Casson Lake Project
V74 Zone
Geological Mapping Report

Curtin Township
G-3005
Sudbury Mining District, Ontario

by

Dan Brunne Geological Technician

FEB, 2008
TABLE OF CONTENTS

LOCATION ... 1
ACCESS .. 1
GEOLOGY ... 1
PREVIOUS WORK ... 2
SUMMARY ... 4
INTERPRETATION ... 4
RECOMMENDATIONS ... 4
MAPPING PROCEDURE ... 6

APPENDIX 1: MAP LOCATION AND VALUES FOR ROCK SAMPLES
APPENDIX 2: STATEMENT OF QUALIFICATION
Casson Lake Intrusion - Sudbury Mining District - Ontario

Summary of Data and Previous Work

Location & Report Area

Curtin Twp: (Geology extends into Mongowin and Roosevelt Townships) approximately 55 kms southwest of Sudbury ON., centered on mining claim number S-1179658 [14 units].

Property

Dan Brunne and Roger Stringer are equal [50%] co-holders of 14 mining claims [45 units]. All claims are in good standing. Access is good via Hwy 6 south from Espanola to Willisville and along Lake Charlton by boat; access to the property is then gained through a series of trails and tertiary roads. Access can also be obtained via a secondary gravel road from Hwy 6 leading to the Whitefish River, then by ATV along an old road bed to the Bousquet Gold mine.

Introduction

The Casson Lake Project is a relatively advanced property with good access and excellent showings. It is most likely a 2230 Ma Nipissing Diabase sill or dike. The property contains numerous gold showings and includes the historic Bousquet Gold Mine [past producer], Bridger Pond [shaft to 110 feet] and the Rainbow gold occurrence [Au over 600m of strike]. PGE Cu-Ni mineralization is associated with sulfides chalcopyrite and pyrrhotite adjacent to or near the contact of the gabbro intrusive and Gowganda Formation sediments (a favourable footwall e.g. Janes Twp. property of PFN). Mineralization also occurs in pods or a pipe of chromite rich gabbro. The intrusion is over 12 kms long and between 200 and 600m wide.

Research

Geological compilation report by G. Harron and Associates; some research has been conducted on mineralization of Nipissing Gabbro in general, Lightfoot and Naldrett 1996, Jobin-Bevans, 1999.

Prospecting and Development

BP Resources Canada completed geophysics, grab sampling, trenching and diamond drilling; the drill core is stored at the author's residence as well as geophysical I.P survey. The property holders completed a considerable amount of power stripping, trenching, sampling and assay over the past 22 years.

Geology

Nipissing Diabase intrusions are 2230 Ma, e.g. - e.g. gabbronorite sills and dikes with strikingly similar geochemistry to East Bull Lake type intrusions. These intrusions generally occur as sills, ring dikes, and dikes intruding Superior Province rocks and the Huronian Supergroup package. They are found intruding mostly as dikes in the Superior Province granitoids and gneisses and as sills within various stratigraphic horizons of the Huronian Supergroup. Commonly 50 to 500m thick, some of the sills are layered and differentiated with Ni, Cu, Co, Au, Ag & PGE mineralization often occurring within the lower section of the stratigraphy.
Mineralization appears to be regionally zoned with higher Ag, and Co in the east and more Cu, Ni, PGE in the central and western areas. These intrusions are formed by slightly variable magmas which are S-undersaturated and PGE Cu-Ni fertile (second stage melts). Some of the best results in Nipissing gabbro intrusions occur in the PFN Janes property (8.7m @ 3.35g/t TPM + 0.57% Cu, 0.33% Ni including 3m @ 8.1g/t TPM + 1.14% Cu, 0.89% Ni). Other results in the Rathbun Intrusion (Flag Resources), and Porter Syncline (Ursa Major) areas are very encouraging.

The Casson Lake intrusion lies on the north limb of the La Cloche Syncline, where Nipissing Gabbro intrudes Gowganda formation (argillaceous dropstone conglomerate) sediments of the Huronian Supergroup. Regional north and northwest trending faults and Sudbury Breccia bodies crosscut the geology. The Casson Lake intrusion is a differentiated gabbrosomite intrusion with highly variable texture, grainsize, and mineralogy. The base of the intrusion is in brecciated igneous contact with footwall sediments. Above the breccia is a unit of equigranular norite, followed by e.g. gabbro, and variably textured gabbro to pegmatitic gabbro near the top of the intrusion. Mineralization is hosted within the basal breccia and the overlying equigranular norite.

