

Ursa Major Minerals Inc.

Stumpy Bay Option Property

Shakespeare and Baldwin Townships, Ontario

Sudbury Mining Division

G-3001 / G-3003

Report on the Surface Diamond Drilling Mineral Exploration Program

U-10

By:

Harold J. Tracanelli; GETN, P.Geo

January 12th., 2006

Table of Contents

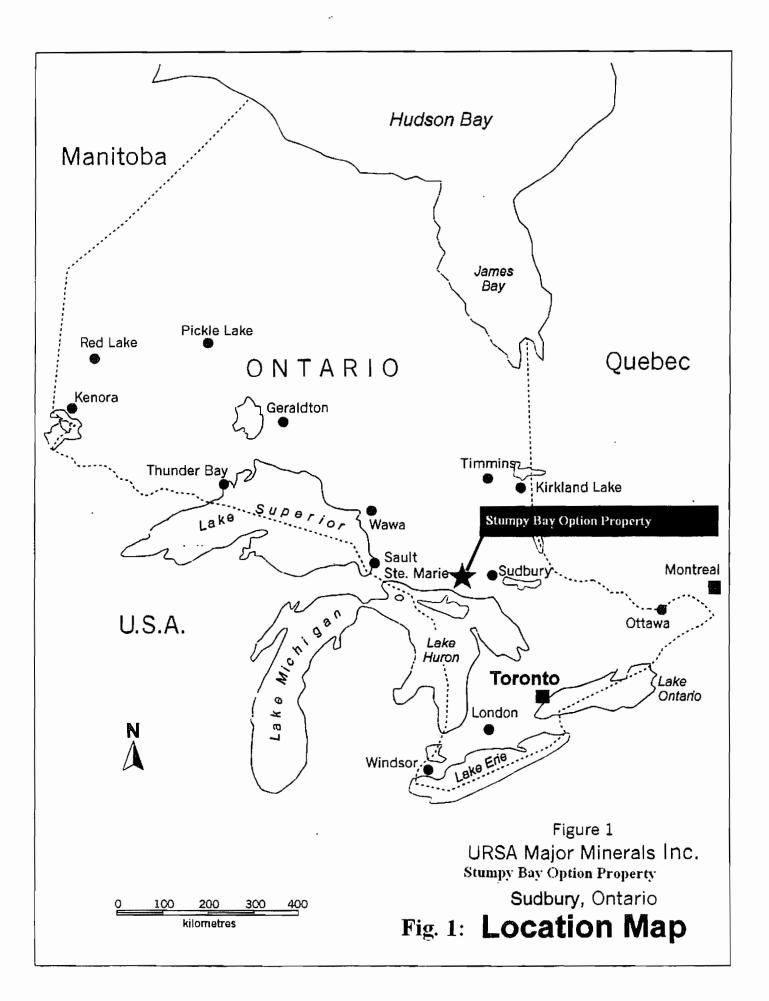
	Page
1.0 Introduction	5
2.0 The Mining Property under Option	6
3.0 Property Location and Access	8
4.0 Diamond Drilling Program 2004-05	11
5.0 Physiography and Climate	12
6.0 Vegetation and Wildlife	
7.0 Exploration History	14
8.0 Geological Setting	
9.0 Geology and Sulphide Mineralization of the	
Shakespeare Intrusive Stratigraphy	
10.0 Previous Work – 2004 Program Drill Summary	29
11.0 Present Work – 2005 Drill hole Program	
12.0 Compilation of U10-03 Assay Results	
13.0 Weighted Average Grade Results for U10-03	
14.0 Summary	
15.0 Recommendations and Conclusions.	
References	
Certificate of Qualifications, Harold J. Tracanelli; GETN	

Listing of the Tables, and Figures

Table 1	Listing of the Mining Claims of the Stumpy Bay Option	7
Table 2	Listing of the Diamond Drill Holes	12
Table 3	Standard Lithological Coding	26
Table 4	Standard Sulphide Coding	27
Table 5	U10-03 Drill Log Summary	35
Table 6	Assay Data Chart for Diamond Drill Hole U-10-03	37
Table 7	Weighted Average Grade for Drill Hole U-10-03	43
Table 8	Compilation of 1956 Noranda Trenching Program Results	45
Figure 1	Provincial Location Map	4
Figure 2	Part of the Provincial Road Map	8
Figure 3	West Agnew Lake Area Claim Map Area	
Figure 4	Stumpy Bay Option Property Shakespeare and	
C	Baldwin Townships	10
Figure 5	Large Scaled Regional Geology	20
Figure 6	Cross Section of DDH U-10-03	34
Figure 7	Stumpy Bay Area Drill Hole Location Plan	41
Figure 9	Previous Drill on Stumpy Bay Option Property	46
Figure 10	Fugaro Airbourne Targets in Stumpy Bay Area	48

Appendices

Appendix I	Drill Hole U10-03 Data Sheets
Appendix II	Diamond Drill Hole Log for U-10-03
Appendix III	SGS – Xral Assay Certificates for Samples Assayed from Diamond Drill Hole U-10-03
Appendix IV	Ursa Major Minerals Inc., Stumpy Bay Option Property, Company – Vendor Option, Part of the Agreement as Supporting Documentation
Appendix V	Diamond Drilling Expenditures – Invoices for Drill Hole U-10-03
Appendix VI	Major Dominik Drill Invoices


Appendix VII MNDM Declaration of Assessment Work

IN POCKETS:

D.H. U10-03 1:1000 Scale Plan

D.H. U10-03 1:1000 Scale Section

Stumpy Bay Property 1:5000 Scale Drill Hole Plan

1.0 Introduction

The Stumpy Bay Option Property, located in Shakespeare and Baldwin Township is situated along the north Shore of Agnew Lake and is made up of 4 crown land staked mining claims consisting of 13 units covering an area of approximately 520 acres or 32.5 hectares in size. The Stumpy Bay Option Property consists of two individual claim blocks, being S-1231439, S-1231440, and S1231441 inclusive situated near the northeast corner of Shakespeare Township, while the second, noncontiguous part of the property being claim S-1230117 is situated near the northwest corner of Baldwin Township, all within the Sudbury Mining Division of Ontario.

The mining claims were optioned from three local prospectors, Dan Brunne, Mitchell Burnard Turcott, and by virtue of an agreement that would allow the company to acquire a 100% undivided interest in three mining claims totaling 9 units situated in Shakespeare Township and one claim of 4 units situated in Baldwin Township. The option agreement was completed and came into effect on March 21st, 2003.

The extensive Spanish River drainage basin and its many tributaries have offered easy access, allowing Trappers and Fur Traders, Loggers, Hunters and Fishers, settlers and prospectors to travel far inland over the last several hundred years. It is probable that some of these areas were examined for metals where rusty or unusual rock formations such as veining or such may have occurred. Little physical evidence or documentation of these early exploration efforts remain unfortunately.

Previous exploration efforts in the area in the 1920's by the Sudbury Shakespeare Gold Copper Syndicate led to the discovery and of the Ni-Cu. bearing Shakespeare deposit and the copper bearing siliceous meta-sedimentary ores at the former Spanish River Copper Mine in the early 1930's. Following uranium exploration success in the Elliot Lake area in the early 1950's and the former Kerr Addison's discovery of the Agnew Lake Uranium Mine in the 1960's, the general Agnew Lake region became a prospective for uranium exploration.

The Shakespeare Ni-Cu deposit was eventually re-staked by Frobisher Exploration in 1941 that carried out 15 drill holes. Falconbridge acquired the property in 1947 who until 1986 drilled a total of 47 holes and 21,833 feet as well as metallurgical testing, resource estimation and engineering studies. All work since June 2000 has been by Ursa major Minerals which includes geologic mapping, sampling and geophysical programs as well as 77 drill holes totaling 16,195 meters. A resource estimate was completed by Micon in the spring of 2004 resulting in an indicated resource of an in-pit Indicated Reserve of 12 million tones grading 0.35% Ni, 0.36% cu, 0.02% Co, 0.19g/t Au, 0.34 g/t Pt and 0.38 g/t Pd. At an average cut-off value of \$43/tonne total in-situ metal.

On the Stumpy Bay Option Property exploration efforts by Ursa Major Minerals Inc. during the late summer of 2003 included surface geological – geophysical and surface trenching. During the winter of 2004 Ursa embarked on a the drilling of two diamond drill holes, totally 400 meters (1321 feet) on claim S-1231441 of the Stumpy Bay Option Property. Recently one 381 meter drill hole, namely U10-03, was drilled with the objective to test a Fugaro airbourne anomaly situated on claim 1231440.

The diamond drilling was carried out by Forage Major Dominik, under the management of Clayton Parson located in Sudbury, Ontario. The various diamond drill core logging and sample delineation was carried out by Douglas MacMillan; Exploration Geologist, under the direction of Harold Tracanelli; Exploration Geologist. Core sample splitting and sample collection was carried out by Tim Hearne.

Past exploration efforts on the Stumpy Bay property has demonstrated the presence Shakespeare stratigraphy and Shakespeare mineralization styles and on that basis further exploration effort is warranted. Recent drilling in 2005 within the lower sectors of the Stumpy Bay Property, stratigraphically below the Shakespeare horizon, indicate the presence of a moderately wide, variably mineralized structural zone consisting of low grade copper values over 15 or so meters. In this zone pyrrhotite accompanied by weak chalcopyrite is hosted by a pervasively silicified and/or quartz veined-stringered sequence of deformed meta-sediments. The highlight of the hole is an interval of 6.5 meters averaging .01% Ni, .39% Cu and 42 g/t Ag

2.0 The Mining Property Under Option

The Stumpy Bay Option Property, located in Shakespeare and Baldwin Township is situated along the north Shore of Agnew Lake and is made up of 4 crown land staked mining claims consisting of 13 units covering an area of approximately 520 acres or 32.5 hectares in size.

During March of 2003, Ursa Major Minerals Inc., entered into negotiations with three local prospectors, Dan Brunne, Mitchell Burnard Turcott, and by virtue of an agreement that would allow the company to acquire a 100% undivided interest in three mining claims totaling 9 units situated in Shakespeare Township and one claim of 4 units situated in Baldwin Township. The option agreement was completed and came into effect on March 21st., 2003.

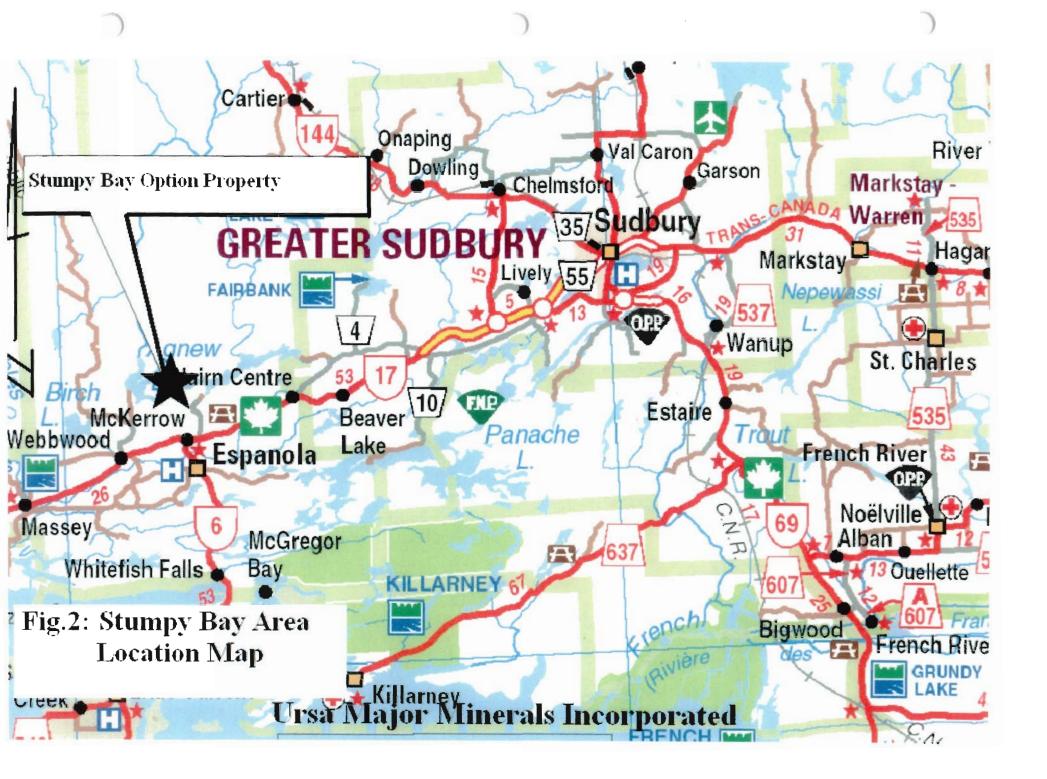
Further to, and superseding the terms of the option agreement between the Vendors and Ursa Major Minerals Inc., the three mining claims under option situated in Shakespeare Township are also subject to the terms and conditions as set out within the Falconbridge Limited / Ursa Major Minerals Inc., Joint Shakespeare Venture Agreement. The one mining claim which is situated within Baldwin Township does not form part of the area of influence enforced by the Falconbridge Limited / Ursa Major Minerals Inc., Joint Venture Agreement.

