2003 PROSPECTING AND GEOLOGY REPORT

ON THE

WOTTAM PROPERTY 2.30609

Frond Lake and Ferguson Lake Areas Thunder Bay North Mines and Minerals Division Ontario

NTS 52P/9, 52P/10

for

Landore Resources Canada Inc. 555 Central Avenue Thunder Bay, Ontario, P7B 5R5

R. Blair Needham, P. Geo Sudbury, Ontario

July 2005

TABLE of CONTENTS

1.0	INTRODUCTION AND TERMS OF REFERENCE	1
2.0	PROPERTY DESCRIPTION AND LOCATION	1
3.0	ACCESS, LOCAL RESOURCES, PHYSIOGRAPHY	5
4.0	HISTORY	8
	WOTTAM PROPERTY SUMMARY	
	MIMINISKA PROPERTY SUMMARY	
4.3	FROND PROPERTY SUMMARY	18
5.0	GEOLOGICAL SETTING	18
5.1	REGIONAL GEOLOGY	19
	LOCAL GEOLOGY	
5.3	PROSPECT GEOLOGY	
6.0	ALTERATION	29
- 0	ALTERATION	20
7.0	STRUCTURE	
8.0	DEPOSIT TYPE	30
9.0	MINERALIZATION	36
10.0	2003 WOTTAM EXPLORATION PROGRAM	
10.1 1	0.11 Mini Grid Establishment	
	0.12 GPS location of geological observation sites and sample locations	
	0.13 Historical Data Compilation Procedures	41
	0.14 Rock Sampling Procedures	
	0.15 Assay Procedures	
10.2	2 GEOLOGICAL MAPPING/SAMPLING RESULTS:	
11.0	DATA VERIFICATION	48
12.0	ADJACENT PROPERTIES	48
12.0	MINED AL DOCCECCINC AND METALLUDCICAL TESTING	40
13.0	MINERAL PROCESSING AND METALLURGICAL TESTING	
14.0	MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES	48
15.0	INTERPRETATION AND CONCLUSIONS	49
16.0	RECOMMENDATIONS:	52
17.0	REFERENCES	54
18.0	CERTIFICATE OF QUALIFICATIONS	55

FIGURES		Page
FIGURE 1:	Wottam Property Location, NW Ontario	2
FIGURE 2:	Landore Wottam Area Claim Map	3
FIGURE 3:	Regional Topography and Property Access	7
FIGURE 4:	Shear Minerals Geological Interpretation and Zones (Miminiska Property, Parent (1999)	17
FIGURE 5:	Uchi and Adjacent Subprovinces Gold Mines	20
FIGURE 6:	Quaternary Geological Landforms of Manitoba and Ontario (Vincent J.S., 1989)	21
FIGURE 7:	Regional Geology of the Miminiska Area	24
FIGURE 8:	Metamorphic zones of the Miminiska Lake Area (Wallace,1981)	28
FIGURE 9:	Musselwhite Zone of Economic Mineralization (Blower and Kiernan, 2003)	35
TABLES		
TABLE 1:	Wottam Property Claim List	4
TABLE 2:	Summary of Previous Work History	13- 15
TABLE 3:	1999 Shear Minerals Preliminary Resource Estimate, Miminiska Property	16
TABLE 4:	Bedrock Stratigraphy of the Miminiska Lake Area	23
TABLE 5:	Common mineral assemblages in the Metamorphic Zones of the Miminiska Lake area.	27

MAPS

MAP 1:	Sample Locations	Map Pocket
MAP 2:	Geology and Site Comments	Map Pocket

APPENDICES

APPENDIX I:	2003 Wottam Project Geological Observation and Sample Assay Table.
APPENDIX II:	Accurassay Laboratory Assay Certificates

- APPENDIX III: Accurassay Laboratory Procedures and Quality Control Report
- APPENDIX IV: 2003 Summary of Expenditures: Wottam Project
- APPENDIX V: Landore Geological Legend

EXECUTIVE SUMMARY:

Landore Resources Canada Inc. ("Landore") is a private junior mining company based in Thunder Bay, Ontario and listed on the London AIM exchange. Landore is a wholly owned subsidiary of Landore Resources Limited of Guernsey, Britain. Landore has undertaken mineral exploration activities exclusively in Canada, exploring for gold, base metals and PGE minerals and is currently exploring for gold in the Miminiska and Wottam Lake areas of Northwestern Ontario. Landore has several other properties in Ontario, Quebec and New Brunswick.

The Wottam property is comprised of a total of 20 mining claims totalling 260 units and covering 4160 hectares.. The property straddles two 1:50,000 NTS map sheets (i.e. 52P/9, 52P/10) and is located approximately 350 kilometres NNE of Thunder Bay Ontario. The property is usually only accessible with the aid of a helicopter or float/ski plane out of the towns of Pickle Lake, Armstrong, or Nakina Ontario. The property is also accessible from the community of Fort Hope by boat along the Albany River or by skidoo in the winter months.

Landore's, 100% owned Wottam Property, lies within the Uchi Subprovince, an easttrending, predominantly metavolcanic-metasedimentary belt in the Superior Province of the Canadian Shield. Quaternary deposits of glacial till, and glaciolacustrine and glaciofluvial sand and gravel now cover much of the bedrock. The property is predominantly underlain by a thick meta-sedimentary sequence consisting of intercalated greywacke and slate/argillite units with regional contact with mafic metavolcanic units covering the extreme northern portion of the property. A major, east-west striking unit of oxide iron formation covers the northwestern portion of the Wottam property, and the northern portion of the Miminiska property. Several other thinner, folded oxide +/- silicate and sulphide iron formation (IF) units are intercalated with the clastic meta-sediments to the south of this unit. A central core of ENE-WSW striking low grade metamorphism prevails over the central portion of the property, with amphibolite grade metamorphism occurring in the northern and southern extremities of the property. The rock units were generally observed to strike 250 to 280 degrees, commonly dipping to the north over a majority of the property. Note that over the Miminiska property to the immediate West, rock units generally were dipping to the south. At least three commonly ENE-WSW striking shear / deformation zones with associated sulphide +/geochemically anomalous gold assays were observed with widths greater than 15 metres. Another three horizons were defined primarily based on the compilation of the historical geophysical surveys and sporadic outcrops of iron formation unit(s) within these horizons. To date, no significant gold mineralization has been defined associated with other these horizons. These six horizons, (i.e. 3 mineralized and 3 non-mineralized) suggest the presence of a regional ENE striking fold axis that is interpreted to occur proximal to the north shore of Wottam Lake. Arsenopyrite mineralization was commonly observed associated with these zones of shearing/deformation by the author, and by other geologists previously working in the area. Several narrow shear horizons less than 2 metres wide were also observed parallel to subparallel to lithological contacts. Isoclinal folding of bedding and quartz veining was commonly observed over the entire property. The plunge of these folded veins were observed striking to the east and west. Presumably late, north to northeasterly lineaments / cross faults were interpreted by previous workers. Diabase dykes occasionally occupy these late structures. Airborne resistivity trends are also oriented in the same trend.

Sulphide mineralization was occasionally observed as:

- a) Haloes to obliquely crosscutting glassy to smoky grey quartz veins.
- b) Haloes to "flat" tension infill quartz veinlets

- c) As disseminated coarse to fine grained grains of pyrrhotite +/- pyrite, arsenopyrite in close proximity to or within zones of silicification and/or sheared horizons.
- d) Localized, bedding parallel sulphidized horizons within the iron formation units.

No visible gold was observed in the 2003 Wottam reconnaissance mapping / sampling program.

The 2003 Landore Wottam Lake exploration program attempted to evaluate, in a limited amount of time, the following:

- 1. Complete limited prospecting along strike of the known zones for extensions to the known mineralization.
- 2. Attempted to re-establish or improve the accuracy of the location previous work grids and /or claim posts in the field to enable the previous completed data to be imported into Map Info.
- 3. Attempted to re-locate trenches and drill hole collars. Defined, re-located and evaluated selected arsenopyrite/gold mineralized zones/ showings. Those trenches with significant mineralization were re-sampled where possible.
- 4. Evaluated previously completed mapping/interpretations. Attempted to add more structural detail to the previously completed mapping.
- 5. Evaluate on a reconnaissance scale, OGS AEM conductors in the Wottam area, especially those on strike with favourable geological contacts and/or previous geochemical sampling anomalies.

Significant results from the 2003 Wottam exploration program include:

- 1. The OGS AEM data was incorporated into the Landore Mapinfo database. Poorly accessible conductors were evaluated with the use of a helicopter. Several AEM conductors were not prospected due to the lack of suitable helicopter landing sites. Many of the conductors, especially those at or north of the regional sediment / volcanic contact were covered by overburden and/or black spruce swamp. When outcrop occurred proximal to AEM conductors, many of the conductors were associated with strongly magnetic oxide iron formation. Many of the conductors south of Miminiska Lake, proximal to the southern regional sediment/ volcanic contact, were not explained due to overburden cover.
- 2. As in the 2002 prospecting program, gold mineralization, when present, has an ambiguous relationship with arsenopyrite mineralization. This ambiguous relationship may be a result of late remobilization of gold with late quartz arsenopyrite mineralization event(s)?
- 3. Overall, no significant gold assays were returned in the 2003 prospecting program. The highest assay returned was 354 ppb Au, taken from the WSW strike extension of the Aspy3 showing sampled in the 2002 prospecting program. In total only 5 gold samples assayed greater than 100 ppb Au. At total of 6 arsenic analyses were geochemically anomalous (i.e. >300 ppm As).
- 4. The BVR showing, located approximately 300m NE of the Wottam camp, returned 1 weak gold and 2 weak arsenic geochemical samples. The samples were associated with sheared, weakly to moderately sulphide mineralized, thin iron formation units interbedded with greywacke. A series of prospecting pits\ trenches occur over 300 metres to ENE of the anomalous samples. Shearing is slightly oblique to lithology in

this area. This horizon may be on strike with iron formation units located north of Goss Lake.

5. Although multiple areas of stripping and historical blast pits were encountered proximal to the regional northern sediment \ volcanic contact, no significant gold or arsenic analyses were returned from the samples taken. Thin <5m wide units of silicate and/or oxide iron formation occur proximal to the contact, in both the sediments and volcanic units. The iron formation was locally sheared and silicified and weakly pyrite +/- pyrrhotite mineralized.</p>

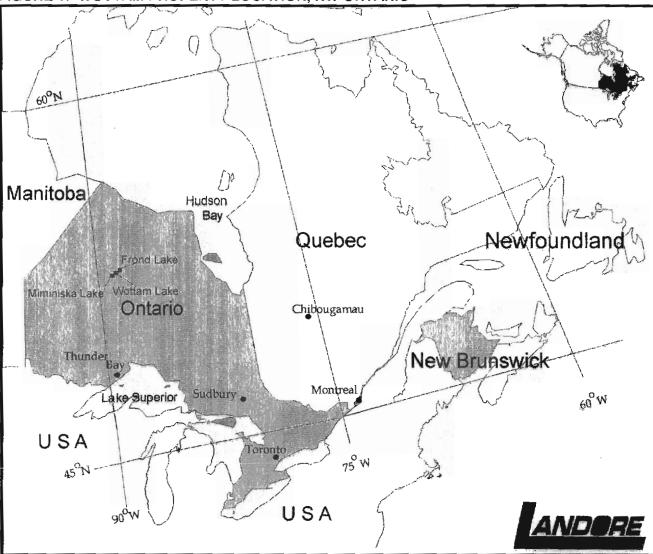
Recommended additional work includes:

- a) Additional prospecting could be attempted along the northern sediment/volcanic contact and along the Aspy3 showing deformation zone. This work may not be cost effective to define any additional drill targets.
- b) Data from the recently flown OGS airborne magnetic and AEM survey should be evaluated in conjunction with the observations compiled in this report. This evaluation should include targeting AEM targets, that coincide with areas of magnetite destruction and/or areas where the iron formation is folded, or where interpreted splay structures can be interpreted intersecting the iron formation. Real time shadowing of the 1st derivative OGS magnetic data may help define some of these structures. Prioritization of the targets generated should be strongly weighted to horizons with known gold and/or arsenic geochemical anomalies along strike of the target.
- c) Limited reconnaissance diamond drilling of the WS41 showing area, and one or two targets along the Aspy3 showing horizon should be considered, totalling 600 metres. The positioning of these reconnaissance drill targets could be refined with the geophysical anomalies obtained from the airborne geophysical evaluation recommended above. An additional 400 metres could be allowed for any targets generated from recommendation (b). Any of the above mentioned drill targets generated, would be 2nd priority targets relative to the Miminiska or Frond property drill targets.
- d) The extent of any additional work on the Wottam project should be contingent on the results from the above recommended work, any future Miminiska drill program(s), and the findings from the Frond property compilation. If results from this work is discouraging, additional work on the Wottam property will not be warranted, and the property should be put on a care and maintenance status until a decision on the status of the Miminiska and Frond properties is made.

DISCLAIMER

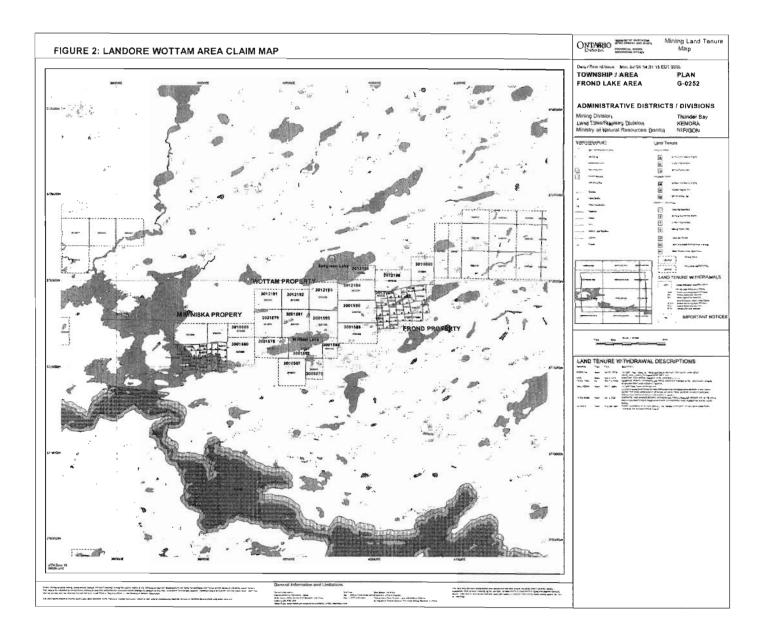
This report was prepared for Landore Resources by R. Blair Needham Exploration Services and is based on information available at the time of preparation. It is believed that the information and estimates contained herein are reliable under the conditions and subject to the qualifications set forth. The cost estimates are based on data supplied by Landore for the 2003 Wottam prospecting program. This report is intended for the exclusive use of Landore Resources Inc. Any other use of or reliance on this report is at the sole risk of the party that so relies.

1.0 INTRODUCTION and TERMS OF REFERENCE


This report was prepared for OGS assessment requirements under the supervision of J. Garber (Senior Geologist, Landore Resources Inc). The author is B. Needham (consultant). Field work was assisted by Dave Maclean (geological technician). The object of this report is to report on the activities of a 2003 fall exploration program designed to confirm previous work, evaluate targets outlined in the 2002 prospecting /data compilation program, and to evaluate selected AEM targets defined from the recently released OGS airborne magnetic and electromagnetic survey completed in the Fort Hope area. The data contained in this report was supplied by Landore and/or was obtained by from the Ontario Geological Survey's assessment files in Sudbury and Thunder Bay. B. Needham was actively involved in the field collection of the samples and was ably assisted by D. Maclean.

2.0 PROPERTY DESCRIPTION AND LOCATION

The Wottam property is located in Northwestern Ontario (Figure 1). It consists of 20 mining claims, totaling approximately 4160 ha. It consists of a total of 260, 16 hectare claim units. The property is bisected by the N-S boundary between the 52P/9 and 52P/10 NTS map sheets. The Landore Miminiska property is contiguous to the immediate west of the Wottam property. The patented claims to the east, known as the Frond property, are also contiguous with the Wottam property. Landore is currently completing a due diligence review of the Frond property. Table 1 lists the claims comprising the Wottam property. Figure 2 illustrates the relative location of the claims associated with the Miminiska, Wottam and Frond properties.


The Wottam property straddles the Miminiska Lake and Frond Lake areas within the Thunder Bay Mining Division (i.e. claim maps G-0332, G-0252 respectively), and in the Land Titles Division of Kenora. It occurs in the Ministry of Natural Resources District of Nipigon. Approximately 1/4 of the Wottam property is overlain by Wottam and smaller lakes. The Wottam property unpatented claims are registered to Landore Resources Inc (i.e.100%). The property has not been legally surveyed. There are several gold and arsenic showings on the property as defined by Company geologists previously working in the area, by OGS geologists and by the author. There are no mine related facilities on the property. The property is not subject to any environmental liabilities. The granting of the mineral title by the Ontario Government gives Landore the right to explore.

2003 Wottam Prospecting and Geology Report

2

FIGURE 1: WOTTAM PROPERTY LOCATION, NW ONTARIO

				Area	# 16 ha	
Claim Recorded Holder	Area	Claim Type	Claim	(ha)	Units	Date Recorded
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3001578	240	15	25-Feb-02
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3001579	256	16	25-Feb-02
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3001580	256	16	25-Feb-02
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3001581	256	16	25-Feb-02
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3001582	240	15	25-Feb-02
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3001583	256	16	25-Feb-02
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3001584	96	6	25-Feb-02
	Frond	Staked Crown			C C	2010002
Landore Resources Inc.(100%)	Lake	Land	3001585	240	15	25-Feb-02
	Frond	Staked Crown	000.000	2.0		20,0000
Landore Resources Inc.(100%)	Lake	Land	3001586	240	15	25-Feb-02
	Frond	Staked Crown				
Landore Resources Inc.(100%)	Lake	Land	3006070	144	9	21-Oct-02
Landore nesources me.(100%)	Ferguson	Staked Crown	0000010		Ū	21 000 02
Landore Resources Inc.(100%)	Lake	Land	3010500	256	16	7-Apr-03
Landore riesources me.(100%)	Frond	Staked Crown	0010000	200		1 / 101 00
Landore Resources Inc.(100%)	Lake	Land	3010506	128	8	21-Oct-02
Landore Hesodrees me. (100%)	Frond	Staked Crown	0010000	120	Ŭ	21-00.02
Landore Resources Inc.(100%)	Lake	Land	3010557	256	16	21-Oct-02
Landore Resources Inc. (100 %)	Frond	Staked Crown	0010007	250	10	21-001-02
Landore Resources Inc.(100%)	Lake	Land	3012191	192	12	25-Feb-03
Lanuore Resources Inc. (100%)	Frond	Staked Crown	3012131	152	12	20-1 00-00
Landore Resources Inc.(100%)	Lake	Land	3012192	192	12	25-Feb-03
Landore Resources Inc. (100%)	Frond	Staked Crown	5012132	132	12	20-1 00-00
Landore Resources Inc.(100%)	Lake	Land	3012193	256	16	25-Feb-03
Landore Resources Inc. (100%)	Frond	Staked Crown	3012133	230	10	20-1 60-00
Landore Resources Inc.(100%)	Lake	Land	3012194	240	15	25-Feb-03
Landore Resources Inc. (100%)	Ferguson	Staked Crown	3012134	240	15	20-1 60-00
Landara Resources Inc. (100%)	Lake	Land	3012195	128	8	25-Feb-03
Landore Resources Inc.(100%)	Ferguson	Staked Crown	3012195	120	0	20-1 60-00
Landera Basaurasa Ina (100%)	Lake	Land	3012196	240	15	25-Feb-03
Landore Resources Inc.(100%)	Frond	Staked Crown	3012190	240	15	20-1 00-00
Landore Resources Inc.(100%)	Lake	Land	3012197	48	3	25-Feb-03
Landore Resources Inc. (100%)	Lane	Lanu		40	<u> </u>	20-100-00
			TOTAL	4160	260	

Landore Resources Canada Inc 09/24/05

3.0 ACCESS, LOCAL RESOURCES, PHYSIOGRAPHY

The Wottam Project is a property located in northwestern Ontario. The property is located approximately 118 kilometres ENE of Pickle Lake Ontario. The project area straddles the north shoreline of Wottam Lake. The property occurs within the following NTS 1:50,000 map sheets; 52P/9 and 52P/10. Figure 1 illustrates the generalized location of the Wottam property.

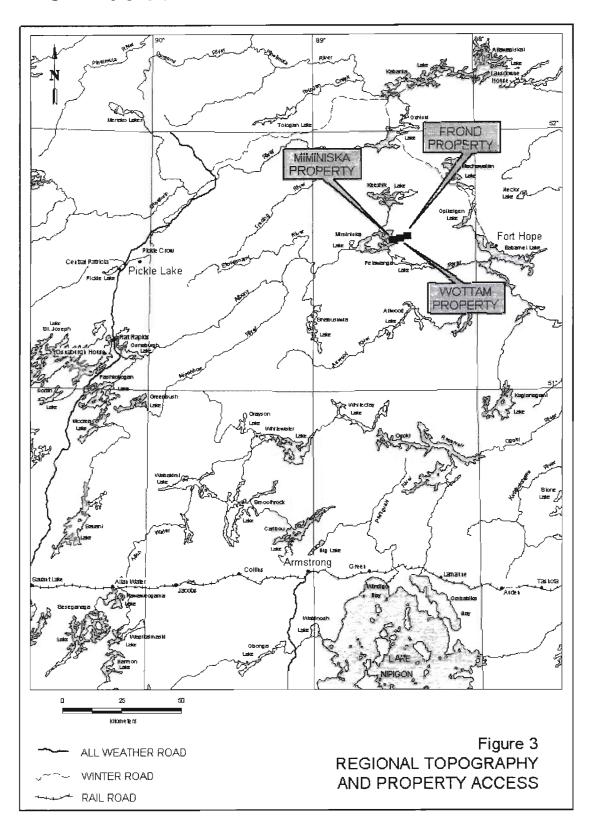
Exploration work is possible year round except for a period during spring breakup and freeze-up in the fall. Sampling is usually undertaken during the summer months from May through October and drilling is most conveniently done from November to March. For the most part the property is accessible only by float plane or helicopter during the summer months, and by helicopter and ski equipped planes during the winter season. Float plane bases are located in Pickle Lake, Armstrong and Nakina, Ontario. The property can be accessed in the summer via the Albany River from Fort Hope, Ontario where there is an air strip capable of landing jet aircraft. At least one portage is required along the river around the falls near the south central portion of Miminiska Lake on the Albany River. In the winter months, the property can be assessed from Fort Hope by skidoo via a series of trails constructed by the local aboriginal community.

A major bend in the Windigo Road, a gravel road that extends north from Pickle Lake, is 80.6 kilometres west-northwest of the property (Figure 3). A staging point could be made for any helicopter ferrying of equipment into the property at this bend, as illustrated in the west central portion of Figure 3. The Fort Hope Reserve and airstrip is located 38 km to the east (Figure 3). A winter road is constructed annually between the Windigo road and the community of Fort Hope. In the past couple of years, the winter road has not been reliable due to a short and/or mild winter season.

Pickle Lake, population of approx. 900, can serve as a centre of supply and service. Most types of exploration equipment and support services are available in Pickle Lake. There are daily scheduled flights to Pickle Lake from points south. The local economy is based on the mining support, tourism and government service industries. The town of Armstrong, Ontario also can be used as a staging point, having daily courier service available to the regional centre of Thunder Bay, Ontario. The town of Armstrong is approximately 150 km SSW of the Wottam property.

In addition to the above, a fully equipped fishing lodge is located approximately 9 km to the NW of the Wottam property. It is located on the north central shore of Miminiska Lake. The lodge has an 800m grass airstrip suitable for wheeled aircraft. The lodge also has satellite communication with internet service. The lodge is normally closed during the winter season. The airstrip could be used after winter break-up or with ski equipped planes in the winter months. The proprietor is Mr. Liddle, telephone 1-888-AND-FISH. Mr. Liddle has been contacted informing him of proposed work activities by Landore.

Miminiska and Wottam Lakes are drained by the Albany River. In the summer months, it was noted that the lake levels and the water level of the creek joining Wottam Lake and


Miminiska Lake varied in elevation approx. 30 cm. The Albany River Park is located to the southwest of the Miminiska property occurring on the south shore of Miminiska Lake and along the Albany River (See Figure 2).

The property physiography is strongly influenced by several small to large lakes commonly interconnected by creeks and rivers. The major drainage channel in the area is the Albany River which eventually drains into Hudson Bay. The property has very minor topographic relief with MSL elevations ranging from approximately 280 to 310 metres. Low relief "highland" areas are influenced by bedrock controlled knolls and outcrops and/or esker ridges. The thickness of overburden covering the Wottam area appears to be variable, ranging from essentially nil to >30m(?). Three ENE trending highland areas with associated 10 to locally 30% outcrop knolls occur on the property. These bedrock controlled areas commonly have a relatively thin cover of pebbly sand till overlying the bedrock. Large, sandy gravel esker ridges were mapped to the E of Miminiska Lake and also to the NE of Wottam Lake. The esker ridges are flanked by sand plains with associated jack pine and poplar vegetation. Dispersed between the bedrock controlled areas are damp to locally wet, semi-open tamarack swamps and/or black spruce moss covered areas.

Overall, black spruce and balsam are the primary tree species with isolated areas of birch and poplar occurring in the better drained areas.

There is no independent source of power. There is an abundant supply of fresh water from Miminiska and Wottam Lake. Mining personnel are available in Pickle Lake and Thunder Bay. Placer Dome's Musselwhite mine, located approximately 185 km to the NW, uses Thunder Bay as a staging area for many of its mine personnel.

The Wottam property should be considered to be in the grass root's stage of mineral exploration.

FIGURE 3: Regional Topography and Property Access

4.0 HISTORY

The Wottam property has been intermittently explored, by several companies, since the early 1930's. Companies completing mineral exploration on the property include Conwest Exploraton Company Limited, International Mining Corp, Goldfields Canadian Mining Ltd., Noramco Exploration Limited/Golden Band Resources Limited, Noranda Exploration Company Limited, and Exploration Mirandor Inc. Copies of pertinent assessment reports were obtained from the Sudbury and Thunder Bay OGS assessment file libraries. A majority of this work was reported in a previous Landore Wottam report by Needham (2003). Table 2 is a summary of work completed in the Wottam area, excluding previous work completed on the Miminiska and Frond properties which are described separately below. This listing of previous work was derived from the OGS Ermes assessment file database (See OGS web site @ www.ermes.mndm.gov.on.ca). In addition to the above, considerable exploration work, starting as early as the 1940's. was completed to the west on the Miminiska property by Conwest Exploration Limited and Baroque Resources Ltd. To the east, considerable exploration work was also completed on the Frond property by Keezic Resources, Conwest Exploration Limited, Westmin Resources Limited/Lacana Mining Corporation and Tandem Resources The strike extension of zones intersected on the Miminiska and Frond Limited. properties are critical to the interpretation and mineral potential of the Wottam property. The following work history includes a compilation of work on all three of these properties. In 2003, the OGS released the results of the Fort Hope Area airborne magnetic and EM survey, a program funded by operation Treasure Hunt. The AEM anomalies generated have been incorporated into the Landore GIS database.

4.1 WOTTAM PROPERTY SUMMARY

In 1942, Prest reported a series of 9 trenches, dug into a zone of amphibolitized biotite garnet iron formation with associated quartz veining and 1 to 5% arsenopyrite, pyrrhotite and pyrite. The trench work was completed by Coin Lake Gold Mines Limited. Grab samples taken by Wallace(1981) assayed up to 1.37 g/t Au. This showing illustrated in this report was re-mapped and sampled in detail in the 2002 Wottam program. It was designated WS41.

In 1945, International Mining Corporation(Canada) Ltd completed approximately 25 kilometres of linecutting which was followed by a magnetic survey and geological mapping and "significant" trenching. The position and number of trenches have not been defined to date. The mapping program found a strong shear sediment zone with associated arsenopyrite mineralization approximately 75 metres south of the twin lakes located in the north central portion of the Landore Wottam Property. This horizon was interpreted to be on strike with the mineralization on the Miminiska Property. Another pyrrhotite and pyrite mineralized horizon was observed to the NE of the same twin lakes. No significant gold assays were returned from the prospecting samples taken. The mineralization was reported to be associated with a sediment / iron formation contact. A total of six, short, X-ray drill holes (MI1-6) were completed, totalling 213m. All drill holes are located north of the central portion of Wottam Lake (See Map 2). The position of

these drill holes could only be approximately located based on distance from topographic features. None of the hole collars were found in the 2002 or the 2003 Landore reconnaissance mapping programs. In drill hole 45MI-2, one anomalous assay was associated with a pyrite mineralized quartz vein. The vein was 13cm wide and assayed 7.2 g/t Au. It should be noted that due to the requirement that the drill be anchored in bedrock, many of the iron formation (i.e. IF) targets could not be tested, the result being many of the holes drilled, were completed for assessment requirements only.

In 1965, Mattagami Mining Company Limited/ Algoma Steel Corporation Limited held the patented claims currently staked by Landore, i.e. Miminiska claims 3010504 and 3010505. These claims cover a thick oxide iron formation unit located along the north boundary of the Landore Miminiska property (See Map 1). A dip needle survey of this property was completed in 1946 by Leta Explorations Limited, with no significant results. Algoma completed ground magnetic survey over the oxide IF to outline the IF thickness. Subsequently in 1966, Algoma completed 4 diamond drill holes, totalling 897 metres. The purpose of the holes was to determine the potential for FeO ore, not gold mineralization. Conclusions made in the assessment file report on the property, stated "The magnetometer survey has indicated that the iron formation has been tightly folded, thereby increasing the overall thickness considerably in some areas. However, between these areas the iron formation is generally narrow and non-contorted." Detailed mapping noted that the folded iron formation has steeply plunging NW and NE trending axis. The wavelengths of these folds varied considerably from as narrow as 2-3 metres while in other areas the IF bedding is planar over 10's of metres. Elemental iron assays from the drill program ranged from 13 to 32.6%.

In the early 1970's, Selco Exploration Company Limited completed airborne magnetic and EM surveys that were followed up by mini grids on which ground magnetic and EM surveys were completed. This work was followed up in 1972 by drilling two diamond drill holes, 113 and 94 metres in length. The holes are located to the south of the east end of Miminiska Lake and NE of the mouth of the Albany River where it flows out of Miminiska Lake. Only minor sulphides associated with a chlorite schist were reported in the northern hole, however a 3 metre wide sulphide (py+po) breccia zone was intersected in the southern hole. The zone is hosted by felsic volcanics. No significant assays were reported. The above is summarized from Wallace (1981).

In 1970, the OGS completed a regional mapping (1"=2 mile) and compilation program to stimulate exploration activity in the Fort Hope area, (Thurston and Carter, 1971).

In 1981, a 1"=1/2 mile scale mapping program was completed by the OGS (Wallace, 1981). This work was scanned, geo-referenced and the outcrops digitized to use as a base for mapping and prospecting programs on the Wottam Property. Maps 1 and 2 illustrate the results of this work. All OGS rock type coding were converted to the Landore Geological Legend rock coding system.

In 1983, E.W. Bazinet completed 1 diamond drill hole in the vicinity of Seagreen Lake (See Map 1 or 2). The position of the hole was determined from historical claim maps stored on microfiche at the Thunder Bay OGS office. The hole was drilled with a winkie drill (EX core size). The hole intersected garnetiferous, amphibolitic, units with banded chert horizons. Up to 50% pyrrhotite and pyrite mineralization was intersected, locally occurring as semi-massive bands in units up to 6.4m wide. The hole ended in pegmatite

at 43.92 metres. No gold assays were submitted for assessment credit. The collar of this drill hole was not found in the field in the 2003 program.

In 1983, D. Humby completed one diamond drill hole in the Wottam Lake area. The position of the hole was determined from historical claim maps stored on microfiche at the Thunder Bay OGS office. The setup for this hole was observed in the field, in the 2002 Wottam due diligence mapping program. The hole is located approximately 40m north of the WS41 showing trenches. The hole intersected interbedded argillite and impure quartzite units. Small quartz veinlets were logged with selvages of disseminated pyrrhotite. Core angles were predominantly observed at 75 dtca. The drill hole length was 32.61 metres. Only one Au assay taken in the hole, and the assay result was not reported in the log. The drill hole did not drill deep enough to test the WS41 showing.

In 1987, Noranda Exploration Company Limited completed a Dighem III airborne geophysical survey over the central and western portion of the Wottam property. Surveys completed included total field magnetics, VLF (using Annapolis Maryland as the base station), resistivity and 900 and 7200 Hz EM. A total of 285 line km were helicopter flown, with a flight line spacing of 150 metres and a bird height of 30m. A total of 25 discrete bedrock conductors were defined in the survey out of a total of 408 conductors. Conductivity, estimated depth and resistivity were calculated for each EM anomaly. A majority of these discrete bedrock conductors occur in a 70 degree trend located 1100 to 400m south of the central portion of Seagreen Lake. These conductors are currently not within the current Wottam Lake property boundary. Two "surficial" conductor trends, that merge to the NE, correspond with deformation / shear horizons observed in the 2002 Landore Wottam due diligence mapping program. A similar series of "surficial" conductors extend from the OGS WS41 showing to SW of Goss Lake where the survey ends. This trend may correspond with either the Frond Lake showing and/or the Frond Lake South horizon.

In 1987, Noramco Exploration Limited/Golden Band Resources completed an extensive exploration program over two properties; the West Wottam Property consisting of 6 claim units and the Wottam Project consisting of 50 claim units. Both properties are with in the current Landore Wottam Property boundaries. Exploration work included; linecutting on 100m spaced grids, geological mapping, Aerodat helicopter supported geophysical surveys, ground geophysical surveys including total field magnetics, and VLF surveys. The Aerodat airborne geophysical surveys were completed over two blocks of ground, using N-S oriented flight lines with 100m line spacing. A total of 389 line km were flown with at a "bird" elevation of 60m over the two areas. The Aerodat airborne survey covers the eastern 1/3 of the Landore Wottam property with flight lines extending north of the Landore property to the south shore of Seagreen Lake. This portion of the survey also covers a large portion of the Frond Property. Another grouping of flight lines straddles Wottam creek covering the eastern 1/2 of claim 3001580 and the western half of 3001578. Ground magnetic data was taken on 12.5m intervals on the 100m spaced, north-south grid lines. Total field and vertical gradient maps were produced. VLF data was taken on 25m intervals on the grid lines using two base stations. A total of seven, commonly 255 degree oriented VLF anomalies were defined on the Wottam property. The VLF anomalies commonly have corresponding and/or proximal magnetic anomaly trends. Four of the seven anomalies defined were interpreted to be associated with sulphide facies +/- magnetite chert facies iron formation based on the magnetic survey,

only two of these anomalies were interpreted to be associated with sulphide IF based on the VLF survey. One strong VLF conductor did not correspond with a magnetic high anomaly. A rock geochemical / assay sampling program was also completed totalling 198 samples, these samples were analysed for Au, Ag, As, Cu, Mo, Sb, W, and Zn. Only three samples assayed greater than 20 ppb Au. It was concluded that the general lack of showings on the property could be attributed to poor outcrop exposure. Selected data has been incorporated into the Landore Mapinfo database. (See Maps 1, 2). The idealized Noramco grid had to be rotated counter clockwise approximately 10 degrees. This work was completed to adjust the grid to known topographic features. In 1987, 4 diamond drill holes, totalling 604.21 metres, were completed on the property. These drill holes tested the two strongest ground and airborne geophysical conductors interpreted to be associated with a graphite pyrite horizon and sulphide iron formation. A majority of the samples did not return significant gold assays with the exception of drill hole SL87-4, the last hole drilled on the property by Noramco. At 31.1 metres, an assay of 28.11 g/t Au over 1.5 metres was returned. The sample occurred on the downhole margin of a 2.6 metre wide, strongly silicified, amphibole altered zone, hosted by a mafic tuff. The location of this hole is illustrated in Map 2. Note that this drill hole drilled through the regional sediment volcanic contact, representing a significant change in rock mechanical properties. As commonly observed in many gold mineralized "camps", this change in rock properties may act as a zone of shearing and/ or faulting, which would increase rock permeability. Late gold bearing fluids commonly follow these zones of increased permeability. The area was staked by Landore in 2003. The collars of all four drill holes were located in the 2003 Wottam prospecting program.

In 1987, Gold Fields Canadian Mining Ltd completed an aggressive exploration program in the Miminiska – Wottam area. This work included; regional mapping/prospecting, the linecutting of several "mini-grids" with associated geophysical surveys, humus sampling, geological mapping and rock sampling programs on the Miminiska property and the C4 grid to the north of Wottam Creek. Several trenches / channel sample lines were also completed in the area. Mapping defined three lithlogical domains on the C4 grid with the central, 152.4m wide domain, being the most significant with respect to mineral potential. It is associated with strong shearing, schistosity, isoclinal folding and quartz veining with associated strong arsenopyrite mineralization and chlorite, tourmaline alteration. This domain may be associated with WSaspy1 trenches to the NE of the east end of Wottam Lake. Alteration intensity was observed to decrease to the SW. A dextral offset occurs in the central domain associated with an E-W fault.

Gold Fields completed a total ten drill holes in the region, but only one was drilled on the Wottam property, i.e. M87-8. The hole was drilled to test a weak EM conductor and magnetic high. This geophysical signature was explained by numerous thin oxide iron formations intersected from 7.77 to 57.69 metres. Weak to locally strong arsenopyrite mineralization (i.e. up to 60%) was intersected associated with 5-7% quartz veining, from 59.95 – 114.7 metres, associated with strongly contorted / folded chlorite / sericite altered interbedded argillite-greywacke unit. No assays were submitted for assessment credit. The collar of M87-8 was found in the field in the 2003 prospecting program. No outcrop was observed to the south of the collar, however barren oxide iron formation was mapped to the immediate north of the M87-8 collar.

