Canadian Arrow Mines Ltd.

Emmons Lake Project

Assessment Report on Prospecting

NTS 52F/10SW

January 31, 2008

Todd Keast, Jessica Bjorkman

TABLE OF CONTENTS

Summary	Page
· · · · · · · · · · · · · · · · · · ·	1
Location and Access	1
Topography	4
Land Tenure and Access.	4
Regional Geology	4
Property Geology	5
Historical Work	5
Exploration Program Results	8
Recommendations	9
References	11

APPENDIX I Option Agreement

APPENDIX II Assay Results

SUMMARY

During January 2008, Canadian Arrow Mines Limited completed a prospecting program on its Emmons Project. The Emmons Prospect, which consists of a single 4 unit claim (K 1247471), is situated within Turtlepond Lake Township G-2595 of the Kenora Mining Division. The claim is situated within an intrusive body proximal to the Atikwa Batholith. The sampling program is a follow up to recommendations by C.E. Blackburn of the Ontario Geological Survey (Open File Report 5987). In 1999 the OGS visited this property and located the historical trench. Grab samples by the OGS returned Nickel (Ni) values >2000 PPM and recommended additional exploration efforts.

The prospecting program was initiated to relocate a historical Ni showing, collect a suite of mineralized samples, and a suite of host rocks representative of the surrounding host lithologies. Currently the company has ongoing Ni-Cu exploration properties in the area with exploration programs underway on a number of them.

The prospecting program successfully located the historical trenches and returned anomalous Ni-Cu mineralization as comparable to results documented in past exploration programs and OGS property visits. The host rocks compare favorably to what the company has observed at the Kenbridge Nickel Deposit and to other Ni-Cu properties that company is working.

Line cutting, ground and airborne geophysical surveys are planned for the Emmons Lake property. Additional claims that have been staked to surround this showing.

PROJECT LOCATION AND ACCESS

The Emmons Lake Property is located 30 km southeast of Dryden Ontario, within Turtlepond Lake Township (G-2595), of the Kenora Mining Division (Figure 1).

The claim is situated in the west central portion of the township overlapping the western side of Emmons Lake. The project is centered at UTM 520609 E 5487918 N Zone 15, 52F/10SW.

The Emmons Project is accessed by traveling along Hwy 502 approximately 30 km south from Dryden. A gravel road going east at this point for approximately 1.0 km is used to access Emmons Lake and crosses the north and central portions of claim.

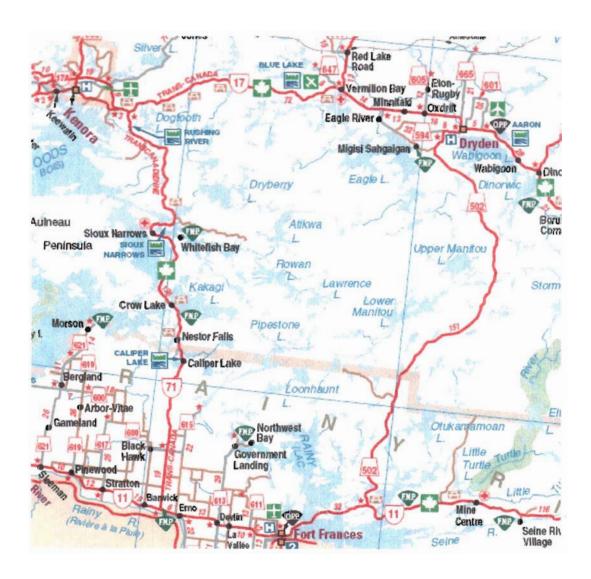


Figure 1 - Location Emmons Lake Project

TOPOGRAPHY AND CLIMATE

The topography of the Emmons Lake is flat to gently rolling. Outcrop exposure is low, approximately 10-15%. The majority of the property is covered by spruce bog, alder and muskeg. Drainage is controlled by a number of small rills which drain into Emmons Lake.

LAND TENURE AND OWNERSHIP

The Emmons Project consists of 1 claim covering four units, situated within Turtlepond Lake Township G2595 of the Kenora Mining Division (Figure 2). Edward Barkauskas (25%) and Sherridan Johnson (75%) are the registered holders (100%) of this claim. Canadia Arrow Mines has an option agreement with the claim holders to earn a 100% interest in this property. A listing of claims is included in Table 1.