Geophysics

BP Resources Canada conducted airborne VLF-EM, and Mag flown with 125m spacing in 1987. IPIRES survey 1974, by Mattagami Lake Mines over western 2/3 of property. BP also did IP over the V74 Zone. The above geophysical surveys indicated direct association to mineralization.

Mineralized Zones

The BP-8, BP-9, BP-1, and An-2, An-3, An-4 zones contain significant mineralization over a strike length of over 1 km in the eastern most section of the property & appear to tie in with mineralization at the BP-I zone. The V75 Zone consists of a 4 unit claim located at the most western extent of the property. It is separated by several patented claims north of Charleton Lake in Miller Bay. The mineralization is consistent and extends over a 800m strike length.

The BP-I zone is located near the western edge of the V74 zone and consists of a roughly 90m x 30m stripped area where mineralization is well exposed over the entire length. Mineralization is seen in numerous gossans with roughly 2-5% disseminated to blebby cpy + po. The intrusive at the BP-I zone is a heterogeneous gabbro/norite with very coarse grained to pegmatitic patches with more mafic patches. Mattagami Lake Mines Ltd. drilled 3 holes (no assays available). Curtin Mines tested the zone in 1979 with DDH 79-2, intersecting .51% Cu and 0.2% Ni over 23.5m (no assays for PGE. BP drilled 6 scissor holes from the north and from the south; none of the holes were drilled with proper stratigraphic control, although one hole did intersect 3m @ 2.09 g/t PGE.

BP-G Zone is a small [15X30m] stripped area with some gossan and heterogeneous gabbro, located approx. 850 m east of the BP-I zone. This area is a newly stripped area and will be channel sampled in the near future.

Bousquet North Zone is a power stripped area located 1.5 km. east of the BP-I Zone. Stripping has identified an area of gossan, sampling on surface and one drill hole by BP yielded encouraging results. BP grab samples indicated mineralization up to 3.2 g/t PGE + Au. The drill hole intersected 1m of greater than 10 g/t Au.

BP Zones 5, 6, and 7 located 1.6 to 2.3 km east of the BP-I zone. These are showings that expose mineralization on an apparent continuous trend over 600m. of strike. The zones show mineralization of large blebby sulfides in fragment bearing heterogeneous gabbro. A distinctive shear zone cuts all three zones with associated gossan and may be used to correlate detailed geological settings along strike.
Summary

The property consists of numerous PGE- Cu- Ni showings in a Nipissing Gabbro sill - dike (Casson Lake Gabbro) that is 200-500m wide and exposed over a 7 kms strike length on the property. The gabbro intrudes folded Gowganda Formation sediments of the Huronian Supergroup, numerous faults and dikes crosscut and disrupt the intrusive. The property and area have had a long exploration history including stripping, trenching, sampling, mapping, and geophysics by junior companies, major companies and prospectors. Assays of highly anomalous PGE occur over >7 kms of strike length. The best assays to date are 8.8 g/t PGE and up to 0.8% Cu and 0.28% Ni in channel samples. Geophysics indicates minor to moderate anomalies coincident with showings on the property. Although the properties have received a vast amount of work very little proper geological, structural and geophysical interpretation has been applied.

The possibility exists for several low grade (2-5 g/t PGE), moderate tonnage (5-10 Mt.), near surface deposits on this property. This property represents one of the best PGE Cu-Ni occurrences in the region and the only significant advanced property not currently held by or in Joint Venture with a major company.

Interpretation

Geological and geophysical interpretation on the property has been inadequate at the level required for exploration and development of a property of this size and complexity. PGE Cu-Ni mineralization appears to be related to the more dynamically emplaced and contaminated portions of the intrusive. The mineralization is similar to that seen at East Bull Lake and River Valley where a very small amount of sulfide occurs in variable gabbroic rocks. One significant difference between Nipissing Gb and EBL type mineralization is the much higher Cu-Ni tenors in the former. Mineralization appears to be continuous at anomalous values along the strike of the intrusion. The stripping on the property is well advanced and exposes wide areas to be sampled and mapped. A potentially serious error affecting the positioning of drill-collar locations was observed while reviewing the BP Resources Canada I.P. Filtered Profiles data.