In 1988, Exploration Mirador completed at total of 60 line kilometres of linecutting, total field magnetic and VLF ground surveys over two claim blocks. The east block is located almost entirely within the Landore Wottam property straddling the south shore of Wottam

Lake. The West block is located immediately SE of the SE corner of the Landore Miminiska Property. It is immediately south of the Landore Wottam Property boundary. On the Mirador West block, a total of 4 magnetic linear trends were defined and 10 linear VLF conductors were also defined. Only one of which was interpreted to be associated with sulphide mineralization. The eastern Mirador block defined 6 magnetic linear trends, and 8 VLF linear trends. Two of these linear VLF anomalies were interpreted to be associated with sulphide mineralization.

The Miminiska, Wottam and Frond area was flown by a fixed-wing geophysical survey by the OGS by in the winter of 2002. The survey, part of the Ontario Government sponsored Operation Treasure Hunt, consisted of airborne magnetics, radiometrics and VLF-EM surveys. The survey has been named the Fort Hope survey. This survey covers Landore's Miminiska, Wottam and Frond properties. The release of the survey was delayed to the summer of 2003. This survey data was reviewed in the office and selected anomalies were evaluated in the field in the 2003 Landore prospecting program. The AEM conductors have been incorporated into the Landore GIS database.

			GEOPHYSICS		# of Discrete	HUMUS	ROCK	ELEMENT	# TRENCH GEOL.		DRILLNG		OTHER	
COMPANY		TYPE OF WORK	LINE KM	Azimuth	Line spacing (m)	Bedrock conductors	# of samples	# of samples	ANALYSED	# of trenches		# DDH'S	TOTAL # METRES	
International Mining	1945	linecutting	25	350	121.9 locally 61m							_		· · ·
	1945	magnetic	25	350	121.9 locally 61m									
	1945	geological mapping / prospecting / trenching?							Au		25km - @ 1 ⁴ =200' scale			stg aspy mineralization associated with sheared sediments located approx. 75m S of the twin lakes located N. of Wottam Lake. Stg po, py mineralization observed to the NE of the same two lakes, associated with a Iron formation/sediment contact.
	1945	diamond drilling							Au			6	213.05	1 anomalous assay obtained from hole 2 -qV3
Matagami Mining Company Limited	1965	linecutting (30.5m spaced, N S grid lines)	35.4	0-180	30.5			batt (e Koni	ne ten de	ara s			13cm wide assayed .21oz/t an employed back and provident to record of the ann employed back and and provident to record of the ann employed back and and an and an an and an an an and an
	1965	ground magnetics	35.4	0-180	30.5									
	1965 1966	mapping diamond drilling		<u> </u>	<u> </u>						34.5km			only two laminar IF o/c's mapped
and the second		diamond drilling							%Fe, %SiO2			2	475.5	4 holes drilled, only two within Wottam property. Ddh's 3,4
Selco Exploration Company Limited		mini- grid geophysics, mag and EM				laha diri		het i teo	X	din 12.	. Y (4)	tetis qu	kast sete 	中的基本工作的新生产性和1%。
	1972	diamond drilling	<u> </u>									2	207	NE of the mouth of the Albany River
		1 111、1111、1111、1111、1111、1111、1111、11		la gla) 39 4 5 4 5 4	. 5 S.	1	l An an fact de	astonie d	hi di kitar d			3m wide sulphide mineralization associated with a breccia zone intersected in the northern hole
OGS geological mapping	1981	geological mapping and rock sampling					[1"=1/2 mile scale regional mapping
E.W. Bazinet Mining and Exploration Ltd. (Eurocan Ventures Ltd.)	1983	2 diamond drill holes	i e de la composition de la composition La composition de la c				Marine e		Au, not reported		est dave en la	2	76.53	winkie drill, EX core. Hole 1, testing WS41 did not reach the target, hole 2 intersected stringer and semi-massive po-py minrealization up to 6.4m wide.
Company Ltd.	1987	Dighem III airborne magnetics, VLF, RESISTIVITY, EM (30m bird elev.)	285	135/315		25					, e. ji ji - M			helicopter supported, photomosaic base
Noramco/Golden Band Resources (Wottam Property)	1987	Referencies and states Inecutting	88.7	0-180	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			19 (M.) (1-4)	p i i i i i i i i i i i i i i i i i i i	r ,ni⊁ d	stip i i		1999年—1996年(1996年)(1997年)(1997年))(1997年))
	1987	geological mapping	88.7	0-180	100						88.7 line km	<u> </u>		
	1987	rock geochemical sampling		0-180			na		Au, As, Ag, Cu, Zn, Mo,		00.7 III 0 KM			
	1987	airborne Aerodat survey (60m bird elev.) - MAG, EM, VLF	208	0-180	100	21 - 2 stg			Sb, W					helicopter supported, NAD27 1:50000 topo base, enlarged

TABLE 2: SUMMARY OF PREVIOUS WORK HISTORY

			GEOPHYS	_		# of Discrete	HUMUS	# of	ELEMENT	1 1	GEOL. MAPPING	DRILLNG		OTHER
COMPANY	YEAR	TYPE OF WORK	LINE KM		Line spacing (m)	Bedrock conductors	# of samples					# DDH'S	TOTAL # METRES	
		ground mag and VLF surveys	88.7	0-180	100	7								stations 12.5m mag, 25m VLF, 7 linear conductors
	1987	diamond drilling							Au, As, Ag, Cu, Zn, Mo, Sb, Pb			4	604.21	tested the 2 northern IF horizons, widely spaced ddh's. ddh SL87-4 intersected 28.11 g/t/1.5m @ 31.1m downhole host by silicified amph zone – mafic tuff. Zone not followed up.
	271:01	States and the second		흔 했다.	igen i da e	śrady – pro		14				1 1	haan oo je	maine tuit. Zone not ionowed up.
Noramco/Golden Band	1987	Inecuting	6.5	0-180	100		·		1			.5.	1	en in the transfer end and the state of the transfer end
Resources (West Wottam Property)	1987	geological mapping and rock geochemical sampling		0-180	100			2	Au, As, Ag, Cu, Zn, Mo, Sb, W					
	1987	airborne Aerodat survey (60m bird elev.) - MAG, EM, VLF	63	0-180	100	4							·	helicopter supported, NAD27 1:50000 topo base, enlarged
	1987	surveys	6.5	0-180	100	2								stations 12.5m mag, 25m VLF
Goldfields c4 grid	1986	airbome magetics and VLF- EM		心 · · 服			i ni da			t for sørde	ga trátro			is the state of the state of the specific test of the noted in geology report, not copied.
	1987	linecutting	58.6				<u> </u>							
	1987	geological mapping									58.6			3 ENE trending lithological domains defined, the central 152.4m wide domain associated with strong shearing, schistosity, isoclinal folding and quartz veining with associated strong aspy mineralization and chl, tour alteration. Horizon
		ground geophysics (mag and MaxMinII EM)	58.6											may be associated
		humus geochemical sampling					423		Au, As					anomalies generated over non-outcrop areas. Anomalies in the vicinity of L4000E within the central mineralized domain. Weak anomalies
	1987	trenching/channel sampling												defined in the southern domain. recent trenches observed in 2002 reconn mapping
Goldfields c4 grid	1988	diamond drilling							not reported, Au, Ag			1	242.93	59.95- 114.7m chl ser altn, stgy contorted/sheared gwk/slate. 5-7% q veining with associated aspy making up to 60% of the vein, but generally 1-5%. Fault zone @ 191.4m.

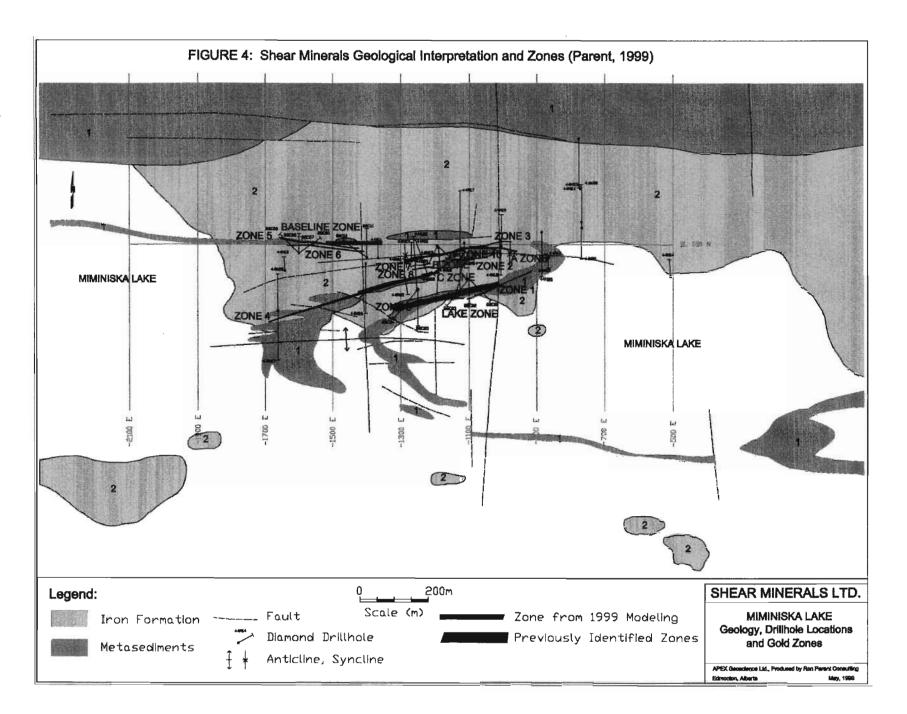
			GEOPHYS	SICS		# of Discrete	HUMUS	ROCK	ELEMENT	# TRENCH	GEOL. MAPPING	DRILLNG		OTHER
COMPANY		TYPE OF WORK	LINE KM					# of samples	ANALYSED	# of trenches		# DDH'S	TOTAL # METRES	
Exploration Mirador Inc. (EAST)	1988	linecutting	30	0-180	100									
		mag - 12.5m stations with anomaly areas @ 6.25m	30	0-180	100	6	_			-				
		VLF -25m stations	30	0-180	100	8- 2 interpreted to be assoc. with sulp's								
Exploration Mirador Inc. (WEST)	n i cirkh 	(1997 Aug) E. Strad Augustic Aug linecutting	30	0-180	100	t gode ⊉ 	n tradiciji N	5412 (14 	a Nga D			, sa	这么 (m) (学是	整理中的"学校教师"的时来,它能加速了新 1
		mag - 12.5m stations with anomaly areas @ 6.25m	30	0-180	100	4								
		VLF -25m stations	30	0-180	100	10 - 1 interpreted to be associated with sulp's								
OGS (AMag/AEM)		airborne geophysics	?	345-165	200	Approx 110		A set i		a di a				entire property covered by survey.
TOTAL						48	423					17	1819.22	

4.2 MIMINISKA PROPERTY SUMMARY

The Miminiska property was first prospected in the 1920's with mineral exploration work occurring intermittently to the present. Work completed is outlined in Needham and Sale, 2004. This work includes prospecting, soil geochemical surveys, rock geochemical surveys, ground magnetic-VLF-HLEM surveys, bedrock stripping and trenching, geological mapping and diamond drilling by various companies including most recently Landore Resources. A majority of this historical work was incorporated into Landore Resources digital database, using the Mapinfo GIS program.

In May of 1999, a preliminary resource evaluation was completed by Ron Parent, for Shear Mineral Resources. It must be stressed that this evaluation was preliminary in nature, and its purpose, it is believed by the author, was to access the potential of the property. Ten distinct zones were interpreted from the drill hole assay information. Table 3 illustrates a summary of this work.

A total of 73 drill holes have been completed by Landore Resources and all other companies to date, for a grand total of 9411.5 metres. In 2003, Landore completed 2370.1 metres of drilling in 18 diamond drill holes. In 2003\2004, a second phase of drilling was recommended and completed by Landore Resources to follow-up on the results obtained in the winter 2003 diamond drill program. The 2003/2004 diamond drill program included 16 holes, totaling 3057.7 metres. For further results of these drill programs see Needham and Sale, 2003 and Needham and Sale, 2004.


TABLE 3: 1999 Shear Minerals Preliminary Resource Estimate (Parent, 1999)

	1 :	gpt Au cute	off	2	gpt Au cut	off	3	gpt Au cuto	off
zone	tonnes	grade	oz. Au	tonnes	grade	oz. Au	tonnes	grade	oz. Al
1	216,073	2.86	18,165	190,108	3.06	17,100	91,963	3.71	10,029
2	81,678	2.76	6,626	73,221	2.91	6,263	22,603	3.68	2,445
3	181,882	3.03	16,199	57,087	6.08	10,202	40,631	7.53	8 <u>,</u> 993
4	161,721	2.00	9,507	117,785	2.31	7,998	8,285	3.02	735
5	128,239	6.10	22,994	109,579	6.87	2 2 ,128	97,759	7.40	21,264
6	76,243	2.81	6,298	51,116	3.53	5,304	38,889	3.87	4,424
7			1				17,410	3.93	2,011
8						ļ	19,640	5.05	2,915
9	34,937	2.03	2,085	13,440	3.21	1,268	9,720	3.52	1,006
10				6,411	2.33	439			
Fotals	880,773	3.16	81,874	618,747	3.89	70,703	346,900	5.28	53,823

"Global resources for each of the 10 zones at the Miminiska Lake Property. "Assigned grades were obtained using the Inverse Distance Squared interpolation method.

Total resources are contained in 10 distinct zones interpreted from the drill hole assay information. A 10 m (EW) by 5 m (NS) by 10 m (ELEV) 3D block model was constructed using MEDSYSTEM/Minesight® over the area covered by drilling.

2003 Wottam Prospecting and Geology Report

4.3 FROND PROPERTY SUMMARY

The Landore Wottam Property is contiguous with the patented claims that comprise the Frond property (See Figure 2). The showing was initially discovered by John Goss by prospecting an outcrop of sulphide IF. The Frond property is currently held by Tandem Resources Inc and Ayres Resources Inc. As at the Miminiska Property to the west, considerable intermittent exploration work has been completed on the property starting in the 1940's. In 2002, Hunt(2003) completed due diligence work on the Frond property on the behalf of Landore Resources Ltd. Hunt summarized the work by various companies completed to date and the geology he observed in core and in outcrop. Exploration work includes linecutting, ground geophysics (mag, VLF, and EM surveys). geological mapping and prospecting, trenching, (33 in total), MaxMinII HLEM survey and a humus survey. Four phases of diamond drilling were also completed totalling 159 drill holes and 12,131.6 metres. A preliminary resource estimate was completed by Routledge(1985). A 1 oz*ft contour was used to define ore shoots on the longitudinal sections. From this work three zones were outlined associated in two iron formation units, with in which multiple shoots were defined in each zone. A resource estimate was calculated totalling approximately 278,220 tonnes @ an average grade of The preliminary resource estimate was cut off at 200 feet below surface. Map 7.41q/t. 2 illustrates the location of drill holes. A third pyrrhotite mineralized iron formation was mapped in the southern portion of the property, but no significant assays were returned from this horizon. Gold mineralization zones A, B and C are currently drilled to 152m, 185.9m and 195m respectively (See Hunt, 2003). The grade of these zones is commonly weaker at depth, possibly as a result of the mineralization racking and/or pinching and swelling down dip. This theory remains to be confirmed by additional zone modelling and/or drilling (See Hunt, 2003).

Mineralization of the Frond property is reported by Neal(1987) to be directly associated with altered iron formation with associated arsenopyrite +/- pyrrhotite sulphide mineralization. The sulphide mineralization, associated with the auriferous zones, is bimodal in grain size. Auriferous zones are variably silicified, garnetiferous, amphibole altered and chlorite/sericite altered. Gold mineralized zones have an apparent affiliation with magnetically low horizons. The three zones defined associated with two iron formation units are located approximately 100 to 300m south of Goss Lake.

The strike extension of these zones has considerable significance relative to the exploration potential of the Wottam property.

No diamond drill drilling has been completed by Landore Resources on the Frond property to date.

There is no known production from the Frond property.

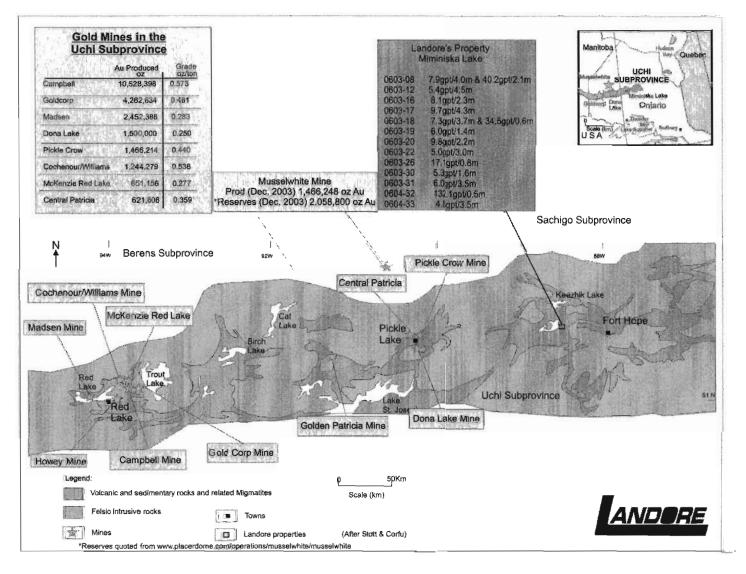
5.0 GEOLOGICAL SETTING

The Wottam Lake area lies within the Uchi Subprovince, an east-trending, predominantly metavolcanic-metasedimentary belt in the Superior Province of the Canadian Shield

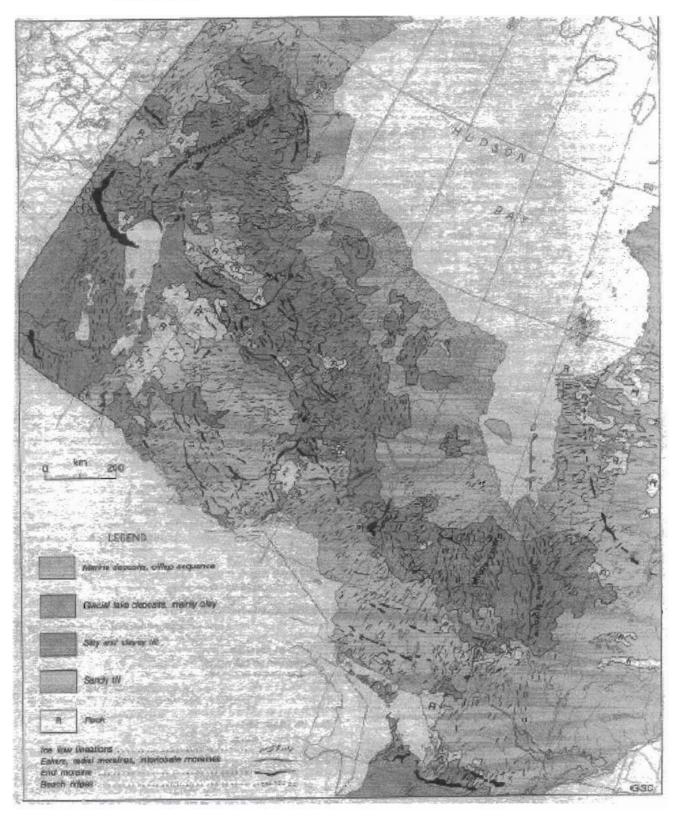
2003 Wottam Prospecting and Geology Report

(Figure 5). All the rock units in the area are Early Precambrian in age, with the exception of a few north-trending dykes of Middle Precambrian diabase. Quaternary deposits of glacial till, and glaciolacustrine and glaciofluvial sand and esker gravels now cover much of the bedrock. Figure 6 illustrates the major Quaternary glacial landforms in Ontario and Manitoba. Field observations of glacial striae suggest ice direction in the area was approximately 270 degrees. Table 4 lists the lithological units of the Wottam Lake area (Brereton, 1988).

5.1 REGIONAL GEOLOGY


The following is a summary of the regional geology of the Miminiska - Wottam Area as paraphased from Brereton, 1988.

The Wottam area is predominantly underlain by a thick metasedimentary sequence consisting predominantly of monotonously intercalated wacke and mudstone units and their metamorphic equivalents. In several places considerable thicknesses of oxide, sulphide and/or silicate facies iron formation occur intercalated with the clastic metasediments. This mixed metasedimentary sequence conformably overlies a thick metavolcanic succession, composed predominantly of mafic pillowed flows, that occupies the southwestern part of the map-area. To the north, there is a second predominantly matic metavolcanic succession which appears to be younger than the metasediments (?). A relatively thin accumulation of conglomerate, pebbly sandstone, and arenite units quite distinct from the main sequence of metasediments to the south and east, occurs in the western part of the area between the metasedimentary and younger matic metavolcanic sequences. A wedge of felsic to intermediate pyroclastics and intercalated volcaniclastic metasediments may in part directly overlie the lower mafic metavolcanics. This wedge is enclosed in the main wacke-mudstone sequence toward the east, and is overlain by the conglomerate and arenite sequence below the younger mafic metavolcanic succession.


Three major intrusions of quartz monzonitic to granodioritic composition occupy the northwestern, northeastern and southeastern corners of the Miminiska-Wottam Lake map areas. The southeastern intrusive has a relatively broad northern contact zone which grades into metasedimentary schists, while the other two intrusions appear to have relatively sharp contacts. Note the presence of iron formation horizons within the southeastern intruvive batholith (i.e. Kawitos Batholith). Obviously the mapping by the OGS for this area needs to be reviewed.

Minor intrusions, including dikes and sills of diabase, gabbro, feldspar and - quartzfeldspar porphyry and pegmatites, are very common, particularly within the metavolcanic sequences.

FIGURE 6: Quaternary Geological Landforms of Manitoba and Ontario (Vincent J.S., 1989)

Structural elements are generally east-northeast trending in the east, and northeasttrending in the western part of the area. The major faults in the Wottam area extend east-northeastward sub-parallel to stratigraphy and a major synformal fold axis that is interpreted to bisect the east embayment of Miminiska Lake, Wottam Lake and to the northeast, Goss Lake. Additional mapping is required to confirm this interpretation. Previous workers in the area suggest that this synform has an easterly plunge overall. Local isoclinal fold axes associated with veining and/or bedding were observed trending in both an easterly and westerly orientation. North to NNW trending cross faults that displace the sedimentary stratigraphy were noted in the Miminiska mapping (Needham, 2003) and from the interpretation of the previously completed airborne and ground geophysical surveys. Slightly oblique to stratigraphy (observed and geophysically interpreted) splay shear structures were noted throughout the Wottam and Miminiska properties. Sulphide mineralization, alteration and locally elevated gold assays were observed associated with these structures.

Low grade metamorphic conditions prevail in the supracrustal rocks throughout the central portion of the Wottam property, coincident with the hypothetical major fold axis. Medium grade amphibole-almandine metamorphism was observed on the north and south margins of the property. Table 5 lists the metamorphic mineral assemblages observed by Wallace(1981) for the Miminiska-Wottam Lake area. The distribution of these metamorphic assemblages is illustrated in Figure 8. Similar changes in metamorphic grade were observed in the Miminiska-Wottam area during the 2003 Wottam reconnaissance geological mapping / prospecting program.

TABLE 4- BEDROCK STRATIGRAPHY OF THE MIMINISKA LAKE AREA (Brereton, 1988)

CENOZOIC

QUATERNARY PLEISTOCENE AND RECENT

Till, sand, boulders (moraine and esker deposits).

Unconformity

PRECAMBRIAN

MIDDLE PRECAMBRIAN MAFIC INTRUSIVE ROCKS Diabase, quartz diabase, olivine diabase, gabbro, quartz gabbro, quartz gabbro dikes.

Intrusive Contact

EARLY PRECAMBRIAN (ARCHEAN) FELSIC TO INTERMEDIATE INTRUSIVE ROCKS Granodiorite, quartz monzonite, pegmatite, feldspar porphyry, quartz- feldspar porphyry.

Relationships Uncertain -

MAFIC INTRUSIVE ROCKS Diabase, gabbro, metagabbro, metadiorite sills and dikes.

Intrusive Contact:

METASEDIMENTS

FERRUGINOUS CHEMICAL METASEDIMENTS

Banded magnetite-quartz iron formation, banded chert; banded sideriteankerite quartz iron formation, banded grunerite-hornblende iron formation, and massive amphibole-garnet-biotite iron formation; pyritic graphitic

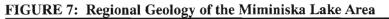
CLASTIC METASEDIMENTS

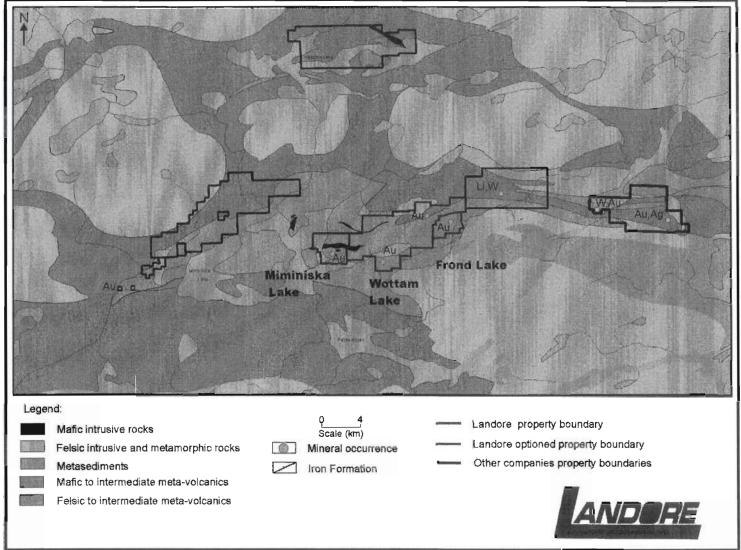
Mudstone, phyllite, slate, subarkosic wacke, lithic subarkosic - wacke, feldspathic litharenite, lithic arkose; polymictic pebble and cobble conglomerate, pebbly sandstone; derived metasedimentary schists.

METAVOLCANICS

FELSIC TO INTERMEDIATE METAVOLCANICS AND DERIVED VOLCANICLASTIC ROCKS

Massive and flow-banded flows, autoclastic breccias; tuff, crystal tuff, laminated tuff, lapilli-tuff, lapillistone, tuff-breccia, pyroclastic breccia, quartz-feldspar porphyry; volcaniclastic metasediments.


MAFIC TO INTERMEDIATE METAVOLCANICS


Massive and pillowed flows, autoclastic breccias; massive and layered amphibolite, garnetiferous amphibolite; pyroclastic rocks; coarse amphibolite. ---

banded

slate.

23

5.2 LOCAL GEOLOGY

The following description of the property geology as observed by the author in the brief 2003 reconnaissance mapping program, and as gleaned from various authors submitting geological reports for OGS assessment credits. Appendix I lists all observations made in the 2003 prospecting program with the dates the observations were made. Digital photos of many of the geological observation sites, and assay sample sites are included in a disk in the back pocket of this report.

The property is underlain predominantly by very well laminated locally turbiditic appearing units of interbedded wacke, quartzitic wacke and slate/argillite. The percentage of greywacke to slate units is approximately 80% to 20%. The northern regional sediment- volcanic contact is covered by the current Landore property position in the area. Iron formation units in areas of higher grade metamorphism are commonly strongly amphibolitized +/- garnet, recrystallized blebby chert – quartz and biotite mineral assemblages. Mafic volcanic units observed in the northeastern portion of the Wottam property, are massive to amygdaloidal in texture, and are commonly strongly amphibole and biotite altered due to regional metamorphism.

The slate/argillite units are not graphitic, are commonly strongly foliated and are also commonly more chloritized or biotitic relative to the more massive greywacke units. Within the greywacke dominant units, quartz rich greywackes were locally observed having a distinctive light grey to buff weathering rim. Bedding contacts are usually very sharp. Bed thicknesses vary from a few millimetres to in excess of 1 metre, with an average of 10-20 cm. In areas of higher grade metamorphism, these units are commonly converted to a biotite quartz garnet +/- staurolite mineral assemblage.

A major unit of banded oxide facies iron formation trends east-west across the northwestern portion of the Wottam property based on the limited geological mapping, previous mapping and ground and airborne magnetic surveys. This unit appears to narrow significantly to the northeast in the central portion of the Wottam property. South of this oxide iron formation, several subsidiary oxide, silicate and locally sulphide iron formation units occur interbedded with meta-argillite and greywacke. The iron formation beds are generally less than 10 m thick, but are composed of a composite of clastic and sedimentary/chemical sedimentary units consisting of sugary quartz(chert)-magnetite iron formation beds, generally less than 2 metres thick, interbedded with beds of fine wacke or mudstone in roughly equal proportions. The clastic interbeds often themselves contain up to 15% magnetite and may be magnetic. The iron formation units may be highly chloritic, a feature usually associated with shearing and/or late guartz or guartzsulphide mineralization. The margins of the iron formation interbeds are commonly sheared and locally schistose. Based on the airborne and ground magnetic surveys completed by various companies in the Wottam area these interbedded iron formation and clastic sediments occur as 6 or more horizons. Drilling by Baroque and Landore on the Miminiska property indicated that host rocks adjoining the interbedded iron formation also have minor magnetite content.

Bedding lamination striking 70 to 110 degrees was in general dipping to the south at 80 to 85 degrees on the Miminiska property, however to the east on the Wottam and Frond

properties, stratigraphy was dominantly dipping moderately to steeply to the north. In the central portion of the Wottam property, in the vicinity of the approximately 150m wide "deformation" horizon mapped by Goldfields (and confirmed by Landore), stratigraphy was observed to dip to the north at approximately 50 degrees. Mapping on the islands south of the Miminiska camp, revealed dips to the north, suggesting an east west striking, synformal structure occurs somewhere just south of the Miminiska camp in the lake. This synformal axis may extend to the ENE through Wottam Lake and Goss Lake. Additional detailed mapping is required to confirm this hypothesis, however outcrop is limited in this critical area due to the Quaternary esker deposits. Thin dominantly oxide iron formation bands occur at or proximal to the northern sediment\ volcanic regional geological contact.

Metamorphic grade is low in general on the Miminiska property, however medium grade metamorphic assemblages of biotite, quartz, garnet, muscovite and staurolite were observed on the north and south margins of the Wottam property. In general, there appears to be an overall increase in metamorphic grade from west to east on the Wottam property. Biotite – amphibole alteration are the key metamorphic index minerals for mafic volcanic units with biotite, garnet, muscovite and locally staurolite commonly associated with sedimentary units. Weak to locally strong sericite or chlorite schist development is associated with sheared \ strongly foliated units.

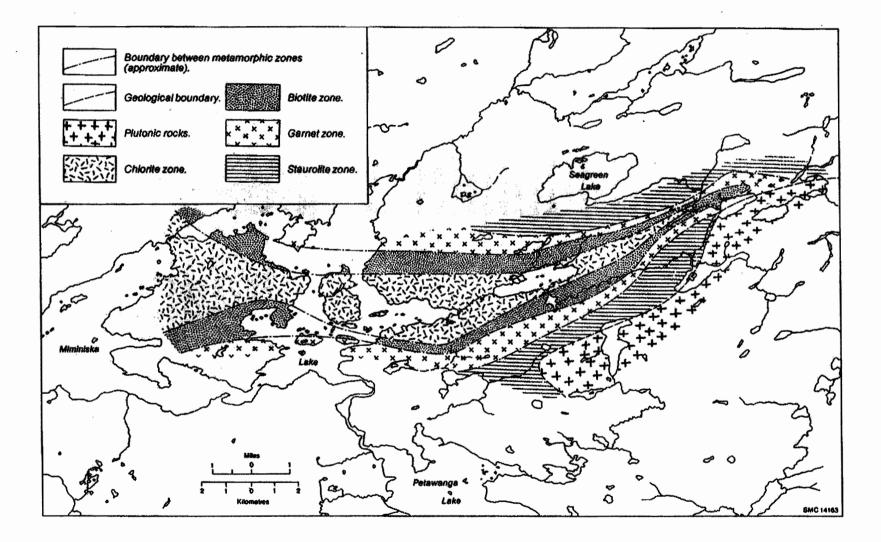
Strong foliation was observed in several separate horizons, including one proximal to the northern regional volcanic – sedimentary lithological contact. Foliation measurements were commonly parallel to bedding, however foliation was locally observed to be 10-20 degrees oblique to bedding predominantly dipping to the north at 50-80 degrees. At least six horizons of ENE striking zones of strong foliation occur on the Wottam property(See Needham, 2003). These horizons commonly have associated strong schistosity and locally phyllite development. The strongest horizon occurs to 200-300 metres to the north of Wottam Lake, associated with the Aspy3 showing. Outcrop scale isoclinal folding was also observed associated with these strongly foliated horizons. Arsenopyrite mineralization is also locally associated with these strongly foliated horizons.

Cross cutting NNE and NNW striking diabase dykes have been mapped on the west margin of the Miminiska property and through the central portion of Wottam Lake. Note that two groups of several contorted VLF apparent resistivity anomalies occur parallel to the Wottam diabase dyke. These anomalies may reflect the presence of a regional scale cross structures/folds.

TABLE 5: COMMON MINERAL ASSEMBLAGES IN THE METAMORPHICZONES OF THE MIMINISKA LAKE AREA. (MODIFIED AFTER WALLACE, 1981SHARPE(1979)).

INDEX MINERAL ZONE	MINERAL ASSEMBLAGES		COMPARABLE METAMORPHIC GRADE (WINKLER,1976)
Chlorite	chlorite+ ser + plag + chl	low	
Biotite	bi + ser + plag ± chl		low
	bi + chl + plag		
	bi + plag ± ser		
Garnet	bi + ser + plag ±gt	(almand	ine) – low
	bi + chi +plag ±gt		
	bi + plag		
	$chl + ser + plag \pm bi \pm gt$		
Staurolite	staur + bi + ser + plag ±gt chi	(almand	ine + andalusite)
	staur + bi + plag \pm ser \pm gt \pm chi	-mediur	n
	staur + bi + plag \pm and \pm gt \pm ser		
	bi + plag + gt ± chi		
	bi + ser + plag + chl2		

Notes:


1. Quartz is present in all assemblages.

2. Chlorite in the presence of sericite at conditions above biotite grade is believed to have formed by retrograde processes.

Abbreviations:

and = andalusite gt = almandine staur = staurolite bi = biotite ser = sericite plag = plagioclase 2003 Wottam Prospecting and Geology Report

Figure 8: Metamorphic Zones of the Miminiska Lake Area (Wallace, 1981)

2003Wottam.doc

28

5.3 PROSPECT GEOLOGY

The geological mapping portion of the 2003 Landore exploration program, in general confirmed the OGS mapping and detailed mapping completed by Goldfields and Noramco. This detailed mapping was previously digitized and recoded and inputted into the Landore Mapinfo database (Needham, 2003).

Within the thick sedimentary units that comprise a majority of the Wottam property, thin silicate to oxide iron formation units are intersected by zones of deformation\ shearing that strike parallel to subparallel to lithology. At the intersection of the shear zones with the iron formation, the iron formation is commonly altered, variably sulphide mineralized, guartz veined and locally auriferous.

Throughout the Wottam property, isoclinal folding of sugary quartz veins/chert horizons were observed in outcrop with fold axis plunging both to the east and west. Commonly, obliquely cross cutting glassy quartz veins were observed tending to occur as a series of en echelon, limited strike length veinlets partially bounded by narrow 2 to 5 metre wide sheared, quartz stringer horizons or iron formation units. Late, steeply cross cutting, quartz carbonate gash veinlets were also commonly observed. Areas of magnetite destruction in conjunction with interpreted parasitic folding should be investigated.

Sulphide mineralization was occasionally observed as haloes to obliquely crosscutting quartz veinlets, or as disseminated coarse to fine grained grains of pyrrhotite +/- pyrite, arsenopyrite in the more intensely silicified and/or sheared horizons. No visible gold was observed in the 2003 prospecting program. No direct correlation of gold assays to pyrrhotite content was observed as suggest by Brereton(1988) for the Miminiska property. In fact the more auriferous assays obtained had an arsenopyrite affiliation as documented for the zones intersected on the Frond property. On several of the outcrops, sulphide mineralization was oxidized to hematite.

6.0 ALTERATION

Alteration on the Wottam property is in general limited to chlorite and carbonate alteration adjacent to shear /fault zones. Strong FeO development is also associated with shear zones. Sericite is locally moderately developed associated with broad shear/deformation horizons. Strong to very strong biotite – amphibole alteration is associated with regional – contact metamorphic aureole proximal to the granitoid plutons/batholiths located to the NE and SW of the property. The most intense alteration associated with the core of the mineralized/structural zones is silicification which is

locally strong, possibly associated with late arsenopyrite mineralization? Patchy grunerite alteration was locally observed associated with silicate iron formation. Appendix I describes the alteration observed in outcrop and in the samples taken in the 2003 Wottam prospecting program.

7.0 STRUCTURE

Numerous structural readings were taken in the course of sampling and mapping on the Wottam property. A majority of the bedding readings were ENE striking and dipping to the north at 50 to 80 degrees. South of Miminiska Lake, in the Albany Falls area, dip measurements were commonly to the south. Foliation measurements were commonly parallel to subparallel to stratigraphy. Appendix I lists the structural measurements observed in outcrop and from the assay samples taken in the 2003 Wottam prospecting program. Map 2 illustrates some of the structural data taken by the author and previous workers.

Medium scale and regional scale folding is interpreted to be present on the Wottam property, based on outcrop scale isoclinal folds observed throughout the property and the repetition of iron formation units. In detail, the presence of three geophysically defined horizons hosting interbedded iron formation units on either side of an inferred regional fold axis may lend credence to the presence of a ENE striking regional fold axis (synform?) located proximal to the north shoreline of Wottam Lake. Definition of the fold axis associated with these assumed folds, would require much more detailed mapping. This work would not be cost effective, partially due to the lack of outcrop in critical areas. In addition, due to the elevated metamorphic grade in the northern and southern margins of the property, top indicators are very difficult to define, e.g. graded bedding. Parasitic folds were locally observed on the limbs of the isoclinal folds observed in outcrop (e.g. see bn3122).

