# REPORT ON 2007 EXPLORATION 

BY WARRIOR VENTURES INC.
ON THE MCNEIL PROPERTY, MCNEIL AND ROBERTSON TOWNSHIPS,

NTS MAP SHEET 42A/02
NORTHEASTERN, ONTARIO

David L. Gibson, Warrior Ventures Inc., and
Tom Setterfield, PhD, P.Geo, GeoVector Management Inc.
July 16, 2009
TABLE OF CONTENTS ..... Page
Summary ..... 4
1.0 Introduction ..... 6
1.1 Schedule of Events ..... 7
1.2 Peronnel ..... 9
2.0 Property Description and Location ..... 10
3.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography ..... 13
4.0 Geological Setting ..... 14
4.1 Geology ..... 14
4.2 Mineralization ..... 17
4.3 Geophysics ..... 18
4.4 Geochemistry ..... 12
5.0 Previous Work ..... 21
5.1 General Statement ..... 21
5.2 Early Exploration ..... 21
5.3 Modern Pre-Warrior Exploration ..... 22
5.4 Exploration by Warrior, 2003-2006 ..... 26
6.0 Warrior Exploration 2007 ..... 27
6.1 General ..... 27
6.2 2007 Geochemical Survey ..... 30
$6.3 \quad 2007$ Prospecting/Stripping ..... 34
6.4 2007 Drilling ..... 37
6.5 2007 Lidar Survey ..... 39
7.0 QA/QC, Data Verification ..... 44
8.0 Conclusions and Recommendations ..... 48
9.0 References ..... 50
Appendix
APPENDIX A: Certificates of Qualifications
Area Flown by Lidar
McNeil 2007 Property Map
2007 Bare Earth Lidar Image Map 2007 Gold in Soil Contours
2007 Gold in Soil Contours with Stations
2007 Soil Sample Logs Spreadsheet
Prospecting and New Showings Map
Stripped over areas of 2007 Map
Warrior Drill Logs Folder
Assay Certificates Folder Listing of Expenditures
LIST OF FIGURES ..... Page

1. Location of the McNeil Property in Northeastern Ontario ..... 6
2. Claims Comprising the McNeil Property ..... 12
3. Exploration Shafts, Areas of Previous Investigation, McNeil Property. ..... 15
4. Geology of the Area Surrounding the McNeil Property ..... 15
5. Geology of the McNeil Property ..... 16
6. Areas of Known Mineralization on the McNeil Property ..... 19
7. Contours of the 1975 Magnetic Survey over the McNeil Property ..... 20
8. Historical Drilling on the McNeil Property ..... 24
9. Lidar Survey Data, McNeil Property ..... 38
10. Soil Samples Collected in 2007, McNeil Property ..... 32
11. McNeil Property Soil Geochemical Survey Results, 2005-2007 ..... 33
12. Warrior 2007 Diamond Drill Holes on the McNeil Property ..... 43
13. Comparison Between Warrior and GeoVector Sample Results ..... 48
LIST OF TABLES Page
14. Claims Comprising the McNeil Property ..... 10
15. Drill Hole Information from Assessment Reports ..... 25
16. Results from GeoVector's Surface Sampling ..... 36
17. Diamond Drill Holes Drilled by Warrior in 2007 ..... 40
18. Results from GeoVector's First Round of Check Assaying ..... 45
19. Results from GeoVector's Second Round of Check Assaying ..... 45

## SUMMARY

Warrior Ventures Inc. is a private corporation with a $100 \%$ interest in the McNeil property. The property consists of 20 claims totaling 256 claim units in McNeil and Robertson townships in the Larder Lake Mining Division. The property is 4119.3 ha in area and is centered at approximately $510000 \mathrm{E} / 5332000 \mathrm{~N}$ (UTM Co-ordinates) or $80^{\circ} 52^{\prime} \mathrm{W} / 48^{\circ} 07^{\prime} \mathrm{N}$ (latitude/longitude) in National Topographic System 1:50,000 map sheet $42 \mathrm{~A} / 02$. The property is 60 km west of Kirkland Lake, 50 km southeast of Timmins, and 25 km northwest of Matachewan. There is excellent access to the property via a well maintained, all-weather gravel road that trends south from the town of South Porcupine for approximately 65 km . A network of logging roads provides additional access to the property. Warrior and its predecessor company have owned the property since 2003. This report documents work completed on the property in 2007.

The McNeil property occurs within the Western Abitibi Subprovince in an area of Archean volcanic and lesser sedimentary rocks, intruded by Archean granitoids. The Proterozoic Cobalt Embayment, consisting of Cobalt Group sediments and the Nipissing Diabase, occurs mostly to the south of the property, but tongues of Cobalt Embayment also occur both east and west of the property. The regional scale Montreal River Fault passes through the northeast part of the property. Detailed mapping shows that the property is underlain predominantly by mafic volcanics, with lesser intermediate to felsic volcanics, intruded in the northeast corner by Archean granodiorite. Northerly trending diabase dikes of the Matachewan dike swarm cut all other rock types. The volcanic rocks may be part of the $2702 / 2701 \mathrm{Ma}$ Kinojevis assemblage. Stratigraphy typically strikes east and dips steeply on the property, and generally becomes younger to the south. The volcanic rocks have been divided into five separate units, from oldest to youngest: i) Mg rich tholeiitic basalt; ii) tholeiitic basalt; iii) Fe-rich tholeiitic basalt, which is typically magnetic; iv) calc-alkaline mafic to intermediate volcanics; and v) minor calc-alkaline intermediate to felsic volcanics. East-striking faults may have juxtaposed various elements of the stratigraphy, particularly the Mg-rich tholeiites against the Fe-rich tholeiites. Gold was discovered on the McNeil property in 1923, and early exploration included the excavation of several shafts. There are a number of gold showings on the property, some of which are reported to contain visible gold. Mineralization is typically in pyrite $\pm$ chalcopyrite bearing quartz veins, originally thought to be related to "felsite" dikes. These "dikes" have been reinterpreted as zones of intense ankerite $\pm$ sericite alteration, in some instances flanked by calcite alteration.

The main objective of exploration on the McNeil property is to discover mesothermal gold mineralization. In 2005 and 2006, Warrior established grids on the property, conducted magnetic, gravity and soil surveys, and undertook prospecting and mechanical stripping. In 2007, Warrior continued prospecting/stripping, commissioned a Lidar survey, and expanded the grid and the magnetic and soil geochemical coverage. The survey grid and magnetic survey are addressed in a separate report. In 2007, they drilled nineteen holes totaling 1981.19 m .

Warrior found several new showings, including the Lightening Zone, where a 2 cm nugget of gold was discovered. A $59.6 \mathrm{~g} / \mathrm{t}$ Au sample was collected from a prospect adjacent to the Lightening Zone. Several potentially important gold-in-soil anomalies were identified. Twelve holes were drilled at the Lightening Zone, testing a strike length of 125 m . Low-grade mineralization encountered in the holes is associated with sulphides (pyrite and lesser pyrrhotite) in quartz-carbonate veins, sulphides in silicified volcanics and sulphides in volcanic breccias. The best mineralization, up to $2.66 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, is invariably associated with thin quartz-carbonate veins. Four holes were drilled at the historical Isadore Shaft. Three of these holes intersected significant thicknesses ( $\geq 5 \mathrm{~m}$ ) of low-grade mineralization. These zones are described as intensely altered (albite-ankerite-silica) syenite dikes with variable sulphide and quartz vein content. Three holes tested the historical Weekly West Zone but were not successful. Although several zones of syenite/alteration were encountered, there was no associated significant gold anomalism.

Work to date by government and industry geologists on the McNeil property has shown it to be underlain predominantly by tholeiitic basalt, a prospective rock type when exploring for mesothermal gold deposits. More importantly, quartz veins and iron carbonate alteration are abundant, and a number of significant showings are known to occur. A significant gold grain in till anomaly occurs on the property, and Warrior's soil geochemical survey has produced anomalies that are worth following up. Potential eastwest structures, not previously factored into exploration planning, are likely to be important in the concentration of gold. Geological and magnetic information define an east-trending stratigraphy, the distribution of which may be at least partially related to structures. Warrior has confirmed the presence of mineralization on the property and demonstrated that examples of previously unknown, near-surface mineralization can still be found on the property. The geology, alteration and abundance of known mineralization all point to a prospective property, in which there are now new avenues to pursue, both in terms of new concepts and new geochemical anomalies. It is also worth noting that little modern exploration has been conducted on the property. It is clear that further exploration of this property is justified.

The primary recommendation is that immediate work be concentrated on re-evaluating the prospectivity of the property as a whole, rather than focusing on any one particular zone of known mineralization. It is believed that such an approach will produce numerous drill targets in areas of the property that have not previously received much attention. Initial work should consist of a re-evaluation of existing data, including a detailed structural interpretation of the property; mapping of the property with an emphasis on structure and alteration; additional soil sampling; a program of till sampling; a program of reconnaissance IP; and additional mechanical stripping. Phase 2 exploration would consist of drilling the best targets and would be contingent upon success in Phase 1. It might be beneficial to conduct detailed magnetic surveys over potential targets to aid with the detailed siting of drill holes.

### 1.0 INTRODUCTION

This report will discuss the practices and procedures used in the performance of the work during the 2007 McNeil program conducted by Warrior Ventures Inc.

Warrior Ventures Inc. (Warrior) owns a $100 \%$ interest in the McNeil property in McNeil and Robertson townships, northeast Ontario (Fig. 1). Warrior is a private corporation incorporated in Alberta in April, 2006. Warrior's predecessor, OGL VENTURES LTD, staked the initial property in 2003. Exploration conducted by OGL and Warrior from 2003 to 2006 has previously been documented and submitted for assessment. This report describes exploration undertaken in 2007 on the McNeil property. The primary objective of exploration is to discover mesothermal gold mineralization.

The 1983 North American Datum (NAD83) co-ordinate system is used in this report. The McNeil property is in Universal Transverse Mercator (UTM) Zone 17N. Assessment reports cited in the references are available on the website of the Ontario Ministry of Northern Development and Mines (www.geologyontario.mndm.gov.on.ca). The AFRI (Assessment File Research Imaging) number is provided for each assessment report. All monetary figures quoted in this report are in Canadian dollars.


## Figure 1: Location of the McNeil Property in Northeastern Ontario

### 1.1 Schedule of Events

May $11^{\text {th }}$ 2007- Nighthawk Timber Installed 36ft steel bridge across a small creek to access the central portion of the property, which was the Area of Focus for the 2007 McNeil program. G. Coffey arrives onsite from Calgary to oversee installation of bridge on behalf of Warrior.

May 13 - May $16^{\text {th }} 2007$ - Drilling equipment, bulldozer, Komatsu excavator, trucks, quads, and exploration equipment shipped by transport from Calgary to McNeil by D. Zyla. B. Etherington travels from Winnipeg to Timmins. D. Gibson arrives on site from Calgary.

May $17^{\text {th }} 2007$ - Camper trailers on site for installation and construction of field camp.
May 17 to June 2, 2007 - D. Gibson, B. Etherington, G. Coffey, and D. Zyla setup field camp. Cleared site, installed sumps, generators, outhouses, water supply and setup field trailers.

June 3, 2007- B. Etherington departs site to return home to Winnipeg. D. Zyla returns transport truck and trailer to Calgary.

June $4^{\text {th }}$ to June $6^{\text {th }}$ D. Zyla travels from Calgary to McNeil with J. Zyla and truckload of supplies and equipment.

June $7^{\text {th }}, 2007$ - T. Zyla and S. Guha arrive by air to Timmins.
June $8^{\text {th }} 2007$ - Drill site prep and setup begins.
June $14^{\text {th }} 2007$ - first core in box and being logged in core shack.
June $28^{\text {th }}$, 2007- D. Gibson, D. Zyla, T. Zyla, J. Zyla, S. Guha and G. Coffey depart McNeil/Timmins for Calgary by air to attend Warrior Ventures Board Meeting.

June $29^{\text {th }}, 2007$ - D. Gibson, S. Guha and G. Coffey return to Timmins by air.
July $1^{\text {st }} 2007$ - R. Blair arrives to replace T. Zyla and J.Zyla as Geologist Assistant and core splitter.

July 1st, 2007- T. Couture and A. McNeil traveled to Timmins, Ontario from Calgary, Alberta to begin survey control on the McNeil program. Traveling each day from Timmins to the program. Outlined in previous report, McNeil Control Survey and Magnetic Survey Report, March 2009

July $4_{\text {th, }} 2007$ - T. Couture and A. McNeil commenced survey control grid. Outlined in previous report, McNeil Control Survey and Magnetic Survey Report, March 2009

July $5^{\text {th }} 2007$ - Additional bulldozer brought in from Battlefield equipment in Timmins to perform stripping and clear additional drill sites.

July $5^{\text {th }} 2007$ - D. Campbell travels from Corbeil, Ontario to McNeil program to perform soil sampling.

July $5^{\text {th }}$ S. Simon and A. Jorstad arrive on site as contracted drillers and travel daily from Timmins to the McNeil program.

July $6^{\text {th }}$ to July $27^{\text {th }} 2007$ G. Coffey performs additional stripping on the Lightening Zone on the west side of the logging road, 55 meters in length by 20 meters wide. Stripping on the new showing known as the Cat zone for 70 meters in length and 12 meters wide. Also prospected areas and collected samples.

July 25 th, 2007- S. Anderson mobilized from Timmins to McNeil program to perform Magnetic surveying, staying on site. Outlined in previous report, McNeil Control Survey and Magnetic Survey Report, March 2009

July 26th, 2007 - S. Anderson commenced magnetic survey along RTK GPS control survey grid. Outlined in previous report, McNeil Control Survey and Magnetic Survey Report, March 2009

July 28th, 2007 - T. Couture and A. McNeil completed survey control grid and left Timmins, Ontario to return to Calgary, AB. Outlined in previous report, McNeil Control Survey and Magnetic Survey Report, March 2009

July $29^{\text {th }}, 2007$ - G. Coffey travels from McNeil to Calgary.
Aug $4^{\text {th }} 2007$ - D. Campbell completes soil geochemistry survey and stays on as driller's helper with S. Simon.

Aug $7^{\text {th }}, 2007-\mathrm{T}$. Couture travels from Calgary to McNeil to take on camp supervision and attendant duties, camp and field logistics assisstant.

Aug $8^{\text {th }} 2007$ - Terrapoint of Ottawa arrived on site to fly Lidar Survey.
Aug $12^{\text {th }} 2007$ - Terrapoint completed flying Lidar Survey.
Aug 19th, 2007 to Aug 2th, 2007 directors C. Hampson, G. Butler, H. Dunfield travel from Calgary to Timmins/McNeil for Property visit.

Aug $30^{\text {th }}, 2007$ - S. Guha returns to Calgary to complete doctorate degree and Uof C. and
R. Blair returns to NC. D. Renaud travels from Corbeil to Timmins/McNeil to replace R. Blair.

Sept $5^{\text {th }}, 2007$ - D. Gibson and D. Campbell take on day shift drilling.
Sept $10^{\text {th }}, 2007$ - T. Dowe arrives on site as driller/drillers helper and travels daily with S . Simon to and from Timmins and they begin working night shift.

Nov $1^{\text {st }}, 2007$ - Crews began spending time in Timmins, Ontario at Bon Air Motel as water lines began to freeze, heaters and generators also failed periodically.

Nov. $10^{\text {th }} 2007$ - Drilling completed, drillers and helpers sent home. D.Gibson, D. Campbell and T.Couture stay on to dismantle camp and remove equipment. D. Reneaud returns to Corbeil, Ontario. Crew Moves into Timmins to Bon Air Motel and travels each day to McNeil site.

Nov $25^{\text {th }} 2007$ - Camp is fully dismantled and site cleaned. All equipment is removed and in storage in Timmins.

### 1.2 Personnel

Personnel for the Mcneil 2007 summer program consisted of D. Gibson, D. Zyla, G. Coffey, S. Guha, B. Etherington, T. Zyla, J. Zyla, D. Campbell, R. Blair, D. Reneud, S. Simon, A. Jorstad, A. McNeil, T. Couture, and T. Dowe.
D. Gibson supervised all aspects of the McNeil 2007 summer exploration program, drilling, surveying, soil sampling, geophysics, stripping, prospecting, and Lidar surveying.
D. Zyla assisted with transporting of men and equipment to the program along with camp construction and as driller.
G. Coffey worked on the program as Cat operator stripping over showings, prospecting and camp construction.
S.Guha performed geological mapping and core logging.
B. Etherington provided field surveying/claim inspection, locating corner posts, field access and field logistics, and camp constructions.
T. Zyla worked as geological assistant to S. Guha.
J. Zyla worked as driller's helper and core splitter.
D. Campbell provided soil sampling collection, core splitting and driller's helper.
R. Blair provided geological assistance to S . Guha and worked as core splitter.
D. Reneaud worked as core splitter.
S. Simon, A. Jorstad and T. Dowe worked as surfaced diamond runners and helpers for each other.
A. McNeil provided GPS chain grid surveying and soil sampling collection.
T. Couture provided GPS chain surveying over the areas of interest of grid line survey control along with program mapping, data processing, soil sampling/collection and cataloging along with camp organization and supervision/attendant.
M. Thompson and K. Jeffs perform core logging through Fladgate Exploration Consultants.

### 2.0 PROPERTY DESCRIPTION AND LOCATION

The McNeil property consists of 20 claims totaling 256 claim units in McNeil and Robertson townships in the Larder Lake Mining Division (Fig. 2; Table 1; Map 1). The property is 4119.3 ha in area and is centered at approximately $510000 \mathrm{E} / 5332000 \mathrm{~N}$ (UTM Co-ordinates) or $80^{\circ} 52^{\prime} \mathrm{W} / 48^{\circ} 07^{\prime} \mathrm{N}$ (latitude/longitude) in National Topographic System (NTS) 1:50,000 map sheet 42A/02.

Table 1: Claims Comprising the McNeil Property

| Claim <br> Number | Township | Recording <br> Date | Claim Due <br> Date | Claim <br> Units | Area <br> (ha) |
| :--- | :--- | :--- | :--- | ---: | ---: |
| 1204585 | McNeil | 2003-Jul-08 | 2010-Feb-03 | 10 | 162.4 |
| 1219237 | McNeil | 2003-Dec-08 | 2010-Jul-06 | 8 | 127.6 |
| 1219273 | McNeil | 2003-Dec-08 | 2010-Jul-06 | 3 | 50.0 |
| 1237005 | McNeil | 2006-Oct-02 | 2010-Oct-02 | 15 | 239.0 |
| 1237006 | McNeil | 2007-May-23 | 2009-May-23 | 7 | 109.7 |
| 1237010 | McNeil | 2007-May-23 | 2009-May-23 | 16 | 255.9 |
| 1237100 | McNeil | 2007-May-23 | 2009-May-23 | 16 | 257.3 |
| 1237409 | McNeil | 2007-May-23 | 2009-May-23 | 16 | 255.9 |
| 1248527 | McNeil | 2003-Oct-21 | 2010-May-19 | 10 | 173.0 |
| 3010873 | McNeil | 2003-Feb-21 | 2010-Sep-19 | 15 | 236.5 |
| 3010874 | McNeil | 2003-Feb-21 | 2010-Sep-19 | 8 | 131.3 |
| 3012718 | McNeil | 2003-Jul-17 | 2010-Feb-12 | 16 | 261.2 |
| 3012719 | McNeil | 2003-Jul-17 | 2010-Feb-12 | 12 | 204.9 |
| 4211423 | McNeil | 2006-May-03 | 2010-May-03 | 16 | 256.5 |


| 4211424 | McNeil | 2006-May-03 | 2010-May-03 | 16 | 256.0 |
| :--- | :--- | :--- | :--- | ---: | ---: |
| 4214664 | McNeil | 2007-Apr-03 | 2009-Apr-03 | 8 | 115.8 |
| 4214920 | McNeil | 2007-Apr-03 | 2009-Apr-03 | 16 | 241.5 |
| 1219270 | Robertson | 2003-Dec-08 | 2010-Jul-06 | 16 | 271.7 |
| 1219271 | Robertson | 2003-Dec-08 | 2010-Jul-06 | 16 | 250.8 |
| 1219272 | Robertson | 2003-Dec-08 | 2010-Jul-06 | 16 | 262.3 |
| Total |  |  |  | $\mathbf{2 5 6}$ | $\mathbf{4 1 1 9 . 3}$ |

Figure 2: Claims Comprising the McNeil Property


The McNeil property consists of unpatented, unsurveyed claims, for which the mineral rights are $100 \%$ owned by Warrior. No royalties, back in rights or other agreements in favour of a third party exist. The mineral rights give Warrior the right to explore for ore on the claims, subject to a 400' surface rights reservation around all lakes and rivers, and a 300' surface reservation around major roads (this may be waived by the Crown). Unpatented claims require work expenditures of at least $\$ 400$ per 16 hectare claim unit in the first two years, and $\$ 400$ per year thereafter (by the anniversary of their recording date); all claims are in good standing at the time of writing (Table 1). No permits are necessary for most exploration work. However, if extensive disturbance to forests is foreseen (i.e. during drilling programs), work permits must be obtained from the Ministry of Natural Resources Regional Office in North Bay in the form of a personal use wood permit for grid cutting and small areas of forest disturbance or a harvesting permit for large areas of forest disturbance (i.e. trenching).

There are no known mineral reserves on the property, and no environmental liabilities accruing to Warrior. No mining has taken place, but there are several exploratory shafts and areas of intense previous investigation on the property (Fig. 3).

### 3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

There is excellent access to the property and McNeil Township is via a well-maintained, all-weather gravel road that trends south from the town of South Porcupine, Ontario for approximately 65 kilometers. The road is locally known as the "Stringers" road or Langmuir road, and is maintained by the city of Timmins and Night Hawk Timber Company for the first 25 km . A good gravel road reaches down to the property and allows access to the south-central portion of the property. A network of logging roads provides additional access to the property (Figs. 2 and 3); these vary from being passable by truck or ATV to only being accessible by foot.

Certain logging roads in the southern part of the property, specifically in claims 1219237, 1219272, 1237005, 3010873, 3010874, and 4214664 (Fig. 2), essentially belong to the Matachewan First Nations. Warrior signed an agreement with the Matachewan First Nations on April 24, 2007, whereby Warrior was granted permission to use these roads in exchange for assuming responsibility for maintaining the roads and bridge crossings, and for decommissioning the roads once exploration is complete. This agreement means that Warrior will have to construct a bridge to cross a stream south of Tom Fox Lake (UTM co-ordinates $511000 \mathrm{E} / 5329810 \mathrm{~N}$; Fig. 2) prior to the next round of exploration.

The property is 60 km west of Kirkland Lake, 50 km southeast of Timmins, and 25 km northwest of Matachewan (Fig. 1). All three of these towns have a long mining history and are home to personnel with the skills to work in the mining industry. The cities of Sudbury and North Bay are also within a three-hour drive of the property. In the event of an economic discovery on the McNeil property, Timmins would likely form the base of
operations and the primary source of necessary equipment and personnel. Water is abundant in the region, and the property contains an all-weather gravel road. Suitable locations for constructing mineral processing facilities are abundant on the property. Depending on the grade of the ore being extracted, it might be economic to truck either the ore or a concentrate to mill facilities at Timmins. There is a power line approximately 20 km northwest of the property in Langmuir Township, which supplies power to the Redstone nickel project. Prior to mining, the claims must be converted to one or more mining lease(s).

The climate of the project area is continental in nature, with cold winters ( -10 to -35 EC ) and warm summers $(+10$ to $+35 E C)$. Seasonal variations affect exploration to some extent (geological mapping can not be done in the winter, geophysics and drilling are best done at certain times of the year etc.), but the climate would not significantly hamper mining operations.

The property has gently rolling topography with maximum relief of approximately 60 m . Elevation varies from 310 to 370 m Above Sea Level. The 3 km long Whitefish Lake occurs on the McNeil property, as do several smaller lakes and several streams (Figs. 2 and 3), but in general the property is dominated by forest and swamp. The northern part of the property has been logged in the past, so the present forest is second growth, a mixture of jackpine, spruce, birch and poplar trees; swampier areas contain small spruce trees and alders. The southern portion of the property has been recently logged, so there is currently no forest present. The bulk of the property is covered by significant ( $>2 \mathrm{~m}$ ) overburden, and outcrop density is low.

### 4.0 GEOLOGICAL SETTING AND MINERALIZATION

### 4.1 Geology

The McNeil property occurs within the Western Abitibi Subprovince as defined by Jackson and Fyon (1991). The property occurs in an area of Archean volcanic and lesser sedimentary rocks, intruded by Archean granitoids (Fig. 4). The Proterozoic Cobalt Embayment, consisting of Cobalt Group sediments and the Nipissing Diabase, occurs mostly to the south of the property, but tongues of Cobalt Embayment also occur both east and west of the property (Fig. 4). The regional scale Montreal River Fault passes through the northeast part of the property. Ice flow direction in this region is south to southeasterly (Bajc, 1996).

The bulk of the geological mapping in the area of the McNeil property has been completed by Larry Jensen of the Ontario Geological Survey (Jensen, 1992a; 1992b; 2002). Jensen's mapping shows that the property is underlain predominantly by mafic volcanics, with lesser intermediate to felsic volcanics, intruded in the northeast corner by Archean granodiorite (Fig. 5). Northerly trending diabase dikes of the Matachewan dike swarm cut all other rock types.

Figure 3: Exploration Shafts, Areas of Previous Investigation, McNeil Property


Figure 4: Geology of the Area Surrounding the McNeil Property


Figure 5: Geology of the McNeil Property. Modified after Jensen (1992b)


Jensen believes that the volcanic rocks are part of the 2702/2701 Ma Kinojevis assemblage. Stratigraphy typically strikes east and dips steeply on the property, and generally becomes younger to the south. Jensen (1992b) divides the volcanic rocks on the property into five separate units, from oldest to youngest: i) Mg -rich tholeiitic basalt; ii) tholeiitic basalt; iii) Fe-rich tholeiitic basalt, which is typically magnetic; iv) calcalkaline mafic to intermediate volcanics; and v) minor calc-alkaline intermediate to felsic volcanics (Fig. 5). Jensen (1992a; 2002) postulates the presence of one or more eaststriking faults that may have juxtaposed various elements of the stratigraphy, particularly the Mg-rich tholeiites against the Fe -rich tholeiites.

### 4.2 Mineralization

Mineralization is typically in pyrite $\pm$ chalcopyrite bearing quartz veins, originally thought to be related to "felsite" dikes. However, Kirkham (2004) reinterprets these dikes as zones of intense ankerite $\pm$ sericite alteration, in some instances flanked by calcite alteration. Known zones of mineralization are shown on Figure 6 and the zones are described below.

The earliest work on the property concentrated on a series of possibly related showings which occur along a northwest trend over a strike length of more than 1 km : Rogers, 8 Ft , Scotch, Forgan, NQV, Micmac and Isador (Fig. 6). These showings are poorly documented, but Jensen (1992b) shows a zone of en echelon, northwest-trending quartz veins in this area. At the Rogers showing, a well-mineralized carbonate alteration zone or carbonatized shear zone is exposed for $32 \times 12 \mathrm{~m}$ (Gibson, 2007a). Visible gold was previously reported from this showing (Gibson, 2007a), and Warrior collected a grab sample, which ran $4.32 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in 2007. Hole 86-8 by Argyle Ventures tested this showing and returned 0.4 m @ $2.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (Stewart, 1987). In the same drilling campaign, hole $86-6$ tested the 8 Ft Zone, and yielded, $7.4 \mathrm{~m} @ 1.5 \mathrm{~g} / \mathrm{t}$ Au including 0.4 m @ $5.7 \mathrm{~g} / \mathrm{t}$ (Stewart, 1987). Free gold was reported from the 8 Ft shaft (Goldyke Mines Limited, 1946). A sample collected from the NQV showing by Warrior ran $1.83 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (Gibson, 2007a). Sampling of carbonatized zones immediately north of the Micmac showing by Jensen yielded results up to $26.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (Jensen, 2002). "Felsic alteration" is reported from the area of the Isador Shaft (Gibson, 2007a). Warrior's best result from sampling in this area in 2006 was $1.2 \mathrm{~m} @ 2.02 \mathrm{~g} / \mathrm{t}$ Au.

The Forbes Carbonate showing is the site of a grab sample collected in 1981, which ran $6.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (Johns-Mansville, 1981). The Johns-Mansville drill hole McN83-1 underneath this showing produced 0.9 m @ $1.7 \mathrm{~g} / \mathrm{t}$ (Evelegh, 1983c). Argyle Ventures' drilling results at the nearby South Carbonate showing include 0.2 m @ $2.7 \mathrm{~g} / \mathrm{t}$ Au in hole $86-2$, $0.8 \mathrm{~m} @ 2.0 \mathrm{~g} / \mathrm{t}$ Au in hole $86-3$ and 0.6 m @ $1.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in hole $86-4$ (Figs. 4 and 6 ; Stewart, 1987)

The Lightening Zone is a north-northwest trending quartz-carbonate alteration zone with disseminated sulphides and numerous quartz veins and stringers (Gibson, 2007a; b). The best channel sample from 2006 sampling was 1.36 m @ $2.20 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. In 2007, Warrior discovered a 2 cm gold nugget within the Lightening Zone (Gibson, 2007b). A pit 90 m
northwest of the Lightening Zone was the source of a $28.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ assay recorded by Stewart (1984). This pit, originally known as the Line 24W Prospect (Fig. 6), produced a grab sample, which ran $59.6 \mathrm{~g} / \mathrm{t}$ Au for Warrior in 2007 (Gibson, 2007b).

The Road showing is a quartz carbonate alteration zone discovered by Warrior on a newly constructed logging road. A grab sample taken during stripping yielded $5.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (Gibson, 2007a). Other showings discovered by Warrior include Cat (assay of $2.42 \mathrm{~g} / \mathrm{t}$ Au ), and Variolite (assay of $1.33 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ ). Warrior's sample from the Pit shaft (Fig. 6) returned $1.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

The King-Weekly showing area in the north-central part of the property has been the site of numerous drill holes (Table 2). The best results were $0.3 \mathrm{~m} @ 45.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and 0.9 m @ $39.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in a hole drilled by Sylva Explorations Limited in 1979 (Sheedy, 1979).

In the Weekly/Laporte area (Fig. 6), visible gold was reported in Weekly holes 9 (Weekly, 1981) and 3 (Weekly, 1984b), and hole 90-3 drilled by Argyle Ventures had an intersection of 1.5 m @ $3.6 \mathrm{~g} / \mathrm{t}$ Au (Lowrie, 1990). A sample with spectacular visible gold taken from the Weekly/Laporte area is on display in the Sir Harry Oake Mining Museum in Kirkland Lake.

Other showings, which appear on Figure 6 and are not discussed above are in the historical record, but do not have specific assays ascribed to them.

### 4.3 Geophysics

In 1974 and again in 1999/2000, the Ontario government flew airborne magnetic and electromagnetic surveys over areas, which include the present McNeil property. Magnetic maps from the two different surveys show similar features: an overall easterly trending grain, with mostly elliptical (east-trending) highs and lows (Fig. 7; ODM, 1975; Ontario Geological Survey, 2000a; b). Jensen (1992a, b) notes that the generally higher magnetic signatures in the southern part of McNeil Township correspond to a mapped sequence of iron-rich tholeiitic basalts. An intense, subcircular, 500 m wide magnetic high is apparent on both surveys, located in the north-central part of the McNeil property (Fig. 7). This feature is considered by Warrior to be a diamond target. No significant discrete conductors were identified on either airborne survey. The map of apparent conductance shows an anomaly coincidental with Whitefish Lake in the northeastern part of the property, along the Montreal River fault system. This anomaly is proximal to several surficial conductors, and is not considered by the authors to be of exploration significance.

Figure 6: Areas of Known Mineralization on the McNeil Property


Figure 7: Contours from the 1975 Magnetic Survey over the McNeil Property


### 4.4 Geochemistry

In 1995 and 1996, the Ontario Geological Survey carried out regional till sampling over an area that included the present McNeil property (Bajc, 1996). Samples were collected from 1 m deep pits, and sent for heavy mineral concentration and geochemical analysis. Gold concentration and gold grain information (abundance, size, shape) were used to identify anomalies of potential exploration significance. One of the anomalies identified was the "Cleaver-McNeil Trend", extending from central Cleaver Township east into central McNeil Township. The anomaly was described as "broad, low amplitude", which "coincides with a structurally-controlled lithologic break between Mg-rich tholeiitic basalts to the north and Fe-rich tholeiitic basalts to the south" (Bajc, 1996). Infill till sampling was recommended to better define the anomaly.

Heavy mineral concentrates from selected till samples collected in 1995/96 were processed to recover Kimberlite Indicator Minerals (KIMs; Bajc and Crabtree, 2001). This work included the microprobing of 4450 chromite grains; the only grain to plot well within the Diamond Inclusion Field on a binary $\mathrm{Cr}_{2} \mathrm{O}_{3}-\mathrm{MgO}$ diagram was from a till sample taken in the west-central portion of the McNeil property, potentially down-ice from the magnetic anomaly shown in Figure 6. No other KIMs were identified from the property, however.

### 5.0 PREVIOUS WORK

### 5.1 General Statement

Information on early exploration in McNeil Township is incomplete; relatively comprehensive records of exploration completed on the property are only available for work conducted after approximately 1975. No historical mineral resource or mineral reserve estimates have been generated from this property, and there has been no mineral production from the property. Areas of concentration of previous work are shown on Figure 3, and modern, pre-Warrior drill holes on the property are shown on Figure 8; information on these holes is provided in Table 2.

### 5.2 Early Exploration

In 1923, three aboriginals, Isadore Longwin, Micmack and Tom Fox, discovered gold on what is now the south-central part of the McNeil property (Hopkins, 1925). All three have parts of the McNeil property named after them (see below). The 65' (20 m) deep Isador shaft and the 60' ( 18 m ) deep Eight Foot shaft were sunk on the property in 1924 on dikes with quartz veins that contain visible gold (Dyer, 1936), within present claims 3010874 and 3010873 respectively. In 1924-1925, the McNeil Development Syndicate undertook approximately 1800 m of stripping and trenching (Arnott, 1946). "Spectacular specimens of visible gold" were found during this work. The shaft on the Eight Foot dike was deepened to 97 m in 1935 (Goldyke, 1946), and the Laporte shaft was sunk on the

Weekly showing, on present claim 3102719, at some point. Goldyke Mines Ltd. worked on the present McNeil property in 1946 (Arnott, 1946). They drilled 46 holes totaling 2553 m . Many of these holes intersected trace amounts of gold, but their best result was only $1.3 \mathrm{~m} @ 5.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and no further work was recommended (Arnott, 1946). Most or all of the pre-1946 work was concentrated on east-northeast trending felsite or quartz porphyry dikes. Goldyke further explored these dikes, but also examined several north to northwest-trending alteration zones/structures. Unfortunately, no reliable map of their drill hole locations is available to the authors.

### 5.3 Modern Pre-Warrior Exploration

Sylva Explorations Limited drilled three holes on their so-called King-Weekly property, in 1979 (Sheedy, 1979; also called Weekly West). Drilling was done in the vicinity of the historical King-Weekly showing (Fig. 3). One hole intersected $0.3 \mathrm{~m} @ 45.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in a quartz vein and $0.9 \mathrm{~m} @ 39.1 \mathrm{~g} / \mathrm{t}$ Au in fractures in silicified andesite (Table 2). Sylva conducted magnetic, VLF and self-potential ground geophysical surveys in this area in 1980 (Sheedy, 1980). The surveys were followed by the drilling of four more holes in this vicinity in 1980 (Weekly, 1980). No assays were provided, but visible gold was noted in one drill log. Weekly also drilled hole 19 in this area in 1983, without reporting any assays (Weekly, 1983). Paul Konovsky drilled hole 25 in this area in 1983-no assays were provided (Konovsky, 1983). Weekly-drilled hole 26 in 1984 (Weekly, 1984a; no assays reported).

In 1981, Weekly drilled holes 8 to 15 on the Weekly showing, in the immediate vicinity of the historical Laporte shaft (Fig. 3). No assays were provided, but visible gold was noted in hole 9. Weekly-drilled holes 16 to 19 in this area in 1982 (Weekly, 1982). No assays were reported, but numerous quartz veins were intersected, many of which contained pyrite and in rare instances chalcopyrite. Konovsky drilled holes 21 and 24 nearby in 1983-no assays were provided (Konovsky, 1983). Weekly drilled a further five holes (1, 2, 3, 27 and 28) in 1984, but again, no assays were reported (Weekly, 1984b). Konovsky drilled hole 30 in this area in 1985 (Konovsky, 1985). Konovsky drilled holes A and B in this vicinity in 1986, encountering only trace amounts of gold (Konovsky, 1986). In 1990, Argyle Ventures conducted geological mapping and drilled holes 90-1 to $90-6$ in the vicinity of this showing (Lowrie, 1990; Table 2). Their best result was 1.5 m @ $3.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in a series of quartz veinlets with associated carbonate.

Johns-Manville Canada collected a number of grab samples from their Bobjo property in 1981 (Johns-Mansville, 1981). This property was situated on what is now the southeastern portion of the McNeil property. Samples returned up to $6.5 \mathrm{~g} / \mathrm{t}$ Au. They also conducted a magnetometer survey in 1981 (Evelegh, 1982) and a vertical loop electromagnetic survey in 1982 (Evelegh, 1983a), as well as localized surveys on two lakes in early 1983 (Evelegh, 1983b). They drilled holes McN83-1 to McN83-4 near the so-called Forbes Carbonate showing (Figs. 3 and 8) on this claim group in 1983 with little success; the best result was 0.9 m @ $1.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (Evelegh, 1983c). They drilled an additional three holes in 1984 in the vicinity of the Johns-Manville showing (Evelegh, 1985; no assays reported). A further three holes were drilled in this latter area in 1985
(Evelegh, 1986a; Table 2: Fig. 8). All work completed to that time by Johns-Manville was summarized by Evelegh (1986b).

In 1983, Argyle Ventures acquired a land position in what is now the south-central part of the McNeil property, in the area of the original gold discoveries (Isadore and 8 Foot shafts, Micmac showing; Boissonneault, 1983). Magnetic and VLF surveys were completed in 1984 (Greer, 1984), as well as geological mapping (Stewart, 1984) and stripping of known showings (Stewart, 1985a). Although numerous anomalous gold assays were obtained, in general assays were lower than those obtained from Goldyke's 1946 program. The main assay of note was $28.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ from what is now known as the Lightening Zone (see below). Argyle drilled nine holes in 1986 in several different areas (Stewart, 1987; Table 2; Fig. 8). Several holes had assays of $>1 \mathrm{~g} / \mathrm{t}$ Au, typically in pyrite-bearing quartz veins.

Fairland Resources conducted magnetometer and VLF surveys on a block of ground covering what is now the northeast corner of the McNeil property in 1985 (Stewart, 1985b). The ground was acquired because of its proximity to known gold showings. Several areas were recommended for stripping.

In 1987, Kerr Addison Mines optioned ground from Argyle Ventures and Johns-Manville in the Tom Fox Lake area. They drilled holes KM87-1 to KM87-4 in 1987 (Table 2; Fig. 7; Fraser, 1987; no assays provided). In 1988 they enlarged their property to the north and conducted magnetic and VLF surveys (Allard, 1988a; 1988b). Kerr Addison drilled holes KM88-01 to KM88-13 in the northern part of the property, presumably on geophysical targets (Table 2; Fig. 4; Quesnel and Watkins, 1988a; 1988b; 1988c). Lowlevel gold was encountered in several holes; their best result was $2.0 \mathrm{~m} @ 2.1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in a pyrite-bearing quartz vein.

In 1992, Argyle Ventures conducted a small ground magnetic and VLF survey in the extreme northern part of the McNeil property, targeting a magnetic anomaly discovered during a government airborne geophysical survey (Lowrie, 1993). This ground is presently under consideration as a possible diamond target (see below).

In 1993, Argyle Ventures ran a Max-Min survey over a small block in what is now the extreme southwest of the McNeil property. No anomalies of interest were discovered (Lowrie and Hussey, 1993).

In 1996, the Oliver Group and Canadian Zeolite Ltd. ran IP surveys over a block in the northern part of the McNeil property and a block around Tom Fox Lake (Woolham, 1996; Stewart, 1997). Holes 96-1 to 96-3 (Table 2; Fig. 7) were drilled on IP anomalies. The only mineralization encountered was low level gold ( $<1 \mathrm{~g} / \mathrm{t}$ ) associated with pyrite stringers in a felsite dike. This was followed by a geological mapping program in 1997 (Stewart, 1998). Further geophysics and drilling were recommended, but apparently were never carried out.


Table 2: Drill Hole Information from Assessment Reports

| Hole | Report | Year | Easting | Northing | Length <br> (m) | Area | Best Gold Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sheedy (1979) | 1979 | 509248 | 5332960 | 38.3 | Weekly West | 1.0 m @ $1.0 \mathrm{~g} / \mathrm{t}$ |
| 2 | Sheedy (1979) | 1979 | 509279 | 5332945 | 50.0 | Weekly West | $\begin{aligned} & 0.3 \mathrm{~m} @ 45.4 \mathrm{~g} / \mathrm{t}, 0.9 \\ & \mathrm{~m} @ 391 \mathrm{o} / \mathrm{t} \end{aligned}$ |
| 3 | Sheedy (1979) | 1979 | 509304 | 5332944 | 59.2 | Weekly West | $1.0 \mathrm{~m} @ 4.1 \mathrm{~g} / \mathrm{t}$ |
| 4 | Weekly (1980) | 1980 | 509278 | 5332990 | 126.5 | Weekly West | NP |
| 5 | Weekly (1980) | 1980 | 509279 | 5332970 | 73.8 | Weekly West | NP |
| 6 | Weekly (1980) | 1980 | 509392 | 5332852 | 81.4 | Weekly West | NP |
| 7 | Weekly (1980) | 1980 | 509223 | 5332974 | 62.2 | Weekly West | NP |
| 8 | Weekly (1981) | 1981 | 510891 | 5332519 | 91.5 | Weekly | NP |
| 9 | Weekly (1981) | 1981 | 510915 | 5332692 | 181.7 | Weekly | Visible gold |
| 10 | Weekly (1981) | 1981 | 510914 | 5332691 | 245.1 | Weekly | NP |
| 11 | Weekly (1981) | 1981 | 510943 | 5332689 | 279.9 | Weekly | NP |
| 12 | Weekly (1981) | 1981 | 510934 | 5332700 | 51.5 | Weekly | NP |
| 13 | Weekly (1981) | 1981 | 510883 | 5332712 | 60.7 | Weekly | NP |
| 14 | Weekly (1981) | 1981 | 510866 | 5332719 | 91.5 | Weekly | NP |
| 15 | Weekly (1981) | 1981 | 510976 | 5332680 | 91.5 | Weekly | NP |
| 16 | Weekly (1982) | 1982 | 510912 | 5332694 | 119.2 | Weekly | NP |
| 17 | Weekly (1982) | 1982 | 510912 | 5332706 | 47.0 | Weekly | NP |
| 18 | Weekly (1982) | 1982 | 510883 | 5332656 | 118.3 | Weekly | NP |
| 19 | Weekly (1982) | 1982 | 510883 | 5332656 | 98.8 | Weekly | NP |
| 19 | Weekly (1983) | 1983 | 509278 | 5332955 | 107.0 | Weekly West | NP |
| McN83-1 | Evelegh (1983c) | 1983 | 511729 | 5329384 | 36.6 | Bobjo | 0.9 m @ $1.7 \mathrm{~g} / \mathrm{t}$ |
| McN83-2 | Evelegh (1983c) | 1983 | 511721 | 5329402 | 35.4 | Bobjo | No Samples |
| McN83-3 | Evelegh (1983c) | 1983 | 511757 | 5329415 | 34.8 | Bobjo | Trace |
| McN83-4 | Evelegh (1983c) | 1983 | 511754 | 5329419 | 35.7 | Bobjo | Nil |
| 21 | Konovsky (1983) | 1983 | 510920 | 5332730 | 122.9 | Weekly | NP |
| 24 | Konovsky (1983) | 1983 | 510534 | 5332863 | 38.1 | Weekly | NP |
| 25 | Konovsky (1983) | 1983 | 509365 | 5333011 | 102.1 | Weekly West | NP |
| 26 | Weekly (1984a) | 1984 | 509268 | 5332989 | 122.0 | Weekly West | NP |
| 1 | Weekly (1984b) | 1984 | 510879 | 5332736 | 68.6 | Weekly | NP |
| 2 | Weekly (1984b) | 1984 | 510879 | 5332737 | 61.0 | Weekly | NP |
| 3 | Weekly (1984b) | 1984 | 510871 | 5332736 | 62.5 | Weekly | Visible gold |
| 27 | Weekly (1984b) | 1984 | 510931 | 5332730 | 122.0 | Weekly | NP |
| 28 | Weekly (1984b) | 1984 | 510981 | 5332645 | 56.7 | Weekly | NP |
| McN84-1 | Evelegh (1985a) | 1984 | 512924 | 5329964 | 36.6 | Bobjo | NP |
| McN84-2 | Evelegh (1985a) | 1984 | 512955 | 5329985 | 37.8 | Bobjo | NP |
| McN84-3 | Evelegh (1985a) | 1984 | 512870 | 5330099 | 38.4 | Bobjo | NP |
| 30 | Konovsky (1985) | 1985 | 510913 | 5332723 | 121.6 | Weekly | NP |
| McN85-1 | Evelegh (1986a) | 1985 | 512266 | 5330138 | 35.1 | Bobjo | NP |
| McN85-2 | Evelegh (1986a) | 1985 | 512266 | 5330138 | 36.6 | Bobjo | NP |
| McN85-3 | Evelegh (1986a) | 1985 | 512187 | 5330076 | 18.3 | Bobjo | NP |
| 86-1 | Stewart (1987) | 1986 | 511914 | 5329903 | 78.4 | Tom Fox South | 0.5 m @ $0.3 \mathrm{~g} / \mathrm{t}$ |
| 86-2 | Stewart (1987) | 1986 | 511915 | 5329911 | 47.9 | Tom Fox South | 0.2 m @ $2.7 \mathrm{~g} / \mathrm{t}$ |


| 86-3 | Stewart (1987) | 1986 | 511917 | 5329876 | 44.8 | Tom Fox South | 0.8 m @ $2.0 \mathrm{~g} / \mathrm{t}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 86-4 | Stewart (1987) | 1986 | 511918 | 5329925 | 57.0 | Tom Fox South | 0.6 m @ $1.7 \mathrm{~g} / \mathrm{t}$ |
| 86-5 | Stewart (1987) | 1986 | 511293 | 5330194 | 7.8 | 8 Ft Shaft | 0.3 m @ $0.3 \mathrm{~g} / \mathrm{t}$ |
| 86-6 | Stewart (1987) | 1986 | 511268 | 5330189 | 19.2 | 8 Ft Shaft | $\begin{aligned} & 7.4 \mathrm{~m} @ 1.5 \mathrm{~g} / \mathrm{t} \mathrm{incl} \\ & 0.4 \mathrm{~m} @ 5.7 \mathrm{~g} / \mathrm{t} \end{aligned}$ |
| 86-7 | Stewart (1987) | 1986 | 511267 | 5330193 | 22.9 | 8 Ft Shaft | 0.6 m @ $2.5 \mathrm{~g} / \mathrm{t}$ |
| 86-8 | Stewart (1987) | 1986 | 511314 | 5330027 | 43.6 | Rogers | 0.4 m @ $2.1 \mathrm{~g} / \mathrm{t}$ |
| 86-9 | Stewart (1987) | 1986 | 510388 | 5329859 | 52.7 | Tom Fox SW | Trace |
| A | Konovsky (1986) | 1986 | 510831 | 5332723 | 34.8 | Weekly | Trace |
| B | Konovsky (1986) | 1986 | 510817 | 5332681 | 75.0 | Weekly | Trace |
| KM87-1 | Fraser (1987) | 1987 | 511857 | 5330161 | 152.4 | Tom Fox South | NP |
| KM87-2 | Fraser (1987) | 1987 | 512374 | 5330246 | 182.3 | Tom Fox SE | NP |
| KM87-3 | Fraser (1987) | 1987 | 511695 | 5329442 | 152.4 | Forbes | NP |
| KM87-4 | Fraser (1987) | 1987 | 511669 | 5329477 | 153.0 | Forbes | NP |
| KM88-1 | Quesnel/Watkins | 1988 | 510261 | 5333901 | 106.7 | McNeil North | NP |
| KM88-2 | Quesnel/Watkins | 1988 | 510157 | 5333436 | 108.5 | McNeil North | Nil |
| KM88-3 | Quesnel/Watkins | 1988 | 510155 | 5333436 | 105.5 | McNeil North | Nil |
| KM88-4 | Quesnel/Watkins | 1988 | 509189 | 5333863 | 130.2 | McNeil North | Nil |
| KM88-5 | Quesnel/Watkins | 1988 | 509292 | 5333510 | 109.7 | McNeil North | 0.7 m @ $0.1 \mathrm{~g} / \mathrm{t}$ |
| KM88-6 | Quesnel/Watkins | 1988 | 508826 | 5333789 | 200.3 | McNeil North | $0.3 \mathrm{~m} @ 0.8 \mathrm{~g} / \mathrm{t}$ |
| KM88-7 | Quesnel/Watkins | 1988 | 508573 | 5333634 | 81.4 | McNeil North | Trace |
| KM88-8 | Quesnel/Watkins | 1988 | 508499 | 5334055 | 98.5 | McNeil North | $0.4 \mathrm{~m} @ 0.5 \mathrm{~g} / \mathrm{t}$ |
| KM88-9 | Quesnel/Watkins | 1988 | 511365 | 5333659 | 106.7 | McNeil North | Trace |
| KM88-10 | Quesnel/Watkins | 1988 | 511480 | 5333222 | 145.4 | McNeil North | $0.5 \mathrm{~m} @ 0.3 \mathrm{~g} / \mathrm{t}$ |
| KM88-11 | Quesnel/Watkins | 1988 | 511688 | 5333046 | 121.0 | McNeil North | 2.0 m @ $2.1 \mathrm{~g} / \mathrm{t}$ |
| KM88-12 | Quesnel/Watkins | 1988 | 511446 | 5333270 | 121.0 | McNeil North | Trace |
| KM88-13 | Quesnel/Watkins | 1988 | 511303 | 5333056 | 85.4 | McNeil North | 0.5 m @ $0.3 \mathrm{~g} / \mathrm{t}$ |
| 90-1 | Lowrie (1990) | 1990 | 510899 | 5332735 | 121.6 | Weekly | Trace |
| 90-2 | Lowrie (1990) | 1990 | 510892 | 5332705 | 91.2 | Weekly | $1.2 \mathrm{~m} @ 0.7 \mathrm{~g} / \mathrm{t}$ |
| 90-3 | Lowrie (1990) | 1990 | 510892 | 5332705 | 106.4 | Weekly | 1.5 m @ $3.6 \mathrm{~g} / \mathrm{t}$ |
| 90-4 | Lowrie (1990) | 1990 | 510892 | 5332705 | 91.2 | Weekly | No Samples |
| 90-5 | Lowrie (1990) | 1990 | 510892 | 5332705 | 103.4 | Weekly | 0.5 m @ $1.2 \mathrm{~g} / \mathrm{t}$ |
| 90-6 | Lowrie (1990) | 1990 | 510892 | 5332705 | 94.2 | Weekly | Trace |
| 96-1 | Stewart (1997) | 1996 | 512015 | 5333162 | 122.0 | McNeil North | Nil |
| 96-2 | Stewart (1997) | 1996 | 511857 | 5329656 | 122.0 | Tom Fox South | Trace |
| 96-3 | Stewart (1997) | 1996 | 512952 | 5329935 | 122 | Bobjo | 0.6 m @ $0.6 \mathrm{~g} / \mathrm{t}$ |

NP: Not Provided

### 5.4 Exploration by Warrior, 2003-2006

OGL Ventures Ltd. commissioned consultant Rod Kirkham to evaluate the property in 2003 (Kirkham, 2004). Kirkham's main recommendations were to relocate and resample known mineralization on the property, improve access within the property, strip the best areas of mineralization and undertake a soil survey.

In 2005, 16.55 line kilometers of grid were established over the Weekly/Laporte zone and an area to the west; gravity surveying and soil sampling were conducted on this grid
(Gibson, 2007a). Lines are north south; line spacing is variably 50 or 100 m . Station interval along the lines is 25 m , and the stations are surveyed such that their position is known to within approximately 10 cm . A Lacoste-Romberg Model "G" gravity meter, model G-232, was used for the gravity survey. Readings were typically collected every 50 m , and at intervening 25 m stations where anomalies were determined in the field. A gravity base station was established on the grid, although the ultimate gravity control came from GSC gravity monument 9201-1975, located at the Timmins airport. The soil survey entailed sampling of the B horizon with soil augers at 50 m intervals. 125 samples were collected and analyzed for gold by fire assay. Gibson (2007a) notes that gold-in-soil anomalies from this program correspond to known gold showings and to gravity anomalies.

In 2006, Warrior expanded the grid to the west and north, and expanded the gravity and soil surveys as well (Gibson, 2007a). They also undertook ground magnetic surveying, prospecting and local stripping plus channel sampling. An additional 31.825 line km were added to the grid, and an additional 565 soil samples were collected. 28.175 line km of gravity surveying were completed, using procedures similar to those used in 2005. Magnetic readings were collected at 25 m intervals over the entire 31.825 line km of the 2006 grid. Three newly discovered showings (Warrior Zone, Road Zone and Lightening Zone) and four historical showings (Isadore Shaft, 8 Ft Shaft, Rogers Showing and Weekly West/King-Weekly) were stripped using an excavator and a bulldozer. Channel sampling was undertaken on the Warrior, Lightening, Road, Isadore Shaft and Weekly West zones, for a total of 90 samples (Gibson, 2007a).

The channel sampling results were somewhat disappointing. At the Isadore shaft, a 1.2 m channel sample returned $2.02 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and several other channel samples with $>0.25 \mathrm{~g} / \mathrm{t}$ Au were taken. At the Lightening Zone, a 1.36 m channel sample yielded $2.20 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and a number of other channels assayed $>0.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, including several above $1.0 \mathrm{~g} / \mathrm{t}$. The best channel sample from the Road Zone was $0.67 \mathrm{~m} @ 0.18 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, in spite of the fact that a grab sample from this zone returned $5.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. At the Weekly West Zone, the best channel sample was $0.71 \mathrm{~m} @ 0.23 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. Warrior also collected a grab sample at the Micmac showing which ran $3.50 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and one from the NQV showing that ran $1.83 \mathrm{~g} / \mathrm{t}$ Au . No significant assays were obtained from the Warrior zone.

### 6.0 WARRIOR EXPLORATION 2007

### 6.1 General

In May of 2007 Warrior Ventures Inc. purchased a bridge and bridge crossing from Domtar Forestry, crossing a small creek, 3 kilometers from the central portion of the McNeil property, which was the focus of the 2007 program. Once the bridge was installed, by Nighthawk Timber, equipment and personnel were mobilized into the area and construction of a camp was commenced on May $16^{\text {th }}, 2007$.

Warrior constructed a camp to house the drilling team, survey teams, and geological teams working on the 2007 summer program.

The camp was located in the central portion of the prospect in the south-west corner of claim 3010873 where the logging road meets a small north-south creek. A clearing along the road at the edge of the log cut was leveled to accommodate the camps.

Three brand new camper trailers, one older trailer, prospector tent/core shack with floor, were rented and installed onsite with running water, sumps and generators. Three field trucks were rented, one from Enterprise and two from Gibson and Associates along with two quads to assist the personnel of the program.



In 2007 Warrior expanded their grid to the south by 72.225 line km and expanded their magnetic and geochemical coverage on the property. The survey control grid and magnetic survey are discussed in the report submitted to the MNDM for assessment in March 2009 titled, "McNeil 2007 Summer Control Survey and Magnetic Survey" (Gibson 2009). They also continued with prospecting and power stripping in selected locations, and conducted a Lidar survey over the eastern part of the property. Warrior drilled nineteen holes in 2007 for a total of 1981.19 m . The magnetic survey has been documented in a separate assessment report (Gibson, 2009).

In 2008, GeoVector Management Inc. (GeoVector) of Ottawa resampled selected intervals from the 2007 drill core and sampled several showings as part of its QA/QC procedures to complement a NI 43-101 Technical Report on the McNeil property (Setterfield and Sexton, 2008). The compilation of previous work on the property presented above was also completed as part of this report.

### 6.2 2007 Geochemical Survey

## Soil Sampling

## Discussions and Procedures

Soil sampling began on July $5^{\text {th }} 2007$ and carried on until Aug $4^{\text {th }} 2007$ with weather delays within this period.

Soil samples were collected from the "B" horizon within the soil strata using "DutchStyle" soil augers and samples were collected in paper "Kraft" style bags, sealed with a stapler and scribed with the station number. Samples were collected for the purposes of assaying for gold within the program area to see if significant trends could be identified within the areas of interest to co-relate with known and potential new gold showings.

Field notes were collected for each sample taken containing sample location (Station Number), the soil colour and soil sample depth of the "B" horizon. The information from the field notes was then entered into the Gpseismic database in separate columns associated with the collected sample station. Spreadsheets were produced from the database for the samples collected. Spreadsheets are found within the appendix of the report.

The soil type collect was " B " horizon and it was chosen for sampling due to the fact that Fluvic and Humic acids have been known to trap elements such as gold within this horizon.

Depths for the " B " horizon range for as shallow as 15 centimeters to as deep as 80 centimeters. The majority being around the 20 to 40 centimeter depth.

Colours of the soils within the " B " horizon were graded using a 3-tier system, Light Brown(LB), Medium Brown(MB) and Dark Brown(DB). The majority of the samples collected had a light brown coloration with a sandy to silty texture. Very little clay was encountered yet a lot of low-lying swampy areas prevented sample collection. See soil sampling spreadsheet in appendix.

Sampling was performed along the established grid lines at the BOL's and EOL's of the lines and at 50 -meter intervals and the even stations. This meaning the ends of the lines were sampled and stations ending $2,4,6,8,0, \ldots$ etc. Where samples could not be collected due to swamps, out-croppings, beaver ponds, or other areas of exclusion a "seismic" skidding method was employed to try and makeup for lost sample positions on either side of the area of exclusion. Example, if stations 142, 144, 146 and 148 could not be sampled due a large water-filled swamp or pond then extra samples were collected at $139,141,149$ and 151 as well as the even stations between. This method was also used for single stations that could not be collected at say 144 then as sample was sought after and collect at either 143 or 145.

Samples were dried, packaged and delivered to Loring Labs in Calgary for assaying.
Loring Labs performed assaying of the samples with a - 80-mesh preparation along with a fire assay for gold with an atomic absorption finish. Results were delivered in digital Excel spreadsheet format copies of the original assay certificates can be found in the appendix.

A total of 72.225 kilometers of grid lines were traversed during the soil geochemistry survey and 1282 samples were collected and delivered to Lorings Labs for analysis. Loring Labs returned certificates with the gold analysis of the samples, which can be found in the appendix. The samples were processed using a -80 mesh, followed by a gold fire assay with an atomic absorption finish.

For the most part, samples were collected on north-south lines spaced 100 m apart, typically at an interval of 25 or 50 m . Locally the sample interval was greater, and north of the Weekly/Laporte area, some samples were collected on east-west lines. At Loring Labs, the samples were dried, sieved to -80 mesh, and then analyzed for gold by fire assay with an atomic absorption finish.

The location of the 2007 soil samples is shown on Figure 10, and the sample locations plus gold values are plotted on a contour map in the appendix. Soil results from the 2005, 2006 and 2007 campaigns, some 1989 samples in total, were combined to produce the gold concentration plot shown in Figure 11. Gold results have been divided into percentiles and colour coded (Fig. 10 and Fig 11). The Weekly/Laporte area is reflected by a widespread anomaly in the soil data. The mineralization in the Tom Fox Lake area was not completely covered by sampling, and in any case produced only single point anomalies. A major anomaly occurs as a possible extension to the newly discovered Cat showing. This anomaly includes a sample, which contained 382 ppb Au , the highest value from the three sampling campaigns. Four of the six $>95$ percentile anomalies represent potential new targets, one west of the Weekly/ Laporte area, two in the central part of the property, and one in the southwest part of the property (Fig. 11). These anomalies should be verified prior to additional exploration.

Figure 10: Soil Samples Collected in 2007, McNeil Property


Figure 11: McNeil Property Soil Geochemical Survey Results, 2005-2007

appendix.

### 6.3 2007 Prospecting/Stripping

## Prospecting

Prospecting in 2007 was mainly conducted by S. Guha, G. Coffey and D.Gibson over the stripped out areas around the Lightening Zone, the Cat Zone and the Variolite complexes to the south of these areas. See Prospected areas and new showing map in the Appendix.

Many new showings were discovered from the 2007 prospecting efforts, most noted were the TC showing, Cabin carbonate zone, the Cat zone and the Variolite zones.
Numerous historical showings were visited throughout the 2007 campaign, such as the Line 24W prospect, South Showing, South Carbonate and Forbes Carbonate showings.

Samples with $2.42 \mathrm{~g} / \mathrm{t}$ and $0.80 \mathrm{~g} / \mathrm{t}$ Au were collected from the Cat Zone, which had small amounts of visible gold in quartz veins. The Variolite Zone in the southern part of the property produced samples with 1.3 and $1.2 \mathrm{~g} / \mathrm{t}$ Au. In addition, a $59.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ sample was collected from the Line 24 W prospect adjacent to the Lightening Zone and a 2 cm nugget of gold was discovered at the Lightening Zone.


Stripping was confined to the Cat zone and the extension of the Lightening Zone during the time period of July $6^{\text {th }}$ to July $27^{\text {th }} 2007$ by G. Coffey. The stripping was performed with the use of a Bulldozer to move the bulk of the over burden and then a small Komatsu Excavator was used for the more detailed work. See Stripped over areas of 2007 map in appendix.


Bulldozer stripping over the Cat Zone.


Komatsu excavator used to move drill and for detailed stripping work.

GeoVector spent a day examining the geology of the property and confirming the location of several features reported by Warrior. Northwest-trending veins/alteration systems/dikes as previously documented were seen, but east-west quartz veins, not previously prospected, were also noted. Grab samples were collected in the Weekly/Laporte, Isador, Lightening and Weekly West areas. Anomalous gold results were obtained from all locations except Weekly West (Table 3).

Table 3: Results from GeoVector's Surface Sampling

| Area | Easting | Northing | Sample | Gold Value <br> $(\mathrm{ppb})$ |
| :--- | :--- | :--- | :--- | :--- |
| Weekly/Laporte | 510827 | 5332646 | 103457 | $<5$ |
| Weekly/Laporte | 510827 | 5332646 | 103458 | 730 |
| Weekly/Laporte | 510902 | 5332695 | 103459 | 680 |
| Isador | 510691 | 5330439 | 103460 | 1100 |
| Lightening | 510372 | 5329730 | 103461 | 550 |
| Lightening | 510372 | 5329730 | 103462 | 130 |
| Lightening | 510372 | 5329730 | 103463 | 820 |
| Weekly West | 509355 | 5332865 | 103464 | 25 |
| Standard |  |  | 103465 | 8500 |
| Blank |  |  | 103466 | 5 |
|  |  |  |  |  |

### 6.4 2007 Lidar Survey

Terrapoint Canada Inc. of Ottawa flew the Lidar Survey in August 2007. The Lidar Survey covered a total of 36 square kilometers of area within the McNeil property. Flight lines were oriented north-south with an altitude of 1000 feet above ground level. A 250 meter swath was scanned over of the area on each pass, with a 50 meter over lap for QA/QC.

GPS control for the Lidar survey was provided by a survey control benchmark established on the McNeil property in 2005 and tied into the IGS control network.

The primary objective was to assist with the processing of gravity data to define subtle geological structures by refining the vertical component of the XYZ coordinate points to within centimeters. From this survey additional data can be extracted and used to determine the ice flows over the extent, enabling the geochemical surveys to isolate areas of interest.

The Lidar image shows a south-southeast trend interpreted to reflect the last glacial movement as well as numerous east-west and north-south trends interpreted as evidence of structural features, which could be discreet breaks that may have importance for exploration. (Fig. 9) See 2007 Bare Earth Lidar Image Map and Area Flown by Lidar map in appendix.

Figure 9: Lidar Survey Data, McNeil Property


### 6.5 2007 Drilling

Warrior Ventures Inc. constructed their own hydraulic heli-portable drill in early spring of 2007, and used it to drill nineteen holes totaling 1981.22 m on gold targets between June and November, 2007. Twelve holes, LZ-07-01 to LZ-07-12, were drilled at the Lightening Zone/Line 24W Prospect. Four holes, ISA-07-01 to ISA-07-04, were drilled at the Isadore Shaft, and holes WW-07-01 to WW-07-03 were drilled at the Weekly West Zone.


Equipment on site included the heli-portable drill with accessories, a bulldozer and a small komatsu excavator used to move the equipment in place.

Completion of the drilling program was extremely slow due to a number of factors with the drilling equipment, personnel and field conditions.

Being a heli-portable drill each setup required numerous man-hours for assembly and disassembly of the drill due to its many components, such as hydraulic hoses, power pack, tower, boom assembly, pumps, water hoses and water tanks. Setups were labour intensive and required days of preparation and assembly by hand. A bulldozer was on site throughout the program, yet was used mainly for clearing the sites and dragging large items to and from setups. Moves between holes would be on an average of two to three days, weather dependent, and was conducted only during the daylight hours.

The drill was often down for repair, which required parts to be flown in from western Canada and other parts machined locally in Timmins. These numerous break-downs and equipment failures caused the majority of delays in drilling.

Personnel operating the drilling equipment from the company also had a learning curve in effect, becoming familiar with the drilling equipment, ground conditions and diamond drilling itself. Quite often the drill production was only a few meters as the crews learn to operate the equipment and learn diamond drilling. Production was slow when drilling was good, often no more than 20 meters per shift.

In the first couple of months only one shift was used for drilling, which alternated between working nights, and days. Depending on the weather condtions.

Being a heli-portable drill the unit was not housed within a shelter or a shack and was open to the elements. Heavy rain and thunder storms often hampered drilling operations and resulted in lost shifts of productions.

All these circumstances impacted on the timeliness of the drilling program, which became extended from June until November 2007.

A geologist preformed the core logging and sampling from the first of June 2007 to the end of August 2007, S. Guha employed directly by Warrior.

During the drilling in September 2007 and end of October 2007 core from the on-going drilling program was warehoused and logged in November 2007 by Fladgate Exploration Consultants of Thunder Bay, Ontario. On November $15^{\text {th }} 2007$ the logging of the core drilled from September 2007 and end of October 2007 was completed by M. Thompson and K. Jeffs and submitted to the company in Excel Spreadsheet.

Too sample the core, the drill core was cut in half along its long axis with a diamond saw; sludge created by sawing was removed after every sample, and the saw was thoroughly cleaned between drill holes and after sampling any higher grade material. Samples were placed in numbered plastic bags with the corresponding identification tags, closed, tied securely and placed in large rice bags, for transport to the laboratory (variably Swastika Laboratories in Swastika, Ontario or to Loring Labs of Calgary, Alberta). The remainder of the sawn drill core was returned to its position in the original core box. Sample intervals do not cross lithological boundaries, and an effort was made to avoid sampling across anticipated major fluctuations in gold concentration. Approximately 625 samples were submitted for assay (including standards and blanks).

Only low-grade mineralization was intersected, much of it over short intervals. Neither the orientation of mineralization nor the relationship between true thickness and mineralized intersections encountered in drilling is known. Drill hole locations are shown on Figure 12, and pertinent hole information is given in Table 4.

Table 4: Diamond Drill Holes Drilled by Warrior in 2007

| Hole | Claim | Easting | Northing | Azimuth | Dip | Length |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Notable Assays


|  |  |  |  | $\left({ }^{\circ}\right.$ ) | $\left({ }^{\circ}\right.$ ) | (m) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LZ-07-01 | 1237005 | 510422 | 5329760 | 240 | -45 | 80.49 | NSV |
| LZ-07-02 | 1237005 | 510396 | 5329773 | 240 | -50 | 40.35 | 0.38 m @ $2.06 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| LZ-07-03 | 1237005 | 510396 | 5329773 | 240 | -60 | 92.47 | 0.12 m @ $2.66 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| LZ-07-04 | 1237005 | 510396 | 5329773 | 240 | -70 | 147.13 | $\begin{aligned} & 1.15 \mathrm{~m} @ 1.18 \mathrm{~g} / \mathrm{t} \mathrm{Au} ; \\ & 0.91 \mathrm{~m} @ 0.75 \mathrm{~g} / \mathrm{tau} \\ & \hline \end{aligned}$ |
| LZ-07-05 | 1237005 | 510425 | 5329729 | 240 | -40 | 78.00 | 0.40 @ $0.50 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| LZ-07-06 | 1237005 | 510425 | 5329729 | 250 | -50 | 60.05 | $\begin{aligned} & 0.59 \mathrm{~m} @ 0.69 \mathrm{~g} / \mathrm{t} \mathrm{Au} ; \\ & 0.52 \mathrm{~m} @ 0.82 \mathrm{~g} / \mathrm{t} \mathrm{Au} \\ & \hline \end{aligned}$ |
| LZ-07-07 | 1237005 | 510387 | 5329803 | 250 | -60 | 74.02 | $\begin{aligned} & 0.25 \mathrm{~m} @ 0.84 \mathrm{~g} / \mathrm{t} \mathrm{Au} ; \\ & 0.24 \mathrm{~m} @ 1.31 \mathrm{~g} / \mathrm{tau} \\ & \hline \end{aligned}$ |
| LZ-07-08 | 1237005 | 510387 | 5329803 | 240 | -45 | 101.55 | $1.67 \mathrm{~m} @ 0.62 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| LZ-07-09 | 1237005 | 510387 | 5329803 | 240 | -55 | 146.83 | $0.50 \mathrm{~m} @ 0.35 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| LZ-07-10 | 1237005 | 510372 | 5329834 | 240 | -65 | 147.50 | 0.90 m @ $0.35 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| LZ-07-11 | 1237005 | 510372 | 5329834 | 240 | -45 | 77.30 | NSV |
| LZ-07-12 | 1237005 | 510372 | 5329834 | 250 | -50 | 164.50 | 0.45 m @ $0.51 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| ISA-07-01 | 3010874 | 510692 | 5330387 | 010 | -40 | 113.50 | $5.00 \mathrm{~m} @ 0.98 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; 4.00 m @ $1.51 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; $1.00 \mathrm{~m} @ 1.13 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| ISA-07-02 | 3010874 | 510692 | 5330387 | 010 | -55 | 179.50 | $1.00 \mathrm{~m} @ 0.95 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; 0.85 m @ $0.56 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; 0.70 m @ $1.78 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| ISA-07-03 | 3010874 | 510644 | 5330422 | 070 | -45 | 93.50 | 1.00 m @ $2.36 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; 6.00 m @ $1.16 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; 0.2 m @ $1.46 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| ISA-07-04 | 3010874 | 510644 | 5330422 | 070 | -60 | 80.50 | $1.00 \mathrm{~m} @ 2.24 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; 7.00 m @ $0.72 \mathrm{~g} / \mathrm{t} \mathrm{Au}$; 8.10 @ $1.27 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| WW-07-01 | 1248527 | 509343 | 5332839 | 030 | -45 | 184.00 | $1.00 \mathrm{~m} @ 0.70 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ |
| WW-07-02 |  | 509343 | 5332839 | 030 | -60 | 51.00 | NSV |
| WW-07-03 |  | 509200 | 5332950 | 030 | -45 | 69.00 | NSV |

NSV: No Significant Values
The twelve holes in the Lightening Zone were drilled from different set-ups; all holes are oriented at $240^{\circ}$ or $250^{\circ}$, roughly perpendicular to the strike of the zone. Collectively the holes test a strike length of 125 m . Low grade mineralization encountered in the holes is associated with sulphides (pyrite and lesser pyrrhotite) in quartz-carbonate veins, sulphides in silicified volcanics and sulphides in volcanic breccias (Appendix D). The best mineralization, up to $2.66 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, is invariably associated with thin quartz-carbonate veins.

