**Report on 2004 Summer Drill Program** 

**Hunter Mine Property** 

ValGoid Resources Ltd.

Whitney Township

**Porcupine Mining District** 

Ontario



2.30149

Dr. Derek McBride P.Eng. Kiam Jensen P.Geol. Toronto, Ontario December 30, 2004

## **Table of Contents**

| Summary                                       | 1  |
|-----------------------------------------------|----|
| Introduction                                  | 1  |
| Location                                      | 1  |
| Geological Mapping                            | 1  |
| 2004 Drilling                                 | 4  |
| Geology of the Mine Section based on drilling | 13 |
| Interpretation                                | 13 |
| Conclusions                                   | 15 |
| Appendix 1 Summary Drill Logs                 | 17 |
| Appendix 2 Assay Certificates                 | 18 |

# List of Figures

| 1 | Location Map                             | 2  |
|---|------------------------------------------|----|
| 2 | 2004 Drill Holes Hunter Property         | 3  |
| 3 | Drill Hole Section HM-04-28, 29, 30 & 39 | 6  |
| 4 | Drill Hole Section HM-04-31, 32 & 33     | 8  |
| 5 | Drill Hole Section HM-04-34 & 35         | 9  |
| 6 | Drill Hole Section HM-04-36              | 11 |
| 7 | Drill Hole Section HM-04-37 & 38         | 12 |
| 8 | Interpretation of Mine Horizon           | 14 |

# List of Tables

| 1 | Drill Hole Summary                          | 5  |
|---|---------------------------------------------|----|
| 2 | List of Assays over One Gram, 2004 Drilling | 5  |
| 3 | Proposed Drilling Budget 2005 Program       | 15 |
| 4 | Project Costs 2004 Drilling                 | 16 |
|   | 11                                          |    |

#### Summary

In June 2004, ValGold Resources Ltd. undertook a drilling program on their Hunter Mine Property. Drilling was carried out on Porcupine Lake by Benoit Drilling of Val d'Or, Quebec using their barge. Twelve holes were drilling to test the gold-bearing shoots indicated by winter drilling in 1985-1986.

Drill results indicated an anomalous gold-bearing horizon that was traced for 200 metres along strike, 150 metres vertical and remains open at depth and along strike in both directions. Within this horizon is a shoot that carries values in the 11 to 18 gram per tonne range over one and a half metres or better. This shoot plunges from surface in the shaft area in a north, northeast direction at an angle of approximately -30 degrees.

A drill program is recommended in 2005 to trace this shoot northeastward and at depth. Additional shoots were indicated in the old work in the shaft area; holes will test their extent. The final part of this program will investigate the horizon to the southwest where it strikes towards the Dome Superpit and has never been investigated. A budget of \$500,000 is proposed for this work.

#### Introduction

In early summer 2004, a drilling program was undertaken to evaluate the Hunter Mine mineralization at depth. To perform this program, the drilling was carried out from the barge of Benoit drilling of Val d'Or. Twelve holes tested the mineralized horizon from the 130 metre to the 250 metre level.

#### Location

The Hunter Mine Property is situated south of Highway 101 in Porcupine, Ontario along the east shore of Porcupine Lake all the way to the Dome pump house east of South Porcupine (Figure 1). A separate claim block extends the property to within the town limits of South Porcupine and two kilometers of the Dome Superpit. Drilling was on claim HR 1009.

## Geological Mapping (Map 1 in pocket)

Mapping was conducted in the fall of 2003 over the Hunter Mine Claims and along the shore of Porcupine Lake. Outcrops on the property lie mainly along the shore of Porcupine Lake with the best exposures being adjacent to the shaft. This large stripped area is underlain by a sequence of bedded carbonate-rich exhalitic sedimentary rocks. Individual beds can be easily identified and traced for considerable distances. A sugary quartz vein (band) has been pitted and the pit on the lakeshore marks the first discovery pit in the Timmins' area.

From footwall to hanging wall (east to west) these rocks form a sequence consists of a basal calcium carbonate rich weakly sericitic exhalitic unit that is pale grey in colour and weathers to a pale brown because of some contained iron carbonate. The top of this unit is a narrow (<0.3m) band of medium grey fine clastic sediments. Conformable with the top of this band is the 20 centimetre sugary quartz band that forms the core of the mineralized horizon. The hanging wall is a thick sequence of iron carbonate-rich sedimentary rocks that in outcrop are diagnostic by the pervasive quartz-filled tension fractures. South of the main outcrop area these rocks are overlain by dark blue-black, very soft ultramafic rocks. North of the main outcrop the exhalitic sequence can be traced to just south of the property boundary, Highway 101. East of the main road south from Porcupine, Haileybury Cres., clumps of trees mark very old pits. These are now badly caved, but the southerly one contains fine-grained medium grey bedded clastic sedimentary rocks.





Drilling in 1985 expanded the mine section to show that the mine horizon is flanked by ultramafic units which are in turn flanked by clastic sedimentary rocks. Bedded felsic lapilli and ash fall tuffs were observed in the southeast corner of the property.

#### 2004 Drilling (Table 1)

Drilling commenced on June 11, 2004 with hole HM 04-28 (Figure 3)which was designed to duplicate previous hole S-16 which had returned an intersection of 24.41g per tonne over 2.74m (0.7136oz per ton over 9ft). The hole was collared at the calculated location of hole S-16 based on earlier maps. When the barge was attempting to move to this location it hit the casing of S-16. The new hole was located approximately 13 meters ahead of S-16 on section. The lake bottom was hit at 2 metres and the casing continued to 55 metres through lake-bottom clays and basal till. Ultramafic talcose fragmental volcanic rocks compose the next 29 metres. These rockd abruptly change into finely laminated soft ultramafic tuffs at 84.1 metres. Below, the contact with the laminated carbonate-rich tuffs is quite sharp and is marked by a rapid hardening of the rock and a change in colour from a medium grey to a brownish grey at 105.1 metres.

The next section is composed of laminated carbonate exhalitic sedimentary rocks that are historically referred to as the altered zone. It is at the top of this unit that the gold mineralization is located; an assay value of 35.56g per tonne over 0.78 metres from 105.2 to 105.9 metres shows the presence of significant gold beyond the historical mine workings and confirms the results from the 1985-1986 drilling (Table 2). Below the mineralized intersection the rock continues as a laminated sequence to the end of the hole at 195.5 metres (Appendix 1 for summary log and 2 for detailed log). Extensive assaying of these rocks did not detect additional mineralized horizons.

The second hole, HM04-29, was drilled from the same location at -75 degrees to intersect the mineralized horizon at the 180 metre level or 35 metres below S-16. It intersected overburden to 55.5 metres followed by the ultramafic talcose fragmental volcanic rocks to 104.7 metres. These rocks are the same as described in the previous hole. At approximately 132 metres, the transition to the exhalitic sedimentary rocks occurs. Sampling of this section is in progress. Continuing down section, the rocks continue their exhalitic sedimentary character commonly showing a pale buff colour and locally the yellow-buff of leucoxene. Bedding is evident throughout the sequence and becomes prominent lower down. From 245.8 to 252.4 metres a section of medium to dark grey argillites is present. Bedding in this section is 75 to 80 degrees to the core axis. Below this argillite the rocks are pale grey siliceous clastic sediments to the end of the hole at 303.2 metres.

Hole HM04-30 was drilled from approximately the same location as the previous two holes to further test this horizon on this section at the 250 metre level. It was cased to 55 metres before entering the talcose ultramafic volcanic rocks. These continue to 107 metres before rapidly grading into the laminated variety of ultramafic tuff. The laminated tuff continues to 139.5 metres where it grades into the bedded exhalitic, tuffaceous sediments. This sequence goes to the end of the hole at 258 metres becoming more

# Table 1

# DRILL HOLE: Summary Summer Program

2004

| HUNT | ER MINE | PROJECT | Γ. |
|------|---------|---------|----|
|      |         |         |    |

|          | UT        | M        |           |     |          |             |         |          |
|----------|-----------|----------|-----------|-----|----------|-------------|---------|----------|
| Hole No. | Long.     | Lat.     | Direction | Dip | Length m | Acc. Length | Started | Finished |
|          |           |          |           |     |          | m           |         |          |
| HM04-28  | 5370930.4 | 487135.0 | 105 Az.   | -50 | 195.5    | 195.5       | June 11 | June 14  |
| HM04-29  | 5370930.4 | 487135.0 | 105 Az.   | -75 | 303      | 498.5       | June 14 | June 19  |
| HM04-30  | 5370931.0 | 487130.1 | 105 Az.   | -85 | 258      | 756.5       | June 22 | June 28  |
| HM04-31  | 5370891.3 | 487116.9 | 105 Az.   | -50 | 243      | 999.5       | June 28 | July 2   |
| HM04-32A | 5370891.3 | 487116.9 | 105 Az    | -80 | 63       | 1062.5      | July 2  | July 2   |
| HM04-32B | 5370891.3 | 487116.9 | 105 Az.   | -80 | 255      | 1317.5      | July 2  | July 6   |
| HM04-33  | 5370904.0 | 487073.0 | 105 Az.   | -80 | 237      | 1554.5      | July 6  | July 9   |
| HM04-34A | 5370818.4 | 487097.3 | 105 Az.   | -67 | 117.8    | 1672.3      | July 10 | July 12  |
| HM04-34B | 5370818.4 | 487097.3 | 105 Az.   | -67 | 167.9    | 1840.2      | July 12 | July 15  |
| HM04-35  | 5370818.4 | 487097.3 | 105 Az.   | -85 | 249      | 2089.2      | July 15 | July 19  |
| HM04-36  | 5370884.7 | 486989.3 | 105 Az.   | -90 | 234      | 2323.2      | July 20 | July 24  |
| HM04-37  | 5370768.3 | 487021.0 | 105 Az.   | -66 | 249      | 2572.2      | July 24 | July 28  |
| HM04-38  | 5370768.3 | 487021.0 | 105 Az.   | -80 | 219      | 2791.2      | July 28 | July 30  |
| HM04-39  | 5370982.0 | 486941.0 | 105 Az.   | -75 | 309      | 3100.2      | July 30 | August 3 |

# Table 2 List of Assays over One Gram per Tonne From 2004 Drill Program

|      |          |        |        |        |       |          | AU    |          |          |          |
|------|----------|--------|--------|--------|-------|----------|-------|----------|----------|----------|
| 1    | Hole     | Sample | From   | То     | Width | Au (g/t) | check | Au (2nd) | Au check | Metallic |
| 5    | HM04-28  | 44512  | 105.12 | 105.90 | 0.78  | 32.88    | 37.85 | 37.03    | 34.49    | 37.52    |
| 148  | HM04-30  | 44607  | 146.10 | 147.41 | 1.31  | 1.51     | 1.49  |          |          | 2.06     |
| 195  | HM04-31  | 44654  | 113.00 | 113.60 | 0.60  | 2.61     | 1.89  | 2.25     |          | 2.86     |
| 197  | HM04-31  | 44656  | 114.70 | 115.80 | 1.10  | 2.06     |       | 2.06     | 2.266    | 2.28     |
| 198  | HM04-31  | 44657  | 115.80 | 116.30 | 0.50  | 36.48    | 36.82 | 36.65    | 18.325   | 31.60    |
| 210  | HM04-31  | 44669  | 127.05 | 127.67 | 0.62  | 1.17     | 0.90  | 1.035    |          | 1.14     |
| 331  | HM04-32  | 44790  | 142.00 | 142.64 | 0.64  | 2.32     | 2.59  |          |          | 3.33     |
| 350  | HM04-32  | 44809  | 158.95 | 159.36 | 0.41  | 1.06     | 0.98  |          |          | 0.59     |
| 522  | HM04-34A | 44981  | 130.58 | 131.75 | 1.17  | 1.03     | 0.79  |          |          | 0.81     |
| 523  | HM04-34A | 44982  | 131.75 | 132.00 | 0.25  | 1.86     | 1.95  |          |          | 1.71     |
| 616  | HM04-35  | 43075  | 156.00 | 156.47 | 0.47  | 0.22     |       | VG       |          | 0.61     |
| 629  | HM04-35  | 43088  | 165.74 | 166.28 | 0.54  | 1.40     | 0.96  |          |          | 1.10     |
| 872  | HM04-37  | 35131  | 171.74 | 172.28 | 0.54  | 1.18     | 1.13  |          |          | 0.61     |
| 874  | HM04-37  | 35133  | 172.78 | 173.43 | 0.65  | 0.89     | 1.16  |          |          | 1.17     |
| 937  | HM04-37  | 35196  | 227.42 | 227.72 | 0.30  | 1.01     | 0.94  |          |          | 0.01     |
| 976  | HM04-38  | 35235  | 146.87 | 147.76 | 0.89  | 1.13     | 1.05  |          |          | 0.06     |
| 1036 | HM04-38  | 35295  | 187.58 | 188.50 | 0.92  | 1.85     | 1.87  |          |          | 2.15     |



sedimentary, down section. A medium to dark grey argillite section occurs from 216.7 to 227.8 metres and probably correlates with the section at 245.8 metres in the previous hole. The mineralized horizon is present in this hole from 146.1 to 147.41 metres which returned 1.5 g per tonne over 1.31 metres.

Drilling continued 30 metres to the south on the section of Hole S-15; this hole contained an assay of 24.5 g per tonne over one metre (0.761oz per ton /3.3ft.). Hole HM04-31 (Figure 4) was designed to intersect the mineralized horizon above S-15. It was cased to 64.3 metres before entering the talcose ultramafic tuffs. They continue to 82.7 metres where they meet the laminated variety which continues to 113 metres. Below these ultramafics are the exhalitic sedimentary rocks; they continue to the end of the hole at 242.2 metres. This hole returned 4.03 g per tonne over 3.3 metres which included 36.65g per tonne over 0.50 metres just below the upper contact with the laminated ultramafic rocks. 11 metres below a second mineralized section gave 1.04g over 0.62 metres. Below these values the gold values drop and seldom exceed 0.10 gram per tonne. The next hole, HM04-32 was designed to the zone at the 180 metre level; it passed through the lake and overburden to 58.4 metres before intersecting the talcose ultramafic fragmental volcanic sequence. These ultramafics continue to 87.4 metres where they rapidly grade into the laminated type which terminates at 138.1 metres. Below these rocks the exhalitic sedimentary section continues to the end of the hole at 255 metres. The medium to dark gray or graphitic argillite is found from 228 metres to the end of the hole. The mineralized horizon is present from 142.0 to 142.64 metres and ran 2.46 g per tonne over 0.64 metres. A second zone is present from 158.95 to 159.36 metres and contains 1.02 g per tonne over 0.41 metres.

Hole HM04-33 was drilled on the same section to intersect the mineralization at the 250 metre level. It was cased to 56.8 metres before entering the talcose ultramafics. They continue to 87.4 metres and rapidly grade into the laminated variety which in turn grade into the exhalitic sediments at 134.1 metres. These exhalitic sediments continue to 230 metres where they grade into dark gray argillites to the end of the hole at 237 metres.

Holes HM04-34 and 34B (Figure 5) were drilled below S-14, 100 metres south of S-16. The first attempt was lost at 117.8 metres; but the second attempt was able to penetrate the exhalitic sediments. It was cased to 59.7 metres and penetrated the talcose ultramafics to 75 metres. Below 75 metres it passed through the laminated tuffs to the exhalitic sediments at 128.8 metres. This sequence continues to the end of the hole at 167.9 metres. The mineralized horizon consisted of a 1.42 metre intersection which returned 1.4 grams of gold per tonne from 130.58 to 132.0 metres.

Hole HM04-35 continued to test this section at the 250 level. It was cased to 75 metres where it encountered the talcose ultramafic rocks; these continued to 94.5 metres. At 94.5 they contact the laminated ultramafic tuffs that extend to 133.8 metres where they contact the lower exhalitic sedimentary sequence. The exhalitc sedimentary sequence continues to the end of the hole at 248.9 metres. Dark gray argillites that form the lower marker horizon extend from 237.5 to 240 metres. Visible gold occurs in the section from 156.0 to





156.47 metres, but the assayed value was 0.22 grams per tonne. A metallic assay returned 0.61 gram per tonne. A second gold-bearing zone is located from 165.74 to 166.28 metres and returned a value of 1.18 grams per tonne over 0.54 metres. This hole completed the investigation of the Hole S-14 section.

The next hole, HM04-36 (Figure 6), was drilled on section of hole S-10 and was designed to cut the mineralized horizon at the 250 metre level. It was cased to 57 metres and penetrated the talcose ultramafic rocks for 60 metres to 117.6 metres. The rocks rapidly change to the laminated ultramafic tuff which goes to 138.9 metres. Beyond is the exhalitic sedimentary sequence which continues to the end of the hole at 243 metres. Graphitic argillite of the lower marker horizon is located from 221 to 224 metres. Mineralization was not observed in this hole, but a one metre section from 140.18 to 141.18 averages 0.43 grams per tonne. It probably represents the mineralized horizon.

The next two holes were the most southerly drilled; they tested the Hole S-20 section about 40 metres north of the shaft or 150 metres south of Hole S-16. They were designed to test the down dip continuation of the 4.24 gram per tonne over 0.67 metre intersection in Hole S-20. Hole HM04-37 was aimed at the 180 metre level; it was cased to 63 metres and continued in talcose ultramafic rocks to105 metres. Below these rocks the laminated ultramafic tuffs go to 167.8 metres and contain a siliceous feldspar porphyry band near its base. Exhalitic sedimentary rocks continue to the end of the hole at 248.8 metres. The last three metres is the dark gray graphitic argillite. Mineralization is weak in this hole and is represented by a 2.12 metre section, from 171.3 to 173. 4 metres, which ran one gram per tonne.

Hole HM04-38 (Figure 7) probed this section at the 250 metre level. After casing to 59.3 metres it penetrated talcose ultramafics for 36 metres to 95.6 metres where it contacted the laminated ultramafic tuffs. These rocks extend to 143.5 metres. Below, the exhalitic sedimentary sequence extends to the end of the hole at 218.6 metres. The lower marker graphitic argillite starts at 213.3 metres and continues to the end of the hole. The mineralized horizon is present from 146.35 to 147.76 metres as a 1.4 metre section containing one gram per tonne.

The last hole in the program was designed to test the S-16 section at depth. It was collared approximately 100 metres west of the first ring of holes. According to the interpretation of Kirwin, 1988 (OGS Assessment File T2664) this hole should have intersected the exhalitic sedimentary rocks at between 130 and 200 metres. The hole was cased to 49 metres before entering the talcose ultramafic fragmental tuffs and agglomerates. It continued in these rocks to 275.8 metres and then passed through a laminated ultramafic band before returning to the talcose rocks to 305 metres. The last 4 metres to 309 metres was a medium to dark gray highly sericitic schist that was probably a fine dark mud. The trend of this unit appears to be within 20 degrees of the core axis. It is unlike any of the other rocks seen in the adjacent holes. The writer is interpreting these sediments to be a band within the talcose ultramafic rocks and the absence of the normal mine section suggests that the dip is much steeper than previously thought.

| N75°W                 | 48700           | 0mE 4 <b>87</b> 100mE | 487200mE                      | 48730                                                                                                                                               | 0mE S15°E                                                                                                  |
|-----------------------|-----------------|-----------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 4 <b>88</b> 900mE<br> | HM04-36         | Porcupine Lake S-9    |                               | carb rich low fe<br>felsic tuff on oc bl surface                                                                                                    | road 0m                                                                                                    |
| Property Boundary     |                 |                       |                               |                                                                                                                                                     |                                                                                                            |
|                       |                 |                       |                               |                                                                                                                                                     | -100m<br>● 2004 Drill Hole<br>● S-9 1986 Drill Hole<br>○ H-5 1985 Drill Hole<br>△ Sample Location<br>-200m |
|                       | E.O.H. 234.0m   |                       |                               | Casing<br>Talcose ultramafic tuffs<br>Laminated ultramafic t<br>Exhalitic sedimentary<br>Fine dark gray mudsto<br>32.88/0.78 Grade (g/t Au) / width | s and fragmental volcanics<br>utfs<br>rocks, tuffs and sedimentary rocks<br>on<br>(metres)                 |
|                       | Scale 1:        | 2,000                 | -300m                         | ValGold Res<br>Hunter Min<br>Whitney Township, Por<br>Onta                                                                                          | e b<br>ources Ltd.<br>e Property<br>cupine Mining District<br>rio<br>OSS Section                           |
| D. McBride. Jan       | 0 20 40<br>metr | 60 80 100<br>es       | of section is 15° to UTM Grid | HOLE M<br>(Looking                                                                                                                                  | H04-36                                                                                                     |

ъ



After the drill program was completed, all samples containing greater than one gram of gold were re-assayed using the metallic assay. This method includes coarse gold in the sample and gives a total gold assay for the sample. The right column shows the metallic assays; for the higher values, the metallic assays are similar or slightly elevated. They show that the nugget effect is neutral or slightly positive.

#### Geology of the Mine Section as based on 2004 Drilling

The lowest rock in the mine section is the exhalitic sedimentary sequence. It can be divided into a lower middle and upper sequences. The lower lies below the graphitic argillite and consists predominantly of pale gray siliceous clastic sedimentary rock with a high calcium carbonate content. Mineralization is not known in these rocks. Above these rocks the graphitic argillite sequence marks a transition from predominantly clastic sedimentary rock to more exhalitic and tuffaceous ones. It is a two to five metre thick series of beds that can be traced between holes.

The main exhalitic sedimentary section or upper series of beds is fairly well bedded and contains abundant carbonate. It is a pale brownish gray in colour and is best differentiated from the other lithologies by its colour and high carbonate content. Gold is found within the top few metres of the unit. On surface at the discovery pit this rock weathers light brown from the iron in the carbonate. A quartz band marks the upper limit of the band and contains the gold in the discovery pit. From the drill intersections, the gold mineralization is essentially conformable with the upper contact of the exhalitic unit.

Above this contact is the laminated ultramafic tuff. It is a well laminated rock with dark talcose beds and paler gray carbonate ones. Up section the talcose bands increase relative to the carbonate and take on the appearance of striped black and pale gray rock. The transition to the overlying talcose ultramafic rocks is sharp. These rocks form a sequence of bedded dark green, soft tuffaceous rocks and agglomerates. Lapilli, fragments and bedding are diagnostic of this rock as is its very soft matrix. It forms the upper most unit seen in all drill holes and in Hole HM04-39 has a core length of more than 300 metres.

#### **Interpretation (Figure 8)**

The 2004 summer drill program has extended the mineralized horizon to the 250 metre level. Gold values very near the top of the exhalitic sedimentary sequence show the continuity of this gold-bearing horizon as a conformable band in the stratigraphy. These observations agree with those mapped on the lakeshore outcrop north of the shaft. Within this gold-bearing horizon, a higher grade ore shoot with visible gold can be traced from the old stopes as a -35 degree plunging structure approximately 100 metres long. Old hole S-18, 30 metres north of the most northerly hole in this program, returned a 3.2 metre section grading 0.44 grams of gold with visible gold observed in the core. A further 60 metres north a 1.6 gram gold assay over 0.3 metre indicates that the gold-bearing horizon continues north. Unfortunately the geology seems complicated from the old log and the core is no longer available. Hole HM04-39 tried to test this horizon well below Hole HM04-30. It failed to penetrate through the talcose ultramafic rocks before being



terminated at 309 metres and shows that the horizon is steeper than previously interpreted.

### Conclusions

The drilling program in the summer of 2004 has succeeded in defining a 100 metre long gold shoot within an extensive horizon that contains more than a gram of gold over more than a metre. This shoot can be traced from surface northerly with a plunge of 35 degrees to below the 180 metre level beyond the northern limit of the program. Future drilling should attempt to trace the shoot to the north and down plunge.

South of this shoot the lower values that the horizon continues and an old value in Hole S-12 of 40.9 grams over 0.46 metres (1.195 oz per ton over 1.5 ft.) indicates that an additional gold-bearing shoot may be present in the shaft area. In addition only four S series holes tested the horizon south of the shaft and only for 300 metres. Gold values were in the trace range, but much of the sampling did not include the gold-bearing horizon as it is now understood. More drilling is warranted in this area and along the horizon to the south to the end of the claims at the Dome Mines pump house.

This recommended program will test the three principle target areas on the property with 3500 metres of drilling. 2000 metres will test the continuity of the north gold shoot, 700 the shaft gold shoot and 800 the southern extension. The total estimated cost of this program is \$500,000 and is detailed in Table 3.

| Drilling 3500 metres: down dip & extension \$100.00 per metres | \$350,000.00 |
|----------------------------------------------------------------|--------------|
| Supervision and technical analysis                             | \$40,000.00  |
| Magnetic and EM surveys for entire property                    | \$15,000.00  |
| Local Field Assistant 60 days at \$150.00 per                  | \$9,000.00   |
| Travel and accommodations 1 and a half months                  | \$12,000.00  |
| Field office and storage                                       | \$10,000.00  |
| Supplies, services and assaying                                | \$10,000.00  |
| Mob., demob. of drill and barge                                | \$20,000.00  |
| Reporting and government filings                               | \$10,000.00  |
| Contingency                                                    | \$24,000.00  |
|                                                                |              |
| Total                                                          | \$500,000.00 |

Table 3Proposed Drilling Budget 2005

The project cost totaled \$430,624.96. Table 4 shows the breakdown from the accounting department of ValGold.

| Tal   | ble | 4     |
|-------|-----|-------|
| Table | of  | costs |

| Drilling contract costs Benoit Drilling   | \$<br>340,638.87 |
|-------------------------------------------|------------------|
| Assaying Swastika and Acurrassay Labs.    | \$<br>16,631.00  |
| Core storage, sampling and hole surveying | \$<br>17,582.13  |
| Project geologist                         | \$<br>38,675.32  |
| Project management                        | \$<br>17,097.64  |
| Total Project Cost                        | \$<br>430,624.96 |

# APPENDIX 1 Drill Logs

| Property:Hunter MineHole MineHole Mino-50Page No.:1 of 8Hole HM-04-28Location:Hole Azimuth:1050Date Started:11/06/2004Image: Started:11/06/2004Image: Started:11/06/2004Image: Started:11/06/2004Image: Started:Image: Started:11/06/2004Image: Started:Image: Started:Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hunter Mine - Diamond Drill Log |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| Location:         Hole Azimuth:         1050         Date Started:         11/06/2004         Image: Control of the started:         Image: Control of the started:         11/06/2004         Image: Control of the started:         11/06/2004         Image: Control of the started:         Image: C                                                                                                                                                                                                                                                                                                                                      |                                 |  |  |  |  |  |  |
| Claim No:       HR 1009       Hole Length       195.5m       Date Finished:       11/06/2004         Elevation:       Porcupine Lake       Purpose:       test zone       Drill Co.:       Benoit       Image: Construction of the state of th                                     |                                 |  |  |  |  |  |  |
| Elevation:       Porcupine Lake       Purpose:       test zone       Drill Co.:       Benoit       Image: Constraints         UTM Cords:       5370930. 4N, 487135.0E       Description       Sample:       K. Jensen       Assays         Meterge       Description       Sample:       Sample:       K. Jensen       Assays         From       To       Mode       No.       From       To       Width       Au (g/t)       Au check       Au (2nd)         60.0       102.5       Taicose Carbonated Brecclated UM       No.       From       To       Vidth       Au (g/t)       Au check       Au (2nd)         60.0       102.5       Taicose Carbonated Brecclated UM       No.       From       To       Vidth       Au (g/t)       Au check       Au (2nd)         60.0       102.5       Taicose Carbonated Brecclated UM       Image: Conservery 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |  |  |  |  |  |  |
| UTM Coords.:       5370930. 4N, 487135.0E       Logged by:       K. Jensen       Assays         Meterage       Description       Sample       Assays       Assays         From       To       No.       From       To       Mu (g/t)       Au check       Au (2nd)         0.0       60.0       Casing - water depth 7'       No.       From       To       Width       Au (g/t)       Au check       Au (2nd)         60.0       102.5       Talcose Carbonated Brecclated UM       Image: Casing - water depth 7'       Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |  |  |  |  |  |  |
| Meterage       Description       Sample       Assays         From       To       No.       From       To       Width       Au (g/t)       Au check       Au (2nd)         0.0       60.0       Casing - water depth 7'       No.       From       To       Width       Au (g/t)       Au check       Au (2nd)         60.0       102.5       Talcose Carbonated Brecclated UM       Image: Carbonated Brecclated Decreases (p) black to greenish black, carbonated, soft to       Image: Carbonated Brecclated UM       Image: Carbonated Brecclated Brecclated Healed with carbonate, rare       Image: Carbonated Brecclated Brecclated Healed with carbonate, rare       Image: Carbonated Brecclated Brecclated and       Image: Carbonated Brecclated Image: Carbonate Brecclated Brecclated Amage: Carbonate                                                                                                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |
| FromToNo.FromToWidthAu (g/t)Au checkAu (2nd)0.060.0Casing - water depth 7'<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |
| 0.0       60.0       Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         60.0       102.5       Talcose Carbonated Brecciated UM       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water depth 7'         Image: Casing - water depth 7'       Image: Casing - water depth 7'       Image: Casing - water                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Au check                        |  |  |  |  |  |  |
| 60.0       102.5       Talcose Carbonated Brecciated UM       Image: Carbonated Brecciated UM       Image: Carbonated Brecciated Core recovery 1.56       Image: Carbonated Brecciated Sections to weakly magnetic with intensely       Image: Carbonated Brecciated Breccia |                                 |  |  |  |  |  |  |
| Inde 60.0-63.0 reamed core recovery 1.56Inde 60.0-63.0 reamed core recovery 1.56Inde 60.0-63.0 reamed core recovery 1.56Imed.,deep bluish tint, very talcose, fg, black to greenish black, carbonated, soft to<br>moderately soft 60-73.6 to moderately soft 73.6 intenselyImage: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rareImage: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rareImage: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rareImage: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rareImage: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rareImage: Carbonated sections to weakly magnetic, brecciated sections to CA-300, paleImage: Carbonated fragments 67.16, 67.35, carbonated brecciated andImage: Carbonate sections to weakly magnetic, brecciated andImage: Carbonate sections to weakly magnetic, brecciated andImage: Carbonate sections to weakly magnetic to the sections to the sections to the section to the sections to the section to the secti                       |                                 |  |  |  |  |  |  |
| med.,deep bluish tint, very talcose, fg, black to greenish black, carbonated, soft to       Image: carbonated sections to moderately soft 73.6 poorly magnetic with intensely         carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated healed with carbonate, rare       Image: carbonated sections to weakly magnetic, breciated sections to weakly magnetic, breciated and       Image: carbonated fragments 67.16, 67.35, carbonated breciated and       Image: carbonate sections to weakly magnetic CA-750, 73.6-74.40 intensity of carbonate       Image: carbonate sections to sectionsections to sectionsecons to sections to sections to sections to s                                                      |                                 |  |  |  |  |  |  |
| moderately soft 60-73.6 to moderately soft 73.6 poorly magnetic with intensely       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated sections to CA-500, 60.0-73.6 intensely       Image: Carbonated sections to weakly magnetic, brecciated sections to CA-500, 60.0-73.6 intensely       Image: Carbonated sections to weakly magnetic, brecciated sections to CA-500, pale       Image: Carbonated sections to CA-500, 60.0-73.6 intensely       Image: Carbonate sections to carbonate sections to CA-500, pale       Image: Carbonate sections to carbonate sectionsections to carbonate sections to carbonate sections to carbonate s                   |                                 |  |  |  |  |  |  |
| carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated healed with carbonate, rare       Image: Carbonated sections to weakly magnetic, brecciated sections to CA-300, contorted foliation to CA-500, 60.0-73.6 intensely       Image: Carbonated sections to weakly magnetic, brecciated sections to CA-300, contorted foliation to CA-500, 60.0-73.6 intensely       Image: Carbonated sections to weakly magnetic, brecciated sections to CA-300, pale       Image: Carbonated sections to CA-300, contorted foliation to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, contorted sections to CA-300, contorted sections to CA-300, pale       Image: Carbonate sections to CA-300, contorted sections to CA-300, conted sectins to CA-300, contorted sections to CA-300, co                                     |                                 |  |  |  |  |  |  |
| qc stringers <0.5cm CA-300, contorted foliation to CA-500, 60.0-73.6 intensely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |  |  |  |  |  |  |
| carbonated, rare buff green elongated fragments, 61.87 5mm qc CA-300, pale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |  |  |  |  |  |  |
| grey white mg elongated fragments 67.16, 67.35, carbonated brecciated and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |  |  |  |  |  |  |
| irregular masses, 72.50 2cm qc veinlet CA-750, 73.6-74.40 intensity of carbonate brecciated decreases to <10%, and hairlike to 1-2mm carbonate , 74.40-77.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |  |  |  |  |  |  |
| brecciated decreases to <10%, and hairlike to 1-2mm carbonate , 74.40-77.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |  |  |  |  |  |  |
| Toliated locally contorted possibly tuffaceous carbonated UM, CA-58o see pyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |  |  |  |  |  |  |
| 77.15 79.4 at 74.89, contorted 76.43-77.15, 77.15 ground contact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |  |  |  |  |  |  |
| Lamprophyre fg mg, salt and pepper brownish altered homblende masses and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |  |  |  |  |  |  |
| carbonated, locally bluish tint, carbonate stringers, CA-30-350 with bluish hue,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |  |  |  |  |  |  |
| moderately soft, carbonated moderately, non magnetic, nil to poorly developed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |  |  |  |  |  |  |
| foliation locally pale buff greenish yellow sericite alth, random x-cut orientation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |  |  |  |  |  |  |
| rare qc or c, qtz stringers, trace sulphides, 79.40 ground contact, 79.37 3cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |  |  |  |  |  |  |
| 79.4 79.9 crumbly core, possible fault/shear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |  |  |  |  |  |  |
| Lamp and Carbonate UM tuff, similar to lamp but looks like alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |  |  |  |  |  |  |
| contact recrystalization, weak alignment foliation CA-680, mottled to salt and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |  |  |  |  |  |  |
| pepper texture of black to black green and pale greenish white carbonate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |  |  |  |  |  |  |
| discontinuous foliated gashes < 2mm, x-cutting foliation, rare scattered cg py,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |  |  |  |  |  |  |
| 79.9 83.87 moderately soft, non magnetic, moderately devel. foliation, 79.90 contact CA-600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |  |  |  |  |  |  |
| TCS carbonated UM tuff talcose, fg, laminated with whitish to whitish grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |  |  |  |  |  |  |
| carbonate, uniform, moderate soft, non magnetic, well developed of bedding CA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |  |  |  |  |  |  |
| 400 foliation with locally contorted folded with displacements 1.5cm 81.18-82.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |  |  |  |  |  |  |
| CA-800 chlorite fol., scattered mg py associated with discontance or carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |  |  |  |  |  |  |
| bands <0.5% to trace, 81.18 3cm x-cut bed, V shaped light brownish qc veinlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |  |  |  |  |  |  |

| Property |       |                                                                                    | Hole No. |       | 28    | Sheet No. | 2        |          |          |          |
|----------|-------|------------------------------------------------------------------------------------|----------|-------|-------|-----------|----------|----------|----------|----------|
| Mete     | rage  | Description                                                                        | Sam      | ple   |       |           |          | Assay    |          |          |
| From     | То    |                                                                                    | No.      | From  | То    | Width     | Au (g/t) | Au Check | Au (2nd) | Au check |
| 79.9     | 83.87 | CA-80o+60o to 83.87 contorted and folded bedded tuff, 83.87 3cm shearing           |          |       |       |           |          |          |          |          |
|          |       | intense foliation with carbonated stringer CA-70o.                                 |          |       |       |           |          |          |          |          |
| 83.87    | 90.03 | Massive to locally Bx UM talcose, fg, black green, moderately                      |          |       |       |           |          |          |          |          |
|          |       | soft, non magnetic, massive, uniform, randomly orientated 1-3mm carbonated         |          |       |       |           |          |          |          |          |
|          |       | ff, nil to weak level of schistose or foliation, void of stringers qtz or qc or c, |          |       |       |           |          |          |          |          |
|          |       | nil to trace sulphides usually py cg py at 83.04 associated with discontinuous     |          |       |       |           |          |          |          |          |
|          |       | carbonated, 84.30 1.2cm pyrite, 84.45 mg py, 88.39-88.66 brecciated                |          |       |       |           |          |          |          |          |
|          |       | carbonated healed, 88.66-89.11 very talcose, 89.11-89.19 very schistose,           |          |       |       |           |          |          |          |          |
|          |       | sheared zone CA-75o+65o, 89.19-90.03 intense brecciated carbonated                 |          |       |       |           |          |          |          |          |
|          |       | healed 50%.                                                                        |          |       |       |           |          |          |          |          |
| 90.03    | 90.3  | silicified carbonated alth felsic, fg light grey brown, non magnetic, weakly to    |          |       |       |           |          |          |          |          |
|          |       | moderately soft, massive, uniform, possible contact alteration, 90.30 broken       |          |       |       |           |          |          |          | 1        |
|          |       | contact, chlorite ff small and discontance.                                        |          |       |       |           |          |          |          |          |
| 90.3     | 91.02 | Altered UM, similar to 77.15-79.40, fg, brownish tint to black green, well         |          |       |       |           |          |          |          |          |
|          |       | developed talcose, soft to moderately soft, crushed zone, nil to very weak         |          |       |       |           |          |          |          |          |
|          |       | developed foliation/schistose, nil stringers, trace sulphides, carbonated,         |          |       |       |           |          |          |          |          |
|          |       | talcose, 91.02 contact CA-40o overall sineous sharp.                               |          |       |       |           |          |          |          |          |
| 91.02    | 91.23 | qtz vein, white, milky with pale green talcose and black green UM fragments        |          |       |       |           |          |          |          |          |
|          |       | inclusions, 91.23 contact sharp sinuous overall 450.                               |          |       |       |           |          |          |          |          |
| 91.23    | 94.94 | Tuff UM, carbonated, talcose, fg, massive to tuffaceous, greyish altered,          | 44501    | 94    | 94.94 | 0.94      | 0.02     |          |          |          |
|          |       | siliceous 91.23-91.53, black to black green with carbonate greenish white,         |          |       |       |           |          |          |          |          |
|          |       | increasing development of bedding 1-2mm laminated, moderately soft, non            |          |       |       |           |          |          |          |          |
|          |       | magnetic, bed at 92.57 CA-720, 93.79 CA-700, 94.45-94.64 contorted                 |          |       |       |           |          |          |          |          |
|          |       | bedding, trace sulphides, 94.94 contact sharp CA-75o.                              |          |       |       |           |          |          |          |          |
| 94.94    | 96.62 | Grey felsic dike, ophanitic, light to medium grey, hard, siliceous, scattered      | 44502    | 94.94 | 96    | 1.06      | 0.03     | 0.04     |          |          |
|          |       | medium to dark green x-cut chlorite, non magnetic, non carbonated, few             |          |       |       |           |          |          |          |          |
|          |       | scattered 1-2mm white qtz stringers CA-60-850 from 95.46-95.94, scattered          |          |       |       |           |          |          |          |          |
|          |       | light grey qtz veinlets 1cm CA-600 irregular at 96.14, white qtz vein 2-3cm        |          |       |       |           |          |          |          |          |
|          |       | irregular CA-80o at 95.41, scattered fg py with few mg py overall 1% locally       |          |       |       |           |          |          |          |          |
|          |       | 1-2% from 94.94-96.14, 96.14-96.62 similar to 94.94-96.14 except nil to trace      |          |       |       |           |          |          |          |          |
|          |       | sulphides, 96.42 increasing greyish white q veinlets to 96.62, contact CA-500      |          |       |       |           |          |          |          |          |
| 96.62    | 97.2  | FP or silicified massive UM, aphanitic medium grey with locally 1mm                | 44503    | 96    | 97    | 1         | 0        |          |          |          |
|          |       | phenocrysts, siliceous and several greyish with qtz veinlets, 1-1.5cm, hard,       |          |       |       |           |          |          |          |          |
|          |       |                                                                                    |          |       |       |           |          |          |          |          |
|          |       |                                                                                    |          |       |       |           |          |          |          |          |
|          |       |                                                                                    |          |       |       |           |          |          |          |          |
|          |       |                                                                                    |          |       |       |           |          |          |          |          |

| Property | Hunter M | ine                                                                                | Hole No. | 28   |        | Sheet No. | 3        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------|----------|------|--------|-----------|----------|----------|----------|----------|
| Me       | terage   | Description                                                                        | Sam      | ole  |        |           |          | Assay    |          |          |
| From     | То       |                                                                                    | No.      | From | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 96.62    | 97.2     | non magnetic, rare sections of <0.5% fg py, nil level foliation, 97,20 contact     |          |      |        |           |          |          |          |          |
|          |          | sharp CA-800.                                                                      |          |      |        |           |          |          |          |          |
| 97.2     | 97.43    | TCS UM tuff, fg, black green, carbonated foliation CA-550, moderately soft,        | 44504    | 97   | 98     | 1         | 0        |          |          |          |
|          |          | non magnetic, talcose, possible inclusions, void of stringers, nil sulphides,      |          |      |        |           |          |          |          |          |
|          |          | 97.39 contact sharp CA-60o.                                                        |          |      |        |           |          |          |          |          |
| 97.43    | 97.55    | Felsic dike, light to medium grey, aphanitic, massive uniform, nil level foliation |          |      |        |           |          |          |          |          |
|          |          | void of stringers, void of sulphides, fg black green clots similar to 94.94-96.62  |          | _    |        |           |          |          |          |          |
|          |          | 96.62 contact sharp CA-650.                                                        |          |      |        |           |          |          |          |          |
| 97.55    | 98.12    | Silicified zone, felsic dike, massive greyish white qtz veining with inclusions    |          |      |        |           |          |          |          |          |
|          |          | of medium grey with black green clots FP similar to 97.39-97.50, void of           |          |      |        |           |          |          |          |          |
|          |          | sulphides, hard, non magnetic, non carbonated, void of second generation           |          |      |        |           |          |          |          |          |
|          |          | stringers, 98.04 contact sharp CA-50-55o.                                          |          |      |        |           |          |          |          |          |
| 98.12    | 98.69    | Silicified zone, UM, massive ultramafic intruded by weakly carbonated veins        | 44505    | 98   | 99     | 1         | 0        |          |          |          |
|          |          | and silicified ultramafic altered to light grey veins white black green core, qtz  |          |      |        |           |          |          |          |          |
|          |          | veinlets random, nil sulphides, 98.04-98.43 silicified 98.43 CA-70o, 98.43-        |          |      |        |           |          |          |          |          |
|          |          | 98.62 silicified foliated black green UM, 98.62 CA-50-60o irregular.               |          |      |        |           |          |          |          |          |
| 98.69    | 98.95    | Felsic dike and qtz vein, similar to 97.43-97.55 with <1mm white phenocrysts       |          |      |        |           |          |          |          |          |
|          |          | hard, nil sulphides, 98.69-98.74 whitish qtz vein CA-75o, 98.78 1/2cm CA-          |          |      |        |           |          |          |          |          |
|          |          | 75o, 98.84-98.95 qtz vein with chlorite UM and talc inclusions 98.95 CA-55o        |          |      |        |           |          |          |          |          |
|          |          | no sulphides.                                                                      |          |      |        |           |          |          |          |          |
| 98.95    | 105.13   | Silicified UM tuff and Bx, fg, blackish green to black, fine laminations,          | 44506    | 99   | 100    | 1         | 0        |          |          |          |
|          |          | moderately hard to hard silicified sections, talcose nil to weakly carbonated      | 44507    | 100  | 101    | 1         | 0        | 0        |          |          |
|          |          | altered to medium grey to blackish grey, irregular discontinuous carbonated        | 44508    | 101  | 102    | 1         | 0.01     |          |          |          |
|          |          | and qtz masses, well developed beding with local contorted bedding                 | 44509    | 102  | 103    | 1         | 0.02     |          |          |          |
|          |          | small folds, locally brecciated, 99.29-99.44 white qtz vein CA-700+550 no          | 44510    | 103  | 104    | 1         | 0.03     |          |          |          |
|          |          | sulphides, 98.95-99.57 brecciated, 99.57-99.91 tuffaceous bed CA-550 minor         | 44511    | 104  | 105.12 | 1.12      | 0.16     |          |          |          |
|          |          | kinkling, 99.91-100.02 qtz vein white CA-800 + 40-450 irregular, 100.02-           |          |      |        |           |          |          |          |          |
|          |          | 100.85 800 silicified light medium grey, brecciated, 100.85-101.33 550             |          |      |        |           |          |          |          |          |
|          |          | brecciated, folded, black green, irregular, 101.33-101.49 greyish qtz vein         |          |      |        |           |          |          |          |          |
|          |          | with altered UM and talc CA-750 overall, 101.49-101.94 brecciated black            |          |      |        |           |          |          |          |          |
|          |          | green, with irregular greyish qtz masses, 101.94 ground contact, 101.94-           |          |      |        |           |          |          |          |          |
|          |          | 102.49 silicified brecciated UM CA-650,                                            |          |      |        |           |          |          |          |          |
|          |          |                                                                                    |          |      |        |           |          |          |          |          |
|          |          |                                                                                    |          |      |        |           |          |          |          |          |
|          |          |                                                                                    |          |      |        |           |          |          |          |          |
|          |          |                                                                                    |          |      |        |           |          |          |          |          |
|          |          |                                                                                    |          |      |        |           |          |          |          |          |

-

| Property: | Hunter M | ine                                                                                 | Hole No. | 28     |       | Sheet No. | 4        |          |          |          |
|-----------|----------|-------------------------------------------------------------------------------------|----------|--------|-------|-----------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                         |          | Sample |       |           | Assay    | 3        |          |          |
| From      | To       |                                                                                     | No.      | From   | То    | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 102.49    | 105.13   | Laminated Ultramafic Tuff                                                           |          |        |       |           |          |          |          |          |
|           |          | black green and greyish gtz carbonated, weakly carbonated to moderately,            |          |        |       |           |          |          |          |          |
| 98.95     | 105.13   | well developed bedding CA-650 at 102.8, scattered x-cutting chlorite fol. CA-230,   |          |        |       |           |          |          |          |          |
|           |          | randomly 1-2mm whitish gtz stringer CA-200, 550 & 400 opposite, bed at 104.16       |          |        |       |           |          |          |          |          |
|           |          | CA-60o, 104.3 1 1/2cm brownish siliceous aphantic felsic dike CA-45o, 104.43        |          |        |       |           |          |          |          |          |
|           |          | 3-4mm qtz whitish to pale green stringer x-cut bedding, CA-15-20o, 104.68-          |          |        |       |           |          |          |          |          |
|           |          | 104.90 irregular greyish qtz veinlet with whitish ankerite carbonate on contacts    |          |        |       |           |          |          |          |          |
|           |          | low angle and II to bed, 105.13 contact CA-40-450 sineous.                          |          |        |       |           |          |          |          |          |
|           |          |                                                                                     |          |        |       |           |          |          |          |          |
| 105.13    | 195.5    | Exhalitic Sedimentary Rocks and Tuffs                                               |          |        |       |           |          |          |          |          |
| 105.13    | 105.28   | Qtz vein, pale brownish tint qtz vein, UM inclusions, minor py at 105.13, contact   | 44512    | 105.1  | 105.9 | 0.78      | 32.88    | 37.85    | 37.03    | 34.49    |
|           |          | 105.28 CA-30o overall sinuous, pin prick VG at 105.23, inclusions rimmed with       |          |        |       |           |          |          |          |          |
|           |          | chocolate brown tourmaline.                                                         |          |        |       |           |          |          |          |          |
| 105.28    | 107.44   | Bleached felsic tuff, aphanitic to fine grained, light buff to greyish tan, random  | 44513    | 105.9  | 106.7 | 0.75      | 0.22     | 0.21     |          |          |
|           |          | rare 1-2mm qtz eyes, well developed laminations tuffaceous, siliceous, hard, non    | 44514    | 106.7  | 107.4 | 0.79      | 0.16     |          |          |          |
|           |          | magnetic, 3 local spots with green fuchsite, 1 as small fragment, qtz and qtz       |          |        |       |           |          |          |          |          |
|           |          | ankerite stringers II to bedding CA-35-450, vfg to fg pyrite associated mostly with |          |        |       |           |          |          |          |          |
|           |          | tuff minor in stringers, scattered fg chalcopyrite, overall 1-2% pyrite,            |          |        |       |           |          |          |          |          |
|           |          | 105.28-105.54 greyish buff with qtz stringers and tourmaline scattered              |          |        |       |           |          |          |          |          |
|           |          | chalcopyrite, 1-2% vfg to fg pyrite in tuff, scattered VG at 105.34 pin prick,      |          |        |       |           |          |          |          |          |
|           |          | 105.43 2 on both sides of qtz veinlet and tourmaline CA-30o 1 spot 0.5mm long       |          |        |       |           |          |          |          |          |
|           |          | cluster and qtz and ankerite stringers x-cut bedding CA-20-40o,                     |          |        |       |           |          |          |          |          |
|           |          | 105.54-107.44 buff felsic tuff, 3 fuchsite 1 fragment, well developed bedding,      |          |        |       |           |          |          |          |          |
|           |          | random chocolate brown tourmaline hairlike usually II to bedding, locally x-cut     |          |        |       |           |          |          |          |          |
|           |          | by qtz ankerite stringers, brighter density from 105.54-106.05 and 107-107.44,      |          |        |       |           |          |          |          |          |
|           |          | 105.73 1-2mm cluster of VG associated with grey qtz stringer CA-10-300 x-cut        |          |        |       | _         |          |          |          |          |
|           |          | bedding CA-450 with brown tourmaline on contacts,                                   |          |        |       | _         |          |          |          |          |
|           |          | 107.39-107.44 greyish buff silicified contacts with II brown tourmaline.            |          |        |       |           |          |          |          |          |
| 107.44    | 116.17   | UM tuff, similar to 102.49-105.13 minor kinkle folding, discontinuous and qtz       | 44515    | 107.4  | 108.4 | 1         | 0.01     |          |          |          |
|           |          | stringers II to bedding Ca-42-45o, 107.44-112.10 bedding x-cut by chlorite          | 44516    | 108.4  | 109.4 | 1         | 0.1      |          |          |          |
|           |          | stringers with usual small displacements CA-25-300 1-5mm up to 20/meter,            | 44517    | 115.0  | 116.2 | 1.17      | 0.24     |          |          |          |
|           |          | about 50:50 x-cuts and displaced qtz stringers II to bedding 10-15/meter,           |          |        |       |           |          |          |          |          |
|           |          | scattered to trace vfg fg pyrite <0.5% overall, 111.08-111.15 greyish buff felsic   |          |        |       |           |          |          |          |          |
|           |          | tuff band, 2-3% vfg pyrite CA-80o, 111.24 contorted felsic band II to bedding but   |          |        |       |           |          |          |          |          |
|           |          |                                                                                     |          |        |       |           |          |          |          |          |
|           |          |                                                                                     |          |        |       |           |          |          |          |          |
|           |          |                                                                                     |          |        |       |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                    | Hole No. | 28     |        | Sheet No. | 5        |          |          |          |
|-----------|----------|----------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                            | Sample   |        |        |           | As       | say      |          |          |
| From      | То       |                                                                                        | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | not x-cut by chlorite stringers, kinkle folded where it should x-cut, 112.68 1/2-      |          |        |        |           |          |          |          |          |
|           |          | 1cm brownish red aplite dike x-cut bedding CA-55o, 114.10-114.16 FP greyish            |          |        |        |           |          |          |          |          |
|           |          | brown, laths feldspar, x-cut CA-55+500 x-cut bed, 116.17 contact sharp CA-800.         |          |        |        |           |          |          |          |          |
| 116.17    | 116.61   | Siliceous zone breccia, ophanitic greyish brown to grey, silicified, scattered         | 44518    | 116.17 | 116.61 | 0.44      | 0.03     |          |          |          |
|           |          | hairlike, tourmaline chocolate brown stringers random, brecciated, non                 |          | _      |        |           |          |          |          |          |
|           |          | carbonated, non magnetic, hard, trace sulphides, 116.61 contact CA-700.                |          |        |        |           |          |          |          |          |
| 116.61    | 117.4    | Silicified tuff, medium grey, fg, silicified, laminated tuff, hard, void of stringers, | 44519    | 116.61 | 117.4  | 0.79      | 0.03     |          |          |          |
|           |          | weak to moderate bedding development, CA-60o, minor dark green                         |          |        |        |           |          |          |          |          |
|           |          | laminations, all <0.5mm, 117.40 contact 600, trace sulphides.                          |          |        |        |           |          | -        |          |          |
| 117.4     | 117.86   | Fragmental tuff, similar to 116.61-117.40 with buff subangular fragments,              | 44520    | 117.4  | 117.58 | 0.45      | 0.05     |          |          |          |
|           |          | silicified, scattered crispy tourmaline stringer, 117.75-117.86 qtz veining,           |          |        |        |           |          |          |          |          |
|           |          | scattered to <1% fg py, 117.86 contact CA-60o.                                         |          |        |        |           |          |          |          |          |
| 117.86    | 118.82   | Sericitic tuff, fg, laminated, pale buff to pale yellowish green buff, weakly to       | 44521    | 117.85 | 119    | 1.15      | 0.1      |          |          |          |
|           |          | weak moderately sericitic altn, well developed bedding CA-65o, minor kinkle            |          |        |        |           |          |          |          |          |
|           |          | folding on axial plane x-cut bedding 0.5mm chlorite ff CA-15o, 40o, 45o,               |          |        |        |           |          |          |          |          |
|           |          | 118.57-118.75 weak sericitic, slightly porphyritic possible large fragment             |          |        |        |           |          |          |          |          |
|           |          | faint contacts, 118.82 contact sharp CA-750.                                           |          |        |        |           |          |          |          |          |
| 118.82    | 118.92   | Qtz vein, whitish with local brownish tint tourmaline nil sulphides, 118.92            |          |        |        |           |          |          |          |          |
|           |          | broken contact.                                                                        |          |        |        |           |          |          |          |          |
| 118.92    | 119.75   | UM-mafic tuff, same as above, medium greyish black green, tuff, hard,                  |          |        |        |           |          |          |          |          |
|           |          | silicified, whitish qtz stringer II to bedding, trace sulphides, 119.75 contact        |          |        |        |           |          |          |          |          |
|           |          | CA-650.                                                                                |          |        |        |           |          |          |          |          |
| 119.75    | 120.26   | FP fg, to ophanitia matrix blackish and altered to medium brown from 119.84-           |          |        |        |           |          |          |          |          |
|           |          | 120.26, 2mm feldspar phenocrysts, hailike qtz stringers random orientated              |          |        |        |           |          |          |          |          |
|           |          | with altered sections, scattered to trace vfg pyrite, 120.26 contact CA                |          |        |        |           |          |          |          |          |
|           |          | irregular at 70o.                                                                      |          |        |        |           |          |          |          |          |
| 120.26    | 121.84   | UM mafic tuff, same as 118.92-119.75, silicified, nil carbonated, 120.47-              | 44522    | 121    | 121.83 | 0.83      | 0.84     | 0.81     |          |          |
|           |          | 120.80 low angle 1cm qtz veinlet, 120.87-120.95 qtz vein CA-70-65o, 121.12             |          |        |        |           |          |          |          |          |
|           |          | x-cut chlorite stringer CA-15o, 121.72 x-cut chlorite stringer CA-50o overall          |          |        |        |           |          |          |          |          |
|           |          | sinuous, 121.84 contact sharp CA-65o.                                                  |          |        |        |           |          |          |          |          |
| 121.84    | 122.24   | Felsic dike altered, ophaintic, pale buff brown to pale buff, black green,             | 44523    | 121.83 | 122.24 | 0.41      | 0.23     |          |          |          |
|           |          | chlorite hairlike fol, usually with fg pyrite overall <1%, 122.24 CA-800.              |          |        |        |           |          |          |          |          |
| 122.24    | 122.57   | Unaltered felsic dike, fg, blackish green, massive, very hard, extremely               |          |        |        |           |          |          |          |          |
|           |          |                                                                                        |          |        |        |           |          |          |          |          |
|           |          |                                                                                        |          |        |        |           |          |          |          |          |
|           |          |                                                                                        |          |        |        |           |          |          |          |          |
|           |          |                                                                                        |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                  | Hole No. | 28     |        | Sheet No. | 6        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                          | Sample   |        |        |           | Ass      | ay       |          |          |
| From      | То       |                                                                                      | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | siliceous nil to weak development of schistosty or bedding, 1% fg mg py,             |          |        |        |           |          |          |          |          |
|           |          | 122.57 sharp contact CA-70-750.                                                      |          |        |        |           |          |          |          |          |
|           |          | Felsic dike, aphanitic to fg, pale brownish buff to pink tint buff, well developed   | 44524    | 122.24 | 123.12 | 0.88      | 0.43     |          |          | _        |
| 122.57    | 123.12   | foliation with chlorite not laminated, random qtz stringers 2mm CA-12o x-cuts        |          |        |        |           |          |          |          |          |
|           |          | foliation CA-65o and qtz stringer CA-45-50o scattered fg pyrite <0.5%, 123.12        |          |        |        |           |          |          |          |          |
|           |          | CA-80o irregular.                                                                    |          |        |        |           |          |          |          |          |
| 123.12    | 124.36   | Chlorite silicified UM tuff, same as above, blackish green, tuff, silicified, hard,  | 44525    | 123.12 | 124.38 | 1.26      | 0.02     |          |          |          |
|           |          | non carbonated, non magnetic, trace sulphides, irregular qtz veinlets and            |          |        |        |           |          |          |          |          |
|           |          | sections, well level bedding CA-irregular, 123.21-123.40 qtz zone, minor vein        |          |        |        |           |          |          |          |          |
|           |          | 123.10-123.29, CA-60o with inclusions, 123.60 1-2cm qtz vein CA-85o, 123.40          |          |        |        |           |          |          |          |          |
|           |          | 123.81 contorted bedding, large fold at 123.72, 123.81-123.91 qtz section CA-        |          |        |        |           |          |          |          |          |
|           |          | 60o, 124.10-124.36 qtz carbonated vein with numerous chlorite, tuff inclusions       |          |        |        |           |          |          |          |          |
|           |          | scattered sulphides CA-70-80o irregular.                                             |          |        |        |           |          |          |          |          |
| 124.36    | 134.03   | Unaltered tuff, fg, hanlike to 0.5mm lamination, dark green to black green and       |          |        |        |           |          |          |          |          |
|           |          | greyish white silica, hard, non carbonate, silicified locally greyish green,         |          |        |        |           |          |          |          |          |
|           |          | bedding well level CA-650 124.82, trace to nil sulphides, void of stringers,         |          |        |        |           |          |          |          |          |
|           |          | 124.36-124.78 contorted and low angle bedding CA-35-55o, scattered fg py,            |          |        |        |           |          |          |          |          |
|           |          | 126.07-126.54 <0.5mm carbonated phenocrysts poor to weak foliation/schist,           |          |        |        |           |          |          |          |          |
|           |          | 126.54-126.69 pale buff to light brown altn of tuff several 0.5cm qtz stringer,      |          |        |        |           |          |          |          |          |
|           |          | altered zone 1% fg py cotact CA-80+650, 128.20-128.40 minor small kinkle             |          |        |        |           |          |          |          | _        |
|           |          | folding, 128.94 1cm white with pale brown tourmaline CA-75o, 130.54-130.58           |          |        |        |           |          |          |          |          |
|           |          | qc veinlet CA-700 II to bed, 132.0-132.16 silicified and qtz vein zone, small        |          |        |        |           |          |          |          |          |
|           |          | stringer 1mm bands of py CA-80o, fragments sericitic altn, 132.16 contact of         |          |        |        |           |          |          |          |          |
|           |          | vein CA-15o, 134.03 contact sharp CA-75-80o.                                         |          |        |        |           |          |          |          |          |
| 134.03    | 143.63   | Silicified tuff to fragmental tuff, similar to above tuff but more qtz and qc random | 44526    | 141.5  | 142    | 0.5       | 0.07     |          |          |          |
|           |          | sections 1-2mm, well level bedding CA-65-70o, massive uniform, scattered vfg         | 44527    | 142    | 142.5  | 0.5       | 0.02     |          |          |          |
|           |          | to fg pyrite locally up to 1% overall <0.5%, rare qc stringers always II to bed      | 44528    | 142.5  | 143.6  | 1.1       | 0.05     | 0.06     |          |          |
|           |          | 135.20-135.25, 136.24 0.7cm, 138.08 5mm, 139.08 5mm, 140.42 1cm, 141.79              |          |        |        |           |          |          |          |          |
|           |          | 5mm, 141.80 1.2cm, 142.04-142.44 silicified with 7 qtz veinlets 1/2-1 1/2cm          |          |        |        |           |          |          |          |          |
|           |          | buff altn with minor chocolate brown tourmaline, scattered pyrite in tuff but        |          |        |        |           |          |          |          |          |
|           |          | higher % beside veinlets locally 1-2% fg to mg pyrite, 143.10-143.14 slightly        |          |        |        |           |          |          |          |          |
|           |          | bright green altn almost fuchsite, 143.63 contact CA-65o.                            |          |        |        |           |          |          |          |          |
| 143.63    | 144.52   | Qtz vein system and Bx zone, siliceous aphanitic grey massive uniform void           | 44529    | 143.6  | 144.52 | 0.92      | 0        |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |

| Property | Hunter M | ine                                                                                  | Hole No: | 28     |        | Sheet No. | 7        |          |          |          |
|----------|----------|--------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete     | erage    | Description                                                                          | Sample   |        |        |           | Assay    |          |          |          |
| From     | To       |                                                                                      | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | of bedding and foliation included by qtz vein, 143.63-144.04, brecciated zone,       |          |        |        |           |          |          |          |          |
|          |          | 144.04-144.15 pale brownish milky gtz vein tourmaline, CA-65+60o 144.04-             |          |        |        |           |          |          |          |          |
|          |          | 144.08 chocolate brown to medium brown, 144.21-144.27 qtz vein pale                  |          |        |        |           |          |          |          |          |
|          |          | brownish CA-55+65o irregular, 144.27-144.52 greyish siliceous brecciated,            |          |        |        |           |          |          |          |          |
|          |          | trace sulphides, 144.52 contact CA-75o.                                              |          |        |        |           |          |          |          |          |
| 144.52   | 146.67   | Silicified tuff, same as above, light medium grey, silicified, banded tuff,          | 44530    | 144.52 | 145.5  | 0.98      | 0.03     |          |          |          |
|          |          | scattered elongated fragments stretched, trace sulphides, 144.85-145.14              | 44531    | 145.5  | 146.5  | 1         | 0        |          | -        |          |
|          |          | low angle white qtz vein near II to CA, 146.56-146.63 white qtz vein CA-800+         |          |        |        |           |          |          |          |          |
|          |          | 400 irregular veined by 1cm chlorite vein at 146.63, 146.67 contact alternate        |          |        |        |           |          |          |          |          |
|          |          | CA-70o.                                                                              |          |        |        |           |          |          |          |          |
| 146.67   | 147.8    | Qtz altn zone, fragmented brecciated, as above, qtz flooded, random                  | 44532    | 146.5  | 147.4  | 0.9       | 0.04     |          |          |          |
|          |          | orientated, brownish grey, chocolate brown pervasive, silica, overall greyish        | 44533    | 147.4  | 147.8  | 0.4       | 0        |          |          |          |
|          |          | with weak brown tint, 146.67-147.40 trace to <0.5% pyrite, 147.40-147.80             |          |        |        |           |          |          |          |          |
|          |          | as above 144.52-146.67, 147.80 contact irregular overall 500-550.                    |          |        |        |           |          |          |          |          |
| 147.8    | 149.25   | Qtz tourmaline altn zone, buff fragments schistose angular, as above                 | 44534    | 147.8  | 148.55 | 0.75      | 0.1      |          |          |          |
|          |          | lithological unit, pervasive chocolate brown tourmaline, qtz flooding brecciated,    | 44535    | 148.55 | 149.3  | 0.75      | 0.04     |          |          |          |
|          |          | fragmental, minor tuff bed CA-35-37o, 2-3% fg masses 3-5mm, pyrite in                |          |        |        |           |          |          |          |          |
|          |          | fragments and tuff II to bed, scattered pyrite in veining, random orientated,        |          |        |        |           |          |          |          |          |
|          |          | scattered qtz stringer CA-40o, large qtz vein at 147.80-148.17 with 1-2cm            |          |        |        |           |          |          |          |          |
|          |          | under random CA, 148.90-149.21, 149.25 contact alth CA-30-35o.                       | 44536    | 149.3  | 150.3  | 1         | 0.26     |          |          |          |
| 149.25   | 155.4    | Silicified sericitic fragmental tuff, as above, fg tuff, pervasive mod. Sericitic    | 44537    | 150.3  | 151.3  | 1         | 0.68     |          |          |          |
|          |          | altn, locally qtz flooded, silicified, rare white qtz stringer, scattered pyrite fg, | 44538    | 151.3  | 152.3  | 1         | 0.21     |          |          |          |
|          |          | blobs, small 3-5mm masses usually II to bedding 151.1 CA-65-70o, locally             | 44539    | 152.3  | 153.3  | 1         | 0.01     |          |          |          |
|          |          | kinkle folding and contacts at 151.4-152.63, 153.36-155.75, scattered to             | 44540    | 153.3  | 154.3  | 1         | 0.01     |          |          |          |
|          |          | trace pyrite locally 1%, bedding altn contact CA-650.                                | 44541    | 154.3  | 155.4  | 1.1       | 0.02     |          |          |          |
| 155.4    | 156.15   | Greyish tuff.                                                                        | 44542    | 155.4  | 156.15 | 0.75      | 0.42     | 0.41     |          |          |
| 156.15   | 156.74   | Qtz flooding, weak pervasive sericitic altn, scattered 1% fg pyrite.                 | 44543    | 156.15 | 156.74 | 0.59      | 0        |          |          |          |
| 156.74   | 156.81   | Large fragments.                                                                     |          |        |        |           |          |          |          |          |
| 156.81   | 159.86   | Grey to green grey tuff, scattered buff to tan altered fragments sub angular         |          |        |        |           |          |          |          |          |
|          |          | several cm large, local contorted bedding at 156.81-157.16, well devel bed           |          |        |        |           |          |          |          |          |
|          |          | 159 CA-600.                                                                          |          |        |        |           |          |          |          |          |
| 159.86   | 160.42   | Qtz Vein and flooding random orientated inclusion mostly greenish grey to            |          |        |        |           |          |          |          |          |
|          |          | brownish green, nil to trace pyrite, contacts CA-60o+60o irregular                   |          |        |        |           |          |          |          |          |
|          |          |                                                                                      |          |        |        |           |          |          |          |          |
|          |          |                                                                                      |          |        |        |           |          |          |          |          |
|          |          |                                                                                      |          |        |        |           |          |          |          |          |
|          |          |                                                                                      |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                             | Hole No. | 28     |        | Sheet No. | 8        |          |          |          |
|-----------|----------|---------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Meter     | age      | Description                                                                     |          | Sample |        |           | Ass      | ay       |          |          |
| From      | To       |                                                                                 | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 160.42    | 168.13   | Scattered weak sericitic altn. tuff, 160.78-160.86 gcv CA-75o                   | 44544    | 167    | 168.14 | 1.14      | 0        |          |          |          |
|           |          | veining + 650 veining, trace sulphides, 161.05-161.08 gcv CA-650+700,           |          |        |        |           |          |          |          |          |
|           |          | 161.27-161.53 kinkle folding, moderately sericitic, 162.45-162.50 schistose     |          |        |        |           |          |          |          |          |
| 160.42    | 168.13   | Qtz V. II to bed CA-500, 162.57 white 1.5cm cqv II to bed CA-700, 162.74-       |          |        |        |           |          |          |          |          |
|           |          | 163.01 several contorted greyish qtz veinlet CA-45o, x-cut bedding and x-cut    |          |        |        |           |          |          |          |          |
|           |          | white qc veinlet which x-cuts bed 450 in opposite direction, 163.84-164.13      |          |        |        |           |          |          |          |          |
|           |          | dark green unaltered tuff, 164.26 1cm kinkled qtz vein CA-15o x-cuts bed        |          | _      |        |           |          |          |          |          |
|           |          | 70o, 164.13-167.68 scattered fragments frequency increasing down hole, buff     |          |        |        |           |          |          |          |          |
|           |          | to sericitic buff altn, 167.68-167.91 qtz flooding.                             |          |        |        |           |          |          |          |          |
| 168.13    | 168.57   | Qtz Vein with inclusions, 168,13-168.35 and 168.46-168.57 CA II to bed          | 44545    | 168.14 | 168.58 | 0.44      | 0        |          |          |          |
|           |          | and x-cut 20+80o.                                                               |          |        |        |           |          |          |          |          |
| 168.57    | 169.62   | pervasive sericitic altr                                                        | 44546    | 168.58 | 169.63 | 1.05      | 0        |          |          |          |
| 169.62    | 177      | Qtz flooding, locally intense 173.13-175.51, 173.53-173.63 light yellow green   |          |        |        |           |          |          |          |          |
|           |          | fuchsite and 170.32-170.46 fragments.                                           |          |        |        |           |          |          |          |          |
| 177       | 179.51   | Weak to moderate pervasive sericitic altn minor greyish opague 0.5-1cm          |          |        |        |           |          |          |          |          |
|           |          | qtz. stringer x-cut bedding.                                                    |          |        |        |           |          |          |          |          |
| 179.51    | 180.2    | Medium grey silica fragments with black 1mm planes 180.20 CA-700 sharp.         |          |        |        |           |          |          |          |          |
| 180.2     | 185.6    | CA-78o slip II to bed, moderate sericitic altn with few 10cm bands of nil to    | 44547    | 184    | 185    | 1         | 0        |          |          |          |
|           |          | very weak altn, scattered pyrite II to bed locally 2-3%, 182.22-183.32 kwinkle  |          |        |        |           |          |          |          |          |
|           |          | folding intense grading to less down hole, 183.32-184.10 scattered fragments    |          |        |        |           |          |          |          |          |
|           |          | and closts with scattered 1/2-1cm greyish opague qtz stringer usually CA-       |          |        |        |           |          |          |          |          |
|           |          | 40-450 x-cut bedding, 184.10-185.60 tuff, 184.82-184.87 qtz vein mass CA-       |          |        |        |           |          |          |          |          |
|           |          | 650 II to bed, 185.00-185.08 with fg py CA-70-750 II to bed.                    | 44548    | 185    | 186    | 1         | 0.02     | 0.01     |          |          |
| 185.6     | 190.05   | Buff to greenish tuff, laminated and qtz, buff fragments elongated              | 44549    | 186    | 187    | 1         | 0.05     |          |          |          |
|           |          | stretched scattered weak moderate sericitia altn, void of stringers, bed 820 at | 44550    | 187    | 188    | 1         | 0        |          |          |          |
|           |          | 187, 80o at 189.8, 186.72-186.80 brecciated fragment healed with chocolate      | 44551    | 188    | 189    | 1         | 0        |          |          |          |
|           |          | brown tourmaline vfg pyrite, 190.05 bed and altn CA-80o.                        | 44552    | 189    | 190.05 | 1.05      | 0.03     |          |          |          |
| 190.05    | 190.47   | dark brown to chocolate brown altn tourmaline in silicified sections.           | 44553    | 190.05 | 190.47 | 0.42      | 0.11     |          |          |          |
| 190.47    | 195.5    | greyish with large clasts 191.05-191.17, bedding at 191.05 white,               | 44554    | 190.47 | 191.15 | 0.68      | 0        |          |          |          |
|           |          | CA-50o at 191.17, qtz flooding 192.5-195.5.                                     | 44555    | 191.15 | 192    | 0.85      | 0.1      | 0.19     |          |          |
|           | 195.5    | END OF HOLE - casing broke.                                                     |          |        |        |           |          |          |          |          |
|           |          |                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                 |          |        |        |           |          |          |          |          |

|           |        | Hunter Mine - Diamo                                                               | ond Drill Log Hole HM | -4-29     |            |       |           |          |          |          |
|-----------|--------|-----------------------------------------------------------------------------------|-----------------------|-----------|------------|-------|-----------|----------|----------|----------|
| Property: |        | Hunter Mine                                                                       | Hole Dip:             | -700      | Page No.   | .:    | 1 of 7    | Hole No. | HM-04-29 |          |
| Location: |        |                                                                                   | Hole Azimuth:         | N1050E    | Date Sta   | rted: | June16/05 |          |          |          |
| Claim No: | :      | HR 1009                                                                           | Hole Length:          | 303.24    | Date Fini  | shed: | June21/05 |          |          |          |
| Elevation | :      | Porcupine Lake                                                                    | Purpose:              | Zone Defn | Drill Co.: |       | Benoit    |          |          |          |
| UTM Coo   | ords.: | 5370930.4N, 487135.0E                                                             |                       |           | Logged b   | y:    | K. Jensen |          |          |          |
| Mete      | rage   | Description                                                                       |                       | Sample    | •          |       |           | Assays   |          |          |
| From      | То     |                                                                                   | No.                   | From      | То         | Width | Au (g/t)  | Au check | Au (2nd) | Au check |
| 0.0       | 55.5   | Casing                                                                            |                       |           |            |       | 1         |          |          |          |
| 55.5      | 84.1   | Taicose Ultramafic Tuffs.                                                         |                       |           |            |       | <u> </u>  |          |          |          |
|           |        | fg black green, to silverish (intensely talcose), talcose carbonated, very soft,  |                       |           |            |       |           |          |          |          |
|           |        | non magnetic except 79.68 - 79.80 strongly magnetic, ca- 250 - 280 possible       |                       |           |            |       |           |          |          |          |
|           |        | dike, generally extremely carbonated with very few sections non-carbonate,        |                       |           |            |       |           |          |          |          |
|           |        | brecciated with few sections not, rare stringers numerous crumbly core sections,  |                       |           |            |       |           |          |          |          |
|           |        | nil to tr pg fg- mg, locally 1-2 %.                                               |                       |           |            |       |           |          |          | I        |
| 55.5      | 64.37  | Massive, soft to moderately soft. 56.48 mud seam. 59.67-59.92 mud seam            |                       |           |            |       |           |          |          |          |
|           |        | 61.35-61.92 crushed core, shear/fault. 62.20-62.28 crushed core, shear/fault.     |                       |           |            |       |           |          |          |          |
| 64.37     | 84.1   | brecciated, carbonated schistose, talcose, very soft. 66.98-67.02 crushed core    |                       |           |            |       |           |          |          |          |
|           |        | shear. 67.08 schist CA-500 67-68.7 1-2% scattered pg fg-mg. 67.50-67.68 mud       |                       |           |            |       |           |          |          |          |
|           |        | seam. 68.61-68.67 crushed mud seam, py. 74-75.05 crushed brecciated ore           |                       |           |            |       |           |          |          |          |
|           |        | intrusively schistose. 74-75.40 cg py 5mm. 78.46-79.67 extremely brecciated.      |                       |           |            |       |           |          |          |          |
|           |        | broken sheared core. 84.10 end of intensely sheared, brecciated, less talcose.    |                       |           |            |       |           |          |          |          |
| 84.1      | 123.32 | Laminated Ultramafic Tuffs                                                        |                       |           |            |       |           |          |          |          |
| 84.1      | 95     | contorted, brecciated, less sheared, more competant core, moderate talcose, fg    |                       |           |            |       |           |          | -        |          |
|           |        | black green, soft scattered patches of pg fg to ore cg x-cut tose to harder       |                       |           |            |       |           |          |          |          |
|           |        | scattered < 1% locally 2-3% 100.70-101.42.                                        |                       |           |            |       |           |          |          |          |
| 104.71    | 105    | s+z kink folding. 101.15 more massive, locally qv st fol, minor bx to 106.45.     |                       |           |            |       |           |          |          |          |
| 106.45    | 108.66 | fg, tuff, few fragments weak to moderate level bedding CA-65o at 107.45           |                       |           |            |       |           |          |          |          |
|           |        | 108.66 contact CA-55o.                                                            |                       |           |            |       |           |          |          |          |
| 108.66    | 114    | tuff fragments to blocks, moderate soft to moderately hard, blocks poor           |                       |           |            |       |           |          |          |          |
|           |        | development of schistose bedding contorted, few stages quartz contorted usually   |                       |           |            |       |           |          |          |          |
|           |        | CA-450 + straight CA-400.                                                         |                       |           |            |       |           |          |          |          |
| 114       | 123.32 | contorted tuff fragmental locally brecciated q and qv stringers usually II to CA, |                       |           |            |       |           |          |          |          |
|           |        | shear planes at CA-35o, 45o, 30o, scattered fg-mg pyrite locally to trace,        |                       |           |            |       |           |          |          |          |
|           |        | occasional large fragments rare. 117.46-117.60 x-cut by qtz.                      |                       |           |            |       |           |          |          |          |
|           |        |                                                                                   |                       |           |            |       |           |          |          |          |
|           |        |                                                                                   |                       |           |            |       |           |          |          |          |
|           |        |                                                                                   |                       |           |            |       |           |          |          |          |
|           |        |                                                                                   |                       |           |            |       |           |          |          |          |