Table 1 - Claim Listing for Emmons Lake Project

Township	Claim #	Units	Hectares	Due Date
Turtlepond Lake	K 1247471	4	64	Feb 3/2008

REGIONAL GEOLOGY

The exploration target sought for is nickel-copper sulphide mineralization, with associated platinum group elements. Ni-Cu sulphide deposits are generally associated with ultramafic and gabbroic volcanic rocks of both intrusive and extrusive nature. The Ni-Cu sulphide deposits are generally associated within a specific sulphide rich horizon, which is generally conductive due to the high sulphide content.

The Atikwa batholith is a prominent regional intrusion which extends west to the Denmark lake area (**Figure 3**). Surrounding this intrusion are a number of Ni-Cu showings at various stages of exploration and development. Canadian Arrow is currently conducting a diamond drill program on the Kenbridge Nickel Deposit,

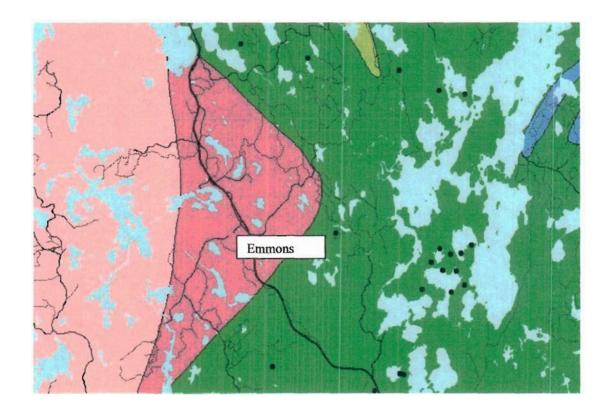


Figure 3 - Regional Geology

in addition to exploration programs on a number of other Ni-Cu projects. This initial prospecting sample collection will allow the company to determine the exploration merits of the Emmons Project and determine the next phase of work.

PROPERTY GEOLOGY

The property geology is best known from a mapping program conducted by New Consolidated Canadian Exploration Ltd. in 1960. Their geological mapping in conjunction with a magnetometer survey indicates a northwest/southeast trend to the underlying geology. Rock types identified from the mapping include granite, diorite, gabbro, and andesite. Sulphide mineralization is hosted in gabbro and diorite host rocks along the north shore of Emmons Lake.

HISTORICAL WORK

In 1941, mapping by J. Satterly produced Map No. 50e of the Dryden-Wabigoon

Area (Satterly, 1941). The rocks on the Emmons property were mapped as unit 4a, diorite and quartz-hornblende diorite of the Algoman Group (Atikwa Batholith). This intrudes the older, basic to intermediate volcanic rocks (basalt) of the Keewatin Group, located 900 meters to the east.

In 1960, geological and geophysical surveys and 10 packsack diamond drill holes (112.5m) were done by New Consolidated Canadian Exploration imited on the Lantz Option (Kenora Assessment File 52F/10SW M-1). Geological mapping (scale 1:4,800) shows diorite (host rock) intruded by diorite porphyry and later, northwest trending granite porphyry dykes. Assays from the drilling were:

Hole No.	% Cu	% Ni	Footage (ft)
1	1.02	1.34	17.2
2	0.44	0.26	17.6
5	0.38	0.17	10.0
5	0.37	0.40	5.6
6	0.45	0.26	6,4
9	0.63	0.28	20.0
10	0.65	0.54	17.1

The sulphide mineralization encountered is finely disseminated over core lengths up to 25 feet or so, with some heavier concentration over a few inches, in places. The mineralization occurs in the medium grained diorite and to a lesser extent in the coarse diorite and quartz diorite. Geophysical surveys, electromagnetic and magnetometer, were carried out and detailed induced polarization around the occurrence (Kenora Assessment File 52F/10SW M-1). No conductor was located over the showing while several small sharp magnetic areas where located around the showing. Near the showings, detailed magnetic work defined an east-west magnetic low cutting across magnetic highs. The bulk of the known coppernickel mineralization lies on the contact of this magnetic low.

In 1962, McIntyre-Porcupine Mines Limited optioned the Lantz Property on Emmons Lake. Four drill holes (307 m) intersected andesite, quartz-hornblende epidiorite, epidiorite, which were intruded by an aplite dyke. A geological cross section of the drilling was included. Copper-nickel was located within the epidiorite zones (see Kenora Assessment Files 52F/10SW L-1).