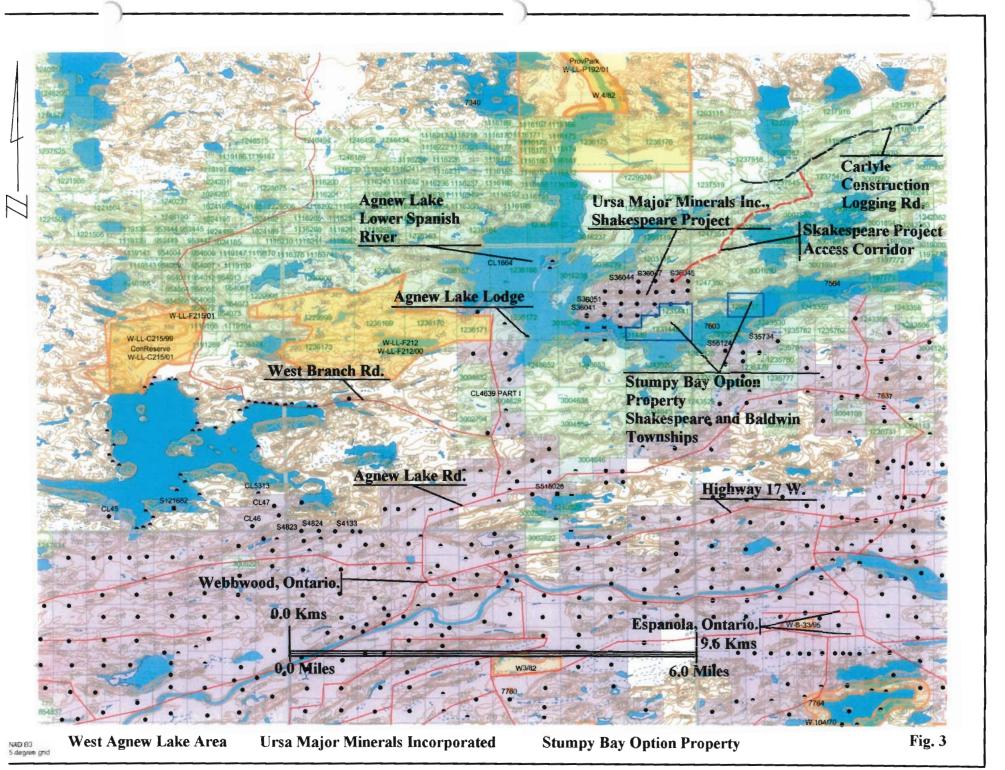
Table 1

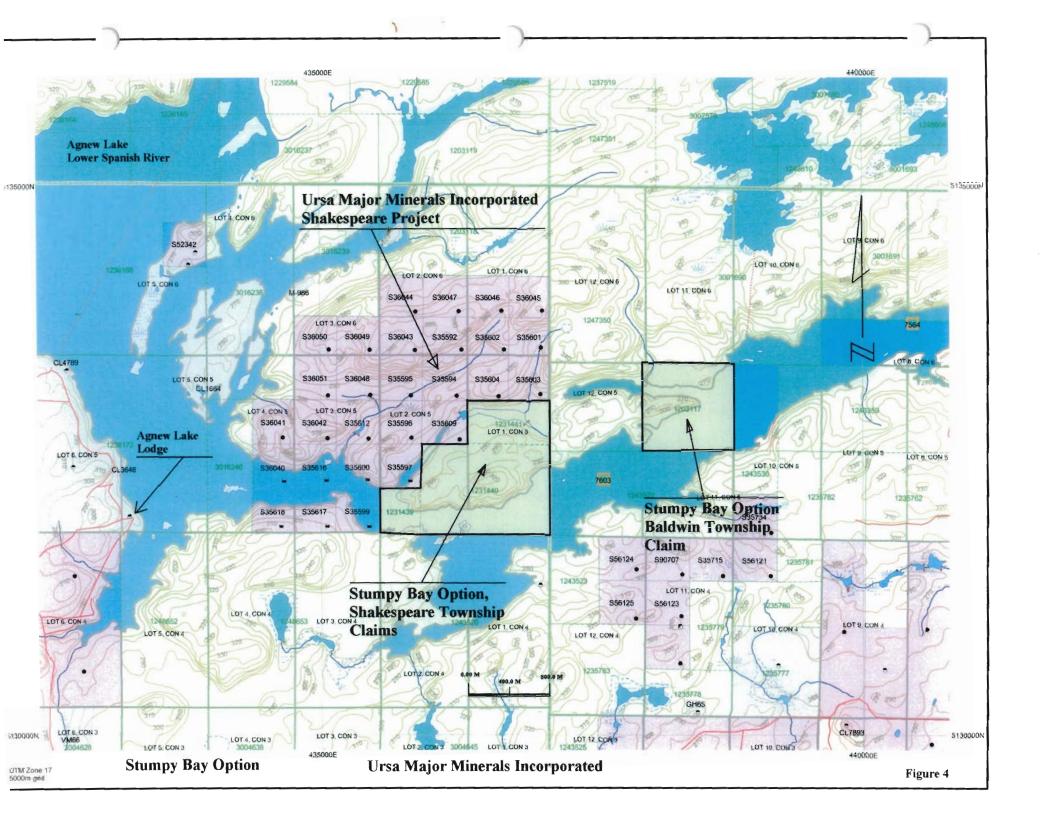
Listing of the Mining Claims of the Stumpy Bay Option.

	Expir	ГУ
Township	<u>Units</u>	Date
Shakespeare	1	March 04 th ., 2005
Shakespeare	6	March 04 th ., 2005
Shakespeare	2	March 04 th ., 2005
Baldwin		July 10 th ., 2004
5	= 13	
	Shakespeare Shakespeare Shakespeare Baldwin	TownshipUnitsShakespeare1Shakespeare6Shakespeare2Baldwin4

* These mining claims are subject to the various terms and conditions as set out in the Falconbridge Limited / Ursa Major Minerals Inc., Joint Venture Agreement.


3.0 Property Location and Access


The Ursa Major Minerals Inc., Stumpy Bay Option Property is made up of two individual claim blocks, being S-1231439, S-1231440, and S1231441 situated near the northeast corner of Shakespeare Township, with an approximated center located at UTM coordinate 0436624E/5132315N. The second, noncontiguous part of the property, being claim S-1230117, is situated near the northwest corner of Baldwin Township at UTM coordinate 043839E/5132961N. All these units occur within the Sudbury Mining Division of Ontario.


The Shakespeare Township claims are situated essentially along the north shore of Agnew Lake, while the western and northern part of property are bound by the linear north east trending Stumpy Bay, and the associated swamp – marsh area further to the northeast. An estimated one quarter of the property is beneath the waters of Agnew Lake. Access to the two individual groups of mining claims is best afforded by means of boating across Agnew Lake. The primary access point onto Agnew Lake for this particular area is the Agnew Lake Lodge boat launch.

The Agnew Lake Lodge can easily be reached by traveling north along the Agnew Lake Road for approximately 10kms (6miles), north of the small town of Webbwood, Ontario located on the Trans Canada Highway No., 17 West. The Agnew Lake Lodge is situated on the south shore of Agnew Lake, while the Stumpy Bay Option claims are approximately 3.2 km's (2 miles), and 6.5 km's (4 miles) to the east respectively.

Some limited land access near the northern edge of the Shakespeare Township claim S-1231441, can be afforded by means of an ATV – drill access route referred to as the McBeth trail which towards the north links up to an extensive network of trails located on the Ursa Major Minerals Inc., Shakespeare project Property, and towards the southwest

allows access to what is referred to as Shakespeare Landing and the Ursa Major Minerals Inc., Shakespeare Project core logging facilities.

4.0 Diamond Drilling Program 2004-2005

During late February and March of 2004, efforts began for the drilling of two diamond drill holes totally 400 meters (1321 feet) on claim S-1231441 the Stumpy Bay Option Property. The objective of this diamond drilling program was to test a developing model that the metal bearing Shakespeare stratigraphy might be present in this particular area, and to test the possibility that these rocks may be also be associated with higher concentrations of sulphide mineralization other than of the previously unearthed lower grade materials on surface at the McBeth Occurrence. The diamond drilling of holes U-10-01 and U-10-02 began on March 01st., 2004 and drilling was completed on March 10th., 2004. The drill program totaled 400 meters.

More recently in March of 2005 a third drill hole was put down on the Stumpy Bay Option Property to rest a Fugaro airbourne target which was delineated by Ursa in a June 2004 survey flown over the adjacent Shakespeare property to the north.. Drill hole U10-03 commenced on March 4th, 2005 and was shut down on March the 12th totaling 381.5 meters.

The diamond drilling was carried out by Forage Major Dominik, under the management of Clayton Parson located in Sudbury, Ontario. The onsite foreman for the drilling operations was carried out by Rodney Canning and or Sheldon Howell. The diamond drilling crew which operated on two shifts, six days per week consisted of two experienced drill runners and two helpers.

The diamond drill core logging work was carried out by Douglas MacMillan, under the direction of Harold Tracanelli at the Ursa Major Minerals Inc., Shakespeare Landing core logging facilities. The Ursa Major Minerals Inc., drilling program on site safety coordinator was Bill Dillabough. The various samples that were marked out on the drill core by the geologist were carefully split, bagged and secured for shipment to SGS – Xral by Tim Hearne.

Table 2

The listing of three diamond drill holes on the Stumpy Bay Option Property is as follows:

			Length						<u>#</u>	
<u>ole-ID</u>	Line	Station	<u>(ft)</u>	Meters	Direction	Dip	Start	<u>Finish</u>	Samples	Drilling Company
10-01	L1+00W	18+00S	724.88	221	147	-65	Mar 01/04	Mar 04/04	64	Forage Dominik
10-02	L3+00E	23+00S	587.12	179	327	-45	Mar 08/04	Mar10/04	61	Forage Dominik
10-03	L33+00E	20+13S	1251.6	381.5	147	-45	Mar04/05	Mar12/05	62	Forage Domini

The diamond drill core logs prepared by D. MacMillan, Exploration Geologist, can be found within the appendix of this report.

5.0 Physiographic and Climate

The general region occurs within the limits of the Great Lakes Basin near the rugged north shore of Georgian Bay and represents the north limits of the Great Lake Forest region, and approximately 50km's (30 miles) west of the Sudbury Basis area.

A large drainage basin area has been developed allowing drainage towards the Spanish River which ultimately drains into Georgian Bay to the south. It has been suggested that the Spanish River may have existed during pre Wisconsin glacial times and may have been part of a very old river system.

Agnew Lake, which was once part of the original Spanish River channel was dammed up by the International Nickel Company of Canada (INCO) in the late 1900's in order to generate hydro electric power for their Copper Cliff smelting operations. The damming of the river resulted in the development of Agnew Lake which is in the order of 32 km's (20 miles +/-) in length.

The northeastern and northwestern areas of Shakespeare and Baldwin Townships is noted for its rugged terrain, well marked by a series northeasterly trending deep gullies and ridges, forming saw toothed topography. Within the property area the topography can be defined as somewhat rolling hills, marked by several well exposed open craggy areas with abrupt scarp – cliff like features, depending on the surrounding geology, structures and erosion that occurred in the area. The erosion characteristics of the area are governed in part by the surround geology, which is made up of predominantly highly resistant, fine to course grained, quartz rich metasedimentary rocks which were then intruded by younger massive sills and or dyke like features of less resistive gabbroic rocks. This assemblage of rocks were then subject to assorted epochs of local and regional deformation to include the Penokian Orogeny, which in part resulted in the strongly developed deformation, and folding to occur in the area. Large scaled faulting associated with the Murray Fault system - zones, such as the Hunter Lake, Cameron Creek and Fairbanks Lake faults to name a few, were ultimately responsible for further dissecting and over thrusting some of the surrounding geology, which has allowed distinct ridges to form as a result of deep erosion occurring along these parallel structural zones.

The surrounding hills in the area are generally well vegetated, with an abundance of tree and animal species, with distinct habitats being observed in gullies and on ridges. The <u>area has been very well glaciated, forming local crag and tail formations notes as large</u> exposures of geology with boulder piles. Some glacial – divergent river channel ways are evident most notably along Stumpy Bay through to Long Bay area where fine grain sand and silt materials running off from the surrounding hill sides have been visibly cut by the flowing waters. For the most part many of the gully and valley areas have been deeply eroded with some remnant sands, silts and clay like materials having been deposited. Some of these areas were then overgrown and have since developed into wet poorly drained swampy terrains. Locally glacial striations have been observed which would appear to indicate ice direction of north and northeast.

The height of land above sea level ranges from approximately 260 meters (852 ft +/-) (level of Agnew Lake) to a maximum of 330 meter (1082 ft +/-).

The seasonal weather and weather patterns that can be observed within the area are typical of the weather patterns known to occur within the Great Lakes Forest of Georgian Bay region which extends towards the southern limits of the Boreal Forest located only a short distance towards the north.

Winters are typically cold often with temperatures in the -30 to -40 degree C., range, while summer temperatures can sometimes reach +30 to +35 degrees C., which is not uncommon. The area is known to be notoriously windy, occasionally very strong north winds appear to funnel down the length of the Spanish River valley area and pour out into the area near the west end of Agnew Lake.

6.0 Vegetation and Wildlife

The surrounding west Agnew Lake area is generally well vegetated with a wide variety of second or third growth tree species, with in places some small remnants of timber areas that was once dominated by large, towering white and red pine trees. Beginning well over 100 years ago, several companies in the area were involved in large scaled logging operations involving the harvesting of the big pines. Such logging operations were carried out extensively along the shores, and spreading inland from the course of the Spanish River, while using the river as a means of transporting the timber to the various saw mills and transportation facilities located downstream. Subsequent to some of these logging operations, the area was frequently subject to forest fires, with the scars and remnants of such events still being evident to this day. Scattered evidence of the former logging operations can still be seen, as remnants of old campsites, chains and pins in outcroppings, old horse haulage roads were carved out and can be found in many places through out the surrounding country side.

The area may be best characterized as being made up of a wide variety of "mixed bush", being made up of an abundance of tree species some of which include:

White and Trembling Aspen – Poplar White – Paper Birch, Yellow Birch Black Spruce with the occasional White Spruce <u>Red and White Pine</u> Eastern White Cedar Hemlock, located on the north sides of hills and shaded gullies Sugar, Mountain Maple, Striped Maple Balsam Fir Some larger sized Oak and Oak scrub brush on top of hills Black, Swamp, and Mountain Ash is some swamps American Hop Hornbeam, Jack Pine and Tamarack, are occasionally seen Wide variety of Willow, Speckled Alder, Mountain Holly and assorted brush Juniper Beaked Hazel Nut

Wild life in the area can be periodically abundant and can include:

White Tailed Deer Moose, less common than deer Black Bear Timber Wolf Red Fox Beaver

7.0 Brief Exploration History

It is not the within the scope of this report to describe in detail the extensive exploration history of the area of interest, and so for further details the reader is advised to refer the extensive collection of assessment files for the Shakespeare, Baldwin, Porter and Hyman Township areas found at the Ministry of Northern Development and Mines, Resident Geologists Office, located in Sudbury, Ontario.

Over the many years of local history, the extensive Spanish River drainage basin and its many tributaries would have offered easy access, allowing Trappers and Fur Traders, Loggers, Hunters and Fishers, settlers and prospectors to travel far inland. It is highly conceivable that some of these areas were examined for possible metals, for example where rusty, or unusual rock formations such as veining or the like may have occurred, but unfortunately there is very little in the way of physical evidence or documentation that might indicate such efforts ever took place.