| Property: | Hunter M | line                                                                                 | Hole No. | 29     |       | Sheet No. | 2        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|--------|-------|-----------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                          |          | Sample |       |           | Assays   |          |          | Assays   |
| From      | То       |                                                                                      | No.      | From   | To    | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 123.32    | 303.24   | Exhalitic Sedimentary Rocks and Tuffs                                                |          |        |       |           |          |          |          |          |
| 123.32    | 123.6    | chocolate brown, siliceous felsic like x-cut by grey opague fol., to 5mm,            |          |        |       |           |          |          |          |          |
|           |          | usually at CA-350, 300, 200, 123.67 CA-350.                                          |          |        |       |           |          |          |          |          |
|           |          | contorted tuff, tuff fragmental schistosely bedding II to CA to 60o-70o, contorted   |          |        |       |           |          |          |          |          |
|           |          | bedding, kink folding to slips planes at axis of folds CA-10o-20o.                   |          |        |       |           |          |          |          |          |
|           |          | silicified zone, tuff, dark grey, CA-500 +700 scattered < 0.5% fg py.                |          |        |       |           |          |          |          |          |
| 131.34    | 132.9    | blackish green laminated tuff, silicified, qtz II to bedding, vein contorted,        |          |        |       |           |          |          |          |          |
|           |          | moderately soft.                                                                     |          |        |       |           |          |          |          |          |
| 132.9     | 134.15   | laminated fg tuff, moderately hard, bed CA-65o 134.0, minor kink folding             |          |        |       |           |          |          |          |          |
|           |          | 134.15 CA-480-500 contact.                                                           |          |        |       |           |          |          |          |          |
| 134.15    | 136.87   | very contorted, s+z folds to slips planes II to fold axis CA 200 + 300 intensely     |          |        |       |           |          |          |          |          |
|           |          | qtz stringer flooding, moderately soft, scattered pyrite elongated vfg blobs II to   |          |        |       |           |          |          |          |          |
|           |          | bedding 136.87 contorted CA-650                                                      |          |        |       |           |          |          |          |          |
| 136.87    | 137.13   | fg well developed bed, fine laminated stretched qtz fragments, light med grey        |          |        |       |           |          |          |          |          |
|           |          | greenish tint.                                                                       |          |        |       |           |          |          |          |          |
| 137.13    | 138.91   | similar to 134.15-136.87 without contorted folding, black green, moderately soft     |          |        |       |           |          |          |          |          |
|           |          | scattered fg py. 137.90-138.20 minor grinding, light brownish tint. 138.57-138.91    |          |        |       |           |          |          |          |          |
|           |          | silicified crushed zone bx 138.91 contact CA-650                                     |          |        |       |           |          |          |          |          |
| 138.91    | 139.53   | siliceous fragment to bx zone in black green and medium brown altn silic flooding    | 44556    | 138.5  | 139.5 | 1         | 0.03     |          |          |          |
|           |          | 139.53 contact CA-70o to 7mm q st displaced by 1 mm qv CA-25o.                       |          |        |       |           |          |          |          |          |
| 139.91    | 140.5    | similar to 137.13-138.91 minor folding, moderately soft, black green local qtz       | 44557    | 139.5  | 140.5 | 0.99      | 0.02     |          |          |          |
|           |          | flooding, moderately soft, trace sulphides, 140.50 sharp contact CA-55o 140.50-      |          |        |       |           |          |          |          |          |
|           |          | 140.63 silicified contact altn, hard, 140.63 CA-60o small angular x-cut folding.     |          |        |       |           |          |          |          |          |
| 140.63    | 141.54   | aphanitic light grey, opague qtz vein hard, inclusions of altn tuff, bleached        | 44558    | 140.5  | 141.7 | 1.16      | 0        |          |          |          |
|           |          | greenish buff to buff tan 1-2mm qtz II CA inclusions CA-30o-35o nil to scattered     |          |        |       |           |          |          |          |          |
|           |          | fg py, 141.54 irregular contact CA 65o-70o gradational.                              |          |        |       |           |          |          |          |          |
| 141.54    | 142.38   | silicified contact altn irregular qtz ff scattered py, blackish green with light     | 44559    | 141.7  | 142.3 | 0.64      | 0.01     |          |          |          |
|           |          | brown to medium brown silicous intrusions irregular qv, 142.38 contact CA            |          |        |       |           |          |          |          |          |
| 142.38    | 143.2    | foliated light grey folsic dike chlorite CA 650-700 intruded Ig silic light brownish | 44560    | 142.3  | 143.2 | 0.87      | 0.01     |          |          |          |
|           |          | falsic dike massive aphanitic silicfied (felsic dike?) CA silicified zone?           |          |        |       |           |          |          |          |          |
| 143.2     | 146.25   | medium to dark green locally black green, moderatly soft, good devel. bedding        | 44561    | 143.2  | 144.3 | 1.11      | 0        |          |          |          |
|           |          | fragmental tuff to scattered fragments, qtz flooding usually II to bed CA 650        | 44562    | 144.3  | 145.5 | 1.19      | 0        |          |          |          |
|           |          | 143.50 up to 144.30, 14430-146.25 x-cut bedding folded, usually light grey           | 44563    | 145.5  | 145.9 | 0.39      | 0        |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 29     |        | Sheet No. | 3        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                        |          | Sample |        |           | Assa     | у        |          |          |
| From      | То       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | opague .5-1.5 ore irregular + contorted bedding, 145.48-145.58 whitish qtz         | 44564    | 145.9  | 146.8  | 0.87      | 0.03     |          |          |          |
|           |          | translusent to white milky carbonated, inclusions, minor talcose altn, light green |          |        |        |           |          |          |          |          |
|           |          | to brown tint contacts CA 70o-35o 145.58-145.84 veined silicified fragmental -     |          |        |        |           |          |          |          |          |
| 143.2     | 146.25   | tuff 145.84 irregular contact.                                                     |          |        |        |           |          |          |          |          |
| 146.25    | 147.37   | qtz flood fragmental tuff similar to 143.20-146.25 but moderatly hard,             | 44565    | 146.75 | 147.37 | 0.62      | 0        |          |          |          |
|           |          | scattered large pale greyish green to pale greenish grey several cm, 147.37        |          |        |        |           |          |          |          |          |
|           |          | contact CA-60o.                                                                    |          |        |        |           |          |          |          |          |
| 147.37    | 147.94   | tuff greyish green well laminated x-cut by black green chlorite qtz 2-4mm CA       | 43201    | 147.37 | 148.4  | 1.03      | 0.01     |          |          |          |
|           |          | 200,250,300,400 moderatly hard, 147.94 contact to bedding CA 800.                  |          |        |        |           |          |          |          |          |
| 147.94    | 149      | light to medium grey, fg, laminated, well devel. bed minor 1-2mm chlorite II       | 43202    | 148.4  | 149    | 0.6       | 0.02     |          |          |          |
|           |          | x-cut at bed, bed qtz flooding and altn to pale brownish grey, CA-50o contact      |          |        |        |           |          |          |          |          |
| 149       | 149.14   | same as 147.94-149.00 intensely silicified contact altn, chlorite and dark         | 43203    | 149    | 149.5  | 0.5       | 0.11     |          |          |          |
|           |          | brown altn 149.14 contact always irregular CA-58o II to bedding.                   |          |        |        |           |          |          |          |          |
| 149.14    | 149.35   | light greyish to medium grey silicous aphanitic felsic dike, very hard, non        |          |        |        |           |          |          |          |          |
|           |          | magnetic, void of stringers, vfg to fg pyrite <0.5% 149.35 sharp contact CA-       |          |        |        |           |          |          |          |          |
|           |          | 450, 149.35-149.48 contact CA-450                                                  |          |        |        |           |          |          |          |          |
| 149.48    | 150.05   | mafic dike, vfg to aphanitic, dark grey, void of foliation, massive uniform,       | 43204    | 149.5  | 150.22 | 0.72      | 0.01     |          |          |          |
|           |          | hard to very hard, non magnetic, non carbonated few scattered 1mm gtz II at        |          |        |        |           |          |          |          |          |
|           |          | CA-60o,80o,70o to 2-4 mm new lower contact, void of sulphides 150.05               |          |        |        |           |          |          |          |          |
|           |          | contact 50o.                                                                       |          |        |        |           |          |          |          |          |
| 150.05    | 153.85   | fragmental tuff contorted, fragmental tuff, moderatly hard, laminated light dark   | 44566    | 150.22 | 151    | 0.78      | 0.04     |          |          |          |
|           |          | grey faint pale brown altn, chlorite sections of tuff, small fragments usually     | 44567    | 151    | 152    | 1         | 0.01     |          |          |          |
|           |          | stretched well devel. bedding usually contorted, 150.05-152.20 contorted.          | 44568    | 152    | 153.13 | 1.13      | 0        |          |          |          |
|           |          | 150.21-150.58 qv brecciated tuff very hard, qtz flooded, contacts CA-50o,40o       | 44569    | 153.13 | 153.67 | 0.54      | 0        |          |          |          |
|           |          | new II to bed 153.90 contact CA-40o.                                               | 44570    | 153.67 | 154.15 | 0.48      | 0        |          |          |          |
| 154.15    | 155.5    | minor fragmental tuff, well devel. bed CA-600 light to medium grey, chlorite       | 44571    | 154.15 | 154.9  | 0.75      | 0        |          |          |          |
|           |          | laminated chloritic bands, hard to moderatly hard, non carbonated siliceous        | 44572    | 154.9  | 155.51 | 0.61      | 0        |          |          |          |
|           |          | to silicified, rare veining 0-2 per 3m scattered to localized fg py >0.5%.         |          |        |        |           |          |          |          |          |
| 155.5     | 156.63   | fragmental tuff medium grey - medium green laminated minor tuff, kink              | 44573    | 155.51 | 155.63 | 0.12      | 0.17     |          |          |          |
|           |          | greyish white qv at 156.32 5-7mm 156.42-156.63 sericitic altn minor fuchite        | 43205    | 156.63 | 158    | 1.37      | 0.05     |          |          |          |
|           |          | 156.42 contact CA-62 slips, 156.63 contact CA-65 slips, 156.63-158.35              | 43206    | 158    | 159    | 1         | 0.11     |          |          |          |
|           |          | light grey + and light medium green laminated fragmental tuff, local tuff altn,    | 43207    | 159    | 160.38 | 1.38      | 0.07     |          |          |          |
|           |          | scattered py chlorite altn, bedding variable 50o-72o, qtz flooding moderate        |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                                                                                                                             | Hole No. | 29     |        | Sheet No. | 4        |          |          |          |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                                                                                                                                     | Sample   |        |        |           | As       | say      |          |          |
| From      | То       |                                                                                                                                                                                                 | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | 158.35-159.39, 157.49 3 cm opague white qv CA-35o x-cut bed 158.35-                                                                                                                             |          |        |        |           |          |          |          |          |
|           |          | 160.39 small fragments locally fuchite altn, 159.12-159.28 v wedge white                                                                                                                        |          |        |        |           |          |          |          |          |
|           |          | opague qv with 1 cm chlorite v on lower contact CA irregular x-cut bedding -                                                                                                                    |          |        |        |           |          |          |          | 4        |
| 155.5     | 156.63   | locally <ca35o bed,="" flood,="" fragments,="" ii="" kink<="" large="" locally="" minor="" qtz="" th="" to=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></ca35o> |          |        |        |           |          |          |          | -        |
|           |          | folding 160.39 contact bed CA-50.                                                                                                                                                               | 44574    | 160.39 | 161.14 | 0.75      | 0.03     |          |          |          |
| 160.39    | 169.36   | sericitic tuff, pervasive uniform, pale yellow green, weak to moderate sericitia                                                                                                                | 44575    | 161.14 | 161.94 | 0.8       | 0        |          |          |          |
|           |          | altn, minor grey 1-2mm qtz eyes minor qtz st usually II to bed, in altn and                                                                                                                     | 44576    | 161.94 | 163    | 1.06      | 0        |          |          |          |
|           |          | x-cut in less alth chlorite tuff 162-162.96 locally scattered fg pyrite locally                                                                                                                 | 44577    | 163    | 164    | 1         | 0        |          |          |          |
|           |          | small stretch blobs II to bed, locally cg at 161.35-161.67, rare stringers bed                                                                                                                  | 44578    | 164    | 165    | 1         | 0.01     | 0.01     | -        |          |
|           |          | 159.5 CA-60o, 166 bed CA-60o 167.40-167.56 kink folding slip at CA-28o                                                                                                                          | 44579    | 165    | 166    | 1         | 0        |          |          |          |
|           |          | x-cut bedding CA-70o-75o, 167.9 bedding CA-65o, 169.17 1cm grey white qv                                                                                                                        | 43208    | 166    | 167    | 1         | 0.04     |          |          |          |
|           |          | CA-630 II to bed.                                                                                                                                                                               | 43209    | 167    | 168    | 1         | 0.02     |          |          |          |
| 169.36    | 176.87   | weak to moderate patchy sericitic altn tuff kink green to medium greenish                                                                                                                       | 43210    | 168    | 169.35 | 1.35      | 0.07     |          |          |          |
|           |          | grey to pale tuff green well level bedding sections of fragmental tuff, 171-                                                                                                                    | 43211    | 169.35 | 170.16 | 0.81      | 0.01     |          |          |          |
|           |          | 171.70 scattered 1cm greyish white qv usually II to bed CA-550-570, 171.91-                                                                                                                     | 43212    | 170.16 | 171    | 0.84      | 0.11     |          |          |          |
|           |          | 171.98 milky white and grey qv in tuff inclusions CA- irregular x-cut bed CA-                                                                                                                   | 44580    | 171    | 171.91 | 0.91      | 0        |          |          |          |
|           |          | 80o + II to bed CA-63o, 172.43-172.62 qtz vein with tuff inclusions CA-57o+                                                                                                                     | 44581    | 171.91 | 173.12 | 1.21      | 0.01     |          |          |          |
|           |          | 75o, 172.77-172.99 qtz vein with tuff inclusions CA-80o+60o, 173.07-173.09                                                                                                                      | 44582    | 173.12 | 174    | 88        | 0.03     |          |          |          |
|           |          | qtz greyish CA-40o x-cut bed 70o, 175.35-176.87 kink folding.                                                                                                                                   | 43213    | 174    | 175.5  | 1.5       | 0.01     |          |          |          |
| 176.87    | 181.82   | fragmental tuff, sericitic weak to moderate pervasive uniform as above, buff                                                                                                                    | 43214    | 175.5  | 176.86 | 1.36      | 0.04     |          |          |          |
|           |          | to pale buff greenish yellow, 176.87-177.51 scattered greyish qts eyes                                                                                                                          | 44583    | 176.86 | 177.74 | 0.88      | 0        |          |          |          |
|           |          | fragments, 177.51-177.73 brecciated grey white qtz healled, 178 bedding CA                                                                                                                      | 44584    | 177.74 | 178.5  | 0.76      | 0        |          |          |          |
|           |          | 600 well developed, 178.49-179.71 qtz flooded locally brecciated scattered                                                                                                                      | 44585    | 178.5  | 179.14 | 0.64      | 0        |          |          |          |
|           |          | py II to bed, 179.39-179.45 white qv locally CA-65 x-cut folded bedding at CA                                                                                                                   | 44586    | 179.14 | 179.72 | 0.58      | 0        |          |          |          |
|           |          | 20o 179.94 bedding CA-60o 180.94 1cm white qv CA-35o x-cut bed CA-50o                                                                                                                           | 44587    | 179.72 | 180.66 | 0.94      | 0.01     |          |          |          |
|           |          | 181.10-181.64 kink folding small, 181.61 fuchsite fragment, 181.64                                                                                                                              | 43215    | 180.66 | 180.83 | 0.17      | 0.03     |          |          |          |
|           |          | ground contact.                                                                                                                                                                                 | 43216    | 180.83 | 181.46 | 0.63      | 0.02     |          |          |          |
| 181.82    | 182.22   | nil to weak sericitic altn medium grey green fg laminate tuff elongated                                                                                                                         | 43217    | 181.66 | 183.5  | 1.84      | 0        |          |          |          |
|           |          | oval qtz II to bed, 182.22 bed contact CA-650                                                                                                                                                   | 43218    | 183.5  | 184.6  | 1.1       | 0.18     |          |          |          |
| 182.42    | 194      | weak moderate pervasive sericitic tuff 182.42-184.59 qtz flooding, strongly                                                                                                                     | 43219    | 184.6  | 186    | 1.4       | 0.03     |          |          |          |
|           |          | pervasive sencitic altn, py, 184.59-185.92 weak and patch                                                                                                                                       | 43220    | 186    | 187.5  | 1.5       | 0        |          |          |          |
|           |          | sericitic altrn, sile scattered py, qtz flooded irregular + II to bed, 185.92-                                                                                                                  | 43221    | 187.5  | 189    | 1.5       | 0.01     |          |          |          |
|           |          | 189.27 weak to weak moderate sericitic tuff minor locally strong qtz flooding                                                                                                                   | 43222    | 189    | 190.5  | 1.5       | 0.01     |          |          |          |
|           |          |                                                                                                                                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                                                                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                                                                                                                                 |          |        |        |           |          |          |          |          |
|           |          |                                                                                                                                                                                                 |          |        |        |           |          |          |          | 6.00     |

| Property: | Hunter M | ine                                                                              | Hole No. | 29     |        | Sheet No. | 5        |          |          |          |
|-----------|----------|----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                      | Sample   |        |        |           | As       | say      |          |          |
| From      | То       |                                                                                  | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | scattered fg py, 186.34-186.40 white opague qtz vein CA-60o II to bed,           | 43223    | 190.5  | 192    | 1.5       | 0        |          |          |          |
|           |          | 186.66-186.79 qtz veining II to bed, 189.27-194 moderate sericitic altn tuff,    | 43224    | 192    | 193.5  | 1.5       | 0        |          |          |          |
|           |          | well devel. bedding, 189.64-189.69 qv II to bed CA-60 + scattered py fg,         | 43225    | 193.5  | 195    | 1.5       | 0.01     |          |          |          |
| 182.42    | 194      | 190.15-190.19 rounded qtz massive bedding curved at 190.15 and really            |          |        |        |           |          |          |          |          |
|           |          | flat at 190.19, 191.39-191.65 qtz veining at py fg II to bed, 192.0-192.23       | 43226    | 195    | 196.5  | 1.5       | 0        |          |          |          |
|           |          | crenulation axis CA-25o x-cut bed 70o.                                           | 43227    | 196.5  | 198    | 1.5       | 0.04     | 0.06     |          |          |
| 194       | 204.08   | weak and patchy sericitic alth tuff majority locally small stretched angular to  | 43228    | 198    | 199.5  | 1.5       | 0.01     |          |          |          |
|           |          | carbonated angular fragments, blackish green to pale yellow tuff, very well      | 43229    | 199.5  | 201    | 1.5       | 0.02     |          |          |          |
|           |          | level bedding CA-750 consistant, void of stringers and qtz flooding, patchy      | 43230    | 201    | 202.5  | 1.5       | 0.01     |          |          |          |
|           |          | locally fg py <0.5% hard siliceous.                                              | 43231    | 202.5  | 204.08 | 1.58      | 0.05     |          |          |          |
| 204.08    | 204.97   | medium grey fg tuff, laminated void of stringer, scattered py <1% + II to        | 44588    | 204.08 | 204.97 | 0.89      | 0.07     |          |          |          |
|           |          | bedding 204.97 contact CA-70o.                                                   |          |        |        |           |          |          |          |          |
| 204.97    | 205.56   | weak patchy sericitic tuff.                                                      | 43232    | 204.97 | 206    | 1.03      | 0.03     |          |          |          |
| 205.56    | 211.34   | fragmented tuff, rare patches of weak sericitic altn for 1m, fg matrix medium    | 43233    | 206    | 207.34 | 1.34      | 0.01     |          |          |          |
|           |          | grey to dark grey, more fragments, 207.33-207.74 qtz breccia zone, milky         | 44589    | 207.34 | 207.74 | 0.4       | 0        |          |          |          |
|           |          | white, nil to trace py, contact CA-60o irregular, 207.94-209.84 fragment         | 43234    | 207.74 | 208.82 | 1.08      | 0        |          |          |          |
|           |          | tuff, light kink to pale brownish green, 208.48-208.77 chlorite slips, CA        | 43235    | 208.82 | 209.84 | 1.02      | 0        |          |          |          |
|           |          | 40o x-cut bed, 209.84-210.78 qtz flooding, 210.36-210.78 brecciated qtz          | 43236    | 209.84 | 210.78 | 0.94      | 0        |          |          |          |
|           |          | healed zone, 210.78-211.34 hard to moderate hard, siliceous, medium              | 43237    | 210.78 | 211.94 | 1.16      | 0        |          |          |          |
|           |          | brownish green, tuff fragments.                                                  |          |        |        |           |          |          |          |          |
| 211.34    | 217.87   | Ultra mafic fragmental tuff, fg, black green light buff green to grey green,     | 43238    | 211.94 | 213    | 1.06      | 0        |          |          |          |
|           |          | 211.34-211.94, moderate hard, overall moderately soft to moderately hard,        | 43239    | 213    | 214.5  | 1.5       | 0        |          |          |          |
|           |          | weakly carbonated, good devel. laminae, locally silicified bed to 2-5mm qtz      | 43240    | 214.5  | 216    | 1.5       | 0.02     |          |          |          |
|           |          | stringer II to bed well develed schistosity, CA-650-670, nil to trace sulphides  | 43241    | 216    | 217.5  | 1.5       | 0        |          |          |          |
|           |          | 217.56-217.87 qtz veining II to contorted bedding 217.87 sharp contact 800       | 43242    | 217.5  | 217.85 | 0.35      | 0        |          |          |          |
| 217.87    | 303.24   | Sedimentary Sequence                                                             |          |        |        |           |          |          |          |          |
| 217.87    | 231.36   | carbonated argillite vfg fg, medium grey to dark grey few blackish argillite     | 43243    | 217.85 | 219    | 1.15      | 0        |          |          |          |
|           |          | bands, calcareous non magnetic carbonated, hard sections, massive with           | 43244    | 219    | 220    | 1         | 0        | 0        |          |          |
|           |          | little signs of bedding, scattered py in sections vfg and II to bedding, 219.96- | 43245    | 220    | 221    | 1         | 0        |          |          |          |
|           |          | 220.15 several qtz veinlets II to bed .5-1.5cm, 218.53-218.74 several qtz        | 43246    | 221    | 222    | 1         | 0        |          |          |          |
|           |          | veinlets II to bed, 223.92-224.89 scattered 1-2% fg py locally 3-5% II to bed    | 43247    | 222    | 223    | 1         | 0.01     |          |          |          |
|           |          | CA-700 224.89- rare to nil veining, 231.23-231.36 black aphanitic to fg          | 43248    | 223    | 223.94 | 0.94      | 0        |          |          |          |
|           |          | graphitic argillite.                                                             | 44590    | 223.92 | 224.89 | 0.97      | 0.29     | 0.22     |          |          |
|           |          |                                                                                  |          |        |        |           |          |          |          |          |
|           |          |                                                                                  |          |        |        |           |          |          |          |          |
|           |          |                                                                                  |          |        |        |           |          |          |          |          |
|           |          |                                                                                  |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 29   |    | Sheet No. | 6        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|------|----|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                        | Sample   |      |    |           |          | Assa     | ay       |          |
| From      | То       |                                                                                    | No.      | From | То | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 231.36    | 237.2    | light medium grey fg mg greywacke weak to moderate level bedding CA-720            |          |      |    |           |          |          |          |          |
|           |          | 234.71-234.75 qc vein II to bed, 237.14-237.17 v shaped qv,                        |          |      |    |           |          |          |          |          |
| 237.2     | 241.41   | black grey to locally black graphitic vfg fg argillite, well level bedding CA-680  |          |      |    |           |          |          |          |          |
|           |          | very few to rare qtz stringers.                                                    |          |      |    |           |          |          |          |          |
| 241.41    | 245.76   | light grey to med grey fg + mg argillite to greywacke, bedding moderate CA-        |          |      |    |           |          |          |          |          |
|           |          | 67o-75o, few kinks q st CA-40o 241.52-241.92, 243.0-243.92, 245.76                 |          |      |    |           |          |          |          |          |
|           |          | contact CA-70o, 245.76-248.24 graphitic argillite, 248.24-248.63 mg                |          |      |    |           |          |          |          |          |
|           |          | greywacke, 248.63-249.38 graphitic argillite, 249.05 tight folding.                |          |      |    |           |          |          |          |          |
| 249.38    | 250.05   | fg greywacke argillite fg to aphantic silicous bands, fg to mg argillite and       |          |      |    |           |          |          |          |          |
|           |          | greywacke light medium grey, 249.98-250.05 very silicous increasing to dark        |          |      |    |           |          |          |          |          |
|           |          | grey to blackish grey qv 251.01-251.05.                                            |          |      |    |           |          |          |          |          |
| 250.05    | 252.39   | graphitic argillite, 251.35 bed 80o several 2-4cm qtz veinlets 251.12-251.17       |          |      |    |           |          |          |          |          |
|           |          | feldspar 3mm qv, 251.41-251.45, 251.73-251.79 white, 251.79-252.39                 |          |      |    |           |          |          |          |          |
|           |          | scattered fg py locally 1% 252.94-253.0, 252.34-252.39 crenulations.               |          |      |    |           |          |          |          |          |
| 252.39    | 266.28   | argillite greywacke fg, fg mg, light grey to medium grey, massive uniform, nil     |          |      |    |           |          |          |          |          |
|           |          | to weak devel. of graded bedding, nil sulphides scattered sections of qv 254.23    |          |      |    |           |          |          |          |          |
|           |          | 254.28 CA-50o+65o, 254.41 1cm CA-65o qv, 255.28 1cm qv 65o, 255.30 1               |          |      |    |           |          |          |          |          |
|           |          | cm qv pinch +swell, 255.67-255.72 qv + inclusions CA-65o, 257.22 1-2cm qv,         |          |      |    |           |          |          |          |          |
|           |          | 257.30 1.5-2cm qv, 257.53 1cm qv CA-65o, 259.04-259.14 crenulation axis            |          |      |    |           |          |          |          |          |
|           |          | CA-35o x-cut bed 77o, 260.10 v shaped qv 1-1.5cm, 264.79 1cm qv, 266.28            |          |      |    |           |          |          |          |          |
|           |          | contact CA-75o.                                                                    |          |      |    |           |          |          |          |          |
| 266.28    | 267.18   | graphitic argillite contact CA-70o II to bed.                                      |          |      |    |           |          |          |          |          |
| 267.18    | 273.25   | argillite greywacke fg, light grey, laminated moderate grey, 269.21 1cm qv         |          |      |    |           |          |          |          |          |
|           |          | 269.30 v shape 1.5cm qv, 269.33 0.5-1cm qv, 270.45 1cm qv, 270.62 2cm qv           |          |      |    |           |          |          |          |          |
|           |          | 70o, 271.44-271.52 white opague qv irregular vein II to bedding, 271.87-           |          |      |    |           |          |          |          |          |
|           |          | 271.97 crenulation, 272.75-273.25 qv 0.5-1.5cm II to bed, 273-273.16               |          |      |    |           |          |          |          |          |
|           |          | contorted bedding.                                                                 |          |      |    |           |          |          |          |          |
| 273.25    | 274.68   | graphitic argillite to minor q st + veinlets, nil sulphides, 273.93 bedding CA69   |          |      |    |           |          |          |          |          |
| 274.68    | 281.53   | argillite, light grey silicous to light medium grey fg, several sections fining mg |          |      |    |           |          |          |          |          |
|           |          | hole tops up hole few scattered 3-5cm dark grey to blackish grey argillite         |          |      |    |           |          |          |          |          |
|           |          | 276.0-276.58 dark grey +minor q stringers 276.86-277.0 broken crumbly              |          |      |    |           |          |          |          |          |
|           |          | scattered core, 279.73-279.78 qv CA-70o, 281.13-282.72 q qv in fg mg               |          |      |    |           |          |          |          |          |
|           |          | argilite 3-5mm 2cm, 282.29-282.35 greyish white qv 283.5 bed CA-760                |          |      |    |           |          |          |          |          |
|           |          |                                                                                    |          |      |    |           |          |          |          |          |
|           |          |                                                                                    |          |      |    |           |          |          |          |          |
|           |          |                                                                                    |          |      |    |           |          |          |          |          |
|           |          |                                                                                    |          |      |    |           |          |          |          |          |

| Property: | pperty: Hunter Mine Hole No. |                                                                              | 29    |        | Sheet No. 7 |       |          |          |          |          |
|-----------|------------------------------|------------------------------------------------------------------------------|-------|--------|-------------|-------|----------|----------|----------|----------|
| Meterage  |                              | Description                                                                  | San   | nple   |             |       |          | Assay    |          |          |
| From      | To                           |                                                                              | No.   | From   | То          | Width | Au (g/t) | Au check | Au (2nd) | Au check |
|           |                              | 279.0 bed 73o 281.53-284.64 fg mg greywacke light grey, poor devel. bedding  |       |        |             |       |          |          |          |          |
|           |                              | 284.64 contact CA-740.                                                       |       |        |             |       |          |          |          |          |
| 284.64    | 288.41                       | medium grey to blackish grey fg argillite, scattered blackish graphitic      |       |        |             |       |          |          |          |          |
|           |                              | sections 284.64-285.37, 287.68-288.41 bed 70o-77o.                           |       |        |             |       |          |          |          |          |
| 288.41    | 302.06                       | greywacke carbonated carbonaceous, as above fg mg, light grey massive,       | 44591 | 294    | 294.45      | 0.45  | 0.02     |          |          |          |
|           |                              | uniform poor devel. bedding, 292.26-293.58 scattered 1-2mm 400,500,550 ff    | 44592 | 294.45 | 295.2       | 0.75  | 0.05     |          |          |          |
|           |                              | q st x-cut bedding 70o-75o, 293.62-293.84 qv II to CA to 293.78, vein CA-60o | 44593 | 295.2  | 295.88      | 0.68  | 0.05     | 0.04     |          |          |
|           |                              | 294.17-294.20 siliceous vein in 1.2cm massive pyrite, 294.44-295.88 massive  | 44594 | 297.27 | 297.97      | 0.7   | 0.01     |          |          |          |
|           |                              | py qtz stringers II to bedding in low angle qv 295.36-295.59 and 295.59-     | 44595 | 297.97 | 298.67      | 0.7   | 0.03     |          |          |          |
|           |                              | 296.39 x-cut 1-3mm q st CA 60o-50o-25o void of py in stringers, overall 15-  |       |        |             |       |          |          |          |          |
|           |                              | 20% py 70o-80o, 297.27-298.67 scattered pyrite bands <1% overall, chlorite   |       |        |             |       |          |          |          |          |
|           |                              | greywacke q + ff stringer CA-40o, 301.85-301.91 qv irregular, bedding 29%    |       |        |             |       |          |          |          |          |
|           |                              | CA-780, 300.9 CA-770.                                                        |       |        |             |       |          |          |          |          |
| 302.06    | 303.24                       | argillite fg mg, medium grey, upper portion aphanitic siliceous, carbonated. |       |        |             |       |          |          |          |          |
|           | 303.24                       | END OF HOLE                                                                  |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |
|           |                              |                                                                              |       |        |             |       |          |          |          |          |

| Hunter Mine - Diamond Drill Log Hole HM-04-30 |        |                                                                                      |               |        |                |           |            |                 |          |          |  |
|-----------------------------------------------|--------|--------------------------------------------------------------------------------------|---------------|--------|----------------|-----------|------------|-----------------|----------|----------|--|
| Property:                                     |        | Hunter Mine                                                                          | Hole Dip:     | -85    | Page No        | Page No.: |            | 9 Hole HM-04-30 |          |          |  |
| Location:                                     |        |                                                                                      | Hole Azimuth: | 105    | Date Started:  |           | June 22/04 |                 |          |          |  |
| Claim No:                                     |        | HR 1009                                                                              | Hole Length:  | 258    | Date Finished: |           | June 28/04 |                 |          |          |  |
| Elevation:                                    |        | Porcupine Lake                                                                       | Purpose:      |        | Drill Co.:     |           | Benoit     |                 |          |          |  |
| UTM Coords.:                                  |        | 5370931.0N, 487130.1E                                                                |               |        | Logged by:     |           | K. Jensen  |                 |          |          |  |
| Meterage                                      |        | Description                                                                          |               | Sample | e              |           |            | Assays          |          |          |  |
| From                                          | То     |                                                                                      | No.           | From   | То             | Width     | Au (g/t)   | Au check        | Au (2nd) | Au check |  |
| 0.0                                           | 55.0   | Casing: Lake 3 metres, clays and basal till to 55m.                                  |               |        |                |           |            |                 |          |          |  |
| 55.0                                          | 107.1  | Massive Ulltramafic (UM)                                                             |               | _      |                |           |            |                 |          |          |  |
|                                               |        | Fine-gr, black green, soft to very soft, talcose, weakly magnetic, weakly            |               |        |                |           |            |                 | -        |          |  |
|                                               |        | to weak moderate carbonated, rill to very weak level of foliation, scattered usually |               |        |                |           |            |                 |          |          |  |
|                                               |        | orientated 3-7mm q and qc stringers CA-50o,40o,65o, scattered mg to cg py            |               |        |                |           |            |                 |          |          |  |
|                                               |        | <0.5%, 55.0-58.96 massive, same as above, 58.96 contorted CA-550 irregular to        |               |        |                |           |            |                 |          |          |  |
|                                               |        | 1.2cm qc veinlet.                                                                    |               |        |                |           |            |                 |          |          |  |
| 58.96                                         | 59.33  | pale green altn, schistose to brecciated, weak to moderate carbonated, very soft     |               |        |                |           |            |                 |          |          |  |
|                                               |        | local Devel. foliation schistosity CA-30o at 63.5 very broken core, locally          |               |        |                |           |            |                 |          |          |  |
| 59.33                                         | 59.66  | crumbly crushed core, brecciated semi healed fault zone.                             |               |        |                |           |            |                 |          |          |  |
| 64.3                                          | 68.84  | brecciated, carbonate healed, broken core, 65.77 shearing CA-25o, scattered fg       |               |        |                |           |            |                 |          |          |  |
|                                               |        | and occassional cg py <0.5%.                                                         |               |        |                |           |            |                 |          |          |  |
| 69,33                                         | 69.53  | pale green talcose, altn zone.                                                       |               |        |                |           |            |                 |          |          |  |
| 70.2                                          | 70.59  | same as 69.33-69.53, 70.45 1.2cm band of cg py 40o CA.                               |               |        |                |           |            |                 |          |          |  |
| 70.59                                         | 76.81  | brecciated, scattered py 0.5-1% fg mg, 74.74 mud seam, 76.0-76.21 talcose            |               |        |                |           |            |                 |          |          |  |
|                                               |        | schist CA-30o, 76.21-76.49 ground, mud seam.                                         |               |        |                |           |            |                 |          |          |  |
| 76.81                                         | 77.78  | 5 mud seams.                                                                         |               |        |                |           |            |                 |          |          |  |
| 77.78                                         | 82.4   | broken core, brecciated um, 81.14-81.26 mud seam ground crushed core.                |               |        |                |           |            |                 |          |          |  |
| 82.4                                          | 89.61  | more competant core, black green angular to sub angular fragments healed             |               |        |                |           |            |                 |          |          |  |
|                                               |        | pale greenish carbonate and talc, talcose, ore 5-7cm massive fragment ore, void      |               |        |                |           |            |                 |          |          |  |
|                                               |        | to very rare distinct veinlets, 82.40-83.86 very brecciated, 87 schistose CA-350     |               |        |                |           |            |                 |          |          |  |
|                                               |        | 87.58 1-1.5cm grey gc v CA-230, 89.61 end of larger fragments in breccia.            |               |        |                |           |            |                 |          |          |  |
| 89.61                                         | 107.08 | small fragments in breccia random schistose weak to weak moderate levels, fg         |               |        |                |           |            |                 |          |          |  |
|                                               |        | py <0.5%, void of veining, 98.05-99 healed crushed zone, to brecclated UM            |               |        |                |           |            |                 |          |          |  |
|                                               |        | fragments, 100.96-101.77 healed crushed zone to fragments, 101.77-102.86 bx          |               |        |                |           |            |                 |          |          |  |
|                                               |        | UM Contact CA-53o contorted S folding, 102.86-104.89 massive, 102.86-103.34          |               |        |                |           |            |                 |          |          |  |
|                                               |        | schistose, 103.34-104.89 massive carbonate stringers random CA-65o, folded           |               |        |                |           |            |                 |          |          |  |
|                                               |        | 350-700, 104.89-105.93 tuffaceous scattered mg py, 105.93-107.08 crushed zone        |               |        |                |           |            |                 |          |          |  |
|                                               |        |                                                                                      |               |        |                |           |            |                 |          |          |  |
|                                               |        |                                                                                      |               |        |                |           |            |                 |          |          |  |
|                                               |        |                                                                                      |               |        |                |           |            |                 |          |          |  |
| Property: | Hunter N | line                                                                                 | Hole No. | 30     |       | Sheet No. | 2        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|--------|-------|-----------|----------|----------|----------|----------|
| Mete      | erage    | Description                                                                          |          | Sample |       |           | Assay    | s        |          |          |
| From      | То       |                                                                                      | No.      | From   | To    | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | light medium green, talcose contact CA-25 LC crenulated 1-3mm qc stringers.          |          |        |       |           |          |          |          |          |
| 107.08    | 139.37   | Laminated Ultramafic Tuffs                                                           |          |        |       |           |          |          |          |          |
| 107.08    | 117.63   | foliated UM tuff with minor tuffoceous fragmented, schistosty CA to II to CA-380     |          |        |       |           |          |          |          |          |
|           |          | at 108.5, 580 at 114.7, scattered cabonated stringers underly orientated.            |          |        |       |           |          |          |          |          |
| 117.63    | 118.97   | contorted qc stringers 2-7mm with chocolate brown tourmaline.                        | 44569    | 117.6  | 119.0 | 1.34      | 0.03     |          |          |          |
| 118.97    | 128.73   | tuff - tuff fragmental UM, scattered qc and and carbonated stringers 10-15m,         |          |        |       |           |          |          |          |          |
|           |          | schistose CA-28 to II to CA, 122.84 tight fold, axis II to CA, 123.80-126            |          |        |       |           |          |          |          |          |
|           |          | crumulations to chlorite slip planes CA-15o schistose random & folded, 126.1         |          |        |       |           |          |          |          |          |
|           |          | schistose 500, 126.48-126.84 massive porphyritic & foliated CA-450-150, 126.84       |          |        |       |           |          |          |          |          |
|           |          | contact CA-420, 126.48 contact CA-490 sharp to 4cm grey qv, 126.84-127.26            |          |        |       |           |          |          |          |          |
|           |          | moderately hard, 127.26-127.72 schistose tuff bed CA-300 minor small folds,          |          |        |       |           |          |          |          |          |
|           |          | 127.72-128.73 very contorted folded, crenulations chlorite II slip planes CA-20o-    |          |        |       |           |          |          |          |          |
|           |          | 30o tuff.                                                                            |          |        |       |           |          |          |          |          |
| 128.73    | 129.32   | massive, foliated, mafic dike? Contacts sharp CA-280 with 1cm qc st porphyritic      |          |        |       |           |          |          |          |          |
|           |          | foliated to 128.97, hard massive CA-580, 129.32 contacts 700+500.                    |          |        |       |           |          |          |          |          |
| 129.32    | 138.13   | contorted tuff to fragmented tuff, 129.32-131.28 schistose II to CA, 130.37 fold     | 44597    | 137.0  | 138.1 | 1.13      | 0.01     |          |          |          |
|           |          | nose, 131.28-136.89 very contorted, CA-40o at 131.9, 35o at 134, 135-136.89          |          |        |       |           |          |          |          |          |
|           |          | crumulated, folded, chlorite II slips planes (136.89-137.52), 138.13 sharp contact   |          |        |       |           |          |          |          |          |
|           |          | CA-750-780.                                                                          |          |        |       |           |          |          |          |          |
| 138.13    | 138.49   | mafic dike, fg, dark green altn at contacts to pale green buff, massive, uniform,    | 44598    | 138.1  | 138.5 | 0.36      | 0        |          |          |          |
|           |          | nil level of foliation, non magnetic, non carbonated, siliceous, x-cut by random 1-2 |          |        |       |           |          |          |          |          |
|           |          | mm white qtz ff stringers, nil to trace sulphides, LC ground.                        |          |        |       |           |          |          |          |          |
| 138.49    | 139.37   | carbonated schistose UM, as above well level of schist CA-600 trace sulphides        | 44599    | 138.4  | 139.4 | 0.93      | 0.06     |          |          |          |
|           |          | minor crenulations to chlorite slip, 139.37 sharp contact CA-55o.                    |          |        |       |           |          |          |          |          |
| 139.37    | 258      | Exhalitic Tuffs and Sedimentary Rocks                                                |          |        |       |           |          |          |          |          |
| 139.37    | 140.15   | felsic dike, fg aphanitic, light brown to buff brown, hard, siliceous, nil level of  | 44600    | 139.4  | 14.2  | 0.78      | 0.01     |          |          |          |
|           |          | folation, brownish siliceous ff (tourmiline) and random q st 1-2mm, scattered fg     |          |        |       |           |          |          |          |          |
|           |          | py <0.5%, 139.82 5mm white qv CA-80o, 140.05 5mm white qv CA-70o-75o,                |          |        |       |           |          |          |          |          |
|           |          | 140.15 ground contact.                                                               |          |        |       |           |          |          |          |          |
| 140.15    | 141.55   | foliated felsic dike, aphantic to fg buff to pale greyish buff to black green        | 44601    | 140.2  | 141.6 | 1.4       | 0.04     | 0.04     |          |          |
|           |          | chlorite elongated phenocrysts to foliated bands 1mm, hard, siliceous few 1-2        |          |        |       |           |          |          |          |          |
|           |          | mm q st usually near II to CA, few at 250 +550 foliation, trace to                   |          |        |       |           |          | _        |          |          |
|           |          | scattered fg to vfg py <0.5%, 141.05-141.16 1/2cm and wedge shaped 2-6cm             |          |        |       |           |          |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |
|           |          |                                                                                      |          |        |       |           |          |          |          |          |

| Property: |        |                                                                                     | Hole No. | 30     |        | Sheet No. | 3        |          |          |          |
|-----------|--------|-------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage  | Description                                                                         | Sample   |        |        |           | As       | say      |          |          |
| From      | То     |                                                                                     | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |        | chocolate brown siliceous veins ie brecciated felsic dike fragments, 141.55         |          |        |        |           |          |          |          |          |
|           |        | contact CA-50o.                                                                     |          |        |        |           |          |          |          |          |
| 141.55    | 142.06 | um tuff fragmented, as above, 141.55-141.88 buff alth fragments white dark          | 44602    | 141.6  | 142.6  | 1.03      | 0.02     |          |          |          |
|           |        | green, matrx, silicified, 141.88-142.06 fg grained weak level of bedding or         |          |        |        |           |          |          |          |          |
|           |        | schist, hard medium brownish green to pale green buff, possible felsic dike         |          |        |        |           |          |          |          |          |
|           |        | weak foliated, contacts sharp 60o+60o.                                              |          |        |        |           |          |          |          |          |
| 142.06    | 144.6  | qtz flood wk altn, ultra mafic tuff fragments, flood II to schist CA-45-500 to      | 44603    | 142.58 | 143.6  | 1.02      | 0        |          | 1        | 1        |
|           |        | crenulated, minor displacements along axis, grey white with pale brown tint,        | 44604    | 143.6  | 144.6  | 1         | 0        |          |          |          |
|           |        | trace to scattered vfg fg py, 142.18-142.41 irregular white qtz vein mass.          |          |        |        |           |          |          |          |          |
| 144.6     | 145.66 | medium grey to medium grey green, um tuff 1-2mm laminated, patchy trace             | 44605    | 144.6  | 145.66 | 1.06      | 0        |          |          |          |
|           |        | of sericitic altn.                                                                  |          |        |        |           |          |          |          |          |
| 145.66    | 146    | aphanitic to fg, black geen to dark grey laminations tuff to siliceous seds,        | 44606    | 145.66 | 146.1  | 0.44      | 0.01     |          |          |          |
|           |        | scatter to <0.5% pyrite, pyrrhotite II to bed CA-500 in more chlorite sections      |          |        |        |           |          |          |          |          |
|           |        | 145.92 t0 146.0.                                                                    |          |        |        |           |          |          |          |          |
| 146       | 146.1  | massive chlorite with irregular pale grey white opague qv, scattered py po and      |          |        |        |           |          |          |          |          |
|           |        | chalcopyrite, ground contact.                                                       |          |        |        |           |          |          |          |          |
| 146.1     | 258    | Exhalitic Sedimentary Rocks and Tuffs                                               |          |        |        |           |          |          |          |          |
| 146.1     | 147.41 | fg grey green laminated + crenulated tuff grading to chlorite orthi fragmental      | 44607    | 146.1  | 147.41 | 1.31      | 1.51     | 1.49     |          |          |
|           |        | 146.95-147.41, few 3-5mm grey q st x-cut bed, 146.42-146.66 crenulation             |          |        |        |           |          |          |          |          |
|           |        | axis CA-15o chlorite II, 147.05 bed CA-57o, 147.14-147.41 several 5mm qtz           |          |        |        |           |          |          |          |          |
|           |        | translucent qtz to minor carbonate II to + x-cut bedding, 147.41 contact CA         |          |        |        |           |          |          |          |          |
|           |        | 350.                                                                                |          |        |        |           |          |          |          |          |
| 147.41    | 148.64 | aphanitic medium grey, very hard, non magnetic, no carbonate, siliceous,            | 44608    | 147.41 | 148.64 | 1.23      | 0        |          |          |          |
|           |        | massive uniform, ie grey white opague qtz st near II to bedding CA -55o,            |          |        |        |           |          |          |          |          |
|           |        | scattered 1-2% fg py usually in qtz ff, 148.64 contact CA-60o.                      |          |        |        |           |          |          |          |          |
| 148.6     | 149.5  | light brownish green to pale greenish light brown, baked altn by greenish           | 44609    | 148.64 | 149.5  | 0.86      | 0        |          |          |          |
|           |        | brown <1mm black phenocyats dike form 148.88-149.12 on side of core +               |          |        |        |           |          |          |          |          |
|           |        | x-cut bedding, 149.12-149.5 fragments altn to buff to greenish tone, 149.24-        |          |        |        |           |          |          |          |          |
|           |        | 149.50 qtz flooding & irregular whitish opague qv, 149.50 contact CA -750.          |          |        |        |           |          |          |          |          |
| 149.5     | 150.23 | crenulated locally, tuff, light grey to buff pale green, trace to scattered vfg py, | 44610    | 149.5  | 150.23 | 0.73      | 0.01     |          |          |          |
|           |        | 150.23 siliceous contact CA-600                                                     |          |        |        |           |          |          |          |          |
| 150.23    | 151.64 | brecciated qtz flooded fragmental tuff, altn hard silicifled zone, light grey, pale | 44611    | 150.23 | 151.64 | 1.41      | 0.1      |          |          | -        |
|           |        | grey, buff, tan, dark coloured fragments, locally chocolate brown silicified        |          |        |        |           |          |          |          |          |
|           |        |                                                                                     |          |        |        |           |          |          |          |          |
|           |        | sections, with irregular patches + masses of white qv, bedding x-cut by             |          |        |        |           |          |          |          |          |
|           |        |                                                                                     |          |        |        |           |          |          |          |          |
|           |        |                                                                                     |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 30     |        | Sheet No. | 4        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                        | Sample   |        |        |           | Ass      | ay       |          |          |
| From      | То       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | greyish white translucent qv some foliated, 151.64 contact CA-50o.                 |          |        |        |           |          |          |          |          |
| 151.64    | 152.6    | grey green tuff, locally folded, 151.79 2cm white opague qv CA-30-35o x-cut        | 44612    | 151.64 | 153    | 1.36      | 0.24     |          |          |          |
|           |          | bed siliceous, 151.90 1cm white grey qv CA-100 trace at 152.09.                    |          |        |        |           |          |          |          |          |
| 152.6     | 153      | light to medium brown buff, massive weak devel. of bedding, altn, brecciated       |          |        |        |           |          |          |          |          |
|           |          | white qtz healed 153.0 65o CA.                                                     |          |        |        |           |          |          |          |          |
| 153       | 155.89   | fg, greenish grey to medium grey, nit to weak pacthy sericitia altn, tuffaceous    | 44613    | 153    | 154.5  | 1.5       | 0.33     |          |          |          |
|           |          | with scattered small angular fragments usually altn buff, hard, siliceous, nil to  | 44614    | 154.5  | 155.89 | 1.39      | 0.07     |          |          |          |
|           |          | trace vfg fg pyrite 155.89 contact CA-50o-60o irregular.                           |          |        |        |           |          |          |          |          |
| 155.89    | 156.15   | medium to dark brown, qtz veined random 1-2mm up to 1.5cm, silicified <0.5         | 44615    | 155.89 | 156.15 | 0.26      | 0.22     | 0.23     |          |          |
|           |          | % mg py + fg 156.15 CA-550 irregular.                                              |          |        |        |           |          |          |          |          |
| 156.15    | 157.2    | fg, pale buff to light buff grey tuff with scattered fragments, trace to scattered | 44616    | 156.15 | 157.2  | 1.05      | 0.05     |          |          |          |
|           |          | fg py 157.20 contact CA-65o irregular.                                             |          |        |        |           |          |          |          |          |
| 157.2     | 157.8    | silicified qtz flooded + veined opague to translucient veining light to medium     | 44617    | 157.2  | 157.8  | 0.6       | 0.58     | 0.67     |          |          |
|           |          | grey 157.80 CA-70o.                                                                |          |        |        |           |          |          |          |          |
| 157.8     | 161.71   | weak to weak moderate sericitic altn, rare qtz veining sections qtz flooded,       | 44618    | 157.8  | 159    | 1.2       | 0.05     |          |          |          |
|           |          | pale green to pale grey green, locally medium green, 158.09-158.90 medium          | 44619    | 159    | 160    | 1         | 0.2      |          |          |          |
|           |          | green tuff contact CA 70o, 158.47-158.90 weak sericitic altn, qtz flooded,         | 44620    | 160    | 160.94 | 0.94      | 0        |          |          |          |
|           |          | scattered light medium green fragments, contact CA-65o, 158.90-159.60 weak         | 44621    | 160.94 | 161.71 | 0.77      | 0.1      |          |          |          |
|           |          | to weak moderate sericitic tuff, 159.45-159.60 1-2% vfg to fg pyrite, 159.60       |          |        |        |           |          |          |          |          |
|           |          | contact Ca-55o, 159.60-160 weak sericitic qtz flood with almost fuchsite green     |          |        |        |           |          |          |          |          |
|           |          | altn, 160-160.95 medium grey, nil to trace patchy sericitic altn tuff, irregular   |          |        |        |           |          |          |          |          |
|           |          | greyish buff 1-2mg irregular and folded stringers, 160.62-160.95 minor small       |          |        |        |           |          |          |          |          |
|           |          | folds and crenulations, 160.95 contact CA-48o-50o, 160.95-161.38 weak              |          |        |        |           |          |          |          |          |
|           |          | sericitic, tuff fragmental 61o, 161.38-161.71 pale green, qtz flood, light grey    |          |        |        |           |          |          |          |          |
|           |          | opague qtz 55o.                                                                    |          |        |        |           |          |          |          |          |
| 161.71    | 164.94   | weak moderate sericitic tuff with massive crenulations, pale green, pale           | 44622    | 161.71 | 162.2  | 0.49      | 0.04     |          |          |          |
|           |          | greyish green, locally 1-2% vfg py, 161.71-162, 164-164.25, 163.26-163.42,         | 44623    | 162.2  | 163    | 0.8       | 0.06     |          |          |          |
|           |          | crenulations 162.6-162.95,162.98-163.24, 163.76-163.89 + vfg py, 164.26-           | 44624    | 163    | 164    | 1         | 0        |          |          |          |
|           |          | 164.38, 164.67-164.94, 162.95-162.98 qv grey ie inclusion II to bed CA-55o-60      | 44625    | 164    | 164.94 | 0.94      | 0.04     |          |          |          |
|           |          | 162.24-162.39 2-v shaped qtz masses.                                               |          |        |        |           |          |          |          |          |
| 164.94    | 165.19   | medium grey tuff, CA-53o.                                                          |          |        |        |           |          |          |          |          |
| 165.19    | 165.8    | weak sericitic very hard tuff ie minor crenulated, 165.80 70o contact.             |          |        |        |           |          |          |          |          |
| 165.8     | 174.08   | light brown to light brownish buff to tan, light grey, nil to very weak patch      |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |

| Property: |        |                                                                                  | Hole No: | 30     |        | Sheet No. | 5        |          |          |          |
|-----------|--------|----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | erage  | Description                                                                      | Sample   |        |        |           | Assay    |          |          |          |
| From      | То     |                                                                                  | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |        | sencitic altn, scattered <0.5 to trace pyrite, minor bed crenulations, few minor |          |        |        |           |          |          |          |          |
|           |        | tuff fragmental sections small, 168.17-168.77 weak sericitic tuff, 168.77-169.85 |          |        |        |           |          |          |          |          |
|           |        | tuff fragmental 169.85-172.72 tuff, 172.72 7mm grey opague gv CA-350,            |          |        |        |           |          |          |          |          |
| 165.8     | 174.08 | 172.82-174.08 medium to dark grey to greenish medium dark grey to pale           |          |        |        |           |          |          |          |          |
|           |        | brownish tint, tuff, 173.61-173.69 opague greyish to pale green gv to inclusion  |          |        |        |           |          |          |          |          |
|           |        | 173.67-173.69, whitish opague qv 174.08 contact CA-60o.                          |          |        |        |           |          |          |          |          |
| 174.08    | 175.8  | weak moderate sericitic, qtz flooded tuff to local fragments to qtz healed       | 44626    | 174.08 | 175    | 0.92      | 0.05     | 0.04     |          |          |
|           |        | brecciated, some minor crenulation, fragments to buff, buff pale green, more     | 44627    | 175    | 175.8  | 0.8       | 0.05     |          |          |          |
|           |        | tuffaceous scattered fg vfg py <0.5% to trace, CA-65o LC.                        |          |        |        |           |          |          |          |          |
| 175.8     | 176.56 | brecciated qtz flood fragmental, karki green to greenish buff to brownish tint   | 44628    | 175.8  | 176.56 | 0.76      | 0        |          |          |          |
|           |        | greyish opague qtz x-cut whitish opague qtz 176.05 1.5cm 35o 176.56 55o.         |          |        |        |           |          |          |          |          |
| 176.56    | 177.53 | buff green, fragmental tuff 50o LC.                                              | 44629    | 176.56 | 177.53 | 0.97      | 0.08     |          |          |          |
| 177.53    | 178.17 | pale green fuchsite altn, fragmental tuff.                                       | 44630    | 177.53 | 179    | 1.47      | 0.01     |          |          |          |
| 178.17    | 178.68 | same as 176.56-177.53, 178.31 1cm white qv 35o x-cut mass of pale                |          |        |        |           |          |          |          |          |
|           |        | brownish qtz mass.                                                               |          |        |        |           |          |          |          |          |
| 178.68    | 179.54 | pale green qtz flood fragmental tuff scattered fuchsite altn, LC 60o.            | 44631    | 179    | 180.06 | 1.06      | 0.04     |          |          |          |
| 179.54    | 179.77 | light brownish fragmental.                                                       |          |        |        |           |          |          |          |          |
| 179.77    | 180.06 | light pale green qtz flood fragmental LC 600.                                    |          |        |        |           |          |          |          |          |
| 180.06    | 180.28 | light brown fragmental.                                                          | 44632    | 180.06 | 180.85 | 0.79      | 0.07     |          |          |          |
| 180.28    | 180.86 | pale green, ie buff to pale buff fragments in qtz flooded II to bed.             |          |        |        |           |          |          |          |          |
| 180.86    | 182    | light brown tuff with few small fragments.                                       |          |        |        |           |          |          |          |          |
| 182       | 182.15 | qtz flood pale greenish buff fragments.                                          |          |        |        |           |          |          |          |          |
| 182.15    | 182.45 | brownish.                                                                        |          |        |        |           |          |          |          |          |
| 182.45    | 182.55 | irregular qtz white bx qtz massive qtz flood fragmantal tuff.                    |          |        |        |           |          |          |          |          |
| 182.55    | 184.92 | fragmental tuff, light to medium brownish to pale buff green. 182.82-182.88      |          |        |        |           |          |          |          |          |
|           |        | irregular gtz + II to bedding, 183.06-186.90 qtz flooding in fragmantal tuff.    |          |        |        |           |          |          |          |          |
| 184.92    | 186.9  | pale green tint assorted ie qtz flooding buff pale green, vfg pyrite <0.5%       |          |        |        |           |          |          |          |          |
|           |        | locally up to 1%, 185.03-185.15 qv in inclusions, pale green opague CA-50o,      |          |        |        |           |          |          |          |          |
|           |        | 185.80 1.5cm qtz ie fuchsite CA-50o, 186.06-186.28 qv zone irregular             |          |        |        |           |          |          |          |          |
|           |        | elongated white opague qv masses 186.06-186.07, and grey white to pale           |          |        |        |           |          |          |          |          |
|           |        | green tint qv ie inclusion tuff fg trace sulphides CA-80o+75o near II to bedding |          |        |        |           |          |          |          |          |
| 186.9     | 187.19 | buff in weak pervasive sericitic altn tuff with crenulations and brecciated      |          |        |        |           |          |          |          |          |
|           |        | fragmental qtz healed bedding CA-60o-63o LC-75o.                                 |          |        |        |           |          |          |          |          |
|           |        |                                                                                  |          |        |        |           |          |          |          |          |
|           |        |                                                                                  |          |        |        |           |          |          |          |          |
|           |        |                                                                                  |          |        |        |           |          |          |          |          |
|           |        |                                                                                  |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 30     |        | Sheet No. | 6        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Meter     | age      | Description                                                                        |          | Sample |        |           | Ass      | ay       |          |          |
| From      | То       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 187.19    | 188.1    | tuff fragmental qtz flood, pale buff weak sericitic to light brown, trace to       |          |        |        |           |          |          |          |          |
|           |          | <0.5% vfg fg py, LC 700.                                                           |          |        |        |           |          |          |          |          |
| 188.1     | 200.6    | tuff fine to 1-2mm lamination with local crenulations, scattered to <0.5%          |          |        |        |           |          |          |          |          |
| 188.1     | 200.6    | pyrite locally up to 1%, sections up to 2-4cm weak moderate.                       |          |        |        |           |          |          |          |          |
| 188.1     | 190.23   | sericitic altn, patchy, medium grey, buff, buff green.                             |          |        |        |           |          |          |          |          |
| 190.23    | 191.01   | light grey to pale yellowish grey, nil to very minor sericitic tuff, few scattered |          |        |        |           |          |          |          |          |
|           |          | vfg to fg py, uniform moderate devel. of bedding CA-70o-72o.                       |          |        |        |           |          |          |          |          |
| 191.01    | 191.53   | weak sericitic altn, tuff, with electrical to elongated greyish to pale greenish   | 44633    | 191    | 191.56 | 0.56      | 0        |          |          |          |
|           |          | grey opague qtz masses II to bedding, trace to scattered pyrite.                   |          |        |        |           |          |          |          |          |
| 191.53    | 192.44   | patchy altn sections of buff yellow green ,50% sencitic altn fg laminated tuff     | 44634    | 191.56 | 192.44 | 0.88      | 0.01     |          |          |          |
|           |          | and medium grey to blackish grey tuff to lapilli tuff, scattered to <0.5% fg py    |          |        |        |           |          |          |          |          |
|           |          | locally up to 1-2% usually in greyish sections, 191.84 2 cm qtz elongated ie       |          |        |        |           |          |          |          |          |
|           |          | pyrite 2mm band CA-67o, 191.88 5mm band of semi massive fg pyrite x-cut            |          |        |        |           |          |          |          |          |
|           |          | II to bedding, CA-700, 192.44 contact CA-700                                       |          |        |        |           |          |          |          |          |
| 192.44    | 194.17   | pervasive sericitic alth few scattered <5% greyish sections, nil to trace py       | 44635    | 192.44 | 193.61 | 1.17      | 0.02     |          |          |          |
|           |          | <0.5% locally.                                                                     | 44636    | 193.61 | 194.68 | 1.07      | 0        |          |          |          |
| 194.17    | 195.32   | patchy <20% same as 191.53-192.44, scattered <5% greyish sections                  |          |        |        |           |          |          |          |          |
|           |          | locally up to 1-2% vfg fg, 194.27 pyrite grey qtz stringers 2mm CA-500 x-cut       |          |        |        |           |          |          |          |          |
|           |          | bed 720, 195.07-195.12 siliceous grey qtz veinlet II to bed, 195.32 CA-750.        |          |        |        |           |          |          |          |          |
| 195.32    | 197.3    | predominant silicified altn <80-85% few 1cm greyish sections tuff, nil to trace    |          |        |        |           |          |          |          |          |
|           |          | sulphides, 196.60 1cm greyish white q st II to bedding, 196.84 7mm greyish         |          |        |        |           |          |          |          |          |
|           |          | white opague q st II to bedding.                                                   |          |        |        |           |          |          |          |          |
| 197.3     | 200.61   | fg tuff, 197.30-199.60 fg tuff patchy sericitic buff altn 50% scattered pyrite     | 44637    | 198    | 199    | 1         | 0        |          |          |          |
|           |          | 198-199 II to bed, 198.86 crenulation, 198.95 2cm grey q st to inclusion           |          |        |        |           |          |          |          |          |
|           |          | greyish brown 1% fg py II to bed, 199.15 crenulation CA-450 x-cut bed CA-68        |          |        |        |           |          |          |          |          |
|           |          | axis slightly off II to bedding, 199.60-200.60 pervasive sericitic altn, tuff,     |          |        |        |           |          |          |          |          |
|           |          | massive uniform LC-650.                                                            |          |        |        |           |          |          |          |          |
| 200.6     | 201.79   | tuff fragmental with elongated stretch boudinage whitish qtz st 1cm minor          |          |        |        |           |          |          |          |          |
|           |          | fuchsite band in gtz at 201.38 II to bed CA-60o LC-60o                             |          |        |        |           |          |          |          |          |
| 201.79    | 203.65   | weak sericitic patchy altn <30%-50% with dark grey to greyish black and            |          |        |        |           |          |          |          |          |
|           |          | greyish tint, scattered py usually assoc. in grey sections rare sericitic,         |          |        |        |           |          |          |          |          |
|           |          | 201.54 1-2mm qtz st ie pyrite CA-60o, 203.58 few scattered fragments,              |          |        |        |           |          |          |          |          |
|           |          | 203.12-203.28 greyish black tuff.                                                  |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                  | Hole No. | 30     |        | Sheet No. | 7        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | erage    | Description                                                                          |          | Sample |        |           | Assa     | /        |          |          |
| From      | То       |                                                                                      | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 203.65    | 203.87   | greyish black fragmental tuff possibly graphitic.                                    | 44638    | 203.65 | 204.1  | 0.45      | 0.07     |          |          |          |
| 203.87    | 203.92   | silicia grey buff fragment in vfg matrix chlorite.                                   |          |        |        |           |          |          |          |          |
| 203.92    | 204.1    | pale greenish buff felsic dike in pale greyish phenocrysts, x-cut by 2cm white       |          |        |        |           |          |          |          |          |
| 203.92    | 204.1    | opague to translucent qtz CA-75o at 203.96, 204.0 1cm qv, 204.01 wedge of            |          |        |        |           |          |          |          |          |
|           |          | tuffaceous fragment, 204.04-204.10 white opague to translucent qv wedge at           |          |        |        |           |          |          |          |          |
|           |          | porphyry contact sinuous, contact CA-650 x-cut contont tuff bedding.                 |          |        |        |           |          |          |          |          |
| 204.1     | 204.33   | crenulation tuff in x-cut weakly sericitic chlorite ff CA 40o+45o x-cut bedding      |          |        |        |           |          |          |          |          |
|           |          | 204.32 1cm grey opague qtz st near II to bed CA-650-700.                             |          |        |        |           |          |          |          |          |
| 204.33    | 206.01   | pale buff grey fragmental tuff with several minor tuffaceous sections, nil to        |          |        |        |           |          |          |          |          |
|           |          | trace sulphides.                                                                     |          |        |        |           |          |          |          |          |
| 206.1     | 206.56   | qtz flooded buff to buff medium grey fragmental tuff.                                | 44639    | 206.02 | 206.55 | 0.53      | 0        |          |          |          |
| 206.56    | 208.1    | massive buff to pale greenish yellow buff to greenish yellow medium brown            |          |        |        |           |          |          |          |          |
|           |          | fragmental tuff, weak level of bedding, rare lamination, grading from siliceous      |          |        |        |           |          |          |          |          |
|           |          | hard to moderately hard, moderately level bedding 207.42-207.83, 207.83-             |          |        |        |           |          |          |          |          |
|           |          | 208.10 0.5 to 1mm blackish crystals, possible crystal tuff.                          |          |        |        |           |          |          |          |          |
| 208.1     | 209.56   | qtz flooded pale yellowish light brown to buff locally blackish green chloritic,     |          |        |        |           |          |          |          |          |
|           |          | moderately sericitic grading to very weakly sericitic. 209.56 contact sharp          |          |        |        |           |          |          |          |          |
|           |          | CA-70o.                                                                              |          |        |        |           |          |          |          |          |
| 209.56    | 216.74   | ultra mafic silicified tuffaceous fragmental fg, blackish green to greenish black    |          |        |        |           |          |          |          |          |
|           |          | with qtz fragments distortions + stretch qts stringers, qtz flooded moderately       |          |        |        |           |          |          |          |          |
|           |          | developed bedding, uniform fragmental tuff, silicified moderately hard, non          |          |        |        |           |          |          |          |          |
|           |          | magnetic, nil to very weakly carbonated, rare distorted qtz stringers usually        |          |        |        |           |          |          |          |          |
|           |          | x-cut bedding (silicified talcose schist) trace sulphides, 209.86-210.33             |          |        |        |           |          |          |          |          |
|           |          | random orientated qtz stringers x-cut bedding 650 II to bedding CA-60o,              |          |        |        |           |          |          |          |          |
|           |          | 210.61-210.65 vfg fg greyish tuff weak level of bedding 60o, 211.12 5mm grey         |          |        |        |           |          |          |          |          |
|           |          | opague q st x-cut bed at low angle sinuous all over 200, 211.12-211.77               |          |        |        |           |          |          |          |          |
|           |          | random orientated qtz veinlets greyish with white x-cut bedding CA-30o, x-cut        |          |        |        |           |          |          |          |          |
|           |          | by grey massive qtz veinlet CA-60+400 irregular, 212.78-212.99 medium                |          |        |        |           |          |          |          |          |
|           |          | brown aphanitic to fg felsic, possible silicified argillite, um fuchsite, with white |          |        |        |           |          |          |          |          |
|           |          | 1mm qtz ff 40o not x-cut contacts, contacts sharp CA- 65+70o, 215.24-216             |          |        |        |           |          |          |          |          |
|           |          | grey white qts vein CA-65+75 II to bed, 216.74 contact sharp 600.                    |          |        |        |           |          |          |          |          |
| 216.74    | 224.07   | fg, greyish light brown in fuchsite altn in upper 15cm to dark grey, light grey      | 44640    | 219.3  | 220.45 | 1.15      | 0        |          |          |          |
|           |          | to medium grey, local aphinitic blackish sections 10-15cm, very hard                 | 44641    | 220.45 | 222    | 1.55      | 0.1      |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |
|           |          |                                                                                      |          |        |        |           |          |          |          |          |

| Property | Hunter M | ine                                                                            | Hole No. | 30    |        | Sheet No. | 8        |          |          |          |
|----------|----------|--------------------------------------------------------------------------------|----------|-------|--------|-----------|----------|----------|----------|----------|
| Met      | erage    | Description                                                                    | Sample   |       |        |           |          | Assay    |          |          |
| From     | То       |                                                                                | No.      | From  | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | siliceous to hard, weak moderate to strongly carbonaceous argillites weak to   | 44642    | 222   | 223.5  | 1.5       | 0.02     |          |          |          |
|          |          | weak moderate level up of bedding grading to moderate to locally strongly      | 44643    | 223.5 | 224.07 | 0.57      | 0.03     |          |          |          |
|          |          | level bedding, qtz white opague + translucent veinlets 0.5 to 6cm II to bed    |          |       |        |           |          |          |          |          |
| 216.74   | 224.07   | with stringers, 217.54-220.76 9-15 per meter, to rare 1-2 per meter, scattered |          |       |        |           |          |          |          |          |
|          |          | sections of vfg to fg pyrite <0.5% locally 15-20%, 223.90-224.03 to py veinlet |          |       |        |           |          |          |          |          |
|          |          | 80%, 20% qtz 224.03-224.07 CA-63o, 220.45-220.82 several 4cm q veinlets        |          |       |        |           |          |          |          |          |
|          |          | white translucent greyish to medium grey in faint brownish tint, 220.82-       |          |       |        |           |          |          |          | 1        |
|          |          | 224.07 scattered pyrite 1-3%, 223.90-224.03 15-20% py, 224.03-224.07 80%       |          |       |        |           |          |          |          |          |
|          |          | py in qtz vein CA-63o, 216.74-224.07 fg to mg argillite.                       |          |       |        |           |          |          |          |          |
| 224.07   | 237.39   | fg argillite with local sections of medium grained argillite+ well devolped    |          |       |        |           |          |          |          |          |
|          |          | bedding graded in fining down hole (tops) light grey to medium grey, 225.49-   |          |       |        |           |          |          |          |          |
|          |          | 225.58 qtz veining and altn to light brown CA-75o, 225.92-226.03 dark grey     |          |       |        |           |          |          |          |          |
|          |          | black aphanitic graphitic, 226.52-226.66 silicified + qtz veined CA-750,       |          |       |        |           |          |          |          |          |
|          |          | 227.70-227.81 silicified + qtz stringer weak sericitic altn CA-800+600,        |          |       |        |           |          |          |          |          |
|          |          | 227.77-228.86 qtz ff x-cut bed CA-10o-25o, 228.54-229.36 graded bedding        |          |       |        |           |          |          |          |          |
|          |          | CA-70o, 229.36-230.06 medium grained to 0.5mm qtz rounded grains in            |          |       |        |           |          |          |          |          |
|          |          | aphanitic ground mass, 230.06-230.11 aphanitic to fg blackish graphitic        |          |       |        |           |          |          |          |          |
|          |          | argillite, non mag, 230.17-231.62 fg to moderate grey argillite light medium   |          |       |        |           |          |          |          |          |
|          |          | grey, 231.62-231.73 blackish grey to black chert, 231.73-232.92 fg light       |          |       |        |           |          |          |          |          |
|          |          | grey argillite, 232.92-232.97 cherty, 233.33-233.46 qtz silicified zone CA-70o |          |       |        |           |          |          |          |          |
|          |          | 233.60-233.68 qtz silicified zone sericitic CA-60o, 235.87 end of fg to mg     |          |       |        |           |          |          |          |          |
|          |          | argillite, 235.87-237.39 aphanitic to fg argillite light grey, medium grey     |          |       |        |           |          |          |          |          |
|          |          | blackish grey laminations excellent graded bedding CA-69o.                     |          |       |        |           |          |          |          |          |
| 237.39   | 239.85   | fg graphitic argillite, rare qtz usually II to bed CA-68o-69o.                 |          |       |        |           |          |          |          |          |
| 239.85   | 240.56   | light medium grey, fg-mg argillite CA broken.                                  |          |       |        |           |          |          |          |          |
| 240.56   | 241.17   | graphitic argillite, patchy py on fuchsite planes.                             |          |       |        |           |          |          |          |          |
| 241.17   | 243.91   | light grey argillite to pale green tint vfg fg to medium grey mg argillite in  |          |       |        |           |          |          |          |          |
|          |          | laminated 1-4cm blackish grey to dark grey chesty sections q st at 242.40,     |          |       |        |           |          |          |          |          |
|          |          | 242.63 1cm CA-70o II to bed, 243.29-243.53 silicified q st minor buff altn.    |          |       |        |           |          |          |          |          |
| 243.91   | 246.01   | graphitic argillite, very broken core, fine laminates.                         |          |       |        |           |          |          |          |          |
| 246.01   | 246.55   | light medium grey argillite.                                                   |          |       |        |           |          |          |          |          |
| 246.55   | 246.75   | gv + inclusions II to bed.                                                     |          |       |        |           |          |          |          |          |
| 246.75   | 248.21   | banded argillite fg-mg.                                                        |          |       |        |           |          |          |          |          |
|          |          |                                                                                |          |       |        |           |          |          |          |          |
|          |          |                                                                                |          |       |        |           |          |          |          |          |
|          |          |                                                                                |          |       |        |           |          |          |          |          |
|          |          |                                                                                |          |       |        |           |          |          |          |          |