In 1970, A. Lantz (prospector) and H.L. King (Ontario Department of Mines) visited this site. The following excerpt is from King's property visit report.

A dark grey, gabbroic rock with unaltered pyroxene and containing inclusions of light grey diorite and fine grain andesite, is the host rock for the mineralization. A breccia texture characterized by rounder fragments (or inclusions) occurs within the mineralized zone. Several quartz veins and narrow granitic dykes (several inches to 2' wide) cut the mafic rocks. Patches of disseminated sulphides consisting of pyrrhotite, chalcopyrite and pyrite have been exposed in 6 trenches, which occur over an area of about 300 feet by 130 feet. Mineralization is generally confined to the darker gabbro but some of the inclusions are also mineralized.

In 1971, A. Lantz drilled two boreholes (98 m) through the mineralized occurrence. Diorite and granitic dike were encountered with 7.6 m of pyrrhotite and chalcopyrite encountered in both holes. No assay data was recorded (Kenora Assessment File 52F/10SW H-1).

In 1982, the Manitou-Stormy Lakes Area Airborne Electromagnetic and Magnetic Survey (Ontario Geological Survey, 1982) covered the west end of the property area. Two weak EM anomalies (5th category) were detected. One EM anomaly was located 50-75 meters west of the showing and probably represents the showing. Location accuracy is within a 100 m (to 200 m) radius when investigating these anomalies on the ground due to the poor navigation equipment at the time of the survey. A second EM anomaly was located 125-150 meters northeast of the showing and has not been explained. However, according to Newcomex mapping, it is represented by the same diorite unit, which hosts the main showing, but limited outcrop was found. The magnetic survey was discontinued 300 meters west of the showing.

In 1998, P. Hinz visited this site in his preliminary survey of the Atikwa Batholith for PGE potential (Hinz, 1998). Anomalous copper-nickel and elevated

platinum-palladium was detected in the main trench at the Emmons Occurrence. No major element geochemistry was located.

Sample	Sample Description	Au ppb	Co ppm	Cu ppm	Ni ppm	Pd ppb	Pt ppb	Sc ppm	Sr ppm	Zn ppm
98-0050	Gabbro with sulfides	2	N.D.	8	17	N.D.	N.D.	3	128	25
98-0051	Gabbro with sulfides	92	98	4514	3405	51	102	29	343	125