Most if not all of the BP drill holes were spotted based upon [a] visual observation of mineralized occurrences. [b] I.P. resistivity profiles. It was noted that the drills collars were determined from the horizontal bar scale that is separated from the coloured profile by 1 cm. The drill collar locations were established from the bar scale which essentially moves the true drill location approximately 25-30 metres horizontally from where they were targeted. From the I.P. profiles the drilling would not intersect the targeted mineralization.

Concerns on the property are [i] minor large equipment (drills, excavators, etc.) access problems, and [2] the threat of Provincial Park expansion. Access can be gained for large equipment across the Whitefish River and is not a major problem at least in the winter months. As long as the claims and patents are held in good standing they are valid as is any advanced exploration or development.

Recommendations

This property is the best PGE Cu-Ni property evaluated thus far by the Regional PGE Project including current Falconbridge claims. Besides possibly East Bull Lake and the PFN Dana Zone in the River Valley intrusion, no better grade, consistent PGE mineralization, has
The AN-3 zone is stripped for 40m x 70m and located approximately 5kms east of the BP-I Zone near Casson Lake. This area contains a chromite rich gabbro unit overlain by inclusion bearing pegmatitic gabbro. One 0.5m channel sample assayed 8.8 g/t PGE, 0.3 % Cu and 0.1 % Ni.

The AN-2, AN-3, AN-4 and Malachite Pit zones are all stripped areas in the eastern portion of the property; these zones show similar mineralization to other areas on the property.

Significant gold mineralization occurs at several showings on the property including the historic Bousquet Gold Mine, Bridger Pond, and Rainbow occurrences.

Results

Sample Assays

Some of the better samples from locations across the Casson Lake Gabbro include the following:

<table>
<thead>
<tr>
<th>Location</th>
<th>Pd (g/t)</th>
<th>Pt (g/t)</th>
<th>Au (g/t)</th>
<th>PGE (g/t)</th>
<th>Cu%</th>
<th>Ni%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 1</td>
<td>1.4</td>
<td>1.1</td>
<td>4.4</td>
<td>6.9</td>
<td>0.4</td>
<td>0.08</td>
</tr>
<tr>
<td>BP 5</td>
<td>2.1</td>
<td>0.8</td>
<td>0.3</td>
<td>3.2</td>
<td>0.9</td>
<td>0.09</td>
</tr>
<tr>
<td>BP 6</td>
<td>2.4</td>
<td>0.5</td>
<td>0.8</td>
<td>3.7</td>
<td>0.7</td>
<td>0.17</td>
</tr>
<tr>
<td>BP 7</td>
<td>3.6</td>
<td>0.7</td>
<td>0.7</td>
<td>5.0</td>
<td>0.3</td>
<td>0.06</td>
</tr>
<tr>
<td>BP 8</td>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
<td>1.6</td>
<td>0.4</td>
<td>0.14</td>
</tr>
<tr>
<td>BP 9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>2.4</td>
<td>0.3</td>
<td>0.07</td>
</tr>
<tr>
<td>BP 10</td>
<td>2.1</td>
<td>0.5</td>
<td>0.9</td>
<td>3.5</td>
<td>0</td>
<td>0.28</td>
</tr>
<tr>
<td>BP 12</td>
<td>1.4</td>
<td>0.3</td>
<td>0.6</td>
<td>2.3</td>
<td>8</td>
<td>0.22</td>
</tr>
<tr>
<td>BP Bousquet N</td>
<td>2.5</td>
<td>0.4</td>
<td>0.3</td>
<td>3.2</td>
<td>0.4</td>
<td>0.05</td>
</tr>
<tr>
<td>AN 2</td>
<td>2.6</td>
<td>0.5</td>
<td>0.8</td>
<td>3.9</td>
<td>0.3</td>
<td>0.26</td>
</tr>
<tr>
<td>AN 3</td>
<td>4.5</td>
<td>3.4</td>
<td>0.9</td>
<td>8.8</td>
<td>0.7</td>
<td>0.12</td>
</tr>
<tr>
<td>AN 4</td>
<td>2.2</td>
<td>0.5</td>
<td>0.4</td>
<td>3.1</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>Bousquet Gold</td>
<td>119.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: showings BP 10 and AN 3 are 7 kms apart and remain within the gabbro sill with other showings (BP 5, BP 7) in between.