,

| Property | Hunter M | ine                                                                           | Hole No. | 30   |    | Sheet No. | 9        |          |          |          |
|----------|----------|-------------------------------------------------------------------------------|----------|------|----|-----------|----------|----------|----------|----------|
| Met      | егаде    | Description                                                                   | Sam      | ple  |    |           |          | Assay    |          |          |
| From     | То       |                                                                               | No.      | From | То | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 248.21   | 248.4    | chert laminated.                                                              |          |      |    |           |          |          |          |          |
| 248.4    | 249.56   | approximate due to very broken core, aphanitic chert, fg dark grey with light |          |      |    |           |          |          |          |          |
|          |          | medium, laminated locally 0.5-1% vfg II to bed and platty planes 249          |          |      |    |           |          |          |          |          |
| 249.56   | 251      | approx broken, graphitic argillite.                                           |          |      |    |           |          |          |          |          |
| 251      | 258      | fg-mg argillite, light to medium grey dark grey to 252.10, 252.10 2cm gy      |          |      |    |           |          |          |          |          |
|          |          | broken core, 252.10-255.90 scattered gy x-cut bed 30-550, 253.75-253.86 gy    |          |      |    |           |          |          |          |          |
|          |          | inclusion, scattered py, 254-258 2 1cm white g st II to bed in medium grey    |          |      |    |           |          |          |          |          |
|          |          | argillite greywacke med, ground mass, weak devel, bedding, cleavage good.     |          |      |    |           |          |          |          |          |
|          | 258      | END OF HOLE.                                                                  |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |
|          |          |                                                                               |          |      |    |           |          |          |          |          |

|           |        | Hunter Mine - Diamond                                                                | d Drill Log HM-04 | 4-31             |             |       |              |          |          |             |
|-----------|--------|--------------------------------------------------------------------------------------|-------------------|------------------|-------------|-------|--------------|----------|----------|-------------|
| Property: |        | Hunter Mine                                                                          | Hole Dip:         | -50              | Page No.    | :     | 1 of 9       |          | Но       | le HM-04-31 |
| Location: |        |                                                                                      | Hole Azimuth:     | 105              | Date Star   | ted:  | June 28,2004 |          |          |             |
| Claim No  | :      | HR 1009                                                                              | Hole Length:      | 242.1 <u>5</u> m | Date Finis  | shed: | 02-Jul-04    |          |          |             |
| Elevation | :      | Porcupine Lake                                                                       | Purpose:          |                  | Drill Co .: |       | Benoit       |          |          |             |
| UTM Coo   | ords.: | 5370891.3N, 487116.9E                                                                |                   |                  | Logged b    | y:    | K. Jensen    |          |          |             |
| Mete      | rage   | Description                                                                          |                   | S                | ample       |       |              | Assays   |          |             |
| From      | To     |                                                                                      | No.               | From             | To          | Width | Au (g/t)     | Au check | Au (2nd) | Au check    |
| 0.0       | 64.3   | Casing                                                                               |                   |                  |             |       |              |          |          |             |
| 64.3      | 82.7   | Ultramafics                                                                          |                   |                  |             |       |              |          |          |             |
| 64.3      | 68.6   | very talcose, very soft, nil to very weak magnetic, fg, light to medium grey to      |                   |                  |             |       |              |          |          |             |
|           |        | blackish grey blue hue, nil to very weak carbonated, massive uniform in qts          |                   |                  |             |       |              |          |          |             |
|           |        | stringer, locally breccia chlorite healed, scattered mg to cg pyrite + masses,       |                   |                  |             |       |              |          |          |             |
|           |        | 68.45 to 68.60 crushed crumbly core, shear fault zone.                               |                   |                  |             |       |              |          |          |             |
| 68.6      | 72     | massive locally brecciated, rare veining.                                            |                   |                  |             |       |              |          |          |             |
| 72        | 73.56  | porphyritic texture, moderately soft, UC broken LC 20-25o, 1/2 to 1cm pyrite         | 44644             | 72               | 73.5        | 1.5   | 0            |          |          |             |
|           |        | masses + x-cut, few irregular qc stringers random CA-20o to 45o.                     |                   |                  |             |       |              |          |          |             |
| 73.56     | 75.68  | possible flow top breccia, minor random qc veining LC 350-400, 74.95-75.06           | 44645             | 73.5             | 75          | 1.5   | 0            |          |          |             |
|           |        | irregular qtz masses.                                                                |                   |                  |             |       |              |          |          |             |
| 75.68     | 76.54  | massive, crushed zone, 76.44-76.54 qc zone of distortion CA-80o+65o LC sharp.        |                   |                  |             |       |              |          |          |             |
| 76.54     | 80.81  | tuffaceous to tuff fragments, moderate well develop bedding bedding CA-450 local     |                   |                  |             |       |              |          |          |             |
|           |        | x-cut chlorite ff CA-200, locally crenulated, scattered qc II to bed, trace to <0.5% |                   |                  |             |       |              |          |          |             |
|           |        | pyrite fg mg, 80.50 5cm qc irregular vein mass in black tournaline x-cut CA-50o.     |                   |                  |             |       |              |          |          |             |
|           |        | 80.81 shearing CA-70o-80o.                                                           |                   |                  |             |       |              |          |          |             |
| 80.81     | 82.65  | pale grey green black, very soft, talcose, moderately carbonated, crushed zone,      |                   |                  |             |       |              |          |          |             |
|           |        | weak level of sch to nil, CA-55o LC.                                                 |                   |                  |             |       |              |          |          |             |
| 82.65     | 112.42 | Laminated Ultramafic Tuffs                                                           |                   |                  |             |       |              |          |          |             |
| 82.65     | 83.5   | tuff fragmental.                                                                     |                   |                  |             |       |              |          |          |             |
| 83.5      | 86.61  | brecciated massive, LC gradational 85.43-85.64 crushed zone.                         |                   |                  |             |       |              |          |          |             |
| 86.61     | 87.53  | tuffaceous, minor fragments LC-60o.                                                  |                   |                  |             |       |              |          |          |             |
| 87.53     | 88.03  | massive intrusive UM dike, non carbonated kinkle qtz ff stringers, nil to trace      |                   |                  |             |       |              |          |          |             |
|           |        | sulphides, black fg, moderately soft, non magnetic, LC sharp CA-400 x-cut            |                   |                  |             |       |              |          |          |             |
|           |        | bedding CA-60o.                                                                      |                   |                  |             |       |              |          |          |             |
| 88.03     | 98     | moderate to level bedding tuff to tuff fragmental moderately soft more carbonated    |                   |                  |             |       |              |          |          |             |
|           |        | to moderately hard more siliceous sections, minor crenulations, scattered fg mg      |                   |                  |             |       |              |          |          |             |
|           |        | pyrite to trace, 93.56-93.97 intrusive carbonate ff stringers CA-800 + LC shearing   |                   |                  |             |       |              |          |          |             |
|           |        |                                                                                      |                   |                  |             |       |              |          |          |             |
|           |        |                                                                                      |                   |                  |             |       |              |          |          |             |
|           |        |                                                                                      |                   |                  |             |       |              |          |          |             |

| Property | Hunter M | line                                                                                     | Hole No. | 31     |       | Sheet N | 2        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------------|----------|--------|-------|---------|----------|----------|----------|----------|
| Mete     | rage     | Description                                                                              |          | Sample |       |         | Assays   |          |          |          |
| From     | To       |                                                                                          | No.      | From   | To    | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | II to bed, 90,15-90,31 grevish gtz vein in chlorite II, contacts UC 270 x-cut bed        |          |        |       |         |          |          |          |          |
|          |          | CA 600-650, LC-550, 94.60-96.90 blobs + masses of gtz discontiuous stringers,            |          |        |       |         |          |          |          |          |
| 88.03    | 98.00    | 96.90-98.00 more tuffaceous, bedding locally crenulation 60o.                            |          |        |       |         |          |          |          |          |
| 98       | 99.12    | massive, moderately soft to moderatly hard, nil to poorly develop, schistosity,          |          |        |       |         |          |          |          |          |
|          |          | minor fg, scattered 1-2mm gtz stringers deformed, 40 600 LC 550.                         |          |        |       |         |          |          |          |          |
| 99.12    | 99.73    | tuff.                                                                                    |          |        |       |         |          |          |          |          |
| 99.73    | 99.81    | aphanitic to fg, light grey, felsic dike, level, chlorite II, trace to vfg py contacts   |          |        |       |         |          |          |          |          |
|          |          | CA- 75 + 550 sharp.                                                                      |          |        |       |         |          |          |          |          |
| 99.81    | 100.28   | vfg tuff to lapilli ash, medium dark green grevish white fragments, nil to trace         | 44646    | 99.7   | 100.3 | 0.55    | 0.08     |          |          |          |
|          |          | sulphides, hard silicified.                                                              |          |        |       |         |          |          |          |          |
| 100.28   | 100.7    | felsic dike, same as 94.73-99.81, scattered to 1% vfg fg pyrite, chlorite ff.            | 44647    | 100.3  | 100.7 | 0.42    | 0.09     |          |          |          |
|          |          | 100.40-100.66 regular chlorite ff almost laminated, 100.66-100.70 massive                |          |        |       |         |          |          |          |          |
|          |          | chlorite LC CA-70o in 7mm grey opague gv.                                                |          |        |       |         |          |          |          |          |
| 100.7    | 102.27   | tuff, fragmental, well level bed, locally contorted chlorite filled slip planes CA-500   | 44648    | 100.7  | 102.3 | 1.57    | 0.02     |          |          |          |
|          |          | x-cut bed 600 locally crenulated.                                                        |          |        |       |         |          |          |          |          |
| 102.27   | 103.09   | same as 99.81-100.28, foliated medium green, hard, x-cut white 1-2mm stringer            | 44649    | 102.3  | 103.1 | 0.82    | 0.05     | 0.08     |          |          |
|          |          | gtz, grey light bleaching altn on contacts, trace to 0.5% py, locally 102.66-            |          |        |       |         |          |          |          |          |
|          |          | 102.88 2-3% mg py. 102.48-102.55 light grey felsic dike in white gtz ff st only 1        |          |        |       |         |          |          |          |          |
|          |          | x-cut into + past contact. 102.88-103.09 grevish felsic dike in light brown tint         |          |        |       |         |          |          |          |          |
|          |          | scattered py.                                                                            |          |        |       |         |          |          |          |          |
| 103.09   | 103.94   | gtz stringer contorted bedding tuff laminated UC 50 LC-650 gradational, trace to         | 44650    | 103.1  | 103.9 | 0.85    | 0.02     |          |          |          |
|          |          | scattered py.                                                                            |          |        |       |         |          |          |          |          |
| 103.94   | 104.32   | grevish felsic dike in chloritic gtz tuff inclusions, 1-2% fg pyrite LC-500 irregular    | 44651    | 103.9  | 104.3 | 0.38    | 0.03     |          |          |          |
|          |          | in contact tuff.                                                                         |          |        |       |         |          |          |          |          |
| 104.32   | 113      | blackish green grading to light grevish green talcose, silicified, moderately hard       | 44652    | 108.2  | 109.1 | 0.93    | 0.03     |          |          |          |
|          |          | to hard, contorted bedding tuff in fragmentals, to locally talcose 111.42-111.94,        | 44653    | 112.0  | 113.0 | 1       | 0.41     |          |          |          |
|          |          | 108.15-109.08 qtz flooding, random stringers, 108.90-109.08 opague irregular qv          |          |        |       |         |          |          |          |          |
|          |          | in inclusions, pale green tint, LC CA-750-800, nil to scattered fg pyrite locally        |          |        |       |         |          |          |          |          |
|          |          | 1-2%, 112.42 5cm greyish + brownish white qv CA-320 irregular.                           |          |        |       |         |          |          |          |          |
| 113      | 242.15   | Exhalitic Tuffs and Sedimentary Rocks                                                    |          |        |       |         |          |          |          |          |
| 113      | 113.6    | aphanitic to fg, buff tan to pale yellowish tint, hard, siliceous, gtz stringer ff, with | 44654    | 113.0  | 113.6 | 0.6     | 2.61     | 1.89     | 2.25     |          |
|          |          | irregular gtz vein at contacts, 113.00-113.16 qv CA-80o+75o vfg scattered pyrite         |          |        |       |         |          |          |          |          |
|          |          | 113.36-113.50 qtz stringers, inclusion of tuff, fg ng py, 113.50-113.60 qv CA-40         |          |        |       |         |          |          |          |          |
| 113.6    | 115      | same as 104.32-113.00 fragmental tuff with white opague qtz stringers altn               | 44655    | 113.6  | 114.7 | 1.1     | 0.29     |          | 0.29     |          |
|          |          | gradational contact.                                                                     |          |        |       |         |          |          |          |          |
| 115      | 115.8    | weak sericitic altn, fragmental tuff LC irregular.                                       | 44656    | 114.7  | 115.8 | 1.1     | 2.06     |          | 2.06     |          |
| 115.8    | 116.12   | av grevish to brownish older av x by milky white opague av UC CA-320 1cm                 | 44657    | 115.8  | 116.3 | 0.5     | 36.48    | 36.82    | 36.65    |          |

| Property | Hunter M | ine                                                                                  | Hole No. | 31     |        | Sheet N | 3        |          |          |  |
|----------|----------|--------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|--|
| Me       | terage   | Description                                                                          | Sample   |        |        |         | Assa     | у        |          |  |
| From     | To       |                                                                                      | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) |  |
|          |          | LC CA-450 sinuous near II to bed.                                                    |          |        |        |         |          |          |          |  |
| 116.12   | 116.3    | fragmental sub angular weak sericitic.                                               |          |        |        |         |          |          |          |  |
| 116.3    | 116.88   | chloritic fragmental tuff LC CA-550 veining.                                         | 44658    | 116.3  | 117.14 | 0.84    | 0.05     |          |          |  |
| 116.88   | 117.14   | buff felsic fragmental to brecciated in vfg ground mass, nil to very weak devel.     |          |        |        |         |          |          |          |  |
|          |          | bedding, scattered qtz 1-4mm CA-20o-30o x-cut bedding LC CA-50o.                     |          |        |        |         |          |          |          |  |
| 117.14   | 118.18   | chloritic to very weak sericitic altn, contorted bedding, scattered qtz 1-4mm        | 44659    | 117.14 | 118.18 | 1.04    | 0        |          |          |  |
|          |          | CA-20o-30o x-cut bedding LC CA-70o-75o.                                              |          |        |        |         |          |          |          |  |
| 118.18   | 119.56   | felsic dike aphanitic to fg, massive uniform, hard, silicious non magnetic,          | 44660    | 118.18 | 119.56 | 1.38    | 0.04     |          |          |  |
|          |          | non carbonated, chlorite + qtz ff, random orientation pale buff tan to pale          |          |        |        |         |          |          |          |  |
|          |          | brown, 118.18-118.41 brecciated grey silicia healed minor chlorite tuff              |          |        |        |         |          |          |          |  |
|          |          | inclusion, 118.41-118.83 massive chlorite + qtz ff, 118.83-119.06- 5cm               |          |        |        |         |          |          |          |  |
|          |          | ground + lost core at 119.94 chlorite massive 3cm and fragmental tuff,               |          |        |        |         |          |          |          |  |
|          |          | 119.06-119.56 felsic in weak to moderate folation of discont. chlorite II            |          |        |        |         |          |          |          |  |
|          |          | lineation CA-55o, UC irregular LC-70o displaced by q st CA-10o-15o sharp.            |          |        |        |         |          |          |          |  |
| 119.56   | 124.6    | aphanitic pale grey to pale brown, in well devel. of foliation CA-400-650 usually    | 44661    | 119.56 | 120.9  | 1.34    | 0.01     | 0.02     |          |  |
|          |          | chlorite, hard, non carbonated inclusions, non magnetic, non carbonated,             | 44662    | 120.9  | 122    | 1.1     | 0.02     |          |          |  |
|          | -        | massive uniform, random greyish white gtz ff in altn on contacts 119.56-             | 44663    | 122    | 123    | 1       | 0.01     |          |          |  |
|          |          | 120.82, med grey, random grey gtz ff + py CA-45o, 119.56-119.60 altn                 | 44664    | 123    | 124    | 1       | 0.05     |          |          |  |
|          |          | fragmental tuff, 119.60-120.82 med grey, scattered cg py, 120.38-120.47 altn         | 44665    | 124    | 124.6  | 0.6     | 0.02     |          |          |  |
|          |          | bleached brecciated chlorite gtz healed, 120.59 4mm blackish brown to dark           |          |        |        |         |          |          |          |  |
|          |          | brown vein 350 in buff inclusion, 120.82-120.90 altn bleached breccia to qtz         |          |        |        |         |          |          |          |  |
|          |          | st, 120.90-123.0 pale brown to buff tan + chlorite brecciation, scattered to         |          |        |        |         |          |          |          |  |
|          |          | trace py, rare qtz ff st, 123.0-124.60 light to medium grey+chlorite brecciation     |          |        |        |         |          |          |          |  |
|          |          | few qtz ff st in bleaching on contacts, 124.60 sharp contact CA-75o-80o              |          |        |        |         |          |          |          |  |
| 124.6    | 127.67   | mafic tuff fragmental tuff, 124.60-126.50 weak pervasive sericitic altn tuff,        | 44666    | 124.6  | 125.6  | 1       | 0.01     |          |          |  |
|          |          | locally deformed bedding in minor chlorite slips planes up to 126.0 CA-30o,          | 44667    | 125.6  | 126.51 | 0.91    | 0        |          |          |  |
|          |          | few fragments 125.30-125.42, 126.50 contact 5mm grey qtz st CA-700 x-cut             | 44668    | 126.51 | 127.05 | 0.54    | 0.1      |          |          |  |
|          |          | tuff but II to chlorite fragmental tuff, 126.50-127.06 chlorite altn fragmental tuff | 44669    | 127.05 | 127.67 | 0.62    | 1.17     | 0.9      | 1.035    |  |
|          |          | in qtz II to bedding 700 alternating light green + dark green, scattered py          |          |        |        |         |          |          |          |  |
|          |          | <0.5%, 127.06-127.13 greyish gtz zone in bleached buff inclusions contacts           |          | -      |        |         |          |          |          |  |
|          |          | CA90-70o straight, sharp, 127.13-127.67 aphanitic pale grey, medium grey             |          |        |        |         |          |          |          |  |
|          |          |                                                                                      |          |        |        |         |          |          |          |  |
| 124.6    | 127.67   | in vfg pyrite overall 1-2% locally 3-5%, LC CA-80o locally buff altn due to          |          |        |        |         |          |          |          |  |
|          |          | silicifiation.                                                                       |          |        |        |         |          |          |          |  |
| 127.67   | 128.98   | light to medium green, to buff patchy sericitic altn, fg tuff, random orientated     | 44670    | 127.67 | 128.98 | 1.31    | 0.54     |          |          |  |
|          |          | transclucent grevish gtz st and masses 127.67-128.78 vfg py 1-2% LC slips            |          |        |        |         |          |          |          |  |
|          |          | CA-60o.                                                                              |          |        |        |         |          |          |          |  |

| Property | Hunter M | line                                                                              | Hole No. | 31     |        | Sheet N | 4        | 1        | T        |          |
|----------|----------|-----------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Me       | terage   | Description                                                                       | Sample   | )      |        |         | Assa     | ·        |          |          |
| From     | То       |                                                                                   | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
| 128.98   | 132.09   | weakly altn sericitic and pervasive, fg tuff pale buff to light medium grey green | 44671    | 128.98 | 130    | 1.02    | 0.03     |          |          |          |
|          |          | occasional fragment, scattered vfg py usually II to bed 770 at 129.3 650          | 44672    | 130    | 131    | 1       | 0.01     |          |          |          |
|          |          | at 131.25, few scattered whitish to whitish pink qc st 2-3mm x-cut bedding        | 44673    | 131    | 132.09 | 1.09    | 0.01     |          |          |          |
|          |          | usually defined 40%, 60% II to near II to bedding, 130.11 1cm vuggy pick qc       |          |        |        |         |          |          |          |          |
|          |          | st CA-90o x-cut bed, 131.42-131.63 whitish qv to buff inclusions 65o II bed 75o   |          |        |        |         |          |          |          |          |
|          |          | x-cut bed scattered to trace pyrite vfg fg, locally 1-2%, 132.09 contact of qtz v |          |        |        |         |          |          |          |          |
|          |          | CA-60o x-cut bed.                                                                 |          |        |        |         |          |          |          | 1        |
| 132.09   | 132.66   | pale green to pale buff altn silicified qtz flood zone, scattered py fg white     | 44674    | 132.09 | 132.66 | 0.57    | 0.02     |          |          | <u> </u> |
|          |          | opague and translucent stringers II to bedding 70o, 40o and greyish black CA-     |          |        |        |         |          |          |          |          |
|          |          | 30o x-cut bed, overall 1-2% pyrite, 132.66 CA-72o.                                |          |        |        |         |          |          |          |          |
| 132.66   | 133.72   | patchy sericitic altn, tuff few greyish qtz st CA-30o x-cut bed, buff at light    | 44675    | 132.66 | 133.72 | 1.06    | 0.02     |          |          |          |
|          |          | green trace sulphides 133.72 sharp contact 90o.                                   |          |        |        |         |          |          |          |          |
| 133.72   | 134.62   | chloritia white grey qtz aphanitic ash to tuff, void of fragments, possible       | 44676    | 133.72 | 134.62 | 0.9     | 0.03     |          |          |          |
|          |          | chloritia argillite? Scattered fg to cg pyrite 1-2% sharp contact 134.62 CA-75o.  |          |        |        |         |          |          |          |          |
| 134.62   | 137.62   | weak pervasive sericitic altn, thin to 1-2mm laminated tuff, pale to medium       | 44677    | 134.62 | 136.12 | 1.5     | 0.01     |          |          |          |
|          |          | grey, pale green, well level bedding CA-135-750, 135.9 CA-700, few scattered      | 44678    | 136.12 | 137.62 | 1.5     | 0.01     |          |          |          |
|          |          | greyish qtz st 5mm II to bedding and pyrite, 135.08-135.27 qtz flooded, 136.24    |          |        |        |         |          |          |          |          |
|          |          | 136.34 white opague to pale buff altn inclusion CA-55o x-cut bedding, 136.52-     |          |        |        |         |          |          |          |          |
|          |          | 137.03 2-5mm irregular sil. qtz grey stringer near II to CA 1-2% locally vfg      |          |        |        |         |          |          |          |          |
|          |          | py in tuff, 137.62 contact in 3mm black baked contact CA-70-75o.                  |          |        |        |         |          |          |          |          |
| 137.62   | 138.25   | felsic dike massive, uniform, level, siliceous, as above aphanitic light to pale  | 44679    | 137.62 | 138.25 | 0.63    | 0.08     | 0.09     |          |          |
|          |          | greenish to pale brownish grey with greyish kinkle qtz st and straight grey       |          |        |        |         |          |          |          |          |
|          |          | gtz in white brecciated gtz in middle 7mm CA-50o, 138.25 sharp CA-55o.            |          |        |        |         |          |          |          |          |
| 138.25   | 140.67   | mafic tuff, fg grey to pale greenish grey laminated tuff to pale grey siliceous   | 44680    | 138.25 | 139.45 | 1.2     | 0.01     |          |          |          |
|          |          | bands, locally contorted bedding, sections qtz flooding, hard to very hard,       | 44681    | 139.45 | 140.67 | 1.22    | 0        |          |          |          |
|          |          | scattered fg py <0.5%, 140.67 contact to qtz vein CA-500 irregular.               |          |        |        |         |          |          |          |          |
| 140.67   | 140.78   | qv white opague in chlorite tuff inclusion, 140.78 CA irregular 70-750 nil        | 44682    | 140.67 | 141.45 | 0.78    | 0.15     | 0.14     |          |          |
|          |          | sulphides.                                                                        |          |        |        |         |          |          |          |          |
| 140.78   | 142.06   | felsic dike, as above, light grey, qtz flooded, sections aphanitic in no visible  | 44683    | 141.45 | 142.06 | 0.61    | 0.11     |          |          |          |
|          |          | foliations at bedding, sections in blach brown ff kinkle stringers, 140.78-       |          |        |        |         |          |          |          |          |
|          |          | 141.45 scattered vfg fg 1-3% pyrite, 141.45-141.95 aphanitic, greyish,            |          |        |        |         |          |          |          |          |
|          |          | silicified + siliceous irregular white opague random orientated qtz veinlets      |          |        |        |         |          |          |          |          |
|          |          | 2-3cm each, contact sharp 650+600, 141.95-142.06 similar to 140.78-141.45         |          |        |        |         |          |          |          |          |
|          |          | foliated pale chlorite and greyish brown ff, 142.06 sharp CA-50o.                 |          |        |        |         |          |          |          |          |
| 142.06   | 142.62   | qtz flood tuff, 142.13-142.35 white opague qv + pale buff inclusion and           | 44684    | 142.06 | 142.62 | 0.56    | 0.17     |          |          |          |
|          |          | chlorite CA-20o, trace sulphide to <0.5%, contorted bedding in white opal qtz     |          |        |        |         |          |          |          |          |
|          |          | stringers with 0.5 to 1mm chocolate brown bands possibly tourmaline or            |          |        |        |         |          |          |          |          |

| Property | Hunter M | ine                                                                               | Hole No: | 31     |        | Sheet N | 5        |          |          |          |
|----------|----------|-----------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Met      | erage    | Description                                                                       | Sample   | )      |        |         | Assay    |          |          |          |
| From     | To       |                                                                                   | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | spherulite, 142.62 contact CA -750.                                               |          |        |        |         |          |          |          |          |
| 142.62   | 143.51   | tuff patch sericitic tuff, crenulations + kinkle folding to 142.70, 1-2mm         | 44685    | 142.62 | 143.51 | 0.89    | 0.01     |          |          |          |
|          |          | greyish siliceous bands, scattered pyrite, broken contact                         |          |        |        |         | _        |          |          |          |
| 143.51   | 147.1    | tuff pervasive moderate sericitic altn, scattered pyrite 1-2% vfg fg in 1mm       | 44686    | 143.51 | 144.57 | 1.06    | 0.06     |          |          |          |
|          |          | patches in grey siliceous bands or stringers, white opague, 144.43 1.5-2.0 qv     | 44687    | 144.57 | 145.54 | 0.97    | 0.02     |          |          |          |
|          |          | CA 25-300 sinuous s-cut bed 600, 144.63-144.76 discont. q st greyish,             | 44688    | 145.54 | 146.45 | 0.91    | 0.02     |          |          |          |
|          |          | 144.87 4cm qv CA-650 white opague, 145.54-145.61 qv CA-350 white opague           | 44689    | 146.45 | 147.1  | 0.65    | 0.04     |          |          |          |
|          |          | 145.65-145.90 gush grey qtz +py x-cut bed random, 145.90-146.45 cg py             |          |        |        |         |          |          |          |          |
|          |          | large blobs 3-4mm in grey silicic buds or cotorted stringers, 146.45-147.10       |          |        |        |         |          |          |          |          |
|          |          | chocolate brown kinkle ff st vfg to fg py 1%, 147.10 contact sinuous CA 450       |          |        |        |         |          |          |          |          |
| 147.1    | 149.13   | moderate strong pervasive sericitic altn qtz flooded greyish, few milky white     | 44690    | 147.1  | 148.24 | 1.14    | 0.06     |          |          |          |
|          |          | opague 148.05-148.16, 148.24-148.68 crenulated tuff LC CA-470 bed, 147.10         | 44691    | 148.24 | 149.13 | 0.89    | 0.01     |          |          |          |
|          |          | 148.05 patch blobs ossociated in tuff not qtz, 148.76-149.09 grey st 2mm II       |          |        |        |         |          |          |          |          |
|          |          | to CA, changing to white, 149.13 crenulated altn contact CA-370.                  |          |        |        |         |          |          | -        |          |
| 149.13   | 150.89   | patchy sericitic, locally crenulation tuff scattered <1% py, 149.63 3mm q st      | 44692    | 149.13 | 149.88 | 0.75    | 0.01     |          |          |          |
|          |          | x-cut bed qv CA-20-250 whitish grey, 149.80 3mm q st x-cut bed qv CA-250          | 44693    | 149.88 | 150.39 | 0.51    | 0.01     |          |          |          |
|          |          | whitish grey, 149.92-150.09 massive extremely sericitic band in py, 150.09-       |          |        |        |         |          |          |          |          |
|          |          | 150.89 1cm white + translucent grey qv CA at cotact 60o.                          |          |        |        |         |          |          |          |          |
| 150.89   | 151      | pervasive string sericitic contact sharp CA-350.                                  | 44694    | 150.39 | 151    | 0.61    | 0        |          |          |          |
| 151      | 151.68   | qtz flooded locally stringer sencitic altn patchy in sloted tuff, grey siliceous  | 44695    | 151    | 151.68 | 0.68    | 0        |          |          |          |
|          |          | bands 1mm py layers non bottom contact.                                           |          |        |        |         |          |          |          |          |
| 151.68   | 153.73   | moderate strong pervasive sencitic altn tuff in alternating sericitic band + grey | 44696    | 151.68 | 152.47 | 0.79    | 0.01     |          |          |          |
|          |          | siliceous, scattered <0.5% pyrite locally 1%, 151.68-152.24 low angular q st      | 44697    | 152.47 | 153.73 | 1.26    | 0.01     |          |          |          |
|          |          | 1/2 cm folded x-cut bed, 152.41-152.47 grey q st CA-550, 152.97-153.68 low        |          |        |        |         |          |          |          |          |
| 151.68   | 153.73   | angle 1/2-1.0cm qtz x-cut bed.                                                    | 44698    | 153.73 | 154.24 | 0.51    | 0.01     |          |          |          |
| 153.73   | 154.24   | patchy sericitic altn, 12cm upper + 10cm lower 2-3% vfg fg py, overall 1-2%       |          |        |        |         |          |          |          |          |
|          |          | crenulation at 153.90, lower 10cm in grey qtz band at discont. q st, 154.24       |          |        |        | -       |          |          |          |          |
|          |          | contact 70o-73o x-cut bedding.                                                    |          |        |        |         |          |          |          |          |
| 154.24   | 159.6    | nil to weak + patchy sericitic altn, <10%, buff, dark grey, pale greenish grey    | 44699    | 154.24 | 155.75 | 1.51    | 0.01     |          |          |          |
|          |          | and greyish to whitish qtz banding, 156.80-157 moderate pale yellow buff altn     | 44700    | 155.75 | 157.3  | 1.55    | 0        |          |          |          |
|          |          | due to qtz veining II to bed, 156.24 bed CA-65 contact, 157.28-157.53 lapilli     | 44701    | 157.3  | 158.8  | 1.5     | 0        |          |          |          |
|          |          | tuff massive unit sharp 53-62o, 157.53-157.94 tuff laminated with stetched        | 44702    | 158.8  | 159.6  | 0.8     | 0.02     |          |          |          |
|          |          | fragmental siliceous, 157.94 1/2-1cm greyish white opague q st CA-700             |          |        |        |         |          |          |          |          |
|          |          | boudinage, 158 bed CA 68o, 158.45-158.65 folded 1/2cm qtz st II to CA.            |          |        |        |         |          |          |          |          |
| 159.6    | 160.03   | patchy moderate sericitic.                                                        | 44703    | 159.6  | 160.83 | 1.23    | 0.02     |          |          |          |
| 160.03   | 160.83   | nil to weak patch sericitic.                                                      |          |        |        |         |          |          |          |          |
|          |          |                                                                                   |          |        |        |         |          |          |          |          |

| Property | Hunter M | ine                                                                               | Hole No. | 31     |        | Sheet N | 6        |          |          |          |
|----------|----------|-----------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Mete     | rage     | Description                                                                       |          | Sa     | mple   |         | Assay    | /        |          |          |
| From     | То       |                                                                                   | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
| 160.83   | 161.58   | patchy moderate sericitic to locally 161.17-161.58 string pervasive sericitic.    | 44704    | 160.83 | 161.8  | 0.97    | 0.02     |          |          |          |
| 161.58   | 161.8    | nil to very weak patch sericitic.                                                 |          |        |        |         |          |          |          |          |
| 161.8    | 163.35   | qtz flooded, pale greyish buff to weakly pale green buff, 162.10 bed CA-40o,      | 44705    | 161.8  | 162.56 | 0.76    | 0.01     |          |          |          |
|          |          | 162.15-162.54 white opague + translucent qv CA-15o x-cut bed at same              | 44706    | 162.56 | 163.35 | 0.79    | 0.03     |          |          |          |
|          |          | strike, true thickness 5cm, 162.25-163.30 black spot, porphyritic with weak       |          |        |        |         |          |          |          |          |
|          |          | level of bedding possible foliated felsic 163.30 sharp in qv CA-60o, 163.30-      |          |        |        |         |          |          |          |          |
|          |          | 163.35 greyish qtz zone.                                                          |          |        |        |         |          |          |          |          |
| 163.35   | 165.37   | fragmental tuff grading to tuff patchy pervasive sericitic altn, 164.40-164.48    | 44707    | 163.35 | 164.4  | 1.05    | 0.01     |          |          |          |
|          |          | white pale grey translucent qv 60 II to bed, 165.31-165.37 u-shaped qv mass       | 44708    | 164.4  | 165.37 | 0.97    | Ő        |          |          |          |
|          |          | 165.37 contact altn CA-60o.                                                       |          |        |        |         |          |          |          |          |
| 165.37   | 166.38   | moderate pervasive sericitic tuff scattered <0.5% vfg py.                         | 44709    | 165.37 | 166.38 | 1.01    | 0        |          |          |          |
| 166.38   | 170.36   | patchy sericitic altn tuff, 166.63-166.71 qv in inclusive white pale green        | 44710    | 166.38 | 167.6  | 1.22    | 0        |          |          |          |
|          |          | opague 70-75o, 167.03-167.28 3 1-2cm q st white II to bed, 168.46-168.85          | 44711    | 167.6  | 168.46 | 0.86    | 0        |          |          |          |
|          |          | qtz string masses II to bed, 167.60-167.70 qv white pale green + fuchsite CA      | 44712    | 168.46 | 169.26 | 0.8     | 0.05     |          |          |          |
|          |          | 80+600 irregular, 169.26-169.49 pale greenish white q stringers in chocolate      | 44713    | 169.26 | 169.49 | 0.23    | 0        |          |          |          |
|          |          | brown siliceous (torumaline) ff + healing of breccia fragmental tuff, 169.49-     | 44714    | 169.49 | 170.36 | 0.87    | 0        | 0.02     |          |          |
|          |          | 170.36 fragmental tuff, uc 45o x-cut bed 65o+35o LC                               |          |        |        |         |          |          |          |          |
| 170.36   | 171.32   | qtz flood in white opague qtz scattered pyrite inclusions of tuff + fragment tuff | 44715    | 170.36 | 171.65 | 1.29    | 0        |          |          |          |
|          |          | 60o uc bed 70-75o at 170.30 LC 80o.                                               |          |        | -      |         |          |          | -        |          |
| 171.32   | 171.65   | greyish tuff in buff fragments bed CA 80o LC-80o.                                 |          |        |        |         |          |          |          |          |
| 171.65   | 173.03   | qtz flood in white opague qtz scattered fg py in tuff + veining locally 2-3% mg   | 44716    | 171.65 | 172.54 | 0.89    | 0.07     |          |          |          |
| 171.65   | 173.03   | 172.51-172.54 white qv opague CA-60o x-cut bed 80-85o, 172.54-172.74 qv           | 44717    | 172.54 | 173.03 | 0.49    | 0.07     |          |          |          |
|          |          | brecciated tuff fragmental, grey qtz in brownish tint, + inclusions LC 600        |          |        |        |         |          |          |          |          |
|          |          | 173.03 contact CA-750.                                                            |          |        |        |         |          |          |          |          |
| 173.03   | 173.65   | string pervasive sericitic altn in occasion grey white veining gtz st in fragment | 44718    | 173.03 | 173.65 | 0.62    | 0.06     |          |          |          |
|          |          | tuff, grade LC, scattered py.                                                     | 44719    | 173.65 | 174.63 | 0.98    | 0.02     |          |          |          |
| 173.65   | 181.04   | weak patchy sericitic altn, 173.65-175.88 crenulated tuff in ivory qtz string     | 44720    | 174.63 | 175.88 | 1.25    | 0.01     |          |          |          |
|          |          | greyish, 175.88-176.18 fragmental tuff LC-750, 176.18-180.60 tuff in locally      | 44721    | 175.88 | 177.4  | 1.52    | 0        |          |          |          |
|          |          | crenulations in scattered 3-10 greyish 2-4mm gtz usually II to bed 720-750 in     | 44722    | 177.4  | 178.5  | 1.1     | 0.02     |          |          |          |
|          |          | occassional x-cut bed 10o+60o, few white qv opague from II to bed to x-cut at     | 44723    | 178.5  | 179.6  | 1.1     | 0        |          |          |          |
|          |          | 80o-85o, scattered vfg fg py py 0.5-1%, locally in bands from 180.60-181.04.      | 44724    | 179.6  | 180.6  | 1       | 0.03     | 0.04     |          |          |
| 181.04   | 182.92   | moderate sericitic altn tuff, 181.04-181.50 qtz flooding scattered py fg vfg.     | 44725    | 180.6  | 181.04 | 0.44    | 0.02     |          |          |          |
|          |          | 181.50-181.83 crenulated tuff nil to trace py, 181.83-182.92 qtz flooded, few     | 44726    | 181.04 | 181.83 | 0.79    | 0        |          |          |          |
|          |          | fuchsite scattered py fg vfg. 182.92 to contact CA-750 II to bed.                 | 44727    | 181.83 | 182.92 | 1.09    | 0.02     |          |          |          |
| 182.92   | 184.28   | nil to very weak patch sericitic tuff crenulated to 183.53, pale buff to pale     | 44728    | 182.92 | 184.28 | 1.36    | 0.01     |          |          |          |
|          |          | greenish buff, few buff fragments, scattered sections of <0.5% vfg fg pv          |          |        |        |         |          |          |          |          |
|          |          | 184.28 contact CA- 75 II to bed.                                                  |          |        |        |         |          |          |          |          |

| Property: |        |                                                                                    | Hole No. |               |        | Sheet N | 0.       |          |          |          |
|-----------|--------|------------------------------------------------------------------------------------|----------|---------------|--------|---------|----------|----------|----------|----------|
| Met       | erage  | Description                                                                        |          | Samp          | e      |         | Assay    |          |          |          |
| From      | To     |                                                                                    | No.      | From          | To     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
| 184.28    | 185.85 | patchy sericitic altn tuff, 184.75-184.80 grey white to grain tint qv opague CA    | 44729    | 184.28        | 185.85 | 1.57    | 0.02     |          |          |          |
|           |        | II to bed 750, 185.17-185.20 grey white qv opague CA-65-650, 185.44-185.85         | 44730    | 185.85        | 186.33 | 0.48    | 0        |          |          |          |
|           |        | nil to weak patchy crenulated tuff, medium grey to dark grey, laminated CA-        |          |               |        |         |          |          |          |          |
|           |        | 650, 185.85 altn contact II to bed 650.                                            |          |               |        |         |          |          |          |          |
| 186.33    | 187.33 | felsic dike, aphanitic, pale buff to light tan, very hard, siliceous nil to very   | 44731    | 186.33        | 187.33 | 1       | 0.03     | 0.03     | _        |          |
|           |        | weak level foliated, scattered dissermated vfg to fg pyrite 1-2% up to 3%          |          |               |        |         |          |          |          |          |
|           |        | locally, 1-2mm grey discont. qtz stringers random, very weak carbonated,           |          |               |        |         |          |          |          |          |
|           |        | 186.62-186.77 grey qv opague CA-75+70o, 187.33 LC CA-65o.                          |          |               |        |         |          |          |          |          |
| 187.33    | 188.47 | fragmental tuff felsic, aphanitic pale buff to light tan fragments elongated in    | 44732    | 187.33        | 188.47 | 1.14    | 0.02     |          | -        |          |
|           |        | aphanitic, med grey matrix of tuff + greyish white siliceous bands, scattered      |          |               |        |         |          |          |          |          |
|           |        | pyrite 0.5-1%, well develop bed, 187.5 CA-55o+70o, 188.0 CA-38, 188.2 CA-          |          |               |        |         |          |          |          |          |
|           |        | 60o, 188.47 CA-60o.                                                                |          |               |        |         |          |          |          |          |
| 188.47    | 189.96 | weak moderate sericitic tuff, same as above, locally crenulated, scattered py,     | 44733    | 188.47        | 189.96 | 1.49    | 0        |          |          |          |
|           |        | weak moderate pervasive sericitic altn.                                            |          |               |        |         |          |          |          |          |
| 189.96    | 195.94 | fragmental tuff, nil to weak patchy sericitic altn <10-20% local crenulation,      | 44734    | 189.96        | 191.46 | 1.5     | 0.01     |          |          |          |
|           |        | blackish tuff bands, buff to light tan to light brown, scattered fragments,        | 44735    | 191.46        | 193    | 1.54    | 0        |          |          |          |
|           |        | scattered 0.5-1% vfg fg py, 2 qtz stringer 2-3 mm at 19.26+194.43 ivory 20+        | 44736    | 193           | 194.5  | 1.5     | 0.04     | 0.06     |          |          |
| 189.96    | 195.94 | 400 x-cut bed, 189.96-191.95 crenulated tuff 193.25 small fragments, 193.34        | 44737    | 194.5         | 195.94 | 1.44    | 0.13     | 0.1      |          |          |
| ·         |        | 195.69 qtz flood tuff to fragmental tuff, 195.69-195.94 fragmental tuff + up to    |          |               |        |         |          |          |          |          |
|           |        | 3-5% fg py, 195.94 contact sharp CA-75.                                            |          |               |        |         |          |          |          |          |
| 195.94    | 196.12 | grey felsic dike, aphanitic, light grey, massive, uniform, hard to very hard,      | 44738    | 195.94        | 196.72 | 0.78    | 0.09     |          |          |          |
|           |        | dike, II to bedding contacts 75o+60o, nil sulphides to trace.                      |          |               |        |         |          |          |          |          |
| 196.12    | 202.67 | fragmental tuff to tuffaceous fragmental, fg, light to medium grey, silicified, to | 44739    | 196.72        | 196.87 | 0.15    | 0        |          |          |          |
|           |        | siliceous fragments tuff, moderate level of bedding CA-50-650, hard, non           | 44740    | 196.87        | 197.48 | 0.61    | 0        |          |          |          |
|           |        | carbonate, non magnetic, 196.72-196.87 grey opague qv CA-82+55o 1-2%               | 44741    | <u>197.48</u> | 198.23 | 0.75    | 0        |          |          |          |
|           |        | 2mm patches of fg pyrite, 197.17-197.21 v-shaped brownish pink felsic dike         | 44742    | 198.23        | 199.5  | 1.27    | 0        |          |          |          |
|           |        | 197.34-197.48 v-shape brownish pink felsic CA-400 irregular in opposite            | 44743    | 199.5         | 201    | 1.5     | 0        |          |          |          |
|           |        | directions, 198.23 CA-60o, 198.23-202.67 fragmental tuff + qtz flood, kinkle       | 44744    | 201           | 202.5  | 1.5     | 0.01     |          |          |          |
|           |        | green, siliceous, irregular qtz st, non carbonate, 202.67 contact 58o.             |          |               |        |         |          |          |          |          |
| 202.67    | 202.98 | porphyritic in black x-cut, weak level of foliation, LC in irregular 1cm qst x-cut | 44745    | 202.5         | 203.1  | 0.6     | 0        |          |          |          |
|           |        | foliation CA 60 and next unit.                                                     |          |               |        |         |          |          |          |          |
| 202.98    | 205.6  | qtz flooded fragmental tuff, grey green, bedding near II to CA up to 204.63,       | 44746    | 203.1         | 203.48 | 0.38    | 0        |          |          |          |
|           |        | 204.63-205.25 CA-30o-50o local hole, + 1% py 205.25-205.60 near II to CA           | 44747    | 203.48        | 204.63 | 1.15    | 0        |          |          |          |
|           |        | 203.10-203.42 qv greyish pink white 30o at uc 1.5cm contacts LC 55o-65o            | 44748    | 204.63        | 205.6  | 0.97    | 0        |          |          |          |
|           |        | grey breccia qv to 203.48.                                                         |          |               |        |         |          |          |          |          |
| 205.6     | 206.46 | minor qtz flooded, tuff in crenulations.                                           | 44749    | 205.6         | 206.46 | 0.86    | 0        |          |          |          |
| 206.46    | 207    | fragmental tuff in minor qtz flooding 680.                                         | 44750    | 206.46        | 207.5  | 1.04    | 0        |          |          |          |

| Property | Hunter M | ine                                                                               | Hole No. | 31            |        | Sheet N | 8        | · · · · · · · · · · · · · · · · · · · |          |          |
|----------|----------|-----------------------------------------------------------------------------------|----------|---------------|--------|---------|----------|---------------------------------------|----------|----------|
| Me       | eterage  | Description                                                                       |          | Sample        |        |         |          | Assay                                 |          |          |
| From     | То       |                                                                                   | No.      | From          | То     | Width   | Au (g/t) | Au check                              | Au (2nd) | Au check |
| 207      | 209.57   | intensely qtz flooded 5 distant qv 50o-65o.                                       | 44751    | 207.5         | 208.5  | 1       | C        | 1                                     |          |          |
| 209.57   | 209.75   | laminated tuff LC 60o feld light grey green.                                      | 44752    | 208.5         | 209.57 | 1.07    | 0.02     | :                                     |          |          |
| 209.75   | 219      | silicified fragmental tuff talcose um, fg, black green, talcose moderately soft   | 44753    | 209.57        | 211    | 1.43    | C        | 1                                     |          |          |
|          |          | to moderate hard, non carbonate, siliceous to silicified, well band talcose tuff  | 44754    | 211           | 212.5  | 1.5     | 0        | i l                                   |          |          |
|          |          | sections CA-80o and contorted near II to CA bedding, scattered sections of        | 44755    | 212.5         | 214    | 1.5     | C        | 1                                     |          |          |
|          |          | fragmental tuff, locally tight folds, kinkle folding s + 2 types, qts flooded     | 44756    | 214           | 215.5  | 1.5     | C        |                                       |          |          |
|          |          | few distinct younger qtz veinlets, 213.43 1 1/2cm 550 white, 214.14 2cm           | 44757    | 215.5         | 217    | 1.5     | C        | j                                     |          |          |
|          |          | white CA-80o, 215.94 grey white 83o, 209.75-217.54 tuff fragmental qtz flood      | 44758    | 217           | 218.18 | 1.18    | 0.01     | 0.01                                  |          |          |
|          |          | 217.54-218.18 laminated qtz tuff CA 65o-72 bed well level, 218.18 contact         | 44759    | 218.18        | 219    | 0.82    | C        | 1                                     |          |          |
|          |          | sharp 60o, 218.18-219 qtz flooded with brecciated + inclusions of laminated       |          |               |        |         |          |                                       |          |          |
|          |          | tuff 218.48-218.65 with green fuchsite band 2mm + 3-5% pyrite overall <1%         |          |               |        |         |          |                                       |          |          |
|          |          | 219 LC 15o-20o, 218.65-219 scattered 3-4mm pyrite blobs 1%.                       | 44760    | 219           | 220.5  | 1.5     | 0        | 1                                     |          |          |
| 219      | 221.7    | siliceous mafic tuff.                                                             | 44761    | 220.5         | 221.7  | 1.2     | 0.01     |                                       |          |          |
| 221.7    | 222.54   | fg, light grey ,medium grey, light greenish grey well develop bedding CA-67 to    | 44762    | 221.7         | 222.54 | 0.84    | 0        | 1                                     |          |          |
|          |          | locally kinkle folding and crenulations 40o axis, siliceous 2-4mm bands,          |          |               |        |         |          |                                       |          |          |
|          |          | scattered slips planes CA 40o, scattered fg py, 220.88 white 3mm q st CA-         |          |               |        |         |          |                                       |          |          |
|          |          | 25o x-cut bed, 221,17 grey white 1-2cm q st CA-60o II to bed, 221.70              |          |               |        |         |          |                                       |          |          |
|          |          | irregular sinuous CA-50o-70o, 221.70-222.54 same as above, moderately             |          |               |        |         |          |                                       |          |          |
|          |          | carbonated HCL sections, 222.54 contact CA-600.                                   |          |               |        |         |          |                                       |          |          |
| 222.54   | 229.52   | argillite carbonate, fg, pale brown to tan grading to pale greyish tan, siliceous | 44763    | 222.54        | 223.34 | 0.8     | 0        |                                       |          |          |
|          |          | moderately hard to hard, moderately carbonated, 222.54-232.50, weakly             | 44764    | 223.34        | 223.32 | 0.98    | 0        |                                       |          |          |
|          |          | carbonated, 232.50-233.26, 222.54-225.90 brown tan LC 50o, qtz stringers          | 44765    | 224.32        | 224.89 | 0.57    | 0        | (                                     |          |          |
|          |          | 5-7mm scattered pyrite II to bed, 225.90-226.44 dark to medium brown,             | 44766    | 224.89        | 225.9  | 1.01    | 0.08     | 0.1                                   |          |          |
|          |          | 228.60-229.52 very small crenulations 7-10 st II CA usually white grey            | 44767    | 225.9         | 227.5  | 1.6     | 0        |                                       |          |          |
|          |          | occasional.                                                                       | 44768    | 227.5         | 229    | 1.5     | 0.01     |                                       |          |          |
| 229.52   | 232.5    | few veining section, massive argillite qtz veining stringers, 230.12-230.28,      | 44769    | 229           | 230.5  | 1.5     | 0        |                                       |          |          |
|          |          | 230.46 2cm, 230.65-230.84, 232-232.05.                                            | 44770    | 230.5         | 231.5  | 1       | 0        |                                       |          |          |
| 232.5    | 233.26   | weakly carbonated minor siliceous, 232.71-233.29 weak carbonate, scattered        | 44771    | 2 <u>31.5</u> | 232.5  | 1       | 0        |                                       |          |          |
|          |          | 2-3% vfg pyrite massive nil bedding,232.89-232.97 irregular qv + 7-10% pyrite     | 44772    | 232.5         | 233.26 | 0.76    | 0        |                                       |          |          |
|          |          | 233.19-233.26 massive pyrite 70o+72o.                                             |          |               |        |         |          |                                       |          |          |
| 233.26   | 234.94   | siliceous to silicified rare stringers, 233.96-234.02 weakly level sericitic pale | 44773    | 233.26        | 234    | 0.74    | 0        |                                       |          |          |
|          |          | green II to bedding, 233.26-233.33 chart band, 70o LC sharp, fg and medium        |          |               |        |         |          |                                       |          |          |
|          |          | grained argillite to small white grains, occasional chert band 2-5mm well level   |          |               |        |         |          |                                       |          |          |
| 234.94   | 242.15   | carbonated dark grey fg argillite to medium grained 1mm to 0.5mm white            |          |               |        |         |          |                                       |          |          |
|          |          | grains, few scattered blackish bands, good level bedding CA-58o-60o, 240.50       |          |               |        |         |          |                                       |          |          |
|          |          | excellent graded bedding fining chocolate tops brown hole, local patchy py        |          |               |        |         |          |                                       |          |          |
|          |          |                                                                                   |          |               |        |         |          |                                       |          |          |

| Property | Hunter M | ine                                                                         | Hole No | 31     |    | Sheet N | 9        |          |          |          |
|----------|----------|-----------------------------------------------------------------------------|---------|--------|----|---------|----------|----------|----------|----------|
| Met      | erage    | Description                                                                 |         | Sample |    |         |          | Assay    |          |          |
| From     | To       |                                                                             | No.     | From   | То | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | on some functions, scattered 1-3mm qtz st usually grey white to white II to |         |        |    |         |          |          |          |          |
|          |          | bedding 1-5 per section.                                                    |         |        |    |         |          |          |          |          |
|          | 242.15   | END OF HOLE                                                                 |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          | _        |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |
|          |          |                                                                             |         |        |    |         |          |          |          |          |

÷,

|           |        | Hunter Mine - Dia                                                                      | mond Drill Log |        |             |       |             |          |           |          |
|-----------|--------|----------------------------------------------------------------------------------------|----------------|--------|-------------|-------|-------------|----------|-----------|----------|
| Property: |        | Hunter Mine                                                                            | Hole Dip:      | -80    | Page No.    | :     | 1 of _7     |          | HM-04-32E |          |
| Location: |        |                                                                                        | Hole Azimuth:  | 1050   | Date Sta    | rted: | July 2,2004 |          |           |          |
| Claim No  | ):     | HR 1009                                                                                | Hole Length:   | 255m   | Date Fini   | shed: | July 6/04   |          |           |          |
| Elevation | 1:     | Porcupine Lake                                                                         | Purpose:       |        | Drill Co .: |       | Benoit      |          |           |          |
| UTM Coo   | ords.: | 5370891.3N, 487116.9E                                                                  |                |        | Logged b    | y:    | K Jensen    |          |           |          |
| Mete      | erage  | Description                                                                            |                | S      | ample       |       |             | Assays   |           |          |
| From      | То     |                                                                                        | No.            | From   | To          | Width | Au (g/t)    | Au check | Au (2nd)  | Au check |
| 0.0       | 58.4   | Casing                                                                                 |                |        |             |       |             |          |           |          |
| 58.4      | 93.6   | Ultramafic Rocks                                                                       |                |        |             |       |             |          |           |          |
| 58.4      | 93.6   | fg, black to silvery (extremely talcose), talcose locally extremely, very soft to soft |                |        |             |       |             |          |           |          |
|           |        | non magnetic, carbonated form very weakly to moderately, locally well devel. bed       |                |        |             |       |             |          |           |          |
|           |        | in fragmental to nil in massive, no distinct q or qc stringers or veins, but locally   |                |        |             |       |             |          |           |          |
|           |        | qc healing in breccia, nil to 10% pyrite fg, mg locally cg up to 1/2cm blobs and       |                |        |             |       |             |          |           |          |
|           |        | well developed cubes, 58.35-60.12 fragmental tuff, 60.12-63.0 massive, porphyritic     |                |        |             |       |             |          |           |          |
|           |        | salt and pepper portion, 63-64.32 brecciated qc healed intensely, 64.32-64.79          |                |        |             |       |             |          |           |          |
|           |        | mud seam possible fault, 64.79-66.32 fragmental to brecciated LC sharp 15o,            |                |        |             |       |             |          |           |          |
|           |        | 66.32-66.81 broken core massive, 66.81-75.1 brecciated to fragmental qtz healed        |                |        |             |       |             |          |           |          |
|           |        | scattered 1-2% pyrite locally disseminated, locally up to 10%, 75.1-78. Massive,       |                |        |             |       |             |          |           |          |
|           |        | 78-79.79 brecciated, intensely q st II healing with 1-2% py ng, 79.79-80.11            |                |        |             |       |             |          |           |          |
|           |        | crushed fragments, shear zone not healed, 80.11-87.44 fragmental to brecciated         |                |        |             |       |             |          |           |          |
|           |        | qtz healed nil to <0.5% pyrite, 87.44-87.54 crushed zone as above, 87.54-93.60         |                |        |             |       |             |          |           |          |
|           |        | brecciated                                                                             |                |        |             |       |             |          |           |          |
| 93.6      | 115.2  | Laminated Ultramafic Tuffs                                                             |                |        |             |       |             |          |           |          |
|           |        | 93.60-115.20 tuffaceous, soft to locally moderate soft, dark grey to                   |                |        |             |       |             |          |           |          |
|           |        | medium grey, less carbonated to weakly carbonated, moderate to weak devel. of          |                |        |             |       |             |          |           |          |
|           |        | bedding, kinkle folding, bed CA-70o to II to CA, scattered qtz st, 2mm-1.5cm           |                |        |             |       |             |          |           |          |
|           |        | usually CA-750, 100, 450 and discont. fragments, veining 93.60-101.94, 101.94          |                |        |             |       |             |          |           |          |
|           |        | rare stringers.                                                                        |                |        |             |       |             |          |           |          |
| 101.94    | 115.2  | contorted bedding, minor sinuous kinkle folding of stringers + straight 3-4mm qtz      |                |        |             |       |             |          |           |          |
|           |        | st + pyrite bedding 55o to II to CA from 105.05-108.35, 108,35-109.80 contorted        |                |        |             |       |             |          |           |          |
|           |        | folded bedding + qtz stringer, 115.20 CA-27o.                                          | 44774          | 118.15 | 119.5       | 1.35  | 0           |          |           |          |
| 115.2     | 227.98 | Exhalitic Tuffs and Sedimentary Rocks                                                  |                |        |             |       |             |          |           |          |
| 115.2     | 124    | light grey to medium grey, fragmental tuff to locally tuffaceous fragmental,           | 44775          | 119.5  | 121         | 1.5   | 0           |          |           |          |
|           |        | moderate soft to moderate hard, scattered to trace pyrite, qtz flooded.                | 44776          | 121    | 122.5       | 1.5   | 0           |          |           |          |
| 124       | 124.24 | dark brown felsic dike in 1mm white x-cut, no foliation, massive uniform, void of      | 44777          | 122.5  | 124         | 1.5   | 0.01        |          |           |          |
|           |        | stringers + pyrite broken contacts.                                                    |                |        |             |       |             |          |           |          |
| 124.24    | 125.58 | laminated tuff, several folds.                                                         |                |        |             |       |             |          |           |          |
| 125.58    | 125.58 | crushed shear zone CA-300                                                              |                |        |             |       |             |          |           |          |

| Property | Hunter N | line                                                                                    | Hole No. | 32     |        | Sheet No. | 2        |          |          |          |
|----------|----------|-----------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete     | erage    | Description                                                                             |          | Sample |        |           | Assay    | /s       |          |          |
| From     | To       |                                                                                         | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 125.59   | 127.22   | crenulated tuff very siliceous fragmental to chlorite II axis of crenulations, blackish |          |        |        |           |          |          |          |          |
|          |          | to medium grey to dark grey, qtz stringer II to bedding.                                | 44778    | 129.0  | 130.5  | 1.5       | 0.05     |          |          |          |
| 127.22   | 133.6    | fragmental tuff, scattered <0.5% fg pyrite locally cg cubes, moderately soft to         | 44779    | 130.5  | 132.0  | 1.5       | 0        |          |          |          |
|          |          | moderately hard, blackish fg, gradational contact.                                      | 44780    | 132.0  | 133.5  | 1.5       | 0.02     |          |          |          |
| 133.6    | 136.94   | tuff, laminated very tight S folds kinkle folding, rare to 1 stringer/meter,            | 44781    | 133.5  | 135.0  | 1.5       | 0        |          |          |          |
|          |          | scattered to trace pyrite, moderate soft, very weakly carbonated, moderately            | 44782    | 135.0  | 136.0  | 1         | 0.01     |          |          |          |
|          |          | hard silicified 136.81-136.94 UC 800, 136.94 contact CA-850.                            | 44783    | 136.0  | 136.9  | 0.94      | 0.03     |          |          |          |
| 136.94   | 137.69   | qtz vein, fg, blackish grey, hard, silicified fragmental tuff, blackish and light       | 44784    | 136.9  | 137.7  | 0.75      | 0        |          |          |          |
|          |          | brown, 3-5% fg py few ng, 134.44-137.53 inclusion of carbonate TCS fg tuff,             |          |        |        |           |          |          |          |          |
|          |          | 137.53-137.69 light grey to pale brown qv in inclusions, 137.69 contact CA-85o.         |          |        |        |           |          |          |          |          |
| 137.69   | 138.15   | fragmental tuff as above, contorted folded bedding, trace sulphides 138.15 CA-50        | 44785    | 137.7  | 138.2  | 0.46      | 0        |          |          |          |
| 138.15   | 138.41   | qtz vein, medium brown, minor inclusions <1% grading to 3-5% vfg, 138.41 CA-            | 44786    | 138.2  | 138.4  | 0.26      | 0        |          |          |          |
|          |          | 60o slightly sinuous.                                                                   |          |        |        |           |          |          |          |          |
| 138.41   | 142.64   | tuff, fg contorted shapes S folds tight, numerous chlorite slip planes CA-20-30o        | 44787    | 138.4  | 139.0  | 0.59      | 0        |          |          |          |
|          |          | grading to laminated tuff form 140.57-140.73, 139.45- 139.65 1/2 cm brownish            | 44788    | 139.0  | 140.5  | 1.5       | 0        |          |          |          |
|          |          | light felsic bands contorted to match bedding to II to CA, 140.73-142.64 slightly       | 44789    | 140.5  | 142.0  | 1.5       | 0        |          |          |          |
|          |          | to weakly contorted bedding minor fragments, very siliceous, laminated, 142.64          | 44790    | 142.0  | 142.6  | 0.64      | 2.32     | 2.59     |          |          |
|          |          | contact CA-350.                                                                         |          |        |        |           |          |          |          |          |
| 142.64   | 143.08   | qv, 142.64-142.75 pale brown, opague, minor chocolate brown tourmaline,                 | 44791    | 142.6  | 143.1  | 0.44      | 0.2      |          |          |          |
|          |          | 142.75-142.81 medium brown altn tuff, 142.81-143.02 white opague qv inclusions          |          |        |        |           |          |          |          |          |
|          |          | white carbonate, 143.02 contact CA-60o, 143.02-143.08 pale greenish yellow              |          |        |        |           |          |          |          |          |
|          |          | bleached felsic dike silicified, vfg py <0.5 to trace 143.08 CA-700 x-cut bed 550       |          |        |        |           |          |          |          |          |
| 143.08   | 143.87   | fg, grey grain, silicified, qtz flooded, trace py, 143.87 CA 60o.                       | 44792    | 143.1  | 143.9  | 0.8       | 0.51     | 0.46     |          |          |
| 143.87   | 146.5    | felsic tuffaceous fragmental, pale buff to tan in kinkle green chlorite laminated       | 44793    | 143.9  | 144.9  | 1         | 0        |          |          |          |
|          |          | locally buff to pale buff fragments, trace py, siliceous, 143.87-144.51 felsic tuff     | 44794    | 144.9  | 145.9  | 0.97      | 0        |          |          |          |
|          |          | buff fragments, 144.51-144.59 white opague to translucent qv CA-300 irregular           | 44795    | 145.9  | 146.5  | 0.65      | 0.13     |          |          |          |
|          |          | 144.59-144.87 felsic tuff + fragments, 144.87-145.20 felsic tuff in kinkle chlorite     |          |        |        |           |          |          |          |          |
|          |          | lamination, 145.20-145.84 felsic fragments in chloritic matrix, contorted bedding       |          |        |        |           |          |          |          |          |
|          |          | S folding LC 60-65o, 145.84-146.50 felsic tuff with chlorite laminations of small       |          |        |        |           |          |          |          |          |
|          |          | kinkle grading to healled chlorite lamination LC CA-50o sinuous.                        |          |        |        |           |          |          |          |          |
| 146.5    | 146.88   | altn tuff, altn ultramafic chlorite tuff fragmental, light buff to tan medium green 3   | 44796    | 146.5  | 147.0  | 0.5       | 0        |          |          |          |
|          |          | white opalesant qtz st 1cm CA-50o.                                                      |          |        |        |           |          |          |          |          |
| 146.88   | 147      | tuff fragmental, as above, grey green LC CA-35-40o.                                     |          |        |        |           |          |          |          |          |
| 147      | 147.55   | qv, pale greyish to pale brownish white opague, nil to trace py, LC CA-80o.             | 44797    | 147.0  | 147.6  | 0.55      | 0        |          |          |          |
| 147.55   | 151.18   | silicified altn buff green to light brown, scattered py vfg, 151.18 CA-80-850.          |          |        |        |           |          |          |          |          |
| 151.18   | 151.88   | qv, white opague with pale brown patches associated in alth tuff inclusions             | 44801    | 151.18 | 151.88 | 0.7       | 0.19     |          |          |          |
|          |          | and chocolate brown II near LC, trace sulphides LC CA-65o.                              |          |        |        |           |          |          |          |          |

| Property | Hunter N | line                                                                                  | Hole No. | 32     |        | Sheet No. | 3        |          |          |          |
|----------|----------|---------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me       | terage   | Description                                                                           | Sample   |        |        |           | As       | say      |          |          |
| From     | To       |                                                                                       | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 151.88   | 152.13   | fragmental tuff to tuff, hard to moderately hard, same as above, 151.88-              | 44802    | 151.88 | 153    | 1.12      | 0        |          |          |          |
|          |          | 152.13 alth silicified, pale brownish green x-cut by 1cm g st white CA-500            |          |        |        |           |          |          |          |          |
|          |          | 158.24 at 152.04.                                                                     |          |        |        |           |          |          |          |          |
| 152.13   | 153.62   | light grey green tuff trace py, rare 1/2cm grey gtz st LC 70o distinct.               | 44803    | 153    | 153.61 | 0.61      | 0        |          |          |          |
| 153.62   | 156.93   | blackish to black green um tuff with gtz lamination, locally contorted folding        | 44804    | 153.61 | 155    | 1.39      | 0        |          |          |          |
|          |          | bedding, moderately hard, scattered 0.5% py fg locally up to 1-2% as 5mm              | 44805    | 155    | 156    | 1         | 0        |          |          |          |
|          |          | blobs 156.0-156.40, 156.74-156.93 moderately soft, 156.93 LC 700 sinuous.             | 44806    | 156    | 156.93 | 0.93      | 0        |          | 1        |          |
| 156.93   | 158.24   | massive dike mafic, fg, light to medium grey, moderately hard, non carbonate          | 44807    | 156.93 | 158.24 | 1.31      | 0        |          |          |          |
|          |          | non magnetic, massive, uniform, x-cut by numerous 1-3mm qtz stringers                 |          |        |        |           |          |          |          |          |
|          |          | scattered disseminated fg to mg occasional blob of pyrite overall <1%,                |          |        |        |           |          |          |          |          |
|          |          | sharp CA-65o near II to bedding.                                                      |          |        |        |           |          |          |          |          |
| 158.24   | 158.39   | chlorite tuff as above, moderately soft medium greenish grey, gradulational           | 44808    | 158.24 | 158.95 | 0.71      | 0        |          |          |          |
|          |          | contact.                                                                              |          |        |        |           |          |          |          |          |
| 158.39   | 158.95   | qtz stockwork, grey green tuff qtz stockwork greyish opague q st x-cut by             |          |        |        |           |          |          |          |          |
|          |          | white translucent qtz st, random occasonaly trace pyrite LC CA-720.                   |          |        |        |           |          |          |          |          |
| 158.95   | 159.36   | chlorite tuff, laminated tuff with chlorite fragments, scattered fg py in bands       | 44809    | 158.95 | 159.36 | 0.41      | 1.06     | 0.98     |          |          |
|          |          | overall 1-2% upper part altn to light medium grey, bed CA-80o, 159.36 CA-75           |          |        |        |           |          |          |          |          |
| 159.36   | 159.79   | siliceous zone, fg light grey to pale grey, hard siliceous to silicified, no          | 44810    | 159.36 | 159.79 | 0.43      | 0.52     | 0.54     |          |          |
|          |          | distinct veining, fragmental to brecciated, LC CA-750 II to bed tuff chlorite         |          |        |        |           |          |          |          |          |
|          |          | trace pyrite.                                                                         |          |        |        |           |          |          |          |          |
| 159.79   | 160.23   | chlorite tuff, same as 158.95-159.36, trace pyrite LC-60o sharp vein.                 | 44811    | 159.79 | 160.23 | 0.44      | 0.02     |          |          |          |
| 160.23   | 161.3    | fg, hard to very hard, siliceous, pale grey to grey creamy opague, with               | 44812    | 160.23 | 161.3  | 1.07      | 0        |          |          |          |
|          |          | silicified tuff inclusions or fragments.160.36-160.40 brecciated sections with        |          |        |        |           |          |          |          |          |
|          |          | fragments in medium brown siliceous matrix CA-53o slips, 160.69-160.77                |          |        |        |           |          |          |          |          |
|          |          | silicified tuff fragments inclusions, few scattered grey white 1-3mm stringers        |          |        |        |           |          |          |          |          |
|          |          | low angular to II to CA, trace py to nil, 161.30 sharp CA-70o.                        |          |        |        |           |          |          |          |          |
| 161.3    | 162.48   | silicified fragmental, extremely silicified, nil to very poor pervasive bedding light | 44813    | 161.3  | 162.48 | 1.18      | 0.02     |          |          |          |
|          |          | to medium grey altn, void of stringers, non carbonate trace to <0.5 fg py,            |          |        |        |           |          |          |          |          |
|          |          | 162.48 sharp CA-80o-85o.                                                              |          |        |        |           |          |          |          |          |
| 162.48   | 162.62   | vein felsic dike, light grey, extremely fractured dark brown folding, hard,           | 44814    | 162.48 | 163.35 | 0.87      | 0.01     |          |          |          |
|          |          | siliceous, non carbonate, trace sulphides LC CA-550                                   |          |        |        |           |          |          |          |          |
| 162.62   | 163.23   | similar to 161.30-162.48 shade greener, silicified, 163.23 chloritic inclusion of     |          |        |        |           |          |          |          |          |
|          |          | tuff fragmental LC irregular.                                                         |          |        |        |           |          |          |          |          |
| 163.23   | 163.35   | vein qtz, pale grey opague irregular center 40o sinuous to py.                        |          |        |        |           |          |          |          |          |
| 163.35   | 165.1    | fragmental tuff, same as above, light grey green, local tuffaceous sections,          | 44815    | 163.35 | 165.1  | 1.75      | 0.01     |          |          |          |
|          |          | small crenulation, few greyish qtz stringers 2-5mm near II to bedding + x-cut         |          |        |        |           |          |          |          |          |
|          |          | bedding, nil to trace pyrite, 164.54-164.87 grey fg felsic dikelet CA-75-700          |          |        |        |           |          |          |          |          |

| Property | Hunter M | line                                                                               | Hole No. | 32     |        | Sheet No. | 4        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me       | terage   | Description                                                                        | Sample   |        |        |           | As       | say      |          |          |
| From     | То       |                                                                                    | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | 165.10 CA-70-750.                                                                  |          |        |        |           |          |          |          |          |
| 165.1    | 166.28   | fragmental brecciated healed with chocolate brown siliceous to 165.54 CA-70        | 44816    | 165.1  | 166.28 | 1.18      | 0.01     |          |          |          |
|          |          | with 3cm white opague qv at 165.26 CA-420 and x-cut grey white 0.5-1cm gtz         |          |        |        |           |          |          |          |          |
|          |          | string CA 5-70 terminated or ends at 165.54, 165.54-166.19 brecciated tuff +       |          |        |        |           |          |          |          |          |
|          |          | fragments healed with grey translucent qtz and 1mm qtz grey CA 15o in              |          |        |        |           |          |          |          |          |
|          |          | opposite, 166.19-166.28 irregular white qtz st 700 with inclusions, trace pyrite.  |          |        |        |           |          |          |          |          |
| 166.28   | 167.21   | tuff fragmental, as above, buff and medium green laminations, buff to tan          | 44817    | 166.28 | 167.21 | 0.93      | 0        |          |          |          |
|          |          | fragments, trace py, void of qtz stringers, well level bed 70o, 167.21 slips       |          |        |        |           |          |          |          |          |
|          |          | contact CA-70o.                                                                    |          |        |        |           |          |          |          |          |
| 167.21   | 167.57   | tuff fragmental altn, fg grey silicified tuff fragments, very hard, silicified, 1% | 44818    | 167.21 | 167.57 | 0.36      | 0.17     | 0.18     |          |          |
|          |          | scattered ff to vfg py, 167.96 sharp CA-65-70o.                                    |          |        |        |           |          |          |          |          |
| 167.57   | 167.96   | qtz stockwork veining, fragmental buff healed with chocolate brown siliceous       | 44819    | 167.57 | 167.96 | 0.39      | 0.01     |          |          |          |
|          |          | x-cut bg dominately greyish white translucent qtz st and a few white qtz st CA     |          |        |        |           |          |          |          |          |
|          |          | 40o up to 167.68, scattered 0.5-1% vfg py, 167.96 sharp CA-65-70o.                 |          |        |        |           |          | -        |          |          |
| 167.96   | 172.64   | fragmental tuff, 167.96-168.25 light greyish buff to greyish buff, no stringers,   | 44820    | 167.96 | 169.1  | 1.14      | 0        |          |          |          |
|          |          | gradation, 168.25-168.59 pale grey to light grey, siliceous disseminated 1-2%      | 44821    | 169.1  | 169.35 | 0.25      | 0        |          |          |          |
|          |          | py 6mm cluster of vfg, 168.59-169.10 pale grey to pale greenish tint grey,         | 44822    | 169.35 | 170.73 | 1.38      | 0.02     |          |          |          |
|          |          | more tuffaceous, few fuchsite patches, trace to scattered <0.5% py, LC sharp       | 44823    | 170.73 | 172.12 | 1.39      | 0        |          |          |          |
|          |          | 60o, 169.10-169.15 grey felsic dikelet or qtz CA-85o LC, 169.15-169.17 tuff as     |          |        |        |           |          |          |          |          |
|          |          | 168.59-169.10, 169.17-169.35 fragmental brecciated healed with chocolate           |          |        |        |           |          |          |          |          |
|          |          | brown silicic matrix + x-cut by grey translucent qzt 2+5mm, CA-40o which is        |          |        |        |           |          |          |          |          |
|          |          | x-cut by 1-1.5 white opague qtz CA-250 x-cuts LC 700, 169.35-169.80 greyish        |          |        |        |           |          |          |          |          |
| 167.96   | 172.64   | fragmental tuff, 169.80-170.37 pale buff weak devel. sericitic altn FT, 170.37-    | 44820    | 167.96 | 169.1  | 1.14      | 0        |          |          |          |
|          |          | 172.12 patchy weak sericite FT, bed 80o, 172.12-172.64 moderate pervasive          | 44821    | 169.1  | 169.35 | 0.25      | 0        |          |          |          |
|          |          | sericitic altn.                                                                    | 44822    | 169.35 | 170.73 | 1.38      | 0.02     |          |          |          |
| 172.64   | 173.02   | weak sericitic patchy <5%, buff to light + medium grey tuff,.                      | 44823    | 170.73 | 172.12 | 1.39      | 0        |          |          |          |
| 173.02   | 174.67   | pervasive moderate sectional altn, qtz flooding scattered to brecciated vfg py     | 44824    | 172.12 | 173.02 | 0.9       | 0.01     |          |          |          |
|          |          | 0.5-1% contacts sharp 70o+70o.                                                     | 44825    | 173.02 | 173.9  | 0.88      | 0.05     |          |          |          |
| 174.67   | 181.02   | light grey, medium grey, light grey with greenish tint tuff, well devel. bedding   | 44826    | 173.9  | 174.67 | 0.77      | 0.29     |          |          |          |
|          |          | not deformed, fine laminations, crenulation minor at 179.77-179.82. Very rare      | 44827    | 174.67 | 176    | 1.33      | 0.01     |          |          |          |
|          |          | to nil stringers, minor st qtz fine, 180.48-181.02 broken contact.                 | 44828    | 176    | 177.5  | 1.5       | 0        |          |          |          |
| 181.02   | 181.79   | weak to moderate pervasive sericitic altn locally fine laminations of pyrite,      | 44829    | 177.5  | 179    | 1.5       | 0        |          |          |          |
|          |          | 181.02-181.24 rusty brown fixture filling.                                         | 44830    | 179    | 180    | 1         | 0        |          |          |          |
| 181.79   | 185.98   | same as 181.02-181.79 qtz flooding few scattered patches of fuchsite,              | 44831    | 180    | 181.02 | 1.02      | 0        |          |          |          |
|          |          | 182.62 grey 1cm gash qtz white, 182.71 ivory 1cm white traces qst st               | 44832    | 181.02 | 181.79 | 0.77      | 0        |          |          |          |
|          |          | 500 x-cut bed, 182.80 straight 1cm white traces qst st 400 x-cut bed, 183-         | 44833    | 181.79 | 183    | 1.21      | 0.04     |          |          |          |
|          |          | minor small crenulations, 183.81-183.89 qtz vein with inclusions II to bed 70o     | 44834    | 183    | 184.5  | 1.5       | 0        |          |          |          |