On the Miminiska property, zones of magnetic destruction correspond with geochemically auriferous zones. Quartz veining was dominantly parallel to foliation with secondary ladder/ gash veinlets crosscutting foliation. Strongly quartz veined zones and/or shear zones were sampled at several locations on the Wottam property, with no significant gold assays returned. Strongly foliated zones with significant sulphide enrichment (up to 10%) did not return significant gold assay results in the 2003 prospecting program.

8.0 DEPOSIT TYPE

Landore is exploring for economic gold deposits on its claims.

The Wottam/ Miminiska Lake area was first prospected for gold in the 1920's and 1930's. Exploration for gold, base metals, lithium and iron has continued since then. Mineral deposits in the region are classified by Wallace (1981) as:

1. Gold-bearing quartz-carbonate veins and shear zones in (a) clastic metasediments and (b) metamorphosed iron formation where the gold appears to be associated with arsenopyrite and other sulphide minerals.

2. Magnetite-quartz and carbonate-quartz iron formation associated with a wackemudstone (distal turbidite) sequence.

3. Lithium-bearing pegmatite dikes.

4. Base metal sulphide deposits associated with (a) sulphide iron formation and (b) felsic to intermediate metavolcanics.

After a review of the current literature regarding Banded Iron Formation (BIF) deposits, the Miminiska showing appears to have many of the characteristics of a stratabound or hybrid type BIF deposit. Table 6 lists the significant characteristics of non-stratiform versus stratiform iron formation deposits (Kerswill, 2000). The initial interpretation of the mineralization at Miminiska assumed that the deposit was non-stratiform type.

Gold mineralization in the Miminiska/ Wottam area is similar to the Lupine and/or Musselwhite Mine models, in that the gold is associated with altered iron formation +/- quartz vein zones that are dominantly but not exclusively associated with BIF.

The following stratiform BIF model characteristics were observed in mineralized zones in the Wottam/ Miminiska area

- 1) Gold bearing zones were mostly restricted to pyrrhotite +/- arsenopyrite bearing BIF.
- 2) These sulphide enriched horizons are interpreted to be laterally continuous, and are commonly conformably interlayered with silicate IF or clastic sediments.
- The pyrrhotite mineralization is most commonly well laminated or banded as disseminations. Less common, late semi-massive fracture fills crosscut conformable mineralization.
- 4) The distribution of gold and sulphide mineralization is not clearly controlled by veining or late structures.
- 5) The sulphide mineralized zones are commonly contorted, with veining displaying brecciated or pull apart textures. The mineralized zones are commonly more sheared or foliated, with respect to the adjacent clastic sediments.
- 6) The Miminiska mineralized zones occur in greenschist metamorphic terrain. Stratiform deposits occur in both greenschist and amphibolite terrains.
- 7) Pyrrhotite is the dominant iron sulphide. Minor pyrite mineralization occurs in, apparently late, fracture fills.
- 8) Arsenic analyses/arsenopyrite mineralization are ambiguous as an indicator of gold mineralization. This is typical of stratiform deposits. Locally the arsenic analyses appear to halo the stronger gold assay intervals.
- 9) Visible gold occurrences are rare, associated with disseminated arsenopyrite grains proximal to quartz chlorite fragmented veinlets and/or chlorite carbonate pyrrhotite fracture fills, bands and disseminations.

Table 6: Characteristics of BIF hosted gold deposits (Kerswill, 2000)

Features common to all deposits

3. Deposits occur in structurally complex settings.

^{1.} There is a very strong spatial association between native gold and iron-sulphide minerals

^{2.} Gold-bearing quartz-rich veins and (or) shear zones are present and locally abundant.

^{4.} Ores contain only background contents of lead and zinc.

FEATURES DIAGNOSTIC OF NON-STATIFORM BIF	FEATURES DIAGNOSTIC OF STRATIFORM BIF
Deposits are non-stratiform	Deposits are stratiform
Gold is commonly not restricted to sulphide BIF or veins that crosscut BIF	Gold is mostly restricted to sulphide BIF or to veins that crosscut sulphide BIF
Sulphide BIF does not occur in laterally continuous units	Sulphide BIF occurs in several, thin but laterally continuous units that are conformably interlayered with barren silicate IF and clastic sedimentary rocks
Sulphide BIF is not well laminated; iron-sulphide minerals are commonly massive	Sulphide BIF is well laminated and chert rich: iron sulphide minerals are typically finely layered.
Distributions of iron-sulphide minerals and gold are clearly controlled by veins and (or) late structures	Distributions of iron-sulphide minerals and gold are not clearly controlled by veins and/or late structures
Orebodies are typically less deformed than associated rocks	Orebodies are as deformed or more deformed than associated rocks
lron-sulphide minerals tend to be relatively undeformed and unmetamorphosed	Iron-sulphide minerals show effects of deformation and metamorphism
Deposits are not restricted to, but are most abundant in, greenschist facies	Deposits occur in both greenschist facies and amphibolite facies terrains
Sulphidization textures are ubiquitous	Sulphidization textures are absent in stratiform ore
Orebody-scale alteration exists	Orebody-scale alteration is lacking; localized vein related alteration does occur
Alteration products are generally similar to those in "mesothermal vein" gold deposits	Vein-related alteration is commonly atypical of "mesothermal vein" gold deposits
Oxide BIF is typically the principal BIF lithology in the deposit	Oxide BfF is lacking in the deposits, irrespective of metamorphic grade
Pyrite is commonly the dominant iron-sulphide mineral	Pyrrhotite is typically the dominant iron sulphide mineral; in some cases early pyrrhotite has been replaced by pyrite
Arsenic, if present, is characteristically directly correlated with gold	Arsenic is generally abundant adjacent to late quartz veins but is not well correlated with gold
Silver contents of gold grains are typically low, Au/Ag ratios >8-0	Silver contents of gold grains are moderately high, Au/Ag ratios 4.0-7.0
Deposits are relatively common, generally small and difficult to evaluate and mine	Deposits are rare, can be very large and easy to evaluate and mine, relative to non stratiform deposits

The following features, typical of non-stratiform deposits, occur in the Miminiska\ Wottam area:

- 1) Sulphidization textures (pyrrhotite replacing magnetite?) were commonly observed.
- 2) Chlorite alteration of the mineralized zones was almost universally observed.
- 3) Bleaching (assumed carbonatization) of the clastic sediments was commonly observed adjacent to the mineralized zones. In addition, intense chloritization occurring as haloes to glassy (vs granular texture quartz rich bands/veins) was commonly observed. Magnetite bearing silicate to oxide iron formation (or the chlorite altered equivalent) was commonly associated with the mineralized zones.
- 4) Based on the results of the ICP analyses of the samples, the gold/silver ratio of the gold mineralization appears to be high. The Miminiska silver contents are dominantly low.

Based on drill core observations, gold mineralization at Miminiska\ Wottam Lake area have characteristics of a Hybrid BIF model classification. Some other features of a hybrid model include (after Kerswill, 2000):

- The core of the iron formation units is dominantly variably altered/mineralized oxide iron formation, however a significant portion of the iron formation units are variably magnetic, and chloritized silicate IF (typical of Hybrid Model).
- The iron formation occurs in a turbiditic sequence of greywacke and argillite, distal from volcanic centres. A typical characteristic of Hybrid Model.

The following is a quote from Brereton, (1988) regarding iron formation hosted gold deposits in the region. Figure 6 illustrates the relative location of gold mines in the Wottam area.

"Host rock to the ore at the Central Patricia Mine in the Pickle Lake camp is banded iron formation contained within greywacke. The gold is associated with abundant pyrrhotite and arsenopyrite which infill fractures in the iron formation. The mineralized stringers strike perpendicularly across the iron formation, usually extending from the hangingwall to the footwall contacts. A mineable ore shoot consists of a group of stringers where the amount of gold is sufficient, despite dilution by the intervening, barren iron formation, for the rock as a whole to have a workable average grade of approximately 0.33 oz Au/ton.

Some stringers have a core of blue to white quartz that, even when mineralized with sulphides, is barren of gold. Green chlorite occurs abundantly in the stringers, closely associated with the sulphides. Gold content seems to vary directly with the amount of chlorite. {This deposit is currently classified as a non-stratiform iron formation deposit}

The Dona Lake deposit near Pickle Lake currently being brought into production by Placer Dome, is also indicated to consist of a sulphidized portion of a magnetite iron formation. The gold deposit has a relatively short surface strike length (100 m) and occurs at a minor warp on the north limb of a local drag fold in the iron formation. Pre-production reserves are quoted at 2,000,000 tons grading 0.194 oz gold per ton.

In marked contrast, gold ores at the Pickle Crow Mine occur in two orebodies both consisting of quartz vein material which occurs in strong shear zones which distinctly crosscut stratigraphy. The Howell vein occupies a zone of shearing that cuts obliquely across stratigraphy passing through mafic volcanics at its west end, a band of hard, siliceous iron formation in its centre, and finally through other mafic flows at its east end. It is associated with a tight fold that has produced a considerable thickening in the iron formation. On the other hand, the No.2 vein is enclosed entirely within a mass of quartz porphyry. A pronounced, fold-produced(?) bulge in the unit occurs where the vein crosses the unit. The iron formation and quartz porphyry units are the most competent of the country rocks. {This deposit is currently classified as a non-stratiform iron formation deposit}

At the Zulapa prospect, located at the Fort Hope Reserve, gold-bearing quartz veins occur in highly sheared quartz-feldspar porphyry. The zone is 300 feet in length varying from 50 to 70 feet in width. There are drill indicated tonnages of 170,000 tons at 0.28 oz gold per ton to 300 feet with additional tonnages to 700 feet."

Placer Dome's Musselwhite mine, located approximately 180 km to the NW of the Miminiska property, is another iron formation hosted mine in the region. Current proven and probable reserves stand @ 1.4 million ounces of gold. In the period from 1997 to December 2003, Musselwhite produced 1,466,248 oz of gold (from www.placerdome.com/operations/musselwhite/musselwhite.html). The genetic model for Musselwhite using Kerswill (2000) criteria, falls into the Hybrid model classification. The following in depth discussion of the Musselwhite Mine is included to emphasize some of the similarities of Musselwhite with the Miminiska property. However, some of the major differences between Musselwhite and Miminiska include:

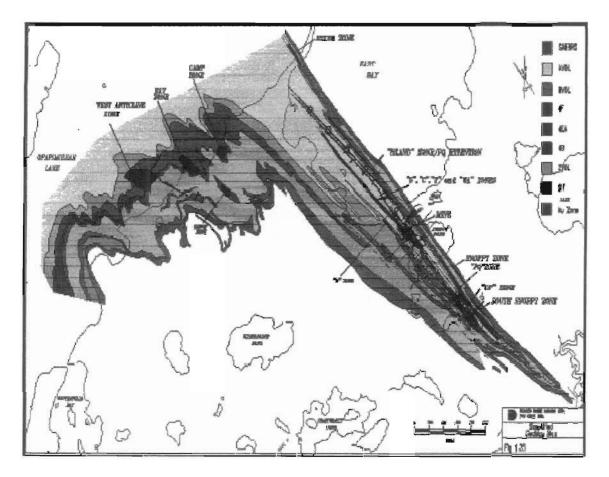
- 1) Musselwhite occurs within mixed volcanic and sedimentary stratigraphy.
- 2) The Musselwhite mine is associated with a regional scale antiform. Miminiska is associated with a localized symformal/antiformal structures.
- 3) The relative contribution of late stage mineralized quartz veining versus stratabound pyrrhotite mineralization to the grade of defined zones at Miminiska has not been defined to date.

4) Musselwhite has been subjected to amphibolitic grade metamorphism, but Miminiska occurs in an area of apparently local, greenschist grade metamorphism.

The following generalized characteristics, of the dominantly amphibole-garnet-chert-magnetite iron formation ore zones(i.e. unit 4ea), occur at Musselwhite(Blower and Kiernan, 2003):

- 1) Mineralization is generally within, or near, favourable iron formations.
- 2) Most deposits occur adjacent to prominent regional structural and stratigraphic features, and mineralization is often related to local structures.
- 3) Contacts between ultramafic (commonly komatiitic) rocks and tholeiitic basalts or sedimentary rocks are important.
- 4) Changes in pinch-outs and facies within geologically favourable units are important loci for ore deposition.

Figure 9 illustrates the location of the various zones of economic mineralization that constitute the Musselwhite Mine relative to the antiformal/synformal structure(s) (Blower and Kiernan, 2003). Blower and Kiernan state that mineralization is best developed in the 4ea iron formation, where structural permeability has been increased by folding, brittle/ductile deformation, or a combination of both.


The following paragraphs quoted from Blower and Kiernan, (2003) describe some of the characteristics of the mineralization and structures at Musselwhite.

"A positive correlation exists between gold and pyrrhotite mineralization within the T-Antiform. In general terms, this translates to 1 g/t Au for each percentage increase in pyrrhotite, up to approximately 15%. Two broad mineralization styles have been documented based on contrasting mineralogical and structural characteristics. The first style, known as quartz-pyrrhotite veining/flooding, is dominant in competent lithologies and is locally crosscutting. The second style, known as strata-bound sulphide replacement, occurs primarily as halos to the zones of quartz flooding.

Musselwhite Type 1: Quartz-Pyrrhotite Veining/Flooding

Quartz-pyrrhotite veins/floods are composed of massive, glassy-blue to grey-blue quartz and up to 20% fine- to medium-grained pyrrhotite locally. Accessory minerals include albite, almandine garnet and calcite, minor arsenopyrite, pyrite, chalcopyrite, and native gold. Sulphide mineralization within the veins is strongly structurally controlled, occurring within small-scale boudins, along the margins of the veins, and as fine stringers within the vein itself gold, along with chalcopyrite, occurs within pyrrhotite micro-fractures.

FIGURE 9: Musselwhite Zones of Economic Mineralization (Blower and Kiernan, 2003)

Visible native gold, usually the size of a pin tip, is commonly observed as isolated specks within quartz; however, the majority of the Quartz-pyrrhotite veins occur as anastomosing networks of multiple veinlets that pinch and swell along strike as well as up and down dip. Vein systems appear to have reasonable continuity, and have been mapped along strike over distances as long as 50 m with little variation. Individual veins typically range from <1 cm to 3 cm in width and rarely exceed 50 cm.

Musselwhite Type 2: Sulphide Replacement

Sulphide replacement style mineralization is characterized by 2% to locally 15% fine grained disseminated pyrrhotite, trace to locally 2% arsenopyrite, trace to 2% pyrite,

and minor native gold and chalcopyrite occurring within garnet-rich, silicate domains.

Gangue minerals consist of almandine garnet, quartz and/or chert, grunerite, actinolite, biotite, magnetite, calcite with accessory epidote, and zircon. Pyrrhotite occurs as disseminated xenoblastic grains and as late-stage fracture fillings concentrating within lowpressure domains. Fine-grained visible gold is commonly observed within poikiloblastic garnets and within garnet strain shadows (Stewart et al. 1989). Strata-bound mineralized zones are intimately associated with the presence of quarz pyrrhotite vein systems and appear to envelop them. As a result, the zones appear to be intensely silicified, although bulk chemical analysis suggests that no appreciable enrichment in silica content has occurred. Consequently, the width as well as the vertical and strike continuity of strata-bound mineralized zones is directly reflected by the continuity of quartz-pyrrhotite vein systems.

Structural Controls on Musselwhite Mineralization

The concentration of sulphide and gold mineralization is very strongly controlled by structure, which in turn is intimately affected by lithology. Quartz-pyrhotite veins occupy dilatant, S2 axial planar fracture cleavage surfaces. The cleavage is best developed in the hinge areas of F2 minor antiformal closures, hence the incidence of veins increases dramatically within these structures. Along limb structures, where the cleavage is subparallel to the stratigraphy, small-scale deflection of the cleavage planes of continuous vein mineralization is impeded. Strata-bound sulphide mineralization is also structurally controlled. On a microscopic scale, disseminated pyrrhotite favours low-pressure garnet strain shadows and is concentrated within orthogonal and conjugate fracture pairs within garnet porphyroblasts. On a much larger scale, strata-bound mineralization appears to be concentrated in close proximity to steeply dipping longitudinal faults within major fold hinges and along steeply dipping limbs of these structures, subparallel to axial planes.

In areas where the limbs of a fold dip at a shallow angle, strata-bound mineralization decreases rapidly away from the axial plane. Mineralization appears to be directly related to the intersection of these faults with the 4ea iron formation, and where these fault systems are absent, gold mineralization is either greatly reduced or missing altogether. This results in an apparent migration of grade from east to west as you move north through the T-Anticline.

Mineralization is also preferentially concentrated in antiformal fold closures and along attenuated limbs. Axial planar cleavage, developed as a result of F2 folds, also appears to play a significant role in the current distribution of gold mineralization. The best-developed axial planar cleavage occurs within a zone of ductile deformation. Archer (1994) feels the East Bay synform roughly defines this area. Structural interpretation from detailed magnetic data supports this hypothesis. In areas with more brittle deformation, such as the West Anticline, mineralization is less focused."

9.0 MINERALIZATION

No visible gold was observed in outcrop in the 2003 exploration program. Several strongly silicified, pyrrhotite, pyrite and/or arsenopyrite mineralized iron formation zones associated with strongly foliated\ sheared horizons and "milled" fault zones were observed. Gold assay values appear to correspond with the content of fine grained disseminated pyrrhotite and\or fine grained arsenopyrite when associated with shear zones with associated strong quartz chlorite carbonate veinlets. Anomalous Au, and commonly As analyses, were observed associated with magnetic low breaks in the iron formation and/or EM conductor anomalies on the Landore Mimisiska property.

Results of the previous and present drill and rock sampling have defined a number of zones of shear-controlled, variably gold-bearing quartz-sulphide zones.

In general, mineralization would appear to be in bedding-subparallel or axially planar shear zones. Brereton(1988) reports that the most prominent sulphide is pyrrhotite with lesser pyrite and arsenopyrite, however due to the weathered/oxidized nature of the

1. 1. A. A. A. A.

outcrops, this was not always discernable in hand specimen. Total sulphide content rarely exceeds 25% and more usually averages 10% or less.

Gold assay values on the Wottam property appear to be correlate with zones of bimodal fine grained and coarse grained arsenopyrite when associated with silicified shear zones. The later quartz-sulphide veins have variable Au assay analyses.

Foliated\ sheared iron formation in outcrop was commonly strongly iron oxide weathered, making identification of sulphide mineralization difficult. The following observations were made predominantly from drill core on the Miminiska property. As at the Musselwhite mine, two styles of mineralization were observed on the Miminiska \Wottam properties:

1) Stratabound pyrrhotite +/- arsenopyrite mineralization. This type of dominantly pyrrhotite mineralization is parallel to bedding, dominantly occurring in bands as fine disseminated grains (up to 40% of the sample). Trace chalcopyrite grains occur within the coarser portions of the pyrrhotite bands, and are interpreted to be contemporaneously deposited with the pyrrhotite. It is interpreted that a majority of this mineralization is derived from the sulphidization of magnetite bearing silicate or oxide iron formation units. Partial replacement of magnetite grains was locally observed in Miminiska drill core. The mineralization is variably interbedded with re-crystallized chert(?) and strongly chloritized silicate iron formation bands. Occasionally, coarse grained euhedral grains of arsenopyrite, occur in disseminated seams parallel to the pyrrhotite banding. In Miminiska drill hole 0603-8 @ 55.45 metres, micro scale crenulation/folding of the pyrrhotite mineralization was observed.

In addition to the above, very fine grained, disseminated arsenopyrite mineralization was observed in the arkosic to quartzose, massive greywacke (i.e. 6G) units. This mineralization is commonly proximal to zones of increased percentages of white quartz carbonate +/-chlorite stringers \ veinlets. It is uncertain if this mineralization is primary or is associated with hydrothermal alteration and associated mineralization. No significant gold assays were returned from these arsenic enriched horizons.

- Late, commonly obliquely and/or strongly crosscutting, white to glassy, fragmented to weakly brecciated quartz chlorite +/- carbonate veining. These veinlets were classified in the logging process as follows:
 - a. V1 non mineralized
 - b. V2 non mineralized vein with disseminated mineralized haloes
 - c. V3 mineralized vein without mineralized haloes
 - d. V4 mineralized vein with disseminated mineralization haloes.

The mineralized veins commonly had coarse fracture fills or clots of pyrrhotite with minor and rare pyrite fracture fills. Disseminated fine to medium grained arsenopyrite grains, commonly occur within the adjacent strongly to intensely chloritized host rock. Pyrrhotite

mineralization adjacent to the veins tends to be coarser grained, possibly a function of local re-mobilization/re-crystallization associated with hydrothermal alteration (?). Isolated, commonly coarse grained, crosscutting pyrrhotite +/- quartz veinlets were also observed in the core (e.g. hole 0603-11, 82.1m). These veinlets may represent late, localized remobilization, and re-deposition of the guartz and pyrrhotite.

In general, the mineralized zones are hosted by altered (chlorite +/- Biotite, silicification), and commonly strongly foliated / sheared, magnetite bearing silicate to oxide iron formation units. These zones are commonly interbedded with chlorite porphyroblastic greywacke subunits. Previous workers identified the chloritized silicate iron formation units as altered mudstone, but magnetic susceptibility readings suggest that the original rock type was silicate iron formation. Some of the strongly to intensely chloritized, variably sulphide mineralized, silicate iron formation units, occur on the flanks (i.e. hanging wall and/or footwall) of thicker units of magnetite-chlorite-chert banded oxide iron formation.

Results of the previous and present drill and rock sampling programs have defined a number of zones of shear-controlled, variably gold-bearing quartz and re-crystallized chert(?) sulphide zones. The correlation of gold with arsenopyrite mineralization, is ambiguous, probably as a result of the two mineralization events. Within the mineralized zones, the ICP analyses of the samples, locally display a pattern in which low grade gold samples are associated with strong ICP arsenic analyses, and the strongly anomalous gold samples, were weakly, arsenic anomalous. Thus, arsenic appears to form halos to the strongly anomalous gold samples. This pattern is not always present, but it may help explain the apparent geographic correlation of arsenic with respect to gold.

10.0 2003 WOTTAM EXPLORATION PROGRAM

Landore Resources Canada Inc. conducted a geological and prospecting exploration program on the Wottam property (i.e. Project #180-12), in the fall of 2003. A small team comprised of contract personnel managed these activities while based on site, and later at the Landore exploration office in Thunder Bay Ontario. Team members included:

> Miminiska Field work: Project Geologist(Contract): R. Blair Needham Technician (Contract): Dave Maclean

Thunder Bay: Senior Exploration Geologist Jim Garber

Field work, for the fall 2003 Landore Wottam exploration program, was completed by both B. Needham and D. Maclean from September 30th to October 15th. A new camp site was cleared on the north east shore of Wottam Lake. A temporary landing dock was constructed on the shoreline for unloading a float plane. In addition, a helicopter landing pad was made on the opposite shore of the peninsula. Data interpretation and report 2003 Wottam Prospecting and Geology Report

writing was completed by B. Needham. Computer services were completed by M. Tuomi, Landore Resources GIS technician. Laboratory processing was completed by Accurassay Laboratories in Thunder Bay, Ontario. A summary of expenditures for the fall 2003 Wottam project, including digital compilation of previous exploration work, is tabulated in Appendix IV.

The result of historical data compilation in conjunction with the work completed by Landore in 2002 and 2003 is illustrated in Map 2. Maps 1 and 2 utilized the Landore legend converted, and geo-referenced, OGS Map 2417 as a base (Wallace, 1981). Appendix V includes the Landore geological legend for rock types and abbreviations used in this report. In addition, summary of geological mapping and vertical drill hole projections for all holes in the area including extensive drilling completed on the Frond and Miminiska properties is also displayed on these maps. Appendix I documents the various outcrops observed and samples taken in the 2003 Wottam reconnaissance mapping and prospecting program. All UTM coordinates noted in this report are in NAD83 Zone 16 coordinate projection.

The 2003 Wottam exploration program concentrated on target areas defined after the 2002 Wottam exploration program and evaluated where reasonably accessible, OGS AEM conductors. Detailed sampling was completed in several areas to determine which rock types, zones or quartz veins were gold anomalous, so that future programs could focus on these features. A summary of areas of interest is described in section 10.2 of this report.

Time was also taken trying to locate, Noramco and Goldfields historical drill holes and to prospect the outcrops in the vicinity of these outcrops. All drill hole set-ups were located. Strongly iron oxide weathered iron formation units 1 to 10 metres wide were found proximal to Noramco drill holes SL87-3 and 4. Evidence of drill hole 83BZ-2, located southeast of Seagreen Lake was not found in the field.

Exploration activities conducted on Landore's behalf during 2003 on the Wottam property are described below:

10.1 SUMMARY OF PROCEDURES

The following is a summary of procedures used, and results obtained, in the 2003 Wottam exploration program.

10.11 Mini Grid Establishment

A flagged baseline was established over one area of historical trenches \ blast pits to allow for geological mapping \ sampling of the trenches. A mini baseline was established over the Beaver dam showing (i.e. BVR) approximately 300m NE of the

Wottam Camp site (See Map 2). In total, approximately 300 metres of baseline was established in this manner. The end points of the mini baseline was determined using a Garmin 12xl handheld GPS and are listed in Appendix I, i.e. sites BVRW and BVRE.

The 2003 magnetic declination of the Wottam area is 4 degrees, 24 minutes.

10.12 GPS location of geological observation sites and sample locations

The field location of the 2003 Wottam samples and geological observations were predominantly defined by UTM (Universal Transverse Mercator system) measurements taken with a Garmin GPS12 XL with an averaging chip. This instrument does not allow for post processing of the satellite data. All UTM locations are within UTM Zone 16 and the projection system for all GPS readings is NAD83. The stated accuracy of this GPS is +/- 15 metres, however this accuracy can vary dependent on the time of day and number of satellites received when the reading was taken. No survey pins of known UTM position occur on the Wottam property (i.e. to check the accuracy/ precision of the GPS instrument). The technical specifications of the GPS 12XL model can be obtained on the Garmin web site.

Six drill set ups were found in the 2003 Landore prospecting program. Four of these drill sites occur in the northeast portion of the Wottam property associated with the Noramco 1987-88 exploration program. No drill core was observed on surface on the Wottam property.

Several historical pickets were found in the field associated with the Noramco and Goldfields grids established in the 1980's. These pickets could be used to refine the scanned location of grids in UTM coordinates.

The historical Noramco grid line 100W was flagged from 500N to TL 1800N. Line 0W was flagged from BLO to 450N. A beaver dam occurs between 450N to 500N. The Noramco tie line 1800N was flagged through cedar swamp to L300E from Line100W. UTM coordinates were taken from the few readable pickets observed along the grid lines traversed. The Noramco grid lines are poorly blazed, and generally would not be visible in the winter. Re-picketing and flagging with limited re-cutting would be required to re-establish the Noramco grid. The northern portion of the Noramco grid, in vicinity of the sediment/volcanic contact should be re-established, if additional drilling is considered for this area. The Noramco tie line 2500N was found in the vicinity of lines 3000-3500E.

The Goldfields baseline was flagged in areas prospected, between lines 600E and 4000E. The Goldfields drill hole site of M87-8 was found. Line 600E was flagged north from Wottam Lake to the end of the line. This grid is in very poor condition in the field, and re-establishment of this grid, if required, would not be cost effective.

Only limited geotechnical digital data was available for the considerable geological, geochemical and geophysical work completed by previous companies on the Wottam property. A majority of this digital compilation work was completed and reported on in the 2002 Wottam report, Needham, 2003. Further work completed since this report, includes the purchase and input of airborne geophysical data from the OGS Fort Hope airborne geophysical survey into the Landore Mapinfo GIS database.

Pertinent details from the OGS assessment file maps were previously digitized, e.g. outcrop geology, geophysical conductors and/or geophysical trends. The digital data was then translated into UTM space using an algorithm written in Map basic to transfer the data from Non-earth grid based units into a UTM projection. This translation process was completed for the Goldfields C4 grid and the Noramco Wottam project grids. Details of how the historical work was inputted into the Mapinfo database for the Miminiska and Frond properties are outlined in Needham(2003) and Hunt(2003). These grids could be checked and adjusted where necessary in the Mapinfo database with the additional GPS readings made from the 2003 Wottam exploration program. At the present time, however it is not deemed cost effective to complete this work.

The purpose of this extensive compilation work was to obtain an up to date digital geological database that could be used in the outlining of new targets.

10.14 Rock Sampling Procedures

Rock samples were obtained from altered, mineralized and/or quartz veined zones using a rock hammer or "geo-tool". Whenever possible, chip samples across a ledge in the outcrop were taken over a specified width. The width of the sample was determined by rock type and/or variations in the intensity of mineralization, shearing and/or quartz veining. An attempt was made to keep the volume of rock even across the width of the chip sample. Shoulder samples were taken of the host rock relative to the zone whenever possible. Grab samples were taken when the outcrop was too rubbly or small to allow chip samples. Grab samples tested the best visible alteration or mineralization in a given location. GPS readings were taken at each sample site. If multiple samples were taken on any given outcrop, the UTM coordinate was calculated relative the initial GPS reading.

Channel \chip sample, sample intervals were outlined using spray paint and were defined by rock type and/or the intensity of alteration, mineralization, quartz vein density and/or shearing/faulting. Sample lengths were measured with a fiberglass tape measuring reel. At least one end point of each sample string were tied into the grid, whenever available, and/or a GPS reading.

Rock samples were described in a field book and the geological data and sample locations were inputted into an Excel spreadsheet designed for Landore. Appendix I lists all the rock sample and geological data observations made for the Wottam property during the 2003 exploration program. A total of 106 samples were taken for fire assay and ICP analyses from the Wottam property. A total of approximately 200 geological observations were taken from outcrop in the course of "reconnaissance mapping" the

Wottam Property. The geological and selected laboratory analyses of the samples (i.e. Au, As, Ag, and Cu) were then imported into the Mapinfo program for plotting and further analyses.

The rock samples were stored in sample number labeled, heavy-duty plastic sample bag. The laboratory sample tag was placed in the bag prior to sealing with flagging tape. The sample bag was then placed in poly-weave "rice bags" (size approx. 60x90cm). The bags were sealed with self locking nylon cable ties. Sample shipments were made whenever the plane was required to support the camp with equipment/groceries. The large "rice bags" were then sent by Huron Air, the float plane charter company, who was acting as our expeditor, directly from Armstrong to Accurassay Laboratories in Thunder Bay via a daily courier service. All reasonable efforts were taken to ensure the integrity and security of the samples prior to shipment to the assaying laboratory.

10.15 Assay Procedures

Based on the author's past experience, a program was designed for the assaying of the Landore samples for gold. This consisted of the following constraints:

1) All samples to be crushed to 90% <15 mesh.

2) A 300g split of the reject was to be pulverized to -150 mesh (95%) to create a pulp.

3) A 1AT aliquot was then assayed using standard fire assay techniques. The analysis was completed with an atomic absorption finish. If the assay was >3 g/t Au, a split of the pulp was to be re-analysed using gravimetric finish.

29 element ICP analyses were completed on a split from the initial pulp.

10.2 GEOLOGICAL MAPPING/SAMPLING RESULTS:

The sample locations and geological observation points (i.e. designated BN3-# or DM3-#) from the 2003 Wottam mapping/ prospecting program are illustrated in Map 2. All geological data has been imported from the excel spreadsheet into the Landore Wottam Mapinfo database. Generally, samples were not taken for assay at the geological A total of 106 samples and approximately 200 geological observation sites. observations were made in the 2003 Wottam prospecting program. Map 1 presents the sample locations and numbers on the Wottam property. The details for each sample and geological observations/comments are listed in Appendix I. Map 2 is a geological compilation and shows sites visited and reference number to the corresponding geological observations/comments in Appendix I. in combination with the author's geological observations from the 2002 and 2003 reconnaissance mapping programs. Baroque, Goldfields and Conwest sampling programs were incorporated into the Landore database. This map also incorporates the results from the Landore Miminiska and Frond rock sampling programs. Thresholds were determined from past experience in combination with evaluating the frequency distribution of the data visually.

The Wottam property was not re-mapped in the 2003 Landore prospecting program. In general, only specific targets defined in the office compilation process were visited. Two areas of multiple historical trenches were found in 2003, approximately 300m northeast of the Wottam camp (i.e. designated BVR) and an area of multiple trenches proximal to the volcanic / sediment contact located in the northeast portion of the Wottam property. Detailed re-sampling of these pits/ trenches was completed on selected sites, as time permitted.

The following is a discussion of generalized areas prospected and reconnaissance mapped:

- a. Beaver dam showing (BVR): Approximately 14 historical trenches/ pits (i.e. 1940's?) were found to the NE of the camp, north of the beaver dam lakes. This showing may be the stratigraphic\ structural equivalent of iron formation observed to the immediate north of Goss Lake. A flag baseline was defined to aid in the sampling process, as compass readings were strongly affected by oxide iron formation in the area. The baseline extends approximately 330m ENE from UTM coordinate 401739E 5717043N. An old Noramco grid line was found cutting through the centre of the outcrop ridge (L5E?). A strong OGS AEM conductor occurs approximately 90m to the SSE of the east end of this outcrop area, in swamp (see bn335). A reconnaissance mapping and selected sampling program was completed of the dominantly oxide iron formation and meta-sediment units observed. The crest of the ridge is occupied by oxide iron formation. Isolated pods of chloritized iron formation and discontinuous rusty quartz veins were observed along the discontinuous outcrop associated with this ridge some of which are on strike with the OGS AEM anomaly. A total of 19 samples were taken, with no significant gold assays returned, samples 26854-26872. Three weakly arsenic anomalous samples occur in the west end of the outcrop area associated with discontinuous guartz stringers and narrow (1m wide) sulphide enriched iron The second most significant sample in the 2003 formation seams. prospecting program, assayed 223 ppb Au from one of these arsenic anomalous samples (i.e. # 26871). Geological observations from bn335 to bn349 also cover this area. Bedding observations in this area strike approximately 260 degrees and dip 74 degrees north.
- b. Noramco SL87-4 area: The casing for Noramco hole SL87-4 was found exactly at the same metreage relative to the 1800N tie line, as stated in the drill logs, i.e. L300E 2270N. The UTM field coordinate of SL87-4 is 402543E 5719180N. The UTM coordinate of the same drill hole, as currently in the Mapinfo database, is 402492E 5719100N. Based on the field UTM coordinates, the Noramco Mapinfo database could be adjusted as the grid lines vary significantly in azimuth due to iron formation magnetism. A helicopter landing area was re-established, by hand, immediately south of the SL87-4 drill collar. Additional field UTM grid coordinates were gathered to enable the accurate positioning of the Noramco assay and geology data, currently in the Mapinfo database. The adjustment of the northern portion of the Noramco grid remains to be completed, if additional work is contemplated in this area. Sample 11358 and geological observation sites bn334 were made in this area. No outcrop was observed to the immediate east of the hole, or in the up-dip projected position of the anomalous 12.54 g/t Au/3m assay intersected in drill hole SL87-4.