Drill Core Assays

An aggregate of 30 holes for a total of 3526m have been drilled on the property by BP and Mattagami Mines. Some shorter holes have been drilled by Mr. Brunne mostly for gold. 2750 metres of core is available for re-logging and sampling. Most drilling has been done without sufficient structural or geological control. Best results were returned for holes BP 7 (14m @ 0.52 g/t PGE 0.14% Cu and 0.06% Ni) and BP 75-2 (3m @ 0.49 g/t PGE 0.14% Cu and 0.07% Ni).
been documented. This property could be fully evaluated, through surface mapping, stripping, sampling, geophysics, drilling and data compilation.

Preliminary exploration plan would include:

- Compilation and analysis of available data, maps, reports.
- Igneous contact and stratigraphic mapping.
- Detailed mapping and sampling of stripped areas.
- Re-Logging of available drill core with sampling where necessary.
- Design and contract 90km of grid @ 100m spacing.
- Analysis and compilation of geophysics with respect to known mineralization and contacts. Grid mapping and sampling. Verification of I.P. anomalies in relation to drill hole collars.
- Possible, late winter drill program.
Statement of Qualification

The undersigned, Danny Albert Brunne, hereby provides a statement of adequacies of qualification with respect to MNDM requirements for reporting geological and geotechnical assessment of mining exploration work under the mining act in the province of Ontario.

1. I am a graduate from Sudbury Mining and Technical School- year 1960.
3. I became a professional prospector in 1979 and with the exception of one year have continued to make my livelihood from mining exploration work until present date.
4. I have held numerous contract positions as Geological Technician and Geological Technologist with both major and junior mining as well as mining consulting companies that include Derry Michener Booth & Wahl, MPH Consulting, BP Resources Canada and Cameco Gold Corp.
5. I am a member in good standing of the Ontario Prospectors Association, Sudbury Prospectors Association and the Sudbury Geological Discussion Group.
6. I have completed my duties to the satisfaction of my superiors for more than 27 years.
7. My duties include; prospecting regionally as well as out-of-province "far-north artic regions", line-cutting, claim-staking, geochemical soil and humus sampling, lake-bottom sediment sampling, regional till sampling, supervision of diamond drills, core logging, core splitting, field mapping, detailed trench mapping, channel sampling, drilling and blasting trenches, excavation work planning and supervision and airborne reconnaissance prospecting.
8. I have successfully completed several OPAP programs to the satisfaction of MNDM.
9. I am permanently licensed to prospect in Ontario after 25 years of continuous licensing.

By: Dan A Brunne

Feb 17, 2008
Mapping, Method & Procedure

Location: NTS 41 ¼ Whitefish Falls, G- Plan [G-3005] Curtin Township, Ontario
Map 2312 Mongowin & Curtin Twp. Geology.

Purpose

For more than 90 years, prospectors, junior and senior mining companies have expressed a remarkable interest in the economic potential of the Casson Lake Property Area. Significant gold discoveries were the main focus of early exploration efforts. Later, during the 1960’s and 70’s copper and nickel with associated PGE mineralization was discovered in Nipissing Age Intrusions. But, it wasn’t until the late 1980’s that platinum group elements [PGE] became the primary target for exploration companies. BP Resources Canada acquired the current project area from Aggressive Mining Inc., where they began directing considerable resources towards two high potential occurrences known as the V74 and V75 zones. During their two year campaign on the project, BP Canada collected more than 2400 surface grab samples, completed ground and airborne geophysics and completed 13 diamond drilled holes. It is the V74 zone that this report addresses since very little of the above data was ever made known to the public until the property holders persuaded MacDonald Mines Exploration Ltd. [while under option] to purchase the archived data from a private source.

Beginning in early September 2006, geological mapping of the V74 [Cu, Ni, PGE] zone was undertaken by the author and partner in order to affix grab sample locations including their respective assay values to the local geology. By focusing primarily on the gabbroic lithology associated with the economic value of the Casson Lake Intrusive, a better understanding of the factors that control mineralization is anticipated. No attempt has been made to correlate or establish the relevant age of the PGE host rock as this work has been studied by previous workers [Lightfoot 1994] and [Turcott 2004].