| Property | Hunter M | ine                                                                                 | Hole No: | 32     |        | Sheet No. | 5        |          |          |          |
|----------|----------|-------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met      | erage    | Description                                                                         | Sample   |        |        |           | Assay    |          |          |          |
| From     | To       |                                                                                     | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | 183.89-185.39 in distinct veining, qtz flood, 185.39-185.98 scattered .5-1cm        | 44835    | 184.5  | 185.98 | 1.48      | 0        |          |          |          |
|          |          | grey white traces qtz st usually II to bed LC 400.                                  |          |        |        |           |          |          |          |          |
| 185.98   | 187.19   | brecciated grey + brownish healled x-cut by large 1cm-2.5cm white traces            | 44836    | 185.98 | 187.19 | 1.21      | 0        |          |          |          |
|          |          | qtz veinlets 40, 200 qtz flooded LC irregular 30-350                                |          |        |        |           |          |          |          |          |
| 187.19   | 191.77   | fragmental tuff, scattered pyrite 0.5-1%, strongly pervasive sericitic altn,        | 44837    | 187.19 | 188.5  | 1.31      | 0.06     |          |          |          |
|          |          | 187.19-191.93 qtz flooded, 190.6 fuchsite, 189.34 2cm black chlorite qtz st         | 44838    | 188.5  | 190    | 1.5       | 0        |          |          |          |
|          |          | CA-55o, local crenulations at 188.74.                                               | 44839    | 190    | 191.5  | 1.5       | 0        |          |          |          |
| 191.77   | 193.33   | tuff, minor crenulations, trace to scattered py locally 1%, 191.77-192.40           | 44840    | 191.5  | 192.5  | 1         | 0        |          |          |          |
|          |          | minor qtz, good bed 80o, 192.40 1/2cm light grey felsic dike x-cut bed 88o          | 44841    | 192.5  | 193.33 | 0.83      | 0        |          |          |          |
|          |          | 192.40-193.33 qtz flooding 30%, 193.09 fuchsite.                                    | 44842    | 193.33 | 194.5  | 1.17      | 0.05     | 0.04     |          |          |
| 193.33   | 202.65   | tuff, patchy random sericitic altn, buff to medium grey well laminated tuff, qtz    | 44843    | 194.5  | 196    | 1.5       | 0.02     |          |          |          |
|          |          | II to bed well level bed CA-750 at 195.3, 800 at 199, patchy to scattered py,       | 44844    | 196    | 197.5  | 1.5       | 0        |          |          |          |
|          |          | 194.40 black qtz chlorite st CA-70o x-cut bed, minor crenulations with              | 44845    | 197.5  | 199    | 1.5       | 0        |          |          |          |
|          |          | moderate grey sections 201.40-201.60.                                               | 44846    | 199    | 200.5  | 1.5       | 0.01     |          |          |          |
| 202.65   | 205.47   | patchy weak to moderate sericitic altn, minor crenulations in medium grey           | 44847    | 200.5  | 201.5  | 1         | 0.01     |          |          |          |
|          |          | sections, rare fragments, void st scattered <0.5% py LC 700 II to bed.              | 44848    | 201.5  | 202.65 | 1.15      | 0        |          |          |          |
| 205.47   | 209.29   | pervasive moderate sericitia altn, tuff rare fragments, qtz II to bed, scattered    | 44849    | 202.65 | 204    | 1.35      | 0        |          |          |          |
|          |          | to trace py, LC 750, void of stringers.                                             | 44852    | 204    | 205.47 | 1.47      | 0.01     |          |          |          |
| 209.29   | 211.01   | patchy to weak patchy sericitic altn, buff to light greenish buff to medium         | 44851    | 205.47 | 207    | 1.53      | 0.01     |          |          |          |
|          |          | greenish, laminated tuff rare fragments, 210.44-210.54 qtz flood boudinage          | 44852    | 207    | 208.5  | 1.5       | 0.02     |          |          |          |
|          |          | 211.01 broken ground contact.                                                       | 44853    | 208.5  | 210    | 1.5       | 0.02     | 0.02     |          |          |
| 211.01   | 212.09   | altn tuff to fragmental tuff, fg to mg, massive, uniform, moderate hard, silicified | 44854    | 210    | 211.01 | 1.01      | 0.01     |          |          |          |
|          |          | nil to very weak devel. of foliation with schistosity to weak level bedding,        | 44855    | 211.01 | 212.09 | 1.08      | 0        |          |          |          |
|          |          | 211.59-212.09 scattered fragments, 211.75-212.09 trace sulphides from white         |          |        |        |           |          |          |          |          |
|          |          | to grey white qtz st LC 80o pervasive weak sericitic altn.                          |          |        |        |           |          |          |          |          |
| 212.09   | 214.63   | qtz flood fragmental tuff, kinkle to light greenish buff to medium greenish         | 44856    | 212.09 | 213.3  | 1.21      | 0        |          |          |          |
|          |          | buff, qtz vein random greyish white translucent to white opague, trace to <0.5      | 44857    | 213.3  | 214.63 | 1.33      | 0        |          |          |          |
|          |          | vfg py, LC irregular.                                                               |          |        |        |           |          |          |          |          |
| 214.63   | 215.82   | fragmental tuff as above, medium grey green, to medium green, kinkle                | 44858    | 214.63 | 215.82 | 1.19      | 0        |          |          |          |
|          |          | 215.20 bed 75o scattered py, very weakly carbonated, siliceous, moderate            |          |        |        |           |          |          |          |          |
|          |          | hard to hard, LC irregular x-cut by qtz flood.                                      |          |        |        |           |          |          |          |          |
| 215.82   | 217.91   | qtz flood um fragmental tuff, pale greenish kinkle to medium green, to              | 44859    | 215.82 | 217    | 1.18      | 0        |          |          |          |
|          |          | green grey, moderate qtz flooding, trace py, gradual contact, 216.12-               | 44860    | 217    | 217.91 | 0.91      | 0        |          |          |          |
|          |          | 216.29 ng grey, moderate carbonate, moderate soft to moderate hard,                 |          |        |        |           |          |          |          |          |
|          |          | argillite with 2-3% fg -mg py, up C irregular LC sharp 75o.                         |          |        |        |           |          |          |          |          |
| 217.91   | 221.47   | um fragmental tuff (lower um), carbonated, fg, black to black green, qtz flood      | 44861    | 217.91 | 219    | 1.09      | 0        |          |          |          |
|          |          | fragmental to fragmental tuff, trace sulphides, 218.78-218.83 medium brown          | 44862    | 219    | 220.15 | 1.15      | 0        |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 32     |        | Sheet No. | 6        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Meter     | rage     | Description                                                                        |          | Sa     | ample  |           | As       | say      |          |          |
| From      | То       |                                                                                    | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | fg felsic dike 80o x-cut, 219.94-219.97 reddish brown fg felsic dike 70o x-cut,    | 44863    | 220.15 | 220.4  | 0.25      | 0.02     | 0.04     |          |          |
|           |          | 220.15-220.49 grey siliceous zone with white qtz opague, altn inclusions,          | 44864    | 220.4  | 221.47 | 1.07      | 0.01     |          |          |          |
|           |          | UC 70o LC 55o, 220.49-220.65 silicified crenulated tuff, 221.47 ground contact     |          |        |        |           |          |          |          |          |
| 221.47    | 255      | Argillite                                                                          |          |        |        |           |          |          |          |          |
| 221.47    | 246.5    | argillite, fg pale brownish to medium to dark grey, fg, silicified argillite, very | 44865    | 221.47 | 223    | 1.53      | 0.01     |          |          |          |
|           |          | poor bedding local sections of laminations, 224.33 74-750 cleavage planes,         | 44866    | 223    | 224.5  | 1.5       | 0        |          |          |          |
|           |          | 226.94-227.01 1-3mm lamination with 10-15% pyrite overall 2-3%, 227.01-            | 44867    | 224.5  | 225.6  | 1.1       | 0        |          |          |          |
|           |          | 227.38 increasing pyrite laminations every 1/2 to 1cm overall 25-30% pyrite        | 44868    | 225.6  | 226.4  | 0.8       | 0.02     |          |          |          |
|           |          | 60-63o bed,227.38-227.44 massive pyrite CA-63o, 227.44-227.90 light to             | 44869    | 226.4  | 227.02 | 0.62      | 0        |          |          |          |
|           |          | medium grey bedded argillite, 227.98-228.19 dark grey possibly graphitic           | 44870    | 227.02 | 227.45 | 0.43      | 0.01     |          |          |          |
|           |          | argillite CA-680, 228.19-231.05 medium grey fg to vfg lamination argillite,        | 44871    | 227.45 | 228.15 | 0.7       | 0        |          |          |          |
|           |          | 231.05-232.63 ng light grey greywacke massive LC 650 sharp, 232.63-232.85          |          |        |        |           |          |          |          |          |
|           |          | graphitic argillite CA-70o sharp, 232.85-235.90 pale greenish grey, fg argillite   |          |        |        |           |          |          |          |          |
|           |          | with minor qtz II to bedding CA-70o, 235.90-240.26 light medium grey argillite     |          |        |        |           |          |          |          |          |
|           |          | aphanitic to fg few graded bedding LC 630, 240.26-240.60 graphitic argillite,      |          |        |        |           |          |          |          |          |
| 221.47    | 246.5    | 240.60-245.25 fg grading to mg with white grey grains, weak carbonated,            |          |        |        |           |          |          |          |          |
|           |          | 245.25-245.49 graphitic argillite, scattered 1-2mm qtz st II to bed, 245.49-       |          |        |        |           |          |          |          |          |
|           |          | 246.50 medium grey med grained greywacke.                                          |          |        |        |           |          |          |          |          |
| 246.5     | 247.06   | stringer pervasive sericitic altn, to pale green to pale greenish grey, few II qtz |          |        |        |           |          |          |          |          |
|           |          | st LC 70o, 246.68 grains of chalcopyrite argillite weak level of bedding.          |          |        |        |           |          |          |          |          |
| 247.06    | 248.56   | patch moderate to string sericitic alth with minor 25-30 graphitic bands.          |          |        |        |           |          |          |          |          |
| 248.56    | 251.19   | graphitic argillite and aphanitic chert bands, light medium grey with dark grey    |          |        |        |           |          |          |          |          |
|           |          | medium green fg bands, chert bands, few strings + offsets LC 70o.                  |          |        |        |           |          |          |          |          |
| 251.19    | 255      | graphitic argillite to graphitic chest well laminated, minor marcasite or          |          |        |        |           |          |          |          |          |
|           |          | pyrite, 253.2-255 very broken core.                                                |          |        |        |           |          |          |          |          |
|           | 255      | END OF HOLE                                                                        |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |
|           |          |                                                                                    |          |        |        |           |          |          |          |          |

| Property | Hunter M | ine                                                                                | Hole No. | 32     |        | Sheet No   | 6        |         |           |           |
|----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|------------|----------|---------|-----------|-----------|
| Meter    | age      | Description                                                                        |          | S      | ample  | 0.1001110. | 0        | [       |           | +         |
| From     | То       |                                                                                    | No.      | From   | To     | Width      | Au (a/t) | Aucheck | Au (2nd)  | Au charle |
|          |          | fg felsic dike 80o x-cut, 219.94-219.97 reddish brown fg felsic dike 70o x-cut,    | 44863    | 220.15 | 220.4  | 0.25       | 0.02     |         | Au (2110) | Au check  |
|          |          | 220.15-220.49 grey siliceous zone with white qtz opague, altn inclusions,          | 44864    | 220.4  | 221.47 | 1.07       | 0.02     | 0.04    |           |           |
| 1        |          | UC 70o LC 55o, 220.49-220.65 silicified crenulated tuff, 221.47 ground contact     |          |        |        |            | 0.01     |         |           |           |
| 221.47   | 255      | Argillite                                                                          |          |        |        |            |          |         |           | +         |
| 221.47   | 246.5    | argillite, fg pale brownish to medium to dark grey, fg, silicified argillite, very | 44865    | 221.47 | 223    | 1.53       | 0.01     |         |           | +         |
|          |          | poor bedding local sections of laminations, 224.33 74-750 cleavage planes,         | 44866    | 223    | 224.5  | 1.5        | 0.01     |         |           |           |
|          |          | 226.94-227.01 1-3mm lamination with 10-15% pyrite overall 2-3%, 227.01-            | 44867    | 224 5  | 225.6  | 1.0        | 0        |         |           |           |
|          |          | 227.38 increasing pyrite laminations every 1/2 to 1cm overall 25-30% pyrite        | 44868    | 225.6  | 226.4  | 0.0        | 0 00     |         |           |           |
|          |          | 60-630 bed,227.38-227.44 massive pyrite CA-630, 227.44-227.90 light to             | 44869    | 226.4  | 227 02 | 0.0        | 0.02     |         |           |           |
|          |          | medium grey bedded argillite, 227.98-228.19 dark grey possibly graphitic           | 44870    | 227 02 | 227 45 | 0.02       | 0        |         |           |           |
|          |          | argillite CA-68o, 228.19-231.05 medium grey fg to vfg lamination argillite,        | 44871    | 227 45 | 228 15 | 0.43       | 0.01     |         |           |           |
|          |          | 231.05-232.63 ng light grey greywacke massive LC 650 sharp, 232.63-232.85          |          |        | 220.15 | 0.7        | 0        |         |           |           |
|          |          | graphitic argillite CA-70o sharp, 232.85-235.90 pale greenish grey, fg argillite   |          |        |        |            |          |         |           |           |
|          |          | with minor qtz II to bedding CA-70o, 235.90-240.26 light medium grey argillite     |          |        |        |            |          |         |           |           |
|          |          | aphanitic to fg few graded bedding LC 630, 240.26-240.60 graphitic argillite.      |          |        |        |            |          |         |           |           |
| 221.47   | 246.5    | 240.60-245.25 fg grading to mg with white grey grains, weak carbonated,            |          |        |        |            |          |         |           |           |
|          |          | 245.25-245.49 graphitic argillite, scattered 1-2mm qtz st II to bed, 245.49-       |          |        |        |            |          |         |           |           |
|          |          | 246.50 medium grey med grained greywacke.                                          |          |        |        |            |          |         |           |           |
| 246.5    | 247.06   | stringer pervasive sericitic altn, to pale green to pale greenish grey, few II gtz |          |        |        |            |          |         |           |           |
|          |          | st LC 700, 246.68 grains of chalcopyrite argillite weak level of bedding.          |          |        |        |            |          |         |           |           |
| 247.06   | 248.56   | patch moderate to string sericitic alth with minor 25-30 graphitic bands.          |          |        |        |            |          |         |           |           |
| 248.56   | 251.19   | graphitic argillite and aphanitic chert bands, light medium grey with dark grey    |          |        |        |            |          |         |           |           |
|          |          | medium green fg bands, chert bands, few strings + offsets LC 70o.                  |          |        |        |            |          |         |           |           |
| 251.19   | 255      | graphitic argillite to graphitic chest well laminated, minor marcasite or          |          |        |        |            |          |         |           |           |
|          |          | pyrite, 253.2-255 very broken core.                                                |          |        |        |            |          |         |           |           |
|          | 255      | END OF HOLE                                                                        |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |
|          |          |                                                                                    |          |        |        |            |          |         |           |           |

|            |          | Hunter Mine - Dian                                                                   | nond Drill Log HM-04 | -33    |            |       |             |          |            |          |
|------------|----------|--------------------------------------------------------------------------------------|----------------------|--------|------------|-------|-------------|----------|------------|----------|
| Property:  | Hunter M | ine                                                                                  | Hole Dip:            | -80    | Page No.   | :     | 1 of 7      |          | Hole HM-04 | 4-33     |
| Location:  |          |                                                                                      | Hole Azimuth:        | 105    | Date Star  | ted:  | July 6,2004 |          |            |          |
| Claim No:  | HR 1009  |                                                                                      | Hole Length:         | 237m   | Date Fini  | shed: | July 8,2004 |          |            |          |
| Elevation: | Porcupin | e Lake                                                                               | Purpose:             |        | Drill Co.: |       | Benoit      |          |            |          |
| UTM Coor   | ds.:     | 5370904.0N, 487073.0E                                                                |                      |        | Logged b   | y:    | K. Jensen   |          |            |          |
| Meter      | rage     | Description                                                                          |                      | Sample | )          |       |             | Assays   |            |          |
| From       | То       |                                                                                      | No.                  | From   | To         | Width | Au (g/t)    | Au check | Au (2nd)   | Au check |
| 0.0        | 56.8     | Casing                                                                               |                      |        |            |       |             |          |            |          |
| 56.8       | 89.9     | Massive Ultramafic Rocks                                                             |                      |        |            |       |             |          |            |          |
| 56.8       | 89.9     | very talcose sections, talcose, fg, black to black green, massive                    |                      |        |            |       |             |          |            |          |
|            |          | uniform, moderately soft to soft, non magnetic to locally magnetic to moderate,      |                      |        |            |       |             |          |            |          |
|            |          | locally moderate hard, weak moderate carbonate, qtz + carbonate stringers, rare      |                      |        |            |       |             |          |            |          |
|            |          | veinlets 3-4cm, locally magnetite xls, 56.82-60 massive weak devel. schistose        |                      |        |            |       |             |          |            |          |
|            |          | random qtz veining 1-3mm + 1cm CA-20-60o random 5-15m, scattered mg cg               |                      |        |            |       |             |          |            |          |
|            |          | pyrite 2-3%, 60-63 very broken core, 63-71.46 fragmental tuff UM, weak moderate      |                      |        |            |       |             |          |            |          |
|            |          | level schistose bedding schistose random to II CA, local brecciated small section    |                      |        |            |       |             |          |            |          |
|            |          | 63.85-63.90 qc vein CA-250, 64.74-64.89 qc inclusions near CA-25-300, 65.08-         |                      |        |            |       |             |          |            |          |
|            |          | 65.13 qc inclusions near CA-30o, 71.46-75.0 brecciated 80% healed qc, irregular      |                      |        |            |       |             |          |            | -        |
|            |          | fragments, small sections of massive <5cm, rare distinct veins, 75-76.13 massive     |                      |        |            |       |             |          |            |          |
|            |          | 75.38-75.54 brecciated qv CA-35o, 76.13-81.20 brecciated large angular fragment      |                      |        |            |       |             |          |            |          |
|            |          | qc healed, 81.20-82.19 brecciated small fragments, crushed zone, 82.19 CA-670        |                      |        |            |       |             |          |            |          |
|            |          | shear, 82.19-83.52 brecciated massive white qtz healed, 83.52-83.68 tuff, bed        |                      |        |            |       |             |          |            |          |
|            |          | CA-550, shear 83.61-83.68, 83.68-85.04 massive brecciated, flow breccia, 85.04-      |                      |        |            |       |             |          |            |          |
|            |          | 85.63 crushed zone, small 3-4mm fragments CA-40 LC, 85.63-86.53 tuff                 |                      |        |            |       |             |          |            |          |
|            |          | moderate well bedded CA-60-70o, fold more at 85.73, 86.53-87.54 brecciated           |                      |        |            |       |             |          |            |          |
|            |          | massive LC 750, 87.54-89.92 mafic dike UM, massive, fg, weak to nil carbonate        |                      |        |            |       |             |          |            |          |
|            |          | weak to moderately magnetic, moderate hard, 87.84-88.73 tuffaceous with 1/2-1        |                      |        |            |       |             |          |            |          |
|            |          | cm py x-cut, with 1-3mm qc st 550, minor crenulations UC 500.                        |                      |        |            |       |             |          |            |          |
| 89.92      | 134.11   | Laminated Ultrmafic Tuffs                                                            |                      |        |            |       |             |          |            |          |
| 89.92      | 93.44    | tuff to tuff fragmental, fg, medium grey to greyish black, weak carbonate, minor     |                      |        |            |       |             |          |            |          |
|            |          | veining to 90.94, 90.94-92.62 moderate veining scattered fg ng py bed near II to     |                      |        |            |       |             |          |            |          |
|            |          | CA at 91.5, 92.62-93.44 fragmental tuff, LC CA-450 sharp.                            |                      |        |            |       |             |          |            |          |
| 93.44      | 96.76    | massive dike, void of all types of stingers nil to trace sulphides, nil foliation or |                      |        |            |       |             |          |            |          |
|            |          | schistosity, moderately soft to soft, non magnetic, weak carbonate, 96.37-96.76      |                      |        |            |       |             |          |            |          |
|            |          | crumbly, shear at 96.72-96.76.                                                       |                      |        |            |       |             |          |            |          |
| 96.76      | 97.54    | tuffaceous to bedded fragments, shearing II to bed CA 580.                           |                      |        |            |       |             |          |            |          |
| 97.54      | 98.28    | brecciated massive, white qc healed, 98.08 irregular 1.2-1.5cm qc CA-400 LC65        |                      |        |            |       |             |          |            |          |
| 98.28      | 100.72   | black green, locally brecciated fragmental weak to moderately magnetic, qtz          |                      |        |            |       |             |          |            |          |

| Property: | Hunter N | line                                                                                  | Hole No. | 33     |        | Sheet No. | 2        |          |          |          |
|-----------|----------|---------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                           |          | Sample |        |           | Assay    | s        |          |          |
| From      | To       |                                                                                       | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | healed white to greyish white, random magnetite xls.                                  |          |        |        |           |          |          |          |          |
| 100.72    | 105.85   | fg medium grey to black, qtz veined, locally brecciated, fragmental small tuff        |          |        |        |           |          |          |          |          |
|           |          | sections veining random, straight gtz 2-4mm CA 300-350 faint LC.                      |          |        |        |           |          |          |          |          |
| 105.85    | 109.63   | massive, weak schistose CA 55o, scattered py masses 1cm x 2cm, few 1/2cm              | 44872    | 108.0  | 109.3  | 1.29      | 0        |          |          |          |
|           |          | x-cuts, non magnetic, very soft, talcose, black to black green, 107.44 schistose      |          |        |        |           |          |          |          |          |
|           |          | CA-550, 107.65-109.29 several 1-1 1/2cm qtz st CA-35, 65 + veining LC 500 at          |          |        |        |           |          |          |          |          |
|           |          | 109.63, scattered to 1% py in veins.                                                  |          |        |        |           |          |          |          |          |
| 109.63    | 110      | tuff to tuff fragmental.                                                              |          |        |        |           |          |          | 1        |          |
| 110       | 110.6    | crushed zone, shearing                                                                |          |        |        |           |          |          |          |          |
| 110.6     | 111.65   | tuff, fg black, bed 55o good LC 60o.                                                  |          |        |        |           |          |          |          |          |
| 111.65    | 112.13   | massive tuff with II gtz veining.                                                     |          |        |        |           |          |          |          |          |
| 112.13    | 113      | tuff with irregular qtz veining II + x-cutting bedding.                               |          |        |        |           |          |          |          |          |
| 113       | 113.32   | intrusive veining brecciated.                                                         |          |        |        |           |          |          |          |          |
| 113.32    | 114.22   | tuff minor veining II to bed kinkle folding.                                          |          |        |        |           |          |          |          |          |
| 114.22    | 114.86   | intense veining random in tuff.                                                       |          |        |        |           |          |          |          |          |
| 114.86    | 119.55   | black green to black, tuff, S fold large at 116.05-117.02 x-cut by chlorite II slips, |          |        |        |           |          |          |          |          |
|           |          | 114.86-118.13 moderate soft, 118.13-118.45 moderate hard tuff silicified, 118.45-     |          |        |        |           |          |          |          |          |
|           |          | 119.55 hard to very hard silicified, black to black green tuff more small             |          |        |        |           |          |          |          |          |
|           |          | crenulations very weak carbonate LC sharp CA-700.                                     |          |        |        |           |          |          |          |          |
| 119.55    | 121.13   | mafic dike, fg, black to black green, nil to very weak level foliation, hard to very  | 44873    | 119.6  | 121.1  | 1.58      | 0        |          |          |          |
|           |          | hard, siliceous, 119.95-120.15 irregular qtz veining with 2-3cm band of pyrrhotite,   |          |        |        |           |          |          |          |          |
|           |          | LC 600 non magnetic, nil to very weak carbonate.                                      |          |        |        |           |          |          |          |          |
| 121.13    | 122.34   | silicified tuff, light green to grey green, to medium green, good bed CA-620 x-cut    | 44874    | 121.1  | 122.3  | 1.21      | 0        |          |          |          |
|           |          | by white opalescent to opague qtz pale buff bleaching on some contacts 122.05         |          |        |        |           |          |          |          |          |
|           |          | 65o 1cm qtz st with pyrrhotite + chalcopyrite, LC broken.                             |          |        |        |           |          |          |          |          |
| 122.34    | 124.46   | tuff fragmental q fc 123.89-125.16 moderate hard, silicified to siliceous, minor      | 44875    | 122.3  | 123.4  | 1.06      | 0        |          |          |          |
|           |          | crenulations, moderately strong qtz flooding, grey green, mostly II to bed, random    | 44876    | 123.4  | 124.5  | 1.06      | 0        |          |          |          |
|           |          | II to CA crenulated, qtz flooding white grey and pale brownish q 124.46-125.16.       | 44877    | 124.5  | 125.2  | 0.7       | 0        |          |          |          |
| 124.46    | 125.16   | qtz flood tuff to fragmental buff.                                                    | 44878    | 125.2  | 126.2  | 0.99      | 0        |          |          |          |
| 125.16    | 127.15   | local crenulated fragmental small tuff, good bed CA 60o trace to scattered fg py.     | 44879    | 126.2  | 127.2  | 1         | 0        | 0        |          |          |
| 127.15    | 129      | qtz flood tuff fragmental tuff grey green with grey opague and grey white trace       | 44880    | 127.2  | 128.0  | 0.85      | 0.01     |          |          |          |
|           |          | tourmaline, II to bed 127-129 28cm ground lost ore.                                   | 44881    | 128.0  | 129.0  | 1         | 0.03     |          |          |          |
| 129       | 129.93   | tuff with crenulations LC 800 veining.                                                | 44882    | 129    | 129.9  | 0.9       | 0        |          |          |          |
| 129.93    | 130      | qv with brown tourmaline LC ground.                                                   |          |        |        |           |          |          |          |          |
| 130       | 130.41   | intense crenulations with chlorite slips CA-280.                                      | 44883    | 129.9  | 131.25 | 1.35      | 0.01     |          |          |          |
| 130.41    | 130.58   | 3-1cm white opague qv CA-55o.                                                         |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 33     |        | Sheet No. | 3        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Meter     | rage     | Description                                                                        | Sample   |        |        |           | As       | say      |          |          |
| From      | To       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 130.58    | 131.16   | distorted crenulated tuff LC50o                                                    |          |        |        |           |          |          |          |          |
| 131.16    | 131.35   | grey opague qtz vein with inclusions CA LC-350.                                    |          |        |        |           |          |          |          |          |
| 131.35    | 132.75   | crenulated tuff with slips 35o 132.11-132.36, rather qtz fragmental tuff bed       | 44884    | 131.25 | 132.75 | 1.5       | 0        |          |          |          |
|           |          | 60o 132.75 CA-50o.                                                                 |          |        |        |           |          |          |          |          |
| 132.75    | 134.11   | qtz flooded black to black green tuff, white opague qtz st LC 650 trace pyrite.    | 44885    | 132.75 | 134.11 | 1.36      | 0        |          | _        |          |
| 134.11    | 237      | Exhalitic Tuffs and Sedimentary Rocks                                              |          |        |        |           |          |          |          |          |
| 134.11    | 134.93   | grey to light grey crenulated fragmental tuff contorted bedding 134.93-134.94      | 44886    | 134.11 | 135.28 | 1.17      | 0.03     |          |          |          |
|           |          | atz stringer discont. @ CA-40o, 0o then 90o.                                       |          |        |        |           |          |          |          |          |
| 134.9     | 135.28   | dark green to black green fragmental tuff with small crenulation scattered mg      |          |        |        |           |          |          |          |          |
|           |          | cg py 1-2% bed 30o LC 70o.                                                         |          |        |        |           |          |          |          |          |
| 135.28    | 136      | pale grey to faint green tint, tuff to 135.72 and fragmental to 136 LC 350.        | 44887    | 135.28 | 136    | 0.72      | 0.02     |          |          |          |
|           |          | 135.28-135.29 grey qtz st CA 70o.                                                  |          |        |        |           |          |          |          |          |
| 136       | 137.45   | light grey massive felsic tuff void of stringers, siliceous, hard, broken LC bed   | 44888    | 136    | 137.45 | 1.45      | 0        |          |          |          |
|           | _        | 49o, scattered 1% fg, to locally 2-3% ng.                                          |          |        |        |           |          |          |          |          |
| 137.45    | 139.61   | pale grey to pale green well level bed, thin laminations CA-450 ore qtz grey       | 44889    | 137.45 | 138.42 | 0.97      | 0        |          |          |          |
|           |          | traces to white opague qtz st from 138.42-139.61, 0.5-1% py with qtz stringer      | 44890    | 138.42 | 139.61 | 1.19      | 0.21     | 0.2      |          |          |
|           |          | 2-3% fg py in tuff, all qtz st II to bed LC CA-50o.                                |          |        |        |           |          |          |          |          |
| 139.61    | 139.89   | grey felsic to siliceous material with grey white trace qtz stringers with         | 44891    | 139.61 | 139.89 | 0.28      | 0        |          |          |          |
|           |          | fragments and chlorite tuff inclusions scattered py, masses 1-2mm near LC          |          |        |        |           |          | _        |          |          |
|           |          | LC-48o.                                                                            |          |        |        |           |          |          |          |          |
| 139.89    | 144.51   | greenish to greyish medium green tuff fragmental fg py, 139.99-140.11 white        | 44892    | 139.89 | 140.93 | 1.04      | 0        |          |          |          |
|           |          | grey opague qv with chocolate brown tourmaline and scattered py CA 35-370          | 44893    | 140.93 | 141.84 | 0.91      | 0.04     |          |          |          |
|           |          | 140.93-141.14 white opague qv with tuff inclusions contacts 40o, 35o, 141.35       | 44864    | 141.84 | 143    | 1.16      | 0.03     |          |          |          |
|           |          | white grey q st 2cm 20o irregular, 141.45 white grey q st 2cm 40o irregular        | 44895    | 143    | 144.51 | 1.51      | 0        |          |          |          |
|           |          | sinuous, 141.79-141.84 white opague minor brown CA-50o, 142.33-142.46              |          |        |        |           |          |          |          |          |
|           |          | ground lost core, 144.06-144.51 locally patchy white and light to medium           |          |        |        |           |          |          |          |          |
|           |          | grey qtz st usually II to bed 450, lost 10cm irregular near II to CA LC-300        |          |        |        |           |          |          |          |          |
| 144.51    | 145.23   | qtz vein altn tuff, fg light brownish grey to dark brown and buff fragments        | 44896    | 144.51 | 145.23 | 0.72      | 0.09     | 0.15     |          |          |
|           |          | inclusions white opague to pale grey translucent qv, vein LC 350 vfg py <1%        |          |        |        |           |          |          |          |          |
| 145.23    | 145.42   | light grey to pale green tuff.                                                     | 44897    | 145.23 | 146    | 0.77      | 0.02     |          |          |          |
| 145.42    | 145.62   | moderate pervasive sericitic alth tuff.                                            |          |        |        |           |          |          |          |          |
| 145.62    | 146      | patchy sericitic alth tuff.                                                        |          |        |        |           |          |          |          |          |
| 146       | 146.88   | light to medium grey to medium grey green tuff, few fragments, well level          | 44898    | 146    | 146.88 | 0.88      | 0        |          |          |          |
|           |          | bedding CA-550 LC 570.                                                             |          |        |        |           |          |          |          |          |
| 146.88    | 147.45   | strong pervasive to string patch sericitic altn tuff, qtz flood from 147.07-147.45 | 44899    | 146.88 | 147.5  | 0.57      | 0        |          |          |          |
|           |          | with minor py fg associated with qtz.                                              |          |        |        |           |          |          |          |          |
| 147.45    | 148.28   | patchy moderate sericitic altn with 147.77 minor fuchsite, trace to scattered      | 44900    | 147.45 | 148.25 | 0.8       | 0.01     |          |          |          |
|           |          | fg py LC 50o.                                                                      |          |        |        |           |          |          |          |          |

.

| Property: | Hunter M | ine                                                                                | Hole No. | 33     |        | Sheet No. | 4        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                        | Sample   |        |        |           | Ass      | ay       |          |          |
| From      | То       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | 144.43-144.51 crenulated tuff.                                                     |          |        |        |           |          |          |          |          |
| 148.28    | 152.82   | pale grey to light pale greenish grey to minor medium grey, trace to very weak     | 44901    | 148.28 | 149.78 | 1.5       | 0.02     |          |          |          |
|           |          | patchy sericitic altn <5%, minor small crenulations, whitish and grey qtz string   | 44902    | 149.78 | 151.3  | 1.52      | 0        |          |          |          |
|           |          |                                                                                    | 44903    | 151.3  | 152.82 | 1.52      | 0        |          |          |          |
|           |          | II to bed 380-400 at 149.83-149.88 x-cuts 1/2cm grey white opague CA-650,          |          |        |        |           |          |          |          |          |
|           |          | 150.15-150.26 laminated qtz stringers with buff altn, 150.90-151.21 laminated      |          |        |        |           |          |          |          |          |
|           |          | greyish white qtz stringer 2mm-1cm, scattered vfg py, bleached bands at            |          |        |        |           |          |          |          |          |
|           |          | 152.38-152.41 and 152.77 1/2cm contact CA sharp 55o.                               |          |        |        |           |          |          |          |          |
| 152.82    | 153.68   | moderate pervasive to locally medium grey band <5%, scattered fg py, 153.21-       | 44904    | 152.82 | 153.68 | 0.86      | 0.01     |          |          |          |
|           |          | 153.57 greyish qtz bands with minor trace fg py LC 60o.                            |          |        |        |           |          |          |          |          |
| 153.68    | 155      | light grey to medium grey bands laminated tuff, minor grey and white opague        | 44905    | 153.68 | 155    | 1.32      | 0.03     | 0.04     |          |          |
|           |          | qtz stringers.                                                                     |          |        |        |           |          |          |          |          |
| 155       | 155.8    | patch moderate sericitic altn, scattered 1-2% fg py locally 3-5% fg ng py,         | 44906    | 155    | 155.8  | 0.8       | 0.02     |          |          |          |
|           |          | minor fuchsite LC-550.                                                             |          |        |        |           |          |          |          |          |
| 155.8     | 157.6    | pale greyish medium green tuff with small fragments, mg tuff, to buff green,       | 44907    | 155.8  | 156.7  | 0.9       | 0.01     |          |          |          |
|           |          | minor qtz stringers usually II to bed, soft 156.95 1/2 grey CA-80o, 157.02         | 44908    | 156.7  | 157.6  | 0.9       | 0        |          |          |          |
|           |          | veining 1cm white opague 800-900 CA LC 400 bed 50-530.                             |          |        |        |           |          |          |          |          |
| 157.6     | 158.89   | qtz flood, moderate pervasive to locally patch, minor fuchsite flecks, scattered   | 44909    | 157.6  | 158.89 | 1.29      | 0        |          |          |          |
|           |          | py LC-450.                                                                         |          |        |        |           |          |          |          |          |
| 158.89    | 162.08   | weak patchy sericitic altn, light green to locally dark green, 160.63 1cm          | 44910    | 158.89 | 160.11 | 1.22      | 0        |          |          |          |
|           |          | medium fragment felsic dike 250 160.11-160.34 pervasive sericitic altn veining     | 44911    | 160.11 | 160.34 | 0.23      | 0.02     |          |          |          |
|           |          | white grey qtz flood, II to bed, 160.84-161.88 ivory qtz stringer II to CA deform. | 44912    | 160.34 | 160.84 | 0.5       | 0        |          |          |          |
| 162.08    | 164.55   | medium to dark green tuff, scattered qtz stringer usually II to bed, 163.06-       | 44913    | 160.84 | 162.08 | 1.24      | 0        |          |          |          |
|           |          | 163.09 whitish grey buff inclusions CA-60o x-cut bed.                              | 44914    | 162.08 | 163.3  | 1.22      | 0        |          |          |          |
| 164.55    | 165.7    | brecciated fragmental tuff, matrix, medium to chocolate brown with bleached        | 44915    | 163.3  | 164.55 | 1.25      | 0.03     |          |          |          |
| 164.55    | 165.7    | pale grey to buff frag., several white opague and grey translucent 1/2-1cm         | 44916    | 164.55 | 165.7  | 1.15      | 0        | 0        |          |          |
|           |          | qtz veinlets CA-50-65-400 grey, 165.63-165.70 brownish siliceous sections          |          |        |        |           |          |          |          |          |
|           |          | void of inclusions LC-550.                                                         |          |        |        |           |          |          |          |          |
| 165.7     | 168.68   | grey green fragmental tuff, locally 3-5cm not qtz flooded, very weak sericitic     | 44917    | 165.7  | 166.7  | 1         | 0.01     |          |          |          |
|           |          | altn patchy, grey white opague masses + veinlets, local buff fragments trace       | 44918    | 166.7  | 167.7  | 1         | 0.01     |          |          |          |
|           |          | pyrite LC 500.                                                                     | 44919    | 167.7  | 168.68 | 0.98      | 0.01     |          |          |          |
| 168.68    | 171.36   | qtz flood, weak patchy sericitic altn to light medium green fragments, white       | 44920    | 168.68 | 169.7  | 1.02      | 0        |          |          |          |
|           |          | grey opague qtz rare distinct white qtz st CA-750.                                 | 44921    | 169.7  | 170.7  | 1         | 0        |          |          |          |
| 171.36    | 171.85   | light medium green to medium grey tuff minor crenulations small, 171.67            | 44922    | 170.7  | 171.36 | 0.66      | 0.04     |          |          |          |
|           |          | 1cm white opague qtz st II to bed LC 600, bed 600 171.60-171.73 grey 1-2%          | 44923    | 171.36 | 171.86 | 0.5       | 0.66     | 0.47     |          |          |
|           |          | pyrite.                                                                            |          |        |        |           |          |          |          |          |
| 171.85    | 172.8    | light to medium grey, qtz flood fragmental tuff, trace vfg py, LC slips 60o.       | 44924    | 171.86 | 172.8  | 0.94      | 0.15     |          |          |          |

-

| Property:      |        |                                                                                  | Hole No: |        |        | Sheet No. | 5        |          |          |          |
|----------------|--------|----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Meter          | age    | Description                                                                      | Sample   |        |        |           | Assay    |          |          |          |
| From           | То     |                                                                                  | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 172.8          | 176.46 | moderate pervasive sericitic altn, fragmental tuff qtz flooded, locally fuchsite | 44925    | 172.8  | 174    | 1.2       | 0        |          |          |          |
|                |        | associated with grey qtz stringer II to bed, bedding at 450 trace to <0.5%       | 44926    | 174    | 175.25 | 1.25      | 0        |          |          |          |
|                |        | vfg py tuff fragmental.                                                          | 44927    | 175.25 | 176.46 | 1.21      | 0        |          |          |          |
| 176.46         | 176.75 | dark grey to dark green, minor light grey laminated tuff LC 630, small           | 44928    | 176.46 | 177.87 | 1.41      | 0.01     |          |          |          |
|                |        | crenulations.                                                                    |          |        |        |           |          |          |          |          |
| 176.75         | 179.25 | pervasive moderate sericitic altn, minor grey white qtz stringer up to 1cm       | 44929    | 177.87 | 179.25 | 1.38      | 0.06     |          |          |          |
|                |        | from 176.90-177.30, 178.74 large scale crenulation, qtz stringer grey II to bed  |          |        |        |           |          |          |          |          |
|                |        | 178.88-179.25 LC 500 II to bed, few scattered fragments mostly tuff.             |          |        |        |           |          |          |          |          |
| 179.25         | 180.15 | greyish tuff, py 1-2% local bed 53o, 179.56-179.62 ivory qtz, carbonate 55o      | 44930    | 179.25 | 180.15 | 0.9       | 0.02     |          |          |          |
| 180.15         | 181    | greyish with 1-3mm black lamination, scattered vfg fg py.                        | 44931    | 180.15 | 181.18 | 1.03      | 0.01     |          |          |          |
| 181            | 181.18 | pervasive to patch sercitic altn II to bed <1% vfg py.                           |          |        |        |           |          |          |          |          |
| 181.18         | 182.76 | massive fg ng lappli tuff, scattered up to 1% fg py void of stringers.           | 44932    | 181.18 | 182    | 0.82      | 0.03     |          |          |          |
| 182.76         | 183.06 | medium green grey to buff green, several white opague qtz st II to bed 57-58     | 44933    | 182    | 183.06 | 1.06      | 0.01     |          |          |          |
|                |        | LC 570                                                                           |          |        |        |           |          |          |          |          |
| 183.06         | 183.96 | buff and black green lamination, well level bed, scattered 1% py, siliceous      | 44934    | 183.06 | 183.96 | 0.9       | 0        |          |          |          |
|                |        | grey bed passible stringer II to bed 580 with associated vfg fg py with tuff     |          |        |        |           |          |          |          |          |
|                |        | near contact of stringer.                                                        |          |        |        |           |          |          |          |          |
| 183.96         | 184.88 | weak to moderate pervasive sercitic altn, void of stringers good bed few         | 44935    | 183.96 | 184.88 | 0.92      | 0        |          |          |          |
| 184.88         | 188.53 | laminated tuff to tufforeous fragmental greyish to greyish green to black green  | 44936    | 184.88 | 185.73 | 0.85      | 0        |          |          |          |
|                |        | rare stringers usually II to bed rare x-cut bedding, weakly to moderate          | 44937    | 185.73 | 186.37 | 0.64      | 0.01     |          |          |          |
| 18 <u>4.88</u> | 188.53 | carbonated, hard, 184.88-185 blackish grey, 185-185.73 light medium grey,        | 44938    | 186.37 | 187.41 | 1.04      | 0.01     |          |          |          |
|                |        | 185.73-186.37 blackish grey to dark grey, scattered pyrite, 186.37-186.96        | 44939    | 187.41 | 188.53 | 1.12      | 0.01     |          |          |          |
|                |        | pale greenish buff to buff, 186.96-187.21 blackish grey to dark green, 187.21-   |          |        |        |           |          |          |          |          |
|                |        | 187.42 vfg to aphanitic siliceous, weak sencitic altn, 187.42-188.53 light       |          |        |        |           |          |          |          |          |
|                |        | medium dark grey carbonated, scattered qtz st altn to light grey II to bed 560   |          |        |        |           |          |          |          |          |
|                |        | scattered fg py, py streaks II to bedding.                                       |          |        |        |           |          |          |          |          |
| 188.53         | 189.3  | dark grey to black green laminated fg tuff, large crenulations at 189.20 LC      | 44940    | 188.53 | 189.72 | 1.19      | 0.01     |          |          |          |
|                |        | sharp CA-510.                                                                    |          |        |        |           |          |          |          |          |
| 189.3          | 189.72 | 1mm white carbonated x-cuts in chlorite black green laminated tuff.              |          |        |        |           |          |          |          |          |
| 189.72         | 189.81 | tuff dark green, carbonated no x-cuts.                                           | 44941    | 189.72 | 190.5  | 0.78      | 0        |          |          |          |
| 189.81         | 190.5  | greenish buff to medium grey green fg tuff carbonated, LC 650.                   |          |        |        |           |          |          |          |          |
| 190.5          | 191.38 | weak patch to moderate patch sericitic alth crenulations at 190.95-191.21,       | 44942    | 190.5  | 191.38 | 0.88      | 0.11     | 0.11     |          |          |
|                |        | trace vfg py to 1% LC sharp 550.                                                 |          |        |        |           |          |          |          |          |
| 191.38         | 192.63 | medium grey + light grey few tuff few fragments, py laminations 1mm 192.27       | 44943    | 191.38 | 192.63 | 1.25      | 0.02     |          |          |          |
|                |        | 192.34 scattered vfg fg py 0.5-1%.                                               |          |        |        |           |          |          |          |          |
| 192.63         | 194.23 | weak to moderate patchy sercitic altn with pale green white opague and grey      | 44944    | 192.63 | 193.45 | 0.82      | 0.01     |          |          |          |
|                |        | opague qtz st II to bed buff, medium brown sections, siliceous, non carbonate    | 44945    | 193.45 | 194.23 | 0.78      | 0.03     |          |          |          |

| Property: | Hunter M | ine                                                                              | Hole No. | 33     |        | Sheet No. | 6        |          |          |                                       |
|-----------|----------|----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|---------------------------------------|
| Metera    | ge       | Description                                                                      |          | Sample |        |           | Ass      | ay       |          |                                       |
| From      | То       |                                                                                  | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check                              |
|           |          | fragments, siliceous, non carbonate.                                             |          |        |        |           |          |          |          |                                       |
| 194.23    | 195.1    | light medium brown to dark brownish green laminated tuff, scattered patchy       | 44946    | 194.23 | 195.1  | 0.87      | 0.1      | 0.13     |          |                                       |
|           |          | py fg, 194.80-194.90 white q st x-cut bedding 60-650 qtz broken, 194.90-         |          |        |        |           |          |          |          |                                       |
|           |          | 194.96 large crenulations, LC 45-500, non carbonated silceous.                   |          |        |        |           |          |          |          |                                       |
| 195.1     | 197.51   | fragmental tuff, siliceous, non carbonate, grey kinks, to light greenish light   | 44947    | 195.1  | 196.1  | 1         | 0.06     |          |          |                                       |
|           |          | brown, light qtz contact, small elongated fragments weak to moderate level of    | 44948    | 196.1  | 197.15 | 1.05      | 0        |          |          |                                       |
|           |          | bedding, qtz flooded, 197.20-197.36 white qtz vein inclusions contacts           | 44949    | 197.15 | 197.51 | 0.36      | 0        |          |          |                                       |
|           |          | irregular 550.                                                                   |          |        |        |           |          |          |          |                                       |
| 197.51    | 200.58   | same as 195.10-197.51 but scattered black to black green, qtz flooded trace      | 44950    | 197.51 | 198.15 | 0.64      | 0        |          |          |                                       |
|           |          | pyrite, 197.93-198.10 white qtz vein at 450 LC 500 bed 500, 199.64-199.68        | 44951    | 198.15 | 199.35 | 1.2       | 0        |          |          |                                       |
|           |          | white q mass II to bed, 199.76 1 1/2cm white qv CA 45-500.                       | 44952    | 199.35 | 200.58 | 1.23      | 0        |          |          |                                       |
| 200.58    | 201.77   | felsic dike, ophanitic, pale buff to buff light brown, massive, uniform, hard to | 44953    | 200.58 | 201.77 | 1.19      | 0.01     |          |          |                                       |
|           |          | very hard, siliceous, LC 80-850 201-201.77 patches of grey black scattered       |          |        |        |           |          |          |          |                                       |
|           |          | with random ff qtz and whitish qtz masses, trace pyrite vfg.                     |          |        |        |           |          |          |          |                                       |
| 201.77    | 206.9    | hover UM fragmental tuff, fg black green grading to altn brownish green          | 44954    | 201.77 | 203    | 1.23      | 0.07     | 0.07     |          |                                       |
|           |          | contact 204.45 qtz flooded, minor crenulations at 203.70, trace fg py, 206.90    | 44955    | 203    | 210.04 | 7.04      | 0.02     |          |          |                                       |
|           |          | contact 550.                                                                     |          |        |        |           |          |          |          |                                       |
| 206.9     | 207.15   | very siliceous grey brown qtz vein fragmental tuff LC 70o slips.                 |          |        |        |           |          |          |          |                                       |
| 207.15    | 210.49   | fragmental tuff, sediments altn, fg scattered brownish green with qtz layers     | 44956    | 210.04 | 210.49 | 0.45      | 0.04     |          |          |                                       |
|           |          | weak bedding to 208.97 to massive medium brown siliceous massive weak            |          |        |        |           |          |          |          |                                       |
|           |          | to moderate devel. bedding from 208.97-210.49 scattered <0.5% py minor po,       |          |        |        |           |          |          |          |                                       |
|           |          | 210.04-210.49 chocolate brown with 3-5% fg po trace pyrite 1% LC sharp 73o       |          |        |        |           |          |          |          |                                       |
|           |          | 210.93-211.41 pale green, 211.41-211.50 graphitic argiilite.                     |          |        |        |           |          |          |          |                                       |
| 210.49    | 213.58   | argillite greywacke, fg massive sections of argillite small sections of ng       |          |        |        |           |          |          |          |                                       |
|           |          | greywacke poor devel. of bedding, contacts 660, 212.96-213.38 carbonated,        |          |        |        |           |          |          |          |                                       |
|           |          | trace sulphides LC 630.                                                          |          |        |        |           |          |          |          |                                       |
| 213.58    | 225.45   | massive, fg, dark green to dark grey massive uniform, mg poor devel. of          |          |        |        |           |          |          |          |                                       |
|           |          | bedding, good cleavage CA 65o, moderately hard to hard, siliceous, moderate      |          |        |        |           |          |          |          | · · · · · · · · · · · · · · · · · · · |
|           |          | carbonated, non magnetic, 203.58-217 scattered 1-2 up to 5mm q carbonate         |          |        |        |           |          |          |          |                                       |
|           |          | stringer II to bedding II to 20m, 217-217.80 massive fg medium to dark grey      |          |        |        |           |          |          |          |                                       |
|           |          | with chlorite banding, void of stringers, LC 60o, 217.80-219.38 same as 217-     |          |        |        |           |          |          |          |                                       |
|           |          | 217.8, weak pervasive sercitic altn. 219.38-225.45 massive fg, dark grey to      |          |        |        |           |          |          |          |                                       |
|           |          | locally light grey near random qtz carbonated stringers II to and x-cutting      |          |        |        |           |          |          |          |                                       |
|           |          | cleavage nil to poorly devel. bedding, moderately carbonated, hard, siliceous    |          |        |        |           |          |          |          |                                       |
|           |          | LC 500.                                                                          |          |        |        |           |          |          |          |                                       |
| 225.45    | 229.78   | lower UM, fg, black green, qtz carbonated flooded stringers II to sch, intensely |          |        |        |           |          |          |          |                                       |
|           |          | moderately soft to soft, talcose, LC 65o trace sulphides.                        |          |        |        |           |          |          |          |                                       |

| Property: | Hunter M | ine                                                                              | Hole No. | 33     |    | Sheet No. | 7        |          |          |          |
|-----------|----------|----------------------------------------------------------------------------------|----------|--------|----|-----------|----------|----------|----------|----------|
| Meter     | age      | Description                                                                      |          | Sample |    |           | Assa     | /        |          |          |
| From      | То       |                                                                                  | No.      | From   | То | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 229.78    | 237      | meta sediments, 229.78-230 greywacke, 230-230.21 argillite, 230.21-230.84        |          |        |    |           |          |          |          |          |
|           |          | argillite light grey, medium grey, sections of pale greenish grey, scattered vfg |          |        |    |           |          |          |          |          |
|           |          | ophanitic chert locally 1cm under 60o occasional mg argillite greywacke very     |          |        |    |           |          |          |          |          |
|           |          | good bedding level, trace to scattered vfg py few to rare gtz st II to bed,      |          |        |    |           |          |          |          |          |
|           |          | 234.83-235.03 graphitic argillite, 236.38-236.45 white trace gv CA 650           |          |        |    |           |          |          |          |          |
|           |          | irregular, 236.45-237 graphitic argillite, scattered pyrite local crenulations.  |          |        |    |           |          |          |          |          |
|           | 237      | END OF HOLE                                                                      |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |
|           |          |                                                                                  |          |        |    |           |          |          |          |          |

|            |        | Hunter Mine - Dia                                                                       | mond Drill Log HM-0 | 4-34B   |             |       |              |          |            |          |
|------------|--------|-----------------------------------------------------------------------------------------|---------------------|---------|-------------|-------|--------------|----------|------------|----------|
| Property:  |        | Hunter Mine                                                                             | Hole Dip:           | -55     | Page No.:   | 1     | 1 of 6       |          | Hole HM-04 | -34B     |
| Location:  |        |                                                                                         | Hole Azimuth:       | 1050    | Date Starte | d:    | July12,2004  |          |            |          |
| Claim No:  |        | HR 1009                                                                                 | Hole Length:        | 167.86m | Date Finish | ed:   | July 15,2004 | 1        |            |          |
| Elevation: |        | Porcupine Lake                                                                          | Purpose:            |         | Drill Co.:  |       | Benoit       |          |            |          |
| UTM Coo    | rds.:  | 5370818.4N, E487097.3                                                                   |                     |         | Logged by:  |       | K. Jensen    |          |            |          |
| Mete       | rage   | Description                                                                             |                     | Sampl   | e           |       |              | Assays   |            |          |
| From       | To     |                                                                                         | No.                 | From    | То          | Width | Au (g/t)     | Au check | Au (2nd)   | Au check |
| 0.0        | 59.7   | Casing                                                                                  |                     |         |             |       |              |          |            |          |
| 59.7       | 114.8  | UM Talcose Rocks                                                                        |                     |         |             |       |              |          |            |          |
| 59.7       | 89.9   | same as HM-03-34, 59.70-60-60 massive 500 LC, 60.60-61.44                               |                     |         |             |       |              |          |            |          |
|            |        | intensely Bx carbonated stringer near II to CA, 61.44-62.11 massive UC 30-35,           |                     |         |             |       |              |          |            |          |
|            |        | LC 40o, small sections of carbonated stringers, 62.11-65.85 intrusively Bx,             |                     |         |             |       |              |          |            |          |
|            |        | 65.85-67.17 brecciated near II to CA, 67.17-69.14 massive with random carbonate         |                     |         |             |       |              |          |            |          |
|            |        | stringers LC 400, 69.14-70.91 brecciated large fragments, 70.70-70.91 large py          |                     |         |             |       |              |          |            |          |
|            |        | masses at 3%, 70.91-75.08 sheared and brecciated small fragments, 74.22-75              |                     |         |             |       |              |          |            |          |
|            |        | very crumbly core, sheared, 75.08-76.29 tuff - tuff fragment at UC 650, 76.29-          |                     |         |             |       |              |          |            |          |
|            |        | 76.73 brecciated, 76.73-77.11 porphyritic LC 40o massive uniform, 77.11-78.08           |                     |         |             |       |              |          |            |          |
|            |        | tuff fragmental LC 70-750, 78.08-79.00 massive with 1-4mm carbonated stringers          |                     |         |             |       |              |          |            |          |
|            |        | random LC 55-600 sinuous II to schist, 79.00-79.53 precciated, carbonated               |                     |         |             |       |              |          |            |          |
|            |        | healed LC45-50o sinuous, 79.53-84.14 fragmental tuff with carbonated stringers,         |                     |         |             |       |              |          |            |          |
|            |        | 84.14-84.42 massive possible large block CA 80-85 LC, 84.42-84.77 brecciated            |                     |         |             |       |              |          |            |          |
|            |        | massive otz carbonated stringer random, 84.77-85.86 fragmental tuff, 85.86-85.88        |                     |         |             |       |              |          |            |          |
|            |        | gtz carbonate vein with cg blobs of py CA-80o, 85.88-87.10 fine grained                 |                     |         |             |       |              |          |            |          |
|            |        | laminated tuff, small crenulations, scattered chlorite II slips planes II to CA, bed    |                     |         |             |       |              |          |            |          |
|            |        | 45-500, 87,10-89,91 fragmental tuff with tuffaceous sections, 88,16-88,70 heavy         |                     |         |             |       |              |          |            |          |
|            |        | veining, 88,70-89,91 tuffaceous few fragments, crenulated locally, LC 800 overall.      |                     |         |             |       |              |          |            |          |
| 89.91      | 89.98  | QFP, fg, light brownish white, whit phencrysts, nil pyrite, nil veining, LC 60-750      |                     |         |             |       |              |          |            |          |
|            |        | opposite direction.                                                                     |                     |         |             |       |              |          |            |          |
| 89.98      | 99.92  | tuff to lapilli tuff, small whitish fragments scattered locally, local crenulations,    |                     |         |             |       |              |          |            |          |
|            |        | scattered chlorite II slip planes heavy 91.82-93.00, nil to rare pyrite fg, bedding     |                     |         |             |       |              |          |            |          |
|            |        | moderate level CA-60o non carbonated, 94.49-95.96 fragmental tuff, 95.96-99.92          |                     |         |             |       |              |          |            |          |
|            |        | tuff locally crenulations, scattered qc st II to contorted bedding, chlorite slip plane |                     |         |             |       |              |          |            |          |
|            |        | 99.97-99.63 white opague qv contacts ground at 30-350, 99.92 LC 45-500.                 |                     |         |             |       |              |          |            |          |
| 99.92      | 100,13 | QFP as above, with grey green inclusions of tuff fragmental, LC 400 sineous trace       |                     |         |             |       |              |          |            |          |
|            |        | sulphides.                                                                              |                     |         |             |       |              |          |            |          |
| 100.13     | 102.14 | tuff as above, crenulated scattered qc stringers II to CA. II to bedding + x-cutting,   |                     |         |             |       |              |          |            |          |
|            |        | local crenulations, chlorite II slip planes 100.57-101.49, increase stringers           |                     |         |             |       |              |          |            |          |
|            |        | 101.49-102.16, kinkled and II to CA LC 60o.                                             |                     |         |             |       |              |          |            |          |

| Property | Hunter M | ine                                                                                  | Hole No. | 34A    |       | Sheet No. | 2        |          |          |          |
|----------|----------|--------------------------------------------------------------------------------------|----------|--------|-------|-----------|----------|----------|----------|----------|
| Mete     | rage     | Description                                                                          |          | Sample |       |           | Assays   |          |          | Assays   |
| From     | То       |                                                                                      | No.      | From   | To    | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 102.14   | 102.26   | atz vein, arevish opaque with talcose inclusions, nil sulphides.                     |          |        |       |           |          |          |          |          |
| 102.26   | 102.6    | fragmental tuff LC slip 70o.                                                         |          |        |       |           |          |          |          |          |
| 102.6    | 104.34   | gtz flood fragmental tuff 103.60-103.70 white translucent qv CA-60+500.              |          |        |       |           |          |          |          |          |
| 104.34   | 106.52   | fragmental tuff.                                                                     |          |        |       |           |          |          |          |          |
| 106.52   | 107.89   | tuff black to black green, laminated with white opague gtz, local crenulations,      | 44968    | 107.0  | 108.0 | 0.96      | 0.01     |          |          |          |
|          |          | scattered pyrite moderately hard LC 700.                                             |          |        |       |           |          |          |          |          |
| 107.89   | 107.96   | mafic dike or baked contact, light to medium grey green, hard, nil stringers, nil    |          |        |       |           |          |          |          |          |
|          |          | sulphides contacts sharp 750.                                                        |          |        |       |           |          |          |          |          |
| 107.96   | 108.34   | silicified zone, silicified tuff or grey porphyry, fg, light grey with medium grey   | 44969    | 108.0  | 108.3 | 0.38      | 0.01     |          |          |          |
|          |          | silicified and siliceous random white qtz st 2-4mm, scattered py, tuff fragments     |          |        |       |           |          |          |          |          |
|          |          | contacts 75+80o.                                                                     |          |        |       |           |          |          |          |          |
| 108.34   | 108.41   | Mmafic dike or baked contact of UM aphanitic tuff, black green, hard, void of        | 44970    | 108.3  | 109.2 | 0.85      | 0        |          |          |          |
|          |          | stringers LC 500.                                                                    |          |        |       |           |          |          |          |          |
| 108.41   | 109.19   | QFP, fg, light to medium grey, siliceous, white 1/2mm feldspar phenocrysts,          |          |        |       |           |          |          |          |          |
|          |          | massive uniform, hard x-cut by random orientated qtz stringers, bleaching well       |          |        |       |           |          |          |          |          |
|          |          | rock buff, scattered mg py in stringers, and fg-mg in porphyryy 1-2%, 109.19         |          |        |       |           |          |          |          |          |
|          |          | veinal contact 80-900.                                                               |          |        |       |           |          |          |          |          |
| 109.19   | 110.04   | tuff fragmental tuff, fg, black to black green, contorted bed locally crenulation    | 44971    | 109.2  | 110.0 | 0.85      | 0        |          |          |          |
|          |          | siliceous banding, irregular mass of qc vein x-cut bed at 109.63-109.65 and          |          |        |       |           |          |          |          |          |
|          |          | 109.72-109.77 70-80o trace to scattered fg py LC sharp 85o                           |          |        |       |           |          |          |          |          |
| 110.04   | 111.48   | silicified zone, similar to 107.96-108.34, probably tuff fragmental, light to medium | 44972    | 110.0  | 111.5 | 1.44      | 0.06     |          |          |          |
|          |          | grey, bleached pale grey by random II and 1-3mm qtz st 1-2% py locally 3% 800        |          |        |       |           |          |          |          |          |
| 111.48   | 112.99   | transition zone, aphanitic to fg, black green, locally section silicified and        | 44973    | 111.5  | 112.2 | 0.76      | 0.09     | 0.1      |          |          |
|          |          | elongated grey qtz probable tuff fragmental, nil to trace pyrite chlorite + pyrite   | 44974    | 112.2  | 112.5 | 0.3       | 0.04     |          |          |          |
|          |          | ff LC sharp CA-60o.                                                                  |          |        |       |           |          |          |          |          |
| 112.99   | 114.75   | QFP, fg to mg, blackish matrix with grey white 1/2mm to 1-2mm feldspar               | 44975    | 112.5  | 113.5 | 0.99      | 0.01     |          |          |          |
|          |          | scattered few angle 2-3mm qtz stringers, hard, massive local sections foliated,      | 44976    | 113.5  | 114.5 | 0.92      | 0        |          |          |          |
|          |          | 112.24-112.54 silicified sections intense qtz stringer II to CA and 25o at LC, UC    | 44977    | 114.5  | 114.8 | 0.3       | 0.06     |          |          |          |
|          |          | 50o, scattered fg py in host + stringers 1-2%, 112.54-113.53 fg few qtz st, 1        |          |        |       |           |          |          |          |          |
|          |          | dark green chlorite inclusion or dike CA 90+80 at 113.33-113.36, scattered vfg fg    |          |        |       |           |          |          |          |          |
|          |          | pyrite <0.5-1%, appears foliated contact CA 80o, 113.53-114.02 foliated              |          |        |       |           |          |          |          |          |
| 112.99   | 114.75   | porphyritic CA 60o, nil pyrite, 114.02-114.45 mg porphyritic, medium to light        |          |        |       |           |          |          |          |          |
|          |          | grey CA 850, 114.45-114.75 cg porphyritic medium to light grey CA 900.               |          |        |       |           |          |          |          |          |
| 114.75   | 129.45   | Laminated Ultramafic Tuffs                                                           |          |        |       |           |          |          |          |          |
| 114.75   | 116.75   | TCS, black green, fragmental tuff to tuff, talcose, moderately soft, local           |          |        |       |           |          |          |          |          |
|          |          | kinkle folding scattered qtz stringers 2-3mm to 1cm usually II to bed 60-780         |          |        |       |           |          |          |          |          |
|          |          | nil to trace py LC sharp 65 to 68o.                                                  |          |        |       |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                  | Hole No: |     | 34A    |        | Sheet No. | 3        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|-----|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | erage    | Description                                                                          | Sample   |     |        |        |           | Assay    |          |          |          |
| From      | To       |                                                                                      | No.      |     | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 116.75    | 119.44   | QFP, as above 116.75-117.13 grading from cg to mg, hard, 117.13-119.20 fg            |          |     |        |        |           |          |          |          |          |
|           |          | porphyritic, rare qtz stringer locally 1mm qtz ff, 119.20-119.38 scattered fg        |          |     |        |        |           |          |          |          |          |
|           |          | mg py 1-2%, 119.38 contact CA-60o, 119.38-119.44 massive dark green                  |          |     |        |        |           |          |          |          |          |
|           |          | chlorite backed contact CA-800 moderatly hard.                                       |          |     |        |        |           |          |          |          |          |
| 119.44    | 128.25   | tuff fragmental tuff, as above, 119.44-121.50 dark green to black green              |          |     |        |        |           |          |          |          |          |
|           |          | crenulated fragmental tuff, qtz flooded from 120.83-121.27, 120.14-120.22            |          |     |        |        |           |          |          |          |          |
|           |          | white opague qv 45+50o x-cut bed, nil to trace sulphides, 121.50-128.25              |          |     |        |        |           |          |          |          |          |
|           |          | light grey to buff or pale greenish buff grey tuff, local crenulations, locally dark |          |     |        |        |           |          |          |          | -        |
|           |          | green talcose, 122.97-123.21, sections scattered chlorite II to 3mm slip             |          |     |        |        |           |          |          |          |          |
|           |          | planes, 123.50 1cm grey translucent qtz st CA-60o, 124.05-124.08 buff                |          |     |        |        |           |          |          |          |          |
|           |          | crenulated tuff, 124.67-124.70 in white q CA-70o irregular, 124.95-125.12            |          |     |        |        |           |          |          |          |          |
|           |          | several qtz veinlets largest 5cm UC 500, 125.12-126.50 medium grey green             |          | _   |        |        |           |          |          |          |          |
|           |          | to dark grey green tuff crenulated 125.80-126.41 small S folds, 125.12-125.80        |          |     |        |        |           |          |          |          |          |
|           |          | fragmental tuff scattered fg py <1%, 126.50 1cm grey white opague +                  |          | _   |        |        |           |          |          |          | · · · ·  |
|           |          | translucent q st CA-750, 126.51-128.25 grading of core.                              |          |     |        |        |           |          |          |          |          |
| 128.25    | 129.2    | FP, light brown altered to grey to greenish tuff fg with chlorite lineations,        | 44       | 978 | 128.25 | 129.2  | 0.95      | 0.31     |          |          |          |
|           |          | foliated moderate devel., tuff inclusions, void of stringers and pyrite, 128.25-     |          |     |        |        |           |          | <u> </u> |          |          |
|           |          | 128.76 grind of core, 129.20 contact 60o.                                            |          |     |        |        |           |          |          |          |          |
| 129.2     | 129.45   | veined alth bleached to buff to tan, brecciated chlorite II healed, brecciated       | 44       | 979 | 129.2  | 129.45 | 0.25      | 0.45     |          |          |          |
|           |          | tuff to fragmental tuff, crispy chocolate brown ff tourmaline, diss. vfg 3-5%        |          |     |        |        |           |          |          |          |          |
|           |          | pyrite and 2-3% vfg fg pyrite in greyish irregular qtz stringer LC ground UC 60      |          |     |        |        |           |          |          |          |          |
| 129.45    | 167.86   | Exhalitic Tuffs and Sedimentary Rocks                                                |          |     |        |        |           |          |          |          |          |
| 129.45    | 131.75   | tuff, 129.45-129.82 dark black green massive tuff, 129.82-130.58 light grey to       | 44       | 980 | 129.45 | 130.58 | 1.13      | 0.01     |          |          |          |
|           |          | buff patchy ivory tuff, scattered <0.5% vfg py, rare stringers qtz from 130.30-      | 44       | 981 | 130.58 | 131.75 | 1.17      | 1.03     | 0.79     |          |          |
|           |          | 130.45 1-2mm with bleaching on 1-2% vfg fg pyrite, 130.58-130.99 light grey          |          |     |        |        |           |          |          |          |          |
|           |          | nil to weak patchy to pervasive sericitic altn, pale buff pale green altn of         |          |     |        |        |           |          |          |          |          |
|           |          | silicified section 130.80-130.88, 130.99-131.75 same as 129.82-130.58,               |          | _   |        |        |           |          |          |          |          |
|           |          | light grey to buff, locally 2-3% vfg py LC 60o crispy brown tourmaline II to bed     |          |     |        |        |           |          |          |          |          |
| 131.75    | 132      | felsic dike, aphanitic, pale grey with faint purple tint, hard, veining qtz stringer | 44       | 982 | 131.75 | 132    | 0.25      | 1.86     | 1.95     |          |          |
| 131.75    | 132      | with fg-mg pyrite masses, wispy pyrite stringer near UC, LC 70-750.                  |          |     |        |        |           |          |          |          |          |
| 132       | 132.39   | fragmental tuff bed 550.                                                             | 44       | 983 | 132    | 133.08 | 1.08      | 0.47     |          |          |          |
| 132.39    | 132.43   | very fuchsite siliceous tuff.                                                        |          |     |        |        |           |          |          |          |          |
| 132.43    | 132.64   | dark grey tuff, LC 70o.                                                              |          |     |        |        |           |          |          |          |          |
| 132.64    | 136      | silicified and veined qtz flood tuff, scattered vfg fg py locally contorted,         | 44       | 984 | 133.08 | 133.54 | 0.46      | 0.11     |          |          |          |
|           |          | 133.07-133.17 fuchsite silicified tuff scattered fg ng py 1% 55o LC, 133.25-         | 44       | 985 | 133.54 | 135    | 1.46      | 0.01     |          |          |          |
|           |          | 133.53 qtz veined zone, grey opague random with lumpy chocolate brown                | 44       | 986 | 135    | 136    | 1         | 0        |          |          |          |
|           |          | tourmaline, altn to medium brown, 133.53-134 large fold bedding II to CA at          |          |     |        |        |           |          |          |          |          |

| Property | Hunter M | ine                                                                              | Hole No. | 34A    |        | Sheet No. | 4        |          |          |          |
|----------|----------|----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Meter    | rage     | Description                                                                      |          | Sample |        |           | Ass      | ay       |          |          |
| From     | To       |                                                                                  | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | 133.78, 134.0-136.0 crenulated with S folds qtz flooded to light                 |          |        |        |           |          |          |          |          |
|          |          | medium brown, LC irregular 40o.                                                  |          |        |        |           |          |          |          |          |
| 136      | 137.43   | dark black green fragmental tuff, contorted bedding rare 1cm qtz stringer        | 44987    | 136    | 137.43 | 1.43      | 0.01     |          |          |          |
|          |          | trace ng py LC 80o.                                                              |          |        |        |           |          |          |          |          |
| 137.43   | 149.53   | light medium grey tuff massive uniform to light greenish medium grey, trace      | 44988    | 137.43 | 138.93 | 1.5       | 0.02     |          |          |          |
|          |          | pyrite, 140.49-140.56 siliceous zone weak sericitic altn with grey opague qtz    | 44989    | 138.93 | 140.43 | 1.5       | 0        |          |          |          |
|          |          | veining 140.52-140.56, CA 80o scattered pyrite, 140.65-140.70 same as            | 44990    | 140.43 | 141.13 | 0.7       | 0.01     |          |          |          |
|          |          | 140.49-140.56 pale green, 140.70 1cm grey to pale brown qtz st CA 550            | 44991    | 141.13 | 141.8  | 0.67      | 0.01     |          |          |          |
|          |          | with opposite direction, 141.13-141.20 greyish aphanitic felsic dike, trace      | 44992    | 141.8  | 143    | 1.2       | 0        |          |          |          |
|          |          | to <0.5% py CA-80o brecciated qtz 1-2mm healed, 141.23-141.41 qtz st             | 44993    | 143    | 144    | 1         | 0.03     |          |          |          |
|          |          | zone pale buff, grey opague with chocolate brown tormaline and white grey,       | 44994    | 144    | 145.43 | 1.43      | 0        |          |          |          |
|          |          | LC II to bed CA 75o, 141.50-141.79 light grey tuff with white grey opague qtz    | 44995    | 145.43 | 145.88 | 0.45      | 0        |          |          |          |
|          |          | veinlets 1.5 and 2cm at contacts, 143-144 numerous chlorite II 1-3mm slip        | 44996    | 145.88 | 146.53 | 0.65      | 0        |          |          |          |
|          |          | planes 250-350, 144.09-144.19 grey siliceous vein with tuff inclusions, trace    | 44997    | 146.53 | 147.38 | 0.85      | 0.09     | 0.07     |          |          |
|          |          | to nil py, 45o and 70o sinuous contacts, 144.66-145.23 qtz flooded, light        | 44998    | 147.38 | 148.03 | 0.65      | 0        |          |          |          |
|          |          | medium grey tuff, scattered to nil pyrite, 145.43 irregular grey translucent qtz | 44999    | 148.03 | 149.53 | 1.5       | 0        |          |          |          |
|          |          | st 1-1 1/2cm irregular, 145.88-146.53 silicified zone few irregular grey         |          |        |        |           |          |          |          |          |
|          |          | translucent qtz stringer with 146.17-146.34 white translucent qtz st II to CA    |          |        |        |           |          |          |          |          |
|          |          | on edge of core, 146.22-146.27 brecclated zone buff to light brown fragments     |          |        |        |           |          |          |          |          |
|          |          | healed greyish and blackish silicin, contacts 75o+70o, 146.53-147.38 grey        |          |        |        |           |          |          |          |          |
|          |          | green, tuff and veined tuff fragmental, 146.95-147.38 with scattered fg py 60o   |          |        |        |           |          |          |          |          |
|          |          | 80o contacts, 147.38-148.30 light brownish grey, fg massive poor devel. of bed   |          |        |        |           |          |          |          |          |
|          |          | tuff fragmental, 148.09-148.30 irregular S shaped UC to sineous LC 500 qtz       |          |        |        |           |          |          |          |          |
|          |          | masses and stringer, 148.30-149.53 fragmental tuff light grey to light greenish  |          |        |        |           |          |          |          |          |
|          |          | grey.                                                                            |          |        |        |           |          |          |          |          |
| 149.53   | 150.73   | siliceous q breccia zone, 149.53-149.70 buff brecciated fragments with grey      | 45000    | 149.53 | 150.73 | 1.2       | 0.01     |          |          |          |
|          |          | to brownish grey siliceous matrix, 149.70-149.75 medium brown siliceous,         |          |        |        |           |          |          |          |          |
|          |          | 149.75-150.27 grey and white brecciated qv healed witle unspz ff chocolate       |          |        |        |           |          |          |          |          |
|          |          | brown tourmaline x-cut by white 1cm qv CA 45o at 149.82-149.84, 149.92           |          |        |        |           |          |          |          |          |
|          |          | 1/2cm grey white qtz st CA33o, 150.27-150.30 medium brown siliceous,             |          |        |        |           |          |          |          |          |
|          |          | 150.30-150.73 brecciated buff fragments healed with chocolate brown              |          |        |        |           |          |          |          |          |
|          |          | siliceous 150.53 chlorite and white qtz stringer 1/2 to 1cm CA 30o terminates    |          |        |        |           |          |          |          |          |
|          |          | 1/2 white qtz stringer at 10o 150.53-150.66, 150.73 irregular CA 40-60o.         |          |        |        |           |          |          |          |          |
| 150.73   | 151.67   | light grey tuff rare st 150.74 1cm bed 78o, 150.90 1cm grey opague 75o.          | 43001    | 150.73 | 151.67 | 0.94      | 0.02     |          |          |          |
| 151.67   | 152.19   | pale green, scattered fuchsite tuff 151.76 1cm white opague and grey             | 43002    | 151.67 | 152.19 | 0.52      | 0.02     |          |          |          |
|          |          | translucent st q 80o II to bed, 151.84 3mm siliceous and fuchsite x-cut bed      |          |        |        |           |          |          |          |          |
|          |          | 75o, scattered mg py.                                                            |          |        |        |           |          |          |          |          |

| Property | Hunter M |                                                                                  | Hole No. | 34A    |        | Sheet No. | 5        |          |          |         |
|----------|----------|----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|---------|
| Mete     | erage    | Description                                                                      |          | Sample |        |           | Assa     | /        |          |         |
| From     | To       |                                                                                  | No       | From   | To     | Width     | Au (0/t) | Aucheck  | Au (2nd) | Aucheck |
| 152 10   | 152.82   | light grey green tuff                                                            | 43003    | 152 10 | 152.82 | 0.63      | 0.01     | Au onook |          | AUGIOOK |
| 152.10   | 152.02   | moderate to strong parioitic alte to pale grean and modium grou natabu tuff      | 43003    | 152.13 | 152.02 | 0.03      | 0.01     |          |          |         |
| 152.62   | 155.19   | functionale to strong sending land and to pale green and medium grey patchy tun  | 43004    | 152.02 | 153.20 | 0.44      | 0.02     |          |          |         |
| 454.90   | 455 70   | ruchsite tierks bedoing laminated the CA 850.                                    | 10007    |        |        |           |          |          |          |         |
| 154.30   | 155.73   | pale greenish light grey to light brownish grey tuff healed crenulated well      | 43007    | 154.36 | 155    | 0.64      | 0.55     | 0.52     |          |         |
|          |          | laminated tuff, occasional py laminations, overall 1-2% vfg fg py locally 3-5%.  |          |        |        |           |          |          |          |         |
| 155.73   | 156.27   | hard to moderate hard, light grey tuff.                                          | 43008    | 155    | 156.5  | 1.5       | 0.03     |          |          |         |
| 156.27   |          | medium grey crenulated tuff with qtz st minor pyrite.                            |          |        |        |           |          |          |          |         |
| 156.5    | 160.95   | pale green grey, tuff with scattered fragments, scattered patchy weak            | 43009    | 156.5  | 158    | 1.5       | 0.02     |          |          |         |
|          |          | moderate sericitic, minor crenulations, blobs of gtz, rare gtz stringer.         | 43010    | 158    | 159    | 1         | 0.02     |          |          |         |
|          |          | scattered trace pyrite, 159.35 1cm white grey translucent gtz st sinuous         | 43011    | 159    | 160    | 1         | 0.02     |          |          |         |
|          |          | overall 200, 160,33 Il brown gtz st pv CA 450 x-cuts bed, 160,42 CA 500          | 43012    | 160    | 160.05 | 0.05      | 0.02     |          |          |         |
|          |          | 160 58 CA 400 opposite direction 160 71 CA 650 chlorite block II                 | 43012    | 100    | 100.95 | 0.95      | 0.19     |          |          |         |
| 160.95   | 161 01   | breccipted sections bealed with area at and dark brown steined                   | 42042    | 400.05 | 101.50 |           |          |          |          |         |
| 100.30   | 101.81   | preciated sections nealed with grey diz and dark brown stained,                  | 43013    | 160.95 | 161.56 | 0.61      | 0.62     | 0.65     |          |         |
| 404.04   | 400.00   | scattered pyrite.                                                                |          |        |        |           |          |          |          |         |
| 161.91   | 162.09   | greyish white qtz vein 650-750 scattered pyrite.                                 | 43014    | 161.56 | 162.58 | 1.02      | 0.37     |          |          |         |
| 162.09   | 162.58   | brecciated tuff healed grey white qtz trace to scattered pyrite.                 |          |        |        |           |          |          |          |         |
| 162.58   | 164.04   | silicic tuff scattered fragments usually buff, weak bedding due to qtz flooding. | 43015    | 162.58 | 164.04 | 1.46      | 0.13     |          |          |         |
| 164.04   | 164.35   | brecciated grey qtz.                                                             | 43016    | 164.04 | 164.35 | 0.31      | 0.12     |          |          |         |
| 164.35   | 164.93   | atz flood tuff fragments light grey pale green with buff pale vellow fragments.  | 43017    | 164 35 | 164 93 | 0.58      | 0.04     |          |          |         |
|          |          | 164,75-164,80 silicified grey section 700 with py blobs and stringers CA 650     |          |        | 104.00 | 0.00      | 0.04     |          |          |         |
| 164 93   | 165.26   | brecciated grey atz vain blackieb brown at lower and                             | 42019    | 164.02 | 100    | 4.07      | 0.04     |          |          |         |
| 165.26   | 166.93   | pole howsigh group tuff at flooded 165 40 1 2 while translucent at CA            | 43010    | 104.93 | 100    | 1.07      | 0.01     |          |          |         |
| 105.20   | 100.00   | pale brownish green full qtz hooded, 165.42 1.2 white translucent qtz CA-        | 43019    | 166    | 166.83 | 0.83      | 0.01     |          |          |         |
| 100 00   | 100.01   | 10-150 to 300 other end at 165./1.                                               |          |        |        |           |          |          |          |         |
| 166.83   | 167.24   | blackish tint to medium green tuff to grey green, 167.04-167.23 1cm grey         | 43020    | 166.83 | 167.24 | 0.41      | 0        |          |          |         |
|          |          | transiucent gtz CA 150.                                                          |          |        |        |           |          |          |          |         |
| 167.24   | 167.86   | weak to moderately patchy sericitic alth with irregular masses and kwinkled      | 43021    | 167.24 | 167.86 | 0.62      | 0        |          |          |         |
|          |          | folded 1cm grey white qtz stringers.                                             |          |        |        |           |          |          |          |         |
|          | 167.86   | END OF HOLE                                                                      |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        | -         |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          | -        |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|          |          |                                                                                  |          |        |        |           |          |          |          |         |
|           |        | HunterMine - Diamond                                                                  | Drill Log HM-04 | -35     |             |       |            |          |          |          |
|-----------|--------|---------------------------------------------------------------------------------------|-----------------|---------|-------------|-------|------------|----------|----------|----------|
| Property: |        | Hunter Mine                                                                           | Hole Dip:       | -75     | Page No.    | :     | 1 of 11    |          |          |          |
| Location: |        |                                                                                       | Hole Azimuth:   | 1050    | Date Star   | ted:  | July 15/04 |          |          |          |
| Claim No  | :      | HR 1009                                                                               | Hole Length:    | 248.87m | Date Finis  | shed: | July 19/04 |          |          |          |
| Elevation | :      | Porcupine Lake                                                                        | Purpose:        |         | Drill Co .: |       | Benoit     |          |          |          |
| UTM Coo   | ords.: | 5370818.4N, E487097.3                                                                 |                 |         | Logged b    | y:    | K. Jensen  |          |          |          |
| Mete      | rage   | Description                                                                           |                 |         | Sample      |       |            | Assays   |          |          |
| From      | То     |                                                                                       | No.             | From    | To          | Width | Au (g/t)   | Au check | Au (2nd) | Au check |
| 0.0       | 75.0   | Casing 0.00-54.0, water and overburden water to11.5', 54-75 reamed.                   |                 |         |             |       |            |          |          |          |
| 75.0      |        | Ultramafic Talcose Rocks                                                              |                 |         |             |       |            |          |          |          |
| 75.0      | 98.6   | Umafic, same as usual, black to black green, moderately soft, talcose, non            |                 |         |             |       |            |          |          |          |
|           |        | magnetic, massive to brecciated, 2-5 qtz stringers / meter, fg, nil to weak schist,   |                 |         |             |       |            |          |          |          |
|           |        | 75.0-79.15 brecciated, contorted schist large angular fragments, trace pyrite         |                 |         |             |       |            |          |          |          |
|           |        | occasional cg pyrite cubes, 79.15 50-60o, 79.15-84.85 massive, uniform, locally       |                 |         |             |       |            |          |          |          |
|           |        | carbonated veining random overall with fragments, nil schistosity, 84.85-92.80        |                 |         |             |       |            |          |          |          |
|           |        | brecciated massive, intensely Bx with carbonate filling usually 1-2cm angular         |                 |         |             |       |            |          |          |          |
|           |        | fragments, local devel. of schist at 50-550 at 92.5, void of distinct veining, 92.80- |                 |         |             |       |            |          |          |          |
|           |        | 94.48 fragmental tuff to brecciated fragments, void of distinct veining, locally      |                 |         |             |       |            |          |          |          |
|           |        | moderately devel. schist 25-30o 93.20-93.94, 93.94-94.48 contorted schistosty,        |                 |         |             |       |            |          |          |          |
|           |        | LC broken                                                                             |                 |         |             |       |            |          |          |          |
| 94.48     | 133.8  | Laminated Ultramafic Tuff                                                             |                 |         |             |       |            |          |          |          |
| 94.48     | 95     | crenulated tuff, well devel. bed & schist. 750, 95.0-96.38                            |                 |         |             |       |            |          |          |          |
|           |        | fragmental tuff contorted schist. locally, 96.38-96.89 foliated massive mg to cg      |                 |         |             |       |            |          |          |          |
|           |        | porphyritic texture LC ground, 96.89-97.18 white opague qv wiyh talcose inclusion     |                 |         |             |       |            |          |          |          |
|           |        | nil sulphides, 97.18-97.33 silicified talcose fragmental, 97.33-97.91 massive weak    |                 |         |             |       |            |          |          |          |
|           |        | to weak moderate level of foliation, scattered 1-2mm carbonated st CA 40-450          |                 |         |             |       |            |          |          |          |
|           |        | II to foliated, 97.91-98.21 brecciated tuffaceous, 98.21-98.55 massive low foliation  |                 |         |             |       |            |          |          |          |
|           |        | LC 15o x-cut undertion tuff with bed CA-50o.                                          |                 |         |             |       |            |          |          |          |
| 98.55     | 99.5   | fragmental tuff brecciated healed with random orientated qtz stringers.               |                 |         |             |       |            |          |          |          |
| 99.5      | 99.8   | crenulated tuff                                                                       |                 |         |             |       |            |          |          |          |
| 99.8      | 102.05 | qtz flood tuff, grey green to medium green random white opague 1-4mm qtz st           |                 |         |             |       |            |          |          |          |
|           |        | scattered fg py 102.05 LC irregular 50-550.                                           |                 |         |             |       |            |          |          |          |
| 102.05    | 108.4  | light to medium grey with greenish tint, tuff, moderately hard to moderately soft,    | 43022           | 106.34  | 107         | 0.66  | 0.05       |          |          |          |
|           |        | with chlorite II slips planes, 1-4mm white opague qtz st, with occasional white       | 43023           | 107     | 108.4       | 1.4   | 0          |          |          |          |
|           |        | translucent qtz veinlets 1/2cm to 1cm, 103.55 CA 45o II to bed, 103.76 1.5cm          |                 |         |             |       |            |          |          |          |
|           |        | CA-500, 103.96 irregular 1cm + py II to crenulated tuff, 104.25-104.29 CA-350,        |                 |         | -           |       |            |          |          |          |
|           |        | 104.89 II to bed 43o, 105.44 1cm CA-40o, 106.12-106.39 irregular gtz veining with     |                 |         |             |       |            |          |          |          |
|           |        | contorted black green tuff CA-15+450, 106.39-108.40 tuff to tuffaceous fragmental     |                 |         |             |       |            |          |          |          |
|           |        | qtz flooded locally crenulated tuff, grey white translucent qtz st 1/2-1.5cm LC 200   |                 |         |             |       |            | _        |          |          |

| Property | Hunter M | ine                                                                                | Hole No. | 35     |        | Sheet No. | 2        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete     | rage     | Description                                                                        |          | Sample |        |           |          | Assay    | •        |          |
| From     | To       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au Check | Au (2nd) | Au check |
| 108.4    | 111      | mafic metavolcanics, fg to aphanitic, light green at upper contact, to blackish    | 43024    | 108.4  | 109    | 0.6       | 0.15     | 0.14     |          |          |
|          |          | green locally medium green chlorite, massive, brecciated, very hard silicified     | 43025    | 109    | 110    | 1         | 0.04     |          |          |          |
|          |          | gtz filled breccia with grey translucent, greyish brown with vfg py, white         | 43025    | 110    | 111    | 1         | 0.03     |          |          |          |
|          |          | opague gtz st generally 1-2mm few up to 1/2cm are above 1cm, nil to very           |          |        |        |           |          |          |          |          |
|          |          | weak devel. of schistosty, non magnetic, non carbonate, 108.40-111.0               |          |        |        |           |          |          |          |          |
|          |          | massive, 1-2% vfg fg overall, locally 3-5% 108.94-110.0.                           |          |        | _      |           |          |          |          |          |
| 111      | 113.03   | tuff fragmental to fragmental flow top, scattered vfg py, 111.93-112.04 contact    | 43027    | 111    | 111.98 | 0.98      | 0.01     |          |          |          |
|          |          | bleaching dark brown, 112.04-112.33 gtz veinlets brecciated with alth brown        | 43028    | 111.98 | 112.33 | 0.35      | 0.01     |          |          |          |
|          |          | inclusions tuffaceous 1-2% vfg py.                                                 | 43029    | 112.33 | 113.15 | 0.82      | 0.01     |          |          |          |
| 113.03   | 114.9    | silicified tuff, with rare grey brown gtz veinlet randomly overlated x-cut locally | 43030    | 113.15 | 114    | 0.85      | 0.02     |          |          |          |
|          |          | by greyish white translucent qtz st, tuff 1-2% vfg py, brownish scattered to       | 43031    | 114    | 114.9  | 0.9       | 0.03     |          |          |          |
|          |          | 1%, white 113.39-113.60 with scattered fg py splashes of chalcopyrite and          |          |        |        |           |          |          |          |          |
|          |          | vfg masses of pyrrhotite irregular CA-20+15o, 113.15-113.30 bleached light         |          |        |        |           |          |          |          |          |
|          |          | brown by irregular white opague gtz st at 113.21-113.25, UC 35o II to bed,         |          |        |        |           |          |          |          |          |
|          |          | 114.12 1/2cm grey white translucent II to bed 250, 114.58-114.85 light grey        |          |        |        |           |          |          |          |          |
|          |          | tuff with black green talcose LC 450 bed 300, 114.75 2cm buff white opague         |          |        |        |           |          |          |          |          |
|          |          | gtz v CA-47o, 114.40 LC contact CA-30o.                                            |          |        |        |           |          |          |          |          |
| 114.9    | 237.47   | Exhalitic Tuffs and Sedimentary Rocks                                              |          |        |        |           |          |          |          |          |
| 114.9    | 115.45   | fragmental tuff, moderately hard to hard to 115.04 grey green, gtz flood with      | 43032    | 114.9  | 115.45 | 0.55      | 0        |          |          |          |
|          |          | pale brownish white opague gtz, trace pyrite, LC 45 with gv 1 1/2.                 |          |        |        |           |          |          |          |          |
| 115.45   | 116.93   | tuff with occasional white fragments, grey green, brecciated tuff, siliceous,      | 43033    | 115.45 | 116.93 | 1.48      | 0        |          |          |          |
|          |          | gtz st, grey to pale brownish grey 10-15m, locally crenulated with chlorite II     |          |        |        |           |          |          |          |          |
|          |          | slip planes, scattered pyrite fg, moderately hard st usually II to bed, follows    |          |        | -      |           |          |          |          |          |
|          |          | crenulation, white translucent rare + x-cut bed, LC ground.                        |          |        |        |           |          |          |          |          |
| 116.93   | 118.1    | fragmental tuff, fg altn light brown to 117.17 felsic tuff fregmental, sinuous     | 43034    | 116.93 | 118.1  | 1.17      | 0        |          |          |          |
|          |          | CA 65-550 dark green light grey laminated fragmental tuff, rare gtz st,            |          |        |        |           |          |          |          |          |
|          |          | scattered pyrite LC 700 sineous.                                                   |          |        | _      |           |          |          |          |          |
| 118.1    | 118.93   | white translucent qtz vein with pale brown inclusions and grey green altn          | 43035    | 118.1  | 118.71 | 0.61      | 0.01     |          |          |          |
|          |          | chlorite nil sulphides LC ground.                                                  |          |        |        |           |          |          |          |          |
| 118.93   | 119.79   | chlorite crenulated locally, tuff, thin laminations, 119.11 1/2cm grey opague      | 43036    | 118.71 | 119.79 | 1.08      | 0        |          |          |          |
|          |          | gtz st CA-650 119.09-119.29 white translucent gtz st on side of core LC            |          |        |        |           |          |          |          |          |
|          |          | 75-80o 119.65 light brown felsic.                                                  |          |        |        |           |          |          |          |          |
| 119.79   | 120.5    | fg, light brownish altn, locally greyish brown with black to black green chlorite  | 43037    | 119.79 | 120.5  | 0.71      | 0.01     |          |          |          |
|          |          | schist tuff inclusions, random orientated 1-2mm up to 1cm qtz white                |          |        |        |           |          |          |          |          |
| 119.79   | 120.5    | translucent stringer usually II to CA to 70-750, scattered pyrite in felsic dike.  |          |        |        |           |          |          |          |          |
|          |          | trace to scattered upper part 119.79-120.0 with 2-3% fg locally LC 50-55o irr.     |          |        |        |           |          |          |          |          |
| 120.5    | 121.5    | black to black green crenulated tuff with 1m-4m chlorite II slip planes,           | 43038    | 120.5  | 121.5  | 1         | 0        |          |          |          |