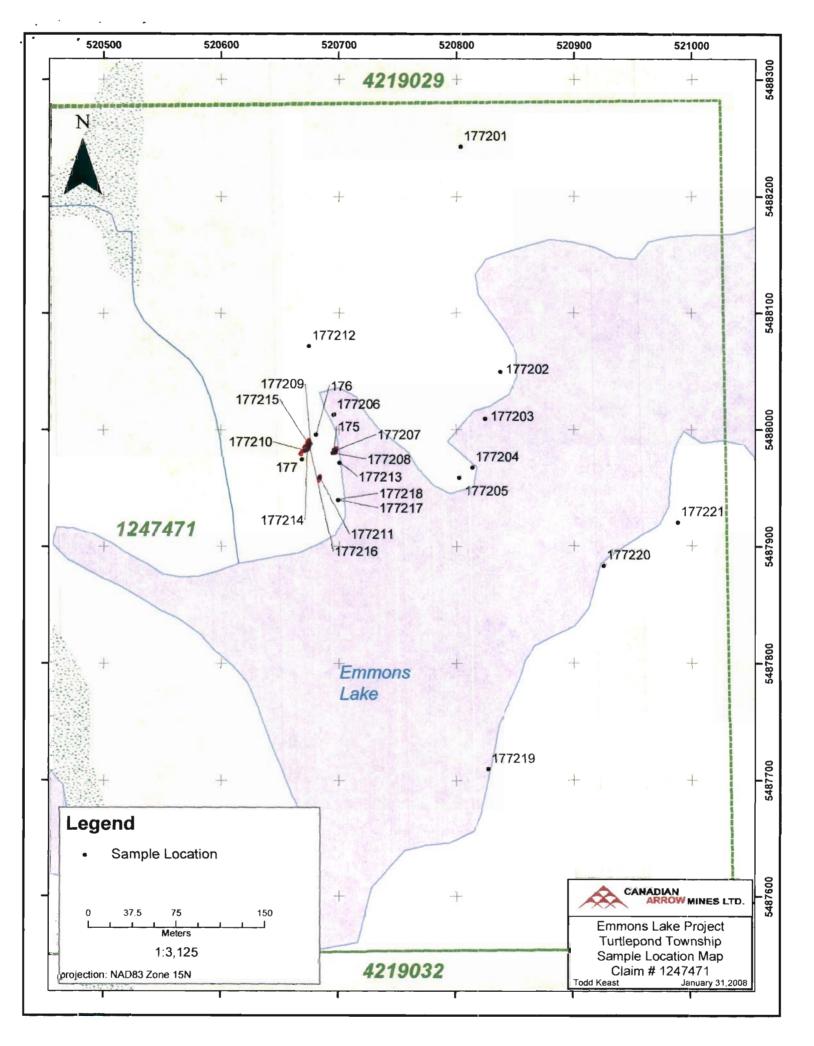
Results

Rock was looked at on both the north and south shores of Emmons Lake. The majority of the rock found was gabbro or diorite and contained trace amounts of sulphide. The gabbro ranged from fine to medium grained and was a melagabbro in places.

The main showing however, was mineralized gabbro to melagabbro with typically 5-10% chalcopyrite, pyrite and sometimes pyrrhotite. (There is a possibility there was pentlandite, however, it was hard to spend much time examining the rock for an accurate conclusion with the cold temperatures.) The main showing was approximately 25m by 10m wide and appeared to be a stripped outcrop with broken wasterock on top of the outcrop. There were 2 old drill core boxes lying on top of the outcrop. A total of five samples were taken from the mineralized rock found on the main showing.

There appeared to be a second smaller stripped outcrop on the lakeshore. It was approximately 10m by 5m and one sample was taken here. Within 50 metres of the main showing, there were two other outcrops that were mineralized and weathered rusty, which were also sampled. The old road indicated on the map, is now just a trail, but could be easily cleared with a bulldozer to reach the showings. There are no steep hills until the showings, which have small steep outcrops around them.

A total of 21 samples were taken one representative sample from the showing (177216). Pictures were taken of each sample as well. Sample locations are


indicated on Map 4 and assay results are included on Appendix I.

The assay results clearly indicate anomalous nickel contents for the samples collected from the trench area and confirm the results of previous sampling.

Recommendations

Further work is recommended for the Emmons lake Property. Lincutting, ground geophysics, surface mapping and sampling should be initiated on this program to determine the extent of the sulphide mineralization. Diamond drill locations will be dependent upon the results of the surveys.

Jodd/ant Jan 31/08

REFERENCES

- Jackson, S.L., Fyon J.A., The Western Abitibi Subprovince in Ontario; in Geology of Ontario, Ontario Geological Survey, Special Volume 4 Part 1.
- Blackburn, C.E., Hinz, P., Storey, C.C., Koslowski, L., and Ravanaas, C.B. 1999.
 Report of Activities 1988, Resident Geologist Program, Red lake Regional
 Resident Geologist Report: Red lake and Kenora Districts; Ontario
 Geological Survey Open File Report 5987, 88p.