Method

During 1988 BP Resources Canada established an east/west baseline with subordinate tie-lines and systematic north/south grid-lines at 100m intervals and 25m stations. Beginning in early September, the author and co-holder Roger Stringer began mapping and refurbishing of the 1988 survey grid over the area of interest in the immediate area of the V74 zone. For improved accuracy, line co-ordinates were re-established by verifying BP drill collar location data found in MNDM assessment file reports. The grid lines and station locations were cut wherever necessary otherwise stations were flag marked with all-weather ribbon.

Geological Legend

The oldest rock in the map area belongs to the [unsubdivided] Huronian Supergroup suite of rocks [10] consisting of conglomerate, siltstone, argillite and quartzite followed
by an intrusion of Nipissing Gabbro [11], intrusive related brecciated quartzite unit [12] and late Amphibolitic dykes [13].

Scale: 1: 2000 metres

Declination: 9.5 degrees west

Daily Work Report V74 Zone

Sept 2, 2006:
Dan Brunne, [mapper] & Roger Stringer [line-cutter & assistant] mobilize to V74 zone – to re-establish grid location L23+00E & B/L 00, that position being the location of a fixed northeast corner post and square iron bar in the ground on patented claim S 4500 for referencing purposes.

Dan = per day@ $275 Roger = per day@ $200.

Sept 3, 2006: Using a recently calibrated Fieldranger A-350 metric hip-chain the line-cutter re-established L23+00E to 3+50N and L23+00E to 2+50S. Mr. Brunne began mapping of outcrops approximately 25m on each side of L23+00E in a northerly direction. L23+00 E complete.

Sept 4, 2006: Mapping continued on L23+50E from TL 0+50N to 3+50N and then south to 2+50S while the line-cutter re-established L23+50 E to 2+50 S & L24+00E including TL 0+50 N from L23+00E to L24+50E.

Sept 5, 2006: Mapping continued south on L24+00E to 2+50S, line-cutting re-established TL 0+50N to L26+00E & L24+50E to 3+50N and 2+50S.

Sept 6, 2006: Mapping continued starting on L24+00E to 3+50N, line-cutting re-established of L25+00E.

Sept 10, 2006: Mapping continued north starting from TL 0+50N on L24+50E to 3+50N & L25+00E back to TL 0+50N, line-cutting re-established all of L26+00E and extended TL 0+50 N to L27+00E.

Sept 11, 2006: Mapping continued south from TL0+50N on L24+50E including L25+00E to 2+50S, line-cutting re-established L27+00E to 2+50S and all of L27+00E.

Sept 12, 2006: Mapping continued from 25+050S to 3+50N on L26+50E, line-cutting re-established L28+00E and also TL 0+50N to L29+00E.
Sept 13, 2006: Mapping continued on L27+00E from TL 0+50N to 3+50N, line-cutting re-established L30+00E to 2+50S including 3+50N.

Sept 14, 2006: Mapping continued L28+00E from TL 0+50N to 3+50N, line-cutting re-established L29+00N.

Sept 16, 2006: Mapping continued on L28+00E from TL 0+50N to 2+50S, line-cutting re-established L31+00E including extending TL 0+50N to L32+00E.

Sept 19, 2006: Mapping continued on L28+00E from 0+50N to 2+50S, line-cutting re-established L32+00E to 3+50N including L0+25S.

Sept 20, 2006: Mapping continued on L29+00E from TL 0+50N to 3+00N, line-cutting re-established L33+00E to 3+50N including to 1+15S.

Sept 22, 2006: Mapping continued on L29+00E from 0+50N to 1+15S & on L30+00E along the lakeshore of White Lake to L32+00E, line-cutting re-established L34+00E.

Sept 23, 2006: Mapping continued on L30+00E from 0+50N to 4+00N & on L31+00E back to TL 0+50N, line-cutting re-established L35+00E including TL 0+50N to L37+00E.

Sept 26, 2006: Mapping continued on L32+00E from 0+50N to 4+00N, line-cutting re-established L36+00E.

Sept 27, 2006: Mapping continued on L33+00E from 0+050N to 4+50N, line-cutting re-established L37+00E.

Sept 28, 2006: Mapping continued on L34+00E from 0+50N to 4+50N, line-cutting re-established L38+00E.

Sept 17, 2006: Mapping continued on L35+00E from 0+50N to 5+50N, line-cutting re-established L39+00E from 0+50N to 5+00N.