- c. Noramco SL87-3 area: The drill site of SL87-3 was located at UTM coordinate 402248E 5719117N. Outcrop was observed 60 to 100m SW and S of hole SL87-3, included amphibolitic mafic flows, oxide to locally sulphide (py +/- po) bearing iron formation with associated hematitic glassy quartz veinlets and medium grade metamorphosed greywacke with interbeds of argillite. The contact between the mafic volcanic and sediment units strikes approximately 250 and dips 60-80 degrees north. Narrow limonitic clayey fault gouge seams and pitted, discontinuous, hematitic quartz veinlets were observed parallel to the volcanic/ sediment contact. The iron formation is 5 metres wide. This area was hand stripped and chip sampled, i.e. samples 11359, 11378-11388 inclusive and geological observations bn3107-bn3108.
 - 11359, 11378-11388 inclusive and geological observations bn3107-bn3108. No significant gold or arsenic analyses were returned from these samples. Meta-sediments 100-300 metres to the south on L300E contained coarse grained phenocrysts of staurolite(?) hosted by a strongly muscovite altered schist, indicating medium grade metamorphism in the area. Additional along strike prospecting was completed to the east and west of the drill hole (See item d).
- d. Northeast Meta-sediment/ volcanic contact area: Multiple AEM, VLF and HLEM conductors occur on strike with and parallel to the volcanic sediment contact. These conductors were prospected and grab sampled when outcrop occurred proximal to the geophysical anomalies. Commonly, the geophysical conductors corresponded with damp ground associated with black spruce swamp, especially the series of ENE striking conductors 300-1000 metres south of Seagreen Lake, e.g. bn380, bn382, bn387, bn388. However, narrow units of oxide/silicate and occasionally thin bands of sulphide iron formation were observed proximal to the regional volcanic / sediment contact. These outcrops of heavily iron oxide weathered iron formation were commonly previously stripped and/ or trenched. These trenches were sporadically observed to the eastern boundary of the Wottam property. The most prospective portions of these trenches were sampled. (See samples 26877-26900, 203751-203754, 11391-11400). Geological observation sites proximal to the sediment/ volcanic contact include numbers BN378-BN3108 and BN3115-BN3155 inclusive (See Appendix I). Several of the samples occur in an N-S trench \stripped area located to the southeast of drill hole SL87-1. A unit of strongly magnetic oxide +/- silicate iron formation occurs proximal to the mafic \ sediment contact and is the probable cause of a series of ENE striking OGS AEM conductors. Chert magnetite banding in the iron formation is strongly isoclinally folded with folds plunging to the ENE at 70 to 80 degrees. Small scale parasitic folds were observed on the flanks of the isoclinal folds. Strongly foliated, locally silicified seams of the narrow iron formation horizon(s) are locally mineralized with 1-locally 10% disseminated pyrite +/- pyrrhotite. No significant gold or arsenic assays were returned from these commonly strongly foliated samples. Note that quartz veining was discontinuous, and generally limited to <10% in the samples taken from this A 2 metre wide white tonalitic dyke also occurs in close proximity to area. the regional volcanic sediment contact in this area. Another area of historical trenching was located further to the east at 405955E 5719960, again proximal to the volcanic \ sediment contact. Siliceous meta-sediments and weakly pyrite mineralized silicate iron formation was observed in this trench. A third area of stripping was observed at 406147E 5720088N, see samples 11392-11394. The 75m long, approximately N-S oriented stripped area is

09/24/05

proximal to the bn3130 AEM anomaly. Predominantly siliceous guartz biotite schist units exposed with lenses of weakly mineralized (i.e. pyrite +/arsenopyrite) silicate iron formation. Strongly amphibolitized mafic volcanic units were observed in outcrop to the north. Lithological contacts in this area commonly strike at 250 to 270 degrees and dip to the north at 65 to 82 degrees. Foliation is commonly slightly oblique to stratigraphy at 240 to 250 degrees, dipping moderately to the north at 50-70 degrees. Low to medium grade metamorphism with strong amphibole alteration of the mafic volcanic and garnet muscovite alteration of the sediments was observed in this area of the property. Meta-sediment units were commonly metamorphosed to guartz biotite mineral assemblages. Another area of strong FeO altered with associated quartz hematite veining and disseminated pyrite mineralization was encountered between Noramco lines 2E and 3E. The iron oxide weathered horizon is 4 metres wide containing silicate iron formation with brecciated chert bands, sulphide seams and iron oxide stained glassy guartz veins. The greywacke at the south end of the area stripped area contained disseminated pyrite. Sampling was completed. A series of AEM and ground geophysical conductors occur north of a small lake at 406320E 5719696N. This area is well exposed, revealing quartz biotite and quartz biotite garnet schist(meta-sediment) and thin lenses of strongly magnetic, non mineralized oxide iron formation rock types. Rock units strike ENE and dip to the north at approximately 72 degrees (See bn3150-bn3156). The sediment/ volcanic contact was also observed in a series of low, poorly exposed, outcrop knolls in the vicinity of samples 11375,11376 and bn388-bn394. Bedding in this area was observed at approximately 254-268 degrees dipping to the north at 74 degrees. Proximal to the contact, thin, strongly iron oxide weathered, silicate to oxide iron formation unit(s) were observed and sampled, but no

e. East strike extension of WS41 showing: This showing was described in the 2002 Wottam report (Needham, 2003). The area to the ENE of the showing was prospected/ mapped with outcrops dominantly of biotitic metagreywacke to dirty sandstone +/- argillite. Narrow silicate iron formation units were observed along the north margin of a series of low bedrock controlled knolls. OGS AEM conductors in general, corresponded with overburden covered areas of black spruce or tamarack swamp (e.g. bn3113) and/or the narrow bands of non sulphide mineralized iron formation. Lithology strikes at approximately 250-270 degrees, and is moderately dipping at 50-65 degrees to the north. Foliation was occasionally noted to be weakly oblique to bedding at 235 to 250 degrees also dipping moderately to the north. The occasional white, non mineralized quartz stringer was observed slightly oblique to stratigraphy @ 250 degrees dipping 58 degrees north.

significant gold and/or arsenic assays were returned.

- f. Goldfields Drill Hole M87-8 area: Prospected in area of Goldfields hole M87-8, located north of Wottam Lake. The drill set-up for hole M87-8 was located at UTM 399961E 5717185N. The collar was found in the centre of a large clear-cut area. Unaltered, oxide iron formation was observed immediately north of the collar. The Goldfields baseline and/or grid lines were flagged wherever possible. The grid was in very poor condition in general, axe cut, and poorly blazed. Several areas of tree blow down occur along the baseline making traverses difficult.
- g. Strike extension of ASPY3 showing: Prospecting occurred along strike to WSW and ENE of Aspy3 showing (See Needham, 2003). Geological

observation sites bn350 to bn371 and samples 11361 to 11371 cover this Boudinaged, white, discontinuous, non mineralized guartz veinlets/ area. stringers were observed within the sedimentary units. Veinlets are predominantly parallel to lamination/foliation. Thin, non to weakly mineralized iron formation units were observed hosted by strongly foliated/ sheared. commonly schistose metasediments. Discontinuous white guartz stringers with the occasional boudinaged lens was observed dominantly subparallel to moderately north dipping, ENE striking stratigraphy. Meta-sediment outcrop, proximal to the SSW draining creek and on strike with the WS41 showing. was strongly schistose and foliated. In addition, non altered/ non-mineralized iron formation hosted by garnet bearing quartz biotite schist unit(s) was observed on Noramco L1W at approximately 1300N (See bn3330 to bn333). This iron formation horizon is thought to represent the ENE extension of the Aspy3 iron formation hosted zone.

- h. Twin Lakes shear\ deformation zone: Prospected north of Aspy3 showing, parallel to two iron formation horizons hosted by strongly foliated, schistose meta-sediment units. The strongly magnetic areas of discontinuous exposure showed limited sulphide mineralization. Geological observation sites bn372 to bn377 and samples 11371 to 11373 were taken from this area. No significant gold or arsenic assays were returned. Foliation measurements strike approximately ENE and dip to the north at approximately 66 degrees.
- i. Albany Falls Area (S. Miminiska Lake): Approximately 20 OGS AEM geophysical anomalies, and outcrop in the vicinity of Albany Falls were prospected (i.e. bn32-bn329 and samples 11353-11357). These conductors occur proximal to the southern regional sediment/ volcanic contact in the Wottam area. The cause of most of these conductors was not determined as a majority of the area is overburden covered. Very poor bush conditions exist in this area, i.e. deadfall, alders etc. Biotite to garnet bearing lithologies associated with regional metamorphism of the volcanic and sedimentary was observed. Oxide iron formation with limited sulphides (pyrrhotite) was observed within a large outcrop ridge, previously mapped by the OGS (eg No arsenopyrite mineralization was observed. sample 11355). The dominant lithology observed in the area was strongly amphibolite altered, foliated mafic volcanic units. The sediment volcanic contact was observed (see sample 11357), where 20-30% quartz stringers occur within amphibolitized, and garnetiferous mafic volcanic. No significant gold assays were returned from this sample. Foliation measurements strike from 96-116 degrees and dip to the south at 60-65 degrees. A few B-horizon soil samples were taken in the vicinity of OGS AEM conductors (11351,11352).
- j. North Miminiska Iron Formation Observations: The easterly extension of a strongly magnetic, >500 metre wide oxide iron formation observed in the 2003 prospecting program was selectively prospected with the aid of a helicopter (see bn3156-bn3158). Outcrop, in general along this trend was poor, and several OGS AEM anomalies in this area are overlain by swamp/ overburden. Prospecting in this area was hindered by a general lack of helicopter landing areas. A large esker ridge was observed to the west of this location, proximal to several OGS AEM conductors. The cause of these conductors remain to be determined. Isoclinally folded, poorly developed oxide iron formation is interbedded with moderately magnetic greywacke +/argillite (e.g. bn3158). Both subunits are thinly laminated(.5-3cm). Axial planes of the isoclinal folds are parallel to foliation striking at approximately

ENE, dipping to the north at 74 degrees. Plunge measurements of mineral lineation are at 74 degrees to the WSW. The iron formation hosts trace to 3% quartz stringers/ veinlets subparallel to bedding. An old drill set-up was observed from the helicopter at 399360E 5718903N.

k. Goss Lake strike extension: UTM coordinates were obtained for Frond grid L10600E 10200N and for drill holes FR87-29/30. The cause of AEM conductors to the ENE of Goss Lake was not determined, as the area is overburden covered. BN3145 to bn3148 describe these investigations. Note that an esker ridge was observed in this area, and a boulder field with quartz biotite muscovite schist rock types commonly observed.

In the process of prospecting in the Wottam Lake area, a temporary camp and loading dock was built on the northeast shore of Wottam Lake on a narrow peninsula. In the same area, a helicopter pad was also cleared (i.e. on the north shore of the same peninsula).

10.3 ASSAY RESULTS

A total of 106 assay samples were taken to evaluate predominantly quartz vein zones, zones of sulphide mineralization, FeO/carbonate altered fault/shear zones and iron formation and/or adjacent rock units to these altered/mineralized/veined zones. All samples were analysed for gold and 29 element ICP analyses by Accurassay Laboratories. Appendix I lists the location, and description of the samples taken, with the assay results for Au, Ag, As, and Cu. The other elements analysed can be reviewed from the laboratory assay certificates found in Appendix II. Again, the location of the samples taken, illustrating the sample numbers can be found in Map 1.

No significant gold assays were returned from the 2003 prospecting program. Only 5 of the samples taken in 2003, assayed greater than 100 ppb gold. The highest assay returned was 354 ppb Au, taken on strike, to the WSW of the Aspy3 showing. Another sample in the same area returned the most significant arsenic analyses of >8000 ppm As (sample 26873). The other area with scattered, weakly anomalous gold assays was in the BVR showing located NE of the Wottam camp. This grab sample was taken from a strongly foliated, chloritized, garnetiferous oxide iron formation unit hosted by schistose meta-sediments. The iron formation was <2 metres wide.

A total of 6 samples were arsenic anomalous (i.e. >300 ppm), with the highest analyses being >8000 from sample 26873. This sample tested an amphibolitized, non-magnetic meta-sediment with strong arsenopyrite and pyrite mineralization located on strike with Aspy3 showing. Three other anomalous arsenic analyses were obtained from arsenopyrite mineralized, strongly foliated silicate iron formation samples from other outcrops in the immediate Aspy3 showing area. Analyses returned included 4549, 4380 and 2201 ppm As from samples 11366, 11369 and 11371 respectively. All gold assays returned from these arsenic anomalous samples were <50 ppb Au. Another sample from the same outcrop area, analysed 4279 ppm As (sample 26874). The BVR showing only had one sample > 300 ppm As (sample 26870).

No significant silver or copper analyses were returned from the multi-element ICP analyses of the 2003 prospecting samples. A visual review of other ICP elements

analysed, revealed no significant anomalies with respect to common gold pathfinder elements.

11.0 DATA VERIFICATION

A detailed summary of the analytical and quality control protocols and procedures are described by G. Kajmowicz, Quality Coordinator, Accurassay Laboratories (see Appendix III). Samples were analyzed in batches of 24. Internal duplicate checks were done on every 10th sample, using pulps. In general, the sample gold tenure is too low to glean any meaningful information. Control charts are within industry standards, i.e. +/- 2 standard deviations. Quality assurance charts are also within industry standards. And duplicate pair samples are also within industry standards.

12.0 ADJACENT PROPERTIES

Landore expanded the initial Wottam Property with staking to the north of the Miminiska property and also staking in the vicinity of the WS41 showing in the fall of 2002. This staking was included in the time allocated for the Wottam property mapping program. As a result, sampling and prospecting work on the Wottam property had to be curtailed. Preliminary resource estimates have been completed on shear/iron formation hosted zones on the contiguous claims associated with the Miminiska and Frond properties as previous discussed.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

To the best of the author's knowledge, no mineral processing or metallurgical testing have been completed to date on rock from the Wottam property. It is recommended that some of the trenches representing the significant composite zones be sampled and bottle roll tested for recovery and refractory properties. Metallurgical testing was completed on some of the iron formation zones on the Frond property with favourable results (i.e. almost 99% Au recovery), see Hunt (2003) for details. Preliminary metallurgical testing (i.e. acid leach testing) was completed on selected samples from the 2003/2004 Miminiska Property drill core. The results of this work are described in Needham and Sale (2004).

14.0 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

To the best of the author's knowledge, no resource estimates have been completed on the Wottam property. Historical resource estimates were completed on the contiguous Miminiska and Frond properties, see Sections 4.2 and 4.3.

15.0 INTERPRETATION AND CONCLUSIONS

Landore's Wottam property should be still be considered a "grass roots" exploration property with the potential to improve, especially if the results from the adjacent Miminiska and possibly the Frond property are encouraging. This is especially relevant, if continuity of the interpreted zones can be proven along strike. The results of the rock sampling program confirm the anomalies obtained by Landore in 2002 and by other Of concern, however is the lack of significant gold assays from the companies. trenches sampled with significant arsenopyrite and/or arsenopyrite-pyrite-pyrite mineralization e.g. mineralization observed along the northern sediment/ volcanic contact. Also of concern is the observation that some of the more mineralized samples were associated with crosscutting quartz infilled, oblique to foliation structures, that were essentially limited in strike length to the width of the iron formation and/or shear zone that hosts the vein. On the positive side, two of the six strongly foliated horizons defined in the Wottam area, commonly hosting multiple geophysical anomalies, also host anomalous gold and arsenic geochemical anomalies. These two horizons also appear to be slightly oblique to the regional stratigraphy, i.e. WS41 and Aspy3 horizons. Thus, these horizons could be prioritized preferentially for further work. Multiple OGS AEM conductors were prospected in the 2003 exploration program, but a majority of the conductors could not be explained in the field primarily due to overburden cover. It is in the author's opinion that the project should be evaluated by limited reconnaissance diamond drilling, and if no significant gold assay results are obtained, the property should be put on a care maintenance status, awaiting for encouraging results from the Miminiska or Frond properties.

In general, the time consuming process of digitally compiling the geotechnical data was useful in defining trends and possible new drill targets. This was especially useful in the interpretation of potential strike extensions of known mineralized zones intersected on the adjacent properties. Data can now be viewed at various scales and the various types of data can now be thematically mapped using Mapinfo. This work, in the future programs, hopefully will be completed prior to the start of the field exploration work.

The following comments interpretation/conclusions can be made from the work described in this report:

- 1) Lateral continuity of structures, but not necessarily gold mineralization could be inferred based on the geophysical anomalies and the alignment of arsenopyrite showings and/or anomalous rock gold, arsenic analyses. There is a strong correlation of the gold zones with weak to strong EM conductors and a possible relationship of the stronger gold zones with breaks in the magnetic high trends. The magnetic high trends are interpreted to be associated with horizons of interbedded oxide iron formation and/or silicate iron formation with greywacke units. Total field magnetic high trends/ clusters are interpreted to represent isoclinally folded (parasitic folds) oxide IF.
- 2) Medium scale and regional scale folding is interpreted to be present on the Wottam property, based on the consistent outcrop scale folds observed throughout the property. Definition of the fold axis associated with these assumed folds, would require much more detailed mapping, but due to the lack of outcrop in critical areas, this would require considerably more time than permitted in the current prospecting program. The symmetrical relationship of several of the iron formation units, also infers the presence of a regional fold axis

(synform?) located on proximal to the north shoreline of Wottam Lake. ín addition, due to the elevated metamorphic grade in the northern and southern margins of the property, top indicators are very difficult to define, e.g. graded bedding. Almost all bedding measurements taken on the Wottam property by the author dip to the north.

- 3) Gold mineralization in the Miminiska Wottam area is typical of a hybrid BIF deposit, with some similarities with the Placer Dome Musselwhite mine.
- 4) No significant gold assays were returned from the 2003 prospecting program. Only 5 of 106 samples returned assays greater than 100 ppb Au with a maximum gold assay of 354 ppb Au. Only 6 samples returned arsenic analyses of >300 ppm.
- 5) No other gold pathfinder elements were significantly anomalous from the 29 element rock geochemical analyses of the assay samples.
- 6) Rock geochemical analyses of the samples taken in the 2003 Wottam prospecting program extended the strike clusters of anomalies obtained in the 2002 prospecting program. Some of these horizons can be interpreted, based on the geology and geophysics, to be associated with zones intersected on the Miminiska and Frond properties (See Map 2). These include:
 - a. The WS41 showing horizon may be associated with the zones intersected on the Tandem Frond property. This horizon may extend to the WSW to the arsenopyrite - pyrrhotite showing that occurs at the sediment/volcanic contact north of the Albany Falls. Thus, sulphide mineralized +/geochemically anomalous gold assays occur over a horizon covering a strike length >13 kilometres. In the 2003 prospecting program, no significant pyrrhotite or arsenopyrite mineralization was observed in outcrop in the Albany Falls area (note outcrop exposure in this area was poor). The cause of many of the AEM anomalies in this area were not determined, again due to a lack of outcrop.
 - b. Several arsenopyrite showings were mapped by Goldfields associated with a ENE striking 150 metre wide shear/deformation horizon located north of Wottam Lake. These arsenopyrite showings include the Aspy3 trenches found in the 2002 prospecting program, could be interpreted to be associated with the Miminiska "Lakeshore zone" to the SW and the WSaspy1 showing to the NE. Sporadic gold assays have been returned from this horizon to date. Note that this horizon is slightly oblique to the overall stratigraphy trend. Oxide iron formation was observed along strike to the ENE on Noramco grid This horizon is thought to be the most prospective of all the line L1E. horizons identified to date.
 - c. A third strongly sheared, mineralized trend was observed immediately south of the "twin lakes" located approx. 900m north of Wottam Lake. Arsenopyrite mineralization was observed in the sheared, strongly schistose, interbedded slate, greywacke and oxide iron formation. This horizon could be correlated with the Miminiska "Baseline zone" to the SW and possibly with the high grade drill hole intersection made by Noramco to the NE. If as interpreted, this shear structure intersects the regional sediment - volcanic contact, this intersection point would be of particular interest for the concentration of gold. In addition, two strong linear EM conductors subparallel to the contact. This NE portion of the Wottam property was prospected in the 2003 program revealing several historical trenches along the sediment/ volcanic contact. Selected samples were taken from these trenches, sampling pyrite +/-

pyrrhotite mineralized, sheared seams, but no significant gold or arsenic assays were returned from these samples.

- d. The BVR showing area, located approximately 300 NE of the Wottam camp, returned 3 anomalous arsenic analyses and 1 weakly anomalous <300 ppb Au assay associated with sheared weakly quartz veined silicate to oxide iron formation units. The samples were taken at the west end of the outcrop area. Multiple historical pits and trenches occur over a strike length of 330 metres to the ENE of these anomalous samples. This horizon may correlate with predominantly barren iron formation intersections to the immediate north of Goss Lake.</p>
- 6. Based on work completed on the Miminiska property, some of the best gold assay intervals occur in areas where there is either a break in the magnetics associated with the IF or there is a contortion in the magnetic high trends (i.e. parasitic folding). Note that several mineralized, strongly foliated horizons were prospected in the 2003 program, but no associated gold mineralization was associated with these horizons, possibly due to a general lack of veining (e.g NE Wottam sediment\volcanic contact).
- 7. No drill core from the previous Wottam drill programs is available for re-sampling to confirm zones.
- Although visual and field observations suggest that there is a strong relationship between gold concentration and arsenic analyses, the graphing of these geochemical analyses result in a poorly defined/ ambiguous relationship (Needham, 2003).
- 9. Long, linear geophysical conductors are interpreted to be commonly associated with thin, variably altered and/or mineralized, oxide to silicate iron formation. However, these conductors tend not to be significantly auriferous without the additional complexity of a secondary structural event (i.e. folding or splay faulting) with associated hydrothermal alteration and quartz veining.
- 10. Quartz veining, when observed, tended to be parallel to foliation, commonly discontinuous (i.e. in the order of 10's of metres) and commonly had associated assumed later cross cutting stringers (ladder type?).
- 11. If additional work is contemplated for the NE or central portions of the Wottam property, the Noramco grid, and associated geological Noramco data points should be adjusted in Mapinfo to conform with the additional UTM coordinates obtained in the 2003 prospecting program. In addition, the Noramco grid could be re-established in the field, if required for future work by Landore. The Goldfields grid is in too poor of condition to re-establish. A new grid or the extension of the Miminiska grid should be considered over the ground covered by the Goldfields grid. The above work should only be considered if significant exploration work is planned by Landore over the portions of the Wottam property covered by these grids.

16.0 RECOMMENDATIONS:

The following work is recommended to further advance the Wottam property. Cost estimates listed below, should be considered as approximations. The proposed work should be put out for bids, to refine the estimations. This work should be contingent upon the results of the Miminiska and /or Frond diamond drill programs.

- 1) Prospecting and additional sampling along already defined shear/deformation zones could be completed in the spring/summer. Structures that appear to be oblique to the regional stratigraphy should be prioritized before other stratigraphic targets. Selected geophysical anomalies generated by the deep penetrating airborne geophysical survey, completed by the OGS, should be drill tested in areas of structural complexity, e.g. interpreted secondary splay structures originating at the northern sediment/volcanic contact, geophysical interpreted areas of folding. It remains to be determined if this recommended work would be cost effective relative to diamond drilling. Approximate cost of a 2 week prospecting program would be \$30,000.
- 2) Data from the recently flown OGS airborne magnetic and AEM survey should be evaluated in conjunction with the observations compiled in this report. This evaluation should include targeting AEM targets, that coincide with areas of magnetite destruction and/or areas where the iron formation is folded, or where interpreted splay structures can be interpreted intersecting the iron formation. Real time shadowing of the 1st derivative OGS magnetic data may help define some of these structures. Prioritization of the targets generated should be strongly weighted to horizons with known gold and/or arsenic geochemical anomalies along strike of the target. The cost to hire a geophysical consultant to complete this work would be approximately \$10,000.
- 3) Limited reconnaissance diamond drilling of the WS41 showing area, and one or two targets along the Aspy3 showing horizon should be considered, totalling 600 metres. The positioning of these reconnaissance drill targets could be refined with the geophysical anomalies obtained from the airborne geophysical evaluation recommended above. An additional 400 metres could be allowed for any targets generated from recommendation (2). Any of the above mentioned drill targets generated, would be 2nd priority targets relative to the Miminiska or Frond property drill targets. The drill targets generated would be 2nd priority targets relative to the Miminiska or Frond property drill targets. The approximate cost to complete this work, in the winter, would be \$200,000.
- 4) After completion of the above, the extent of any additional work on the Wottam project should be contingent on the results from a) the result from the above recommended work and b) from the results from Miminiska drill program(s), and the findings from the Frond property compilation. If results from these other projects are discouraging, additional work on the Wottam property will not be warranted.

2003 Wottam Prospecting and Geology Report

Respectfully Submitted, R. Blair Needham

K Blain Needhom

Dated: July, 2005 Sudbury, Ontario

17.0 REFERENCES

Blower, S. and Kiernan, J., 2003. Technical Report Review of the Musselwhite Mine Operations, Ontario prepared for Kinross Gold Inc. Sedar Company Technical Report.

Brereton, W. and Rollinson J.P., 1988. Exploration Report, Conwest-Miminiska Gold Project, Northwestern Ontario for Baroque Resources Ltd.

Hunt, 2003. Compilation and geology of the Frond Lake Property. Landore Resources Ltd. Internal report.

OGS Ermes GIS database. Assessment files. Government of Ontario.

Neal, H.E., 1987. Report on 1987 Frond Lake Diamond Drilling Project for Tandem Resources Ltd. and Ayrex Resources Ltd. H.E. Neal & Associates Ltd. Tandem internal report.

Needham, R.B., 2002 Compilation, Drill hole database review and Geological Report, Miminiska Project for Landore Resources Inc. Internal Landore Report.

Needham, R.B., 2003 Compilation, Drill hole database review and Geological Report, Wottam Project for Landore Resources Inc. Internal Landore Report.

Needham, R.B. and Sale, M., 2004. 2003/2004 Diamond Drilling Report, Miminiska Project for Landore Resources Inc. Internal Landore Report.

Parent, R., 1999. Miminiska Lake Property Resource Evaluation. Internal report for Shear Mineral Ltd.

Prest, V., 1942. Geology of the Fort Hope area; ODM Vol.51 pt3, p1-28.

Routledge, 1985. Report on the Frond Lake gold property, Miminiska Lake area, Ontario. Prepared for Keezic Resources Limited.

Thurston P.C. and Carter M.C. 1970. Operation Fort Hope, OGS Misc Paper 42 .

Vincent, J.S., 1989. Quaternary geology of the southeastern Canadian Shield; In Chapter 3 of Quaternary Geology of Canada and Greenland, R.J. Fulton editor.

Wallace, H., 1981. Geology of the Miminiska Lake Area, Districts of Kenora(Patricia Portion) and Thunder Bay: OGS Report 214. Accompanying maps 2416 and 2417, scale 1:31680.

18.0 CERTIFICATE OF QUALIFICATIONS

R. Blair Needham

As the author of this report on the Miminiska property for Landore Resources Inc., I hereby make the following declarations:

- 1. My name is R. Blair Needham and I am a geologist residing at 2428 Blyth Road, Sudbury, Ontario. P3E 5A6.
- I have received the following degree in Geological Sciences: Honour BA, Geology and Geography, McMaster University, 1979.
- 3. I have practiced my profession continuously since 1980.
- 4. I am a member of the Association of Professional Geoscientists of Ontario.
- 5. I am a member of the Prospector and Developers Association of Canada and the C.I.M.
- 6. This report is based upon my personal involvement as a contract geologist on the project, where I was under the supervision of Landore Senior Geologist Jim Garber for field activities associated with the property evaluation program
- 7. Dave Maclean and myself were responsible for the collection of the rock samples, interpretation of the results was the responsibility of myself.
- 8. I have neither received, nor do I expect to receive any interest, either direct or indirect in the property(s). Furthermore, I do not own beneficially, directly or indirectly any securities of the companies or affiliates of the companies or individuals holding or earning an interest in the property.

R. Blair Needham Sudbury, ON July 2005 2003 Wottam Prospecting and Geology Report

APPENDIX I

COMPILATION DESCRIPTION/ ASSAY RESULTS TABLE OF ASSAY SAMPLES AND GEOLOGICAL OBSERVATION SITES

CATEGORY	SAMPLE #	EANOMALY	DATE	TIME	utmi Zone NAD8	16 Zone1	6 LOCAT	ION LOCAT	TION (N								PLE SAMPI	E MAJOR ROCI	K MINOR ROCK UNIT		C TEXTURE	ALTERATION	MINERALIZATION	STRUCTURE TYPE	AZM DIF	P PLUNG DIP				DIP PHO	OTO DESCRIPTION
il sample	11351	B- horizon soil sample		3 1514	392360	5712994	4		51.5	5577489 -	-88.55273	0.0025	Method	0.5 1	.5 10	na	B-horiz soil	on OB										+		(1)	Hummooky knoll. Upturned tree. Pebbly clay till, Cohesive. 70m SE of AEM anomaly.
l sample	11352	B- horizon soil sample		3 1528	392401	5712951	1		51.5	57368 -	-88.55212	0.0025	CP	0.5 1	.5 7	na	B-horiz soil	on OB							+						Pebbly sitty clay till. Cohesive. Sample in vicinity of AEM anomaly @ BN3-2
il sample	11353	B-horizon soil/AEM	30-Sep-0	3 1746	393281	5712619	9		51.5	545517 -	-88.53934	0.0025	CP	0.5 1	5 7	na	na	OB	-								-	-			20m W of bn3005 AEM anomaly. B-horizon soil sample.
ck sample	11354	anomaly sample in vicinity of bn3-6 EM	30-Sep-0	3 1826	393265	5712777	7		51.5	559733 -	-88.53962	0.0025 1	CP	0.5 1	.5 12	na	o/c - gr	ab 5A gt	2M amp		fols strong FeO		tr-1% po	folm	100 64					Y	coarse grained gamet bands ib with strongly magnetic oxide IF. Dark red brown residual soll. Rut moss covered o/c on large bedrock controlled ridge N slope. Position of AEM anomaly BN3-6
ck sample	11355	anomaly	30-Sep-03	3 1902	393284	5712796	5		51.5	56145 -	-88.53935	0.0025	CP	0.5 1	5 3	na	o/c - gr	ab 5A chrt shrs			shrs chert banded very fine grained		tr po FeO stained	shrs	95 76			v1 fracture	e	Y	strongly magnetic black
k sample	11356	1	30-Sep-0	3 1921	393303	5712790)		51.5	560967 -	-88.53907	0.0025	CP	0.5 1	.5 0.	5 na	o/c - gr	ab 6 shrs	-		shrs schs			shrs	96 84	-	+	fills(ff)		Y	strongly FeO stained schistose strongly sheared/foliated.
ck sample	11357		30-Sep-0	3 2012	393488	5712747	7		51.5	5557426 -	-88.53639	0.0025 1	CP	0.5 1	.5 10	ina	o/c - gr	ab 6H6K 2AMam (at	amph	sediment volcanic contact. Sediments strongly q st veined	FeO stained sediments	FeQ stained wk to mod	cnt	103 ?			v1	103	Y	20-30% q st's parallel to sed/volc cnt. Weakly to moderately FeO stained sediments. Contact wit gt ampc maf volc
k sample	11358		09-Oct-03	17:52	402557	5719114			51.6	146171 -	-88 40738	0.0025	CP	0.5 1	5 33	na	0/0 - 01	ab 2A Mam	5B FeO	amph	fg mt seams	FeO stained	locy tr-2% py/po	-			+		-		S. margin of low bedrock controlled knoll. Poor exposure.
k sample	11359		09-Oct-03							5143221		0.0025			.5 21			ab 2A Mam	5A	amph	q bi sch			sed/volc cnt	2302 72		-				O/C exposure to N dominantly ampc mafic volc. Bsp swamp to S. O/C SW of ddh SL87-4
			_						_							na				ampin		abb an ann		bde							
	11360 11361		05-Oct-03 05-Oct-03							969414 - 944415 -	-88.44377	0.0025 1		0.5 1	5 5	na	grab grab	QfpV1 hem	+		shr	tr hem chi	lia	bug	250 30			qfpV1	280 75	Y	thinly lamd oxide IF 20m N of Goldfields ddh M87-8 3-15cm discont wht q fp veinlet parallel to shearing.
k sample	11362		05-Oct-03	17:28	399995	5716920)		51.5	944415 -	-88.44375	0.0025 1	CP	0.5 1	9 12	na	grab	6K chis sch	-		thinly foliated/schistos	fracture fills e chis	FeO partings	fols	280 75		+	+		Y	thinly foliated schistose meta argilite FeO partings parallel to foliation.
k sample	11363		05-Oct-03	19:53	399200	5716761			51.5	928698 -	-88.45518	0.0025 1	CP	0.5 2	2 40	na	grab	6H chim fols	-			+	-				-	-		Y	o/c WSW of Asp3 showing stgy sheared chloritized gwk. Discontinuous qv1 veinlets. Non mnzc
	11364	-	05-Oct-03					_	_			0.0025			.5 24	0.8	grab	QV1	+		-			fols	270? 80			VI	270 80	- Y	rock sample sito 11363 dominantly white to glassy veinlet with wk FeO stain. Located 1mS and 1mVV of 1136
	11365	eld1										1.959		0.5 1	-		3										-	-		-	standard 1
	11366	Stul	05-Oct-03	20:16	399167	5716771	-		51.5	929556 -	-88.45565	0.044			549 31		grab	5D bim qv2		amp	fg	bim	tr asp	folm	272? 74			v2		Y	15x40m o/c knoll silicate IF with granular q vt's
sample	11367		06-Oct-03	14:46	398955	5716646	3		51.5	917969 -	-88.45868	0.0025	CP	0.5 3	9 6	na	grab	6K chim schm	_			chim-chis	na	fols	272 78			v1	272 78	Y	large o/c area trending 265 deg's. Stgy foliated/sheared interbedded 6H/6K with <2m wide silica
sample	11368	1	06-Oct-03	14:48	398955	5716647	,	-	51.5	918022 -	-88.45868	0.0025	CP	0.5 1	.5 4	na	grab	QV1										qv1		Y	lenses and discontinous whit quartz vt/s, sito 11367 whit to glassy q vt
	11369		06-Oct-03	15:32	399008							0.015			380 22	na	grab	5D bis qV2			fols	bis	tr po asp	fols	278 80			qv2	278 80	Y	sito 11367 30-50cm wide bi altd silicate IF boundinaged q vt with tr po/asp. 25mS of Goldfield and 20-25mE of L6E
sample	11370		06-Oct-03	15:36	399008	5716707	'		51.5	923441 -	-88.45793	0.0025	CP	0.5 3	9 4	na	grab	6K chim schs			shrs	chim serw	na	shrs				qv1		Y	sito 11367 sheared arg chim with stretched / boudinaged q st's
sample	11371	-	06-Oct-03	15:37	399014	5716707	,		51.5	923548 -	-88.45785	0.006	CP	0.5 2	201 65	na	grab	5D asp2 6H			blk fg non mage	bim				1	1			Y	sito 11367 6m E of 11369 blk fg silicate IF(non magc) tr-2% asp and tr po grains <1m wide h
sample	11372		06-Oct-03	19:37	399589	5717434			51.5	989906 -	88.44976	0.013	CP	0.5 2	7 16	3 na	bld	5D chis sch Fe	2		sch	silm chis	tr py	sch				qv1 st		Y	boulder/subcrop. Stg FeO chld silicate IF? 10% glassy q st's trpy
sample	11373	-	06-Oct-03	19:53	399457	5717426	3	_	51.5	98894 -	-88.45166	0.24 1	CP	0.5 1	.5 32	na	grab	gv4 5D chis gt fols			contorted follation	chis gt	stg FeO	contorted	270 66		-				stg FeO weathering contorted child silicate IF
k sample	11374		08-Oct-03	18:29	401616	5718900	603W	2102N	51.6	12525 -	-88.42091	0.0025 1	CP	0.5 4	28	na	grab	2A Mam qcbV1	-	amp	fg-mg amp	_	mt	foliation fols	+ +	-	+	qcbv1	st	Y	dk gn blk fg oxide iF interbedded with amp maf flow. Qcb st' parallel to foln. Non mnzd, Samp
	11375		08-Oct-03				_	-				0.0025		0.5 1	5 16	1.2	chip	5A 5D FeO silm	-			FeO stg chim		shrs	265 85						W margin of poorly exposed o/c knoll. Sed/vol contact area. 1.2m rough chip sample of stgy Fe
											00.12717						Citip	chim				silm		oo		1		ĺ			weathered sil silicate IF. Fragmented chert seams (discont q sts?). Proximal to EM conductor. sample tag # 19540.
sample	11376		08-Oct-03	19:13	401581	5718874			51.6	12289 -	-88.42141	0.0025 1	CP	0.5 1	5 68	na	grab	6H chis FeO				chis FeO v	py2 adj to q vt	folm	273 78			qv2	273 78	Y	Sample 3mS and 4mE of 11375, sheared stgy FeO weathered 6H/6K fols, 3cm FeO stained s
k sample	11377		09-Oct-03	15:37	402257	5719108	15E	2240N				0.0025	CP	0.5 1	.5 57	na	grab	OB bld 5A sch	+			sig								Y	g vi with seams of py adj to vi. Boulder on trend with AEM conductor. Stgy schistose oxide IF stgy mago gt bearing. Tr py gr
k sample	11378		09-Oct-03	18:25	402494	5719065	5		-			0.0025	CP	0.5 1	.5 31	na	grab	gts mts 5D FeO sils ch	s		fols	FeO stg chim	py2-5			-	-	qV4		Y	S margin of BN3107 o/c. stgy FeO weathering silicified chioritized silicate IF with 2-5% diss py
k sample	11379		12-Oct-03	19:02	402494	5719064						0.0025	CP	0.5 1	5 19	1m	chip	py2-5 5D FeO sils ch	s		fols	silm FeO stg chlm	py2-5 hem clots	fol	-			ghem/v	4 70 30	Y	1m N-S chip sample. Mnzd IF with 2 ghem veinlets pll to bdg but dipping shallowly S.
	11380	-	12-Oct-03						_			0.0025			5 14	1m	chip	ghemV4 5D FeO clay fg			fols clay fgg seam	silm	py2-5 hem clots		+			-			1m N-S chip sample. Mnzd IF stgy FeO weathered. Limonitic fault gouge seam at S margin of
	11381					5719062		_				0.0025				-					01.040	silm									
sample	11382		12-Oct-03	19:17	402494	5719061						0.0025	CP	0.5 1	5 8	1m	chip	5B sils py10-30 5B sils py0-15			fols	sils	py10-30 py0-15				-			Y	1m N-S chip sample sulphide IF with semi-massive py seams. Silicified. Heavily FeO weather 1m N-S chip sample. Mnzd IF silicified. Heavy FeO
sample	11383 11384		12-Oct-03	19:20	402494	5719060 5719063	3					0.0025 1	CP	0.5 1	5 5		grab grab	6H silw py2 ghemV4			fg-mg pitted	siłw hem	ру0-2	-					-	- Y -	grab sample altered gwk +/- dis py grains. Weakly silicified. subcrop sampled
	11385 11386		12-Oct-03 12-Oct-03		402494	5719062	2					0.0025		0.5 1			grab	ghemV4			pitted	hem									subcrop sampled standard #2
sample	11387		09-Oct-03	20:09	402491	5719064	ki i					0.007		0.5 1			grab	qhemV4 5D sile	n		fols	FeO silm chl	py5					qhemp V4	y 070? 30		qhemV4 v1 approx 5m E along strike of 11379. v1 has py sel's, mnzd altered 5D.
sample	11388		10-Oct-03	18:24	400874	5714996						0.0025	CP	0.5 1	5 22	na	grab	5D2 chl amp 6	3		folw	chl		folw	270 58					Y	E extension of Asp showing S of Wottam Lake. N margin of 0/c 3m wide silicate IF with contor chert interbeds with gwk to S. Locy child. Amp rich seams. Non mage.
sample	11389		10-Oct-03	19:24	400730	5714960	-	-	-			0.0025	CP	0.5 1	.5 45	กล	grab	5D Mam chim	1		schw	FeO partings	FeO	bdg	250 76	1	-	qv1	245	Y	<2m wide silicate IF hosted by gwk. Possible weak shear @ 245. Old shallow prospecting trend
	11390		11-Oct-03							-		0.0025	CP	0.5 6	60	ņa	grab	6H 2A Mam bis gt	-	amp gi	mg	chim-chis bis	tr py/po				_	-			SW oriented 0 deg's. W margin of o/c. stgy ampc maf flow parnet bearing seams. Vol/sed contact 25m S.
	11391		13-Oct-03				_	-				0.0025			.5 17	na	grab	5D2 ib 6H sils			fg-mg sch	sils	na	fols	260 74		_			Ŷ	stgy banded silicate IF silicified non mnzd. Occurs proximal to Vol/sed ent. To S q bi sch (meta
sample	11392		13-Oct-03	16:29	405955	5719960						0.0025	CP	0.5 7	39	na	grab	6H Mam chl seams		amp	fg-mg sch	sils stg FeO chis seams	tr-locy 3% dis py							Y	Historical pit/trench N-S oriented. UTM at S end of trench Stgy FeO weathered sil meta sed wit seams. Tr-3% dis py
	11393 11394		16-Oct-03			5719976 5719977				_		0.0025 1		0.5 1			grab grab	5D2 5D mt sils py1	-	amp amp	fg wky bxd	stg FeO sits FeO	tr-1% dis po tr-2% dis py	bxw				-		Y	16m N of 11392, rusty siliceous IF non-mago 17m N of 11392, stgy silicified mt bearing silicate IF. Tr-2% py tr asp. wky-mody mego.
	11395		16-Oct-03		405855		_										-	bxw			blk fg schs	2000	1-2% dis py							~	74m (2) 74 deg's to AEM anomaly br3130, ampc mail flow (hib sch) with 1-3% cubic py. To S a
						_						0.0025		0.5 1	100		grab	2A Mam py2 schs	-	amp		amp		6147-1	010						trench q bi sch (meta-gwk) and <10m wide chen banded imt bearing silicate IF units exposed.
sample 1	11396		13-Oct-03	18:25	406147	5720087						0.0025	OP	0.5 1	5 35	na	grab	5D Mam bim py3 fols schs		amp	shr	stg FeO bim musc	py2-5	fol <i>s</i> /shr	250- 75 260	1				Ŷ	75m cleared and stripped trench @ approx. 190? Deg's. UTM @ N end of trench. 74m @ 74 di AEM anomaly bn3130. stgy sheared stgy FeO weathered amphc silicate IF. Bim. Probable cau
sample 1	11397		13-Oct-03	19:00	406289	5720137						0.0025	CP	0.5 1	5 26	na	grab	5A ib 6H 6K		amp	fg bandeti	-	py1-2	fols	250- 80			ghemV	4 250-260	Y	conductor. 2-5% py. Approx 7m S of 11396 crest of ridge oxide iF hosted by interbedded gwk/arg. 20-30 cm glassy ghem vit parallel to lam
	11398		13-Oct-03					-				0.0025		0.5 6	12	-	9.40	ghemV4 5D FeO py.1		amp		stg FeO non		-	260			-		Y	dis py halo. Prospecting trench, Sample 10m N of S end of trench, Blast rock sampled, Fg-mg, stgy FeO ve
10000									-						12	·					for one water-	mage			200 70			akar 1	1 200 20		silicate IF non magc. Recrystallized chert laminae.
	11399		14-Oct-03	15:27	406320	5719696						0.009		0.5 3	36	na	grab	QhemV4 6H Mam		amp	fg-mg gritty	bi non magc	na	TOIS	260 72	-	-	duem	1 260 72		NE corner of small lake. Large o/c ridge on N margin of lake exposing stgy foliated and schisto schiet (<u>awk-ss</u>). Non mage. Sample of 15cm hern q vt # 11399
		standard dm3-002	30-SEP-0	3	393296	5712726	-	-	51.5	555012 -	88.53913	1.69 II 0.0025 II		0.5 1				2Mam	-	amp	mg	limonite stain	tr-1% po					-			standard Mg blk ampc maf vol tr-1% po. Minor copper oxide stain.
			30-SEP-03		393284			-	_			0.0025		0.5 1			-	OB													b-horizon soil sample dark rusty brown
e	LUUUL	3110-000	SU-GEF-0.	1	000204	5/12/1/					00.04000	0.0020		0.0																-	
sample 2	26853	dm3-004	30-SEP-03		393281	5712619				FFOOD	00 50545	0.0025	- the	0.5 1	5 33		grab	2A Mam gt		amp gt	mg dk gn blk	ampc		ack	1 1						Mg dk gn blk ampc sch with 3% pk gamet. Tr po. DM3-04