Appendix II

Prospecting Assay Result

Emmons Lake Prospecting 2008

Duration	Units	Sequence	SAMPLE	NI	Cu	Pd	Ag	Co	As	Pb	W	Zn	Cd	Ba	Мо	Nb	Zr	Sr	Rb	Bi	Fe	Mn	Cr	٧	Ti	Ca	K	S	Bai
60	3 %	Final	BLANK	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	(0 < LOD	< LOD	< LOD	< LOD	0.01	< LOD	0.01	0.01	< LOD	0.09	< LOD	< LOD	99.86				
60	9%	Final	NCS 73308	< LOD	0	C	< LOD	0.01	< LOD	< LOD	()	0 0.01	0	< LOD	< LOD	3.3	0.13	0.04	0.03	0.15	0.75	< LOD	< LOD	95.48				
60	9 %	Final	CCRMP TILL-4	< LOD	0.02	< LOD	< LOD	< LOD	0.01	C	0.03	0.01	< LOD	< LOD			0.04	0.01	0.01	0.01	4.79	0.05	0.02	0.04	0.54	1.07	3.79	< LOD	89.49
66	3 %	Final	NCS 73308	< LOD	0		< LOD	0	< LOD	< LOD			0 0.01	0	< LOD	< LOD	3.28	0.11	0.04	0.03	0.16	0.76	0.15	< LOD	95.43				
- 60	9%	Final	RCRA 180-436	< LOD	< LOD	< LOD	0.05	< LOD	0.04	0.08	< LOD	0.01	0.05	< LOD	(0.02	0.01	0.01	< LOD	6.26	0.1	0.07	0.04	0.49	4.42	2.67	< LOD	85.63
60	%	Final	177216	0.51	0.73	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD			0 < LOD	0.01	< LOD	< LOD	11.95	0.18	0.06	0.03	0.29	3.94	0.16	2.5	79.61
60	%	Final	177221	< LOD	< LOD	< LOD	< LOD	0	< LOD	< LOD	(0.01	0.01	< LOD	< LOD	4.51	0.07	0.03	0.03	0.24	6.94	1.23	< LOD	86.05				
60) [%	Final	177220	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD		ס	0.01	0.01	< LOD	< LOD	5.81	0.1	0.01	0.02	0.2	2.65	0.27	< LOD	90.64				
- 60	%	Final	177219	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD			0.01	0.01	0	< LOD	4.5	0.16	0.01	0.01	0.12	0.93	0.49	< LOD	93.64				
60	%	Final	177209	0.63	1.29	< LOD	0	< LOD	0	< LOD	< LOD	0.01	< LOD	< LOD)	0 < LOD	0.01	< LOD	< LOD	12.07	0.13	0.05	0.05	0.35	4.68	< LOD	6.46	74.04
60	0 %	Final	177208	0.12	0.04	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD	(3	0 < LOD	0.01	< LOĐ	< LOD	9.67	80.0	0.06	0.02	0.18	2.75	< FOD	< LOD	85.64
60) %	Final	177207	0.25	0.32	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD)	0 < LOD	0.01	< LOD	< LOD	9.08	0.08	0.05	0.03	0.25	5.19	0.25	5.75	78.7
60	0 %	Final	177218	< LOD	0.04	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD	()	0 0	0.02	< LOD	< LOD	9.86	0.13	< LOD	0.06	0.54	6.71	< LOD	< LOD	80.59
60	%	Final	177215	0.2	0.27	< LOD	< LOD	< LOD_	< rob	< LOD	< LOD	0.01	< LOD	< LOD	(0 0	0.02	< LOD	< LOD	8.52	0.11	0.04	0.02	0.14	4.47	V LOD	< LOD	85.98
60)%	Final	177214	0.87	0.97	< LOD	< LOD	< LOD	0	< LOD	< LOD	0.01	< LOD	< LOD		< LO	< LOD	0.01	< LOD	< LOD	12.21	0.08	0.05	0.04	0.23	3.74	0.21	9.61	71.96
60)%	Finaí	177216	0.45	1.73	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.02	< LOD	< LOD	(0 < LOD	< LOD	< LOD	< LOD	12.96	0.14	0.04	0.03	0.12	2.49	< LOD	5.08	76.9
60	3 %	Final	177217	< LOD	3.05	< LOD	< LOD	< LOD	0	< LOD	()	0 0	0.02	< LOD	< LOD	12.05	0.08	0,03	0.03	0.38	3.7	0.2	6.83	73.54				
60	7 %	Final	177206	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD	(0.01	0.02	< LOD	< LOD	6.02	0.13	0.04	0.05	0.34	2.69	1.08	< LOD	88.02				
60	9%	Final	177205	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD			0.01	0.02	< LOD	< LOD	7.02	0.13	0.02	0.04	0.51	4.5	< LOD	< LOD	87.03				
60	3 %	Final	177213	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD	(0 < LOD	0.02	< LOD	< LOD	8.29	0.14	0.02	0.02	0.45	6.81	0.2	< LOD	82.92				
60	9 %	Final	177204	< LOD	< FOD	< LOD	< LOD	0.01	< LOD	< LOD	()	0.01	0.02	< LOD	0	7.08	0.07	0.02	0.03	0.4	10.09	0.17	< LOD	80.85				
60	96	Final	177212	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	()	0.01	0.01	0	< LOD	1.25	< LOD	0.02	0.05	0.32	0.16	3.46	< LOD	94.68				
	_	Finai	177203	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD	()	0 0	0.02	< LOD	< LOD	6.63	0.09	0.02	0.04	0.33	7.78	< LOD	< LOD	84.8				
60	9%	Final	177211	0.87	0.6	< LOD	< LOD	< LOD	0	< LOD	(0 < LOD	0.01	< LOD	< LOD	16.13	0.07	0.02	0.03	0.27	3.11	0.15	5.7	73.01				
60)%	Final	177211 DUP	0.75	0.59	< LOD	< LOD	< LOD	0	< LOD	(0 < LOD	0.01	< LOD	< LOD	15.08	0.07	< LOD	< LOD	0.15	1.89	< LOD	2.64	78.77				
60	%	Final	177210	1.45	0.29	< LOD	< LOD	< LOD	< LOD	< LOD	< FOD	0.01	< LOD	< LOD	()	0 < LOD	0.01	< LOD	< LOD	15.53	0.11	0.03	0.02	0.09	1.38	< LOD	5.45	75.52
	_	Final	177202	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD	()	0 < LOD	0.01	< LOD	< LOD	5.9	0.09	0.07	0.04	0.29	7.16	0.18	< LOD	85.67				
60	%	Final	177201	< LOD	< LOD	< LOD	< LOD	0.01	< LOD	< LOD	(0 < LOD	0.02	< LOD	< LOD	6.58	0.15	0.04	0.02	0.18	6.23	0.24	< LOD	86.36				