Four holes were drilled toward the Isadore Shaft from two different directions. Three of these holes intersected significant thicknesses ( $\geq 5 \mathrm{~m}$ ) of low-grade mineralization. These zones are described in the logs as intensely altered (albite-ankerite-silica) syenite dikes with variable sulphide and quartz vein content (Appendix D). The orientation of these zones is not clear from the drill results.

The three holes that tested the Weekly West Zone were not successful. The holes were oriented at $030^{\circ}$, perpendicular to the strike of the zone. Although several zones of syenite/alteration were encountered, there was no associated significant gold anomalism (Table 4; Appendix D).

All the core is currently being stored at 85 Government Road North in Timmins, Ontario in covered and core racks.

Figure 12: Warrior 2007 Diamond Drill Holes on the McNeil Property


### 7.0 QA/QC, DATA VERIFICATION

Drill core samples collected in 2007 were mostly sent to Swastika, although some were sent to Loring. Those sent to Loring were crushed and pulverized to -80 mesh, and then analyzed for gold by fire assay with an atomic absorption finish. Swastika dries the samples, crushes them to $1 / 2$ inch in a jaw crusher and then to -10 mesh in a rolls crusher. The sample is split with a Jones riffle, and 350 g of material is taken for analysis; the remainder (the reject) is placed in a numbered plastic bag and stored. The 350 g sample is then pulverized ( $85-95 \%$ passing 150 mesh) and homogenized, and is ready for assay. Compressed air is used to clean the equipment between samples, and the rolls crusher is also cleaned with a wire brush. Barren material is crushed between sample batches. Gold is analyzed by fire assay. Swastika has a current Certificate of Laboratory Proficiency from ISO. In addition to standards submitted by Warrior, Swastika analyzed their own standards and blanks with every batch of samples. Loring's and Swastika's employees are independent from Warrior; Warrior's personnel are in no way involved in sample preparation and analysis.

GeoVector resampled selected intervals of Warrior's core in two stages. Samples were sent to TSL Laboratories Inc. (TSL) in Saskatoon. TSL has an ISO/IEC Standard 17025 accreditation; samples were analyzed for gold by fire assay with gravimetric finish and for 36 other elements using ICP-AES preceded by a partial digestion using Aqua Regia. GeoVector also submitted blanks and standards. GeoVector's assay certificates are provided in Appendix D. Samples were collected from the Isador and the Weekly West holes.

During the first stage of GeoVector sampling, 18 samples from several zones of low grade mineralization in holes ISA-07-01 and ISA-07-04 were collected. Samples were taken to correspond with the previous sample intervals of Warrior. The correlation between Warrior assays and GeoVector assays was not very good, nor was there a systematic bias in the results (i.e. Warrior results were not consistently higher or lower than GeoVector results) between the two sets of samples (Table 5). It was decided to conduct additional sampling because of the discrepancies between the different sample results. During the second stage of GeoVector sampling, 50 samples were collected from holes ISA-07-02, ISA-07-03, ISA-07-04 and WW-07-01. Results were similar to the first stage results, in that GeoVector's sampling showed that there is gold present in the drill holes, but the correlation between the Warrior results and the GeoVector results is not very good (Table 6).

Results of both sampling programs are plotted in Figure 13. The figure shows the weak correlation between the Warrior and GeoVector results, but also shows the general lack of bias. Part of the weak correlation can be attributed to the difficulty in obtaining consistent results for low grade mineralization, but there at least four "problem" results, shown by the red oval in Figure 13. These samples all returned more than $2 \mathrm{~g} / \mathrm{t}$ Au from Warrior's sampling, but less than $0.5 \mathrm{~g} / \mathrm{t}$ Au from GeoVector's analyses. These samples are all from areas of alteration with thin quartz veins-a possible explanation for the discrepancy is that the quartz veins were over-represented during the original sampling,
i.e. that the samples collected were not representative. Similarly, GeoVector sample 103329 returned an assay of 4490 ppb Au from a sample interval where Warrior obtained 2146 ppb Au (Table 6; Fig. 13). This discrepancy could also be due to a sample, which is not representative, or perhaps to inconsistent gold distribution in the rock.

Table 5: Results from GeoVector's First Round of Check Assaying

| Hole <br> Number | From <br> $(\mathrm{m})$ | To <br> $(\mathrm{m})$ | Length <br> $(\mathrm{m})$ | Warrior <br> Sample | Warrior <br> Result <br> $(\mathrm{ppb} \mathrm{Au})$ | GeoVector <br> Sample | GeoVector <br> Result <br> $(\mathrm{ppm} \mathrm{Au})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :---: |
| ISA-07-01 | 5.50 | 6.50 | 1.00 | 591002 | 309 | WV-1 | 1.34 |
| ISA-07-01 | 6.50 | 7.50 | 1.00 | 591003 | 34 | WV-2 | $<0.03$ |
| ISA-07-01 | 42.50 | 43.50 | 1.00 | 591009 | 202 | WV-3 | 0.38 |
| ISA-07-01 | 43.50 | 44.50 | 1.00 | 591010 | 1224 | WV-4 | 1.17 |
| ISA-07-01 | 44.50 | 45.50 | 1.00 | 591011 | 651 | WV-5 | 1.06 |
| ISA-07-01 | 45.50 | 46.50 | 1.00 | 591012 | 1838 | WV-6 | 0.65 |
| ISA-07-01 | 53.30 | 54.00 | 0.70 | 591019 | 343 | WV-7 | 0.21 |
| ISA-07-01 | 54.00 | 55.00 | 1.00 | 591020 | 1419 | WV-8 | 0.38 |
| ISA-07-01 | 55.00 | 56.00 | 1.00 | 591021 | 2709 | WV-9 | 0.41 |
| ISA-07-01 | 56.00 | 57.00 | 1.00 | 591022 | 1166 | WV-10 | 0.62 |
| ISA-07-01 | 57.00 | 58.00 | 1.00 | 591023 | 741 | WV-11 | 0.17 |
| ISA-07-01 | 58.00 | 58.90 | 0.90 | 591024 | 463 | WV-12 | $<0.03$ |
| ISA-07-01 | 61.00 | 62.00 | 1.00 | 591028 | 0 | WV-13 | $<0.03$ |
| ISA-07-01 | 62.00 | 63.00 | 1.00 | 591029 | 3 | WV-14 | $<0.03$ |
| ISA-07-04 | 6.50 | 7.50 | 1.00 | 591076 | 81 | WV-15 | 0.62 |
| ISA-07-04 | 7.50 | 8.50 | 1.00 | 591077 | 2241 | WV-16 | 0.27 |
| ISA-07-04 | 8.50 | 9.50 | 1.00 | 591078 | 231 | WV-17 | 0.21 |
| ISA-07-04 | 9.50 | 10.50 | 1.00 | 591079 | 346 | WV-18 | 0.51 |
| Blank |  |  |  |  |  | WV-19 | $<0.03$ |
| Standard |  |  |  |  |  | WV-20 | 17.46 |

Table 6: Results from GeoVector's Second Round of Check Assaying

| Hole <br> Number | From <br> $(\mathrm{m})$ | To <br> $(\mathrm{m})$ | Length <br> $(\mathrm{m})$ | Warrior <br> Sample | Warrior <br> Result <br> $(\mathrm{ppb} \mathrm{Au})$ | GeoVector <br> Sample | GeoVector <br> Result <br> $(\mathrm{ppb} \mathrm{Au})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-02 | 7.00 | 8.00 | 1.00 | 591128 | 951 | 103301 | 1500 |
| ISA-07-02 | 8.00 | 9.00 | 1.00 | 591129 | 26 | 103302 | 60 |
| ISA-07-02 | 9.00 | 10.00 | 1.00 | 591130 | nil | 103303 | 10 |
| ISA-07-02 | 10.00 | 11.00 | 1.00 | 591131 | 12 | 103304 | $<5$ |
| ISA-07-02 | 11.00 | 12.00 | 1.00 | 591132 | 58 | 103305 | 45 |
| ISA-07-02 | 12.00 | 13.00 | 1.00 | 591133 | nil | 103306 | 20 |
| ISA-07-02 | 13.00 | 14.00 | 1.00 | 591134 | 22 | 103307 | 470 |
| ISA-07-02 | 14.00 | 15.00 | 1.00 | 591135 | 26 | 103308 | 10 |
| ISA-07-02 | 27.65 | 28.50 | 0.85 | 591146 | 562 | 103309 | 110 |


| ISA-07-02 | 28.50 | 29.50 | 1.00 | 591147 | 38 | 103310 | 75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-02 | 29.50 | 30.40 | 0.90 | 591148 | 3 | 103311 | 35 |
| ISA-07-02 | 30.40 | 31.50 | 1.10 | 591149 | nil | 103312 | $<5$ |
| ISA-07-02 | 31.50 | 32.30 | 0.80 | 591151 | 5 | 103313 | 5 |
| ISA-07-02 | 32.30 | 33.00 | 0.70 | 591152 | nil | 103314 | $<5$ |
| ISA-07-02 | 38.00 | 39.20 | 1.20 | 591158 | 202 | 103315 | 15 |
| ISA-07-02 | 39.20 | 39.90 | 0.70 | 591159 | 1783 | 103316 | 90 |
| ISA-07-03 | 8.50 | 9.50 | 1.00 | 27007 | 82 | 103317 | 140 |
| ISA-07-03 | 9.50 | 10.50 | 1.00 | 27008 | 2362 | 103318 | 390 |
| Standard |  |  |  |  |  | 103319 | 8740 |
| Blank |  |  |  |  |  | 103320 | 15 |
| ISA-07-03 | 10.50 | 11.50 | 1.00 | 27009 | 192 | 103321 | 370 |
| ISA-07-03 | 11.50 | 12.50 | 1.00 | 27010 | 243 | 103322 | 100 |
| ISA-07-03 | 12.50 | 13.50 | 1.00 | 27011 | 871 | 103323 | 1070 |
| ISA-07-03 | 26.00 | 27.00 | 1.00 | 27017 | 363 | 103324 | 1250 |
| ISA-07-03 | 27.00 | 28.00 | 1.00 | 27018 | 473 | 103325 | 340 |
| ISA-07-03 | 28.00 | 29.00 | 1.00 | 27019 | 1317 | 103326 | 1120 |
| ISA-07-03 | 29.00 | 30.00 | 1.00 | 27020 | 384 | 103327 | 160 |
| ISA-07-03 | 30.00 | 31.00 | 1.00 | 27021 | 158 | 103328 | 930 |
| ISA-07-03 | 31.00 | 32.00 | 1.00 | 27022 | 2146 | 103329 | 4490 |
| ISA-07-03 | 32.00 | 33.00 | 1.00 | 27023 | 1584 | 103330 | 810 |
| ISA-07-03 | 33.00 | 34.00 | 1.00 | 27024 | 1361 | 103331 | 480 |
| ISA-07-03 | 34.00 | 35.00 | 1.00 | 27026 | 398 | 103332 | 250 |
| ISA-07-03 | 35.00 | 36.00 | 1.00 | 27027 | 607 | 103333 | 60 |
| ISA-07-03 | 36.00 | 36.70 | 0.70 | 27028 | 213 | 103334 | 200 |
| ISA-07-03 | 36.70 | 37.40 | 0.70 | 27029 | 86 | 103335 | 170 |
| ISA-07-04 | 12.50 | 13.50 | 1.00 | 591082 | 2225 | 103336 | 40 |
| ISA-07-04 | 13.50 | 14.50 | 1.00 | 591083 | 62 | 103337 | 20 |
| ISA-07-04 | 14.50 | 15.50 | 1.00 | 591084 | 446 | 103338 | 530 |
| Standard |  |  |  |  |  | 103339 | 8470 |
| Blank |  |  |  |  |  | 103340 | 20 |
| ISA-07-04 | 15.50 | 16.50 | 1.00 | 591085 | 285 | 103341 | 410 |
| ISA-07-04 | 16.50 | 17.50 | 1.00 | 591086 | 487 | 103342 | 990 |
| ISA-07-04 | 17.50 | 18.50 | 1.00 | 591087 | 442 | 103343 | 670 |
| ISA-07-04 | 18.50 | 19.50 | 1.00 | 591088 | 1114 | 103344 | 400 |
| ISA-07-04 | 19.50 | 20.50 | 1.00 | 591089 | 0 | 103345 | $<5$ |
| WW-07-01 | 84.50 | 85.30 | 0.80 | 28427 | 0 | 103346 | $<5$ |
| WW-07-01 | 85.30 | 86.10 | 0.80 | 28428 | 21 | 103347 | 30 |
| WW-07-01 | 86.10 | 86.80 | 0.70 | 28429 | 7 | 103348 | $<5$ |
| WW-07-01 | 86.80 | 87.80 | 1.00 | 28430 | 01 | 103349 | $<5$ |
| WW-07-01 | 158.10 | 159.10 | 1.00 | 28451 | 14 | 103350 | $<5$ |
| WW-07-01 | 159.10 | 160.10 | 1.00 | 28452 | 0 | 103451 | $<5$ |
| WW-07-01 | 160.10 | 161.10 | 1.00 | 28453 | 0 | 103452 | $<5$ |


| WW-07-01 | 161.10 | 162.10 | 1.00 | 28454 | 3 | 103453 | $<5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WW-07-01 | 162.10 | 163.10 | 1.00 | 28455 | 7 | 103454 | $<5$ |
| Blank |  |  |  |  |  | 103456 | $<5$ |



Figure 13: Comparison Between Warrior and GeoVector Sample Results

### 8.0 CONCLUSIONS AND RECOMMENDATIONS

Work to date by government and industry geologists on the McNeil property has shown it to be underlain predominantly by tholeiitic basalt, a prospective rock type when exploring for mesothermal gold deposits. More importantly, quartz veins and iron carbonate alteration are abundant, and a number of significant showings are known to occur, in spite of the sparse exposure on the property. A significant gold grain in till anomaly occurs on the property, and Warrior's soil geochemical survey has produced anomalies that are worth following up. Potential east-west structures, not previously factored into exploration planning, are likely to be important in the concentration of gold. Geological and magnetic information define an east-trending stratigraphy, the distribution of which may be at least partially controlled by structures.

Warrior's geochemical and geophysical surveys cover a limited portion of the property. In spite of this, Warrior has confirmed the presence of mineralization on the property and demonstrated that the property is prospective. Warrior has also shown that examples of previously unknown, near-surface mineralization can still be found on the property. The geology, alteration and abundance of known mineralization all point to a prospective property, which has new avenues to pursue, both in terms of new concepts and new
geochemical anomalies. It is also worth noting that little modern exploration has been conducted on the property. It is clear that further exploration of this property is justified.

The primary recommendation is that immediate work be concentrated on re-evaluating the prospectivity of the property as a whole, rather than focusing on any one particular zone of known mineralization. It is believed that such an approach will likely produce numerous drill targets in areas of the property that have not previously received much attention.

Additional interpretation and computer modelling of existing data would be very useful. This exercise would include a detailed structural analysis of the property. Such an analysis should include all available geological and magnetic information, and incorporate information from the Lidar survey, airphotos and satellite imagery. The goal of the structural analysis would be to obtain more confidence in the presence and location of the postulated east-west structures. As has been previously suggested (Jensen, 2002; Kirkham, 2004), these structures could be key features for the localization of gold on the property. The objective of the overall data interpretation would be to provide a preliminary prioritization of the different parts of the property.

The entire McNeil property should be mapped, with an emphasis on collecting structural data and understanding the distribution of alteration types. An improved understanding of structure and alteration would enable more efficient exploration to be conducted.

Additional soil sampling is recommended. The goals would be to verify the anomalies shown in Figure 11, and expand the areal coverage. It is not considered necessary to create a physical grid for soil sampling-sample locations can be documented with sufficient accuracy by GPS.

A program of till sampling is recommended. Property-wide till sampling and gold grain analysis should be conducted to provide more detail on the diffuse anomaly identified by the Ontario Geological Survey (Bajc, 1996).

Consideration should be given to a program of reconnaissance IP. In particular, it is suggested that six 5 km long north-south lines be surveyed in the main part of the property. All gold mineralization encountered to date on the property contains associated pyrite $\pm$ chalcopyrite and so should produce chargeability anomalies; associated quartz veins are likely to be manifested as apparent resistivity highs, and graphite-bearing faults may appear as apparent resistivity lows.

Mechanical stripping should be performed in areas of geochemical anomalism or IP anomalies. Previous experience would suggest that the overburden is sufficiently thin that areas of mineralization can in some instances be uncovered by stripping operations. If successful, stripping provides valuable information prior to drilling.

The above activities would constitute a Phase 1 exploration program on the McNeil property. Phase 2 exploration would consist of drilling the best targets, and would be
contingent upon success in Phase 1. It might be beneficial to conduct detailed magnetic surveys over potential targets to aid with the detailed siting of drill holes.

### 9.0 REFERENCES

Allard, M. 1988a. Geophysical Report, Magnetic and Electromagnetic VLF Surveys, Kerr Addison Inc., McNeil Project, McNeil Township, February 1988. Assessment Report, Kerr Addison Mines Ltd. (AFRI File No. 42A02NW0056), 7 p.

Allard, M. 1988b. Geophysical Report, Magnetic \& Electromagnetic VLF Surveys, Kerr Addison Inc., McNeil Project, McNeil Township, March 1988. Assessment Report, Kerr Addison Mines Ltd. (AFRI File No. 42A02NW0056), 9 p.

Arnott, B.M. 1946. Report on Goldyke Mines Limited. Assessment Report, Goldyke Mines Limited (not in AFRI reporting system), 10 p .

Bajc, A.F. 1996. Regional Distribution of Gold in Till in the Peterlong-Radisson Area, Southern Abitibi Subprovince; Potential Exploration Targets. Ontario Geological Survey Open File Report 5941, 57 p.

Bajc, A.F. and Crabtree, D.C. 2001. Results of Regional Till Sampling for Kimberlite and Base Metal Indicator Minerals, Peterlong Lake-Radisson Lake Area, northeastern Ontario. Ontario Geological Survey, Open File Report 6060, 65 p.

Boissoneault, J.R. 1983. Geological Report on McNeil Township Property, Larder Lake Mining Division, Ontario. Assessment Report, Argyle Ventures Inc. (AFRI File No. 42A02NW0068), 12 p.
Dubé, B. and Gosselin, P. 2007. Greenstone-hosted quartz-carbonate vein deposits. In Goodfellow, W.D., ed. Mineral Deposits of Canada: A Synthesis of Major DepositTypes, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, pp.49-73.

Dyer, W.S. 1936. Geology and ore deposits of the Matachewan-Kenogami Area. Ontario Department of Mines Annual Report, v.44, part 2, pp.1-55.

Evelegh, F.J. 1982. Report on Magnetometer Survey, Bobjo Group of Claims, McNeil Township, Larder Lake Mining Division, Province of Ontario. Assessment Report, Johns-Manville Canada Inc. (AFRI File No. 42A02NW0079), 9 p.

Evelegh, F.J. 1983a. Report on Electromagnetic Survey, Bobjo Group of Claims, McNeil Township, Larder Lake Mining Division, Province of Ontario. Assessment Report, Johns-Manville Canada Inc. (AFRI File No. 42A02NW1151), 7 p.

Evelegh, F.J. 1983b. Report on Geophysical Surveys, Bobjo Group of Claims, McNeil Township, Larder Lake Mining Division, Province of Ontario. Assessment Report, Johns-Manville Canada Inc. (AFRI File No. 42A02NW0076), 5 p.

Evelegh, F.J. 1983c. Diamond Drill Logs. Assessment Report, Johns-Manville Canada Inc. (AFRI File No. 42A02SW8431), 12 p.

Evelegh, F.J. 1985. Diamond Drill Logs. Assessment Report, Johns-Manville Canada Inc. (AFRI File No. 42A02NW0071), 12 p.

Evelegh, F.J. 1986a. Diamond Drill Logs. Assessment Report, Johns-Manville Canada Inc. (AFRI File No. 42A02NW0066), 9 p.

Evelegh, F.J. 1986b. Report on Geological Survey, Bobjo Group of Claims, McNeil Township, Larder Lake Mining Division, Province of Ontario. Assessment Report, Johns-Manville Canada Inc. (AFRI File No. 42A02NW0063), 12 p.

Fladgate. 2007. Drill Logs, Weekly West and Isadore Zones. Internal Warrior Ventures Documents, Logging by Fladgate Exploration.

Fraser, R.J. 1987. Diamond Drill Logs. Assessment Report, Kerr Addison Mines Ltd. (AFRI File No. 42A02NW0061), 40 p.

Gibson, D.L. 2007a. Control Surveying, Gravity Surveying, Magnetic Surveying, Soil Geochemistry, Mechanical Stripping and Power Washing, Prospecting and Channel Sampling for Warrior Ventures Inc. Report Submitted for Assessment, Warrior Ventures Inc., 53 p .

Gibson, D.L. 2007b. Warrior Ventures Inc. Promotional Document. Warrior Ventures Inc. Internal Report, 24 p.

Gibson, D.L. 2009 McNeil 2007 Summer Control Survey and Magnetic Survey . Report submitted for Assessment, Warrior Ventures Inc. March 2009.

Goldyke Mines Limited. 1946. Prospectus. 3 p.
Greer, M. 1984. Geophysical Survey Report on the McNeil Property, McNeil Township, Larder Lake Mining Division, District of Timiskaming, Ontario. Assessment Report, Argyle Ventures Inc. (AFRI File No. 42A02NW0070), 15 p.

Guha, S. 2007. Drill Logs, Lightening Zone. Internal Warrior Ventures Documents.
Hodgson, C.J. 1993. Mesothermal lode-gold deposits. Geological Association of Canada, Special Paper 40, pp.635-678.

Hopkins, P.E. 1925. Notes on gold in McNeil and other townships. Ontario Department of Mines Annual Report, v.33, part 3, pp.37-40.

Jackson, S.L. and Fyon, J.A. 1991. The western Abitibi subprovince in Ontario. In Geology of Ontario, Ontario Geological Survey Special Volume 4, pp. 405-482.

Jensen, L.S. 1992a. Project Unit 92-07. Geology of McNeil and Robertson Townships, District of Timiskaming. In Summary of Fieldwork and Other Activities, Ontario Geological Survey Miscellaneous Paper 160, pp.53-59.

Jensen, L.S. 1992b. Precambrian Geology, Geology and Mineral Potential of McNeil and Robertson Townships, District of Timiskaming, Ontario. Ontario Geological Survey Open File Map 204, scale 1:20,000.

Jensen, L.S. 2002. Precambrian Geology of McNeil, Robertson, Hincks and Cleaver Townships. Ontario Geological Survey Open File Report 5931, 77 p.

Johns-Manville. 1981. Results of Surface Sampling, Bobjo Property. Assessment Report, Johns-Manville Canada Incorporated (AFRI File No. 42A02NW0073), 7 p.

Kirkham, R.V. 2004. A Preliminary Evaluation of the Tom Fox-Weekly Gold Property, McNeil Township (42A/2W), Ontario. Assessment Report, OGL Ventures Ltd. (AFRI File No. 42A02NW2003), 52 p .

Konovsky, P.R. 1983. Diamond Drill Logs. Assessment Report. (AFRI File No. 42A02NW0075), 6 p.

Konovsky, P.R. 1985. Diamond Drill Log. Assessment Report. (AFRI File No. 42A02NW0060), 5 p.

Konovsky, P.R. 1986. Diamond Drill Logs. Assessment Report. (AFRI File No. 42A02NW0065), 16 p.
Lowrie, D.A. 1990. Report on Geological Mapping and Diamond Drilling on the Weekly Gold Mine Prospect ML314, McNeil Township, Ontario. Assessment Report, Argyle Ventures Inc. (AFRI File No. 42A02NW0051), 52 p.

Lowrie, D.A. 1993. Report of Work Performed on Seven Claims Located in McNeil Township, Larder Lake M.D., Ontario. Assessment Report, Argyle Ventures Inc. and the Weekly Trust (AFRI File No. 42A02NW1152), 4 p.

Lowrie, D.A. and Hussey, J. 1993. Geophysical Report to be Applied as Part of a Work Report for Assessment Work Purposes. Assessment Report, Argyle Ventures Inc. and the Weekly Trust (AFRI File No. 42A02SW8432), 12 p.

ODM. 1975. Airborne Electromagnetic and Total Intensity Magnetic Survey, McNeil Township, District of Timiskaming; by Questor Surveys Limited. Ontario Division of Mines, Preliminary Map P.1015, Scale 1 inch to $1 / 4$ mile.

Ontario Geological Survey. 2000a. Airborne Magnetic and Electromagnetic Surveys, Kirkland Lake Area. Ontario Geological Survey Map 82 030, Scale 1:20,000.

Ontario Geological Survey. 2000b. Airborne Magnetic and Electromagnetic Surveys, Kirkland Lake Area. Ontario Geological Survey Map 82 031, Scale 1:20,000.

Ontario Geological Survey. 2001. Airborne Magnetic and Electromagnetic Surveys, Apparent Conductance and Electromagnetic Anomalies, Kirkland Lake Area. Ontario Geological Survey Map 82 220, Scale 1:50,000.

Ontario Geological Survey. 2006. 1:250,000 Scale Bedrock Geology of Ontario. Miscellaneous Release-Data (MRD) 126.

Poulsen, K.H., Robert, F. and Dubé, B. 2000. Geological classification of Canadian gold deposits. Geological Survey of Canada Bulletin 540, 106 p.

Quesnel, T.J. and Watkins, J. 1988a. Diamond Drill Logs. Assessment Report, Kerr Addison Mines Ltd. (AFRI File No. 42A02NW0054), 19 p.

Quesnel, T.J. and Watkins, J. 1988c. Diamond Drill Logs. Assessment Report, Kerr Addison Mines Ltd. (AFRI File No. 42A02NW0057), 58 p.

Quesnel, T.J. and Watkins, J. 1988b. Diamond Drill Logs. Assessment Report, Kerr Addison Mines Ltd. (AFRI File No. 42A02NW0059), 82 p.

Robert, F. 1997. A preliminary geological model for syenite-associated disseminated gold deposits in the Abitibi belt, Ontario and Quebec. In Current Research 1997-C, Geological Survey of Canada, pp. 201-210.

Setterfield, T. and Sexton, A. 2008. Report on the McNeil Property, McNeil and Robertson Townships, NTS Map Sheet 42A/02, Northeastern Ontario, for Warrior Ventures Inc. NI 43-101 Technical Report, 46 p.

Sheedy, R. 1979. Technical Report on the King-Weekly Mining Claims, McNeil Twp, District of Temiskimang. Assessment Report, Sylva Explorations Limited. (AFRI File No. 42A02NW0083), 17 p.

Sheedy, R. 1979. Technical Report on the Group of Claims known as the Lew Weekly Property, McNeil Twp. Assessment Report, Sylva Explorations Limited. (AFRI File No. 42A02NW0080), 14 p.

Stewart, R.V. 1984. Geological Report on Tom Fox Lake Property in McNeil Township, Larder Lake Mining Division, Ontario. Assessment Report, Argyle Ventures Inc. (AFRI File No. 42A02NW0068), 15 p.

Stewart, R.V. 1985a. Manual Stripping, Tom Fox Lake Property in McNeil Township, Larder Lake Mining Division, Ontario. Assessment Report, Argyle Ventures Inc. (AFRI File No. 42A02NW0074), 15 p.

Stewart, R.V. 1985b. Geophysical and Geological Report on the Whitefish Lake Property in McNeil Township, Larder Lake Mining Division, Ontario. Assessment Report, Fairland Resources Limited (AFRI File No. 42A02NW0064), 10 p.

Stewart, R.V. 1987. Diamond Drill Logs. Assessment Report, Argyle Ventures Inc. (AFRI File No. 42A02NW0067), 44 p.

Stewart, R.V. 1997. Report on an I.P. Electromagnetic Survey and Diamond Drilling Program, McNeil Township, Ontario. Assessment Report, Oliver Group/Canadian Zeolite Ltd. (AFRI File No. 42A02NW00142), 13 p.

Stewart, R.V. 1998. Report on a Geological Mapping \& Line Cutting Program, McNeil Township, Northern Ontario. Assessment Report, Oliver Group/Alda Industries Ltd. (AFRI File No. 42A02NW2001), 8 p.

Weekly, L. 1980. Diamond Drill Logs. Assessment Report. (AFRI File No. 42A02NW0084), 9 p.

Weekly, L. 1981. Diamond Drill Logs. Assessment Report. (AFRI File No. 42A02NW0085), 12 p .

Weekly, L. 1982. Diamond Drill Logs. Assessment Report. (AFRI File No. 42A02NW0081), 8 p.

Weekly, L. 1983. Diamond Drill Log. Assessment Report. (AFRI File No. 42A02NW0078), 5 p.

Weekly, L. 1984a. Diamond Drill Log. Assessment Report. (AFRI File No. 42A02NW0069), 4 p.

Weekly, L. 1984b. Diamond Drill Log. Assessment Report. (AFRI File No. 42A02NW0072), 9 p.

Woolham, R.W. 1996. Report on an Induced Polarization Survey, McNeil Township Properties, Timmins Area, Ontario. Assessment Report, Oliver Group/Canadian Zeolite Ltd. (AFRI File No. 42A02NW00142), 10 p.

Zyla, T. 2007. Drill Logs, Lightening Zone. Internal Warrior Ventures Documents.

APPENDIX A: Certificates of Qualifications

I, Tom Setterfield, PhD, P.Geo. do hereby certify that:

1. I am currently one of the principals of GeoVector Management Inc. Suite 312, 10 Green St., Ottawa, Ontario, K2J 3Z6
2. I graduated with a BSc degree in Geology and Chemistry from Carleton University in 1980. In addition, I have obtained an MSc in Geology from the University of Western Ontario in 1984, and a PhD in Earth Sciences from the University of Cambridge in 1991.
3. I am a member of the Association of Professional Geoscientists of Ontario (membership \#0103).
4. I have worked as a geologist for a total of 28 years since my graduation from university.
5. I compiled the Previous Work on the McNeil property and wrote the bulk of this assessment report. I have not visited McNeil property.

Dated this 5th Day of April, 2009.

## Tom Satterfield

## Tom Setterfield

GOLD SAMPLE ANALYSIS FOR HOLES LZ-07-11, LZ-07-12, ISA-07-01 TO

## ISA-07-04, WW-07-01 TO WW-07-03

| Hole_ID | From | To | Sample_\# | Length | Analysis | Type | Litho Unit | Comments | Certificate_\# | AU ppb | m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WW-07-01 | 0.50 | 1.50 | 28401 | 1.00 | AU, AG | Core |  |  |  | 3 | 0.1 |
| WW-07-01 | 1.50 | 2.30 | 28402 | 0.80 | $A U, A G$ | Core |  |  |  | 10 | 0.2 |
| WW-07-01 | 2.30 | 2.90 | 28403 | 0.60 | $A U, A G$ | Core |  |  |  |  |  |
| WW-07-01 | 2.90 | 3.45 | 28404 | 0.55 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 3.45 | 4.20 | 28405 | 0.75 | AU, AG | Core |  |  |  | 14 | 0.1 |
| WW-07-01 | 4.20 | 5.20 | 28406 | 1.00 | AU, AG | Core |  |  |  | 17 | 0.1 |
| WW-07-01 | 5.20 | 6.20 | 28407 | 1.00 | AU, AG | Core |  |  |  | 216 | 0.9 |
| WW-07-01 | 6.20 | 7.20 | 28408 | 1.00 | AU, AG | Core |  |  |  | 261 | 0.1 |
| WW-07-01 | 7.20 | 8.20 | 28409 | 1.00 | AU, AG | Core |  |  |  | Nil | 0.3 |
| WW-07-01 | 8.20 | 9.20 | 28410 | 1.00 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 9.20 | 10.20 | 28411 | 1.00 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 10.20 | 10.90 | 28412 | 0.70 | AU, AG | Core |  |  |  | 24 | 0.1 |
| WW-07-01 | 10.90 | 11.65 | 28413 | 0.75 | AU, AG | Core |  |  |  | 55 | 0.1 |
| WW-07-01 | 11.65 | 12.50 | 28414 | 0.85 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 12.50 | 13.50 | 28415 | 1.00 | AU, AG | Core |  |  |  | 7 | 0.1 |
| WW-07-01 | 13.50 | 14.50 | 28416 | 1.00 | $A U, A G$ | Core |  |  |  | 10 | 0.1 |
| WW-07-01 | 14.50 | 15.10 | 28417 | 0.60 | $A U, A G$ | Core |  |  |  | 34 | 0.1 |
| WW-07-01 | 15.10 | 16.10 | 28418 | 1.00 | $A U, A G$ | Core |  |  |  | 7 | 0.1 |
| WW-07-01 | 16.10 | 17.10 | 28419 | 1.00 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 17.10 | 18.10 | 28420 | 1.00 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 18.10 | 19.10 | 28421 | 1.00 | $A U, A G$ | Core |  |  |  | 696 | 0.3 |
| WW-07-01 | 19.10 | 20.10 | 28422 | 1.00 | $A U, A G$ | Core |  |  |  | 21 | 0.1 |
| WW-07-01 | 20.10 | 20.80 | 28423 | 0.70 | $A U, A G$ | Core |  |  |  | 17 | 0.1 |
| WW-07-01 | 20.80 | 21.55 | 28424 | 0.75 | $A U, A G$ | Core |  |  |  | 3 | 0.1 |
| BLANK |  |  | 28425 | 0.00 | AU, AG | Grab |  | BLANK |  | Nil | 0.1 |
| WW-07-01 | 21.55 | 22.50 | 28426 | 0.95 | AU, AG | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 84.50 | 85.30 | 28427 | 0.80 | $A \cup, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 85.30 | 86.10 | 28428 | 0.80 | AU, AG | Core |  |  |  | 21 | 0.1 |
| WW-07-01 | 86.10 | 86.80 | 28429 | 0.70 | AU, AG | Core |  |  |  | 7 | 0.1 |
| WW-07-01 | 86.80 | 87.80 | 28430 | 1.00 | $A \cup, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 118.00 | 119.00 | 28431 | 1.00 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 119.00 | 120.00 | 28432 | 1.00 | $A U, A G$ | Core |  |  |  | Nil | 0.1 |
| WW-07-01 | 120.00 | 121.00 | 28433 | 1.00 | $A U, A G$ | Core |  |  |  | 10 | 0.2 |
| WW-07-01 | 121.00 | 122.00 | 28434 | 1.00 | $A U, A G$ | Core |  |  |  | 3 | 0.2 |


| WW-07-01 | 135.70 | 136.70 | 28435 | 1.00 | AU, AG | Core |  | Nil | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WW-07-01 | 136.70 | 137.70 | 28436 | 1.00 | $A U, A G$ | Core |  | Nil | 0.1 |
| WW-07-01 | 137.70 | 138.60 | 28437 | 0.90 | $A U, A G$ | Core |  | Nil | 0.1 |
| WW-07-01 | 138.60 | 139.60 | 28438 | 1.00 | AU, AG | Core |  | Nil | 0.1 |
| WW-07-01 | 139.60 | 140.60 | 28439 | 1.00 | $A U, A G$ | Core |  | 3 | 0.2 |
| WW-07-01 | 148.10 | 149.10 | 28440 | 1.00 | AU, AG | Core |  | 7 | 0.1 |
| WW-07-01 | 149.10 | 150.10 | 28441 | 1.00 | $A U, A G$ | Core |  | 120 | 0.1 |
| WW-07-01 | 150.10 | 151.10 | 28442 | 1.00 | $A U, A G$ | Core |  | 51 | 0.3 |
| WW-07-01 | 151.10 | 152.10 | 28443 | 1.00 | $A U, A G$ | Core |  | 31 | 0.2 |
| WW-07-01 | 152.10 | 153.10 | 28444 | 1.00 | $A U, A G$ | Core |  | 3 | 0.3 |
| WW-07-01 | 153.10 | 154.10 | 28445 | 1.00 | $A U, A G$ | Core |  | 24 | 0.1 |
| WW-07-01 | 154.10 | 155.10 | 28446 | 1.00 | $A U, A G$ | Core |  | Nil | 0.3 |
| WW-07-01 | 155.10 | 156.10 | 28447 | 1.00 | $A U, A G$ | Core |  | 31 | 0.1 |
| WW-07-01 | 156.10 | 157.10 | 28448 | 1.00 | $A U, A G$ | Core |  | 7 | 0.1 |
| WW-07-01 | 157.10 | 158.10 | 28449 | 1.00 | $A U, A G$ | Core |  | 17 | 0.1 |
| JG31 Au STD |  |  | 28450 | 0.00 | AU, AG | Pulp | SG31 Au STD | 953 | 0.8 |
| WW-07-01 | 158.10 | 159.10 | 28451 | 1.00 | $A U, A G$ | Core |  | 14 | 0.1 |
| WW-07-01 | 159.10 | 160.10 | 28452 | 1.00 | AU, AG | Core |  | Nil | 0.1 |
| WW-07-01 | 160.10 | 161.10 | 28453 | 1.00 | AU, AG | Core |  | Nil | 0.1 |
| WW-07-01 | 161.10 | 162.10 | 28454 | 1.00 | $A U, A G$ | Core |  | 3 | 0.1 |
| WW-07-01 | 162.10 | 163.10 | 28455 | 1.00 | AU, AG | Core |  | 7 | 0.1 |
| WW-07-01 | 163.10 | 164.10 | 28456 | 1.00 | AU, AG | Core |  | 3 | 0.1 |
| WW-07-01 | 164.10 | 165.10 | 28457 | 1.00 | AU, AG | Core |  | Nil | 0.1 |
| WW-07-01 | 165.10 | 166.10 | 28458 | 1.00 | $A U, A G$ | Core |  | Nil | 0.1 |
| WW-07-01 | 166.10 | 167.10 | 28459 | 1.00 | $A U, A G$ | Core |  | Nil | 0.1 |
| WW-07-01 | 167.10 | 168.10 | 28460 | 1.00 | $A \cup, A G$ | Core |  | 7 | 0.2 |
| WW-07-01 | 168.10 | 169.10 | 28461 | 1.00 | $A U, A G$ | Core |  | 110 | 0.1 |
| WW-07-01 | 169.10 | 170.10 | 28462 | 1.00 | $A \cup, A G$ | Core |  | Nil | 0.1 |
| WW-07-01 | 170.10 | 171.10 | 28463 | 1.00 | $A U, A G$ | Core |  | Nil | 0.1 |
| WW-07-01 | 171.10 | 172.10 | 28464 | 1.00 | AU, AG | Core |  | 14 | 0.1 |
| WW-07-01 | 172.10 | 173.10 | 28465 | 1.00 | $A U, A G$ | Core |  | Nil | 0.1 |
| WW-07-01 | 173.10 | 174.10 | 28466 | 1.00 | AU, AG | Core |  | Nil | 0.1 |
| WW-07-01 | 174.10 | 175.10 | 28467 | 1.00 | AU, AG | Core |  | 7 | 0.1 |
| WW-07-01 | 175.10 | 176.10 | 28468 | 1.00 | AU, AG | Core |  | 10 | 0.1 |
| WW-07-01 | 176.10 | 177.10 | 28469 | 1.00 | AU, AG | Core |  | 17 | 0.1 |
| WW-07-01 | 177.10 | 178.10 | 28470 | 1.00 | $A U, A G$ | Core |  | 3 | 0.1 |
| WW-07-01 | 178.10 | 179.10 | 28471 | 1.00 | $A U, A G$ | Core |  | 14 | 0.1 |


| WW-07-01 | 179.10 | 180.10 | 28472 | 1.00 | $A U, A G$ | Core |  |  | 3 | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WW-07-01 | 180.10 | 181.10 | 28473 | 1.00 | $A U, A G$ | Core |  |  | Nil | 0.1 |
| WW-07-01 | 181.10 | 182.10 | 28474 | 1.00 | $A U, A G$ | Core |  |  | 17 | 0.1 |
| BLANK |  |  | 28475 | 0.00 | $A U, A G$ | Grab | BLANK |  | 3 | 0.1 |
| WW-07-01 | 182.10 | 183.10 | 28476 | 1.00 | $A U, A G$ | Core |  |  | Nil | 0.1 |
| WW-07-01 | 183.10 | 184.00 | 28477 | 0.90 | $A U, A G$ | Core |  |  | Nil | 0.1 |
| ISA-07-01 | 4.50 | 5.50 | 591001 | 1.00 | $A U, A G$ | Core |  |  | 10 | 0.1 |
| ISA-07-01 | 5.50 | 6.50 | 591002 | 1.00 | $A U, A G$ | Core |  |  | 309 | 0.2 |
| ISA-07-01 | 6.50 | 7.50 | 591003 | 1.00 | $A U, A G$ | Core |  |  | 34 | 0.1 |
| ISA-07-01 | 7.50 | 8.50 | 591004 | 1.00 | $A U, A G$ | Core |  |  | 89 | 0.1 |
| ISA-07-01 | 8.50 | 9.50 | 591005 | 1.00 | $A U, A G$ | Core |  |  | 110 | 0.2 |
| ISA-07-01 | 9.50 | 10.50 | 591006 | 1.00 | $A U, A G$ | Core |  |  | 17 | 0.1 |
| ISA-07-01 | 40.50 | 41.50 | 591007 | 1.00 | $A U, A G$ | Core |  |  | 264 | 0.5 |
| ISA-07-01 | 41.50 | 42.50 | 591008 | 1.00 | $A U, A G$ | Core |  |  | 987 | 0.2 |
| ISA-07-01 | 42.50 | 43.50 | 591009 | 1.00 | $A U, A G$ | Core |  |  | 202 |  |
| ISA-07-01 | 43.50 | 44.50 | 591010 | 1.00 | $A U, A G$ | Core |  |  | 1224 |  |
| ISA-07-01 | 44.50 | 45.50 | 591011 | 1.00 | AU, AG | Core |  |  | 651 |  |
| ISA-07-01 | 45.50 | 46.50 | 591012 | 1.00 | $A U, A G$ | Core | 0.861 | g/ton | 1838 |  |
| ISA-07-01 | 46.50 | 47.10 | 591013 | 0.60 | $A U, A G$ | Core | over 5 meters |  | 51 |  |
| ISA-07-01 | 47.10 | 48.00 | 591014 | 0.90 | $A U, A G$ | Core |  |  | 27 |  |
| ISA-07-01 | 48.00 | 48.70 | 591015 | 0.70 | $A U, A G$ | Core |  |  | 27 |  |
| ISA-07-01 | 48.70 | 49.70 | 591016 | 1.00 | $A U, A G$ | Core |  |  | 21 |  |
| ISA-07-01 | 52.50 | 52.90 | 591017 | 0.40 | $A U, A G$ | Core |  |  | Nil |  |
| ISA-07-01 | 52.90 | 53.30 | 591018 | 0.40 | $A U, A G$ | Core |  |  | Nil |  |
| ISA-07-01 | 53.30 | 54.00 | 591019 | 0.70 | $A U, A G$ | Core |  |  | 343 |  |
| ISA-07-01 | 54.00 | 55.00 | 591020 | 1.00 | $A U, A G$ | Core |  |  | 1419 |  |
| ISA-07-01 | 55.00 | 56.00 | 591021 | 1.00 | $A U, A G$ | Core |  |  | 2709 |  |
| ISA-07-01 | 56.00 | 57.00 | 591022 | 1.00 | $A U, A G$ | Core |  |  | 1166 |  |
| ISA-07-01 | 57.00 | 58.00 | 591023 | 1.00 | $A U, A G$ | Core |  |  | 741 |  |
| ISA-07-01 | 58.00 | 58.90 | 591024 | 0.90 | $A U, A G$ | Core | 1.14 | g/ton | 463 |  |
| Blank |  |  | 591025 | \#VALUE! | $A U, A G$ | Grab | Blank |  | 3 |  |
| ISA-07-01 | 58.90 | 60.00 | 591026 | 1.10 | $A U, A G$ | Core | over 6 meters |  | 55 |  |
| ISA-07-01 | 60.00 | 61 | 591027 | 1.00 | $A U, A G$ | Core |  |  | 89 |  |
| ISA-07-01 | 61.00 | 62.00 | 591028 | 1.00 | $A U, A G$ | Core |  |  | Nil |  |
| ISA-07-01 | 62.00 | 63.00 | 591029 | 1.00 | $A U, A G$ | Core |  |  | 3 |  |
| ISA-07-01 | 63.00 | 64.00 | 591030 | 1.00 | $A U, A G$ | Core |  |  | Nil |  |
| ISA-07-01 | 64.00 | 65.00 | 591031 | 1.00 | $A U, A G$ | Core |  |  | Nil |  |


| ISA-07-01 | 78.50 | 79.80 | 591032 | 1.30 | AU, $A G$ | Core |  | 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-01 | 79.80 | 80.80 | 591033 | 1.00 | AU, AG | Core |  | NIL |  |
| ISA-07-01 | 80.80 | 81.80 | 591034 | 1.00 | AU, AG | Core |  | 7 |  |
| ISA-07-01 | 81.80 | 82.90 | 591035 | 1.10 | AU, AG | Core |  | NIL |  |
| ISA-07-01 | 82.90 | 83.30 | 591036 | 0.40 | AU, AG | Core |  | 5 |  |
| ISA-07-01 | 83.30 | 84.30 | 591037 | 1.00 | $A U, A G$ | Core |  | NIL |  |
| ISA-07-01 | 84.30 | 85.30 | 591038 | 1.00 | AU, AG | Core |  | 3 |  |
| ISA-07-01 | 85.30 | 85.80 | 591039 | 0.50 | AU, AG | Core |  | NIL |  |
| ISA-07-01 | 85.80 | 87.00 | 591040 | 1.20 | $A U, A G$ | Core |  | NIL |  |
| ISA-07-01 | 87.00 | 88.00 | 591041 | 1.00 | AU, AG | Core |  | 5 |  |
| ISA-07-01 | 88.00 | 89.00 | 591042 | 1.00 | $A U, A G$ | Core |  | 10 |  |
| ISA-07-01 | 89.00 | 90.00 | 591043 | 1.00 | AU, AG | Core |  | NIL |  |
| ISA-07-01 | 90.00 | 91.00 | 591044 | 1.00 | $A U, A G$ | Core |  | 3 |  |
| ISA-07-01 | 91.00 | 91.70 | 591045 | 0.70 | AU, AG | Core |  | 12 |  |
| ISA-07-01 | 91.70 | 93.00 | 591046 | 1.30 | $A U, A G$ | Core |  | 81 |  |
| ISA-07-01 | 93.00 | 93.50 | 591047 | 0.50 | AU, AG | Core |  | 288 |  |
| ISA-07-01 | 93.50 | 94.50 | 591048 | 1.00 | AU, AG | Core |  | 223 |  |
| ISA-07-01 | 94.50 | 95.50 | 591049 | 1.00 | AU, AG | Core |  | 254 |  |
| 3L 34 Au STD |  |  | 591050 | 0.00 | AU, AG | Pulp | SL 34 Au STD | 1449 |  |
| ISA-07-01 | 95.50 | 96.50 | 591051 | 1.00 | AU, AG | Core |  | 463 |  |
| ISA-07-01 | 96.50 | 97.50 | 591052 | 1.00 | $A \cup, A G$ | Core |  | 101 |  |
| ISA-07-01 | 97.50 | 98.50 | 591053 | 1.00 | AU, AG | Core |  | 219 |  |
| ISA-07-01 | 98.50 | 99.50 | 591054 | 1.00 | $A \cup, A G$ | Core |  | 1128 |  |
| ISA-07-01 | 99.50 | 100.50 | 591055 | 1.00 | $A \cup, A G$ | Core |  | 34 |  |
| ISA-07-01 | 100.50 | 101.20 | 591056 | 0.70 | $A \cup, A G$ | Core |  | Nil |  |
| ISA-07-01 | 101.20 | 102.00 | 591057 | 0.80 | AU, AG | Core |  | 550 | 0.1 |
| ISA-07-01 | 102.00 | 103.00 | 591058 | 1.00 | AU, AG | Core |  | 39 | 0.1 |
| ISA-07-01 | 103.00 | 104.00 | 591059 | 1.00 | AU, AG | Core |  | 14 | 0.1 |
| ISA-07-01 | 104.00 | 105.00 | 591060 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-01 | 105.00 | 106.30 | 591061 | 1.30 | AU, AG | Core |  | 17 | 0.1 |
| ISA-07-01 | 106.30 | 107.50 | 591062 | 1.20 | AU, AG | Core |  | 7 | 0.1 |
| ISA-07-01 | 107.50 | 108.50 | 591063 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-01 | 108.50 | 109.50 | 591064 | 1.00 | $A \cup, A G$ | Core |  | NIL | 0.1 |
| ISA-07-01 | 109.50 | 110.50 | 591065 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-01 | 110.50 | 111.50 | 591066 | 1.00 | $A \cup, A G$ | Core |  | NIL | 0.1 |
| ISA-07-01 | 111.50 | 112.50 | 591067 | 1.00 | $A \cup, A G$ | Core |  | NIL | 0.1 |
| ISA-07-01 | 112.50 | 113.50 | 591068 | 1.00 | $A U, A G$ | Core |  | NIL | 0.1 |


| ISA-07-04 | 0.50 | 1.50 | 591069 | 1.00 | $A U, A G$ | Core |  |  | 84 | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-04 | 1.50 | 2.50 | 591070 | 1.00 | $A U, A G$ | Core |  |  | NIL | 0.1 |
| ISA-07-04 | 2.50 | 3.50 | 591071 | 1.00 | AU, AG | Core |  |  | 34 | 0.1 |
| ISA-07-04 | 3.50 | 4.50 | 591072 | 1.00 | $A U, A G$ | Core |  |  | 614 | 0.1 |
| ISA-07-04 | 4.50 | 5.50 | 591073 | 1.00 | AU, AG | Pulp |  |  | 10 | 0.1 |
| ISA-07-04 | 5.50 | 6.50 | 591074 | 1.00 | $A U, A G$ | Core |  |  | NIL | 0.1 |
| Blank |  |  | 591075 | 0.00 | AU, AG | Core |  |  | NIL | 0.1 |
| ISA-07-04 | 6.50 | 7.50 | 591076 | 1.00 | AU, AG | Core |  |  | 81 | 0.1 |
| ISA-07-04 | 7.50 | 8.50 | 591077 | 1.00 | $A U, A G$ | Core |  |  | 2241 | 0.2 |
| ISA-07-04 | 8.50 | 9.50 | 591078 | 1.00 | $A U, A G$ | Core |  |  | 231 | 0.1 |
| ISA-07-04 | 9.50 | 10.50 | 591079 | 1.00 | $A U, A G$ | Core |  |  | 346 | 0.1 |
| ISA-07-04 | 10.50 | 11.50 | 591080 | 1.00 | $A U, A G$ | Core |  |  | 57 | 0.1 |
| ISA-07-04 | 11.50 | 12.50 | 591081 | 1.00 | AU, AG | Core |  |  |  |  |
| ISA-07-04 | 12.50 | 13.50 | 591082 | 1.00 | $A U, A G$ | Core |  |  | 2225 | 0.1 |
| ISA-07-04 | 13.50 | 14.50 | 591083 | 1.00 | $A U, A G$ | Core |  |  | 62 | 0.1 |
| ISA-07-04 | 14.50 | 15.50 | 591084 | 1.00 | $A U, A G$ | Core |  |  | 446 | 0.1 |
| ISA-07-04 | 15.50 | 16.50 | 591085 | 1.00 | $A U, A G$ | Core |  |  | 285 | 0.1 |
| ISA-07-04 | 16.50 | 17.50 | 591086 | 1.00 | $A U, A G$ | Core |  |  | 487 | 0.1 |
| ISA-07-04 | 17.50 | 18.50 | 591087 | 1.00 | AU, AG | Core |  |  | 442 | 0.1 |
| ISA-07-04 | 18.50 | 19.50 | 591088 | 1.00 | $A U, A G$ | Core |  |  | 1114 | 0.1 |
| ISA-07-04 | 19.50 | 20.50 | 591089 | 1.00 | $A U, A G$ | Core |  |  | nil |  |
| ISA-07-04 | 29.00 | 30.00 | 591090 | 1.00 | $A U, A G$ | Core |  |  | nil |  |
| ISA-07-04 | 30.00 | 30.90 | 591091 | 0.90 | $A U, A G$ | Core |  |  | 171 | 0.2 |
| ISA-07-04 | 30.90 | 32.00 | 591092 | 1.10 | $A U, A G$ | Core |  |  | 2078 | 0.4 |
| ISA-07-04 | 32.00 | 33.00 | 591093 | 1.00 | AU, AG | Core |  |  | 538 | 0.1 |
| ISA-07-04 | 33.00 | 34.00 | 591094 | 1.00 | $A U, A G$ | Core |  |  | 333 | 0.1 |
| ISA-07-04 | 34.00 | 35.00 | 591095 | 1.00 | $A U, A G$ | Core |  |  | 830 | 0.3 |
| ISA-07-04 | 35.00 | 36.00 | 591096 | 1.00 | $A U, A G$ | Core |  |  | 2150 | 0.1 |
| ISA-07-04 | 36.00 | 37.00 | 591097 | 1.00 | $A U, A G$ | Core |  |  | 909 | 0.1 |
| ISA-07-04 | 37.00 | 38.00 | 591098 | 1.00 | AU, AG | Grab |  |  | 694 | 0.1 |
| ISA-07-04 | 38.00 | 39.00 | 591099 | 1.00 | $A U, A G$ | Core | 0.78 | g/ton | 2366 | 0.1 |
| Au Std SG31 |  |  | 591100 | 0.00 | AU, AG | Pulp | Au Std SG31 |  | 970 | 0.3 |
| ISA-07-04 | 39.00 | 39.90 | 591101 | 0.90 | AU, AG | Core | over 23 meters |  | 48 | 0.1 |
| ISA-07-04 | 39.90 | 41.00 | 591102 | 1.10 | $A U, A G$ | Core |  |  | 7 | 0.1 |
| ISA-07-04 | 41.00 | 42.00 | 591103 | 1.00 | $A U, A G$ | Core |  |  | NIL | 0.1 |
| ISA-07-04 | 42.00 | 43.00 | 591104 | 1.00 | $A U, A G$ | Core |  |  | 17 | 0.1 |
| ISA-07-04 | 43.00 | 44.00 | 591105 | 1.00 | $A U, A G$ | Core |  |  | NIL | 0.1 |


| ISA-07-04 | 47.90 | 48.90 | 591106 | 1.00 | AU, AG | Core |  | 10 | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-04 | 48.90 | 50.00 | 591107 | 1.10 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-04 | 50.00 | 51.00 | 591108 | 1.00 | AU, AG | Core |  | 10 | 0.1 |
| WW-07-03 | 17.50 | 18.55 | 591109 | 1.05 | $A \cup, A G$ | Core |  | NIL | 0.1 |
| WW-07-03 | 18.55 | 19.40 | 591110 | 0.85 | AU, AG | Core |  | 5 | 0.1 |
| WW-07-03 | 19.40 | 20.40 | 591111 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| WW-07-03 | 25.50 | 26.00 | 591112 | 0.50 | AU, AG | Core |  | 110 | 0.1 |
| WW-07-03 | 26.00 | 27.00 | 591113 | 1.00 | AU, AG | Core |  | 36 | 0.1 |
| WW-07-03 | 27.00 | 27.40 | 591114 | 0.40 | AU, AG | Core |  | 370 | 0.1 |
| WW-07-03 | 27.40 | 28.40 | 591115 | 1.00 | AU, AG | Core |  | 36 | 0.1 |
| WW-07-03 | 40.00 | 40.95 | 591116 | 0.95 | AU, AG | Core |  | 9 | 0.1 |
| WW-07-03 | 40.95 | 41.55 | 591117 | 0.60 | AU, AG | Core |  | 12 | 0.1 |
| WW-07-03 | 41.55 | 42.50 | 591118 | 0.95 | AU, AG | Core |  | 5 | 0.1 |
| WW-07-03 | 42.50 | 43.50 | 591119 | 1.00 | AU, AG | Core |  | 7 | 0.1 |
| WW-07-03 | 43.50 | 44.00 | 591120 | 0.50 | AU, AG | Core |  | nil | 0.1 |
| WW-07-03 | 61.00 | 62.00 | 591121 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| WW-07-03 | 62.00 | 63.00 | 591122 | 1.00 | AU, AG | Core |  | 17 | 0.1 |
| WW-07-03 | 63.00 | 63.70 | 591123 | 0.70 | AU, AG | Core |  | 3 | 0.1 |
| WW-07-03 | 63.70 | 64.70 | 591124 | 1.00 | AU, AG | Core |  | 137 | 0.1 |
| Blank |  |  | 591125 | 0.00 | AU, AG | Grab | Blank | 3 | 0.1 |
| ISA-07-02 | 5.00 | 6.00 | 591126 | 1.00 | AU, AG | Core |  | 9 | 0.1 |
| ISA-07-02 | 6.00 | 7.00 | 591127 | 1.00 | AU, AG | Core |  | 55 | 0.1 |
| ISA-07-02 | 7.00 | 8.00 | 591128 | 1.00 | AU, AG | Core |  | 951 | 0.1 |
| ISA-07-02 | 8.00 | 9.00 | 591129 | 1.00 | AU, AG | Core |  | 26 | 0.1 |
| ISA-07-02 | 9.00 | 10.00 | 591130 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 10.00 | 11.00 | 591131 | 1.00 | AU, AG | Core |  | 12 | 0.1 |
| ISA-07-02 | 11.00 | 12.00 | 591132 | 1.00 | AU, AG | Core |  | 58 | 0.1 |
| ISA-07-02 | 12.00 | 13.00 | 591133 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 13.00 | 14.00 | 591134 | 1.00 | AU, AG | Core |  | 22 | 0.1 |
| ISA-07-02 | 14.00 | 15.00 | 591135 | 1.00 | AU, AG | Core |  | 26 | 0.1 |
| ISA-07-02 | 15.00 | 16.00 | 591136 | 1.00 | AU, AG | Core |  | 31 | 0.1 |
| ISA-07-02 | 16.00 | 17.00 | 591137 | 1.00 | AU, AG | Core |  | 14 | 0.1 |
| ISA-07-02 | 17.00 | 18.00 | 591138 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 18.00 | 19.00 | 591139 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 19.00 | 20.00 | 591140 | 1.00 | AU, AG | Core |  | 9 | 0.1 |
| ISA-07-02 | 20.00 | 21.00 | 591141 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 21.00 | 22.00 | 591142 | 1.00 | AU, AG | Core |  | 10 | 0.1 |


| ISA-07-02 | 22.00 | 23.00 | 591143 | 1.00 | AU, $A G$ | Core |  | nil | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-02 | 23.00 | 24.00 | 591144 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 27.20 | 27.65 | 591145 | 0.45 | AU, AG | Core |  | 165 | 0.1 |
| ISA-07-02 | 27.65 | 28.50 | 591146 | 0.85 | AU, AG | Core |  | 562 | 0.1 |
| ISA-07-02 | 28.50 | 29.50 | 591147 | 1.00 | AU, AG | Core |  | 38 | 0.1 |
| ISA-07-02 | 29.50 | 30.40 | 591148 | 0.90 | AU, AG | Grab |  | 3 | 0.1 |
| ISA-07-02 | 30.40 | 31.50 | 591149 | 1.10 | AU, AG | Core |  | nil | 0.1 |
| SJ32 Au STD |  |  | 591150 | 0.00 | AU, AG | Core | SJ32 Au STD | nil | 0.1 |
| ISA-07-02 | 31.50 | 32.30 | 591151 | 0.80 | AU, AG | Core |  | 5 | 0.1 |
| ISA-07-02 | 32.30 | 33.00 | 591152 | 0.70 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 33.00 | 33.50 | 591153 | 0.50 | $A U, A G$ | Core |  | 22 | 0.1 |
| ISA-07-02 | 33.50 | 34.50 | 591154 | 1.00 | AU, AG | Core |  | 3 | 0.1 |
| ISA-07-02 | 34.50 | 35.50 | 591155 | 1.00 | $A U, A G$ | Core |  | nil | 0.1 |
| ISA-07-02 | 35.50 | 36.80 | 591156 | 1.30 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 36.80 | 38.00 | 591157 | 1.20 | $A U, A G$ | Core |  | 27 | 0.1 |
| ISA-07-02 | 38.00 | 39.20 | 591158 | 1.20 | AU, AG | Core |  | 202 | 0.1 |
| ISA-07-02 | 39.20 | 39.90 | 591159 | 0.70 | AU, AG | Core |  | 1783 | 0.1 |
| ISA-07-02 | 43.30 | 44.20 | 591160 | 0.90 | AU, AG | Core |  | 7 | 0.1 |
| ISA-07-02 | 44.20 | 45.10 | 591161 | 0.90 | AU, AG | Core |  | 65 | 0.1 |
| ISA-07-02 | 45.10 | 45.90 | 591162 | 0.80 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 53.00 | 54.00 | 591163 | 1.00 | $A \cup, A G$ | Core |  | 146 | 0.1 |
| ISA-07-02 | 54.00 | 55.00 | 591164 | 1.00 | AU, AG | Core |  | 84 | 0.1 |
| ISA-07-02 | 55.00 | 56.00 | 591165 | 1.00 | AU, AG | Core |  | 36 | 0.1 |
| ISA-07-02 | 56.00 | 57.00 | 591166 | 1.00 | AU, AG | Core |  | 156 | 0.1 |
| ISA-07-02 | 57.00 | 58.00 | 591167 | 1.00 | AU, AG | Core |  | 17 | 0.1 |
| ISA-07-02 | 58.00 | 59.30 | 591168 | 1.30 | AU, AG | Core |  |  |  |
| ISA-07-02 | 59.30 | 60.50 | 591169 | 1.20 | AU, AG | Core |  | 3 | 0.1 |
| ISA-07-02 | 72.50 | 73.50 | 591170 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 73.50 | 74.50 | 591171 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 74.50 | 75.50 | 591172 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 75.50 | 76.50 | 591173 | 1.00 | AU, AG | Pulp |  | 189 | 0.1 |
| ISA-07-02 | 76.50 | 77.50 | 591174 | 1.00 | AU, AG | Core |  | 171 | 0.1 |
| Blank |  |  | 591175 | 0.00 | $A U, A G$ | Core | Blank | 192 | 0.1 |
| ISA-07-02 | 77.50 | 78.50 | 591176 | 1.00 | AU, AG | Core |  | 31 | 0.2 |
| ISA-07-02 | 83.30 | 84.30 | 591177 | 1.00 | $A \cup, A G$ | Core |  | 75 | 0.1 |
| ISA-07-02 | 84.30 | 84.90 | 591178 | 0.60 | $A \cup, A G$ | Core |  | 418 | 0.2 |
| ISA-07-02 | 84.90 | 85.90 | 591179 | 1.00 | $A \cup, A G$ | Core |  | 2 | 0.1 |


| ISA-07-02 | 89.00 | 90.00 | 591180 | 1.00 | AU, AG | Core |  | 363 | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-02 | 90.00 | 91.00 | 591181 | 1.00 | AU, AG | Core |  | 21 | 0.1 |
| ISA-07-02 | 91.00 | 92.00 | 591182 | 1.00 | $A U, A G$ | Core |  | NIL | 0.1 |
| ISA-07-02 | 101.60 | 102.10 | 591183 | 0.50 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 102.10 | 103.10 | 591184 | 1.00 | AU, AG | Core |  | 315 | 0.1 |
| ISA-07-02 | 103.10 | 104.10 | 591185 | 1.00 | AU, AG | Core |  | 19 | 0.1 |
| ISA-07-02 | 104.10 | 105.10 | 591186 | 1.00 | AU, AG | Core |  | 7 | 0.1 |
| ISA-07-02 | 105.10 | 105.60 | 591187 | 0.50 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 105.60 | 106.60 | 591188 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 106.60 | 107.20 | 591189 | 0.60 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 107.20 | 108.20 | 591190 | 1.00 | AU, AG | Core |  | 62 | 0.1 |
| ISA-07-02 | 108.20 | 108.80 | 591191 | 0.60 | AU, AG | Core |  | 21 | 0.1 |
| ISA-07-02 | 108.80 | 109.80 | 591192 | 1.00 | AU, AG | Core |  | 14 | 0.1 |
| ISA-07-02 | 109.80 | 110.80 | 591193 | 1.00 | AU, AG | Core |  | 14 | 0.1 |
| ISA-07-02 | 110.80 | 111.80 | 591194 | 1.00 | AU, AG | Core |  | 17 | 0.1 |
| ISA-07-02 | 164.50 | 165.50 | 591195 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| ISA-07-02 | 165.50 | 166.00 | 591196 | 0.50 | AU, AG | Core |  | nil | 0.1 |
| ISA-07-02 | 166.00 | 167.00 | 591197 | 1.00 | AU, AG | Core |  | 14 | 0.1 |
| LZ-07-12 | 19.20 | 19.70 | 591198 | 0.50 | AU, AG | Grab |  | NIL | 0.1 |
| LZ-07-12 | 19.70 | 20.70 | 591199 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| SL34 Au STD |  |  | 591200 | 0.00 | AU, AG | Core | SL34 Au STD | 5 | 0.1 |
| LZ-07-12 | 20.70 | 21.00 | 819951 | 0.30 | AU, AG | Core |  | 3 | 0.1 |
| LZ-07-12 | 21.00 | 22.05 | 819952 | 1.05 | $A \cup, A G$ | Core |  | NIL | 0.1 |
| LZ-07-12 | 22.05 | 22.40 | 819953 | 0.35 | AU, AG | Core |  | 10 | 0.1 |
| LZ-07-12 | 34.50 | 35.50 | 819954 | 1.00 | AU, AG | Core |  | NIL | 0.1 |
| LZ-07-12 | 35.50 | 36.50 | 819955 | 1.00 | AU, AG | Core |  | 24 | 0.1 |
| LZ-07-12 | 36.50 | 37.50 | 819956 | 1.00 | AU, AG | Core |  | 9 | 0.1 |
| LZ-07-12 | 37.50 | 38.50 | 819957 | 1.00 | AU, AG | Core |  | 12 | 0.1 |
| LZ-07-12 | 66.15 | 66.60 | 819958 | 0.45 | AU, AG | Core |  | 7 | 0.1 |
| LZ-07-12 | 66.60 | 67.10 | 819959 | 0.50 | AU, AG | Core |  | 5 | 0.1 |
| LZ-07-12 | 67.10 | 67.50 | 819960 | 0.40 | AU, AG | Core |  | NIL | 0.1 |
| LZ-07-12 | 81.00 | 82.00 | 819961 | 1.00 | AU, AG | Core |  | 7 | 0.1 |
| LZ-07-12 | 82.00 | 83.00 | 819962 | 1.00 | AU, AG | Core |  | 3 | 0.1 |
| LZ-07-12 | 83.00 | 84.00 | 819963 | 1.00 | AU, AG | Core |  | 5 | 0.1 |
| LZ-07-12 | 87.10 | 87.40 | 819964 | 0.30 | AU, AG | Core |  | 26 | 0.1 |
| LZ-07-12 | 87.40 | 88.50 | 819965 | 1.10 | AU, AG | Core |  | 123 | 0.1 |
| LZ-07-12 | 88.50 | 89.30 | 819966 | 0.80 | AU, AG | Core |  | NIL | 0.1 |


| LZ-07-12 | 95.60 | 96.50 | 819967 | 0.90 | AU, AG | Core |  | NIL | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LZ-07-12 | 96.50 | 97.50 | 819968 | 1.00 | $A U, A G$ | Core |  | NIL | 0.1 |
| LZ-07-12 | 97.50 | 98.10 | 819969 | 0.60 | $A U, A G$ | Core |  | 1 | 0.1 |
| LZ-07-12 | 129.60 | 130.00 | 819970 | 0.40 | $A U, A G$ | Core |  | 9 | 0.1 |
| LZ-07-12 | 130.00 | 130.50 | 819971 | 0.50 | $A U, A G$ | Core |  | NIL | 0.1 |
| LZ-07-12 | 149.50 | 150.50 | 819972 | 1.00 | $A U, A G$ | Core |  | 7 | 0.1 |
| LZ-07-12 | 150.50 | 150.95 | 819973 | 0.45 | $A U, A G$ | Pulp |  | 507 | 0.1 |
| LZ-07-12 | 150.95 | 152.00 | 819974 | 1.05 | $A U, A G$ | Core |  | 10 | 0.1 |
| LZ-07-12 | 155.44 | 156.00 | 819975 | 0.56 | $A U, A G$ | Core |  | 3 | 0.1 |
| LZ-07-12 | 156.00 | 156.70 | 819976 | 0.70 | $A U, A G$ | Core |  | 5 | 0.1 |
| LZ-07-12 | 160.50 | 161.40 | 819977 | 0.90 | $A U, A G$ | Core |  | NIL | 0.1 |
| LZ-07-12 | 161.40 | 162.00 | 819978 | 0.60 | AU, AG | Core |  | NIL | 0.1 |
| LZ-07-12 | 162.00 | 163.00 | 819979 | 1.00 | $A U, A G$ | Core |  | 7 | 0.1 |
| LZ-07-11 | 22.20 | 22.70 | 819980 | 0.50 | $A U, A G$ | Core |  | 3 | 0.1 |
| LZ-07-11 | 22.70 | 23.20 | 819981 | 0.50 | AU, AG | Core |  | nil | 0.1 |
| LZ-07-11 | 23.20 | 23.70 | 819982 | 0.50 | AU, AG | Core |  | nil | 0.1 |
| LZ-07-11 | 32.70 | 33.70 | 819983 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| LZ-07-11 | 33.70 | 34.70 | 819984 | 1.00 | $A U, A G$ | Core |  | 21 | 0.1 |
| LZ-07-11 | 34.70 | 35.70 | 819985 | 1.00 | $A U, A G$ | Core |  | nil | 0.1 |
| BLANK |  |  | 819986 | \#VALUE! | $A U, A G$ | Core | BLANK | 9 | 0.1 |
| WW-07-02 | 29.00 | 30.00 | 819987 | 1.00 | $A U, A G$ | Core |  | nil | 0.1 |
| WW-07-02 | 30.00 | 31.00 | 819988 | 1.00 | AU, AG | Core |  | nil | 0.1 |
| WW-07-02 | 31.00 | 32.00 | 819989 | 1.00 | $A U, A G$ | Core |  | nil | 0.1 |
| WW-07-02 | 32.00 | 32.60 | 819990 | 0.60 | $A U, A G$ | Core |  | nil | 0.1 |
| WW-07-02 | 32.60 | 33.50 | 819991 | 0.90 | AU, AG | Core |  | 5 | 0.1 |
| WW-07-02 | 38.20 | 38.70 | 819992 | 0.50 | $A U, A G$ | Core |  | 10 | 0.1 |
| WW-07-02 | 38.70 | 39.50 | 819993 | 0.80 | AU, AG | Core |  | 69 | 0.1 |
| WW-07-02 | 42.50 | 43.20 | 819994 | 0.70 | $A U, A G$ | Core |  | 7 | 0.1 |
| WW-07-02 | 43.20 | 43.70 | 819995 | 0.50 | AU, AG | Core |  |  |  |
| WW-07-02 | 43.70 | 44.20 | 819996 | 0.50 | $A U, A G$ | Core |  | nil | 0.1 |
| ISA-07-03 | 0.50 | 1.50 | 819997 | 1.00 | $A U, A G$ | Core |  | nil | 0.1 |
| ISA-07-03 | 1.50 | 2.50 | 819998 | 1.00 | AU, AG | Grab |  | 34 | 0.1 |
| ISA-07-03 | 2.50 | 3.50 | 819999 | 1.00 | AU, AG | Core |  | 165 | 0.1 |
| Au STD SG3 |  |  | 820000 | \#VALUE! | AU, AG | Core | Au STD SG31 | nil |  |
| ISA-07-03 | 3.50 | 4.50 | 27001 | 1.00 | $A U, A G$ | Core |  | NIL | 0.1 |
| ISA-07-03 | 4.50 | 5.50 | 27002 | 1.00 | AU, AG | Core |  | 1 | 0.1 |
| ISA-07-03 | 5.50 | 6.50 | 27003 | 1.00 | AU, AG | Core |  | 34 | 0.1 |


| ISA-07-03 | 6.50 | 7.50 | 27004 | 1.00 | AU, AG | Core |  | 161 | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-03 | 7.50 | 8.50 | 27005 | 1.00 | $A U, A G$ | Core |  | 175 | 0.1 |
| ntaly missed sample |  |  | 27006 | 0.00 | $A U, A G$ | Core | Accidentaly missed sample |  |  |
| ISA-07-03 | 8.50 | 9.50 | 27007 | 1.00 | $A U, A G$ | Core |  | 82 | 0.1 |
| ISA-07-03 | 9.50 | 10.50 | 27008 | 1.00 | $A U, A G$ | Core |  | 2362 | 0.2 |
| ISA-07-03 | 10.50 | 11.50 | 27009 | 1.00 | $A U, A G$ | Core |  | 192 | 0.2 |
| ISA-07-03 | 11.50 | 12.50 | 27010 | 1.00 | $A U, A G$ | Core |  | 243 | 0.2 |
| ISA-07-03 | 12.50 | 13.50 | 27011 | 1.00 | $A U, A G$ | Core |  | 871 | 0.2 |
| ISA-07-03 | 13.50 | 14.50 | 27012 | 1.00 | $A U, A G$ | Core |  | 81 | 0.1 |
| ISA-07-03 | 14.50 | 15.50 | 27013 | 1.00 | $A U, A G$ | Core |  | 319 | 0.1 |
| ISA-07-03 | 15.50 | 16.50 | 27014 | 1.00 | $A U, A G$ | Core |  | 70 | 0.1 |
| ISA-07-03 | 16.50 | 17.50 | 27015 | 1.00 | $A U, A G$ | Core |  | 67 | 0.1 |
| ISA-07-03 | 17.50 | 18.30 | 27016 | 0.80 | $A U, A G$ | Core |  | 26 | 0.1 |
| ISA-07-03 | 26.00 | 27.00 | 27017 | 1.00 | $A U, A G$ | Core |  | 363 | 0.1 |
| ISA-07-03 | 27.00 | 28.00 | 27018 | 1.00 | $A U, A G$ | Core |  | 473 | 0.1 |
| ISA-07-03 | 28.00 | 29.00 | 27019 | 1.00 | $A U, A G$ | Core |  | 1317 | 0.1 |
| ISA-07-03 | 29.00 | 30.00 | 27020 | 1.00 | $A U, A G$ | Core |  | 384 | 0.1 |
| ISA-07-03 | 30.00 | 31.00 | 27021 | 1.00 | $A U, A G$ | Core |  | 158 | 0.1 |
| ISA-07-03 | 31.00 | 32.00 | 27022 | 1.00 | $A U, A G$ | Core |  | 2146 | 0.4 |
| ISA-07-03 | 32.00 | 33.00 | 27023 | 1.00 | $A U, A G$ | Pulp |  | 1584 | 0.4 |
| ISA-07-03 | 33.00 | 34.00 | 27024 | 1.00 | $A U, A G$ | Core |  | 1361 | 1.3 |
| BLANK |  |  | 27025 | 0.00 | $A U, A G$ | Core | BLANK | 1 | 0.1 |
| ISA-07-03 | 34.00 | 35.00 | 27026 | 1.00 | $A U, A G$ | Core |  | 398 | 0.2 |
| ISA-07-03 | 35.00 | 36.00 | 27027 | 1.00 | $A U, A G$ | Core | $0.80 \mathrm{~g} / \mathrm{ton}$ | 607 | 0.1 |
| ISA-07-03 | 36.00 | 36.70 | 27028 | 0.70 | $A U, A G$ | Core | over 18.5 meters | 213 | 0.1 |
| ISA-07-03 | 36.70 | 37.40 | 27029 | 0.70 | $A U, A G$ | Core |  | 86 | 0.1 |
| ISA-07-03 | 57.50 | 58.00 | 27030 | 0.50 | $A U, A G$ | Core |  | 51 | 0.1 |
| ISA-07-03 | 58.00 | 58.70 | 27031 | 0.70 | $A U, A G$ | Core |  | 326 | 0.1 |
| ISA-07-03 | 58.70 | 59.40 | 27032 | 0.70 | $A U, A G$ | Core |  | 429 | 0.1 |
| ISA-07-03 | 59.40 | 60.50 | 27033 | 1.10 | $A U, A G$ | Core |  | 62 | 0.1 |
| ISA-07-03 | 60.50 | 61.50 | 27034 | 1.00 | $A U, A G$ | Core |  | 31 | 0.1 |
| ISA-07-03 | 61.50 | 62.50 | 27035 | 1.00 | $A U, A G$ | Core |  | 507 | 0.1 |
| ISA-07-03 | 62.50 | 63.50 | 27036 | 1.00 | $A U, A G$ | Core |  | 7 | 0.1 |
| ISA-07-03 | 63.50 | 64.75 | 27037 | 1.25 | $A U, A G$ | Core |  | nil | 0.1 |
| ISA-07-03 | 64.75 | 65.50 | 27038 | 0.75 | $A U, A G$ | Core |  | 250 | 0.1 |
| ISA-07-03 | 65.50 | 66.55 | 27039 | 1.05 | $A U, A G$ | Core |  | 233 | 0.1 |
| ISA-07-03 | 66.55 | 67.25 | 27040 | 0.70 | $A U, A G$ | Core |  | 485 | 0.1 |


| ISA-07-03 | 67.25 | 68.15 | 27041 | 0.90 | AU, AG | Core |  |  | NIL | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISA-07-03 | 68.15 | 68.50 | 27042 | 0.35 | $A U, A G$ | Core |  |  | 70 | 0.1 |
| ISA-07-03 | 68.50 | 68.70 | 27043 | 0.20 | $A U, A G$ | Core |  |  | 1457 | 0.1 |
| ISA-07-03 | 68.70 | 69.50 | 27044 | 0.80 | $A U, A G$ | Core |  |  | 39 | 0.1 |
| ISA-07-03 | 69.50 | 70.30 | 27045 | 0.80 | $A U, A G$ | Core |  |  | NIL | 0.1 |
| ISA-07-03 | 70.30 | 71.30 | 27046 | 1.00 | $A U, A G$ | Core |  |  | NIL | 0.1 |
| ISA-07-03 | 71.30 | 72.30 | 27047 | 1.00 | $A U, A G$ | Core |  |  | 213 | 0.1 |
| ISA-07-03 | 72.30 | 73.30 | 27048 | 1.00 | $A U, A G$ | Core |  |  | 351 | 0.1 |
| ISA-07-03 | 73.30 | 74.00 | 27049 | 0.70 | $A U, A G$ | Core |  |  | 319 | 0.1 |
| ISA-07-03 | 74.00 | 75.00 | 27050 | 1.00 | $A U, A G$ | Core | 0.43 | g/ton | 41 | 0.1 |