-

| Property | Hunter M | ine                                                                                | Hole No. | 35            |        | Sheet No. | 3        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------|----------|---------------|--------|-----------|----------|----------|----------|----------|
| Me       | terage   | Description                                                                        |          | Sample        |        |           |          | Assay    |          |          |
| From     | To       |                                                                                    | No.      | From          | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | scattered pyrite near contacts, 120.54 3-4cm white opague qv CA 60o, void          |          |               |        |           |          |          |          |          |
|          |          | of stringers LC irregular 350.                                                     |          |               |        |           |          |          |          |          |
| 121.5    | 122.75   | same as 119.79-120.5, up to 123.06 trace pyrite, 123.06-123.37 scattered           | 43039    | 121.5         | 122.75 | 1.25      | 0.01     |          |          |          |
|          |          | sections of fg pyrite overall 1%, 123.37-123.51 tuff inclusions chlorite irregular |          |               |        |           |          |          |          |          |
|          |          | masses black, 123.46-122.75 hydro fracturing, qtz ff, random qtz st 3-5mm          |          |               |        |           |          |          |          |          |
|          |          | 122.75 irregular qtz veinlets 5cm LC 350.                                          |          |               |        |           |          |          |          |          |
| 122.75   | 125.63   | silicified medium grey felsic dike, nil to very poorly devel. foliation with minor | 43040    | 122.75        | 123.84 | 1.09      | 0.08     | 0.05     |          |          |
|          |          | inclusions of black green tuff, several white to white grey opague qtz stringer    | 43041    | 123.84        | 124.67 | 0.83      | 0.04     |          |          |          |
|          |          | usually at 600, mumerous white II and brecciated filled qtz stringers, random      | 43042    | 124.67        | 125.63 | 0.96      | 0.08     |          |          |          |
|          |          | irregular 1-3mm and irregular mass breccia vein 123.33-123.38 CA-55o small         |          |               |        |           |          |          |          |          |
|          |          | 1-3mm qtz stringer fg py CA-350,250,500, level sections altn to pale               |          |               |        |           |          |          |          |          |
|          |          | brownish grey, scattered 1-2% fg py locally 3-5%, 125.40 altn contact 550          |          |               |        |           |          |          |          |          |
|          |          | LC CA broken + ground.                                                             |          |               |        |           |          |          |          |          |
| 125.63   | 127.2    | very hard to hard, silicified brecciated tuff fragmental contorted bed to 126.62   | 43043    | 125.63        | 126.63 | 1         | 0        |          |          |          |
|          |          | qtz flood to 127.20 void of stringers, nil to trace py, LC ground.                 | 43044    | 126.63        | 127.2  | 0.57      | 0        |          |          |          |
| 127.2    | 130.19   | moderate hard, tuff to fragmental tuff, medium grey green to medium greenish       | 43045    | 127.2         | 128    | 0.8       | 0        |          |          |          |
|          |          | grey locally crenulated tuff, distorted bedding, 128.0-128.09 light brownish to    | 43046    | 128           | 129    | 1         | 0        |          |          |          |
|          |          | brownish grey felsic dikelet CA-40o, note 126-128 41cm ground lost, 128.86-        | 43047    | 129           | 129.27 | 0.27      | 0.04     |          |          |          |
|          |          | 129.0 greyish siliceous bands with 1-3% scattered fg py CA 550 curved,             | 43048    | 129.27        | 130.07 | 0.8       | 0        |          |          |          |
|          |          | 129.0-129.27 light greyish light brown felsic dike with tuff inclusions 129.17-    |          |               |        |           |          |          |          |          |
|          |          | 129.22 CA 73o irregular LC irregular 60-70o medium brown 129.22-129.27,            |          |               |        |           |          |          |          |          |
|          |          | 130.07-130.19 felsic dike light brown, siliceous with irregular white qtz and      |          |               |        |           |          |          |          |          |
|          |          | grey white qtz stringers, 130.31-130.40 white translucent qtz vein with            |          |               |        |           |          |          |          |          |
|          |          | chlorite inclusions CA irregular 60o, 130.42-130.55 same as 130.31-130.40.         |          |               |        |           |          |          |          |          |
| 130.19   | 132.68   | black green fg with grey siliceous brecciations occasional fragment, small S       | 43049    | 130.07        | 130.55 | 0.48      | 0        |          |          |          |
|          |          | folds, local crenulations, local bed well level CA-650 trace to scattered py,      | 43050    | 130.55        | 131.65 | 1.1       | 0        |          |          |          |
|          |          | void of stringers except 130.31-130.40 and 130.47-130.55, LC 70o.                  | 43051    | <u>131.65</u> | 132.68 | 1.03      | 0.09     |          |          |          |
| 132.68   | 133.4    | black green very contorted bedding S folds.                                        | 43052    | 132.68        | 134.02 | 1.34      | 0        |          |          |          |
| 133.4    | 134.02   | black green with grey laminations minor crenulations and chlorite II slip plane    |          |               |        |           |          |          |          |          |
|          |          | CA-30-45o, LC altn 75o.                                                            |          |               |        |           |          |          |          |          |
| 134.02   | 136.32   | light medium green, tuffaceous to 134.90 more massive poorly devel. bed sch. to    | 43053    | 134.0         | 135.0  | 0.98      | 0        |          |          |          |
|          |          | 136.32, weak pervasive sericitic altn, LC 730, fg massive ivory qtz st CA-600.     | 43054    | 135.0         | 136.3  | 1.32      | 0.18     |          |          |          |
| 136.32   | 140.2    | fg, light medium green to medium green to grey green, well devel. bedding locally  | 43055    | 136.3         | 137.8  | 1.48      | 0        |          |          |          |
|          |          | brecciated, chlorite ff slip planes 139.73-140.64, locally fragmental, grey white  | 43056    | 137.8         | 139.3  | 1.5       | 0        |          |          |          |
|          |          | qtz stringer at 137.57 opalescence 1/2cm, ground core, 138.54-138.57 CA-85o        | 43057    | 139.3         | 140.4  | 1.1       | 0        |          |          |          |
|          |          | x-cut bed CA-65o, 139.55-139.60 II to contorted bedding 70o+35o, scattered fg      |          |               |        |           |          |          |          |          |
|          |          | py, few 2-3mm masses of py, weak to moderately weak patchy to locally              |          |               |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                  | Hole No. | 35     |        | Sheet No. | 4        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                          |          | Sample |        |           | Assay    | S        |          |          |
| From      | To       |                                                                                      | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 140.2     | 142      | greywacke siliceous laminations locally pale grey to medium grey green, hard         | 43058    | 140.4  | 141.5  | 1.08      | 0.01     |          |          |          |
|           |          | well level 570-470.                                                                  | 43059    | 141.5  | 142.8  | 1.29      | 0.01     |          |          |          |
| 142       | 142.77   | qtz flooded light grey green to medium green, fragmental tuff, trace pyrite, grey    |          |        |        |           |          |          |          |          |
|           |          | white qtz stringer mostly II to contorted bedding, few x-cut bedding.                |          |        |        |           |          |          |          |          |
| 142.77    | 144.64   | light grey green, local buff fragments, fragmental tuff to tuff, 142.77-143.13 heavy | 43060    | 142.8  | 144.0  | 1.23      | 0.01     |          |          |          |
|           |          | veining and grey white qtz masses, 143.13-143.51 scattered irregular grey white      | 43061    | 144.0  | 144.6  | 0.64      | 0.01     | 0        |          |          |
|           |          | atz stringer contorted x-cut bedding, bedding tuff crenulated with 1mm chlorite      |          |        |        |           |          |          |          |          |
|           |          | ff slip, 143.51-143.69 1/2-1cm grey whit qtz string x-cut bed and II to CA trace     |          |        |        |           |          |          |          |          |
|           |          | pyrite, 143.69-143.94 qtz white vein with medium green tuff inclusions CA-70-60      |          |        |        |           |          |          |          |          |
|           |          | irregular, 143.94-144.64 medium green weak pervasive sericitic altn contorted        |          |        |        |           |          |          |          |          |
|           |          | crenulated tuff with 1-2mm scattered qtz st x-cut bedding, 144.14-144.16             |          |        |        |           |          |          |          |          |
|           |          | irregular grey white translucent qtz st CA-80o 144.64 contact sharp CA 65o irreg     |          |        |        |           |          |          |          |          |
| 144.64    | 145.5    | qtz vein. Brown tourmaline, fg to aphanitic, light to pale brown, with 2-3mm white   | 43062    | 144.6  | 145.5  | 0.86      | 0        |          |          |          |
|           |          | ghost phenocryst, aimilar to 121.5-122.75 and 119.79-120.5, minor chlorite II,       |          |        |        |           |          |          |          |          |
|           |          | few grey white qtz stringers 2-4mm with chocolate II tourmaline, scattered vfg fg    |          |        |        |           |          |          |          |          |
|           |          | py, 144.86-145.03 medium grey white 3-4mm white phenocryst ghosts,                   |          |        |        |           |          |          |          |          |
|           |          | moderately devel. foliation CA-450 UC-500 LC irregular, 145.03-145.07 white          |          |        |        |           |          |          |          |          |
|           |          | translucent qtz v CA-450 irregular, 145.50 irregular CA-600.                         |          |        |        |           |          |          |          |          |
| 145.5     | 147.83   | light grey green to medium green patchy weak sericitic tuff, crenulated locally      | 43063    | 145.5  | 146.3  | 0.8       | 0        |          |          |          |
|           |          | with 1m chlorite II slips few grey contorted 3-5mm qtz stringers.                    | 43064    | 146.3  | 146.8  | 0.5       | 0        |          |          |          |
| 147.83    | 148.15   | fragmental tuff light grey green to medium green patchy sericitic altn LC 400        | 43065    | 147.8  | 149.2  | 1.35      | 0.01     |          |          |          |
| 148.15    | 148.24   | light brown qtz vein with inclusions irregular trace pyrite.                         |          |        |        |           |          |          |          |          |
| 148.24    | 149.18   | fg laminated crenulated tuff void of stringers weak pervasive sericite.              |          |        |        |           |          |          |          |          |
| 149.18    | 150.63   | light greenish to medium greyish green with qtz grey laminated tuff, locally         | 43066    | 149.2  | 150.2  | 1.02      | 0.02     |          |          |          |
|           |          | crenulated weak patchy sericitic altn, 150.20-150.33 greyish felsic band with        | 43067    | 150.2  | 150.6  | 0.43      | 0.02     |          |          |          |
| 149.18    | 150.63   | weak sericitic tuff inclusions, 150.34 1/2cm greyish white opalescence qtz st        |          |        |        |           |          |          |          |          |
|           |          | CA-50o, 150.34 1/2cm greyish white translucent qtz st CA-25o both x-cut              |          |        |        |           |          |          |          |          |
|           |          | bed 650, 150.52-150.57 light brown to buff qtz vein scattered vfg py CA-800          |          |        |        |           |          |          |          |          |
|           |          | 40o slips, 150.63 contact CA sharp 70o.                                              |          |        |        |           |          |          |          |          |
| 150.63    | 150.8    | felsic hydro fractured dike possible massive ash tuff, fg to aphanitic, medium       | 43068    | 150.63 | 150.8  | 0.17      | 0        |          |          |          |
|           |          | grey, massive uniform with pale yellowish green II hydro fractions with              |          |        |        |           |          |          |          |          |
|           |          | chalcopyrite void of laminations, schistosty etc, void of normal qtz st, hard to     |          |        |        |           |          |          |          |          |
|           |          | very hard, siliceous, non magnetic, non carbonated, matrix has vfg to fg py          |          |        |        |           |          |          |          |          |
|           |          | 3-5% overall LC CA-80o.                                                              |          |        |        |           |          |          |          |          |
| 150.8     | 151.22   | very simular to 150.63-150.80 both with fragments, well level bedding CA-75o         | 43069    | 150.8  | 151.22 | 0.42      | 0.27     | 0.27     |          |          |
|           |          | chlorite filling between fragments and layers, scattered fg py and occasional        |          |        |        |           |          |          |          |          |
|           |          | 1mm bands, felsic fragmental tuff, overall 2-3% pyrite, 151.22 contact sharp         |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 35     |        | Sheet No. | 5        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                        | Samp     | le     |        |           | As       | say      |          |          |
| From      | To       |                                                                                    | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | CA 550-570.                                                                        |          |        |        |           |          |          |          |          |
| 151.22    | 151.42   | grevish brown alth fragmental terminates in chloritic tuff UC at 700. If to        | 43070    | 151.22 | 151.85 | 0.63      | 0        |          |          |          |
|           |          | CA-300 LC gradual with gtz flooding.                                               |          |        |        |           |          |          |          |          |
| 151.42    | 151.72   | medium green to light green locally weak moderate sericitia alth tuff lapilli      |          |        |        |           |          |          |          |          |
|           |          | tuff contried bedding.                                                             |          |        |        |           |          |          |          |          |
| 151.72    | 151.85   | white translucent gtz veinlets irregular with inclusions black green patches of    |          |        |        |           |          |          |          |          |
|           |          | chlorite.                                                                          |          |        |        |           |          |          |          |          |
| 151.85    | 151.93   | white opague qtz vein CA irregular 200.                                            |          |        |        |           |          |          |          |          |
| 151.85    | 152.89   | brecciated, light grey buff fragmental, minor to nil tuff, 152.35-152.48 1cm       | 43071    | 151.85 | 152.89 | 1.04      | 0.02     |          |          |          |
|           |          | white opague with medium brown tourmaline, CA-60o, 152.42-152.47 curved            |          |        |        |           |          |          |          |          |
|           |          | 1/2-1cm white gtz st with brown tourmaline, 152.49 1cm white opague gtz            |          |        |        |           |          |          |          |          |
|           |          | veinlet CA-550 opposite to 152.35-152.48 stringers, 152.75 grey white qtz          |          |        |        |           |          |          |          |          |
|           |          | stringer translucent CA-35o, 152.80-152.87 irregular white opague on contact       |          |        |        |           |          |          |          |          |
|           |          | with grey white translucent in center, trace to <1% vfg py, 152.89 contact         |          |        | -      |           |          |          |          |          |
|           |          | sharp CA 60-650.                                                                   |          |        |        |           |          |          |          |          |
| 152.89    | 154.25   | medium green to dark green fragmented tuff with randomly orientated 3-5mm          | 43072    | 152.89 | 154.25 | 1.36      | 0        |          |          |          |
|           |          | white veined with grey center qtz st, trace to scattered vfg, moderate level       |          |        |        |           |          |          |          |          |
|           |          | bed, 154.25 sharp CA 40o.                                                          |          |        |        |           |          |          |          |          |
| 154.25    | 156.22   | light to medium green fragmental tuff, moderate to well devel. bedding CA 63o,     | 43073    | 154.25 | 155.3  | 1.05      | 0.03     |          |          |          |
|           |          | 155.97-156.0 grey to buff bleaching, 156-156.07 irregular CA-35o, white            | 43074    | 155.3  | 156    | 0.7       | 0        |          |          |          |
|           |          | opague qtz veinlet with brownish altn, fg py 1% in vein, 156.07-156.22             |          |        |        |           |          |          |          |          |
| 154.25    | 156.22   | blanked tuff, few fragments, buff to bluish hue green.                             |          |        |        |           |          |          |          |          |
| 156.22    | 156.47   | bleached grey brown to med dark chocolate brown brecciated fragmental x-cut        | 43075    | 156    | 156.47 | 0.47      | 0.22     |          |          |          |
|           |          | by 1-3mm grey white qtz st CA-150, 800, 500, + large 2 white V shaped qtz          |          |        |        |           |          |          |          |          |
|           |          | opague stringer 156.32-156.47 CA-50o with scattered ng py, large 1cm by            |          |        |        |           |          |          |          |          |
|           |          | 4mm pyrrhotite, magnetic mass at lower contact CA-30-35o, 2mm x 1.2                |          |        |        |           |          |          |          |          |
|           |          | pyrrhotite and chalcopyrite vg, 156.47 altn contact CA-750.                        |          |        |        |           |          |          |          |          |
| 156.47    | 158      | light green to light brownish buff weak patchy sericitic altn, tuffaceous fragment | 43076    | 156.47 | 157.25 | 0.78      | 0        |          |          |          |
|           |          | minor small crenulations, scattered vfg py, good bed CA-70o, rare stringers        | 43077    | 157.25 | 158    | 0.75      | 0.01     |          |          |          |
|           |          | 156.92 2m x-cuts bed CA-15o, 157.91-157.95 patches of grey white opalescant        |          |        |        |           |          |          |          |          |
|           |          | gtz st masses II to bed, 158.0 contact CA-60o.                                     |          |        |        |           |          |          |          |          |
| 158       | 159.32   | dark green with pale green buff laminations minor, scattered grey white opal       | 43078    | 158    | 159.32 | 1.32      | 0        |          |          |          |
|           |          | qtz stringers masses, 158.47-158.49 2.5cm white grey qtz st CA-65o near II to      |          |        |        |           |          |          |          |          |
|           |          | bed, 158.70-158.80 pale grey buff altn with grey white siliceous, 2-3% fg ng       |          |        |        |           |          |          |          |          |
|           |          | pyrite CA-650 158.85-159.32 very fine grained laminations with 1/2-1cm grey        |          |        |        |           |          |          |          |          |
|           |          | buff qtz carbonation laminations, 159.32 contact CA-75o.                           |          |        |        |           |          |          |          |          |
| Property: | Hunter M | ine                                                                                | Hole No. | 35     |        | Sheet No. | 6        |          |          |          |

| Property: | Hunter M      | ine                                                                               | Hole No.       | 35     |        | Sheet No. | 6        |          |          |          |
|-----------|---------------|-----------------------------------------------------------------------------------|----------------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | terage        | Description                                                                       | Samp           | e      |        |           | Ass      | say      |          |          |
| From      | То            |                                                                                   | No.            | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 159.32    | 159.72        | light green to light buff, pale grey, well laminated tuff, locally crenulations,  | 43079          | 159.32 | 159.72 | 0.4       | 0        |          |          |          |
|           |               | scattered py, py 2mm band at 159.44 CA-80o bedding overall 75o.                   |                |        |        |           |          |          |          |          |
| 159.72    | 163.24        | moderate pervasive sericitic altn to locally patchy 161.66-163.24, scattered      | 43080          | 159.72 | 160.39 | 0.67      | 0.09     |          |          |          |
|           |               | greyish 1/2-1cm bands, scattered vfg to fg pyrite locally 2-3%, moderate qtz      | 43081          | 160.39 | 160.95 | 0.56      | 0.1      |          |          |          |
|           |               | flooding II to bed, CA-70o at 160, 60o at 161.5, rare grey translucent qtz        | 43082          | 160.95 | 161.66 | 0.71      | 0.04     |          |          |          |
|           |               | stringer 1/2cm x-cut bed at 750, bed at 163.05 700.                               | 43083          | 161.66 | 162.45 | 0.79      | 0.01     |          |          |          |
| 163.24    | 164.9         | buff grey to light and medium grey pale green to weak patchy sericitic altn,      | 43084          | 162.45 | 163.24 | 0.79      | 0.01     |          |          |          |
|           |               | tuff, few whitish qtz st usually II to bed occasional x-cut bedding and kinkle    | 43085          | 163.24 | 164    | 0.76      | 0.01     |          |          |          |
|           |               | folded, scattered pyrite, nil to locally <0.5, weak carbonated, well bed.         | 43086          | 164    | 164.95 | 0.95      | 0.01     |          |          |          |
| 164.9     | 165.74        | weak moderate sercitic altn pervasive tuff.                                       | 43087          | 164.95 | 165.74 | 0.79      | 0.42     |          |          |          |
| 165.74    | 166.28        | weak patchy sercitic tuff.                                                        | 43088          | 165.74 | 166.28 | 0.54      | 1.4      | 0.96     |          |          |
| 166.28    | 166.96        | weak moderate pervasive sercitic altn tuff, scattered py, bed 750 altn II-contact | 43089          | 166.28 | 166.96 | 0.68      | 0.04     |          |          |          |
| 166.96    | 168.97        | nil to weak patch sercitic altn tuff, chlorite bands vfg pyrite locally <0.5-1%   | 43090          | 166.96 | 168    | 1.04      | 0.01     |          |          |          |
|           |               | 168.02-168.08 grey opague qtz stringer 1/2cm and creamy white qtz CA 75-65        | 4 <u>30</u> 91 | 168    | 168.97 | 0.97      | 0.01     |          |          |          |
| 168.97    | 169.66        | moderate pervasive sercitic altn, scattered pyrite.                               | 43092          | 168.97 | 169.66 | 0.69      | 0        |          |          |          |
| 169.66    | 171.2         | grey green tuff nil to very weak sercitic patchy, 170.96-171.14 crenulations      | 43093          | 169.66 | 171.2  | 1.54      | 0.01     |          |          |          |
|           |               | with chlorite ff stringers.                                                       |                |        |        |           |          |          |          |          |
| 171.2     | 171.38        | qtz flood tuff with scattered vfg fg py, bed CA-50o contact 35o with weak to      | 43094          | 171.2  | 171.38 | 0.18      | 0.12     | 0.14     |          |          |
| 171.2     | 171.38        | moderate sercitic altn.                                                           |                |        |        |           |          |          |          |          |
| 171.38    | 172.19        | brecciated zone of tuff with occasional fragment, contorted bedding, healed       | 43095          | 171.38 | 172.19 | 0.81      | 0.01     |          |          |          |
|           |               | with brown siliceous and occasional grey cherty q to 171.74, 171.74-172.19        |                |        |        |           |          |          |          |          |
|           |               | healed grey opague qtz and stringers, minor pyrite, scattered pyrrhotite in       |                |        |        |           |          |          |          |          |
|           |               | 171.38-171.74, LC 60o.                                                            |                |        |        |           |          |          |          |          |
| 172.19    | 172.4         | qtz flooded with weak sercitic altn LC 750.                                       | 43096          | 172.19 | 172.4  | 0.21      | 0.01     |          |          |          |
| 172.4     | 173.08        | light green to grey green, weak patchy sercitia altn, rare stringers, trace py.   | 43097          | 172.4  | 173.08 | 0.68      | 0.01     |          |          |          |
| 173.08    | 173.34        | с                                                                                 | 43098          | 173.08 | 174.03 | 0.95      | 0.01     |          |          |          |
| 173.34    | 173.63        | qtz vein white opague with stringers and breeciated inclusions of medium          |                |        |        |           |          |          |          |          |
|           |               | green tuff, qtz vein at 173.36-173.44.                                            |                |        |        |           |          |          |          |          |
| 173.63    | 174.03        | same as 172.40-173.08.                                                            |                |        |        |           |          |          |          |          |
| 174.03    | 174.28        | chesty greyish qtz vein x-cut by greyish opague qtz stringers, chocolate          | 43099          | 174.03 | 174.28 | 0.25      | 0.03     |          |          |          |
|           |               | brown ff, inclusions of weak sericitic altn tuff, contacts 50o-70o trace pyrite   |                |        |        |           |          |          |          |          |
|           |               | opposite direction, brecciated 174.03-174.09.                                     |                |        |        |           |          |          |          |          |
| 174.28    | <u>174.67</u> | weak pervasive sericitic altn, tuff LC-70o.                                       | 43100          | 174.28 | 175.59 | 1.31      | 0.04     |          |          |          |
| 174.67    | 174.81        | irregular greyish white qtz stringer, tuff with minor fuchsite altn, 2-3% vfg to  |                |        |        |           |          |          |          |          |
|           |               | fg pyrite.                                                                        |                |        |        |           |          |          |          |          |
| 174.81    | 175.59        | weak patchy sericitic altn minor fragments 175.42 1/2cm grey qtz st CA 650        |                |        |        |           |          |          |          |          |
|           |               | x-cuts bed 650.                                                                   |                |        |        |           |          |          |          |          |
| 175.59    | 176.23        | gtz flooded usually II to bedding and x-cut bedding grey white translucent,       | 43101          | 175.59 | 176.23 | 0.64      | 0        |          |          |          |
|           |               | with moderate pervasive sericitic altn.                                           |                |        |        |           |          |          |          |          |

| Property: | Hunter N | ine                                                                               | Hole No. | 35     |        | Sheet No. | 7        |          |          |          |
|-----------|----------|-----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| From      | То       |                                                                                   | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 176.23    | 178.64   | weak pervasive sericitic altn, tuff grey white 1/2 opague gtz stringer, x-cut     | 43102    | 176.23 | 177.73 | 1.5       | 0.02     |          |          |          |
|           |          | bedding at 650 straight + 450 kinkle folded to 177.0, 177.73-178.64               | 43103    | 177.73 | 178.64 | 0.91      | 0.01     |          |          |          |
|           |          | moderate gtz flooding all II to bed LC sharp 70o.                                 |          |        |        |           |          |          |          |          |
| 178.64    | 179.65   | chloritic tuff, fg, dark grey to dark grey green, siliceous, non carbonated,      | 43104    | 178.64 | 179.65 | 1.01      | 0.01     |          |          |          |
|           |          | locally contorted bedding near white translucent glassy vein 179.14-179.30        |          |        |        |           |          |          |          |          |
|           |          | with grey brown to buff alth tuff, 179.23-179.29 with 2-3% fg py, chlontic tuff   |          |        |        |           |          |          |          |          |
|           |          | locally 2-3% fg py, greyish cherty bands.                                         |          |        |        |           |          |          |          |          |
| 179.65    | 181.04   | weak pervasive sericitic altn, laminated tuff with band grey white translucent    | 43105    | 179.65 | 181.04 | 1.39      | 0.02     |          |          |          |
|           |          | qtz stringer usually II to bed, few patches of fuchsite, LC bed 70o-75o.          |          |        |        |           |          |          |          |          |
| 181.04    | 182      | light tan to light brown, locally dark to medium greyish tan, well level bedding  | 43106    | 181.04 | 182    | 0.96      | 0.04     | 0.1      |          |          |
|           |          | and laminations, weak sericite.                                                   |          |        |        |           |          |          |          |          |
| 182       | 182.91   | dark brownish to medium grey brown, laminated with pale sections altn by          | 43107    | 182    | 182.91 | 0.91      | 0.02     |          |          |          |
| 182       | 182.91   | white qtz stringer, trace pyrite.                                                 |          |        |        |           |          |          |          |          |
| 182.91    | 185.25   | similar to 181.04-182.0, weak sericitic altn scattered fg py occasional 1mm       | 43108    | 182.91 | 184    | 1.09      | 0.01     |          |          |          |
|           |          | bands, 1-2m 2mm whitish qtz st II to bedding.                                     | 43109    | 184    | 185.25 | 1.25      | 0.04     |          |          |          |
| 185.25    | 188.15   | weak to moderate pervasive sencitic altn scattered vfg fg py, occasional          | 43110    | 185.25 | 186.75 | 1.5       | 0.02     |          |          |          |
|           |          | 1-2mm py band, light brown to tan, uniform, rare qtz st, scattered vfg fg py.     | 43111    | 186.75 | 188.15 | 1.4       | 0.01     |          |          |          |
| 188.15    | 190.48   | weak pervasive to locally patchy sericitic altn, light brownish medium green      | 43112    | 188.15 | 189    | 0.85      | 0.02     |          |          |          |
|           |          | to medium greyish medium green, massive uniform, rare stringers, void of          | 43113    | 189    | 190.48 | 1.48      | 0.03     |          |          |          |
|           |          | folding, bed 750.                                                                 |          |        |        |           |          |          |          |          |
| 190.48    | 194.32   | scattered weak patchy sericitic altn, tuff, scattered to trace pyrite fg vfg to   | 43114    | 190.48 | 192    | 1.52      | 0.08     |          |          |          |
|           |          | 192.0, rare stringers, 192.0-194.32 fairly brecciated vfg to fg pyrite with       | 43115    | 192    | 193    | 1         | 0.14     |          |          |          |
|           |          | occasional bands 1-2mm, local small crenulations with grey green units            | 43116    | 193    | 194    | 1         | 0.15     |          |          |          |
|           |          | 192.10-192.12, 192.69-192.98, overall py 2-3% ng to 3-5% LC sharp 72o,            | 43117    | 194    | 194.32 | 0.32      | 0.63     | 0.59     |          |          |
|           |          | II to bed.                                                                        |          |        |        |           |          |          |          |          |
| 194.32    | 194.81   | felsic dike aphanitic to fg, massive uniform, hard, siliceous, greenish grey      | 43118    | 194.32 | 194.81 | 0.49      | 0        |          |          |          |
|           |          | to medium grey, very weakly foliated specially 194.45-194.81 nil sulphides,       |          |        |        |           |          |          |          |          |
|           |          | low angle grey white banded 4cm qtz stringer, 194.57-194.74 LC broken.            |          |        |        |           |          |          |          |          |
| 194.81    | 196.81   | fg, black green to bark green, laminated chlorite with greyish siliceous          | 43119    | 194.81 | 195.81 | 1         | 0        |          |          |          |
|           |          | 1-2mm bands, locally crenulations from 195.43-196.21 with 2-4mm chlorite          | 43120    | 195.81 | 196.81 | 1         | 0        |          |          |          |
|           |          | Il slip and 196.66-196.81, tuff LC 50o, rare grey 1cm qtz st CA folded.           |          |        |        |           |          |          |          |          |
| 196.81    | 197.45   | similar to 194.81-196.81 but fragmental tuff, chlorite.                           | 43121    | 196.81 | 197.45 | 0.64      | 0.01     |          |          |          |
| 197.45    | 197.74   | qtz flooded grey green tuff fragmental irregular contacts chlorite.               | 43122    | 197.45 | 197.74 | 0.29      | 0        |          |          |          |
| 197.74    | 200.43   | light grey green to kinkle green, weak pervasive sericitic altn tp 198.66, tuff   | 43123    | 197.74 | 199    | 1.26      | 0        |          |          |          |
|           |          | to fragmental tuff scattered to nil pyrite, 197.92 2cm qtz light grey translucent | 43124    | 199    | 200.43 | 1.43      | 0        |          | _        |          |
|           |          | and carbonated irregular, 198.29 1/2cm light grey translucent with white          |          |        |        |           |          |          |          |          |
|           |          | carbonated CA 75o x-cut bed 75o, 198.29-198.66 crenulated tuff with black         |          |        |        |           |          |          |          |          |

,

| Property: | Hunter M | ine                                                                                 | Hole No. | 35     |        | Sheet No. | 8        |          |          |          |
|-----------|----------|-------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Meter     | rage     | Description                                                                         |          | Sa     | mple   |           | Ass      | say      |          |          |
| From      | To       |                                                                                     | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | green chlorite II slip, 198.66-200.43 fragmental tuff, light opal gtz st CA 80-     |          |        |        |           |          |          |          |          |
|           |          | 75o cherty, 200.43 LC 55o.                                                          |          |        |        |           |          |          |          |          |
| 200.43    | 200.73   | pinkish to grevish pink gtz vein, glassy, translucent, 1-2mm x-cut grevish          | 43125    | 200.43 | 200.73 | 0.3       | 0        |          |          |          |
|           |          | white gtz st, nil sulphides, LC sharp 75o-80o.                                      |          |        |        |           |          |          |          |          |
| 200.73    | 202.22   | same as 198.66-200.43 fragmental buff grey green, very weak patchy sericitic        | 43126    | 200.73 | 202.22 | 1.49      | 0        |          |          |          |
|           |          | altn, trace py LC 60o.                                                              |          |        |        |           |          |          |          |          |
| 202.22    | 203.03   | tuff same as 198.29-198.66 with crenulations void of stringers, dark green to       | 43127    | 202.22 | 203.03 | 0.81      | 0.01     |          |          |          |
|           |          | dark greyish green, laminated with grey white silica, LC 65o x-cut bed 70o.         |          |        |        |           |          |          |          |          |
| 203.03    | 203.28   | black green tuff as 202.22-203.03 with 3 greyish white qtz veinlets 2-4cm ash       | 43128    | 203.03 | 203.28 | 0.25      | 0        |          |          |          |
|           |          | near to x-cut bedding, LC irregular 60-650.                                         |          |        |        |           |          |          |          |          |
| 203.28    | 203.45   | white opague qtz vein nil sulphides CA-70o LC.                                      | 43129    | 203.28 | 203.45 | 0.17      | 0        |          |          |          |
| 203.45    | 207.69   | FP dike, aphanitic to fragmented light salmon to medium salmon pink in              | 43130    | 203.45 | 204    | 0.55      | 0.09     |          |          |          |
|           |          | sections cverall greyish white, with 1-2mm plagioclose phenocryst fine pin          | 43131    | 204    | 204.65 | 0.65      | 0        |          |          |          |
|           |          | prick black phenocryst locally dark grey ff random 203.45-203.96, 204.4-            | 43132    | 204.65 | 205.25 | 0.6       | 0        |          |          |          |
|           |          | 204.60, white grey from 203.85-203.96 + 206.97-207.69, random grey                  | 43133    | 205.25 | 206    | 0.75      | 0.03     |          |          |          |
|           |          | translucent glassy 2-3mm stringers random with rare 2cm veinlet at 204.75           | 43134    | 206    | 206.97 | 0.97      | 0.01     | 0        |          |          |
|           |          | near II to CA scattered chalcopyrite at 204.69, 205.4, 205.73, 205.93, 206.28,      | 43135    | 206.97 | 207.69 | 0.72      | 0        |          |          |          |
|           |          | 205.82 qtz st grey translucent CA-80o, random qtz st 206.10-206.89, 207.69          |          |        |        |           |          |          |          |          |
|           |          | contact sharp 60o.                                                                  |          |        |        |           |          |          |          |          |
| 207.69    | 208.72   | chloritin tuff UM, fg black to black green, crenulated with chlorite ff slip planes | 43136    | 207.69 | 208.72 | 1.03      | 0        |          |          |          |
|           |          | 2-3mm siliceous, as above void of stringers, trace pyrite, silicified contorted     |          |        |        |           |          |          |          |          |
|           |          | bedding, sharp contact LC-35o.                                                      |          |        |        |           |          |          |          |          |
| 208.72    | 209.17   | grey feldspar porphyritic dike, fg light to medium grey, 1-2mm white                | 43137    | 208.72 | 209.17 | 0.45      | 0.02     |          |          |          |
|           |          | plagioclose phenocryst, massive hard to very hard, random qtz st from 209-          |          |        |        |           |          |          |          |          |
|           |          | 209.12 CA-10-15o x-cut to LC and taminated at lower contact 209.03 1cm              |          |        |        |           |          |          |          |          |
|           |          | grey translucent qtz st CA irregular 40-450 nil sulphides LC sharp CA-500.          |          |        |        |           |          |          |          |          |
| 209.17    | 209.68   | silicified tuff, fg, light medium grey, silicified tuff with random qtz st and qtz  | 43138    | 209.17 | 209.68 | 0.51      | 0        |          |          |          |
|           |          | mass 209.31-209.52 irregular, hard, chlorite layers, trace LC 450 x-cuts            |          |        |        |           |          |          |          |          |
|           |          | bedding CA-800 foliation.                                                           |          |        |        |           |          |          |          |          |
| 209.68    | 209.96   | grey feldspar porphyritic same as 208.72-209.17 with more qtz st and                | 43139    | 209.68 | 209.96 | 0.28      | 0.03     |          |          |          |
|           |          | irregular qtz veinlet 209.71-209.79, trace py LC griund broken CA-90o.              |          |        |        |           |          |          |          |          |
| 209.96    | 211.2    | fragmental tuff, same as above, light grey green, white laminations, minor          | 43140    | 209.96 | 211.2  | 1.24      | 0.01     |          |          |          |
|           |          | kinkle folding, bed good CA 70o, silicified trace py, rare contorted grey           |          |        |        |           |          |          |          |          |
|           |          | tranclucent qtz st 4-5mm LC graduation 60o.                                         |          |        |        |           |          |          |          |          |
| 211.2     | 211.59   | qtz flooded random rare 1cm qtz st grey white CA-70o at 211.32 with pale            | 43141    | 211.2  | 211.59 | 0.39      | 0        |          |          |          |
|           |          | yellow buff altn weak sericite.                                                     |          |        |        |           |          |          |          |          |
| 211.59    | 211.96   | moderate sericitic altn, siliceous tuff with large 1cm bands qtz inclusions and     | 43142    | 211.59 | 211.96 | 0.37      | 0        |          |          |          |

| Property: | Hunter M | ine                                                                                   | Hole No. | 35     |        | Sheet No. | 9        |          |          |          |
|-----------|----------|---------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                           |          | Samp   | le     |           | Assa     | y        |          |          |
| From      | То       |                                                                                       | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | firm laminations with fg mg pyrite 3-5% locally LC sharp CA-700.                      |          |        |        |           |          |          |          |          |
| 211.96    | 215.01   | tuff to fragmental tuff, fg, pale greenish grey to light brown to blackish green      | 43143    | 211.96 | 213    | 1.04      | 0        |          |          |          |
|           |          | locally sections with white calcite x-cuts, porphyritic tint, moderately              | 43144    | 213    | 214    | 1         | 0        |          |          |          |
|           |          | carbonated rare gtz at 212.47 1/2cm CA-650, bedding CA-70-600 213.15,                 | 43145    | 214    | 214.75 | 0.75      | 0        |          |          |          |
| 211.96    | 215.01   | carbonated, moderately hard to hard, siliceous with local patches sections            | 43146    | 214.75 | 215.01 | 0.26      | 0.07     | 0.1      |          |          |
|           |          | 3-4cm of carbonated x-cuts ultrmafic, rare st, vfg to fg tuff, occasional             |          |        |        |           |          |          |          |          |
|           |          | fragments small, 214.85-214.95 scattered fg to vfg pyrite 1-2%, 214.95-215            |          |        |        |           |          |          |          |          |
|           |          | semi massive py with gtz 85%, 213.08 ground core, LC 60o.                             |          |        |        |           |          |          |          |          |
| 215.01    | 216.97   | argillite greywacke, fg, light to medium grey argillite to fine grained greywacke     | 43147    | 215.01 | 216    | 0.99      | 0        |          |          |          |
|           |          | moderately carbonated, moderately hard, uniform, scattered randomly                   |          |        |        |           |          |          |          |          |
|           |          | orientated gc st 1-2mm from 215.01-215.36 80-70o in both direction few II to          |          |        |        |           |          |          |          |          |
|           |          | weak devel. of bedding, at 70o, 215.65- 216.18 4mm -1cm gc II to bedding,             |          |        |        |           |          |          |          |          |
|           |          | 216.97 LC 730.                                                                        |          |        |        |           |          |          |          |          |
| 216.97    | 217.81   | 216.97-235.86 ultramafic, 216.97-217.81 black green, weak moderate level of           |          |        |        |           |          |          |          |          |
|           |          | bedding tufferous, non magnetic.                                                      |          |        |        |           |          |          |          |          |
| 217.81    | 218.92   | tuffaceous olive to light greenish buff, weak moderate level bedding, hard,           | 43148    | 217.81 | 218.92 | 1.11      | 0.01     |          |          |          |
|           |          | siliceous to silicified, scattered qtz stringers usually II to bedding, scattered     |          |        |        |           |          |          |          |          |
|           |          | vfg fg pyrite locally 1-2% occasional with randomly orientated grey opague            |          |        |        |           |          |          |          |          |
|           |          | siliceous, carbonated.                                                                |          |        |        |           |          |          |          |          |
| 218.92    | 219.42   | black gren moderate hard tuff.                                                        | 43149    | 218.92 | 219.56 | 0.64      | 0.01     |          |          |          |
| 219.42    | 219.56   | irregular qc veinlets with chloritic crenulated tuff inclusions, nil to trace pyrite, |          |        |        |           |          |          |          |          |
|           |          | CA 60o.                                                                               |          |        |        |           |          |          |          |          |
| 219.56    | 232.43   | mass, moderately soft to soft, carbonated talcose, massive with brecciated            |          |        |        |           |          |          |          |          |
|           |          | healed with qtz st random, locally section II to schistosty, trace to scattered       |          |        |        |           |          |          |          |          |
|           |          | pyrite, 221.58-221.68 porphyritic texture, 222.59-223.20 tuff with several folds      |          |        |        |           |          |          |          |          |
|           |          | 223.20-227.14 massive, brecciated qc healed, 227.14-227.68 tuffaceous with            |          |        |        |           |          |          |          |          |
|           |          | qc II to bedding, local fragments, 227.68-230.60 massive brecciated black             |          |        |        |           |          |          |          |          |
|           |          | 230.52-230.60 massive talcose vein soft, 230.60-231.06 massive with few st            |          |        |        |           |          |          |          |          |
|           |          | qc, soft, LC 50o, 231.06-232.43 moderately hard, light green, tuff to fragment        |          |        |        |           |          |          |          |          |
|           |          | local crenulations 232.33-232.43.                                                     |          |        |        |           |          |          |          |          |
| 232.43    | 235.86   | moderately soft to moderately hard, carbonated, light green to medium grey            |          |        |        |           |          |          |          |          |
|           |          | green, massive, carbonated, scattered random qc st and veinlets.                      |          |        |        |           |          |          |          |          |
| 234.45    | 235.86   | black green moderately hard massive large fragments within carbonated tuff            |          |        |        |           |          |          |          |          |
|           |          | to fragmental tuff, qtz carbonated vein II to schistosty bedding CA-77-60o,           |          |        |        |           |          |          |          |          |
|           |          | 235.63-235.86 moderately hard, silicified intensely veined with grey white qc         |          |        |        |           |          |          |          |          |
|           |          | stringer II to bed LC CA-700.                                                         |          |        |        |           |          |          |          |          |
| 235.86    | 249      | meta sediments, argillite to greywacke with graphitic argillite, light grey to        | 43150    | 235.86 | 236.72 | 0.86      | 0        |          |          |          |

| Property | Hunter M | ine                                                                             | Hole No. | 35   |    | Sheet No. | 10       |          |          |          |
|----------|----------|---------------------------------------------------------------------------------|----------|------|----|-----------|----------|----------|----------|----------|
| Me       | terage   | Description                                                                     |          | Samp | e  |           |          | Assay    |          |          |
| From     | То       |                                                                                 | No.      | From | To | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 235.86   | 249      | medium grey to black fg fg mg, nil to trace py, scattered section of pyrrhotite |          |      |    |           |          |          |          |          |
| 235.86   | 236.72   | light grey green fg argillite with scattered pyrrhotite 235.93-236.08 with 2-3% |          |      |    |           |          |          |          |          |
|          |          | several 1mm stringers CA-550 bedding 550, carbonated sections with 25-          |          |      |    |           |          |          |          |          |
|          |          | 30% fg pyrrhotite from 236.08-236.21 CA 60-650.                                 |          |      |    |           |          |          |          |          |
| 236.72   | 236.97   | dark grey greywacke fg, weak devel, bedding.                                    |          |      | _  |           |          |          |          |          |
| 236.97   | 237.13   | ultramafic laminated tuff carbonated kinkle stringers LC 550.                   |          |      |    |           |          |          |          |          |
| 237.13   | 237.47   | medium grey greywacke, bedding.                                                 |          |      |    |           |          |          |          |          |
| 237.47   | 248.87   | Argillites and Arenites                                                         |          |      |    |           |          |          |          |          |
| 237.47   | 239.97   | dark grey to black graphitic argillite with scattered bandike carbonated st     |          |      |    |           |          |          |          |          |
|          |          | calcite, with ore crispy pyrite II to bed 620, few sections 1-2cm of medium     |          |      |    |           |          |          |          |          |
|          |          | grey greywacke.                                                                 |          |      |    |           |          |          |          |          |
| 239.97   | 242.93   | massive light to medium grey greywacke with few small cherty bands and          |          |      |    |           |          |          |          |          |
|          |          | argillite 240.17-240.27, 240.47-240.61, 242.79-242.82, bedding CA-65,67,67o     |          |      |    |           |          |          |          |          |
| 242.93   | 248.87   | light grey to dark grey chert argillite, with minor pale yellowish green grey   |          |      |    |           |          |          |          |          |
|          |          | sericitic altn due to fine qtz stringers 244.15-244.89 fg-mg greywacke, 244.89  |          |      |    |           |          |          |          |          |
|          |          | 246.98 black to dark grey graphitic argillite with few fg greywacke bands,      |          |      |    |           |          |          |          |          |
|          |          | local crenulations at 246.27, 246.32-246.41 cross bedding in 5mm bands,         |          |      |    |           |          |          |          |          |
|          |          | 246.98-248.13 light grey greywacke scattered qc stringers II to bed, 248.13-    |          |      |    |           |          |          |          |          |
|          |          | 248.87 graphitic argiilite.                                                     |          |      |    |           |          |          |          |          |
|          | 248.87   | END OF HOLE marker 249.                                                         |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |
|          |          |                                                                                 |          |      |    |           |          |          |          |          |

|           |        | Hunter Mine - Diam                                                                   | ond Drill Log |       |            |            |            |          |          |          |
|-----------|--------|--------------------------------------------------------------------------------------|---------------|-------|------------|------------|------------|----------|----------|----------|
| Property: |        | Hunter Mine                                                                          | Hole Dip:     | -90   | Page No.   |            | 1 of 9     |          |          |          |
| Location: |        |                                                                                      | Hole Azimuth: | 105   | Date Star  | ted:       | July20/04  |          |          |          |
| Claim No  | :      | HR 1009                                                                              | Hole Length:  | 234m  | Date Finis | shed:      | July 24/04 |          |          |          |
| Elevation | :      | Porcupine Lake                                                                       | Purpose:      |       | Drill Co.: |            | Benoit     |          |          |          |
| UTM Cod   | ords.: | 5370884.7N, E486989.3                                                                |               |       | Logged b   | <b>y</b> : | K. Jensen  |          |          |          |
| Mete      | erage  | Description                                                                          |               |       | Sample     |            |            | Assays   |          |          |
| From      | То     |                                                                                      | No.           | From  | То         | Width      | Au (g/t)   | Au check | Au (2nd) | Au check |
| 0.0       | 57.0   | Casing                                                                               |               |       |            |            |            |          |          |          |
| 57.0      | 117.6  | Ultramafic Talcose Rocks                                                             |               |       |            |            |            |          |          |          |
| 57.0      | 71.1   | ultramafic, fg, black to black green, soft, talcose, nil to moderately magnetic, nil | 43151         | 71    | 71.11      | 0.11       | 0.04       |          |          |          |
|           |        | to weakly carbonated, few white qtz stringer <1cm less than 1 per 3m, scattered      |               |       |            |            |            |          |          |          |
|           |        | pyrite fg to mg, 57-59.61 crushed zone, 59.57-59.61 intense shearing CA-70o,         |               |       |            |            |            |          |          |          |
|           |        | 59.61-63.80 fragmental tuff, shearing, 63.80-69 crushed zone, intense sheared,       |               |       |            |            |            |          |          |          |
|           |        | 66-66.38 porphyritic texture, 69-71.11 fragmental tuff, shear, 70.95-71.11 crushed   |               |       |            |            |            |          |          |          |
|           |        | zone, 71.11 contact sharp with 1cm qc stringer CA-52o.                               |               |       |            |            |            |          |          |          |
| 71.11     | 71.83  | feldspar porphyritic, fg mg black matrix 0.5mm white phenocrysts plagioclose,        | 43152         | 71.11 | 71.83      | 0.72       | 0.03       |          |          |          |
|           |        | weakly magnetic, weakly to locally moderately carbonated, hard, randomly             |               |       |            |            |            |          |          |          |
|           |        | scattered 2-3mm qc stringers CA-30,50,60o scattered to disseminated 3-5% mg          |               |       |            |            |            |          |          | _        |
|           |        | pyrite or cg pyrite 71.83 LC CA-50o ground.                                          |               |       |            |            |            |          |          |          |
| 71.83     | 72.36  | homblonde feldspar porphyritic, light to medium grey cg qtz feldspar with 5-7mm      | 43153         | 71.83 | 72.36      | 0.53       | 0.01       |          |          |          |
|           |        | long hornblende phenocrysts, overall cg, few qc stringers, weakly carbonated,        |               |       |            |            |            |          |          |          |
|           |        | moderately to locally stringer, magnetic, hard, siliceous, scattered vfg to fg py    |               |       |            |            |            |          |          |          |
|           |        | 2-3% LC 25-300.                                                                      |               |       |            |            |            |          |          |          |
| 72.36     | 72.87  | feldspar porphyritic to mafic porphyritic dike, mg to cg similar to 71.83-72.36      | 43154         | 72.36 | 72.87      | 0.51       | 0.04       | 0.08     |          |          |
|           |        | homblende phenocrysts, scattered to disseminated 2-3% fg vfg py,                     |               |       |            |            |            |          |          |          |
|           |        | scattered white 2-3mm qc st, weakly carbonated, weak magnetic.                       |               |       |            |            |            |          |          |          |
| 72.87     | 90     | same as above UM, very rare veining, 72.87-73.13 fragmental tuff, 73.13-74.92        | 43155         | 72.87 | 75         | 2.13       | 0          |          |          |          |
|           |        | lost ground core, crushed zone intensely sheared, 74.92-75 grey white qc veinlet     |               |       |            |            |            |          |          |          |
|           |        | ground contacts, 75-76 fragmental tuff, 76-78 ground lost core, crushed zone,        |               |       |            |            |            |          |          |          |
|           |        | 78-81 fragmental tuff, contorted bedding weakly to moderately sheared, very soft,    |               |       |            |            |            |          |          |          |
|           |        | scattered pyrite, 81-81.07 rounded greyish white fragments of qtz vein, 86.56-       |               |       |            |            |            | _        |          |          |
|           |        | 86.60 crushed zone shearing, 86.78-90 approximate crushed zone, very crumbly,        |               |       |            |            |            |          |          |          |
|           |        | 86.89-87 white qtz vein.                                                             |               |       |            |            |            |          |          |          |
| 90        | 94.8   | fragmental tuff, large fragments locally brecciated, locally contorted bedding,      |               |       |            |            |            |          |          |          |
|           |        | scattered pyrite to 1cm mass of pyrite, 94.80 approx CA70o.                          |               |       |            |            |            |          |          |          |
| 94.8      | 110.31 | fragmental tuff brecciated with bed/schistosty CA-50o to II to CA, weakly            |               |       |            |            |            |          |          |          |
| 94.8      | 110.31 | carbonated, soft to moderately soft, weakly magnetic with sections intensely         |               |       |            |            |            |          |          |          |
|           |        | schistose, 102.17-103.26 intensely carbonated Bx to shearing, 103.07-                |               |       |            |            |            |          |          |          |

| Property | Hunter M | ine                                                                                | Hole No. | 36     |        | Sheet No. | 2        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete     | erage    | Description                                                                        |          | Sample |        |           |          | Assay    |          |          |
| From     | To       |                                                                                    | No.      | From   | To     | Width     | Au (g/t) | Au Check | Au (2nd) | Au check |
|          |          | 103.26 crushed crumbly zone, 106.37-106.47 crushed crumbly core, 108-              |          |        |        |           |          |          |          |          |
|          |          | 110.31 tuffaceous with fragments, less fragments as above.                         |          |        |        |           |          |          |          |          |
| 110.31   | 111      | tuff bed CA-200-600.                                                               |          |        |        |           |          |          |          |          |
| 111      | 113.29   | fragmental tuff moderately to strongly schistose, talcose.                         |          |        |        |           |          |          |          |          |
| 113.29   | 113.8    | massive, black green, tuff, numerous 1mm calcite stringers CA-30-550,              |          |        |        |           |          |          |          |          |
|          |          | broken contact, 1-2cm py blobs.                                                    |          |        |        |           |          |          |          |          |
| 113.86   | 114.27   | massive, fg, void of stringers, soft, nil to weak magnetic LC sharp 44o.           |          |        |        |           |          |          |          |          |
| 114.27   | 117.58   | fragmental tuff varying degree of bedding.                                         |          |        |        |           |          |          |          |          |
| 117.58   | 138.93   | Laminated Ultramafic Tuffs                                                         |          |        |        |           |          |          |          |          |
| 117.58   | 118.95   | more massive with well devel. schistosity numerous 1-3mm gc st II to schist        |          |        |        |           |          |          |          |          |
|          |          | ground contact.                                                                    |          |        |        |           |          |          |          |          |
| 118.95   | 119.45   | fragmental trace pyrite.                                                           | 43156    | 118    | 119.45 | 1.45      | 0.01     |          |          |          |
| 119.45   | 119.94   | white opague qv with grey green ultramafic inclusions usually with carbonate       | 43157    | 119.45 | 119.94 | 0.49      | 0        |          |          |          |
|          |          | contacts 650 + 350.                                                                |          |        |        |           |          |          |          |          |
| 119.94   | 120.33   | fragmental to locally brecciated, qtz stringers to 120.06, irregular contact.      | 43158    | 119.94 | 120.33 | 0.39      | 0        |          |          |          |
| 120.33   | 122.11   | black green fragmental tuff contorted bedding and x-cut by 1 1/2-3cm white         | 43159    | 120.33 | 121    | 0.67      | 0        |          |          |          |
|          |          | qv with chlorite and talcose, moderately soft, non magnetic, qtz st.               | 43160    | 121    | 122.11 | 1.11      | 0        |          |          |          |
| 122.11   | 123.81   | FP, fg medium to dark grey matrix with 1-2mm white plagioclose phenocryst,         | 43161    | 122.11 | 123    | 0.89      | 0.01     |          |          | <u> </u> |
|          | -        | hard, massive uniform, siliceous, scattered to 3mm gtz st random CA-               | 43162    | 123    | 123.81 | 0.81      | 0        |          |          |          |
|          |          | 10, 20, 30, 40, 60, minor chlorite , white 1/2cm qtz veinlets CA- 87o at           |          |        |        |           |          |          |          |          |
|          |          | 122.67, 123.37-123.81 pale grey matrix due to altn from qtz st, qtz flooding       |          |        |        |           |          |          |          |          |
|          |          | and irregular chalk white qtz masses, 123.70-123.81 inclusions of chlorite,        |          |        |        |           |          |          |          |          |
|          |          | trace sulphides UC with 3cm of massive recrystallized chlorite, LC irregular       |          |        |        |           |          |          |          |          |
|          |          | CA sinuous 50o and massive recrystalized chlorite 123.81-123.85.                   |          |        |        |           |          |          |          |          |
| 123.81   | 124.64   | UM, 123.81-124.28 hard silicified black green UM very chloritic with white qtz     | 43163    | 123.81 | 124.64 | 0.83      | 0        |          |          |          |
|          |          | flooding, irregular stringers and masses, LC 60o, 124.28-124.64 fragmental         |          |        |        |           |          |          |          |          |
|          |          | to tuffaceous dark green moderately hard, qtz flooded, trace to scattered vfg      |          |        |        |           |          |          |          |          |
|          |          | pyrite LC broken ground.                                                           |          |        |        |           |          |          |          |          |
| 124.64   | 124.88   | felsic dike, aphanitic dark grey to blackish, altn due to qtz stringer to greenish | 43164    | 124.64 | 124.88 | 0.24      | 0        |          |          |          |
|          |          | brown, hard, siliceous, massive uniform, with chlorite fragments and inclusion     |          |        |        |           |          |          |          |          |
|          |          | chlorite ff trace vfg py, LC 850.                                                  |          |        |        |           |          |          |          |          |
| 124.88   | 127.96   | fragmental tuff UM, fg, chloritic dark green matrix with light brown to grey buff  | 43165    | 124.88 | 125.74 | 0.86      | 0.01     |          |          |          |
| 124.88   | 127.96   | fragments, overall light to medium grey, slightly broken from 124.88-125.63,       | 43166    | 125.74 | 127.07 | 1.33      | 0.38     | 0.27     |          |          |
|          |          | locally crenulated bedding 126.33-127.0, few qtz st at 125.25 1cm CA 60-65         |          |        |        |           |          |          |          |          |
|          |          | x-cut bed 60o 125.40 sinuous 1/2cm CA overall 60o x-cut bed, 125.55-               |          |        |        |           |          |          |          |          |
|          |          | 125.74 grey white translucent with carbonated, 126.17 1/2-1cm grey                 |          |        |        |           |          |          |          |          |
|          |          | translucent qtz st, CA sinuous deformed CA-30o to 60o LC.                          |          |        |        |           |          |          |          |          |

| Property | Hunter M | ine                                                                               | Hole No. | 36     |        | Sheet No. | . 3      |          |           | 1        |
|----------|----------|-----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|-----------|----------|
| Me       | terage   | Description                                                                       |          | Sample |        |           |          | Assay    |           | <u> </u> |
| From     | То       |                                                                                   | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd)  | Au check |
| 127.96   | 128.3    | tuffaceous CA-30o to 60o LC.                                                      | 43167    | 127.07 | 128.3  | 1.23      | 0.02     | 4        | <u>``</u> |          |
| 128.3    | 131.45   | qtz flooded, tuff to fragmental tuff, black green with minor dark green chlorite  | 43168    | 128.3  | 129.26 | 0.96      | 0        | 1        |           |          |
|          |          | fragments, high silica in contact, hard, scattered 1/2-1cm qtz st usually II to   | 43169    | 129.26 | 130.26 | 1         | 0        |          |           |          |
|          |          | bedding and x-cut bed more contorted and deformed, trace to scattered py.         | 43170    | 130.26 | 131.45 | 1.19      | 0        | ,        |           |          |
| 131.45   | 132.65   | fragmental tuff, void of stringers, tightly packed LC 450.                        | 43171    | 131.45 | 132.65 | 1.2       | 0        |          |           |          |
| 132.65   | 133.09   | crenulated tuff well laminated with chlorite II slip planes, trace pyrite LC 250  | 43172    | 132.65 | 133.16 | 0.51      | 0        |          | I         | <u> </u> |
|          |          | void of stringers.                                                                |          |        |        |           |          |          |           |          |
| 133.09   | 133.16   | same as 131.45-132.57 LC irregular.                                               |          |        |        |           |          |          |           |          |
| 133.16   | 133.28   | white opague qtz v with chloritic talcose altn tuff fragment inclusions LC irreg. | 43173    | 133.16 | 133.82 | 0.66      | 0.02     | 1        |           |          |
| 133.28   | 133.85   | black green fragmental with contacts 1/2cm grey white crenulation with white      | 43174    | 133.82 | 134.27 | 0.45      | 0.09     |          |           |          |
|          |          | carbonate on contacts qtz stringers II to CA, 133.60 1cm grey qtz stringer        |          |        |        |           |          |          |           |          |
|          |          | II to bed CA 530 white translucent qtz veinlet with pale green margins 3mm        |          |        |        |           |          |          |           |          |
|          |          | CA-350 x-cut bed.                                                                 |          |        |        |           |          |          |           |          |
| 133.85   | 135.71   | qtz flooded, 133.85-134.27, medium brown, hard silicified, irregular white        | 43175    | 134.27 | 135    | 0.73      | 0        |          |           |          |
|          |          | translucent qtz veinlets and masses, with inclusions, 134.27-134.40 medium        | 43176    | 135    | 135.93 | 0.93      | 0.08     | 0.09     |           |          |
|          |          | grey green tuff fragmental, moderate hard, 134.40-135.0 moderate hard, grey       |          |        |        |           |          |          |           |          |
|          |          | green fragmental tuff with irregular qtz st, contorted, 134.49 1cm white          |          |        |        |           |          |          |           |          |
|          |          | translucent qts st CA 500, 135.0-135.23 light brownish grey qtz mass with         |          |        |        |           |          |          |           |          |
|          |          | bleached and pale green fragments LC irregular, 135.23-135.68 bleached            |          |        |        |           |          |          |           |          |
|          |          | silicified chlorite II fragmented, 135.68-135.71 grey siliceous aphanitic veinlet |          |        |        |           |          |          |           |          |
|          |          | CA 70 + 85o.                                                                      |          |        |        |           |          |          |           |          |
| 135.71   | 135.93   | aphanitic light to medium grey and medium green laminated tuff to                 |          |        |        |           |          |          |           |          |
|          |          | metisediments possible ash tuff LC 70o weakly carbonated.                         |          |        |        |           |          |          |           |          |
| 135.93   | 138.93   | fg, dark grey to greenish grey with occasional 2mm up to 1cm chloritic band,      | 43177    | 135.93 | 137.43 | 1.5       | 0.02     |          |           |          |
|          |          | well bedding CA-65o at 136.5, CA-75o at 137.8 crenulated bedding, to light        | 43178    | 137.43 | 138.93 | 1.5       | 0.05     |          |           |          |
|          |          | medium grey laminations, locally folded at 137.10, scattered crenulations         |          |        |        |           |          |          |           |          |
|          |          | 137.40-137.93, rare small fragments, rare q st greyish white 1/2cm usually II     |          |        |        |           |          |          |           |          |
|          |          | to bedding and white qc masses to discontinuous gash st 1/4-1/2cm trace to        |          |        |        |           |          |          |           |          |
| 135.93   | 138.93   | scattered vfg fg pyrite LC CA-60o.                                                |          |        |        |           |          |          |           |          |
| 138.93   | 221.41   | Exhalitic Tuffs and Sedimentary Rocks                                             |          |        |        |           |          |          |           |          |
| 138.93   | 139.85   | massive fragmental very hard siliceous, fg, massive light grey poorly developed   | 43179    | 138.9  | 139.9  | 0.92      | 0.03     |          |           |          |
|          |          | bedding, qtz st all II CA-750 upper 6cm appears as fragmental, remainder          |          |        |        |           |          |          |           |          |
|          |          | possible massive flow, scattered pyrite with 1-2% vfg fg for 139.50-139.85.       |          |        |        |           |          |          |           |          |
| 139.85   | 139.92   | siliceous fragmental LC 720.                                                      | 43180    | 139.9  | 140.2  | 0.33      | 0        |          |           |          |
| 139.92   | 140      | massive medium grey nil bedding, large block or fragment very hard siliceous LC   |          |        |        |           |          |          |           |          |
|          |          | 750 conformable with underlying tuff.                                             |          |        |        |           |          |          |           |          |
| 140      | 140.18   | typical crenulated tuff, light grey to light greenish grey, laminated.            |          |        |        |           |          |          |           |          |