In more recent years, exploration efforts in the area appear to have been confined to the discovery and exploration of the Ni. and Cu., bearing sulphide occurrences of the

Shakespeare deposit in the mid 1920's, including the discovery of, exploration and development of the copper bearing, siliceous – metasedimentary ores at the former Spanish River Copper Mine in the early 1930's. In the early 1950's through to the 1970's spurred on by the uranium excitement and interests of Elliot Lake, Ontario, and followed by the discovery, exploration and development of the former Kerr Addison, Agnew Lake Uranium Mine in the 1960's and 1970's, the general Agnew Lake area became a highly prospective region for uranium exploration. A small amount of exploration work was quietly carried out in the 1980's by Falconbridge Limited of the Shakespeare Property, and the area remained idle until the year 2000.

It has been said that sometime during the 1920's the original Shakespeare showings were said to have been identified, and some limited surface trenching was thought to have occurred at that time. Judging by the actual size the Shakespeare occurrence – West Shakespeare deposit area, it is remarkable how little surface trenching was carried out.

In the early to mid 1940's and 1950' then again in 1985 and 1986, Falconbridge Limited; on their wholly owned property; embarked on a series of mineral exploration programs which included extensive diamond drilling, geological mapping, and some limited surface geophysical surveys were carried out on the property, most notably in the West Shakespeare area. Over the years assorted internal resources assessments and economic analysis work was carried out on the Shakespeare deposit to determine its potential economic viability. In 2000 Falconbridge Limited entered into an option agreement with Ursa Major Minerals Inc., which would allow Ursa to acquire a specified interest in the Shakespeare Property.

From approximately the 1930's through to the 1950's, prospectors and mineral exploration companies explored the area in search of copper, silver and gold bearing sulphide mineral deposits associated with siliceous altered metasediments within structurally controlled environments. The copper occurrence which is associated with the present Stumpy Bay Option drill effort was originally delineated in the 30's by the Sudbury Gold Copper Syndicate. In 1956 Noranda Mines Limited carried out geological, geophysical, trenching and six holes totaling 1000 feet exploring this zone over 1,800 feet of strike length. In 1968 Broulan Reef Mines outlined several geophysical EM anomalies and tested the conductors with 17 drill holes totaling 12,954 feet. The sulphide zone averaged 1% copper and was delineated across a 10 foot width and 1,900 feet of strike length. Howbeit the sulphide distribution and metal values are highly variable within the zone. It has also been reported that a small metal bearing resource exists in the area of the copper occurrence. Several smaller scaled copper bearing occurrences with in the metasediments are known to occur along strike of the Agnew Lake – Noranda Occurrence.

During an extensive period from the 1950's through to the 1970's, the entire region was being actively explored for uranium within the conglomeritic metasediments that are known to occur in the area. Many hundreds of claims were staked by prospectors and optioned to mineral exploration companies, spurred on by the excitement that was generated in the Blind River and Elliot Lake camps, and in addition by advancements that were taking place by Kerr Addison Mines Ltd, at the newly developed Agnew Lake Uranium Mine, to the northeast in Hyman Township. Much of the area of interest was flown with early MAG and EM airborne systems, including systematic radiometric surveys both on the ground and in the air.

As a result of these efforts many anomalous areas were identified and subsequently a considerable amount of surface work was carried out including geophysical and geological mapping surveys, followed up with some times deep diamond drilling programs. Much of the ground had so much assessment work filed that they remained in good standing for many years. Although there was a tremendous amount of exploration activity being carried out at the time, ironically no significant occurrences of sulphide mineralization associated with gabbroic rocks was ever known to have been reported. Exploration companies highly favored the prospective metasedimentary rocks and were not at all interested in exploring mafic rocks and the like. As a result of these concentrated efforts, several sub economic grading uranium and thorium occurrences were identified on surface and in some of the diamond drill holes in the area. There are a number of such occurrences near the end of Long Bay, on or near the Stumpy Bay Option Property.

Field efforts by Harold Tracanelli; Exploration Geologist, with assistance provided by David Scott; Exploration geologist, examined the northern area of the Stumpy Bay Option claim S-1231441 were geological mapping at a scale of 1 inch = 100 feet off of cut grid lines was carried out and which resulted in the discovery of several small mineral occurrences. As a result of these efforts the McBeth No., 1, No., 2 and No., 3 Occurrences were identified, and appropriate samples were collected and analyzed. As a result of these efforts, it was shown that the predominant underlying geology was made up of silty to quartzose metasediments that had been intruded by Nipissing type gabbros. Within the lower part of the Nipissing intrusive, the typical basal units of fine to medium grained pyroxenitic rocks were found to occur. In the areas of the McBeth Cu., Ni., bearing pyrrhotite occurrences, these rocks were found to somewhat resemble the rocks of the Shakespeare suite, which are known to host the sizable Shakespeare mineral deposit.

During the spring of 2002, a series of grid lines were established to extend the originally Ursa Major Minerals Inc., Shakespeare grid further to the east, and in so doing, several of the grid lines were extended significantly south to cover parts of the northern areas of the Stumpy Bay Option claim S-1231441. Further to the establishment of the grid lines, JVX Ltd., under the direction of Blaine Webster, and John Gilliat, carried out a Spectral induced polarization (IP) survey and a ground magnetometer survey (MAG). The results of these efforts were shown to be inconclusive, but it has been suggested; and with recent developments; may also suggest that further detailed study may be warranted.

During February and March of 2003, the current property vendors Mitchell B. Turcott and Dan Brunne, carried out line cutting on the Stumpy Bay Property. These efforts were followed up with a ground MAG and a Very Low Frequency Electromagnetic (VLF-EM) survey having been carried out; the results of such efforts have been systematically described in a report filed for assessment work entitled:

"Geophysical Report For the Stumpy Bay Property Shakespeare Twp., Sudbury Mining Division Submitted By: Mitchell B. Turcott, B.Sc. Date: February, 2003.

Further to the various prospecting and geological efforts, by Harold Tracanelli with assistance proved by Bill Dillabough, in the mid Summer of 2003 a series of 7 surface trenches were excavated by Steven Hamer of Belham Ltd., utilizing what is referred to a the Super Hoe. Subsequent to these efforts the various trenches were washed off, carefully examined and channel samples. The washing of the trenches and the cutting of the various channel samples was cut and collected, this work being carried out by Bill Dillabough and Douglas MacMillian; Exploration Geologist, with assistance being provided by Brett Tracanelli; Laborer. The fresh surfaces have been carefully examined by Harold Tracanelli, Douglas MacMillan and Richard Sutcliffe, and will require further more detailed study in the near future.

In addition Dr. Bob Hodder with assistance being provided by Duncan Bain, examined reported on the various lithologies that area exposed in the area.

The trenching, washing and sampling efforts were carried out under the direction of Harold Tracanelli; Project Geologist. As a result of the surface trenching and sampling efforts it was determined that what appeared to be possibly deformed remnants of the Shakespeare stratigraphy appeared to have an along strike trend from the Sardine Hill on the Ursa Major Minerals Inc., Shakespeare Property, trending on towards the McBeth mineral occurrences. The apparent stratigraphic arrangement was at that time thought to form the potential south facing limb of the folded around Shakespeare stratigraphy, which along strike to the north hosts the Shakespeare mineral deposit. Sample results form the many channel samples collected within the trenches and some of the surrounding exposures were found to be quite low in terms of the Ni., Cu., Co., Au., Pt., and Pd., metal values. Samples collected from the McBeth Occurrences contained sulphide mineralization that was considered consistent with the sulphide styles encountered at the Shakespeare deposit, although at McBeth sulphides were significantly lower in concentrations, some of the samples were found to contain anomalous metal values.

In late February and early March of 2004, two NQ., diamond drill holes totally 400 meters (1312 feet), were drilled in the northern part of the Stumpy Bay Option claim S-1231441. The objective of this diamond drilling program was to further test the model – notion that the metal bearing Shakespeare stratigraphy might be present in this particular area, and to test the possibility that these rocks may be also be associated with higher concentrations of sulphide mineralization other than that which had been previously unearthed on surface at the McBeth Occurrence. The results of this diamond drilling

would appear to indicate more definitively the presence of the various units of the Shakespeare stratigraphy, including the type and styles of mineralization known to occur within these rocks. In this particular area the Shakespeare stratigraphy; for what ever reason; appears to have become thinner. Complicating factors which include faulting as seen in diamond drill hole U-10-01; for instance; cut out part of the stratigraphy, in conjunction with the previously folded and steepened of the rocks, might give the impression that the stratigraphy is thinner. Diamond drill core logging was carried out by Douglas MacMillan, under the direction of Harold Tracanelli, while the sampling was carried out by Robert Proctor. Over the course of the drill core logging many samples were identified, and analyzed for Cu., Ni., Co., Au., Pt., and Pd. The combined precious metal values (PGM's) generally returned values of less than 100ppb. Nickel and copper values were found to be more encouraging and considered anomalous with a wide range of values occurring between 0.01 to 0.07% for each of the metals. Only 2 samples collected from diamond drill hole U-10-02 returned metal values for Ni., and Cu., that exceeded 0.10%. Samples 1002062 and 1002063 returned base metal values of 0.06% Ni., / 0.19% Cu., 0.11% Ni., / 0.19% Cu., respectively. Cobalt assays generally returned metal values that were most often below the <0.01% detection limit.

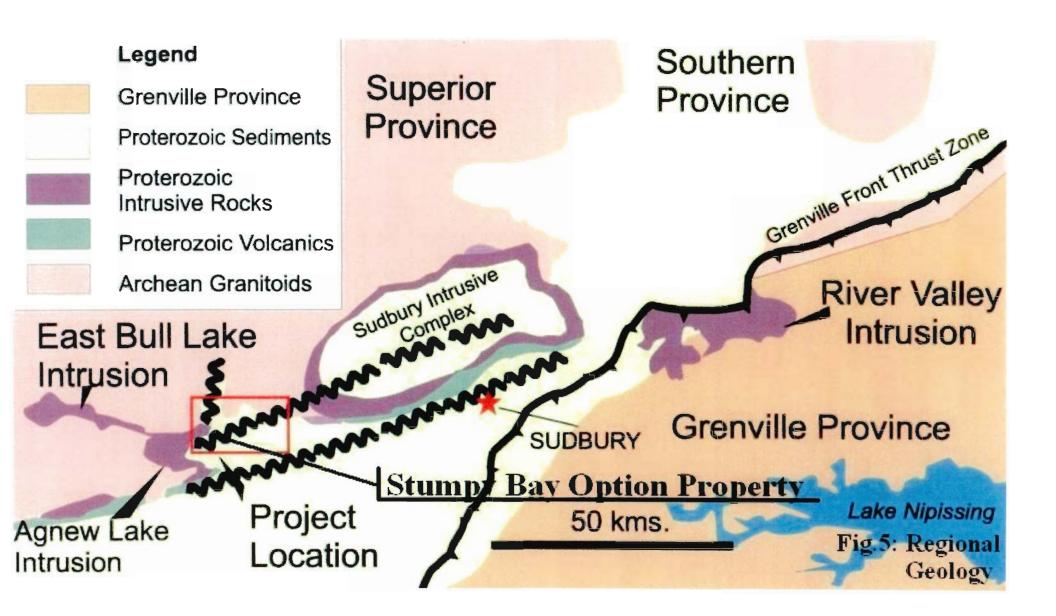
During the mid and late winter of 2004 a series of grid lines were established onto the Shakespeare Township portion of the Stumpy Bay Property, being the extensions of several of the grid lines from the adjoining Ursa Major Minerals Inc., Shakespeare Project. Crone Geophysics Ltd., under the direction of Kevin Ralph, and Crew Chief; Wayne Pearson, a Time Domain Electromagnetic Survey (TDEM) was carried out. The various grid lines were purposely extended towards the south, in an attempt to cover the extent of the known Agnew Lake – Noranda Copper Occurrence. The preliminary results of this geophysical work would appear to indicate a distinctive response – signature associated with this particular mineral occurrence, the completed results and reporting of which are currently pending.

From the summer of 2000 through to the present the vast majority of the mineral exploration and potential pending development efforts in the area have been confined to the adjacent Ursa Major Minerals Inc., Shakespeare Project. During this period the company embarked on an extensive surface mineral exploration program which included IP, MAG, and TDEM, VLF-EM geophysical and geological mapping survey. These efforts were followed up with an extensive program of diamond drilling, followed up with a thorough surface trenching and sampling program. As a result of these efforts, on April 15th., 2004 Ursa Major Minerals Inc., released to the public, information at the conclusive of an extensive resource evaluation; part of which has been directly quoted here as per Richard Sutcliffe; President which reads as follows:

"URSA Major Minerals Incorporated ("URSA Major") is pleased to report an in-pit mineral resource estimate for the Shakespeare nickel, copper and platinum group metal (PGM) deposit, west of Sudbury, Ontario. Drilling to February 2004 has resulted in an in-pit Indicated Resource of 12.0 million tonnes grading 0.35% nickel, 0.36% copper, 0.02% cobalt, 0.19 g/t gold, 0.34 g/t platinum and 0.38 g/t palladium at an average cut-off value of CDN\$43.65/tonne total in-situ metal. Using 24-month average commodity prices, the mineralization has a gross in-situ value of CDN\$79.59/tonne. The Indicated Resource includes the Shakespeare East deposit that was discovered by URSA Major in 2002 and Shakespeare West deposit that was previously drilled by Falconbridge Limited (Falconbridge)".

8.0 Geological Setting

Regional Geology


The regional geologic setting surrounding this project area has previously been well described in detail by Ginn (1961), Card (1965), Card and Palonen (1976), Robertson (1976) and Vogel (1996). The description of metal deposits and mineralization has also been previously covered by Thompson (1985) and Naldrett (1996). Recent papers by James et al (2002) and Lightfoot et al (2001,2002) study the magmatic suites of the area and the metallogeny. Locally the Shakespeare deposit, immediately to the north of the Stumpy Bay Option property, has been described in detail by Wolfe (1941), Davidson (1942), Lewis (1949), Lochhead (1951), Penstone (1974), Clarke (1985) and Thompson (1986). A brief summary of the main geologic and tectonic features and events surrounding the area is presented below.

The Dunlop-Shakespeare-Baldwin-Porter Township area is situated along the southern margin of the Superior Province and near the triple point of three structural provinces including the Superior, Southern and Grenville.