STRUCTURAL LOGS
ire Drill Holes LZ-07-11, LZ-07-02, ISA-07-01 TO ISA-07-04 AND WW-07-01 TO WW-07-03

| Hole_ID | From m | Tom | Structure_Type | Alpha | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WW-07-01 | 6.00 | 6.10 | qtz vein | 15 |  |
| WW-07-01 | 16.00 | 1.10 | qtz vein | 20 |  |
| WW-07-01 | 20.00 | 20.10 | qtz vein | 30 |  |
| WW-07-01 | 99.00 | 99.01 | s1 | 40 |  |
| WW-07-01 | 110.00 | 110.01 | s1 | 50 |  |
| WW-07-01 | 137.00 | 137.01 | s1 | 55 |  |
| WW-07-01 | 149.00 | 149.10 | sz | 65 | mod shear/bx'ed zone |
| WW-07-01 | 150.10 | 150.70 | sz | 65 | mod shear/bx'ed zone |
| WW-07-01 | 154.00 | 154.01 | s1 | 64 |  |
| WW-07-01 | 155.10 | 155.11 | fault gauge | 65 |  |
| WW-07-01 | 156.80 | 156.90 | fault gauge | 60 |  |
| WW-07-01 | 170.00 | 170.01 | s1 | 64 |  |
| WW-07-01 | 182.00 | 182.01 | s1 | 63 |  |
| WW-07-01 | 181.20 | 181.21 | fault gauge | 53 |  |
| ISA-07-01 | 6.00 | 6.50 | qtz vein | 20 | 2-4 cm quartz vein with ank rims and 5-10 cm alt halo w/py |
| ISA-07-01 | 8.65 | 8.90 | qtz vein | 15 | 3 cm translucent white qtz vein with carb rim and ank staining. |
| ISA-07-01 | 44.10 | 44.50 | qtz vein | 30 | cm scale grey/white translucent qtz veining |
| ISA-07-01 | 44.1 | 44.50 | qtz vein | 15 | cross cutting and displacing previous veins |
| ISA-07-04 | 30.00 | 30.01 | s1 | 63 |  |
| ISA-07-04 | 37.80 | 38.30 | qtz vein | 8 | $2-3 \mathrm{~cm}$ qtz vein with irregular margins and mm scale cubic pyrite |
| ISA-07-04 | 38.50 | 38.55 | qtz vein | 55 | opposite angle to last vein. Large cm scale coarse py |
| ISA-07-04 | 80.00 | 80.01 | s1 | 50 |  |
| WW-07-03 | 8.00 | 8.01 | s1 | 48 |  |
| WW-07-03 | 8.50 | 8.51 | s2 | 30 |  |
| WW-07-03 | 20.00 | 20.01 | s1 | 54 |  |
| ISA-07-02 | 7.20 | 7.30 | qtz vein | 32 | vitreous grey/white qtz vein |
| ISA-07-02 | 28.00 | 28.50 | qtz vein | 5 | vitrous qtz vein with $5 \% 3-4 \mathrm{~mm}$ cubic pyrite |
| ISA-07-02 | 28.50 | 28.55 | qtz vein | 52 | .5 cm white qtz vein |
| ISA-07-02 | 46.20 | 46.30 | qtz/carb vein | 24 | irregular brittle brecciated qtz carb vein |
| ISA-07-02 | 44.20 | 44.21 | qtz/carb vein | 70 | cm qqtz carb vein with $15 \%$ py at contact |
| ISA-07-02 | 35.40 | 35.50 | gauge | 50 | cm of soft gouge in zone of two metres of rubbly core |
| ISA-07-02 | 59.00 | 59.01 | s1 | 55 |  |
| ISA-07-02 | 65.00 | 65.10 | s1 | 28 |  |
| ISA-07-02 | 75.00 | 75.01 | s1 | 48 |  |
| ISA-07-02 | 89.00 | 89.10 | s1 | 30 |  |
| ISA-07-02 | 79.00 | 79.10 | qtz vein | 45 | 4 cm qtz vein white to translucent. Cross cutting foliation |
| ISA-07-02 | 85.10 | 85.20 | qtz vein | 35 | same as above 2 cm |
| ISA-07-02 | 89.20 | 89.30 | qtz vein | 40 | same as above 2 cm |
| ISA-07-02 | 105.60 | 105.61 | contact | 50 |  |
| ISA-07-02 | 104.00 | 110.00 | qtz veins | 55 | $3 \% .5 \mathrm{~cm}$ qtz/feldspar veins |
| ISA-07-02 | 136.00 | 136.10 | s1 | 37 |  |
| ISA-07-02 | 123.00 | 123.10 | s1 | 45 |  |
| ISA-07-02 | 150.00 | 150.10 | s1 | 48 |  |
| ISA-07-02 | 165.00 | 165.10 | s1 | 50 |  |
| ISA-07-02 | 167.30 | 167.40 | qtz/carb/py vein | 40 | cm wide |
| LZ-07-12 | 10.00 | 10.01 | s1 | 34 |  |
| LZ-07-12 | 22.10 | 22.15 | qtz/carb/py vein | 53 |  |
| LZ-07-12 | 40.00 | 40.10 | s1 | 45 |  |
| LZ-07-12 | 67.20 | 67.30 | qtz/carb/py vein | 25 | cm |
| LZ-07-12 | 99.00 | 99.10 | s1 | 65 |  |
| LZ-07-12 | 110.00 | 110.10 | s1 | 62 |  |
| LZ-07-12 | 130.00 | 130.10 | s1 | 65 |  |
| LZ-07-12 | 150.00 | 150.10 | s1 | 50 |  |

## IVIAJUK LIIMULUG Y

|  |  | Drill Logs Holes LZ-07-11, LZ-07-12, ISA-07-01, ISA-07-02, ISA-07-03, ISA-07-04, WW-07-01, ww-07-02, WW-07-03 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| light grey green | aph | Intensely altered mafic volcanic possibly a tuff? Buff to light | WW-07-01 | 0.50 | 1.50 | 28401 | 1.00 |
|  |  | albitic/ankeritic/silica alteration with disseminated pale yellow sericite alteration, weakly foliated | WW-07-01 | 1.50 | 2.30 | 28402 | 0.80 |
|  |  | with frequent $.5-1 \mathrm{~cm}$ quartz feldspar veinlets | WW-07-01 | 2.30 | 2.90 | 28403 | 0.60 |
|  |  |  | WW-07-01 | 2.90 | 3.45 | 28404 | 0.55 |
| medium green | mgr | Medium grained moderate pervasive alb/ank/sil alteration and weak diss ser altered felsic dyke. Frequent cm scale quartz feldspar veinlets at 15 tca | WW-07-01 | 3.45 | 4.20 | 28405 | 0.75 |
|  |  |  | WW-07-01 | 4.20 | 5.20 | 28406 | 1.00 |
|  |  |  | WW-07-01 | 5.20 | 6.20 | 28407 | 1.00 |
|  |  | Fine grained medium green moderately per ank/alb/sil diss ser altered syenitic intrusive. |  |  |  |  |  |
| medium green med pink/green | fgr | Moderately late fracturing with brown iron staining. | WW-07-01 | 6.20 | 7.20 | 28408 | 1.00 |
|  | mgr | Massive to weakly foliated dark pink/green felsic dyke with moderate to intense pervasive hematite alteration and weak to moderate sericite alteration. | WW-07-01 | 7.20 | 8.20 | 28409 | 1.00 |
|  |  |  | WW-07-01 | 8.20 | 9.20 | 28410 | 1.00 |
|  |  |  | WW-07-01 | 9.20 | 10.20 | 28411 | 1.00 |
|  |  |  | WW-07-01 | 10.20 | 10.90 | 28412 | 0.70 |
|  |  |  | WW-07-01 | 10.90 | 11.65 | 28413 | 0.75 |
| buff to orange | aph | Intensely altered mafic volcanic poss tuff? Massive weakly foliated buff to light grey green, intense pervasive alb/ank/sil alteration with diss pale yellow ser alt, weakly foliated with frequent mm scale carb veinlets. Unit has late water producing fracturing that has left metre scale orange iron stains with visible fluid contacts. | WW-07-01 | 11.65 | 12.50 | 28414 | 0.85 |
|  |  |  | WW-07-01 | 12.50 | 13.50 | 28415 | 1.00 |
|  |  |  | WW-07-01 | 13.50 | 14.50 | 28416 | 1.00 |
|  |  |  | WW-07-01 | 14.50 | 15.10 | 28417 | 0.60 |
|  |  |  | WW-07-01 | 15.10 | 16.10 | 28418 | 1.00 |
|  |  |  | WW-07-01 | 16.10 | 17.10 | 28419 | 1.00 |
|  |  |  | WW-07-01 | 17.10 | 18.10 | 28420 | 1.00 |
|  |  |  | WW-07-01 | 18.10 | 19.10 | 28421 | 1.00 |
|  |  |  | WW-07-01 | 19.10 | 20.10 | 28422 | 1.00 |
|  |  |  | WW-07-01 | 20.10 | 20.80 | 28423 | 0.70 |
|  |  |  | WW-07-01 | 20.80 | 21.55 | 28424 | 0.75 |
|  |  |  | BLANK |  |  | 28425 |  |
| medium green | fgr | Medium green mafic volcanics with moderate fracturing and carb filing. Varies between fine grained massive to weakly foliated and medium grained amphibolitic flow. Unaltered. | WW-07-01 | 21.55 | 22.50 | 28426 | 0.95 |
|  |  |  | WW-07-01 | 84.50 | 85.30 | 28427 | 0.80 |
| buff to pink | fgr | Massive buff/orange/pink intermediate to mafic volcanic weakly porphyritic ( $7 \% \mathrm{~mm}$ scale anhedral feldspars) with mod to int per ank/alb/sil alteration and weak to mod per kspar alt. Possibly just alteration of mafics. Lower contact irregular | WW-07-01 <br> WW-07-01 | $\begin{aligned} & 85.30 \\ & 86.10 \end{aligned}$ | $\begin{aligned} & 86.10 \\ & 86.80 \end{aligned}$ | $\begin{aligned} & 28428 \\ & 28429 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.70 \end{aligned}$ |
| medium green | fgr | Medium green moderately green mafic volcanic with $5 \%$ carb filled mm scale fractures with no distinct direction. Weak per carb alt. lower contact irregular | WW-07-01 | 86.80 | 87.80 | 28430 | 1.00 |
|  |  |  | WW-07-01 | 118.00 | 119.00 | 28431 | 1.00 |
|  |  |  | WW-07-01 | 119.00 | 120.00 | 28432 | 1.00 |
|  |  |  | WW-07-01 | 120.00 | 121.00 | 28433 | 1.00 |
|  |  |  | WW-07-01 | 121.00 | 122.00 | 28434 | 1.00 |
|  |  |  | WW-07-01 | 135.70 | 136.70 | 28435 | 1.00 |
|  |  |  | WW-07-01 | 136.70 | 137.70 | 28436 | 1.00 |
| buff to light green medium green | $\begin{aligned} & \text { fgr } \\ & \text { fgr } \end{aligned}$ | same as 85.3-86.6 with no kspar alteration. Lower contact irregular same as 86.8-137.7 lower contact diffuse | WW-07-01 | 137.70 | 138.60 | 28437 | 0.90 |
|  |  |  | WW-07-01 | 138.60 | 139.60 | 28438 | 1.00 |
|  |  |  | WW-07-01 | 139.60 | 140.60 | 28439 | 1.00 |
|  |  |  | WW-07-01 | 148.10 | 149.10 | 28440 | 1.00 |
| light grey green | fgr | Light green fine gained mafic volcanics with mod to int ank/alb/sil alteration and mod per/ff carb weak $<.1 \%$ diss py/po through mafics and in areas of carb ff. 149-149.1 mod sheared/bx'ed 150.1150.7 mod sheared/brecciated 65tca, 155.1 cm band of soft gouge 60tca, 156.8-156.9 soft gauge $65 t \mathrm{ca}$. | WW-07-01 | 149.10 | 150.10 | 28441 | 1.00 |
|  |  |  | WW-07-01 | 150.10 | 151.10 | 28442 | 1.00 |
|  |  |  | WW-07-01 | 151.10 | 152.10 | 28443 | 1.00 |
|  |  |  | WW-07-01 | 152.10 | 153.10 | 28444 | 1.00 |
|  |  |  | WW-07-01 | 153.10 | 154.10 | 28445 | 1.00 |


|  | fgr | Weak to moderately foliated med green mafic volcanics with $5 \% \mathrm{~mm}$ scale carb filled fractures cm of soft fault gouge 181.2 m 53 tca. $<.5 \%$ py disseminated throughout in matics and in carb ff. EOH | WW-07-01 | 154.10 | 155.10 | 28446 | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | WW-07-01 | 155.10 | 156.10 | 28447 | 1.00 |
|  |  |  | WW-07-01 | 156.10 | 157.10 | 28448 | 1.00 |
|  |  |  | WW-07-01 | 157.10 | 158.10 | 28449 | 1.00 |
|  |  |  | SG31 Au STD |  |  | 28450 |  |
|  |  |  | WW-07-01 | 158.10 | 159.10 | 28451 | 1.00 |
|  |  |  | WW-07-01 | 159.10 | 160.10 | 28452 | 1.00 |
| light grey green |  |  | WW-07-01 | 160.10 | 161.10 | 28453 | 1.00 |
|  |  |  | WW-07-01 | 161.10 | 162.10 | 28454 | 1.00 |
|  |  |  | WW-07-01 | 162.10 | 163.10 | 28455 | 1.00 |
|  |  |  | WW-07-01 | 163.10 | 164.10 | 28456 | 1.00 |
|  |  |  | WW-07-01 | 164.10 | 165.10 | 28457 | 1.00 |
|  |  |  | WW-07-01 | 165.10 | 166.10 | 28458 | 1.00 |
|  |  |  | WW-07-01 | 166.10 | 167.10 | 28459 | 1.00 |
|  |  |  | WW-07-01 | 167.10 | 168.10 | 28460 | 1.00 |
|  |  |  | WW-07-01 | 168.10 | 169.10 | 28461 | 1.00 |
|  |  |  | WW-07-01 | 169.10 | 170.10 | 28462 | 1.00 |
|  |  |  | WW-07-01 | 170.10 | 171.10 | 28463 | 1.00 |
|  |  |  | WW-07-01 | 171.10 | 172.10 | 28464 | 1.00 |
|  |  |  | WW-07-01 | 172.10 | 173.10 | 28465 | 1.00 |
|  |  |  | WW-07-01 | 173.10 | 174.10 | 28466 | 1.00 |
|  |  |  | WW-07-01 | 174.10 | 175.10 | 28467 | 1.00 |
|  |  |  | WW-07-01 | 175.10 | 176.10 | 28468 | 1.00 |
|  |  |  | WW-07-01 | 176.10 | 177.10 | 28469 | 1.00 |
|  |  |  | WW-07-01 | 177.10 | 178.10 | 28470 | 1.00 |
|  |  |  | WW-07-01 | 178.10 | 179.10 | 28471 | 1.00 |
|  |  |  | WW-07-01 | 179.10 | 180.10 | 28472 | 1.00 |
|  |  |  | WW-07-01 | 180.10 | 181.10 | 28473 | 1.00 |
|  |  |  | WW-07-01 | 181.10 | 182.10 | 28474 | 1.00 |
|  |  |  | BLANK |  |  | 28475 |  |
|  |  |  | WW-07-01 | 182.10 | 183.10 | 28476 | 1.00 |
|  |  |  | WW-07-01 | 183.10 | 184.00 | 28477 | 0.90 |
|  |  | Casing |  |  |  |  |  |
| light grey green to <br> buff fgr $\quad$ ISA-07-01 $4.50 \quad 5.50 \quad 591001 \quad 1.00$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| light green buff | $\begin{aligned} & \text { fgr } \\ & \text { fgr } \end{aligned}$ | Massive moderately to intensely altered mafic volcanics. Int to mod ank/alb alteration. Numerous 1 - | ISA-07-01 | 5.50 | 6.50 | 591002 | 1.00 |
|  |  | 3 cm quartz veins with albitic margins Veins at 20tca. More intense alteration in 2-5 cm halo | ISA-07-01 | 6.50 | 7.50 | 591003 | 1.00 |
|  |  | around qtz veining. $1 \%$ diss py fgr to cm blebs in intense alteration. Poss syentic intrusion with | ISA-07-01 | 7.50 | 8.50 | 591004 | 1.00 |
|  |  | obliterated textures due to intense alteration. | ISA-07-01 | 8.50 | 9.50 | 591005 | 1.00 |
|  |  | Massive moderately altered mafic volcanics. Moderate pervasive ankerite/albite alteration with weak to moderate diss yellow sericite. $5 \%$ fine fractures with carb fill. | ISA-07-01 | 9.50 | 10.50 | 591006 | 1.00 |
|  |  |  | ISA-07-01 | 40.50 | 41.50 | 591007 | 1.00 |
|  |  |  | ISA-07-01 | 41.50 | 42.50 | 591008 | 1.00 |
|  |  | fine diss py. Texture is almost obliterated by alteration, contact grades into mafics. | ISA-07-01 | 42.50 | 43.50 | 591009 | 1.00 |
|  |  |  | ISA-07-01 | 43.50 | 44.50 | 591010 | 1.00 |
|  |  |  | ISA-07-01 | 44.50 | 45.50 | 591011 | 1.00 |
|  |  |  | ISA-07-01 | 45.50 | 46.50 | 591012 | 1.00 |
|  |  |  | ISA-07-01 | 46.50 | 47.10 | 591013 | 0.60 |
| light green buff light green | fgr | massive light green fine grained mafic volcanics with weak pervasive ank/alb alteration. Upper contact diffuse lower contact irregular but sharp | ISA-07-01 | 47.10 | 48.00 | 591014 | 0.90 |
|  | fgr | medium grained syenitic intrusive with moderate ank/alb/sil alteration. | ISA-07-01 | 48.00 | 48.70 | 591015 | 0.70 |
|  | fgr | same as previous matic | ISA-07-01 | 48.70 | 49.70 | 591016 | 1.00 |


| light grey green to buff | fgr | same as previous syenitic intrusion | ISA-07-01 | 52.50 | 52.90 | 591017 | 0.40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| light green | fgr | massive light green fine grained mafic volcanics with weak pervasive ank/alb alteration. | ISA-07-01 | 52.90 | 53.30 | 591018 | 0.40 |
| grey to buff | fgr | medium grained cream to buff syenitic intrusion with moderate to intense albitic/ankerite alteration. Unit has cm scale qtz veining at regular $.5-1 \mathrm{~m}$ spacing. Alteration is intense in halo around qtz veins and grades to moderate in between. Unit has $3-5 \%$ fine to medium pyrite disseminated throughout. Upper contact is diffuse and irregular lower contact is sharp at 60tca | ISA-07-01 | 53.30 | 54.00 | 591019 | 0.70 |
|  |  |  | ISA-07-01 | 54.00 | 55.00 | 591020 | 1.00 |
|  |  |  | ISA-07-01 | 55.00 | 56.00 | 591021 | 1.00 |
|  |  |  | ISA-07-01 | 56.00 | 57.00 | 591022 | 1.00 |
|  |  |  | ISA-07-01 | 57.00 | 58.00 | 591023 | 1.00 |
|  |  |  | ISA-07-01 | 58.00 | 58.90 | 591024 | 0.90 |
|  |  |  | Blank |  |  | 591025 |  |
| light grey green grey to buff | fgr | Massive light grey green intermediate volcanics | ISA-07-01 | 58.90 | 60.00 | 591026 | 1.10 |
|  | fgr | light grey to buff fine to medium grained syenitic intrusive. With blotchy weak to intense | ISA-07-01 | 60.00 | 61 | 591027 | 1.00 |
|  |  | albitic/ankerite alteration. Upper end of unit has $1 \% \mathrm{~mm}$ scale dark grey qtz eyes, increasing to 3\% | ISA-07-01 | 61.00 | 62.00 | 591028 | 1.00 |
|  |  | at 69 m . Unit has increasing alteration that obliterates texture except for qtz eyes from 73-77.5m | ISA-07-01 | 62.00 | 63.00 | 591029 | 1.00 |
|  |  | lower contact obscured by alteration. | ISA-07-01 | 63.00 | 64.00 | 591030 | 1.00 |
|  |  |  | ISA-07-01 | 64.00 | 65.00 | 591031 | 1.00 |
| light green | fgr | Light green and cream mottled mafic volcanics. Intensely altered zone that has undergone intense deformation. Silicified rounded brecciated $.5-2 \mathrm{~cm}$ clasts in a mixed chloritic or silicified matrix. Moderate ff sericite alteration. | ISA-07-01 | 78.50 | 79.80 | 591032 | 1.30 |
|  |  |  | ISA-07-01 | 79.80 | 80.80 | 591033 | 1.00 |
|  |  |  | ISA-07-01 | 80.80 | 81.80 | 591034 | 1.00 |
|  |  | fine grained dark buff syenitic intrusion? Intensely altered. Upper contact sharp but irregular at |  |  |  |  |  |
| dark buff | fgr | 30 tca lower contact sheared at 90tca. | ISA-07-01 | 81.80 | 82.90 | 591035 | 1.10 |
| light green | fgr | same as 77.5081.80 | ISA-07-01 | 82.90 | 83.30 | 591036 | 0.40 |
|  |  |  | ISA-07-01 | 83.30 | 84.30 | 591037 | 1.00 |
|  |  |  | ISA-07-01 | 84.30 | 85.30 | 591038 | 1.00 |
|  |  |  | ISA-07-01 | 85.30 | 85.80 | 591039 | 0.50 |
| dark buff | fgr | same as 81.8-92.9 Upper contact sharp 50tca lower contact sharp 60tca. | ISA-07-01 | 85.80 | 87.00 | 591040 | 1.20 |
| light green | fgr | Light grained mottled with pink and cream. Similar to $77.5-81.8$ with intense per ff sericite alteration and moderate pink (K) alteration. | ISA-07-01 | 87.00 | 88.00 | 591041 | 1.00 |
|  |  |  | ISA-07-01 | 88.00 | 89.00 | 591042 | 1.00 |
|  |  |  | ISA-07-01 | 89.00 | 90.00 | 591043 | 1.00 |
|  |  |  | ISA-07-01 | 90.00 | 91.00 | 591044 | 1.00 |
| buff |  | fine grained moderately to intensely sil/ank/alb altered syenitic intrusive with regular $1-3 \mathrm{~cm}$ $\mathrm{qtz} / \mathrm{carb}$ veins every $.5-1 \mathrm{~m}$ at $15-20 \mathrm{tca}$. $3-5 \%$ disseminated py | ISA-07-01 | 91.00 | 91.70 | 591045 | 0.70 |
| light green | fgr | medium green, fine grained, moderately altered mafic volcanic. | ISA-07-01 | 91.70 | 93.00 | 591046 | 1.30 |
|  |  |  | ISA-07-01 | 93.00 | 93.50 | 591047 | 0.50 |
| buff |  |  | ISA-07-01 | 93.50 | 94.50 | 591048 | 1.00 |
|  |  | fine grained moderately to intensely sil/ank/alb altered syenitic intrusive with regular $1-3 \mathrm{~cm}$ qtz/carb veins every $.5-1 \mathrm{~m} 15-20 \mathrm{tca}$. 3-5\% py disseminated throughout and along fracture planes | ISA-07-01 | 94.50 | 95.50 | 591049 | 1.00 |
|  |  |  | SL 34 Au STD |  |  | 591050 |  |
| light green |  | medium green, fine grained, moderately altered volcanic. | ISA-07-01 | 95.50 | 96.50 | 591051 | 1.00 |
|  |  |  | ISA-07-01 | 96.50 | 97.50 | 591052 | 1.00 |
|  |  |  | ISA-07-01 | 97.50 | 98.50 | 591053 | 1.00 |
|  |  |  | ISA-07-01 | 98.50 | 99.50 | 591054 | 1.00 |
|  |  |  | ISA-07-01 | 99.50 | 100.50 | 591055 | 1.00 |
|  |  |  | ISA-07-01 | 100.50 | 101.20 | 591056 | 0.70 |
|  |  |  | ISA-07-01 | 101.20 | 102.00 | 591057 | 0.80 |
|  |  |  | ISA-07-01 | 102.00 | 103.00 | 591058 | 1.00 |
| light green | mgr-cgr | coarse moderately altered syenitic intrusive. | ISA-07-01 | 103.00 | 104.00 | 591059 | 1.00 |
|  |  |  | ISA-07-01 | 104.00 | 105.00 | 591060 | 1.00 |
|  |  |  | ISA-07-01 | 105.00 | 106.30 | 591061 | 1.30 |
| green | fgr |  | ISA-07-01 | 106.30 | 107.50 | 591062 | 1.20 |
|  |  | medium green, fine grained, moderately altered intermediate volcanic with 1-3\% Py disseminated | ISA-07-01 | 107.50 | 108.50 | 591063 | 1.00 |


|  |  | throughout. Fine mm scale vitreous grey qtz veins with py approx. every .5-1 metres at 15-20tca. | ISA-07-01 | 108.50 | 109.50 | 591064 | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ISA-07-01 | 109.50 | 110.50 | 591065 | 1.00 |
|  |  |  | ISA-07-01 | 110.50 | 111.50 | 591066 | 1.00 |
|  |  |  | ISA-07-01 | 111.50 | 112.50 | 591067 | 1.00 |
|  |  |  | ISA-07-01 | 112.50 | 113.50 | 591068 | 1.00 |
| buff to pink | fgr | buff to pink intensely altered syenitic intrusive, with small mafic interbedded from 5-6.5m. Alteration is buff to pink ank/sil/alb alteration with $3-5 \%$ py disseminated throughout. Whole unit has chloritic fracture seams and regular qtz veining $\mathrm{mm}-\mathrm{cm}$ scale. Qtz veins are at 15 tca or opposite at 55 tca . quarts is vitreous white to grey with minor amounts of carb on margins. rare fine grained black flecks (poss tourmaline poss chl) Lower contact sharp at 17tca. | ISA-07-04 | 0.50 | 1.50 | 591069 | 1.00 |
|  |  |  | ISA-07-04 | 1.50 | 2.50 | 591070 | 1.00 |
|  |  |  | ISA-07-04 | 2.50 | 3.50 | 591071 | 1.00 |
|  |  |  | ISA-07-04 | 3.50 | 4.50 | 591072 | 1.00 |
|  |  |  | ISA-07-04 | 4.50 | 5.50 | 591073 | 1.00 |
|  |  |  | ISA-07-04 | 5.50 | 6.50 | 591074 | 1.00 |
|  |  |  | Blank |  |  | 591075 |  |
|  |  |  | ISA-07-04 | 6.50 | 7.50 | 591076 | 1.00 |
|  |  |  | ISA-07-04 | 7.50 | 8.50 | 591077 | 1.00 |
|  |  |  | ISA-07-04 | 8.50 | 9.50 | 591078 | 1.00 |
|  |  |  | ISA-07-04 | 9.50 | 10.50 | 591079 | 1.00 |
|  |  |  | ISA-07-04 | 10.50 | 11.50 | 591080 | 1.00 |
|  |  |  | ISA-07-04 | 11.50 | 12.50 | 591081 | 1.00 |
|  |  |  | ISA-07-04 | 12.50 | 13.50 | 591082 | 1.00 |
|  |  |  | ISA-07-04 | 13.50 | 14.50 | 591083 | 1.00 |
|  |  |  | ISA-07-04 | 14.50 | 15.50 | 591084 | 1.00 |
|  |  |  | ISA-07-04 | 15.50 | 16.50 | 591085 | 1.00 |
|  |  |  | ISA-07-04 | 16.50 | 17.50 | 591086 | 1.00 |
|  |  |  | ISA-07-04 | 17.50 | 18.50 | 591087 | 1.00 |
|  |  |  | ISA-07-04 | 18.50 | 19.50 | 591088 | 1.00 |
| light grey greenbutt | fgr | light grey green fine grained intermediate volcanic with fine carb filled fractures. Lower two metres has increasing alteration halo as nearing contact with intrusion. Alteration is ank/alb/sil lower contact sharp at 47tca | ISA-07-04 | 19.50 | 20.50 | 591089 | 1.00 |
|  |  |  | ISA-07-04 | 29.00 | 30.00 | 591090 | 1.00 |
|  |  |  | ISA-07-04 | 30.00 | 30.90 | $591091$ | 0.90 |
|  | fgr | intensely altered syenitic intrusive like $.5-19.5 \mathrm{~m}$. Two regular qtz vein sets at $5-15 \mathrm{tca} 1-3 \mathrm{~cm}$ and $50-$ 60 tca regular at 1 cm . Both vein sets are vitreous grey to white with minor amounts of carb. Some coarse py in veins and $3 \% \mathrm{~mm}$ scale py disseminated throughout unit. Lower contact sharp at 43tca. | ISA-07-04 | 30.90 | $32.00$ | $591092$ | 1.10 |
|  |  |  | ISA-07-04 | 32.00 | 33.00 | 591093 | 1.00 |
|  |  |  | ISA-07-04 | 33.00 | 34.00 | 591094 | 1.00 |
|  |  |  | ISA-07-04 | 34.00 | 35.00 | 591095 | 1.00 |
|  |  |  | ISA-07-04 | 35.00 | 36.00 | 591096 | 1.00 |
|  |  |  | ISA-07-04 | 36.00 | 37.00 | 591097 | 1.00 |
|  |  |  | ISA-07-04 | 37.00 | 38.00 | 591098 | 1.00 |
|  |  |  | ISA-07-04 | 38.00 | 39.00 | 591099 | 1.00 |
|  |  |  | Au Std SG31 |  |  | 591100 | 0.00 |
|  |  |  | ISA-07-04 | 39.00 | 39.90 | 591101 | 0.90 |
| light grey green | fgr | massive light grey green intermediate volcanic with weak ank/alb alteration at upper contact. From 47.9-51 increasing alteration and deformation of zone with increasing carb/qtz filled fracture zone. 55-55.5 flow top breccia. | ISA-07-04 | 39.90 | 41.00 | 591102 | 1.10 |
|  |  |  | ISA-07-04 | 41.00 | 42.00 | 591103 | 1.00 |
|  |  |  | ISA-07-04 | 42.00 | 43.00 | 591104 | 1.00 |
|  |  |  | ISA-07-04 | 43.00 | 44.00 | 591105 | 1.00 |
|  |  |  | ISA-07-04 | 47.90 | 48.90 | 591106 | 1.00 |
|  |  |  | ISA-07-04 | 48.90 | 50.00 | 591107 | 1.10 |
|  |  |  | ISA-07-04 | 50.00 | 51.00 | 591108 | 1.00 |
| grey to buff | fgr | porphyritic debris flow, $30-40 \mathrm{~cm}$ bands of porphyritic flow material with $5-10 \% \mathrm{~mm}$ scale anhedral feldspar crystals. $5-25 \mathrm{~cm}$ clasts of fine grained intermediate material throughout. Moderate alteration of unit. (have seen this type of rock called porphyrite in Kirkland Lake area) |  |  |  |  |  |
| med grey green | fgr | massive grey green intermediate to mafic volcanics |  |  |  |  |  |
|  |  |  | WW-07-03 | 17.50 | 18.55 | 591109 | 1.05 |


| med/dark green | fgr | medium green fine grained massive mafic volcanics with $5 \%$ carbonate filled mm scale fractures. upper contact gradual into a intermediate tuff with flattened lapilli? Altered to chlorite. Moderately | WW-07-03 | 18.55 | 19.40 | 591110 | 0.85 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| grey | fgr/mgr | well foliated with vis. S1 and S2 | WW-07-03 | 19.40 | 20.40 | 591111 | 1.00 |
| red | fgr/mgr | Massive medium grained felsic dyke with intense med red potassic Kspar (poss hem?) alteration. Upper contact irregular 60tca lower contact has sharp at 65tca | WW-07-03 | 25.50 | 26.00 | 591112 | 0.50 |
| med green | fgr | Weak to moderately foliated medium to dark green fine grained mafic volcanic with $5 \%$ carbonate filled mm scale fractures and $5 \% 3-8 \mathrm{~mm}$ qtz carb veins $70-90$ tca. $2 \%$ disseminated pyrite concentrated around veins. | WW-07-03 | 26.00 | 27.00 | 591113 | 1.00 |
| pink | fgr | Orange pink feldspar porphyry dyke. 15\% subhedral feldspar phenocrysts in a intensely potassic altered orange/pink matrix. | WW-07-03 | 27.00 | 27.40 | 591114 | 0.40 |
| med green | mgr | medium green strongly magnetic amphibolitic flow. $5 \% \mathrm{~mm}$ scale calcite filled fractures and veinlets some up to 5 mm . Rare veins with remobilized magnetite on contacts or epidote alteration halos. | WW-07-03 | 27.40 | 28.40 | 591115 | 1.00 |
| med grey green | fgr | Fine to medium grained grey green intermediate volcanic with $5 \%$ fine mm scale calcite filled fractures. Not magnetic, very gradual contacts at top and bottom. | WW-07-03 | 40.00 | 40.95 | 591116 | 0.95 |
| med green | mgr | Same as magnetic amphibolitic flow 41.55-49.9m. No veins with magnetite contacts or epidote alteration halos. | WW-07-03 | 40.95 | 41.55 | 591117 | 0.60 |
| grey/purple | fgr | med grey/purple feldspar porphyry with $10 \% \mathrm{~mm}$ scale anhedral feldspar phenocrysts. Upper contact sharp at 90 tca lower contact sharp and irregular. | WW-07-03 | 41.55 | 42.50 | 591118 | 0.95 |
| med green | fgr | same as 11.35-40.05, no sulphides. EOH | WW-07-03 | 42.50 | 43.50 | 591119 | 1.00 |
|  |  |  | WW-07-03 | 43.50 | 44.00 | 591120 | 0.50 |
|  |  |  | WW-07-03 | 61.00 | 62.00 | 591121 | 1.00 |
|  |  |  | WW-07-03 | 62.00 | 63.00 | 591122 | 1.00 |
|  |  |  | WW-07-03 | 63.00 | 63.70 | 591123 | 0.70 |
|  |  |  | WW-07-03 | 63.70 | 64.70 | 591124 | 1.00 |
|  |  | Casing |  |  |  |  |  |
|  |  |  | Blank |  |  | 591125 | 0.00 |
|  |  | Buff to light grey green fine grained variably altered intermediate to mafic volcanic poss a tuff. | ISA-07-02 | 5.00 | 6.00 | 591126 | 1.00 |
|  |  | Alteration is pervasive ankerite/albite/silica alteration ranging from intense at 6.5-9.5 to | ISA-07-02 | 6.00 | 7.00 | 591127 | 1.00 |
|  |  | weak/moderate through rest of unit. Weak disseminated Sericite throughout. 6.5-9.5 also has 3\% | ISA-07-02 | 7.00 | 8.00 | 591128 | 1.00 |
|  |  | disseminated and fracture fill pyrite in mm scale smokey qtz veins. lower contact has .5 m | ISA-07-02 | 8.00 | 9.00 | 591129 | 1.00 |
|  |  | alteration halo. lower contact lost in rubble. | ISA-07-02 | 9.00 | 10.00 | 591130 | 1.00 |
|  |  |  | ISA-07-02 | 10.00 | 11.00 | 591131 | 1.00 |
|  |  |  | ISA-07-02 | 11.00 | 12.00 | 591132 | 1.00 |
|  |  |  | ISA-07-02 | 12.00 | 13.00 | 591133 | 1.00 |
|  |  |  | ISA-07-02 | 13.00 | 14.00 | 591134 | 1.00 |
|  |  |  | ISA-07-02 | 14.00 | 15.00 | 591135 | 1.00 |
|  |  |  | ISA-07-02 | 15.00 | 16.00 | 591136 | 1.00 |
|  |  |  | ISA-07-02 | 16.00 | 17.00 | 591137 | 1.00 |
|  |  |  | ISA-07-02 | 17.00 | 18.00 | 591138 | 1.00 |
|  |  |  | ISA-07-02 | 18.00 | 19.00 | 591139 | 1.00 |
|  |  |  | ISA-07-02 | 19.00 | 20.00 | 591140 | 1.00 |
|  |  |  | ISA-07-02 | 20.00 | 21.00 | 591141 | 1.00 |
|  |  |  | ISA-07-02 | 21.00 | 22.00 | 591142 | 1.00 |
|  |  |  | ISA-07-02 | 22.00 | 23.00 | 591143 | 1.00 |
|  |  |  | ISA-07-02 | 23.00 | 24.00 | 591144 | 1.00 |
|  |  |  | ISA-07-02 | 27.20 | 27.65 | 591145 | 0.45 |
|  |  | buff to dark pink feldspar porphyry, grading from medium grained with $10 \%$ anhedral feldspar phenos at top contact into a fine grained intrusive with no phenos at bottom. $5 \%$ py in $1-4 \mathrm{~mm}$ | ISA-07-02 | 27.65 | 28.50 | 591146 | 0.85 |
|  |  | cubes disseminated through unit from 27.65 to 29.3 m . Irregular patches of quartz flooding | ISA-07-02 | 28.50 | 29.50 | 591147 | 1.00 |
|  |  | throughout. Lower contact sharp 47tca. | ISA-07-02 | 29.50 | 30.40 | 591148 | 0.90 |
|  |  |  | ISA-07-02 | 30.40 | 31.50 | 591149 | 1.10 |
|  |  | light grey green fine grained mafic volcanics with moderate per/ff carbonate alteration. Minor | SJ32 Au STD |  |  | 591150 |  |

amounts of quartz flooding with $2 \%$ associated diss mm scale py. Lower contact irregular at 20tca Dark grey to purple syenitic intrusive with $3 \% \mathrm{~mm}$ dark grey quartz eyes and $1 \%$ anhedral feldspar phenos. Lower contact irregular at 15
light grey green fine grained mafic volcanics with moderate per/ff carbonate alteration. 10 cm band of same intrusive as 37.1-40.2m throughout unit. Lower contact lost in rubbly core.
buff to light pink medium grained porphyritic dyke with fine dark fractures (chl?) lower 1.5 m grades into fine grained grey to buff with $10 \% \mathrm{~mm}$ scale quartz filled fractures at random orientation. Lowe contact sharp at 50tca.
same as 34.5-37.1

Weakly foliated to massive buff to pink moderately to intensely altered zone. Upper end is very gradual, lower contact is sharp (possibly different flow?) at 55 tca

Moderately well foliated medium green mafic volcanics. Zone of flow breccia $64-65 \mathrm{~m}$, zone of pale pink albatized amygdules 67-68. and 73-74

Massive light pink to buff alteration zone with very gradual upper and lower contacts, $5 \%$ disseminated mm scale py at core of intense alteration. Alteration is alb/ank/weak sil.
light grey to green weakly altered mafic volcanics, zone of qtz flooding with grey translucent quartz and ass py diss along contacts.

## Fine grained dyke

light grey to green weakly altered mafic volcanics, zone of qtz flooding with grey translucent quartz and ass py diss along contacts.

Same altered rock as 53-59.3 upper and lower contacts sharp. Upper at 50 tca lower at 55 tca
light grey green mafic volcanic with $25 \% \mathrm{~mm}$ scale sericitized? mineral.
same altered rock as $53-59.3$ upper contact is sharp at 55 tca, lower contact is very gradual. Light to medium green mafic volcanic with moderate amount of carbonate filled fractures

## Medium green coarse grained mafic flow with a moderate amount of carbonate filled fractures.

 Light to medium green mafic volcanic with moderate amount of carbonate filled fractures.Medium green coarse grained mafic flow with a moderate amount of carbonate filled fractures.
Light to medium green mafic volcanic with moderate amount of carbonate filled fractures.

| ISA-07-02 | 31.50 | 32.30 | 591151 | 0.80 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| ISA-07-02 | 32.30 | 33.50 | 591153 | 1.20 |
| ISA-07-02 | 33.50 | 34.50 | 591154 | 1.00 |
| ISA-07-02 | 34.50 | 35.50 | 591155 | 1.00 |
| ISA-07-02 | 35.50 | 36.80 | 591156 | 1.30 |
|  |  |  |  |  |
| ISA-07-02 | 36.80 | 38.00 | 591157 | 1.20 |
| ISA-07-02 | 38.00 | 39.20 | 591158 | 1.20 |
| ISA-07-02 | 39.20 | 39.90 | 591159 | 0.70 |
| ISA-07-02 | 43.30 | 44.20 | 591160 | 0.90 |
| ISA-07-02 | 44.20 | 45.10 | 591161 | 0.90 |
| ISA-07-02 | 45.10 | 45.90 | 591162 | 0.80 |
| ISA-07-02 | 53.00 | 54.00 | 591163 | 1.00 |
| ISA-07-02 | 54.00 | 55.00 | 591164 | 1.00 |
| ISA-07-02 | 55.00 | 56.00 | 591165 | 1.00 |
| ISA-07-02 | 56.00 | 57.00 | 591166 | 1.00 |
| ISA-07-02 | 57.00 | 58.00 | 591167 | 1.00 |
| ISA-07-02 | 58.00 | 59.30 | 591168 | 1.30 |
| ISA-07-02 | 59.30 | 60.50 | 591169 | 1.20 |
| ISA-07-02 | 72.50 | 73.50 | 591170 | 1.00 |
| ISA-07-02 | 73.50 | 74.50 | 591171 | 1.00 |
| ISA-07-02 | 74.50 | 75.50 | 591172 | 1.00 |
| ISA-07-02 | 75.50 | 76.50 | 591173 | 1.00 |
| ISA-07-02 | 76.50 | 77.50 | 591174 | 1.00 |
| BBA |  |  | 591175 |  |
| ISA-07-02 | 77.50 | 78.50 | 591176 | 1.00 |
| ISA-07-02 | 83.30 | 84.30 | 591177 | 1.00 |
| ISA-07-02 | 84.30 | 84.90 | 591178 | 0.60 |
| ISA-07-02 | 84.90 | 85.90 | 591179 | 1.00 |
| ISA-07-02 | 89.00 | 90.00 | 591180 | 1.00 |
| ISA-07-02 | 90.00 | 91.00 | 591181 | 1.00 |
| ISA-07-02 | 91.00 | 92.00 | 591182 | 1.00 |
|  |  |  |  |  |
| ISA-07-02 | 101.60 | 102.10 | 591183 | 0.50 |
| ISA-07-02 | 102.10 | 103.10 | 591184 | 1.00 |
| ISA-07-02 | 103.10 | 104.10 | 591185 | 1.00 |
| ISA-07-02 | 104.10 | 105.10 | 591186 | 1.00 |
| ISA-07-02 | 105.10 | 105.60 | 591187 | 0.50 |
| ISA-07-02 | 105.60 | 106.60 | 591188 | 1.00 |
| ISA-07-02 | 106.60 | 107.20 | 591189 | 0.60 |
| ISA-07-02 | 107.20 | 108.20 | 591190 | 1.00 |
| ISA-07-02 | 108.20 | 108.80 | 591191 | 0.60 |
| ISA-07-02 | 108.80 | 109.80 | 591192 | 1.00 |
| ISA-07-02 | 109.80 | 110.80 | 591193 | 1.00 |
| ISA-07-02 | 110.80 | 111.80 | 591194 | 1.00 |


|  | ISA-07-02 ISA-07-02 | $\begin{aligned} & 165.50 \\ & 166.00 \end{aligned}$ | $\begin{aligned} & 166.00 \\ & 167.00 \end{aligned}$ | $\begin{aligned} & 591196 \\ & 591197 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 1.00 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| massive to weakly foliated medium green mafic volcanics. Very little evidence of deformation, no carb fractures no shearing. <br> massive medium grey to light green intermediate volcanic. Weak FF carb alteration. Very gradational contacts at top and bottom. |  |  |  |  |  |
|  | LZ-07-12 | 19.20 | 19.70 | 591198 | 0.50 |
| weakly foliated medium grained amphibolitic flow with increasing amounts of per/ff carbonate | LZ-07-12 | 19.70 | 20.70 | 591199 | 1.00 |
| alteration. Small zones of stringer style qtz carb veining with $10 \%$ py at 20.7-20.8 and 22.1-22.4m | SL34 Au STD |  |  | 591200 |  |
|  | LZ-07-12 | 20.70 | 21.00 | 819951 | 0.30 |
|  | LZ-07-12 | 21.00 | 22.05 | 819952 | 1.05 |
| weakly foliated light grey fine to medium grained ash flow with moderate amounts of ff carbonate alteration. Lower contact at 35tca | LZ-07-12 | 22.05 | 22.40 | 819953 | 0.35 |
| light grey coarse grained ash flow with $10 \%$ feldspar phenos. Lower contact at 74 tca. |  |  |  |  |  |
| weakly foliated to massive medium green mafic volcanic with moderate ff carbonate. Coarse | LZ-07-12 | 34.50 | 35.50 | 819954 | 1.00 |
| Amphibolite flow $41.5-44 \mathrm{~m}$. Increasing cm scale qtz carb veins $2-7 \mathrm{~mm}$ avg $55 \mathrm{tca} .67 .5-832 \% \mathrm{~cm}$ | LZ-07-12 | 35.50 | 36.50 | 819955 | 1.00 |
| scale epidote veins avg 45tca. | LZ-07-12 | 36.50 | 37.50 | 819956 | 1.00 |
|  | LZ-07-12 | 37.50 | 38.50 | 819957 | 1.00 |
|  | LZ-07-12 | 66.15 | 66.60 | 819958 | 0.45 |
|  | LZ-07-12 | 66.60 | 67.10 | 819959 | 0.50 |
|  | LZ-07-12 | 67.10 | 67.50 | 819960 | 0.40 |
|  | LZ-07-12 | 81.00 | 82.00 | 819961 | 1.00 |
|  | LZ-07-12 | 82.00 | 83.00 | 819962 | 1.00 |
|  | LZ-07-12 | 83.00 | 84.00 | 819963 | 1.00 |
| medium grey massive to weakly foliated intermediate volcanics. $3 \% \mathrm{~cm}$ scale qtz/carb veins with | LZ-07-12 | 87.10 | 87.40 | 819964 | 0.30 |
| up to $20 \%$ coarse py. | LZ-07-12 | 87.40 | 88.50 | 819965 | 1.10 |
|  | LZ-07-12 | 88.50 | 89.30 | 819966 | 0.80 |
| Alternating bands of flows varying from medium green to medium grey (more intermediate) and fine | LZ-07-12 | 95.60 | 96.50 | 819967 | 0.90 |
| grained to medium grained. $5 \% \mathrm{~mm}$ scale carbonate fracture fill. Rare cm scale irregular stringer | LZ-07-12 | 96.50 | 97.50 | 819968 | 1.00 |
| style qtz carb veins with ass pyrite. 129.6-130 6 cm white vitreous quartz vein 24tca.150.6-150.7 | LZ-07-12 | 97.50 | 98.10 | 819969 | 0.60 |
| 5 cm vitreous white quartz vein 58 tc awith cm alteration halo at contact containing 10 vfgr diss py \& | LZ-07-12 | 129.60 | 130.00 | 819970 | 0.40 |
| poss sp hem. $155-164.52 \% 3-5 \mathrm{~mm}$ carb veins with $10 \%$ diss specular hematite. veins at $25-45 \mathrm{tca}$ | LZ-07-12 | 130.00 | 130.50 | 819971 | 0.50 |
| 164.5 EOH | LZ-07-12 | 149.50 | 150.50 | 819972 | 1.00 |
|  | LZ-07-12 | 150.50 | 150.95 | 819973 | 0.45 |
|  | LZ-07-12 | 150.95 | 152.00 | 819974 | 1.05 |
|  | LZ-07-12 | 155.44 | 156.00 | 819975 | 0.56 |
|  | LZ-07-12 | 156.00 | 156.70 | 819976 | 0.70 |
|  | LZ-07-12 | 160.50 | 161.40 | 819977 | 0.90 |
|  | LZ-07-12 | 161.40 | 162.00 | 819978 | 0.60 |
|  | LZ-07-12 | 162.00 | 163.00 | 819979 | 1.00 |
|  | LZ-07-11 | 22.20 | 22.70 | 819980 | 0.50 |
|  | LZ-07-11 | 22.70 | 23.20 | 819981 | 0.50 |
| 16 m rubbly core. 45.5-51.5 coarse amphibolitic flow. 21.2-23.76\% of unit is cm scale stringer | LZ-07-11 | 23.20 | 23.70 | 819982 | 0.50 |
| style carb veins with fine magnetite and $20 \%$ coarse py. 33.7-34.5 altered zone with 5\% fine | LZ-07-11 | 32.70 | 33.70 | 819983 | 1.00 |
| disseminated pyrite. alteration gradational to intense core with cm vitreous white qtz vein 68tca | LZ-07-11 | 33.70 | 34.70 | 819984 | 1.00 |
| weak foliated throughout entire hole varies between 55-65tca. | LZ-07-11 | 34.70 | 35.70 | 819985 | 1.00 |
|  | BLANK |  |  | 819986 |  |
| Fine grained massive to weakly foliated medium green mafic volcanics with moderate carbonate filled fracturing. Lower contact sharp at 33tca. <br> medium grained felsic dyke with moderate pervasive red/dark pink hematite? Alteration. Lower contact sharp at 30tca <br> same as .5-14.05 |  |  |  |  |  |

# gradational change into intensely altered zone (poss sed?/poss still mafics) upper contact of zone 

has gradational alteration increasing bands of pink kspar alteration grading into buff coloured
$\mathrm{alb} / \mathrm{sil} / \mathrm{ser}$ ? Alteration lower contact is gradational with cm scale bands of light pink (kspar?)
alteration grading back into mafic volcanics.
fine grained weak to moderately foliated mafic volcanics with moderate to intense per/ff calcite.
Weak shearing from $35-44$ with cm of soft gauge 33 tca at 36.7 m . Upper five metres of unit has cm
scale qtz/albite veins and moderate per albite alteration rest of unit has qtz carb veins. Only rare vis pyrite in qtz veins. $s 150-55 \mathrm{~s} 230$

|  |  | WW-07-02 | 32.60 | 33.50 | 819991 | 0.90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WW-07-02 | 38.20 | 38.70 | 819992 | 0.50 |
|  |  | WW-07-02 | 38.70 | 39.50 | 819993 | 0.80 |
|  |  | WW-07-02 | 42.50 | 43.20 | 819994 | 0.70 |
|  |  | WW-07-02 | 43.20 | 43.70 | 819995 | 0.50 |
|  |  | WW-07-02 | 43.70 | 44.20 | 819996 | 0.50 |
| Buff to pink | Buff to pink feldspar porphyry with moderate fracturing. $2 \%$ disseminated and ff py. $2 \%$ of unit is cm scale quartz feldspar veining with associated py. | ISA-07-03 | 0.50 | 1.50 | 819997 | 1.00 |
|  |  | ISA-07-03 | 1.50 | 2.50 | 819998 | 1.00 |
|  |  | ISA-07-03 | 2.50 | 3.50 | 819999 | 1.00 |
|  |  | Au STD SG31 |  |  | 820000 |  |
|  |  | ISA-07-03 | 3.50 | 4.50 | 27001 | 1.00 |
|  |  | ISA-07-03 | 4.50 | 5.50 | 27002 | 1.00 |
|  |  | ISA-07-03 | 5.50 | 6.50 | 27003 | 1.00 |
|  |  | ISA-07-03 | 6.50 | 7.50 | 27004 | 1.00 |
|  |  | ISA-07-03 | 7.50 | 8.50 | 27005 | 1.00 |
|  |  | Accidentaly missed sample |  |  | 27006 | 0.00 |
|  |  | ISA-07-03 | 8.50 | 9.50 | 27007 | 1.00 |
|  |  | ISA-07-03 | 9.50 | 10.50 | 27008 | 1.00 |
|  |  | ISA-07-03 | 10.50 | 11.50 | 27009 | 1.00 |
|  |  | ISA-07-03 | 11.50 | 12.50 | 27010 | 1.00 |
|  |  | ISA-07-03 | 12.50 | 13.50 | 27011 | 1.00 |
|  |  | ISA-07-03 | 13.50 | 14.50 | 27012 | 1.00 |
|  |  | ISA-07-03 | 14.50 | 15.50 | 27013 | 1.00 |
|  |  | ISA-07-03 | 15.50 | 16.50 | 27014 | 1.00 |
|  |  | ISA-07-03 | 16.50 | 17.50 | 27015 | 1.00 |
|  |  | ISA-07-03 | 17.50 | 18.30 | 27016 | 0.80 |
| light Green | fine to medium grained medium to light green tuff with weak per sericite alteration. | ISA-07-03 | 26.00 | 27.00 | 27017 | 1.00 |
| Buff to pink | same as .5-18.3 $2 \%$ of unit is quartz feldspar veining with ass py. | ISA-07-03 | 27.00 | 28.00 | 27018 | 1.00 |
|  |  | ISA-07-03 | 28.00 | 29.00 | 27019 | 1.00 |
|  |  | ISA-07-03 | 29.00 | 30.00 | 27020 | 1.00 |
|  |  | ISA-07-03 | 30.00 | 31.00 | 27021 | 1.00 |
|  |  | ISA-07-03 | 31.00 | 32.00 | 27022 | 1.00 |
|  |  | ISA-07-03 | 32.00 | 33.00 | 27023 | 1.00 |
|  |  | ISA-07-03 | 33.00 | 34.00 | 27024 | 1.00 |
|  |  | BLANK |  |  | 27025 |  |
|  |  | ISA-07-03 | 34.00 | 35.00 | 27026 | 1.00 |
|  |  | ISA-07-03 | 35.00 | 36.00 | 27027 | 1.00 |
|  |  | ISA-07-03 | 36.00 | 36.70 | 27028 | 0.70 |
|  |  | ISA-07-03 | 36.70 | 37.40 | 27029 | 0.70 |
| Light Green | Fine to medium grained tuff with weak per sericite alteration. Lower metre has feldspar phenos. | ISA-07-03 | 57.50 | 58.00 | 27030 | 0.50 |
| Buff to pink | Buff to light pink quartz feldspar porphyry with $3 \%$ disseminated and fracture fill py. $2 \% \mathrm{~cm}$ scale qtz albite veining. Veins $15-25$ tca. Moderate pervasive ank/alb/ser alteration. Contacts with tuff is | ISA-07-03 | 58.00 | 58.70 | 27031 | 0.70 |
|  | overprinted by alteration. | ISA-07-03 | 58.70 | 59.40 | 27032 | 0.70 |
| Buff | buff fine grained tuff with moderate alb/ank alteration. | ISA-07-03 | 59.40 | 60.50 | 27033 | 1.00 |


|  |  | ISA-07-03 | 60.50 | 61.50 | 27034 | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ISA-07-03 | 61.50 | 62.50 | 27035 | 1.25 |
|  |  | ISA-07-03 | 62.50 | 63.50 | 27036 | 0.75 |
|  |  | ISA-07-03 | 63.50 | 64.75 | 27037 | 1.05 |
| Buff to pink | same as 58-59.4 | ISA-07-03 | 64.75 | 65.50 | 27038 | 0.70 |
|  |  | ISA-07-03 | 65.50 | 66.55 | 27039 | 0.90 |
| Buff | same as 59.4-64.75 | ISA-07-03 | 66.55 | 67.25 | 27040 | 0.35 |
| Buff to pink | same as 58-59.4 | ISA-07-03 | 67.25 | 68.15 | 27041 | 0.20 |
| Buff | same as 59.4-64.75 | ISA-07-03 | 68.15 | 68.50 | 27042 | 0.80 |
| Buff to pink | same as 58-59.4 | ISA-07-03 | 68.50 | 68.70 | 27043 | 0.80 |
| Buff | same as 59.4-64.75 | ISA-07-03 | 68.70 | 69.50 | 27044 | 1.00 |
|  |  | ISA-07-03 | 69.50 | 70.30 | 27045 | 1.00 |
| Buff to pink | same as 58-59.4 angle of contacts is between 35-45 | ISA-07-03 | 70.30 | 71.30 | 27046 | 1.00 |
|  |  | ISA-07-03 | 71.30 | 72.30 | 27047 | 0.70 |
|  |  | ISA-07-03 | 72.30 | 73.30 | 27048 | 1.00 |
|  |  | ISA-07-03 | 73.30 | 74.00 | 27049 | 0.00 |
|  |  | ISA-07-03 | 74.00 | 75.00 | 27050 | 0.00 |
| medium green | light to medium green fine to medium grained tuff with bands of $1 \% \mathrm{~mm}$ scale anhedral feldspar phenos. Weak pervasive sericite alteration. EOH |  |  |  |  |  |

## DIAMOND DRILL LOG



| Hole No. LZ-07-10 |  |  | Claim No. <br> 1237005 | Township/Area McNeil Twp | Date <br> Started: <br> August <br> 7, 2007 | Date <br> Completed <br> August 22, <br> 2007 | Date Logged $\begin{aligned} & \text { August 25, } \\ & 2007 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Holder <br> Warrior Ventures Inc |  |  | Core Size <br> BTW | Azimuth <br> 240 degrees | Dip: -65 degrees | End of Hole (m): 147.50 | Logged by: <br> Sangeeta <br> Guha |
| Depth (m) |  |  | Rock | Description (colour, grain size, texture, minerals, | Sample | Sample No. | Assay |
| $\begin{aligned} & \text { Box 1 } \\ & 0.9-6.9=6.00 \mathrm{~m} \end{aligned}$ | From | To | Type | alteration, etc.) | length |  |  |
|  | 0.9 | 6.9 | Dacite Andesite | -Broken pieces of greyish green, hard, fine grained, Dacitic-Andesitic rock -linear and disseminated variolites/spherulites. -coarse grained phyrrotite ( $<1 \%$ ) -no mineralization in the varioles/spherulites | No sample |  |  |
| $\begin{aligned} & \hline \text { Box } 2 \\ & 6.9-12.9= \\ & 6.00 \mathrm{~m} \end{aligned}$ | 6.9 | 12.9 | Dacite Andesite | -greyish green, fine grained Dacitic-Andesitic rock -broken and missing cores at $7.74-7.97 \mathrm{~m}$ depth -no mineralization |  |  |  |
|  | 9.08 | 10.52 | Andesite | -Porphyritic light green Andesitic rock -missing core at $9.50-9.56 \mathrm{~m}$ depth -no mineralization |  |  |  |
|  | 10.52 | 12.90 | Andesite | -Porphyritic dark green Andesitic rock -number of thin quartz veins, calcite filling in it (Quartz alteration). <br> -light grey Rhyolitic flow at $10.52-10.70 \mathrm{~m}$ depth -no mineralization <br> -missing core at $10.70-10.78 \mathrm{~m}$ depth |  |  |  |

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \hline \text { Box } 3 \\
\& 12.9- \\
\& 18.72=5.82 \mathrm{~m}
\end{aligned}
\]} \& 12.9 \& 15.10 \& Andesite \& -quartz alteration, porphyritic, medium grained, dark green Andesitic rock -number of thin quartz veins, calcite filling in it -not much mineralization \& \& \& \\
\hline \& 15.10 \& 18.72 \& Andesite \& -Porphyritic dark green Andesitic rock with varioles -epidote filled fractures -only a few, thin quartz veins -no mineralization in the varioles, pyrite concentration around the epidote filled fractures -coarse pyrite grain within the quartz vein -no sample taken from this section \& \& \& \\
\hline Box 4
\(18.72-\)
\(24.59=5.87 \mathrm{~m}\) \& 18.72 \& 24.59 \& Andesite \& \begin{tabular}{l}
-Porphyritic dark green Andesitic rock with alteration zone \\
-quartz carbonate alteration: less alteration from 18.7221.65 m depth and more alteration from \(21.65-24.59 \mathrm{~m}\) depth \\
-epidote filled fractures \\
-pyrite concentration around the epidote filled fractures -coarse grains pyrite and phyrrotite within the quartz carbonate alteration zone -samples taken from \\
(i) \(22.27-23.10 \mathrm{~m}\) \\
(ii) \(23 \cdot 10-23.89 \mathrm{~m}\)
\end{tabular} \& \begin{tabular}{l}
(i) \\
22.27- \\
\(23.10=0\). \\
83m \\
(ii) \\
23.10- \\
\(23.89=0\). \\
79m
\end{tabular} \& \[
\begin{aligned}
\& 28263 \\
\& 28264
\end{aligned}
\] \& 10

nil <br>

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \hline \text { Box } 5 \\
& 24.59-30.41= \\
& 5.82 \mathrm{~m}
\end{aligned}
$$} \& 24.59 \& 25.08 \& Andesite \& -medium grained, porphyritic dark green Andesitic rock showing alteration zone (quartz carbonate alteration) -calcite and smokey quartz in the quartz veins -phyrrotite along the epidote filled fractures ( $<2 \%$ ) \& \& \& <br>