| Property: | Hunter M | ine                                                                                   | Hole No. | 36     |        | Sheet No. | 4        |          |          |          |
|-----------|----------|---------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                           |          | Sample | e      |           | Assay    | S        |          |          |
| From      | To       |                                                                                       | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 140.18    | 140.67   | fg, tuff. Upper 10cm chocolate brown to medium brown, remainder light yellow          | 43181    | 140.2  | 14.7   | 0.49      | 0.29     |          |          |          |
|           |          | green sericitic altn, patchy moderate to weak, trace to scattered py CA-50o.          |          |        |        |           |          |          |          |          |
| 140.67    | 141.41   | grey green tuff fragmental light grey and black green lamination, minor kinkle        | 43182    | 140.7  | 141.2  | 0.51      | 0.56     | 0.56     |          |          |
|           |          | scattered to <0.5% py, void of stringers, LC 500.                                     |          |        |        |           |          |          |          |          |
| 141.41    | 141.48   | grey translucent qtz veinlet with chlorite II and greyish carbonate LC-60o.           | 43183    | 141.2  | 142.4  | 1.18      | 0        |          |          |          |
| 141.48    | 142.36   | weak patchy sericitic altn with greyish crenulated tuff, scattered to trace pyrite,   |          |        |        |           |          |          |          |          |
|           |          | LC-70o, void of stringers.                                                            |          |        |        |           |          |          |          |          |
| 142.36    | 143.43   | light grey fine grained to locally aphanitic contorted bedding, laminated locally     | 43184    | 142.4  | 143.4  | 1.07      | 0        |          |          |          |
|           |          | occasional tuff, LC with qtz st irregular and x-cut bed LC 700.                       |          |        |        |           |          |          |          |          |
| 143.43    | 143.96   | light grey green weakly sericitic altn folded with mumerous 1-2 up to 1.5cm grey      | 43185    | 143.4  | 144.0  | 0.53      | 0        |          |          |          |
|           |          | white opague qtz stringers II to bedding, stringer at UC + LC irregular + x-cut       |          |        |        |           |          |          |          |          |
|           |          | bedding LC-70o.                                                                       |          |        |        |           |          |          |          |          |
| 143.96    | 144.35   | light medium grey tuff, from 2-3mm qtz st II to bed.                                  | 43186    | 144.0  | 145.4  | 1.39      | 0.05     |          |          |          |
| 144.35    | 145.35   | light medium grey green weakly sericitic altn tuff 1cm white opague qtz st at         |          |        |        |           |          |          |          |          |
|           |          | 144.57, 144.67, 144.92 all II to bedding.                                             |          |        |        |           |          |          |          |          |
| 145.35    | 146.48   | dark grey locally crenulated tuff, <0.5% vfg py, 145.56-145.71 qtz vein with dark     | 43187    | 145.4  | 146.5  | 1.13      | 0.01     |          |          |          |
|           |          | green tuff inclusions and light brownish tan altn tuff, carbonated (ankirite) contact |          |        |        |           |          |          |          |          |
|           |          | II to bed 60o-70o, 146.22-146.48 irregular qtz st 1-1 1/2cm x-cut bedding and         |          |        |        |           |          |          |          |          |
|           |          | stringers 3-5mm II to bedding, buff to tan altered inclusions, trace sulphides.       |          |        |        |           |          |          |          |          |
| 146.48    | 147      | light grey green, weakly sericitic altn to weak moderate pervasive sericitic altn,    | 43188    | 146.5  | 147.0  | 0.52      | 0        |          |          |          |
|           |          | local crenulations qts st at 146.59 1cm 50-55o, x-cut bed, 146.85 1 1/4cm CA-         |          |        |        |           |          |          |          |          |
|           |          | 75o near II to bed, 146.94-146.98 CA-60-70o irregular II and near II to bed with      |          |        |        |           |          |          |          |          |
|           |          | chocolate brown tourmaline ff, LC sharp CA-70o.                                       |          |        |        |           |          |          |          |          |
| 147       | 147.55   | medium grey green, tuff few stringers II to bed.                                      | 43189    | 147.0  | 147.6  | 0.55      | 0.02     |          |          |          |
| 147.55    | 150.42   | bleached light grey due to white translucent qtz mass 147.65-147.71, veinlet          | 43190    | 147.6  | 148.0  | 0.45      | 0        |          |          |          |
| 147.55    | 150.42   | 147.75-147.93 (curved UC 45o x-cut bed), grey to medium grey qtz veinlet              | 43191    | 148    | 148.57 | 0.57      | 0        |          |          |          |
|           |          | 148.32-148.57 contact 25-55o, grey white translucent st 148.80-148.97 II to           | 43192    | 148.57 | 149.38 | 0.81      | 0.01     |          |          |          |
|           |          | 10o, qtz flooding 149.38-150.42.                                                      | 43193    | 149.38 | 150.42 | 1.04      | 0        | 0.01     |          |          |
| 150.42    | 151.82   | grey green tuff, crenulated, from 2-4mm grey qtz st II to bed, trace to <0.5%         | 43194    | 150.42 | 151.82 | 1.4       | 0        |          |          |          |
|           |          | vfg py 151.44-151.57 light brown grey felsic dike, 2 stringers II to contact          |          |        |        |           |          |          |          |          |
|           |          | x-cut CA-40o, weak devel. of foliation contact slips CA 65o-75o LC irregular 60       |          |        |        |           |          |          |          |          |
| 151.82    | 153.3    | qtz flooded, tuff to fragmental tuff, 151.82-153.30 patchy pervasive sericitic        | 43195    | 151.82 | 153    | 1.18      | 0.01     |          |          |          |
|           |          | altn, hard to moderately hard, qtz carbonated stringers II to bed CA-60o x-cut        |          |        |        |           |          |          |          |          |
|           |          | 850 trace to <1% py vfg.                                                              |          |        |        |           |          |          |          |          |
| 153.3     | 153.98   | hard to very hard, intensely silicified numerous grey qtz veinlets stringers,         | 43196    | 153    | 153.98 | 0.98      | 0        |          |          |          |
|           |          | pinkish brown, 153.54-153.56 and white 1cm qc veinlets II x-cut bedding at            |          |        |        |           |          |          |          |          |
|           |          | 55-60o, 153.93-153.98 grey opal qtz st 1cm CA-60o x-cut bedding cut by                |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 36     |        | Sheet No. | 5        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                        | Samp     | le     |        |           | As       | say      |          |          |
| From      | To       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | 1 1/2cm grey gtz stringer CA 65-700 which x-cuts bedding.                          |          |        |        |           |          |          |          |          |
| 153.98    | 154.47   | gtz flooded light grey, 50% gtz trace to vfg scattered py LC-60o.                  | 43197    | 153.98 | 154.41 | 0.43      | 0        |          |          |          |
| 154.47    | 157.31   | dark grey green to dark green, nil to weak patchy sericitic altn of crenulated     | 43198    | 154.41 | 155.27 | 0.86      | 0        |          |          |          |
|           |          | with chlorite II slip planes CA-15-30o, scattered 2-5 1/2-1cm white grey           | 43199    | 155.27 | 155.91 | 0.64      | 0.01     |          |          |          |
|           |          | opal qtz carbonated stringers II to and x-cut bedding CA-50o x-cut, 55 II to,      | 43200    | 155.91 | 157.31 | 1.4       | 0        |          |          |          |
|           |          | 75o x-cut with pyrite scattered mg py locally cg near vein 3 at 155.85, LC 53      |          |        |        |           |          |          |          |          |
| 157.31    | 157.64   | numerous grey white translucent qtz stringer with white carbonated on              | 35001    | 157.31 | 157.64 | 0.33      | 0        |          |          |          |
|           |          | margins, blobs masses and II to bedding.                                           |          |        |        |           |          |          |          |          |
| 157.64    | 158.38   | patch to weak pervasive.                                                           | 35002    | 157.64 | 158.38 | 0.74      | 0        |          |          |          |
| 158.38    | 159.4    | light grey crenulated well laminated tuff, trace pyrite, 159.28 1/2cm pyrite       | 35003    | 158.38 | 159.4  | 1.02      | 0.04     | 0.06     |          |          |
|           |          | cube LC 56o.                                                                       |          |        |        |           |          |          |          |          |
| 159.4     | 160.53   | weak pervasive sericitic altn, minor crenulation, few stringers II to bedding      | 35004    | 159.4  | 160.53 | 1.13      | 0        |          |          |          |
|           |          | trace py LC 530 scattered pyrite.                                                  |          |        |        |           |          |          |          |          |
| 160.53    | 161.01   | siliceous with multiple grey siliceous bands chesty II to bed LC 500 sharp.        | 35005    | 160.53 | 161.01 | 0.48      | 0.01     |          |          |          |
| 161.01    | 165      | dark green to blackish green, fine laminations with light to medium grey,          | 35006    | 161.01 | 162    | 0.99      | 0.02     |          |          |          |
|           |          | carbonated locally crenulations, to 162.0, dark green to 165.0, vfg py few py      | 35007    | 162    | 163    | 1         | 0.05     |          |          |          |
|           |          | laminations, rare to void of qtz stringers, well level bedding CA 550, 162.4       | 35008    | 163    | 164    | 1         | 0        |          |          |          |
|           |          | 65o at 164.3, 55o at 164.92.                                                       | 35009    | 164    | 165    | 1         | 0        |          |          |          |
| 165       | 165.36   | weakly sericitic alth tuff carbonated.                                             | 35010    | 165    | 165.36 | 0.36      | 0        |          |          |          |
| 165.36    | 166.79   | medium to dark grey laminated rare qtz st LC bed CA 58o.                           | 35011    | 165.36 | 166.79 | 1.43      | 0        |          |          |          |
| 166.79    | 167.51   | light to medium grey, tuff laminated 167.16-167.21 grey white qtz st with          | 35012    | 166.79 | 167.51 | 0.72      | 0.05     |          |          |          |
| 166.79    | 167.51   | 1mm brecciated py band, 167.21-167.28 3-5% fg pyrite carbonated.                   |          |        |        |           |          |          |          |          |
| 167.51    | 168.26   | siliceous, nil carbonated, weak patchy sericitic altn, crenulated tuff, scattered  | 35013    | 167.51 | 168.26 | 0.75      | 0.07     |          |          |          |
|           |          | pyrite 1%, usually on slips forms of black green laminations, locally small        |          |        |        |           |          |          |          |          |
|           |          | crenulations.                                                                      |          |        |        |           |          |          |          |          |
| 168.26    | 170.1    | light to medium grey, siliceous moderate pervasive sericitic altn, well            | 35014    | 168.26 | 169.2  | 0.94      | 0.01     |          |          |          |
|           |          | laminated bed 60o rare stringers.                                                  | 35015    | 169.2  | 170.1  | 0.9       | 0        |          |          |          |
| 170.1     | 171.25   | patchy sericitic altn usually with few siliceous bands with medium grey to         | 35016    | 170.1  | 171.25 | 1.15      | 0.03     |          |          |          |
|           |          | greenish medium grey sections, 170.43 1/2cm white opague q st CA II to bed.        |          |        |        |           |          |          |          |          |
| 171.25    | 174.43   | patchy moderate strong pervasive altn to locally pervasive sericitic altn, void of | 35017    | 171.25 | 172.25 | 1         | 0        |          |          |          |
|           |          | stringers, siliceous non carbonated, tuff, scattered pyrite, LC 55o 172.84         | 35018    | 172.25 | 173.23 | 0.98      | 0.09     |          |          |          |
|           |          | formation CA-250 displacement 1.5cm left band, downhole, 172.97-173.47             | 35019    | 173.23 | 174.43 | 1.2       | 0.61     | 0.56     |          |          |
|           |          | elongated greyish qtz discontinuous stringer II to bed, 173.24-173.47 1/2cm        |          |        |        |           |          |          |          |          |
|           |          | curved stringer x-cut bed.                                                         |          |        |        |           |          |          |          |          |
| 174.43    | 176.11   | patchy sericitic altn, 2 qtz stringer at 174.66 1.2cm II to bed, 175.18 boutinga   | 35020    | 174.43 | 175.57 | 1.14      | 0        |          |          |          |
|           |          | II to bed 175.81-175.92 brecciated chloritic healed x-cut bed 35o, Bx-25o, 175     | 35021    | 175.57 | 176.11 | 0.54      | 0.08     |          |          |          |
|           |          | bed 45o LC-25o x-cut bed by qtz vein.                                              |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                                 | Hole No. | 36     |        | Sheet No. | 6        |          |          |          |
|-----------|----------|-------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                         | Samp     | le     |        |           | Ass      | say      |          |          |
| From      | To       |                                                                                     | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 176.11    | 176.15   | white cloudy to opague gtz vein CA-25o.                                             | 35022    | 176.11 | 176.61 | 0.5       | 0.3      | 0.33     |          |          |
| 176.15    | 176.61   | chloritic black green gtz rich laminated tuff scattered to <1% vfg py LC with       |          |        |        |           |          |          |          |          |
|           |          | qtz st 30-40o irregular.                                                            |          |        |        |           |          |          |          |          |
| 176.61    | 176.77   | foliated to bedded, medium brown felsic, hard with irregular glossy grey white      | 35023    | 176.61 | 177.05 | 0.44      | 0.19     |          |          |          |
|           |          | qtz mass, LC 350 0.5-1% vfg py.                                                     |          |        |        |           |          |          |          |          |
| 176.77    | 176.93   | massive medium brown with small 1mm white grey plagioclose x-cut, some              |          |        |        |           |          |          |          |          |
|           |          | buff elongated angular fragment LC sharp CA 40o.                                    |          |        |        |           |          |          |          |          |
| 176.93    | 177.05   | same as 176.61-176.77 tuffaceous felsic sharp LC 350 with altn chloritic            |          |        |        |           |          |          |          |          |
|           |          | laminations 1mm.                                                                    |          |        |        |           |          |          |          |          |
| 177.05    | 181.82   | light grey to grey green weakly pervasive sericitic altn, rare greyish qtz stringer | 35024    | 177.05 | 178.25 | 1.2       | 0.13     |          |          |          |
|           |          | masses fragmental tuff to tuff, 178.70-178.74 whitish irregular mass, 179.28-       | 35025    | 178.25 | 179.29 | 1.04      | 0.22     |          |          |          |
|           |          | 179.78 scattered greyish white 3-5mm stringer usually x-cut bedding, 179.78-        | 35026    | 179.29 | 179.78 | 0.49      | 0        |          |          |          |
|           |          | pinkish orange qc veinlet with pink calcite, trace sulphides, contacts 40-350       | 35027    | 179.78 | 179.98 | 0.2       | 0.07     |          |          |          |
|           |          | irregular, 179.98-180.43 qtz flooded fragmental tuff, scattered py, 180.43-         | 35028    | 179.98 | 180.43 | 0.45      | 0.03     |          |          |          |
|           |          | 181.82 grey green laminated minor crenulated tuff bed 40o, 180.55 2cm qtz           | 35029    | 180.43 | 181.82 | 1.39      | 0        |          |          |          |
|           |          | veinlet CA-45o sinuous, 180.86-181.70 crenulated with 1-2mm chlorite II slips,      |          |        |        |           |          |          |          |          |
|           |          | 181.59 3/4cm qtz st grey translucent CA-75 x-cut bed, 181.71 1cm greyish            |          |        |        |           |          |          |          |          |
| 177.05    | 181.82   | white translucent CA-700 LC 350 lost 10-12cm hard, baked.                           |          |        |        |           |          |          |          |          |
| 181.82    | 182.4    | feldspar porphyritic, fg, medium grey matrix with 1mm white to whitish grey         | 35030    | 181.82 | 182.4  | 0.58      | 0.02     |          |          |          |
|           |          | plagioclose phenocryst, massive uniform, hard siliceous, vfg pyrite scattered,      |          |        |        |           |          |          |          |          |
|           |          | chlorite py II, qtz st II, 181.84 1-2mm grey white II qtz st deformed               |          |        |        |           |          |          |          |          |
|           |          | 182.10 3-4mm grey white translucent straight q st 650 LC sharp 500.                 |          |        |        |           |          |          |          |          |
| 182.4     | 187.54   | tuffaceous fragmental, grey green, hard, siliceous, small pale buff fragments,      | 35031    | 182.4  | 183    | 0.6       | 0        |          |          |          |
|           |          | scattered 3mm grey white qtz st to 1cm and 3cm qtz mass, 182.97-183.0               | 35032    | 183    | 184    | 1         | 0.04     |          |          |          |
|           |          | cloudy white qtz mass irregular x-cut bed, 183.44 1cm grey white translucent        | 35033    | 184    | 185    | 1         | 0.03     |          |          |          |
|           |          | qtz st CA-35-40o irregular x-cut bedding 50-55o, 183.56-183.63 irregular grey       | 35034    | 185    | 186    | 1         | 0.04     |          |          |          |
|           |          | white qtz stringer and mass, 184 increasing tuff and less fragments, 184.70-        | 35035    | 186    | 187    | 1         | 0.07     |          |          |          |
|           |          | 186.0 local crenulations and 2-3 chlorite II slips planes, 186.03-186.06 light      | 35036    | 187    | 187.54 | 0.54      | 0.03     |          |          |          |
|           |          | brown to medium brown felsic laminated fine, tuff, CA-40o, 186.06-187.54            |          |        |        |           |          |          |          |          |
|           |          | tuff fragmental, light grey and black green, laminations, trace pyrite,             |          |        |        |           |          |          |          |          |
|           |          | moderately hard, siliceous, 187.0-187.05 white qtz st 1cm discontinuous 1cm         |          |        |        |           |          |          |          |          |
|           |          | straight CA 800 near II to bed, 187.23-187.52 irregular 2-4mm grey qtz st           |          |        |        |           |          |          |          |          |
|           |          | near II to CA overall 60o x-cut bed, 187.45-187.52 whitish grey qtz veinlet         |          |        |        |           |          |          |          |          |
|           |          | with inclusions CA 50o, 187.52-187.54 massive chlorite contorted altn, baked        |          |        |        |           |          |          |          |          |
|           |          | contact, LC-50o.                                                                    |          |        |        |           |          |          |          |          |
| 187.54    | 189.27   | felsic dike, aphanitic to fg, light grey to medium grey, hairlike qtz stringer      | 35.37    | 187.54 | 188.4  | 0.86      | 0.01     |          |          |          |
|           |          | hydrofracturing, monor chlorite ff, massive, uniform, irregular siliceous, non      | 35.38    | 188.4  | 189.27 | 0.87      | 0        |          |          |          |

| Property: | Hunter M | ine                                                                                 | Hole No: | 36     |        | Sheet No. | 7        |          |          |          |
|-----------|----------|-------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                         | Samp     | e      |        |           | Assay    |          |          |          |
| From      | To       |                                                                                     | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | magnetic, few scattered 2-3mm grey opague translucent qtz st, usually at            |          |        |        |           |          |          |          | 1        |
|           |          | 25-40o, few discont. white qc st vfg to fg py trace to scattered <0.5% LC           |          |        |        |           |          |          |          |          |
|           |          | 55o with 1cm black green chlorite baked contact.                                    |          |        |        |           |          |          |          |          |
| 189.27    | 193.16   | fragmental tuff, black green, moderately hard, few irregular 1-1.5cm white qtz      | 35039    | 189.27 | 190.75 | 1.48      | 0        |          |          |          |
|           |          | st II to bedding, vein few qtz stringers CA-45o, well develop bedding 190 at        | 35040    | 190.75 | 192.25 | 1.5       | 0        |          |          |          |
|           |          | 43o, 191 at 47o, 192.6 at 70o, 192.84-193.16 folded kinkled bedding,                | 35041    | 192.25 | 193.16 | 0.91      | 0        |          |          |          |
|           |          | medium light grey and black chlorite laminations, trace to nil sulphides, LC        |          |        |        |           |          |          |          |          |
|           |          | 50o contact baked chlorite band.                                                    |          |        |        |           |          |          |          |          |
| 193.16    | 194.02   | felsic dike foliated, aphanitic to fine grained, massive light brownish grey        | 35042    | 193.16 | 194.02 | 0.86      | 0.04     |          |          |          |
|           |          | 193.16-193.25, foliated medium to dark grey foliated 50o 193.25-193.83, light       |          |        |        |           |          |          |          |          |
|           |          | to medium brown 193.83-194.02, colour due to chlorite qtz carbonated                |          |        |        |           |          |          |          |          |
|           |          | irregular stringers, hard, siliceous rare sulphides, numerous 2-5mm qtz grey        |          |        |        |           |          |          |          |          |
|           |          | opague and grey white translucent stringers II to foliation or near II to foliation |          |        |        |           |          |          |          |          |
| 193.16    | 194.02   | CA 45o, chlorite II with 1/2cm qtz stringers 30-33o x-cut foliation, 193.47-        |          |        |        |           |          |          |          |          |
|           |          | 193.50 grey opague qtz veinlet with scattered pyrite, CA 75o, 193.82 1cm            |          |        |        |           |          |          |          |          |
|           |          | grey white with pyrite in altn sections CA-30-350 LC CA-450.                        |          |        |        |           |          |          |          |          |
| 194.02    | 197.4    | fragmental tuff, same as 189.27-193.16, few stringers, light grey green to          | 35043    | 194.02 | 195.5  | 1.48      | 0        |          |          |          |
|           |          | medium grey, few grey white stringers 195.76-196.80 overall trace to                | 35044    | 195.5  | 196.9  | 1.4       | 0.01     |          |          |          |
|           |          | scattered py, 196.90-197.40 qtz flooding with scattered vfg py LC 40o.              | 35045    | 196.9  | 197.4  | 0.5       | 0        |          |          |          |
| 197.4     | 203.82   | felsic tuffaceous fragmental, aphanitic to fine grained, weakly to moderately       | 35046    | 197.4  | 197.77 | 0.37      | 0.06     |          |          |          |
|           |          | fine laminations silicified to 197.81, carbonated weakly to moderately 197.81-      | 35047    | 197.77 | 199.27 | 1.5       | 0        |          |          |          |
|           |          | 203.37, rare distinct greyish cloudy white qtz stringers at 198.0 CA-40o II to      | 35048    | 199.27 | 200.27 | 1         | 0        |          |          |          |
|           |          | bed CA-360 at 198.05, 199.0 CA-200 2-3mm 203.41 CA-550, 203.47 CA-450               | 35049    | 200.27 | 201.4  | 1.13      | 0        |          |          |          |
|           |          | both 4mm, numerous hairlike to 1mm calcite carbonate II stringers II to bed,        | 35050    | 201.4  | 201.83 | 0.43      | 0        |          |          |          |
|           |          | locally laminations fg ophanitia difficult to determine tops, local crenulations    | 35051    | 201.83 | 202.43 | 0.6       | 0.01     |          |          |          |
|           |          | from 201.83-202.43 more tuffaceous 202.43-203.82 fragmental tuff with               | 35052    | 202.43 | 202.73 | 0.3       | 0        | -        |          |          |
|           |          | irregular crispy qtz carbonated stringers hairlike, 202.73-203.82 scattered         | 35053    | 202.73 | 203.37 | 0.64      | 0.11     |          |          |          |
|           |          | 1-2% overall pyrite with scattered pyrrhotite 203.06-203.37 as crenulation          | 35054    | 203.37 | 203.62 | 0.25      | 0.1      | 0.07     |          |          |
|           |          | masses up to 2-3% ossociated with greyish qtz carbonated between                    | 35055    | 203.62 | 203.82 | 0.2       | 0.03     |          |          |          |
|           |          | fragments LC-45o, 203.37-203.62 silicified, hard, few stringers, silicified grey    |          |        |        |           |          |          |          |          |
|           |          | brecciated zone 3-5% pyrrhotite with up to 1% pyrite associated with                |          |        |        |           |          |          |          |          |
|           |          | brecciated fragmental, trace to <0.5% with greyish opague cloudy siliceous          |          |        |        |           |          |          |          | 1        |
|           |          | and rare pyrite in stringers, LC 70o, 203.62-203.82 buff to buff green fragment     |          |        |        |           |          |          |          |          |
|           |          | moderately hard to hard, rare to scattered fg pyrite, LC 700 gradational            |          |        |        |           |          |          |          |          |
|           |          | colour change lust 2cm to buff blackish green, conformable contact.                 |          |        |        |           |          |          |          |          |
| 203.82    | 207.2    | UM fragmental tuff silicified, fg, black green, hairlike qtz flooding stringer ff   | 35056    | 203.82 | 205.1  | 1.28      | 0        |          |          |          |
|           |          | locally well laminated tuff sections within fragmental tuff, hard, silicified, qtz  | 35057    | 205.1  | 206    | 0.9       | 0.01     |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 36     |        | Sheet No. | 8        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                        |          | S      | ample  |           | As       | say      |          |          |
| From      | То       |                                                                                    | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | flooding 204-205.08, scattered to trace pyrite ossociated with qtz scattered       | 35058    | 206    | 207.2  | 1.2       | 0        |          |          |          |
|           |          | to trace, few distinct qtz str, LC gradational, moderately soft, 205.08-205.34     |          |        |        |           |          |          |          |          |
|           |          | same as above but weakly to moderately carbonated to 205.34, locally               |          |        |        |           |          |          |          |          |
|           |          | siliceous due to grey opague qtz masses and veinlets 205.72-206.0 weakly           |          |        |        |           |          |          |          |          |
|           |          | carbonated 206-209.85, 203.82-205.10 fragmental tuff, 205.10-207.20 qc             |          |        |        |           |          |          |          |          |
|           |          | flood weak carbonate flooding moderately carbonated fragmental tuff.               |          |        |        |           |          |          |          |          |
| 207.2     | 209.07   | brecciated and qtz flooded, massive, tuff, fragmental, 206.91-206.97 qc vein       | 35059    | 207.2  | 208    | 0.8       | 0        |          |          |          |
|           |          | CA-80o, 207.04-207.21 tufforeous, 207.21-209.07 massive, with porphyritic          | 35060    | 208    | 209.07 | 209.07    | 0.07     |          |          |          |
|           |          | texture carbonated x-cuts.                                                         |          |        |        |           |          |          |          |          |
| 207.2     | 209.07   | brecciated and qtz flooded, massive, tuff, fragmental, 206.91-206.97 qc vein       | 35059    | 207.2  | 208    | 0.8       | 0        |          |          |          |
|           |          | CA-80o, 207.04-207.21 tufforeous, 207.21-209.07 massive, with porphyritic          | 35060    | 208    | 209.07 | 209.07    | 0.07     |          |          |          |
|           |          | texture carbonated x-cuts.                                                         |          |        |        |           |          |          |          |          |
| 209.07    | 209.85   | tuffaceous fragmental qtz flooded weakly carbonated moderately soft.               | 35061    | 209.07 | 209.85 | 0.78      | 0        |          |          |          |
| 209.85    | 211.6    | very strongly carbonated porphyritic texture massive intensely qc veining          |          |        |        |           |          |          |          |          |
|           |          | usually CA-550 II to foliation schistosty, qtz flood brecciated from 210.83-       |          |        |        |           |          |          |          |          |
|           |          | 211.12, qc vein 211.12-211.21 CA-500 x-cut schistosty, 211.21-211.60 very          |          |        |        |           |          |          |          |          |
|           |          | carbonated tuff to tuff fragmental.                                                |          |        |        |           |          |          |          |          |
| 211.6     | 212.86   | weakly carbonated, carbonate stringers, tuff to tuff fragmental intensely vein,    |          |        |        |           |          |          |          |          |
|           |          | LC 50-550.                                                                         |          |        |        |           |          |          |          |          |
| 212.86    | 219.38   | 1mm white grey carbonate phenocryst massive with locally veining to                |          |        |        |           |          |          |          |          |
|           |          | brecciation angular fragments, 213.27-215.76, 216.58-218.40 non porphyritic        |          |        |        |           |          |          |          |          |
|           |          | locally porphyritic.                                                               |          |        |        |           |          |          |          |          |
| 219.38    | 220.3    | carbonated flooded non porphyritic.                                                |          |        |        |           |          |          |          |          |
| 220.3     | 221.12   | tuff fragmental.                                                                   |          |        |        |           |          |          |          |          |
| 221.12    | 221.34   | crenulated tuff.                                                                   |          |        |        |           |          |          |          |          |
| 221.34    | 221.41   | massive tuff, conformable contact CA 650.                                          |          |        |        |           |          |          |          |          |
| 221.41    | 234      | Argillite Graphitic and Grey Arenites                                              |          |        |        |           |          |          |          |          |
| 221.41    | 223.67   | graphitic argillite, aphanitic to fg, black, fine laminations, well devel. bedding |          |        |        |           |          |          |          |          |
|           |          | 50o, massive, rare hairlike II stringers usually II to bed to 35o x-cut bed at     |          |        |        |           |          |          |          |          |
|           |          | 221.57-222.20 pink calcite vein 221.61 2 1/2cm CA028-300 x-cut bedding.            |          |        |        |           |          |          |          |          |
| 223.67    | 226.98   | banded argillite with minor graphitic argillite dark grey to black laminations,    | 35062    | 224    | 224.8  | 0.8       | 0        |          |          |          |
|           |          | 224.0-224.41 glassy translucent qc veinlet greenish inclusions CA-50o II to        | 35063    | 226    | 226.4  | 0.4       | 0.01     |          |          |          |
|           |          | bed and broken. 224.41 1 1/2cm qc veinlet II to bed, 224.56-225.10 irregular       |          |        |        |           |          |          |          |          |
|           |          | qc veining x-cut bed, 225 bed 380-400, 225.10-225.36 kinkle folding to             |          |        |        |           |          |          |          |          |
|           |          | crenulations, 225.36-225.92 crenulation bedding change to vein II to CA then       |          |        |        |           |          |          |          |          |
|           |          | to 50o numerous slip planes CA 25-40o, 225.92-226.16 crenulated graphitic          |          |        |        |           |          |          |          |          |
|           |          | argillite, 226.16-226.43 qtz vein with graphitic argillite siliceous, CA-300       |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                        | Hole No. | 36    |       | Sheet No. | 9        |                                              |          |          |
|-----------|----------|----------------------------------------------------------------------------|----------|-------|-------|-----------|----------|----------------------------------------------|----------|----------|
| Mete      | erage    | Description                                                                |          | Sam   | ple   |           | Assa     | <u>у                                    </u> |          |          |
| From      | To       |                                                                            | No.      | From  | То    | Width     | Au (g/t) | Au check                                     | Au (2nd) | Au check |
|           |          | irregular x-cut bedding to 450 II to bedding,226.43-226.98 weak carbonated |          |       |       |           |          |                                              |          |          |
|           |          | siliceous.                                                                 |          |       |       |           |          |                                              |          |          |
| 226.98    | 227.3    | fg light to medium grey greywacke, irregular LC, carbonated.               |          |       |       |           |          |                                              |          |          |
| 222.3     | 228.41   | crenulation vfg chesty to fg argillite LC 80o carbonated.                  |          |       |       |           |          |                                              |          |          |
| 228.41    | 228.77   | massive mg weakly carbonated, siliceous greywacke LC 750 II to bed.        |          |       |       |           |          |                                              |          |          |
| 228.77    | 229      | dark grey argiilite scattered py II to bed.                                |          |       |       |           |          |                                              |          |          |
| 229       | 229.96   | greywacke massive weak to moderate level bed, 229.37-229.42 qc veinlet     | 35064    | 229.3 | 229.6 | 0.3       | 0.03     |                                              |          |          |
|           |          | with inclusions, fg py CA-60-70o.                                          |          |       |       |           |          |                                              |          |          |
| 229.96    | 230.42   | laminated fg medium grey argillite.                                        |          |       |       |           |          |                                              |          |          |
| 230.42    | 234      | massive greywacke poorly to weakly devel. bedding, cleavage CA-55o.        |          |       |       |           |          |                                              |          |          |
|           | 234      | END OF HOLE                                                                |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           | -        |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |
|           |          |                                                                            |          |       |       |           |          |                                              |          |          |

|           |        | Hunter Mine - Diamond I                                                              | Drill Log HM-04 | -37     |            |       |            |          |          |          |
|-----------|--------|--------------------------------------------------------------------------------------|-----------------|---------|------------|-------|------------|----------|----------|----------|
| Property: |        | Hunter Mine                                                                          | Hole Dip:       | -66     | Page No    | .:    | 1 of 13    |          | HM-04-37 |          |
| Location: |        |                                                                                      | Hole Azimuth:   | 105     | Date Sta   | rted: | July 20,04 |          |          |          |
| Claim No  | :      | HR 1009                                                                              | Hole Length:    | 248.81m | Date Fini  | shed: | July 28/04 |          |          |          |
| Elevation | :      | Porcupine Lake                                                                       | Purpose:        |         | Drill Co.: |       | Benoit     |          |          |          |
| UTM Coc   | ords.: | 5370768.3N, E487021.0                                                                |                 |         | Logged b   | by:   | K. Jensen  |          |          |          |
| Mete      | rage   | Description                                                                          |                 | Si      | ample      |       |            | Assays   |          |          |
| From      | To     |                                                                                      | No.             | From    | То         | Width | Au (g/t)   | Au check | Au (2nd) | Au check |
| 0.0       | 63.0   | Casing                                                                               |                 |         |            |       |            |          |          |          |
| 63        |        | Ultramafic Talcose Rocks                                                             |                 |         |            |       |            |          |          |          |
| 63.0      | 70.5   | ultramafic, 63.0-65.33 fg schistose, local shearing, schist CA-300, tuffaceous,      |                 |         |            |       |            |          |          |          |
|           |        | carbonated stringers, soft, talcose, 65.33-68.78 more massive, locally schistose     |                 |         |            |       |            |          |          |          |
|           |        | carbonated qtz stringers 10-200 to II to CA, moderately hard, 68.78-70.5             |                 |         |            |       |            |          |          |          |
|           |        | crumbly brecciated sheared zone, void of stringers, only small brecciated            |                 |         |            |       |            |          |          |          |
|           |        | fragments of qtz, 69.0-72.0 only 1.33m lost core 1.67m.                              |                 |         |            |       |            |          |          |          |
| 70.5      | 77.82  | fragmental tuff, scattered qtz carbonated fragments of stringers, minor stringers    |                 |         |            |       |            |          |          |          |
|           |        | boudinage and near II to CA same as bedding schistose, local sections with bed       |                 |         |            |       |            |          |          |          |
|           |        | at 15-20o, moderately soft to soft, talcose, scattered fg mg py, LC 28o at 1.3cm     |                 |         |            |       |            |          |          |          |
|           |        | qtz c veinlet CA-280.                                                                |                 |         |            |       |            |          |          |          |
| 77.82     | 79.45  | massive, pophyritic texture, nil to very weak devel. of schistose, rare qc stringers |                 |         |            |       |            |          |          |          |
|           |        | 1cm CA-35o, 78.44-78.60 irregular mass of carbonate + talcose LC-50o irregular       |                 |         |            |       |            |          |          |          |
| 79.45     | 82.31  | massive with local brecciated sections and appearance of polysuturing, randomly      |                 |         |            |       |            |          |          |          |
|           |        | orientated carbonate healling stringers with brecciated sections, trace to           |                 |         |            |       |            |          |          |          |
|           |        | scattered pyrite LC irregular.                                                       |                 |         |            |       |            |          |          |          |
| 82.31     | 105    | brecclated healed with creamy pale greenish carbonate, 85.94-86.60 intense           |                 |         |            |       |            |          |          |          |
|           |        | shearing 400 with small section of breccia, 87-93 2.99m lost core sections of        |                 |         |            |       |            |          |          |          |
|           |        | brecciated and intensely sheared and crushed zone, 93.50- 94.22 crushed zone,        |                 |         |            |       |            |          |          |          |
|           |        | 94.22-95.31 schistose, probably tuffaceous fragmental bedding CA-40o, 95.31-         |                 |         |            |       |            |          |          |          |
|           |        | 98.84 brecciated tuff fragmental with intense shearing and crushed zone, local       |                 |         |            |       |            |          |          |          |
|           |        | slick on side, 98.84-103.0 brecciates carbonate healed, intense random veining,      |                 |         |            |       |            |          |          |          |
|           |        | 103-103.47 massive weak level of schistose CA-550 trace pyrite, 103.47-105.0         |                 |         |            |       |            |          |          |          |
|           |        | brecciated scattered mg cg py in veining.                                            |                 |         |            |       |            |          |          |          |
| 105       |        | Laminated Ultramafic Tuffs                                                           |                 |         |            |       |            |          |          |          |
| 105       | 105.8  | tuff fragmental stringer carbonated veining 2-5mm all II well level of schistose bed |                 |         |            |       |            |          |          |          |
|           |        | CA-400 LC 400 scattered 1-3mm pyrite masses in veining.                              |                 |         |            |       |            |          |          |          |
| 105.8     | 108    | brecciated fragmental.                                                               |                 |         |            |       |            |          |          |          |
| 108       | 110.51 | tuff to tuffaceous fragmental, local kwinkle folding 108.0-108.18, local intense st  |                 |         |            |       |            |          |          |          |
|           |        | carbonated probably due to laminations 108.23-110.51, contorted schist bedding       |                 |         |            |       |            |          |          |          |
| 108       | 110.51 | carbonate fragmental stringers, 109.64-109.68 intense searing CA-60o.                |                 |         |            |       |            |          |          |          |

| Property | Hunter M      | ine                                                                               | Hole No. | 37     |        | Sheet N | 2        |          |          |          |
|----------|---------------|-----------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Mete     | erage         | Description                                                                       |          | Sample |        |         |          | Assay    |          |          |
| From     | To            |                                                                                   | No.      | From   | To     | Width   | Au (g/t) | Au Check | Au (2nd) | Au check |
| 110.51   | 111.48        | massive non magnetic, few 2-3 white carbonated stringers usually CA-70-800        |          |        |        |         |          |          |          |          |
|          |               | moderately soft, trace sulphides, LC 500 with qc veining 1.5cm with 2-3%          |          |        |        |         |          |          |          |          |
|          |               | mg cg py minor chalcopyrite and traces of pyrrhotite.                             |          |        |        |         |          |          |          |          |
| 111.48   | 113.29        | fg, weak to moderately level of bedding, black to black green, tuff, random       |          |        |        |         |          |          |          |          |
|          |               | orientated qc st irregular, contorted, few S folds, no sections to HCC trace      |          |        |        |         |          |          |          |          |
|          |               | sulphides.                                                                        | 1        |        |        |         |          |          |          |          |
| 113.29   | 113.43        | qc vein with inclusions UC grade LC irregular.                                    |          |        |        |         | _        |          |          |          |
| 113.43   | 113.9         | more massive weak devel. of bed random orientated 2-5mm qc st kinkle fold.        |          |        |        |         |          |          |          |          |
| 113.9    | 118.37        | vfg to fg, tuff local small crenulations, scattered small fragments, random       | 35065    | 115.4  | 116.15 | 0.75    | 0.04     |          |          |          |
|          |               | stringers, 113.90-115.41, afterwards majority 1-2mm II to bedding and             | 35066    | 116.15 | 116.84 | 0.69    | 0        |          |          |          |
|          |               | apperance of fg py to small 2mm blobs, locally 115.75-116.15 3-5% vfg py,         | 35067    | 116.84 | 118.37 | 1.53    | 0.04     |          |          |          |
|          |               | 116.84-117.0 3-5% mg, 117.0-118.37 1-2% vfg py, stretching to have small          |          |        |        |         |          |          |          |          |
|          |               | fragments.                                                                        |          |        |        |         |          |          |          |          |
| 118.37   | 120           | tuff to tuffaceous fragmental medium grey to greenish tint, locally crenulations  | 35068    | 118.37 | 119.64 | 1.27    | 0.03     |          |          |          |
|          |               | 119.30-119.64, 119.64-120.0 bedding near II to CA contorted, occasional           | 35069    | 119.64 | 120.8  | 1.16    | 0        |          |          |          |
|          |               | stringers near II to bed 600.                                                     |          |        |        |         |          |          |          |          |
| 120      | 122.04        | 10-150 qtz st white opague, 1-2mm up to 1-1 1/2cm random orientated from          | 35070    | 120.8  | 122.04 | 1.24    | 0        |          |          |          |
|          |               | near II to bedding to 400-600 x-cut bedding.                                      |          |        |        |         |          |          |          |          |
| 122.04   | 123.07        | high siliceous contact, fragmental void of stringers, brecciated with black       | 35071    | 122.04 | 123.07 | 1.03    | 0        |          |          |          |
|          |               | green chlorite ff, trace pyrite LC sharp 50o.                                     |          |        |        |         |          |          |          |          |
| 123.07   | 123.22        | fg grey green tuff, 1/2cm qc stringer CA-40o at 123.13.                           | 35072    | 123.07 | 124.23 | 1.16    | 0.03     |          |          |          |
| 123.22   | 124.23        | similar to 122.04-123.07, fragmental LC-65o x-cut by 1cm grey qtz st CA-50o       |          |        |        |         |          |          |          |          |
|          |               | 124.04-124.10 qtz vein V shaped with inclusions CA-55o.                           |          |        |        |         |          |          |          |          |
| 124.23   | 126           | fg tuff, light greenish light medium grey well devel. bedding small crenulations, | 35073    | 124.23 | 125.07 | 0.84    | 0.01     |          |          |          |
|          |               | locally contorted with scattered 1/2-1cm grey translucent qtz st, CA-20-25o       | 35074    | 125.07 | 126    | 0.93    | 0        |          |          |          |
|          |               | x-cut bed CA-55o at 124.5, 65o at 125.3 80oat 125.80.                             |          |        |        |         |          |          |          |          |
| 126      | 126.24        | qtz flood vein with inclusion, silicified scattered 1-4mm pyrite masses to        | 35075    | 126    | 126.23 | 0.23    | 0.02     |          |          |          |
|          |               | blocks contact sharp 65 + 70-750.                                                 |          |        |        |         |          |          |          |          |
| 126.24   | 126.88        | tuff as 124.23-126.0.                                                             | 35076    | 126.23 | 126.88 | 0.65    | 0.01     |          |          |          |
| 126.88   | <u>127.13</u> | white qtz vein with talcose medium grey green inclusion trace py CA-60-700.       | 35077    | 126.88 | 127.13 | 0.25    | 0.09     |          |          |          |
| 127.13   | 132.24        | light grey to medium grey green, laminated with grey siliceous and altered        | 35078    | 127.13 | 128.55 | 1.42    | 0.12     | 0.17     |          |          |
|          |               | chloritic tuff fragmental with minor crenulated tuff 127.82-127.92, 2-4 qtz grey  | 35079    | 128.55 | 129.95 | 1.4     | 0        |          |          |          |
| 127.13   | 132.24        | stringer per meter, from II to bed to x-cut bedding locally contorted 127.33      | 35080    | 129.95 | 131    | 1.05    | 0.01     |          |          |          |
|          |               | 1/4cm CA-15o, 127.47 3cm mass, 127.50 II to CA to 10o, 127.93 CA 70o,             | 35081    | 131    | 132.24 | 1.24    | 0        |          |          |          |
|          |               | 128.12-128.16 qtz mass, 128.61 200 1cm, 129.04-129.09 qtz mass, 129.23            |          |        |        |         |          |          |          |          |
|          |               | 1cm CA 55o, 129.26 1 1/2 CA 30o, 129.97-130.13 buff white qtz vein irregular      |          |        |        |         |          |          |          |          |
|          |               | 50o with inclusions V shaped x-cut and near II to 50o, 130.85-131.0               |          |        |        |         |          |          |          |          |

| Property | Hunter M | ine                                                                                | Hole No. | 37     |        | Sheet N | 3        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Me       | eterage  | Description                                                                        |          | Sample |        |         |          | Assay    |          |          |
| From     | То       |                                                                                    | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | crenulated tuff, 131.31 1/2cm grey gtz st CA-200 x-cut bedding 700, 131.69         |          |        |        |         |          |          |          |          |
|          |          | 1cm tops to 1/2cm arev atz st CA 30o-20o x-cut bedding.                            |          |        |        |         |          |          |          |          |
| 132.24   | 133      | massive, nil to very weak schistosty, weakly porphyritic with fg chlorite          | 35082    | 132.24 | 133    | 0.76    | 0        |          |          |          |
|          |          | x-cuts, x-cuts by random orientated contorted grey white opague gtz stringer       |          |        |        |         |          |          |          |          |
|          |          | from 1-4mm, trace to nil pyrite LC 750 angular UC 500 irregular.                   |          |        |        |         |          |          |          |          |
| 133      | 134.17   | gtz flooded fragmental fragments, nil to weak schistosty contorted gtz st.         | 35083    | 133    | 134.45 | 1.45    | 0        |          |          |          |
|          |          | grading from fg tuff 133.0-133.20 to fragmental scattered to <0.5% fg pyrite,      |          |        |        |         |          |          | 1        |          |
|          |          | LC 20-300 contacted.                                                               |          |        |        |         |          |          |          |          |
| 134.17   | 134.45   | fg, kacki green brecciated fragments with chlorite healed, 1% vfg fg pyrite.       |          |        |        |         |          |          |          |          |
| 134.45   | 135.4    | massive to brecciated massive flow, 134.45-134.67 massive, few 2-3 gtz st          | 35084    | 134.45 | 135.4  | 0.95    | 0        | 0.01     |          |          |
|          |          | random, 134.67-135.30 massive brecciated large fragments filled with gtz,          |          |        |        |         |          |          |          |          |
|          |          | 135.30-135.40 massive brecciated small fragments qtz filled, LC 650.               |          |        |        |         |          |          |          |          |
| 135.4    | 138.76   | fragmental to fragmental tuff, 135.40-135.47 appears to be rubble zone small       | 35085    | 135.4  | 136.77 | 1.37    | 0        |          |          |          |
|          |          | qtz fragments 4-7mm contorted schist, 135.47-138.76 qtz flooded, brecciated        | 35086    | 136.77 | 138.2  | 1.43    | 0        |          |          |          |
|          |          | tuff fragmented contorted schistosty bedding, grey green to olive green,           | 35087    | 138.2  | 139.53 | 1.33    | 0        |          |          |          |
|          |          | locally more intense qtz flooding, 137.90-138.76 larger fragments possible Bx      |          |        |        |         |          |          |          |          |
|          |          | massive flow.                                                                      |          |        |        |         |          |          |          |          |
| 138.76   | 139.38   | qtz flooding decreasing tuff fragmental with crenulated bedding with chlorite ff   |          |        |        |         |          |          |          |          |
|          |          | slip planes near II to CA.                                                         |          |        |        |         |          |          |          |          |
| 139.38   | 139.53   | buff to light tan tuff and felsic dike internal fractured and filled with black    |          |        |        |         |          |          |          |          |
|          |          | green chlorite, interlayered into chlorite, fragmental tuff, LC sharp 470 UC 500.  |          |        |        |         |          |          |          |          |
| 139.53   | 140.24   | felsic dike, aphanitic to light tan at contacts to medium brown, heavy             | 35088    | 139.53 | 140.28 | 0.75    | 0.02     |          |          |          |
|          |          | hydrofracturing chlorite II massive uniform, very hard siliceous, scattered 1%     |          |        |        |         |          |          |          |          |
|          |          | to disseminated 1% py in dike, minor py associated with chlorite II, rare white    |          |        |        |         |          |          |          |          |
|          |          | hairlike gtz II, random, more intensely chlorite II st lower contact to bottom     |          |        |        |         |          |          |          |          |
|          |          | 1/2, LC 750.                                                                       |          |        |        |         |          |          |          |          |
| 140.24   | 140.28   | chlorite tuff and 1cm qc st CA-750.                                                |          |        |        |         |          |          |          |          |
| 140.28   | 140.73   | foliated felsic fragmental tuff, fg, buff with chlorite matrix massive uniform     | 35089    | 140.28 | 140.73 | 0.45    | 0.02     |          |          |          |
| 140.28   | 140.73   | weak to weak moderately devel. foliation CA-40o, LC 15-32o, UC 60o, 6 3mm          |          |        |        |         |          |          |          |          |
|          |          | grey qtz st from 140.48-140.73 CA-70, 60, 900, trace sulphides, hard, siliceous.   |          |        |        |         |          |          |          |          |
| 140.73   | 141.21   | chloritin tuff fragmental, 140.73-141.01 fragmental very chloritin, 141.01-141.21  | 35090    | 140.7  | 141.2  | 0.48    | 0        |          |          |          |
|          |          | tuff crenulated, chlorite II slips II to CA contacts 50o irregular LC 40o overall. |          |        |        |         |          |          |          |          |
| 141.21   | 141.38   | foliated felsic fragmental tuff same as 140.28-140.73, elongated stretched buff    | 35091    | 141.2  | 141.4  | 0.17    | 0        |          |          |          |
|          |          | fragments near UC, few hairlike chlorite ff with py, UC kinkled 3mm qc st x-cut    |          |        |        |         |          |          |          |          |
|          |          | contact, 141.30 3mm grey qtz st CA-65o x-cut bed CA-45o better bedding than        |          |        |        |         |          |          |          |          |
|          |          | above, LC 430 II to chlorite tuff fragmental.                                      |          |        |        |         |          |          |          |          |
| 141.38   | 147.32   | tuff fragmental, same as above, grey green to locally buff grey green, 141.38-     | 35092    | 141.4  | 142.5  | 1.12    | 0        |          |          |          |

| Property: | Hunter M | ine                                                                                  | Hole No. | 37     |        | Sheet N | 4        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Mete      | erage    | Description                                                                          |          | Sample |        |         | Assa     | /S       |          |          |
| From      | То       |                                                                                      | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | 143.20 large blocks or fragments no foliation schistose in tuff locally crenulated,  | 35093    | 142.5  | 144.0  | 1.5     | 0        |          |          |          |
|           |          | 143.20-147.32 small fragments with increasing tuff component down hole,              | 35094    | 144.0  | 145.0  | 1       | 0        |          |          |          |
|           |          | 141.38-146.0 chlorite II 2-3mm slip planes II to CA, 145.0-145.86 1-3 mm qc st,      | 35095    | 145.0  | 145.9  | 0.86    | 0        |          |          |          |
|           |          | II to CA and x-cut bedding CA 47-500 trace pyrite, 145.86-147.32 qtz flood           | 35096    | 145.9  | 147.3  | 1.46    | 0        |          |          |          |
|           |          | fragmental tuff, grey green, LC sinuous overall 350.                                 |          |        |        |         |          |          |          |          |
| 147.32    | 148.29   | well laminated tuff kinkle folded and crenulations, chlorite II sips CA-15o, few     | 35097    | 147.3  | 148.3  | 0.97    | 0.02     |          |          |          |
|           |          | scattered qtz st II to bedding 40o at 147.5 at 35o at 148.20 grey and grey green     |          |        |        |         |          |          |          |          |
|           |          | lamination grading to grey and light brownish grey few dark green laminations        |          |        |        |         |          |          |          |          |
|           |          | well bedded, 147.32-147.50 mg cg py 1-2%, 147.50-148.29 <0.5% fg with few            |          |        |        |         |          |          |          |          |
|           |          | cg blobs LC sharp CA-350.                                                            |          |        |        |         |          |          |          |          |
| 148.29    | 150.28   | weakly sericitic altn, buff to phenocryst tuff and light grey, few small fragments,  | 35098    | 148.3  | 148.7  | 0.38    | 0        |          |          |          |
|           |          | 148.29-148.67 6 1/2-1cm chlorite veinlets, CA-60o, 40, 35o with grey qtz             | 35099    | 148.7  | 149.5  | 0.78    | 0        |          |          |          |
|           |          | fragments, 148.38-148.44 grey translucent qtz ankerite vein with chlorite on         | 35100    | 149.5  | 150.3  | 0.83    | 0        |          |          |          |
|           |          | contacts and buff tuff fragmental inclusions, 1-2% py CA-500 II to bed, 148.67-      |          |        |        |         |          |          |          |          |
|           |          | 150.28 void of qtz st, 5 chlorite stringers/band 1/2-1cm II to bedding CA 30, 35o,   |          |        |        |         |          |          |          |          |
|           |          | 149.06-149.20 grey irregular kinkled qtz st with brown tourmaline on side of         |          |        |        |         |          |          |          |          |
|           |          | core 350 to bedding and near x-cut to bed, 150.28 sharp contact with chlorite        |          |        |        |         |          |          |          |          |
|           |          | band 40o.                                                                            |          |        |        |         |          |          |          |          |
| 150.28    | 151.82   | grey green fragmental tuff, chlorite and crenulated tuff, vfg fg py scattered to     | 35101    | 150.3  | 150.5  | 0.17    | 0.02     |          |          |          |
|           |          | dissemented to 150.45 1%, 150.45-150.70 aphanitic grey felsic dike hairlike qtz      | 35102    | 150.5  | 150.8  | 0.32    | 0.03     |          |          |          |
|           |          | Il hydrofracturing, with 1cm qtz st at 150.50 CA-450 UC CA-270 LC 550, 150.70-       | 35103    | 150.8  | 151.8  | 1.05    | 0        |          |          |          |
|           |          | 150.77 medium grey qtz veinlet with grey white qtz on marigins V shaped              |          |        |        |         |          |          |          |          |
|           |          | scattered 1% vfg fg py, 150.77-151.67 tuff to locally tuff fragmental, green to grey |          |        |        |         |          |          |          |          |
|           |          | green laminations, locally crenulated with chlorite II CA-30o, 151.67-151.69         |          |        |        |         |          |          |          |          |
| 150.28    | 151.82   | greyish brown qtz veinlet CA-750 x-cut bed, 151.69-151.82 brecciated tuff            |          |        |        |         |          |          |          |          |
|           |          | fragmental, brecciated grey white to buff qtz, LC with chlorite CA-400.              |          |        |        |         |          |          |          |          |
| 151.82    | 152.33   | 151.82-151.84 greyish brown qtz veinlet with brecciated tuff fragments, pale         | 35104    | 151.82 | 152.33 | 0.51    | 0        |          |          |          |
|           |          | grey fragments in medium grey medium green tuff contorted bedding x-cut              |          |        |        |         |          |          |          |          |
|           |          | by 2-1/2mm greyqtz st CA kinked overall 450 at 152.07 and straight at                |          |        |        |         |          |          |          |          |
|           |          | 152.12, CA-60o both x-cut bedding, 151.88-151.91 grey opague qtz veinlet             |          |        |        |         |          |          |          |          |
|           |          | CA-40o II to bed, 152.26-152.33 grey qtz vein with milky white ankerite veinlet      |          |        |        |         |          |          |          |          |
|           |          | fragments, CA-40o.                                                                   |          |        |        |         |          |          |          |          |
| 152.33    | 154      | grey light green fragmental tuff to locally tuff with amount of crenulation, trace   | 35105    | 152.33 | 153    | 0.67    | 0        |          |          |          |
|           |          | pyrite LC sharp with numerous hairlike ff qtz 450.                                   | 35106    | 153    | 154    | 1       | 0        |          |          |          |
| 154       | 154.74   | mafic dike, aphanitic, medium grey, hard massive uniform, siliceous and              | 35107    | 154    | 154.74 | 0.74    | 0        |          |          |          |
|           |          | silicified by numerous irregular randomly orientated grey translucent qtz st         |          |        |        |         |          |          |          |          |
|           |          | and qtz ankente st, grey has minor fg py, dike mg with few cg py x-cuts 2%,          |          |        |        |         |          |          |          |          |

| Property: | Hunter M | ine                                                                               | Hole No. | 37     |        | Sheet N | 5        |          |          |          |
|-----------|----------|-----------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                       | Samp     | le     |        |         | A        | ssay     |          |          |
| From      | To       |                                                                                   | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | 154.17-154.21 grey translucent qtz and ankerite CA-50o-60o, 154.48-154.50         |          |        |        |         |          |          |          |          |
|           |          | grey translucent gtz and askinete CA-800, 154.74 LC sharp CA-400.                 |          |        |        |         |          |          |          |          |
| 154.74    | 157.83   | tuff to tuffaceous fragmental, as above grey medium to grey light greenish        | 35108    | 154.74 | 155.27 | 0.53    | 0        |          |          |          |
|           |          | grey, locally pale brownish tint, 154,74-155.27 tuff, locally crenulated, 155.27- | 35109    | 155.27 | 156.26 | 0.99    | 0        |          |          |          |
|           |          | 156.26 fragmental tuff well bedded CA-40-450 with 1/2cm grey qtz st II to         | 35110    | 156.26 | 157.4  | 1.14    | 0        |          |          |          |
|           |          | bedding, minor crenulations with qtz st II to crenulations, rare x-cut qtz st,    | 35111    | 157.4  | 157.83 | 0.43    | 0        |          |          |          |
|           |          | 155.72 1cm CA-80o, trace py, 156.26-157.40 tuff fragmental with contorted         |          |        |        |         |          |          |          |          |
|           |          | qtz st II and x-cut bedding numerous stringers with medium grey, 157.40-          |          |        |        |         |          |          |          |          |
|           |          | 157.83 qtz flood medium grey fragmental tuff.                                     |          |        |        |         |          |          |          |          |
| 157.83    | 160.55   | medium grey tuff to fragmental, rare qtz stringers, trace to scattered vfg py st  | 35112    | 157.83 | 158.5  | 0.67    | 0        |          |          |          |
|           |          | Il to bedding CA-40o at 158.3, 45o at 159.7 weak moderate devel. of bedding,      | 35113    | 158.5  | 158.86 | 0.36    | 0        |          |          |          |
|           |          | 158-158.86 contorted and qtz grey flooding layer fragments, 158.86-160.30         | 35114    | 158.86 | 159.7  | 0.84    | 0        |          |          |          |
|           |          | fragmental tuff, 160.30-160.55 well bedded laminated tuff, tuff fragmental        | 35115    | 159.7  | 160.55 | 0.85    | 0        |          |          |          |
|           |          | crenulated with 2mm chlorite II slip planes, bed 45-500, 160.55 LC with qtz       |          |        |        |         |          |          |          |          |
|           |          | veinlet CA-80o x-cut bed.                                                         |          |        |        |         |          |          |          |          |
| 160.55    | 161.33   | qtz flooded fragmental tuff with distinct qtz ankerite veinlets at 160.55-160.59  | 35116    | 160.55 | 161.33 | 0.78    | 0        |          |          |          |
|           |          | CA-80o 160.84 1/2 CA-75o, 161.12-161.15 grey with whitish x-cuts II to            |          |        |        |         |          |          |          |          |
|           |          | bedding CA-40o, 161.33 contact sharp CA-30o.                                      |          |        |        |         |          |          |          |          |
| 161.33    | 162.8    | fg well bedded laminated pale grey green weakly sericitic pervasive altn, with    | 35117    | 161.33 | 162.8  | 1.47    | 0        | 0        |          |          |
|           |          | numerous 1mm grey ff st to 161.90 x-cut bed CA 50-60o 161.90-162.80               |          |        |        |         |          |          |          |          |
| 161.33    | 162.8    | few greyish qtz st 1/2cm x-cut bed ranges from 650 at 161.95, 400 at 162.56       |          |        |        |         |          |          |          |          |
|           |          | 40o discont. at 162.66 all translucent, grey white qtz ank at 162.50 1cm CA       |          |        |        |         |          |          |          |          |
|           |          | 80o, 162.78-162.80 baked contact CA-50o sharp.                                    |          |        |        |         |          |          |          |          |
| 162.8     | 167.08   | QFP, aphanitic light brownish matrix 2-4mm milky white plagioclose and grey       | 35118    | 162.8  | 163.2  | 0.4     | 0.04     |          |          |          |
|           |          | opague qtz phenocrysts, massive uniform, very hard, siliceous, fragmental and     | 35119    | 163.2  | 163.62 | 0.42    | 0.03     |          |          |          |
|           |          | filled with chocolate brown siliceous tourmaline, locally rare intense, locally   | 35120    | 163.2  | 164.5  | 1.3     | 0.02     |          |          |          |
|           |          | matrix medium grey unaltered 163.65-163.87, 164.87-165.37, inclusions of          | 35121    | 164.5  | 165.64 | 1.14    | 0.01     |          |          |          |
|           |          | grey green tuff fragmental from 163.62-163.66 CA-600 qtz stringers 163.20-        | 35122    | 165.64 | 166.6  | 0.96    | 0        |          |          |          |
|           |          | 163.62 usually 1/2 grey translucent CA-250 in both direction to 200 with          | 35123    | 166.6  | 167.08 | 0.48    | 0.02     |          |          |          |
|           |          | intensely brown tourmaline breccia healed, scattered to dissemented vfg 1-2%      |          |        |        |         |          |          |          |          |
|           |          | pyrite, 164.62-164.85 intensely fractured, 165.66-166.07 intensely fractured,     |          |        |        |         |          |          |          |          |
|           |          | 164.58 1/2 grey qtz st x-cut intensely fractured CA-450, 166.60-167.08            |          |        |        |         |          |          |          |          |
|           |          | intensely fractured, 164.59-167.08 void of large qtz stringers except ff, 1mm     |          |        |        |         |          |          |          |          |
|           |          | CA-250, 167.08 sharp contact CA-350.                                              |          |        |        |         |          |          |          |          |
| 167.08    | 245.42   | Exhalitic Tuff and Sedimentary Rocks                                              |          |        |        |         |          |          |          |          |
| 167.08    | 168.35   | tuff to fragmental tuff, fg, pale green massive tuff x-cut by several siliceous   | 35124    | 167.76 | 0.68   | 0.11    |          |          |          |          |
|           |          | medium brown felsic dikelets 167.27-167.30 450, 167.39-167.48 brecciated          | 35125    | 168.35 | 0.59   | 0.1     |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 37     |        | Sheet N | 6        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                        | Samp     | le     |        |         | As       | say      |          |          |
| From      | То       |                                                                                    | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | tuff irregular and 470, 167.62-167.76 V shaped with tuff fragment inclusions       |          |        |        |         |          |          |          |          |
|           |          | CA-40-600, 167.76-168.35 pale grey green tuff, few stringers II to bedding, very   |          |        |        |         |          |          |          |          |
|           |          | weak to weakly sericitic altn. 168.28-168.35 1cm gtz stringer CA 600 with Bx       |          |        |        |         |          |          |          |          |
|           |          | fragmental tuff altn, medium brown 168.39-168.35 LC 550.                           |          |        |        |         |          |          |          |          |
| 168.35    | 169.02   | QV, aphanitic light grey matrix intensely fractured filled with chocolate brown    | 35126    | 168.35 | 169.02 | 0.67    | 0.01     |          |          |          |
|           |          | siliceous tourmaline, x-cut by grey white randomly orientated 3-4mm stringers      |          |        |        |         |          |          |          |          |
|           |          | gtz, scattered buff white ankerite x-cuts, scattered fg pyrite 0.5-1% LC at        |          |        |        |         |          |          |          |          |
|           |          | 169.02 CA-450.                                                                     |          |        |        |         |          |          |          |          |
| 169.02    | 169.29   | QFL Bx tuff, fg, laminated tuff yellow brown to buff green altn, gtz flooded and   | 35127    | 169.02 | 169.29 | 0.27    | 0.76     |          |          |          |
|           |          | brecciated x-cut by white q schist irregular stringer, trace py LC 400 curved.     |          |        |        |         |          |          |          |          |
| 169.29    | 170.02   | carbonated fragmental tuff, fg, buff yellowish green to pale green, small and      | 35128    | 169.29 | 170.02 | 0.73    | 0.02     |          |          |          |
|           |          | inclusions size fragments, massive tuff, to pale grey in gtz flood silicified      |          |        |        |         |          |          |          |          |
|           |          | sections, weakly carbonated, hard, trace to <0.5% LC 450 sharp.                    |          |        |        |         |          |          |          |          |
| 170.02    | 171.31   | weakly pervasive sericitic altn and qtz flooded fragmental tuff pale green, minor  | 35129    | 170.02 | 171.31 | 1.29    | 0.05     |          |          |          |
|           |          | fuchsite, pale yellow green rare distinct qtz stringer or fragments CA-550         |          |        |        |         |          |          |          |          |
|           |          | original matrix of fragmental lappilli tuff with small blackish grains, scattered  |          |        |        |         |          |          |          |          |
|           |          | mg pyrite <0.5-1% locally LC gradural.                                             |          |        |        |         |          |          |          |          |
| 171.31    | 171.74   | weakly pervasive sericitic alth tuff, moderately level of bedding, numerous        | 35130    | 171.31 | 171.74 | 0.43    | 0.84     |          |          |          |
|           |          | layers with 2-3% fg pyrite, void of stringers except 171.56-171.74 1/2 greyish     |          |        |        |         |          |          |          |          |
|           |          | with scattered pyrite, near II to CA, deformed kinkle folded LC 550 sharp.         |          |        |        |         |          |          |          |          |
| 171.74    | 172.28   | fg, grey green to pale green 2-7mm laminations, minor grey silicic bands,          | 35131    | 171.74 | 172.28 | 0.54    | 1.18     | 1.13     |          |          |
|           |          | scattered vfg py <0.5%, 2 1/2cm white opague qtz st at 172.17, CA-50o II to        |          |        |        |         |          |          |          |          |
|           |          | bed 55o at 171.85, 50o at LC at 172.28.                                            |          |        |        |         |          |          |          |          |
| 172.28    | 172.78   | weakly pervasive sericitic altn, well laminated with grey qtz banding, few grey    | 35132    | 172.28 | 172.78 | 0.5     | 0.72     |          |          |          |
|           |          | kwinkle gtz st x-cit bed, scattered vfg py, py band 172.65 3-5% pale grey          |          |        |        |         |          |          |          |          |
|           |          | green to light green, tuff, siliceous and silicified, LC 50-520.                   |          |        |        |         |          |          |          |          |
| 172.78    | 173.43   | weakly patchy sericitic altn, light grey pale green, medium green, grey white      | 35133    | 172.78 | 173.43 | 0.65    | 0.89     | 1.16     |          |          |
|           |          | silicin banding, greyish medium brown kinkle qtz stringer near II to CA,           |          |        |        |         |          |          |          |          |
|           |          | irregular greyish qtz mass at 173.02-173.05, several disseminated pyrite           |          |        |        |         |          |          |          |          |
|           |          | bands 0.5-1.5cm 2-3 to 7-10% fg py associated with pale green bands, LC            |          |        |        |         |          |          |          |          |
|           |          | sharp 520.                                                                         |          |        |        |         |          |          |          |          |
| 173.43    | 173.91   | patchy moderately sericitic altn to pale buff to buff light yellowish green, trace | 35134    | 173.43 | 173.91 | 0.48    | 0.07     |          |          |          |
|           |          | to locally 1% fg py grey white translucent qtz st at 173.52 1.5cm CA-550           |          |        |        |         |          |          |          |          |
|           |          | near II to bedding LC sharp CA-35o.                                                |          |        |        |         |          |          |          |          |
| 173.91    | 174.81   | same as 173.43-173.91, qtz flooded minor fragmental, majority II to bedding        | 35135    | 173.91 | 174.81 | 0.9     | 0.03     |          |          |          |
|           |          | few grey white translucent massive 174.0-174.07 qtz veinlet with inclusions        |          |        |        |         |          |          |          |          |

| Property:     | Hunter M | ine                                                                                | Hole No: | 37     |        | Sheet N | 7        |          |          | 1        |
|---------------|----------|------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Met           | erage    | Description                                                                        | Samp     | le     |        |         | Assay    |          |          |          |
| From          | То       |                                                                                    | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|               |          | and minor fuchsite trace py, locally 174.61 mg py in band LC 550.                  |          |        |        |         |          |          |          |          |
| 174.81        | 175.3    | medium grained fragmental tuff, massive weak moderate devel. of bedding,           | 35136    | 174.81 | 175.3  | 0.49    | 0        |          |          |          |
|               |          | trace py, grey green to medium green, LC broken.                                   |          |        |        |         |          |          |          |          |
| 175.3         | 176.51   | qtz flooded, moderate patchy sericitic altn fragmental tuff, with few pinkish      | 35137    | 175.3  | 176.51 | 1.21    | 0.03     |          |          |          |
|               |          | tan felsic fragments at 176.29-176.41, increasing chlorite downhole as             |          |        |        |         |          |          |          |          |
|               |          | brecciation distinct qtz veinlet at 175.30-175.54 grey trace white opague ank      |          |        |        |         |          |          |          |          |
|               |          | CA irregular at 550 irregular, trace py ng.                                        |          |        |        |         |          |          |          |          |
| 176.51        | 177.98   | same as above, but moderate pervasive sericitic altn, qtz flooded fragmental       | 35138    | 176.51 | 177.98 | 1.47    | 0.04     |          |          |          |
|               |          | tuff with few pale pinkish buff felsic layers 176.65-177.04, q flood usually II to |          |        |        |         |          |          |          |          |
|               |          | bedding, scattered black 1mm q eyes with tuff grade contact CA-40o sharp.          |          |        |        |         |          |          |          |          |
| <u>177.98</u> | 179.38   | moderate patchy to pervasive sericitic altn, numerous greyish translucent qtz      | 35139    | 177.98 | 179.38 | 1.4     | 0.02     |          |          |          |
|               |          | stringers 1/2-1cm II to bedding few with fuchsite, ankerite common with st         |          |        |        |         |          |          |          |          |
|               |          | usually CA-40o, rare greyish qtz st x-cut bed CA-65o, LC sharp CA-52o              |          |        |        |         |          |          |          |          |
|               |          | scattered py fg mg locally <0.5%.                                                  |          |        |        |         |          |          |          |          |
| 179.38        | 180.62   | aphanitic to fine grained pale pinkish grey to pale greenish light grey massive    | 35140    | 179.38 | 180.62 | 1.24    | 0.08     |          |          |          |
|               |          | sections up to 30cm with very fine laminations with few stretches of fuchsite      |          |        |        |         |          |          |          |          |
|               |          | grey to grey green tuff sections from 179.76-180.02 and 180.32-180.62,             |          |        |        |         |          |          |          |          |
|               |          | bedding CA-42o at 179.55 pale pinkish green to 52o at 180.45, trace to nll py      |          |        |        |         |          |          |          |          |
|               |          | void of stringers.                                                                 |          |        |        |         |          |          |          |          |
| 180.62        | 180.91   | aphanitic blackish grey siliceous matrix with chlorite, brecciated fragments       | 35141    | 180.62 | 180.91 | 0.29    | 0.08     |          |          |          |
|               |          | grey green to buff lower portion 180.77-180.85 siliceous brownish matrix           |          |        |        |         |          |          |          |          |
|               |          | 180.85 contact CA-75o sinuous, 180.85-180.91 tuffaceous fragmental breccia         |          |        |        |         |          |          |          |          |
|               |          | moderately sericitic, LC 750.                                                      |          |        |        |         |          |          |          |          |
| 180.91        | 182.07   | fg, pale buff to light tan tuff, trace to scattered vfg py, good level bedding CA  | 35142    | 180.91 | 182.07 | 1.16    | 0.01     | 0.01     |          |          |
|               |          | 47o, scattered qtz stringers 181.07-181.18 white opague qtz veinlets CA-           |          |        |        |         |          |          |          |          |
|               |          | 60-650 with inclusions, 181.34 1/2 cm x-cut bed, 750, 181.62 1cm with minor        |          |        |        |         |          |          |          |          |
|               |          | fuchsite CA 50-600, 181.62 1cm white qtz st CA 800 x-cut and termination           |          |        |        |         |          |          |          |          |
|               |          | 1cm pale greenish white grey qtz st CA-320 182.01-182.07 greyish white             |          |        |        |         |          |          |          |          |
|               |          | opague with faint green tint CA-60o-45o LC-45o.                                    |          |        |        |         |          |          |          |          |
| 182.07        | 183.63   | patchy weak sericitic altn, laminated buff and pale brown tuff to grey green,      | 35143    | 182.07 | 182.93 | 0.86    | 0        |          |          |          |
|               |          | scattered pyrite void of stringers bed CA-500 LC 530 sharp.                        | 35144    | 182.93 | 183.63 | 0.7     | 0        |          |          |          |
| 183.63        | 185.11   | patchy weak moderate to moderate sericitic altn laminated buff, pale brown         | 35145    | 183.63 | 184.39 | 0.76    | 0        |          |          |          |
|               |          | and medium green, minor kinkle folding at 184.07, scattered 1-2% pyrite            | 35146    | 184.39 | 185.11 | 0.72    | 0        |          |          |          |
|               |          | with buff grey band at 184.24 1cm, scattered fg py, qtz stringer at 183.76         |          |        |        |         |          |          |          |          |
|               |          | 1 1/2cm II to bed CA-60o, 184.03 1cm qtz st CA-80o 184.39-184.56 greyish           |          |        |        |         |          |          |          |          |
|               |          | white opal with milky white qtz and inclusions with vfg py CA-30o and 60-70o       |          |        |        |         |          |          |          |          |
|               |          | irregular, 184.91-184.97 irregular grey white qtz st CA 45-550 py fg to mg at      |          |        |        |         |          |          |          |          |

| Property: | Hunter M | ine                                                                                | Hole No. | 37     |        | Sheet N | 8        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Mete      | rage     | Description                                                                        |          | Sa     | mple   |         | As       | say      |          |          |
| From      | То       |                                                                                    | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | lower contact.                                                                     |          |        |        |         |          |          |          |          |
| 185.11    | 188.82   | moderate patchy sericitic altn, tuff, fragmental tuff to 185.51, 2cm very qtz st   | 35147    | 185.11 | 185.51 | 0.4     | 0.12     | 0.16     |          |          |
|           |          | cloudy with sericitia CA-60-550, local sections qtz flooded, 185.51-186.0          | 35148    | 185.51 | 186    | 0.49    | 0        |          |          |          |
|           |          | fragmental numerous qtz II to bed boudinage, scattered py, 185.84 3cm              | 35149    | 186    | 186.71 | 0.71    | 0.01     |          |          |          |
|           |          | blackish qtz st x-cut bed with vfg py CA irregular 60o-70o, 185.86-186.0           | 35150    | 186.71 | 187.1  | 0.39    | 0        |          |          | :        |
|           |          | approximate 2-3% fg mg pyrite, 186.25-186.27 grey irregular qtz flooding with      | 35151    | 187.1  | 187.46 | 0.36    | 0.01     |          |          |          |
|           |          | 2-3% fg mg py, 186.34 chlorite altn to fuchsite 2mm band with pyrite, 186.78       | 35152    | 187.46 | 188.03 | 0.57    | 0.02     |          |          |          |
|           |          | 188.09 kink fold axis at 10o CA, 187.29-187.33 3/4-1cm band with 5-7% fg           | 35153    | 188.03 | 189.2  | 1.17    | 0        |          |          |          |
|           |          | pyrite, 187.37-187.46 irregular sinuous qtz veinlet grey white with alth           |          |        |        |         |          |          |          |          |
|           |          | inclusions 0.5-1% vfg py CA-35-60o, 187.93-188.03 weak altn with greyish           |          |        |        |         |          |          |          |          |
| 185.11    | 188.82   | siliceous bands 5-7% fg py, CA-550 188.82.                                         |          |        |        |         |          |          |          |          |
| 188.82    | 189.2    | weak to nil sericitic altn.                                                        |          |        |        |         |          |          |          |          |
| 189.2     | 192.94   | weak patchy sericitic alth felsic tuff, tuffaceous fragmental. Local sections      | 35154    | 189.2  | 190.33 | 1.13    | 0.02     | 0.03     |          |          |
|           |          | 1-2% mg py, with scattered 10-20cm sections of chlorite tuff grey green            | 35155    | 190.33 | 191.04 | 0.71    | 0.09     |          |          |          |
|           |          | medium green laminations 189.38-189.48, 430, 190.73-191.04, 680, 191.04,           | 35156    | 191.04 | 192    | 0.96    | 0.05     |          |          |          |
|           |          | 2-3% py, 189.29-189.33 V shape grey white qtz st 400-650 II to bed, 190.35-        | 35157    | 192    | 192.94 | 0.94    | 0.43     | 0.42     |          |          |
|           |          | 190.42 grey white and sericitia and trace vfg py CA 60-80o, 191.19 grey            |          |        |        |         |          |          |          |          |
|           |          | blackish qtz st CA 70o x-cut bed 2cm 1% py, 192.37-192.44 chlorite buff tuff       |          |        |        |         |          |          |          |          |
|           |          | fragments 3-5% fg py CA-32-300, 192.86 1 1/2cm white grey qtz st CA 500            |          |        |        |         |          |          |          |          |
|           |          | II to bed.                                                                         |          |        |        |         |          |          |          |          |
| 192.94    | 194.42   | fg laminated tuff, weak patchy sericitic altn, bedding good devel. CA 193.5 at     | 35158    | 192.94 | 194.42 | 1.48    | 0.11     |          |          |          |
|           |          | 50o 194.3 at 50o.                                                                  |          |        |        |         |          |          |          |          |
| 194.42    | 194.81   | light grey to pale brownish tint tuff.                                             | 35159    | 194.42 | 195.36 | 0.94    | 0.03     |          |          |          |
| 194.81    | 196.53   | nil to weak patchy sericitic altn, fg mg, uniform, moderate devel. of bedding,     | 35160    | 195.36 | 196.53 | 1.17    | 0        |          |          |          |
|           |          | less distinct lamination, cleveage good CA-55o, scattered pyrite 195.36 with       |          |        |        |         |          |          |          |          |
|           |          | siliceous band, 195.82, 195.89, 196.23 1cm pink qtz CA-550 196.53 LC-550.          |          |        |        |         |          |          |          |          |
| 196.53    | 198.16   | medium grey green laminated tuff, scattered py bands at 196.73, 197.22-            | 35161    | 196.53 | 197.16 | 0.63    | 0.02     |          |          |          |
|           |          | 197.25, 197.60-197.71 2-3% py, 197.18-197.62 scattered pinkish grey qtz            | 35162    | 197.16 | 198.16 | 1       | 0.06     |          |          |          |
|           |          | pink carbonated st II to bedding 2-5mm, 197.53 5mm, 197.57 1cm, 197.73             |          |        |        |         |          |          |          |          |
|           |          | 1/2-1cm kinkled grey white q st near II to CA with vfg pyrite on contact.          |          |        |        |         |          |          |          |          |
| 198.16    | 198.97   | light grey to light grey green, siliceous scattered to finely disseminted vfg py   | 35163    | 198.16 | 198.97 | 0.81    | 0.09     | 0.1      |          |          |
|           |          | overall <1% locally 1-2% with band, LC 48o.                                        |          |        |        |         |          |          |          |          |
| 198.97    | 199.85   | patchy weak sericitic altn tuff, pale greenish qtz st 199.04 1.2cm blackish qtz    | 35164    | 198.97 | 199.85 | 0.88    | 0.07     |          |          |          |
|           |          | st CA-73-80o x-cut bed 55o scattered pyrite, 3-5% 199.03-199.04.                   |          |        |        |         |          |          |          |          |
| 199.85    | 200.88   | weak pervasive sericitic altn, tuff minor kwinkle fold, pale green q st II to bed. | 35165    | 199.85 | 200.88 | 1.03    | 0.08     |          |          |          |
| 200.88    | 201.47   | medium grey to blackish green, tuff, locally qtz flooded 201.0-201.18, qtz st      | 35166    | 200.88 | 201.47 | 0.59    | 0.21     |          |          |          |
|           |          | 2-3% py CA-650 irregular at 201.35.                                                |          |        |        |         |          |          |          |          |