The bedrock underlying the area is Precambrian age and includes Archean felsic plutonic rocks of the Superior Province which are overlain by Proterozic supracrustal Huronian Supergroup rocks of the Southern Province. This sequence of rocks has been consequently transected by mafic intrusions of several ages including the East Bull Lake Suite, Nipissing Suite and the Sudbury Igneous Complex.

The Southern Province forms a discontinuous belt extending 1200 km. from Quebec to central Minnesota along the southern edge of the Superior Province. The rocks of the Southern Province consist of a thick sequence (12,000 m)of clastic metasediments with a minor volcanic component, unconformably overlying an Archean basement. The Huronian Supergroup in Ontario is thought to partly represent a depositional basin related to rift margin formation.

The Huronian Supergroup consists of an assortment of fine grained to locally coarse grained metasedimentary rocks. In the property area, the predominant metasedimentary rocks include that of the quartz arenites of the Hough Lake Group, Mississagi Formation which also contains minor thin intercalated arkosic and siltstone interbeds. These rocks are also in close proximately to the Hough Lake Group, Pecors Formation greywacke and argillites, the Ramsey Lake Formation conglomerates and feldspathic sandstones. The

less subordinate metasedimentary rocks in the property area include the Elliot Lake Group, McKim Formation, altered and deformed, finer grained materials such as argillites and greywacke, to the coarser grained rocks of the Matinenda Formation feldspathic sandstones through to conglomeritic rocks. The McKim and the Matinenda Formations contain what appear to be intercalated – interformational assemblages of subordinate former Huronian aged mafic flows and fragmental – volcanoclastic and sedimentary rocks. This extensive assemblage of rocks is thought to rest unconformably upon Early Precambrian granitic, felsic and gabbroic plutonic rocks.

Major magmatic episodes in the area include the East Bull Lake Suite at 2.48-2.47 Ga, the Nipissing Suite emplaced at about 2.2 Ga and the Sudbury Igneous Complex (SIC) dated at approximately 1.85 Ga. The East Bull Lake Suite occurs as large sills situated at the Superior/Southern Province boundary while the Nipissing Suite sill-like intrusions are located more commonly within the Huronian Supergroup and less commonly along the Archean/Proterozic inconformity. The SIC occurs along the contact between the Superior and Southern Provinces but also near the Grenville Province margin. This well known structure forms a composite mafic-felsic NE trending elliptical ring extending 60 by 27 kilometers.

The most prominent structural feature of the area is the east-northeast trending Murray fault system which is thought to have controlled Huronian sedimentation as syndepositional normal growth faults during the development of rift margin basins.

Local Geology

The Stumpy Bay Option Property and adjacent Shakespeare Property is predominantly underlain by Huronian-aged Mississagi quartzite and Nipissing aged gabbroic intrusive which trend north-east and dip moderately to the north. The quartzititic sediments that dominate the southern portions the Stumpy Bay Option Property in the western claim group (1231439, 1231440, and 1231441) are typically whiteish, medium grained, uniform and generally massive. To the north on the Shakespeare property outcrops that are well cross bedded are common. To the south along Stumpy Bay the sediment becomes quite deformed, foliated and /or mylonitized. Bedding in these sediments strike northeasterly and dip moderately to the northwest and locally plunge to the northeast at 20-40 degrees.

Nipissing gabbroic rocks are prevalent in the central and north reaches of these claims. Gabbro sills on the property have thickness up to 1600 feet wide. The sequence is a layered in nature and for the most part consists of an upper vari-textured top, variably granophyric, a thick midsection of approximately medium grained equigranular gabbro and a basal unit of pyroxenite.

On the Shakespeare property within this Nippissing sequence occurs an additional sill like structure occurring at or near the top of the Nipissing gabbro intrusive sill like feature, on the Ursa Major Minerals Inc. Shakespeare Project a narrow 100 to 120 meter thick but discrete and highly unique intrusive phase of Nipissing age (2217 thousand

million years) has been identified and hosts the Ni., Cu. and PGE metal bearing Shakespeare mineral deposit. Stratigraphy within this sub-sill varies from an upper felsic quartz diorite unit downwards to a mineralized quartz gabbro, fragment bearing gabbro to an ultramafic composition melagabbro at the base. This is being referred to as the Shakespeare Intrusive Suite. This particular metal bearing suite of rocks has been traced for a considerable distance along strike, including across Stumpy Bay Option Property in Shakespeare Township.

The main structural feature in the general property area is the Porter Lake Syncline. The Stumpy Bay Option and adjacent Shakespeare Property are situated near the western end and northern limb of this NE/SW trending, doubly plunging synformal feature. Smaller scale parasitic folding related to this main structure has produced Z forms and other tight to moderately open, upright, complex folds trending roughly parallel the main syncline. The Shakespeare stratigraphy has undergone moderate amplitude folding as well. The geology of the property are have been further disrupted by a series of northeast trending thrust fault structures, such as the Hunter Lake, Cameron Creek, Fairbanks Lake Fault to name a few that trend through the area. The Hunter Lake fault continues under Stumpy Bay as a more ductile mylonitic structure. Many of these fault structure have unusual looking breccias developed, referred to as rheomorphic breccias, which is found to be very common in the area. For the most part these structures have developed parallel and are possibly related to the main Murray Fault system situated a short distance to the south. In many of the rocks affected by the structures, zone of brecciation will develop, while in other locations barren or local sulphide bearing quartz, carbonate and chlorite bearing veins may have developed. The development of such structural zones may have been in part responsible for the development of the copper rich siliceous metasediments known to occur in the area similar to the copper bearing siliceous zone intersected in U10-03 described in this report.

9.0 Geology and Sulphide Mineralization of the Shakespeare Intrusion

Shakespeare Gabbro

Lithology

Within the area, most notably on the adjacent Ursa Major Minerals Inc., Shakespeare project, and also on the Ursa Major Minerals Inc., Stumpy Bay Option Property, this highly unique Shakespeare Intrusive phase has been identified, which is known to host the very sizable Ni., Cu., and precious metal bearing Shakespeare mineral deposit towards the north. This previously unrecognized intrusive now referred to as the Shakespeare Intrusive – Shakespeare Suite has been traced for a considerable distance along strike off of the Shakespeare Property. Most recently the various rocks which make up the Shakespeare Intrusive Suite have been identified on the Ursa Major Minerals Inc., 100% ground several km's further to the east.

The rocks of the Shakespeare Intrusion – Shakespeare suite can be characterized as being made up of a rather unusual assemblage of rocks ranging from a highly felsic dioritic end

member through to a highly mafic – ultramafic, pyroxenitic end member. The rocks which form the hang wall to the Shakespeare stratigraphy include a thick sequence of well bedded and foliated fine to medium grained quartz arenites rocks with narrow inter beds of more dirty looking arkosic and finer grained silty metasediments.

More specifically the rocks of the Shakespeare intrusion include fine to medium grained biotite quartz diorite. Some of these rocks contain many small to larger scaled fresh to sometimes highly digested faint remnants of highly assimilated quartzite xenolithic materials in the areas that is sometimes referred to as the intrusive roof zone. Where undisturbed these rocks can vary in thickness up to approximately 100 meters in true thickness. The younger quartz diorite rocks overly the visibly more mafic medium grained, light green to salt and pepper grey – white quartz gabbro materials of approximately 40 to 50 meters in thickness. These rocks contain visible reduced quartz, an increase in amphiboles and pyroxenes, sometimes associated with biotite, illmenite. and occasionally scattered concentrations of sulphide mineralization. The biotite quartz diorite and the quartz gabbro rocks form approximately one half to 2/3 the thickness of the stratigraphy and is sometimes referred to as the upper part of the Shakespeare Suite.

The quartz gabbro overlies a markedly increased mafic – melagabbro unit being made up of predominantly amphiboles after pyroxene, associated with 10 to 30 % feldspars, local biotite and illmenite. The melagabbro unit which has an estimated thickness of from approximately 20 to 40 meters, can be broken into two sub units which include an upper rock fragment bearing Melagabbro, overlying a more massive medium grained, equigranular melagabbro. The rock fragment bearing melagabbro unit is characterized as 10 to 15 meter thick unit of some what altered looking a fine to medium grained amphibole rich rock that has been found to contain an abundance of small mm scaled to large scaled, rarely multi cm scaled rounded to angular shard like rock fragments of former felsic looking rocks such as the overlying quartzite's and or quartz gabbros. Occasionally more mafic looking rock fragments have been noted. The underlying fresher looking, more massive equigranular melagabbro which varies in thickness from 10 to 30 meters, is characterized as containing visibly increased lighter colored feldspars relative to the amphibole pyroxene minerals and has a more distinctive igneous texture.

In places, the lower contact of the Shakespeare Intrusion – Shakespeare Suite forms a visibly sharp, chilled contact with the adjacent rocks, while at several locations the contact appears evident as a 5 to 15 meter thick zone of somewhat irregular, sometimes bulbous like admixture of overlying melagabbro rocks and the underlying Nipissing Suite of gabbroic rocks, sometimes referred to as the lower contact footwall zone.

Sulphide mineralization has been recognized within the entire Shakespeare stratigraphy, but is most concentrated within the lower mafic units. Occasionally small mm scaled concentrations of fine grained pyrrhotite associated with chalcopyrite, pyrite and or marcasite, can been seen within the quartz diorite rocks, occurring most notably as sulphide bearing, thin quartz rich fracture filling veins. Marcasite, and occasionally fine grained dusty like appearance s of chalcopyrite, galena and sphalerite have been noted within very tight chlorite rich partings developed within the adjacent quartzite sediments and often within the blue grey hornfels altered quartzite xenoliths within the quartz diorite rocks.

A visible increase in the presence of strongly developed wide spread, spotted to streaky blue grey hornfels alteration of the quartzite xenoliths usually signifies the approaching contact of the area of the underlying quartz gabbro, which usually also marks a significant increase in the visible sulphide content. Quite often the upper parts of the quartz gabbro are often barren of sulphides, or only contain very small, <1mm traces of very fine grained pyrrhotite and chalcopyrite, and usually contains no visible pyrite, relative to the overlying rocks. Progressing downwards through the quartz gabbro small 1m to 3mm, sometimes up to 5mm isolated composite blebs of pyrrhotite with minor chalcopyrite can develop, and then will be isolated by more barren quartz gabbro. Within the lower parts of the quartz gabbro unit, an increase in the illmenite content usually signifies an approaching increase in the sulphide content. In these areas there begins an increase in the sulphide content, with in places more concentrated sulphides forming intermittent bands - collections of 1mm to 5mm composite blebs of pyrrhotite and chalcopyrite can develop. One or more of these concentrations – collections of band can form, sometime being surrounded by relatively barren quartz gabbro.

Near the contact between the quartz gabbro and the melagabbro rocks, there is a very marked increase in the concentration of and collection of 1 to 10mm, sometimes 15 to 20mm well developed composite blebs of fine to medium grained pyrrhotite and chalcopyrite mineralization, forming more consistent looking zones. The overall sulphide content may be slightly erratic and vary from say 1% to approximately 10% +/- by volume, and can develop for several meters above the contact area.

At or near the contact between the overlying quartz gabbro and the underlying melagabbro there is a very significant increase in the sulphide content, which has resulted in a well developed zone of 10% up to 30 or 40% of larger scaled 5mm to 10mm up to 30mm and 40mm of congealed like, interconnected blebs of fine to medium grained, net textured like pyrrhotite and chalcopyrite. The thickness of these interconnected sulphide range from 0.40 meters to up to 3 meters Most often the zone of interconnected sulphide mineralization occurs very near the contact between the two rock units, but on occasion was found to waver slightly from one side to the other. Within this collection of sulphides there can be a visible increase in the chalcopyrite content, which equates to noticeably higher grades, and essentially marks the upper, ore grade part of the mineral deposit.

The bulk of the sulphide mineralization found within the Shakespeare Intrusion, occurs principally within the melagabbro rocks. Both the rock fragment melagabbro and the massive equigranular melagabbro are consistently mineralized with small blebs and disseminations of fine grained pyrrhotite and chalcopyrite mineralization. Typically the rock fragment bearing melagabbro contains both small scaled 3mm to 5mm to sometimes 10mm blebs associated with small scales <1mm to 3mm individual, interstitial grains, disseminations of fine grained pyrrhotite and chalcopyrite mineralization. The sulphide content of these rocks is very consistent and ranges from 3 to 5%, to 5 to 7%, sometimes

up to 10 or 12% pyrrhotite, with 1 to 2% sometime 3% of fine grained chalcopyrite. In the upper part of the melagabbro in contact with the quartz gabbro, the blebby concentrations and finer grained disseminations appear to form a transition zone between the blebby and the disseminated styles of sulphide mineralization. Some of the rock fragments were found to contain fine grained chalcopyrite and pyrrhotite, while in some areas it would appear that sulphides were able to collect; may have been trapped; along the edges of some of these rock fragments. Progressing to the lower levels of the unit, there is a noticeable decrease in the dimensions of the sulphide minerals to form a highly consistent collection of smaller scaled mineral grains. Within the upper parts of the melagabbro unit, narrow mm scale to cm scaled, chalcopyrite rich, - pyrrhotite bearing quartz, carbonate, chlorite fracture filling veins have commonly developed within these rocks, and become less evident lower down in the stratigraphy. Some of these sulphide bearing fracture filling veins appear to have been somewhat structurally controlled.

Within the massive equigranular melagabbro near the lower most part of the unit, the rocks are very consistently mineralized with 3 to 5%, often 5 to 7% up to 10% or more of well developed small scaled <1mm to 3mm grains of typically fine grained pyrrhotite and 1 to 3% of fine grained chalcopyrite mineralization. On a few rare occasions, small scaled blebs and sulphide bearing fracture filling veins will be present within the unit. The lower part of the consistently mineralized melagabbro marks the lower edge – lower limits of the ore grade portion of the mineral deposit.

The concentrations of sulphide mineralization found to occur within the lower contact zone, the area of the potential mixing of the Shakespeare Intrusive melagabbro with the underlying barren Nipissing gabbro, can be somewhat variable with narrow to wide sections of poorly to well mineralized melagabbro being separated by significant stretches of barren Nipissing gabbros. Within these rocks concentrations of sulphides are typically in the form of the finer grained disseminations, are consistent with the sulphides found in the massive melagabbro, but can be variable and can range from traces to say 10% +/- by volume. These rocks usually do not contain sufficient areas of metal grades to be classified within the main part of the mineral deposit.