2.20609

CATEGORY	SAMPLE	ANOMALY	DATE	TIME	utmE Zone16 NAD83		GRID LOCATION East					e	Multi- lement (g nalyses (Ag gj (mgg	As Co pm) pp	M LENGT	E SAMP	LE MAJOR R E UNIT			C TEXTURE	ALTERATIO	N MINERALIZATION	TYPE	E AZM DIF	DIP	AZM.		QV E STRIKE		PHOTO.	D ESC:RIPTICIN
	26855		03-Oct-03				-				.41613 0	.0025 IC	P 0	5 1.	5 6	na	Igrato	5A2	6H	1		chim mts	1				1	V3			Y	Trende 2. 1x2m blast pit 200m E and 15mN. Child oxide IF. Q blots discentinuous will a pripo
	26856 26857		03-Oct-03 03-Oct-03	20:45 4	401894 401894	5717136				161 -88 268 -88	.4164 0 .4164 0	.008 IC		5 1		ាច ពង	grab	QV 5A2			banded	chis FeO	tr-1% po	bdg	285? 70		-	V4	350?		Y Y	Trench 4 stripped arren xitig g vt hosted by oxide IF i.e. 26857 Trench 4 host rock bandrd shit mit oxide IF west margin of 55m o/c
rock sample	26858		4-Oct-03	14:13	401866	5717130			51.5966	57 -88	4168 0	0025 IC	P C	.5 h.	5 8	ma	grab	QV 5A2 ch	m	-	<u> </u>	chiw wk FeC						-			Y' -	discont nuous q vng subpli to IF lamn glassy vng with wk FeO staining. See BN340
	26859 26860		14-Oct-03	14:11 4	4D1868	5717128					41678 0	014 IC	P 10	5 1.		/na 188.	grab grab	5A2	5A2	amp							-	qv1			Y'	nest child axize. IF is no to 20050. see BN340 N of 9 vi discontinuous a van subpil to IF lamit, ataser yes with we FaCystationg. See BN340
	2686-1					5717049						039 IC		5 6	64	tm	chip	5B Marn sh		-	+	FeO	patchy dis po 1-loc	y fractured	260? 48?	'		441			Y	Trends 11 UTM 35m S of flag line @ 20mE fractured sulp if variable int content
	26862		04-Oct-03	15:41 4	101768	5717048	-			06 -88		013 10		5 11.	5 115	1m	cinip	58 Mam			fg	chim-chis	p01-locy10	fractured					-		Y	sito 2000 1
	26863		04-Oct-03						51.59589	041 -88	A1842 0	.189 ICI	0.	5 15	5 37	Jna	arab	5A Mam ISB amp		amp amp	cg hb seams mg - cg hb		po.1-10 po5-7%					qv1 qv1			Y. 1	in discontinuous pods of glassy o sulp IF with in discontig glass bit, 8 for S and 17E bit prospecting prid 30am wide PeO gossan 10m S and 17m E av prospecting grid
rock sangnia lock saungle	26865		07-001-03	14:40 4	101752	5717036			51.59579	934 -88.	41842 0	166 ICI		5 17		MP	grab	5 FeD		-		30cm gossan	FeO stg	+		-	1		+		Y	30cm wide FeO gossan 10m S and গীন্দ E an prospecting grid stanstard
	26867	1	07-Oct-03	14:42	401752	5717035			54, 5957	68 -88.	41842 0	085 101		5 29		100	grab	58 FeO													Y	subplif stg FeO to Immunitic section to 1% pulpy dis shiw to chim. 10.7m S and 17E on prospecting
TOCK Sample	26868	1	07-Dc1-03	14:43 4	401754	5717033		1	31.5957	665 -88	.4184 D	119 10	P	5 9	16	na.	grab	5B shirm Q/	9	amp	shrm og hb phen's	lim/ FeO	po1-7%	shrm			-	qv1		r	Y	site 26867 with rusty discont q vt's 300m E to AEM anomaly(on strike with anomaly)
	28869	1	07-Oct-03	14:44 4	101752	5717044		1				.078 NC			5 13		grab	5D Mam Fe		amp	mg	FeO stg	locy po1%					-		1	Y'	
	26870		04-Oct-03				-					.057 %C			0 78 9 78		grab	5D Mam qv 5B	1	amp	mg-cg	chim	po.1-1 po15-20					qv1			Y. K	trench 14 prospecting grid 1mE 4.7mS, 15% discontinuous g st's, amp silicate IF trench 14 prospecting grid 1mE 3.2mS, 15-20% po st's and dis grains, sulphide IF
	26872					5717041 5716710						.011 IC			5 5		grab	QV4 6H Mam		amp	ma		3% asp 5% fg py					qv4			-	trench 14 timE and 2 8mS. Discorit q vi adj to 26671. FeO stalining q blb sch (6H 6K) dis asp and py grains. Non magc.
rock sample	26874 26875	(15:43 3	398998	5716718 5717464			51.5924	46 -88	45808 0	.018 IC	P D	5 14	226	na	deng deng	6E Marn. sci 5A gt chis v		amp	sch	hib	1% asp	lamo	701			V3				1-5% rusty q vt's dk gy blk
					al la realizadari			ļ		-						Inc	-									`	<u> </u>					rusty q st's stg rusty exidization
rock sample	26876 26877		11-Oct-03	17:49 4	105555	5717438 5719812			51.5990	061-88.	0	.057 NC	P (0.		5 30		grab	5A gt 5B3		amp amp	ita	magm gi	3%po 1%py tr cpy	-				v1			Y	stg rusty oxidization
	26878 26879 t		1-Oct-03 2-Oct-03			5719810 5719855				-		.0025 IC			5 19		grab	5B3 5A2 ampc o	him	amp	fo (bainded	magm gt chim bis	3%po 1%py tr cpy mt	bdg	260 50			v1		f		boulder sito 26877 chert mt banded oxide IF see bn3121
rock sample	26880 s	standard						-			2	.932 IC	P IO	5 8	30		-	bis	_			-						-	-			Standard
			2-Oct-03	16:04 4	05563	5719803						.0025 IC		.5 1.	5 0.5	na	grab	5A1		amp	fg-mg interbedded	na	mt	M-type foldin	g 80 65N	80-85	80					1-2cm chert bands oxide IF micro-folded with steep E plunge
and a set	200000					-		1	1					_		_		-			mag chert micro folded							-				
rock sample	26882	1	1-001-03	18:48 4	05589	5719843					0	.0025 101	PD	.5 h.	5 7	na	grab	5D arnp sils Mam	2A	amp		sils FeO wk- mod		folm	250- 82 260					ſ	Y	NW margin of o/c, silicate IF hosted by ampc maf flow. Recrystallized chrt bands in thin IF. Wiky te mody FeO stained. Stilicitied
rock sample	26883	1	1-Oct-03	18:55 4	05588	5719837					0	.0025 IC	P 0	.5 80	20	na	grab	6H Mam sil	s blw	amp	fg-mg granular	sils biw	1-3%py							Ĩ	Y.	bld/seborop located on same e/c as 2/3882. I bi gt son (6H Mam). 1-3% dis py grains.
	26884 26885		2-Oct-03	15:49 4	05628	5719850				-		.0025 IC		.5 1.		1	chip	6H sil ib 5D		amp	fg-mg granular	sils	tr dis py	+				-	-		Y	SL87-1 area trench(bn3-123)
				_		5719848						.0025 IC			5 17	1.5	chip	6H 6E ib 6F FeO biw for	5	amp	gritty		oxided sulphides?					-				SL87-1 area trench(bn3-123)
	26886		2-Oct-03	15:51 4	05628	5719847					°	.0025 IC	P 0	.5 1.	5 17	0.9	chip	5D mt ib 6H py2 fols	2	amp	fg-mg gritty gwk ib	biw non mag	1-3% fg dis py+/-pc	fois schs			1]	Y	SL87-1 area trench(bn3-123) FeO partings (weathered sulphides)
rock sample	26887	1	2-Oct-03	15:52 4	05628	5718847					0	.0025 IC	P 0	.5 1.	5 31	0.7	chip	5A silm py4	fols	amp	fg-mg schm	amp silm-sils	2-5% dis py pll to folm	fols schs						ſ	Y	SL87-1 area trench(bn3-123) FeO partings (weathered sulphides)
rock sample	26888	1	2-Oct-03	15:53 4	05628	5719846					0	.0025 IC	P 0	.5 1.	5 23	0.6/5	chip	5A amp ib 6 amp silm p		amp	stgy sch fg-mg gritty	silm-sils FeC	2-4% vfg dis py	føl:s/shr							Y I	SL87-1 area trench(bn3-123)
	26889		2-Oct-03			5719845				-		.0025 ICI		.5 3		1.25	chip	5A sils py4	folm	amp	fa	sils	3-5% dis py	folm-fols							Y I	SL87-1 area trench(bn3-123)
	26890		2-Oct-03			5719843						.0025 IC		_	5 35	1.4	chip	5A sils ib 6 shrs py4	_	amp	to with shr 6H6K lib's		3-5% dis and frc's	folw to locy shr								SL87-1 area trench(bn3-123) sed interbeds stgy sheared.
rock sample	26891	1	2-Oct-03	15:57 4	05628	5719842			1		٥	.0025 IC	P 0	.5 4	34	1.2	chip	6H amp ib 8 FeO bis	D mt	amp	variably sheared interbedded gwk and		1-4% dis py	fols						ľ	Y I	SL87-1 area trench(bn3-123)
rock sample	26892		2-Oct-03	15:58 4	05628	5719841					0	0025 ICI	PO	.5 1.	5 47	t	chip	5A silm am		amp	q bi sch vig IF with gritty gwik/s		bv3-10%	folm			-		-		Y	SL87-1 area trench(bn3-123)
	26893		2-Oct-03	-		5719840						.0025 IC			5 29	0.9	grab	py10 ib 6E 5D mt ib 6F	nt	amp	interibeds fg-mg gritty gwk ib	partings	1-3% fg dis py+/-po	fole eche	+ +			_	_			SL87-1 area trench(bn3-123)
										_							-	py2 fois	-02		igning giner give ib				00 000		<u> </u>					
	26894		3-Oct-03	14:18 4	05736	5719857		l				.0025 IC		-	5 12	na	grab	5A1		amp	IF.	mi	1% fg py/po	lainn	85 65N			_			·	o/c loomed W of SL87-1 thinty laminated oxid# IF
	26895 s 26896		3-Oct-03	15:21 4	05885	5719948		-	-			.217 ICI			5 47 5 46	па	grab	2AMam		amp	sch mg	magw to	3% po wispy	schm			-					standard 1 Sim liong N-S historical trench GPS @ N and of trench gritty metasediments geol observation ISM310
rock sample	26897		3-Oct-03	15:53 4	05915	5719963			+		10	0025 ICI	P 10	5 1	5 18	ina	grab	SB mag py	5	amp	to	maom silon stg FeO				<u> </u>		+			4	Fim to N 14m long X. 1m wide prospecting trench dk gy sil pro IF stay mag
rock sample	26898 26899	1	3-Oct-03	16:14 4	05912	5719964					0	.0025 ICI	P 0.	5 3	44 5 11		grab	2AMam		amp amp	sch img	magw hib	tr-2% py mt#								Y	14m long x 1m wide prospecting trench black hib sch siliceous iF chert. Non mage
rock sample	26900	1	3-Oct-03	19:14 4	06315	5720182				-	0	0025 ICI	P 0	.5 1.	5 36		grab grab	5D2	_	amp	fg	Chiw	tr-2% wispy po 5% wispy po				1					silicate IF wk mago stg FeO stained
rock sample	203751 203752	1	4-Oct-03	14:14 4	04724	5720182 5719642			-			.0025 ICI	P 0	.5 1.	5 48 5 11	na	grab	5D sil po3 r 5D sch	ntw	ampamp	ing	stq FeO	1-3% wispy po mody mage tr py			-	f				ř	approx 8m of 1F exposed stor FeO weathered black hip mice sch
	203753 203754		4-Oct-03 4-Oct-03									.0025 ICI		.5 9 .5 1.		na	grab	5D2 5A Mam		ampamp	tg-mg scib	FeO 5% gt stg FeO	wk-mod mage				-		_			well banded chert silicate F latin 2 gip to 1 cm non mage 5% pk gt
rock sample	203755 203756 si	1	4-Oct-03			5718259					0	.0025 ICI	P 0	.5 1.	5 0.5 5 49		grab	5A Mam	_	amp	thinly lamd isoclinal	stg rmt 5-7%		foin	255 74	255	74	-				stgy isoclinally folded exide IF with 84 interbeds. Stgy mage 100 mnzd. Non alto
cornment - geophy	b1 b	51 3	0-Sep-03			5712577		-			54369 n	a na	n	a na	na	na	na			-		-		R			-	-				
comment - geophy comment - geophy	b3 b	03 0	0-Sep-03 2-Oct-03	18:56 4	02538				51.61493	336 -88.	.53527 n 40767 n	a na	n	a na	na na	na	na na		-				-					-				
comment - geophy comment - geophy	b4 b		5-Oct-03 2 5-Oct-03 2			5716745 5716745					45555 n. 45554 n.	a na a na	n	a na	na	na	na na				-										{	
comment - geophy comment - geophy	b6 b	06 0		19:24 3	99679	5717429			51.59895	584 -88.		a na	n	a na		na	na					-			1-1-			-				
comment - geophy	b9 b	09 1	3-Oct-03 2	21:27 4	06326	5720430					n	a na	n	a na	na	na	na	-	-			1										noter exhibition on above i
comment - misc		ocation	u-260-03	3	92350	5713060			51.55833	39 -88.	.55289 n	a na	n	a na	na	na	na					1								- 1	9	esker pobbles on shoreline
comment - geophy	BN3002 e	em anomaly 3	0-Sep-03	3	92400	5712940			51.55727	715 -88,	.55214 n	a na	n	a na	na	na	na								+			+				AEM conductor location unknown cause no O/C cohesive pb clay till on surface
comment - geophy	BN3003 e	m anomaly 3	0-Sep-03	3	92610	5712940				_	54911 in	· · · · · ·		a na		na	na					+			+		-					AEM conductor location unknown cause
comment - geophy						5712900				872 -88.		9 60		a Ina		0.9	na											-				AEM conductor tobation unknown cause
										_		- ne																				
comment - geophy						5712620			51.55456			a na		a na		na	na															AEM conductor location unknown cause olk spruce alder damp ground
comment - geophy		î				5712790			51.55608			a na	n	a na	na	na	na															AEM conductor location O/C sampled 11354 15×20m O/C amphiboliitic vole with tr-1% PO
comment - geophy	BN3007 e	am anomaly 3	0-Sep-03	3	93550	5712760			51.55587	714 -88	.5355 n	a na	n	a na	na	na	na															W margin of e/c
comment - geophy	BN3008 ei	ern anomaly 3	0-Sep-03	3	93340	5712760			51.55582	285 -88.	53853 n	a na	n	a na	na	na	na									1	1					sed/vol contact
comment - geophy	BN3009 ei	im anomaly 3	0-Sep-03	3	93460	5712810			51,55630	005 -88.	53881 n	a na	n	a na	na	na	na	1		1				1		-	-	-			-	AEM conductor located N of O/C associated with Bsp swamp
comment - geophy	BN3010 er	m anomaly 3	0-Sep-03	3	93700	5712600			51.55448	605 -88.	53329 n	a na	n	a na	na	na	na			1							-	+				AEM located at E margin of O/C
comment geophy E	BN3011 er	m anomaly 3	0-Sep-03	3	93890	5712600			51.55449	981 -88.	53055 n	a na		a na	na	na	na						-		1-		-	-	-+	-+		AEM located NE of O/C
		L						L	1					1	1				1	1	1	1		1				1	1			

CATEGORY SAMPLE ANOMALY DATE #	Zone16 Zone16	LOCATION LOCATION (Nad83) (Nad83)	elemen	nt (ppm) (pp	As Cu pm) ppm	SAMPLE S	SAMPLE M TYPE	UNIT	ROCK GR/		URE AL	TERATION	MINERALIZATION	STRUCTURE TYPE	AZM DI	P PLUNGE DIP	QV QV TYPE STRIP		HOTO DESCRIPTION
	NAD83 NAD83		analys Metho	d					UNIT										
comment - geophy BN3012 em anomaly 30-Sep-03	394140 5712680			na na	na	na n	na									· · · · · · · · · · · · · · · · · · ·	 		AEM located at W margin of lake
comment - geophy BN3013 em anomaly 30-Sep-03	394200 5712480	and the second sec		na na			na												AEM located immediately S of Sed/Voic contact
comment - geophy BN3014 em anomaly 30-Sep-03	394090 5712400		na na	na na	na	na n	na												AEM conductor unknown cause
comment - geophy BN3015 em anomaly 30-Sep-03	393160 5712370	51.5522933 -88.541	na na	na na	na	na r	na										 		AEM located on shoreline unknown cause
comment - geophy BN3016 em anomaly 30-Sep-03	392970 5712350			na na	na	na n	na												AEM located on shoreline unknown cause
comment - geophy BN3017 em anomaly 30-Sep-03	392330 5712430	51.5526742 -88.55291) na na	na na	na	na n	na												AEM located in lake unknown cause
comment - geophy BN3018 em anomaly 30-Sep-03	391720 5712350			na na	na	na n	na												AEM located on SW margin of Island unknown cause
comment - geophy BN3019 em anomaly 30-Sep-03	390610 5713480	51.5617776 -88.5781	na na	na na	na	na r	na												AEM located SW of church unknown cause
comment - geophy BN3020 em anomaly 30-Sep-03	390750 5713630		na na	na na	na	na r	na												AEM located NE edge of small island S of church
comment - geophy BN3021 em anomaly 30-Sep-03	393670 5712160	51.5505016 -88.5335	9 na na	na na	na	na r	na												AEM located @ river unknown cause
comment - rock BN3022 o/c 30-Sep-03 comment	392186 5712901	51.5568799 -88.5552	na na	na na	na	na r	na 2A	Mam	amph	fg to mg fp p	fc na		na	folm	96 62	1			massive flow non magnetic jointing with carbonate/epidote fracture fills @ 195/88.
comment - rock BN3023 o/c 30-Sep-03 comment	392139 5712862	51.5565205 -88.5558	7 na na	na na	na	na r	na 2A	Mam			chl	Im		folm	116 63		v1 294	86 Y	non mnzd strongly pitted amygduloidal mafic flow with hyaloclastic flow bands.
comment - geophy BN3024 comment - 30-Sep-03 proximal to EM	393246 5712630	51.5546483 -88.53984	ina na	na na	na	na r	na 2A	Mam	amph	fg	na		na	folm	112 66				ep/tp infilled joints @ 22/88. Low o/c knoll moss covered located approx 60m W of AEM anomaly BN3- 5
comment - rock BN3025 o/c 30-Sep-03	393284 5712681	51.5551096 -88.5393	na na	na na	na	na r	na 2A	Mam	amph	fg to mg fp p	fc			fols	132 60			Y	locallized coarse grained amph clots
comment - rock BN3026 o/c 30-Sep-03	393261 5712789	51.5560806 -88.5396	na na	na na	na	na r	na 2A	Mam gt			grained na		na	foim	115 64		 	+ -	coarse grained gamet amphibolitic volcanic. Approx 25m NW of 11354.
comment - rock BN3027 o/c 30-Sep-03	393344 5712753	51.5557694 -88.5384	na na	na na	na	na r	na 2A	Mam gt	amph	fols fp pfc u		ls	na	fols	110 72				amphc mafic uniform texture flow/sill
comment - rock BN3026 o/c 30-Sep-03	393409 5712771	51.5559411 -88.5375	3 na na	na na	na	na r	na 6H	16K	amph	.5 to 10cm b			na	bdg	108 64		 	Y	Massive gt amph flow contact with sediments.
comment - rock BN3029 comment - 30-Sep-03 EM anomaly	393460 5712810		na na	na na	na	na r	na OE	в		interbedded								Y	black spruce swamp water pools/discontinuous creek located approx. 50m N of large bedrock controlled ridge. Located @ AEM anomaly @ BN3-9
comment - rock BN3030 6m W of 02-Oct-03 1	14:19 402336 5717581	106W ? 51.600793 -88.4101	5 na na	na na	na	na r	na 6H	lamp	amp	shm. ceorys	tallized vvk	FeO stain	na	shrm	262 78				meta gwk wk FeO stain silw shm
line 1W	15:25 402266 5718148	104W 1287N 51.6058838 -88.4113	2 na na	na na	na	na r	na 5A	shrm	amp	thinly lamina	ted na		กล					-	thinly laminated/sheared oxide IF low flat o/c
	15:33 402265 5718195	100W 1335N 51.6063023 -88.4113	5 na na	na na	na	na r		Kampgt6H 5 npqbi		og gt rich ba	nds		tr py	bdg	280 32				S margin of o/c banded oxide IF o/c 20x40m
comment - rock BN3034 o/c 02-Oct-03 1	15:53 402223 5718476 17:35 402565 5718955			na na na na		na r na r	na 6H	l amp I 6K staur amp	amp staur sch	ist cg	na am	np	na na					Y	225 deg bedrock controlled knoll non magc quartz amp/bi schist with coarse grained phen's of staurolite. Boulder covered knoll/subcrop
comment - geophy BN3035 em anomaly 03-Oct-03 1	19:28 402040 5717120	51.596598 -88.4142	9 na na	na na	na	na r	na OE	В									 	-	No o/c in vicinity EM conductor in swamp. Bn3-36 located 90m to NNW associated with oxide IF. Conductor on strike with samples 26861 to 26872
	19:46 402020 5717210 20:55 401899 5717139			na na na na		na r na r		H ID 5A2		banded	na chi	IS	mt	bdg	270 75			Y	10x50m O/C 1m wide chrt mt banded IF interbedded with q biot sch (gwk) S end of filled in Trench 3. oxide IF
comment - rock BN3038 03-Oct-03 2	20:58 401890 5717150 21:12 401884 5717130	51.5968394 -88.4164	6 ina ina	na na na na	na		na 6H		3Н			lw	na				 	Y	central portion of Trench 3. bull wht q blowout at N end of trench. Not sampled trench 5 25m poorly stripped area S to N margin of Beaver swamp.
comment - rock BN3040 04-Oct-03 1	14:16 401882 5717133			na na		na r		12 qv1		banded							qv1 55?	Y	trench 6 N end of southern OB infilled portion of trench. Oxide IF with non mnzd discont q vt/s. Samples 26858-860.
	14:59 401847 5717112 15:06 401802 5717084			na na na na				2 amp	amp	banded	v v	wk FeO	mt				 	Y Y	trench 7 N end extending S to lake rubbly exposure trench 8 N end. Flag line 0 80mE. 2x1x.5m OB infilled pit.
	15:15 401789 5717074			na na		na r	na OE na OE											Ŷ	trench 9 N end. Flag line 3.7m N 60m E. Infilled with moss/sand-gravel OB. Approx. 1.5m deep. Oriented SSE to beaver dam swamp.
comment - rock BN3044 04-Oct-03 1	15:21 401768 5717068			na na		na r		B			bi.	chi				-	 av1	¥.	trench 10 N end. Flag line 6.8N 40mE. Vegetation infilled moss/trees. Overburden.
	16:18 401755 5717060			na na	-	na 7		V1 5D Mam	emp	D 45 am lam		chi		IF cnt		-	 qv1		trench 11 S end. Flag line 9.5m S 26m E. Bedrock knoll at south end of trench samples 26601- 26863. Trench ends at beaver dam lake.
	17:26 401755 5717029			na na		na r		H 5AMam	amp	2-15cm lam		Im bim				_		v	trench 12 S end. O/c exposed at S end of trench. IF/6H contact strikes to the centre of swamp at lake edge trench 13 S and o/c heat pit. Proceeding and 11 mE approx 15S
comment - rock BN3048 04-Oct-03 1	17:54 401751 5717040 17:56 401749 5717057	51.5959865 -88.4184	3 na na	na na na na	na		na OE	D Mam B	amp	mg								Y	trench 13 S end o/c blast pit. Prospecting grid 11mE approx 15S trench 13 N end. OB blast pit. Glassy q v @ s end of pit
	18:01 401743 5717036			na na	_		Q	0 Mam sich V1	amp	sch	an			fala	278 74		 qv1	·	trench 14 S end. Flag line 0E 8.5m S. stgy amp sch siliciate IF
comment - rock BN3051 05-Oct-03 1	14:23 400244 5717057 15:06 400147 5717081	51.5959168 -88.4416	na na	na na na na	na	na r	na 2A	C shrs chis A fols chis		shrs sch	ch		na		280 75			1-1	deformation zone sheared argillite with discont q st's
	17:06 400000 5716935			na na				(shrs chis		sch crenula cleavage	tion ch	15	na	fols	280 /3	, 			255m S of ddh M87-8 (Goldfields). Sheared chloritized argillite
comment - rock BN3054 05-Oct-03 1	17:56 400009 5716852 18:12 399929 5716861	51.5938997 -88.4446	3 na na	na na na na	na	na r		B H shrs			chi	lw to chis	na	fols	265 72		qcbv1 265	72 Y	silt knoll poplar stand 336m S of M87-8 SW margin of bedrock controlled ridge
	18:40 399639 5716800 18:46 399587 5716798		na na na	na na			na na						10.000 AV		t f	-			Goldfields grid BL0 375m W of ddh M87-8 grid line. Goldfields grid BL0 437m W of ddh M87-8 grid line. N-S axe cut grid line possibly older than Goldfield
comment - grid BN3057 05-Oct-03 1	19:12 399410 5716777	51.5930575 -88.4521		na na				V1											gnd? Goldfields grid BLO 614m W of ddh grid line
comment - grid BN3060 goldfields 06-Oct-03 1	19:30 399370 5716831 14:04 399026 5716388	51.5935296 -88.4527 L6E 11S 51.5894902 -88.4575		na na na na			na 5A	A 6H								-	 	Y	Was3 showing guartz blowout area several photos taken Goldfields grid L6E 11S
	14:24 399007 5716624 16:05 398988 5716754			na na na na				H 6K fols qv1 H chlw bim		fols interbe	ded			bdg folm	92 56 242 66		 gv1 260	90 Y	413m "N" of lake low o/c knoll interbedded gwk/ang with in discont whitig vt's 15x40m o/c, wk chl/bi eltd gwk.
comment - rock BN3063 06-Oct-03 1	16:19 398966 5716897	51.5940499 -88.4586	na na	na na	na	na r	na 50	D ? Chim bim		fols	ch	ılm bim	na			-		1-1	693m N of lake on Goldfields grid line 6E
tamment - grid BN3064 L6E (2) 06-Oct-03 1 825m N of Iake	16:26 398953 5717031	51.5952569 -88.4588	2 na na	na na	na	na r	na	hs											L6E @ 825m N of lake end of line
comment - rock BN3065 06-Oct-03 1 comment - geophy BN3066 OGS AEM 06-Oct-03 1 anomaly(54.	16:49 398966 5717143 17:09 399060 5717500			na na na na			na 6H na	H biw folw		fg-mg	biv	W	na	folw					subcrop area fg-mg gwk wky bi altd. Folw OGS AEM conductor (54.155) no o/c
comment - geophy BN3067 06-Oct-03 1	17:10 398270 5717270	51.5972793 -88.4687		na na			na 5A						mt	bdo	277 74	-			OGS AEM conductor (83.557) no o/c bik oxide IF stgy mage thinly laminated. Possible cause of AEM conductor. S margin of BN365 o/c.
comment - rock BN3068 06-Oct-03 1 comment - rock BN3069 06-Oct-03 1	17:20 399006 5717135 17:39 399053 5717211	51.5968877 -88.4574		na na na na	na	na r	na 5A na 5A	1		contorted la	mn thin na		mt	lamn	1 14		na		contorted thin land oxide IF non mnzd. Stgy magc
comment - rock BN3070 06-Oct-03 1	17:49 399074 5717207	51.5988555 -88.4571	2 na na	na na	na	na r	na 5A	A ib BK qv1		ib			mt				qv1	Y	20% 6K interbeds within stgy magc oxide IF. 3-15% whit q st's parallel to bdg
	18:02 399208 5717221			na na				A ID 6K		fg thin ib of	BK loc	cy chim	mt	foln	270? 80		0000	Y	fg oxide IF with interbeds of 6K
	18:31 399376 5717266		3 na na	na na	1000			A Ib 6K qv1	0000	ig use thisty to	md na		79		2101 00		4.1	-	fg oxide IF with interbeds of 6K discont wht q st's parallel to forn N. margin of low o/c knoll. Stgy magc.
comment - rock BN3073 comment - rock BN3074 06-Oct-03 1	399446 5717282 18:41 399500 5717257		na na 9 na na	na na			na 5A na 5A		amp	rig thinly la	na		mi	thinly lamd		1	- 1		fg bit thinly laminated oxide IF. Lamn <.5cm. Site on E-W claim line