| Property: | Hunter M | ine                                                                               | Hole No. | 37     |        | Sheet N | 9        |          |          |          |
|-----------|----------|-----------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                       |          | Samp   | le     |         | Assa     | iy       |          |          |
| From      | To       |                                                                                   | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
| 201.47    | 203.8    | moderate sericitic altn to locally moderate patch sericitia, tuff to locally tuff | 35167    | 201.47 | 202.6  | 1.13    | 0.21     |          |          |          |
|           |          | fragmental, scattered vfg py, blackish qtz st at 201.77 1/2cm CA-70o x-cut        | 35168    | 202.6  | 203.8  | 1.2     | 0.31     |          |          |          |
|           |          | bed 450, qtz breccia vein 202.09-202.13 with 2-3% pyrite, 202.73 1cm grey         |          |        |        |         |          |          |          |          |
|           |          | Bx st CA 55o, x-cut fragmental bed 70o, 202.90 1/2cm grey brown qtz st 70o        |          |        |        |         |          |          |          |          |
|           |          | x-cut bedding.                                                                    |          |        |        |         |          |          |          |          |
| 203.8     | 206.86   | light grey to pale grey pale green tuff local kinkled folds, scattered vfg pyrite | 35169    | 203.8  | 205.3  | 1.5     | 0.3      |          |          |          |
| 203.8     | 206.86   | <0.5% good bedding CA-57o, small fragments, 205.52-205.70 parts of pale           | 35170    | 205.3  | 206.2  | 0.9     | 0        |          |          |          |
|           |          | grey opague qtz st, appears II to bed, 205.71 1.5cm grey opague qtz st CA         | 35171    | 206.2  | 206.55 | 0.35    | 0        |          |          |          |
|           |          | 60o, 205.93-206.07 irregular white opague gtz masses, and grey opague             | 35172    | 206.55 | 206.86 | 0.31    | 0        |          |          |          |
|           |          | masses, 206.20-206.55 gtz flooded and white opague, grey opague gtz               |          |        |        |         |          |          |          |          |
|           |          | veinlets overall 65% veining irregular contacts and inclusions of grey tuff       |          |        |        |         |          |          |          |          |
|           |          | fragmental CA-400 700 trace to rare sulphides, 206.55-206.86 fragmental tuff      |          |        |        | _       |          |          |          |          |
|           |          | large fragments UM moderate level bedding CA-55-60o LC 50o.                       |          |        |        |         |          |          |          |          |
| 206.86    | 208.9    | gtz flooding with distinct grey opague with whitish carbonate from 1-1.5cm        | 35173    | 206.86 | 207.77 | 0.91    | 0        |          |          |          |
|           | _        | usually II to bed and white opaque gtz veinlets 5-9cm usually x-cut bedding       | 35174    | 207.77 | 208.45 | 0.68    | 0        |          |          |          |
|           |          | in fragmental tuff, trace to <0.5% vfg py, 40-50% veining LC 450 with 2cm         | 35175    | 208.45 | 208.9  | 0.45    | 0.01     | 0.03     |          |          |
|           |          | grey opague qtz st.                                                               |          |        |        |         |          |          |          |          |
| 208.9     | 209.73   | grey green to dark green laminated tuff fragmental, nil altn, few 1/2 gtz ank st  | 35176    | 208.9  | 209.73 | 0.83    | 0.03     |          |          |          |
|           |          | CA-600 II to bedding x-cut by grey opague 3mm st gtz CA-450.                      |          |        |        |         |          |          |          |          |
| 209.73    | 210.26   | irregular grey white opague gtz stringers and masses, 209.91-210.26 tuff          | 35177    | 209.73 | 210.26 | 0.53    | 0        |          |          |          |
|           |          | fragmental olive green and medium green fragmental.                               |          |        |        |         |          |          |          |          |
| 210.26    | 210.75   | gtz flooded and white gtz veinlets and opague grey stringers and masses,          | 35178    | 210.26 | 210.75 | 0.49    | 0        |          |          |          |
|           |          | white at 210.38-210.46, grey 210.60-210.63 white 210.70-210.75, host fg           |          |        |        |         |          |          |          |          |
|           |          | laminated tuff.                                                                   |          |        |        |         |          |          |          |          |
| 210.75    | 215.33   | medium to dark green, laminated tuff fragmental with grey and white silicic       | 35179    | 210.75 | 211.7  | 0.95    | 0        |          |          |          |
|           |          | and carbonated II to bed moderate to well level CA-55-580 moderately hard.        | 35180    | 211.7  | 212.58 | 0.88    | 0        |          |          |          |
|           |          | less siliceous, 212.85-212.98 dark green tuff, 212.58-212.85 fg medium grev       | 35181    | 212.58 | 212.98 | 0.4     | 0        |          |          |          |
|           |          | tuff lapilli massive poor moderate level bedding CA-600, small elongated          | 35182    | 212.98 | 214.4  | 1.42    | 0        |          |          |          |
|           |          | fragments locally 2-3% fg pv.                                                     | 35183    | 214.4  | 215.33 | 0.93    | 0        |          |          |          |
| 215.33    | 216.06   | foliated felsic dike, to buff to light brown at contacts for approximate 10cm     | 35184    | 215.33 | 216.06 | 0.73    | 0.09     | 0.13     |          |          |
|           |          | changing to fg. moderately foliated CA-60-650, hard, non magnetic non             |          |        |        |         |          |          |          |          |
|           |          | carbonated, massive, uniform, contacts sharp with massive chlorite and            |          |        |        |         |          |          |          |          |
|           |          | minor amount of gtz carbonated stringers, gtz ff stringers random with            |          |        |        |         |          |          |          |          |
|           |          | bleaching alth, few grey opaque gtz stringers 600 x-cut foliation, trace to       |          |        |        |         |          |          |          |          |
|           |          | scattered to py, LC sharp CA-600 x-cut gtz ankinte chlorite schistose tuff        |          |        |        |         |          |          |          |          |
|           |          | fragmental at low angular oblique.                                                |          |        |        |         |          |          |          |          |
| 216.06    | 218.92   | fragmental tuff UM, same as 210.75-212.58 and 212.85-215.33, medium               | 35185    | 216.06 | 217.5  | 1.44    | 0        |          |          |          |

| Property | Hunter M | ine                                                                                 | Hole No. | 37     |        | Sheet N | 10       |          |          |          |
|----------|----------|-------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Met      | terage   | Description                                                                         |          | Sample |        |         |          | Assa     | y        |          |
| From     | To       |                                                                                     | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | green to locally olive green, medium grey where qtz strings grey opague are         | 35186    | 217.5  | 218.92 | 1.42    | 0        |          |          |          |
|          |          | 217.81-218.10 locally crenulation with slip plans, moderately hard, non             |          |        |        |         |          |          |          |          |
| 216.06   | 218.92   | carbonated, non magnetic, trace to scattered sulphides.                             |          |        |        |         |          |          |          |          |
| 218.92   | 220      | tuff fragmental, qtz flooded 25%, light brownish grey green, qtz grey opague        | 35187    | 218.92 | 220    | 1.08    | 0        |          |          |          |
|          |          | random but near II to schistosty.                                                   |          |        |        |         | _        |          |          |          |
| 220      | 221.44   | QV stockwack, fg, medium grey green to black green tuff fragmental with             | 35188    | 220    | 221.44 | 1.44    | 0        |          |          |          |
|          |          | large qtz carbonated veins with inclusions mostly cloudy white, locally grey        |          |        |        |         |          |          |          |          |
|          |          | opague stringer CA-600 1.03m of veining, trace to scattered fg py, UC 30-350        |          |        |        |         |          |          |          |          |
|          |          | irregular LC with 3cm of baked chlorite sharp 37o.                                  |          |        |        |         |          |          |          |          |
| 221.44   | 221.98   | silicified tuff, fg, medium grey uniform, moderate to well devel. of bedding, with  | 35189    | 221.44 | 221.98 | 0.54    | 0.02     |          |          |          |
|          |          | very small white phenocrysts, hard siliceous, silicified weakly carbonated,         |          |        |        |         |          |          |          |          |
|          |          | bed CA-450 hailike qtz st II to bed, trace to nil sulphides LC-550.                 |          |        |        |         |          |          |          |          |
| 221.98   | 222.89   | carbonated tuff to lapilli tuff, fg, with crispy carbonated to calcite II stringers | 35190    | 221.98 | 222.89 | 0.91    | 0.03     |          |          |          |
|          |          | and bands all II to bedding, string carbonated, hard to moderately hard, void       |          |        |        |         |          |          |          |          |
|          |          | of distinct stringers, local crenulations, scattered pyrite x-cuts mg and           |          |        |        |         |          |          |          |          |
|          |          | masses to blobs, overall <0.5%, LC-60o.                                             |          |        |        |         |          |          |          |          |
| 222.89   | 223.12   | massive tuff, light brown felsic, hard, few qtz calcite stringer 3-6mm all II to    | 35191    | 222.89 | 224.32 | 1.43    | 0        |          |          |          |
|          |          | bed CA-650 nil to trace sulphides LC at 5mm qc st CA-650.                           |          |        |        |         |          |          |          |          |
| 223.12   | 225.26   | carbonated tuff fragmental, medium brown, same as 221.98-222.89, light              | 35192    | 224.32 | 225.26 | 0.94    | 0        |          |          |          |
|          |          | brown, stronly carbonated with simple wispy calcite, 223.40-223.58                  |          |        |        |         |          |          |          |          |
|          |          | carbonated weak moderate without wispy calcite, 223.58-224.32 scattered             |          |        |        |         |          |          |          |          |
|          |          | pyrite masses 2-4mm, overall 1%, 224.32-225.42.                                     |          |        |        |         |          |          |          |          |
| 225.26   | 225.42   | massive tuff as 222.89-223.12 dark brownish green to blackish green, weak           | 35193    | 225.26 | 226.14 | 0.88    | 0        |          |          |          |
|          |          | moderate level bedding, few crispy calcite.                                         |          |        |        |         |          |          |          |          |
| 225.42   | 226.14   | same as 223.12-225.26, strongly carbonated, crispy calcite usually II to bed        |          |        |        |         |          |          |          |          |
|          |          | and web texture, 225.88-225.95 cherty with scattered pyrrhotite along               |          |        |        |         |          |          |          |          |
|          |          | bands overall 10-15%, LC sharp 650.                                                 |          |        |        |         |          |          |          |          |
| 226.14   | 226.66   | grey felsic tuff, fg, light grey to medium grey to 226.41 very hard siliceous,      | 35194    | 226.14 | 226.49 | 0.35    | 0        |          |          |          |
|          |          | few local laminations, void of qtz or carbonated stringers, silicified, massive,    |          |        |        |         |          |          |          |          |
|          |          | uniform, occasional grey aphanitic chert, 226.25-226.41 1-2% scattered mg           |          |        |        |         |          |          |          |          |
|          |          | pyrite, 226.41-226.49 sericitia massive pyrite to 226.45 80%, 226.45-226.49         |          |        |        |         |          |          |          |          |
|          |          | qtz vein with 10-15% clots and fg pyrite CA-60o, 226.58-226.64 greenish             |          |        |        |         |          |          |          |          |
| 226.66   | 226.86   | grey non carbonate feldspar porphyritic dike, 0.5-1mm plagioclose                   | 35195    | 226.49 | 227.42 | 0.93    | 0.01     |          |          |          |
|          |          | phenocrysts nil sulphides CA-68o sharp.                                             |          |        |        |         |          |          |          |          |
| 226.86   | 227.09   | some grey feldspar porphyritic CA-70o sharp no carbonate.                           |          |        |        |         |          |          |          |          |
| 227.09   | 227.34   | grey feldspar porphyritic x-cuts CA-70o, weak to moderate devel. foliation 65o.     |          |        |        |         |          |          |          |          |
|          |          | 2mm grey black qtz x-cut up contact CA 62o stringer, nil sulphides.                 |          |        |        |         |          |          |          |          |

| Property | Hunter M | ine                                                                                 | Hole No. | 37     |        | Sheet N | 11       |          |          |          |
|----------|----------|-------------------------------------------------------------------------------------|----------|--------|--------|---------|----------|----------|----------|----------|
| Met      | erage    | Description                                                                         |          | Sample |        |         |          | Assay    |          |          |
| From     | To       |                                                                                     | No.      | From   | То     | Width   | Au (g/t) | Au check | Au (2nd) | Au check |
| 227.34   | 227.42   | grey laminated tuff.                                                                |          |        |        |         |          |          |          |          |
| 227.42   | 227.72   | grey laminated 2-7mm and pyrite bands of fg to mg pyrite x-cut, 227.66-             | 35196    | 227.42 | 227.72 | 0.3     | 1.01     | 0.94     |          |          |
|          |          | 227.72 same but with oval pyrite blobs, overall 50-60% pyrite contacts 70%,         |          |        |        |         |          |          |          |          |
|          |          | weakly moderately ankerated, hard siliceous.                                        |          |        |        |         |          |          |          |          |
| 227.72   | 228.03   | fg grey to light grey massive, bedded, appears graded bedding fining                | 35197    | 227.72 | 228.03 | 0.31    | 0.01     |          |          |          |
|          |          | downhole tops, nil sulphides void of stringers, LC sharp 650 with 1/2cm qtz         |          |        |        |         |          |          |          |          |
|          |          | strongly carbonated.                                                                |          |        |        |         |          |          |          |          |
| 228.03   | 228.95   | lower UM, altn greenish grey fg tuff to 228.30 moderately carbonated, hard to       | 35198    | 228.03 | 228.95 | 0.92    | 0.65     | 0.7      |          |          |
|          |          | moderately hard, silicified, nil to trace pyrite, scattered qtz carbonated st II to |          |        |        |         |          |          |          |          |
|          |          | bedding changing to blackish green, weakly carbonated, moderately soft to           |          |        |        |         |          |          |          |          |
|          |          | soft, talcose, massive with brecciated sections, small tuff sections strongly       |          | _      |        |         |          |          |          |          |
|          |          | carbonated 228.76-228.95, 228.45-228.76 brecciated, 228.76-228.95 tuff              |          |        |        |         |          |          |          | :        |
|          |          | strongly carbonated, II to bed CA-650.                                              |          |        |        |         |          |          |          |          |
| 228.95   | 234.85   | weak carbonate, massive, qc veining chlorite in same direction CA-50-600            |          |        |        |         |          |          |          |          |
|          |          | locally vein has brecciated fragments, intensely veined gtz flooded LC-60o.         |          |        |        |         |          |          |          |          |
| 234.85   | 235.5    | tuffaceous fragmental, moderately carbonated intensely qtz flooded near II to       |          |        |        |         |          |          |          |          |
|          |          | bedding, LC 55-600.                                                                 |          |        |        |         |          |          |          |          |
| 235.5    | 241.23   | same as 228.95-234.85 local 0.5-1mm greyish white carbonation phenocryst            |          |        |        |         |          |          |          |          |
|          |          | nil to trace sulphides.                                                             |          |        |        |         |          |          |          |          |
| 241.23   | 241.52   | porphyritic section weakly carbonated, 1mm grey white phenocrysts contact           |          |        |        |         |          |          |          |          |
|          |          | 70o-70o sineous in opposite direction, possibly UM dike non carbonated              |          |        |        |         |          |          |          |          |
|          |          | qc stringers 40-700.                                                                |          |        |        |         |          |          |          |          |
| 242.66   | 242.79   | porphyritic possible UM dike moderately hard non carbonated, stringers at           |          |        |        |         |          |          |          |          |
|          |          | 10o contacts 45-65o same direction.                                                 |          |        |        |         |          |          |          |          |
| 242.79   | 243.97   | massive, Bx weakly carbonated.                                                      |          |        |        |         |          |          |          |          |
| 243.97   | 244.24   | tuffaceous banding strongly carbonated LC 750.                                      |          |        |        |         |          |          |          |          |
| 244.24   | 245.42   | strongly carbonated, soft to moderately soft, massive fg olive green, with          |          |        |        |         |          |          |          |          |
|          |          | randomly orientated qc st, trace sulphides, 245.42 broken + ground contact.         |          |        |        |         |          |          |          |          |
| 245.42   | 248.81   | Argillite-Graphitic and Arenites                                                    |          |        |        |         |          |          |          |          |
| 245.42   | 248.81   | graphitic argiilite, fg, black, laminated graphitic argiilite with numerous         | 35199    | 245.42 | 245.87 | 0.45    | 0        |          |          |          |
|          |          | scattered bands of medium to dark grey mg carbonated tuff, locally x-cut by         | 35200    | 245.87 | 246.33 | 0.46    | 0        |          |          |          |
| 245.42   | 248.81   | calcite ff stringers, 40o x-cut bed 55o patchy pyrite on graphitic layers,          |          |        |        |         |          |          |          |          |
|          |          | 246.40-248.81 scattered hairlike calcite stringers II to bedding, scattered by      |          |        |        |         |          |          |          |          |
|          |          | pyrite, 245.87-246.33 massive black void of bedding mafic dike, mg hard             |          |        |        |         |          |          |          |          |
|          |          | non magnetic x-cut by calcite II hairlike UC 700 LC 60-650 broken, bed CA 53        |          |        |        |         |          |          |          |          |
|          | 248.81   | END OF HOLE.                                                                        |          |        |        |         |          |          |          |          |
|          |          |                                                                                     |          |        |        |         |          |          |          |          |

|           |        | Hunter Mine - Diamo                                                                  | ond Drill Log H | M-04-38 |            |       |            |          |          |          |
|-----------|--------|--------------------------------------------------------------------------------------|-----------------|---------|------------|-------|------------|----------|----------|----------|
| Property: |        | Hunter Mine                                                                          | Hole Dip:       | -80     | Page No.   | :     | 1 of 11    |          |          |          |
| Location: |        |                                                                                      | Hole Azimuth:   | 105     | Date Star  | ted:  | July 28,04 |          |          |          |
| Claim No  | ):     | HR 1009                                                                              | Hole Length:    | 218.63m | Date Fini  | shed: | Aug 3,04   |          |          |          |
| Elevation | 1:     | Porcupine Lake                                                                       | Purpose:        |         | Drill Co.: |       | Benoit     |          |          |          |
| UTM Cod   | ords.: | 5370768.3N, E487021.0                                                                |                 |         | Logged b   | y:    | K.Jensen   |          |          |          |
| Mete      | erage  | Description                                                                          |                 | s       | ample      |       |            | Assays   |          |          |
| From      | То     |                                                                                      | No.             | From    | To         | Width | Au (g/t)   | Au check | Au (2nd) | Au check |
| 0.0       | 59.2   | Casing                                                                               |                 |         |            |       |            |          |          |          |
| 59.2      |        | Ultramafic Talcose Rocks                                                             |                 |         |            |       |            |          |          |          |
| 59.2      | 66.2   | UM same as before, 59.23-59.34 white opague qtz vein LC 400, 59.34-60.0 light        | 35201           | 62.13   | 62.73      | 0.6   | 0          |          |          |          |
|           |        | black green, very talcose mass schistose near II to CA, 60.0-61.09 brecciated        |                 |         |            |       |            |          |          |          |
|           |        | carbonated healed large fragments, 61.09-61.13 intensely sheared schistose CA        |                 |         |            |       |            |          |          |          |
|           |        | 55-60o and near II to CA LC sharp CA-65o, 61.13-62.27 white qtz vein nil sulphide    |                 |         |            |       |            |          |          |          |
|           |        | or carbonate LC sharp 62o, 62.27-62.37 brecciated UM, 62.37-62.73 qtz vein with      |                 |         |            |       |            |          |          |          |
|           |        | large angular inclusions, talcose on contacts, nil sulphides, white irregular        |                 |         |            |       |            |          |          |          |
|           |        | contacts, 62.73-63.88 massive, schistose near II to CA 12-150 LC 200, 63.88-         |                 |         |            |       |            |          |          |          |
|           |        | 64.80 brecciated qtz carbonate fragments, nil to poor level of schistosty gradation  |                 |         |            |       |            |          |          |          |
|           |        | contact, 64.80-65.13 massive poor level schistose small 2-3mm qtz eyes, 65.13-       |                 |         |            |       |            |          |          |          |
|           |        | 66.17 brecciated qtz carbonated healled.                                             |                 |         |            |       |            |          |          |          |
| 66.17     | 79.11  | qtz carbonated brecciated UM of possible fragmental UM, crushed zone sections        | 35202           | 75      | 75.56      | 0.56  | 0          |          |          |          |
|           |        | from 66.32-66.44, 66.65-68.09, 69.85-70.30, 71.95-72.0, 74.08-74.33 75o,             |                 |         |            |       |            |          |          |          |
|           |        | scattered mg to cg pyrite, 75.26-75.56 irregular masses of white opague qtz          |                 |         |            |       |            |          |          |          |
|           |        | irregular with inclusions with breccia.                                              |                 |         |            |       |            |          |          |          |
| 79.11     | 81.79  | massive, black green, porphyritic from 79.74-80.55 brecciated 80.55-80.84 on         |                 |         |            |       |            |          |          |          |
|           |        | vein near II to CA, 80.84-81.66 few scattered irregular qc veinlets slips, 81.66-    |                 |         |            |       |            |          |          |          |
|           |        | 81.79 porphyritic qtz and plagioclose LC sharp CA-70o.                               |                 |         |            |       |            |          |          |          |
| 81.79     | 97.27  | brecciated, calcite and qtz healed, rare distinct stringers or veins except at 82.40 |                 |         |            |       |            |          |          |          |
|           |        | 3cm qtz calcite CA-30o, 83.05-83.11 white to creamy calcite CA-35o, 84.40-           |                 |         |            |       |            |          |          |          |
|           |        | 86.56 schistosty II to CA, 94.15-95.35 scattered small sections of sheared           |                 |         |            |       |            |          |          |          |
|           |        | schistose UM with elongated black hexagonal x-cut, 95.56 1cm band of pyrite          |                 |         |            |       |            |          |          |          |
|           |        | fg with tuffaceous material or schistose CA-30o.                                     |                 |         |            |       |            |          |          |          |
| 97.27     | 143.5  | Laminated Ultramafic Tuffs                                                           |                 |         |            |       |            |          |          |          |
| 97.27     | 105.03 | tuff to tuffaceous fragmental, fg, black to black green grading to medium green      | 35203           | 99.75   | 100.45     | 0.7   | 0.02       |          |          |          |
|           |        | with veining siliceous bands at 104.43 locally crenulations, minor kinkle folding    | 35204           | 100.45  | 100.62     | 0.17  | 0          |          |          |          |
|           |        | qtz carbonate usually II to bed well level CA-480 at 98.0, 600 at 100.4, scattered   | 35205           | 100.62  | 101.56     | 0.94  | 0.02       |          |          |          |
|           |        | fg, mg py, 102.0-102.11 2-4mm pyrite stringers II to bed tuff, 99.0-99.23 intense    | 35206           | 101.56  | 102.2      | 0.64  | 0          |          |          |          |
|           |        | veining kinkled S shaped, 100.45-100.62 grey gtz vein minor pyrite fg CA-50-620      | 35207           | 102.2   | 103        | 0.8   | 0          |          |          |          |
| 97.27     | 105.03 | 100.62-101.56 qtz carbonated st 1/2 II to bedding and fragments all mg               | 35208           | 103     | 104.02     | 1.02  | 0.03       | 0        |          |          |

| Property | Hunter M | line                                                                            | Hole No. | 38     |        | Sheet No. | 2        |          |          | 1                                             |
|----------|----------|---------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|-----------------------------------------------|
| Mete     | erage    | Description                                                                     |          | Sample |        |           |          | Assay    | ;        | <u>                                      </u> |
| From     | To       |                                                                                 | No.      | From   | То     | Width     | Au (g/t) | Au Check | Au (2nd) | Au check                                      |
|          |          | bedding intense veining, 101.43-101.49 gtz veinlet irregular CA-650, 101.56-    | 35209    | 104.02 | 104.4  | 0.38      | 0        |          |          |                                               |
|          |          | 104.02 more tuffaceous, devel, crenulations, scattered py, gtz st II to bedding | 35210    | 104.4  | 105.03 | 0.63      | 0        |          |          |                                               |
|          |          | usually less vfg-fg pyrite, several near II to CA and fractured LC-650, 104.02- |          |        |        |           |          |          |          |                                               |
|          |          | 104.40 irregular gtz ankerite stringers, veinlets with minor inclusions, trace  |          |        |        |           |          |          |          |                                               |
|          |          | to scattered pyrite, 104.40-105.03 scattered grey opague gtz veining            |          |        |        |           |          |          |          |                                               |
|          |          | fragments and irregular stringers.                                              |          |        |        |           |          |          |          |                                               |
| 105.03   | 109.56   | tuffaceous with isolated small fragments locally crenulated, scattered gtz      |          |        |        |           |          |          |          |                                               |
|          |          | carbonated stringers random orientated 106.95 1 1/2 cm gc CA-200 x-cut          |          |        |        |           |          |          |          |                                               |
|          |          | bed, 107.11-107.30 1 1/2cm near II to CA irregular with fragment, LC 60-700.    |          |        |        |           |          |          |          |                                               |
| 109.56   | 110.4    | brecciated qtz carbonated healed, contorted bedding x-cut by chlorite filled    |          |        |        |           |          |          |          |                                               |
|          |          | slip planes CA-15o.                                                             |          |        |        |           |          |          |          |                                               |
| 110.4    | 110.93   | laminated black green and q S fold and kwinkled folded laminated tuff LC-500    |          |        |        |           |          |          |          | 1                                             |
| 110.93   | 112.12   | fragmental with minor tuff, contorted bedding, gtz ankerite stringer at 111.06  |          |        |        |           |          |          |          |                                               |
|          |          | V shaped and pyrite 4mm to 1.5cm CA-40o II to bed, 111.91 1 1/2cm               |          |        |        |           |          |          |          |                                               |
|          |          | irregular CA-500 x-cut bed low angle, 112.05-112.12 gtz ankerite and pyrite     |          |        |        |           |          |          |          |                                               |
|          |          | and chlorite CA-75o sinuous x-cut bed.                                          |          |        |        |           |          |          |          |                                               |
| 112.12   | 112.63   | brecciated small fragments chlorite healed, no stringer, LC-650.                |          |        |        |           |          |          |          |                                               |
| 112.63   | 113.41   | tuffaceous fragmental scattered mg py, local contorted bedding, LC sinuous      |          |        |        |           |          |          |          |                                               |
|          |          | CA-500.                                                                         |          |        |        |           |          |          |          |                                               |
| 113.41   | 115.68   | massive with 2-3mm greenish white phenocrysts, porphyritic texture, x-cut       |          |        |        |           |          |          |          |                                               |
|          |          | by irregular orientated qc stringers 5-8mm, scattered mg cg py x-cuts LC        |          |        |        |           |          |          |          |                                               |
|          |          | ground CA-450.                                                                  |          |        |        |           |          |          |          |                                               |
| 115.68   | 116.32   | tuffaceous fragmental contorted and tight S folding with scattered cg up to     |          |        |        |           |          |          |          |                                               |
|          |          | 1/2cm py cubes contorted LC.                                                    |          |        |        |           |          |          |          |                                               |
| 116.32   | 117.24   | contorted tuff, upper portion, non deformed bedding CA-80o to 116.67,           | 35211    | 116    | 117.24 | 1.24      | 0        |          |          |                                               |
|          |          | scattered fg py LC irregular S shaped.                                          |          |        |        |           |          |          |          |                                               |
| 117.24   | 118.11   | intense qtz veining, white opague, 4-1 1/2 to 3cm CA-50-70o x-cut bedding,      | 35212    | 117.24 | 118.11 | 0.87      | 0        |          |          |                                               |
|          |          | 117.74-118.11 large v with talcose tuff inclusions, LC ground 80o UC CA-45o.    |          |        |        |           |          |          |          |                                               |
| 118.11   | 121.4    | tuff with fine fragments lapilli, grey green local laminated and bedding to     | 35213    | 118.11 | 119    | 0.89      | 0        |          |          |                                               |
|          |          | 118.50 CA-50o, 118.50-121.29 fragments are all porphyritic with 1-2mm           | 35214    | 119    | 120    | 1         | 0        |          |          |                                               |
|          |          | plagioclose phenocrsyst showing no schistosty or bedding, possibly massive      | 35215    | 120    | 121.4  | 1.4       | 0.05     |          |          |                                               |
|          |          | filled intensely veined in all same direction CA-65-550, 119.13-119.93 with     |          |        |        |           |          |          |          | 4                                             |
| 118.11   | 121.4    | 1cm qtz opague st CA-42o at 119.93, intensely stringers 120.56-121.0 all        |          |        |        |           |          |          |          |                                               |
|          |          | same direction with felsic aphanitic dikelet from 120.64-120.70 CA-550 and      |          |        |        |           |          |          |          |                                               |
|          |          | scattered fg py, 121.29-121.40 laminated with grey silic LC at 121.40 broken.   |          |        |        |           |          |          |          |                                               |
| 121.4    | 122.47   | light grey to light medium grey, very hard, siliceous, medium grained grading   | 35216    | 121.4  | 122.47 | 1.07      | 0.33     |          |          |                                               |
|          |          | to fine grained downhole, scattered irregular crispy qtz calcite stringers from |          |        |        |           |          |          |          |                                               |

| Property | Hunter M | ine                                                                                | Hole No. | 38     |        | Sheet No. | 3        |          |          |          |
|----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me       | eterage  | Description                                                                        |          | Sample |        |           |          | Assay    |          |          |
| From     | То       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |          | 121.96-122.47, vfg to fg pyrite scattered to dissemated 1% from 121.63-            |          |        |        |           |          |          |          |          |
|          |          | 122.36, 121.40-121.63 grevish white development of plagioclose x-cuts with         |          |        |        |           |          |          |          |          |
|          |          | mg pyrite, LC CA-600 weak moderate level bed CA-500.                               |          |        |        |           |          |          |          |          |
| 122.47   | 122.59   | tuff fragmental UM light grey green to dark grey green, LC with 1/2cm qtz st       | 35217    | 122.47 | 122.79 | 0.32      | 0.04     | 0.07     |          |          |
|          |          | CA-600.                                                                            |          |        |        |           |          |          |          |          |
| 122.59   | 122.79   | porphyritic felsic 2mm plagioclose x-cuts grading to fragmental, grading mg        |          |        |        |           |          |          |          |          |
|          |          | to fg py overall 2-3% LC sharp CA-450.                                             |          |        |        |           |          |          |          |          |
| 122.79   | 127.39   | tuff -tuff fragmental, fg, black green, tuff to tuffaceous fragmental, moderate    | 35218    | 122.79 | 124    | 1.21      | 0.02     |          |          |          |
|          |          | well development of bedding locally poor devel. low to massive tuff sections,      |          |        |        |           |          |          |          |          |
|          |          | local sections intensely veined with 2-4mm qtz stringer overall 50-60%,            |          |        |        |           |          |          |          |          |
|          |          | locally kinkle folding, with chlorite ff slip planes, more crenulations, nil to    |          |        |        |           |          |          |          |          |
|          |          | trace to locally 1% fg pyrite, 122.79-127.39 qtz flooded, small stringers,         |          |        |        |           |          |          |          |          |
|          |          | generally all in same direction II to or near bedding 600, 123.56-123.63 felsic    |          |        |        |           |          |          |          |          |
|          |          | dikelet CA-70-500, 124.39-124.47 felsic diklet CA-500 2-3% mg py, 124.47-          |          |        |        |           |          |          |          |          |
|          |          | 124.99 kinkled folds, 124.99-125.05 white opague qtz vein CA 40-520,               |          |        |        |           |          |          |          |          |
|          |          | 125.52-126.41 1-2mm grey white x-cuts, porphyritic texture, massive, nil           |          |        |        |           |          |          |          |          |
|          |          | schistose or bedding, stringer veins same direction as tuff fragmental above       |          |        |        |           |          |          |          |          |
|          |          | less density LC 550, 126.41-127.39 qtz flooding LC-50-550.                         |          |        |        |           |          |          |          |          |
| 127.39   | 128.58   | light to medium grey green to olive, decreasing orientation of stringers           |          |        |        |           |          |          |          |          |
|          |          | usually II to bed 500 with few scattered stringers x-cut bedding mostly            |          |        |        |           |          |          |          |          |
|          |          | discont. due to kinkle folding, lapilli tuff, trace sulphides LC-50o.              |          |        |        |           |          |          |          |          |
| 128.58   | 129.05   | fragmental unit with buff to light greenish buff fragments elongated with          |          |        |        |           |          |          |          |          |
|          |          | medium to dark green tuff matrix LC sharp CA-60o.                                  |          |        |        |           |          |          |          |          |
| 129.05   | 130.94   | tuff with small sections of tuff fragmental light grey green, few stringers        |          |        |        |           |          |          |          |          |
|          |          | usually II to bedding scattered stringers x-cut bedding and folded stringers       |          |        |        |           |          |          |          |          |
|          |          | x-cut bedding and folded stringers x-cut bed, 130.92-130.94 pinkish light          |          |        |        |           |          |          |          |          |
|          |          | greenish yellow sericitic altn felsic dikelets near II to bed CA-550.              |          |        |        |           |          |          |          |          |
| 130.94   | 131.17   | fragmental tuff.                                                                   |          |        |        |           |          |          |          |          |
| 131.17   | 133.85   | medium green grading to dark green tuff with small isolated sections of fragment   |          |        |        |           |          |          |          |          |
|          |          | crenulations with chlorite II slip planes, scattered qtz stringers 2-5m.           |          |        |        |           |          |          |          |          |
| 133.85   | 134.55   | qtz flooded 1/2-4cm grey opague qtz with ankerite generally CA-55o, few grey       | 35219    | 133.9  | 134.6  | 0.7       | 0        |          |          |          |
|          |          | opal qtz stringer x-cut by above CA-40o, contacts UC 50o LC-45o.                   |          |        |        |           |          |          |          |          |
| 134.55   | 138.72   | tuff fragments as above, qtz ankerite, x-cut bed scattered, CA-75,500, 135.28      | 35220    | 137.5  | 138.7  | 1.19      | _0.51    | 0.54     |          |          |
|          |          | 3mm qtz ankinte stringer with pyrite CA-450 li to bed, 136.0-137.05 intense qtz    |          |        |        |           |          |          |          |          |
|          |          | weak stringer x-cut bed 2-5mm CA-60o, 75o, 85o, 30o discont., 137.35 1cm           |          |        |        |           |          |          |          |          |
|          |          | gtz ankerite stringers CA-750, 137.53-138.72 gtz flood, brecciated fragmental tuff |          |        |        |           |          |          |          |          |
|          |          | with scattered pyrite.                                                             |          |        |        |           |          |          |          |          |

| Property: | Hunter M | line                                                                                   | Hole No. | 38     |        | Sheet No. | 4        |          |          |          |
|-----------|----------|----------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | erage    | Description                                                                            |          | Sample | e      |           | Assa     | ys       |          |          |
| From      | То       |                                                                                        | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
| 138.72    | 138.79   | felsic pale pinkish light tan, fragments tuff, siliceous, void of stringers CA-70-600  | 35221    | 138.7  | 138.9  | 0.15      | 0        |          |          |          |
| 138.79    | 138.87   | siliceous fragmental breccia LC 400.                                                   |          |        |        |           |          |          |          |          |
| 138.87    | 139.62   | mafic medium green fragmental tuff with irregular greyish qtz stringer fragments       | 35222    | 138.9  | 139.6  | 0.75      | 0        |          |          |          |
|           |          | scattered to 0.5% vfg to fg pyrite LC sharp 53o.                                       |          |        |        |           |          |          |          |          |
| 139.62    | 139.87   | light tan to pale buff siliceous minor amount of chlorite felsic fragmental grading    | 35223    | 139.6  | 139.9  | 0.25      | 0        |          |          |          |
|           |          | contact with veining chlorite.                                                         |          |        |        |           |          |          |          |          |
| 139.87    | 141.41   | chlorite matrix with greyish fragmental locally brecciated, x-cut by greyish           | 35224    | 139.9  | 140.6  | 0.73      | 0        |          |          |          |
|           |          | opague and grey qtz opague and ankerite stringers up to 1cm CA-40, 55, 700             | 35225    | 140.6  | 141.4  | 0.81      | 0        |          |          |          |
|           |          | and II to CA at 141.07-141.24 side of core, weak moderate devel. of bedding CA-        |          |        |        |           |          |          |          |          |
|           |          | 40o LC-35o, scattered fg py in stringers, nil to trace pyrite in fragmental tuff.      |          |        |        |           |          |          |          |          |
| 141.41    | 143.5    | light grey to light greyish light green, to medium grey, tuff, stringers II to bed 250 | 35226    | 141.4  | 142.3  | 0.89      | 0        |          |          |          |
|           |          | same x-cut at 500, 650, scattered vfg pyrite, 142.68-142.79 intense stringers II       | 35227    | 142.3  | 142.8  | 0.49      | 0.01     |          |          |          |
|           |          | to bedding with minor fuchsite CA-30o, 143.30-143.33 light brownish siliceous          | 35228    | 142.8  | 143.5  | 0.71      | 0        |          |          |          |
|           |          | CA-550 dikelet felsic.                                                                 |          |        |        |           |          |          |          |          |
| 143.5     | 213.25   | Exhalitic Tuffs and Sedimentary Rocks                                                  |          |        |        |           |          |          |          |          |
| 143.5     | 143.97   | felsic breccia, fg, light grey to medium grey, brecciated, healed laminated by         | 35229    | 143.5  | 144.0  | 0.47      | 0        |          |          |          |
|           |          | chlorite, with pyrite to 143.73, x-cut by white qtz stringer with pyrite CA-80o at     |          |        |        |           |          |          |          |          |
|           |          | 143.58 and 50o at 143.64, from 143.58-143.64 healed with chocolate brown               |          |        |        |           |          |          |          |          |
|           |          | silica LC sharp CA-350                                                                 |          |        |        |           |          |          |          |          |
| 143.97    | 145.1    | felsic foliated dike, fg, medium grey massive, uniform, weakly foliated with           | 35230    | 144.0  | 144.8  | 0.81      | 0.05     | 0.09     |          |          |
|           |          | greyish silica qtz fragmental, silicified, siliceous, nil to very weak development of  | 35231    | 144.8  | 145.1  | 0.32      | 0.01     |          |          |          |
|           |          | foliation except near contacts, scattered pyrite vfg to fg, rare distinct stringers    |          |        |        |           |          |          |          |          |
|           |          | 143.97-144.16 weak level of foliation CA-25o, 144.16-144.78 massive, scattered         |          |        |        |           |          |          |          |          |
|           |          | py, 144.78-144.91 chloritic matrix with buff to tan fragments possible inclusion,      |          |        |        |           |          |          |          |          |
|           |          | 144.91-145.10 weakly foliated scattered pyrite 1% fg.                                  |          |        |        |           |          |          |          |          |
| 145.1     | 145.71   | qtz vein brecciated, felsic to approx, 145.28, 145.28-145.71 altn tuff fragment        | 35232    | 145.1  | 145.71 | 0.61      | 0        |          |          |          |
|           |          | inclusions, silicified with dark brown silica tourmaline II white opague qtz           |          |        |        |           |          |          |          |          |
|           |          | ankerite veining and stockwack, 145.52-145.71 1/2cm of grey qtz stringers              |          |        |        |           |          |          |          |          |
|           |          | CA-40o, white opague qtz ankerite with scattered py and minor pyrrhotite,              |          |        |        |           |          |          |          |          |
|           |          | 145.71 LC CA-450 sharp.                                                                |          |        |        |           |          |          |          |          |
| 145.71    | 147.76   | tuff to tuff fragmental, 145.71-146.35 fg tuff, patchy moderate sericitic altn,        | 35233    | 145.71 | 146.35 | 0.64      | 0.07     |          |          |          |
|           |          | minor contorted bedding, CA-40o changing to 60o at LC-60o, 146.35-146.71               | 35234    | 146.35 | 146.87 | 0.52      | 0.93     | 0.9      |          |          |
|           |          | crispy chocolate brown matrix to 146.57 changing to medium green chloritic             | 35235    | 146.87 | 147.76 | 0.89      | 1.13     | 1.05     |          |          |
|           |          | fragmental tuff, LC-450, 146.71-146.87 medium green tuff with small 2-3mm              |          |        |        |           |          |          |          |          |
|           |          | grey white silica bands, bands, LC-40o, 146.87-147.29 light grey fragments in          |          |        |        |           |          |          |          |          |
|           |          | dark green tuff matrix poorly devel. bedding, trace sulphides LC-45o, 147.29-          |          |        |        |           |          |          |          |          |
|           |          | 147.37 light tan to buff felsic dikelet CA-60o, 147.37-147.41 chloritic tuff,          |          |        |        |           |          |          |          |          |

| Property: | Hunter M | ine                                                                             | Hole No. | 38     |        | Sheet No. | 5        |          |          |          |
|-----------|----------|---------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                     | Samp     | e      |        |           | A        | ssay     |          |          |
| From      | То       |                                                                                 | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | 147.41-147.71 gtz flooded greyish brown silica stringers 1-1 1/2cm CA-600       |          |        |        |           |          |          |          |          |
|           |          | x-cutting weakly bedded Bx fragments, LC-550, 147.71-147.76 medium green        |          |        |        |           |          |          |          |          |
|           |          | laminated tuff LC-500 x-cut bedding.                                            |          |        |        |           |          |          |          |          |
| 147.76    | 148.33   | brecciated zone, fg, buff to tan, sub angular fragments within alth matrix to   | 35236    | 147.76 | 148.33 | 0.57      | 0        |          |          |          |
|           |          | yellow greenish tan to chocolate brown siliceous matrix, small grey white       |          |        |        |           |          |          |          |          |
|           |          | opague qtz masses or fragments of veins, trace to scattered vfg fg py, void of  |          |        |        |           |          |          |          |          |
|           |          | distinct stringers, LC sharp CA-50o.                                            |          |        |        |           |          |          |          |          |
| 148.33    | 152.12   | tuff fragmental, grey green, light grey to medium grey, 148.77-148.89 irregular | 35237    | 148.33 | 149.08 | 0.75      | 0.01     |          |          |          |
|           |          | grey white opague stringers CA-700 II to bed, 149.08-149.35 tuff fragmental     | 35238    | 149.08 | 149.35 | 0.27      | 0.19     |          |          |          |
|           |          | with white opal 1/2cm qtz st CA-70, 48, 650 opposite and irregular mass and     | 35239    | 149.35 | 150.05 | 0.7       | 0.44     |          |          |          |
|           |          | vfg py CA-55, 600 LC II to bed, 149.35-150.05 tuff dark grey to grey green,     | 35240    | 150.05 | 150.68 | 0.63      | 0.05     |          |          | -        |
|           |          | 150.05-152.12 weak patchy sericitic altn, tuff fragmental pale green and        | 35241    | 150.68 | 152.12 | 1.44      | 0        |          |          |          |
|           |          | medium green, 150.15-150.68 brecciated, qtz flood light to medium grey qtz      |          |        |        |           |          |          |          |          |
|           |          | stringers and folding vfg py, 150.68-152.12 patch weak to weak moderate         |          |        |        |           |          |          |          |          |
|           |          | sericitic tuff fragmental, with white opague and grey white opague qtz stringer |          |        |        |           |          |          |          |          |
|           |          | 1/2 to 2.5cm CA-50o II to bedding, 151.39-151.45 1/2cm pinkish qtz              |          |        |        |           |          |          |          |          |
|           |          | carbonated stringer CA-300 II bed, 152.04-152.12 qtz veinlet with minor         |          |        |        |           |          |          |          |          |
|           |          | fuchsite, irregular CA-50o near II to bed.                                      |          |        |        |           |          |          |          |          |
| 152.12    | 152.68   | patchy moderate sericitic altn fragmental tuff, trace to scattered vfg py, LC-  | 35242    | 152.12 | 152.68 | 0.56      | 0        |          |          |          |
|           |          | 500                                                                             |          |        |        |           |          |          |          |          |
| 152.68    | 153.55   | q flooded, moderate to strongly sericitic alth qtz II to bedding of fragmental  | 35243    | 152.68 | 153.55 | 0.87      | 0.03     |          |          |          |
| 152.68    | 153.55   | tuff, LC 450 II to bed.                                                         |          |        |        |           |          |          |          |          |
| 153.55    | 154.09   | buff to dark brown locally minor sericitic altn fg tuff with small fragments    | 35244    | 153.55 | 154.09 | 0.54      | 0        |          |          |          |
|           |          | lapilli tuff LC 450, pink carbonated qtz st at 153.59 1cm, 153.64 1cm, 153.75   |          |        |        |           |          |          |          |          |
|           |          | 1/2cm CA-450.                                                                   |          |        |        |           |          |          |          |          |
| 154.09    | 154.68   | qtz flooded locally brecciated moderate to strongly sericitic altn, minor       | 35245    | 154.09 | 154.68 | 0.59      | 0        |          |          |          |
|           |          | fuchsite altn stringers in BX 154.09-154.28 pale greenish tint 154.28 qtz       |          |        |        |           |          |          |          |          |
|           |          | flooding II to bed, trace to scattered fg py LC 35-370 bedding.                 |          |        |        |           |          |          |          |          |
| 154.68    | 155.01   | tuff, pervasive moderate sericitic altn good laminations CA-420.                | 35246    | 154.64 | 155.01 | 0.33      | 0        |          |          |          |
| 155.01    | 156.15   | grey green to black green, scattered milky white qtz carbonated to wispy pink   | 35247    | 155.01 | 156.15 | 1.14      | 0        |          |          |          |
|           |          | carbonated qtz stringer II to bedding CA-40o nil to trace pyrite LC-50o.        |          |        |        |           |          |          |          |          |
| 156.15    | 156.68   | weak to locally moderate patch sericitic altn, weak rare pervasive, tuff        | 35248    | 156.15 | 156.68 | 0.53      | 0.02     |          |          |          |
|           |          | laminated CA-55o, 156.39-156.51, grey white qtz ankerite veinlet CA-50o x-cut   |          |        |        |           |          |          |          |          |
|           |          | by 2 - 1/2cm grey to brownish grey and black chlorite stringer CA-70+650,       |          |        |        |           |          |          |          |          |
|           |          | 156.68 LC CA-500.                                                               |          |        |        |           |          |          |          |          |
| 156.68    | 157.04   | qtz tuff flooded laminated tuff, brecciated by qtz, grey white opague and       | 35249    | 156.68 | 157.04 | 0.36      | 0        |          |          |          |
|           |          | medium grey opague qtz, moderate sericitic altn of tuff, trace to scattered     |          |        |        |           |          |          |          |          |

.

| Property: | Hunter M | ine                                                                                | Hole No. | 38     |        | Sheet No. | 6        |          |          |          |
|-----------|----------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Me        | terage   | Description                                                                        | Sampl    | e      |        |           | A        | ssay     |          |          |
| From      | То       |                                                                                    | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | pyrite LC 60o.                                                                     |          |        |        |           |          |          |          |          |
| 157.04    | 157.35   | brecciated tuff healled with weakly sericitic alth chlorite, qtz grey to medium    | 35250    | 157.04 | 157.37 | 0.33      | 0.08     |          |          |          |
|           |          | grey, light grey to buff tuff, scattered to disseminated vfg pyrite 1-2%, LC-550.  |          |        |        |           |          |          |          |          |
| 157.35    | 158.02   | weak pervasive with locally moderate sericitic alth silicified by minor qtz        | 35251    | 157.37 | 158.02 | 0.65      | 0.15     | 0.16     |          |          |
|           |          | flooding, scattered 1% overall locally 157.35-157.47 vfg 2-3% py LC-65o II bed     |          |        |        |           |          |          |          |          |
| 158.02    | 158.59   | fg light buff to light brownish, hard, weakly carbonated well laminated tuff to    | 35252    | 158.02 | 158.59 | 0.57      | 0.38     | 0.39     |          |          |
|           |          | argillite CA-550 158.05 1/2cm qtz st x-cut bed CA-600, 158.02-158.20 more          |          |        |        |           |          |          |          |          |
|           |          | brecciated vfg pyrite 3-5%, grading to 1-2% vfg, LC sharp CA-60o.                  |          | _      |        |           |          |          |          |          |
| 158.59    | 160.02   | fg to mg massive uniform, weak devel. bed, grading to fg buff to medium brown      | 35253    | 158.59 | 159.12 | 0.53      | 0        |          |          |          |
|           |          | carbonated weakly greywacke to argillite 159.12, well bedded 159.42-160.02         | 35254    | 159.12 | 160.02 | 0.9       | 0.01     |          |          |          |
|           |          | alternating black green, buff, tan laminations, odd 2-3mm qtz apperance of         |          |        |        |           |          |          |          |          |
|           |          | fragmental tuff, vfg py <0.5%.                                                     |          |        |        |           |          |          |          |          |
| 160.02    | 160.9    | qtz flooded, weak patchy sericitic altn, fragmental tuff grading to fine laminated | 35255    | 160.02 | 160.9  | 0.88      | 0.01     |          |          |          |
|           |          | tuff, qtz masses, II to bed and x-cut bed, scattered vfg pyrite LC-50o.            |          |        |        |           |          |          |          |          |
| 160.9     | 161.94   | well laminated tuff, weakly pervasive sericitic altn, rare qtz stringer usually    | 35256    | 160.9  | 161.94 | 1.04      | 0.02     |          |          |          |
|           |          | x-cut bed, scattered to desseminted vfg to fg pyrite 1-2%, LC-50o.                 |          |        |        |           |          |          |          |          |
| 161.94    | 162.49   | blackish, light to medium grey, buff laminations, minor greyish qtz stringers,     | 35257    | 161.94 | 162.49 | 0.55      | 0.02     |          |          |          |
| 161.94    | 162.49   | 3 pink qtz carbonated stringer II to bedding 2-5 mm CA-500 sharp, 162.11           |          |        |        |           |          |          |          |          |
|           |          | grey to blackish qtz stringer CA-65o x-cut bedding with dragging of bedding        |          |        |        |           |          |          |          |          |
|           |          | on both sides, 162.39-162.49 greyish qtz stringers 1-3mm II to bed 162.49          |          |        |        |           |          |          |          |          |
|           |          | contact CA 550 sharp.                                                              |          |        |        |           |          |          |          |          |
| 162.49    | 163.53   | fg to mg, medium grey, massive uniform, weak to weak moderate level of             | 35258    | 162.49 | 163.53 | 1.04      | 0        |          |          |          |
|           |          | bedding disseminted white 1/2mm grains, possible greywacke, non                    |          |        |        |           |          |          |          |          |
|           |          | carbonated, bed 50o, locally mg pyrite up to 2mm x-cuts, no baked contacts         |          |        |        |           |          |          |          |          |
|           |          | hard, siliceous, scattered hairlike to 2mm qtz stringers II to bed, possible       |          |        |        |           |          |          |          |          |
|           |          | crystal tuff, LC sharp CA-450.                                                     |          |        |        |           |          |          |          |          |
| 163.53    | 163.9    | fg, laminated, medium brown to light brown and buff laminations grading to         | 35259    | 163.53 | 163.9  | 0.37      | 0        |          |          |          |
|           |          | greyish white and buff, bed excellent CA-550, trace sulphides LC-430 sharp.        |          |        |        |           |          |          |          |          |
| 163.9     | 164.3    | qtz stringers II to bed, irregular near II to CA and grey white to creamy qtz      | 35260    | 163.9  | 164.3  | 0.4       | 0.08     | 0.08     |          |          |
|           |          | ank 164.27-164.30 in tuff fragmental LC-40o near II to bed CA-42-45o sinuous       |          |        |        |           |          |          |          |          |
| 164.3     | 165.32   | nil to weak patchy sericitia altn with scattered 1cm to 2cm straight grey qtz      | 35261    | 164.3  | 165.32 | 1.02      | 0        |          |          |          |
|           |          | stringers II to bed and irregular grey white qtz II and x-cut bedding, fragmental  |          |        |        |           |          |          |          |          |
|           |          | tuff LC-550, scattered pyrite with tuff and grey qtz stringer.                     |          |        |        |           |          |          |          |          |
| 165.32    | 165.86   | fg, weak pervasive sericitic altn, rare stringers minor kinkle folding, grey       | 35262    | 165.32 | 165.86 | 0.54      | 0.02     |          |          |          |
|           |          | black crenulated 1/2cm qtz stringer CA 70o x-cut bed at 165.37, 165.65 1/2         |          |        |        |           |          |          |          |          |
|           |          | cm grey black qtz stringer II to bedding with pyrite, scattered fg pyrite LC-550   |          |        |        |           |          |          |          |          |
| 165.86    | 166.68   | patchy moderate sericitic altn with black to black green siliceous, scattered      | 35263    | 165.86 | 166.68 | 0.82      | 0        |          |          |          |

1

.
| Property: | Hunter M | ine                                                                               | Hole No: | 38       |        | Sheet No. | 7        |          |          |          |
|-----------|----------|-----------------------------------------------------------------------------------|----------|----------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                       | Sam      | ple      |        |           | Assay    |          |          |          |
| From      | То       |                                                                                   | No.      | From     | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | pyrite with sericitic altn sections, more pyrite with unaltered sections, few 1/2 |          |          |        |           |          |          |          |          |
|           |          | pink carbonated qtz stringers II to bed, buff to light brown to dark brown, tuff  |          |          |        |           |          |          |          |          |
|           |          | bands with black green fragmental tuff LC-60o.                                    |          |          |        |           |          |          |          |          |
| 166.68    | 166.96   | pervasive weak to weak moderate sericitic alth tuff, trace sulphides LC-400       | 3526     | 4 166.68 | 166.96 | 0.28      | 0        |          |          |          |
|           |          | trace pyrite.                                                                     |          |          |        |           |          |          |          |          |
| 166.96    | 167.12   | qtz vein medium grey to blackish grey qtz vein with sericitic tuff inclusions     | 3526     | 5 166.96 | 167.12 | 0.16      | 0.1      |          |          |          |
|           |          | UC straight sharp LC sinuous irregular CA-50-60o x-cut bedding.                   |          |          |        |           |          |          |          |          |
| 167.12    | 167.9    | weak patchy sericitic altn, tuff, scattered pyrite bands 1-2mm, scattered 1%      | 3526     | 6 167.12 | 167.9  | 0.78      | 0.05     |          |          | +        |
|           |          | to locally 1-2% disseminted pyrite, few 1-2cm grey opague qtz ankerite            |          |          |        |           |          |          |          |          |
|           |          | stringers near II to bedding, LC-50o.                                             |          |          |        |           |          |          |          |          |
| 167.9     | 169.48   | weak to moderate pervasive sericitic altn well laminated tuff, local small        | 3526     | 7 167.9  | 168.7  | 0.8       | 0.05     |          |          |          |
|           |          | bands of crenulated tuff, bed 55-56o, scattered py locally 1-2% vfg-fg LC-55o.    | 3526     | 8 168.7  | 169.48 | 0.78      | 0.14     |          |          |          |
| 169.48    | 170.01   | black green and buff laminated tuff, few fragments, few blackish to black grey    | 3526     | 9 169.48 | 170.01 | 0.53      | 0.09     |          |          |          |
| 169.48    | 170.01   | siliceous II to bed, occasionally pyrite 1-2mm band, void of distinct st LC-55o   |          |          |        |           |          |          |          |          |
| 170.01    | 171.6    | moderate pervasive sericitic altn, laminated tuff with few fragments, void of     | 3527     | 0 170.01 | 170.9  | 0.89      | 0.21     |          |          | 1        |
|           |          | stringers, scattered pyrite <0.5% well level bed CA-57-60o LC-45o.                | 3527     | 1 170.9  | 171.6  | 0.7       | 0.25     | 0.18     |          |          |
| 171.6     | 171.9    | laminated tuff fragmental, grey to buff and black green, LC 1/2cm grey white      | 3527     | 2 171.6  | 172.2  | 0.6       | 0.13     |          |          |          |
|           |          | qtz ankinte st CA-650 x-cut bed.                                                  |          |          |        |           |          |          |          |          |
| 171.9     | 172.08   | brecciated tuff fragmental healed with grey qtz and chlorite, minor to            |          |          |        |           |          |          |          |          |
|           |          | scattered py vfg fg, LC sharp 50o.                                                |          |          |        |           |          |          |          |          |
| 172.08    | 172.2    | altn to buff and medium from fragmental tuff, silicified 2 grey opal qtz st in    |          |          |        |           |          |          |          |          |
|           |          | opposite direction forming x-cut CA-350+280 near II to bed, scattered vfg fg      |          |          |        |           |          |          |          |          |
|           |          | py, splash of chalcopyrite, LC with qtz vein 43o.                                 |          |          |        |           |          |          |          |          |
| 172.2     | 172.9    | light tan tuff fragmental of small elongated qtz alth bleached by qtz veinlet at  | 35273    | 3 172.2  | 172.9  | 0.7       | 0        |          |          |          |
|           |          | UC 3cm, 1cm grey qtz at 172.27 90o, and qtz vein with inclusions 172.35-          |          |          |        |           |          |          |          |          |
|           |          | 172.90, fragmental to 172.39, tuff 172.39-172.90 with few qtz eyes LC-50o         |          |          |        |           |          |          |          |          |
|           |          | overall irregular.                                                                |          |          |        |           |          |          |          |          |
| 172.9     | 175.87   | fg, light grey to medium grey green to light olive, small numerous fragments,     | 35274    | 172.9    | 173.68 | 0.78      | 0.03     |          |          |          |
|           |          | occasional qtz stringer usually II to moderate devel. of bedding CA-50-55o,       | 3527     | 5 173.68 | 173.87 | 0.19      | 0        |          |          |          |
|           |          | local kinkle folding with ff chlorite slip planes, scattered to trace vfg py qtz  | 3527     | 6 173.87 | 174.25 | 0.38      | 0        |          |          |          |
|           |          | ar 173.0-173.03 irregular x-cut bed, 173.70-173.82 with inclusions near II to     | 3527     | 174.25   | 175.04 | 0.79      | 0        |          |          |          |
|           |          | bed CA 60o irregular, 174.05 1cm grey II to bed, 174.13-174.16 II to bed grey     | 35278    | 3 175.04 | 175.87 | 0.83      | 0        |          |          |          |
|           |          | 174.22 grey white translucent sinuous near II to bed, 174.82 grey qtz             |          |          |        |           |          |          |          |          |
|           |          | ankerite 1cm CA-550 II to bed, 175.04-175.55 several grey st, qtz st 1/2-1cm      |          |          |        |           |          |          |          |          |
|           |          | II to bed 175.70-175.76 irregular qtz veinlet 500 II to bed then x-cut bed,       |          |          |        |           |          |          |          |          |
|           |          | 175.76-175.87 fg tuff, LC 48-50o.                                                 |          |          |        |           |          |          |          |          |
| 175.87    | 176.66   | light to medium grey fragmental tuff, trace pyrite, massive uniform, laminated    | 35279    | 175.87   | 176.66 | 0.79      | 0        |          |          |          |

| Property: | operty Hunter Mine |                                                                                    | Hole No. | 38     |        | Sheet No. | 8        |          |          |          |
|-----------|--------------------|------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Mete      | rage               | Description                                                                        |          | S      | ample  |           | A        | ssay     |          |          |
| From      | To                 |                                                                                    | No.      | From   | To     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |                    | bedding 2-3mm 175.92 4cm whitish qtz st opague II to bed with grey opague          |          |        |        |           |          |          |          |          |
|           |                    | gtz stringer branching x-cut bedding, 176.66 increasing silica grey bands and      |          |        |        |           |          |          |          |          |
|           |                    | darker colour gradutional contact over 10cm.                                       |          |        |        |           |          |          |          |          |
| 176.66    | 178.48             | layers of grey silica and black green and dark grey layers, fragmental tuff,       | 35280    | 176.66 | 177.52 | 0.86      | 0.02     |          |          |          |
|           |                    | uniform, good bed 50-550 slightly talcose, chloritic, hard, trace pyrite, void of  | 35281    | 177.52 | 178.48 | 0.96      | 0        | 0        |          |          |
|           |                    | distinct stringers LC-450.                                                         |          |        |        |           |          |          |          |          |
| 178.48    | 179.59             | same as 176.66-178.48 light qtz stringer and qtz flooded, grey green to black      | 35282    | 178.48 | 179.59 | 1.11      | 0        |          |          |          |
|           |                    | green, uniform, LC 60o.                                                            |          |        |        |           |          |          |          |          |
| 179.59    | 180                | same as 176.66-178.48 LC approximate 600.                                          | 35283    | 179.59 | 180    | 0.41      | 0        |          |          |          |
| 180       | 182.6              | mafic dike, fg, medium to dark grey, altered to medium brown by qtz white          | 35284    | 180    | 180.6  | 0.6       | 0        |          |          |          |
|           |                    | cloudy stringers from 180.0-180.48 and 181.77-182.60, massive uniform, hard        | 35285    | 180.6  | 181.49 | 0.89      | 0.05     |          |          |          |
|           |                    | to very hard siliceous, weak foliation of black green chlorite from 181.14-        | 35286    | 181.49 | 182.13 | 0.64      | 0.03     |          |          |          |
|           |                    | 182.35, scattered white grey qtz stringers with pyrite to 180.60, large low        | 35287    | 182.13 | 182.6  | 0.47      | 0.02     |          |          |          |
|           |                    | angular qtz stringer x-cut by grey opague qtz vein with minor chalcopyrite,        |          |        |        |           |          |          |          |          |
|           |                    | from 180.60-180.84, scattered po in stringers and dike matrix to 181.44,           |          |        |        |           |          |          |          |          |
|           |                    | 181.44-181.48 white opague qtz st CA 400 irregular with pyrite patchy              |          |        |        |           |          |          |          |          |
|           |                    | fracture CA-450, 181.77-182.13 pyrrhotite assosiated with ff qtz stringers,        |          |        |        |           |          |          |          |          |
|           |                    | 182.13 1cm white translucent qtz st CA-60o, 182.14-182.60 chlorite II and          |          |        |        |           |          |          |          |          |
|           |                    | qtz hydrofracturing, light brownish tan to medium brown altn, scattered            |          |        |        |           |          |          |          |          |
|           |                    | pyrrhotite associated with qtz ff, 182.60 LC gradational with altn tuff fragment   |          |        |        |           |          |          |          |          |
|           |                    | CA-40o.                                                                            |          |        |        |           |          |          |          |          |
| 182.6     | 184.74             | fragmental tuff, fg grey green very weak pervasive sericitic altn, fragmental tuff | 35288    | 182.6  | 183.65 | 1.05      | 0.01     |          |          |          |
|           |                    | high silica contact with grey qtz, rare grey opague qtz stringer, 184.05-184.07    | 35289    | 183.65 | 184.74 | 1.09      | 0        |          |          |          |
|           |                    | grey opague qtz stringer CA-650 x-cut bed, bed average 500, trace to nil           |          |        |        |           |          |          |          |          |
|           |                    | sulphides LC-40-45o, 184.54-184.74 x-cut 1cm grey opague to opal qtz st            |          |        |        |           |          |          |          |          |
|           |                    | some straight and some contorted S folded.                                         |          |        |        |           |          |          |          |          |
| 184.74    | 185.23             | very qtz rich, cloudy grey with black green chlorite and few fragments of olive    | 35290    | 184.74 | 185.41 | 0.67      | 0        |          |          |          |
|           |                    | green tuff fragmental, LC with grey opal qtz stringers CA-50o.                     |          |        |        |           |          |          |          |          |
| 185.23    | 185.41             | fg, olive green, weak sericitic altn tuff fragmental with grey opal bands or       |          |        |        |           |          |          |          |          |
|           |                    | stringers II to bed.                                                               |          |        |        |           |          |          |          |          |
| 185.41    | 186.43             | grey green laminated tuff fragmental, trace pyrite, qtz st at 185.41-185.44 and    | 35291    | 185.41 | 186.41 | 1         | 0        |          |          |          |
|           |                    | 185.67-185.69 II to bed LC ground.                                                 |          |        |        |           |          |          |          |          |
| 186.43    | 186.57             | mafic dike to intermediate, fg, medium grey to light grey bleaching around qtz     | 35292    | 186.41 | 186.71 | 0.3       | 0        |          |          |          |
|           |                    | ankerite stringers, massive, uniform, moderate development of foliation CA-50      |          |        |        |           |          |          |          |          |
|           |                    | with black chlorite alignment to form foliation, siliceous scattered qtz ankerite  |          |        |        |           |          |          |          |          |
|           |                    | stringers 2-3mm up to 2-3cm, trace to scattered vfg pyrite locally mg py up to     |          |        |        |           |          |          |          |          |
|           |                    | 1-2%, 186.41-186.57 aphanitic to fg contact siliceous qtz st fragments,            |          |        |        |           |          |          |          |          |

-

| Property: | Hunter M | ine                                                                                  | Hole No. | 38     |        | Sheet No. | 9        |          |          |          |
|-----------|----------|--------------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met       | erage    | Description                                                                          |          | Sam    | ple    |           | Ass      | ay       |          |          |
| From      | То       |                                                                                      | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|           |          | displaced qtz stringer by chlorite ff CA-70o, medium to dark grey, 186.57-           |          |        |        |           |          |          |          |          |
|           |          | contact sharp 80o sinuous.                                                           |          |        |        |           |          |          |          |          |
| 186.57    | 186.71   | light brownish grey, poor to weakly foliated deformed 1cm qtz stringers which        |          |        |        |           |          |          |          |          |
|           |          | are laminated at both contacts fractures CA-60-650, stringers CA-550 qtz             |          |        |        |           |          |          |          |          |
|           |          | ankerite with scattered pyrite, possible inclusion.                                  |          |        |        |           |          |          |          |          |
| 186.71    | 186.99   | aphanitic to fine grained medium to dark grey massive uniform, hard,                 | 35293    | 186.71 | 186.99 | 0.28      | 0.04     |          |          |          |
|           |          | siliceous, weak devel. foliation few chlorite ff stringers hairlike, pale grey white |          |        |        |           |          |          |          |          |
|           |          | ghost phenocrysts, 186.73 4mm qtz grey st CA-70o, 186.98 3mm qtz grey                |          |        |        |           |          |          |          |          |
|           |          | st CA-800 with pyrite blobs, scattered to disseminted vfg to fg pyrite 1-2%.         |          |        |        |           |          |          |          |          |
| 186.99    | 187.58   | medium grey weak moderate devel. foliation several qtz ankinte stringers x-cut       | 35294    | 186.99 | 187.58 | 0.59      | 0.06     |          |          |          |
|           |          | foliation CA-500, 187.00 2mm qtz stringer with 2mm alteration on both sides          |          |        |        |           |          |          |          |          |
|           |          | 40o, 187.03 2mm qtz st with 2mm alteration on both sides 40o, both x-cut             |          |        |        |           |          |          |          |          |
|           |          | by chlorite qtz ff CA-270, 187.16 1-1.2cm qtz ankerite veinlet with chlorite,        |          |        |        |           |          |          |          |          |
|           |          | pyrrhotite CA-40o crenulated 20o x-cut foliated at low angle, 187.22-187.24          |          |        |        |           |          |          |          |          |
|           |          | grey qtz opague veinlet with 3-5% pyrrhotite and splashes of chalcopyrite            |          |        |        |           |          |          |          |          |
|           |          | II to foliation, CA-450, 187.25-187.29 qtz carbonated veinlet with pyrite and        |          |        |        |           |          |          |          |          |
|           |          | pyrrhotite LC-50o, 187.39-187.43 grey qtz vein with grey inclusions and              |          |        |        |           |          |          |          |          |
|           |          | pyrrhotite 1% CA-70+50o, 187.43-187.58 scattered qtz ankerite stringers and          |          |        |        |           |          |          |          |          |
|           |          | grey opague qtz stringers near II to foliation.                                      |          |        |        |           |          |          |          |          |
| 187.58    | 188.61   | moderate to well foliated, medium to dark grey, fg, with alignment of chlorite       | 35295    | 187.58 | 188.5  | 0.92      | 1.85     | 1.87     |          |          |
|           |          | scattered qtz stringers II to and near II to bed x-cut foliation, 187.74 1cm grey    |          |        |        |           |          |          |          |          |
|           |          | white qtz stringer CA-40o, 187.89 3/4cm grey opague qtz stringer CA-65o,             |          |        |        |           |          |          |          |          |
|           |          | 187.91-187.97 x-cut foliation qtz white creamy stringers with pyrrhotite CA-         |          |        |        |           |          |          |          | _        |
|           |          | 45-850 2-4mm, 188.06-188.14 1.2cm grey creamy qtz stringer II to foliation           |          |        |        |           |          |          |          |          |
|           |          | CA-450 with po associated with chlorite on contact with branch ivory stringer        |          |        |        |           |          |          |          |          |
|           |          | 188.23 chlorite and py ff st CA-40o 2-4mm, 188.61 contact sharp CA-50o.              |          |        |        |           |          |          |          |          |
| 188.61    | 188.66   | brownish grey felsic dikelet 2-3% vfg pyrite, few chlorite ff hairlike, massive      |          |        |        |           |          |          |          |          |
|           |          | uniform, qtz and plagioclose feldspar, minor mafix LC sharp at 550.                  |          |        |        |           |          |          |          |          |
| 188.66    | 189.3    | medium grey well foliated, 188.89-189.0 4 chlorite II stringers with bleaching       | 35296    | 188.5  | 189.3  | 0.8       | 0.1      |          |          |          |
|           |          | of dike, 2-3mm gash CA-55-35o x-cut foliation at low angle, overall 1% vfg to        |          |        |        |           |          |          |          |          |
|           |          | fg py, 189.0-189.30 x-cut by numerous 2-3 up to 1cm qtz grey translucent             |          |        |        |           |          |          |          |          |
|           |          | stringers near II to foliation and 1 x-cut foliation at high angle CA-700 with       |          |        |        |           |          |          |          |          |
|           |          | pyrrhotite, 189.17-189.30 5 1-2mm white qtz st with pyrite CA-70-75o and             |          |        |        |           |          |          |          |          |
|           |          | 65o in opposite direction, 189.30 baked contact CA-60o.                              |          |        |        |           |          |          |          |          |
| 189.3     | 191.42   | tuff fragmental, fg, matrix light to medium brown, with small grevish and            | 35297    | 189.3  | 190.4  | 1.1       | 0        |          |          |          |
|           |          | creamy fragments well laminated with grey opague, grey translucent and               | 35298    | 190.4  | 191.42 | 1.02      | 0        |          |          |          |
|           |          | greyish white qtz carbonated layers, non carbonated calcite, rare distinct st        |          |        |        |           |          |          |          |          |

| Property | Hunter Mine |                                                                                   | Hole No. | 38     |        | Sheet No. | 10       |          |          |          |
|----------|-------------|-----------------------------------------------------------------------------------|----------|--------|--------|-----------|----------|----------|----------|----------|
| Met      | terage      | Description                                                                       |          | Sample |        |           |          |          |          |          |
| From     | То          |                                                                                   | No.      | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |             | at 189.42 1.2cm irregular cloudy white with talcose inclusion chlorite on         |          |        |        |           |          |          |          |          |
| 189.3    | 191.42      | lower contact CA-450 x-cut bedding, 189.51 1.5cm irregular grey opague qtz        |          |        |        |           |          |          |          |          |
|          |             | ankerite st CA-85-900, 189.80-189.82 vfg to fg tuff altn to green fuchsite,       |          |        |        |           |          |          |          |          |
|          |             | 190.06 2 1/2cm creamy white with greyish opague qtz CA-550, 190.60-               |          |        |        |           |          |          |          |          |
|          |             | 190.65 grey opague qtz veinlet CA-50o, 190.74-190.89 bluish grey to grey          |          |        |        |           |          |          |          |          |
|          |             | q and creamy white ankerite carbonated, minor chlorite, 4 veinlets or 1 large     |          |        |        |           |          |          |          |          |
|          |             | vein with inclusions of fragmental tuff CA II to bed, 191.42 contact CA-60o.      |          |        |        |           |          |          |          |          |
| 191.42   | 191.6       | tuff, fg well laminated 1-2mm, 191.54 1cm qtz carbonated banded vein with         | 35299    | 191.42 | 192    | 0.58      | 0.04     |          |          |          |
|          |             | minor fuchsite II to bed 570.                                                     |          |        |        |           |          |          |          |          |
| 191.6    | 192.7       | crystal tuff, similar to 189.30-191.42 but less grey qtz siliceous banding, fg    | 35300    | 192    | 192.7  | 0.7       | 0        |          |          |          |
|          |             | to mg, lapilli to crystal tuff, rare fragments, minor section of intense grey     |          |        |        |           |          |          |          |          |
|          |             | qtz silica banding from 192.07-192.24, distinct qtz cloudy white stringers at     |          |        |        |           |          |          |          |          |
|          |             | 191.86 1-1/2cm CA-44-55o, 192.03 1/2cm II to bedding CA-50o, 192.70               |          |        |        |           |          |          |          |          |
|          |             | contact sharp CA-550.                                                             |          |        |        |           |          |          |          |          |
| 192.7    | 192.94      | very fine grained laminated tuff, light brown, locally sericitic altn, with 1-2cm | 35301    | 192.7  | 192.94 | 0.24      | 0        |          |          |          |
|          |             | bands of fuchsite altn at 192.73 and CA-450 and 192.86-192.85 2 1/2cm,            |          |        |        |           |          |          |          |          |
|          |             | qtz vein with medium to dark brown tuff inclusions 192.85-192.94 CA-550           |          |        |        |           |          |          |          |          |
|          |             | scattered vfg pyrite.                                                             |          |        |        |           |          |          |          |          |
| 192.94   | 193.75      | mg, light brownish crystal tuff with qtz stringer flooding greyish opague qtz     | 35302    | 192.94 | 193.75 | 0.81      | 0        |          |          |          |
|          |             | ankerite and creamy white qtz ankerite stringers II or near II to bedding,        |          |        |        |           |          |          |          |          |
|          |             | massive poor to weakly develop bedding void of lamination, rare dark grey qtz     |          |        |        |           |          |          |          |          |
|          |             | stringer 1/2 x-cut bedding CA-700.                                                |          |        |        |           |          |          |          |          |
| 193.75   | 194.51      | same as 192.94-193.75 decreasing amount of stringers more medium grey             | 35303    | 193.75 | 194.51 | 0.76      | 0        |          |          |          |
|          |             | qtz, in greenish buff brown crystal tuff, weakly pervasive sericitic altn, 194.51 |          |        |        |           |          |          |          |          |
|          |             | contact CA-60o trace to scattered vfg py.                                         |          |        |        |           |          |          |          |          |
| 194.51   | 194.78      | olive to pale yellow green weak pervasive sericitic altn fragmental tuff, 2-3mm   | 35304    | 194.51 | 194.78 | 0.27      | 0        |          |          |          |
|          |             | greyish opague with chlorite qtz stringers and ankerite and discont. or           |          |        |        |           |          |          |          |          |
|          |             | fragments of qtz ankerite 1% pyrite LC sharp CA-500 up to 2-3% fg mg.             |          |        |        |           |          |          |          |          |
| 194.78   | 195.48      | intense large white opage qtz veining with ankerite, chlorite black green,        | 35305    | 194.78 | 195.1  | 0.32      | 0        |          |          |          |
|          |             | altered light grey tuff and minor fuchsite altn, scattered pyrite in tuff, 194.79 | 35306    | 195.1  | 195.48 | 0.38      | 0        |          |          |          |
|          |             | 1cm cloudy grey qtz st irregular near II to bed, 194.85-194.96 white opague       |          |        |        |           |          |          |          |          |
|          |             | qtz and py and medium brown carbonate dark qtz, ankerite and pyrite minor         |          |        |        |           |          |          |          |          |
|          |             | po CA-50o, 194.96-195.01 fuchsite and sericitic altn tuff with 3-5% vfg py        |          |        |        |           |          |          |          |          |
|          |             | x-cut by irregular 3-4mm qtz ankerite stringer, 195.01-195.10 medium brown        |          |        |        |           |          |          |          |          |
| 194.78   | 195.48      | tuff fg with grey opague qtz ankerite st straight CA-60o V shape and 3-5% vfg     |          |        |        |           |          |          |          |          |
|          |             | py LC irregular CA-85-90o, 195.10-195.48 white qtz vein with with grey altn       |          |        |        |           |          |          |          |          |
|          |             | tuff inclusions and black green chlorite ankerite, scattered vfg py, fuchsite     |          |        |        |           |          |          |          |          |