The footwall rocks of the Shakespeare stratigraphy include massive fresh looking, usually sulphide poor quartz gabbro, and pyroxene rich – feldspar gabbros of the Nipissing Suite.

Structure

The stratigraphy in the area has been strongly isoclinally folded into a Z shaped form. This antiformal fold structure plunges shallowly towards the northeast, and may represent a recumbent fold developed on the north facing limb of the Porter Lake Syncline. The Shakespeare stratigraphy which is overlain by quartz arenites and underlain by Nipissing type gabbro rocks have also been folded with the northern fold nose occurring on the Shakespeare property. The various limbs of the folded stratigraphy are found to be inclined at 60 to 70 degrees, locally steeper in areas where faulting and dislocation of the rocks have occurred. It is within the northern, north facing limb of the fold that the Shakespeare stratigraphy hosts the very sizable Shakespeare mineral deposit. As the

Shakespeare stratigraphy trends towards the north east, it begins to wrap around and a fold nose has been developed near what is referred to as Sardine Hill. From the Sardine Hill fold nose area, the now south facing limb and Shakespeare stratigraphy, trend towards the southwest and onto the Stumpy Bay Option Property. Although the Shakespeare stratigraphy is present it appears to have become thinner along this limb. The Shakespeare stratigraphy appears to trend towards line 5+00W, before it once again becomes folded to form a north facing limb; bottom of the Z; which trends towards the northeast.

Standard Lithological Coding

Key lithological units were categorized using a standardized alpha-numeric coding system which was developed by Richard Sutcliffe, Geoff Shore, Mike Perkins and Harold Tracanelli in the earlier 2002 Shakespeare Project mineral exploration program, please refer to the table below:

Table 3

Standard Lithologic Codes (October 2002)
8a Granitic dykes and irregular granitiod intrusions
7a Lamprophyre dykes
LATE DIABASE DIKES 6a aphanitic olivine diabase dyke materials 6b medium grained olivine diabase
FAULT BRECCIA AND RELATED ROCKS 5a Rheomorphic breccia 5b Pseudotachylite, ultramylonite
ULTRAMAFIC TO FELSIC INTRUSIVE ROCKS (MINERALIZED SUITE) 4a aphanitic mafic rocks 4b biotite-pyroxene mela-gabbro (<35% felsic minerals) 4c quartz diorite/quartz gabbro 4d biotite quartz diorite (>65% felsic minerals) 4e granophyric quartz diorite 4f rock fragment phase
MAFIC INTRUSIVE ROCKS (NIPISSING GABBRO) 3a gabbro, amphibole bearing gabbro

3b quartz gabbro (>10% quartz) 3e coarse-grained to pegmatitic quartz gabbro, granophyric gabbro 3f metapyroxenite, melagabbro (>65% mafics)

METASEDIMENTS 2a greywacke (25% lithic fragments) 2b siltstone

la quartzite, quartz arenites lb bedded quartzite with siltstone lc arkose ld conglomerate

Standard Sulphide Coding

In the winter 2002/2003 program a sulphide coding system was developed by Harold Tracanelli and was introduced to distinguish parts of the mineralized zone based on sulphide occurrence and texture.

The various styles of sulphide mineralization found to be associated with the various parts of the Shakespeare stratigraphy have been categorized in the table below. The bulk of the potentially ore grade type of sulphide mineralization is characterized by an upper part of Blebby "B" style of sulphide mineralization and a lower part of Disseminated "D" style of sulphide mineralization.

Table 4

Styles of Sulphide Mineralization, for the Ursa Major Minerals Inc., Shakespeare Project and the Surrounding Areas.

- 1. Intermittent Peripheral style
 - IN1 Fine grained disseminated py +/- cpy +/- po occurring with the biotite quartz diorite rocks (4d)
 - IN2 Isolated blebs of po +/- cpy +/- py occurring within the biotite quartz diorite rocks (4d)
 - IN3 Intermittent development of "band" like features of blebs of po cpy occurring within the biotite quartz diorite (4d)
 - IN4 Secondary py cpy +/- po marcasite +/- arsenopyrite occurring within the metasediments (1a)
 - IN5 Secondary po cpy py +/- arsenopyrite associated with quartz carbonate fracture fillings developed within any of the rock types occurring within the peripheral areas of the Shakespeare mineral deposit

2. <u>Blebby Style</u>

• B1 Scattered, to band like features of unconnected blebs of po +/- cpy usually occurring

within the quartz diorite / quartz gabbro (4c), more specifically quartz gabbro(4c)

- B2 Converged interconnected blebs of po cpy, usually developed at or near and often marks the boundary - contact between the quartz gabbro (4c) and the underlying biotite pyroxene melagabbro (4b)
 - B1S Secondary cpy po associated with quartz carbonate fracture fillings which overlapping B1
 - B2S Secondary cpy po associated with quartz carbonate fracture fillings which overlap B2

3. Disseminated Style

- D1 Consistently disseminated po cpy developed within the massive fine medium to coarse grained biotite pyroxene mela gabbro (4b)
- D2 Consistently disseminated po cpy developed within the visible rock fragment (4f) bearing, generally fine to medium grained biotite pyroxene mela gabbro (4b)
- **DIRB** Consistently disseminated po cpy in gabbroic and or mela gabbroic rock fragments xenoliths incorporated within the fine grained matrix of a rheomorphic breccia (5a)
 - D1f Consistently disseminated po cpy mineralization which appears to be significantly aligned parallel to an imposed fabric
 - D2f Consistently disseminated po cpy mineralization which appears to be significantly aligned parallel to an imposed fabric that has been superimposed upon the rock fragment bearing mela gabbro
 - D1S Secondary cpy po associated with quartz carbonated fracture fillings which appear to cross cut the Consistently disseminated po – cpy developed within a visible rock fragment (4f) bearing, generally fine to medium grained biotite pyroxene mela gabbro
 - D2S Secondary cpy po associated with quartz carbonated fracture fillings which appear to cross cut the consistently disseminated po - cpy developed within fine medium to coarse grained biotite pyroxene mela gabbro
 - D3G Primary or secondary remobilization of fine to coarse grained cpy po within segregations of coarse grained to pegmatitic gabbroic rocks developed within relatively finer grained mela gabbro

4. Porter - Nipissing Style

- P1 Fine grained disseminations to occasional blebs of cpy +/- po developed within a gabbro leuco gabbro (3a)
- P2 Fine grained interstitial disseminations of cpy +/- po developed within fine to coarse grained fibrous metapyroxenite, mela gabbro (3f)
 - P1S Secondary cpy po +/- py associated with quartz carbonate fracture fillings which appear to cross cut the fine grained disseminations to occasional blebs of cpy +/- po developed within a gabbro – leuco gabbro
 - P2S Secondary cpy po +/- py associated with quartz carbonate fracture fillings which appear to cross cut the fine grained interstitial disseminations of cpy +/- po developed within fine to coarse grained fibrous metapyroxenite, mela gabbro

PSC Secondary cpy - po associated with fine grained felsic veinlets

10.0 Previous Work - 2004 Program Drill Hole Summary

The drill program carried out on the Stumpy Bay Option Property during the winter of 2004 included two NQ diamond drill holes totaling 400 meters. The results from d.h.'s U10-01 and U10-02 indicate the presence of Shakespeare-like stratigraphy and related styles of sulphide mineralization. Complicating factors such as faulting and the tight folding may have resulted in the partial dislocation of this stratigraphy into fault remnants. Concentrations of pyrrhotite and chalcopyrite in the mineralized zones returned low but anomalous metal values. These exploration efforts still demonstrate the presence of a partially intact Shakespeare stratigraphy containing related anomalous Ni-Cu values within cumulate-like sulphide textures. The area is remains highly prospective.

The objectives of the diamond drilling program were initially to test both the south and north facing stratigraphy as it has been folded around the nose, and to test the stratigraphy that would form the bottom of the Z fold which trends towards the north east.

The two diamond drill holes that were put down were successful in encountering the Shakespeare stratigraphy, and the associated styles of sulphide mineralization will be discussed below:

The diamond drill core logging was carried out at the Ursa Major Minerals Inc.., Shakespeare Project ore logging facility by Douglas MacMillan; Exploration Geologist, under the direction of Harold J. Tracanelli; Exploration Geologist. The diamond drill core has been stored at the Shakespeare Project core logging facility, situated at Stumpy Bay. The core sample collection work was carried out by Robert Proctor.

Diamond Drill Hole U-10-01

Collar Location: 18+00S / L1+00W, -45 degrees @ 147 degrees AZ.

NAD 83 UTM Coordinates: 0436615E and 5133046N, 299.9 meters above SL.

<u>Objectives:</u> To attempt to cut across both the north and south facing stratigraphy, to test the potential depth extent of the pyrrhotite and chalcopyrite mineralization found at the McBeth No., 1 and No., 2 Occurrences, and to possibly encounter increased concentrations of sulphide mineralization at depth. Diamond drill hole U-10-01 was set up on a pronounce hill overlooking the McBeth No., 1 and the No., 2 Occurrences

D.H. U10-01 encountered some rocks associated with the Shakespeare gabbroic stratigraphy in an interval from 66.9 to 104.1 meters. From 66.90 meters through to 86.35 meters the rocks are an admixture of the Shakespeare melagabbro rocks and the Nipissing type gabbro rocks, to form what appears to be the lower footwall contact zone. These rocks were found to be weakly mineralized with disseminations of fine grained pyrrhotite and chalcopyrite. From 86.35 meters through to 104.10 the rocks were found to be predominantly Shakespeare melagabbro which have also been weakly mineralized

with disseminations of fine grained pyrrhotite and chalcopyrite. A strong steeply south dipping structure truncates the above. From 104.10 meters through to 221.00 meters, and the end of the drill hole, the rocks are predominantly made up of massive, bedded to strongly deformed quartz arenites.

It is notable that from173.90 meters to 179.47 meters a very fine grained weak looking pyrite – marcasite, chalcopyrite and pyrrhotite mineralization very similar in nature to the Agnew Lake – Noranda Copper Occurrence was encountered within a highly deformed and altered, quite fissile looking metasediment material. This is a likely strike extension of the of the more highly concentrated sulphide mineralization found at the Agnew Lake – Noranda Copper Occurrence to the south-west.

Diamond Drill Hole U-10-02

Collar Location: 23+00S / L3+00E, -45 degrees @ 327 degrees Azimuth

NAD 83 UTM Coordinates: 0436823E and 5133033N, 275.4 meters above SL.

<u>Objectives:</u> To test the extend Shakespeare stratigraphy of the southern, north facing limb of the bottom of the Z fold, and to possibly encounter increased concentrations of sulphide mineralization relative to some of the weakly mineralized gabbroic rocks noted is some of the local, small surface trench areas. Diamond drill hole U-10-02 was drilled approximately 400 feet (121.9 meters) along strike to the east from diamond drill hole U-10-01.

D.H. U10-02 encountered Shakespeare gabbroic stratigraphy from 43.3 to 104.68 meters. From 43.30 meters through to approximately 52.50 meters the rocks were found to be made up alternating like narrow bands of Shakespeare biotite quartz diorite and Shakespeare quartz gabbro rocks. This assemblage of rocks appears to represent the lower edges - potential contract area between the two lithologies. From 52.50 meters through to 104.68 meters the Shakespeare stratigraphy and the associated styles of sulphide mineralization were encountered. The overall intensity of the sulphide mineralization relative to diamond drill hole U-10-02 is visible increased, and is so reflected by virtue of some slightly higher assays being reported. From 52.50 meters through to 79.30 meters the rocks encountered were rock fragment bearing Shakespeare quartz gabbro. On occasion small mm to cm scaled rock fragment can be found within these rocks. From 79.30 through to 86.88, the rocks continue to be the Shakespeare non fragmental quartz gabbro. From 86.88 meters through to 104.68 meters, the rocks encountered were the Shakespeare rock fragment bearing melagabbro. At 104.68 meters the rock fragment bearing melagabbro appears to have been cut off by a significant and very steep north facing structure that appears to have dislocated the lower part of the Shakespeare Stratigraphy.

In summary, it has been pointed by H. Tracanelli in the previous Stumpy Bay Option Property Report on Diamond Drilling (2004) that both drill holes U-10-01 and U-10-02 have encountered remnants of the Shakespeare stratigraphy and associated sulphide mineralization styles.

11.0 Present Work – 2005 Drill Hole Program

Diamond Drill Hole U10-03

The diamond drill core logging work was carried out by Douglas MacMillan, under the direction of Harold Tracanelli at the Ursa Major Minerals Inc., Shakespeare Landing core logging facilities. The Ursa Major Minerals Inc., drilling program on site safety coordinator was Bill Dillabough. The various samples that were marked out on the drill core by the geologist were carefully split, bagged and secured for shipment to SGS – Xral by Tim Hearne.

Collar Location: L33+00W, 20+13S, -45 degrees @ 147 AZ

NAD83 UTM Co-ordinates: 0435844E, 5132462N

Objective: To test a Figaro airbourne conductor located on the south shore of Stumpy Bay related to the copper-rich historical showings which have been previously examined by Sudbury Shakespeare Copper Gold Syndicate in the 1930's, Noranda in the 1950's and Broulan Reef in the 1960's.

Drill hole U10-03 was set up on the northwest shore of Stumpy Bay to target the Fugaro airbourne anomaly which was situated across Stumpy Bay approximately 1200 feet in land from the shore line on L33E.

D.H. U10-03 Geology

The beginning section of U10-03 up to 81.67 meters is comprised by several rock types including massive, medium grained, equigranular to foliated Nipissing gabbro intercalated with two 15 meter sections of arkosic metasediment and one 7 meter zone of rheomorphic breccia. Structurally the sequence appears to be inclined to the south-east or grid south. Contacts between gabbro and sediment are dipping between 80-85 degrees grid south based on drill core fabric. Structural elements such as foliation, shearing, mylonite seams, local gouge and rheomorphic breccia bands are all have a slightly more pronounced southerly attitude between 60 and 80 degrees, again suggested by core fabric measurements.

This initial section of the drill hole is succeeded by an 80 meter unit of Nipissing gabbroic which stretches from 81.67 to 161.58 meters. It is a vari-textured unit with medium to coarse grained crystals in the 2-10 mm size range. The rock is generally

massive but is still affected by structure in the form of numerous but narrow zones of moderate to strong foliation which can contain bands, veins, shears of chlorite-carbonate and /or biotite rich material and may also be accompanied by 4mm-4cm concordant quartz-carbonate stringers.