з

CATEGORY	&LE A	ANOMAL'Y D	ATE TIM	E utm Zone NAD	16 Zone16	LOCATI	GRID ON LOCATIO North	Latitude (Nad83)	Longitud (Nad83)	e Au (g/t)	Multi- A element (pp anaiyses	g As m)(ppm)	Cu) ¥ğırı	SAMPLE SAMPL LENGTH TYPE	E MAJOR ROCK UNIT	K MINOR ROCK UNIT	ORADE	TEXTURE	ALTERATION	MINERALIZATION	TYPE	azM bu	P PLUNGE DIP	PLUNGE AZM.		eitrike	Λ υκ , μι	POTO BESCRIP1!SN
comment - rock	BN3075	06-0	Oct-03 18:5	2 399692	5717334		-	51,5981108	8 -88.44824	na	na na	na	na	na na	5A			fg thinly land	†	fost	thinly lamo			1				fg blk thinly laminated oxide IF.
comment - rock	BN3075 BN3077	06-0	Oct-03 19:02 Oct-03 19:11	2 399732 9 399678	5717354 5717432			51.5982986	5 -88.447.67 5 -88.44847	na	108 108		ุกล กล	na na	5A ib 6H 5A ib 6K shr	-	bilentis locy cil	fg contented lamn thin	na ser	mt	ib 6H conterted				9V1		LY IY	to bik exide IF with It gy 6H interbeds sonterleg exide IF with phylitic arg interbeds. Lecally at baaring, owscentinuous g stis
commenit- itosk	BN3078	08-0	Oct-03 14:39	9 402190	5718773	100W	1908N	51.6114843	3 -88.4 1258	na	na na	na	na	na na	tork agaur gt mus	sç	silaur ýt	lamnsch	shim muse	ng	scn	-	-			1		stay matamorphosed meta-sediment gt-staur-musc oute-rop angular bid's un surrace. Noramico any
	BN3079	08-0	Dct-03	4.02 190	571881.5 5718921	100W	195014	1		na	na na	na	na	na na	2A chis							_	-				-	boulger nevered knoll/subcrop. Dominantly still 51 alle baselt. cedar elds, swamp.coincident with AEM conductor. ENE strikting
	BN3080 BN3081	08-0	Dct-03 14:51 Dct-03 15:10	9 402167 0 402127	5718921	100W 125W	2050N 2175ht(app 01)	51.6128147	7 -88.41296 3 -88.41356		na na	na	na	na na na na	OB 2A chis birr sch bid	n					-							cease elds, swamp coincident with Asia conductor. ENE strikting bsp/mass Guyared iknoll with langed dk brown mat schist boulders. Chi's him
comment - geophy			Oct-03 16:00			-	_		3 -88.41387	na	na na	na	na	na na	Swp													pisp/aider swamp pussible cause of VLE conductor
	BN3083 BN3084		Oct-03 15:45 Oct-03 16:36				2500N		9 -88.41385 5 -88.41659			na	na	na na	Bsp labt moss	1					-		1				_	one the g2 2510% crussful by E-W Sizzed claim libe. Rsp/aider Battls ground_No 6/c. gne the g2 2510% crussful by E-W Sizzed claim libe. Rsp/aider Battls ground_No 6/c.
comment - grid comment - grid	BN3085 BN3086		Oct-03 16:40 Oct-03 17:00			500W/end	2500N TL 2 2500N		4 -88.41951 -88.4212		na na	ha na	na	<u>na na</u>	Bsp labt moss Bsp labt moss								-					grid picket TL 2500N 500W. Bsp/labUiinnen-muss. Slightly elevated Sanaz km2ll W end of TL 2500N @ 600W = L612W 2495N. TL @ 96 degls. Gwarf bsp/lebi viightly elevated ground.
						W	TL(2495N)	51.010044	-00.4212	114		114	na		cobbles			_	-								_	Cobbles on surface, Lagustrine lag deposits.
comment - geophy comment - geophy		08-0	Oct-03 17:0 Oct-03 17:2	7 401599 3 401610	5719358	600W	2330N		5 -88.42128 9 -88.4212	na	na na	na	na	na na	Bsp ald swp Bsp ald labt	-											-	No o/c asset with the try, hannel AEM anomaly. Bsp alder labt damp ground. 2nd ever ever line approx 15m no o/c assoc with 12 channel AEM anomaly. Bsp alder labt damp ground. 2nd ever ever ever 15m
																		ta ma	0000000									W of site. No.o/c.@.625W 23N site of another AEM anomaly
comment - rock	BN3089	08-0	Oct-03 17:4	411599	5719011			51.01351/4	4 -88.42127	na	na na	na	na	na ma	2AMam amg		amp	fc-mg	amp non നകൃ	3				L			4	aporty exposed o(c knoll dk gy gn to-mg amp basalt. Non mage.
comment - rock comment - rock	BN3090 BN3091	08-0	Oct-03 18:00 Oct-03 19:19	8 401622 9 401595	5718923				2 -88.42083 2 -88.42121		na na	na	na	na na na	2a Marn gt 6H 6K ib		amp gt	mg-og weil lanns	chim bim amp	ng	lamd schm	270 80 254 78					7	parnetiferous DIK mg-cg mody foliated mat? Flow. Massive flow/sil 20m to N 20m E of 11375 SE margin of o/c. Well lamd ib 6H 6K with FeO weathered seams. Non mage, Non
comment - rock	BN3092	08-0	Oct-03 19:43	3 401653	5718919			51.6127074	-88.42038	na	na na	na	na	na na	6H silm schm 6	KAK	b) amp		bim silm	ha	schm	268 74	<u> </u>		qv1 st	-		E margin of large bedrock controlled ridge. Gwk with thin arg seams Rare whit discont g vt parallel 45
																-							1		41.11		_	bedding. Possible thin mafic flow interbeds.
comment - rock	BN3093	08-0	Dct-03 19:56	401733	5718964	'	_	151,6131258	81-88.41925	na	na na	na	na	NB 143	2A Mamimg		amp	mg_uniform_lexture possible នាំ॥										subcrop on E margin of large bedrock controlled ridge. AEM conductor in Bsp swamp located to the immediate S of o/c ridge.
	BN3094		Oct-03 20:02				2025N	51.6133028	8 -88.41804	na	na na	na	na	na na	2A Mam		amp	mg	amp bis		fols	247 76	-					stgy amph meta basalt stgy foliation/shr.
comment - grid	BN3095		Dc1-03 14:34				2025N				na na	110	119	118	OB 6 M musc staur sch bid						7.1							boulder covered moraine knoll. Dominantly chi musc staur meta sedimera autorounded to sub angular boulders.
comment-rook	BN3096	09-0	Dot-03 14:44	402281	5718927					na	na na	na	na	na ná	6 M staur musc schs		staur musc	ര്പ്പെട്ടവം	IMUSC	na	1015	270 85						creat of knoll with stgy foliated schistose staurolitic meta sed no indication of cause of VLF conductor located along N margin of knoll.
comment - rock	BN3097	09-0	061(13 14:5)	3 402239	5718978	50W	2160N	-	1	na	na na	ກສ	na	na tư	6H sch Lis muscm		amp b misc	saps	musc bi	na	fols	260 ?						bi musc schist (gwk). Bsp damp ground S of o/c knoll
comment-rock	BN3098		001-03 15:02				-			na	กร กล		na	na na	2A Mam		sent rp	fg	amp	na aa	foim	-		-			-	subcrop/large bid's on N margin of moraine/bedrock controlled knoll. Meta basall bid's dominant
comment:rock	BN3099	09-0	od-03 15:12	402252	5719101				4	ດຸລ	08 08	na	na	na na	2A Mam		emp	fg:mg	amp	11.59	l l							SE margin of helipad cut area for ddh SL87-3. dk gn blk fg-mg amp basait. Non mnzd non magc. Bsp ald on S margin of bedrock controlled ridge.
comment - rock			Oct-03 16:16 Oct-03 16:30						-	110	ne na		na	na na	2A mam		amp	folm	amp bi	na	folm	258 70						approx 30m W of ddh SL87-3. stgy ampc foliated mafic flow approx position of Noramco EM conductor. Bsp/labt. No o/c.
comment - geophy comment - rock	BN3102	09-0	Oct-03 16:44	4 402352	5719242					_	na na	na	na na	na na	2A Mam folm		amp	fg-mg	bin amp	na	folm	262 82	1				-	dk gn/bik fg-mg foliated mafic flow. Non magc. Hb phen's. Atua anomaly occurs on N margin of
comment - rock	BN3103	09-0	Oct-03 16:54	4 402352	5719207					na	na na	na	na	1a na	2A Mam folm		amp	19-110	l bim amp	na	folm	256 55			fpV1	256 5	5	bedrock knoll associated with bsp swamp unexplained anomaly. S margin of o/c area. Dk gn/bik foliated ampc mafic flow. Feldpar seams parallel to foliation. Non
										-		-				_			amp			272 64			fpV1	6 19	_	magc.
Comment - TOCK	BN3104	09-0	Oct-03 17:03	5 4 <u>,023</u> 58ED	5719165					tia	ins na	na	ha	na na	2A schs		amp		anp	IId	TOILIT	272 04			(joint frc)	5		E margin of approx 40m diamater or area. Dk gn bm fg sil maf flow wky-mody foliated. Feldpsar Infilled fractures crosscutting foliation
comment - rock	BN3105	09-0	Oct-03 17:14	4 402406	5719124					na	nt na	na	Rife	na na	2A Mam py.1 folw		amp	fg-mg	ampc bim	tr py	fotw	237 78					-	S margin of <10m o/c dk gn blk fg ampc matched. Weakly foliated.
comment - rock	BN3106	09-0	Oct-03 17:24	4 402427	5719118		-		1	na	na na	na	na	na na	2A Mam ang	1	amp	fg fols	amp burn chiw	0.a	fols	226? 76			tia		Y	S margin of ofcknoll Bsp.swamp to S. stgy foliated ampc mafter flow. Non mage. Amgygdaloidal.
comment - rock	BN3107	09-0	oct-03 17:40	402466	5719073					na	na na	na	na	na na	2A Mam gt ib 6	н	amp gt	ma-co	amp gt bim	na	fols	276 76		+	na		A.	story totated ampc mat flow with gwk/arg interbeds. Gametiferous
comment - rock	BN3108	09-0	Oct-03 18:57	7 402496	571906	+	-			na	เกล กะ	na	na	na na	6K 5D FeO sils chl:	Is		fols	FeO stg chim	py2-5	cnt	260? 80			qV4	250?? 8	Y	S margin of BN3107 o/c. stg. F.3O waath, ring silicified chloritized silicate IF with 2506 diss py.
															py2-5				sils			?					_	Vol/IF/sed contact exposed and sampled with 11378-11387, probable cause of AEM anomaly and target for Noramco ddh. Qhem v4 veinlets pil to bedding.
	BN3109 BN31TU		Oct-03 17:56 Oct-03 18:41				_		-	-	na na	na	na	na na	6H 5D MaM			cg amp	chim	Ina	Cnt			<u> </u>				contact between cg ampc silicate IF? On the N margin of o/c with gwk to the S.
comment - rock	BN3111	10-0	Oct-03 18:52	2 400813	5714978					na	na na	na	na	na ina	6H 6G biw folm	ו		fg-mg gritty	biw	1	folm	263 58			qv1 st's	250 6	5 1	50x40m o/c area with bsp moss covered area to W. gwk granular/gntty matrix. Wky schistose with dig bi in matrix. Non mozd. Rare obliquely xttg q vt
	BN3112	10-0	oct-03 19:02	2 400743	5714977				-	na	ne na		na	ne na	6H 6G biw folm	1		fg-mg gritty	biw		folm	240 78		-	qv1 st's		_	sito bn3111 E margin of o/c knol
comment - geophy	BN3113	10-0	Oct-03 19:34	4 400540	5714990					na	ite na	na	na	na ina	ов												<u> </u>	AEM anomaly ENE of Woltam Abo showing prospected in 2002. No orc her, tam damp ground Till covered, ridge to N.
	BN3114 BN3115		0ct-03 19:59 0ct-03		5714918 5719687					na	na na	na	na	na ina	6H 6G schs	+	lamo	gnitty g bi sch	bim	na	100y	265 68 268 76			qv1 st's	238 6	2 2	SW, margin of o/c. Kpoll-commantly till covered. Mec. an gran away of a supercent of the low oc/. Q-bi schist with discont gchl sts. stgy foriated. Proximal to Noramco EM conductor.
comment - rock	BN3116	11-0	001-03 16:58	405436	5719607		-			ma	ina na	na	na	ne na	6H 6G SONS	-	amp staur	gritty q bi-sch	bim		folm	252 66					_	g bi schist with staur phen's, mody foliated
comment - rock	BN3117	11-0	oci-33 [17:06	6 405413	5719615					na	na ma	Pre l	neu	nn8 1+d	6H Mam Sihe		amp bi	folm sch	bis emp	na	tois	246 60	1		qv1 st 's	246 6		series of low or knoll roughly elongated ENE (appro, 20, 00) Or brachist (ampc gwk), Non magc. In discontinuous a staylobs subparallel to mod to sto (gilation. Grithy/granular fg-mg texture. o/c area extends to 5.50-75m.
conment- rock		11-0	101-03 117.117	405430	5719562	L3200E	2300N			na	na na				6H Mam schs	-	ampöi	folm-sch	bis amp	na	fols	_	1	10	qV1 sts			sto bn3117. grid picket L3200E 2300N
	BN3119 BN3120	11-0	001-03 17:33	405439	5719511	-	1	+		na	na na	na	na	na na	2A Mam folm 6H Mamgit sohs	IS	amphi g.	ifs mg	bim chim bini	na	folm	250 76	-	ŧ	971365		1	SW margin of o/c. Bik ig-mg ampc mat flow Non-mugc. 5-10% q st's pil to foliation. q bi gt schist (granular q _{wk}) Non magc. S margin of o/c ridge. Further S bsp labt _{overbu} urden infilled
comment-rock	BNU1211	11-0	vol-03 18:24	405554	57 19810					na	00 70	na	200	78 18	54.2 emp	-	ണയി	Wanded shirl isoclinely	ame shim his	142	15th	250 . 50	-		<u> </u>			sand? plain. Sc2719 Bigosed of Knoll an NPL 201979 at this site sag amp?cfim his herdinally folded lamp. Non-
	30382		oct-03 18:31	_				-		Ina	ria 0.8	ina	na		544	-	ump	folded				260	N 205	180			-+	b) Critis Shored of a finding and the 2007 at this size, we ample throws: secondary order at the Non- mark Approx.50% recrystralized chert laminae. 17-2cm chert bandes oxide if micro-folded with steep E a unce secondary order 2007 - 2007
Government - Fruck	DINGINZ	1.1.45	UP05 10.5	403503	5/ 190.00			1		L DIA	na na	10 a	ilia		3940		anip	imag the rt micro	1015	NH4	INTO BE TOTOLOGY		NOC.	00			1	banded. Small scale micro-folds on the line of larger rold. Axial plane to r0-80 deg's. plunge 76-e0
comment - reck	BING 123	11-0	001-03 20.19	405629.	5719855	134355	256 7N	1	1	1-10	NA NA	P.a	na	na tua	64. 5D SAN PYOS slim tornah	5		folded				•					- 7	deg's E. Old prospecting trench 350 deg's onene-a tidg 25/7/1/141 Grid line 20 0 deg's UTM @ North end of trenct. Aparamoc grid 34/35E 2565N. Trench extends to 5 14.4m. Samples 26884-26893 take. from trenct. Trench area tested by DDH SL87-01 associated with stg AEM anomalies on stake with trench.
m.monat.	DNI2404	10.0	02 12.00	10570	- Proper of		_					_	-				2010	0 biastb	lthi	0.	↓		-	-				q bi schist ampc low o/c 10m S of TL2500
comment - rock	BN3124 BN3125	13-0	oct-03 13:24 oct-03 13:32	405700	5719810	L3515E	2500N	1	1		ina na	na	na	na na	6H Mam 13A 6H Marm	1	amp	q bi sch intrude a by 20	nibi	na	ibdg	260 86	-		QV'1 #1'5			2m wide tonalite dyke intruding q bi sch (meta gwk). Az muth parallel to bdg. 5-10% q-st's pil to bdg.
comment - rock	BN3126	13-0	001-03 13:42	405712	5719823	L3515E	2.20N			na	ina na	0.8	0.8	na 11/3	5A2 amp bim		amp	fg well lamd	bim chim	08	ibdg	260 85						12m long trench to S probable gause of stg AEM anomaly stgy chert mt bang, 2 oxne, (# 3, gy gar 30 non mnzd, IF 4 sm
comment - rock	BN3127			1	5719822		2525N	+							chim 6H gv1 py:1	-		,q bi sch	bir silm	tr sv'		-			gV1st's			Alter q bi sch (meta gwk) with 10-15 disco, 1 q stis paraiu, to foin. Tr py grain
comment - rock	BN3128	13-0	ct-03 14:16	405800	5719854	1	L			na	กร กล	กล	na	na ta	6H BE Mam	-	auso	ry bi sch	Diwslin	10	61				qv1 st's		-	dk gy blk sil meta sed g rich gwk/ss. Dls vfg bi Non macc non mnzd.
comment - rock comment - greephy					5719870				1		na na	na	na	กล กล	6H 6K Mam 5A2 Mam 6H	+	amp	thinly land c'nt banded	amp	na FeO stg	fois	280 71		71-	QV1 STS			bi musc schist, variable discont q si's parallel to foln IF on N margin of o/c ridge, gwk on S margin. IF probable cause of EM gradugay
comment - geophy		13.0	ct-03 17-16	406035	5720095		-			05	100	na	ina.	08 03	silm 2A Mam fols		amp		chis						-		- 5	unknown nauuse of EM.conduit.or.
comment - rock	BN3132	13-0	CA-03 14:48	405800	5719846	1		1	1	ກສ	tra na	ine	136	na <u>n</u> e	2A Man folm		amp	h	biw amsc	<u>n</u> e	fum	2722 78		-				subcrop. Dk.pr.g.yt.g.meta mafic volc. Stgv.ampc. Normactic wkypi. S.margin of large ENE trending.orc knoll. Q.bi musc sch (meta-gwk) futietion mod tv stg. Possibile staur
	BN9/133				5718907	Ś.				na	na na	ina	na	na	6H Mam		skult,	achs	stau	nia		2123 76					1	phen's
comment - rock	BN3134	1/3-0	oct-03 15:06	405914	5719859				1	na	na na	ina	na	na na	6H Mam		amp	sicihs	q bi musc +/-	na	fols							series of low o'c knolls. Cg staur in g bi musc sch (meta gwk). Non nined
comment-nack	BIN3135	13-0	ct-03 17:24	405960	52 0020	1	1		1	Ina	ne na	Ina	na	na na	2A Man. si Isch	Isl	នាល្	scihs		Iwik*eQ	foisishr	25.2 \$4	1	1			-	stoning tonated man now tuff locally migratolised tonation stay child sea ms (6K ib?)
Comment~ ruck	BN3136,	13-0	17:33	405958	57,20087	1	1	-		tre	516 113	กะว	na	na l _i ne	2A Mam sil sch	6	amp	scihs	chis see ms	wik.FeG	fuls/shr		-		1	-		70 fr.E. of Atau conductor should in strongly rouative mar forwelly of Joually million fided foliation story cha
comment - recit	BN3137	113-0	ct-03 17:43	40602	572009	+				IR	fa na	THE:	ne	re) na	2A Mam silische	0	amp.	scibs	Hills Seantro	wk FeO	fols/siir	270 15			-			seams (6K ib?) by mappin of bedrook controlled tode 30mE of AEM conductor eN3131. ston aly foliated mart nounter boarty misretalded (Station stor child
commenit- geophy			ci-มี3 19:49		_		-	}		10			na		fols	_			biw dign mage		<u> </u>							seems (6K ib?)). N margin of bedrock controlled tr _{icle} iE(<u>M anymaly</u> comercinds with the setting swamp. Ore to S tills bi schills +/- thin i≞ lenses.
Assumeria- deoptiv it	00100100	113-0	or.ng [] is 48	00305	15/20330	1	P	4	à	Letter .	na na	na	dua 1		1300	2				/		P						TEVE and that corresponds with usp settimoped swattip. O/c to S tills of script +/- thin t# lenses.

CATEGORY SAMPLE ANOMAL	Y DATE	TIME		utmN	GRID			Longitude	Au (g/t)	Multi-	Ag	As (u SAMI	PLE SAM	APLE MA	JOR ROCK	MINOR	METAMORPHIC	TEXTURE	ALTERATION	MINERALIZATION	STRUCTUR	E AZM DI	IP PLUN DIF			QV STRIKE		РНОТО	DESCRIPTION
#			Zone16 NAD83		East	North	(Nad83)	(Nad83)		analyses Method	(ppm)	(ppm) p	pm LENG	ATH TY	PE	UNIT	ROCK	GRADE				tirs		0.0	742.11		- OTRIAL			
comment - geophy BN3139	13-Oct-0	3 19:50	406338	5720380					na	na	na n	na na	na	na	OB															EM anomaly corresponds with N slope of bedrock controlled ridge with thin cover of bouldery sand gravel. No o/c observed.
comment - geophy BN3140	13-Oct-0	3 19:50	406412	5720355					na	na	na r	na na	na	na	OB															EM anomaly corresponds with the margin of Bsp swamp and bedrock controlled ridge exposing ampc basalt but no IF observed.
comment - rock BN3141 comment - rock BN3142	13-Oct-0	3 20:01 3 20:25	406315 406383	5720262 5720363	-			-	na na			na na		na na		Mam schs Mam schs		amp amp	fg-mg schs fg-mg schm	amp bi amp stg	na na	fols			-	-	-	-		hib bi schist fg-og with FeO seams <10cm wide. Non mage. N slope of large bedrock controlled ridge. Bsp swamp to N of site. Ampc baselt schm fols. Proximal to
comment - misc BN3143 helicopter landing are			NA	NA					na	na	na r	na na	na	na	fols										1	1				AEM anometr bn3140
comment - grid BN3144 Frond Grid comment - rock BN3145	d 14-Oct-0	3 13:11	407172	5719148					na	na	na r	na na	na	na	OB							-			-	-				Frond Property and picket, L10600E 10200N, S edge of old drill road. AEM anomaly E of ddh FR87-20/30, Bsp labt vegetation, OB covered area. No o/c, Anemaly
comment - rock BN3145	14-Oct-0	3 14:03	408038	5719425					na	na	na r	na na	na	na	OB												-			unexplained.
comment - rock BN3146 comment - rock BN3147	14-Oct-0	3 14:05 3 14:27	408745	5719813 5720029	-					na		na na		na na	OB								++-			-		-		AEM anomaly. Marsh area. No o/o. Anomaly unexplained. AEM anomaly Esker send ridge, Jack pine/bap, Anomaly unexplained.
comment - rock BN3148				5719788								na na		na		- 6H Mam s								_						Pennisula on Strike of anomaly bris148. Bidw down area with numerous boulders of q bi sch (meta gwk).
comment - rock BN3149		3 14:59		5719756					ina			na na	-	na	schs	- 6H Mam						fala	260 72			ab a mi	(1.000	70		v large boulder of q bi musc sch. Site of an abandonned camp.
comment - rock BN3150	_		406320	5719696					na	na		na na	na	n.a	GH M	Mam bi sch mV1		amp	fg-mg gritty	bi non mago	108	1015	260 12		_	gnem	/1 260	12		NE corner of small take. Large o/c ridge on N margin of take exposing stgy foliated end schistose q bi schist (gwk-ss). Non mage. Sample of 15cm hem q vt # 11399 AEM anomaly - 64 conductivity. No o/c observed.
comment - geophy BN3151 comment - geophy BN3152	14-Oct-0	3 15:36 3 15:38	406273	5719553 5719876							na r	na na na na		na	OB				for man a state	bi non mano		bda	258 70			-				AEM anomaly -19.6 conductivity. No o/c observed. Bsp swamp, Wet stgy laminated gametiferous q bj schist. Non mage. Non mnzd.
comment - rock BN3153 comment - rock BN3154	14-Oct-0 14-Oct-0	3 15:49 3 16:05		5719745 5719795		-		1	na na		na r na r	na na na na	na	na	5A. N	Mam gt schs Mam gt		amp gt amp gt	fg-mg gritty fg-mg	bi non mage bi amp gt	mt	fols	250 72	2	-	1				N margin of large area of semi-continous o/c area. To N semi-open bsp swamp. Stgy garnetiferous bi
comment - rock BN3155	14-Oct-0	3 16:16	406294	5719916				-	na	na	na r	na ni	na	na	6H 1 gt 13	Mam fols sch	1	ampgi	fg-mg	bi amp +/- gt		fols	250 76	6	_	1				amp oxide IF, Non mnzd. Mod-stg foliation. Stay mage approx 40m NNE of AEM anomaly bn3152. SW margin of large bic knoll extending to E, gritty q bi schisk (aneta gwk/ss) minor gamets. Non mage. Stgy foliated, Rare tonalite dykeiet parallel to foliation
comment - geophy BN3156				5717271		-			na		na r		a na	na	OB								++-	-	_			-		AEM conductor located on the crest of large esker ridge. Cobbly gravel. No o/c.
comment - ddh BN3157 comment - rock BN3158				5718903 5716254				1				na na na na		na		ib 6H			fg		mt	lamn Isoclina folding	1 255 84	4 74	255	qv1	255	84	Y	old drill set up. Sills observed. Could not land with helicopter. Unknown drill hole number. E margin of a series of low o/c knolls. Bik well banded oxide (F. Stgy magc. Minor discont. q st's parallel to lamn. IF interbedded with magc gwk / arg lenses. Strong isoclinal folding observed. No significant sulphide mycn.
comment - grid BN3159 comment - misc DM3001 Wottam	16-Oct-0 30-Sep-0		398985 401408	5716723 5716816	L6E	BLO	51 593780	3 -88.42333				na ni na ni	na na	na	WO	TTAM							+	-					Y	Goldfields Grid - L6E BL0 Wottam prospecting camp. Temporary dock constructed.
rock sample DM3002 26851			393296					2 -88.53913		1.1.1				na		MP		amp	mg	limonite stain	tr-1% po		+-+-			+				
Soil sample DM3003 26852	30-SEP-			5712717				9 -88.54365				na n	a na	na	OB								+	-		-				b-horizon soil sample derk rusty brown
spil sample DM3004 26853	30-SEP-			5712619				3 -88.53519		na	na r	na na	a na	na	OB	- 2Mam gt		amp gt	mg	gamet	tr po		+	-	-	-		-		8-horizon soil sample dark rusty brown with ampc mg-og maf flow o/c proximal to sample
comment - CP DM3005 cp 887474 887476-1	1-3 02-OCT-	-	to be be					6 -88.40948		na	na r	na n	na na	na								1.000		-	-					
comment - grid DM3006 Noramco grid L1W		15:04	402282	5718035	L1W	1175N	51.604864	6 -88.41105	na	na	na	na n	na	na									+			-				
comment - grid DM3007 noramco grid L1W		15:46	402236	5718342	L1W	1475N	51.607621	9 -88.41181	na	na	na i	na n	na	na					1						-					
comment - grid DM3008 L1W @ tie line @ 80		3 17:36	401483	5717104	L1W		51.596362	-88.42233	na	na	na 1	na n	a na	na																
comment - rock DM3009 outcrop west edge		3 17:57	401714	5717063	L1W		51.596034	8 -88.41899	na	na	ла	na n	a na	na	o/c															
comment - grid DM3010 L1W @ tie	e 05-Oct-0	3 15:26	400345	5717190	L1W		51.596936	-88.43878	na	na	na	na n	a na	na																
comment - grid DM3011 250m W o DM3010 o tie line		3 15:42	400124	5717088			51.595975	8 -88.44194	กล	na	na	na n	a na	na																
comment - grid DM3012 L6E @ BL comment - rock DM3013 26873	06-Oct-0		398986 309995		L6E	BLO	51.592494	3 -88.45626		na na		na n na n	a na	na na		Mam seh		ສານວ	isch	non magnetiti	c 3% asp blebs 5% t	tg	++	-		-	-			
comment - rock DM3014 26874			399998	5716715	-			-	na	na	na	na n	ana	na	6E 1	Mam sch	1	amp	sch	hib	wispy py 1% asp					√3	-			1-5% rusty q vt's dk gy bik
comment - rock DM3015 26876 comment - rock DM3016 26875	06-Oct-0 06-Oct-0	3	394675 399653	5717439 5717464		-						na n na n		na na		gt chis vnw		amp amp		wky mag		lamn	70	ON		V4				stg rusty oxidization rusty q st's stg rusty oxidization
comment - rock DM3017 L1W 20N	_						+						a na	na		taur musc sch	h	staur	sch mg	wk FeO	na		++	-		-		-		med gy staurolitic muscovite schist
comment - rock DM3018	13-Oct-0	3 15:08	405888	5719956		-	-		na	na	ina i	na n	a na	ne		Mam		hib sch	sch	wk chl	na			-		-	-			or located proximal to 12 channel EM anomaly sediment contact to S. non magnetic
comment - rock DM3019 ddh - known DM3020 SL87-02	13-Oct-0	3 15:16	405883	5719953 5719608						na na	กล	0 66	a na	na na		sch			sch	musc				-		-		-		5m long N-5 historical trench_GPS @ N end of trench_gritty metasediments_sample 26896 4m to S ddh collar
position comment - grid DM3021 TL25N @				5719642	-			-					a na	na									++	-	+	+				Norameo grid
comment - rock DM3022	1	_		5719633	-				1	na		na n	a na	na	120	3			100				1-1-		_			-		5m wide dyke white g fp muss pegmatite
comment - rock DM3023 comment - rock DM3024	14-Oct-0	3 14:22	404751	5719666				-	na	nə	na	na n na n	a na	na	2A	Mam sch Mam		amp	sch mg	na gt hib	กล	lamn	70	ON			+			dk grn bik ampc maf flow mg black mody mage hib gi sch (oxide IF)
comment - rock DM3025												na in		na		Mam		anip	sch mg	hib	าเอ			-	-		-			mg black stgy magc hlb sch (oxide IF)
comment - rock DM3026 comment - rock DM3026 comment - rock DM3027	14-Oct-0 14-Oct-0	3 <u>15:39</u> 3 16:06	404709 404325	5719634 5719502 5719578					na	na	na	na n		na	2A	Mam Mam 12G		amp amp	fg fg sch		non mage Ina	toh.	75 70	'0- :0N				-		Ig dk gm bik non mage maf flow located on picket line fg dk gm sch maf vole with q fp pegmatite dykelets
comment - CP DM3028 Claim line	14-Oct-0	3 18:16	397886	5717182			-		na	กล	na	na n	a na	na							1			1			1	1		claim line post 400m N of 3001579-3 400mN of 3010506-2
comment - misc DM3029 helicopter landing are		3 19:46	396510	5716200					na	na	na	na n	a na	na								1								belicopter landing area
comment -rock ddh-estimated ddh	10-Oct-0			5718681 5715054					กล กล			na n na n		na na	6H		-	amp	mg	ig bi			+-+	+	+	-				quartz blotte schiet (meta-sedument)
position ddh-estirnated ddh	11-Oci-0	3 14:01	406580	5719970		-		1	na	na	na	na n	a na	na	-		1		-				1							
position ddh-estimated ddh	11-Oct-0	3 14:02	406900	5720350					Ina	na	na	na n	a na	na					1									1		
ddh-estimated ddh	01-Oct-0	3 17:10	405474	5719847				+	na	na	na	na n	a na	na					1					1	1	1	1			
position ddh-estimated ddh	01-Oct-0	3 17:16	404487	5719597					na	na	na	na n	a na	na			-			1		1		-		1		1		
ddh-estimated ddh	01-Oct-0	3 17:17	402194	5719030	-			-	na	ла	na	na n	a na	ла			1			1	1	1	++	-	-	1	1	1		
position	1				1	1			1		1		1				1			1	1		1 1	1	1	_	1	1		

CATEGORY	SAMPLE #	ANOMALY	DATE	TIME	utmE Zone16 NAD83	utmN Zone16 NAD83	GRID LOCATION East	GRID LOCATION North		Longitude (Nad83)		Multi- element analyses Method		As (ppm)	Cu ppm	SAMPLE	SAMPLE TYPE	MAJOR ROCK UNIT	MINOR ROCK UNIT	METAMORPHIC GRADE	TEXTURE	ALTERATION	N MINERALIZATION	STRUCTURE TYPE	AZM DI	DIP	PLUNGE AZM,		STRIN
ddh-estimated position	ddh		01-Oct-03	17:18	402492	5719097					na	na	na	na	na	na	na												
ddh-estimated position	M87-8		02-Oct-03	0:37	399959	5717347			51.5982771	-88,44439	na	na	na	nâ	na	na	na												
ddh- known position	M87-8C		05-Oct-03	15:47	399961	5717185			51.5968233	-88.44431	na	na	na	na	na	na	na												
ddh- known position	SL874C	SL874C	14-Oct-03		402543	5719180			51.6152018	-88.4076	na	na	na	na	na	56	na					-							
ddh- known position	FR10EL	FR10EL	07-Oct-03	21:04	406645	5718843			51.6128683	-88.34829	na	na	na	na	na	na;	ha												
ddh- known position	FR87-8	FR87-8	07-Oct-03	20:53	406681	5718813			51.6126108	-88.34776	na	na	na	na	na	na	na				1	1							
ddh- known position	SL871C	SL871C	11-Oct-03	16:16	405510	5719847					na	na	na	na	na	ne:	ha												
ddh - known position	DM3020 SL872C	-SL872C	14-Oct-03	13:21	404518	5719608					na	na	na	na	na	na	ha												
ddh- known position		SL873C	02-Oct-03	15:25	402249	5719117					na	na	na	na	na	na	na					1	T						
ddh- known position	ddh F87- 29 and 30	ddh F87-29 and 30	14-Oct-03	13:19	407196	5719176					na	na	na	na	na	na	na												
ddh-estimated position	45IM-1.	45IM-1.	02-Oct-03	0:38	400026	5717347					na	na	na	na	na	na	na												
ddh-estinneted position	45IM+2	45(N+2	02-Oct-0/3		400247	5717347				5.002	na	na	na	na	na	na	na												
ddh-estimated position	451M-3	451101-3	02-Oct-03	0:40	400247	5717347					na	na	na	na	na	na	na									-			
ddh-estimated position	451M-4	45IM-4	02-Oct-03		400291	5717298					na	na	na	na	na	na	กล		-										
ddh-estimated position	45IM-5	45IM-5	02-Oct-03	0:42	400291	5717298					na	na	na	na	na	na	na					1							-
ddh-estimated position	451M-6	45IM-6	02-Oct-03	0:43	400508	5716933					na	na	na.	na	na	ດຸລ	na												
ddh-estimated position	66MA-3	66MA-3	02-Oct-03	0:45	394520	5716600					na	na	na -	na	na	ດອ	ຖຍ												<u> </u>
ddh-estimated position	66MA-4	66MA-4	02-Oct-03	0:44	394320	5716900					กอ	na	na	na	na	na	na											<u> </u>	
ddh-estimated position	83BZ-1	83BZ-1	02-Oct-03	0:34	400179	5714943					na	na	na	na	na	na	กล												
ddh-estimated position	83BZ-2	83BZ-2	02-Oct-03	0:35	404510	5720260					na	na	na	Ina	na	na	na												
ddh-estimated position	87-30	87-30	14-Oct-03	12:52	407192	5719179					กล	na	na	na	na	na	กอ												
comment - CP	CP3-1	CP-613209- 2 613205-3				5717124					na	na	na	na	na	na	na								L				
comment	CP3-2	CP -1- 874821 1986	05-Oct-03		400078	5717036			51.5955037	-83.44.259		na	na	na	na	ла	na										-		-
comment - CP	℃₽- 3613209- 2 613205-3	613205-3	03-Oct-03								na	na	na	na	na	ກa	<u>na</u>												
comment - grid	BVREST	BL of temp prospecting grid east		14:30	401917	5717125		0			na	na	na	na	na	na	na												-
comment - grid	BVRWS T	BL of temp prospecting grid west		18:33	401739	5717043	0	0	ໃຈກະວ່958577	-88.41862	na	na	na	na	na	ina	<u>,08</u>										(10.00) (10.00)		
comment - grid	N0E18N	Norameo	02-Oct-03	16:47	402311	5718681	LOE	1800N	51.6106743	-88.41081	na	na	na	na	та	na	na									-			
comment - grid	N1E18N		02-Oct-03	16:55	402394	5718712	LIONE	1800N	51.6109693	-88.40962	na	ina	ne	na	na	ina	ຸດອ					-		1					1
commeril- (grid	N2EI18N		02-Oct-03	17:07	402502	5718721	L200E	18001	51.6110712	-884.0807	na	ina	na	na	na	na	na			1			-		-				
comment; gi d	NRE_1RUN		02-Oct-03	17:20	40260.1	5718720	1300E	1800N	51.6110786	-98.40663	na	10,6	984	na	TR.	ifia	ins.		1			-				1			1
zomvnent-gyld	N1W18N		02-C/cl-Cl3	18:32	402200	5718659	L100W	1800N	51.6104651	-85.41241	na	/m	na	na	na	na	na	-		1	2 					1			
comment - gid'	N1W750		12-0a-03	14:28	402335	5717617	L100W	750W	51.6011149	88.41017	na	na	na	na	n _B .	ina.	กล		i l				1				_		
comment -: grid	1CJEBLO	Grid Noramco Grid	02-Dct-03	13:15	402530	5716875	ILIDE.	BLO	5.1 \$944R.AL	-88.40715	na	na	na	na	na	na	na												
comment- giur	NL5WBV R	BL of temp prospecting grid west		14:48	KQ1/862	5717:082		D			na	10'	ſœ	na	78	TT FOR	48												
comment-grith	NL6WBV R	BL of temp prospecting grid west		14:43	401849	5717103	1	D			na	na	na	na	na	ina	ina												1
comment-grid			02-Oct-03		402200	5718659	105W	1793N			6 /1	te	194	n, B	na	กย	na		-							-		-	t-
comment- grid"		picket OE	29-Wai-DS		402252	5719096	0E	2225N			na	na	-Oa	na	na	na	na				i			1					
comment - grid		2225N Noramco	111-Dct-03	16:45	4055423	57. 19767.	3200E	11250014			na	na	ŋ Ru	na	na	na	10.00		-		<u>+</u>	1				1			
യന്നനent – grid	N3300E	Grid Noramoci	1 1-Od-03	1.6:36	405497	57197 77	3300E	1/2500N		1	Tre	ne	ina	na	na	าเติ	กษ								1	-	1	1	1
commente- grad	N3500E		11-Oct-03	21:03	405707	571 9811	3500E	112500N			na	na	na	18	ina.	na	01		+										1
cromment - grid	G475W?		05-Oct-03	-	399983	571,7037.	4.75/07	RIDON			ina	Ins	na	na	na	na	na		<u> </u>							1	†		-
comment - grid	G6E		06-03-03		399007	5.716636	6E	3005			na	na	na	na	ane -	Ina	fra							<u> </u>				1-	-
isomment- grid	300S G6E BL0	gtid Goldfiel ds	06-Oct-03	1	398985	571/67/23	6E	1b0)			โ ล้	16	THÍ	18	na	118.	181						-(
comment - rnisc	'ne'irpati	grid H2	14-Dci-Ua	18:55	394968	57077191					na.	nia	na	<u>na</u>	ina	19	etri 1		+								1		
commerit misc	the lpad	H3.	14-Ort-03	19:30	399107	5718760	1	1				Ina	na	na	na		กย	1	ļ		1		1	-		1		1	ť

101	QV DI	PHOTO	DESCRIPTION
SE.			
_	_		
_			
		Y	larse helicopter drill hole clearing drill set the sills and water infilier bit Priented approx 210 deg's
			MVC casing with 2 mabilizing rods to the immediate norm of casing jox30 metric clearing with bid hetwopter landing pad s of casing. Area re-cleared by hand for helicotier landing.
			mediculating paul S of calarity. Area receivance or transformer randomig.
-			
-		v	Roserved Adamen of ddh SHA7:1: NO SaSing, dhily drill Set Up Sills. Earge hercopter langing area:
_			Numerous bers on sufface
_			
_		Y	NWY Casing hol caPEed, Ckih azimun 19 and 8
		Ŷ	समा (Scation) old sills no casing, Survey oin Sem ^{1-O} nen Swamp Yerv wet, 19m S of cresk.
_			
_			
_			
_			
-			
_	1		
1			
	-		
-		-	
	-		CP - 2 -613209 3 - 61326e
			CP - 1-8, 4821 2-874820 3-874826 4-874825
_			end of propsecting baseline. Eastern end of baseline.
_			
	1	i	start of prospecting baseline @ 654 deg : western end of baseline
	-		TL 18N @ 88 deg's grid line @ 358 dt.3s. itte 415m E of L1W
			Gele & 358 tie line (m 8 8 deg 200)
			TL @ 195Vv 1793N west margin of bedroom controlled o/c knolls. Bsp+laot veg-
		_	0 (d @ 0 deg)s
	<u> </u>		9rid @ 6.deg's
			The date of the da
_			
			TH1800("@: LHW" W" margin of bedrock controlled hdge bsp hlabt
			Notanus with OF 222 N
			Noramco TL 25 CIN @ 3200E bsc last Dy ground.
			δύτιτητικο πιωχεδύζζ @ 2495N 33001: How o/c (snoll 20m to \$γ/r tel. @ 20b dig s.
			NSn 841350 TL2500N @ 2485KN 3600E?
			Goldneys gud 45 5 W? 800N
			Goldfields runn 6E. 305: Worde 425rt W W Wott #IT Lake
-		Y	Goldfeias gric18± @L0. BL @ 288 feg's
1			(i

APPENDIX I: 2003 Wottam Project Geological Observation and Sample Assay Table

CATEGORY	SAMPLI #	E ANOMAL	Y DATE	TIME	Zone16		LOCATION	LOCATION			ude Au (g/ 33)	element	(ppm)	As ((ppm) p	om LENG	PLE SAMPL	E MAJOR ROC UNIT	K MINOR ROCK	METAMORPHIC GRADE	TEXTURE	ALTERATION	MINERALIZATION	N STRUCTURE A		QV TYPE S		DIPLPHOT	TO DESCRIPTION
					NAD83	NAD83	East	North				analyse Method	8					UNIT							 	_	-	
ment - misc	Lake	LILYCP	02-Mar-0	3 18:05	411725	5720808					na	na	na	na na	na	na												
nent - misc	Camp Miminsik a Camp	K MCAMP				5716384			51.588347	6 -88.544	23 na	na	na	na na	na	na												Temporary Dock constructed.
nent - misc	MOB	MOB	13-Oct-03	3 17:27	405958	5720034			51.594286	-88.422	88 na	na	na	na na	na	na											_	
ment - misc	Wottam Camp	Wottam Camp				5716816			51.593760			na	na	na na	na	na											Y	

APPENDIX II

ACCURASSAY LABORATORY CERTIFICATES

1070 LITHIUM DRIVE, UNIT 2 PHONE (807) 626-1630 FAX (807) 623 6820 THUNDER BAY, ONTA EMAIL accuracy@tbaytel.net

ONTARIO P7B 6G3 tel.net WEB www.accurassay.com

Certificate of Analysis

Wednesday, October 22, 2003

Landore Resources Inc. 555 Central Avenue Thunder Bay, ON, CA P7B5R5 Ph#: (807) 623-3770 Fax#: (807) 623-2335 Email landore@tbaytel.net

Wottam Prospectiz Cert.