\hline \& 25.08 \& 25.76 \& Andesite \& | -fine grained, dark green Andesitic rock |
| :--- |
| -thin quartz veins, calcite and smokey quartz in the veins |
| -fine to medium grained pyrites in the ground mass ( $>5 \%$ ), |
| -phyrrotite along the epidote filled fractures ( $<2 \%$ ) | \& \[

$$
\begin{aligned}
& \hline 25.08- \\
& 25.76=0 . \\
& 68 \mathrm{~m}
\end{aligned}
$$
\] \& 28265 \& nil <br>

\hline \& 25.76 \& 27.89 \& Andesite \& -medium grained, dark green, porphyritic Andesite -quartz veins ( $2-4 \mathrm{~mm}$ thick, +50 degrees to vertical), with calcite and smokey quartz in the veins -coarse disseminated phyrrotite in the ground mass ( $>3 \%$ ) \& \& \& <br>
\hline
\end{tabular}

|  | 27.89 | 28.60 | Andesite | -medium grained, porphyritic dark green Andesitic rock <br> with quartz carbonate alteration <br> -epidote filled flow structure <br> -phyrrotite along the alteration zone ( $>3 \%$ ) | $27.89-$ <br> $28.60=0$. <br> 71 m | 28266 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 28.60 | 29.04 | Andesite | -medium grained, porphyritic dark green Andesitic rock <br> -epidote filled flow structure <br> -not much mineralization |  |  |  |
|  |  | 29.04 | 30.41 | Andesite | -coarse grained, dark green, porphyritic Andesite <br> -quartz veins, -40 degrees and vertical, 2-3 mm thick, <br> calcite and smokey quartz in the quartz veins <br> -<1\% mineralization |  |  |
| Box 6 <br> $30.41-$ <br> $36.29=5.88 \mathrm{~m}$ | 30.41 | 35.66 | Andesite | -medium to coarse grained, dark green, porphyritic <br> Andesitic rock <br> -thin quartz veins 2 mm thick, +,-30 to 50 degrees <br> -one wavy quartz veins shows phyrrotite and pyrite <br> within the vein <br> -thick quartz veins filled with chlorite and smokey quartz <br> -epidote filled wavy fractures <br> -Hematite leaching along the fractures <br> -chlorite filling in the cleavages of epidote breccias <br> -coarse disseminated phyrrotite and pyrites in the ground <br> mass and along fractures (<3\%) <br> -no sample taken from this box |  |  |  |


|  | 39.23 | 39.46 | Rhyolite- <br> Dacite <br> breccia <br> flow | -dark grey, Rhyolitic-dacite breccia (2-3 cm dia.) flow -thick quartz veins $0.5-2 \mathrm{~cm}$, calcite and smokey quartz filled, hematite leaching, k -feldspar -sulphides in the breccia matrix ( $<5 \%$ ) -no mineralization in the quartz veins | $\begin{aligned} & 39.30- \\ & 40.58= \\ & 1.28 \mathrm{~m} \end{aligned}$ | 28268 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 39.46 | 42.20 | Andesite | -medium to coarse grained, dark green, Andesitic rock -thin calcite and epidote filled fractures -thin quartz veins 2 mm thick, + ,- 40 to 50 degrees -one wavy quartz veins shows phyrrotite and pyrite within the vein -no mineralization seen in this section |  |  |  |
| $\begin{aligned} & \text { Box } 8 \\ & 42.20-48.09= \\ & 5.89 \mathrm{~m} \end{aligned}$ | 42.20 | 48.09 | Andesite Breccia | -Andesitic brecciated rock/flow. <br> -epidotic breccia, breccia size ranges from 2 cm to <br> $>15 \mathrm{~cm}$. <br> -quartz, epidote and chlorite rich matrix <br> -very fine fractures filled with epidote <br> -very thin to thick quartz veins, -45 degrees, 2 mm to 4 cm . <br> -andesitic breccia, k-feldspar and chlorite in the quartz veins <br> -pyrite mineralization around the quartz veins <br> $-<2 \%$ mineralization in the breccia matrix <br> -sample taken from 46.63-47.23 m depth | $\begin{aligned} & \hline 46.63- \\ & 47.23 \\ & =0.60 \mathrm{~m} \end{aligned}$ | 28269 | nil |
| $\begin{aligned} & \hline \text { Box 9 } \\ & 48.09-53.94= \\ & 5.85 \mathrm{~m} \end{aligned}$ | 48.09 | 48.45 | Dacite Rhyolite | -fine grained, light grey, Dacitic-Rhyolitic rock/flow -quartz vein, 4 mm thick, -50 degrees, k -feldspar and calcite filling. -chlorite veins |  |  |  |
|  | 48.45 | 49.63 | Dacite Rhyolite | -Dacitic-Rhyolitic breccia flow <br> -Breccia size ranges from 2 cm to 10 cm max length. -embedded in chlorite matrix <br> $-<1 \%$ mineralization |  |  |  |
|  | 49.63 | 50.04 | Rhyolite | light grey, fine grained, Rhyolitic flow -quartz veins, $2-4 \mathrm{~mm}$ thick, +30 to 40 degrees -medium grained pyrite around the quartz veins | $\begin{aligned} & \hline 49.63- \\ & 50.04= \\ & 0.41 \mathrm{~m} \end{aligned}$ | 28270 | nil |
|  | 50.04 | 50.98 | Dacite Rhyolite | -Dacitic-Rhyolitic breccia flow <br> -Breccia embedded in chlorite matrix, ranges from 2 cm to 5 cm max length. <br> $-<1 \%$ mineralization |  |  |  |


|  | 50.98 | 53.94 | Andesite | -Andesitic breccia flow/rock <br> -Breccia embedded in chlorite, epidote matrix, ranges <br> from 2 cm to 3 cm max. length. <br> $-<2 \%$ mineralization | $51.75-$ <br> $52.32=$ <br> 0.57 m | 28271 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Box 10 <br> $53.94-59.75=$ <br> 5.81 m |  |  |  |  |  |  |  |


| Box 13 <br> $71.57-77.39=$ <br> 5.82 m | 71.57 | 73.05 | Andesite | -light to dark green, siliceous, quartz carbonate altered <br> Andesitic rock <br> -thin quartz veins, epidote filled minor fractures <br> -concentration of coarse grained pyrites around some <br> quartz veins |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | 93.51 | 95.13 | Dacite Rhyolite | -Light grey, mottled (variolitic?), fine grained, hard, siliceous dacitic-rhyolitic mixed rock -rich in fuchsite -no mineralization | $\begin{aligned} & \hline 94.50- \\ & 94.82=0 . \\ & 32 \mathrm{~m} \end{aligned}$ | 28279 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Box } 17 \\ & 95.13-100.95= \\ & 5.82 \mathrm{~m} \end{aligned}$ | 95.13 | 96.61 | Dacite Rhyolite | -Light grey, mottled, fine grained, hard, siliceous daciticrhyolitic mixed rock -thick quartz vein, 3 cm , calcite and fuchsite filled, almost vertical -no mineralization | $\begin{aligned} & \hline 95.77- \\ & 96.08= \\ & 0.31 \mathrm{~m} \end{aligned}$ | 28280 | nil |
|  | 96.61 | 98.07 | Dacite Rhyolite | -darker grey, mottled, hard, siliceous dacitic-rhyolitic mixed rock <br> -quartz rich zone filled with calcite and fuchsite -no mineralization | $\begin{aligned} & 97.45- \\ & 98.07= \\ & 0.62 \mathrm{~m} \end{aligned}$ | 28281 | nil |
|  | 98.07 | 99.53 | Dacite Rhyolite | -dark grey, variolitic/mottled, hard, siliceous daciticrhyolitic mixed rock -thin quartz veins, 2 mm thick, +40 to 60 degrees, quartz blebs. -no mineralization |  |  |  |
|  | 99.53 | 100.95 | Variolite | -dark grey, variolitic, dacitic rock -quartz rich zone, thin quartz veins, $1-2 \mathrm{~mm}$ thick,,+-40 to 45 degrees -coarse grained pyrite near quartz rich zone ( $<5 \%$ ) |  |  |  |
| $\begin{array}{\|l\|} \hline \text { Box } 18 \\ 100.95- \\ 106.93=5.98 \mathrm{~m} \end{array}$ | 100.95 | 103.27 | Variolite | -dark grey, variolitic rock -thin quartz veins, $1-2 \mathrm{~mm}$ thick,,+-40 to 45 degrees |  |  |  |
|  | 103.27 | 106.93 | Andesite | -light green, siliceous, fine grained, quartz carbonate rich Andesitic rock (alteration) <br> -no mineralization in the ground mass <br> -samples taken from <br> (i) $103.49-103.77 \mathrm{~m}$ depth shows thick quartz vein/zone with fuchsite mineralization and coarse pyrite grains <br> (ii) 105.18-105.71 m depth shows quartz carbonate alteration with coarse grained pyrite | $\begin{aligned} & \hline \text { (i) } \\ & 103.49- \\ & 103.77= \\ & 0.28 \mathrm{~m} \\ & \text { (ii) } \\ & 105.18- \\ & 105.71= \\ & 0.53 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{aligned} & 28282 \\ & 28283 \end{aligned}$ | Nil nil |
| $\begin{array}{\|l\|} \hline \text { Box } 19 \\ 106.93- \\ 112.90=5.97 \mathrm{~m} \\ \hline \end{array}$ | 106.90 | 107.67 | Andesite | -dark grey dacitic flow in andesitic rock <br> -fuchsite in dacitic flow <br> -coarse grained pyrites in fuchsite <br> -sample taken from 107.06-107.68m depth shows grey <br> dacitic rock with light green fuchsite | $\begin{aligned} & \hline \text { (i) } \\ & 107.06- \\ & 107.68= \\ & 0.62 \mathrm{~m} \end{aligned}$ | 28284 | nil |


|  | 107.67 | 108.10 | Dacite | -dark grey, quartz rich, dacitic flow -sample taken from 107.68-108.10m depth shows quartz rich, dacitic flow with fuchsite | $\begin{aligned} & 107.68- \\ & 108.10= \\ & 0.42 \mathrm{~m} \end{aligned}$ | 28285 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 108.10 | 110.03 | Dacite Rhyolite | -Light grey, mottled, fine grained, hard, siliceous daciticrhyolitic mixed rock -thick quartz vein, $2 \mathrm{~mm}-2 \mathrm{~cm},-60$ to 65 degrees, calcite and fuchsite filled -no mineralization -three samples taken showing mottled, dacitic-rhyolitic mixed rock with light green fuchsite in it. <br> (i) $108.10-108.61 \mathrm{~m}$ <br> (ii) $108.61-109.06 \mathrm{~m}$ <br> (iii) $109.06-110.03 \mathrm{~m}$ | (i) $108.10-$ $108.61=$ 0.51 m (ii) $108.61-$ $109.06=$ 0.45 m (iii) $109.06-$ $110.03=$ 0.97 m | $\begin{aligned} & 28287 \\ & 28286 \\ & 28288 \end{aligned}$ | Nil <br> Nil <br> nil |
|  | 110.03 | 111.40 | Dacite Rhyolite | -darker grey, mottled, hard, siliceous dacitic-rhyolitic mixed rock <br> -thin quartz vein, $2 \mathrm{~mm},+70$ degrees, calcite filled -no mineralization |  |  |  |
|  | 111.40 | 112.56 | Dacite Andesite | -very dark grey, mottled, hard, siliceous dacitic? andesitic mixed rock <br> - thin quartz vein, $1 \mathrm{~mm},+,-40$ to 50 degrees, calcite filled in -no mineralization |  |  |  |
|  | 112.56 | 112.90 | Variolite | -dark grey, variolitic rock -no mineralization |  |  |  |
| $\begin{aligned} & \text { Box } 20 \\ & 112.90- \\ & 118.85=5.95 \mathrm{~m} \end{aligned}$ | 112.90 | 113.10 | Andesite | -dark grey, siliceous, quartz carbonate altered andesitic rock <br> -no mineralization |  |  |  |
|  | 113.10 | 116.87 | Variolite | -dark grey, variolitic rock <br> -thin quartz veins,,+-40 to 60 degrees and vertical, 1 mm to 3 mm thick, calcite filling/leaching in quartz veins -oxidized pyrites in between 116.87-117.27 m depth, more near fractures and quartz veins -no mineralization in the ground mass |  |  |  |


|  | 116.87 | 118.85 | Dacite | -dark grey, mottled, hard, siliceous dacitic, mixed rock -light grey mottled, mixed rock flow in between 118.31118.43 m depth <br> - thin quartz vein, $1 \mathrm{~mm},+,-40$ to 50 degrees, calcite filling in it. <br> -no mineralization in the mottled rock | $\begin{aligned} & 118.17- \\ & 118.74= \\ & 0.57 \mathrm{~m} \end{aligned}$ | 28289 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Box 21$118.85-$$124.65=5.80 \mathrm{~m}$ | 118.85 | 123.22 | Dacite | -dark grey, variolitic and mottled, dacitic or mixed rock -calcite filled thick quartz vein, $1-6 \mathrm{~mm},+40$ to 45 degrees -no mineralization |  |  |  |
|  | 123.22 | 124.65 | Andesite Dacite | -dark greenish grey, mottled, andesitic-dacitic mixed rock -calcite filled linear and wavy quartz vein, $1-3 \mathrm{~mm}$ thick. -no mineralization | $\begin{aligned} & 123.89- \\ & 124.52= \\ & 0.63 \mathrm{~m} \end{aligned}$ | 28290 | nil |
| $\begin{aligned} & \text { Box } 22 \\ & 124.65- \\ & 130.55=5.90 \mathrm{~m} \end{aligned}$ | 124.65 | 126.63 | Variolite | -dark grey, variolitic mixed rock -calcite filled linear and wavy quartz vein, $3-4 \mathrm{~mm}$ thick, ,+-40 to 60 degrees dip. -no mineralization |  |  |  |
|  | 126.63 | 130.55 | Andesite Dacite | -greyish green to green, fine grained, andesitic rock -breccia flow in the grey dacitic zone <br> -sulphide rich flow in the andesitic rock ( $>10 \%$ pyrites) <br> -Samples taken from 127.66-127.99 m and 129.19- <br> 129.98 m depth show sulphide rich flow in andesitic rock | (i) $127.66-$ $127.99=$ 0.33 m (ii) $129.19-$ $129.98=$ 0.79 m | $\begin{gathered} 28291 \\ 28292 \end{gathered}$ | nil nil |

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Box } 23 \\
\& 130.55- \\
\& 136.44=5.89 \mathrm{~m}
\end{aligned}
\] \& 130.55 \& 136.44 \& Andesite \& \begin{tabular}{l}
-dark green, fine grained, andesitic rock \\
-sulphide rich flow show quartz carbonate alteration \\
-Samples taken from \\
(i) \(131.05-132.19 \mathrm{~m}\) \\
and (ii) 132.19-133.12m depths \\
show sulphide rich flow in andesitic rock \\
(iii) 135.27-136.44 m depth \\
shows quartz carbonate alteration with coarse grained pyrites in the ground mass.
\end{tabular} \& \begin{tabular}{l}
(i) \\
131.05- \\
132.19= \\
1.04 m \\
(ii) \\
132.19- \\
133.12= \\
0.93 m \\
(iii) \\
135.27- \\
\(136.44=\) \\
1.17 m
\end{tabular} \& \[
\begin{array}{|c}
28293 \\
28294 \\
28295
\end{array}
\] \& \begin{tabular}{l}
Nil \\
Nil \\
nil
\end{tabular} \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { Box } 24 \\
136.44- \\
142.19=5.75 \mathrm{~m} \\
\hline
\end{array}
\]} \& 136.44 \& 138.36 \& Andesite \& \begin{tabular}{l}
-dark green, fine grained, andesitic rock \\
-sulphide concentration along the quartz carbonate \\
alteration flow/zone \\
-minor epidote filled fractures \\
-fine gained sulphides in the epidote filled fractured ground mass \\
-Samples taken from \\
(i) 136.44-137.36m depth shows sulphide concentration along the quartz carbonate alteration flow/zone \\
(ii) \(137.36-138.27 \mathrm{~m}\) depth shows fine gained sulphides in the ground mass shows epidote filled minor fractures
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { (i) } \\
\& 136.44- \\
\& 137.36= \\
\& 0.92 \mathrm{~m} \\
\& \\
\& \text { (ii) } \\
\& 137.36- \\
\& 138.27= \\
\& 0.91
\end{aligned}
\] \& \[
\begin{array}{|c}
28296 \\
28297
\end{array}
\] \& 10

nil <br>

\hline \& 138.36 \& 139.80 \& Andesite \& | -quartz rich andesitic rock |
| :--- |
| -number of thin quartz veinlets filled with calcite |
| -fuchsite along the thick smokey quartz veins |
| -no sulphide mineralization |
| -sample taken from 139.28-139.66m depth shows fuchsite along the thick smokey quartz veins with some coarse grained pyrites | \& \[

$$
\begin{aligned}
& 139.28- \\
& 139.66= \\
& 0.38 \mathrm{~m}
\end{aligned}
$$
\] \& 28298 \& 5 <br>

\hline \& 139.80 \& 141.05 \& Dacite Andesite \& -greyish green, fine grained, dacitic-andesitic rock -no sulphide mineralization \& \& \& <br>
\hline \& 141.05 \& 142.19 \& Dacite Rhyolite \& -light grey, fine grained, Dacitic-Rhyolitic rock -no sulphide mineralization in the ground mass -thin calcite filled quartz veins -pyrite concentration around quartz veins \& \& \& <br>
\hline
\end{tabular}

| Box 25 <br> $142.19-$ <br> $147.50=5.31 \mathrm{~m}$ | 142.19 | 146.29 | Dacite - <br> Rhyolite | -light to dark grey, fine grained, Dacitic-Rhyolitic rock <br> -coarse grained sulphide mineralization around the quartz <br> veins, calcite and smokey quartz filled in quartz veins <br> -sample taken from 143.78-144.39m depth shows <br> sulphide mineralization around the quartz veins | $143.78-$ <br> $144.39=$ <br> 0.61 m | 28299 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 146.29 | 147.50 | Andesite - <br> -porphyry | -Mottled/porphyritic, dark green, medium grained <br> andesitic rock <br> -thin quartz veins, 2-4 mm, -30 to 40 degrees, calcite and <br> smokey quartz filled in quartz veins. <br> -no mineralization in ground mass |  |  |  |

## DIAMOND DRILL LOG



| Hole No. LZ-07-09 |  |  | Claim No. $1237005$ | Township/Area <br> McNeil Twp | Date <br> Started: <br> August <br> 01, 2007 | Date Completed August 7, 2007 | Date Logged $\begin{aligned} & \text { August 10, } \\ & 2007 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Holder <br> Warrior Ventures Inc |  |  | Core Size <br> BTW | Azimuth <br> 240 degrees | Dip: <br> -55 <br> degrees | End of <br> Hole (m): <br> 146.83 | Logged by: <br> Sangeeta <br> Guha |
| Depth (m) |  |  | Rock | Description (colour, grain size, texture, minerals, | Sample | Sample No. | Assay |
| $\begin{aligned} & \text { Box 1 } \\ & 1.2-7.2=6.0 \mathrm{~m} \end{aligned}$ | From | To | Type |  |  |  |  |
|  | 1.2 | 7.2 | Dacite Andesite | -Broken pieces of greyish green hard, fine grained Dacitic-Andesitic rock, epidote along the fractures. -linear and disseminated spherulites ( $2-6 \mathrm{~mm}$ ) -coarse grained Chalcopyrite in the spherulites/variolites ( $>2 \%$ ) <br> -thick quartz vein $94 \mathrm{~cm},-50$ degrees at 5.28 to 5.32 m depth, calcite, chlorite and Andesitic mass filled in) -coarse pyrite in quartz vein <br> -thin, linear, fine grained carbonate alteration zone, calcite and k-feldspar vein <br> -fine grained pyrites and Chalcopyrite along the alteration zone at 7.00 to 7.10 m depth. <br> -sample taken from 4.56-5.34 depth shows Chalcopyrite in spherulites ( $>2 \%$ ). | $\begin{aligned} & 4.56- \\ & 5.34= \\ & 0.78 \mathrm{~m} \end{aligned}$ | 28198 | nil |


| Box 2 <br> 7.2- <br> $13.2=6.00 \mathrm{~m}$ | 7.2 | 13.2 | Dacite Andesite | -greyish green Dacitic-Andesitic rock <br> (i) <br> -fine grained, spherulitic/variolitic Dacitic-Andesitic rock from 7.2 to 8.7 m depth <br> -coarse chalcopyrite and pyrite in spherulites <br> (ii) <br> -Porphyritc light green Andesitic rock from 8.7 to 13.2 m depth <br> -pyrrohtite along the fractures and in the ground mass (<1\%) <br> -broken and missing cores, no sample taken from this box |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Box } 3 \\ & 13.2-19.2= \\ & 6.0 \mathrm{~m} \end{aligned}$ | 13.2 | 14.52 | Andesite | -Porphyritc light green Andesitic rock <br> -pyrrohtite and pyrites in the ground mass ( $>3 \%$ ) epidote and Andesitic leaching in the fractures -quartz vein, $3 \mathrm{~mm},-40$ to 45 degrees, smokey quartz and iron leching in the quartz vein -coarse pyrite grain in the quartz vein -cherry red hematite leaching along the fractures -sample taken from 13.2-14.52 m depth | $\begin{aligned} & 13.2- \\ & 14.52= \\ & 1.32 \mathrm{~m} \end{aligned}$ | 28199 | nil |
|  | 14.52 | 15.90 | Dacite | -Fine grained, quartz rich, grey, dacitic rock -medium grained pyrite in the ground mass -thin quartz veins ( $2 \mathrm{~mm},+,-30$ to 40 degrees) <br> -Sample taken from 15.08-15.90 m depth shows medium grained pyrite in the ground mass, pyrrohtite and coarse grained pyrite concentrated along the smeared vein filled with smokey quartz and dacitic material. -missing core at $14.96-15.08 \mathrm{~m}$ depth | $\begin{aligned} & 15.08- \\ & 15.90= \\ & 0.82 \mathrm{~m} \end{aligned}$ | 28200 | nil |
|  | 15.90 | 17.7 | Andesite | -Light green, quartz rich, porphyritc Andesitic rock -high concentration of pyrrohtite along the wavy epidote filled fractures -cherry red hematite leaching along the fractures -quartz altered patch, coarse pyrite in the alteration patch -missing core at 16.2-16.37 m depth -sample taken at $16.37-17.7 \mathrm{~m}$ depth shows concentration of pyrrohtite along the epidote filled fractures | $\begin{aligned} & 16.37- \\ & 17.7= \\ & 1.33 \mathrm{~m} \end{aligned}$ | 28201 | nil |

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& 17.7 \& 19.2 \& Andesite \& \begin{tabular}{l}
-dark green, porphyritc Andesitic rock -pyrrohtite along the epidote filled fractures -disseminated, coarse grained pyrite along the alteration patch at 18.7-18.8 m depth. \\
-sample taken from 18.49-18.94 m depth shows coarse grained pyrite along the Q-C alteration patch. -missing core at 17.2-17.32 m depth
\end{tabular} \& \[
\begin{aligned}
\& 18.49- \\
\& 18.94= \\
\& 0.45 \mathrm{~m}
\end{aligned}
\] \& 28202 \& nil \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Box } 4 \\
\& 19.2-25.02= \\
\& 5.82 \mathrm{~m}
\end{aligned}
\]} \& 19.2 \& 23.66 \& Dacite Andesite \& \begin{tabular}{l}
-dark green to grey, fine grained andesitic dacitic rock with variolitic flow in between \\
-quartz veins,,+-30 to 40 degrees, \(2-8 \mathrm{~mm}\) thick \\
-pyrrohtite and pyrite in variolites ( \(>2 \%\) ) \\
-Sample taken from 20.69-21.33 m depth shows variolites with pyrrohtite
\end{tabular} \& \[
\begin{aligned}
\& 20.69- \\
\& 21.33= \\
\& 0.64
\end{aligned}
\] \& 28204 \& nil \\
\hline \& 23.66 \& 25.02 \& Dacite Andesite \& \begin{tabular}{l}
-dark grey, fine grained, quartz altered andesitic dacitic rock \\
-linear and wavy thick quartz veins,,+-30 to 40 degrees, parallel and vertical, 2 mm to 4 cm thick, calcite and smokey quartz filling -epidote filled fractures -coarse grained pyrite in the alteration zone ( \(>5 \%\) ) -Sample taken from 23.66-24.58 m depth shows quartz altered andesitic dacitic rock with coarse grained pyrites
\end{tabular} \& \[
\begin{aligned}
\& 23.66- \\
\& 24.58= \\
\& 0.92 \mathrm{~m}
\end{aligned}
\] \& 28205 \& 8 \\
\hline \[
\begin{aligned}
\& \hline \text { Box 5 } \\
\& 25.02- \\
\& 30.89=5.87 \mathrm{~m}
\end{aligned}
\] \& 25.02 \& 30.89 \& Andesite \& \begin{tabular}{l}
-dark green, fine grained, quartz-carbonate altered andesitic rock from \(25.02-29.85 \mathrm{~m}\) depth -dark grey, fine grained, quartz-carbonate altered andesitic-dacitic rock from 29.85-30.89 m depth -linear and wavy quartz veins,,+-40 to 70 degrees, and vertical, 2 mm to 4 cm thick, calcite and smokey quartz filling in it. \\
-epidote filled fractures. \\
-breccia flow in between the andesite mass. \\
-coarse grained pyrrohtite and pyrites in the alteration zone and along and around the fractures and veins ( \(>2 \%\) ) \\
-Sample taken from \\
(i) \(25.62-26.47 \mathrm{~m}\) \\
(ii) \(26.77-27.38 \mathrm{~m}\) \\
(iii) \(28.23-29.42 \mathrm{~m}\) \\
(iv) \(30.38-30.76 \mathrm{~m}\)
\end{tabular} \& \begin{tabular}{l}
(i) \\
25.62- \\
26.47= \\
0.85 m \\
(ii) \\
26.77- \\
27.38= \\
0.61 m \\
(iii) \\
28.23- \\
29.42= \\
1.19 m \\
(iv) \\
30.38- \\
30.76= \\
0.38 m
\end{tabular} \& \[
\begin{aligned}
\& 28206 \\
\& 28207 \\
\& 28208 \\
\& 28209
\end{aligned}
\] \& Nil

Nil

Nil

Nil <br>
\hline
\end{tabular}

| $\begin{aligned} & \hline \text { Box 6 } \\ & 30.89-36.79= \\ & 5.90 \mathrm{~m} \end{aligned}$ | 30.9 | 32.64 | Andesite | -dark green, fine grained, quartz-carbonate altered andesitic rock <br> -thin linear quartz veins,,+-40 to 70 degrees, and vertical, 2 mm to 4 mm thick, calcite filling. -Fine grained pyrites in the ground mass -coarse grained pyrrohtite and pyrites in the alteration zone (>3\%) <br> -Sample taken from 31.17-31.71 m shows quartzcarbonate altered andesitic rock with coarse grained pyrrohtite and pyrites in the alteration zone | $\begin{aligned} & \hline 31.17- \\ & 31.71 \\ & =0.54 \mathrm{~m} \end{aligned}$ | 28210 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 32.64 | 35.93 | Dacite Rhyolite | -light grey, fine grained, hard siliceous, Rhyolitic-Dacitic rock <br> -linear veins,,+-40 to 70 degrees, and vertical, 2 mm to 5 cm thick with calcite filling. <br> -coarse grained pyrites around the quartz vein ( $>3 \%$ ) <br> -no mineralization within the quartz vein <br> -Sample taken from <br> (i)) 33.41-33.81 m depth shows Rhyolitc-Dacitic flow with coarse grained pyrites along the flow <br> (ii) Sample taken from 34.57-35.14 m depth shows <br> Rhyolitc-Dacitic flow with fine grained pyrites around the quartz veins | $\begin{aligned} & \hline \text { (i) } \\ & 33.41- \\ & 33.81 \\ & =0.40 \mathrm{~m} \end{aligned}$ <br> (ii) <br> 34.57- <br> 35.14 $=0.57 \mathrm{~m}$ | 28211 | 101 |
|  | 35.93 | 36.54 | Dacite | -dark grey, fine grained, hard siliceous, Dacitic rock -linear quartz veins,,+-40 to 70 degrees, and vertical, 2 mm to 5 mm thick. <br> -a few coarse grained pyrites around the quartz vein ( $<1 \%$ ) |  |  |  |
|  | 36.54 | 36.79 | Andesite | -dark green, fine grained, quartz-carbonate altered andesitic <br> -thin linear and wavy quartz veins,,+-40 to 70 degrees, and vertical, $2-4 \mathrm{~mm}$ thick <br> -coarse grained pyrites in the ground mass ( $<1 \%$ ) |  |  |  |
| $\begin{aligned} & \text { Box 7 } \\ & 36.79-42.69= \\ & 5.90 \mathrm{~m} \end{aligned}$ | 36.79 | 39.90 | Andesite | -dark green, fine grained, siliceous, andesitic rock -very thin linear quartz veins, $2-3 \mathrm{~mm}$ thick - coarse grained pyrites along the flow ( $>3 \%$ ) -sample taken from 39.18-39.72 m depth | 39.1839.72= 0.54 m | 28212 | nil |


|  | 39.90 | 41.94 | Dacite | -dark grey, fine grained, hard siliceous, Dacitic flow rock <br> -linear quartz veins, 2 mm thick. <br> -smeared smokey quartz and chlorite veining <br> -coarse grained pyrites around the quartz veins ( $>2 \%$ ) <br> -sample taken from $39.90-40.67 \mathrm{~m}$ depth | $\begin{aligned} & 39.90- \\ & 40.67= \\ & 0.77 \mathrm{~m} \end{aligned}$ | 28213 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 41.94 | 42.69 | Dacite Rhyolite | -light grey, fine grained, hard siliceous, Rhyolitc-Dacitic rock <br> -linear quartz veins ( 2 mm ) <br> -fine grained pyrites around the quartz vein and pyrrohtite along the fractures ( $>3 \%$ ) <br> -Sample taken from 41.94-42.52 m depth | $\begin{aligned} & 41.94- \\ & 42.52= \\ & 0.58 \mathrm{~m} \end{aligned}$ | 28214 | nil |
| $\begin{aligned} & \text { Box } 8 \\ & 42.69-48.62= \\ & 5.93 \mathrm{~m} \end{aligned}$ | 42.69 | 44.54 | Dacite Rhyolite | -light grey, fine grained, hard siliceous, Rhyolitc-Dacitic rock <br> -linear quartz veins ( 2 mm ), chloritic fractures and veins, k -feldspar in the quartz vein <br> -fine grained pyrites around the smeared smokey quartz and chlorite vein and pyrrohtite along the fractures ( $>3 \%$ ) <br> -Sample taken from $42.69-43.31 \mathrm{~m}$ depth | $\begin{aligned} & 42.69- \\ & 43.31= \\ & 0.62 \mathrm{~m} \end{aligned}$ | 28215 | nil |
|  | 44.54 | 45.10 | Dacite | -dark grey, fine grained, hard siliceous, Dacitic rock -blebby, andesitic-chloritic patch in the ground mass -fine grained pyrites in the ground mass ( $<1 \%$ ) |  |  |  |


|  | 45.10 | 48.62 | Andesite Breccia | -dark green, fine grained, quartz-carbonate altered andesitic <br> -Q-C rich andesitic flow and breccia flow <br> -coarse grained pyrites along the alteration flow zone <br> -fine to medium grained pyrite in the breccia matrix <br> -Samples taken from <br> (i) $45.1-45.66=0.56 \mathrm{~m}$ <br> -Andestic flow with smaller breccia, Coarse grained pyrite and pyrohtite in andesitic matrix but not within the breccia (>2\%) <br> (ii) $45.66-46.16=0.50 \mathrm{~m}$ <br> -big brecciated andesitic rock, coarse grained pyrite and pyrohtite in siliceous matrix ( $>2 \%$ ) <br> (iii) 46.16-47.46=1.30 <br> -Highly siliceous flow within andesitic rock, Quartz alteration, big crystals of pyrite along the flow ( $>3 \%$ ) <br> (iv) 47.60-48.09=0.49 <br> -Quartz carbonate alteration with coarse grained pyrites and pyrrohtites <br> (v) $48.09-48.62=0.53 \mathrm{~m}$ <br> -Quartz carbonate alteration with fine to medium grained pyrites ( $>3 \%$ ) | (i) $45.1-$ $45.66=0$. 56 m (ii) $45.66-$ $46.16=0$. 50 m (iii) $46.16-$ $47.46=1$. 30 (iv) $47.60-$ $48.09=0$. 49 (v) $48.09-$ $48.62=0$. 53 m | $\begin{aligned} & 28216 \\ & 28217 \\ & 28218 \\ & 28219 \\ & 28220 \end{aligned}$ | Nil <br> Nil <br> Nil <br> 8 <br> nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Box } 9 \\ & 48.62-54.41= \\ & 5.79 \mathrm{~m} \end{aligned}$ | 48.62 | 49.85 | Andesite Breccia | -andesitic mass with Breccia flow <br> -coarse grained pyrite along the flow( $>3 \%$ ) <br> -Samples aken from <br> (i) $48.62-49.07=0.45 \mathrm{~m}$ <br> -andesitic breccia flow with coarse grained pyrite <br> (ii) $49.25-49.60=0.35 \mathrm{~m}$ <br> -Quartz carbonate alteration in andesitic flow with coarse grained pyrite and pyrrohtite | (i) 48.6249.07= 0.45 m <br> (ii) 49.2549.60= 0.35 m | $\begin{aligned} & 28221 \\ & 28222 \end{aligned}$ | Nil <br> nil |
|  | 49.85 | 51.63 | Andesite | -dark green, silica rich porphyritic andesitc rock -thin quartz vein and epidote filled fractures -coarse grained disseminated pyrite in the ground mass |  |  |  |
|  | 51.63 | 52.31 | Andesite | -Quartz carbonate altered andesitic rock with fine grained pyrites in the ground mass and pyrrohtite concentration along the epidote filled fractures. |  |  |  |

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& 52.31 \& 52.94 \& Andesite \& \begin{tabular}{l}
-dark green, silica rich porphyritic andesitic rock -thin quartz veins \\
-disseminated pyrite in the ground mass
\end{tabular} \& \[
\begin{aligned}
\& 52.35- \\
\& 52.94= \\
\& 0.59 \mathrm{~m}
\end{aligned}
\] \& 28223 \& 10 \\
\hline \& 52.94 \& 54.41 \& Andesite \& -Quartz carbonate alteration in andesitic rock with fine grained pyrrohtite concentration along the epidote filled fractures and also along the quartz veins. \& 54.0354.41= 0.38 m \& 28224 \& nil \\
\hline \[
\begin{aligned}
\& \text { Box } 10 \\
\& 54.41- \\
\& 60.27=5.86 \mathrm{~m}
\end{aligned}
\] \& \& \& Andesite \& \begin{tabular}{l}
-Quartz carbonate alteration in andesitic rock with andesitic flows -coarse to fine grained pyrites along the flow -samples taken from the flow containing coarse crystals of pyrites \\
(i) \(54.65-55.01 \mathrm{~m}\) \\
(ii) \(55.26-55.54 \mathrm{~m}\) \\
(iii) \(57.60-58.73 \mathrm{~m}\)
\end{tabular} \& \begin{tabular}{l}
(i) \\
54.65- \\
55.01= \\
0.36 m \\
(ii) \\
55.26- \\
55.54= \\
0.28 m \\
(iii) \\
57.60- \\
\(58.73=\) \\
1.13 m
\end{tabular} \& \[
\begin{aligned}
\& 28225 \\
\& 28226 \\
\& 28227
\end{aligned}
\] \& Nil
Nil

8 <br>

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \hline \text { Box 11 } \\
& 60.27-66.18= \\
& 5.91 \mathrm{~m}
\end{aligned}
$$} \& 60.27 \& 60.66 \& Andesite \& -Dark green andesitic rock -no mineralization \& \& \& <br>

\hline \& 60.66 \& 63.78 \& Variolite \& | -variolitic rock |
| :--- |
| -thick quartz veins parallel to the drill axis -very fine grained sulphides ( $<1 \%$ ) | \& \& \& <br>

\hline \& 63.78 \& 66.18 \& Andesite Porphyry \& -Porphyritic andesite \& \& \& <br>

\hline \multirow[t]{4}{*}{\[
$$
\begin{aligned}
& \hline \text { Box 12 } \\
& 66.18-72.06= \\
& 5.88 \mathrm{~m}
\end{aligned}
$$

\]} \& 66.18 \& 66.38 \& | Andesite |
| :--- |
| Porphyry | \& | -quartz carbonate altered porphyritic andesite |
| :--- |
| -very fine grained sulphides in the ground mass | \& \& \& <br>

\hline \& 66.38 \& 66.98 \& Dacite-rhyoliteandesite flow breccia \& -Dacitic-rhyolitic-andesitic breccia with fine grained sulphides within breccia ( $>30 \%$ ) \& $$
\begin{aligned}
& 66.38- \\
& 66.98= \\
& 0.60 \mathrm{~m}
\end{aligned}
$$ \& 28228 \& nil <br>

\hline \& 66.98 \& 69.79 \& Andesite \& -quartz-carbonate altered dark green andesitic rock -coarse grained pyrites around the quartz veins \& \& \& <br>
\hline \& 69.79 \& 72.06 \& Andesite \& -porphyritic andesite (broken cores) \& \& \& <br>
\hline
\end{tabular}

| $\begin{aligned} & \hline \text { Box 13 } \\ & 72.06-77.85 \end{aligned}$ | 72.06 | 77.85 | Andesite | -dark green, medium grained, porphyritic andesite -quartz carbonate alteration <br> -fine grained sulphides in the ground mass ( $<1 \%$ ) -coarse grained pyrites around the quartz veins Sample taken from <br> (i) 76.42-77.00 $=0.58$ <br> -Andesitic breccia with fine grained sulphides <br> (ii) 77.47-77.85=0.38 <br> -Andesitic flow with coarse grained pyrites along the quartz rich flow | $\begin{aligned} & \hline \text { (i) } \\ & 76.42- \\ & 77.00=0 . \\ & 58 \\ & \text { (ii) } \\ & 77.47- \\ & 77.85=0 . \\ & 38 \end{aligned}$ | $\begin{aligned} & 28230 \\ & 28231 \end{aligned}$ | Nil 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Box 14 } \\ & 77.85-83.74= \\ & 5.89 \mathrm{~m} \end{aligned}$ | 77.85 | 79.39 | Andesite | -dark green, medium grained, porphyritic andesite -quartz carbonate alteration -medium grained pyrites and pyrrohtite in the ground mass ( $>2 \%$ ) <br> -pyrites and pyrrohtite around the quartz veins and fractures |  |  |  |
|  | 79.39 | 79.96 | Dacite | -dark grey, medium to coarse grained, porphyritic Dacitic rock <br> -quartz veining <br> -medium to coarse grained pyrites and pyrrohtite in the ground mass ( $>35 \%$ ) | $\begin{aligned} & \hline 79.39- \\ & 79.96= \\ & 0.57 \mathrm{~m} \end{aligned}$ | 28232 | nil |
|  | 79.96 | 80.24 | Rhyolite | -light grey, purplish colour, fine grained, Rhyolitic rock -quartz rich flow <br> -coarse grained pyrites in the ground mass ( $>3 \%$ ) <br> -pyrrohtite concentration along the contact line of <br> Rhyolitic flow and dacitic rock | $\begin{aligned} & \hline 79.96- \\ & 80.24= \\ & 0.28 \mathrm{~m} \end{aligned}$ | 28233 | 10 |
|  | 80.24 | 82.25 | Andesite flow breccia | -dark green, medium grained, porphyritic andesite -quartz carbonate alteration, flow structure -coarse grained pyrites and pyrrohtite along the flow | 80.24- <br> 81.38= <br> 1.14 m | 28234 | 10 |
|  | 82.25 | 83.74 | Andesite flow breccia | -dark green, medium grained, brecciated andesite -quartz carbonate alteration, breccia flow structure -coarse grained pyrites and pyrrohtite in the matrix along the flow. | $\begin{aligned} & \hline 82.25- \\ & 83.55= \\ & 1.30 \mathrm{~m} \end{aligned}$ | 28235 | 8 |
| $\begin{aligned} & \text { Box 15 } \\ & 83.74-89.61= \\ & 5.87 \mathrm{~m} \\ & \hline \end{aligned}$ | 83.74 | 84.67 | Andesite porphyry | -light green, medium grained, porphyritic andesite -quartz carbonate alteration at the flow -medium grained pyrites and pyrrohtite along the flow |  |  |  |


|  | 84.67 | 86.20 | Andesite flow breccia | -dark green, medium to fine grained, breccia flow in andesite <br> -quartz carbonate alteration <br> -medium to coarse grained pyrites and pyrrohtite in the silica and chlorite rich matrix ( $>5 \%$ ) | $\begin{aligned} & 85.12- \\ & 86.20= \\ & 1.08 \mathrm{~m} \end{aligned}$ | 28236 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 86.20 | 87.76 | Dacite- <br> Rhyolite <br> flow | -light grey to fine grained Dacitic-Rhyolitic flow -quartz veins, +30 degrees, 4 mm thick <br> -fine to medium grained pyrites and pyrrohtite around the quartz vein and chlorite filled fracture ( $<5 \%$ ) | 86.7687.39= 0.63m | 28237 | nil |
|  | 87.76 | 89.61 | Andesite | -dark green, fine grained breccia flow in andesite -quartz carbonate alteration along the flow -medium to coarse grained pyrites and pyrrohtite in the silica and chlorite rich matrix ( $>10 \%$ ) <br> -Sample taken from <br> (i) $87.76-88.14=0.38 \mathrm{~m}$ <br> (ii) $88.29-88.78=0.49 \mathrm{~m}$ <br> (iii) $88.78-89.4=0.62 \mathrm{~m}$ | (i) <br> 87.76- <br> 88.14= <br> 0.38 m <br> (ii) <br> 88.29- <br> 88.78= <br> 0.49 m <br> (iii) <br> 88.78- <br> 89.4= <br> 0.62 m | $\begin{aligned} & 28238 \\ & 28239 \\ & 28240 \end{aligned}$ | 15 <br> nil <br> nil |
| $\begin{aligned} & \hline \text { Box 16 } \\ & 89.61-95.57= \\ & 5.96 \mathrm{~m} \end{aligned}$ | 89.61 | 94.08 | Andesite flow breccia | -dark green, fine grained andesite with breccia flow quartz carbonate alteration in the ground mass and along the flow -coarse grained pyrites and pyrrohtite in the silica and chlorite rich matrix (>20\%) <br> -Sample taken from <br> (i) $89.61-91.11=1.50 \mathrm{~m}$ <br> (ii) $91.11-93.06=1.95 \mathrm{~m}$ <br> (iii) $93.06-94.08=1.02 \mathrm{~m}$ | (i) <br> 89.61- <br> 91.11= <br> 1.50 m <br> (ii) <br> 91.11- <br> 93.06= <br> 1.95 m <br> (iii) <br> 93.06- <br> $94.08=$ <br> 1.02 m | $\begin{aligned} & 28241 \\ & 28242 \\ & 28243 \end{aligned}$ | Nil <br> 6 <br> 80 |
|  | 94.08 | 95.57 | Dacite Andesite | -dark grey, fine to medium grained porphyritic Daciteandesite rock, varioles also seen in this section -no mineralization <br> -No sample taken from this section |  |  |  |


| $\begin{array}{\|l\|} \hline \text { Box 17 } \\ 95.57-101.62= \\ 6.05 \mathrm{~m} \end{array}$ | 95.57 | 98.10 | Dacite Andesite | -greyish green, medium grained, porphyritic dacitic andesitic rock with varioles -thin quartz veins, + ,- 40 degrees, 2 mm thick -no mineralization seen in the ground mass as well within the variolites |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 98.10 | 99.50 | Andesite | -very fine to medium grained, dark green, andesite with flow <br> -quartz carbonate alteration along the flow -coarse grained pyrites and pyrrohtite along the flow ( $>5 \%$ ) <br> -Sample taken from $98.58-99.50=0.92 \mathrm{~m}$ depth | 98.58$99.50=$ 0.92 m | 28244 | nil |
|  | 99.50 | 100.53 | Andesite | -medium to coarse grained, porphyritic dark green, andesite with flow <br> -quartz carbonate alteration along the flow <br> -coarse grained pyrites and pyrrohtite along the flow <br> ( $>10 \%$ ) and in the ground mass <br> -Sample taken from 99.50-100.53=1.03m depth | $\begin{aligned} & 99.50- \\ & 100.53= \\ & 1.03 \mathrm{~m} \end{aligned}$ | 28245 | nil |
|  | 100.53 | 101.62 | Andesite | -medium to coarse grained, mottled, light green, andesite rock <br> -coarse grained pyrites and pyrrohtite in the ground mass ( $>10 \%$ ) <br> -Sample taken from 100.53-101.47= 0.94 m depth | $\begin{aligned} & 100.53- \\ & 101.47= \\ & 0.94 \mathrm{~m} \end{aligned}$ | 28246 | 12 |
| $\begin{aligned} & \hline \text { Box } 18 \\ & 101.62-07.63= \\ & 6.01 \mathrm{~m} \end{aligned}$ | 101.62 | 102.92 | Andesite | -fine grained, light green, quartz rich andesite -quartz veins, $2-3 \mathrm{~mm},-40$ to +50 degrees -coarse grained pyrites and pyrrohtite along the flow ( $>3 \%$ )-sample taken from an anedesitic flow at 101.84102.24 m depth | $\begin{aligned} & 101.84- \\ & 102.24= \\ & 0.45 \end{aligned}$ | 28247 | nil |
|  | 102.92 | 103.77 | Dacite | -fine grained, dark grey, quartz rich dacitic rock/flow -quartz veins, $2-3 \mathrm{~mm},+50$ degrees <br> -fine to medium grained pyrites and pyrrohtite along the veins ( $>5 \%$ ) | $\begin{aligned} & 103.15- \\ & 103.77= \\ & 0 . .62 \end{aligned}$ | 28248 | nil |


|  | 103.77 | 105.31 | Rhyolite | -fine grained, light grey, quartz rich Rhyolitic flow -thick quartz veins, 2-3 cm, -50 degrees <br> -fine medium grained pyrites and pyrrohtite along the veins (>3\%) <br> -samples taken for sulphide concentration around quartz vein <br> (i) $103.77-104.20=0.43$ <br> (ii) $104.62-105.31=0.69 \mathrm{~m}$ | (i) $103.77-$ $104.20=$ 0.43 (ii) $104.62-$ $105.31=$ 0.69 m | $\begin{array}{\|c} 28249 \\ 28250 \end{array}$ | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 105.31 | 106.72 | Dacite | -fine grained, dark grey, mottled, quartz rich dacitic rock -quartz veins, $2 \mathrm{~mm},+50$ degrees and vertical -medium grained pyrites and pyrrohtite along the veins ( $>5 \%$ ) |  |  |  |
|  | 106.72 | 107.63 | Andesite | -medium to coarse grained, quartz rich, mottled, light green, andesitic rock -coarse grained pyrites and pyrrohtite along the fractures and quartz veins ( $>3$ ) | $\begin{aligned} & \hline 106.80- \\ & 107.29= \\ & 0.45 \mathrm{~m} \end{aligned}$ | 28251 | 65 |
| $\begin{aligned} & \text { Box } 19 \\ & 107.63- \\ & 113.51=5.88 \mathrm{~m} \end{aligned}$ | 107.63 | 109.08 | Andesite Dacite interface | -light green, quartz rich andesitic dacitic rock. <br> -thin quartz veins <br> -medium to coarse grained pyrites around quartz veins -sample taken from | $\begin{aligned} & 108.23- \\ & 108.66= \\ & 0.43 \mathrm{~m} \end{aligned}$ | 28252 | nil |
|  | 109.08 | 109.51 | Andesite | -light green andesitic rock with breccia flow -medium to coarse grained sulphides in the quartz rich matrix | $\begin{aligned} & 109.08- \\ & 109.51= \\ & 0.43 \mathrm{~m} \end{aligned}$ | 28253 | nil |
|  | 109.51 | 112.00 | Andesite | -light green, quartz rich, andesitic rock showing quartz carbonate alteration -very fine grained sulphides ( $<1 \%$ ) |  |  |  |
|  | 112.00 | 113.00 | Andesite Breccia | -Andesitic breccia in quartz and epidote rich matrix $->5 \%$ pyrite and pyrrohtite in the matrix | $\begin{aligned} & 112.00- \\ & 112.62 \\ & =0.62 \mathrm{~m} \end{aligned}$ | 28254 | nil |
|  | 113.00 | 113.51 | Andesite | -Dark green quartz rich andesitic rock -no mineralization noticed in this section |  |  |  |
| $\begin{array}{\|l\|} \hline \text { Box } 20 \\ 113.51- \\ 119.40=5.89 \mathrm{~m} \\ \hline \end{array}$ | 113.51 | 114.97 | Andesite | -light green, quartz rich, andesitic rock <br> -thin quartz veins <br> -very fine grained sulphides ( $<1 \%$ ) |  |  |  |
|  | 114.97 | 117.58 | Andesite | -light green, quartz rich, porphyritic andesitic rock -number of quartz veins, quartz alteration in andesitic rock <br> -medium to coarse grained sulphides ( $>3 \%$ ) | $\begin{aligned} & 115.10- \\ & 115.70= \\ & 0.60 \mathrm{~m} \end{aligned}$ | 28255 | nil |


|  | 117.58 | 119.40 | Dacite - Rhyolite interface | -light grey mottled, rhyolitic-dacitic rock <br> -quartz veins, calcite filling in quartz veins <br> -fine grained sulphides around some of the quartz veins ( $<1 \%$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Box 21 } \\ & 119.40- \\ & 125.34=5.94 \mathrm{~m} \end{aligned}$ | 119.40 | 120.88 | Rhyolite | -light grey, fine grained, rhyolitic rock -quartz veins, +40 degrees, 2 cm , fuchsite inclusion in quartz vein, calcite filling in quartz veins - medium grained sulphides around quartz veins ( $>2 \%$ ) -sample taken at 119.95-120.25 m depth shows sulphides concentration around quartz veins | $\begin{aligned} & 119.95- \\ & 120.25= \\ & 0.30 \mathrm{~m} \end{aligned}$ | 28256 | 78 |
|  | 120.88 | 122.11 | Dacite Rhyolite interface | -light grey mottled, rhyolitic-dacitic rock <br> -quartz veins, +30 to 40 degrees, calcite filling in quartz veins <br> -no mineralization |  |  |  |
|  | 122.11 | 125.34 | Andesite | -light to dark green mottled, andesitic rock <br> -quartz veins, calcite filling in quartz veins -concentration of pyrites and pyrrohtite around horizontal quartz veins ( $>3 \%$ ) | $\begin{aligned} & 122.36- \\ & 122.82= \\ & 0.46 \mathrm{~m} \end{aligned}$ | 28257 | nil |
| $\begin{aligned} & \hline \text { Box 22 } \\ & 125.34- \\ & 131.30=5.96 \mathrm{~m} \end{aligned}$ | 125.34 | 131.30 | Andesite | -light to dark green porphyritic/mottled, andesitic rock -quartz veins, calcite filling in quartz veins, quartz carbonate alteration along the flow at $128.22-128.33 \mathrm{~m}$ depth <br> -sample taken from 127.48-128.33 m depth shows concentration of pyrites and pyrrohtite along the flow and disseminated pyrites in the ground mass | $\begin{aligned} & 127.48- \\ & 128.33= \\ & 0.85 \mathrm{~m} \end{aligned}$ | 28258 | nil |


| $\begin{aligned} & \hline \text { Box } 23 \\ & 131.30- \\ & 137.18=5.88 \mathrm{~m} \end{aligned}$ | 131.30 | 137.18 | Andesite | -light to dark green porphyritic, andesite <br> -quartz veins, calcite filling in quartz veins, epidote filled veins and fractures <br> -quartz carbonate alteration along the flow -sample taken from shows quartz carbonate alteration (not much) with sulphides around the flow (alteration) structure <br> (i) $132.88-143.02=1.14 \mathrm{~m}$ <br> -fine grained sulphides in the ground mass around the flow structure ( $>10 \%$ ) <br> (ii) $134.27-135.03=0.76 \mathrm{~m}$ <br> -breccia flow with sulphides in the matrix ( $<5 \%$ ) <br> (iii) $136.06-136.56=0.50 \mathrm{~m}$ <br> -fine grained sulphides in the ground mass, coarse grained pyrites around the quartz vein ( $<3 \%$ ) | (i) <br> 132.88- <br> 143.02= <br> 1.14 m <br> (ii) <br> 134.27- <br> 135.03= <br> 0.76 m <br> (iii) <br> 136.06- <br> 136.56= <br> 0.50 m | $\begin{aligned} & 28259 \\ & 28260 \\ & 28261 \end{aligned}$ | Nil <br> Nil $348$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Box } 24 \\ & 137.18- \\ & 143.04=5.86 \mathrm{~m} \end{aligned}$ | 137.18 | 139.66 | Andesite | -light to dark green, medium grained, andesite -thin quartz veins, calcite filling in quartz veins, -medium grained pyrites around the quartz veins ( $>3 \%$ ) | $\begin{aligned} & 138.61- \\ & 139.00= \\ & 0.39 \mathrm{~m} \end{aligned}$ |  |  |
|  | 139.66 | 143.04 | Variolite | -dark to light grey variolites with $<1 \%$ sulphides. |  |  |  |
| $\begin{aligned} & \text { Box } 25 \\ & 143.04- \\ & 146.83= \end{aligned}$ | 143.04 | 146.83 | Variolite | -dark to light grey variolites with no mineralization. | No sample |  |  |

## DIAMOND DRILL LOG

| Hole No. LZ-07-08 |  |  | $\begin{aligned} & \text { Claim No. } \\ & 1237005 \end{aligned}$ | Township/Area <br> McNeil Twp | Date <br> Started: <br> July 31, <br> 2007 | Date <br> Completed <br> Aug 1, <br> 2007 | Date Logged <br> Aug 6, 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Holder <br> Warrior Ventures Inc |  |  | Core Size <br> BTW | Azimuth <br> 240 degrees | Dip: -45 degrees | End of Hole (m): 101.55 | Logged by: <br> Sangeeta <br> Guha |
| Depth (m) |  |  | Rock <br> Type | Description (colour, grain size, texture, minerals, alteration, etc.) | Sample length | Sample No. | Assay |
| Box No. 1 | From | To |  |  |  |  |  |


| $1.2-7.2=6.0$ |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | Dacitic- <br> Andesite | -greyish green, hard, Dacitic-Andesitic rock <br> -broken core from 1.2 to 5.7 m depth <br> -from 5.7 to 7.2 continuous core <br> -spherulites <br> -mineralization inside the spherulites <br> -missing cores at 4.4 to 4.45 m and at 5.3 to 5.42 m depth <br> Samples taken from <br> (i) 4.45-4.90= 0.45m <br> -greyish green, hard, Dacitic-Andesitic rock <br> ->2\% mineralization in the host rock (coarse grains <br> pyrites and pyrrohtite) |  |  |

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& 15.64 \& 17.21 \& Andesite \& \begin{tabular}{l}
-fine grained, dark green , hard quartz altered Andesitic rock \\
-linear and wavy quartz vein, ‘+,-40 degrees', 4-5 mm thick, calcite and epidote filling in it. \\
-high concentration of fine grained sulphides around the veins (>2\%) \\
-sample taken from 16.20-17.21 m depth shows coarse grained pyrites and pyrrohtite in the ground mass
\end{tabular} \& \[
\begin{aligned}
\& \hline 16.20- \\
\& 17.21= \\
\& 1.01 \mathrm{~m}
\end{aligned}
\] \& 28149 \& 8 \\
\hline \& 17.21 \& 19.20 \& Andesite \& \begin{tabular}{l}
-fine grained, grayish green, quartz carbonate altered Andesitic rock \\
-Andesitic breccia in quartz -epidote matrix at 18.1018.20 m depth \\
-high concentration of fine grained sulphides in the matrix ( \(<3 \%\) ), and around the quartz veins ( \(>2 \%\) ) -sample taken from 18.03-18.98 m depth shows quartz carbonate altered Andesitic rock with high sulphides concentration in the quartzitic matrix
\end{tabular} \& \[
\begin{aligned}
\& \hline 18.03- \\
\& 18.98= \\
\& 0.95 \mathrm{~m}
\end{aligned}
\] \& 28150 \& nil \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& \hline \text { Box } 4 \\
\& 19.20-25.07= \\
\& 5.87 \mathrm{~m}
\end{aligned}
\]} \& 19.20 \& 19.61 \& Andesite \& \begin{tabular}{l}
-fine grained, dark green, hard, quartz rich Andesitic rock \\
-thin linear quartz vein \\
\(-<1 \%\) sulphides mineralization
\end{tabular} \& \& \& \\
\hline \& 19.61 \& 20.22 \& Andesite \& \begin{tabular}{l}
-Andesitic breccia in quartz -epidote matrix - concentration of fine grained sulphides in the matrix (>2\%) \\
-sample taken from 19.61-20.22 m depth for sulphide rich Andesitic breccia
\end{tabular} \& \[
\begin{aligned}
\& \hline 19.61- \\
\& 20.22= \\
\& 0.61 \mathrm{~m}
\end{aligned}
\] \& 28151 \& nil \\
\hline \& 20.22 \& 20.70 \& Andesite \& -fine grained, dark green, Andesitic rock \(-<1 \%\) medium grained sulphides in the ground mass \& \& \& \\
\hline \& 20.70 \& 22.48 \& Andesite \& \begin{tabular}{l}
-fine grained, dark green, hard quartz-carbonate altered rock \\
-linear and wavy quartz vein, ',+-40 degrees', \(4-6 \mathrm{~mm}\) thick with calcite and epidote filling. \\
-coarse grained sulphides around the fractures ( \(<1 \%\) ) -sample taken from \\
(i) 20.96-22.16 \(=1.20 \mathrm{~m}\) shows quartz carbonate alteration rich with sulphides ( \(>1 \%\) ) \\
(ii) \(22.24-23.03=0.78 \mathrm{~m}\) shows quartz rich andesite with coarse grained sulphides around the quartz vein \((<2 \%)\)
\end{tabular} \& \begin{tabular}{l}
(i) \\
20.96- \\
22.16= \\
1.20 m \\
(ii) \\
22.24- \\
\(23.03=\) \\
0.78 m
\end{tabular} \& 28152

28153 \& 17

13 <br>
\hline
\end{tabular}

|  | 22.48 | 23.56 | Dacite Andesite | -fine grained, dark grey, hard Dacitic-andesitic rock -linear quartz vein, '-40 degrees', 2-6 mm thick with calcite filling. -medium to coarse grained sulphides in the ground mass ( $<1 \%$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 23.56 | 24.64 | Andesite | -fine to medium grained, dark green, hard quartz carbonate rich andesitic rock <br> -linear and wavy quartz vein, '-40 degrees', 2 mm thick, calcite filling. <br> -medium grained sulphides in the ground mass around the quartz vein ( $<1 \%$ ) <br> -sample taken from 23.61-24.33 m depth shows medium grained sulphides around the quartz vein | $\begin{aligned} & 23.61- \\ & 24.33= \\ & 0.72 \mathrm{~m} \end{aligned}$ | 28154 | 9 |
|  | 24.64 | 25.07 | Andesite | -medium to coarse grained, dark green, porphyritic appearance, hard, quartz rich Andesitic rock -linear and wavy quartz vein, ‘+,-40 degrees', 2-3 mm thick, calcite filling. <br> -medium grained sulphides in the ground mass around the quartz vein $(<1 \%)$ |  |  |  |
| Box 5 $\begin{aligned} & 25.07-30.93= \\ & 5.86 \mathrm{~m} \end{aligned}$ | 25.07 | 26.31 | Andesite | -medium to coarse grained, dark green, porphyritic, hard, Andesitic rock <br> -linear quartz vein, '+30 to-70 degrees', 2-5 mm thick, calcite filling. <br> -fine grained sulphides in the ground mass ( $<1 \%$ ) |  |  |  |
|  | 26.31 | 26.86 | Dacite Andesite | -fine grained, dark green, hard Andesitic-dacitic rock -linear quartz vein, ',+-70 degrees', $3-5 \mathrm{~mm}$ thick, calcite and smokey quartz filling. <br> -medium grained sulphides ( $<1 \%$ ) <br> -Sample taken from 26.66-27.19m | $\begin{aligned} & 26.66- \\ & 27.19= \\ & 0.53 \mathrm{~m} \end{aligned}$ | 28155 | nil |
|  | 26.86 | 27.54 | Dacite Andesite | -fine grained, grayish green, hard Andesitic-dacitic rock -linear quartz vein, ‘+50 to 70 degrees', 5 mm thick, calcite and smokey quartz filling. -medium grained sulphides ( $<2 \%$ ) |  |  |  |
|  | 27.54 | 27.95 | Dacite Andesite | -fine grained, dark grey, hard, Andesitic-dacitic rock -no mineralization |  |  |  |


|  | 27.95 | 30.32 | Rhyolite | -fine grained, light grey, Rhyolitic flow/rock -linear quartz vein, '+50 to 70 degrees', 5 mm to 1 cm thick, calcite and smokey quartz filling. <br> -sulphides concentration is more around the quartz veins ( $>2 \%$ ) <br> -disseminated pyrites and pyrrohtite in the flow <br> Samples taken from: <br> (i) $27.99-28.62=0.63 \mathrm{~m}$ <br> -Rhyolitic rock, <2\% sulphides <br> (ii) $28.62-29.09=0.47 \mathrm{~m}$ <br> -Rhyolitic rock, mineralization around quartz veins <br> ( $>1 \%$ ) <br> (iii) $29.66-30.32=0.66 \mathrm{~m}$ <br> -Rhyolitic flow, $>1 \%$ mineralization | (i) <br> 27.99- <br> 28.62= <br> 0.63 <br> (ii) <br> 28.62- <br> 29.09= <br> 0.47 m <br> (iii) <br> 29.66- <br> 30.32= <br> 0.66 m | $\begin{aligned} & 28156 \\ & 28157 \\ & 28158 \end{aligned}$ | 22 <br> 268 <br> nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30.32 | 30.93 | Andesite | -medium grained, light green, quartz carbonate altered <br> Andesitic rock <br> -medium grained pyrite and pyrrohtite ( $<2 \%$ ) <br> -Sample taken from 30.32-30.93m | $\begin{aligned} & \hline 30.32- \\ & 30.93= \\ & 0.61 \mathrm{~m} \end{aligned}$ | 28159 | nil |
| Box 6 | 30.93 | 32.33 | Andesite | -medium grained, dark grayish green, quartz carbonate altered Andesitic rock <br> -chlorite phenocrysts <br> $-<1 \%$ mineralization |  |  |  |
|  | 32.33 | 32.43 | Andesite | -medium grained, dark green, quartz carbonate altered Andesitic rock -chlorite phenocrysts, minor blow out cavities along the quartz vein $-<1 \%$ mineralization |  |  |  |
|  | 32.43 | 33.0 | Andesite | -medium grained, dark grayish green, quartz carbonate altered Andesitic rock <br> -breecia flow in Andesite <br> - $k$-feldspars in quartz vein <br> -pyrite and pyrrohtite concentration along the flow ( $<1 \%$ ), <br> sulphides noticed within the quartz patch <br> -Sample taken from 33.06-33.79m | $\begin{aligned} & \hline 33.06- \\ & 33.79= \\ & 0.73 \mathrm{~m} \end{aligned}$ | 28160 | nil |
|  | 33.80 | 34.08 |  | Missing core |  |  |  |


|  | 34.08 | 34.59 | Dacite Rhyolite | -fine grained, dark grey, dacitic-Rhyolitic flow (with gas bubbles) <br> -k-feldspars in quartz vein <br> -pyrite and pyrrohtite concentration along the flow( $<1 \%$ ) <br> -Sample taken from 34.08-34.40m | $\begin{aligned} & \hline 34.08- \\ & 34.4= \\ & 0.28 \mathrm{~m} \end{aligned}$ | 28161 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 34.59 | 36.29 | Rhyolite | -fine grained, light grey, Rhyolitic flow <br> -carbonate and smokey quartz in the flow <br> -quartz carbonate rich flow <br> -thick quartz veins 3 to 4 cm , calcite, smokey quartz filling in it <br> -more pyrite and pyrrohtite concentration around the quartz vein $(<1 \%)$ than in the flow -concentration of pyrrohtite along the chlorite and smokey quartz thin veins <br> -Sample taken from 35.15-35.72m | $\begin{aligned} & \hline 35.15- \\ & 35.72= \\ & 0.55 \mathrm{~m} \end{aligned}$ | 28162 | 338 |
|  | 36.29 | 36.93 | Andesite | -medium grained, light green, quartz carbonate altered Andesite rock $-<1 \%$ mineralization -missing core 36.52-36.62 m depth |  |  |  |
| $\begin{aligned} & \text { Box } 7 \\ & 36.93-42.78= \\ & 5.85 \mathrm{~m} \end{aligned}$ | 36.93 | 37.97 | Andesite | -fine grained, light green, quartz-carbonate altered Andesitic rock <br> -thin quartz vein, calcite filling in quartz vein <br> $-<1 \%$ sulphides in the ground mass <br> -fine grained, light green, quartz carbonate altered <br> Andesitic flow at $37.67-37.97 \mathrm{~m}$ depth <br> -calcite and epidote filling along the flow <br> $->2 \%$ coarse grained pyrites and pyrrohtite along the flow <br> -Sample taken from (sulphide rich flow) | $\begin{aligned} & \hline 37.67- \\ & 37.97= \\ & 0.30 \mathrm{~m} \end{aligned}$ | 28163 | nil |
|  | 37.97 | 38.10 | Variolite | -fine grained, dark grey variolitic lava $-2-4 \mathrm{~mm}$ varioles of feldspars and chlorite -no sample taken from this variolitic lava |  |  |  |


|  | 38.10 | 38.81 | Dacite Andesite | -fine grained, light green, quartz-carbonate altered Andesitic rock -calcite filling in quartz vein <br> $-<1 \%$ sulphides in the ground mass <br> -fine grained, light grey, quartz carbonate rich dacitic flow at $38.53-38.61 \mathrm{~m}$ depth <br> $-<1 \%$ sulphides along the flow |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 38.81 | 39.24 | Variolite | -fine grained, dark grey and grayish green variolitic lava flow <br> $-2-4 \mathrm{~mm}$ elongated varioles of feldspars and chlorite <br> $->2 \%$ fine grained sulphides in variolites | $\begin{aligned} & \hline 39.00- \\ & 39.24= \\ & 0.24 \mathrm{~m} \end{aligned}$ | 28164 | nil |
|  | 39.24 | 42.78 | Variolite | -fine grained, lighter grey variolitic lava $-2-3 \mathrm{~mm}$ varioles of feldspars and chlorite -big dactic-adesitic breccia in variolitic lava at 40.9141.21 m depth $-<2 \%$ very fine grained sulphides in variolitic lava -Samples taken from variolitic rock at <br> (i) $39.24-40.91=1.67 \mathrm{~m}$ <br> (ii) $41.32-42.78=1.46 \mathrm{~m}$ | (i) 39.2440.91= 1.67 m <br> (ii) <br> 41.32- <br> $42.78=$ <br> 1.46 m | $\begin{aligned} & 28165 \\ & 28166 \end{aligned}$ | $615$ <br> nil |
| $\begin{aligned} & \text { Box } 8 \\ & \\ & 42.78-48.55= \\ & 5.77 \mathrm{~m} \end{aligned}$ | 42.78 | 43.44 | Variolite | -fine grained, darker grey variolitic lava $-2-3 \mathrm{~mm}$ varioles of feldspars and chlorite -quartz vein, -40 degrees, calcite filled in. <br> $-<1 \%$ very fine grained sulphides <br> -Samples taken from variolitic rock at 42.78-43.44 | 42.7843.44= 0.66m | 28167 | 5 |
|  | 43.44 | 43.82 | Andesite | -fine grained, light green, hard, quartz rich Andesitic rock <br> -calcite filling in quartz vein <br> -fine grained pyrite and pyrrohtite ( $>2 \%$ ) <br> -Samples taken from $43.63-44.01 \mathrm{~m}$ | $\begin{aligned} & 43.63- \\ & 44.01= \\ & 0.38 \end{aligned}$ | 28168 | nil |
|  | 43.82 | 44.62 | Andesite | -medium to coarse grained, light green, hard, quartz rich Andesitic rock <br> -thin quartz vein/veinlets, calcite filling in quartz vein, epidote filled minor fractures <br> -coarse grained pyrite and pyrrohtite around the quartz vein |  |  |  |


|  | 44.62 | 45.38 | Dacite Andesite | -fine to medium to coarse grained, greyish green, hard, quartz rich Andesitic-dacitic rock <br> -thin, cross cut quartz vein/veinlets, calcite filling in quartz vein, epidote filled minor fractures -coarse grained pyrite and pyrrohtite ( $>1 \%$ ) <br> -Sample taken from $44.62-45.38 \mathrm{~m}$ depth | $\begin{aligned} & \hline 44.62- \\ & 45.38= \\ & 0.76 \mathrm{~m} \end{aligned}$ | 28169 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 45.38 | 46.37 | Andesite | -medium grained, light green, hard, quartz-carbonate altered Andesitic rock <br> -thin epidote filled minor fractures <br> $-<1 \%$ sulphides <br> -Alteration flow at $45.48-45.68 \mathrm{~m}$ depth, <br> -no mineralization along the flow <br> -no sample taken |  |  |  |
|  | 46.37 | 46.63 | Andesite | -Broken cores of fine grained, light green, quartzcarbonate altered Andesitic rock -no sample taken |  |  |  |
|  | 46.63 | 46.94 | Dacite Andesite | -fine grained, greyish green, hard, dacitic-Andesitic rock -thin, epidote filled minor fractures, thin quartz veins, calcite filling in quartz vein -coarse grained mineralization (>2\%), sulphides along the epidote filled fractures |  |  |  |
|  | 46.94 | 48.21 | Dacite | -coarse grained, greyish green, hard, dacitic rock <br> -thin, epidote filled minor fractures, <br> -quartz veins (wavy, linear), calcite and epidote filling in quartz vein <br> -less mineralization ( $<1 \%$ ) |  |  |  |
|  | 48.21 | 48.67 | Dacite Andesite | -fine grained, greyish green, hard, dacitic-Andesitic rock -thin, epidote filled minor fractures and calcite filled thin quartz veins <br> -fine grained mineralization (<2\%) <br> -Sample taken from 48.30-48.67 m depth shows coarse grained pyrites concentration around quartz veins | $\begin{aligned} & 48.30- \\ & 48.67= \\ & 0.37 \mathrm{~m} \end{aligned}$ | 28170 | nil |
| $\begin{aligned} & \text { Box } 9 \\ & 48.55- \\ & 54.33=5.66 \end{aligned}$ | 48.67 | 49.49 |  | -coarse grained, dark green, hard, mottled Andesitic rock -calcite filled thin quartz veins <br> -fine grained mineralization ( $<1 \%$ ) <br> - Sample taken from 49.03-49.64 m showing coarse grained sulphide rich mottled Andesitic rock | $\begin{aligned} & 49.03- \\ & 49.64= \\ & 0.61 \mathrm{~m} \end{aligned}$ | 28171 | nil |