From 161.58 to 186.36 meters a marginally more volumous Nipissing gabbroic rock is transected by several zones of Rheomorphic Breccia on the order of 2 to 6 meters in width. This weakly to moderately developed tectonic breccia consists of 1mm to 5 cm wide light green and somewhat chloritic which anastomize and transect a medium grained gabbro creating a net like or brecciated texture. Breccia `fragments' to a much lesser degree can be represented by a light green fine grained rock and what may be an altered light grey fine grained silicic metasediment. Fragments are generally elongated and fragment to matrix ratio is typically on the order of a 60:40 to 70:30 ratio. Quartz-carbonate alteration is common.

Following this section at 161.58 to 204.9 meters is composed of an admixture of Rheomorphic Breccia, Nipissing Gabbro and pyroxenite in order of abundance. The pyroxenitic rock is a fine to medium grained, massive equigranular, felty textured rock. Light to medium green amphibole is somewhat vitreous and >85%. Feldspar is present in much lesser amount and generally <10%. A white to yellowy brown opaque mineral is common at 1-3%. Carbonate is common in small amounts as well. Chalcopyrite may be visible in fine grained trace quantities. The units appear to coarsen and become more massive down hole. The Rheomorphic breccia zones in this area now contain the additions of salty sedimentary and silica which are more volumous than the gabbroic fractions. The structural attitude of rocks appears to be dipping steeply grid south as before.

Sedimentary rocks dominate the remaining length of the hole from 204.9 to 381.5 meters. A silty sediment unit of approximately 50 meters in width belonging to the Pecors Formation occurs between 204.9 and 254.93 meters. It is a well foliated, clay rich, fine grained medium brown rock containing quartz, biotite, sericite, chlorite, feldspar, amphibole, carbonate and sulphide in order of abundance. Quartz is variable from 70-85% while biotite is present in amount between 15-20%. A moderate intensity structural zone is encountered early in this unit for about 2 meters at 208.58. It consists of a highly schistose zone containing a strong sericitic component, very friable rock and local gouge seams. Mineralization is very weak and generally sporatic and much less than .5% consisting of pyrrhotite, chalcopyrite and pyrite. Sulphide is secondary and mostly a fine grained disseminated or bleb style associated with quartz and/or carbonate stringers.

The next unit encountered is a quarzitic sediment from 254.9 to 326.66 meters. It is a variable fine to rock, streaky or possibly laminated quartz rich to more arkosic in composition. Local silty more biotite rich layers can occur and may be silty layers or structurally produced features. Alteration through the unit occurs as 2mm to 1 centimeter wide smoky grey to blueish tinged concordant siliceous bands to cross-cutting quartz stringers in weak to moderate intensities. Larger scale 3 to 85 centimeter concordant quartz veins also inhabit the section. Alteration is quite variable in intensity and

distribution throughout on the scale of meters. Mineralization increases with the increase in alteration and structure and again is highly variable in nature between trace to 5% po, cpy and py ranging between copper values from .01 to 1%.

At 326.66 a very well foliated mafic to intermediate composition altered sediment is encountered for about 11 meters. The strong fabric is exemplified by strong alteration which is moderate and 40-50% of the section. It occurs as 2-15 mm white to grayish quartz stringers and pervasively silicified bands. Where alteration is less prevalent the rock type appears intermediate and somewhat tuffaceous in nature with 1-2 mm felsic SR-SA particles. Mineralogy is variable with quartz is from 10-30%, amphibole at 30-50% while feldspar can range from 5-25% and biotite between 7 and 15%. Mineralization is notably increased and consistent through this zone and ranging between .25-2% of po, cpy and py as fine grained disseminations and fracture fillings. Metal values are almost negligible apart from .05% copper across a meter at 330 meters.

The target of the hole occurs within a 23 meter wide zone of highly altered, weakly to moderately mineralized and deformed sediments occurring between 335.7 and 358.90 meters. Alteration consists of strong pervasive silicification and/or quartz veining and a fairly consistent sulphide content ranging between .5-15 %. Mineralization consists of trace -15% po, tr-3% cpy and trace-15% py in very fine to fine grained disseminations, medium grained euhedral crystals and ovoids and fracture fillings. One 7.5 meter section from 343 to 350.5 meters though this mineralized zone averaged .01 %Ni, .36 %Cu, .02 %Co and 36 g/tonne Ag. The target of the hole was a sulphide-siliceous rich conductive zone between 348.6 to 349.5 meters which contained a 10 and 15 cm wide band of semimassive pyrrhotite and chalcopyrite with metals values of .8% cu and > 300 g/ton Ag. The sulphide is net-textured and anastomizes throughout and brecciates a fine grained white siliceous rock and/or quartz vein. The host rock is fine grained whiteish to light grayish with a streaky texture developing from sub-mm amphibolitic foliae and lesser 5-20 mm concordant fine-medium grained mafic/intermediate sedimentary intercalations. A fault or structure is encountered on the tail end of this mineralization from 354.3 to 357.4 consisting of moderately to highly blocky, broken core and fracture controlled potassic alteration. The structure has a steep south dipping attitude.

The hole exits into a fine grained to medium grained quartzite at 358.9 meters. The unit contains several 2 to 3 meters broken zones of fractured or blocky core and rubble zones. Following this structural feature medium to coarse grained quarzitic sediment is intersected to the end of the hole at 381.5 meters.

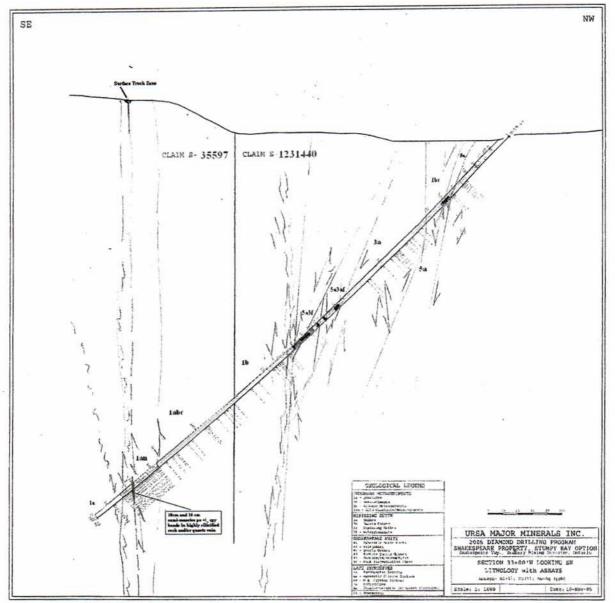


Figure 6: Drill Hole U10-03 Cross section

Table 5: U10-03 Drill Log Summary

0-29.9: Over burden

29.9- 30.25: Nipissing Gabbro medium grained, massive, equigranular.

30.35-44.95: Metasediment with moderate to strong development of conjugate hairline fractures @8-20 deg'd TCA, parallel 2mm-2 cm seams of mylonitic rock, hairline biotitic and chloritic fracture fillings, fracture density = 4-5 fractures/meter.

44.95-57.78: Nipissing Gabbro; moderate –strong foliation, weak qtz veining, 2mm-1cm concordant qtz/cb stringers, hairline cb fracture fillings, local 15 cm <u>qv+cpy @ 49.28m</u>.

57.78-65: Rheomorphic Breccia @ 12-20 deg's TCA, predominated by gabbroic inclusions, auto brecciated textures with fg mafic or med brown grey material anastomizing thru gabbroic like rocks, gouge seam @ 64.60 meters @20 deg's TCA.

65-81.67: Metasediment; fg, light whitey grey color, wk to moderate foliation, qtz>fspar. possible arenite, unit becoming friable/foliated @ 76.60 meters @ 40 deg's TCA.

81.67-161.58: Nipissing Gabbro; vari-textured unit, 2-10 mm size mg-cg rock, numerous zones of mod-strong foliation within which occur 1mm-2cm wide bands, veins, shears of fg chlorite/carbonate, local 4mm-4cm qtz/cb vn'g, biotitization and pervasive carb., cb hairline fracture fillings common on the order of 10 fr's/m, tr cpy present throughout.

161.58-186.36: Rheomorphic Breccia/Nipissing Gabbro; variable section of mixed 2 to 7 meter wide units of alternating breccia and gabbro with gabbro rocks marginally more volumous at 55% of section, breccia frags predominantly gabbroic in nature.

186.36- 189.80: Pyroxenite; fg;mg, massive, fairly equigranular, felty textured rock unit.

189.8-198.95: Rheomorphic Breccia; a mix of fg. Silty, fg silicic, fg/mg quasi-gabbroic and fg/mg very foliated ultramafic inclusions, frag:matrix=70:30 ratio.

198.95-202.50, Pyroxenite; mg dark green, cb fractures @ 20-25 fr's/meter.

202.5 204.9, Rheomorphic Breccia; moderately blocky core.

204.9254.93: Pecors Fmn. Silty Sediments; variably sericitic, schistose, friable highly foliated and /or laminated, local gouge seams which @ 232.3 meters becomes less deformed but still mod-strongly foliated with qtz and cb stringers.

254.93-326.66: Quartzitic Sediment; variable succession of fg/mg well foliated rock with interbanded/bedded biotitic laminae, cg quartite and pinky arkosic layers, 1-12 cm quartz veining common +/- small amounts of cpy,po,py and aspy, @ 286.36 m. an increase in structural component with bx'd textures, qtz stringers, blocky core, high foliation, silicic bands and fg dissem'd cpy/po<1%, xn continues variably moderate intensities, zone of very strong mag susceptibility 310.66-312.08 with magnetite present in fg dissem's and 1-4mm concordant stringers.

326.66-335.70: Altered Intermediate Metasediment; fg-mg, light-med. grey-green well foliated rx. with a strong fabric developed by small concordant, 1-15 mm, white to grey qtz stringers or bands and pervasively silicified bands, a mafic component of amphibole can lend a 1-2mm tuffaceous banding appearance to sections which are less altered or deformed.

334.7-335.7: Fault; almost all .5-2 cm broken core a mm grit @ 50 deg's TCA.

335.7-346.6: Quartz Veined-Silicified Sediment; fg, lt. greyish streaky qtz veining, highly foliated xn with sub-mm amphibolitic foliae and 5-20 mm concordant fg/mg mafic-intermed. volcanic/sediment layers throughout the highly qtz veined sequence, qtz veining stringers account for 85% of unit, po tr-15%, cpy tr-3%, py tr-15%, marcasite tr-.5%, sulphide as vfg disseminations, blebs, hairline fracture fillings.

346.6 -349.5: Becoming more highly qtz veined rock than previous xn., whiter quartz color, much lesser of a mafic component and sulphide content increased, local 10-15 cm wide zones of semi-massive po+/-cpy bands which are internally net textured sulphide throughout a brecciated white qtz, 1-10 mm po+/-cpy fracture fillings and blebs can transect white and grey qtz as well, po10-15%, cpy .5-3%.

349.5-354.3: Very similar to previous section described at 335.7 meters as quartz-veined/silicified metasediment, po tr-1%, py tr-15% and locally vuggy.

354.3-358.9: A section of moderately to highly fractured core, variably salmon pink fracture controlled potassic alteration, vfg-fg py disseminations @ .5-2% with tr po and cpy, fractures @ 60-90 TCA.

358.9-381.5: Medium to coarse grained quartzite with 2mm to 2cm SR-SA white to grey or blueish qtz pebbles, matrix tends to be mildly sericitic and there is vfg disseminated po, py @ tr - .25%.

In summary the hole was successful in explaining the Fugaro airbourne anomaly with the intersection of several semimassive 10-15 centimeter wide po bands which were present in a highly altered silicified/veined section of metasediments occurring between 346.6 and 349.5 meters.

12.0 Compilation of the Assay Results from the Stumpy Bay Option Property Diamond Drilling Program

Through out the 381.5 meter drill hole 107 core samples were identified including duplicates. The duplicate sampling includes the insertion of various field blanks, quarter duplicates and 2 types of certified reference material into the sample stream. Initially the samples are prepared for shipment and sent to the SGS Lakefield Research preparation facility in Garson Ontario. The sample procedure involves a primary crushing to a passing 10 mesh. Then 250 grams of this coarser material is then split off and further pulverized to 95% passing 150 mesh. This finely ground rock is then sent to the SGS – Xral Assay Laboratory, located in Don Mills Ontario. All of the samples were assayed for Au., Pt., and Pd., using the traditional 30 gram fire assay method with an AA finish. The base metals including Ni., Cu., and Co., were analyzed by means of traditional wet chemistry methods, ICP determinations and an AAS finish. The precious metals were analyzed at both SGS Don Mills and the Rouyn Noranda facilities. Values have been reported in parts per billion while the base metals have been reported in percent. The compiled assay results have been compiled and reported in Table 5, while weighed average scenarios are prepared and presented in Table 6.