Bjorkman Prospecting 807-929-1093

UTM Grid NAD83 Datum

Emmons Lake Prospecting January 29+30 2008, Jessica & Aaron Bjorkman

Sample #	Lab ID	UTM Zone Ea	sting	Northing	Elevation	Assay ppb Rock Type	Mineralization	Alteration	Comment
177201			520804	5488243	430	melagabbro?	trace-minor fine pyrite		greenish grey, medium grained
177202			520838	5488050	431	diorite?	trace pyrite if any	minor foliation	medium grained
177203			520825	5488010	425	gabbro	minor py on fracture	minor epidote, sheared	
177204			520814	5487968	421	gb or diorite?	1% py on frcture, locally c	ubey py	fine/medium grained
177205		15 U	520803	5487959	425	gb or basalt?	minor py	minor rust, cross-frctrd	fgr, dark greenish-black
177206			520696	5488013	420	mafic	tr-minor pyrite	cross-fractured	fgr, beside cgr leucogb
177207			520697	5487982	422	melagabbro	5% fine chalcopyrite, po	rusty fractures	fine/medium grained
177208	}	15 U	520695	5487980	424	melagabbro	trace sulfide	hematite, rusty weather	medium grained
177209			520676	5487988	419	melagabbro	5-10% cpy, po, py	chlorite/talc?, rusty	mgr, loose on showing
177210			520671	5487982	428	melagabbro	5-10% cpy, p (poss pent)	rusty gossin wthrd surf	m + cgr, from wastepile, loose
177211		15 U	520684	5487959	429	gabbro	5% cpy, py		medium grained
177212			520675	5488072	426	pink felsic		carb + hematite alter'n	qtz vning stockwork
177213		15 U	520701	5487972	430	melagabbro	trace pyrite		medium grained, dark grey
177214			520673	5487983	426	gabbro	5% cpy, py	rusty gossin wthrd surf	at main showing
177215			520674	5487988	425	gabbro	1% cpy, py	rusty	m+cgr, loose pcs from showing
177216			520675	5487986	428	melagabbro	5% cpy+py		medium grained, dark grey
177217			520700	5487940	419	gabbro	local massive cpy, py		fine gr, from 2cm miner'd zone
177218			520700	5487940	419	gabbro	minor pyrite		fine grained
177219			520828	5487710	438	diorite?		highly metamorphosed	1cm k-spar vein
177220			520926	5487884	423	mafic	no sulfide		fine grained, grey
177221		15 U	520989	5487921	426	gb/diorite?	rotted sulfide?	orange/brown carb	medium grained, grey
175	5	15 U	520696	5487983	421	5 X 10 m stripp	oed showing		
176	6	15 U	520681	5487996	425	stripped outcro	pp with old core boxes and		
177	•	15 U	520669	5487975	426	waste rock bro	ken in small pieces piled or	ı top	
178	3	15 U	520509	5488437	425	start of old roa	d leaving gravel road		