|  | 49.49 | 51.39 | Andesite | -coarse grained, light green, hard, mottled Andesitic rock -calcite filled thin quartz veins <br> -medium grained mineralization around the quartz veins ( $<1 \%$ ) <br> -no sample taken |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 51.39 | 52.87 | Andesite | -fine grained, greyish green, hard, epidote rich Andesitic rock <br> -thin, epidote filled minor fractures and calcite/smokey quartz filled thin quartz veins -coarse grained mineralization in the epidote matrix ( $<2 \%$ ) <br> -Sample taken from 51.59-52.16m depth shows coarse grained pyrites concentration in the epidote matrix | $\begin{aligned} & 51.59- \\ & 52.16= \\ & 0.57 \end{aligned}$ | 28172 | nil |
|  | 52.87 | 54.33 | Andesite | -fine grained, greyish green, hard, quartz carbonate altered Andesitic rock -epidote filled fractures -calcite and smokey quartz filled in quartz rich breecia, veins and veinlets. <br> -coarse grained mineralization in the quartz rich alteration patch ( $<2 \%$ ) <br> -Sample taken from $53.42-54.21 \mathrm{~m}$ depth shows sulphide concentration in quartz rich alteration patch | 53.42- <br> 54.21= <br> 0.79 m | 28173 | nil |
| $\begin{array}{\|l\|} \hline \text { Box 10 } \\ 54.33-60.20= \\ 5.87 \mathrm{~m} \end{array}$ | 54.33 | 56.13 | Andesite | -medium grained, dark green, hard, quartz carbonate altered Andesitic rock <br> -epidote filled fractures <br> -calcite and smokey quartz filled in quartz patches <br> -mineralization in the quartz rich alteration patch (<2\%) <br> and around quartz veins <br> -missing core $55.39-55.55 \mathrm{~m}$ depth |  |  |  |
|  | 56.13 | 56.57 | Dacite Rhyolite | -fine grained, light grey, hard, quartz rich DaciticRhyolitic rock <br> -Thick linear quartz vein (-60 degrees, 1 cm thick) -calcite and smokey quartz filled in vein -mineralization in the quartz vein in calcite filling ( $<2 \%$ ) and around quartz veins in the ground mass -Sample taken from $56.18-56.57 \mathrm{~m}$ | $\begin{aligned} & \text { 56.18- } \\ & 56.57=0 . \\ & 39 \mathrm{~m} \end{aligned}$ | 28174 | nil |


|  | 56.57 | 58.15 | Andesite | -medium grained, greyish green, hard, quartz-carbonate altered Andesitic rock <br> -epidote filled minor fractures and veinlets -calcite and smokey quartz filled in quartz veins -medium grained mineralization in the ground mass (<2\%) <br> -Sample taken from $56.57-58.15 \mathrm{~m}$ depth | $\begin{aligned} & 56.57- \\ & 58.15=1 . \\ & 58 \mathrm{~m} \end{aligned}$ | 28175 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 58.15 | 60.20 | Dacite | -coarse grained, light grey, hard, Dacitic (variolitic?/porphyritic?) rock -linear and wavy quartz veins (vertical and horizontal to axis), calcite filled in quartz veins $-<1 \%$ mineralization in the ground mass, pyrite concentration along fracture -Sample taken from 58.73-59.10 m depth | $\begin{aligned} & 58.73- \\ & 59.10=0 . \end{aligned}$ $37 \mathrm{~m}$ | 28176 | nil |
| $\begin{aligned} & \text { Box } 11 \\ & \\ & 60.20- \\ & 66.05=5.85 \mathrm{~m} \end{aligned}$ | 60.20 | 64.85 | Dacite | -coarse grained, light grey, hard, porphyritic Dacitic rock (phenocrysts/varioles? and spherulites) -linear and wavy quartz veins ( +30 to 45 degrees, vertical and horizontal to axis, 2 mm to 1 cm thick), calcite, andesitic mass and smokey quartz filled in quartz veins $-<1 \%$ mineralization in the ground mass -no sample taken from this rock |  |  |  |
|  | 64.85 | 64.94 |  | Missing core- |  |  |  |
|  | 64.94 | 66.05 | DaciteAndesite | -fine grained, green, hard, quartz-carbonate altered Andesitic rock <br> -silica rich at the contact with Dacitic rock at 64.94-65.04 m depth <br> -getting darker green further beyond the contact zone -calcite and smokey quartz filled quartz veins -medium to fine grained mineralization in the ground mass ( $<2 \%$ ), concentration along the minor fractures -Sample taken from 64.94-66.05 m depth for complete section |  | 28177 | nil |
| $\begin{aligned} & \hline \text { Box 12 } \\ & 66.05-72.05= \\ & 6.00 \mathrm{~m} \end{aligned}$ | 66.05 | 67.38 | Dacite Andesite | -fine grained, dark green, hard, dacitic-Andesitic rock -medium gained pyrites and pyrrohtite ( $<1 \%$ ) in the ground mass -sample taken from 66.68-67.15 | 66.68- <br> $67.15=$ <br> 0.47 m | 28178 | 9 |
|  | 67.38 | 67.48 |  | -missing core |  |  |  |


|  | 67.48 | 68.77 | Andesite | -fine grained, green, hard, quartz-carbonate altered Andesitic rock |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 68.77 | 69.05 |  | Missing and broken cores |  |  |  |
|  | 69.05 | 70.55 | Andesite | -fine grained, green, hard, quartz-carbonate altered Andesitic rock |  |  |  |
|  | 70.55 | 72.05 |  | Broken cores, cores not matching |  |  |  |
| $\begin{aligned} & \text { Box } 13 \\ & \\ & 72.05-77.95= \\ & 5.90 \mathrm{~m} \end{aligned}$ | 72.05 | 76.39 | Dacite Andesite | -coarse grained, dark grayish green, hard, quartz rich dacitic-Andesitic rock <br> -linear quartz veins (+,40 to 60 degrees, $2-3 \mathrm{~mm}$ thick, calcite filled in) -medium grained pyrites and pyrrohtite ( $<3 \%$ ) in the ground mass <br> -Broken cores72.05-72.61 m depth and at 75.89-76.05 m depth <br> -Sample taken at $75.13-76.39 \mathrm{~m}$ depth | $\begin{aligned} & 75.13- \\ & 76.39= \\ & 1.26 \mathrm{~m} \end{aligned}$ | 28179 | nil |
|  | 76.39 | 77.21 | Andesite | -fine grained, dark greyish green, hard, quartz rich dacitic-Andesitic rock <br> -thin linear quartz veins (,+ 40 to 60 degrees, 1 mm thick, calcite filled in) <br> -fine to medium gained pyrites and pyrrohtite ( $<2 \%$ ) in the ground mass <br> -Sample taken at 76.39-77.21 m depth | $\begin{aligned} & 76.39- \\ & 77.21= \\ & 0.82 \mathrm{~m} \end{aligned}$ | 28180 | nil |
|  | 77.21 | 77.95 | Andesite | -fine grained, light green, hard, quartz-carbonate altered Andesitic rock -calcite and epidote filled altered patch <br> -fine grained mineralization in the ground mass ( $<1 \%$ ), concentration along the epidote filled part <br> -Sample taken from 77.21-77.95 m depth for complete section | $\begin{aligned} & 77.21- \\ & 77.95= \\ & 0.74 \mathrm{~m} \end{aligned}$ | 28181 | 12 |


| $\begin{aligned} & \hline \text { Box } 14 \\ & 77.95-83.84= \\ & 5.89 \mathrm{~m} \end{aligned}$ | 77.95 | 82.22 | Andesite | -fine grained, light green, hard, quartz-carbonate altered Andesitic rock <br> -flow with big andesitic breccia <br> -flow at 81.18-81.48 and 81.87-82.07 m depth <br> -fine grained mineralization in the ground mass ( $>2 \%$ ), concentration along the epidote filled matrix, quartz breccia and along the minor fractures -samples taken at <br> (i) $77.95-79.39 \mathrm{~m}$ <br> (ii) $79.39-80.9 \mathrm{~m}$ <br> (iii) $80.92-82.22 \mathrm{~m}$ | (i) <br> 77.95- <br> 79.39= <br> 1.44 m <br> (ii) <br> 79.39- <br> 80.9= <br> 1.53 m <br> (iii) <br> 80.92- <br> 82.22= <br> 1.30 m | $\begin{gathered} 28182 \\ 28183 \\ 28184 \end{gathered}$ | Nil <br> Nil <br> nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 82.22 | 83.05 | Andesite | -fine grained, dark grayish green, hard, quartz rich Andesitic (dacitic) rock -quartz vein filled with chlorite and smokey quartz -fine grained mineralization in the ground mass ( $>3 \%$ ) -sample taken at 82.36-83.05m | $\begin{aligned} & 82.36- \\ & 83.05= \\ & 0.69 \mathrm{~m} \end{aligned}$ | 28185 | 8 |
|  | 83.05 | 83.68 | Dacite Rhyolite | -fine grained, dark greyish, hard, quartz rich, altered dacitic-rhyolitic rock <br> -linear and wavy quartz vein ( -70 degree, 5 mm thick), filled with chlorite and smokey quartz <br> -medium to coarse grained mineralization around the vein ( $>3 \%$ ) <br> -sample taken at $83.05-83.68 \mathrm{~m}$ | $\begin{aligned} & 83.05- \\ & 83.68= \\ & 0.63 \mathrm{~m} \end{aligned}$ | 28186 | nil |
|  | 83.68 | 83.84 | Dacite | -fine grained, greyish green, hard, quartz rich dacitic rock <br> -fine grained mineralization in the ground mass ( $>2 \%$ ) |  |  |  |
| Box 15 $\begin{aligned} & 83.84-89.82= \\ & 5.98 \mathrm{~m} \end{aligned}$ | 83.84 | 83.65 | Dacite Andesite | -fine grained, greyish green, hard, quartz rich daciticAndesitic rock <br> -silica rich alteration patch at 84.34 to 84.39 and 84.84 to 84.90 m depth <br> -quartz vein filled with smokey quartz, epidote leaching and calcite -one thick wavy quartz vein $2 \mathrm{~cm},-30$ degrees. <br> -coarser pyrites around the quartz veins <br> -epidote filled minor fractures, sulphide concentration in fractures <br> -fine grained mineralization in the ground mass ( $>3 \%$ ) | $\begin{array}{\|l} \hline 83.84- \\ 85.65= \\ 1.81 \mathrm{~m} \end{array}$ | 28187 | nil |

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& 83.65 \& 88.65 \& Dacite \& \begin{tabular}{l}
-fine to medium grained, greyish, hard, quartz rich dacitic- rock \\
-quartz veins filled with smokey quartz and calcite -epidote filled minor fractures, pyrrohtite along the fractres \\
-fine grained mineralization in the ground mass ( \(>2 \%\) )
\end{tabular} \& \& \& \\
\hline \& 88.65 \& 89.38 \& Andesite \& -medium grained, grayish green, hard, porphyritic Andesitic rock -quartz veins filled with smokey quartz and calcite with minor amount of epidote leaching in it -coarse grained pyrites in the ground mass ( \(<2 \%\) ) \& \[
\begin{aligned}
\& 88.65- \\
\& 89.38= \\
\& 0.73 \mathrm{~m}
\end{aligned}
\] \& 28188 \& nil \\
\hline \& 89.38 \& 89.82 \& Andesite \& \begin{tabular}{l}
-coarse grained, greyish green, hard, mottled Andesitic rock \\
-quartz veins with smokey quartz and calcite -coarse grained pyrites in the ground mass ( \(<2 \%\) ) and filled along the fractures
\end{tabular} \& \& \& \\
\hline \multirow[t]{3}{*}{Box 16
\[
\begin{aligned}
\& 89.82-95.68= \\
\& 5.86 \mathrm{~m}
\end{aligned}
\]} \& 89.82 \& 90.46 \& Andesite \& \begin{tabular}{l}
-medium grained, dark grey, hard, porphyritic (chlorite phenocrysts) dacitic rock \\
-coarse grained pyrites and pyrrohtites in the ground mass ( \(>2 \%\) ) \\
-sample taken from 89.82-90.46m depth
\end{tabular} \& \[
\begin{aligned}
\& 89.82- \\
\& 90.46= \\
\& 0.64 \mathrm{~m}
\end{aligned}
\] \& 28189 \& nil \\
\hline \& 90.46 \& 93.66 \& Andesite \& \begin{tabular}{l}
-medium grained, dark grey, hard, porphyritic and porphyritic dacitic rock. \\
-wavy and linear quartz veins, calcite filling in it. -medium to coarse grained pyrites and pyrrohtites in the ground mass ( \(>2 \%\) ), concentration around quartz veins and along the quartz veins in epidotic leaching -sample taken from \\
(i) \(90.46-91.02 \mathrm{~m}\) (mottled dacitic rock) \\
(ii) \(91.60-92.32 \mathrm{~m}\) (porphyritic dacitic rock)
\end{tabular} \& \begin{tabular}{l}
(i) \\
90.46- \\
91.02= \\
0.56 m \\
(ii) \\
91.60- \\
\(92.32=\) \\
0.72 m
\end{tabular} \& \[
\begin{aligned}
\& 28190 \\
\& 28191
\end{aligned}
\] \& Nil

nil <br>

\hline \& 93.66 \& 94.62 \& Dacite \& | -fine grained, grayish green, hard, quartz carbonate altered andesitic rock -minor epidote filled, andesitic matrix filled fractures -linear quartz veins, smokey quartz filled. |
| :--- |
| -medium to coarse grained pyrites and pyrrohtites in the ground mass ( $<2 \%$ ), concentration around alteration zone. |
| -sample taken from 93.66-94.20m | \& \[

$$
\begin{aligned}
& 93.66- \\
& 94.20= \\
& 0.54 \mathrm{~m}
\end{aligned}
$$
\] \& 28192 \& nil <br>

\hline
\end{tabular}

|  | 94.62 | 95.68 | Andesite | -fine grained, dark grey, hard, quartz rich daciticrhyolitic rock <br> -quartz, chlorite, andesite breccia <br> -Calcite and smokey quartz filled linear quartz vein. -medium to coarse grained pyrites and pyrrohtites in the ground mass ( $<2 \%$ ), in the breccia and along the fractures. <br> -sample taken from 94.20-94.62m depth | 94.20- <br> $94.62=$ <br> 0.42 m | 28193 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Box } 17 \\ & 95.68-101.55= \\ & 5.87 \mathrm{~m} \end{aligned}$ | 95.68 | 98.20 | Andesite <br> Dacite <br> Rhyolite | -medium grained, dark grey, hard, prophyritic dacitic rock at $95.68-96.04 \mathrm{~m}$ depth <br> -Calcite and smokey quartz filled in linear quartz vein. -medium grained pyrites and pyrrohtites in the ground mass (<2\%). <br> -siliceous hard, light grey Rhyolitic-dacitic rock at 96.0496.55 m depth <br> -medium to cairse grained pyrites and pyrrohtites in the around the quartz vein (<2\%). <br> -again medium grained, dark grey, hard, prophyritic dacitic rock at $96.55-98.20 \mathrm{~m}$ depth with medium grained pyrites and pyrrohtites in the ground mass ( $<2 \%$ ) <br> -Samples taken from <br> (i) $96.04-96.55 \mathrm{~m}$ (Rhyolitic dacitic rock) <br> (ii) $97.16-97.7 \mathrm{~m}$ (porphyritic dacitic rock) | (i) <br> 96.04- <br> $96.55=$ <br> 0.51 m <br> (ii) <br> 97.16- <br> 97.7= <br> 0.54 m | 28194 | 16 |
|  | 98.20 | 99.02 | Dacite | -fine grained, dark grey, hard, quartz rich dacitic- rock -Calcite and smokey quartz filled in linear quartz vein ( +50 degrees, $3-4 \mathrm{~mm}$ thick). <br> -medium grained pyrites and pyrrohtites in the ground mass ( $<2 \%$ ) and along the fractures. |  |  |  |
|  | 99.02 | 100.10 | Andesite | -fine grained, light green, hard, quartz rich altered andesitic <br> -Calcite and smokey quartz filled in linear quartz vein (23 mm ) <br> -fine to medium grained pyrites and pyrrohtites in the alteration patch ( $<2 \%$ ) and along the fractures. <br> -Sample taken from 99.02-100.10 m depth | $\begin{aligned} & 99.02- \\ & 100.10= \\ & 1.08 \end{aligned}$ | 28196 | nil |


|  | 100.10 | 101.55 | Andesite | -fine grained, light green, hard, quartz-carbonate altered <br> Andesitic rock | $100.10-$ <br> -Calcite, epidote, andesitic matrix, iron oxide and <br> smokey quartz filled in linear quartz vein and along the <br> veinlets. <br> -fine to medium grained pyrites and pyrrohtites in the <br> alteration patch (<2\%), concentration along the <br> fractures. <br> -Sample taken from $100.10-101.55 \mathrm{~m}$ depth | 28197 | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |

## DIAMOND DRILL LOG



| Hole No. LZ-07-07 |  |  | Claim No. <br> 1237005 | Township/Area McNeil Twp | Date Stated July 23, $2007$ | Date Completed July 25, $2007$ | Date Logged <br> July 26, 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Holder <br> Warrior Ventures Inc |  |  | Core Size BTW | Azimuth <br> 250 degrees | Dip: -60 degrees | End of Hole (m): $74.02 \mathrm{~m}$ | Logged by: <br> Sangeeta <br> Guha |
| Depth (m) |  |  | Rock | Description (colour, grain size, texture, minerals, | Sample | Sample No. | Assay |
|  | From | To | Type | alteration, etc.) | length |  |  |
| $\begin{aligned} & 2.30-8.30= \\ & 6.00 \mathrm{~m} \end{aligned}$ | 2.30 | 5.30 | Dacite | -Broken pieces of dark grey, hard, dacitic rock -not much mineralization seen in this section |  |  |  |
|  | 5.30 | 6.10 | Dacite Rhyolite | -fine to medium grained, grey, porphyritic, hard daciticrhyolitic rock <br> -fine grained sulphides mineralization around the quartz vein (>2\%) |  |  |  |
|  | 6.10 | 7.87 | Rhyolite | -fine grained, light grey, quartz rich, hard Rhyolitic rock -fine grained sulphides mineralization around the altered part (>2\%) <br> -sample taken from 6.10-6.50 m depth around sulphide rich quartz vein | 6.10$6.50=$ 0.40 m | 28113 | 575 |
|  | 7.87 | 8.30 | Dacite Rhyolite | -medium grained, grey, porphyritic, hard siliceous dacitic-Rhyolite <br> -thick quartz vein ( -70 degrees, 3 cm thick) <br> -no mineralization around the quartz vein <br> -fine grained mineralization in the ground mass ( $<1 \%$ ) |  |  |  |


| Box 2 | 8.30-14.26 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | 15.95 | 20.23 | Andesite | -fine grained, grayish green, siliceous hard DaciticAndesitic rock -quartz vein (+,- 30 to 40 degrees, 2-4 mm thick), calcite, epidote and smokey quartz filling <br> -fine grained sulphides mineralization in the ground mass ( $>3 \%$ ) <br> -sample taken from 18.73-19.38m | $\begin{aligned} & 18.73- \\ & 19.38= \\ & 0.65 \mathrm{~m} \end{aligned}$ | 28116 | 37 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Box 4 <br> 20.23-29.19= <br> 5.96m <br> (coarse <br> grained, high <br> sulphide <br> concentration <br> in ground <br> mass) | 20.23 | 21.31 | Andesite | -fine grained, dark green Andesitic rock <br> -linear quartz vein ( -30 to 50 ' degrees, 2- 6 mm thick), <br> filled with calcite and smokey quartz <br> $-<1 \%$ sulphides mineralization <br> -missing core (broken core 20.91-21.00 m depth) |  |  |  |
|  | 21.31 | 22.73 | Andesite | -medium grained, green, porphyritic Andesitic rock -linear and wavy quartz vein ( -30 to 50 ' degrees, 2- 6 mm thick), broken pieces of quartz vein, filled with calcite and smokey quartz <br> -epidote filled minor fractures <br> $->3 \%$ sulphides (coarse grained) mineralization around the quartz altered part and in the ground mass <br> -sample taken from 22.01-22.67 m depth <br> -missing core (22.78-22.84 m depth) | $\begin{aligned} & 22.01- \\ & 22.67= \\ & 0.66 \mathrm{~m} \end{aligned}$ | 28117 | nil |
|  | 22.73 | 24.33 | Andesite | -medium to coarse grained, green, porphyritic Andesitic rock <br> -linear quartz vein (' +50 to 60 ' degrees, $2-7 \mathrm{~mm}$ thick), filled with calcite, epidote and smokey quartz <br> -epidote filled minor fractures <br> $->2 \%$ coarse grained sulphide mineralization in the ground mass <br> -sample taken from $23.56-23.99 \mathrm{~m}$ depth | $\begin{aligned} & 23.56- \\ & 23.99= \\ & 0.43 \mathrm{~m} \end{aligned}$ | 28118 | nil |
|  | 24.33 | 24.71 | Andesite | -fine grained, dark green, Andesitic rock <br> -thin linear quartz vein ('+ 50 ' degrees, 2 mm thick), <br> filled with calcite, epidote and smokey quartz <br> -epidote filled minor fractures <br> $->3 \%$ coarse grained sulphide mineralization in the ground mass |  |  |  |


|  | 24.71 | 26.19 | Andesite | -medium to coarse grained, green, porphyritic Andesitic rock <br> -linear quartz vein (' +50 to 60 ' degrees, $2-7 \mathrm{~mm}$ thick), filled with calcite, epidote and smokey quartz <br> -epidote filled minor fractures <br> $->2 \%$ coarse grained sulphide mineralization in the ground mass <br> -sample taken from 24.79-25.51 m depth | $\begin{aligned} & \hline 24.79- \\ & 25.51= \\ & 0.72 \mathrm{~m} \end{aligned}$ | 28119 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Box 5 <br> 26.19-32.11= <br> 5.92 m <br> (coarse grained, high sulphide concentration in ground mass) | 26.19 | 26.46 | Andesite | -fine grained, dark green, Andesitic rock -epidote filled minor fractures $-<2 \%$ fine grained sulphide mineralization in the ground mass -sample taken from 26.39-26.75 m | $\begin{aligned} & \hline 26.39- \\ & 26.75= \\ & 0.36 \mathrm{~m} \end{aligned}$ | 28120 | nil |
|  | 26.46 | 27.14 | Andesite | -medium grained, green, Andesitic rock <br> -linear quartz vein ('- 70 ’ degrees, 4 mm thick), filled with calcite and smokey quartz -epidote filled minor fractures $-<2 \%$ coarse grained sulphide mineralization in the ground mass -missing core $27.02-27.14 \mathrm{~m}$ |  |  |  |
|  | 27.14 | 27.44 | Andesite | -fine grained, dark green, Andesitic rock <br> -wavy quartz vein (‘- 70 ’ degrees, 4 mm thick), filled with calcite and epidote -epidote filled minor fractures $->2 \%$ medium grained sulphide mineralization -sample taken from 27.14-27.45 m | $\begin{aligned} & 27.14- \\ & 27.45= \\ & 0.31 \mathrm{~m} \end{aligned}$ | 28121 | nil |
|  | 27.44 | 27.69 |  | -fine to medium grained, dark green, hard, porphyritic dacitic-Andesitic rock -epidote filled minor fractures $->2 \%$ fine grained sulphide mineralization |  |  |  |

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& 27.69 \& 29.42 \& Dacite Andesite \& \begin{tabular}{l}
-medium grained, dark green, hard, porphyritic daciticAndesitic rock \\
-linear and wavy quartz vein (‘+,- 50 to 70 ' degrees, 2-4 mm thick), filled with calcite and smokey quartz -epidote filled minor fractures \\
\(->2 \%\) fine to medium grained sulphide mineralization -samples taken from \\
(i) \(27.69-28.28=0.59 \mathrm{~m}\) \\
(ii) \(29.34-29.89=0.55 \mathrm{~m}\)
\end{tabular} \& \begin{tabular}{l}
(i) 27.6928.28= \\
0.59 \\
(ii) \\
29.34- \\
29.89= \\
0.55 m
\end{tabular} \& \[
\begin{gathered}
28122 \\
28123
\end{gathered}
\] \& 6

nil <br>

\hline \& 29.42 \& 30.61 \& Dacite Andesite \& | -medium grained, dark green, hard, porphyritic-mottled, dacitic-Andesitic rock |
| :--- |
| -linear quartz vein (‘+,- 50 to 70 ' degrees, 4 mm thick), filled with calcite and smokey quartz $->2 \%$ fine to medium grained sulphide mineralization around quartz vein and in the ground mass | \& \& \& <br>

\hline \& 30.61 \& 31.81 \& Andesite \& -medium grained, dark green, porphyritic Andesitic rock -linear and wavy quartz vein (‘+,- 50’ degrees, 3-4 mm thick), filled with calcite and smokey quartz -epidote filled minor fractures $->2 \%$ fine to medium grained sulphide mineralization in the epidote filled fractures and in the ground mass -sample taken from $30.76-31.27 \mathrm{~m}$ -missing core 31.27-31.36 m \& $$
\begin{aligned}
& \hline 30.76- \\
& 31.27= \\
& 0.51 \mathrm{~m}
\end{aligned}
$$ \& 28124 \& <br>

\hline \& 31.81 \& 32.11 \& Andesite \& -medium grained, dark green, Andesitic rock $-<2 \%$ fine sulphide mineralization in the ground mass \& \& \& <br>

\hline $$
\text { Box } 6
$$

\[
$$
\begin{aligned}
& 32.11-37.99= \\
& 5.88 \mathrm{~m}
\end{aligned}
$$

\] \& 32.11 \& 34.81 \& Andesite \& | -medium grained, green, Andesitic rock |
| :--- |
| -epidote filled minor fractures |
| $->2 \%$ fine to medium grained sulphide mineralization in the ground mass |
| -sample taken from $32.62-33.13 \mathrm{~m}$ | \& \[

$$
\begin{aligned}
& \hline 32.62- \\
& 33.13= \\
& 0.51 \mathrm{~m}
\end{aligned}
$$
\] \& 28125 \& nil <br>

\hline
\end{tabular}

| 34.81 | 35.51 | Andesite | -medium to coarse grained, dark green, porphyritic Andesitic rock <br> -linear and wavy quartz vein ('+,- 40 to 50 ' degrees, 2-4 mm thick), filled with calcite and smokey quartz -epidote filled minor fractures <br> $->2 \%$ fine to medium grained sulphide mineralization in the epidote filled fractures, in the quartz vein and in the ground mass -samples taken from <br> (i) $34.61-35.27=0.66 \mathrm{~m}$ <br> (ii) $35.42-35.84=0.42 \mathrm{~m}$ | $\begin{aligned} & \hline \text { (i) } \\ & 34.61- \\ & 35.27= \\ & 0.66 \mathrm{~m} \end{aligned}$ $\begin{aligned} & \text { (ii) } \\ & 35.42- \\ & 35.84= \\ & 0.42 \mathrm{~m} \end{aligned}$ | $28126$ $28127$ | 139 <br> nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35.51 | 35.84 | Dacite Andesite | -medium to coarse grained, dark grey-green, porphyritic Dacitic-Andesitic transition zone <br> -linear and wavy quartz vein (‘+ 40' degrees, 2 mm thick), filled with calcite and smokey quartz $->2 \%$ medium grained sulphide mineralization in the ground mass |  |  |  |
| 35.84 | 36.02 | Dacite | -medium to coarse grained, dark grey, pophyritic dacitic rock <br> -linear quartz vein ('+45' degrees, 2 mm thick), filled with calcite <br> $->2 \%$ sulphides in the ground mass |  |  |  |
| 36.02 | 37.99 | Dacite Rhyolite | -medium to coarse grained, light grey, porphyritic Rhyolitic-dacitic rock <br> -linear and wavy quartz vein ('- 40 to 50' degrees, 2-4 mm thick), filled with calcite <br> -minor fractures <br> $-<2 \%$ fine grained sulphide mineralization in the fractures, around the quartz vein and in the ground mass -sample taken from 36.85-37.1m <br> -missing core at $36.79-36.85 \mathrm{~m}$ depth | $\begin{aligned} & 36.85- \\ & 37.1= \\ & 0.25 \mathrm{~m} \end{aligned}$ | 28128 | 837 |


| Box 7$\begin{aligned} & 37.99-43.99= \\ & 6.00 \mathrm{~m} \end{aligned}$ | 37.99 | 40.99 | Rhyolite | -medium fine grained, light to dark grey, quartz rich porphyritic Rhyolitic rock (quartz alteration) <br> -thick linear quartz vein ('- 40' degrees, 4-6 cm thick), filled with calcite <br> $-<2 \%$ fine grained sulphide mineralization in the quartz altered ground mass <br> -missing core at $40.21-40.26 \mathrm{~m}$ <br> -sample taken from $37.99-38.69 \mathrm{~m}$ | $\begin{aligned} & 37.99- \\ & 38.69= \\ & 0.70 \mathrm{~m} \end{aligned}$ | 28129 | 49 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 40.99 | 41.99 | Dacite Rhyolite | -fine grained, greenish grey, dacitic-rhyolitic rock -quartz carbonate alteration at $40.99-41.15 \mathrm{~m}$ -thick linear quartz vein ('- 50' degrees, 1-3 cm thick), filled with calcite $->2 \%$ fine grained sulphide mineralization in the altered ground mass -sample taken from $40.99-41.99 \mathrm{~m}$, shows quartz alteration and coarse grained sulphide enrichment in the alteration zone | $\begin{aligned} & 40.99- \\ & 41.99= \\ & 1.00 \mathrm{~m} \end{aligned}$ | 28130 | nil |
|  | 49.99 | 43.99 | Dacite | -medium grained, greenish grey, dacitic rock $-<3 \%$ medium grained sulphide mineralization in the ground mass <br> -missing core at 43.45-43.50 and 43.82-43.99 m depth -sample taken from sulphide mineralized dacitic rock at 43.05-43.45m | $\begin{aligned} & 43.05- \\ & 43.45= \\ & 0.40 \mathrm{~m} \end{aligned}$ | 28131 | nil |
| Box 8$\begin{aligned} & 43.99-49.95= \\ & 5.96 \mathrm{~m} \end{aligned}$ | 43.99 | 45.23 | Dacite Andesite | -Broken cores, green andesitic rock $-<2 \%$ sulphides seen in the broken cores -broken cores $43.99-44.97 \mathrm{~m}$ |  |  |  |
|  | 45.23 | 45.63 | Dacite | -fine grained, dark grey, dacitic rock $-<1 \%$ fine grained sulphide mineralization |  |  |  |
|  | 45.63 | 46.86 | Dacite Rhyolite | -fine grained, light grey, Rhyolitic-dacitic rock $-<1 \%$ fine grained sulphides around the fractures -missing core 45.63-45.72m depth |  |  |  |
|  | 46.86 | 47.55 | Dacite | -fine grained, greenish grey, dacitic rock $-<1 \%$ fine grained sulphide mineralization in and around the quartz vein |  |  |  |
|  | 47.55 | 48.52 | Dacite | -medium grained, light grey, dacitic rock -quartz carbonate alteration at $40.99-41.15 m$ $-<1 \%$ mineralization |  |  |  |


|  | 48.52 | 48.76 | Dacite Rhyolite | -fine grained, light grey, quartz rich, Rhyolitic-dacitic rock <br> -Thick quartz vein ' +50 ' degrees', 4 mm to 3 cm thick, filled with calcite <br> $->2 \%$ coarse grained pyrite and pyrrohtite in the altered ground mass around the quartz vein -sample taken from $48.52-48.76 \mathrm{~m}$ depth | $\begin{aligned} & 48.52- \\ & 48.76= \\ & 0.24 \mathrm{~m} \end{aligned}$ | 28132 | 1310 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 48.76 | 49.71 | Dacite Rhyolite | -fine grained, greenish grey, quartz rich, dacitic-rhyolitic rock <br> $-<1 \%$ mineralization |  |  |  |
|  | 49.71 | 49.95 | Dacite | -fine grained, dark grey, dacitic rock $-<1 \%$ fine grained mineralization -missing core 49.71-49.87 m depth |  |  |  |
|  | 49.95 | 50.32 | Dacite | -fine grained, dark grey, dacitic rock -missing core at 50.29-50.32 m depth |  |  |  |
| 49.95- | 50.32 | 50.77 | Dacite Rhyolite | -fine grained, light grey, quartz rich, Rhyolitic-dacitic rock <br> $-<2 \%$ mineralization around the quartz vein -sample taken from 50.32-50.72m | 50.32- <br> $50.72=$ <br> 0.40 m | 28133 | 13 |
|  | 50.77 | 51.74 | Dacite | -fine grained, light grey, dacitic rock $-<1 \%$ mineralization |  |  |  |
|  | 51.74 | 52.89 | Andesite | - broken pieces of fine grained, dark green andesitic rock ( $51.74-52.89 \mathrm{~m}$ ) <br> $->2 \%$ fine grained pyrite and pyrrohtite in the ground mass <br> -sample taken from 51.83-52.17 m | 51.83- <br> 52.17= <br> 0.34 m | 28134 | 127 |
|  | 52.89 | 54.45 | Andesite | -medium grained, light green, porphyritic Andesitic rock $->2 \%$ medium grained pyrite and pyrrohtite in the ground mass <br> -sample taken from 53.13-53.79 m depth | $\begin{aligned} & 53.13- \\ & 53.79= \\ & 0.66 \mathrm{~m} \end{aligned}$ | 28135 | nil |
|  | 54.45 | 55.10 | Andesite | -fine grained, dark green Andesitic rock <br> -quartz carbonate alteration at 54.45-54.55 m depth <br> $->2 \%$ coarse grained pyrite and pyrrohtite in the altered ground mass <br> -sample taken from 54.45-55.10 m depth | $\begin{aligned} & \hline 54.45- \\ & 55.10= \\ & 0.65 \mathrm{~m} \end{aligned}$ | 28136 | 5 |
|  | 55.10 | 55.95 | Andesite | -medium grained, light green, porphyritic Andesitic rock $-<1 \%$ mineralization <br> -mineralization at fractures |  |  |  |



|  | 64.67 | 66.82 | Andesite | -medium grained, green, quartz rich (quartz carbonate altered) Andesitic rock -number of thin quartz veins (+,- 30 to 60 degrees, 1-2 mm ), with higher calcite and smokey quartz filled in. ->2 \% mineralization -sample taken from 64.91-66.18m depth | $\begin{aligned} & \hline 64.91- \\ & 66.18= \\ & 1.27 \mathrm{~m} \end{aligned}$ | 28142 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 66.82 | 67.61 | Andesite | -medium to fine grained, green, quartz rich Andesitic rock <br> -no quartz veins <br> $-<1 \%$ mineralization |  |  |  |
| $\begin{aligned} & \hline \text { Box } 12 \\ & \\ & 67.61-73.44= \\ & 5.83 \mathrm{~m} \end{aligned}$ |  |  | Andesite | -medium grained, green, quartz-carbonate rich (quartz carbonate-altered) Andesitic rock -number of thin quartz veins (,+-30 to 60 degrees, 2-4 mm ), with higher calcite and less smokey quartz filled in. ->2 \% mineralization -samples taken from following depths <br> (i) $68.53-69.32=0.79 \mathrm{~m}$ <br> (ii) $70.67-71.54=0.87 \mathrm{~m}$ <br> (iii) $71.54-72.53=0.99 \mathrm{~m}$ | (i) $68.53-$ $69.32=0$. 79 m (ii) $70.67-$ $71.54=0$. 87 m (iii) $71.54-$ $72.53=0$. 99 m | $\begin{aligned} & 28143 \\ & 28144 \\ & 28145 \end{aligned}$ | Nil <br> Nil <br> 16 |
| Box 13 $\begin{aligned} & 73.44- \\ & 74.02=0.58 \mathrm{~m} \end{aligned}$ |  |  | Andesite | -medium grained, green, quartz-carbonate rich (quartz carbonate-altered) Andesitic rock -thin quartz veins ( -30 and vertical, $2-4 \mathrm{~mm}$ ), with calcite and smokey quartz filled in. <br> $-<1 \%$ mineralization <br> -No sample taken from this section |  |  |  |




|  |  |  |  | $\begin{aligned} & \hline 60.83= \\ & 0.40 \mathrm{~m} \\ & \hline \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60.40 | 60.86 | Andesite | -Dark green fine grained Andesitic rock <br> -thin cross cut veins <br> -fine-grained pyrites (<55\%) <br> -epidote in thick quartz veins <br> -in general '- 30 ’ degrees fractures <br> -calcite filling and K-alteration in the quartz vein |  |  |  |
| 60.86 | 60.92 | Andesite | -light green, soft, medium to coarse grained Andesitic rock -medium to coarse-grained pyrites, phyrrotite. <br> -K-alteration in the quartz vein -no mineralization in the quartz vein |  |  |  |
| 60.92 | 61.09 | Andesite | -Dark green fine grained Dacitic-Andesitic rock -no mineralization <br> -K-alteration in the quartz vein |  |  |  |
| 61.09 | 61.63 | Andesite | -Dark green, soft, medium to coarse grained Andesitic rock -thin cross cut veins <br> -epidote leaching in the quartz veins <br> -K-alteration and K -feldspar inclusion in the quartz vein -pyrite, phyrrotite and chalcopyrite in the quartz vein (<5\%) <br> -smeared, blebby quartz vein with epidote and K-feldspar are more mineralized than the linear quartz vein without K feldspar | 60.83- <br> $61.63=$ <br> 0.80m | 27960 | nil |
| 61.63 | 61.91 | Andesite | -light to dark green, soft, fine grained Andesitic rock -three different kinds of quartz vein <br> (i) Blebby vein with sulphide (Pyrites) <br> (ii) Smokey quartz vein with chlorite inclusion <br> (iii) linear quartz veins <br> -not much mineralization |  |  |  |
| 61.91 | 62.82 | Andesite | -light green, epidote rich, mottled Andesitic rock -Calcite and epidote filling in fractures -Sulphide mineralization in the epidote vein -no mineralization in the host rock. | $\begin{aligned} & 61.91- \\ & 62.82= \\ & .91 \mathrm{~m} \end{aligned}$ | 27961 | nil |
| 62.82 | 63.10 | Rhyolitic rock | -light green, hard Rhyolitic rock <br> -Sulphide mineralization along the fractures with Kalteration matrix. |  |  |  |
| 63.10 | 63.77 | Andesite | -light green, epidote rich Andesitic rock | 63.10- | 27962 | nil |


|  |  |  |  | -epidote, calcite filling in the in the quartz veins and fractures <br> -fine-grained pyrite in the host rock. <br> -‘-60’ degrees quartz vein ( 1 cm thick) <br> - Pyrite patch in ' +40 ', 2 mm , thin quartz vein. | $\begin{aligned} & 63.77= \\ & .67 \mathrm{~m} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 63.77 | 64.60 | Andesite | -Dark green, Andesitic rock -thin cross cut veins <br> -no K-seen in the quartz vein <br> -fine gained pyrite in the host rock -irregular fractures -calcite filling in the fracture |  |  |  |
| Box 11 $64.60-70.48=$ | 64.60 | 65.72 | Andesite | -Grey to dark green, soft, fine to medium grained Andesitic rock <br> quartz vein '-45’ ( 5 mm ) degrees and vertical ( 1 mm ) <br> -calcite and epidote filling in fractures (thin fractures) <br> -K-alteration and K feldspar inclusion in the quartz vein <br> -Sulphide mineralization (pyrite, phyrrotite patch) <br> -Concentration of mineralization around the quartz vein but not within the quartz vein. <br> -Chlorite crystals in the calcite veins/fractures | 1.12 | 27963 | nil |
|  | 65.72 | 66.41 | Brecciated <br> Andesite | -Breccia flow with siliceous Andesite, epidote fillings -epidote matrix is rich in phyrrotite and pyrite crystals -quartz vein with calcite matrix and chlorite grains | 70 cm | 27964 | nil |
|  | 66.41 | 67.05 | Andesite | -Dark green, fine grained Andesitic rock -spherulites (light green, $<0.5 \mathrm{~cm}$ radius) and variolites (whitish spots) -not much fractured -two quartz vein <br> (i) ' +45 ', 0.5 cm thick <br> (ii) ' -45 ' to ' 50 ', 1 mm thick <br> $->15 \%$ sulphides in the host rock (pyrites and phyrrotites) <br> -aggregated pyrite and phyrrotite ( $>15 \%$ mineralization) | 64 cm | 27965 | nil |
|  | 67.05 | 67.62 | Andesite | -light green, fine grained, epidote rich Andesitic rock -no mineralization seen in this section | 64 cm | 27966 | nil |
|  | 67.62 | 68.01 | Andesite | -Dark green, fine grained, brecciated flow rich in phyrrotite <br> -pyrite crystals are associated with, phyrrotite <br> ->10\% mineralization <br> - quartz veins breccia | 39 cm | 27967 | nil |


|  |  |  |  | -not much fractured -no epidote filling in fractures -only one calcite vein -no linear quartz vein |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 68.01 | 68.61 | Andesite | -Siliceous Andesitic rock <br> -no mineralization <br> -Calcite and epidote filling in fractures -quartz vein with calcite matrix | 60 cm | 27968 | nil |
|  | 68.61 | 69.80 | Andesite | -Brecciated Andesitic rock <br> -matrix rich in quartz epidote <br> -breccia (size: 1 cm to 5 cm , angular) <br> -sulphide mineralization in the matrix <br> -phyrrotite is more than pyrite | 1.19 | 27969 | nil |
|  | 69.80 | 70.48 | Andesite | -light to dark green, siliceous Andesitic rock -brecciated nature at the end of the core -calcite, epidote in the fracture -no mineralization in this section | 68 cm | 27970 | 15 |
| $\begin{aligned} & \text { Box } 12(70.48- \\ & 71.930 \end{aligned}$ | 70.48 | 72.13 | Andesite | -Brecciated Andesitic rock, Dark green, -andesitic breccia in siliceous and epidotic matrix -sulphide mineralization in andesitic breccia and matrix both -medium to coarse grained pyrite, phyrrotite and chalcopyrite <br> $-10-15 \%$ mineralization <br> ,-+-30 to 40 degrees flow direction <br> -thin calcite veins <br> -no epidote filling in the vein <br> -one quartz vein at ' -50 ' degrees, 5 mm thick. | 1.65 m | 27971 | nil |
|  | 72.13 | 73.26 | Andesite | -light green, fine, siliceous carbonate altered rock <br> -thin fractures and veins of epidote and calcite <br> -no mineralization in the host rock <br> -a few pyrite grains in the epidote veins <br> -only one vertical quartz vein ( 1 mm thick) | 1.13 m | 27972 | nil |
|  | 73.26 | 74.92 | Andesite | -Andesitic breccia flow (dark green) <br> -siliceous epidote matrix <br> -sulphide mineralization (pyrite, phyrrotite) <br> -flow direction + ,- 45 degrees <br> -0.5 cm thick quartz vein ( +45 degrees) | 1.66 m | 27973 | nil |


|  |  |  |  | -phyrrotite patch in breccia <br> -thin calcite veins (+- 60 degrees to vertical) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 74.92 | 76.37 | Andesite | -Dark green andesitic breccia flow -quartz rich matrix <br> -pyrite crystal concentration in andesitic breccia. -phyrrotite patch in silaceous matrix. | 1.45 | 27974 | nil |
| $\begin{aligned} & \text { Box 13 } \\ & (76.37-77.82) \end{aligned}$ | 76.37 | 77.82 | Andesite | -light green, fine grained, siliceous Andesite -fine grained pyrite in the host rock -no flow noticed in this section | 1.45 | 27979 | nil |
|  | 77.32 | 79.08 | Andesite | -light green, siliceous Andesite -medium to coarse grained fine grained pyrite in the host rock <br> -flow noticed at the depth of 78.32-78.42 and 79.16-16 m | 1.26 | 27978 | nil |
|  | 79.08 | 80.17 | Andesite | -light to dark green, siliceous Andesite <br> -fine grained sulphides in the host rock ( $<2 \%$ mineralization) <br> -no flow seen in this section | 1.09 | 27977 | nil |
|  | 80.17 | 81.61 | Andesite | -Siliceous, light to dark green Andesite -sulphides rich flow at $80.84-80.91 \mathrm{~m}$ depth -sulphide mineralization (pyrite, phyrrotite) in the flow -epidote and quartz rich matrix in the flow. | 1.44 | 27976 | nil |
|  | 81.61 | 82.18 | Quartz <br> carbon <br> alteration <br> of <br> Andesite | -light to dark green, siliceous and carbonate rich Andesite <br> -thin fractures <br> -fine grained fine-grained pyrite and phyrrotite patch in the host rock ( $<1 \%$ ) <br> -not many quartz vein (only one, +40 degrees, 3 mm thick) -mineralization noticed around the quartz vein. | 57 cm | 27975 | nil |
| Box 14 <br> 82.18- <br> $83.68=6.06$ | 82.18 | 82.64 | Andesite | -dark green, medium grained, soft, Andesite -epidote filled thin fractures <br> -sulphide mineralization in the epidote filled fractures -quartz filled fractures/veins are not mineralized, but epidote leaching around the periphery is mineralized $-<5 \%$ mineralization. | 46 cm | 27980 | nil |
|  | 82.64 | 84.08 | Rhyolite ? | -greyish, fine-grained quartzitic rock (Rhyolite?) <br> -soft, can be scratched by knife <br> -quartz vein (broken) <br> -pinch and swell quartz veins <br> -one thick quartz vein ( 3 cm , ‘-50’ degrees dip from axis) | 1.44 m | 27981 | nil |


|  |  |  |  | -fine to coarse grained pyrite and phyrrotite patch in the host rock -coarse grained pyrite near the quartz vein -no epidote veining or grains in this section |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 84.08 | 85.98 |  | -dark green Andesite <br> -fine grained pyrite in the host rock ( $<1 \%$ ) -thin quartz vein | 1.90 | 27982 | nil |
|  | 85.98 | 86.44 |  | -silaceous Andesite <br> -epidote filling in the veinlets <br> -fine grained pyrite in the host rock <br> -thin quartz vein <br> $-<1 \%$ visible sulphide mineralization | 0.46 | 27983 | nil |
|  | 86.44 | 88.24 |  | -medium grained, dark green, Andesite <br> -epidote filling in the veinlets <br> -medium to coarse grained sulphides (pyrite and phyrrotite) in the host rock <br> - thin quartz vein filled with epidote (,+-30 degrees) <br> -no veinlets, not much fractured rock | 1.80 | 27984 | nil |
| Box 15 $\begin{aligned} & 88.24- \\ & 92.47=4.23 \end{aligned}$ | 88.24 | 89.69 |  | -dark green, medium grained Andesitic rock <br> -epidote filling in the quartz veins <br> $-‘+,-30$ to 40 ' degrees and almost vertical thin quartz vein <br> ( 0.2 to 0.5 cm thick) <br> -not much fractured rock <br> -medium to coarse-grained pyrite and phyrrotite patch (<5\%) <br> -flow noticed at (i) 88.24-88.36 and (ii) 89.04-89.34 | 1.45 | 27985 | nil |
|  | 89.69 | 90.88 |  | -dark green, Andesitic rock in continuation with previous sample <br> -epidote filling in the quartz veins <br> $-‘+30$ to 40 ' degrees thin quartz vein ( 0.2 to 0.5 cm thick) <br> -not much fractured rock <br> -medium to coarse-grained pyrite and phyrrotite in the host rock ( $<5 \%$ ) | 1.19 | 27986 | nil |
|  | 90.88 | 91.73 | Andesite | -dark green, siliceous mafic rock (Andesite?) <br> -epidote filling in the quartz veins <br> $-‘+30$ to 60 ' degrees linear quartz vein ( 0.2 cm thick) <br> -wavy quartz veins <br> -epidote veinlets | 0.85 | 27987 | nil |


|  |  |  |  | -medium to coarse-grained pyrite (<2\%) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 91.73 | EOH <br> EOH | variolites | -variolitic mafic rock <br> -light green to white variolites <br> -epidote filling in the quartz veins <br> -two, thin quartz vein -wavy quartz veins <br> -no mineralization seen in the variolitic section | 0.74 | 27988 |

DIAMOND DRILL LOG

| Hole No. LZ-07-05 |  |  | $\begin{aligned} & \text { Claim No. } \\ & 1237005 \end{aligned}$ | Township/Area McNeil Twp | Date Stated July 20,2007 | Date Completed July 21, $2007$ | Date Logged $\text { July 23, } 2007$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Holder <br> Warrior Ventures Inc |  |  | Core Size <br> BTW | Azimuth <br> 240 degrees | Dip: -40 degrees | End of Hole (m): 78 m | Logged by: <br> Sangeeta <br> Guha |
| Depth (m) |  |  | Rock <br> Type | Description (colour, grain size, texture, minerals, alteration, etc.) | Sample length | Sample No. | Assay |
| $\begin{aligned} & \text { Box No. } 1 \\ & 0.0-5.84=5.84 \\ & \mathrm{~m} \end{aligned}$ | From | To |  |  |  |  |  |
|  | 0.0 | 3.0 |  | -dark green, epidote rich, Andesitic pebbles (no sample collected for this length) |  | No sample |  |
|  | 3.0 | 3.49 |  | -grey, fine grained, Rhyolitic rock. <br> -quartz vein ' -70 'degrees ( 2 mm ), calcite filling in the vein <br> -very fine grained pyrite crystals and pyrrohtite ( $<1 \%$ ). | 0.49 | 28024 | 8 |
|  | 3.66 | 4.40 |  | -grey, fine grained, Rhyolitic rock. <br> - thick quartz vein ‘ +30 ’ degrees ( 1 cm ) <br> -thin quartz vein ' -80 'degrees ( 2 mm ), calcite filling in the vein <br> -pyrrohtite filling in quartz vein ( $>3 \%$ ). | 0.74 | 28025 | 23 |
|  | 4.40 | 4.80 |  | -grey, fine grained, Rhyolitic-dacitic rock. <br> -thick quartz vein '-30' degrees ( 10 cm ), no mineralization -chlorite filling in factures -pyrrohtite filling in fracture along the chlorites ( $>3 \%$ ) | 0.40 | 28026 | 496 |


|  | 4.80 | 5.84 | -grey, medium grained, Rhyolitic-dacitic rock. <br> -thick quartz vein ' +40 ' degrees ( 1 cm ), no mineralization <br> -chlorite filling in factures -very fine grained pyrite crystals and pyrrohtite ( $<1 \%$ ). | 1.04 | 28027 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Box No. 2$\begin{aligned} & 5.84-11.67= \\ & 5.83 \mathrm{~m} \end{aligned}$ | 5.84 | 6.61 | -grey, fine, Rhyolitic-dacitic rock. <br> -quartz vein '+ 70 to 80 ' degrees ( 1 cm ), no mineralization, calcite filling in the vein -chlorite filling in factures -very fine grained pyrite and pyrrohtite in the ground mass ( $<1 \%$ ). | 0.77 | 28028 | 200 |
|  | 6.61 | 8.55 | -grey, medium grained, Rhyolitic-dacitic rock. <br> -thick quartz vein '- 40 ' degrees, 3 cm , no mineralization -very fine grained pyrite and pyrrohtite in the ground mass ( $<1 \%$ ). | 1.94 | 28029 | nil |
|  | 8.55 | 9.39 | -grey, fine grained, Rhyolitic rock. <br> -thick quartz vein ',+-60 to 70 ' degrees 2 cm , no mineralization along the vein, epidote and calcite in the vein <br> -fine grained sulphide in the ground mass ( $<1 \%$ ). | 0.84 | 28030 | 22 |
|  | 9.39 | 10.21 | -greenish andesitic rock with pyrite grains in the ground mass ( $<1 \%$ ) | 0.82 | No Sample, dirty core |  |
|  | 10.21 | 10.77 | dark green, medium grained Andesite -quartz veins ( ${ }^{-}-70^{\prime}, 2 \mathrm{~mm}$ ), calcite filling in the vein -fine to medium grained pyrite and pyrrohtite in the ground mass (<2\%) | 0.56 | 28031 | 7 |
|  | 10.77 | 11.67 | -dark green, medium grained Andesite -quartz veins (' $+40,-70$ ', $1-2 \mathrm{~mm}$ ), calcite filling in the vein <br> -fine to medium grained pyrite and pyrrohtite in the ground mass | 0.90 | No Sample, dirty core |  |
| $\begin{aligned} & \hline \text { Box } 3 \\ & 11.67- \\ & 17.52=5.85 \mathrm{~m} \end{aligned}$ | 11.67 | 13.40 | -dark green, medium grained Andesite -a few quartz veins ( $+40,1-2 \mathrm{~mm}$ ), calcite and epidote filling in the vein <br> -fine to medium grained pyrite and pyrrohtite in the ground mass ( $>2 \%$ ) <br> -fine grained pyrite and pyrrohtite in the vein along epidote filling | 1.73 | 28032 | 6 |


|  | 13.4 | 14.55 | -dark green, medium grained porphyritic Andesite -a few quartz veins ( $+50,-80$ ', 2 mm ), calcite and smokey quartz filling in the vein -fine to medium grained pyrite and pyrrohtite in the ground mass ( $>2 \%$ ), rich in broken surface of core | 1.15 | 28033 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 14.55 | 15.91 | -dark green, medium grained porphyritic Andesite - vertical, ‘ +50 ’ ( 2 mm ) and wavy quartz veins, calcite and smokey quartz filling in the vein -fine to medium grained pyrite and pyrrohtite in the ground mass ( $<2 \%$ ), and in the wavy quartz vein | 1.36 | 28034 | nil |
|  | 15.91 | 17.52 | -dark to lighter green, medium grained porphyritic Andesite -vertical linear , ' -30 to 50 ', ( 2 mm ) and wavy quartz vein -calcite and smokey quartz filled in quartz veins -fine to medium grained pyrite and pyrrohtite in the ground mass ( $<2 \%$ ), and in the fractures filled with epidote | 1.61 | 28035 | nil |
| Box 4$\begin{aligned} & 17.52- \\ & 23.39=5.87 \end{aligned}$ | 17.52 | 19.43 | -dark green, fine grained Andesite -linear , ' +70 to 80 ' degrees, ( 2 mm ) quartz vein, calcite and smokey quartz filled in quartz veins -fine to medium grained pyrite and pyrrohtite in the ground mass ( $<1 \%$ ) | 1.91 | 28036 | nil |
|  | 19.43 | 21.24 | -dark green, medium grained porphyritic Andesite <br> -linear, ‘+ 40 to 50’ degrees, ( 2 mm ) quartz vein, calcite and smokey quartz filled in quartz veins -epidote filled fractures (a few) <br> -medium to coarse grained pyrite and pyrrohtite in the ground mass ( $<1 \%$ ) <br> -big crystals of pyrite inside the broken core at 21.67 m depth | 1.81 | 28037 | nil |
|  | 21.24 | 22.38 | -light green, medium grained porphyritic Andesite -linear , '+40' degrees, ( 1 cm ) quartz vein, calcite, epidote and smokey quartz filled in quartz veins -epidote filled wavy fractures (a few) -medium to coarse grained pyrite and pyrrohtite in the ground mass ( $<2 \%$ ), pyrrohtite concentration along the epidote filled fractures | 1.14 | 28038 | nil |



| $\begin{aligned} & \hline \text { Box } 6 \\ & 29.28- \\ & 35.16=5.88 \mathrm{~m} \end{aligned}$ | 29.28 | 30.74 | -greyish, fine grained, Dacite-Andesite rock <br> -wavy quartz vein and minor fractures, <br> -medium to fine grained sulphides in the ground mass around the veins and fractures ( $<1 \%$ ) | 1.46 | 28045 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30.74 | 31.49 | -greyish, medium grained, porphyritic Dacitic rock -medium grained sulphides in the ground mass ( $<1 \%$ ) | 0.75 | 28046 | 5 |
|  | 31.49 | 32.23 | -grey, fine grained, silica rich Dacitic-Rhyolitic rock -thin quartz vein and minor fractures, -medium to fine grained sulphides in the ground mass ( $<1 \%$ ) and in fractures | 0.74 | 28047 | 8 |
|  | 32.23 | 33.69 | -grey, fine grained, silica rich Dacitic-Rhyolitic flow -thin quartz vein and minor fractures filled with chlorite - medium to coarse grained pyrite and pyrrohtite ( $>2 \%$ ) | 1.46 | 28048 | nil |
|  | 33.69 | 35.16 | -grey, fine grained, silica rich Dacitic-Rhyolitic flow -quartz vein filled with calcite and smokey quartz -minor fractures filled with chlorite -medium to coarse grained pyrite and pyrrohtite concentration in silica rich altered part (33.99 to 34.09 m ) and in the main ground mass ( $>3 \%$ ) | 1.47 | 28049 | 140 |
| Box 7$\begin{aligned} & 35.16- \\ & 41.05=5.89 \mathrm{~m} \end{aligned}$ | 25.16 | 35.38 | -grey, medium grained, porphyritic silica rich Daciticrock <br> -quartz vein filled with calcite <br> -medium to coarse grained pyrite and pyrrohtite in the main ground mass ( $<3 \%$ ) | 0.22 | 28050 | nil |
|  | 35.38 | 36.03 | -grey, fine grained, silica rich, hard Dacitic-Rhyolitic rock <br> -quartz vein filled with calcite and smokey quartz -minor fractures filled with chlorite <br> $-<1 \%$ mineralization | 0.65 | 28051 | 10 |
|  | 36.03 | 36.66 | -grey, fine grained, porphyritic silica rich Dacitic- <br> Rhyolitic rock <br> -thick quartz vein filled with calcite, smoky quartz and green matrix of rock (chlorite) <br> $-<1 \%$ mineralization | 0.63 | 28052 | nil |


|  | 36.66 | 37.86 | -grey, fine grained, porphyritic silica rich DaciticRhyolitic flow -minor fractures filled with chlorite, dacitic mass -medium to coarse grained pyrite and pyrrohtite concentration in silica rich altered, porphyritic ground mass ( $>3 \%$ ) | 1.20 | 28053 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 37.86 | 38.70 | -grey, fine grained, siliceous Dacitic-Rhyolitic rock -minor fractures filled with chlorite, dacitic mass $-<1 \%$ mineralization | 0.84 | 28054 | nil |
|  | 38.70 | 40.15 | -grey, fine grained, porphyritic silica rich Dacitic rock -minor fractures filled with Dacitic matrix -medium to coarse grained pyrite and pyrrohtite concentration in ground mass ( $<2 \%$ ) and along the fractures. | 1.45 | 28055 | nil |
|  | 40.15 | 41.05 | -grey, fine grained, hard, Rhyolitic-Dacitic rock <br> $-<1 \%$ mineralization | 0.90 | 28056 | nil |
| Box 8$41.05-$$47.05=6.00 \mathrm{~m}$ | 41.05 | 42.75 | -dark grey, porphyritic, Dacitic rock <br> -thin linear quartz veins (+10to 30 degrees', 1-2 mm thick <br> -calcite, chlorite and smokey quartz filled in quartz veins -fine to medium grained pyrite and pyrrohtite in the ground mass ( $<2 \%$ ) | 1.70 | 28068 | 12 |
|  | 42.75 | 44.10 | -light grey, hard, silica rich (altered) Rhyolitic-Dacitic rock <br> -thin linear quartz veins ( +10 to 30 degrees', 2 mm thick -calcite, and smokey quartz filled in quartz veins <br> - mineralization in the in quartz veins <br> -pyrite and pyrrohtite concentration around and in the quartz vein at 43.42 m depth <br> -fine to medium grained pyrite and pyrrohtite in the ground mass (<2\%) | 1.35 | 28069 | 68 |
|  | 44.10 | 44.65 | -grey, hard, siliceous Rhyolitic-Dacitic rock <br> -thin linear quartz veins (-70 degrees', 2 mm thick <br> -calcite filling in quartz veins <br> -no mineralization in the quartz veins <br> -no mineralization in the ground mass | 0.55 | 28070 | 5 |



|  | 50.00 | 50.85 | -dark green, porphyritic, spherulitic Andesitic rock -thin linear and wavy quartz veins (+.-30 to 50 degrees', 2 mm thick -calcite filled in quartz pieces -coarse grained pyrite and pyrrohtite clustering in the ground mass ( $>2 \%$ ) at 50.30 tpo 50.60 m depth. | 0.85 | 28060 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 50.85 | 52.26 | -fine grained, green, hard dacitic-Andesitic rock -thin linear quartz veins (.+-30 to 50 degrees', 1 mm thick <br> -calcite filled in quartz veins <br> -pyrite and pyrrohtite concentration along the quartz vein 51.69 to $51 . .73 \mathrm{~m}$ depth. <br> -pyrite and pyrrohtite concentration along the epidote filled fracture ( $<3 \%$ ) | 1.41 | 28061 | 6 |
|  | 52.26 | 52.97 | -coarse grained, green, mottled Andesitic rock -minor fractures filled with epidote -calcite and epidote filled in quartz vein -pyrite and pyrrohtite concentration along the epidote filled fracture ( $<2 \%$ ) | 0.71 | 28062 | 6 |
| Box 10 $\begin{aligned} & 52.97- \\ & 58.93=5.96 \end{aligned}$ | 52.97 | 54.61 | -coarse grained, green, hard, porphyritic dacitic- <br> Andesitic rock <br> -a few minor fractures filled with epidote <br> -one quartz vein (' +40 ' degrees), 3 mm thick), calcite <br> and smokey quartz filled in quartz vein <br> -pyrite and pyrrohtite concentration along the epidote <br> filled fracture and around the quartz vein ( $<1 \%$ ) <br> -not much mineralization in the ground mass <br> -no mineralization within the quartz vein | 1.64 | 28063 | nil |
|  | 54.61 | 55.49 | -medium grained, green, hard, siliceous porphyritic dacitic-Andesitic rock <br> -minor fractures filled with epidote <br> -quartz veins (' +50 ’ degrees and vertical ), 3 mm thick), <br> calcite and smokey quartz filled in quartz vein <br> -pyrite and pyrrohtite concentration along the epidote <br> filled fracture ( $<1 \%$ ) <br> -fine grained sulphide mineralization in the ground mass (<2\%) <br> -no mineralization within the quartz vein | 0.88 | 28064 | nil |


|  | 55.49 | 56.32 | -medium grained, light green, siliceous hard Andesitic rock <br> -minor fractures filled with epidote $-<1 \%$ sulphide mineralization in the ground mass | 0.83 | 28065 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 56.32 | 58.10 | -medium grained, green, hard, siliceous mottled and fractured Andesitic rock -minor fractures filled with epidote -quartz veins ('+40 to 30 ' degrees and vertical ), $2-3 \mathrm{~mm}$ thick), calcite and smokey quartz filled in quartz vein -pyrite and pyrrohtite concentration along the epidote filled fracture (<2\%) <br> -pyrite and pyrrohtite concentration around the quartz vein and quartz alteration part at $56.39-56.45 \mathrm{~m}$ and at 57.58 to 57.62 m depth <br> -fine grained sulphide mineralization in the ground mass (<1\%) <br> -no mineralization within the quartz vein | 1.78 | 28066 | nil |
|  | 58.10 | 58.93 | -medium grained, green, hard, siliceous porphyritic Andesitic rock <br> -minor fractures filled with epidote <br> -fine to medium grained grained sulphide mineralization in the ground mass ( $<2 \%$ ) | 0.83 | 28067 | nil |
| Box 11 $\begin{aligned} & \text { 58.93- } \\ & 64.93=6.00 \end{aligned}$ | 58.93 | 60.43 | -medium grained, green, Andesitic rock -one thick quartz vein ( ${ }^{-}-30$ ' degrees', calcite and epidote filling, rich in sulphides along the epidotes -other minor quartz veins (' +40 to 30 ' degrees and vertical ), $2-3 \mathrm{~mm}$ thick, calcite filled in quartz vein -big crystals of pyrite in the ground mass ( $<2 \%$ ) | 1.50 | 28073 | nil |
|  | 60.43 | 61.46 | -medium grained, green, Andesitic rock <br> -quartz vein (' +40 ' degrees'), calcite filling -medium to coarse crystals of pyrite in the ground mass (<2\%) | 1.03 | 28074 | nil |


|  | 61.46 | 62.98 | -medium grained, green, porphyritic hard dacitic (?) Andesitic rock -quartz vein ('+,- 30 to 70 ' degrees', calcite and smokey quartz filling, <br> -big crystals of pyrite in the ground mass at 62.23 to 62.33 m depth -not much mineralization in ground mass ( $<1 \%$ ) | 1.52 | 28075 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 62.98 | 63.43 | -fine grained, green, siliceous Andesitic rock -wavy quartz vein, calcite and chlorite filling in quartz vein -concentration of pyrite along the quartz vein in chloritic mass | $\begin{array}{\|l} \hline 0.45 \\ \text { (includi } \\ \text { ng } \\ \text { missing } \\ \text { core) } \\ \hline \end{array}$ | 28076 | 7 |
|  | 63.43 | 63.92 | -medium grained, green, porphyritic Andesitic rock -cross cut, thin quartz vein (',+-30 to 70 ' degrees' and vertical, calcite and smokey quartz filled in. $-<1 \%$ mineralization in ground mass -pyrrohtite along the epidote filled fractures | 0.49 | 28077 | 5 |
|  | 63.92 | 64.24 | No description, missing core | 0.32 | Missing core |  |
|  | 64.24 | 64.93 | -medium grained, green, porphyritic Andesitic rock -thin quartz vein ('+70' degrees' and vertical, with calcite and smokey quartz filling. <br> - medium to coarse crystals of pyrite in the ground mass ( $<1 \%$ ) <br> -pyrrohtite along the epidote filled fractures | 0.69 | 28078 | nil |
| $\begin{aligned} & \text { Box } 12 \\ & 64.93- \end{aligned}$ | 64.93 | 66.24 | -medium grained, green, porphyritic Andesitic rock -thin quartz vein (' +40 ' degrees' and vertical, with calcite filling. -epidote filled fractures. <br> -medium to coarse pyrites and pyrrohtite in the ground mass (<2\%) <br> -pyrrohtite along the epidote filled fractures and around quartz veins | 1.31 | 28079 | nil |
|  | 66.24 | 68.65 | -Diabasic rock, sampled only at 66.81-67.04 m depth for andesitic amalgamated diabas rock with sulphide mineralization in it ( $<2 \%$ ) | 2.41 | 28080 | nil |


|  | 68.65 | 69.99 | -medium grained, light green, porphyritic Andesitic rock -thin quartz vein ('+,-40 to 70 ' degrees' and vertical, with calcite filling. -epidote filled fractures. <br> $-<1 \%$ sulphides in the ground mass | 1.34 | 28081 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 69.99 | 70.85 | -medium grained, light green, porphyritic Andesitic rock -quartz vein (',+-45 to 70 ' degrees' with calcite and epidote filling. <br> -thick epidote filled fractures. <br> -sulphides along the epidote filled fractures and quartz vein <br> $-<2 \%$ sulphides in the ground mass | 0.86 | 28082 | 6 |
| $\begin{aligned} & \text { Box } 13 \\ & 70.85-78=7.15 \end{aligned}$ | 70.85 | 78.00 | Broken cores, no samples taken in this box: -medium to fine grained, green, Andesitic rock -quartz vein (',+-45 to 70 ' degrees' with calcite and epidote filling. <br> $-<1 \%$ sulphides in the ground mass | No sample | No sample |  |