Sept 18, 2006: Mapping continued on L36+00E from 1+50N to 5+50N, line-cutting re-established L39+00E from T/L 1+50N to 5+50N.

Sept 29, 2006: Mapping continued on L37+00E from 1+50N to 5+50N, line-cutting re-established L40+00E from T/L 1+50N to 5+50N.

Sept 30, 2006: Mapping continued on L38+00E from 1+50N to 5+50N, line-cutting re-established L41+00E from T/L 1+50N to 5+50N.

Oct 10, 2006: Mapping continued on L39+00E from 3+00S to 5+50N, line-cutting re-established L42+00E from T/L 1+50N to 5+50N.
Oct 11, 2006: Mapping continued on L40+00E from 1+50N to 5+50N, line-cutting terminated for this year on L43+00E at 5+50N.

Oct 13, 2006: Mapping continued on L42+00E from 1+50S to 5+50N. Line-cutter demobilized equipment to Willisville.

Oct 14, 2006: Mapping continued on L43+00E from 1+50N to 5+50N. Line-cutter completed de-mob of equipment

March 12, 2007: Map plotting and report preparation. Dan

March 13, 2007: Map plotting and report preparation. Dan

March 14, 2007: Map plotting Dan.

March 22, 2007, Map plotting Dan

March 25, 2007, Map plotting Dan

March 26, 2007, Map plotting Dan.

April 25, 2007: Map plotting Dan.

Work days this period re: Dan Brunne 37 days X $275 = $10,175.

Work days this period re: Roger Stringer 26 days X $200 = $5,200.

Sub-Total: $15,375.
April 28, 2007: Re-mobilize equipment to V74 zone, Dan & Roger

April 29, 2007: Mapping continued on L43+00E from 1+50N to 1+50S, line-cutter completed re-mobilization of equipment.

April 30, 2007: Mapping continued on L44+00E from 1+50N to 5+50N, line-cutting re-established L44+00E from 1+50N to 5+50N & 1+50N to 1+50S, including extending TL 1+50N to L45+00E.

May 2, 2007: Mapping continued on L45+00E from 1+50N to 5+50N, line-cutting re-established L45+00E from 1+50N to 5+50N & 1+50N to 1+50S, extended TL 1+50N to L46+00E.

May 3, 2007: Mapping continued on L46+00E from 1+50N to 5+50N, line-cutting re-established L46+00E & TL1+50N to L47+00E.

May 6, 2007: Mapping continued on L47+00E from TL1+50N to 5+00N, line-cutting re-established L47+00E & TL1+50N to L48+00E.

May 7, 2007: Mapping continued on L48+00N from TL1+50N to 5+50N, line-cutting re-established L48+50E & TL1+50N to L49+00E.

May 8, 2007: Mapping continued on L48+00E from TL1+50N to 5+50N, line-cutting re-established L49+00E & TL1+50N to L49+50E.

May 9, 2007: Mapping continued on L48+50E from TL1+50N to 5+50N, line-cutting re-established L49+50E & TL1+50N to L50+00E.

May 10, 2007: Mapping continued on L49+00E from TL1+50N to 5+50N, line-cutting re-established L50+00E & TL1+50N to L50+50E.

May 13, 2007: Mapping continued on L49+50E from TL1+50N to 5+50N, line-cutting re-established L50+50E & TL1=50N to L51+00E.

May 14, 2007: Mapping continued on L50+00E from TL1+50N to 5+50N, line-cutting re-established L51+00E & TL1+50N to L51+50E.

May 15, 2007: Mapping & line-cutting terminated until the Fall. De-mobilize equipment both Dan & Roger.

Work days this period re: Dan Brunne = 13 days X $275. = $3575.

Work days this period re: Roger Stringer = 13 days X $200. = 2600.

Sub - total: $21,550.
Oct 4, 2007: Mapping continues; re-mobilize equipment to V74 zone, Dan & Roger.

Oct 5, 2007: Mapping continued on L50+50E from TL1+50N to 5+50N, line-cutting re-established L52+00E.

Oct 6, 2007: Mapping continued on L51+00N from TL1+50n to 5+50N, line-cutting re-established L52+50E & TL1+50N to L53+00E.

Oct 7, 2007: Mapping continued on L51+50E from TL1+50N to 5+50N, line-cutting re-established L53+00E & TL1+50N to L53+50E.