UTM Grid NAD83 Datum

Accurasay Results Sample # Comment

Niton Results

Sample #	Comment																
	Ni	Cu C	o Au	Pt	Pd	\sqcap	SAMPLE NI		Cu	Pd	Ag	Со	As	Pb	W	Zn	Cd
177201	97	46	39	8	<15	<10	177201 < LO	D	< LOD	0.01	< LOD						
177202	171	78	46	9	21	<10	177202 < LO	D	< LOD	0.01	< LOD						
177203	68	78	33	9	18	<10	177203 < LO	D	< LOD	0.01	< LOD						
177204	59	107	42	11	19	<10	177204 < LO	D	< LOD	0.01	< LOD						
177205	81	95	46	6	<15	<10	177205 < LO	D	< LOD	0.01	< LOD						
177206	67	59	34	6	15	<10	177206 < LO	D	< LOD	0.01	< LOD						
177207	7090	8776	179	299	177	108	177207	0.25	0.32	< LOD	0.01	< LOD					
177208	918	638	40	122	93	54	177208	0.12	0.04	< LOD	0.01	< LOD					
177209	11952	12279	215	171	146	88	177209	0.63	1.29	< LOD	0	< LOD	0	< LOD	< LOD	0.01	< LOD
177210	15731	4345	374	28	46	107	177210	1.45	0.29	< LOD	0.01	< LOD					
177211	9936	9632	280	228	126	96	177211 (0.87	0.6	< LOD	< LOD	< LOD	0	< LOD	< LOD	< LOD	< LOD
177212	560	389	18	10	<15	<10	177212 < LO	D	< LOD								
177213	161	118	34	7	16	<10	177213 < LO	D	< LOD	0.01	< LOD						
177214	9839	10787	246	170	268	175	177214	0.87	0.97	< LOD	< LOD	< LOD	0	< LOD	< LOD	0.01	< LOD
177215	3406	7477	84	132	140	53	177215	0.2	0.27	< LOD	0.01	< LOD					
177216	5091	8197	102	222	219	85	177216	0.51	0.73	< LOD	0.01	< LOD					
177217	438	70978	33	542	531	201	177217 < LO	D	3.05	< LOD	< LOD	< LOD	0	< LOD	< LOD	< LOD	< LOD
177218	647	2561	44	61	249	38	177218 < LO	D	0.04	< LOD	0.01	< LOD					
177219	74	160	31	<5	<15	<10	177219 < LO	D	< LOD	0.01	< LOD						
177220	71	154	32	6	<15	<10	177220 < LO	D	< LOD	0.01	< LOD						
177221	124	33	33	<5	<15	<10	177221 < LO	D	< LOD	0	< LOD						

Bjorkman Prospecting 807-929-1093

Ва	Мо	Nb	Zr	Sr	Rb	Bi	Fe	Mn	Cr	V	Ti	Ca	K	S	Bai
< LOD	0	0	< LOD	0.02	< LOD	< LOD	6.58	0.15	0.04	0.02	0.18	6.23	0.24	< LOD	86.36
< LOD	0	0	< LOD	0.01	< LOD	< LOD	5.9	0.09	0.07	0.04	0.29	7.16	0.18	< LOD	85.67
< LOD	0	0	0	0.02	< LOD	< LOD	6.63	0.09	0.02	0.04	0.33	7.78	< LOD	< LOD	84.8
< LOD	0	0	0.01	0.02	< LOD	0	7.08	0.07	0.02	0.03	0.4	10.09	0.17	< LOD	80.85
< LOD	0	0	0.01	0.02	< LOD	< LOD	7.02	0.13	0.02	0.04	0.51	4.5	< LOD	< LOD	87.03
< LOD	0	0	0.01	0.02	< LOD	< LOD	6.02	0.13	0.04	0.05	0.34	2.69	1.08	< LOD	88.02
< LOD	0	0	< LOD	0.01	< LOD	< LOD	9.08	0.08	0.05	0.03	0.25	5.19	0.25	5.75	78.7
< LOD	0	0	< LOD	0.01	< LOD	< LOD	9.67	0.08	0.06	0.02	0.18	2.75	< LOD	< LOD	85.64
< LOD	0	0	< LOD	0.01	< LOD	< LOD	12.07	0.13	0.05	0.05	0.35	4.68	< LOD	6.46	74.04
< LOD	0	0	< LOD	0.01	< LOD	< LOD	15.53	0.11	0.03	0.02	0.09	1.38	< LOD	5.45	75.52
< LOD	0	0	< LOD	0.01	< LOD	< LOD	16.13	0.07	0.02	0.03	0.27	3.11	0.15	5.7	73.01
< LOD	0	0	0.01	0.01	0	< LOD	1.25	< LOD	0.02	0.05	0.32	0.16	3.46	< LOD	94.68
< LOD	0	0	< LOD	0.02	< LOD	< LOD	8.29	0.14	0.02	0.02	0.45	6.81	0.2	< LOD	82.92
< LOD	0	< LOD	< LOD	0.01	< LOD	< LOD	12.21	0.08	0.05	0.04	0.23	3.74	0.21	9.61	71.96
< LOD	0	0	0	0.02	< LOD	< LOD	8.52	0.11	0.04	0.02	0.14	4.47	< LOD	< LOD	85.98
< LOD	0	0	< LOD	0.01	< LOD	< LOD	11.95	0.18	0.06	0.03	0.29	3.94	0.16	2.5	79.61
< LOD	0	0	0	0.02	< LOD	< LOD	12.05	0.08	0.03	0.03	0.38	3.7	0.2	6.83	73.54
< LOD	0	0	0	0.02	< LOD	< LOD	9.86	0.13	< LOD	0.06	0.54	6.71	< LOD	< LOD	80.59
< LOD	0	0	0.01	0.01	0	< LOD	4.5	0.16	0.01	0.01	0.12	0.93	0.49	< LOD	93.64
< LOD	0	0	0.01	0.01	< LOD	< LOD	5.81	0.1	0.01	0.02	0.2	2.65	0.27	< LOD	90.64
< LOD	0	0	0.01	0.01	< LOD	< LOD	4.51	0.07	0.03	0.03	0.24	6.94	1.23	< LOD	86.05