Date Received : 08-Oct-03 Date Completed : 21-Oct-03 Job # 200341446 Reference : Wottam Sample #: 45 Rock

Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)
62503	11354	990 <5	<0.001	<0.005
62504	11355	<5	<0.001	<0.005
62505	11356	<5	<0.001	<0.005
62506	11357	<5	<0.001	<0.005
62507	11358	<5	< 0.001	<0.005
62508	11359	<5	<0.001	<0.005
62509	11360	<5	<0.001	<0.005
62510	11361	<5	<0.001	<0.005
62511	11362	<5	<0.001	<0.005
62512	11363	<5	<0.001	<0.005
62513 Check	11363	<5	<0.001	<0.005
62514	11364	<5	<0.001	< 0.005
62515	11365	1959	0.057	1.959
62516	11366	44	0.001	0.044
62517	11367	<5	< 0.001	< 0.005
62518	11368	<5	<0.001	<0.005
62519	11369	15	<0.001	0.015
62520	11370	<5	<0.001	<0.005
62521	11371	6	<0.001	0.005
62522	11372			
62523 Check		13	<0.001	0.013
62524 Check	11372	6	< 0.001	0.006
62525	26851	240	0.007	0.240
02323	20051	<5	< 0.001	< 0.005

approval of the laboratory

Derek Demianiuk H.Bsc., Laboratory Manager

The Certificate of Analysis should not be reproduced except in full, without the written

AL903-0125-10/22/2003 08:02 AM

1070 LITHIUM DRIVE, UNIT 2 FAX (807) 623 6820 PHONE (807) 626-1630

THUNDER BAY, EMAIL accuracy@tbaytel.net

ONTARIO P7B 6G3 WEB www.accurassay.com

Certificate of Analysis

Wednesday, October 22, 2003

Landore Resources Inc. 555 Central Avenue Thunder Bay, ON, CA P7B5R5 Ph#: (807) 623-3770 Fax#: (807) 623-2335 Email landore@tbaytel.net

Wottam -Prosperting Keol

Date Received : 08-Oct-03 Date Completed : 21-Oct-03 Job # 200341446 Reference : Wottam Sample #: 45 Rock

Accurassay #	Client Id	Au	Au	Au	
-		ppb	oz/t	g/t (ppm)	
62526	26853	<5	< 0.001	< 0.005	
62527	26854	<5	< 0.001	< 0.005	
62528	26855	<5	< 0.001	< 0.005	
62529	26856	8	< 0.001	0.008	
62530	26857	10	< 0.001	0.010	
62531	26858	<5	< 0.001	< 0.005	
62532	26859	14	< 0.001	0.014	
62533 Check	26859	18	<0.001	0.018	
62534	26860	7	< 0.001	0.007	
62535	26861	39	0.001	0.039	
62536	26862	13	< 0.001	0.013	
62537	26863	189	0.006	0.189	
62538	26864	33	< 0.001	0.033	
62539	26865	166	0.005	0.166	
62540	26866	- 1725	0.050	1.725	
62541	26867	85	0.002	0.085	
62542	26868	119	0.003	0.119	
62543 Check	26868	145	0.004	0.145	
62544	26869	78	0.002	0.078	
62545	26870	57	0.002	0.057	
62546	26871	223	0.007	0.223	
62547	26872	11	< 0.001	0.011	
62548	26873	13	< 0.001	0.013	
PROCEDURE CODES: ALAAL				Pag	ze 2 of

PROCEDURE AD4ICPAR **Certified By** Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested

Page 2 of 3

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0125-10/22/2003 08:02 AM

1070 LITHIUM DRIVE, UNIT 2 PHONE (807) 626-1630 FAX (807) 623 6820 THUNDER BAY, ONTARIO P7B 6G3 EMAIL accuracy@tbaytel.net WEB ww

WEB www.accurassay.com

Certificate of Analysis

Wednesday, October 22, 2003

Landore Resources Inc. 555 Central Avenue Thunder Bay, ON, CA P7B5R5 Ph#: (807) 623-3770 Fax#: (807) 623-2335 Email landore@tbaytel.net

Wottan Prospecting (Geol

Date Received : 08-Oct-03 Date Completed : 21-Oct-03 Job # 200341446 Reference : Wottam Sample #: 45 Rock

A	Oligant Id	Au	Au	Au	
Accurassay #	Client Id	ppb	oz/t	g/t (ppm)	
62549	26874	18	< 0.001	0.018	
62550	26875	354	0.010	0.354	
62551	26876	57	0.002	0.057	

PROCEDURE CODES: AL4Au3, AL4ICPAR	\frown	Page 3 of 3
Certified By:	The results included on this report relate only to the items tes 	
Derek Demianiuk H.Bsc., Laboratory Manager	approval of the laboratory	AL903-0125-10/22/2003 08:02 AM

Accurassay Laboratories A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

andore Resources Inc. Date Created: 03-10-24 07:41 AM Job Number: 200341446)ate Recieved: 10/8/2003 Jumber of Samples: 45 Type of Sample: Rock)ate Completed: 10/21/2003 Project ID: Wottam

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

*The methods used for these analysis are not accredited under ISO/IEC 17025

Page: 1

Accur. # Clie	nt Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	Ti ppm	V ppm	Y ppm	Zn ppm
62503	11354	<1	0.97	<3	71	35	<1	1.04	<10	6	164	12	4.72	0.07	0.57	1669	3	0.23	16	557	4	<10	<1	0.26	24	856	<1	4	6	28
62504	11355	<1	0.05	<3	91	<10	<1	0.02	<10	2	43	3	9.40	<0.01	0.05	866	2	<0.01	6	112	13	<10	<1	0.13	<1	128	<1	18	3	7
62505	11356	<1	0.16	<3	66	<10	<1	0.05	<10	1	59	<1	3.88	<0.01	0.04	1618	1	0.01	<1	122	5	<10	<1	0.11	<1	<100	2	2	2	7
62506	11357	<1	0.08	<3	74	<10	<1	0.09	<10	2	308	10	4.17	0.04	0.05	845	4	<0.01	10	<100	3	<10	<1	0.19	<1	<100	<1	<2	1	5
62507	11358	<1	0.71	<3	80	66	<1	0.67	<10	5	96	33	7.09	0.17	0.41	1943	1	0.23	7	337	5	<10	<1	0.21	39	875	<1	4	3	12
62508	11359	<1	0.64	<3	82	1 70	<1	0.13	<10	10	336	21	4.43	0.35	0.71	379	4	0.07	54	386	4	<10	<1	0.12	9	1574	<1	12	2	31
62509	11360	<1	1.10	<3	78	83	<1	0.20	<10	19	151	15	8.01	0.18	0.99	272	1	0.03	40	517	6	<10	<1	0.11	8	2008	<1	10	5	49
62510	11361	<1	0.38	5	58	<10	<1	0.03	<10	2	183	5	0.85	0.02	0.37	107	2	0.02	11	115	4	<10	<1	0.06	<1	203	<1	<2	<1	22
62511	11362	<1	1.43	19	58	43	<1	0.09	<10	10	268	12	3.91	0.14	1. 62	494	4	0.04	48	386	4	<10	<1	0.21	4	803	<1	<2	4	97
62512	11363	<1	1.44	22	66	25	<1	0.09	<10	13	280	40	4.11	0.07	1.68	647	3	0.04	53	631	6	<10	<1	0.18	5	178	<1	7	7	94
62513	11363	<1	1.43	22	62	24	<1	0.09	<10	12	267	27	3.99	0.07	1.64	624	2	0.04	51	606	7	<10	<1	0.20	5	166	<1	6	7	91
62514	11364	<1	0.19	<3	54	<10	<1	0.10	<10	2	777	24	0.71	<0.01	0.08	<100	7	0.04	27	127	4	<10	<1	0.07	5	<100	5	<2	<1	8
62515	11365	<1	0.59	<3	57	17	<1	0.49	<10	18	12	55	1.81	0.05	0.31	251	1	0.27	9	825	3	<10	<1	0.05	33	>4,000	<1	29	20	43
62516	11366	<1	0.23	4549	146	19	<1	0.23	21	23	339	31	1.87	0.05	0.08	<100	5	0.04	42	693	9	<10	2	0.05	20	1212	<1	<2	9	5
62517	11367	<1	1.38	39	61	35	<1	0.06	<10	10	274	6	3.63	0.14	1.50	500	4	0.04	64	434	4	<10	<1	0.14	3	<100	<1	<2	9	82
62518	11368	<1	0.30	<3	48	<10	<1	0.26	<10	<1	367	4	0.40	<0.01	0.11	<100	3	<0.01	12	<100	<1	<10	<1	0.09	7	<100	3	<2	4	8
62519	11369	<1	0.42	4380	98	43	<1	0.08	19	8	509	22	2.74	0.09	0.26	1 41	6	0.05	22	345	10	<10	<1	0.07	11	874	<1	<2	4	12
62520	11370	<1	1.15	39	53	53	<1	0.07	<10	8	330	4	2.97	0.12	1.20	349	4	0.03	45	374	5	<10	<1	0.19	2	753	<1	<2	5	62
62521	11371	<1	0.12	2201	103	30	<1	0.07	10	19	269	65	1.31	0.03	0.02	<100	5	0.04	69	449	3	<10	<1	0.05	4	677	<1	<2	5	4
62522	11372	<1	1.32	27	60	10	<1	0.27	<10	5	377	163	7.32	0.05	0.64	251	2	<0.01	16	826	17	<10	<1	0.25	1	623	<1	<2	4	26
62523	11372	<1	1.34	26	79	11	<1	0.28	<10	5	389	165	7.53	0.05	0.66	263	3	0.01	14	837	15	<10	<1	0.26	1	658	<1	<2	4	26
62524	11373	<1	1.23	<3	76	250	<1	0.15	<10	9	320	32	7.15	0.55	0.69	103	2	0.02	30	628	7	<10	<1	0.19	2	1425	<1	3	2	27

Certified By Derek Dem

R Accurassay Laboratories

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

												* This	Certific of the	ate of <i>i</i> laborate	Analys ory.	ese anal	ld not l	be repro	oduced	l excep	t in full			vritten a	pprova	al				
Accur. # Clie	nt Tag	Ag	AI	As	в	Ва	Be	Ca	Cd	Co	Cr	Cu	Fe	к	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Se	Si	Sr	Ti	τı	v	Y	Zn
		ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
62525	26851	<1	1.13	<3	62	19	<1	1.69	<10	13	163	88	4.56	0.08	0.78	2077	2	0.30	30	658	<1	<10	<1	0.29	14	1020	<1	<2	6	26
62526	26853	<1	0.84	<3	57	89	<1	0.72	<10	20	106	33	3.99	0.21	0.55	881	2	0.15	50	488	<1	<10	<1	0.23	3	865	<1	2	4	14
62527	26854	<1	0.21	<3	93	11	<1	0.37	<10	2	150	14	8.56	0.04	0.05	<100	- <1	0.04	3	1021	9	<10	<1	0.07	35	127	<1	<2	2	2
62528	26855	<1	0.10	<3	53	10	<1	0.08	<10	1	615	6	1.55	0.03	0.05	139	5	0.02	16	<100	<1	<10	<1	0.05	3	<100	2	<2	<1	<1
62529	26856	<1	0.09	<3	61	<10	<1	0.16	<10	<1	284	1	1.91	0.01	0.02	<100	3	0.03	7	486	2	<10	<1	0.05	23	<100	4	<2	<1	5
62530	26857	<1	0.35	13	80	53	<1	0.40															5							
62531	26858	<1	0.05	<3	50	<10	<1	0.04	<10	1	919	8	0.82	<0.01	0.02	<100	8	0.02	24	<100	<1	<10	<1	0.04	4	<100	3	<2	<1	2
62532	26859	<1	0.78	<3	59	37	<1	0.92	<10	1	113	6	4.15	0.09	0.25	168	6	0.12	14	797	6	<10	<1	0.25	47	112	<1	<2	2	10
62533	26859	<1	0.83	<3	59	39	<1	0.97	<10	1	103	6	4.37	0.10	0.26	174	5	0.12	4	838	4	<10	<1	0.22	49	118	<1	<2	2	8
62534	26860	<1	<0.01	<3	39	<10	<1	<0.01	<10	1	574	5	0.40	<0.01	<0.01	<100	5	<0.01	17	<100	1	<10	<1	0.03	7	<100	3	<2	<1	3
62535	26861	<1	1.03	6	94	36	<1	1.08	<10	2	139	64	>10.00	0.08	0.38	418	2	0.05	10	482	22	<10	<1	0.08	51	220	<1	25	3	15
62536	26862	<1	1.81	<3	89	15	<1	0.30	<10	2	78	15	>10.00	0.04	0.96	503	1	0.03	12	505	18	<10	<1	0.07	11	294	<1	52	2	42
62537	26863	<1	0.92	5	94	78	<1	0.55	<10	6	307	62	>10.00	0.16	0.35	488	3	0.05	19	861	21	<10	<1	0.07	35	190	2	18	4	14
62538	26864	<1	1.28	<3	85	12	<1	1.06	<10	1	135	37	8.90	0.06	0.51	300	2	0.10	8	674	13	<10	<1	0.08	36	386	4	31	3	14
62539	26865		0.14	17	78	20	<1	0.43	<10	1	462	21	6.80	0.04	0.04	274	4	<0.01	15	665	13	<10	<1	0.11	47	<100	3	2	2	3
62540	26866		0.66	<3	51	15	<1	0.47	<10	18	12	50	1.71	0.04	0.29	235	2	0.20	14	756	<1	<10	<1	0.03	30	>4,000	<1	89	18	40
62541	26867		0.87	294	92	18	<1	0.91	<10	3	71	66	8.85	0.07	0.23	181	<1	0.10	9	338	14	<10	<1	0.13	19	<100	<1	4	3	9
62542	26868	-	0.08	9	49	<10	<1	0.07	<10	<1	405	6	0.68	<0.01	0.01	<100	3	0.01	12	<100	<1	<10	<1	0.03	1	<100	<1	<2	<1	<1
62543	26868		0.09	6	50	<10	<1	0.07	<10	1	407	7	0.68	< 0.01	0.01	<100	3	0.02	11	<100	<1	<10	<1	0.03	1	<100	<1	<2	<1	5
62544	26869	-	0.81	<3	74	35	<1	1.09	<10	3	58	13	5.48	0.07	0.22	190	<1	0.07	14	649 624	6	<10	<1	0.05	56	264	2	<2	2	18
62545 62546	26870	-	1.01	630	108	50	<1	1.72	<10	5	182	78	>10.00	0.09	0.40	454	<1	0.09 0.11	14	634 1 4 82	18	<10	<1	0.09 0.08	27 29	207 139	2 <1	<2 <2	4	18 11
02040	26871	<1	0.89	129	100	32	<1	1.12	<10	3	131	78	>10.00	0.13	0.27	241	<1	0.11	12	1462	16	<10	<1	0.00	29	139		~2	3	11

Certified By: Derek Demianiuk, H Bsc.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Accurassay Laboratories

andore Resources Inc. Date Created: 03-10-24 07:41 AM Job Number: 200341446 ate Recieved: 10/8/2003 umber of Samples: 45 Type of Sample: Rock ate Completed: 10/21/2003 roject ID: Wottam Accur. # Client Tag Ag Al As B Ba Be Ca Cd Co Cr ppm % ppm ppm ppm 9 % ppm ppm ppm													* This	Certific of the	include ate of / laborate s used	Analysi ory.	is shou	ld not i	be repr	oduced	l excep	t in full			vritten a	approva	al			
Accur. # Cl	lient Tag				В							Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	TI ppm	V ppm	Y ppm	Zn ppm
		ppm	%	ppm	ppm	ppm	ppm	70	ppm	ppin	ppm	ppm	70	70	/0	ppm	ppm	70	ppm	ppm	ppm	ppm	ppm	70	ppm	ppin	ppm	ppm	ppin	ppm
62547	26872	<1	0.14	<3	42	<10	<1	0.11	<10	2	517	5	0.82	<0.01	0.05	<100	4	0.02	15	<100	2	<10	<1	0.03	<1	<100	<1	<2	<1	3
62548	26873	<1	0.20	>8,000	109	<10	<1	0.26	95	29	194	172	2.72	<0.01	0.05	<100	2	0.01	76	1052	7	<10	<1	0.05	19	537	<1	<2	8	10
62549	26874	<1	0.24	4279	72	<10	<1	0.16	21	23	159	73	2.01	0.03	0.13	<100	2	0.02	77	587	7	<10	<1	0.04	5	612	<1	<2	10	10
62550	26875	<1	0.93	23	65	<10	<1	0.18	<10	8	399	228	4.96	0.01	0.31	241	3	<0.01	22	483	6	<10	<1	0.13	<1	230	<1	<2	2	15
62551	26876	<1	1.74	8	96	53	<1	0.33	<10	11	519	51	9.81	0.14	1.04	463	4	0.01	32	1753	11	<10	<1	0.11	3	662	<1	<2	6	40

Certified By: <u>Kcymb</u> Derek Demiarfiyk, H.Bsc.

1070 LITHIUM DRIVE, UNIT 2 FAX (807) 623 6820 PHONE (807) 626-1630

THUNDER BAY, EMAIL accuracy@tbaytel.net

ONTARIO P7B 6G3 WEB www.accurassay.com

Certificate of Analysis

Thursday, October 23, 2003

Landore Resources Inc. 555 Central Avenue Thunder Bay, ON, CA P7B5R5 Ph#: (807) 623-3770 Fax#: (807) 623-2335 Email landore@tbaytel.net

Wittan property

Date Received : 16-Oct-03 Date Completed : 23-Oct-03 Job # 200341499 Reference : Wottam Sample #: 57 Rock

curassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)
64239	11374	>5	<0.001	<0.005
64240	11375	<5	< 0.001	< 0.005
64241	11376	<5	< 0.001	<0.005
64242	11377	<5	< 0.001	< 0.005
64243	11378	<5	< 0.001	<0.005
64244	11379	<5	< 0.001	<0.005
64245	11380	<5	< 0.001	<0.005
64246	11381	<5	< 0.001	<0.005
64247	11382	<5	< 0.001	< 0.005
64248	11383	<5	< 0.001	< 0.005
64249 Check	11383	<5	<0.001	< 0.005
64250	11384	<5	<0.001	< 0.005
64251	11385	<5	< 0.001	< 0.005
64252	11386	3098	0.090	3.098
64253	11387	7	< 0.001	0.007
64254	11388	<5	< 0.001	< 0.005
64255	11389	<5	< 0.001	< 0.005
64256	11390	<5	< 0.001	< 0.005
64257	11391	<5	< 0.001	< 0.005
64258	11392	<5	< 0.001	< 0.005
64259 Check	11392	<5	< 0.001	< 0.005
64260	11393	<5	< 0.001	< 0.005
64261	11394	<5	< 0.001	< 0.005
OCEDURE CODES: A				Page
rtified By:		sults included on this report relate	only to the Items	0

approval of the laboratory

f 3

Derek Demianiuk H.Bsc., Laboratory Manager

AL903-0125-10/23/2003 12:21 PM

1070 LITHIUM DRIVE, UNIT 2 PHONE (807) 626-1630 FAX (807) 623 6820

THUNDER BAY, EMAIL accuracy@tbaytel.net

ONTARIO P7B 6G3 WEB www.accurassay.com

Certificate of Analysis

Thursday, October 23, 2003

Landore Resources Inc. 555 Central Avenue Thunder Bay, ON, CA P7B5R5 Ph#: (807) 623-3770 Fax#: (807) 623-2335 Email landore@tbaytel.net

Date Received : 16-Oct-03 Date Completed : 23-Oct-03 Job # 200341499 Reference : Wottam Sample #: 57 Rock

	•	Au	Au	Au
Accurassay #	Client Id	ppb	oz/t	g/t (ppm)
64262	11395	<5	< 0.001	< 0.005
64263	11396	<5	< 0.001	< 0.005
64264	11397	<5	<0.001	< 0.005
64265	11398	<5	< 0.001	< 0.005
64266	11399	9	< 0.001	0.009
64267	11400	1690	0.049	1.690
64268	26877	<5	< 0.001	<0.005
64269 Check	26877	<5	< 0.001	< 0.005
64270	26878	<5	< 0.001	<0.005
64271	26879	<5	< 0.001	<0.005
64272	26880	2932	0.086	2.932
64273	26881	<5	< 0.001	<0.005
64274	26882	<5	< 0.001	< 0.005
64275	26883	<5	< 0.001	<0.005
64276	26884	<5	<0.001	< 0.005
64277	26885	<5	< 0.001	<0.005
64278	26886	<5	< 0.001	< 0.005
64279 Check	26886	<5	< 0.001	< 0.005
64280	26887	<5	<0.001	< 0.005
64281	26888	<5	< 0.001	< 0.005
64282	26889	<5	< 0.001	<0.005
64283	26890	<5	< 0.001	<0.005
64284	26891	<5	< 0.001	< 0.005
-				

PROCEDURE CODES: AL AAu3, AL4ICPAR Certified By: Derek Demianiuk-H:Bsc., Laboratory Manager

The results included on this report relate only to the items tested

Page 2 of 3

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0125-10/23/2003 12:21 PM

A DIVISION OF ASSAY LABORATORY SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 PHONE (807) 626-1630 FAX (807) 623 6820 THUNDER BAY, ONTARIO P7B 6G3 EMAIL accuracy@tbaytel.net WEB ww

WEB www.accurassay.com

Certificate of Analysis

Thursday, October 23, 2003

Landore Resources Inc. 555 Central Avenue Thunder Bay, ON, CA P7B5R5 Ph#: (807) 623-3770 Fax#: (807) 623-2335 Email landore@tbaytel.net

Date Received : 16-Oct-03 Date Completed : 23-Oct-03 Job # 200341499 Reference : Wottam Sample #: 57 Rock

Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)
64285	26892	<5	< 0.001	< 0.005
64286	26893	<5	< 0.001	< 0.005
64287	26894	<5	< 0.001	< 0.005
64288	26895	1217	0.036	1.217
64289	26896	<5	< 0.001	< 0.005
64290 Check	26896	<5	< 0.001	< 0.005
64291	26897	<5	< 0.001	< 0.005
64292	26898	<5	< 0.001	< 0.005
64293	26899	<5	< 0.001	<0.005
64294	26900	<5	< 0.001	< 0.005
64295	203751	<5	<0.001	< 0.005
64296	203752	<5	< 0.001	<0.005
64297	203753	<5	< 0.001	<0.005
64298	203754	<5	< 0.001	<0.005
64299 Check	203754	<5	< 0.001	< 0.005
64300	203755	<5	< 0.001	< 0.005
64301	203756	1745	0.051	1.745

approval of the laboratory

PROCEDURE CODES: ALADS, AL4ICPAR

Page 3 of 3

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written

AL903-0125-10/23/2003 12:21 PM

Accurassay Laboratories A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Wollam thing

andore Resources Inc. Date Created: 03-10-24 09:53 AM Job Number: 200341499 ate Recieved: 10/16/2003 umber of Samples: 57 Type of Sample: Rock ate Completed: 10/23/2003 roject ID: Wottam

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

1

*The methods used for these analysis are not accredited under ISO/IEC 17025

Page:

Accur. # Cl	lient Tag	Ag	Ai	As	в	Ва	Be	Са	Cd	Co	Cr	Cu	Fe	к	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Se	Si	Sr	Ti	ТΙ	v	Y	Zn
		ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
64239	11374	<1	0.73	4	60	77	<1	1.02	<10	15	74	28	7.39	0.10	0.48	2550	<1	0.28	36	611	8	<10	<1	0.12	46	1175	1	13	6	11
64240	11375	<1	0.44	<3	83	86	<1	0.04	<10	6	165	16	5.12	0.14	0.35	715	<1	0.12	12	653	8	<10	<1	0.14	30	1602	<1	3	3	12
64241	11376	<1	0.36	<3	62	48	<1	0.20	<10	56	462	68	6.11	0.15	0.25	340	3	0.05	122	332	10	<10	<1	0.07	5	1514	<1	9	3	22
64242	11377	<1	1.46	<3	94	57	<1	0.45	<10	7	242	57	>10.00	0.06	0.44	292	2	0.01	8	201	14	<10	<1	0.08	3	1076	<1	<2	4	16
64243	11378	<1	0.70	<3	80	41	<1	0.22	<10	15	361	31	8.14	0.41	0.66	799	1	0.10	74	521	10	<10	<1	0.11	17	2071	<1	9	3	33
64244	11379	<1	0.35	<3	81	88	<1	0.08	<10	6	596	19	8.72	0.17	0.27	655	4	0.04	46	282	8	<10	<1	0.10	6	897	<1	7	<1	14
64245	11380	<1	0.32	<3	70	68	<1	0.14	<10	4	633	14	7.08	0.19	0.20	959	4	0.03	15	224	10	<10	<1	0.09	14	1368	<1	5	1	9
64246	11381	<1	0.52	<3	88	81	<1	0.26	<10	93	490	21	>10.00	0.20	0.36	1337	4	0.05	46	273	14	<10	<1	0.12	20	1605	<1	6	1	22
64247	11382	<1	0.69	<3	43	25	<1	0.88	<10	11	507	8	2.12	0.06	0.11	1007	4	0.04	17	267	2	<10	<1	0.09	83	2048	<1	3	2	5
64248	11383	<1	1.03	<3	45	143	<1	0.52	<10	20	927	23	1.80	0.52	0.50	432	7	0.20	59	410	1	<10	<1	0.11	68	2589	<1	6	3	35
64249	11383	<1	1.04	3	47	145	<1	0.52	<10	20	942	23	1.83	0.53	0.51	438	7	0.20	63	411	<1	<10	<1	0.11	69	2615	<1	6	3	35
64250	11384	<1	0.03	<3	36	<10	<1	0.01	<10	<1	567	5	0.69	0.01	0.01	<100	4	0.02	14	<100	<1	<10	<1	0.04	<1	<100	1	<2	<1	<1
64251	11385	<1	0.05	<3	31	<10	<1	<0.01	<10	<1	576	5	0.85	0.02	0.01	<100	5	0.03	14	<100	<1	<10	<1	0.04	1	136	<1	<2	<1	<1
64252	11386	<1	0.46	6	37	27	<1	0.53	<10	8	17	31	1.04	0.06	0.23	150	5	0.17	18	330	7	<10	<1	0.04	25	2701	<1	10	8	23
64253	11387	<1	0.33	<3	84	25	<1	0.12	<10	21	373	40	>10.00	0.06	0.29	335	2	0.04	96	278	10	<10	<1	0.15	6	907	<1	2	2	14
64254	11388	<1	1.32	<3	72	<10	<1	1.79	<10	4	375	22	6.94	0.18	0.36	385	3	0.27	12	605	5	<10	<1	0.18	20	629	<1	<2	8	10
64255	11389	<1	0.70	<3	68	<10	<1	0.64	<10	2	296	45	5.98	0.06	0.21	449	2	0.06	7	639	7	<10	<1	0.08	12	185	<1	<2	3	5
64256	11390	<1	1.67	6	85	507	<1	1.88	<10	24	385	60	9.64	0.77	1.10	7291	1	0.30	99	207	8	<10	<1	0.11	81	3518	<1	30	10	36
64257	11391	<1	1.30	<3	53	25	<1	1.84	<10	7	452	17	3.03	0.32	0.66	708	3	0.13	23	704	2	<10	<1	0.10	105	1280	<1	<2	5	20
64258	11392	<1	1.74	7	67	102	<1	1.90	<10	22	544	39	5.39	0.43	0.95	2453	4	0.38	56	943	7	<10	<1	0.12	171	2443	<1	<2	9	74
64259	11392	<1	1.63	7	57	83	<1	1.62	<10	18	449	32	4.56	0.35	0.80	2080	3	0.31	46	7 9 8	7	<10	<1	0.15	139	2033	<1	<2	7	69
64260	11393	<1	0.93	<3	54	34	<1	1.57	<10	34	264	29	3.54	0.17	0.85	833	2	0.21	60	1418	<1	<10	<1	0.15	51	>4,000	<1	34	12	38

Certified By: Derek Demianiuk,

V

ppm

<2

<2

<2

<2

Υ

ppm

<1

Zn

ppm

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

wottampenting

Accurassay Laboratories

andore Res Jate Created Job Number ate Recieve umber of S Type of Sam [−] ate Comple	d: 03-10-2 :: 2003414 ed: 10/16/ Samples: 5 pple: Rock	4 09:8 99 2003 57												* This	Certific of the	cate of laborat	Analys tory.	is shou	uld not	re not a	oduced accredit	l excep	ot in full			written a	approv	al
roject ID: V		5/200	5																raye.	2								
Accur. # Clie	ent Tag	Ag	AI	As	в	Ba	Be	Са	Cd	Co	Cr	Cu	Fe	к	Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Se	Si	Sr	Ti	TI	,
	i ug	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	pp
64261	113 94	<1	0.84	<3	55	60	<1	1.33	<10	19	224	24	4.25	0.17	0.69	1382	2	0.14	56	1329	2	<10	<1	0.10	50	0070	- 1	
64262	11395	<1	0.82	~3 <3	55 54	38	<1	1.43	<10	24	285	24 31	4.08	0.17	0.79	1505	2	0.14	43	1329	2 5	<10	<1	0.10 0.15	50 42	2872 2647	<1 <1	۱ د
64263	11395	<1	1.17	<3	75	<10	<1	0.88	<10	22	249	35	9.19	0.03	1.14	3557	2	0.04	43 62	579	9	<10	<1	0.15	42 49	2047	<1	-
64264	11397	<1	0.04	<3	32	<10	<1	0.01	<10	5	959	26	0.84	<0.00	<0.01	<100	8	0.01	31	<100	<1	<10	<1	0.04	49 <1	<100	3	
64265	11398	<1	1.22	6	57	166	<1	1.38	<10	15	295	120	6.08	0.27	0.82	1972	1	0.33	38	151	5	<10	<1	0.16	29	1749	<1	2
64266	11399	<1	0.94	3	77	134	<1	0.02	<10	6	746	36	3.09	0.51	0.63	138	6	0.03	28	<100	7	<10	<1	0.16	2	957	<1	2
64267	11400	<1	0.65	<3	42	15	<1	0.51	<10	17	14	52	1.79	0.05	0.30	247	1	0.27	8	791	3	<10	<1	0.04	35	>4.000	<1	2
64268	26877	<1	0.79	<3	50	290	<1	0.19	<10	24	512	30	4.11	0.55	0.81	574	4	0.07	66	1173	3	<10	<1	0.10	23	1629	<1	2
64269	26877	<1	0.74	<3	45	271	<1	0.18	<10	23	481	28	3.97	0.51	0.76	525	3	0.07	62	1105	3	<10	<1	0.12	22	1509	<1	2
64270	26878	<1	0.69	<3	52	224	<1	0.17	<10	22	388	19	3.91	0.24	0.60	440	3	0.08	84	710	4	<10	<1	0.07	29	1460	<1	36
64271	26879	<1	0.60	<3	43	11	<1	1.82	<10	1	458	12	2.11	0.02	0.08	1221	4	0.02	12	749	4	<10	<1	0.06	71	271	<1	<
64272	26880	<1	0.44	8	35	27	<1	0.52	<10	9	17	30	1.04	0.06	0.23	149	6	0.16	15	333	6	<10	<1	0.02	25	2652	<1	1(
64273	26881	<1	0.31	<3	109	15	<1	0.51	<10	3	271	<1	>10.00	0.06	0.15	146	3	0.08	7	671	19	<10	<1	0.07	19	207	<1	<
64274	26882	<1	0.76	<3	48	<10	<1	0.41	<10	2	752	7	3.55	0.01	0.25	1452	6	0.03	19	759	3	<10	<1	0.13	32	393	<1	<
64275	26883	<1	0.54	80	49	13	<1	0.28	<10	15	595	20	4.21	0.08	0.33	935	5	0.04	34	1210	7	<10	<1	0.14	28	798	<1	3
64276	26884	<1	0.68	<3	53	123	<1	0.31	<10	4	545	12	4.99	0.21	0.39	1153	4	0.09	15	576	6	<10	<1	0.15	40	1094	<1	1
64277	26885	<1	0.78	<3	51	170	<1	0.19	<10	8	351	17	5.01	0.41	0.50	570	2	0.08	15	1257	4	<10	<1	0.14	40	1511	<1	34
64278	26886	<1	0.83	<3	55	84	<1	0.37	<10	8	311	17	4.87	0.28	0.41	435	2	0.16	16	1849	5	<10	<1	0.09	78	1342	<1	1
64279	26886	<1	0.77	<3	52	74	<1	0.33	<10	7	278	15	4.36	0.25	0.36	400	2	0.14	14	1651	2	<10	<1	0.09	69	1223	<1	12
64280	26887	<1	1.51	<3	49	104	<1	1.66	<10	26	386	31	4.64	0.21	0.65	791	2	0.41	56	1041	5	<10	<1	0.17	230	1642	<1	3
64281	26888	<1	1.11	<3	45	73	<1	0.84	<10	13	421	23	3.91	0.19	0.53	556	3	0.26	28	1019	<1	<10	<1	0.15	121	1392	<1	13
64282	26889	<1	1.25	3	56	67	<1	1.10	<10	32	433	43	5.65	0.28	0.65	929	3	0.16	60	1477	5	<10	<1	0.10	139	1756	<1	13

Certified By: <u>Stry Kymperic</u> Derek Demianijuk, H.Bsc.

Accurassay Laboratories A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Wothan prospecting

andore Resources Inc. _ate Created: 03-10-24 09:53 AM Job Number: 200341499 ate Recieved: 10/16/2003 umber of Samples: 57 Type of Sample: Rock ¬ate Completed: 10/23/2003 roject ID: Wottam

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

3

*The methods used for these analysis are not accredited under ISO/IEC 17025

Page:

Accur. # Clie	nt Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	TI ppm	V ppm	Y ppm	Zn ppm
									•••		1 P	1							PP	PP	P P ····	PP.11	PP		P.P	PP	PP	PP	PPIII	ppm
64283	26890	<1	0.79	<3	47	91	<1	0.36	<10	26	254	35	4.00	0.26	0.51	551	1	0.06	59	1340	3	<10	<1	0.09	55	1648	<1	32	5	36
64284	26891	<1	1.22	4	57	99	<1	0.73	<10	25	378	34	5.09	0.34	0.78	759	2	0.20	52	1232	<1	<10	<1	0.09	127	1761	<1	21	6	61
64285	26892	<1	1.24	<3	47	95	<1	1.04	<10	27	296	47	4.29	0.25	0.61	587	2	0.23	58	1106	4	<10	<1	0.13	126	1275	<1	10	5	46
64286	26893	<1	1.14	<3	60	186	<1	0.54	<10	20	346	29	5.42	0.55	0.74	670	2	0.19	27	1164	5	<10	<1	0.10	106	1780	<1	28	5	59
64287	26894	<1	0.12	<3	39	<10	<1	0.12	<10	2	396	12	2.52	<0.01	0.06	734	3	<0.01	15	<100	<1	<10	<1	0.05	5	<100	3	<2	<1	<1
64288	26895	<1	0.67	<3	40	16	<1	0.52	<10	17	13	47	1.70	0.05	0.29	237	1	0.27	9	785	2	<10	<1	0.03	36	>4,000	<1	22	18	39
64289	26895	<1	0.64	<3	38	15	<1	0.50	<10	17	13	46	1.68	0.05	0.28	231	<1	0.25	8	763	2	<10	<1	0.04	34	>4,000	<1	23	18	38
64290	26896	<1	0.84	<3	46	107	<1	1.06	<10	16	219	19	3.60	0.27	0.68	952	2	0.13	32	1452	4	<10	<1	0.12	33	2756	<1	19	9	36
64291	26897	<1	0.36	<3	73	<10	<1	0.78	<10	23	143	18	9.58	0.02	0.16	1120	<1	0.03	41	285	12	<10	<1	0.08	48	736	<1	3	4	18
64292	26898	<1	0.73	3	39	13	<1	1.26	<10	28	179	44	1.96	0.10	0.47	424	1	0.17	77	1771	2	<10	<1	0.09	70	3396	<1	20	12	20
64293	26899	<1	1.69	<3	35	64	<1	2.44	<10	8	401	11	2.00	0.14	0.48	595	4	0.17	21	457	2	<10	<1	0.16	262	1090	<1	<2	3	31
64294	26900	<1	1.36	<3	46	73	<1	2.02	<10	32	231	36	3.56	0.16	0.50	521	2	0.17	82	1735	7	<10	<1	0.08	152	3600	<1	<2	11	40
64295	203751	<1	0.90	<3	41	13	<1	1.04	<10	19	179	48	3.94	0.05	0.25	330	1	0.15	43	302	2	<10	<1	0.08	41	1743	<1	3	6	25
64296	203752	<1	0.85	<3	55	<10	<1	0.85	<10	8	294	11	4.97	0.06	0.40	2286	2	0.19	29	610	3	<10	<1	0.08	16	885	<1	2	4	12
64297	203753	<1	0.97	9	47	<10	<1	0.89	<10	4	187	9	4.21	0.05	0.44	2407	1	0.15	22	877	3	<10	<1	0.14	28	1020	<1	<2	4	15
64298	203754	<1	0.59	<3	49	<10	<1	0.63	<10	<1	115	3	4.14	0.03	0.40	2310	1	0.11	2	462	4	<10	<1	0.12	34	502	<1	<2	2	19
64299	203754	<1	0.61	<3	46	<10	<1	0.66	<10	<1	87	3	4.09	0.03	0.42	2537	<1	0.11	<1	423	3	<10	<1	0.11	35	536	<1	<2	2	21
64300	203755	<1	0.08	<3	121	<10	<1	0.09	<10	3	275	<1	>10.00	<0.01	0.03	141	2	<0.01	5	709	23	<10	<1	0.04	12	<100	<1	<2	1	9
64301	203756	<1	0.78	<3	39	16	<1	0.62	<10	17	13	49	1.75	0,05	0.29	240	1	0.32	8	801	<1	<10	<1	0.03	43	>4,000	<1	17	18	40

Certified By Derek Demianiuk, HVBsc.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, **ONTARIO P7B 6G3** PHONE (807) 626-1630 FAX (807) 623 6820 EMAIL accuracy@tbaytel.net WEB www.accurassay.com

Certificate of Analysis

Tuesday, October 28, 2003

Landore Resources Inc.	Date Received : 08-Oct-03
555 Central Avenue	Date Completed : 27-Oct-03
Thunder Bay, ON, CA	Job # 200341447
P7B5R5	Reference : Wottam
Ph#: (807) 623-3770	Sample #: 4 Soil
Fax#: (807) 623-2335	
Email landore@tbaytel.net	

Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)	
(0.7.70		999	021	gir (ppin)	
62552	11351	<5	<0.001	< 0.005	
62553	11352	<5	< 0.001	< 0.005	
62554	11353	<5	< 0.001	< 0.005	
62555	26852	<5	< 0.001	<0.005	
62556 Check	26852	<5	< 0.001	< 0.005	

1.111 -)

 $\overline{}$ PROCEDURE CODES: MAAu3, AL4 CPAR The results included on this report relate only to the items tested **Certified By** The Certificate of Analysis should not be reproduced except in full, without the written Derek Demianiuk H.Bsc., Laboratory Manager approval of the laboratory

Page 1 of 1

AL903-0125-10/28/2003 10:35 AM

Accurassay Laboratories A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Jate Crea Job Numt rate Rec lumber of Type of S ∵ate Con	ber: 20034 ieved: 10/ of Sample	1-05 0 41447 /8/2003 es: 4 oil 0/27/2	3	M										* This	Certific of the	ate of l laborat	Analys ory.		ild not t	be repr	oduced	l excep	ested ot in full ler ISO			vritten a	approva	al		
Accur. #	Client Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	TI ppm	V ppm	Y ppm	Zn ppm
62552	11351	<1	1.10	<3	53	46	<1	0.30	<10	4	20	10	1.32	0.13	0.26	<100	<1	0.02	8	592	7	<10	<1	0.09	16	1270	<1	<2	5	20
62553	11352	<1	1.90	<3	62	51	<1	0.29	<10	10	35	7	2.55	0.16	0.40	152	1	0.02	19	819	7	<10	<1	0.07	15	1494	<1	<2	5	25
62554	11353	<1	1.37	<3	61	43	<1	0.33	<10	7	29	7	1.79	0.14	0.40	138	<1	0.03	16	470	4	<10	<1	0.08	17	1630	<1	<2	5	25
62555	26852	<1	1.35	<3	61	30	<1	0.20	<10	8	32	6	2.85	0.13	0.44	173	<1	0.02	13	678	9	<10	<1	0.05	13	2125	<1	11	3	37
62556	26852	<1	1.39	<3	64	31	<1	0.20	<10	7	34	8	2.97	0.14	0.46	178	1	0.02	13	707	7	<10	<1	0.05	13	2180	<1	12	3	38
					.'																									