Oct 8, 2007: Mapping continued on L52+00E from TL1+50N to 5+50N, line-cutting re-established L53+50E & TL1+50N to L54+00N.

Oct 9, 2007: Mapping continued on L52+50E from TL1+50N to 5+50N, line-cutting re-established L54+00E & TL1+50N to L54+50E.

Oct 13, 2007: Mapping continued on L53+00E from TL1+50N to 5+50N, line-cutting completed.

Oct 14, 2007: Mapping continued on L53+50E from TL1+50N to 5+50N & 1+50S, line-cutter mapping access route.

Oct 15, 2007: Mapping continued on L54+00E from TL1+50N to 5+50N & 1+50S, line-cutter mapping access route.

Oct 16, 2007: Mapping continued on L54+50E from TL1+50N to 5+50N & 1+50S, line-cutter mapping access route.

Oct 20, 2007: Mapping continued on L55+00E from TL1+50N to 5+50N & 1+50S, line-cutter completed mapping of access route.

Oct 22, 2007: Mapping continued on L53+00E to L47+00E from TL1+50n to 1+50S, line-cutter assisted with establishing of previous grab sample locations.

Note: During the mapping procedure approximately 50% of 2400 grab samples were readily identifiable to respective outcrop and assigned to this compilation. Therefore, a detailed search was initiated beginning Oct 22, 2007 which was designed to establish [as accurately as practical] the correct location of the remaining samples.
Oct 23, 2007: Mapping continued on L47+00E to L43+00E from TL1+50N to 1+50S. Geological mapping completed.

Oct 27 to Nov 5, 2007: Dan & Roger locate and assign sample locations. The method and area of search is mainly random based primarily on the importance of economic values reported from assay. Non-economic values from analysis of grab samples were assigned to an approximated location only.

Nov 8, 2007: De-mobilize equipment Dan & Roger. Field work completed.

Nov 12, 2007: Map plotting

Nov 13, 2007: Map plotting

Nov 14, 2007: Map plotting

Nov 23, 2007: Map plotting completed

Feb 15, 2008: Report writing

Feb 20, 2008: Copying & map preparation [production]

Work days this period re: Dan 32 days X $275 = $8800.

Work days this period re: Roger 24 days X $200 = $4800.

Sub-total $13,600.

Total work days this report re: Dan 82 days X $275 = $22,550.

Total work days this report re: Roger 63 X $200. = $12,600.

Total expenditures: = $35,150.
LEGEND

CENOZOIC

QUATERNARY

PLEISTOCENE AND RECENT

Sands, gravel, clay.

UNCONFORMITY

PRECAMBRIAN

LATE PRECAMBRIAN

Diabase intrusions.

MIDDLE PRECAMBRIAN

Mongowin Pluton

AMPHIBOLITE INTRUSIONS

MISSISSING DIABASE

HURONIAN SUPERGROUP

COBALT GROUP

GORDON LAKE FORMATION

LORRAIN FORMATION

GOWSGANDA FORMATION

CONFORMABLE TO DISCONFORMABLE CONTACT

QUIRKES LAKE GROUP

SERPENT FORMATION

ESPERANZA FORMATION

BRUCE FORMATION

ROUGH LAKE GROUP

MISSISSAgI FORMATION

PECS FORMATION

RAMSAY LAKE FORMATION

ELLIOt LAKE GROUP

McKIN FORMATION

BRECCIA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td>Sb</td>
</tr>
<tr>
<td>Pb</td>
<td>Pb</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu</td>
</tr>
<tr>
<td>Bi</td>
<td>Bi</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn</td>
</tr>
<tr>
<td>Au</td>
<td>Au</td>
</tr>
<tr>
<td>Ag</td>
<td>Ag</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
</tr>
<tr>
<td>Fe</td>
<td>Fe</td>
</tr>
<tr>
<td>Si</td>
<td>Si</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>As</td>
<td>As</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Notes:

- *Fine-grained chert sandstone.*
- *Wacke, medium-grained sandstone.*
- *From medium-grained sandstone.*
- *Pink, feldspathic sandstone.*
- *Grey sandstone.*
- *Argillite.*
- *Quartz and jasper pebble conglomerate.*

CONFORMABLE TO DISCONFORMABLE CONTACT