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Feb 20, 2008

Certificate of Analysis

Wednesday, February 27, 2008

Canadian Arrow Mines Ltd.

Date Received:

Canadian Arrow Mines Ltd.

Sudbury, ON, CAN

Date Completed: Feb 27, 2008

Sudbury, ON, CAN

P3B1M7

Ph#: (705) 673-8259

Fax#: (705) 673-5450 Job #: 200840266

Email#: dmaceachern@canadianarrowmines.com

Reference:

Sample #: 21 Core

Acc#		Client ID	Au ppb	Pt ppb	Pd ppb	Rh ppb	Ag ppm	Co ppm	Cu ppm	Fe ppm	Ni ppm	Pb ppm	Zn ppm
24646		177201	8	<15	<10			39	46		97		
24647		177202	9	21	<10			46	78		171		
24648		177203	9	18	<10			33	78		68		
24649		177204	11	19	<10			42	107		59		
24650		177205	6	<15	<10			46	95		81		
24651		177206	6	15	<10			34	59		67		
24652		177207	299	177	108			179	8776		7090		
24653		177208	122	93	54			40	638		918		
24654		177209	171	146	88			215	12279		11952		
24655		177210	28	46	107			374	4345		15731		
24656		177211	228	126	96			280	9632		10524		
24657	Dup	177211	200	131	97			266	9230		9936		
24658		177212	10	<15	<10			18	389		560		
24659		177213	7	16	<10			34	118		161		
24660		177214	170	268	175			246	10787		9839		
24661		177215	132	140	53			84	7477		3406		
24662		177216	222	219	85			102	8197		5091		
24663		177217	542	531	201			33	70978		438		
24664		177218	61	249	38			44	2561		647		
24665		177219	<5	<15	<10			31	160		74		
24666		177220	6	<15	<10			32	154		71		
24667		177221	<5	<15	<10			33	33		124		
24668	Dup	177221	<5	15	<10			34	33		130		

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Wednesday, February 27, 2008

Canadian Arrow Mines Ltd. Date Received: Feb 20, 2008

Canadian Arrow Mines Ltd.
Sudbury, ON CAN Date Completed: Feb 27, 2008

Sudbury, ON, CAN

P3B1M7

Ph#: (705) 673-8259

Fax#: (705) 673-5450 Job #: 200840266

Email#: dmaceachern@canadianarrowmines.com

Reference:

Sample #: 21 Core

Pt Pd Rh Pb Zn Au Ag Co Cu Fe Ni Acc# Client ID ppm ppm ppb ppb ppb ppb ppm ppm ppm ppm ppm

PROCEDURE CODES: AL4APP, AL4Co, AL4Cu, AL4Ni, AL4SLF

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL917-0257-02/27/2008 4:13 PM