| Property | perty Hunter Mine |                                                                                   |       | 38     |        | Sheet No. | 11       |          |          | 1        |
|----------|-------------------|-----------------------------------------------------------------------------------|-------|--------|--------|-----------|----------|----------|----------|----------|
| Met      | terage            | Description                                                                       |       | Sample |        |           | Assa     |          |          |          |
| From     | То                |                                                                                   | No.   | From   | То     | Width     | Au (g/t) | Au check | Au (2nd) | Au check |
|          |                   | from 195.37-195.43.                                                               |       |        |        |           |          |          |          |          |
| 195.48   | 200.95            | argillite and greywacke, fg, light buff brown to tan, to medium brown, massive    | 35307 | 195.48 | 195.91 | 0.43      | 0        |          |          |          |
|          |                   | uniform, well devel. bedding, laminated by argillite to 197.19 with local mg      |       | 195.91 | 197    | 1.09      | 0        |          |          |          |
|          |                   | argillite to greywacke, siliceous to 195.91 then moderately carbonated            |       | 199    | 199.6  | 0.6       | 0        |          |          |          |
|          |                   | 195.91-200.95, overall siliceous rare stringers, local graded bedding 197.88-     | 35310 | 199.6  | 200.13 | 0.53      | 0        |          |          |          |
|          |                   | 198.0, 197.96-199.67 mix argillite and greywacke bed CA-570, 199.67-199.70        | 35311 | 200.13 | 200.95 | 0.82      | 0        |          |          |          |
|          |                   | pyrite band with 1% pyrrhotite CA-650, 199.70-200.95 dominated by argillite,      |       |        |        |           |          |          |          |          |
|          |                   | 199.92 boudinage qtz st CA II to bed 57o 1/4-1cm, 199.95-200.10 fg mg py in       |       |        |        |           |          |          |          |          |
|          |                   | bands overall 20-25%, 200.10-200.95 colour change greyish tan to 200.53           |       |        |        |           |          |          |          |          |
|          |                   | then increasing grey green, 200.95 sharp contact CA-650.                          |       |        |        |           |          |          |          |          |
| 200.95   | 201.3             | chloritic metasediments, fg, dark grey to blackish grey, hard, carbonated,        |       |        |        |           |          |          |          |          |
|          |                   | massive, moderate level of bed CA-60o, trace py, 201.30 sharp contact 60o.        |       |        |        |           |          |          |          |          |
| 201.3    | 213.25            | lower UM, soft to moderate soft, nil level schistose bed, fg, black green,        |       |        |        |           |          |          |          |          |
|          |                   | carbonated st, talcose, non magnetic, brecciated appearance but all st in         |       |        |        |           |          |          |          |          |
|          |                   | same orientation, 202.78-203.22 broken lost core, ground, 203.22-205.24           |       |        |        |           |          |          |          |          |
|          |                   | starting fg carbonated phenocryst to mg 1mm, 205.24-206.57 brecciated,            |       |        |        |           |          |          |          |          |
|          |                   | random orientated, pale green carbonated st, 206.57-207.54 massive black          |       |        |        |           |          |          |          |          |
|          |                   | green, soft moderate soft, 207.54-209.09 medium greenish black, very              |       |        |        |           |          |          |          |          |
|          |                   | talcose, brecciated, nil pyrite, 209.09-209.97 porphyritic up to 1mm, massive     |       |        |        |           |          |          |          |          |
|          |                   | broken carbonated st to talcose st, nil py, 209.97-213.25 brecciated, massive     |       |        |        |           |          |          |          |          |
|          |                   | and porphyritic, 212.90-213.25 fg black green, soft talcose, weak to moderate     |       |        |        |           |          |          |          |          |
|          |                   | level schistose 650 appears tuffaceous, 213.0-213.25 moderately hard,             |       |        |        |           |          |          |          |          |
|          |                   | 213.25 contact conformable sharp CA-650.                                          |       |        |        |           |          |          |          |          |
| 213.25   | 218.63            | Argillite-Graphitic and Arenites                                                  |       |        |        |           |          |          |          |          |
| 213.25   | 218.63            | metasediments, fg, black to light medium grey, hard to very hard, siliceous,      | 35312 | 217.55 | 217.96 | 0.41      | no assay |          |          |          |
|          |                   | weakly to moderately carbonated, non magnetic, 213.25-213.47graphitic             |       |        |        |           |          |          |          |          |
|          |                   | argillite, 213.47-213.55 argillite, 213.55-214.73 mg grading to fg greywacke,     |       |        |        |           |          |          |          |          |
|          |                   | 214.73-214.94 carbonated zone sharp contacts x-cut by greyish translucent         |       |        |        |           |          |          |          |          |
|          |                   | qtz stringers random, nil sulphides contacts CA-75+730, 214.94-215.09 vfg         |       |        |        |           |          |          |          |          |
|          |                   | to fg argillite, 215.09-215.46 black grey graphitic argillite and light to medium |       |        |        |           |          |          |          |          |
|          |                   | grey argillite graded bedding, LC broken, 215.46-217.47 black fg graphitic        |       |        |        |           |          |          |          |          |
| 213.25   | 218.63            | argillite 630, scattered 2-5mm calcite stringer II to bed 216.0-216.75 few        |       |        |        |           |          |          |          |          |
|          |                   | 1mm calcite and pyrite stringers II to bed, rare x-cut CA-30o, 217.47-217.63      |       |        |        |           |          |          |          |          |
|          |                   | alternating graphitic argillite black, and argillite dark grey scattered calcite  |       |        |        |           |          |          |          |          |
|          |                   | stringers, 217.75-217.96 veining with ff pyrite 70o and broken, 218.15 fg karki   |       |        |        |           |          |          |          |          |
|          |                   | green carbonated lapilli tuff CA-60o, 218.28 fg olive green carbonated lapilli    |       |        |        |           |          |          |          |          |
|          |                   | tuff CA-60o.                                                                      |       |        |        |           |          |          |          |          |
|          | 218.63            | END OF HOLE                                                                       |       |        |        |           |          |          |          |          |

|        |                                                                   | Hunter Mine Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ject HM-04-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Hunter Mine                                                       | Hole No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM-02-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page No:                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   | Hole Angle:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Starte                                                                                                                                                                                                                                                                                                                  | ed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30-Jul-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| er:    | HR 1009                                                           | Hole Azimuth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Finished: 03-Aug-04                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | Porcupine Lake                                                    | Hole Length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drilling Company: Benoit                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nates  | 5370982.0N, E486941.0                                             | Avg. Core Recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ry: +99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Logged By: D. McBride                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rage   | Description                                                       | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              | Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | savs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| То     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                                                                                                                                                                                                                                                                                                                          | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | То                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Au ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cu(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 49.00  | Casing                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 275.80 | Talcose Ultramafic Fragmental Tuffs and Agglome                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142.60                                                                                                                                                                                                                                                                                                                       | 143.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | Soft, dark green matrix with harder fragments to 10 cm            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143.28                                                                                                                                                                                                                                                                                                                       | 143.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | So 60o CA, S1 50o CA                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35315                                                                                                                                                                                                                                                                                                                        | 143.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 144.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | no assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | very hetrogeneous sequence with fine-grained more m               | 35316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 144.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 145.40                                                                                                                                                                                                                                                                                                                       | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | no assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | to 159.3 and 169.2 to 190                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 145.40                                                                                                                                                                                                                                                                                                                       | 146.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 301.20 | Laminated Ultramafic Tuffs                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | Fine-grained laminated rock, diagnostic by dark grey to           | black laminations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | S0 750 CA                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | after 289m, lighter grey and less laminated than most \$          | S0 60o CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | lacks brownish colour of exhalitic sedimentary rocks ar           | nd seems slightly coa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | grained , S0 50o CA- lower contact                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 305.00 | Talcose Ultramatic Fragmental Tuffs                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | similar to above, but with carbonate bands                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 309.00 | Clastic Sedimentary rocks                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | Fine-grained, medium grey to dark grey sericitic sedim            | entary rocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | S0 10-200 CA, S2 050 CA & 300CA to S1, S3 700 & 8                 | 00 CA S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | EOH                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | er:<br>age<br>To<br>49.00<br>275.80<br>301.20<br>305.00<br>309.00 | Hunter Mine   er: HR 1009   Porcupine Lake   tates 5370982.0N, E486941.0   age Descripti   To 10   49.00 Casing   275.80 Talcose Ultramafic Fragmental Tuffs and Agglomer   Soft, dark green matrix with harder fragments to 10 cm   So 600 CA, S1 500 CA   very hetrogeneous sequence with fine-grained more m   to 159.3 and 169.2 to 190   301.20 Laminated Ultramafic Tuffs   Fine-grained laminated rock, diagnostic by dark grey to   S0 750 CA   after 289m, lighter grey and less laminated than most 1   lacks brownish colour of exhalitic sedimentary rocks ar   grained , S0 500 CA- lower contact   305.00 Talcose Ultramafic Fragmental Tuffs   similar to above, but with carbonate bands   309.00 Clastic SedImentary rocks   Fine-grained, medium grey to dark grey sericitic sedimentary S0 10-200 CA, S2 050 CA & 300CA to S1, S3 700 & 8   EOH 10 | Hunter Mine Prc   Hunter Mine Hole No.:   Hole Angle: Hole Angle:   er: HR 1009 Hole Azimuth:   Porcupine Lake Hole Length:   ates 5370982.0N, E486941.0 Avg. Core Recove   age Description   To Avg. Core Recove   age Description   275.80 Talcose Ultramafic Fragmental Tuffs and Agglomerates   Soft, dark green matrix with harder fragments to 10 cm and lapilli bands So 600 CA, S1 500 CA   very hetrogeneous sequence with fine-grained more massive sections from to 159.3 and 169.2 to 190 Soll.20   301.20 Laminated Ultramafic Tuffs   Fine-grained laminated rock, diagnostic by dark grey to black laminations, S0 750 CA   after 289m, lighter grey and less laminated than most S0 600 CA   lacks brownish colour of exhalitic sedimentary rocks and seems slightly coa grained , S0 500 CA- lower contact   305.00 Talcose Ultramafic Fragmental Tuffs   similar to above, but with carbonate bands   309.00 Clastic Sedimentary rocks   S0 10-200 CA, S2 050 CA & 300CA to S1, S3 700 & 800 CA S1   EOH EOH | Hunter Mine   Hole No.:   HM-02-39     er:   HR 1009   Hole Angle:   -75     Porcupine Lake   Hole Augent:   105     9orcupine Lake   Hole Length:   309     1ates   5370982.0N, E486941.0   Avg. Core Recovery: +99%     3ge   Description   -75     To   Avg. Core Recovery: +99%   309     3ge   Description   -75     To | Hunter Mine Project HM-04-39     Hunter Mine   Hole No.:   HM-02-39   Page No.     er:   HR 1009   Hole Argie:   .75   Date Start     Porcupine Lake   Hole Length:   303   Difling Co.     ates   5370982.0N, E486941.0   Avg. Core Recovery: +99%   Logged By     ge   Description   Image: Figure 105   No.     70   Avg. Core Recovery: +99%   Logged By     ge   Description   Image: Figure 105   No.     75.60   Talcose Ultramafic Fragmental Tuffs and Agglomerates   35313     Soft, dark green matrix with harder fragments to 10 cm and lapilli bands   35314     So 60 CA, S1 50 CA   35315     very hetrogeneous sequence with fine-grained more massive sections from 149.7   35316     to 159.3 and 169.2 to 190   35317     301.20   Laminated Ultramafic Tuffs   Image: Fine-grained laminated rock, diagnostic by dark grey to black laminations, S0 750 CA     after 289m, lighter grey and less laminated than most S0 600 CA   Iacks brownish colour of exhaltic sedimentary rocks and seems slightly coarser     grained, S0 500 CA, buwer contact   Image: S0 500 CA & 300CA to S1 | Hunter Mine Project HM-04-39     Hunter Mine   Hole No.:   HM-02-39   Page No:   1     Hole Angle:   -75   Date Started:   105   Date Started:   105     Porcupine Lake   Hole Length:   309   Drilling Company:   Logged By:   309     320   Avg. Core Recovery: +99%   Logged By:   Sat   12     300   Casing   No.   From   5313   142.60     275.80   Talcose Ultramafic Fragmental Tuffs and Aggiomerates   35313   142.60   35314   143.26     Soft for CA, S1 500 CA   Soft Adv Green matrix with harder fragments to 10 cm and lapilli bands   35315   143.26     Soft for S3 and 169.2 to 190   35315   143.26   35315   143.26     Very hetrogeneous sequence with fine-grained more massive sections from 149.7   35316   144.63   144.63     301.20   Laminated rock, diagnostic by dark grey to black laminations, Soft 6A   Interest and table in the section sectio section sectio section section section section section section s | Hunter Mine Project HM-04-39     Hunter Mine   Hole No.:   HM-02-39   Page No.:   1   1 of 1     er   HR 1009   Hole Angie:   -75   Date Started:   30-Jul-04     Porcupine Lake   Hole Length:   309   Dilling Company:   Benoit     ates   Storgez ON, E486941.0   Avg. Core Recovery: +99%   Logged By:   D. McBride     70    Sample   Sample   Sample   To   To     70     Sample   Sample   To   To | Hunter Mine Project HM-04-39     Hunter Mine   Hole No.:   HM-02-39   Page No:   1   1 of 1     er:   HR 1009   Hole Angle:   -75   Date Started:   30-Jul-04     Porcupine Lake   Hole Length:   309   Date Finished:   03-Aug-04     Base Strobe2.0N, E486941.0   Avg. Core Recovery +99%   Logged By:   D. McBride     3ge   Description   Sample   Sample     To   49.00   Casing   No.   From   To   Width     70   Victh Sand Aggiomerates   353131   142.60   143.28   10.39   0.62     So 60 CA, S1 500 CA   Inters for time   35314   145.63   0.73   0.81   0.62   0.80     90 Experimental Tuffs   Inters for tinter   Inters for time   Inters fo | Hunter Mine Project HM-04-39     Hunter Mine   Hole No.:   HM-02-39   Page No.:   1   1 of 1     er:   HR 1009   Hole Angle:   -75   Date Started:   30J-U-04     procupine Lake   Hole Azimuth:   105   Date Finished:   30J-U-04     states   S07082/0K, E486941.0   Avg. Core Recovery: +99%   Logged By:   D. McBride     3ge   Description   Sample   Asg. Core Recovery: +99%   Logged By:   D. McBride     70.   To   No.   From   To   No.   From   No.   Soft. 4u ppb     30.6 CA, S1 500 CA   Soft. dark green matrix with harder fragments to 10 cm and lapilit bands   35313   142.60   143.28   148.30   0.68   no assay     So 6 CA, S1 500 CA   Soft. dark green matrix with harder fragmenter massive sections from 149.7   35316   144.60   146.20   0.80   no assay     So 750 CA   Soft. dark grey and less laminated more massive sections from 149.7   35316   145.40   0.77   no assay     So 10.20   Soft. Tore grained meminater cock, diagnostic by |

#### APPENDIX II Assay Certificates



Assaying - Consulting - Representation

Page 1 of 2

### Assay Certificate

4W-1444-RA1

#### Company: VALGOLD RESOURCES

Date: JUL-16-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 45 Core samples submitted JUL-08-04 by .

| Sample | Au      | Au Check | Au 2nd  | Au 2ndCk |                                       |
|--------|---------|----------|---------|----------|---------------------------------------|
| Number | g/tonne | g/tonne  | g/tonne | g/tonne  |                                       |
| 44501  | 0.02    | -        |         |          |                                       |
| 44502  | 0.03    | 0.04     | -       | -        |                                       |
| 44503  | Nil     | -        | -       | -        |                                       |
| 44504  | Nil     | -        | -       | -        |                                       |
| 44505  | Nil     | -        | -       | -        |                                       |
| 44506  | Nil     | -        |         | -        |                                       |
| 44507  | Nil     | Nil      | -       | -        |                                       |
| 44508  | 0.01    | -        | -       | -        |                                       |
| 44509  | 0.02    | -        | -       | -        |                                       |
| 44510  | 0.03    | -        | -       | -        |                                       |
| 44511  | 0.16    | -        |         | -        | · · · · · · · · · · · · · · · · · · · |
| 44512  | 32.88   | 37.85    | 37.03   | 34.49    |                                       |
| 44513  | 0.22    | 0.21     | -       | -        |                                       |
| 44514  | 0.16    | -        | -       | -        |                                       |
| 44515  | 0.01    | -        |         |          |                                       |
| 44516  | 0.10    | -        |         |          |                                       |
| 44517  | 0.24    | -        | -       | -        |                                       |
| 44518  | 0.03    | -        | -       | -        |                                       |
| 44519  | 0.03    | -        | -       | -        | •                                     |
| 44520  | 0.05    |          |         |          |                                       |
| 44521  | 0.10    | -        | -       | -        |                                       |
| 44522  | 0.84    | 0.81     | -       | -        |                                       |
| 44523  | 0.23    | -        | -       | -        |                                       |
| 44524  | 0.43    | -        | -       | -        |                                       |
| 44525  | 0.02    | -        |         | -        |                                       |
| 44526  | 0.07    | -        | -       | -        |                                       |
| 44527  | 0.02    | -        | -       | -        |                                       |
| 44528  | 0.05    | 0.06     | -       | -        |                                       |
| 44529  | Nil     | -        | -       | -        |                                       |
| 44530  | 0.03    |          |         |          |                                       |

Certified by Jucky Route



Assaying - Consulting - Representation

Page 2 of 2

### Assay Certificate

4W-1444-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine Attn: K. Jensen

Date: JUL-16-04

We hereby certify the following Assay of 45 Core samples submitted JUL-08-04 by .

| Sample    | Au      | Au Check | Au 2nd  | Au 2ndCk |  |
|-----------|---------|----------|---------|----------|--|
| Number    | g/tonne | g/tonne  | g/tonne | g/tonne  |  |
| 44531     | Nil     | -        | -       | -        |  |
| 44532     | 0.04    | -        | -       | -        |  |
| 44533     | Nil     | -        | -       | -        |  |
| 44534     | 0.10    | -        | -       | -        |  |
| 44535     | 0.04    | -        |         |          |  |
| 44536     | 0.26    | -        | -       |          |  |
| 44537     | 0.68    | -        | -       | -        |  |
| 44538     | 0.21    | -        | -       | -        |  |
| 44539     | 0.01    | -        | -       | -        |  |
| 44540     | 0.01    |          | -       | -        |  |
| 44541     | 0.02    | -        |         |          |  |
| 44542     | 0.42    | 0.41     | -       | -        |  |
| 44543     | Nil     | -        | -       | -        |  |
| 44544     | Nil     | -        | -       | -        |  |
| 44545     | Nil     |          | -       | -        |  |
| Blank     | Nil     | -        | -       | -        |  |
| STD OxK18 | 3.39    | -        | -       | -        |  |

Certified by Milly Rent



Assaying - Consulting - Representation

Page 1 of 2

#### Assay Certificate

4W-1445-RA1

Date: JUL-16-04

#### Company: VALGOLD RESOURCES Project: Hunter Mine

Attn: K. Jensen

We hereby certify the following Assay of 45 Core samples submitted JUL-08-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 44546  | Nil     | -        |  |
| 44547  | Nil     | -        |  |
| 44548  | 0.02    | 0.01     |  |
| 44549  | 0.05    | -        |  |
| 44550  | Nil     | -        |  |
| 44551  | Nil     |          |  |
| 44552  | 0.03    | -        |  |
| 44553  | 0.11    | -        |  |
| 44554  | Nil     | -        |  |
| 44555  | 0.10    | 0.19     |  |
| 44556  | 0.03    | -        |  |
| 44557  | 0.02    | -        |  |
| 44558  | Nil     | -        |  |
| 44559  | 0.01    | -        |  |
| 44560  | 0.01    |          |  |
| 44561  | Nil     | -        |  |
| 44562  | Nil     | -        |  |
| 44563  | Nil     | -        |  |
| 44564  | 0.03    | -        |  |
| 44565  | Nil     |          |  |
| 44566  | 0.04    | 0.03     |  |
| 44567  | 0.01    | -        |  |
| 44568  | Nil     | -        |  |
| 44569  | Nil     | -        |  |
| 44570  | Nil     | -        |  |
| 44571  | Nil     | -        |  |
| 44572  | Nil     | -        |  |
| 44573  | 0.17    | -        |  |
| 44574  | 0.03    | -        |  |
| 44575  | Nil     |          |  |
|        |         |          |  |

Certified by Judy Leure



Assaying - Consulting - Representation

Page 2 of 2

### Assay Certificate

**4W-1445-RA1** Date: **JUL-16-04** 

#### Company: VALGOLD RESOURCES Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 45 Core samples submitted JUL-08-04 by .

| Sample   | Au      | Au Check |
|----------|---------|----------|
| Number   | g/tonne | g/tonne  |
| 44576    | Nil     | -        |
| 44577    | Nil     | -        |
| 44578    | 0.01    | 0.01     |
| 44579    | Nil     | -        |
| 44580    | Nil     |          |
| 44581    | 0.01    | -        |
| 44582    | 0.03    | -        |
| 44583    | Nil     |          |
| 44584    | Nil     | -        |
| 44585    | Nil     | -        |
| 44586    | Nil     | -        |
| 44587    | 0.01    | -        |
| 44588    | 0.07    | -        |
| 44589    | Nil     | -        |
| 44590    | 0.29    | 0.22     |
| Blank    | Nil     | -        |
| STD OxK8 | 3.50    | -        |

Certified by July Perro



Assaying - Consulting - Representation

Page 1 of 2

### Assay Certificate

4W-1479-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine

Date: JUL-22-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 57 Core samples submitted JUL-11-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 44591  | 0.02    | -        |   |
| 44592  | 0.05    | -        |   |
| 44593  | 0.05    | 0.04     |   |
| 44594  | 0.01    | -        |   |
| 44595  | 0.03    |          |   |
| 44596  | 0.03    | -        |   |
| 44597  | 0.01    | -        |   |
| 44598  | Nil     | -        |   |
| 44599  | 0.06    | -        |   |
| 44600  | 0.01    | -        |   |
| 44601  | 0.04    | 0.04     |   |
| 44602  | 0.02    | -        |   |
| 44603  | Nil     | -        |   |
| 44604  | Nil     | -        |   |
| 44605  | Nil     |          |   |
| 44606  | 0.01    | -        |   |
| 44607  | 1.51    | 1.49     |   |
| 44608  | Nil     | -        |   |
| 44609  | Nil     | -        | • |
| 44610  | 0.01    | -        |   |
| 44611  | 0.10    | -        |   |
| 44612  | 0.24    | -        |   |
| 44613  | 0.33    | -        |   |
| 44614  | 0.07    | -        |   |
| 44615  | 0.22    | 0.23     |   |
| 44616  | 0.05    | -        |   |
| 44617  | 0.58    | 0.67     |   |
| 44618  | 0.05    | -        |   |
| 44619  | 0.20    | -        |   |
| 44620  | Nil     |          |   |
|        |         |          |   |

Certified by Judy Pena



Assaying - Consulting - Representation

Page 2 of 2

#### Assay Certificate

4W-1479-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine

Date: JUL-22-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 57 Core samples submitted JUL-11-04 by .

| Sample    | Au      | Au Check |     |
|-----------|---------|----------|-----|
| Number    | g/tonne | g/tonne  |     |
| 44621     | 0.10    | -        |     |
| 44622     | 0.04    | -        |     |
| 44623     | 0.06    | -        |     |
| 44624     | Nil     | -        |     |
| 44625     | 0.04    |          |     |
| 44626     | 0.05    | 0.04     |     |
| 44627     | 0.05    | -        |     |
| 44628     | Nil     | -        |     |
| 44629     | 0.08    | -        |     |
| 44630     | 0.01    |          |     |
| 44631     | 0.04    | -        |     |
| 44632     | 0.07    | -        |     |
| 44633     | Nil     | -        |     |
| 44634     | 0.01    | -        |     |
| 44635     | 0.02    |          |     |
| 44636     | Nil     | -        |     |
| 44637     | Nil     | -        |     |
| 44638     | 0.07    | -        |     |
| 44639     | Nil     | -        | •   |
| 44640     | Nil     |          |     |
| 44641     | 0.10    | 0.06     |     |
| 44642     | 0.02    | -        |     |
| 44643     | 0.03    | -        |     |
| 44644     | Nil     | -        |     |
| 44645     | Nil     |          |     |
| 44646     | 0.08    | -        | · · |
| 44647     | 0.09    | -        |     |
| Blank     | Nil     | -        |     |
| STD OxK18 | 3.64    | -        |     |
|           |         |          |     |

Certified by Andy Penno



Assaying - Consulting - Representation

Page 1 of 2

### Assay Certificate

4W-1480-RA1

#### VALGOLD RESOURCES C

Date: JUL-22-04

| Company: | VALGOLD RESOU |
|----------|---------------|
| Project: | Hunter Mine   |
| Attn:    | K. Jensen     |
|          |               |

We hereby certify the following Assay of 33 Core samples submitted JUL-15-04 by .

| Sample | Au      | Au Check |                                       |
|--------|---------|----------|---------------------------------------|
| Number | g/tonne | g/tonne  |                                       |
| 44648  | 0.02    | -        |                                       |
| 44649  | 0.05    | 0.08     |                                       |
| 44650  | 0.02    | -        |                                       |
| 44651  | 0.03    | -        |                                       |
| 44652  | 0.03    |          |                                       |
| 44653  | 0.41    | -        |                                       |
| 44654  | 2.61    | 1.89     |                                       |
| 44655  | 0.29    | -        |                                       |
| 44656  | 2.06    | -        |                                       |
| 44657  | 36.48   | 36.82    | · · · · · · · · · · · · · · · · · · · |
| 44658  | 0.05    | -        |                                       |
| 44659  | Nil     | -        |                                       |
| 44660  | 0.04    | -        |                                       |
| 44661  | 0.01    | 0.02     |                                       |
| 44662  | 0.02    | -        |                                       |
| 44663  | 0.01    | -        |                                       |
| 44664  | 0.05    | -        |                                       |
| 44665  | 0.02    | -        |                                       |
| 44666  | 0.01    | -        | •                                     |
| 44667  | Nil     |          |                                       |
| 44668  | 0.10    |          |                                       |
| 44669  | 1.17    | 0.90     |                                       |
| 44670  | 0.54    | -        |                                       |
| 44671  | 0.03    | -        |                                       |
| 44672  | 0.01    |          |                                       |
| 44673  | 0.01    |          |                                       |
| 44674  | 0.02    | -        |                                       |
| 44675  | 0.02    | -        |                                       |
| 44676  | 0.03    | -        |                                       |
| 44677  | 0.01    | -        |                                       |

Certified by Judy Pena



Assaying - Consulting - Representation

Page 2 of 2

### Assay Certificate

4W-1480-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine

Date: JUL-22-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 33 Core samples submitted JUL-15-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 44678     | 0.01    | -        |  |
| 44679     | 0.08    | 0.09     |  |
| 44680     | 0.01    | -        |  |
| Blank     | Nil     | -        |  |
| STD OxK18 | 3.45    | -        |  |
|           |         |          |  |

Certified by <u>Alidy Penne</u>



Assaying - Consulting - Representation

Page 1 of 2

### Assay Certificate

4W-1496-RA1

### Company: VALGOLD RESOURCES

Date: JUL-20-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 50 Core samples submitted JUL-15-04 by .

| Number g/tonne g/tonne |           |
|------------------------|-----------|
|                        |           |
| 44681 Nil -            |           |
| 44682 0.15 0.14        |           |
| 44683 0.11 -           |           |
| 44684 0.17 -           |           |
| 44685 0.01 -           |           |
| 44686 0.06 -           |           |
| 44687 0.02 -           |           |
| 44688 0.02 -           |           |
| 44689 0.04 -           |           |
| 44690 0.06 -           |           |
| 44691 0.01 -           |           |
| 44692 0.01 -           |           |
| 44693 0.01 -           |           |
| 44694 Nil -            |           |
| 44695 Nil -            |           |
| 44696 0.01 -           |           |
| 44697 0.01 -           |           |
| 44698 0.01 -           |           |
| 44699 0.01 0.01 ·      |           |
| 44700 Nil -            | <b></b> - |
| 44701 Nil -            |           |
| 44702 0.02 -           |           |
| 44703 0.02 -           |           |
| 44704 0.02 -           |           |
| 44705 0.01 -           |           |
| 44706 0.03 -           |           |
| 44707 0.01 -           |           |
| 44708 Nil -            |           |
| 44709 Nil -            |           |
| 44710 Nil -            |           |

Certified by May Peno



Assaying - Consulting - Representation

Page 2 of 2

### Assay Certificate

4W-1496-RA1

### Company: VALGOLD RESOURCES

Date: JUL-20-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 50 Core samples submitted JUL-15-04 by .

| Sample    | Au Au Ch     |      |
|-----------|--------------|------|
| Number    | g/tonne g/to |      |
| 44711     | Nil          | <br> |
| 44712     | 0.05         |      |
| 44713     | Nil          |      |
| 44714     | Nil O        |      |
| 44715     | Nil          |      |
| 44716     | 0.07         | <br> |
| 44717     | 0.07         |      |
| 44718     | 0.06         |      |
| 44719     | 0.02         |      |
| 44720     | 0.01         | <br> |
| 44721     | Nil          |      |
| 44722     | 0.02         |      |
| 44723     | Nil          |      |
| 44724     | 0.03 0       |      |
| 44725     | 0.02         | <br> |
| 44726     | Nil          |      |
| 44727     | 0.02         |      |
| 44728     | 0.01         |      |
| 44729     | 0.02         |      |
| 44730     | Nil          | <br> |
| Blank     | Nil          |      |
| STD OxK18 | 3.55         |      |

Certified by Judy Penn



Assaying - Consulting - Representation

Page 1 of 2

### Assay Certificate

4W-1497-RA1

#### VALGOLD RESOURCES Company: Hunter Mine

Date: JUL-22-04

Project: K. Jensen Attn:

We hereby certify the following Assay of 50 Core samples submitted JUL-15-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 44731  | 0.03    | 0.03     |  |
| 44732  | 0.02    | -        |  |
| 44733  | Nil     | -        |  |
| 44734  | 0.01    | -        |  |
| 44735  | Nil     | -        |  |
| 44736  | 0.04    | 0.06     |  |
| 44737  | 0.13    | 0.10     |  |
| 44738  | 0.09    | -        |  |
| 44739  | Nil     | -        |  |
| 44740  | Nil     |          |  |
| 44741  | Nil     | -        |  |
| 44742  | Nil     | -        |  |
| 44743  | Nil     | -        |  |
| 44744  | 0.01    | -        |  |
| 44745  | Nil     |          |  |
| 44746  | Nil     | -        |  |
| 44747  | Nil     | -        |  |
| 44748  | Nil     | Nil      |  |
| 44749  | Nil     | -        |  |
| 44750  | Nil     |          |  |
| 44751  | Nil     | -        |  |
| 44752  | 0.02    | -        |  |
| 44753  | Nil     | -        |  |
| 44754  | Nil     | -        |  |
| 44755  | Nil     | -        |  |
| 44756  | Nil     | -        |  |
| 44757  | Nil     | -        |  |
| 44758  | 0.01    | 0.01     |  |
| 44759  | Nil     | ~        |  |
| 44760  | Nil     | -        |  |
|        |         |          |  |

Certified by July Perro



Assaying - Consulting - Representation

Page 2 of 2

#### Assay Certificate

4W-1497-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine

Date: JUL-22-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 50 Core samples submitted JUL-15-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 44761     | 0.01    | -        |  |
| 44762     | Nil     | -        |  |
| 44763     | Nil     | -        |  |
| 44764     | Nil     | -        |  |
| 44765     | Nil     | -        |  |
| 44766     | 0.08    | 0.10     |  |
| 44767     | Nil     | -        |  |
| 44768     | 0.01    | -        |  |
| 44769     | Nil     | -        |  |
| 44770     | Nil     | -        |  |
| 44771     | Nil     | -        |  |
| 44772     | Nil     | -        |  |
| 44773     | Nil     | -        |  |
| 44774     | Nil     | -        |  |
| 44775     | Nil     | -        |  |
| 44776     | Nil     | -        |  |
| 44777     | 0.01    | -        |  |
| 44778     | 0.05    | -        |  |
| 44779     | Nil     | -        |  |
| 44780     | 0.02    |          |  |
| Blank     | Nil     |          |  |
| STD OxK18 | 3.51    | -        |  |

Certified by Judy Rev



Assaying - Consulting - Representation

Page 1 of 3

#### Assay Certificate

4W-1566-RA1

#### Company: VALGOLD RESOURCES

Date: JUL-30-04

Project: Hunter Mine Attn: J. Jensen

We hereby certify the following Assay of 75 Core samples submitted JUL-21-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 43201  | 0.01    | -        |  |
| 43202  | 0.02    | -        |  |
| 43203  | 0.11    | -        |  |
| 43204  | 0.01    | -        |  |
| 43205  | 0.05    | -        |  |
| 43206  | 0.11    | -        |  |
| 43207  | 0.07    | -        |  |
| 43208  | 0.04    | -        |  |
| 43209  | 0.02    | -        |  |
| 43210  | 0.07    |          |  |
| 43211  | 0.01    | -        |  |
| 43212  | 0.11    | 0.08     |  |
| 43213  | 0.01    | -        |  |
| 43214  | 0.04    | -        |  |
| 43215  | 0.03    |          |  |
| 43216  | 0.02    | -        |  |
| 43217  | Nil     | ~        |  |
| 43218  | 0.18    | -        |  |
| 43219  | 0.03    | -        |  |
| 43220  | Nil     |          |  |
| 43221  | 0.01    | -        |  |
| 43222  | 0.01    | -        |  |
| 43223  | Nil     | -        |  |
| 43224  | Nil     | -        |  |
| 43225  | 0.01    | -        |  |
| 43226  | Nil     | -        |  |
| 43227  | 0.04    | 0.06     |  |
| 43228  | 0.01    | -        |  |
| 43229  | 0.02    | -        |  |
| 43230  | 0.01    |          |  |
|        |         |          |  |

Certified by Judy Penn.



Assaying - Consulting - Representation

Page 2 of 3

### Assay Certificate

4W-1566-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine

Date: JUL-30-04

Attn:J. JensenWe hereby certify the following Assay of 75 Core samples<br/>submitted JUL-21-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 43231  | 0.05    |          |  |
| 43232  | 0.03    | -        |  |
| 43233  | 0.01    | -        |  |
| 43234  | Nil     | 0.01     |  |
| 43235  | Nil     | -        |  |
| 43236  | Nil     | -        |  |
| 43237  | Nil     | -        |  |
| 43238  | Nil     | -        |  |
| 43239  | Nil     | -        |  |
| 43240  | 0.02    |          |  |
| 43241  | Nil     | -        |  |
| 43242  | Nil     | -        |  |
| 43243  | Nil     | -        |  |
| 43244  | Nil     | Nil      |  |
| 43245  | Nil     |          |  |
| 43246  | Nil     | -        |  |
| 43247  | 0.01    | -        |  |
| 43248  | Nil     | -        |  |
| 44781  | Nil     | -        |  |
| 44782  | 0.01    |          |  |
| 44783  | 0.03    | -        |  |
| 44784  | Nil     | -        |  |
| 44785  | Nil     | -        |  |
| 44786  | Nil     | -        |  |
| 44787  | Nil     |          |  |
| 44788  | Nil     | -        |  |
| 44789  | Nil     | -        |  |
| 44790  | 2.32    | 2.59     |  |
| 44791  | 0.20    | -        |  |
| 44792  | 0.51    | 0.46     |  |
|        |         |          |  |

Certified by Audy Puno



Assaying - Consulting - Representation

Page 3 of 3

### Assay Certificate

4W-1566-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine Attn: J. Jensen

Date: JUL-30-04

We hereby certify the following Assay of 75 Core samples submitted JUL-21-04 by .

| Au      | Au Check                                                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|
| g/tonne | g/tonne                                                                                                                                        |
| Nil     |                                                                                                                                                |
| Nil     | -                                                                                                                                              |
| 0.13    | -                                                                                                                                              |
| Nil     | -                                                                                                                                              |
| Nil     |                                                                                                                                                |
| Nil     |                                                                                                                                                |
| Nil     | -                                                                                                                                              |
| 0.12    | 0.12                                                                                                                                           |
| 0.19    | -                                                                                                                                              |
| Nil     |                                                                                                                                                |
| 3.28    | -                                                                                                                                              |
|         | Au<br>g/tonne<br>Nil<br>Nil<br>0.13<br>Nil<br>Nil<br>Nil<br>0.12<br>0.19<br>Nil<br>Nil<br>Nil<br>Nil<br>Nil<br>Nil<br>Nil<br>Nil<br>Nil<br>Nil |

Certified by July Ruce



Assaying - Consulting - Representation

Page 1 of 2

#### Assay Certificate

4W-1567-RA1

### Company: VALGOLD RESOURCES

Date: JUL-30-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 37 Core samples submitted JUL-21-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 44808  | Nil     | -        |   |
| 44809  | 1.06    | 0.98     |   |
| 44810  | 0.52    | 0.54     |   |
| 44811  | 0.02    | -        |   |
| 44812  | Nil     |          |   |
| 44813  | 0.02    | -        |   |
| 44814  | 0.01    | -        |   |
| 44815  | 0.01    | -        |   |
| 44816  | 0.01    | -        |   |
| 44817  | Nil     | -        |   |
| 44818  | 0.17    | 0.18     |   |
| 44819  | 0.01    | -        |   |
| 44820  | Nil     | -        |   |
| 44821  | Nil     | -        |   |
| 44822  | 0.02    |          |   |
| 44823  | Nil     | -        |   |
| 44824  | 0.01    | -        |   |
| 44825  | 0.05    | -        |   |
| 44826  | 0.29    | 0.26     | • |
| 44827  | 0.01    |          |   |
| 44828  | Nil     | -        |   |
| 44829  | Nil     | -        |   |
| 44830  | Nil     | -        |   |
| 44831  | Nil     | -        |   |
| 44832  | Nil     | -        |   |
| 44833  | 0.04    | -        |   |
| 44834  | Nil     | -        |   |
| 44835  | Nil     | Nil      |   |
| 44836  | Nil     | -        |   |
| 44837  | 0.06    | -        |   |
|        |         |          |   |

Certified by Anily Penn-



Assaying - Consulting - Representation

Page 2 of 2

### Assay Certificate

Date: JUL-30-04

4W-1567-RA1

Company: VALGOLD RESOURCES Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 37 Core samples submitted JUL-21-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 44838     | Nil     | -        |  |
| 44839     | Nil     | -        |  |
| 44840     | Nil     | -        |  |
| 44841     | Nil     | -        |  |
| 44842     | 0.05    | 0.04     |  |
| 44843     | 0.02    | -        |  |
| 44844     | Nil     | -        |  |
| Blank     | Nil     | -        |  |
| STD OxK18 | 3.40    | -        |  |
|           |         |          |  |
|           |         |          |  |

Certified by Judy Perro



Assaying - Consulting - Representation

Page 1 of 2

### Assay Certificate

4W-1607-RA1

Date: AUG-03-04

#### Company: VALGOLD RESOURCES Project: Hunter Mines Attn: K. Jensen

We hereby certify the following Assay of 56 Core samples submitted JUL-24-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 44845  | Nil     | -        |  |
| 44846  | 0.01    | -        |  |
| 44847  | 0.01    | -        |  |
| 44848  | Nil     | -        |  |
| 44849  | Nil     | -        |  |
| 44850  | 0.01    | -        |  |
| 44851  | 0.01    | -        |  |
| 44852  | 0.02    | -        |  |
| 44853  | 0.02    | 0.02     |  |
| 44854  | 0.01    |          |  |
| 44855  | Nil     | -        |  |
| 44856  | Nil     | -        |  |
| 44857  | Nil     | -        |  |
| 44858  | Nil     | -        |  |
| 44859  | Nil     |          |  |
| 44860  | Nil     | -        |  |
| 44861  | Nil     | -        |  |
| 44862  | Nil     | -        |  |
| 44863  | 0.02    | 0.04     |  |
| 44864  | 0.01    | -        |  |
| 44865  | 0.01    | -        |  |
| 44866  | Nil     | -        |  |
| 44867  | Nil     | -        |  |
| 44868  | 0.02    | -        |  |
| 44869  | Nil     |          |  |
| 44870  | 0.01    | -        |  |
| 44871  | Nil     | -        |  |
| 44872  | Nil     | -        |  |
| 44873  | Nil     | -        |  |
| 44874  | Nil     | -        |  |
|        |         |          |  |

Certified by Judy Pur



Assaying - Consulting - Representation

Page 2 of 2

### Assay Certificate

4W-1607-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mines

Date: AUG-03-04

Project: Hunter Mines Attn: K. Jensen

We hereby certify the following Assay of 56 Core samples submitted JUL-24-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 44875     | Nil     | -        |  |
| 44876     | Nil     | -        |  |
| 44877     | Nil     | -        |  |
| 44878     | Nil     | -        |  |
| 44879     | Nil     | Nil      |  |
| 44880     | 0.01    |          |  |
| 44881     | 0.03    | -        |  |
| 44882     | Nil     | -        |  |
| 44883     | 0.01    | -        |  |
| 44884     | Nil     |          |  |
| 44885     | Nil     | -        |  |
| 44886     | 0.03    | -        |  |
| 44887     | ·0.02   | -        |  |
| 44888     | Nil     | -        |  |
| 44889     | Nil     | -        |  |
| 44890     | 0.21    | 0.20     |  |
| 44891     | Nil     | -        |  |
| 44892     | Nil     | -        |  |
| 44893     | 0.04    | -        |  |
| 44894     | 0.03    |          |  |
| 44895     | Nil     | -        |  |
| 44896     | 0.09    | 0.15     |  |
| 44897     | 0.02    | -        |  |
| 44898     | Nil     | -        |  |
| 44899     | Nil     |          |  |
| 44900     | 0.01    | -        |  |
| Blank     | Nil     | -        |  |
| STD OxK18 | 3.37    | -        |  |

Certified by Judy Persu

\_\_\_\_\_



Assaying - Consulting - Representation

Page 1 of 2

#### Assay Certificate

4W-1608-RA1

#### Company: VALGOLD RESOURCES Project: Hunter Mine

Date: AUG-03-04

Atm: K. Jensen

We hereby certify the following Assay of 32 Core samples submitted JUL-24-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 44901  | 0.02    | -        |  |
| 44902  | Nil     | -        |  |
| 44903  | Nil     | -        |  |
| 44904  | 0.01    | -        |  |
| 44905  | 0.03    | 0.04     |  |
| 44906  | 0.02    | -        |  |
| 44907  | 0.01    | -        |  |
| 44908  | Nil     | -        |  |
| 44909  | Nil     | -        |  |
| 44910  | Nil     | -        |  |
| 44911  | 0.02    |          |  |
| 44912  | Nil     | -        |  |
| 44913  | Nil     | -        |  |
| 44914  | Nil     | -        |  |
| 44915  | 0.03    | -        |  |
| 44916  | Nil     | Nil      |  |
| 44917  | 0.01    | -        |  |
| 44918  | 0.01    | -        |  |
| 44919  | 0.01    | -        |  |
| 44920  | Nil     | -        |  |
| 44921  | Nil     | -        |  |
| 44922  | 0.04    | -        |  |
| 44923  | 0.66    | 0.47     |  |
| 44924  | 0.15    | -        |  |
| 44925  | Nil     | -        |  |
| 44926  | Nil     | -        |  |
| 44927  | Nil     | -        |  |
| 44928  | 0.01    | -        |  |
| 44929  | 0.06    | -        |  |
| 44930  | 0.02    | -        |  |
|        |         |          |  |

Certified by Auly Perco-



Assaying - Consulting - Representation

Page 2 of 2

### Assay Certificate

4W-1608-RA1

Date: AUG-03-04

Company: VALGOLD RESOURCES Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 32 Core samples submitted JUL-24-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 44931     | 0.01    | -        |  |
| 44932     | 0.03    | -        |  |
| Blank     | Nil     | -        |  |
| STD OxK18 | 3.37    | -        |  |
|           |         |          |  |

Certified by July Leurs



Assaying - Consulting - Representation

Page 1 of 3

### Assay Certificate

4W-1700-RA1

### Company: VALGOLD RESOURCES INC.

Date: AUG-23-04

| Company: | ALGOLD RESC |
|----------|-------------|
| Project: | Hunter Mine |
| Attn:    | K. Jensen   |
|          |             |

We hereby certify the following Assay of 68 Core samples submitted AUG-05-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 44933  | 0.01    | -        |  |
| 44934  | Nil     | -        |  |
| 44935  | Nil     | -        |  |
| 44936  | Nil     | -        |  |
| 44937  | 0.01    |          |  |
| 44938  | 0.01    | -        |  |
| 44939  | 0.01    | -        |  |
| 44940  | 0.01    | -        |  |
| 44941  | Nil     | -        |  |
| 44942  | 0.11    | 0.11     |  |
| 44943  | 0.02    | -        |  |
| 44944  | 0.01    | -        |  |
| 44945  | 0.03    | -        |  |
| 44946  | 0.10    | 0.13     |  |
| 44947  | 0.06    |          |  |
| 44948  | Nil     | -        |  |
| 44949  | Nil     | -        |  |
| 44950  | Nil     | -        |  |
| 44951  | Nil     | -        |  |
| 44952  | Nil     | -        |  |
| 44953  | 0.01    | -        |  |
| 44954  | 0.07    | 0.07     |  |
| 44955  | 0.02    | -        |  |
| 44956  | 0.04    | -        |  |
| 44957  | 0.03    |          |  |
| 44958  | 0.04    | -        |  |
| 44959  | 0.02    | -        |  |
| 44960  | 0.01    | -        |  |
| 44961  | Nil     | -        |  |
| 44962  | 0.01    |          |  |
|        |         |          |  |

Certified by Judy fem-



Assaying - Consulting - Representation

Page 2 of 3

### Assay Certificate

4W-1700-RA1

### Company: VALGOLD RESOURCES INC.

Date: AUG-23-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 68 Core samples submitted AUG-05-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 44963  | Nil     | -        |   |
| 44964  | 0.01    | -        |   |
| 44965  | 0.03    | -        |   |
| 44966  | Nil     | -        |   |
| 44967  | Nil     |          | · |
| 44968  | 0.01    | -        |   |
| 44969  | 0.01    | -        |   |
| 44970  | Nil     | -        |   |
| 44971  | Nil     | -        |   |
| 44972  | 0.06    |          |   |
| 44973  | 0.09    | 0.10     |   |
| 44974  | 0.04    | -        |   |
| 44975  | 0.01    | -        |   |
| 44976  | Nil     | -        |   |
| 44977  | 0.06    |          |   |
| 44978  | 0.31    | -        |   |
| 44979  | 0.45    | -        |   |
| 44980  | 0.01    | -        |   |
| 44981  | 1.03    | 0.79     |   |
| 44982  | 1.86    | 1.95     |   |
| 44983  | 0.47    | -        |   |
| 44984  | 0.11    | -        |   |
| 44985  | 0.01    | -        |   |
| 44986  | Nil     | -        |   |
| 44987  | 0.01    |          |   |
| 44988  | 0.02    | -        |   |
| 44989  | Nil     | -        |   |
| 44990  | 0.01    | -        |   |
| 44991  | 0.01    | -        |   |
| 44992  | Nil     |          |   |
|        |         |          |   |

Certified by Judy Perro



Assaying - Consulting - Representation

Page 3 of 3

### Assay Certificate

4W-1700-RA1

### Company: VALGOLD RESOURCES INC.

Date: AUG-23-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 68 Core samples submitted AUG-05-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 44993     | 0.03    | -        |  |
| 44994     | Nil     | -        |  |
| 44995     | Nil     | -        |  |
| 44996     | Nil     | -        |  |
| 44997     | 0.09    | 0.07     |  |
| 44998     | Nil     | -        |  |
| 44999     | Nil     | -        |  |
| 45000     | 0.01    | -        |  |
| Blank     | Nil     | -        |  |
| STD OxK18 | 3.42    | -        |  |
|           |         |          |  |

Certified by Andy Pure



Assaying - Consulting - Representation

Page 1 of 2

#### Assay Certificate

4W-1701-RA1

### Company: VALGOLD RESOURCES INC.

Date: AUG-23-04

| Company: | VALGOLD RESOURCES |
|----------|-------------------|
| Project: | Hunter MIne       |
| Attn:    | K. Jensen         |
|          |                   |

We hereby certify the following Assay of 50 Core samples submitted AUG-05-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 43001  | 0.02    | -        |   |
| 43002  | 0.02    | -        |   |
| 43003  | 0.01    | -        |   |
| 43004  | 0.02    | -        |   |
| 43005  | 0.50    |          |   |
| 43006  | 0.01    | -        |   |
| 43007  | 0.55    | 0.52     |   |
| 43008  | 0.03    | -        |   |
| 43009  | 0.02    | -        |   |
| 43010  | Nil     |          |   |
| 43011  | 0.02    | -        |   |
| 43012  | 0.19    | -        |   |
| 43013  | 0.62    | 0.65     |   |
| 43014  | 0.37    | -        |   |
| 43015  | 0.13    | -        |   |
| 43016  | 0.12    | -        |   |
| 43017  | 0.04    | -        |   |
| 43018  | 0.01    | -        |   |
| 43019  | 0.01    | -        | • |
| 43020  | Nil     |          |   |
| 43021  | Nil     | -        |   |
| 43022  | 0.05    | -        |   |
| 43023  | Nil     | -        |   |
| 43024  | 0.15    | 0.14     |   |
| 43025  | 0.04    |          |   |
| 43026  | 0.03    | -        |   |
| 43027  | 0.01    | -        |   |
| 43028  | 0.01    | -        |   |
| 43029  | 0.01    | -        |   |
| 43030  | 0.02    | -        |   |
|        |         |          |   |

Certified by Hudy Perro



Assaying - Consulting - Representation

Page 2 of 2

Date: AUG-23-04

### Assay Certificate

4W-1701-RA1

| Company: | VALGOLD RESOURCES INC. |
|----------|------------------------|
| Project: | Hunter MIne            |
| Attn:    | K. Jensen              |

We hereby certify the following Assay of 50 Core samples submitted AUG-05-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 43031     | 0.03    |          |  |
| 43032     | Nil     | -        |  |
| 43033     | Nil     | -        |  |
| 43034     | Nil     | -        |  |
| 43035     | 0.01    | -        |  |
| 43036     | Nil     | -        |  |
| 43037     | 0.01    | -        |  |
| 43038     | Nil     | -        |  |
| 43039     | 0.01    | -        |  |
| 43040     | 0.08    | 0.05     |  |
| 43041     | 0.04    | -        |  |
| 43042     | 0.08    | -        |  |
| 43043     | Nil     | -        |  |
| 43044     | Nil     | -        |  |
| 43045     | Nil     |          |  |
| 43046     | Nil     | -        |  |
| 43047     | 0.04    | -        |  |
| 43048     | Nil     | -        |  |
| 43049     | Nil     | -        |  |
| 43050     | Nil     |          |  |
| Blank     | Nil     | -        |  |
| STD OxK18 | 3.31    | -        |  |

Certified by July ferror



Assaying - Consulting - Representation

Page 1 of 3

#### Assay Certificate

4W-1696-RA1

### Company: VALGOLD RESOUCRES INC.

Date: AUG-23-04

| Project: | Hunter Mine |  |  |
|----------|-------------|--|--|
| Attn:    | K. Jensen   |  |  |

We hereby certify the following Assay of 80 Core samples submitted AUG-05-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 43051  | 0.09    | -        |   |
| 43052  | Nil     | -        |   |
| 43053  | Nil     | -        |   |
| 43054  | 0.18    | -        |   |
| 43055  | Nil     | -        |   |
| 43056  | Nil     | -        |   |
| 43057  | Nil     | -        |   |
| 43058  | 0.01    | -        |   |
| 43059  | 0.01    | -        |   |
| 43060  | 0.01    |          |   |
| 43061  | 0.01    | Nil      |   |
| 43062  | Nil     | ~        |   |
| 43063  | Nil     | -        |   |
| 43064  | Nil     | -        |   |
| 43065  | 0.01    |          |   |
| 43066  | 0.02    | -        |   |
| 43067  | 0.02    | -        |   |
| 43068  | Nil     | -        |   |
| 43069  | 0.27    | 0.27     | • |
| 43070  | Nil     |          |   |
| 43071  | 0.02    | -        |   |
| 43072  | Nil     | -        |   |
| 43073  | 0.03    | -        |   |
| 43074  | Nil     | -        |   |
| 43075  | 0.22    |          |   |
| 43076  | Nil     | -        |   |
| 43077  | 0.01    | -        |   |
| 43078  | Nil     | -        |   |
| 43079  | Nil     | -        |   |
| 43080  | 0.09    | -        |   |
|        |         |          |   |

Certified by Judy Perro



Assaying - Consulting - Representation

Page 2 of 3

#### Assay Certificate

4W-1696-RA1

| Company: | VALGOLD RESOUCRES INC. |
|----------|------------------------|
| Project: | Hunter Mine            |
| Attn:    | K. Jensen              |

Date: AUG-23-04

We hereby certify the following Assay of 80 Core samples submitted AUG-05-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 43081  | 0.10    | -        |   |
| 43082  | 0.04    | -        |   |
| 43083  | 0.01    | -        |   |
| 43084  | 0.01    | -        |   |
| 43085  | 0.01    | -        |   |
| 43086  | 0.01    | -        |   |
| 43087  | 0.42    | -        |   |
| 43088  | 1.40    | 0.96     |   |
| 43089  | 0.04    | -        |   |
| 43090  | 0.01    | -        |   |
| 43091  | 0.01    |          |   |
| 43092  | Nil     | -        |   |
| 43093  | 0.01    | -        |   |
| 43094  | 0.12    | 0.14     |   |
| 43095  | 0.01    | -        |   |
| 43096  | 0.01    | -        |   |
| 43097  | 0.01    | -        |   |
| 43098  | 0.01    | -        |   |
| 43099  | 0.03    | -        | • |
| 43100  | 0.04    |          |   |
| 43101  | Nil     | -        |   |
| 43102  | 0.02    | -        |   |
| 43103  | 0.01    | -        |   |
| 43104  | 0.01    | -        |   |
| 43105  | 0.02    |          |   |
| 43106  | 0.04    | 0.10     |   |
| 43107  | 0.02    | -        |   |
| 43108  | 0.01    | -        |   |
| 43109  | 0.04    | -        |   |
| 43110  | 0.02    | -        |   |
|        |         |          |   |

Certified by Judy Juw



Assaying - Consulting - Representation

Page 3 of 3

### Assay Certificate

#### 4W-1696-RA1

| Company: | VALGOLD RESOUCRES INC. |
|----------|------------------------|
| Project: | Hunter Mine            |
| Attn:    | K. Jensen              |

Date: AUG-23-04

We hereby certify the following Assay of 80 Core samples submitted AUG-05-04 by .

| Sample    | Au      | Au Check |   |
|-----------|---------|----------|---|
| Number    | g/tonne | g/tonne  |   |
| 43111     | 0.01    |          |   |
| 43112     | 0.02    | -        |   |
| 43113     | 0.03    | -        |   |
| 43114     | 0.08    | -        |   |
| 43115     | 0.14    | -        |   |
| 43116     | 0.15    | -        |   |
| 43117     | 0.63    | 0.59     |   |
| 43118     | Nil     | -        |   |
| 43119     | Nil     | -        |   |
| 43120     | Nil     |          |   |
| 43121     | 0.01    | -        |   |
| 43122     | Nil     | -        |   |
| 43123     | Nil     | -        |   |
| 43124     | Nil     | -        |   |
| 43125     | Nil     |          |   |
| 43126     | Nil     | -        |   |
| 43127     | 0.01    | -        |   |
| 43128     | Nil     | -        |   |
| 43129     | Nil     | -        | • |
| 43130     | 0.09    |          |   |
| Blank     | Nil     | -        |   |
| STD OxK18 | 3.57    | -        |   |

Certified by Judy Pure


Assaying - Consulting - Representation

Page 1 of 3

Date: SEP-01-04

### Assay Certificate

#### 4W-1859-RA1

| Company: | VALGOLD RESOURCES |
|----------|-------------------|
| Project: | Hunter Mine       |
| Attn:    | K. Jensen         |

We hereby certify the following Assay of 70 Core samples submitted AUG-12-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 43131  | Nil     | -        |  |
| 43132  | Nil     | -        |  |
| 43133  | 0.03    | -        |  |
| 43134  | 0.01    | Nil      |  |
| 43135  | Nil     | -        |  |
| 43136  | Nil     | -        |  |
| 43137  | 0.02    | -        |  |
| 43138  | Nil     | -        |  |
| 43139  | 0.03    | -        |  |
| 43140  | 0.01    | -        |  |
| 43141  | Nil     |          |  |
| 43142  | Nil     | -        |  |
| 43143  | Nil     | -        |  |
| 43144  | Nil     | -        |  |
| 43145  | Nil     | -        |  |
| 43146  | 0.07    | 0.10     |  |
| 43147  | Nil     | -        |  |
| 43148  | 0.01    | -        |  |
| 43149  | 0.01    | -        |  |
| 43150  | Nil     | -        |  |
| 43151  | 0.04    |          |  |
| 43152  | 0.03    | -        |  |
| 43153  | 0.01    | -        |  |
| 43154  | 0.04    | 0.08     |  |
| 43155  | Nil     | -        |  |
| 43156  | 0.01    |          |  |
| 43157  | Nil     | -        |  |
| 43158  | Nil     | -        |  |
| 43159  | Nil     | -        |  |
| 43160  | Nil     | -        |  |
|        |         |          |  |

Certified by Judy Resso



Assaying - Consulting - Representation

Page 2 of 3

#### Assay Certificate

4W-1859-RA1

### Company: VALGOLD RESOURCES

Date: SEP-01-04

| Company: V | ALGOLD REC |
|------------|------------|
| Project: H | unter Mine |
| Attn: K.   | Jensen     |

We hereby certify the following Assay of 70 Core samples submitted AUG-12-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 43161  | 0.01    | -        |   |
| 43162  | Nil     | -        |   |
| 43163  | Nil     | -        |   |
| 43164  | Nil     | -        |   |
| 43165  | 0.01    | -        |   |
| 43166  | 0.38    | 0.27     |   |
| 43167  | 0.02    | -        |   |
| 43168  | Nil     | -        |   |
| 43169  | Nil     | -        |   |
| 43170  | Nil     | -        |   |
| 43171  | Nil     | -        |   |
| 43172  | Nil     | -        |   |
| 43173  | 0.02    | -        |   |
| 43174  | 0.09    | -        |   |
| 43175  | Nil     |          |   |
| 43176  | 0.08    | 0.09     |   |
| 43177  | 0.02    | -        |   |
| 43178  | 0.05    | -        |   |
| 43179  | 0.03    | -        | • |
| 43180  | Nil     |          |   |
| 43181  | 0.29    | -        |   |
| 43182  | 0.56    | 0.56     |   |
| 43183  | Nil     | -        |   |
| 43184  | Nil     | -        |   |
| 43185  | Nil     |          |   |
| 43186  | 0.05    | -        |   |
| 43187  | 0.01    | -        |   |
| 43188  | Nil     | -        |   |
| 43189  | 0.02    | -        |   |
| 43190  | Nil     |          |   |
|        |         |          |   |

Certified by Judy Peur



Assaying - Consulting - Representation

Page 3 of 3

### Assay Certificate

4W-1859-RA1

### Company: VALGOLD RESOURCES

Date: SEP-01-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 70 Core samples submitted AUG-12-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/come   |  |
| 43191     | Nil     | -        |  |
| 43192     | 0.01    | -        |  |
| 43193     | Nil     | 0.01     |  |
| 43194     | Nil     | -        |  |
| 43195     | 0.01    |          |  |
| 43196     | Nil     | -        |  |
| 43197     | Nil     | -        |  |
| 43198     | Nil     | -        |  |
| 43199     | 0.01    | -        |  |
| 43200     | Nil     |          |  |
| Blank     | 0.01    | -        |  |
| STD OxK18 | 3.55    | -        |  |

-----

Certified by Audy Run



Assaying - Consulting - Representation

Page 2 of 3

### Assay Certificate

4W-1860-RA1

### Company: VALGOLD RESOURCES

Date: SEP-01-04

| Company: | VALGULD KES |
|----------|-------------|
| Project: | Hunter Mine |
| Attn:    | K. Jensen   |
|          |             |

We hereby certify the following Assay of 80 Core samples submitted AUG-12-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 35031  | Nil     | -        |  |
| 35032  | 0.04    | -        |  |
| 35033  | 0.03    | -        |  |
| 35034  | 0.04    | -        |  |
| 35035  | 0.07    | -        |  |
| 35036  | 0.03    | -        |  |
| 35037  | 0.01    | -        |  |
| 35038  | Nil     | -        |  |
| 35039  | Nil     | -        |  |
| 35040  | Nil     |          |  |
| 35041  | Nil     | -        |  |
| 35042  | 0.04    | -        |  |
| 35043  | Nil     | -        |  |
| 35044  | 0.01    | -        |  |
| 35045  | Nil     | -        |  |
| 35046  | 0.06    |          |  |
| 35047  | Nil     | -        |  |
| 35048  | Nil     | -        |  |
| 35049  | Nil     | -        |  |
| 35050  | Nil     |          |  |
| 35051  | 0.01    | -        |  |
| 35052  | Nil     | -        |  |
| 35053  | 0.11    | -        |  |
| 35054  | 0.10    | 0.07     |  |
| 35055  | 0.03    |          |  |
| 35056  | Nil     | -        |  |
| 35057  | 0.01    | -        |  |
| 35058  | Nil     | -        |  |
| 35059  | Nil     | -        |  |
| 35060  | 0.07    | -        |  |
|        |         |          |  |

Certified by Judy Perso



Assaying - Consulting - Representation

Page 3 of 3

### Assay Certificate

4W-1860-RA1

#### Company: VALGOLD RESOURCES

Date: SEP-01-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 80 Core samples submitted AUG-12-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 35061     | Nil     |          |  |
| 35062     | Nil     | -        |  |
| 35063     | 0.01    | -        |  |
| 35064     | 0.03    | -        |  |
| 35065     | 0.04    | -        |  |
| 35066     | Nil     | -        |  |
| 35067     | 0.04    | -        |  |
| 35068     | 0.03    | -        |  |
| 35069     | Nil     | -        |  |
| 35070     | Nil     | -        |  |
| 35071     | Nil     | -        |  |
| 35072     | 0.03    | -        |  |
| 35073     | 0.01    | -        |  |
| 35074     | Nil     | -        |  |
| 35075     | 0.02    |          |  |
| 35076     | 0.01    | -        |  |
| 35077     | 0.09    | -        |  |
| 35078     | 0.12    | 0.17     |  |
| 35079     | Nil     | -        |  |
| 35080     | 0.01    | -        |  |
| Blank     | Nil     | -        |  |
| STD OxK18 | 3.39    | -        |  |

Certified by Judy ferre



Assaying - Consulting - Representation

Page 1 of 3

### Assay Certificate

4W-1861-RA1

#### Company: VALGOLD RESOURCES

Date: SEP-01-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 70 Core samples submitted AUG-17-04 by .

| Sample | Au      | Au Check |  |
|--------|---------|----------|--|
| Number | g/tonne | g/tonne  |  |
| 35081  | Nil     | -        |  |
| 35082  | Nil     | -        |  |
| 35083  | Nil     | -        |  |
| 35084  | Nil     | 0.01     |  |
| 35085  | Nil     | ·        |  |
| 35086  | Nil     | -        |  |
| 35087  | Nil     | -        |  |
| 35088  | 0.02    | -        |  |
| 35089  | 0.02    | -        |  |
| 35090  | Nil     |          |  |
| 35091  | Nil     | -        |  |
| 35092  | Nil     | -        |  |
| 35093  | Nil     | -        |  |
| 35094  | Nil     | -        |  |
| 35095  | Nil     |          |  |
| 35096  | Nil     | -        |  |
| 35097  | 0.02    | -        |  |
| 35098  | Nil     | -        |  |
| 35099  | Nil     | -        |  |
| 35100  | Nil     |          |  |
| 35101  | 0.02    | -        |  |
| 35102  | 0.03    | 0.05     |  |
| 35103  | Nil     | -        |  |
| 35104  | Nil     | -        |  |
| 35105  | Nil     |          |  |
| 35106  | Nil     | -        |  |
| 35107  | Nil     | -        |  |
| 35108  | Nil     | -        |  |
| 35109  | Nil     | -        |  |
| 35110  | Nil     | -        |  |
|        |         |          |  |

Certified by Audy Corro



Assaying - Consulting - Representation

Page 2 of 3

#### Assay Certificate

4W-1861-RA1

#### Company: VALGOLD RESOURCES

Date: SEP-01-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 70 Core samples submitted AUG-17-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 35111  | Nil     | -        |   |
| 35112  | Nil     | -        |   |
| 35113  | Nil     | -        |   |
| 35114  | Nil     | -        |   |
| 35115  | Nil     | -        |   |
| 35116  | Nil     | -        |   |
| 35117  | Nil     | Nil      |   |
| 35118  | 0.04    | -        |   |
| 35119  | 0.03    | -        |   |
| 35120  | 0.02    |          |   |
| 35121  | 0.01    | -        |   |
| 35122  | Nil     | -        |   |
| 35123  | 0.02    | -        |   |
| 35124  | 0.11    | -        |   |
| 35125  | 0.10    |          |   |
| 35126  | 0.01    | -        |   |
| 35127  | 0.76    | -        |   |
| 35128  | 0.02    | -        |   |
| 35129  | 0.05    | -        | • |
| 35130  | 0.84    |          |   |
| 35131  | 1.18    | 1.13     |   |
| 35132  | 0.72    | -        |   |
| 35133  | 0.89    | 1.16     |   |
| 35134  | 0.07    | -        |   |
| 35135  | 0.03    |          |   |
| 35136  | Nil     | -        |   |
| 35137  | 0.03    | -        |   |
| 35138  | 0.04    | -        |   |
| 35139  | 0.02    | -        |   |
| 35140  | 0.08    | -        |   |
|        |         |          |   |

Certified by Achy Penis



Assaying - Consulting - Representation

Page 3 of 3

#### Assay Certificate

4W-1861-RA1

| Company: | VALGOLD RESOURCES |
|----------|-------------------|
| Project: | Hunter Mine       |
| Attn:    | K. Jensen         |

Date: SEP-01-04

We hereby certify the following Assay of 70 Core samples submitted AUG-17-04 by .

| Sample    | Au      | Au Check |  |
|-----------|---------|----------|--|
| Number    | g/tonne | g/tonne  |  |
| 35141     | 0.08    |          |  |
| 35142     | 0.01    | 0.01     |  |
| 35143     | Nil     | -        |  |
| 35144     | Nil     | -        |  |
| 35145     | Nil     | -        |  |
| 35146     | Nil     |          |  |
| 35147     | 0.12    | 0.16     |  |
| 35148     | Nil     |          |  |
| 35149     | 0.01    | -        |  |
| 35150     | Nil     |          |  |
| Blank     | Nil     |          |  |
| STD OxK18 | 3.52    | -        |  |
|           |         |          |  |

-----

Certified by Audy Resso



Assaying - Consulting - Representation

Page 1 of 3

Date: SEP-09-04

#### Assay Certificate

4W-1965-RA1

| Company: | VALGOLD RESOURCES LTD |
|----------|-----------------------|
| Project: | Hunter Mine           |
| Attn:    | K. Jensen             |

We hereby certify the following Assay of 75 Core samples submitted AUG-27-04 by .

| Sample | Au      | Au Check |   |
|--------|---------|----------|---|
| Number | g/tonne | g/tonne  |   |
| 35151  | 0.01    | -        |   |
| 35152  | 0.02    | -        |   |
| 35153  | Nil     | -        |   |
| 35154  | 0.02    | 0.03     |   |
| 35155  | 0.09    | -        |   |
| 35156  | 0.05    | -        |   |
| 35157  | 0.43    | 0.42     |   |
| 35158  | 0.11    | -        |   |
| 35159  | 0.03    | -        |   |
| 35160  | Nil     | -        |   |
| 35161  | 0.02    | -        |   |
| 35162  | 0.06    | -        |   |
| 35163  | 0.09    | 0.10     |   |
| 35164  | 0.07    | -        |   |
| 35165  | 0.08    | -        |   |
| 35166  | 0.21    | -        |   |
| 35167  | 0.21    | -        |   |
| 35168  | 0.31    | -        |   |
| 35169  | 0.30    | -        | • |
| 35170  | Nil     |          |   |
| 35171  | Nil     | -        |   |
| 35172  | Nil     | -        |   |
| 35173  | Nil     | -        |   |
| 35174  | Nil     | -        |   |
| 35175  | 0.01    | 0.03     |   |
| 35176  | 0.03    | -        |   |
| 35177  | Nil     | -        |   |
| 35178  | Nil     | -        |   |
| 35179  | Nil     | -        |   |
| 35180  | Nil     | -        |   |
|        |         |          |   |

Certified by July Certa



Assaying - Consulting - Representation

Page 2 of 3

### Assay Certificate

4W-1966-RA1

#### Company: VALGOLD RESOURCES LTD Project: Hunter Mine

Date: SEP-13-04

Project: Hunter Mine Attn: K. Jensen

We hereby certify the following Assay of 85 Core samples submitted AUG-27-04 by .

| Sample | Au Au Check     | ζ                                     |
|--------|-----------------|---------------------------------------|
| Number | g/tonne g/tonne | 2                                     |
| 35256  | 0.02            |                                       |
| 35257  | 0.02            |                                       |
| 35258  | Nil             |                                       |
| 35259  | Nil ·           |                                       |
| 35260  | 0.08 0.08       |                                       |
| 35261  | Nil             |                                       |
| 35262  | 0.02            |                                       |
| 35263  | Nil ·           |                                       |
| 35264  | Nil ·           |                                       |
| 35265  | 0.10            |                                       |
| 35266  | 0.05            | · · · · · · · · · · · · · · · · · · · |
| 35267  | 0.05 -          |                                       |
| 35268  | 0.14 -          |                                       |
| 35269  | 0.09 -          |                                       |
| 35270  | 0.21 -          |                                       |
| 35271  | 0.25 0.18       |                                       |
| 35272  | 0.13 -          |                                       |
| 35273  | Nil -           |                                       |
| 35274  | 0.03 -          | •                                     |
| 35275  | Nil -           |                                       |
| 35276  | Nil -           |                                       |
| 35277  | Nil -           |                                       |
| 35278  | Nil -           |                                       |
| 35279  | Nil -           |                                       |
| 35280  | 0.02 -          |                                       |
| 35281  | Nil Nil         |                                       |
| 35282  | Nil -           |                                       |
| 35283  | Nil -           |                                       |
| 35284  | Nil -           | •                                     |
| 35285  | 0.05 -          |                                       |
|        |                 |                                       |

Certified by July Rena



Assaying - Consulting - Representation

Page 3 of 3

### Assay Certificate

4W-1966-RA1

Date: SEP-13-04

| Company: | VALGOLD RESOURCES LTD |
|----------|-----------------------|
| Project: | Hunter Mine           |
| Attn:    | K. Jensen             |

We hereby certify the following Assay of 85 Core samples submitted AUG-27-04 by .

| Sample    | Au      | Au Check |   |
|-----------|---------|----------|---|
| Number    | g/tonne | g/tonne  |   |
| 35286     | 0.03    | -        |   |
| 35287     | 0.02    | -        |   |
| 35288     | 0.01    | -        |   |
| 35289     | Nil     | -        |   |
| 35290     | Nil     |          |   |
| 35291     | Nil     | -        |   |
| 35292     | Nil     | -        |   |
| 35293     | 0.04    | -        |   |
| 35294     | 0.06    | -        |   |
| 35295     | 1.85    | 1.87     |   |
| 35296     | 0.10    | -        |   |
| 35297     | Nil     | -        |   |
| 35298     | Nil     | -        |   |
| 35299     | 0.04    | -        |   |
| 35300     | Nil     | -        |   |
| 35301     | Nil     | -        |   |
| 35302     | Nil     | -        |   |
| 35303     | Nil     | -        |   |
| 35304     | Nil     | -        | • |
| 35305     | Nil     |          |   |
| 35306     | Nil     | -        |   |
| 35307     | Nil     | Nil      |   |
| 35308     | Nil     | -        |   |
| 35309     | Nil     | -        |   |
| 35310     | Nil     | -        |   |
| Blank ,   | Nil     | -        |   |
| STD OxK18 | 3.51    | -        |   |

Certified by Judy Leur



Assaying - Consulting - Representation

### Metallic Assay Certificate

#### 4W-2423-RM1

Date: NOV-04-04

#### Company: VALGOLD RESOURCES INC. Project: Hunter Mine Attn: K. Jensen

# We hereby certify the following Metallic Assay of 21 Core samples submitted OCT-22-04 by .

|        |     |       | * * * * | ***   | *****  | * * | ********** | ********* | * * * | ******** | *******   | *** | *********** | ******* | * * *    |          | ******** |
|--------|-----|-------|---------|-------|--------|-----|------------|-----------|-------|----------|-----------|-----|-------------|---------|----------|----------|----------|
| Sample | •   | Tota  | 11      | * +1  | 100 M  | *   | Assay V    | alue Au   | *     | Total W  | Weight Au | *   | Metallic Au |         | *        | Net Au   |          |
| Number | *   | Wt (  | (g)     | * 5   | Nt (g) | *   | +100(g/t)  | -100(g/t) | *     | +100(mg) | -100 (mg) |     | (oz/ton)    | (g/t)   | •        | (oz/ton) | (g/t)    |
| 35401  | * 1 | 1220. | 62      | •     | 5.14   | *   | 4.41       | 0.59      | *     | 0.023    | 0.717     | *   | 0.001       | 0.02    | *        | 0.018    | 0.61     |
| 35402  | * ] | 1505. | 30      | *     | 20.55  | *   | 1.21       | 1.17      | *     | 0.025    | 1.737     | *   | 0.000       | 0.02    | *        | 0.034    | 1.17     |
| 35403  | *   | 681.  | 64      | *     | 21.75  | *   | 0.01       | 0.01      | *     | 0.000    | 0.007     | *   | 0.000       | 0.00    | *        | 0.000    | 0.01     |
| 35404  | *   | 934.  | 87      | *     | 11.66  | *   | 0.99       | 0.49      | *     | 0.012    | 0.452     | *   | 0.000       | 0.01    | *        | 0.014    | 0.50     |
| 35405  | * 1 | 1675. | 93      | *     | 14.26  | *   | 0.18       | 0.06      | *     | 0.003    | 0.100     | *   | 0.000       | 0.00    | *        | 0.002    | 0.06     |
| 35406  | * 1 | 1587. | 88      | •     | 15.62  | *   | 1.13       | 2.16      | *     | 0.018    | 3.396     | *   | 0.000       | 0.01    | *        | 0.063    | 2.15     |
| 35407  | *   | 693.  | 20      | *     | 19.89  | *   | 0.09       | 0.52      | *     | 0.002    | 0.350     | ٠   | 0.000       | 0.00    | *        | 0.015    | 0.51     |
| 35408  | ٠   | 991.  | 52      | *     | 8.13   | *   | 1.32       | 1.18      | ٠     | 0,011    | 1.160     | *   | 0.000       | 0.01    | *        | 0.034    | 1.18     |
| 35409  | * 1 | 1056. | 76      | *     | 12.72  | *   | 173.27     | 35.87     | *     | 2.204    | 37.450    | *   | 0.061       | 2.09    | *        | 1.094    | 37.52    |
| 35410  | * 1 | 1353. | 96      | *     | 18.21  | *   | 0.18       | 0.23      | *     | 0.003    | 0.307     | *   | 0.000       | 0.00    | *        | 0.007    | 0.23     |
| 35411  | + 2 | 2027. | 80      | *     | 15.26  | *   | 0.66       | 2.06      | *     | 0.010    | 4.146     | ٠   | 0.000       | 0.00    | *        | 0.060    | 2.05     |
| 35412  | * 1 | 1208. | 42      | *     | 4.54   | *   | 21.37      | 2.61      | *     | 0.097    | 3.142     | ٠   | 0.002       | 0.08    | *        | 0.078    | 2.68     |
| 35413  | * 1 | 1811. | 60      | *     | 13.86  | *   | 5.05       | 2.26      | *     | 0.070    | 4.063     | ٠   | 0.001       | 0.04    | *        | 0.067    | 2.28     |
| 35414  | *   | 939.  | 21      | *     | 19.45  | ٠   | 136.24     | 29.59     | *     | 2.650    | 27.216    | *   | 0.082       | 2.82    | *        | 0.927    | 31.80    |
| 35415  | * 1 | 1741. | 18      | *<br> | 16.41  |     | 0.01       | 0.05      | *     | 0.000    | 0.086     | *   | 0.000       | 0.00    | <b>.</b> | 0.001    | 0.05     |
| 35416  | * 1 | 1153. | 35      | •     | 16.87  | *   | 1.50       | 1.13      | ٠     | 0.025    | 1.284     | *   | 0.001       | 0.02    | ٠        | 0.033    | 1.14     |
| 35417  | * 1 | 181.  | 83      | *     | 20.54  | *   | 3.16       | 3.33      | *     | 0.065    | 3.867     | *   | 0.002       | 0.05    | *        | 0.097    | 3.33     |
| 35418  | ٠   | 560.  | 94      | *     | 15.18  | ٠   | 0.57       | 0.59      | ٠     | 0.009    | 0.322     | *   | 0.000       | 0.02    | *        | 0.017    | 0.59     |
| 35419  | * 1 | 1773. | 74      | *     | 15.53  | *   | 1.02       | 0.81      | *     | 0.016    | 1.424     | ٠   | 0.000       | - 0.01  | ٠        | 0.024    | 0.81     |
| 35420  | *   | 400.  | 20      | *<br> | 5.24   |     | 0.61       | 1.72      | *     | 0.003    | 0.679     |     | 0.000       | 0.01    |          | 0.050    | 1.71     |
| 35421  | + 2 | 2348. | 75      | •     | 18.41  | *   | 0.64       | 0.25      | *     | 0.012    | 0.583     | *   | 0.000       | 0.01    | ٠        | 0.007    | 0.25     |

Certified by Judy Lever

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

------