<u>Table 6</u>

a Major Minerals Inc.,

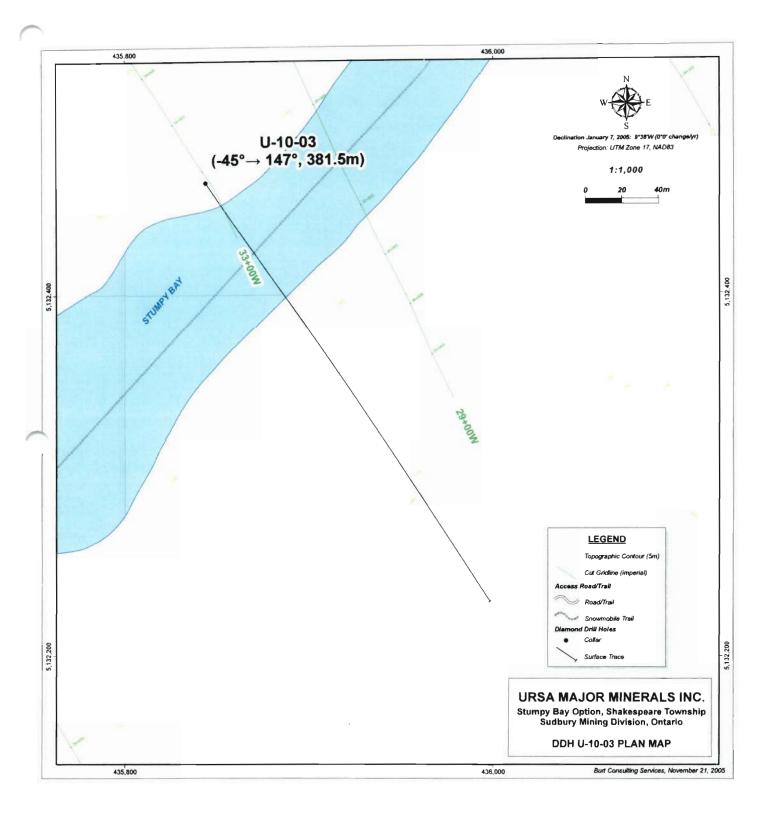
Stumpy Bay Option U-10

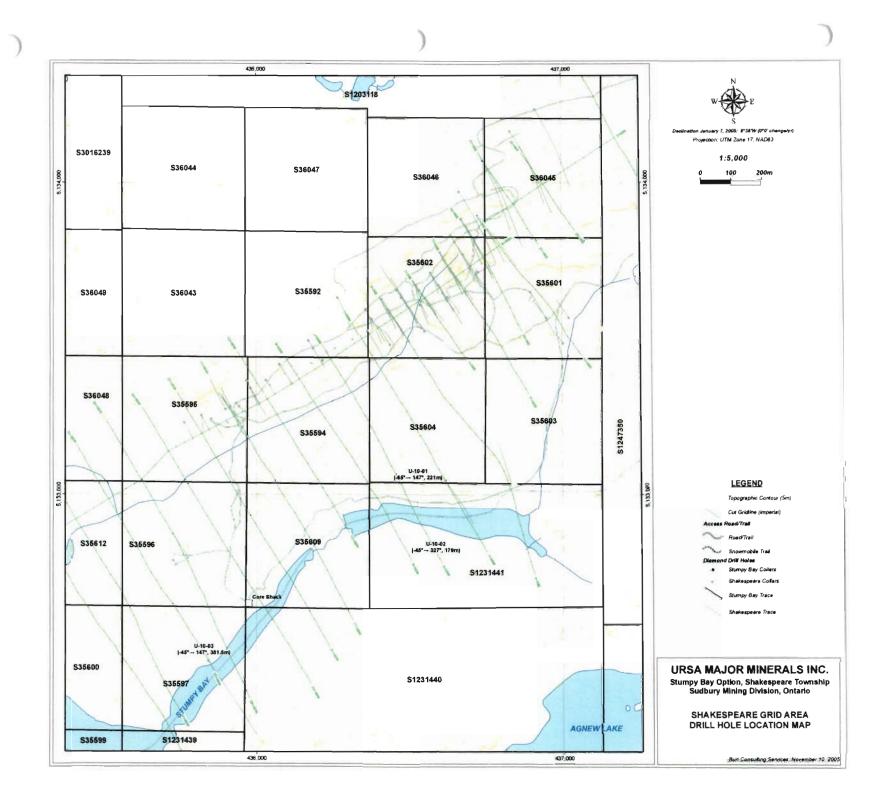
Compiled Assay Data for Diamond Drill Hole U-10-3

Mining Claim S-35597, S-1231440

DDH., Collar Coordinates L20+13S / 33+00W (-45 degrees) @ 147 Degrees Azimuth

Sample #	<u>From m.</u>	<u>To m.</u>	Distance: <u>M's</u>	Sulphide <u>Code</u>	Au FAI 30P <u>ppb</u>	Pt FAI30P <u>ppb</u>	Pd FAI30P <u>ppb</u>	Ni ICAY50 %	Cu ICAY5 %
Analysis Unit					limit=1	limit=10	limit=1	limit=0.01	limit=0
	41.2	42.1	0.9	IN4	0.9	9	0.9	0.009	0.009
98904	42.1	43	0.9	IN4	1	9	3	0.009	0.009
98905	43	43.95	0.95	IN4	1	9	7	0.009	0.009
98906	43.95	44.8	0.85	P1S	0.9	9	5	0.009	0.009
98907	44.8	45.65	0.85	P1S	1	14	11	0.009	0.009
98908	45.65	46.65	1	P1S	1	11	8	0.009	0.009
98909	53.8	54.35	0.55	- P1S	1	9	7	0.009	0.009
98910	54.35	55	0.65	P1S	2	12	11	0.009	0.009
98911	55	55.8	0.8	P1S	1	12	9	0.01	0.009
98912	55.8	56.72	0.92	P1S	3	9	9	0.009	0.02
98913	62.35	63.35	1	 	0.9	9	8	0.009	0.009
92014	85.1	85.6	0.5	P1S	2	12	9	0.009	0.01
: j	88.5	89.25	0.75	P1S	3	11	7	0.009	0.01
98916	94.25	95.15	0.9	P1S	2	14	10	0.009	0.009
98917	97.2	97.8	0.6	P1S	2	11	8	0.009	0.009
98925	99.6	100.6	1	P1	7	13	9	0.009	0.01
98926	100.6	101.6	1	_ P1	13	17	11	0.009	0.03
98918	107	107.4	0.4	P1S	21	19	10	0.009	0.05
98919	107.4	108.4	1	P1S	19	17	5	0.009	0.03
98920	108.4	109.4	1	P1S	7	18	9	0.009	0.05
98921	109.4	110.3	0.9	P1S	7	16	12	0.009	0.01
98922	110.3	111.3	1	P1S	14	9	3	0.009	0.03
98923	111.3	112	0.7	P1S	10	37	4	0.009	0.01
98924	114.75	115.4	0.65	P1S	8	27	41	0.009	0.01
98927	121.83	122.6	0.77	P1P1S	5	9	4	0.009	0.03
98928	134.6	135.21	0.61	P1P1S	6	9	11	0.009	0.05
98929	137	137.4	0.4	P1S	0.9	13	18	0.009	0.009
98930	185.3	186.1	0.8	P1S	6	9	9	0.02	0.01
98931	188.8	189.8	1	P1	2	13	24	0.03	0.009
98932	208.55	209.2	0.65	IN4	11	9	6	0.009	0.009
98933	209.2	210	0.8	IN4	12	9	8	0.009	0.009
98934	210	211	1	N4	5	9	4	0.009	0.009
98935	211	212	1	IN4	7	9	4	0.009	0.009
98936	216.47	217.2	0.73	1N4	22	9	2	0.009	0.009
98937	217.2	217.72	0.52	IN4	181	9	3	0.009	0.009
98038	217.72	218.62	0.9	IN4	41	9	2	0.009	0.009
9	218.62	219.1	0.48	IN4	5	9	3	0.009	0.01


				1514	2	0	4	0.009	0.009
98940	219.1	220.1	1	IN4	3	9	4 6	0.003	0.009
1 _	222	222.5	0.5	IN4	0.9	9		0.009	0.009
9o 0 42	223.99	224.99	1	1N4	13	9	3	0.009	0.009
98943	237.65	238.4	0.75	IN4	8	9	6	0.009	0.009
98944	244.13	244.82	0.69	IN4	29	9	3	0.009	0.02
98945	259.66	260	0.34	IN4	5	9	2	0.009	0.06
98946	263.52	264.06	0.54	IN4	32	9	2	0.009	0.31
98947	266.1	266.67	0.57	IN4	370	9	2	0.009	
98948	268.5	269.34	0.84	IN4	20	9	2		0.24
98949	274.9	275.55	0.65	IN4	3	9	2	0.009	0.02
98950	282.9	283.9	1	IN4	35	9	2	0.009	0.38
98800	283.9	284.5	0.6	IN4	2	9	2	0.009	0.009
98800a	284.5	285.2	0.7	IN4	0.9	9	1	0.009	0.01
98800b _	285.2	286.2	<u> </u>	IN4	38	9	2	0.009	0.34
93721a	297.35	298.25	0.9	IN4	1	9	2	0.009	0.009
93728a	301.12	302.12	1	IN4	0.9	9	0.9	0.009	0.009
93722a	310.66	311.36	0.7	IN4	5	9	0.9	0.009	0.009
93723a	311.36	312.08	0.72	IN4	2	9	0.9	0.009	0.009
93724a	314.55	315.4	0.85	IN4	63	9	0.9	0.009	0.61
93725a	315.4	316.4	1	IN4	0.9	9	0.9	0.009	0.03
93726a	320.5	320.75	0.25	IN4	0.9	9	0.9	0.009	0.009
93727a _	320.75	321.41	0.66	IN4	0.9	9	0.9	0.009	0.009
98601	326.55	327.55	1	IN5	1	n/a	n/a	0.009	0.009
98602	327.55	328.25	0.7	IN5	0.09	n/a	n/a	0.009	0.009
98603	328.25	329	0.75	IN5	3	n/a	n/a	0.009	0.009
g	329	330	1	IN5	0.09	n/a	n/a	0.009	0.009
98505	330	331	1	IN5	9	n/a	n/a	0.009	0.05
98606	331	332	1	IN5	0.09	n/a	n/a	0.009	0.009
98607	332	333	1	IN5	0.09	n/a	n/a	0.009	0.009
98608	333	334	1	IN5	2	n/a	n/a	0.009	0.009
98609	334	334.7	0.7	IN5	1	n/a	n/a	0.009	0.009
98610	334.7	335.7	1	IN5	6	n/a	n/a	0.009	0.01
98611	335.7	336.7	1	IN5	15	n/a	n/a	0.009	0.06
98612	336.7	337.7	1	IN5	12	n/a	n/a	0.009	0.09
98613	337.7	338.6	0.9	IN5	26	n/a	n/a	0.009	0.14
98614	338.6	339	0.4	IN5	57	n/a	n/a	0.009	0.56
98615 98646	339	340	1	IN5	5	n/a	n/a	0.009	0.03
}8616 }8617	340 341	341 342	1	IN5	5	n/a	n/a	0.009	0.05
98618	342	343	1	IN5 IN5	1	n/a	n/a	0.009	0.009
98619	343	343	1	IN5	5 44	n/a n/a	n/a n/á	0.009	0.07
38620	343	344.85	1 0.85	IN5				0.009	0.31
98621	344.8 5	345.6	0.85		16	n/a	n/ a	0.009	0.26
				IN5	9	n/a	n/a	0.0 0 9	0.05
98622 98623	345.6	346.6	1	IN5	22	n/a	n/a	0.009	0.31
98 624	346.6	347.6	1	IN5	58 17	n/a	n/a	0 .009	0.7
98625	347.6 348.6	348.6 349 <i>.</i> 5	1	IN5	17 56	n/a	n/a	0.009	0.25
98626	348.6 349.5	349.5 350.5	0.9 1	IN5	56 28	n/a	n/a	0.02	0.8
98627	349.5 350.5			IN5	28	n/a	n/a	0.009	0.21
96627 98	350.5 351.45	351.45 351.7	0.95 0.25	IN5 IN5	2	n/a	n/a	0.009	0.02
	501.40	301.7	0.20	Crit	4	n/a	n/a	0.00 9	0.05


98629	351.7	352.7	1	IN5	0.09	n/a	n/a	0.009	0.009
(50n×3	352.7	353.7	1	IN5	1	n/a	n/a	0.00 9	0.01
98531	353.7	354.56	0.86	IN5	0.09	n/a	n/a	0.009	0.009
98632	354.56	355.2	0.64	IN5	0.09	n/a	n/a	0.00 9	0.009
98633	355.2	356	0.8	IN5	1	n/a	n/a	0.009	0.00 9
98634	356	357	1	IN5	0.09	n/a	n/a	0.009	0.009
98635	357	358	1	IN5	0.09	n/a	n/a	0.009	0.009
98636	358	358.9	0.9	IN5	0.09	n/a	n/a	0.009	0.009
93729A	365.73	366.33	0.6	IN4	0.9	9	2	0.009	0.009
93730A	366.33	367.03	0.7	IN4	0.9	9	2	0.009	0.009
93731A	367.03	367.6	0.57	IN4	0.9	9	0.9	0.009	0.009
DUP-98601	326.55	327.55	1		2	n/a	n/a	0.009	0.009
DUP-98613	337.7	338.6	0.9		24	n/a	n/a	0.009	0.14
DUP-98625	348.6	349.5	0.9		51	n/a	n/a	0.02	0.81
DUP-98903	41.2	42.1	0.9		0.9	9	0.9	0.009	0.009
DUP-98915	88.5	89.25	0.75		2	11	8	0.01	0.01
DUP-98927	121.83	122.6	0.77		5	9	3	0.009	0.03
DUP-98939	218.62	219.1	0.48		6	9	0.9	0.009	0.009
DUP-98800	282.9	283.9	1		3	9	0.9	0.009	0.009
DUP-93730A	366.33	367.03	0.7		0.9	9	0.9	0.009	0.009

13.0 U10-03 Weighted Average Grade Compilation for Assay Results

One local assay from this hole reached the 1% mark for Cu which was #98045. This sample was a 54 cm in width and occurred within a well altered and foliated section containing a 3 cm concordant quartz vein and a 1-3 cm fracture filling of chalcopyrite in addition to disseminations and blebs of cpy and pyrrhotite. Sporatic values of anomalous Cu occur throughout the section form this point up to the main zone of alteration at 335.70 meters. These values are all very low ranging from .01 to .56 % copper. Other base metal constituents such as nickel are absent and Co sporatic between nil and .09 %. Gold values are also low and generally < 60 ppb. Exceptions to this occur in two samples which are taken from 1abc sediments. Sample #98937 returns 181 ppb Au with .25% po and small quartz stringers. Sample #98947 contains 370 ppb Au (.31% Cu) with 5-12 cm quartz veining and sulphide fracture fillings and 3-8 mm sulphide blebs. The altered sediment zone from 335.7 to 358.9 meters which hosts the 12 channel Fugaro anomaly target carries low but anomalous copper values ranging between .01-.8%. Ni and Co values are neglible while Au ranges less 100 ppb at between 2-56 ppb. The highlight of the zone occurs between 348.6-349.5 meters where the conductive target was intersected. This target consists of two 10-15 cm semi-massive po bands which average .02% Ni, .8%Cu, .07 Co, 56 ppb Au and 300g/tonne Ag. Averaged across 7.5 meters of this altered zone from 343 to 350.5 meters an average of .01% Ni, .36% Cu, .02% Co and 36 g/tonne Ag. The values across this 7.5 section are 4 fold lower than those obtained from the 1956 Noranda trenching program.

In assessing the metal content of U10-03 a comparison of these low grade values with much higher surface results indicates an obvious weakening of values with depth. The hole has intersected the target zone at a depth of approximately 250 meters below surface. A six hole Noranda program all intersected the horizon only 125 to 240 feet below surface. Therefore the Stumpy Bay hole would appear to have intersected the zone at the deepest level thus far with poor results.