## DIAMOND DRILL LOG



| Hole No. LZ-07-04 |  |  | Claim No. <br> 1237005 | Township/Area <br> McNeil Township | Date Stated <br> July 13, 2007 | Date Completed <br> July 18, 2007 | Date Logged $\text { July 21, } 2007$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Holder <br> Warrior Ventures Inc |  |  | Core Size BTW | Azimuth $240$ | Dip $-70$ | End of Hole (m) $147.13$ | Logged by: <br> Sangeeta <br> Guha |
| Depth (m) |  |  | Rock | Description (colour, grain size, texture, minerals, | Sample | Sample No. | Assay |
| $\begin{aligned} & \hline \text { Box No. } 1 \\ & 00-5.71=5.71 \end{aligned}$ | From | To | Type | alteration, etc.) | length |  |  |
|  | 0.0 | 1.43 | Andesite | -dark green, epidote rich, Andesitic rock -epidote veinlets <br> -no quartz vein <br> -no mineralization in the host rock <br> -two flows at (i) 0.29-0.33 and (ii) 1.29-1.36 <br> -big pyrite crystals in flow (i) <br> -medium grained pyrites in flow (ii) | 1.43 | 27989 | nil |
|  | 1.43 | 2.73 | Andesite | -dark green, epidote rich, fine grained Andesitic rock -epidote veinlets <br> -no quartz vein -medium to coarse grained pyrite crystals in the host rock ( $<5 \%$ ) | 1.30 | 27990 | nil |
|  | 2.73 | 4.10 | Andesite | -light to dark green, epidote rich Andesitic rock - - 30 to 40 degrees thin fractures filled with epidote -thin quartz vein ( 2 mm ) parallel to the fractures -fine to medium grained pyrite in the host rock $(<5 \%)$. | 1.37 | 27991 | nil |


|  | 4.10 | 5.00 | -light to dark green, silceous Andesitic rock <br> - -80 degrees to vertical quartz vein ( 1 mm to 2 mm ) <br> -flow seen at 4.61-4.69 m depth -no mineralization in the flow | 0.90 | 27992 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.00 | 5.71 | -greyish, soft, fine grained, silica rich Andesitic rock -no epidote seen <br> -‘-80 degrees to vertical thin quartz vein -fine grained pyrite in the host rock | 0.71 | 27993 | nil |
| Box No. 2$\begin{aligned} & 5.71- \\ & 11.59=5.88 \end{aligned}$ | 5.71 | 6.81 | -greyish, soft, fine grained, siliceous Andesite <br> -almost vertical thin quartz vein ( 2 mm ) <br> -fine grained pyrite in the host rock -mineralization noticed in the darker part of the host rock | 1.10 | 27994 | nil |
|  | 6.81 | 7.96 | -greyish, fine grained, brecciated Andesite <br> -Siliceous breccia in the Andesite rock, <br> -fine to coarse grained pyrite in the host rock, pyrrohtite patch also visible <br> -no mineralization seen in the siliceous breccia -thick quartz vein ( -85 degrees), calcification at the periphery of the vein, no mineralization within the quartz vein <br> -concentration of sulphides around the quartz vein | 1.15 | 27995 | 1182 |
|  | 7.96 | 9.31 | -fine grained, siliceous Andesite <br> -flow seen at $8.07-8.25 \mathrm{~m}$ depth <br> -flow is rich in pyrite (fine grained) <br> -very fine grained pyrite in the host rock, <br> -thin quartz vein ( 2 mm ) <br> -no epidote, no veinlets | 1.35 | 27996 | nil |
|  | 9.31 | 10.11 | -greyish, medium grained, siliceous Andesite ${ }^{-}+30$ to 40 ' degrees quartz vein ( 2 mm to 3 mm ) -sulphides mineralization around the quartz vein -sulphide rich flow at $10.01-10.04 \mathrm{~m}$ depth | 0.80 | 27997 | nil |
|  | 10.11 | 11.59 | -dark green, medium grained, epidote rich, soft Andesitic rock -epidote filled in fractures $-(+,-40$ to 45 degrees), 2 mm thick -medium to coarse grained pyrite in the host rock | 1.48 | 27998 | nil |


| $\begin{aligned} & \hline \text { Box No. } 3 \\ & 11.59- \\ & 17.40=5.81 \end{aligned}$ | 11.59 | 13.32 | -dark green, medium grained, epidote rich Andesite -+40 ' epidote filled in fractures $-‘+,-50$ to 60 ' degrees quartz vein ( 2 to 5 mm thick) -medium to coarse grained pyrite in the host rock | 1.73 | 27999 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 13.32 | 14.68 | -dark green, medium grained Andesite <br> -‘- 40 ' degrees quartz vein ( 2 mm to 1 cm thick) <br> -quartz infilling for the Andesite breccia <br> -medium to coarse grained pyrite in the host rock | 1.36 | 27800 | 30 |
|  | 14.68 | 15.83 | -fine grained Andesite <br> -epidote filling in fractures <br> -no mineralization seen in this section | 1.15 | 27801 | nil |
|  | 15.83 | 17.40 | -epidote rich, fine grained, Andesite <br> -siliceous flow <br> -not much mineralization in the host rock, but epidote patches are rich in pyrite and pyrrohtite <br> -quartz veining and fracture filling is prominent in this section | 1.57 | 27802 | nil |
| $\begin{aligned} & \text { Box No. } 4 \\ & \\ & 17.4- \\ & 23.20=5.80 \end{aligned}$ | 17.4 | 18.85 | -fine to medium grained Andesite $-‘+,-40$ to 50 degrees quartz and epidote vein ( 2 mm thick) <br> -fine grained pyrite in the host rock ( $<2 \%$ ) -medium grained pyrite concentration around the quartz vein and along the epidote fillings in the fractures. -pyrrohtite patch also seen | 1.45 | 27803 | nil |
|  | 18.85 | 19.96 | -medium grained, dark green, Andesite <br> -no quartz vein <br> -epidote veining/fracture filling <br> -fine grained sulphide mineralization in rock mass -sulphide concentration along the epidote filled fractures. | 1.11 | 27804 | nil |
|  | 19.96 | 20.78 | -fine grained, dark green Andesite (approaching towards silica rich part) <br> $-‘+,-50$ degrees cross cut quartz vein ( 2 mm thick) -medium to coarse grained pyrite in the host rock -thin epidote filled fractures. | 0.82 | 27805 | nil |



| $\begin{aligned} & \hline \text { Box No. } 6 \\ & 29.05-34.79= \\ & 5.74 \mathrm{~m} \end{aligned}$ | 29.05 | 29.87 | -dark green, mottled, Andesitic rock $-‘+40$ ' to vertical quartz vein -no mineralization in the quartz vein -not much mineralization in the rock mass -sulphide concentration mainly around the veins | 0.82 | 27812 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 29.87 | 30.56 | -greyish green, smaller, mottled, Andesitic rock <br> $-‘+40$ ' to vertical quartz vein ( 2 to 3 mm ) <br> -no mineralization in the quartz vein <br> -not much mineralization in the rock mass <br> -fine grained pyrite along the epidote flow but not around the quartz vein. | 0.69 | 27813 | 173 |
|  | 30.56 | 31.92 | -greyish green, smaller, mottled, Andesitic rock <br> $-‘+40$ ' to vertical quartz vein ( 2 to 3 mm ) <br> -no mineralization in the quartz vein <br> -not much mineralization in the rock mass <br> -fine grained pyrite along the epidote flow but not around the quartz vein. | 1.36 | 27814 | 200 |
|  | 31.92 | 33.63 | -light grey to green, mottled, Dacite-Andesitic rock <br> -Thick quartz vein, ' +60 ' to 80 ' degrees ( 0.6 cm to 2 cm ) -thin quartz vein at ' +40 ' to 80 ' degrees dip from axis, -fine andesitic-Rhyolitic mass in between 32.72-32.79 m depth. <br> -brecciated grey Rhyolite (quartz rich mass) at 33.4333.63 m depth <br> -pyrites along the fractures | 1.71 | 27815 |  |
|  | 33.63 | 34.79 | -fine grained, dark green, Andesitic rock <br> - '+,- 40-60' degrees quartz vein ( $2-3 \mathrm{~mm}$ ) <br> -no mineralization in the quartz vein and in the ground mass | 1.16 | 27816 | nil |
| $\begin{aligned} & \text { Box No. } 7 \\ & 34.79- \\ & 40.58=5.79 \end{aligned}$ | 34.79 | 35.11 | -fine to medium grained, grayish, soft, Dacite-Andesitic rock <br> -cross cut quartz vein (‘+,- 50 ', 2 mm thick) <br> -no mineralization in the quartz vein <br> -medium to coarse grained pyrite and pyrrohtite in the ground mass ( $<1 \%$ ) | 0.32 | 27817 | nil |
|  | 35.11 | 35.83 | -medium grained, mottled, dark green Andesitic rock <br> -thin quartz vein (' $+40,-50$ 'degrees) <br> -fine grained sulphides in the ground mass | 0.72 | 27818 | nil |


|  | 35.83 | 37.41 | -mottled, dark green Andesitic rock -minor fractures ( ${ }^{‘}+40,-60$ 'degrees) filled with epidotes -no mineralization in the quartz vein -medium grained sulphides (pyrites)in the ground mass (<2\%) <br> -Pyrrohtite patch noticed in the ground mass | 1.58 | 27819 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 37.41 | 38.1 |  | 0.69 | 27820 | nil |
|  | 38.10 | 39.68 |  | 1.58 | 27821 | nil |
|  | 39.68 | 40.58 | -dark green, blackish, non- mottled Andesitic rock <br> -light felsic, granular appearance <br> -quartz vein ('+,- 60', 2-3mm thick <br> - minor fractures ( ${ }^{\circ}+40,-60$ 'degrees) filled with epidotes <br> -no mineralization in the quartz vein <br> -sulphides concentration around the quartz vein <br> -not much fracturing <br> -no epidote filling in the fractures | 0.90 | 27822 | nil |
| Box No. 8$\begin{aligned} & 40.58- \\ & 46.50=5.92 \mathrm{~m} \end{aligned}$ | 40.58 | 42.32 | -dark green, mottled Andesitic rock - two sets fractures ( ',+-40 to 60 'degrees), filled with felsic/epidotic material $-‘+40$ 'degrees calcite vein -epidote rich flow at 41.43-41.58 m depth -coarse grained pyrite concentration around the flow -pyrrohtite filling along the flow <br> -fine grained pyrite in the ground mass | 1.74 | 27823 | nil |
|  | 42.32 | 43.51 | -dark green, mottled, fine grained Andesitic rock $-‘+30$ 'degrees epidote filled vein -less fractured and less quartz vein -pyrrohtite patches along the flow, fractures | 1.19 | 27824 | nil |
|  | 43.51 | 44.85 | -fine grained, greyish green, Andesite <br> -epidote rich flow at $44.26-44.56 \mathrm{~m}$ depth <br> -big pyrite crystals in the ground mass <br> -pyrrohtite filling along the flow <br> $-‘+40$ 'degrees quartz vein <br> $-‘+30^{\prime}$ degrees calcite vein ( 2 mm ), calcification at the margin | 1.34 | 27825 | nil |
|  | 44.85 | 46.50 | -fine grained, dark green, Andesite <br> -epidote rich flow at $44.26-44.56 \mathrm{~m}$ depth <br> -pyrrohtite patch and pyrite crystals in the ground mass $-{ }^{‘}+40$ 'degrees quartz vein, calcification and epidote filling at the margin | 1.65 | 27826 | nil |


| Box No. 9$\begin{aligned} & 46.50- \\ & 52.45=5.95 \mathrm{~m} \end{aligned}$ | 46.50 | 47.69 | -fine to medium grained, green Andesite $-‘+40$ to 50 'degrees smokey quartz vein ( 2 mm ) -epidote and calcite filling in the vein -coarse grained pyrite, pyrrohtite patch in the ground mass | 1.19 | 27827 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 47.69 | 49.63 | -greyish green, porphyritic Andesite <br> -‘-80’degrees calcite vein with fuchsite -medium to coarse grained pyrite in the ground mass ( $<3 \%$ ) | 1.94 | 27828 | nil |
|  | 49.63 | 51.07 | -fine grained, dark greyish green Andesite <br> -flow in between 51.45-52.02 <br> -coarse pyrite and pyrrohtite in the flow <br> $-‘+50$ to 60 'degrees quartz vein with smokey quartz in it. -medium to coarse grained pyrite in the dark Andesitic ground mass (near the flow) | 1.34 | 27829 | nil |
|  | 51.07 | 52.45 | -greyish green, porphyritic Andesite <br> $-‘+40$ to 60 'degrees quartz vein ( $1-2 \mathrm{~mm}$ thick), and vertical quartz vein <br> -a few medium grained pyrite crystal visible on the surface ( $<1 \%$ ), concentrated around the siliceous patch | 1.38 | 27830 | nil |
| $\begin{aligned} & \text { Box No. } 10 \\ & \\ & 52.45- \\ & 58.43=5.98 \mathrm{~m} \end{aligned}$ | 52.45 | 54.27 | -medium grained, grayish, porphyritic Dacite-Andesite rock <br> $-‘+45$ ’ to vertical quartz vein ( $2-4 \mathrm{~mm}$ thick), calcification in the quartz vein -no visible sulphide on the surface and in the quartz vein | 1.82 | 27831 | nil |
|  | 54.27 | 55.76 | -greyish, porphyritic Andesite <br> -Rhyolitic siliceous greenish flow at $55.0-55.43 \mathrm{~m}$ depth <br> $-{ }^{-}+40$ ' to vertical thin quartz vein <br> $-‘+45$ ' to calcite vein ( $3-4 \mathrm{~mm}$ ) <br> -medium grained pyrite crystal, only a few grains, mostly concentrated around the siliceous patch | 1.49 | 27832 | nil |


|  | 55.76 | 57.39 |  | -greyish green, medium grained, porphyritic DaciteAndesite <br> -Rhyolitic light greenish flow at 56.17-56.72 m <br> - +40 to 45 ' degrees thin quartz vein <br> -potassic inclusions in the quartz vein at 56.90 m depth <br> -thick quartz vein ( 1 cm ), ‘-30’ degrees with calcite <br> filling and K -alteration <br> -sulphide grains clustering near siliceous alteration patch <br> $-‘+45$ ' to calcite vein ( $3-4 \mathrm{~mm}$ ) | 1.63 | 27833 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 57.39 | 57.92 | Andesite | -greyish mottled, bleachy appearance, Dacite-Andesite -‘+60 to 70’ degrees quartz vein ( 2 mm ) <br> -potassic inclusions in the quartz vein at 56.90 m depth -thick quartz vein ( 1 cm ), with mafic material leaching in it. <br> -no mineralization seen in this section | 0.53 | 27834 | nil |
|  | 57.92 | 58.43 | Andesite | -dark green, fine grained, Andesite - +60 to 65 ' degrees quartz vein ( $1-5 \mathrm{~mm}$ ) -calcite filling in the quartz vein -no mineralization seen on the surface | 0.51 | 27835 | nil |
| $\begin{aligned} & \hline \text { Box 11 } \\ & 58.43- \\ & 64.42=5.99 \end{aligned}$ | 58.43 | 59.98 | Andesite | -greyish green, fine grained, Dacite-Andesite <br> -felsic alteration at $58.43-58.61 \mathrm{~m}$. <br> -+60 to 65 ' degrees quartz vein ( 2 mm ) <br> -Thick quartz vein at the end ( 10 cm thick) at 59.78- <br> 59.98 <br> -slaty nature of rock near the thick quartz vein at 59.98 m depth <br> -calcite filling in the quartz vein <br> -no mineralization seen on the surface and near the quartz vein | 1.55 | 27836 | nil |
|  | 59.98 | 60.80 | Andesite | -slaty nature, greyish green, fine grained, Andesite -vertical quartz vein ( $2-4 \mathrm{~mm}$ ) <br> -broken quartz pieces of quartz veins mixed with the ground mass (quartz alteration) <br> -clustering of coarse grained pyrite ( $<3 \%$ ) <br> -pyrrohtite patch in the quartz vein <br> -no epidote veining/veinlets | 0.82 | 27837 | nil |


|  | 60.80 | 61.86 | Andesite | -epidote rich, fine grained, green Andesite <br> -thin linear and wavy fractures filled with green matrix (epdote?) <br> -epidote flow rich in sulphides (pyrite and Pyrrohtite) <br> -‘-60 to vertical'quartz vein ( $2-3 \mathrm{~mm}$ ) <br> -broken quartz veins mixed with the ground mass (quartz <br> alteration) at the end of the sample (at 65.49-61.86) <br> -epidote rich flow at $61.49-61.59 \mathrm{~m}$ <br> -medium to coarse grained pyrite and pyrrohtite in the ground mass <br> -concentration of pyrite and pyrrohtite mainly along the epidote, chlorite rich ground mass/flow and around the quartz vein | 1.06 | 27838 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 61.86 | 62.73 | Andesite | -light green, fine grained, epidote rich, Andesite -thin linear and wavy fractures filled with green matrix -no quartz vein in this section -medium to coarse grained pyrite and pyrrohtite -concentration of pyrite and pyrrohtite mainly along the epidote, chlorite rich flow and fractures | 0.87 | 27839 | nil |
|  | 62.73 | 64.42 | Andesite | -epidote rich, fine grained, green Andesite -thin linear and wavy fractures filled with green matrix -good concentration of medium to coarse grained pyrite and pyrrohtite in/along the epidote flow -‘-60’ degrees to vertical quartz vein ( $2-3 \mathrm{~mm}$ ) | 1.69 | 27840 | nil |
| $\begin{aligned} & \hline \text { Box } 12 \\ & \\ & 64.42- \\ & 70.34=5.92 \mathrm{~m} \end{aligned}$ | 64.42 | 66.15 |  | -fine to medium grained, epidote rich, dark to light green Andesite <br> -epidote flow (green matrix) <br> -no quartz vein in this section <br> -concentration of medium to coarse grained pyrite and pyrrohtite in/along the light green, siliceous flow ( $<5 \%$ ) | 1.73 | 27841 | nil |
|  | 66.15 | 67.16 |  | -light grey to greenish, fine grained, quartz rich Andesite (Quartz alteration) <br> -quartz veining and fracture filing with siliceous material -thick quartz vein ( 2 cm ) <br> -calcite filling in the quartz vein <br> -concentration of pyrrohtite mainly along the quartz vein/flow ( $<5 \%$ ) <br> -medium to coarse grained pyrite in the ground mass | 1.01 | 27842 | nil |


|  | 67.16 | 68.69 |  | -light to dark green, medium grained, epidote and silica rich Andesite (Quartz-carbonate alteration) -calcite vein (2mm) <br> -epidote flow and fractures <br> -concentration of pyrrohtite patch within the altered part and quartz vein (light green siliceous part) <br> -quartz vein show K-alteration (pinkish appearance at some spots) <br> -not much mineralization seen in the ground mass | 1.53 | 27843 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 68.69 | 70.34 |  | -light green, fine grained, siliceous Andesite (Quartzcarbonate alteration) <br> -quartz vein shows calcite matrix -epidote flow and fractures filling -concentration of pyrrohtite patch within and around the light green siliceous altered part -quartz vein show pinkish appearance at some places -not much mineralization seen in the ground mass -pyrite clustering within the light green siliceous altered part ( $>5 \%$ mineralization inside the altered part) | 1.65 | 27844 | nil |
| $\begin{aligned} & \text { Box } 13 \\ & \\ & 70.34- \\ & 76.34=6.00 \mathrm{~m} \end{aligned}$ | 70.34 | 72.03 | Andesite | -light green, fine to medium grained, carbonate-epidotesilica rich Andesite (Quartz-carbonate alteration) -fine grains and more alteration in between 70.34 to 71.08 m -medium grained and lesser alteration in between 71.08 to 72.03 m -quartz vein at 71.82 m depth ( 3 cm ) -calcite filling in thick quartz vein -pyrrohtite patch within the thick quartz vein -concentration of pyrrohtite within and around the light green siliceous flow/aleration -not much mineralization seen on the surface but broken piece shows rich pyrite inside the core | 1.69 | 27845 | nil |


|  | 72.03 | 73.41 | Andesite | -fine to medium grained, greyish green, Andesite (Quartz-carbonate alteration) <br> -thin quartz vein ( 1 mm ) at ' -70 ' to vertical dip, calcite filling in the vein, <br> -Quartz-carbonate rich flow at 72.85-72.95 m depth -pyrrohtite concentration within and around the light green siliceous flow/alteration ( $<2 \%$ ) <br> -a few pyrite grains on the surface ( $<1 \%$ ) <br> -not much mineralization seen on the main ground mass <br> but broken piece shows rich sulphides inside the core | 1.38 | 27846 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 73.41 | 74.74 | Andesite | -fine to medium grained, light to dark green, Andesite (Quartz-carbonate alteration) <br> -Quartz-carbonate alteration dominant in between 73.4174.42 m depth <br> -linear, irregular quartz vein ('+40-60' degrees, 2-3 mm thick) <br> -epidote filled/felsic leaching in the fractures <br> -pyrrohtite concentration within the light green siliceous flow/alteration <br> -less alteration in between $74.42-74.73 \mathrm{~m}$ depth <br> -this part is fine grained than the previous part <br> -thin cross cut quartz vein ( 1 mm ) at ',+-45 ' dip, calcite filling in the veins, <br> -pyrrohtite concentration in the light green siliceous fracture filling | 1.33 | 27847 | nil |
|  | 74.74 | 76.34 | Andesite | -fine to medium grained, light to dark green, Andesite with Quartz-carbonate alteration. <br> -carbonate alteration dominate the quartz alteration -linear quartz vein (' $+40,+80$ ' degrees and vertical, 2-4 mm thick), calcite filling in the quartz vein, one quartz vein shows reddish tint (K-alteration) <br> -pyrrohtite patch in the light green siliceous alteration part (<1\%) <br> -pyrite grains are not much seen in this section | 1.60 | 27848 | nil |
| $\begin{aligned} & \text { Box 14 } \\ & 76.34- \\ & 82.29=5.95 \mathrm{M} \end{aligned}$ | 76.34 | 77.33 |  | -medium grained, light green, Andesite with Quartzcarbonate alteration. <br> -minor fractures filled with green matrix/epidotes -carbonate alteration dominate in this section | 0.99 | 27849 | 10 |


|  |  |  |  | -wavy, irregular quartz vein(' +40 degrees) -calcite filling in the quartz vein, -pyrite and pyrrohtite patch in the ground mass (>2\%) -pryrrohtite along the epidote filled fractures |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 77.33 | 78.05 |  | -medium to fine grained, dark green, Andesite with Quartz-carbonate alteration. -minor fractures filled with green matrix/epidotes -carbonate alteration dominate in this section -linear quartz vein(',+-40 to 60 degrees), 2 mm thick -one thick quartz vein ( $\sim 3.5 \mathrm{~cm}$ ) -calcite filling in the quartz vein -no mineralization in the quartz vein -but pyrite concentration near by/around thick quartz vein -epidote/green matrix leaching in the quartz vein | 0.72 | 27850 | 5 |
|  | 78.05 | 78.37 |  | -fine grained, greyish green, compact Rhyolitic flow in between the Andesite mass -quartz matrix in the wavy fractures/flow -vertical smokey quartz vein ( 0.6 cm thick) -pyrrohtite along the smoky quartz vein -not much mineraliztion in the main rock mass | 0.32 | 27851 | nil |
|  | 78.37 | 80.35 |  | -medium grained, light green, Andesite showing Quartzcarbonate alteration. <br> -minor fractures (+40 to 60 degrees) filled with green matrix/epidotes <br> -carbonate alteration (greenish felsic matrix in the fracture) dominate in this section -vertical, wavy quartz vein, 2-4 mm thick -more felsic, light green colour at 79.78-80.35m depth -calcite filling in the quartz vein -mineralization at the periphery of the quartz vein on chloritic grains <br> -pyrrohtite, pyrite concentration near by/around fracture network | 1.98 | 27852 | 18 |
|  | 80.35 | 82.29 |  | -medium grained, light green, Quartz-carbonate alteration in Andesite. <br> -Quartz alteration dominates at this section <br> -linear and wavy quartz vein $9+,-50$ degrees to vertical) | 1.94 | 27853 | 5 |


|  |  |  |  | -thick quartz vein at 82.03-82.11 m depth <br> -calcite filling in the quartz vein <br> -epidote flow (+45 to 60 degrees) <br> -coarse to medium grained pyrite and pyrrohtite clustered <br> around the quartz vein and fracture network |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $82.29-$ <br> $88.17=5.88 \mathrm{~m}$ |  |  |  | -medium grained, light green, Andesite showing Quartz- <br> Borbonate alteration. <br> -minor fractures (+40-60 degrees) filled with green <br> matrix/epidotes <br> -linear quartz vein(‘+,- 80 to vertical), 2-5 mm thick <br> -calcite filling in the quartz vein <br> -quartz and carbonate alteration (greenish felsic matrix in <br> the fracture) both equal in this section <br> -felsic matrix leached out in the quartz vein <br> -fine grained pyrite and pyrrohtitite concentration near <br> by/around fracture network and quartz veining |  |  |  |


|  | 85.58 | 86.70 |  | -fine to medium grained, greyish green, Andesite -minor fractures (+,- 30 to 60 degrees and vertical) filled with green matrix/epidotes <br> -linear quartz vein(‘+,- 70), 2-3 mm thick -reddish tint in the quartz vein (K-alteration?) at 85.92 m depth <br> -calcite and felsic matrix leached out at the periphery of quartz vein. <br> -Fine grained pyrite and pyrrohtite at the ground mass - pyrrohtite patch along the green matrix of fractures/flow. <br> -coarse grained pyrite and pyrrohtitite concentration near by/around fracture network and quartz veining -fine grained, greyish rock in between 86.37-86.70 m depth with coarse grained pyrite and pyrrohtitite concentration | 1.12 | 27856 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 86.70 | 88.17 |  | -fine to medium grained, greyish green, Andesite -minor fractures (+,-60 degrees) filled with green matrix/epidotes <br> -pyrrohtite concentration along these fractures -linear, cross cut quartz vein(',+-60 ), 2 mm thick -calcite and felsic matrix leached out at the periphery of quartz vein. <br> -pyrrohtite patch along the quartz vein in felsic leaching -reddish tint in the quartz vein (K-alteration?) at 87.4987.59 m depth <br> -Fine to coarse grained pyrite and pyrrohtite at the ground mass ( $<1 \%$ ) | 1.47 | 27857 | nil |


| Box 16 88.17- $94.1=5.93 \mathrm{~m}$ | 88.17 | 89.75 |  | -medium grained, light green, Andesite -variation in this section can be discussed in two sections -(i) in between 88.17-89.17 m depth: quartz dominated alteration, medium grained green colour rock (Andesite) <br> -mainly ' -50 to 80 degrees' $2-5 \mathrm{~mm}$ thick quartz vein, -+40 ' quartz vein, one thick quartz vein ( 2 cm ) -smokey quartz in the vein <br> -big pyrrohtite patch and pyrite grains clustering around the quartz vein -calcite filling in the vein and felsic matrix leached out at the periphery of quartz vein. <br> -(ii) in between 89.17-89-75 m depth: -medium grained, light green, not much altered Andesite -one quartz (' +60 ' degrees) and one calcite vein ( ${ }^{\circ}-60$ ' degrees) <br> -pyrrohtite patch along the light green altered patch | 1.58 | 27858 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 89.75 | 91.36 |  | -medium grained, light greenish grey, Andesite (dacitic) -variation in this section, can be described in three parts <br> (i) 89.75-90.22: quartz alteration: <br> quartz vein ' -70 ' degrees to vertical <br> -more altered part is 90.12 to 90.22 m depth, with quartz zoning <br> -pyrrohtite patch in this altered zone <br> (ii) $90.72-91.04 \mathrm{~m}$ depth <br> -light green, porphyritic andesite-dacite rock <br> -less alteration <br> -thin, wavy, broken quartz vein <br> -fine grained pyrrohtite in the ground mass <br> -pyrrohtite concentration along the green matrix filled in fractures <br> (iii) 91.04-91.12m: <br> -quartz dominated alteration, medium grained greyish rock (Dacite-Andesite) <br> -pyrrohtite clustering in the quartz rich part | 1.61 | 27859 | 139 |





|  | 106.38 | 107.56 |  | -fine grained, grey, silica rich, dacitic-Rhyoltic rock -siliceous alteration (focus point for hydrothermal event) at 106.88-106.18 m depth, fine to medium sulphide concentration ( $>2 \%$ ) in this zone, quartz vein ( ${ }^{〔}-50$ to 60 ' degrees, $3-4 \mathrm{~m}$ thick), smokey quartz and calcite filling in these veins, Ochre natured dacitic rock at the focal part -quartz vein (',$+ 30-50$ ' degrees and vertical around the alteration zone with calcite and chlorite filling in it. 2-3 mm thick) <br> -pyrrohtite in chlorite and calcite filling in the vein -medium to fine grained pyrite, pyrrohtite in the ground mass | 1.1 | 27875 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 107.56 | 108.35 |  | -fine grained, grey, dacitic rock <br> -quartz vein (',$+ 30-50$ ', '-20 to 30 ' degrees and vertical -smokey quartz, chlorite, epidote and calcite filling in the quartz vein -no mineralization around vein and in the ground mass | 0.79 | 27876 | <5 |
|  | 108.35 | 109.04 |  | -fine to medium grained, greyish green, andesitic rock -dark green, epidote, chlorite rich flow at 108.50 to 108.64 m depth <br> -quartz vein (' +40 ' degrees, $2-5 \mathrm{~mm}$ thick), calcite and chlorite filling in it. <br> -matrix filled minor dense fracturing around the flow -pyrrohtite patch along the flow in chloritic, epidotic mass <br> -medium gained pyrite in the fracture network | 0.69 | 27877 | <5 |
|  | 109.04 | 110.08 |  | -medium grained, light green, porphyritic, andesitic rock -quartz vein ( ${ }^{\circ}-40$ to 70 ' degrees, 2-7 mm thick), calcite filling in it. <br> -epidote fracture ( ${ }^{+}+20$ to 40 ' degrees, 1 mm thick) -medium to coarse grained pyrite, pyrrohtite in the ground mass ( $>2 \%$ ) | 1.04 | 27878 | <5 |
|  | 110.08 | 110.78 |  | -fine grained, light to dark green, andesitic rock -quartz vein (',+-50 to 70 ' degrees, 2-5 mm thick), calcite filling and epidote leaching in the quartz vein -medium to coarse grained pyrite, pyrrohtite in the ground mass (>2\%) | 0.60 | 27879 | <5 |
|  | 110.78 | 111.98 |  | -fine grained, dark green, andesite rock | 1.20 | 27880 | <5 |


|  |  |  |  | -quartz vein ('- 50 ' degrees, 3 mm thick), calcite filling in the quartz vein -epidote/green mtrix filled minor fractures -epidote rich flow at $111.27-111.46 \mathrm{~m}$ depth <br> -pyrite, pyrrohtite around the flow -medium to coarse grained pyrite, pyrrohtite in the ground mass ( $<2 \%$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Box } 20 \\ & 111.98- \\ & 117.89=5.91 \\ & 11 \end{aligned}$ | 111.98 | 113.87 |  | -fine to medium grained, dark green, fractured, carbonate rich andesitic rock <br> -epidote/green matrix filled minor fractures -quartz vein ( ${ }^{-}-60$ to +30 ' degrees, $1-3 \mathrm{~mm}$ thick), smokey quartz calcite filling in the quartz vein -pyrite, pyrrohtite along the fractures ( $<3 \%$ ) -coarse grained pyrite, pyrrohtite along the quartz veins | 1.89 | 27881 | <5 |
|  | 113.87 | 114.97 |  | -fine to medium grained, light green, fractured, quartzcarbonate altered Andesitic rock <br> -highly fractured (thin fractures) <br> -epidote/green matrix filled in fractures <br> -quartz vein ( ${ }^{-}-60$ to +80 ' degrees, $1-3 \mathrm{~mm}$ thick), <br> -smokey quartz, chlorite and calcite filling in the quartz vein <br> -coarse grained pyrite, pyrrohtite in the quartz veins on chloritic/epidotic grains <br> -fine grained pyrite in the ground mass( $<3 \%$ ) | 1.10 | 27882 | <5 |
|  | 114.97 | 115.10 |  | -fine to medium grained, dark green, quartz rich, altered andesitic rock <br> -quartz vein (' ${ }^{-}$60' degrees, $3-5 \mathrm{~mm}$ thick), <br> -smokey quartz, chlorite and calcite filling in the quartz vein <br> -coarse grained pyrite, pyrrohtite in the quartz veins on chloritic/epidotic grains <br> -fine grained pyrite in the ground mass(>2\%) | 0.13 | 27883 | <5 |


|  | 115.48 | 116.42 | -fine to medium grained, light green, quartz-carbonate altered andesitic rock <br> -quartz vein (‘+,- 60’ degrees, 1-2 mm thick), <br> -smokey quartz, chlorite and calcite filling in the quartz vein <br> -medium grained pyrite, pyrrohtite in the quartz veins on chloritic/epidotic grains <br> -fine grained pyrite in the ground mass(<2\%) | 0.94 | 27884 | <5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 116.42 | 117.89 | -medium grained, dark green, porphyritic andesitic rock -quartz vein ('+ 70 to 80 ’ degrees, $1-2 \mathrm{~mm}$ thick), <br> -smokey quartz, chlorite and calcite in the quartz vein -medium grained pyrite, pyrrohtite in the quartz veins on chloritic/epidotic grains <br> -fine to medium grained pyrite in the ground mass ( $>2 \%$ ) | 1.47 | 27885 | <5 |
|  | 115.10 | 115.48 | -fine grained, light green, highly fractured, quartzcarbonate altered Andesitic rock -highly fractured (thin fractures) <br> -epidote/green matrix filled in fractures <br> -a patch of pyrrohtite seen along the fracture <br> -no mineralization in the ground mass | 0.38 | 27786 | $<5$ |
| $\begin{aligned} & \hline \text { Box } 21 \\ & 117.89- \\ & 123.87=5.98 \\ & \hline \end{aligned}$ | 117.89 | 118.22 | -fine to medium grained, dark green, Andesitic rock -quartz vein ( $‘+,-70$ to 80 ' degrees, $1-2 \mathrm{~mm}$ thick) -fine gained pyrite and pyrrohtite in the ground mass (>2\%) | 0.33 | 27887 | <5 |
|  | 118.22 | 119.62 | -medium grained, spotty appearance, grey, Rhyolitic rock (Dacite?) <br> -one calcite filled quartz vein ('-60' degrees, 2 mm thick) -fine to coarse grained pyrite and pyrrohtite in the ground mass ( $>3 \%$ ) | 1.40 | 27888 | <5 |
|  | 119.62 | 120.79 | -dark green, medium grained, (porphyritic) Andesitic rock <br> -calcite filled quartz veins (',+-60 to 70 ' degrees, $1-2 \mathrm{~mm}$ thick) <br> -epidote rich flow at 119.90-120-20 m depth <br> -no mineralization in the main ground mass <br> -pyrite and pyrrohtite along the flow | 1.17 | 27889 | <5 |
|  | 120.79 | 121.26 | -light green, fine grained, quartz (dominant) carbonate alteration | 0.47 | 27890 | nil |



|  | 124.6 | 126.23 | -light to dark green, medium grained, Andesite -chlorite and epidote filled fractures -calcite filled quartz veins (' +40 to 50 ’ degrees, $1-2 \mathrm{~mm}$ ) -fine grained pyrite and pyrrohtite along the fractures -no mineralization in the in the ground mass | 1.63 | 27898 | nil |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 126.23 | 126.95 | -dark greyish green, medium grained, Dacitic-Rhyoltic -chlorite and epidote filled fractures <br> - many calcite filled quartz veins (‘+,-50’ degrees, and vertical $1-2 \mathrm{~mm}$ ) <br> -fine to coarse grained pyrite and pyrrohtite in the ground mass | 0.72 | 27899 | nil |
|  | 126.95 | 128.89 | -grey, medium grained, spotty appearance, hard, DaciticRhyoltic rock -number of quartz veins, calcite filled quartz veins ('+ +50 to 70 ' degrees, and vertical $2-3 \mathrm{~mm}$ ) <br> -fine to coarse grained pyrite and pyrrohtite around the quartz vein | 1.94 | 27900 | nil |
|  | 128.89 | 129.45 | -fine grained, grey, hard, Dacitic-Rhyoltic rock -few quartz veins (calcite filled, ‘-50, +30 ’ degrees, 2 mm ) <br> -concentration of fine to coarse grained pyrite and pyrrohtite around the quartz vein at some spots at 128.96-129 m depth | 0.56 | 28001 | nil |
|  | 129.45 | 129.85 | -medium grained, greyish green, Andesitic rock -concentration of coarse grained pyrite and pyrrohtite at $129.73-129.85 \mathrm{~m}$ depth | 0.40 | 28002 | nil |
| $\begin{aligned} & \text { Box } 23 \\ & 129.85- \\ & 135.71=5.86 \mathrm{~m} \end{aligned}$ | 129.85 | 130.55 | -dark green, medium grained, Andesite -not many veins and factures in this section -calcite filled quartz veins ( -70 ' degrees, 2 mm ) -coarse grained pyrite and pyrrohtite in the ground mass (<2\%) | 0.70 | 28003 | nil |
|  | 130.55 | 131.41 | -light green, medium grained, spherulitic, quartz altered, Andesite <br> -quartz veins ('+40 to 70' degrees, $2-3 \mathrm{~mm}$ ) <br> -2 mm diameter of spherulites <br> -epidote filled minor fractures <br> -pyrite and pyrrohtite along the fractures $(<2 \%)$ | 0.86 | 28004 | 5 |


|  | 131.41 | 132.64 | -light green, medium to fine grained, fractured, quartzcarbonate altered, Andesite <br> -quartz veins (' +50 to 70 ' degrees, 2 mm ) <br> - epidote, felsic filling in minor fractures <br> -pyrite and pyrrohtite along the fractures and in the ground mass ( $<3 \%$ ) | 1.23 | 28005 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 132.64 | 133.46 | -light to dark green, medium grained, porphyritic, spherulitic, Andesite <br> -a few quartz veins ( ${ }^{\prime}+30$ to 40 'degrees, 2 mm ) <br> -epidote, in minor fractures (a few) <br> -coarse grained pyrite at 132.91 m depth, around/along a flow <br> -no mineralization in the ground mass | 0.82 | 28006 | nil |
|  | 133.46 | 134.25 | -dark green, medium grained, epidote rich Andesite -thick quartz vein near the flow (' +30 'degrees, 3 cm ) -no mineralization in the quartz vein -epidote blotting effect on the surface, filling in minor fractures and around periphery of quartz vein -pyrite, pyrrohtite concentration along the flow at 133.96-134.01 m depth $m$ depth <br> -no mineralization in the ground mass | 0.79 | 28007 | nil |
|  | 134.25 | 134.68 | -light to dark green, medium grained, porphyritic, spherultic Andesite -one quartz veins ( ${ }^{-}-70$ ’, 3 mm ) -epidote in minor fractures (a few) -fine grained pyrite and pyrrohtite along the fractures -no mineralization in the ground mass | 0.43 | 28008 | 6 |
|  | 134.68 | 135.19 | -greyish green, fine grained Andesite <br> -one quartz veins ( ${ }^{-}-70$ ', 5 mm ) <br> -fine grained pyrite and pyrrohtite in the ground mass ( $<2 \%$ ) | 0.51 | 28009 | nil |
|  | 135.19 | 135.71 | -light to dark green, medium grained, porphyritic, Andesite -epidote filling in minor fractures (a few fractures) -fine grained pyrite and pyrrohtite patch along the fractures and in the ground mass ( $<3 \%$ ). | 0.52 | 28010 | nil |
| Box 24 | 135.71 | 137.01 | -light to dark green, medium grained, fractured porphyritic, Andesite (altered) | 1.30 | 28011 | nil |



|  | 143.05 | 143.99 |  | -grey, fine grained, silica rich, brecciated flow, Dacitic- <br> Rhyoltic rock? <br> -fine and coarse grained pyrite crystals and pyrrohtite <br> patch along the flow (<2\%). | 0.94 | 28019 | $<5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 143.99 | 145.69 |  | -grey, fine grained, silica rich flow, Rhyolitic-Dacitic <br> flow. <br> -quartz vein ‘-70 to +50' degrees, calcite filling in the <br> vein <br> -fine grained pyrite crystals and pyrrohtite patch along <br> the vein/flow (<1\%). | 1.70 | 28020 | $<5$ |
|  | 145.69 | 146.40 |  | -grey, fine grained, silica rich, Rhyolitic flow. <br> -quartz vein ‘-40 to -70'degrees (2mm -3 cm thick), <br> calcite and epidote filling in the quartz vein <br> -fine grained pyrite crystals and pyrrohtite around the <br> vein(<1\%). | 0.71 | 28021 | $<5$ |
|  | 146.40 | 146.87 |  | -grey, fine grained, silica rich, Rhyolitic flow. <br> -quartz vein '+40 to -70'degrees (2 mm to 5 mm), calcite <br> filling in the vein <br> -fine grained pyrite crystals and pyrrohtite in the quartz <br> vein(<3\%). | 0.47 | 28022 | 218 |
|  | 146.87 | 147.13 |  | -greyish green, fine grained, silica rich, dacitic-Andesite <br> rock. <br> -fine to coarse grained pyrite crystals and pyrrohtite in <br> the ground mass and rich in the flow (<3\%). | 0.26 | 28023 | nil |



## Loring Laboratories Ltd. <br> 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 <br> Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date: Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $31-266$ |  |
| $31-268$ | $<5$ |
| $31-269$ | $<5$ |
| $31-270$ | $<5$ |
| $33-228$ | $<5$ |
| $33-229$ | $<5$ |
| $33-230$ | $<5$ |
| $33-231$ | $<5$ |
| $33-232$ | $<5$ |
| $33-233$ | $<5$ |
| $33-235$ | $<5$ |
| $33-236$ | $<5$ |
| $33-237$ | $<5$ |
| $33-239$ | $<5$ |
| $33-240$ | $<5$ |
| $33-241$ | $<5$ |
| $33-246$ | $<5$ |
| $33-247$ | $<5$ |
| $33-248$ | $<5$ |
| $33-250$ | $<5$ |
| $33-251$ |  |
| $33-252$ |  |
| $33-253$ |  |
| $33-254$ |  |
| $33-256$ |  |
| $33-257$ |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described sampies:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 6


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date: Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $33-259$ |  |
| $33-260$ |  |
| $33-261$ | $<5$ |
| $33-263$ | $<5$ |
| $33-264$ | 9 |
| $33-266$ | $<5$ |
| $33-267$ | $<5$ |
| $33-268$ | $<5$ |
| $33-269$ |  |
| $33-270$ | 10 |
| $86-233$ | $<5$ |
| $86-235$ | $<5$ |
| $86-237$ | $<5$ |
| $86-239$ | $<5$ |
| $86-241$ | 11 |
| $86-243$ | 9 |
| $86-245$ | 8 |
| $86-247$ | $<5$ |
| $86-249$ | $<5$ |
| $86-251$ | $<5$ |
| $86-254$ | $<5$ |
| $86-255$ |  |
| $86-260$ |  |
| $86-261$ |  |
| $86-263$ |  |
| $86-265$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 86-268 | < 5 |
| 86-272 | < |
| 86-273 | < |
| 86-275 | < |
| 86-277 | $<5$ |
| 86-281 | < |
| 86-291 | < 5 |
| 86-292 | <5 |
| 90-223 | $<5$ |
| 90-225 | $<5$ |
| 90-226 | $<5$ |
| 90-229 | 5 |
| 90-231 | <5 |
| 90-233 | $<5$ |
| 90-234 | $<5$ |
| 90-235 | $<5$ |
| 90-239 | $<5$ |
| 90-241 | $<5$ |
| 90-243 | <5 |
| 90-245 | 10 |
| 90-247 | $<5$ |
| 90-249 | 9 |
| 90-251 | 22 |
| 90-253 | $<5$ |
| 90-255 | < |
| 90-257 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample | Gold <br> No. |
| :---: | :---: |
|  |  |
|  |  |
| peochem Analysis" |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights PI.,
Airdire, Alberta
Date : Sept 20, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $98-239$ |  |
| $98-241$ | $<5$ |
| $98-243$ | $<5$ |
| $98-245$ | $<5$ |
| $98-247$ | $<5$ |
| $98-248$ | $<5$ |
| $98-251$ | $<5$ |
| $98-252$ | $<5$ |
| $98-253$ | $<5$ |
| $98-254$ | $<5$ |
| $98-257$ | $<5$ |
| $98-259$ | 8 |
| $98-261$ | $<5$ |
| $98-265$ | $<5$ |
| $98-269$ | $<5$ |
| $98-270$ | $<5$ |
| $98-271$ | $<5$ |
| $98-272$ | 50 |
| $98-273$ | $<5$ |
| $98-274$ |  |
| $98-275$ | $<5$ |
| $102-239$ | $<5$ |
| $102-240$ |  |
| $102-245$ |  |
| $102-247$ |  |
| $102-252$ |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3

File No : 49997
Date : Sept 20, 2007
Samples: Soil

Attn: David Gibson
Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $102-253$ |  |
| $102-255$ | $<5$ |
| $102-257$ | $<5$ |
| $102-261$ | $<5$ |
| $102-262$ | $<5$ |
| $102-263$ | $<5$ |
| $102-265$ | $<5$ |
| $102-268$ | $<5$ |
| $102-269$ | $<5$ |
| $102-271$ | $<5$ |
| $106-223$ | $<5$ |
| $106-227$ | $<5$ |
| $106-229$ | $<5$ |
| $106-231$ | $<5$ |
| $106-233$ | $<5$ |
| $106-241$ | $<5$ |
| $106-242$ | $<5$ |
| $106-243$ | $<5$ |
| $106-245$ | $<5$ |
| $106-249$ | $<5$ |
| $106-250$ | $<5$ |
| $106-251$ |  |
| $106-253$ |  |
| $106-255$ |  |
| $106-257$ |  |
| $106-258$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date: Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $106-261$ |  |
| $106-264$ | $<5$ |
| $106-265$ | $<5$ |
| $106-267$ | $<5$ |
| $106-269$ | $<5$ |
| $106-271$ A | $<5$ |
| $106-271$ B | $<5$ |
| $106-272$ | $<5$ |
| $106-274$ | $<5$ |
| $106-277$ | $<5$ |
| $110-218$ | $<5$ |
| $110-222$ | $<5$ |
| $110-240$ | $<5$ |
| $110-241$ | $<5$ |
| $110-242$ | $<5$ |
| $110-243$ | $<5$ |
| $110-244$ | $<5$ |
| $110-254$ | $<5$ |
| $110-255$ | $<5$ |
| $110-257$ | $<5$ |
| $110-259$ | $<5$ |
| $110-261$ |  |
| $110-263$ |  |
| $110-265$ |  |
| $110-267$ |  |
| $110-269$ |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-054 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $110-271$ |  |
| $110-273$ | $<5$ |
| $110-275$ | $<5$ |
| $110-276$ | $<5$ |
| $110-277$ | $<5$ |
| $110-278$ | $<5$ |
| $110-283$ | $<5$ |
| $110-285$ | $<5$ |
| $110-287$ | $<5$ |
| $110-289$ | $<5$ |
| $110-291$ | 6 |
| $110-292$ | $<5$ |
| $114-218$ | $<5$ |
| $114-219$ | $<5$ |
| $114-221$ | $<5$ |
| $114-247$ | $<5$ |
| $114-248$ | $<5$ |
| $114-249$ | $<5$ |
| $114-250$ | $<5$ |
| $114-251$ | $<5$ |
| $114-252$ | $<5$ |
| $114-255$ |  |
| $114-257$ |  |
| $114-263$ |  |
| $114-266$ |  |
| $114-267$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $114-268$ |  |
| $114-269$ | $<5$ |
| $114-271$ | $<5$ |
| $114-273$ | $<5$ |
| $114-275$ | $<5$ |
| $114-277$ | $<5$ |
| $114-279$ | $<5$ |
| $114-281$ | $<5$ |
| $114-283$ | $<5$ |
| $114-285$ | $<5$ |
| $114-287$ | $<5$ |
| $114-288$ | $<5$ |
| $114-291$ | $<5$ |
| $114-292$ | $<5$ |
| $118-244$ | $<5$ |
| $118-245$ | $<5$ |
| $118-247$ | $<5$ |
| $118-249$ | $<5$ |
| $118-251$ | $<5$ |
| $118-253$ | $<5$ |
| $118-255$ | $<5$ |
| $118-256$ |  |
| $118-257$ |  |
| $118-258$ |  |
| $118-263$ |  |
| $116-266$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $118-267$ |  |
| $118-269$ | $<5$ |
| $118-271$ | $<5$ |
| $118-273$ | $<5$ |
| $118-275$ | $<5$ |
| $118-277$ | $<5$ |
| $118-279$ | $<5$ |
| $118-281$ | $<5$ |
| $118-283$ | $<5$ |
| $118-284$ | $<5$ |
| $118-288$ | $<5$ |
| $118-291$ | 7 |
| $118-292$ | $<5$ |
| $122-244$ | $<5$ |
| $122-245$ | $<5$ |
| $122-246$ | $<5$ |
| $122-247$ | $<5$ |
| $122-249$ | $<5$ |
| $122-251$ | $<5$ |
| $122-253$ | 9 |
| $122-259$ | $<5$ |
| $122-260$ |  |
| $122-261$ |  |
| $122-282$ |  |
| $122-265$ |  |
| $122-266$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 15


## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.<br>File No : 49997<br>6 Jensen Heights PI., Airdire, Alberta<br>Date : Sept 20, 2007<br>Samples: Soil<br>T4B 2J3<br>Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $122-270$ |  |
| $122-271$ | $<5$ |
| $122-273$ | $<5$ |
| $122-275$ | $<5$ |
| $122-277$ | $<5$ |
| $122-279$ | $<5$ |
| $122-281$ | $<5$ |
| $122-283$ | $<5$ |
| $122-285$ | $<5$ |
| $122-287$ | $<5$ |
| $122-291$ | $<5$ |
| $122-292$ | $<5$ |
| $138-220$ | $<5$ |
| $138-221$ | 6 |
| $138-222$ | $<5$ |
| $138-225$ | $<5$ |
| $138-226$ | $<5$ |
| $138-227$ | $<5$ |
| $138-241$ | 8 |
| $138-245$ | $<5$ |
| $138-246$ |  |
| $138-251$ | $<5$ |
| $138-252$ | $<5$ |
| $138-253$ |  |
| $138-254$ |  |
| $138-255$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 138-257 | $<5$ |
| 138-259 | $<5$ |
| 138-262 | <5 |
| 138-263 | $<5$ |
| 138-265 | < |
| 138-267 | $<5$ |
| 138-268 | $<5$ |
| 138-269 | $<5$ |
| 138-272 | <5 |
| 138-273 | 22 |
| 138-277 | 36 |
| 138-279 | < |
| 138-281 | $<5$ |
| 138-283 | $<5$ |
| 138-285 | $<5$ |
| 138-287 | $<5$ |
| 138-289 | $<5$ |
| 138-291 | $<5$ |
| 138-292 | <5 |
| 146-165 | $<5$ |
| 146-168 | $<5$ |
| 146-169 | <5 |
| 146-171 | <5 |
| 146-173 | $<5$ |
| 146-175 | 9 |
| 146-178 | 10 |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights PI., Airdire, Alberta

Date : Sept 20, 2007
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Goid <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $146-179$ |  |
| $146-181$ | $<5$ |
| $146-183$ | $<5$ |
| $146-185$ | $<5$ |
| $146-187$ | $<5$ |
| $146-189$ | $<5$ |
| $146-191$ | $<5$ |
| $146-193$ | $<5$ |
| $146-194$ | $<5$ |
| $146-199$ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


[^0]

File No : 49846
Date : July 31, 2007
Samples: Core
Project
P.O.\#

## Certificate of Assay



To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2.J3
ATTN: Dave Gibson


File No
49846
Date: July 31, 2007
Samples: Core
Project
P.O.\#

## Certificate of Assay <br> Loring Laboratories Ltd.

629 Beaverdam Road. NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax (403)275-0541


To.: WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


Certificate of Assay Loring Laboratories Ltd. 629 Beaverdam Road. NE Calgary Alberta T2K AW7 Tel: (403)274-2777 Fexc (403)275-0541


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


Certificate of Assay Loring Laboratories Ltd.
629 Beaverdam Road, NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax. (403)275-0541

| Sample No. | $\begin{gathered} \hline \mathbf{p p b} \\ \mathbf{A u} \\ \hline \end{gathered}$ |
| :---: | :---: |
| 27657 | <5 |
| 27658 | <5 |
| 27659 | 30 |
| 27660 | <5 |
| 27661 | < |
| 27662 | <5 |
| 27663 | < |
| 27664 | <5 |
| 27665 | <5 |
| 27666 | <5 |
| 27667 | <5 |
| 27668 | < |
| 27669 | <5 |
| 27670 | < |
| 27671 | < |
| 27672 | <5 |
| 27673 | <5 |
| 27674 | <5 |
| 27675 | <5 |
| 27676 | <5 |
| 27677 | <5 |
| 27678 | <5 |
| 27679 | <5 |
| 27680 | 84 |
| 27681 | < |
| I HEREBY CERTIFY made by me upon |  |

To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd.
629 Beeverdam Road, NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax: (403)275-0547

| Sample No. | $\begin{array}{r} \mathbf{p p b} \\ \mathrm{Au} \end{array}$ | $\begin{aligned} & \hline \mathbf{p b} \\ & \mathrm{Au} \end{aligned}$ |
| :---: | :---: | :---: |
| 27682 |  | <5 |
| 27683 |  | <5 |
| 27684 |  | <5 |
| 27685 | 198 | 88 |
| 27686 |  | < |
| 27687 |  | $<5$ |
| 27688 |  | < |
| 27689 |  | < |
| 27690 |  | < |
| 27691 |  | 5 |
| 27692 |  | < |
| 27693 |  | 5 |
| 27694 |  | 5 |
| 27695 |  | 5 |
| 27696 |  | 5 |
| 27697 |  | 5 |
| 27698 | 2058 |  |
| 27699 | 19 | 9 |
| 27700 | 19 | 9 |
| 27701 |  | 5 |
| 27702 |  | 5 |
| 27703 |  | 5 |
| 27704 | <5 | 5 |
| 27705 | <5 | 5 |
| 27706 |  | 5 |
| I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples : |  |  |

[^1]To: WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road. NE Calgary Abberta T2K 4W7
Tel: (403)274-2777 Fax (403)275-0541


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax: (403)275-0541


To : W'ARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

 Loring Laboratories Ltd.629 Beaverdam Road. NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax: (403)275-0541

| Sample No. | $\begin{array}{r} \hline \mathrm{ppb} \\ \mathrm{Au} \end{array}$ |
| :---: | :---: |
| 27606 | 33 |
| 27607 | 20 |
| 27608 | 41 |
| 27609 | 774 |
| 27610 | 311 |
| 27611 | 496 |
| 27612 | 803 |
| 27613 | 65 |
| 27614 | 29 |
| 27615 | 14 |
| 27616 | 25 |
| 27617 | <5 |
| 27618 | <5 |
| 27619 | 11 |
| 27620 | 9 |
| 27621 | 8 |
| 27622 | 5 |
| 27623 | <5 |
| 27624 | <5 |
| 27625 | 13 |
| 27626 | <5 |
| 27627 | <5 |
| 27628 | <5 |
| 27629 | 11 |
| 27630 | <5 |
| I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples : |  |

To: W'ARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

## Loring Laboratories Ltd.

629 Beaverdam Road, NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax (403)275-0541


To : W'ARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd. 629 Beeverdam Road. NE Calgary Alberta. T2K 4W7

Tel: (403)274-2777 Fax (403)275-0541


To : WंARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


File No : 49846
Date : July 31, 2007
Samples: Core
Project
P.O.\#

## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road. NE Calgary Alberta T2K 4W/7
Tel: (403)274-2777 Fax: (403)275-0541


[^2]To : ẀARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson

Certificate of Assay
Loring Laboratories Ltd.
629 Beaverdam Road. NE Calgary Alberta T2K 4 W 7
Tel: (403)274-2777 Fax: (403)275-0541


- To : WARRIOR VENTURES INC.

6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


Certificate of Assay Loring Laboratories Ltd.

## 629 Beaverdam Pioad. NE Calgary Alberta T2K 4W7

Tel: (403)274-2777 Fax. (403)275-0541


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

- To : WARRIOR VENTURES INC.

6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road, NE Calgary Aberta T2K 4W7
Tel: (403)274-2777 Fox: (403)275-0541


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49997

T4B 2J3
Attn: David Gibson

Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis"' |  |
| 23-269 | $<5$ |
| 23-270 | <5 |
| 31-229 | < |
| 31-230 | < |
| 31-233 | < 5 |
| 31-234 | < |
| 31-237 | < |
| 31-238 | $<5$ |
| 31-239 | $<5$ |
| 31-240 | < |
| 31-241 | $<5$ |
| 31-242 | $<5$ |
| 31-243 | $<5$ |
| 31-245 | $<5$ |
| 31-246 | $<5$ |
| 31-248 | $<5$ |
| 31-251 | $<5$ |
| 31-252 | $<5$ |
| 31-253 | <5 |
| 31-254 | $<5$ |
| 31-255 | $<5$ |
| 31-256 | < |
| 31-259 | < |
| 31-261 | < |
| 31-262 | < 5 |
| 31-263 | < |
| I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples: |  |
|  |  |

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $31-266$ |  |
| $31-268$ | $<5$ |
| $31-269$ | $<5$ |
| $31-270$ | $<5$ |
| $33-228$ | $<5$ |
| $33-229$ | $<5$ |
| $33-230$ | $<5$ |
| $33-231$ | $<5$ |
| $33-232$ | $<5$ |
| $33-233$ | $<5$ |
| $33-235$ | $<5$ |
| $33-236$ | $<5$ |
| $33-237$ | $<5$ |
| $33-239$ | $<5$ |
| $33-240$ | $<5$ |
| $33-241$ | $<5$ |
| $33-246$ |  |
| $33-247$ | $<5$ |
| $33-248$ |  |
| $33-250$ |  |
| $33-251$ |  |
| $33-252$ |  |
| $33-253$ |  |
| $33-254$ |  |
| $33-256$ |  |
| $33-257$ |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $33-259$ |  |
| $33-260$ | $<5$ |
| $33-261$ | $<5$ |
| $33-263$ | $<5$ |
| $33-264$ | 9 |
| $33-266$ | $<5$ |
| $33-267$ | $<5$ |
| $33-268$ | $<5$ |
| $33-269$ | 10 |
| $33-270$ | $<5$ |
| $86-233$ | $<5$ |
| $86-235$ | $<5$ |
| $86-237$ | $<5$ |
| $86-239$ | 11 |
| $86-241$ | 9 |
| $86-243$ | 8 |
| $86-245$ | $<5$ |
| $86-247$ | $<5$ |
| $86-249$ | $<5$ |
| $86-251$ | $<5$ |
| $86-254$ |  |
| $86-255$ |  |
| $86-260$ |  |
| $86-261$ |  |
| $86-263$ |  |
| $86-265$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3

File No : 49997
Date : Sept 20, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $86-268$ |  |
| $86-272$ | $<5$ |
| $86-273$ | $<5$ |
| $86-275$ | $<5$ |
| $86-277$ | $<5$ |
| $86-281$ | $<5$ |
| $86-291$ | $<5$ |
| $86-292$ | $<5$ |
| $90-223$ | $<5$ |
| $90-225$ | $<5$ |
| $90-226$ | $<5$ |
| $90-229$ | $<5$ |
| $90-231$ | 5 |
| $90-233$ | $<5$ |
| $90-234$ | $<5$ |
| $90-235$ | $<5$ |
| $90-239$ | $<5$ |
| $90-241$ | $<5$ |
| $90-243$ | $<5$ |
| $90-245$ |  |
| $90-247$ |  |
| $90-249$ |  |
| $90-251$ |  |
| $90-253$ |  |
| $90-255$ |  |
| $90-257$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 8


Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.<br>6 Jensen Heights PI.,<br>Airdire, Alberta<br>T4B 2J3<br>Attn: David Gibson<br>File No : 49997<br>Date : Sept 20, 2007<br>Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
|  |  |
| $90-259$ |  |
| $90-261$ | $<5$ |
| $90-263$ | $<5$ |
| $90-265$ | $<5$ |
| $90-267$ | 10 |
| $90-269$ | $<5$ |
| $90-271$ | 7 |
| $90-273$ | $<5$ |
| $90-276$ | $<5$ |
| $94-220$ | 9 |
| $94-221$ | $<5$ |
| $94-229$ | $<5$ |
| $94-241$ | $<5$ |
| $94-243$ | $<5$ |
| $94-245$ | $<5$ |
| $94-247$ | $<5$ |
| $94-250$ | $<5$ |
| $94-251$ | $<5$ |
| $94-261$ | $<5$ |
| $94-268$ | 8 |
| $94-270$ | $<5$ |
| $94-271$ | $<5$ |
| $94-272$ | $<5$ |
| $94-273$ | $<5$ |
| $98-227$ | $<5$ |
| $98-229$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3

File No : 49997
Date : Sept 20, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $98-239$ |  |
| $98-241$ | $<5$ |
| $98-243$ | $<5$ |
| $98-245$ | $<5$ |
| $98-247$ | $<5$ |
| $98-248$ | $<5$ |
| $98-251$ | $<5$ |
| $98-252$ | $<5$ |
| $98-253$ | $<5$ |
| $98-254$ | $<5$ |
| $98-257$ | $<5$ |
| $98-259$ | 8 |
| $98-261$ | $<5$ |
| $98-265$ | $<5$ |
| $98-269$ | $<5$ |
| $98-270$ | $<5$ |
| $98-271$ | $<5$ |
| $98-272$ | 50 |
| $98-273$ | $<5$ |
| $98-274$ | $<5$ |
| $98-275$ |  |
| $102-239$ | $<5$ |
| $102-240$ | $<5$ |
| $102-245$ |  |
| $102-247$ |  |
| $102-252$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights PI., Date : Sept 20, 2007
Airdire, Alberta
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $102-253$ |  |
| $102-255$ | $<5$ |
| $102-257$ | $<5$ |
| $102-261$ | $<5$ |
| $102-262$ | $<5$ |
| $102-263$ | $<5$ |
| $102-265$ | $<5$ |
| $102-268$ | $<5$ |
| $102-269$ | $<5$ |
| $102-271$ | $<5$ |
| $106-223$ | $<5$ |
| $106-227$ | $<5$ |
| $106-229$ | $<5$ |
| $106-231$ | $<5$ |
| $106-233$ | $<5$ |
| $106-241$ | $<5$ |
| $106-242$ | $<5$ |
| $106-243$ | $<5$ |
| $106-245$ | $<5$ |
| $106-249$ | $<5$ |
| $106-250$ |  |
| $106-251$ |  |
| $106-253$ |  |
| $106-255$ |  |
| $106-257$ |  |
| $106-258$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49997
Date : Sept 20, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 106-261 | $<5$ |
| 106-264 | $<5$ |
| 106-265 | < |
| 106-267 | < |
| 106-269 | < |
| 106-271A | < |
| 106-271B | <5 |
| 106-272 | $<5$ |
| 106-274 | $<5$ |
| 106-277 | $<5$ |
| 110-218 | <5 |
| 110-222 | $<5$ |
| 110-240 | $<5$ |
| 110-241 | $<5$ |
| 110-242 | $<5$ |
| 110-243 | <5 |
| 110-244 | < |
| 110-254 | < |
| 110-255 | $<5$ |
| 110-257 | <5 |
| 110-259 | $<5$ |
| 110-261 | < 5 |
| 110-263 | $<5$ |
| 110-265 | $<5$ |
| 110-267 | <5 |
| 110-269 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3

File No : 49997
Date : Sept 20, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $110-271$ |  |
| $110-273$ | $<5$ |
| $110-275$ | $<5$ |
| $110-276$ | $<5$ |
| $110-277$ | $<5$ |
| $110-278$ | $<5$ |
| $110-283$ | $<5$ |
| $110-285$ | $<5$ |
| $110-287$ | $<5$ |
| $110-289$ | $<5$ |
| $110-291$ | 6 |
| $110-292$ | $<5$ |
| $114-218$ | $<5$ |
| $114-219$ | $<5$ |
| $114-221$ | $<5$ |
| $114-247$ | $<5$ |
| $114-248$ | $<5$ |
| $114-249$ | $<5$ |
| $114-250$ | $<5$ |
| $114-251$ | $<5$ |
| $114-252$ | $<5$ |
| $114-255$ | $<5$ |
| $114-257$ |  |
| $114-263$ |  |
| $114-266$ |  |
| $114-267$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $114-268$ |  |
| $114-269$ | $<5$ |
| $114-271$ | $<5$ |
| $114-273$ | $<5$ |
| $114-275$ | $<5$ |
| $114-277$ | $<5$ |
| $114-279$ | $<5$ |
| $114-281$ | $<5$ |
| $114-283$ | $<5$ |
| $114-285$ | $<5$ |
| $114-287$ | $<5$ |
| $114-288$ | $<5$ |
| $114-291$ | $<5$ |
| $114-292$ | $<5$ |
| $118-244$ | $<5$ |
| $118-245$ | $<5$ |
| $118-247$ | $<5$ |
| $118-249$ | $<5$ |
| $118-251$ | $<5$ |
| $118-253$ |  |
| $118-255$ |  |
| $118-256$ |  |
| $118-257$ |  |
| $118-258$ |  |
| $118-263$ |  |
| $118-266$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 14

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $118-267$ |  |
| $118-269$ | $<5$ |
| $118-271$ | $<5$ |
| $118-273$ | $<5$ |
| $118-275$ | $<5$ |
| $118-277$ | $<5$ |
| $118-279$ | $<5$ |
| $118-281$ | $<5$ |
| $118-283$ | $<5$ |
| $118-284$ | $<5$ |
| $118-288$ | $<5$ |
| $118-291$ | 7 |
| $118-292$ | $<5$ |
| $122-244$ | $<5$ |
| $122-245$ | $<5$ |
| $122-246$ | $<5$ |
| $122-247$ | $<5$ |
| $122-249$ | $<5$ |
| $122-251$ | $<5$ |
| $122-253$ | $<5$ |
| $122-259$ |  |
| $122-260$ |  |
| $122-261$ |  |
| $122-262$ |  |
| $122-265$ |  |
| $122-266$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
| $122-270$ |  |
| $122-271$ | $<5$ |
| $122-273$ | $<5$ |
| $122-275$ | $<5$ |
| $122-277$ | $<5$ |
| $122-279$ | $<5$ |
| $122-281$ | $<5$ |
| $122-283$ | $<5$ |
| $122-285$ | $<5$ |
| $122-287$ | $<5$ |
| $122-291$ | $<5$ |
| $122-292$ | $<5$ |
| $138-220$ | $<5$ |
| $138-221$ | 6 |
| $138-222$ | $<5$ |
| $138-225$ | $<5$ |
| $138-226$ | $<5$ |
| $138-227$ | $<5$ |
| $138-241$ | $<5$ |
| $138-245$ | $<5$ |
| $138-246$ |  |
| $138-251$ | $<5$ |
| $138-252$ |  |
| $138-253$ |  |
| $138-254$ |  |
| $138-255$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 138-257 | $<5$ |
| 138-259 | < |
| 138-262 | $<5$ |
| 138-263 | < |
| 138-265 | $<5$ |
| 138-267 | $<5$ |
| 138-268 | $<5$ |
| 138-269 | $<5$ |
| 138-272 | <5 |
| 138-273 | 22 |
| 138-277 | 36 |
| 138-279 | < |
| 138-281 | < 5 |
| 138-283 | <5 |
| 138-285 | $<5$ |
| 138-287 | < |
| 138-289 | < |
| 138-291 | < 5 |
| 138-292 | <5 |
| 146-165 | < 5 |
| 146-168 | < 5 |
| 146-169 | < |
| 146-171 | < |
| 146-173 | $<5$ |
| 146-175 | 0 |
| 146-178 | 10 |
| I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples: |  |

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights Pl.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |  |
| :---: | :---: | :---: |
| Geochem Analysis" |  |  |
| $146-179$ |  |  |
| $146-181$ |  |  |
| $146-183$ |  |  |
| $146-185$ |  |  |
| $146-187$ |  |  |
| $146-189$ |  |  |
| $146-191$ |  |  |
| $146-193$ |  |  |
| $146-194$ |  |  |
| $146-199$ |  | $<5$ |
|  |  | $<5$ |

[^3]

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights PI.,
Airdire, Alberta
Date : Sept 20, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $17-235$ |  |
| $17-236$ | $<5$ |
| $17-237$ | $<5$ |
| $17-238$ | $<5$ |
| $17-239$ | $<5$ |
| $17-240$ | $<5$ |
| $17-241$ | $<5$ |
| $17-242$ | 42 |
| $17-243$ | $<5$ |
| $17-246$ | $<5$ |
| $17-249$ | $<5$ |
| $17-251$ | $<5$ |
| $17-252$ | $<5$ |
| $17-253$ | $<5$ |
| $17-254$ | $<5$ |
| $17-255$ | $<5$ |
| $17-256$ | $<5$ |
| $17-257$ | $<5$ |
| $17-258$ |  |
| $17-260$ |  |
| $17-261$ |  |
| $17-262$ |  |
| $17-263$ |  |
| $17-264$ |  |
| $17-265$ |  |
| $17-266$ |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $17-267$ |  |
| $19-233$ | $<5$ |
| $19-234$ | $<5$ |
| $19-235$ | $<5$ |
| $19-238$ | $<5$ |
| $19-241$ | $<5$ |
| $19-242$ | $<5$ |
| $19-244$ | $<5$ |
| $19-245$ | $<5$ |
| $19-251$ | $<5$ |
| $19-252$ | $<5$ |
| $19-253$ | $<5$ |
| $19-254$ | $<5$ |
| $19-257$ | $<5$ |
| $19-258$ | $<5$ |
| $19-259$ | $<5$ |
| $19-260$ | $<5$ |
| $19-261$ | $<5$ |
| $19-262$ | $<5$ |
| $19-263$ | $<5$ |
| $19-264$ |  |
| $19-265$ |  |
| $19-266$ |  |
| $19-267$ |  |
| $19-268$ |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3

Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay



[^4]

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights PI.,
Airdire, Alberta
Date : Sept 20, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $23-231$ |  |
| $23-232$ | $<5$ |
| $23-233$ | $<5$ |
| $23-234$ | $<5$ |
| $23-235$ | $<5$ |
| $23-236$ | $<5$ |
| $23-237$ | $<5$ |
| $23-241$ | $<5$ |
| $23-243$ | $<5$ |
| $23-244$ | $<5$ |
| $23-246$ | $<5$ |
| $23-247$ | $<5$ |
| $23-248$ | $<5$ |
| $23-249$ | $<5$ |
| $23-250$ | $<5$ |
| $23-251$ | $<5$ |
| $23-257$ | $<5$ |
| $23-258$ | $<5$ |
| $23-259$ | $<5$ |
| $23-260$ | $<5$ |
| $23-261$ |  |
| $23-262$ |  |
| $23-263$ |  |
| $23-264$ |  |
| $23-265$ |  |
| $23-266$ |  |
|  |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49997
6 Jensen Heights Pl.,
Airdire, Alberta
Date : Sept 20, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $23-269$ |  |
| $23-270$ | $<5$ |
| $31-229$ | $<5$ |
| $31-230$ | $<5$ |
| $31-233$ | $<5$ |
| $31-234$ | $<5$ |
| $31-237$ | $<5$ |
| $31-238$ | $<5$ |
| $31-239$ | $<5$ |
| $31-240$ | $<5$ |
| $31-241$ | $<5$ |
| $31-242$ | $<5$ |
| $31-243$ | $<5$ |
| $31-245$ | $<5$ |
| $31-246$ | $<5$ |
| $31-248$ | $<5$ |
| $31-251$ | $<5$ |
| $31-252$ |  |
| $31-253$ | $<5$ |
| $31-254$ |  |
| $31-255$ | $<5$ |
| $31-256$ |  |
| $31-259$ |  |
| $31-261$ |  |
| $31-262$ |  |
| $31-263$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To : WARRIOR VENTURES INC. 6 Jensen Heights Place Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road, NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax (403)275-0541


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson
File No : 49852
Date : July 31, 2007
Samples: Core
Project
P.O.\#

## Certificate of Assay Loring Laboratories Ltd.

 629 Beaverdam Road. NE Calgary Alberta T2K 4W7 Tel: (403)274-2777 Fax (403)275-0541| Sample No. | ppb |
| :---: | :---: |
|  | Au |
| 27737 |  |
| 27738 | $<5$ |
| 27739 | $<5$ |
| 27740 | $<5$ |
| 27741 | $<5$ |
| 27742 | $<5$ |
| 27743 | $<5$ |
| 27744 | $<5$ |
| 27745 | $<5$ |
| 27746 | $<5$ |
| 27747 | $<5$ |
| 27748 | $<5$ |
| 27749 | $<5$ |
| 27750 | $<5$ |
| 27751 | $<5$ |
| 27752 | $<5$ |
| 27753 | $<5$ |
| 27754 | $<5$ |
| 2775 |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples :


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


Certificate of Assay Loring Laboratories Ltd.
629 Beaverdam Road, NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax (403)275-0541


Tó: WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2.J3
ATTN: Dave Gibson

Certificate of Assay Loring Laboratories Ltd.
629 Beaverdam Road. NE Calgary Alberta T2K 4 W 7
Tel: (403)274-2777 Fex (403)275-0541

| Sample No. | ppb |
| :--- | :--- |
| 27796 |  |
| 27797 |  |
| 27798 |  |
| 27799 |  |
| 27800 |  |
| No \# |  |
| Reju |  |
| I HEREBY CERTIFY that the above results are those assays |  |
| made by me upon the herein described samples : | $<5$ |

## To : WARRIOR VENTURES INC.

6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd. 629 Beaverdam Road, NE Calgary Alberta T2K 4W7

Tel: (403)274-2777 Fax (403)275-0541


To: WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


File No : 49852
Date : July 31, 2007
Samples: Core
Project
P.O.\#

## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road, NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax: (403)275-0541

| Sample No. | $\begin{gathered} \text { ppb } \\ \text { Au } \end{gathered}$ |
| :---: | :---: |
| 27920 | $<5$ |
| 27921 | $<5$ |
| 27922 | $<5$ |
| 27923 | $<5$ |
| 27924 | 182 |
| 27925 | $<5$ |
| 27926 | < 5 |
| 27927 | $<5$ |
| 27928 | $<5$ |
| 27929 | $<5$ |
| 27930 | $<5$ |
| 27931 | $<5$ |
| 27932 | $<5$ |
| 27933 | $<5$ |
| 27934 | $<5$ |
| 27935 | $<5$ |
| 27936 | $<5$ |
| 27937 | $<5$ |
| 27938 | <5 |
| 27939 | 123 |
| 27940 | $<5$ |
| 27941 | $<5$ |
| 27942 | $<5$ |
| 27943 | $<5$ |
| 27944 | $<5$ |
| HEREBY CERTIF made by me upon |  |

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To : WARRIOR VENTURES INC. 6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


Certificate of Assay Loring Laboratories Ltd. 629 Beaverdam Road, NE Calgary Alberta T2K 4W7 Tel: (403)274-2777 Fax (403)275-0541


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road. NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax: (403)275-0541


To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


## Certificate of Assay

Loring Laboratories Ltd.
629 Beaverdam Road. NE Calgary Alberta T2K 4W7
Teil: (403)274-2777 Fax (403)275-0541


To : WARRIOR VENTURES INC.
6 Jensen Heights Place
Airdrie, Alberta
T4B 2J3
ATTN: Dave Gibson


Certificate of Assay
Loring Laboratories Ltd.
629 Beaverdam Road. NE Calgary Alberta T2K 4W7
Tel: (403)274-2777 Fax (403)275-0541

| Sample No. | ppb |  |
| :---: | :---: | :---: |
| 27796 |  |  |
| 27797 |  |  |
| 27798 |  |  |
| 27799 |  |  |
| 27800 | $<5$ |  |
| No\# |  | $<5$ |

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

# Swastika Laboratories Ltd <br> Assaying - Consulting - Representation 

Page 1 of 3
Geochemical Analysis Certificate
7W-3813-RG1
Company: WARRIOR VENTURES LTD
Date: JAN-07-08
Project: McNeil Project
Attn: D. Gibson
We hereby certify the following Geochemical Analysis of 66 Core samples submitted NOV-30-07 by



## Swastika Laboratories Ltd

Assaying - Consulting - Representation

## Geochemical Analysis Certificate

Company: WARRIOR VENTURES LTD

Project: McNeil Project
Attn: D. Gibson
We hereby certify the following Geochemical Analysis of 66 Core samples submitted NOV-30-07 by

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PPM |
| E819973 | 507 | 384 | 0.1 |
| E819974 | 10 |  | 0.1 |
| E819975 | 3 |  | 0.1 |
| E819976 | 5 |  | 0.1 |
| E819977 | NIL |  | 0.1 |
| E819978 | NIL | NIL | 0.1 |
| E819979 | 7 |  | 0.1 |
| E819980 | 3 |  | 0.1 |
| E591198 | NIL |  | 0.1 |
| E591199 | NIL |  | 0.1 |
| E591200 | 5 |  | 0.1 |
| E591032 | 3 |  | 0.1 |
| E591033 | NIL |  | 0.1 |
| E591034 | 7 |  | 0.1 |
| E591035 | NIL |  | 0.1 |
| E591036 | 5 |  | 0.1 |
| E591037 | NIL |  | 0.1 |
| E591038 | 3 |  | 0.1 |
| E591039 | NIL |  | 0.1 |
| E591040 | NIL |  | 0.1 |
| E591041 | 5 |  | 0.1 |
| E591042 | 10 |  | 0.1 |
| E591043 | NIL |  | 0.1 |
| E591044 | 3 |  | 0.1 |
| E591045 | 12 |  | 0.1 |
| E591046 | 81 |  | 0.1 |
| E591047 | 288 |  | 0.1 |
| E591048 | 223 |  | 0.1 |
| E591049 | 254 |  | 0.1 |
| E591050 | 1449 |  | 0.9 |

Established 1928

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

## Geochemical Analysis Certificate

Company: WARRIOR VENTURES LTD
Project: McNeil Project
Attn:
D. Gibson

7W-3813-RG1
Date: JAN-07-08

We hereby certify the following Geochemical Analysis of 66 Core samples submitted NOV-30-07 by .