Certified By: Derek Demianiuk, H.Bsc.

2003 Wottam Prospecting and Geology Report

APPENDIX III

ACCURASSAY QUALITY CONTROL REPORT

QUALITY CONTROL REPORT FOR LANDORE RESOURCES INC. WOTTAM PROJECT

Presented To:

Landore Resources, Inc. Thunder Bay, Ontario c/o Blair Needham

Date: July 27, 2005

Prepared By:_____

Greg Kajmowicz Quality Control Coordinator Accurassay Laboratories Thunder Bay, Ontario

Report Scope

A Quality Control Report was requested by Landore Resources, Inc. The following report contains a method description for analysis performed on Landore Resources, Inc. exploration samples for the Wottam Project, followed by quality control data and charts for standards. The following is a listing of the jobs used in this report. NOTE: This report does not include quality control data concerning ICP analysis.

ACCURASSAY JOB	LANDORE	LANDORE SAMPLE	DATE RECEIVED
NUMBER	PROJECT	NUMBER	
200341446	Wottam	11354 – 11373,	October 8, 2003
		26851, 26853 - 26876	
200341447	Wottam	11351 – 11353, 26852	October 8, 2003
200341499	Wottam	11374 - 11400, 26877	October 16, 2003
		– 26900, 203751 –	
		203756	

Sample Preparation

The samples provided to Accurassay Laboratories by Landore Resources Inc. were received either as rock or soil samples. Rock samples were dried when required and then crushed to 90%-10 mesh and split into 250 - 450 gram sub-samples using a Jones Rifler. These sub-samples were then pulverized to 90%-150 mesh using a ring and puck pulverizer and homogenized prior to analysis. Silica cleaning between each sample is performed to prevent any cross contamination.

Soil samples were dried when required and then sieved through -150 mesh. The portion of soil sample that passed through the sieve was used in the analysis.

Fire Assay

For flame AAS determinations preliminary concentrations for Au by fire assay (lead collection) is the preferred method. The standard operating procedure for Fire Assaying at Accurassay Laboratories involves weighing, fluxing, fusion and cupellation.

Weighing: A 30.2 gram sample mass was used for the Wottam project. NOTE: Sample mass was changed to accommodate sample chemistry, when required. A sample mass of 30.2 grams was used for all soil samples.

A furnace load consists of 24 samples with a check done every 10th sample, along with a blank and a Quality Control Standard. NOTE: Duplicate checks were done on pulverized samples and not reject samples along with one Certified Reference Material per 8-hour work shift. The Certified Reference Material was provided by CANMET.

Fluxing:	Samples provided to Accurassay Laboratories by Landore Resources Inc., usually do not require preliminary treatment and may be mixed directly with the assay flux and fused. Currently, Accurassay Laboratories uses a premixed basic flux purchased from Anachemia Science Mines Assay Supply. The composition of the flux is as follows: Litharge: 50.4% , Soda Ash (dense) – 35.9% , Borax – 10% , and silica flour – 3.6% . It is standard practice for laboratories to use a premixed flux and adjust the ingredients when necessary.
Fusion:	Samples are typically fused for $1\frac{1}{4}$ hour at 1800 to 2000 degrees Fahrenheit. The fusion time may be increased as needed.
Cupellation:	Samples are typically cupelled for 50 minutes at 1000 degrees Celsius. The cupellation time may be increased as needed.

Digestion

Precious metal beads are digested using a nitric/hydrochloric acid digestion and bulked up with a 1% La2O3 solution and distilled water. The use of lanthanum in the concentration of 0.2 - 1.0% is an acceptable practice and complies with accepted published methods. A final volume of 3 mls is used for the analysis.

Flame Atomic Absorption Spectrometric Measurement

Accurassay Laboratories uses a Varian AA600 with manual sample introduction for the determination of gold.

Calibration standards are made up from 1000 ppm certified stock solutions. Quality Control check solutions are made up from separately purchased 1000 ppm certified stock solutions.

Reporting

Laboratory reports are currently produced using Accurassay Laboratories' LIMS program. All duplicate assays are reported on the certificate of analysis. Quality Control Standards and blanks are not reported unless requested by the client.

Control Charts for Quality Control Standards

All data generated for Quality Control standards, blanks and duplicates are retained with the client's file and are used in the validation of results. For each quality control standard control charts are produced to monitor the performance of the laboratory. Warning lines on the chart are set at +/-2 standard deviations, and control lines are set at +/-3 standard deviations. Any data that falls between the +/-2 or +/-3 lines requires 10% of the samples in that batch to be reassayed and have their values compared with the previous set of results. Results will be accepted as long as the standards for each batch of samples falls below the +/-2 standard deviation lines. Any data that falls outside the +/-3 standard deviation lines will result in the rejection of all results and the entire batch reassayed.

Standards

The house standard used for gold was made up from a rock source provided to Accurassay Laboratories by a third party. The standard is referred to as AU41. The recommended values for

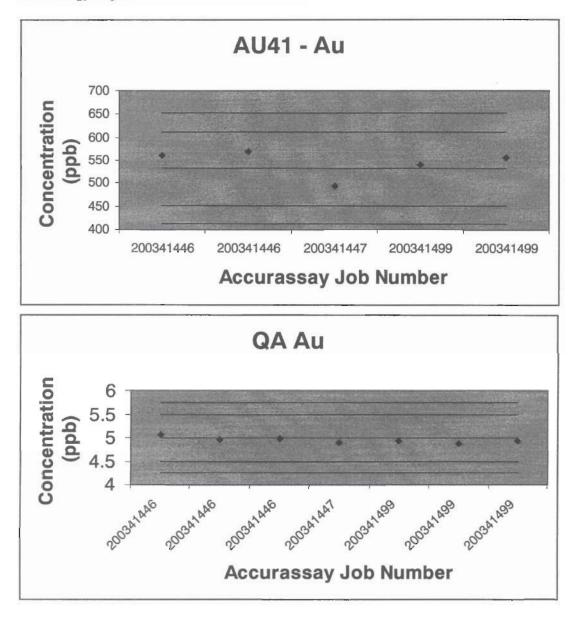
each standard are listed below. The Quality Assurance (QA) sample is made in the laboratory from certified stock solutions purchased from an ISO 9000 certified supplier. The solution is different from the solution used to make calibration standards. NOTE: Although a standard or quality assurance standard may not be listed by job number on the control charts, a standard and quality assurance sample was run with each job.

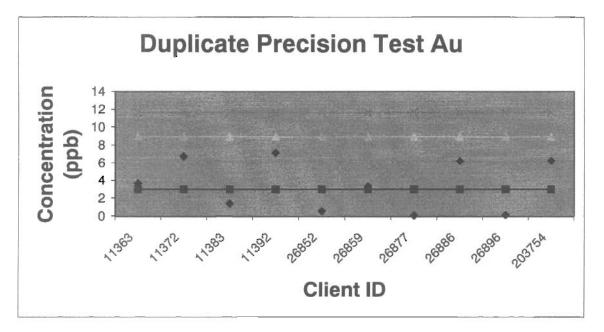
STANDARD	ELEMENT	RECOMMENDED VALUE
AU41*	Au	532.43 +/- 40.14 ppb
QA*	Au	5.0 ppm

*NOTE: The values for AU41 and QA were developed at Accurassay Laboratories. The values for CANMET certified reference materials were obtained from their respective certificates of analysis.

Interpretation

Control Charts


On the following control charts the mean is represented by the pink line, the green lines represent the +/-2 standard deviations and the red lines represent the +/-3 standard deviations. The concentration of the standard is represented by the blue points. As previously stated, any standard that fell between the +/-2 and +/-3 standard deviation lines had 10% of the samples in that load reassayed and their values compared with the originals. If the standard fell within the +/-2 standard deviations and the reassays matched the original values, then all data form the original load was accepted. If not, the entire load was reassayed.


Any standard that fell outside the +/- 3 standard deviation lines was rejected and the entire load reassayed.

Range Control Charts

Range control charts were constructed using the duplicate pairs of check assays. Each duplicate set represents one set of duplicate pairs from each Landore Resources, Inc. Wottam project.

The mean, R, of the absolute value of the difference between each of the duplicate sets was calculated. The absolute value was converted to parts-per-billion and then plotted as shown in the following range control chart, as well as lines at 0.845R, 2.51R, and 3.27R. Once the chart was set up the R values from the duplicates obtained from the Landore Resources, Inc. jobs were plotted on it. Statistically, 50% of the values plotted should lie below the 0.845R line, only 5% of the duplicate pairs fall above the 2.51R line, and no values above the 3.27R line.

2003 Wottam Prospecting and Geology Report

APPENDIX IV

2003 SUMMARY OF EXPENDITURES WOTTAM PROPECTING PROGRAM

.

1:27 PM

Aug 17, 05

Accrual Basis

Landore Resources Canada Inc. Wottam Expenditures, from Aug. 31, 2003 As of August 17, 2005 (excluding drilling 180.12.84)

Тур	be Date	Num	Name	Memo	Amount
ASSETS					
Other As		()			
	Mineral properties	(MP)			
10	30.12 · MP-Wottam 12.60 · Compilatio	n n			
Bill	23/09/2003	W001218	Lowerys Limited	copying	183.56
Bill	25/09/2003	24151	Minister of Finance	data	108.00
	Tatal 12 60 Came	lation			
	Total 12.60 · Comp	Diation			291.56
	12.66 · Prospectir	ng			
Bill	24/09/2003	2343	Chaltrek	consumable supplies	139.32
Bill	26/09/2003	Inv. 1	Pykari, Dave	labour	400.00
Bill	26/09/2003	Expenses, Sep	Maclean, Dave	ground transporation	40.00
Bill	26/09/2003	Expenses, Sep	-	air transportation - fixed wing	402.43
Bill	26/09/2003	Expenses, Sep	-	groceries/meals	96.03
Bill Bill	26/09/2003 26/09/2003	Expenses, Sep LDO-DM 1	Maclean, Dave Maclean, Dave	consumable supplies prospecting	611.72 900.00
Bill	27/09/2003	801225	Ritz Motel	project related accommodations	260.00
Bill	16/10/2003	B68VAR	AMEX Bank of Canada	air transportation - fixed wing	332.81
Bill	17/10/2003	Exp. Oct-03	Maclean, Dave	groceries/meals	121.89
Bill	17/10/2003	Exp. Oct-03	Maclean, Dave	project related accommodations	236.07
Bill	17/10/2003	Exp. Oct-03	Maclean, Dave	ground transportation	40.00
	Total 12.66 · Prosp	pecting			3,580.27
	12.78 · Geology				
Bill	25/09/2003	IN00022172	KBM Sales	consumable supplies	18.23
Bill	25/09/2003	Inv. 2003-8	R. Blair Needham	consultant	1.731.00
Bill	26/09/2003	Expenses, 08-09	R. Blair Needham	ground transportation	537.10
Bill	26/09/2003	Expenses, 08-09	R. Blair Needham	groceries/meals	692.04
Bill	26/09/2003	Expenses, 08-09	R. Blair Needham	supplies	570.58
Bill	26/09/2003	Expenses, 08-09	R. Blair Needham	fuel - diesel	28.80
Bill	27/09/2003	801225	Ritz Motel	project related accommodations	590.00
Bill	27/09/2003	11591	Huron Air	air transportation - fixed wing	3,274.85
Bill	01/10/2003	3210804	InfoSat Telecommunications	cornmunications	50.26
Bill Bill	07/10/2003 14/10/2003	11608 Oct 1 - 9, 2003	Huron Air Garber, James	air transportation - fixed wing	1,463.40
Bill	14/10/2003	Oct 1 - 9, 2003	Garber, James	groceries/meals consumable supplies	71.51 43.44
Bill	14/10/2003	Oct 1 - 9, 2003	Garber, James	consumable supplies	43.44 5.71
Bill	14/10/2003	Oct 1 - 9, 2003	Garber, James	consumable supplies	48.57
Bill	14/10/2003	Oct 1 - 9, 2003	Garber, James	groceries/meals	17.04
Bill	14/10/2003	Oct 1 - 9, 2003	Garber, James	consumable supplies	20.50
Bill	14/10/2003	Oct 1 - 9, 2003	Garber, James	groceries/meals	34.97
Bill	15/10/2003	statement, sun	Huron Air	fuel - diesel	749.67
Bill	15/10/2003	11616	Huron Air	air transportation - fixed wing	3,132.80
Bill	17/10/2003	01-156195-05	A to Z Rental Sales Service	ground transporation	459.03
Bill	18/10/2003	LDO-DM-2	Maclean, Dave	labour	4,837.50
Bill Bill	24/10/2003	2003-9 2003-9	R. Blair Needham R. Blair Needham	labour equipment rental	6,482.00
Bill	24/10/2003 26/10/2003	Exp, October	R. Blair Needham	ground transportation	500.00 508.40
Bill	26/10/2003	Exp, October	R. Blair Needham	fuel - gas	49.00
Bill	26/10/2003	Exp, October	R. Blair Needham	accommodations	233.94
Bill	26/10/2003	Exp, October	R. Blair Needham	consumable supplies	284.25
Bill	31/10/2003	Oct 2003	Central Car Wash Lube & Det	fuel - gas	108.24
Bill	03/11/2003	218396	Stares Contracting Corp	equipment rental	625.00
Bill	10/11/2003	00001756	Forest Helicopters Inc.	air transportation - helicopter	7,006.70
	Total 12.78 · Geolo	рду			34,174.53
Bill	12.87 · Assaying	82788	Accurassay Laboratories	prospecting	000 50
Bill	23/10/2003 23/10/2003	82788 82784	Accurassay Laboratories	prospecting prospecting	826.50 652.50
Bili	28/10/2003	82830	Accurassay Laboratories	soils	58.00
	Total 12.87 · Assay	ing			1,537.00

12.90 · Services/camp costs

Total 12.90 · Services/camp costs

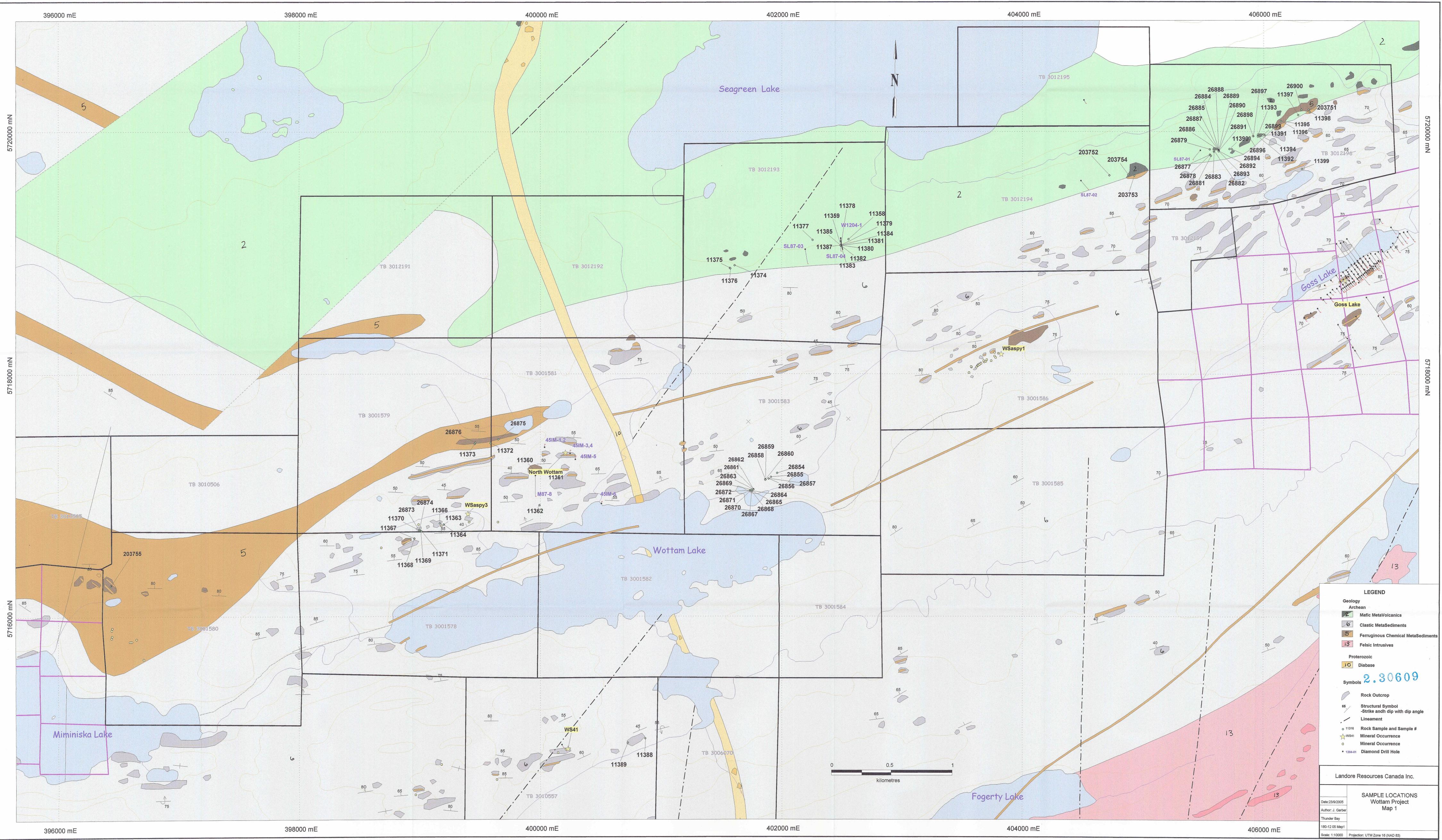
1:27 PM

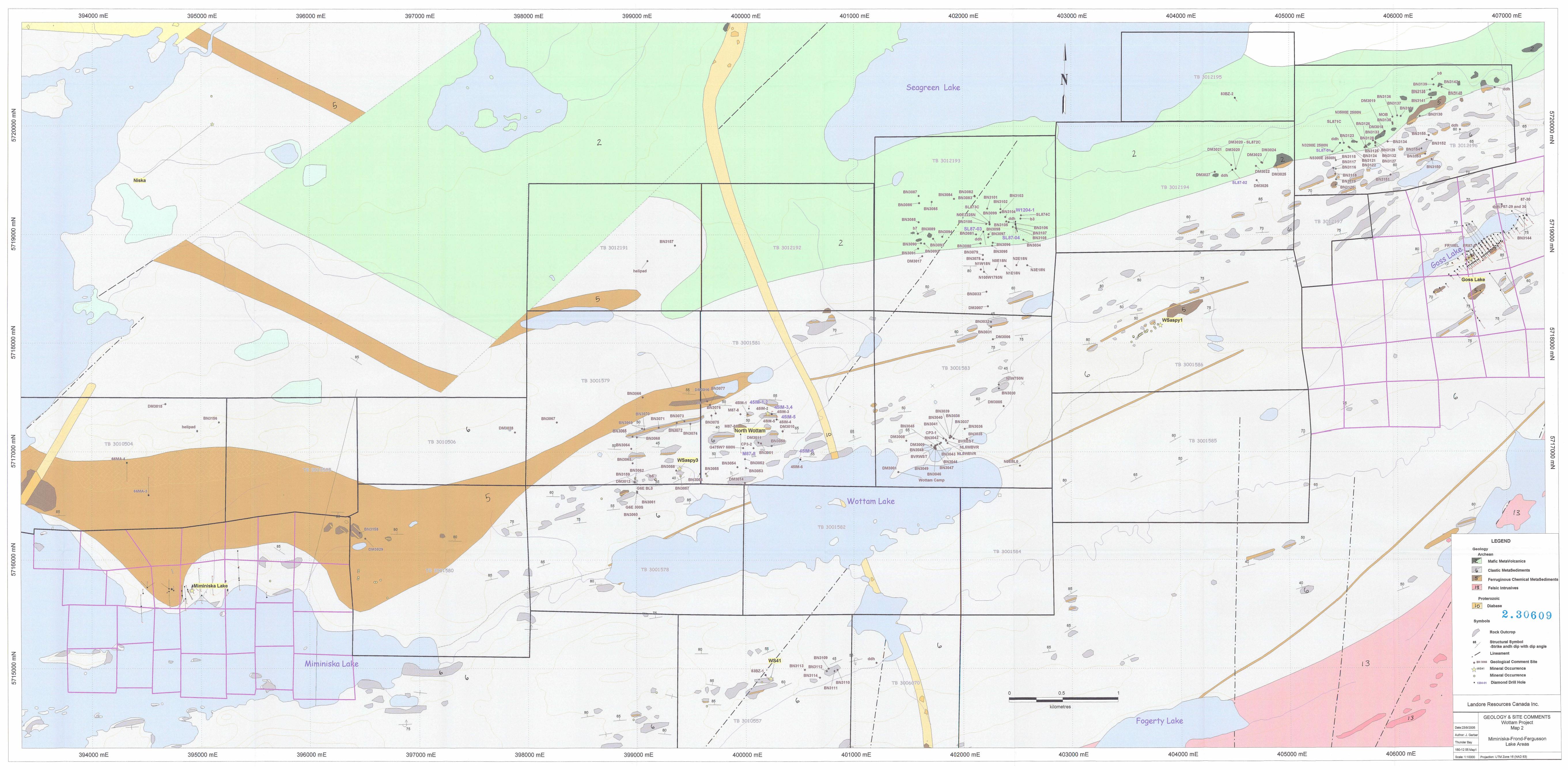
Aug 17, 05

Accrual Basis

Landore Resources Canada Inc. Wottam Expenditures, from Aug. 31, 2003 As of August 17, 2005 (excluding drilling 180.12.84)

Туре	Date	Num	Name	Memo	Amount
12	2.93 · Report pre	paration			
Bill	26/09/2003	11	Salo GeoScience Services	drafting	525.00
Bill	28/10/2003	12	Salo GeoScience Services	drafting	437.50
Bill	19/12/2003	13	Salo GeoScience Services	drafting	122.50
Bill	06/08/2005	2005-7	R. Blair Needham	A13A	2,625.00
Тс	otal 12.93 · Repor	rt preparation			3,710.00
12	2.96 · Contractor	s			
Τc	otal 12.96 · Contra	actors			
Total	180.12 · MP-Wot	ttam			43,293.36
Total 180) · Mineral proper	ties (MP)			43,293.36
otal Other	Assets				43,293.36
	s				43,293.36


2003 Wottam Prospecting and Geology Report


APPENDIX V

LANDORE GEOLOGICAL LEGEND

				LAN	OORE R	ESOUR		C.						
			GEC			GEND								
15 TECTONITES			CHEMICAL N	METASE										
A mylonites			A limestone				breccia			Exhalite				
B protomylonites C Tectonic Breccla			B dolostone C dolomite	e		2	bedded ur	nits		(see iron fo	ormation)			
14 MIGMATITES & GNEISS	4 /		C dolomite D gypsum											
A undifferentiated	├ ─── /		E salt											
B protomylonites			F marble											
C orthogneiss			CLASTIC ME	TASEDI	MENTS									
D paragneiss			A conglome			G	arkosic/g	ritty greywa	acke	ib	interbedde	ed .	-	
E pelitic to semi pelitic gneiss			B quartz sa		quartzite	н	greywack			ic	intercalate			
13 FELSIC PLUTONIC ROCKS			C sandston	e		J	siltstone							
A tonalite			D feldspathi		tone	к	argillite							
B granodiorite			E lithic sand	dstone		M	shale							
C granite			F arkose			N	graphitic	sediments						
D alkali feldspar granite			IRON FORM											
E syenite			A oxide					agnetite-qua	artz+/- chiori	te				
12 MINOR FELSIC INTRUSIVES	ا ــــــــــــــــــــــــــــــــــــ		B sulfide C carbonate				banded ch	ert lerite-ankeri						
A quartz feldspar porphyry	┨───┩		D silicate					unerite-horn						
B quartz porphyry			D sincate					a-garnet-biol						
C feldspar porphyry			mt - magneti	te bearin	20		pyritic grap							
Daplite			int megnen	to bouin			amphibolit							
G pegmatite		4	FELSIC MET	AVOLC	ANICS		Flows(F)	<u> </u>		Pyroclasti	csl(P)			Porphyritic(PF)
11 ALKALIC PLUTONIC ROCKS			A rhyolite (u			F1	flow top br	eccia		agglomera			PF1	feldspar> quartz
A kimberlite			B calc alkali			F2	pillow bred		P2	tuff breccia			PF2	quartz> feldspar
B lamprophyre			C tholeiltic	rhyolite		F3	pillowed		P3	lapilli tuff >			PF3	feldspar
C anorthosite			D rhyodacit			F4	variolitic		P4	augen tuff	1/16-2mm		PF4	quartz
D anorthosite gabbro			E calc-alkali			F5	spherulitic			crystal tuff				
E nepheline syenite	ļ]		F tholeiitic r			F6	amygdaloi	al	P6	coarse ast				
F alkalic syenite			G dacite (un			F7	vesicular		P7	fine ash tu	f <1/16mm			
G carbonate H fenite	↓ /		H calc alkali			F8	massive							
J ijonlite	┣───┦		J tholeiitic d	lacite		F9 F10	hyaloclast	te						
10 DIABASE	↓ ↓	3	INTERMEDIA				banded			Durreeleet	ee (D)			Developmental (DE
9 MAFIC PLUTONIC ROCKS	<u>├───</u> ┦		A andesite (F1	Flows (F) massive			Pyroclasti aggiomera			PF1	Porphyritic (PF
A gabbro			B calc-alkali			F1 F2	pillowed			aggiomera tuff breccia			PF1 PF2	feldspar> quartz
B norite			C tholeiitic a			F3	banded			lapilli tuff >			PF2 PF3	quartz> feldspar feldspar
C hornblendite			D trachyte (F4	amygdaloi			augen tuff			PF3	quartz
D pyroxenite			E latite (unc			F5	variolitic			crystal tuff				
E amphibolite						F6	spherulitic			coarse ash		nm-2mm		
F diorite						F7	vesicular			fine ash tu				
8 ULTRAMAFIC PLUTONIC ROCKS						F8	hyaloclasti							
A peridotite						F9	flow top br							
A dunite						F10	pillow brec							
C hornblendite			MAFIC META				Flows (F)			Pyroclasti				
D pyroxenite			A basalt (ur			F1	massive			aggiomerat				
	+		B Mg tholei		lt	F2	pillowed			tuff breccia				
			C tholeiltic		•	F3	banded			lapilli tuff >				
			D Fe tholeil	uc basa	L	F4 F5	amygdaloi: variolitic			augen tuff crystal tuff				
Metamorphic grade						F5	spherulitic			crystal tuff coarse ash		L. nm+2mm		
Sidde						F7	vesicular			fine ash tuf				
						F8	hyaloclasti		· · · · · · · · · · · · · · · · · · ·	aan tu				
grst greenschist						F9	flow top br							
Mam amphibolite						F10	pillow brec							
gns gneiss														
			Ultramafic M				Flows (F)			Pyroclasti	cs (P)			
			A komatiitic			F1	massive			agglomerat				
			B basaltic ko	omatiites	3	F2	pillowed			tuff breccia				
		⊢				F3	banded			lapilli tuff 2.				
				_		F4	amygdaloia			augen tuff				
	l					F5	variolitic			crystal tuff				
	<u> </u>					F6 F7	spherulitic vesicular			coarse ash fine ash tuf				
						F7	vesicular hyaloclasti		r'	une asn tuf	< 1/16mm			
	└─── ┤					F9	flow top br							·····
						F10	pillow brec		-					
						F11	polygonal							
						F12	bladed							
						F13	spinifex							
			LAND	ORE F	RESOUR	RCES IN	C.							
		GE	OLOGICA					:	-					
DEC						JUNEV		, 			MINERAL	747101		
	ALTERATION				VEINING	onk-rit -					MINERALI			
weakly altered moderately altered		albitization ankertization				ankerite calcite						amphibole		
		biotitization									asp	arsenopyrite		
strongly altered		bleached				epidote hematite					cp fp	chalcopyrite feldspar	, <u> </u>	
weakly sheared		calcitic				nematite magnetite						garnet		
		carbonatizat	tion			quartz					· ····································	galena		
moderately sheared	cb					quartz-tour	maline					graphite		
moderately sheared strongly sheared		chloritization				quartz anke						magnetite		
moderately sheared strongly sheared weakly veined	chl d	chloritization epidotization	n I			quartz calc						molybenite		
moderately sheared strongly sheared weakly veined moderately veined	chi d		n									pyrrhotite		
moderately sheared strongly sheared weakly veined moderately veined strongly veined	chl d ep d gt g	epidotizatior garnet				tourmaline						pynnoute :		
moderately sheared strongly sheared weakly veined moderately veined strongly veined	chl d ep e gt g gcb g	epidotization	nate		tour	tourmaline quartz carb	onate					pyrite		
moderately sheared strongly sheared weakly veined moderately veined strongly veined weakly mineralized	chl c ep c gt c gcb c hem h	epidotizatior garnet green carbo	nate		tour qcb						ру			
moderately sheared strongly sheared weakly veined moderately veined strongly veined weakly mineralized moderately mineralized	chl d ep d gt g gcb g hem h k p	epidotizatior garnet green carbo hematizatior	nate		tour qcb qchl	quartz carb	rite	ite			ру	pyrite		
moderately sheared strongly sheared weakly veined strongly veined weakly mineralized moderately mineralized strongly mineralized moderately foliated	chl c ep e gt g gcb g hem t k p lx k ox c	epidotization garnet green carbo hematization potassic leucoxene oxidized	nate		tour qcb qchl qcbchl qcbcp	quartz carb quartz chlo quartz carb quartz carb	rite onate chlor onate epido	ote			py she sta sph	pyrite scheelite staurolite sphalerite		
moderately sheared strongly sheared weakly veined moderately veined weakly mineralized moderately mineralized strongly mineralized weakly foliated moderately foliated strongly foliated	chl c ep e gt g gcb g hem t k p lx l ox c rst r	epidotization garnet green carbo hematization potassic leucoxene oxidized rusty	nate		tour gcb gchl gcbchl gcbep gchlhem	quartz carb quartz chlo quartz carb quartz carb quartz chlo	rite onate chlor onate epido	ote			py she sta sph	pyrite scheelite staurolite		
moderately sheared strongly sheared weakly veined strongly veined weakly mineralized moderately mineralized moderately mineralized strongly mineralized weakly foliated moderately foliated strongly foliated	chl c ep c gt c gcb c hem h k r lx h ox c rst r ser s	epidotization garnet green carbo hematization potassic leucoxene oxidized rusty sericitization			tour gcb gchl gcbchl gcbep gchihem Intensity C	quartz carb quartz chlo quartz carb quartz carb quartz chlo ode	rite onate chlor onate epido rite hematite	ote			py she sta sph	pyrite scheelite staurolite sphalerite		
moderately sheared strongly sheared weakly veined strongly veined weakly mineralized moderately mineralized strongly mineralized weakly foliated strongly foliated strongly foliated	chl c ep c gt c gcb c gcb c k p lx l ox c rst rs ser s	epidotizatior garnet green carbo hematizatior potassic leucoxene oxidized rusty sericitization serpentiniza			tour qcb qchl qcbchl qcbep qchlhem Intensity C use per cer	quartz carb quartz chlo quartz carb quartz carb quartz chlo ode ntage (I.e.	rite onate chlor onate epido rite hematite	ote			py she sta sph	pyrite scheelite staurolite sphalerite		
moderately sheared strongly sheared weakly veined strongly veined weakly mineralized moderately mineralized strongly mineralized weakly foliated strongly foliated strongly foliated	chi c ep c gt c gcb c hem i k p ix i x i x i x i x i x i x i x i x i x	epidotization garnet green carbo hematization potassic leucoxene oxidized rusty sericitization serpentiniza silicification			tour gcb gchl gcbchl gcbep gchihem Intensity C	quartz carb quartz chlo quartz carb quartz carb quartz chlo ode ntage (I.e.	rite onate chlor onate epido rite hematite	ote			py she sta sph VG	pyrite scheelite staurolite sphalerite visible gold		
moderately sheared strongly sheared weakly veined strongly veined weakly mineralized moderately mineralized strongly mineralized strongly foliated strongly foliated strongly foliated	chi c ep c gt c gcb c gcb c hem i k p ix i ix i ox c crst r ser s sorp s sil s ti t	epidotizatior garnet green carbo hematizatior potassic leucoxene oxidized rusty sericitization serpentiniza			tour qcb qchl qcbchl qcbep qchlhem Intensity C use per cer Vein Morp	quartz carb quartz chlo quartz carb quartz carb quartz chlo ode ntage (I.e.	rite onate chlor onate epido rite hematite qcv 20)	ote			py she sta sph VG Intensity C	pyrite scheelite staurolite sphalerite visible gold	ver possible	

				LANDO	RE RESOU	RCES INC	C					
				GEOLOGICA	L LEGEND	ROCK C	ODES					
bnd	banded			V3	Mineraliz	ed with non-n	ninəralizəd	halo				
lam	lamination			V4	Mineraliz	ed with miner	alized halo			Mineraliz	ation Texture	
bx,bxd	breccia, brecciated	Intensity Co	ode	bx	brecciate	d				blb	disseminated	
ct	contact	ankw	weak up to 5	ff	fracture-	illing				bx	brecciated	
fd	folded	ankm	moderate 15-50	st	stringer	<1cm)			_	clst	clustered	
fdd	folded drag	anks	strong 50-100	vt	veinlet (2	-10cm)				ff	fracture fill	
flt	fault	TEXTURAL		v	vein (>10)cm)				mas	massive	
FZ	fault zone	aph	aphanitic	ma	s massive					st	stringer	
fltg	faulting	vfg	very fine grained	sht	sheeted					stwk	stockwork	
fl	flow	fg	fine grained	rxl	recrystal	ized				smas	semi-massive	
frc	fracture	mg	medium grained	fid	flooded							
fgg	gouge	cg	coarse grained	xc	crosscut	ting foliation/b	edding					
shr	shear	fmg	fine-medium grain	ed ma:	s massive							
SZ	shear zone	fcg	fine-coarse graine	d								
slk	slickenside	glom	glomerophyric	ŌΤ	HER ABBREVIA	TIONS						
AZ	alteration zone	htr	heterolithic	pll	parallel		loc,I_	locally (local)	eg Imag			
fol,foln	foliated, foliation	pfbc	porphyroblastic	deg			mag	magnetic				
sch	schistose	mas	massive	LC	Lost Cor	e	wk,w_	weak eg wma	ag			
bou	boudinaged	dis	disseminated	tr	trace		mod	moderate				
		cmn	crenulated	sito	similar to		stg	strong				
		cntd	contorted				int	intense				