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PPM |
| E591051 | 463 |  | 0.1 |
| E591052 | 101 |  | 0.1 |
| E591053 | 219 |  | 0.1 |
| E591054 | 891 | 1128 | 0.2 |
| E591055 | 34 |  | 0.1 |
| E591075 | 21 |  | 0.1 |
| Blank | 3 |  |  |
| STD OxK48 | 3483 |  |  |



Established 1928

## Swastika Laboratories Ltd

Assaying - Consulting - Representation
Page 1 of 2
Geochemical Analysis Certificate
7W-3811-RG1

Company: WARRIOR VENTURES INC.
Project: McNeil Project
Attn: D. Gibson
We hereby certify the following Geochemical Analysis of 58 Core samples submitted NOV-30-07 by .

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PPM |
| 27001 | NIL | - | 0.1 |
| 27002 | Nil | - | 0.1 |
| 27003 | 34 | - | 0.1 |
| 27004 | 99 | 161 | 0.1 |
| 27005 | 175 | - | 0.1 |
| 27007 | 82 | - | 0.1 |
| 27008 | 2362 | - | 0.2 |
| 27009 | 192 | - | 0.2 |
| 27010 | 243 | - | 0.2 |
| 27011 | 871 | - | 0.2 |
| 27017 | 363 | 281 | 0.2 |
| 27018 | 473 | - | 0.1 |
| 27019 | 1317 | - | 0.1 |
| 27020 | 384 | - | 0.1 |
| 27021 | 158 | - | 0.1 |
| 27022 | 2146 | - | 0.4 |
| 27023 | 1584 | - | 0.4 |
| 27024 | 1361 | - | 1.3 |
| 27025 | 001 | - | \% 0.1 |
| 27026 | 398 | - | 0.2 |
| 27027 | 559 | 607 | 0.1 |
| 27028 | 213 | - | 0.1 |
| 27029 | 86 | - | 0.1 |
| E591082 | 2225 | - | 0.1 |
| E591083 | 62 | - | 0.1 |
| E591084 | 446 | - | 0.1 |
| E591085 | 285 | - | 0.1 |
| E591086 | 487 | - | 0.1 |
| E591087 | 442 | - | 0.1 |
| E591088 | 1114 | - | 0.1 |



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1 T0
Telephone (705) 642-3244 Fax (705) 642-3300

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Geochemical Analysis Certificate
7W-3811-RG1
Company: WARRIOR VENTURES INC.
Date: JAN-07-08
Project: McNeil Project
Attn: D. Gibson
We hereby certify the following Geochemical Analysis of 58 Core samples submitted NOV-30-07 by


Certified by


## Swastika Laboratories Ltd

Assaying - Consulting - Representation

## Geochemical Analysis Certificate

7W-3816-RG1

| Company: | WARRIOR VENTURES INC. | Date: JAN-02-08 |
| :--- | :--- | :--- |
| Project: | McNeil Project |  |
| Attn: | D. Gibson |  |

We hereby certify the following Geochemical Analysis of 11 Core samples submitted NOV-30-07 by .

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PPM |
| 27040 | 485 | - | 0.1 |
| 27041 | NIL | - | 0.1 |
| 27042 | 70 | - | 0.1 |
| 27043 | 1457 | - | 0.1 |
| 27044 | 39 | - | 0.1 |
| 27045 | NIL | - | 0.1 |
| 27046 | NIL | - | 0.1 |
| 27047 | 213 | 269 | 0.1 |
| 27048 | 351 | - | 0.1 |
| 27049 | 319 | - | 0.1 |
| 27050 | 41 | - | 0.1 |
| Blank | 3 | - | - |
| STD OxK48 | 3634 | - | - |



## Swastika Laboratories Ltd

Assaying - Consulting - Representation
Page 1 of 2

## Geochemical Analysis Certificate

Company: WARRIOR VENTURES INC.
Project: McNeil Project
7W-3812-RG1
Date: JAN-08-08
Attn:
D. Gibson

We hereby certify the following Geochemical Analysis of 54 Core samples submitted NOV-30-07 by .

| Sample <br> Number | PPB | Au Check PPB | Ag <br> PPM |
| :---: | :---: | :---: | :---: |
| E591056 MSSING | -- |  | --- |
| E591057 | 550 |  | 0.1 |
| E591058 | 39 |  | 0.1 |
| E591059 | 14 |  | 0.1 |
| E591060 | NIL |  | 0.1 |
| E591061 | 17 |  | 0.1 |
| E591062 | 7 |  | 0.1 |
| E591063 MISSING | - |  | 0. |
| E591064 | NIL |  | 0.1 |
| E591069 | 84 |  | 0.1 |
| 27012 | 81 |  | 0.1 |
| 27013 | 319 |  | 0.1 |
| 27014 | 70 |  | 0.1 |
| 27015 | 67 |  | 0.1 |
| 27016 | 26 |  | 0.1 |
| E591180 | 21 |  | 0.1 |
| E591181 | NIL |  | 0.1 |
| E591182 | NIL |  | 0.1 |
| E591183 | 315 | 182 | 0.1 |
| E591184 | 19 |  | 0.1 |
| E591185 | 7 |  | 0.1 |
| E591186 | NIL |  | 0.1 |
| E591187 | NIL |  | 0.1 |
| E591188 | NIL |  | 0.1 |
| E591192 | 14 |  | 0.1 |
| E591195 | NIL |  | 0.1 |
| E591097 | 909 |  | 0.1 |
| E591098 | 694 |  | 0.1 |
| E591099 | 2366 | 1738 | 0.1 |
| E591100 | 970 |  | 0.3 |



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Established 1928

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

## Geochemical Analysis Certificate

7W-3812-RG1
Company: WARRIOR VENTURES INC.
Project: McNeil Project
Attn: D. Gibson
We hereby certify the following Geochemical Analysis of 54 Core samples submitted NOV-30-07 by .



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1 T0
Telephone (705) 642-3244 Fax (705) 642-3300

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49985
Date : Sept 17, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
|  |  |
| $178-195$ | $<5$ |
| $178-197$ | $<5$ |
| $178-199$ | $<5$ |
| $178-201$ | $<5$ |
| $178-203$ | $<5$ |
| $178-205$ | $<5$ |
| $178-207$ | $<5$ |
| $178-209$ | $<5$ |
| $178-210$ | $<5$ |
| $178-211$ | $<5$ |
| $178-213$ | 26 |
| $178-215$ | $<5$ |
| $178-217$ | $<5$ |
| $178-219$ | $<5$ |
| $178-221$ | $<5$ |
| $178-223$ | $<5$ |
| $178-225$ | $<5$ |
| $178-227$ | $<5$ |
| $178-229$ | 21 |
| $178-231$ | 65 |
| $178-233$ | $<5$ |
| $178-235$ | $<5$ |
| $178-237$ |  |
| $178-239$ |  |
| $178-241$ |  |
| $178-243$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49985
Date : Sept 17, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $178-247$ |  |
| $178-248$ | $<5$ |
| $178-249$ | $<5$ |
| $178-250$ | $<5$ |
| $178-252$ | $<5$ |
| $178-261$ | $<5$ |
| $178-263$ | $<5$ |
| $178-265$ | $<5$ |
| $178-267$ | $<5$ |
| $178-269$ | $<5$ |
| $178-271$ | $<5$ |
| $178-273$ | $<5$ |
| $178-275$ | $<5$ |
| $178-277$ | $<5$ |
| $178-279$ | $<5$ |
| $178-281$ | $<5$ |
| $178-283$ | $<5$ |
| $178-285$ | $<5$ |
| $178-287$ | $<5$ |
| $178-289$ | $<5$ |
| $178-291$ | $<5$ |
| $178-292$ | $<5$ |
| $174-160$ | $<5$ |
| $174-161$ |  |
| $174-163$ |  |
| $174-169$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights Pl.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson
File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay



[^5]

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $174-287$ |  |
| $174-289$ |  |
| $174-290$ |  |
| $174-291$ |  |
| $174-292$ | $<5$ |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $166-160$ |  |
| $166-162$ | $<5$ |
| $166-163$ | $<5$ |
| $166-165$ | $<5$ |
| $166-167$ | $<5$ |
| $166-169$ | $<5$ |
| $166-171$ | $<5$ |
| $166-172$ | $<5$ |
| $166-173$ | $<5$ |
| $166-174$ | $<5$ |
| $166-183$ | $<5$ |
| $166-185$ | $<5$ |
| $166-187$ | $<5$ |
| $166-189$ | $<5$ |
| $166-191$ | $<5$ |
| $166-193$ | $<5$ |
| $166-195$ | $<5$ |
| $166-196$ | $<5$ |
| $166-199$ | $<5$ |
| $166-201$ |  |
| $166-203$ | $<5$ |
| $166-205$ |  |
| $166-207$ |  |
| $166-209$ |  |
| $166-211$ |  |
| $166-213$ |  |
|  |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

File No : 49985

T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $166-216$ |  |
| $166-217$ | $<5$ |
| $166-220$ | 6 |
| $166-221$ | $<5$ |
| $166-223$ | $<5$ |
| $166-225$ | $<5$ |
| $166-234$ | 15 |
| $166-235$ | $<5$ |
| $166-237$ | $<5$ |
| $166-239$ | $<5$ |
| $166-242$ | 32 |
| $166-245$ | 16 |
| $166-247$ | $<5$ |
| $166-249$ | $<5$ |
| $166-251$ | $<5$ |
| $166-253$ | 35 |
| $166-255$ | $<5$ |
| $166-259$ | $<5$ |
| $166-264$ | $<5$ |
| $166-265$ | $<5$ |
| $166-267$ | $<5$ |
| $166-269$ | 76 |
| $166-273$ | $<5$ |
| $166-275$ | $<5$ |
| $166-277$ | $<5$ |
| $166-279$ |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 2


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3

File No : 49985
Date : Sept 17, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $166-281$ |  |
| $166-283$ | $<5$ |
| $166-287$ | $<5$ |
| $166-291$ | $<5$ |
| $166-292$ | $<5$ |
| $170-160$ | $<5$ |
| $170-161$ | $<5$ |
| $170-163$ | $<5$ |
| $170-165$ | $<5$ |
| $170-167$ | $<5$ |
| $170-169$ | $<5$ |
| $170-170$ | $<5$ |
| $170-173$ | $<5$ |
| $170-175$ | $<5$ |
| $170-176$ | $<5$ |
| $170-183$ | $<5$ |
| $170-185$ | $<5$ |
| $170-187$ | $<5$ |
| $170-189$ | $<5$ |
| $170-191$ | $<5$ |
| $170-193$ |  |
| $170-195$ |  |
| $170-197$ |  |
| $170-199$ |  |
| $170-204$ |  |
|  |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
|  |  |
| $170-205$ |  |
| $170-207$ | $<5$ |
| $170-209$ | $<5$ |
| $170-211$ | $<5$ |
| $170-213$ | $<5$ |
| $170-215$ | $<5$ |
| $170-218$ | $<5$ |
| $170-219$ | $<5$ |
| $170-221$ | $<5$ |
| $170-223$ | $<5$ |
| $170-225$ | $<5$ |
| $170-227$ | $<5$ |
| $170-229$ | $<5$ |
| $170-231$ | $<5$ |
| $170-234$ | $<5$ |
| $170-235$ | $<5$ |
| $170-237$ | $<5$ |
| $170-239$ | $<5$ |
| $170-240$ | $<5$ |
| $170-241$ | $<5$ |
| $170-245$ | $<5$ |
| $170-247$ |  |
| $170-249$ |  |
| $170-251$ |  |
| $170-253$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3

File No : 49985
Date : Sept 17, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.<br>6 Jensen Heights PI.,<br>Airdire, Alberta<br>T4B 2J3<br>Attn: David Gibson<br>File No : 49985<br>Date : Sept 17, 2007<br>Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $178-195$ |  |
| $178-197$ | $<5$ |
| $178-199$ | $<5$ |
| $178-201$ | $<5$ |
| $178-203$ | $<5$ |
| $178-205$ | $<5$ |
| $178-207$ | $<5$ |
| $178-209$ | $<5$ |
| $178-210$ | $<5$ |
| $178-211$ | $<5$ |
| $178-213$ | $<5$ |
| $178-215$ | 26 |
| $178-217$ | $<5$ |
| $178-219$ | $<5$ |
| $178-221$ | $<5$ |
| $178-223$ | $<5$ |
| $178-225$ | $<5$ |
| $178-227$ | $<5$ |
| $178-229$ | 21 |
| $178-231$ | 6 |
| $178-233$ | $<5$ |
| $178-235$ | $<5$ |
| $178-237$ | $<5$ |
| $178-239$ |  |
| $178-241$ |  |
| $178-243$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-054 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3

File No : 49985
Date : Sept 17, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $178-247$ |  |
| $178-248$ | $<5$ |
| $178-249$ | $<5$ |
| $178-250$ | $<5$ |
| $178-252$ | $<5$ |
| $178-261$ | $<5$ |
| $178-263$ | $<5$ |
| $178-265$ | $<5$ |
| $178-267$ | $<5$ |
| $178-269$ | $<5$ |
| $178-271$ | $<5$ |
| $178-273$ | $<5$ |
| $178-275$ | $<5$ |
| $178-277$ | $<5$ |
| $178-279$ | $<5$ |
| $178-281$ | $<5$ |
| $178-283$ | $<5$ |
| $178-285$ | $<5$ |
| $178-287$ | $<5$ |
| $178-289$ | $<5$ |
| $178-291$ | $<5$ |
| $178-292$ | $<5$ |
| $174-160$ |  |
| $174-161$ |  |
| $174-163$ |  |
| $174-169$ |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.<br>6 Jensen Heights Pl.,<br>Airdire, Alberta<br>T4B 2J3<br>Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
|  |  |
| "Geochem Analysis" |  |
| $174-171$ |  |
| $174-174$ | $<5$ |
| $174-175$ | $<5$ |
| $174-176$ | $<5$ |
| $174-180$ | $<5$ |
| $174-181$ | $<5$ |
| $174-187$ | $<5$ |
| $174-189$ | $<5$ |
| $174-191$ | $<5$ |
| $174-193$ | $<5$ |
| $174-195$ | $<5$ |
| $174-197$ | $<5$ |
| $174-199$ | $<5$ |
| $174-201$ | $<5$ |
| $174-203$ | $<5$ |
| $174-205$ | $<5$ |
| $174-207$ | $<5$ |
| $174-209$ | $<5$ |
| $174-211$ | $<5$ |
| $174-213$ | $<5$ |
| $174-215$ | $<5$ |
| $174-217$ |  |
| $174-219$ |  |
| $174-221$ |  |
| $174-223$ |  |
| $174-230$ |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 8


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0544 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3
Attn: David Gibson

File No : 49985 Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $174-231$ |  |
| $174-233$ | $<5$ |
| $174-237$ | $<5$ |
| $174-238$ | $<5$ |
| $174-239$ | $<5$ |
| $174-241$ | $<5$ |
| $174-243$ | $<5$ |
| $174-245$ | $<5$ |
| $174-248$ | $<5$ |
| $174-249$ | $<5$ |
| $174-251$ | $<5$ |
| $174-256$ | $<5$ |
| $174-257$ | $<5$ |
| $174-258$ | $<5$ |
| $174-259$ | $<5$ |
| $174-261$ | $<5$ |
| $174-263$ | $<5$ |
| $174-265$ | $<5$ |
| $174-267$ | $<5$ |
| $174-269$ | $<5$ |
| $174-271$ | $<5$ |
| $174-273$ |  |
| $174-275$ | $174-277$ |
| $174-279$ |  |
| $174-284$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $174-287$ |  |
| $174-289$ |  |
| $174-290$ |  |
| $174-291$ |  |
| $174-292$ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
File No : 49886
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

Date : August 29, 2007
Samples: Core

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Assay Analysis" |  |
| 27770 |  |
| 27771 |  |
| 27773 | 15 |
| 27774 | $<5$ |
| 27775 | $<5$ |
| 27776 | $<5$ |
| 27777 | $<5$ |
| 27808 | $<5$ |
| 27809 | $<5$ |
| 27810 | $<5$ |
| 27811 | $<5$ |
| 27812 | $<5$ |
| 27813 | $<5$ |
| 27814 | $<5$ |
| 27816 | 173 |
| 27817 | 200 |
| 27818 | $<5$ |
| 27819 | $<5$ |
| 27820 | $<5$ |
| 27821 | $<5$ |
| 27822 | $<5$ |
| 27823 | $<5$ |
| 27824 | $<5$ |
| 27825 | $<5$ |
| 27826 |  |
| 27827 |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49886
Date : August 29, 2007
Samples: Core

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Assay Analvsis" |  |
| 27770 |  |
| 27771 | 15 |
| 27773 | $<5$ |
| 27774 | $<5$ |
| 27775 | $<5$ |
| 27776 | $<5$ |
| 27777 | $<5$ |
| 27808 | $<5$ |
| 27809 | $<5$ |
| 27810 | $<5$ |
| 27811 | $<5$ |
| 27812 | $<5$ |
| 27813 | $<5$ |
| 27814 | 173 |
| 27816 | 200 |
| 27817 | $<5$ |
| 27818 | $<5$ |
| 27819 | $<5$ |
| 27820 | $<5$ |
| 27821 | $<5$ |
| 27822 | $<5$ |
| 27823 | $<5$ |
| 27824 | $<5$ |
| 27825 | $<5$ |
| 27826 |  |
| 27827 |  |
|  |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49886
Date : August 29, 2007
Samples: Core

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 2

## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49960
6 Jensen Heights PI., Airdire, Alberta

Date : August 29, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $126-244$ |  |
| $126-245$ | $<5$ |
| $126-247$ | $<5$ |
| $126-249$ | $<5$ |
| $126-252$ | $<5$ |
| $126-253$ | $<5$ |
| $126-256$ | $<5$ |
| $126-257$ | $<5$ |
| $126-259$ | $<5$ |
| $126-261$ | $<5$ |
| $126-264$ | $<5$ |
| $126-265$ | $<5$ |
| $126-267$ | $<5$ |
| $126-270$ | $<5$ |
| $126-271$ | $<5$ |
| $126-273$ | $<5$ |
| $126-275$ | $<5$ |
| $126-277$ | $<5$ |
| $126-279$ |  |
| $126-280$ | $<5$ |
| $126-281$ |  |
| $126-285$ |  |
| $126-287$ |  |
| $126-289$ |  |
| $126-291$ |  |
| $126-292$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49960

T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample | Gold <br> No. |
| :---: | :---: |
|  | ppb |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 2

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $134-229$ |  |
| $134-231$ | $<5$ |
| $134-233$ | $<5$ |
| $134-235$ | $<5$ |
| $134-237$ | $<5$ |
| $134-239$ | $<5$ |
| $134-241$ | $<5$ |
| $134-245$ | $<5$ |
| $134-247$ | $<5$ |
| $134-249$ | $<5$ |
| $134-251$ | $<5$ |
| $134-256$ | $<5$ |
| $134-258$ | $<5$ |
| $134-259$ | $<5$ |
| $134-261$ | $<5$ |
| $134-262$ | $<5$ |
| $134-268$ | $<5$ |
| $134-272$ | $<5$ |
| $134-273$ |  |
| $134-275$ | $<5$ |
| $134-281$ |  |
| $134-283$ |  |
| $134-285$ |  |
| $134-287$ |  |
| $134-291$ |  |
| $134-292$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49960
6 Jensen Heights PI.,
Airdire, Alberta
Date : August 29, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $142-202$ |  |
| $142-203$ | $<5$ |
| $142-205$ | $<5$ |
| $142-207$ | 10 |
| $142-209$ | $<5$ |
| $142-212$ | 13 |
| $142-213$ | $<5$ |
| $142-215$ | $<5$ |
| $142-217$ | $<5$ |
| $142-249$ | $<5$ |
| $142-250$ | $<5$ |
| $142-251$ | $<5$ |
| $142-252$ | $<5$ |
| $142-253$ | 14 |
| $142-255$ | $<5$ |
| $142-257$ | $<5$ |
| $142-259$ | $<5$ |
| $142-261$ | $<5$ |
| $142-262$ | $<5$ |
| $142-265$ | $<5$ |
| $142-267$ | $<5$ |
| $142-270$ |  |
| $142-271$ |  |
| $142-273$ |  |
| $142-275$ |  |
| $142-277$ |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3
Attn: David Gibson

File No : 49960 Date : August 29, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3

File No : 49960
Date : August 29, 2007
Samples : Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $146-264$ |  |
| $146-265$ | $<5$ |
| $146-267$ | $<5$ |
| $146-269$ | $<5$ |
| $146-271$ | $<5$ |
| $146-273$ | $<5$ |
| $146-275$ | $<5$ |
| $146-279$ | $<5$ |
| $146-281$ | $<5$ |
| $146-282$ | $<5$ |
| $146-283$ | $<5$ |
| $146-289$ | $<5$ |
| $146-290$ | $<5$ |
| $146-291$ | 70 |
| $146-292$ | $<5$ |
| $150-161$ | $<5$ |
| $150-201$ | 112 |
| $150-203$ | $<5$ |
| $150-206$ | $<5$ |
| $150-207$ | $<5$ |
| $150-209$ | $<5$ |
| $150-211$ |  |
| $150-213$ |  |
| $150-215$ |  |
| $150-217$ |  |
| $150-219$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 7

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3

File No : 49960
Date : August 29, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
| $150-271$ |  |
| $150-273$ | $<5$ |
| $150-275$ | $<5$ |
| $150-277$ | $<5$ |
| $150-279$ | $<5$ |
| $150-281$ | $<5$ |
| $150-283$ | $<5$ |
| $150-285$ | $<5$ |
| $150-286$ | $<5$ |
| $150-287$ | $<5$ |
| $150-291$ | $<5$ |
| $150-292$ | $<5$ |
| $154-248$ | $<5$ |
| $154-249$ | $<5$ |
| $154-251$ | $<5$ |
| $154-253$ | $<5$ |
| $154-255$ | $<5$ |
| $154-257$ | $<5$ |
| $154-258$ | $<5$ |
| $154-261$ | 7 |
| $154-263$ | 6 |
| $154-264$ | $<5$ |
| $154-267$ | 55 |
| $154-269$ | 10 |
| $154-271$ | $<5$ |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights Pl.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

## Certificate of Assay



I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $17-235$ |  |
| $17-236$ | $<5$ |
| $17-237$ | $<5$ |
| $17-238$ | $<5$ |
| $17-239$ | $<5$ |
| $17-240$ | $<5$ |
| $17-241$ | $<5$ |
| $17-242$ | 42 |
| $17-243$ | $<5$ |
| $17-246$ | $<5$ |
| $17-249$ | $<5$ |
| $17-251$ | $<5$ |
| $17-252$ | $<5$ |
| $17-253$ | $<5$ |
| $17-254$ | $<5$ |
| $17-255$ | $<5$ |
| $17-256$ | $<5$ |
| $17-257$ | $<5$ |
| $17-258$ | $<5$ |
| $17-260$ | $<5$ |
| $17-261$ | 28 |
| $17-262$ |  |
| $17-263$ |  |
| $17-264$ |  |
| $17-265$ |  |
| $17-266$ |  |
|  |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance

## Loring Laboratories Ltd. <br> 629 Beaverdam Road N.E., <br> Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49997
Date : Sept 20, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $17-267$ |  |
| $19-233$ | $<5$ |
| $19-234$ | $<5$ |
| $19-235$ | $<5$ |
| $19-238$ | $<5$ |
| $19-241$ | $<5$ |
| $19-242$ | $<5$ |
| $19-244$ | $<5$ |
| $19-245$ | $<5$ |
| $19-251$ | $<5$ |
| $19-252$ | $<5$ |
| $19-253$ | $<5$ |
| $19-254$ | $<5$ |
| $19-257$ | $<5$ |
| $19-258$ | $<5$ |
| $19-259$ | $<5$ |
| $19-260$ | $<5$ |
| $19-261$ | $<5$ |
| $19-262$ | $<5$ |
| $19-263$ | $<5$ |
| $19-264$ |  |
| $19-265$ |  |
| $19-266$ |  |
| $19-267$ |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49997
Date : Sept 20, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49997
Date : Sept 20, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
| $23-231$ |  |
| $23-232$ | $<5$ |
| $23-233$ | $<5$ |
| $23-234$ | $<5$ |
| $23-235$ | $<5$ |
| $23-236$ | $<5$ |
| $23-237$ | $<5$ |
| $23-241$ | $<5$ |
| $23-243$ | $<5$ |
| $23-244$ | $<5$ |
| $23-246$ | $<5$ |
| $23-247$ | $<5$ |
| $23-248$ | $<5$ |
| $23-249$ | $<5$ |
| $23-250$ | $<5$ |
| $23-251$ | $<5$ |
| $23-257$ | $<5$ |
| $23-258$ | $<5$ |
| $23-259$ | $<5$ |
| $23-260$ | $<5$ |
| $23-261$ | $<5$ |
| $23-262$ |  |
| $23-263$ |  |
| $23-264$ |  |
| $23-265$ |  |
| $23-266$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

File No : 49972
Date : Sept 10, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 158-253 | $<5$ |
| 158-255 | $<5$ |
| 158-257 | $<5$ |
| 158-259 | 23 |
| 158-261 | $<5$ |
| 158-263 | $<5$ |
| 158-265 | $<5$ |
| 158-267 | $<5$ |
| 158-269 | $<5$ |
| 158-271 | $<5$ |
| 158-273 | $<5$ |
| 158-275 | $<5$ |
| 158-277 | $<5$ |
| 158-278 | $<5$ |
| 158-281 | $<5$ |
| 158-283 | $<5$ |
| 158-284 | $<5$ |
| 158-287 | $<5$ |
| 158-288 | $<5$ |
| 158-289 | $<5$ |
| 158-290 | 11 |
| 162-160 | $<5$ |
| 162-161 | $<5$ |
| 162-162 | $<5$ |
| 162-163 | 84 |
| 162-173 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49972
Date : Sept 10, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 162-174 | $<5$ |
| 162-175 | $<5$ |
| 162-177 | $<5$ |
| 162-179 | $<5$ |
| 162-181 | $<5$ |
| 162-183 | 11 |
| 162-185 | $<5$ |
| 162-187 | $<5$ |
| 162-189 | $<5$ |
| 162-191 | $<5$ |
| 162-193 | $<5$ |
| 162-195 | 8 |
| 162-197 | $<5$ |
| 162-204 | $<5$ |
| 162-206 | $<5$ |
| 162-207 | $<5$ |
| 162-208 | $<5$ |
| 162-209 | $<5$ |
| 162-218 | $<5$ |
| 162-219 | 10 |
| 162-220 | $<5$ |
| 162-221 | 8 |
| 162-222 | 7 |
| 162-227 | $<5$ |
| 162-229 | 13 |
| 162-230 | 9 |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance

## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,

To: WARRIOR VNETURES INC.
File No : 49972
6 Jensen Heights PI., Date : Sept 10, 2007

Airdire, Alberta
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $162-234$ |  |
| $162-236$ |  |
| $162-237$ | 62 |
| $162-239$ | $<5$ |
| $162-241$ | $<5$ |
| $162-243$ |  |
| $162-245$ | $<5$ |
| $162-246$ |  |
| $162-252$ |  |
| $162-253$ |  |
| $162-255$ |  |
| $162-267$ |  |
| $162-269$ |  |
| $162-271$ |  |
| $162-273$ |  |
| $162-275$ |  |
| $162-277$ |  |
| $162-281$ |  |
| $162-282$ |  |
| $162-283$ |  |
| $162-285$ |  |
| $162-287$ |  |
| $162-289$ |  |
| $182-209$ |  |
| $182-212$ |  |
| $182-213$ |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

To: WARRIOR VNETURES INC.
File No : 49972
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

Date : Sept 10, 2007
Samples: Soil

Certificate of Assay

| Sample No. | $\begin{gathered} \text { Gold } \\ \text { ppb } \end{gathered}$ |
| :---: | :---: |
| "Geochem Analysis" |  |
| 182-215 | < 5 |
| 182-217 | 14 |
| 182-219 | 11 |
| 182-221 | < 5 |
| 182-223 | $<5$ |
| 182-225 | < 5 |
| 182-227 | < 5 |
| 182-229 | 17 |
| 182-231 | < 5 |
| 182-233 | $<5$ |
| 182-235 | $<5$ |
| 182-237 | < 5 |
| 182-239 | < 5 |
| 182-240 | < 5 |
| 182-243 | < 5 |
| 182-245 | < 5 |
| 182-247 | $<5$ |
| 182-249 | < 5 |
| 182-252 | $<5$ |
| 182-253 | < 5 |
| 182-255 | < 5 |
| 182-257 | < 5 |
| 182-259 | $<5$ |
| 182-265 | $<5$ |
| 182-266 | $<5$ |
| 182-267 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights Pl.,
Airdire, Alberta
File No : 49972

T4B 2J3
Attn: David Gibson

Date : Sept 10, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $182-268$ |  |
| $182-269$ |  |
| $182-271$ |  |
| $182-273$ | $<5$ |
| $182-275$ | $<5$ |
| $182-277$ |  |
| $182-279$ |  |
| $182-281$ |  |
| $182-283$ |  |
| $182-285$ |  |
| $182-287$ |  |
| $182-289$ |  |
| $182-291$ |  |
| $186-210$ |  |
| $186-273$ |  |
| $186-274$ |  |
| $186-275$ |  |
| $186-276$ |  |
| $186-277$ |  |
| $186-279$ |  |
| $186-281$ |  |
| $186-283$ |  |
| $190-207$ |  |
| $190-208$ |  |
| $190-209$ |  |
| $190-210$ |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49972
Date : Sept 10, 2007
Samples: Soil

## Certificate of Assay

| Sample No. | $\begin{gathered} \hline \text { Gold } \\ \text { ppb } \\ \hline \end{gathered}$ |
| :---: | :---: |
| "Geochem Analvsis" |  |
| 190-217 | $<5$ |
| 190-218 | < 5 |
| 190-219 | < 5 |
| 190-233 | < 5 |
| 190-235 | < 5 |
| 190-237 | < 5 |
| 190-239 | < 5 |
| 190-243 | < 5 |
| 190-245 | < 5 |
| 190-246 | < 5 |
| 190-247 | < 5 |
| 190-249 | < 5 |
| 190-250 | < 5 |
| 190-251 | $<5$ |
| 190-252 | < 5 |
| 190-257 | $<5$ |
| 190-258 | < 5 |
| 190-259 | $<5$ |
| 190-261 | $<5$ |
| 190-263 | $<5$ |
| 190-275 | $<5$ |
| 190-276 | $<5$ |
| 190-277 | $<5$ |
| 190-278 | $<5$ |
| 194-210 | $<5$ |
| 194-211 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49972

T4B 2J3
Attn: David Gibson

## Certificate of Assay



I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.<br>File No : 49960<br>6 Jensen Heights PI.,<br>Airdire, Alberta<br>Date : August 29, 2007<br>T4B 2J3<br>Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $126-244$ |  |
| $126-245$ | $<5$ |
| $126-247$ | $<5$ |
| $126-249$ | $<5$ |
| $126-252$ | $<5$ |
| $126-253$ | $<5$ |
| $126-256$ | $<5$ |
| $126-257$ | $<5$ |
| $126-259$ | $<5$ |
| $126-261$ | $<5$ |
| $126-264$ | $<5$ |
| $126-265$ | $<5$ |
| $126-267$ | $<5$ |
| $126-270$ | $<5$ |
| $126-271$ | $<5$ |
| $126-273$ | $<5$ |
| $126-275$ | $<5$ |
| $126-277$ | $<5$ |
| $126-279$ |  |
| $126-280$ |  |
| $126-281$ |  |
| $126-285$ |  |
| $126-287$ |  |
| $126-289$ |  |
| $126-291$ |  |
| $126-292$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 1

## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49960
6 Jensen Heights PI.,
Date : August 29, 2007
Airdire, Alberta
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
| $130-241$ |  |
| $130-243$ | $<5$ |
| $130-245$ | $<5$ |
| $130-247$ | 85 |
| $130-249$ | $<5$ |
| $130-251$ | $<5$ |
| $130-252$ | $<5$ |
| $130-255$ | $<5$ |
| $130-257$ | 21 |
| $130-259$ | $<5$ |
| $130-261$ | $<5$ |
| $130-262$ | $<5$ |
| $130-265$ | $<5$ |
| $130-269$ | $<5$ |
| $130-271$ | 72 |
| $130-277$ | $<5$ |
| $130-280$ | $<5$ |
| $130-286$ | $<5$ |
| $130-287$ | $<5$ |
| $130-289$ | $<5$ |
| $130-291$ | $<5$ |
| $130-292$ |  |
| $134-218$ |  |
| $134-219$ |  |
| $134-225$ |  |
| $134-227$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 3

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC
6 Jensen Heights PI., Airdire, Alberta T4B 2J3

File No : 49960
Date : August 29, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analvsis" |  |
| $142-202$ |  |
| $142-203$ | $<5$ |
| $142-205$ | $<5$ |
| $142-207$ | 10 |
| $142-209$ | $<5$ |
| $142-212$ | 13 |
| $142-213$ | $<5$ |
| $142-215$ | $<5$ |
| $142-217$ | $<5$ |
| $142-249$ | $<5$ |
| $142-250$ | $<5$ |
| $142-251$ | $<5$ |
| $142-252$ | $<5$ |
| $142-253$ | $<5$ |
| $142-255$ | 14 |
| $142-257$ | $<5$ |
| $142-259$ | $<5$ |
| $142-261$ | $<5$ |
| $142-262$ | $<5$ |
| $142-265$ | $<5$ |
| $142-267$ | $<5$ |
| $142-270$ |  |
| $142-271$ |  |
| $142-273$ |  |
| $142-275$ |  |
| $142-277$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance

## Loring Laboratories Ltd. <br> 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 <br> Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 5

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 146-264 | $<5$ |
| 146-265 | $<5$ |
| 146-267 | < |
| 146-269 | < |
| 146-271 | <5 |
| 146-273 | < |
| 146-275 | < |
| 146-279 | < |
| 146-281 | < |
| 146-282 | <5 |
| 146-283 | < |
| 146-289 | $<5$ |
| 146-290 | < |
| 146-291 | 70 |
| 146-292 | <5 |
| 150-161 | <5 |
| 150-201 | 112 |
| 150-203 | <5 |
| 150-206 | $<5$ |
| 150-207 | < |
| 150-209 | < 5 |
| 150-211 | $<5$ |
| 150-213 | $<5$ |
| 150-215 | $<5$ |
| 150-217 | $<5$ |
| 150-219 | 33 |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

File No : 49960
Date : August 29, 2007
Samples: Soil

## Certificate of Assay

| $\begin{gathered} \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Gold } \\ \text { ppb } \end{gathered}$ |
| :---: | :---: |
| "Geochem Analysis" |  |
| 150-220 | $<5$ |
| 150-223 | <5 |
| 150-225 | <5 |
| 150-226 | <5 |
| 150-229 | <5 |
| 150-231 | 42 |
| 150-233 | <5 |
| 150-237 | <5 |
| 150-238 | <5 |
| 150-239 | <5 |
| 150-241 | 26 |
| 150-244 | <5 |
| 150-245 | <5 |
| 150-247 | 37 |
| 150-249 | <5 |
| 150-251 | <5 |
| 150-253 | <5 |
| 150-255 | <5 |
| 150-257 | <5 |
| 150-259 | <5 |
| 150-261 | <5 |
| 150-262 | <5 |
| 150-263 | 22 |
| 150-265 | <5 |
| 150-267 | $<5$ |
| 150-269 | <5 |
| I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples: |  |
|  |  |

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49960
Date : August 29, 2007
Samples: Soil

Certificate of Assay


1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights Pl.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $166-160$ |  |
| $166-162$ | $<5$ |
| $166-163$ | $<5$ |
| $166-165$ | $<5$ |
| $166-167$ | $<5$ |
| $166-169$ | $<5$ |
| $166-171$ | $<5$ |
| $166-172$ | $<5$ |
| $166-173$ | $<5$ |
| $166-174$ | $<5$ |
| $166-183$ | $<5$ |
| $166-185$ | $<5$ |
| $166-187$ | $<5$ |
| $166-189$ | $<5$ |
| $166-191$ | $<5$ |
| $166-193$ | $<5$ |
| $166-195$ |  |
| $166-196$ |  |
| $166-199$ |  |
| $166-201$ |  |
| $166-203$ |  |
| $166-205$ |  |
| $166-207$ |  |
| $166-209$ |  |
| $166-211$ |  |
| $166-213$ |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 49985
6 Jensen Heights PI.,
Date : Sept 17, 2007
Airdire, Alberta
Samples: Soil
T4B 2J3
Attn: David Gibson
Certificate of Assay

| Sample | Gold <br> No. |
| :---: | :---: |
| "Gpb |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49985
Date : Sept 17, 2007
Samples: Soil

Certificate of Assay


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights Pl., Airdire, Alberta
T4B 2J3
Attn: David Gibson

> File No : 49985
> Date : Sept 17, 2007
> Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
File No : 50034
6 Jensen Heights PI.,
Airdire, Alberta
Date : Oct 22, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $29-269$ |  |
| $29-270$ |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 50046

T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
| 186210 |  |
| 186214 |  |
| 186216 |  |
| 186217 | 13 |
| 186218 | $<5$ |
| 186219 | $<5$ |
| 186222 | $<5$ |
| 186223 | $<5$ |
| 186224 | $<5$ |
| 186225 | $<5$ |
| 186226 | 13 |
| 186229 | $<5$ |
| 186233 | 15 |
| 186234 | $<5$ |
| 186235 | $<5$ |
| 186237 | $<5$ |
| 186239 | $<5$ |
| 186241 | $<5$ |
| 186242 |  |
| 186246 |  |
| 186247 |  |
| 186249 |  |
| 186251 |  |
| 186253 |  |
| 186254 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 1

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 50046
Date : Oct 22, 2007
Samples: Soil

## Certificate of Assay

| Sample No. | $\begin{gathered} \hline \text { Gold } \\ \text { ppb } \\ \hline \end{gathered}$ |
| :---: | :---: |
| "Geochem Analysis" |  |
| 186258 | $<5$ |
| 186259 | <5 |
| 186260 | <5 |
| 186261 | <5 |
| 186262 | <5 |
| 186273 | 6 |
| 186274 | <5 |
| 186275 | 9 |
| 186276 | <5 |
| 186277 | 8 |
| 186279 | 9 |
| 186281 | <5 |
| 186283 | 6 |
| 150162 | <5 |
| 150163 | <5 |
| 150165 | <5 |
| 150169 | <5 |
| 150170 | <5 |
| 150171 | <5 |
| 150173 | <5 |
| 150175 | <5 |
| 150177 | <5 |
| 150179 | <5 |
| 150181 | <5 |
| 150183 | <5 |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 2

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

File No : 50046
Date : Oct 22, 2007

T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 150184 |  |
| 150187 |  |
| 150189 | $<5$ |
| 150191 | $<5$ |
| 150193 | $<5$ |
| 150194 | $<5$ |
| 150197 | $<5$ |
| 150199 | $<5$ |
| 158192 | $<5$ |
| 158193 | $<5$ |
| 158195 | $<5$ |
| 158197 | $<5$ |
| 158199 | $<5$ |
| 158201 |  |
| 158203 | $<5$ |
| 158206 |  |
| 158207 |  |
| 158208 |  |
| 142160 |  |
| 142161 |  |
| 142163 |  |
| 142165 |  |
| 142167 |  |
| 142169 |  |
| 142171 |  |
|  |  |
|  |  |
|  |  |
|  |  |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3
Attn: David Gibson

File No : 50046
Date : Oct 22, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 142173 |  |
| 142175 |  |
| 142177 |  |
| 142179 | $<5$ |
| 142181 | $<5$ |
| 142183 | $<5$ |
| 142185 | $<5$ |
| 142186 | $<5$ |
| 142189 | $<5$ |
| 142191 |  |
| 142193 |  |
| 142195 |  |
| 142197 |  |
| 142199 |  |
| 86234 |  |
| 86236 |  |
| 86276 |  |
| 86278 |  |
| 86282 |  |
| 86288 |  |
| 90237 |  |
| 90270 |  |
| 90272 |  |
| 90274 |  |
| 90286 |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 4

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 50046
Date : Oct 22, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
| 94242 |  |
| 94244 | $<5$ |
| 94246 | $<5$ |
| 94254 | $<5$ |
| 98238 | $<5$ |
| 98240 | $<5$ |
| 98258 | $<5$ |
| 98260 | $<5$ |
| 102246 | $<5$ |
| 102248 | $<5$ |
| 102272 | $<5$ |
| 102273 | $<5$ |
| 102274 | 8 |
| 106273 |  |
| 106275 | $<5$ |
| 126246 |  |
| 126248 | $<5$ |
| 130242 |  |
| 130246 |  |
| 130267 |  |
| 130273 |  |
| 130274 |  |
| 130275 |  |
| 130290 |  |
| 142210 |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights Pl.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 50046
Date : Oct 22, 2007
Samples: Soil

Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analysis" |  |
| 142216 |  |
| 146196 |  |
| 146198 |  |
| 146230 |  |
| 146232 |  |
| 162258 | $<5$ |
| 162268 |  |
| 162270 |  |
| 162288 | $<5$ |
| 166252 |  |
| 166256 |  |
| 166257 |  |
| 166266 |  |
| 166285 |  |
| 170264 |  |
| 174164 |  |
| 174165 |  |
| 174183 |  |
| 174185 |  |
| 174218 |  |
| 174220 |  |
| 178160 |  |
| 178161 |  |
| 178163 |  |
| 178164 |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 50046

T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |  |
| :---: | :---: | :---: |
| "Geochem Analysis" |  |  |
| (78165 <br> 178177 <br> 178178 <br> 178180 |  | $<5$ |

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

File No : 50046
Date : Oct 22, 2007

T4B 2J3
Attn: David Gibson
Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 186210 |  |
| 186214 |  |
| 186216 |  |
| 186217 |  |
| 186218 |  |
| 186219 |  |
| 186222 |  |
| 186223 |  |
| 186224 |  |
| 186225 |  |
| 186226 |  |
| 186229 |  |
| 186233 |  |
| 186234 |  |
| 186235 |  |
| 186237 |  |
| 186239 |  |
| 186241 |  |
| 186242 |  |
| 186246 |  |
| 186247 |  |
| 186249 |  |
| 186251 |  |
| 186253 |  |
| 186254 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 50046
6 Jensen Heights PI.,
Airdire, Alberta
Date : Oct 22, 2007
T4B 2J3
Attn: David Gibson

## Certificate of Assay



I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
File No : 50046
6 Jensen Heights PI., Airdire, Alberta Date: Oct 22, 2007 Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 150184 |  |
| 150187 |  |
| 150189 | $<5$ |
| 150191 | $<5$ |
| 150193 | $<5$ |
| 150194 | $<5$ |
| 150197 | $<5$ |
| 150199 | $<5$ |
| 158192 | $<5$ |
| 158193 | $<5$ |
| 158195 |  |
| 158197 | $<5$ |
| 158199 | $<5$ |
| 158201 |  |
| 158203 | $<5$ |
| 158206 |  |
| 158207 |  |
| 158208 |  |
| 142160 |  |
| 142161 |  |
| 142163 |  |
| 142165 |  |
| 142167 |  |
| 142169 |  |
| 142171 |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
File No : 50046
6 Jensen Heights PI.,
Date : Oct 22, 2007
Airdire, Alberta
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay



I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
File No : 50046
Airdire, Alberta
Date: Oct 22, 2007
T4B 2J3
Samples: Soil
Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 94242 | $<5$ |
| 94244 | $<5$ |
| 94246 | $<5$ |
| 94254 | <5 |
| 98238 | $<5$ |
| 98240 | $<5$ |
| 98258 | $<5$ |
| 98260 | $<5$ |
| 102246 | $<5$ |
| 102248 | $<5$ |
| 102272 | $<5$ |
| 102273 | $<5$ |
| 102274 | 8 |
| 106273 | $<5$ |
| 106275 | $<5$ |
| 126246 | $<5$ |
| 126248 | $<5$ |
| 130242 | $<5$ |
| 130246 | 5 |
| 130267 | $<5$ |
| 130273 | $<5$ |
| 130274 | $<5$ |
| 130275 | $<5$ |
| 130290 | $<5$ |
| 142210 | $<5$ |

1 HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance

## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

File No : 50046
Date: Oct 22, 2007
Samples: Soil

T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 142216 |  |
| 146196 | 5 |
| 146198 | $<5$ |
| 146230 | $<5$ |
| 146232 | $<5$ |
| 162258 | $<5$ |
| 162268 | $<5$ |
| 162270 | $<5$ |
| 162288 | $<5$ |
| 166252 | $<5$ |
| 166256 | $<5$ |
| 166257 | $<5$ |
| 166266 | $<5$ |
| 166285 |  |
| 170264 |  |
| 174164 | $<5$ |
| 174165 | $<5$ |
| 174183 |  |
| 174185 | $<5$ |
| 174218 |  |
| 174220 |  |
| 178160 |  |
| 178161 |  |
| 178163 |  |
| 178164 |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer
Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
File No : 50046
Airdire, Alberta
Date : Oct 22, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 178165 |  |
| 178177 |  |
| 178178 |  |
| 178180 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
File No : 49972
6 Jensen Heights PI.,
Date : Sept 10, 2007
Airdire, Alberta
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $154-234$ |  |
| $154-237$ |  |
| $154-239$ |  |
| $154-241$ | $<5$ |
| $154-243$ | $<5$ |
| $154-245$ | $<5$ |
| $158-162$ | $<5$ |
| $158-163$ | $<5$ |
| $158-215$ | $<5$ |
| $158-216$ | 21 |
| $158-219$ | $<5$ |
| $158-221$ | $<5$ |
| $158-223$ |  |
| $158-225$ | $<5$ |
| $158-227$ | $<5$ |
| $158-229$ | $<5$ |
| $158-231$ | $<5$ |
| $158-234$ | $<5$ |
| $158-235$ |  |
| $158-237$ |  |
| $158-239$ |  |
| $158-241$ |  |
| $158-243$ |  |
| $158-245$ |  |
| $158-247$ |  |
| $158-249$ |  |
| $158-251$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


## Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample No. | $\begin{gathered} \hline \text { Gold } \\ \text { ppb } \end{gathered}$ |
| :---: | :---: |
| "Geochem Analysis" |  |
| 158-253 | $<5$ |
| 158-255 | < 5 |
| 158-257 | < 5 |
| 158-259 | 23 |
| 158-261 | < 5 |
| 158-263 | < 5 |
| 158-265 | < 5 |
| 158-267 | < 5 |
| 158-269 | < 5 |
| 158-271 | $<5$ |
| 158-273 | < 5 |
| 158-275 | < 5 |
| 158-277 | < 5 |
| 158-278 | < 5 |
| 158-281 | < 5 |
| 158-283 | $<5$ |
| 158-284 | $<5$ |
| 158-287 | < 5 |
| 158-288 | < 5 |
| 158-289 | < 5 |
| 158-290 | 11 |
| 162-160 | < 5 |
| 162-161 | $<5$ |
| 162-162 | < 5 |
| 162-163 | 84 |
| 162-173 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49972
Date : Sept 10, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $162-174$ |  |
| $162-175$ |  |
| $162-177$ | $<5$ |
| $162-179$ | $<5$ |
| $162-181$ | $<5$ |
| $162-183$ | $<5$ |
| $162-185$ | $<5$ |
| $162-187$ | 11 |
| $162-189$ | $<5$ |
| $162-191$ | $<5$ |
| $162-193$ | $<5$ |
| $162-195$ | $<5$ |
| $162-197$ |  |
| $162-204$ |  |
| $162-206$ |  |
| $162-207$ |  |
| $162-208$ |  |
| $162-209$ | $<5$ |
| $162-218$ |  |
| $162-219$ |  |
| $162-220$ |  |
| $162-221$ |  |
| $162-222$ |  |
| $162-227$ |  |
| $162-229$ |  |
| $162-230$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3

File No : 49972
Date : Sept 10, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
|  |  |
| $162-234$ |  |
| $162-236$ |  |
| $162-237$ |  |
| $162-239$ | $<5$ |
| $162-241$ | $<5$ |
| $162-243$ | $<5$ |
| $162-245$ | $<5$ |
| $162-246$ | $<5$ |
| $162-252$ | 51 |
| $162-253$ | $<5$ |
| $162-255$ | $<5$ |
| $162-267$ | $<5$ |
| $162-269$ |  |
| $162-271$ | $<5$ |
| $162-273$ | $<5$ |
| $162-275$ | $<5$ |
| $162-277$ | $<5$ |
| $162-281$ |  |
| $162-282$ |  |
| $162-283$ |  |
| $162-285$ |  |
| $162-287$ |  |
| $162-289$ |  |
| $182-209$ |  |
| $182-212$ |  |
| $182-213$ |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 49972
Date : Sept 10, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample No. | $\begin{gathered} \hline \text { Gold } \\ \text { ppb } \\ \hline \end{gathered}$ |
| :---: | :---: |
| "Geochem Analysis" |  |
| 182-215 | < 5 |
| 182-217 | 14 |
| 182-219 | 11 |
| 182-221 | < 5 |
| 182-223 | < 5 |
| 182-225 | < 5 |
| 182-227 | < 5 |
| 182-229 | 17 |
| 182-231 | < 5 |
| 182-233 | < 5 |
| 182-235 | < 5 |
| 182-237 | < 5 |
| 182-239 | $<5$ |
| 182-240 | < 5 |
| 182-243 | < 5 |
| 182-245 | < 5 |
| 182-247 | < 5 |
| 182-249 | < 5 |
| 182-252 | < 5 |
| 182-253 | < 5 |
| 182-255 | $<5$ |
| 182-257 | < 5 |
| 182-259 | $<5$ |
| 182-265 | < 5 |
| 182-266 | $<5$ |
| 182-267 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:



To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3
Attn: David Gibson

## Certificate of Assay

| $\begin{gathered} \hline \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Gold } \\ \text { ppb } \\ \hline \end{gathered}$ |
| :---: | :---: |
| "Geochem Analysis" |  |
| 182-268 | < 5 |
| 182-269 | < 5 |
| 182-271 | < 5 |
| 182-273 | 14 |
| 182-275 | < 5 |
| 182-277 | < 5 |
| 182-279 | < 5 |
| 182-281 | $<5$ |
| 182-283 | < 5 |
| 182-285 | $<5$ |
| 182-287 | < 5 |
| 182-289 | $<5$ |
| 182-291 | < 5 |
| 186-210 | < 5 |
| 186-273 | < 5 |
| 186-274 | < 5 |
| 186-275 | < 5 |
| 186-276 | < 5 |
| 186-277 | < 5 |
| 186-279 | < 5 |
| 186-281 | < 5 |
| 186-283 | < 5 |
| 190-207 | < 5 |
| 190-208 | < 5 |
| 100-209 | < 5 |
| 190-210 | < 5 |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## Loring Laboratories Ltd. <br> 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7

Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49972
Date : Sept 10, 2007
Samples: Soil

## Certificate of Assay

| Sample No. | $\begin{gathered} \hline \text { Gold } \\ \text { ppb } \end{gathered}$ |
| :---: | :---: |
| "Geochem Analysis" |  |
| 190-217 | $<5$ |
| 190-218 | $<5$ |
| 190-219 | < 5 |
| 190-233 | < 5 |
| 190-235 | $<5$ |
| 190-237 | < 5 |
| 190-239 | $<5$ |
| 190-243 | $<5$ |
| 190-245 | < 5 |
| 190-246 | $<5$ |
| 190-247 | < 5 |
| 190-249 | < 5 |
| 190-250 | < 5 |
| 190-251 | < 5 |
| 190-252 | < 5 |
| 190-257 | < 5 |
| 190-258 | < 5 |
| 190-259 | < 5 |
| 190-261 | < 5 |
| 190-263 | < 5 |
| 190-275 | < 5 |
| 190-276 | < 5 |
| 190-277 | < 5 |
| 190-278 | < 5 |
| 194-210 | < 5 |
| 194-211 | < 5 |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer

# Loring Laboratories Ltd. 

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta
T4B 2J3
Attn: David Gibson

File No : 49972
Date : Sept 10, 2007
Samples: Soil

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $194-212$ |  |
| $194-213$ | $<5$ |
| $194-218$ | $<5$ |
| $194-220$ | $<5$ |
| $194-221$ | $<5$ |
| $194-223$ | $<5$ |
| $194-225$ | $<5$ |
| $194-227$ | $<5$ |
| $194-233$ | $<5$ |
| $194-234$ |  |
| $194-235$ |  |
| $194-237$ |  |
| $194-239$ |  |
| $194-241$ |  |
| $194-243$ |  |
| $194-250$ |  |
| $194-251$ |  |
| $194-252$ |  |
| $194-255$ | $<5$ |
| $194-256$ |  |
| $194-257$ |  |
| $194-259$ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

Attn: David Gibson

## Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| $154-234$ |  |
| $154-237$ |  |
| $154-239$ |  |
| $154-241$ | $<5$ |
| $154-243$ | $<5$ |
| $154-245$ | $<5$ |
| $158-162$ |  |
| $158-163$ | $<5$ |
| $158-215$ |  |
| $158-216$ |  |
| $158-219$ |  |
| $158-221$ |  |
| $158-223$ |  |
| $158-225$ |  |
| $158-227$ |  |
| $158-229$ |  |
| $158-231$ |  |
| $158-234$ |  |
| $158-235$ |  |
| $158-237$ |  |
| $158-239$ |  |
| $158-241$ |  |
| $158-243$ |  |
| $158-245$ |  |
| $158-247$ |  |
| $158-249$ |  |
| $158-251$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2
Geochemical Analysis Certificate

Company: WARRIOR VENTURES INC.
Date: NOV-21-07
Project: McNeil Project
Atm: D. Gibson
We hereby certify the following Geochemical Analysis of 49 Core samples submitted NOV-08-07 by .



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244 Fax (705) 642-3300

Established 1928

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Geochemical Analysis Certificate
7W-3463-RG1
Company: WARRIOR VENTURES INC.
Date: NOV-21-07
Project: McNeil Project
Atto: D. Gibson
We hereby certify the following Geochemical Analysis of 49 Core samples submitted NOV-08-07 by .

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PPM |
| E591011 | 651 | - | 0.3 |
| E591012 | 1838 | - | 0.2 |
| E591013 | 51 | - | 0.1 |
| E591014 | 27 | - | 0.1 |
| E591015 | 27 | - | 0.1 |
| E591016 | 21 | 31 | 0.1 |
| E591017 | Nil | - | 0.1 |
| E591018 | Nil | - | 0.1 |
| E591019 | 343 | - | 0.1 |
| E591020 | 1419 | - | 0.1 |
| E591021 | 1515 | 2709 | 0.2 |
| E591022 | 1166 | - | 0.2 |
| E591023 | 741 | - | 0.2 |
| E591024 | 463 | - | 0.1 |
| E591025 | 3 | - | 0.1 |
| E591026 | 55 | - | 0.1 |
| E591027 | 89 | - | 0.1 |
| E591028 | Nil | - | 0.1 |
| E591029 | 3 | 10 | 0.1 |
| E591030 | Nil | $\cdots$ | 0.1 |
| E591031 | Nil | - | 0.1 |



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1 T0
Telephone (705) 642-3244 Fax (705) 642-3300

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

## Geochemical Analysis Certificate

7W-3456-RG1
$\begin{array}{ll}\text { Company: } & \text { WARRIOR VENTURES INC. } \\ \text { Project: } & \text { McNeil Project } \\ \text { Atto: } & \text { D. Gibson }\end{array}$
Date: NOV-21-07

We hereby certify the following Geochemical Analysis of 62 Core samples submitted NOV-08-08 by



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1 T0
Telephone (705) 642-3244 Fax (705) 642-3300

## Swastika Laboratories Ltd <br> Assaying - Consulting - Representation

## Geochemical Analysis Certificate

Company: WARRIOR VENTURES INC.
Project:
McNeil Project
Attn:
D. Gibson

We hereby certify the following Geochemical Analysis of 62 Core samples submitted NOV-08-08 by


Certified by


1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

# Swastika Laboratories Ltd <br> Assaying - Consulting - Representation 

Page 3 of 3

## Geochemical Analysis Certificate

| Company: | WARRIOR VENTURES INC. | Date: NOV-21-07 |
| :--- | :--- | :--- |
| Project: | McNeil Project |  |
| Attn: | D. Gibson |  |

We hereby certify the following Geochemical Analysis of 62 Core samples submitted NOV-08-08 by .

| Sample | AuAu Check <br> Number | Ag |  |
| :--- | ---: | ---: | ---: |
| -28458 | Nil | PPB | PPM |
| 28459 | Nil | - | 0.1 |
| Blank | Nil | - | 0.1 |
| STD OxK48 | 3504 | - | - |



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244 Fax (705) 642-3300

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2

## Geochemical Analysis Certificate

7W-3669-RG1
Date: DEC-12-07
Company: WARRIOR VENTURES INC.
Die: DEC-12-07

Project: McNeil Project
Atn: D. Gibson
We hereby certify the following Geochemical Analysis of 31 Core samples submitted NOV-22-07 by .

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PRM |
| E59116 | 9 |  | 0.1 |
| E59117 | 12 |  | 0.1 |
| E59118 | 5 |  | 0.1 |
| E59119 | 7 |  | 0.1 |
| E59120 | nil | 7 | 0.1 |
| E59121 | nil |  | 0.1 |
| E59122 | 17 |  | 0.1 |
| E59123 | 3 |  | 0.1 |
| E59124 | 137 |  | 0.1 |
| E591145 | 165 |  | 0.1 |
| E591146 | 562 |  | 0.1 |
| E591147 | 38 |  | 0.1 |
| E591148 | 3 |  | 0.1 |
| E591081 | 363 | 281 | 0.1 |
| E591189 | 17 |  | 0.1 |
| E591190 | 62 |  | 0.1 |
| E591191 | 21 |  | 0.1 |
| E591193 | 14 |  | 0.1 |
| E591194 | 17 | 14 | 0.1 |
| E591196 | ni1 |  | 0.1 |
| E591197 | 14 |  | 0.1 |
| 27030 | 51 |  | 0.1 |
| 27031 | 326 |  | 0.1 |
| 27032 | 312 | 429 | 0.1 |
| 27033 | 62 |  | 0.1 |
| 27034 | 31 |  | 0.1 |
| 27035 | 507 |  | 0.1 |
| 27036 | 7 |  | 0.1 |
| 27037 | nil |  | 0.1 |
| 27038 | 250 |  | 0.1 |



1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244 Fax (705) 642-3300

## Swastika Laboratories Ltd <br> Assaying - Consulting - Representation

$$
\text { Page } 2 \text { of } 2
$$

## Geochemical Analysis Certificate

Company: WARRIOR VENTURES INC.
Project: McNeil Project
Attn: D. Gibson
We hereby certify the following Geochemical Analysis of 31 Core samples submitted NOV-22-07 by .

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PPM |
| 27039 | 233 |  | 0.1 |
| Blank | nil |  |  |
| STD OxK48 | 3504 |  |  |

Certified by


## Swastika Laboratories Ltd

Assaying - Consulting - Representation

## Geochemical Analysis Certificate

Company: WARRIOR VENTURES INC.
Project: McNeil Project
Attn: D. Gibson
Date: DEC-13-07

We hereby certify the following Geochemical Analysis of 49 Core samples submitted NOV-22-07 by .

| Sample | Au | Au Check | Ag |
| :---: | :---: | :---: | :---: |
| Number | PPB | PPB | PPM |
| E591149 | nil | 5 | 0.1 |
| E591150 | nil |  | 0.1 |
| E591151 | 5 |  | 0.1 |
| E591152 | nil |  | 0.1 |
| E591153 | 22 |  | 0.1 |
| E591154 | 3 |  | 0.1 |
| E591155 | nil |  | 0.1 |
| E591156 | nil |  | 0.1 |
| E591157 | 27 |  | 0.1 |
| E591158 | 202 |  | 0.1 |
| E591159 | 1783 | 953 | 0.1 |
| E591160 | 7 |  | 0.1 |
| E591161 | 65 |  | 0.1 |
| E591162 | nil |  | 0.1 |
| E591163 | 146 |  | 0.1 |
| E591164 | 84 |  | 0.1 |
| E591165 | 36 |  | 0.1 |
| E591168 | nil |  | 0.1 |
| E819981 | nil |  | 0.1 |
| E819982 | nil |  | 0.1 |
| E819983 | nil |  | 0.1 |
| E819985 | nil |  | 0.1 |
| E819986 | nil |  | 0.1 |
| E819987 | 9 |  | 0.1 |
| E819988 | nil |  | 0.1 |
| E819989 | nil |  | 0.1 |
| E819990 | nil |  | 0.1 |
| E819991 | ni i |  | 0.1 |
| E819995 | 5 |  | 0.1 |
| E591125 | 3 |  | 0.1 |

Certified by


1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1 T0
Telephone (705) 642-3244 Fax (705) 642-3300


Established 1928

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 2

## Geochemical Analysis Certificate

Company: WARRIOR VENTURES INC.
Date: DEC-13-07
Project: McNeil Project
Attn: D. Gibson
We hereby certify the following Geochemical Analysis of 49 Core samples submitted NOV-22-07 by


Certified by


1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1 To

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta T4B 2J3
Attn: David Gibson

File No : 50034
Date: Oct 22, 2007
Samples: Soil

Certificate of Assay

| Sample <br> No. | Gold <br> ppD |
| :---: | :---: |
| "Geochem Analysis" |  |
| $25-231$ |  |
| $25-232$ | $<5$ |
| $25-233$ | $<5$ |
| $25-234$ | 5 |
| $25-235$ | $<5$ |
| $25-236$ | $<5$ |
| $25-237$ | $<5$ |
| $25-240$ | $<5$ |
| $25-241$ | $<5$ |
| $25-242$ | $<5$ |
| $25-243$ | $<5$ |
| $25-244$ | 11 |
| $25-245$ | 14 |
| $25-246$ | $<5$ |
| $25-247$ | 12 |
| $25-248$ | 14 |
| $25-249$ | 11 |
| $25-250$ | $<5$ |
| $25-253$ | $<5$ |
| $25-255$ | $<5$ |
| $25-256$ | $<5$ |
| $25-258$ | $<5$ |
| $25-259$ |  |
| $25-260$ |  |
| $25-261$ |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights Pl., Airdire, Alberta

File No : 50034

T4B 2J3
Attn: David Gibson

Date : Oct 22, 2007
Samples: Soil

## Certificate of Assay



Rejects and pulps are retained for one month unless specific arrangements are made in advance.

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
T4B 2J3

File No : 50034
Date: Oct 22, 2007
Samples: Soil

Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 29-229 | $<5$ |
| 29-233 | < |
| 29-237 | < |
| 29-238 | $<5$ |
| 29-239 | < |
| 29-240 | $<5$ |
| 29-241 | < |
| 29-242 | $<5$ |
| 29-247 | <5 |
| 29-249 | $<5$ |
| 29-250 | $<5$ |
| 29-251 | $<5$ |
| 29-252 | $<5$ |
| 29-253 | < 5 |
| 29-255 | $<5$ |
| 29-256 | $<5$ |
| 29-257 | < 5 |
| 29-258 | $<5$ |
| 29-259 | $<5$ |
| 29-260 | 6 |
| 29-262 | < |
| 29-263 | $<5$ |
| 29-264 | $<5$ |
| 29-265 | $<5$ |
| 29-267 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
loringlabs@telus.net
To: WARRIOR VNETURES INC.
File No : 50034
6 Jensen Heights PI., Date : Oct 22, 2007
Airdire, Alberta
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay



I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.
P. 4

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541
Ioringlabs@telus.net
To: WARRIOR VNETURES INC.
6 Jensen Heights PI., Airdire, Alberta

File No : 50034
Date : Oct 22, 2007
Samples: Soil
T4B 2J3
Attn: David Gibson

## Certificate of Assay

| Sample No. | Gold ppb |
| :---: | :---: |
| "Geochem Analysis" |  |
| 25-231 | $<5$ |
| 25-232 | $<5$ |
| 25-233 | 5 |
| 25-234 | $<5$ |
| 25-235 | $<5$ |
| 25-236 | $<5$ |
| 25-237 | <5 |
| 25-240 | $<5$ |
| 25-241 | $<5$ |
| 25-242 | $<5$ |
| 25-243 | 11 |
| 25-244 | 14 |
| 25-245 | $<5$ |
| 25-246 | 12 |
| 25-247 | 14 |
| 25-248 | 11 |
| 25-249 | <5 |
| 25-250 | $<5$ |
| 25-253 | < |
| 25-255 | < |
| 25-256 | $<5$ |
| 25-258 | < |
| 25-259 | < |
| 25-260 | < 5 |
| 25-261 | $<5$ |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.

## Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC. 6 Jensen Heights Pl., Airdire, Alberta TAB 2J3
Attn: David Gibson

File No : 50034
Date : Oct 22, 2007
Samples: Soil

## Certificate of Assay



I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Assayer

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

To: WARRIOR VNETURES INC.
6 Jensen Heights PI.,
Airdire, Alberta
File No : 50034

T4B 2J3
Attn: David Gibson

Date : Oct 22, 2007
Samples: Soil

Certificate of Assay

| Sample <br> No. | Gold <br> ppb |
| :---: | :---: |
| Geochem Analvsis" |  |
| $29-229$ |  |
| $29-233$ | $<5$ |
| $29-237$ | $<5$ |
| $29-238$ | $<5$ |
| $29-239$ | $<5$ |
| $29-240$ | $<5$ |
| $29-241$ | $<5$ |
| $29-242$ | $<5$ |
| $29-247$ | $<5$ |
| $29-249$ | $<5$ |
| $29-250$ | $<5$ |
| $29-251$ | $<5$ |
| $29-252$ | $<5$ |
| $29-253$ | $<5$ |
| $29-255$ | $<5$ |
| $29-256$ | $<5$ |
| $29-257$ | $<5$ |
| $29-258$ |  |
| $29-259$ |  |
| $29-260$ |  |
| $29-262$ |  |
| $29-263$ |  |
| $29-264$ |  |
| $29-265$ |  |
| $29-267$ |  |
|  |  |
|  |  |
|  |  |
|  |  |

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:


Rejects and pulps are retained for one month unless specific arrangements are made in advance.


## CERTIFICATE OF ANALYSIS




CERTIFICATE OF ANALYSIS



## CERTIFICATE OF ANALYSIS




## CERTIFICATE OF ANALYSIS




CERTIFICATE OF ANALYSIS


$$
\begin{aligned}
& \text { A. Sexton } \\
& \text { Project: Iimmins }
\end{aligned}
$$

| Au | Aul | Eile |
| :---: | :---: | :---: |
| $9 / t$ | $g / t$ | Name |
| 10.87 |  | $\$ 26860$ |

CORTES TO: A. Sexton
INVOICE TO: Ceovector Mgmt. - Nepean ON
Feb 01/08


Page 2 of 2


## CERTIFICATE OF ANALYSIS



## LISTING OF EXPENDITURES MCNEIL 2007

## TRAVEL

May 10-May 11, 2007 G. Coffey travel from Ontario/Manitoba Boarder to Timmins/McNeil program 1136km @ \$.40/km one way ..... \$454.40
May 15-May 16,2007 D. Zyla, B.Etherington, and D. Gibsontravel from Ontario/Manitoba Boarder to Timmins/McNeil program$1136 \mathrm{~km} @ \$ .40 / \mathrm{km}$ one way for each person, $\$ 454.40 /$ person\$1,363.32
June $3^{\text {rd }}, 2007$ B. Etherington travel from Timmins/McNeil program to Ontario/Manitoba Boarder 1136km @ \$.40/km one way ..... \$454.40
June 3 ${ }^{\text {rd }}, 2007$ D.Zyla travel from Timmins/McNeil program to Ontario/Manitoba Boarder 1136km @ \$.40/km one way ..... $\$ 454.40$
June $4^{\text {th }}$ to June $6^{\text {th }} 2007$ D. Zyla and J. Zyla travel fromOntario/Manitoba Boarder to Timmins/McNeil program 1136km@ \$.40/km one way for each person, $\$ 454.40 /$ person$\$ 908.80$
June 7 ${ }^{\text {th }}, 2007$ T.Zyla and S. Guha travel travel from
Ontario/Manitoba Boarder to Timmins/McNeil program1136km
@ \$.40/km one way for each person, \$454.40/person\$908.80
June $28^{\text {th }}$, 2007 D. Gibson, D. Zyla, T. Zyla, J. Zyla, S. Guha and
G. Coffey depart McNeil/Timmins for Calgary by air to attend
Warrior Ventures Board Meeting from Timmins/McNeil program to
Ontario/Manitoba Boarder1136km @ \$.40/km one way, $\$ 454.40 /$ person\$2,726.40

June 29th, 2007 - D. Gibson, S. Guha and G. Coffey return to

Timmins from Calgary by air, travel from Ontario/Manitoba Boarder to Timmins $/ \mathrm{McNeil}$ program $1136 \mathrm{~km} @ \$ .40 / \mathrm{km}$ one way for each person, $\$ 454.40 /$ person

July $1^{\text {st }}, 2007$ R.Blair travels from NC to Timmins/McNeil to replace J. Zyla and T. Zy;a, driven from Niagara Falls to Timmins 818km @ \$.40/km

July $5^{\text {th }}, 2007$ D. Campbell travels from Corbeil to McNeil Program 442 km One way @\$.40/km

July $6^{\text {th }} 2007$ to Sept. $10^{\text {th }} 2007$ travel for S. Simon to and from McNeil And Timmins daily working, 130km/day return for 65 days at $\$ .40 /$ day

July $29^{\text {th }}, 2007$ G. Coffey travels from Timmins to Calgary, from Timmins/McNeil program to Ontario/Manitoba Boarder 1136km @ \$.40/km one way

Aug $7^{\text {th }}, 2007$ T. Couture travels from Calgary to McNeil to Take over as camp superivision, camp and field logistics assistant, travel from Ontario/Manitoba Boarder to Timmins/McNeil program 1136km @ \$.40/km one way

Aug $19^{\text {th }}, 2007$ returning Aug $20^{\text {th }}, 2007$ Travel for Directors C. Hampson, G. Butler and H. Dunfield for property visit from Calgary by air, travel from Ontario/Manitoba Boarder to Timmins/McNeil program 1136km one way, 2272 km return for each person, @\$.40/km \$908.80/person

Aug $30^{\text {th }}, 2007$ S. Guha returns to Calgary from McNeil to
Complete Doctorate degree and UofC. travel from
Timmins/McNeil program to Ontario/Manitoba Boarder 1136km
@ \$.40/km one way\$454.40
Aug $30^{\text {th }}, 2007$ R. Blair returns to NC, travels from Timmins/McNeil To Niagara Falls, Ontario 818km one way @\$.40/km ..... \$327.20
Aug 30th, 2007 D. Renaud travels from Corbeil to McNeil Program 442 km One way @\$.40/km ..... \$176.68
Sept $10^{\text {th }}, 2007$ to Nov $10^{\text {th }}, 2007$ T. Dowe travels from Timmins, Daily To and from McNeil program, 130km return per day @ $\$ .40 / \mathrm{km}$ for 27 days ..... \$1,404.00
Nov $10^{\text {th }}, 2007$ D. Reneaud travels from McNeil Program to Corbeil, ON 442 km One way @ $\$ .40 / \mathrm{km}$ ..... \$176.68
Nov $10^{\text {th }}, 2007$ to Nov $25^{\text {th }}, 2007$ inclusive, travel D. Gibson, T.Couture,D. Campbell, from Timmins to McNeil daily to dismantle camp andRemove equipment, 130km daily return, @ $\$ .40 / \mathrm{km}$ for 16 days$\$ 832.00$
Nov 26th, 2007 - T.Couture departs Timmins for Calgary.
Timmins/McNeil program to Ontario/Manitoba Boarder 1136km
@ \$.40/km one way\$454.40
Nov 26th, 2007- D. Campbell departs Timmins for Corbeil, ON ..... \$176.68442 km One way @\$.40/kmDec 12, 2007 - D. Gibson departs Timmins for Calgary

Timmins/McNeil program to Ontario/Manitoba Boarder 1136km
@ $\$ .40 / \mathrm{km}$ one way

## FIELD WAGES AND SALARIES

May $17^{\text {th }}$ to June 2, 2007 inclusive 17 days camp construction, G. Coffey B.Etherington, and D. Zyla, 17 days at $\$ 250 /$ man/day

May 16, 2007 to Nov 25, 2007 D. Gibson project supervision,
Coordination, field logistics, Exploration planning, program
Development, and design, 181 days @ \$550/day
June $2^{\text {nd }}$ to July $28^{\text {th }} 2007$ G. Coffey camp attendant, filled generators, Water tanks, propane, supplies from town, maintain camp, field
Assistant and equipment maintenance, dozer and excavator operator 55 days at $\$ 250 /$ day

Nov $10^{\text {th }}, 2007$ to Nov $25^{\text {th }}, 2007$ inclusive D. Campbell field assistant, General labourer helping in removal of camp and equipment, 16 days At \$200/day

Aug $30^{\text {th }}, 2007$ to Nov $10^{\text {th }}, 2007$ inclusive D. Renaud worked as core Splitter, camp and field assistant, general labourer 82 days at $\$ 150$ /day

June $7^{\text {th }}, 2007$ to June $28^{\text {th }}, 2007$ inclusive, T. Zyla, 22 days as geological Assistant @ $\$ 250 /$ day
Assistant and splitting core 61 days @ $\$ 150 /$ day

## EQUIPMENT RENTALS

| Battlefield Equipment-Timmins, Ontario |  |
| :--- | :--- |
| Bulldozer, pumps, hoses, generators and accessories rented from Battlefield Equipment from July 2007 to Nov 2007 |  |
| Aug 29th,2007 Bulldozer rental | $\$ 5,380.35$ |
| Aug 29th,2007 Hoses | $\$ 191.46$ |
| Aug 29th 2007 Hose rental | $\$ 691.39$ |
| Aug 29th,2007 Pump Rental | $\$ 2,105.35$ |
| Aug 27th,2007 Hose Access. | $\$ 483.45$ |
| Aug 27th,2007 Hose Access. | $\$ 467.85$ |
| Oct 4th,2007 Pump Rental | $\$ 1,154.05$ |
| Oct 5th,2007 Pump Rental | $\$ 1,154.05$ |
| Oct 5th,2007 Bulldozer Rental | $\$ 5,380.35$ |
| Oct 5th,2007 Bulldozer Rental | $\$ 5,380.35$ |
| Oct 5th,2007 Pump Rental | $\$ 1,154.05$ |
| Oct 26th,2007 Bulldozer Rental and Repair | $\$ 6,673.11$ |
| Oct 31st,2007 Pump Rental | $\$ 1,154.05$ |
| Oct 31st,2007 2nd Pump Rental | $\$ 1,154.05$ |
| Oct 31st,2007 3rd Pump Rental | $\$ 1,154.05$ |
| Nov 14th,2007 Generator rental from July to November | $\$ 3,206.78$ |
| Nov 16th,2007 Hose fitting | $\$ 140.36$ |
| Nov 19th,2007 Pump rental | $\$ 1,013.69$ |
| Nov 21st,2007 hose rental | $\$ 32.49$ |
| Dec 10,2007 final invoice for pump rental and repairs | $\$ 336.30$ |
| Warrior Equipment on-site | $\$ 22,400.00$ |

## Porcupine Air Tools

July 24,2007 Porcupine Air Tools rental of Stone Boats $\quad \$ 8,042.00$
Aug 24,2007 Porcupine Air Tools rental of Stone Boats \$8,042.00
$\begin{array}{ll}\text { Sept } 24,2007 \text { Porcupine Air Tools rental of Stone Boats } & \$ 8,042.00\end{array}$
From May 2007 to Nov 2007, GPS Total station, and single frequency GPS equipment rental.
7 Lieca SR530, 3 Ashtec Promark II GPS survey instruments on-site for establishing grid lines, spotting holes, detailed geological geophysica and geochemical work from Gibson and Associates, 7 Lieca SR530 at $\$ 100 /$ day/unit, 3 Ashtec Promark II at $\$ 80 /$ day/unit $\$ 64,742.68$

Enterprise Rent-a-car rental of F350 Ford Superduty from June 2007 to Nov 2007, rental, insurances, repairs and maintenance

| July 18th,2007 | $\$ 2,012.53$ |
| :--- | :--- |
| July 30th,2007 | $\$ 678.45$ |
| July 30th,2007 | $\$ 2,131.81$ |
| Aug 10th,2007 | $\$ 2,182.44$ |
| Aug 31st,2007 | $\$ 2,338.03$ |
| Sept 30th,2007 | $\$ 4,734.83$ |
| Oct 18th,2007 | $\$ 293.23$ |
| Oct 29th,2007 | $\$ 445.45$ |
| Nov 2nd,2007 | $\$ 293.23$ |
| Nov 19th,2007 | $\$ 500.00$ |
| Dec 12th,2007 final invoice for November | $\$ 2,717.78$ |

May 01, 2007 to Nov 21,2007 rental of two trucks and two quads from Gibson and Associates 2 quads at $\$ 45 /$ quad/day, 12004 F250 Superduty Truck at $\$ 90 /$ day, 11994 F350 at $\$ 55 /$ day

May 01, 2007 to Nov 21, 2007 rental of 4 camper trailers for field camp on McNeil program from Gibson and Associates
4 trailers at \$180/day

## MEALS AND ACCOMODATIONS

## BonAir Motel

July 14th,2007 \$233.10
July 15th, 2007$\$ 77.70$
July 18th,2007 room and meals ..... \$449.55
July 22th,2007 ..... $\$ 77.70$
July 27th,2007 ..... \$310.80
Aug 22nd,2007 ..... \$323.01
Oct 21st,2007 ..... \$405.15
Oct 30th,2007 ..... \$81.03
Nov 1st,2007 ..... \$524.79
Nov 1st,2007 ..... \$81.03
Nov 3rd,2007 ..... \$1,134.22
Nov 4th,2007 ..... \$81.03
Nov 6th,2007 ..... \$101.27
Nov 9th,2007\$81.03
Nov 15th,2007 meals and accomodations for Fladgate Exploration Consultants and crews ..... \$1,428.66
Nov 15th,2007 meals and accomodations for Fladgate Exploration Consultants and crews ..... \$2,077.01
Dec 16th,2007 final invoice for crew for meals and accomodations for Nov 2007. ..... \$4,684.63CAMP SUPPLIES, GROCERIES, PROPANE, FUEL HARDWARE SUPPLIESGenetronics
Camp supplies, fuel, propane, groceries
May 2nd,2007 ..... \$637.53
May 14th,2007 ..... \$661.85
May 16th,2007 ..... \$1,186.63
May 24th,2007 ..... \$767.14
May 24th, 2007 ..... \$812.63
May 24th,2007 ..... \$1,459.19
May 24th,2007 ..... \$988.70
June 22nd,2007 ..... \$537.57
June 22nd,2007 ..... \$887.89
June 22nd,2007 ..... \$40.56
June 22nd, 2007 ..... \$1.71
June 22nd,2007 ..... \$187.67
June 22nd,2007 ..... \$579.18
June 22nd,2007 ..... \$131.58
June 23rd,2007 ..... \$2,823.50
June 30th,2007 ..... \$1,275.00June 30th,2007June 30th,2007\$166.77June 30th,2007\$428.85Jun 30h, 2007\$294.53
June 30th,2007 ..... \$141.99
July 14th,2007 ..... \$299.04
July 23rd,2007 ..... \$1,369.27
July 31st,2007 ..... \$187.77
Aug 7th,2007 ..... \$338.50
Aug 7th,2007 ..... \$159.64
Aug 7th,2007 ..... $\$ 8.47$
Aug 7th,2007 ..... $\$ 13.73$
Aug 17th,2007 ..... \$15.66
Aug 17th,2007 ..... \$14.83
Aug 17th,2007 ..... \$94.38
Aug 31st,2007 ..... \$56.10
Sept 19th,2007 ..... \$131.69
Sept 19th,2007 ..... \$121.74
Sept 19th,2007 ..... $\$ 44.22$
Sept 19th,2007 ..... \$85.27
Oct 31st,2007 ..... \$144.87
Oct 31st,2007 ..... \$23.93
Nov 30,2007 ..... \$155.48
Dec 5th expense report groceries for November ..... \$389.53\$18,525.29
GEOLOGICAL, GEOCHEMICAL,GEOPHYSICAL AND GEOTECHNICAL
Drilling of 1981.22 meters of BTW drill core from May 2007 to Nov 2007 at $\$ 150 /$ meter ..... \$297,183.00
Geochemical soil sampling of 72.225 km grid lines at $\$ 450 / \mathrm{km}$ ..... \$32,501.25
Nov 15,2007 geological core logging by Fladgate Exploration Consultants ..... \$8,142.07
June $7^{\text {th }}$ to Aug $30^{\text {th }}, 2007$ S. Guha Company Geologist on-site,Corelogging, sampling, geological interpretation, 23 days in Juneat \$600/day\$13,800.00
27 days in July 2007 @ \$600/day ..... \$16,200.00
25 days in Aug, 2007 @ \$600/day ..... \$15,000.00
Aug $12^{\text {th }}, 2007$ Terrapoint completes Lidar Survey over property ..... \$47,890.80

## ASSAYING EXPENSES

Loring Labs Calgary, AB ..... \$30,361.00
Swastika Labs, Swastika, ON ..... $\$ 5,727.52$\$36,088.52
AUTO REPAIRS AND MAINTENANCE
GCR Tire Center
Nov 15th,2007 repairs to damaged tires, replacement of damaged tires ..... \$658.35
Nov 15th,2007 tire repairs ..... $\$ 45.60$
Repairs and Maintenance from expenses reports submitted by field crew memebers, tires and rims
May 24th,2007\$230.76
June 22nd,2007 ..... \$20.60
June 30th,2007 ..... \$167.03
July 5th,2007 ..... \$27.48
Aug 17th,2007 ..... \$72.18
Aug 20th,2007 ..... \$314.77
Oct 1st,2007 ..... \$447.70
Oct 31st,2007 ..... \$193.65
Oct 31st,2007 ..... \$268.60
Oct 31st,2007 ..... \$208.17
Dec 12,2007 ..... $\$ 58.13$
Dec 17th,2007 ..... \$14.82
Dec 19th,2007 ..... $\$ 54.34$$\mathbf{\$ 2 , 7 8 2 . 1 8}$

## FUEL

From expense reports submits by field crew members
Fuel for all vehicles, Bulldozers, Excavator, Trucks and quads on the McNeil program from May 2007 to Nov 2007

| May 24th,2007 | $\$ 766.45$ |
| :--- | :--- |
| May 24th,2007 | $\$ 632.04$ |
| May 24th,2007 | $\$ 633.00$ |
| June 22nd,2007 | $\$ 91.85$ |
| June 22nd,2007 | $\$ 685.62$ |
| June 22nd,2007 | $\$ 71.00$ |
| June 22nd,2007 | $\$ 470.35$ |
| June 22nd,2007 | $\$ 566.04$ |
| June 23rd,2007 | $\$ 1,792.21$ |
| June 30th,2007 | $\$ 642.79$ |
| June 30th,2007 | $\$ 203.67$ |
| June 30th,2007 | $\$ 151.53$ |
| June 30th,2007 | $\$ 2,298.60$ |
| June 30th,2007 | $\$ 101.83$ |
| July 5th,2007 | $\$ 812.01$ |
| July 14th,2007 | $\$ 1,141.55$ |
| July 17th,2007 | $\$ 39.00$ |
| July 17th,2007 | $\$ 128.00$ |
| July 23rd,2007 | $\$ 1,992.95$ |
| July 23rd,2007 | $\$ 289.92$ |
| Aug 7th,2007 | $\$ 88.00$ |
| Aug 7th,2007 | $\$ 971.72$ |
| Aug 7th,2007 | $\$ 718.72$ |
| Aug 7th,2007 | $\$ 1,591.63$ |
| Aug 7th,2007 | $\$ 327.54$ |
| Aug 7th,2007 | $\$ 119.82$ |
| Aug 17th,2007 | $\$ 133.00$ |
| Aug 17th,2007 | $\$ 46.31$ |
| Aug 17th,2007 | $\$ 45.16$ |
| Aug 17th,2007 | $\$ 242.00$ |

Aug 17th,2007 ..... $\$ 90.00$
Aug 20th,2007 ..... \$498.31
Sept 19th,2007 $\$ 114.00$Sept 19th,2007\$392.04
Sept 19th,2007 ..... \$222.00
Sept 19th,2007 ..... \$230.12
Sept 19th,2007 ..... \$110.00
Oct 1st,2007 ..... \$16.30
Oct 15th,2007 ..... \$50.00
Oct 25th,2007 ..... \$272.76
Oct 31st,2007 ..... \$795.19
Oct 31st,2007 ..... \$1,018.53
Oct 31st,2007 ..... \$1,038.65
Oct 31st,2007 ..... \$1,191.06
Oct 31st,2007 ..... \$685.01
Oct 31st,2007 ..... $\$ 75.90$
Oct 31st,2007 ..... \$598.18
Oct 31st,2007 ..... \$220.31
Oct 31st,2007 ..... \$100.00
Nov 30th,2007 ..... \$680.82
Dec 12th, 2007 ..... \$270.35
Dec 5th,2007 ..... \$268.54
Dec 7th,2007 ..... \$231.00
Dec 17th, 2007 ..... \$317.16
Dec 17th,2007 ..... \$252.16
Dec 17th,2007 ..... $\$ 43.70$
Dec 19th,2007 ..... \$227.00

## STRIPPING

| July $6^{\text {th }}$ to July $27^{\text {th }}, 2007$ G. Coffey 22 days stripping on Lightening zone |  |
| :--- | :--- |
| Extension and Cat zone with bulldozer and komatsu excavator, 8 days |  |
| July 6th to July 13th inclusive. With bulldozer at $\$ 1,800 /$ day $/ \$ 150 / \mathrm{hr} / 12$ hours | $\$ 14,400.00$ |
| July 14th to July 27th, 14 days with komatsu Excavator at $\$ 1,200 /$ day $/ \$ 100 / \mathrm{hr} / 12$ hours | $\$ 16,800.00$ |
|  | $\mathbf{\$ 3 1 , 2 0 0 . 0 0}$ |
| Freight and Shipping |  |
|  |  |
| Manitoulin Transport | $\$ 372.06$ |
| July 19th,2007 shipment from Canuck Drilling Supplies | $\$ 252.24$ |
| Sept 6th,2007 shipment from Canuck Drilling |  |
|  | $\$ 249.10$ |
| Air Canada freight | $\$ 20.94$ |
| July 19th,2007 air freight of replacement water pump from Multi-Power Products in Kelowna,BC | $\$ 221.02$ |
| Greyhound Bus /Ontario Northland shipping | $\$ 578.76$ |
| June 22nd,2007 | $\$ 1,130.97$ |
| July 23rd,2007 | $\$ 42.77$ |
| July 31st,2007 | $\$ 295.35$ |
| Aug 7th,2007 | $\$ 520.57$ |
| Aug 17th,2007 20th,2007 | $\$ 187.41$ |
| Sept. 19th,2007 | $\$ 43.94$ |
| Sept. 19th,2007 | $\$ 19.50$ |
| Sept. 19th,2007 | $\$ 209.98$ |
| Oct 31st,2007 | $\$ 20.74$ |
| Oct 31st,2007 |  |
| Dec 19th,2007 |  |

Wingers Towing
July 13th,2007 deliver stone boats ..... \$636.00
Nov 17th,2007 remove drilling equipment from McNeil ..... \$667.80
Onil Deschatelets Trucking
May 10th,2007 delivery of D8 Cat from Kenora, Ontario to McNeil Property ..... \$3,010.40
Leo Alarie and Sons
July 25th,2007 load and haul D8 Cat into Timmins for servicing ..... \$2,756.00
Drill Supplies, Repairs and Replacement equipment
May 8,2007 Core Boxes from Vics Fabricating in Timmins ..... \$3,420.00
T.I.M.E. Industrial Supplies
Jne 30th,2007 hydraulic fitting ..... \$14.71
July 16th,2007 drilling mud and grease ..... \$588.49
Oct 9th,2007 drilling mud and grease ..... \$400.16
Oct 9th,2007 drilling mud and grease ..... $\$ 390.07$
Nov 17th,2007 rod grease ..... $\$ 113.43$
Nov 24th,2007 hose fitting ..... \$12.38
Rivers Hydraulics
Aug 7th,2007 replacement Hydraulic motor for water pump and hydraulic fittings ..... \$3,630.90
Sept 25th,2007 Boart Longyear replacement parts for drill ..... $\$ 775.02$
Hydro-Pro
General Drilling Supplies
May 5th,2007 ..... \$222.60
Canuck Drilling Systems - drilling supplies
May 6th,2007 ..... \$3,973.29
May 17th,200 ..... \$582.74
May 28th,2007 ..... \$252.02
May 28th,2007 ..... \$280.90
June 14th,2007 ..... \$302.83
July 5th,2007 ..... \$922.20
July 10th,2007 ..... \$595.72
July 13th,2007 ..... \$261.56
July 19th,2007 ..... \$3,846.21
July 25th,2007 ..... \$380.62
July 31st,2007 ..... \$372.06
Aug 23rd,2007 ..... \$2,677.04Aug 23rd,2007\$102.82
Aug 29th,2007
A ..... \$285.44
Sept 6th,2007 ..... \$252.24
Sept 7th,2007 ..... \$550.97
Oct 24th,2007 ..... \$7,627.02
Nov 1st,2007 ..... \$195.02
Nov 5th,2007 ..... \$1,077.27
Nov 5th,2007 ..... \$622.77
Columbia Chrome-Drill repairs
July 19th,2007 ..... \$848.16
Oct 12th,2007 ..... \$239.40
Gibson Welding and Mechanical
Aug 19th,2007 welding and repair drill rig ..... \$452.00
Hydracore Drills
May 8th,2007 drill supplies ..... \$752.60
May 29th,2007 drill supplies ..... $\$ 95.40$
June 5th,2007 drill replacement parts ..... \$493.96
June 5th,2007 drill replacement parts ..... \$154.78
June 12th,2007 drill collar replacement ..... \$1,696.00
Sept 15th,2007 drill parts ..... \$275.60Hydraulics Plus
July 13th,2007 repair hydraulic motor ..... \$671.31
Oct 12th,2007 replace hydraulic motor ..... \$659.55
Multi-Power Products
June 11th,2007 replacement high pressure water pump ..... \$5,266.49
July 19th,2007 replacement high pressure mud pump ..... \$7,124.26

## MCNEIL 2007 SOIL SAMPLING SPREADSHEET

| Sample Number | Colour |  |
| :---: | :---: | :---: |
| 17235 | LB | Depth (cm) |
| 17236 | LB | 40 |
| 17237 | MB | 50 |
| 17238 | MB | 40 |
| 17239 | LB | 35 |
| 17240 | LB | 40 |
| 17241 | LB | 40 |
| 17242 | LB | 40 |
| 17243 | DB | 45 |
| 17246 | MB | 30 |
| 17249 | DB | 40 |
| 17251 | DB | 50 |
| 17252 | MB | 50 |
| 17253 | LB | 40 |
| 17254 | DB | 40 |
| 17255 | MB | 35 |
| 17256 | LB | 30 |
| 17257 | MB | 40 |
| 17258 | LB | 30 |
| 17260 | LB | 40 |
| 17261 | LB | 25 |
| 17262 | LB | 30 |
| 17263 | LB | 35 |
| 17264 | LB | 30 |
| 17265 | MB | 40 |
| 17266 | MB | 30 |
| 17267 | LB | 50 |
| 19233 | LB | 40 |
| 19234 | LB | 40 |
| 19235 | LB | 30 |
| 19238 | LB | 65 |
| 19241 | LB | 40 |
| 19242 | DB | 30 |
| 19244 | LB | 50 |
| 19245 | LB | 30 |
| 19251 | MB | 50 |
| 19252 | MB | 30 |
| 19253 | LB | 25 |
| 19254 | LB | 30 |
| 19257 | LB | 40 |
| 19258 | LB | 30 |
| 19259 | MB | 40 |
| 19260 | LB | 40 |
| 19261 | MB | 25 |
| 19262 | LB | 30 |
| 19263 | LB | 25 |
| 19264 | MB | 20 |
| 19265 | MB | 40 |
| 19266 | LB | 30 |
|  |  |  |


| 19267 | MB | 35 |
| :---: | :---: | :---: |
| 19268 | LB | 50 |
| 19269 | MB | 30 |
| 19270 | MB | 40 |
| 21232 | LB | 30 |
| 21233 | MB | 50 |
| 21234 | LB | 40 |
| 21235 | MB | 45 |
| 21236 | LB | 40 |
| 21237 | MB | 35 |
| 21239 | DB | 35 |
| 21240 | MB | 40 |
| 21241 | DB | 30 |
| 21246 | MB | 40 |
| 21247 | MB | 35 |
| 21249 | MB | 40 |
| 21251 | MB | 35 |
| 21257 | MB | 25 |
| 21259 | LB | 40 |
| 21260 | MB | 40 |
| 21261 | LB | 30 |
| 21262 | LB | 40 |
| 21263 | MB | 20 |
| 21264 | LB | 30 |
| 21265 | MB | 25 |
| 21266 | MB | 30 |
| 21267 | MB | 25 |
| 21268 | MB | 30 |
| 21270 | LB | 30 |
| 23231 | LB | 30 |
| 23232 | LB | 40 |
| 23233 | LB | 15 |
| 23234 | LB | 30 |
| 23235 | LB | 60 |
| 23236 | LB | 40 |
| 23237 | LB | 35 |
| 23241 | MB | 40 |
| 23243 | DB | 20 |
| 23244 | LB | 50 |
| 23246 | MB | 40 |
| 23247 | LB | 55 |
| 23248 | LB | 30 |
| 23249 | LB | 50 |
| 23250 | LB | 30 |
| 23251 | DB | 25 |
| 23257 | LB | 30 |
| 23258 | LB | 30 |
| 23259 | LB | 25 |
| 23260 | LB | 30 |
| 23261 | LB | 25 |
| 23262 | LB | 20 |
| 23263 | LB | 25 |


| 23264 | LB | 40 |
| :---: | :---: | :---: |
| 23265 | MB | 20 |
| 23266 | MB | 30 |
| 23269 | MB | 30 |
| 25231 | MB | 60 |
| 25232 | MB | 40 |
| 25233 | MB | 30 |
| 25234 | LB | 30 |
| 25235 | MB | 20 |
| 25236 | MB | 30 |
| 25237 | MB | 30 |
| 25240 | MB | 30 |
| 25241 | MB | 30 |
| 25242 | LB | 30 |
| 25243 | LB | 30 |
| 25244 | LB | 40 |
| 25245 | MB | 20 |
| 25246 | MB | 30 |
| 25247 | LB | 30 |
| 25248 | LB | 30 |
| 25249 | MB | 30 |
| 25250 | LB | 30 |
| 25253 | MB | 30 |
| 25255 | LB | 40 |
| 25256 | MB | 40 |
| 25258 | MB | 30 |
| 25259 | MB | 40 |
| 25260 | LB | 30 |
| 25261 | MB | 40 |
| 25262 | LB | 30 |
| 25264 | LB | 40 |
| 25266 | LB | 30 |
| 25267 | DB | 30 |
| 25268 | LB | 30 |
| 25269 | LB | 20 |
| 25270 | LB | 20 |
| 27236 | MB | 30 |
| 27238 | MB | 30 |
| 27242 | MB | 30 |
| 27243 | LB | 30 |
| 27244 | MB | 30 |
| 27261 | MB | 40 |
| 27262 | LB | 30 |
| 27263 | MB | 20 |
| 27264 | LB | 30 |
| 27265 | LB | 20 |
| 27266 | LB | 30 |
| 27267 | LB | 30 |
| 27268 | LB | 30 |
| 27269 | LB | 20 |
| 27270 | LB | 20 |
| 29226 | MB | 40 |


| 29227 |  |  |
| :--- | :--- | :---: |
| 29228 | MB | 40 |
| 29229 | LB | 30 |
| 29233 | LB | 40 |
| 29237 | MB | 40 |
| 29238 | LB | 20 |
| 29239 | MB | 30 |
| 29240 | LB | 30 |
| 29241 | MB | 30 |
| 29242 | MB | 30 |
| 29247 | LB | 30 |
| 29249 | MB | 20 |
| 29250 | MB | 30 |
| 29251 | MB | 40 |
| 29252 | DB | 40 |
| 29253 | LB | 20 |
| 29255 | LB | 30 |
| 29256 | LB | 30 |
| 29257 | LB | 30 |
| 29258 | LB | 30 |
| 29259 | LB | 30 |
| 29260 | LB | 30 |
| 29262 | LB | 30 |
| 29263 | LB | 30 |
| 29264 | LB | 30 |
| 29265 | LB | 20 |
| 29267 | LB | 30 |
| 29269 | LB | 30 |
| 29270 | MB | 30 |
| 31229 | LB | 40 |
| 31230 | LB | 30 |
| 31233 | MB | 40 |
| 31234 | DB | 40 |
| 31237 | MB | 20 |
| 31238 | MB | 40 |
| 31239 | LB | 20 |
| 31240 | LB | 30 |
| 31241 | LB | 30 |
| 31242 | LB | 30 |
| 31243 | LB | 30 |
| 31245 | LB | 30 |
| 31246 | LB | 30 |
| 31248 | LB | 30 |
| 31251 | LB | 30 |
| 31252 | LB | 30 |
| 31253 | LB | 20 |
| 31254 | LB | 40 |
| 31255 | LB | 30 |
| 31256 | LB | 30 |
| 31259 | MB | 30 |
| 31261 | LB | 30 |
| 31262 | LB | 30 |
|  |  |  |


| 31263 | LB | 40 |
| :--- | :--- | :---: |
| 31266 | LB | 40 |
| 31268 | MB | 30 |
| 31269 | LB | 40 |
| 31270 | LB | 30 |
| 33228 | MB | 35 |
| 33229 | MB | 35 |
| 33230 | MB | 40 |
| 33231 | MB | 50 |
| 33232 | MB | 55 |
| 33233 | MB | 20 |
| 33235 | MB | 55 |
| 33236 | MB | 20 |
| 33237 | LB | 35 |
| 33239 | DB | 25 |
| 33240 | MB | 25 |
| 33241 | MB | 25 |
| 33246 | LB | 45 |
| 33247 | MB | 40 |
| 33248 | LB | 25 |
| 33250 | LB | 25 |
| 33251 | MB | 35 |
| 33252 | LB | 30 |
| 33253 | MB | 35 |
| 33254 | MB | 30 |
| 33256 | LB | 25 |
| 33257 | MB | 40 |
| 33259 | LB | 30 |
| 33260 | DB | 45 |
| 33261 | MB | 30 |
| 33263 | LB | 50 |
| 33264 | MB | 60 |
| 33266 | MB | 45 |
| 33267 | LB | 45 |
| 33268 | MB | 65 |
| 33269 | MB | 30 |
| 33270 | LB | 30 |
| 86233 | LB | 40 |
| 86235 | LB | 30 |
| 86237 | LB | 40 |
| 86239 | LB | 40 |
| 86241 | LB | 40 |
| 86243 | LB | 30 |
| 86245 | MB | 30 |
| 86247 | LB | 20 |
| 86249 | MB | 30 |
| 86251 | MB | 30 |
| 86254 | LB | 30 |
| 86255 | LB | 40 |
| 862606 | MB | 30 |
| 86263 | MB | 40 |
|  | MB | 30 |
|  |  |  |


| 86265 |  |  |
| :--- | :--- | :---: |
| 86268 | MB | 50 |
| 86272 | LB | 50 |
| 86273 | LB | 40 |
| 86275 | LB | 30 |
| 86277 | MB | 40 |
| 86281 | LB | 40 |
| 86291 | LB | 40 |
| 86292 | LB | 50 |
| 90223 | LB | 40 |
| 90225 | LB | 40 |
| 90226 | LB | 30 |
| 90229 | LB | 30 |
| 90231 | LB | 50 |
| 90233 | MB | 40 |
| 90234 | LB | 40 |
| 90235 | LB | 50 |
| 90239 | DB | 30 |
| 90241 | LB | 40 |
| 90243 | LB | 40 |
| 90245 | LB | 30 |
| 90247 | LB | 50 |
| 90249 | LB | 40 |
| 90251 | MB | 30 |
| 90253 | MB | 40 |
| 90255 | MB | 30 |
| 90257 | LB | 40 |
| 90259 | LB | 60 |
| 90261 | MB | 20 |
| 90263 | MB | 20 |
| 90265 | MB | 30 |
| 90267 | MB | 20 |
| 90269 | MB | 30 |
| 90271 | LB | 40 |
| 90273 | LB | 30 |
| 90276 | LB | 30 |
| 94220 | LB | 30 |
| 94221 | LB | 30 |
| 94229 | LB | 50 |
| 94241 | LB | 30 |
| 94243 | DB | 20 |
| 94245 | LB | 30 |
| 94247 | LB | 40 |
| 94250 | LB | 30 |
| 94251 | LB | 50 |
| 94261 | MB | 40 |
| 94268 | MB | 50 |
| 94270 | LB | 30 |
| 94271 | MB | 25 |
| 9427272 | MB | 30 |
| 98227 | LB | 30 |
|  | LB | 30 |
|  |  |  |


| 98229 |  |  |
| :--- | :---: | :---: |
| 98239 | MB | 20 |
| 98241 | MB | 40 |
| 98243 | MB | 50 |
| 98245 | LB | 30 |
| 98247 | MB | 20 |
| 98248 | MB | 40 |
| 98252 | MB | 50 |
| 98253 | MB | 40 |
| 98254 | LB | 50 |
| 98257 | LB | 50 |
| 98259 | MB | 50 |
| 98261 | MB | 50 |
| 98265 | MB | 30 |
| 98269 | LB | 40 |
| 98270 | LB | 40 |
| 98271 | LB | 20 |
| 98272 | MB | 40 |
| 98273 | LB | 30 |
| 98274 | LB | 50 |
| 98275 | MB | 40 |
| 102239 | LB | 40 |
| 102240 | MB | 40 |
| 102245 | DB | 40 |
| 102247 | MB | 40 |
| 102252 | MB | 40 |
| 102253 | MB | 40 |
| 102255 | MB | 40 |
| 102257 | MB | 40 |
| 102261 | MB | 40 |
| 102262 | LB | 50 |
| 102263 | MB | 30 |
| 102265 | LB | 20 |
| 102268 | LB | 40 |
| 102269 | LB | 40 |
| 102271 | LB | 60 |
| 106223 | LB | 30 |
| 106227 | LB | 40 |
| 106229 | LB | 40 |
| 106231 | LB | 40 |
| 106233 | LB | 40 |
| 106241 | LB | 30 |
| 106242 | MB | 20 |
| 106243 | MB | 30 |
| 106245 | MB | 40 |
| 106249 | MB | 30 |
| 106250 | MB | 20 |
| 106251 | DB | 35 |
| 106253 | MB | 25 |
| 106255 | MB | 30 |
| 106257 | MB | 30 |
| 106258 | MB | 20 |
|  |  |  |
|  |  |  |


| 106261 | MB | 35 |
| :--- | :--- | :---: |
| 106264 | LB | 50 |
| 106265 | MB | 20 |
| 106267 | DB | 30 |
| 106269 | DB | 25 |
| 106271 | LB | 40 |
| 106272 | MB | 40 |
| 106274 | MB | 40 |
| 106277 | MB | 30 |
| 110218 | LB | 50 |
| 110222 | MB | 30 |
| 110240 | LB | 20 |
| 110241 | LB | 30 |
| 110242 | LB | 30 |
| 110243 | LB | 35 |
| 110244 | DB | 20 |
| 110254 | MB | 30 |
| 110255 | MB | 35 |
| 110257 | MB | 20 |
| 110259 | DB | 30 |
| 110261 | DB | 20 |
| 110263 | DB | 35 |
| 110265 | MB | 20 |
| 110267 | MB | 25 |
| 110269 | DB | 20 |
| 110271 | LB | 25 |
| 110273 | MB | 30 |
| 110275 | MB | 25 |
| 110276 | LB | 40 |
| 110277 | MB | 30 |
| 110278 | LB | 35 |
| 110283 | LB | 25 |
| 110285 | LB | 20 |
| 110287 | MB | 40 |
| 110289 | MB | 40 |
| 110291 | MB | 25 |
| 110292 | MB | 35 |
| 114218 | LB | 50 |
| 114219 | LB | 50 |
| 114221 | MB | 40 |
| 114247 | MB | 25 |
| 114248 | LB | 30 |
| 114249 | MB | 35 |
| 114250 | MB | 25 |
| 114251 | MB | 30 |
| 114253 | DB | 30 |
| 114255 | MB | 25 |
| 114257 | MB | 40 |
| 114263 | MB | 35 |
| 114266 | MB | 40 |
| 114267 | LB | 25 |
| 114268 | DB | 30 |
|  |  |  |


| 114269 | MB | 40 |
| :---: | :---: | :---: |
| 114271 | MB | 30 |
| 114273 | DB | 25 |
| 114275 | MB | 20 |
| 114277 | MB | 35 |
| 114279 | DB | 20 |
| 114281 | DB | 30 |
| 114283 | MB | 30 |
| 114285 | MB | 30 |
| 114287 | MB | 30 |
| 114288 | MB | 35 |
| 114291 | MB | 20 |
| 114292 | LB | 35 |
| 118244 | MB | 45 |
| 118245 | LB | 30 |
| 118247 | LB | 20 |
| 118249 | MB | 30 |
| 118251 | MB | 25 |
| 118253 | MB | 30 |
| 118255 | DB | 45 |
| 118256 | MB | 35 |
| 118257 | MB | 30 |
| 118258 | DB | 35 |
| 118263 | DB | 40 |
| 118266 | MB | 25 |
| 118267 | MB | 25 |
| 118269 | LB | 30 |
| 118271 | DB | 20 |
| 118273 | MB | 45 |
| 118275 | MB | 20 |
| 118277 | MB | 20 |
| 118279 | MB | 30 |
| 118281 | MB | 35 |
| 118283 | MB | 30 |
| 118284 | MB | 45 |
| 118288 | MB | 20 |
| 118291 | MB | 45 |
| 118292 | MB | 35 |
| 122244 | MB | 30 |
| 122245 | DB | 50 |
| 122246 | LB | 50 |
| 122247 | LB | 20 |
| 122249 | MB | 40 |
| 122251 | MB | 35 |
| 122253 | MB | 35 |
| 122259 | LB | 40 |
| 122260 | MB | 35 |
| 122261 | LB | 20 |
| 122262 | LB | 30 |
| 122265 | MB | 35 |
| 122266 | MB | 35 |
| 122270 | MB | 45 |


| 122271 | MB | 30 |
| :---: | :---: | :---: |
| 122273 | MB | 40 |
| 122275 | MB | 23 |
| 122277 | MB | 55 |
| 122279 | MB | 25 |
| 122281 | MB | 25 |
| 122283 | MB | 30 |
| 122285 | MB | 25 |
| 122287 | MB | 30 |
| 122291 | LB | 40 |
| 122292 | MB | 35 |
| 126244 | DB | 45 |
| 126245 | DB | 45 |
| 126247 | MB | 40 |
| 126249 | MB | 35 |
| 126252 | MB | 20 |
| 126253 | MB | 30 |
| 126256 | LB | 40 |
| 126257 | MB | 40 |
| 126259 | MB | 35 |
| 126261 | MB | 23 |
| 126264 | LB | 45 |
| 126265 | MB | 35 |
| 126267 | DB | 45 |
| 126270 | LB | 45 |
| 126271 | MB | 20 |
| 126273 | LB | 25 |
| 126275 | MB | 30 |
| 126277 | LB | 23 |
| 126279 | MB | 45 |
| 126280 | MB | 40 |
| 126281 | MB | 23 |
| 126285 | MB | 23 |
| 126287 | MB | 40 |
| 126289 | MB | 50 |
| 126291 | MB | 23 |
| 126292 | MB | 30 |
| 130241 | LB | 60 |
| 130243 | LB | 50 |
| 130245 | LB | 30 |
| 130247 | LB | 30 |
| 130249 | DB | 30 |
| 130251 | DB | 30 |
| 130252 | LB | 40 |
| 130255 | LB | 30 |
| 130257 | LB | 40 |
| 130259 | LB | 40 |
| 130261 | LB | 30 |
| 130262 | LB | 30 |
| 130265 | LB | 20 |
| 130269 | MB | 30 |
| 130271 | LB | 30 |


| 130277 | MB | 30 |
| :---: | :---: | :---: |
| 130280 | LB | 30 |
| 130286 | LB | 30 |
| 130287 | DB | 20 |
| 130289 | LB | 50 |
| 130291 | MB | 30 |
| 130292 | LB | 40 |
| 134218 | LB | 30 |
| 134219 | LB | 40 |
| 134225 | LB | 30 |
| 134227 | MB | 30 |
| 134229 | LB | 20 |
| 134231 | MB | 30 |
| 134233 | LB | 20 |
| 134235 | LB | 30 |
| 134237 | LB | 30 |
| 134239 | MB | 30 |
| 134241 | LB | 30 |
| 134245 | MB | 30 |
| 134247 | MB | 20 |
| 134249 | LB | 30 |
| 134251 | LB | 30 |
| 134256 | LB | 30 |
| 134258 | MB | 10 |
| 134259 | LB | 20 |
| 134261 | MB | 20 |
| 134262 | MB | 20 |
| 134268 | MB | 20 |
| 134272 | MB | 20 |
| 134273 | MB | 30 |
| 134275 | LB | 40 |
| 134281 | DB | 30 |
| 134283 | LB | 30 |
| 134285 | LB | 30 |
| 134287 | MB | 30 |
| 134291 | LB | 20 |
| 138220 | MB | 45 |
| 138221 | MB | 25 |
| 138222 | DB | 40 |
| 138225 | MB | 40 |
| 138226 | MB | 35 |
| 138227 | MB | 40 |
| 138241 | LB | 30 |
| 138245 | MB | 35 |
| 138246 | LB | 25 |
| 138251 | MB | 35 |
| 138252 | LB | 30 |
| 138253 | MB | 30 |
| 138254 | DB | 30 |
| 138255 | LB | 25 |
| 138257 | LB | 25 |
| 138259 | LB | 35 |


| 138262 | MB | 50 |
| :--- | :--- | :---: |
| 138263 | LB | 30 |
| 138265 | DB | 40 |
| 138267 | DB | 25 |
| 138268 | DB | 25 |
| 138269 | MB | 30 |
| 138272 | DB | 30 |
| 138273 | MB | 30 |
| 138277 | MB | 65 |
| 138279 | LB | 25 |
| 138281 | MB | 50 |
| 138283 | MB | 35 |
| 138285 | MB | 50 |
| 138287 | LB | 30 |
| 138289 | MB | 25 |
| 138291 | MB | 30 |
| 142160 | MB | 45 |
| 142161 | LB | 30 |
| 142163 | DB | 35 |
| 142165 | $M B$ | 45 |
| 142167 | MB | 50 |
| 142169 | MB | 40 |
| 142171 | DB | 40 |
| 142173 | LB | 45 |
| 142175 | MB | 45 |
| 142177 | MB | 23 |
| 142179 | LB | 55 |
| 142181 | DB | 45 |
| 142183 | LB | 40 |
| 142185 | LB | 45 |
| 142186 | LB | 45 |
| 142189 | DB | 30 |
| 142191 | MB | 30 |
| 142193 | MB | 40 |
| 142195 | MB | 40 |
| 142197 | MB | 35 |
| 142199 | DB | 50 |
| 142202 | DB | 30 |
| 142203 | MB | 30 |
| 142205 | LB | 30 |
| 142207 | MB | 20 |
| 142209 | LB | 30 |
| 142212 | MB | 30 |
| 142213 | LB | 35 |
| 142215 | MB | 25 |
| 142217 | LB | 20 |
| 142249 | LB | 35 |
| 142250 | LB | 30 |
| 142251 | MB | 25 |
| 142252 | LB | 25 |
| 142253 | LB | 30 |
| 142255 | MB | 20 |
|  |  |  |


| 142257 | MB | 25 |
| :---: | :---: | :---: |
| 142259 | DB | 35 |
| 142261 | MB | 25 |
| 142262 | MB | 35 |
| 142265 | MB | 25 |
| 142267 | MB | 30 |
| 142270 | MB | 30 |
| 142271 | MB | 25 |
| 142273 | LB | 50 |
| 142275 | MB | 30 |
| 142277 | MB | 40 |
| 142279 | DB | 25 |
| 142281 | MB | 20 |
| 142283 | LB | 20 |
| 142284 | MB | 30 |
| 142289 | LB | 30 |
| 142290 | MB | 35 |
| 142291 | MB | 30 |
| 142292 | MB | 45 |
| 146165 | MB | 35 |
| 146168 | MB | 55 |
| 146169 | MB | 50 |
| 146171 | MB | 30 |
| 146173 | MB | 25 |
| 146175 | MB | 30 |
| 146179 | MB | 25 |
| 146181 | MB | 25 |
| 146183 | LB | 50 |
| 146185 | MB | 50 |
| 146187 | MB | 50 |
| 146189 | LB | 50 |
| 146191 | MB | 25 |
| 146193 | LB | 45 |
| 146194 | LB | 45 |
| 146197 | MB | 50 |
| 146199 | LB | 40 |
| 146218 | MB | 30 |
| 146229 | DB | 40 |
| 146231 | MB | 25 |
| 146233 | LB | 40 |
| 146235 | MB | 25 |
| 146237 | MB | 25 |
| 146239 | LB | 30 |
| 146240 | MB | 20 |
| 146242 | LB | 30 |
| 146244 | MB | 30 |
| 146247 | DB | 30 |
| 146248 | MB | 25 |
| 146251 | MB | 40 |
| 146253 | MB | 30 |
| 146255 | MB | 30 |
| 146257 | MB | 20 |


| 146259 | DB | 20 |
| :---: | :---: | :---: |
| 146261 | MB | 30 |
| 146264 | DB | 20 |
| 146265 | DB | 20 |
| 146267 | MB | 20 |
| 146269 | MB | 30 |
| 146271 | MB | 30 |
| 146273 | DB | 30 |
| 146275 | DB | 30 |
| 146279 | MB | 20 |
| 146281 | LB | 45 |
| 146282 | MB | 30 |
| 146283 | MB | 40 |
| 146289 | MB | 30 |
| 146290 | MB | 30 |
| 146291 | DB | 20 |
| 146292 | MB | 35 |
| 150161 | LB | 25 |
| 150162 | MB | 35 |
| 150163 | MB | 20 |
| 150165 | MB | 25 |
| 150169 | MB | 40 |
| 150170 | MB | 20 |
| 150171 | MB | 20 |
| 150173 | MB | 25 |
| 150175 | LB | 25 |
| 150177 | MB | 45 |
| 150179 | MB | 50 |
| 150181 | LB | 40 |
| 150183 | MB | 25 |
| 150184 | MB | 35 |
| 150187 | MB | 25 |
| 150189 | MB | 15 |
| 150191 | MB | 50 |
| 150193 | MB | 30 |
| 150194 | MB | 25 |
| 150197 | MB | 45 |
| 150199 | LB | 35 |
| 150201 | LB | 30 |
| 150203 | MB | 40 |
| 150206 | MB | 25 |
| 150207 | MB | 20 |
| 150209 | MB | 25 |
| 150211 | LB | 25 |
| 150213 | DB | 40 |
| 150215 | MB | 35 |
| 150217 | MB | 25 |
| 150219 | MB | 35 |
| 150220 | MB | 20 |
| 150223 | MB | 30 |
| 150225 | MB | 20 |
| 150226 | MB | 25 |


| 150229 | MB | 25 |
| :---: | :---: | :---: |
| 150231 | MB | 40 |
| 150233 | MB | 20 |
| 150237 | MB | 30 |
| 150238 | DB | 30 |
| 150239 | MB | 25 |
| 150241 | LB | 30 |
| 150244 | LB | 30 |
| 150245 | DB | 25 |
| 150247 | MB | 35 |
| 150249 | MB | 30 |
| 150251 | LB | 30 |
| 150253 | DB | 30 |
| 150255 | MB | 25 |
| 150257 | MB | 30 |
| 150259 | MB | 35 |
| 150261 | MB | 20 |
| 150263 | MB | 25 |
| 150265 | DB | 20 |
| 150267 | DB | 20 |
| 150269 | MB | 30 |
| 150271 | MB | 25 |
| 150273 | MB | 25 |
| 150275 | DB | 30 |
| 150277 | LB | 35 |
| 150279 | MB | 35 |
| 150281 | DB | 30 |
| 150283 | LB | 20 |
| 150285 | LB | 30 |
| 150286 | MB | 30 |
| 150287 | DB | 20 |
| 150291 | MB | 35 |
| 150292 | MB | 35 |
| 154160 | MB | 25 |
| 154161 | LB | 30 |
| 154203 | DB | 20 |
| 154204 | MB | 20 |
| 154207 | MB | 30 |
| 154209 | MB | 35 |
| 154210 | DB | 35 |
| 154213 | MB | 25 |
| 154215 | DB | 20 |
| 154217 | MB | 20 |
| 154219 | MB | 20 |
| 154221 | LB | 25 |
| 154222 | LB | 45 |
| 154225 | MB | 30 |
| 154227 | MB | 25 |
| 154229 | MB | 25 |
| 154230 | DB | 20 |
| 154232 | LB | 30 |
| 154234 | MB | 25 |


| 154237 | DB | 40 |
| :---: | :---: | :---: |
| 154239 | MB | 40 |
| 154241 | LB | 30 |
| 154243 | DB | 30 |
| 154245 | MB | 20 |
| 154248 | MB | 25 |
| 154249 | DB | 35 |
| 154251 | MB | 35 |
| 154253 | MB | 25 |
| 154255 | MB | 50 |
| 154257 | DB | 40 |
| 154258 | MB | 30 |
| 154261 | DB | 35 |
| 154263 | MB | 40 |
| 154264 | MB | 30 |
| 154267 | DB | 30 |
| 154269 | LB | 35 |
| 154271 | DB | 30 |
| 154273 | DB | 30 |
| 154275 | DB | 40 |
| 154277 | LB | 20 |
| 154279 | MB | 25 |
| 154281 | MB | 40 |
| 154283 | LB | 30 |
| 154288 | DB | 35 |
| 154289 | MB | 30 |
| 154290 | DB | 35 |
| 154291 | MB | 35 |
| 154292 | MB | 30 |
| 158162 | LB | 35 |
| 158163 | LB | 25 |
| 158192 | LB | 30 |
| 158193 | MB | 50 |
| 158195 | LB | 50 |
| 158197 | MB | 40 |
| 158199 | LB | 30 |
| 158201 | LB | 40 |
| 158203 | LB | 20 |
| 158206 | DB | 40 |
| 158207 | MB | 30 |
| 158208 | MB | 30 |
| 158215 | LB | 40 |
| 158216 | MB | 25 |
| 158219 | MB | 20 |
| 158221 | DB | 25 |
| 158223 | MB | 20 |
| 158225 | MB | 20 |
| 158227 | MB | 20 |
| 158229 | DB | 40 |
| 158231 | MB | 30 |
| 158234 | MB | 20 |
| 158235 | MB | 30 |


| 158237 | DB | 25 |
| :---: | :---: | :---: |
| 158239 | MB | 25 |
| 158241 | LB | 80 |
| 158243 | DB | 30 |
| 158245 | MB | 40 |
| 158247 | DB | 30 |
| 158249 | DB | 30 |
| 158251 | MB | 30 |
| 158253 | DB | 30 |
| 158255 | DB | 30 |
| 158257 | MB | 20 |
| 158259 | DB | 25 |
| 158261 | MB | 25 |
| 158263 | DB | 30 |
| 158265 | MB | 35 |
| 158267 | MB | 30 |
| 158269 | DB | 35 |
| 158271 | DB | 20 |
| 158273 | MB | 20 |
| 158275 | MB | 20 |
| 158277 | LB | 40 |
| 158278 | LB | 55 |
| 158281 | LB | 35 |
| 158283 | DB | 35 |
| 158284 | LB | 40 |
| 158287 | MB | 20 |
| 158288 | MB | 30 |
| 158289 | DB | 30 |
| 158290 | MB | 20 |
| 162160 | LB | 30 |
| 162161 | DB | 30 |
| 162162 | LB | 30 |
| 162163 | LB | 25 |
| 162173 | DB | 45 |
| 162174 | MB | 30 |
| 162175 | MB | 25 |
| 162177 | MB | 30 |
| 162179 | MB | 30 |
| 162181 | MB | 20 |
| 162183 | MB | 40 |
| 162185 | MB | 25 |
| 162187 | MB | 25 |
| 162189 | MB | 30 |
| 162191 | DB | 30 |
| 162193 | MB | 35 |
| 162195 | MB | 25 |
| 162197 | MB | 30 |
| 162204 | MB | 50 |
| 162206 | MB | 30 |
| 162207 | MB | 25 |
| 162208 | MB | 25 |
| 162209 | DB | 35 |


| 162218 | MB | 30 |
| :--- | :--- | :---: |
| 162219 | LB | 30 |
| 162220 | MB | 30 |
| 162221 | MB | 30 |
| 162222 | DB | 40 |
| 162227 | MB | 30 |
| 162229 | DB | 25 |
| 162230 | MB | 20 |
| 162234 | LB | 30 |
| 162236 | MB | 25 |
| 162237 | MB | 25 |
| 162239 | MB | 25 |
| 162241 | DB | 25 |
| 162243 | DB | 20 |
| 162245 | MB | 20 |
| 162246 | LB | 30 |
| 162252 | MB | 30 |
| 162253 | MB | 35 |
| 162255 | MB | 30 |
| 162267 | LB | 50 |
| 162269 | MB | 30 |
| 162271 | MB | 50 |
| 162273 | LB | 20 |
| 162275 | MB | 30 |
| 162277 | MB | 30 |
| 162281 | LB | 40 |
| 162282 | LB | 50 |
| 162283 | LB | 50 |
| 162285 | LB | 30 |
| 162287 | LB | 30 |
| 162289 | DB | 30 |
| 166160 | MB | 30 |
| 166162 | LB | 20 |
| 166163 | DB | 20 |
| 166165 | DB | 30 |
| 166167 | LB | 30 |
| 166169 | MB | 30 |
| 166171 | MB | 20 |
| 166172 | MB | 30 |
| 166173 | LB | 30 |
| 166174 | LB | 40 |
| 166185 | MB | 30 |
| 166187 | MB | 20 |
| 166189 | LB | 20 |
| 166191 | DB | 20 |
| 166193 | MB | 25 |
| 166195 | MB | 25 |
| 166196 | MB | 40 |
| 166199 | DB | 20 |
| 166201 | DB | 20 |
| 166203 | LB | 30 |
| 166205 | MB | 30 |
|  |  |  |


| 166207 | LB | 20 |
| :---: | :---: | :---: |
| 166209 | DB | 20 |
| 166211 | MB | 30 |
| 166213 | LB | 20 |
| 166216 | MB | 20 |
| 166217 | LB | 48 |
| 166220 | LB | 40 |
| 166221 | LB | 30 |
| 166223 | LB | 20 |
| 166225 | DB | 20 |
| 166234 | MB | 40 |
| 166235 | LB | 30 |
| 166237 | MB | 30 |
| 166239 | MB | 30 |
| 166242 | MB | 30 |
| 166245 | LB | 20 |
| 166247 | MB | 30 |
| 166249 | MB | 50 |
| 166251 | MB | 40 |
| 166253 | MB | 30 |
| 166255 | DB | 30 |
| 166259 | LB | 40 |
| 166264 | MB | 40 |
| 166265 | MB | 40 |
| 166267 | MB | 20 |
| 166269 | LB | 40 |
| 166273 | DB | 30 |
| 166275 | LB | 50 |
| 166277 | LB | 50 |
| 166279 | LB | 50 |
| 166281 | MB | 40 |
| 166283 | LB | 40 |
| 166287 | LB | 20 |
| 166291 | LB | 30 |
| 166292 | MB | 30 |
| 170160 | MB | 30 |
| 170161 | LB | 35 |
| 170163 | LB | 20 |
| 170165 | MB | 20 |
| 170167 | MB | 35 |
| 170169 | MB | 30 |
| 170170 | MB | 40 |
| 170173 | MB | 20 |
| 170175 | LB | 40 |
| 170176 | MB | 30 |
| 170183 | MB | 25 |
| 170185 | MB | 20 |
| 170187 | MB | 30 |
| 170189 | LB | 20 |
| 170191 | DB | 20 |
| 170193 | LB | 30 |
| 170195 | DB | 25 |


| 170197 | LB | 25 |
| :---: | :---: | :---: |
| 170199 | MB | 30 |
| 170201 | MB | 20 |
| 170203 | DB | 35 |
| 170205 | DB | 25 |
| 170207 | LB | 30 |
| 170209 | MB | 45 |
| 170211 | MB | 20 |
| 170213 | MB | 30 |
| 170215 | MB | 20 |
| 170218 | MB | 20 |
| 170219 | MB | 30 |
| 170221 | MB | 40 |
| 170223 | DB | 30 |
| 170225 | MB | 30 |
| 170227 | MB | 30 |
| 170229 | MB | 40 |
| 170231 | MB | 30 |
| 170234 | MB | 30 |
| 170235 | LB | 35 |
| 170237 | LB | 20 |
| 170239 | MB | 35 |
| 170240 | MB | 40 |
| 170241 | MB | 30 |
| 170245 | MB | 30 |
| 170247 | MB | 30 |
| 170249 | DB | 40 |
| 170251 | DB | 25 |
| 170253 | MB | 20 |
| 170255 | LB | 20 |
| 170256 | MB | 20 |
| 170257 | MB | 25 |
| 170263 | MB | 30 |
| 170265 | MB | 30 |
| 170267 | LB | 25 |
| 170269 | MB | 30 |
| 170271 | DB | 20 |
| 170273 | MB | 30 |
| 170274 | MB | 20 |
| 170276 | LB | 40 |
| 170279 | MB | 30 |
| 170281 | MB | 20 |
| 170282 | LB | 25 |
| 170283 | DB | 30 |
| 170285 | LB | 40 |
| 170290 | MB | 20 |
| 170291 | DB | 35 |
| 174160 | LB | 20 |
| 174161 | LB | 25 |
| 174163 | LB | 30 |
| 174169 | MB | 30 |
| 174171 | LB | 25 |


| 174174 | DB | 30 |
| :---: | :---: | :---: |
| 174175 | MB | 30 |
| 174176 | LB | 20 |
| 174180 | LB | 20 |
| 174181 | MB | 35 |
| 174187 | MB | 30 |
| 174189 | MB | 20 |
| 174191 | MB | 40 |
| 174193 | MB | 30 |
| 174195 | MB | 30 |
| 174197 | MB | 35 |
| 174199 | MB | 20 |
| 174201 | MB | 20 |
| 174203 | MB | 30 |
| 174205 | MB | 30 |
| 174207 | MB | 30 |
| 174209 | MB | 30 |
| 174211 | MB | 45 |
| 174213 | LB | 30 |
| 174215 | MB | 35 |
| 174217 | MB | 20 |
| 174219 | MB | 25 |
| 174221 | DB | 20 |
| 174223 | DB | 20 |
| 174230 | DB | 40 |
| 174231 | LB | 35 |
| 174233 | LB | 25 |
| 174237 | MB | 35 |
| 174238 | DB | 25 |
| 174239 | DB | 35 |
| 174241 | MB | 40 |
| 174243 | DB | 25 |
| 174245 | DB | 40 |
| 174248 | DB | 50 |
| 174249 | MB | 20 |
| 174251 | DB | 35 |
| 174256 | DB | 30 |
| 174257 | LB | 30 |
| 174258 | LB | 30 |
| 174259 | DB | 25 |
| 174261 | LB | 20 |
| 174263 | DB | 20 |
| 174265 | DB | 20 |
| 174267 | DB | 30 |
| 174269 | DB | 30 |
| 174271 | MB | 25 |
| 174273 | MB | 20 |
| 174275 | DB | 30 |
| 174277 | MB | 30 |
| 174279 | MB | 20 |
| 174284 | MB | 20 |
| 174287 | MB | 35 |


| 174289 |  |  |
| :--- | :--- | :---: |
| 174291 | MB | 30 |
| 174292 | DB | 20 |
| 178175 | MB | 30 |
| 178177 | LB | 50 |
| 178179 | LB | 30 |
| 178181 | LB | 30 |
| 178183 | MB | 30 |
| 178185 | LB | 30 |
| 178188 | LB | 50 |
| 178189 | MB | 40 |
| 178191 | LB | 20 |
| 178193 | LB | 20 |
| 178195 | LB | 20 |
| 178197 | MB | 20 |
| 178199 | LB | 30 |
| 178201 | LB | 30 |
| 178203 | LB | 30 |
| 178205 | MB | 30 |
| 178207 | LB | 30 |
| 178209 | LB | 30 |
| 178210 | MB | 30 |
| 178211 | LB | 70 |
| 178213 | MB | 35 |
| 178215 | MB | 20 |
| 178217 | MB | 25 |
| 178219 | DB | 40 |
| 178221 | DB | 35 |
| 178223 | DB | 25 |
| 178225 | DB | 60 |
| 178227 | DB | 30 |
| 178229 | MB | 25 |
| 178231 | MB | 20 |
| 178233 | DB | 20 |
| 178235 | DB | 40 |
| 178237 | MB | 25 |
| 178239 | MB | 25 |
| 178241 | LB | 35 |
| 178243 | LB | 30 |
| 178247 | MB | 30 |
| 178248 | LB | 30 |
| 178249 | LB | 30 |
| 178250 | MB | 20 |
| 178252 | LB | 30 |
| 178261 | LB | 30 |
| 178263 | LB | 20 |
| 178265 | LB | 20 |
| 178267 | MB | 30 |
| 178269 | LB | 30 |
| 178271 | MB | 30 |
| 178273 | DB | 20 |
| 178275 | MB | 20 |
|  |  |  |


| 178277 |  |  |
| :--- | :--- | :---: |
| 178279 | MB | 20 |
| 178281 | LB | 20 |
| 178283 | MB | 30 |
| 178285 | LB | 30 |
| 178287 | MB | 30 |
| 178289 | LB | 20 |
| 178291 | MB | 20 |
| 178292 | LB | 20 |
| 182209 | LB | 40 |
| 182212 | DB | 30 |
| 182213 | MB | 20 |
| 182215 | MB | 30 |
| 182217 | MB | 40 |
| 182219 | MB | 20 |
| 182221 | MB | 20 |
| 182223 | MB | 20 |
| 182225 | LB | 30 |
| 182227 | DB | 20 |
| 182229 | LB | 30 |
| 182231 | LB | 20 |
| 182233 | LB | 20 |
| 182235 | MB | 20 |
| 182237 | DB | 20 |
| 182239 | MB | 20 |
| 182240 | MB | 30 |
| 182243 | MB | 20 |
| 182245 | LB | 20 |
| 182247 | LB | 30 |
| 182249 | MB | 30 |
| 182252 | LB | 20 |
| 182253 | LB | 30 |
| 182255 | MB | 30 |
| 182257 | MB | 30 |
| 182259 | DB | 30 |
| 182265 | LB | 30 |
| 182266 | LB | 30 |
| 182267 | LB | 30 |
| 182268 | MB | 30 |
| 182269 | LB | 30 |
| 182271 | LB | 30 |
| 182273 | LB | 30 |
| 182275 | MB | 30 |
| 182277 | MB | 20 |
| 182279 | DB | 30 |
| 182281 | MB | 20 |
| 182283 | LB | 20 |
| 182285 | LB | 30 |
| 182287 | LB | 30 |
| 182289 | MB | 20 |
| 182291 | MB | 20 |
| 186210 | DB | 20 |
|  |  |  |


| 186214 | MB | 23 |
| :--- | :--- | :--- |
| 186216 | MB | 20 |
| 186217 | MB | 20 |
| 186218 | MB | 30 |
| 186219 | MB | 20 |
| 186222 | DB | 20 |
| 186223 | MB | 20 |
| 186224 | MB | 30 |
| 186225 | MB | 35 |
| 186226 | MB | 40 |
| 186229 | MB | 40 |
| 186233 | DB | 55 |
| 186234 | MB | 35 |
| 186235 | MB | 30 |
| 186237 | LB | 40 |
| 186239 | MB | 20 |
| 186241 | MB | 40 |
| 186242 | LB | 40 |
| 186246 | LB | 50 |
| 186247 | LB | 40 |
| 186249 | MB | 50 |
| 186251 | LB | 60 |
| 186253 | DB | 50 |
| 186254 | MB | 15 |
| 186258 | MB | 30 |
| 186259 | MB | 35 |
| 186260 | MB | 35 |
| 186261 | MB | 35 |
| 186262 | LB | 40 |
| 186273 | MB | 40 |
| 186274 | LB | 40 |
| 186275 | MB | 35 |
| 186276 | MB | 35 |
| 186277 | MB | 40 |
| 186279 | MB | 40 |
| 186281 | MB | 45 |
| 186283 | MB | 25 |
| 190207 | LB | 20 |
| 190208 | LB | 15 |
| 190209 | LB | 20 |
| 190210 | LB | 20 |
| 190217 | LB | 25 |
| 190218 | DB | 25 |
| 190219 | MB | 55 |
| 190233 | DB | 40 |
| 190235 | MB | 30 |
| 190237 | LB | 45 |
| 190239 | DB | 35 |
| 190243 | LB | 20 |
| 190245 | DB | 25 |
| 190247 | MB | 40 |
|  | LB | 20 |
|  |  |  |


| 190249 |  |  |
| :--- | :--- | :---: |
| 190250 | LB | 25 |
| 190251 | MB | 35 |
| 190252 | DB | 40 |
| 190257 | MB | 40 |
| 190258 | LB | 40 |
| 190259 | DB | 35 |
| 190261 | MB | 35 |
| 190263 | DB | 60 |
| 190275 | MB | 45 |
| 190276 | LB | 20 |
| 190277 | LB | 50 |
| 190278 | LB | 50 |
| 194210 | DB | 55 |
| 194211 | DB | 50 |
| 194212 | MB | 35 |
| 194213 | MB | 35 |
| 194218 | DB | 30 |
| 194220 | LB | 25 |
| 194221 | LB | 30 |
| 194223 | MB | 25 |
| 194225 | MB | 35 |
| 194227 | LB | 60 |
| 194233 | LB | 30 |
| 194234 | DB | 30 |
| 194235 | DB | 30 |
| 194237 | DB | 20 |
| 194239 | MB | 30 |
| 194241 | MB | 30 |
| 194243 | MB | 40 |
| 194250 | DB | 35 |
| 194251 | MB | 35 |
| 194252 | MB | 30 |
| 194255 | MB | 40 |
| 194256 | MB | 20 |
| 194257 | LB | 30 |
| 194259 | MB | 40 |
|  |  |  |




2007 GOLD IN SOIL CONTOURS WITH STATION LOCATIONS


SCALE 1:5000






[^0]:    Rejects and pulps are retained for one month unless specific arrangements are made in advance.

[^1]:    Rejects and pulps are retained for one month unless specific arrangements are made in advance.

[^2]:    Rejects and pulps are retained for one month unless specific arrangements are made in advance

[^3]:    Rejects and pulps are retained for one month unless specific arrangements are made in advance.

[^4]:    Rejects and pulps are retained for one month unless specific arrangements are made in advance

[^5]:    Rejects and pulps are retained for one month unless specific arrangements are made in advance