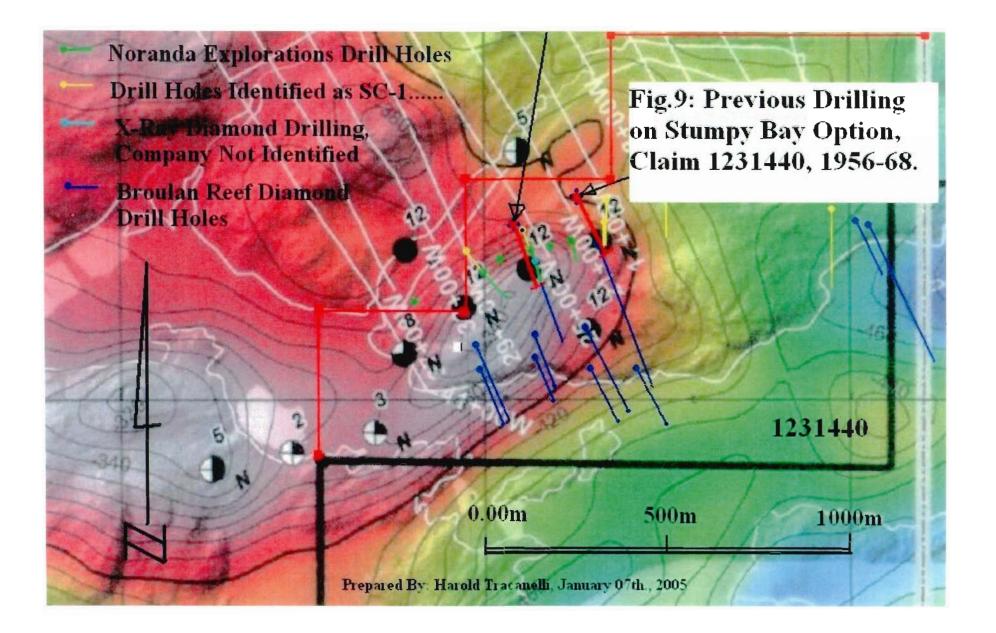
TABLE 7: Weighted Average Grades for Drill Hole U10-03

Feet	Feet	Interval	Meters	Meters	Interval	WAG	WAG	WAG	WAG
From:	<u> </u>	in Feet:	From:	<u>To:</u>	in Meters	Au.ppb	<u>Ni</u> .%	Си.%	<u> </u>
						337.85	0.16	3.46	0.39
1097.816	1153.576	55.76	334.7	351.7	17	19.87353	0.009582	0.203471	0.022841
 Feet	Feet	Interval	Meters	Meters	Interval	WAG	WAG	WAG	WAG
From:	To:	in Feet:	From:	To:	in Meters	Au.	Ni.	Cu.	Co.
						331.85	0.15	3.45	0.38
1101.096	1153.576	52.48	335.7	351.7	16	20.74062	0.009619	0.215562	0.023644
Feet	Feet	Interval	Meters	Meters	Interval	WAG	WAG	WAG	WAG
From:	To:	in Feet:	From:	To:	in Meters	Au.	Ni.	Cu.	Co.
						301.95	0.13	3.27	0.31
1107	1149.64	42.64	337.5	350.5	13	23.22692	0.009623	0.251346	0.023635
Feet	Feet	Interval	Meters	Meters	Interval	WAG	WAG	WAG	WAG
From:	To:	in Feet:	From:	To:	in Meters	Au.	Ni.	Cu.	Co.
110111.	10.		110111	10.	in Meters	250.55	0.11	2.93	0.26
1110.608	1146.36	35.752	338.6	349.5	10.9	22.98624	0.009908	0.268945	0.023876
Feet	Feet	Interval	Meters	Meters	Interval	WAG	WAG	WAG	WAG
From:	To:	in Feet:	From:	To:	in Meters	Au.	Ni.	Cu.	Co.
11011.	10.	111 COL.	17011	10.	in Meters	239.75	0.08	2.76	0.17
1125.04	1149.64	24.6	343	350.5	7.5	31.96667	0.01032	0.3678	0.022167
Feet	Feet	Interval	Meters	Meters	Interval	WAG	WAG	WAG	WAG
From:	To:	in Feet:	From:	To:	in Meters	Au,	Ni.	Cu.	Co.
						211.75	0.07	2.55	0.15
1125.04	1146.36	21.32	343	349.5	6.5	32.57692	0.010523	0.392077	0.0225
Feet	Feet	Interval	Meters	Meters	interval	WAG	WAG	WAG	WAG
From:	To:	in Feet:	From:	To:	in Meters	Au.	Ni.	Cu.	Co.
						147.40	0.04	1.98	0.12
1133.568	1146.36	12.792	345.6	349.5	3.9	37.79487	0.011538	0.507692	0.031282
Feet	Feet	Interval	Meters	Meters	interval	WAG	WAG	WAG	WAG
From:	To:	in Feet:	From:	To:	in Meters	Au. 125.40	Ni. 0.04	Cu. 1.67	Co.

Feet From:	Feet To:	Interval in Feet:	Meters From:	Meters To:	Interval in Meters	WAG Au.	WAG Ni.	WAG Cu.	WAG Co.
						355.42	0.30	3.64	0.53
1071.084	1177.192	106.108	326.55	358.9	32.35	10.98668	0.009306	0.112493	0.016304

14.0 Summary

1. D.H. U10-03 has successfully explained the Fugaro airbourne anomaly which is coincident with the former Noranda copper occurrence. The conductor consists of a .9 meter sulphide rich zone which includes two closely spaced 10 cm and 15 centimeter semi-massive po+/-cpy bands hosted by a pervasively silicified to quartz veined metasediment. Sulphide texture within the bands is a mm scale network of fracture fillings which transects a white quartz to highly silicified sediment. Sulphide also can occur in lesser concentrations up to 15% as 1-10 mm fracture fillings and blebs within greyish silicified rock. Sample #98625 which assays this .9 meter section averaged .02% Ni, .8% Cu, .07% Co, 56 ppb Au and 300 g/tonne Ag. This zone is occurs within a wider 7.5 meter zone of mineralized altered silicified and quartz stringered sediment averaging .01 % Ni, .36 % Cu, .02 % Co and 36g/tonne Ag from 343 to 350.5 meters.


2. With the exception of one high silver value of 300 g/tonne in sample #98625 and 1% Cu over .54 meters in sample #98946 metals values remain very low and much lower than the surface values that were undercut.

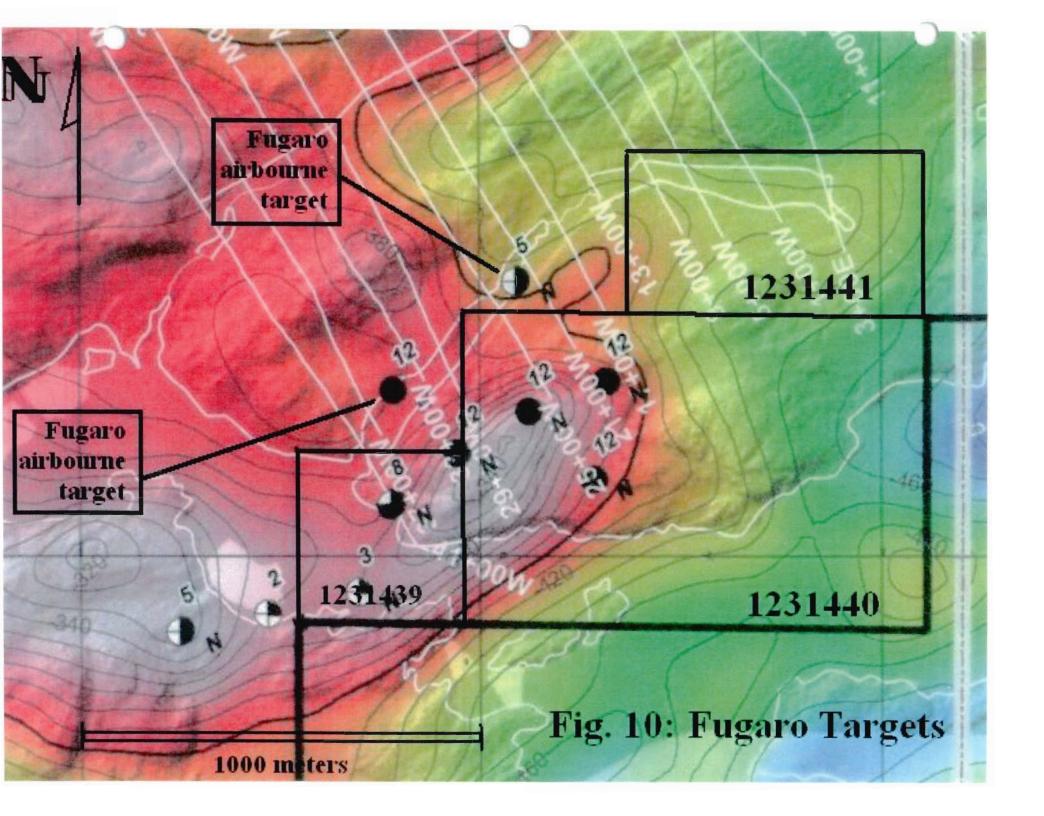
3. The mineralization encountered occurs within a wider deformational zone with a apparent width of over 100 meters possessing both brittle and ductile characteristics. Quartz stringers and gashes, pervasive concordant silicification, local gouge or rubble seams, sheared and possibly mylonitic rocks all occur within the section. This zone which runs through Stumpy Bay may possibly be a southern splay off the more northerly and adjacent Hunter Lake fault.

4. Sulphide mineralization occurs as a combination of both finely disseminated to blebby py and po +/- cpy as well as fracture fillings. The most strongly mineralized section is clearly remobilized into fracture fillings, hairline fractures and the conductive po bands, which explain the target anomaly, are themselves a net-textured-like sulphide transecting a highly silicic or quartz veined host rock. The presence of disseminated sulphide suggests the mineralization was likely syngenetic and remobilized and reconcentrated into later formed fractures, shears and alteration during the progressive deformation which resulted in structural zone formation.

5. Previous work in the area by Noranda trenching in 1956 has outlined a mineralized zone of some 552 meters in strike length but variable in widths from 1.2 to 4.7 meters.

TABLE	8: Comp	oilation o	f 1956 N	loranda	Trenching	Prograr	n Resul	ts
					.scale 'Plan o			
			·····					
	Trench #	width ft.	% Cu	Cu-ft.				
	1	6	0.62	3.72				
	2	12	1.36	16.32				
	3	19	1.37	26.03				
	4	15	1.04	15.6				
	5	9.5	0.78	7.41				
	6	7	0.72	5.04				
	7	11.5	0.95	10.925			and the second second	
	8	15.5	1.26	19.53				
	9	25	1.74	43.5	_			
	10	11	0.83	9.13				
	11	2.1	2.44	5.124				
	12	12	1.73	20.76				
	13	2.5	6.4	16				
	14	5	0.75	3.75				
	15	25	0.83	20.75				
	16	8	0.64	5.12				
	17	15.5	1.05	16.275				
	18	15.5	1.2	18.6				
_	19	7	0.8	5.6				
	20	11	0.72	7.92				
	21	12	0.64	7.68				
	22	6	0.59	3.54				
	23	4	1.64	6.56				
	24	5.5	1.64	9.02	WAG %Cu	Average ft.	strike ft.	
Totals	24	262.6		303.904	1.16	10.9	1813	

Variable metals values obtained from the series of 24 trenches range from .59% to 6.4 % Cu in this trenching program. The zone averages about 1.16% Cu over an average width of approximately 3.3 meters and spans across a 552 meter strike length. Drill hole U10-03 intersects this surface showing at 250 meters below surface but only managed a zone averaging 7.5 meters of .36% Cu. This demonstrates a three fold weakening with depth in copper content.


5. A relatively high silver assay of 300 g/tonne assay over a .9 meters width within the U10-03 intersection is notable but similar values of silver values elsewhere are not recorded which could further indicate the erratic nature of the metal values within this zone as a whole, a point stated by Card (1976) with respect to surface grabs samples and copper content which ranged from 1.55% to 8.45%.

6. The hole intersects a lower portion Nipissing sill associated with the Shakespeare deposit. In this vicinity an apparent steep south dip is inferred from core angle measurements. The presence of a basal pyroxenitic layers in this south dipping section which appear to overlie gabbroic rocks in some parts of D.H. U10-03 may imply an overturned sequence. The variety of rocks encountered in the hole north of the main sedimentary section include massive and vari-textured Nipissing gabbro, quartzites, a pyroxenitic units and multiple occurrences of rheomorphic breccia zones. The intercalation of sediments into gabbroic rocks and the presence of lower level massive gabbros to the north higher level vari-textured gabbros may suggest some structural displacement such as possible over thrusting which is known to occur with movement along zones associated Rheomorphic breccias. This thrusting may have cut some of this section into displaced fault wedges thereby producing a somewhat out of sequence admixture of rocks. Notwithstanding the complex folding known to exist in the immediate area such as parasitic folds related to the Porter Lake Syncline to the north may also come into play here as well.

15.0 Conclusions and Recommendations

1. Drill hole U10-03 has been successful in explaining the 12 channel Fugaro airbourne conductor which is coincident with the former Noranda copper occurrence on claim 1231440. The conductor consists of a .9 meter sulphide rich zone which includes two closely spaced 10 cm and 15 centimeter semi-massive po+/-cpy bands hosted by a pervasively silicified to quartz veined metasediment. However this .9 meter section averaged only .02% Ni, .8% Cu, .07% Co, 56 ppb Au and 300 g/tonne Ag significantly lower than the surface mineralization it undercut.

2. The mineralization which was intersected in D.H. U10-03 tests the 1956 Noranda copper occurrence at depth of approximately 250 meters below surface is the deepest level the zone has been tested. A 7.5 meter interval within the hole which averaged .36% Cu is about three times lower than Cu values cited by the 1956 Noranda trenching program which averaged 1.16% Cu across a width of 3.3 meters with a strike length of 552 meters. The trend obviously demonstrates that copper values weaken substantially

with depth. To underscore the previous point drill hole U10-03 has also undercut the higher grade midsection of the surface zone. No further drilling is recommended in the immediate vicinity under the zone of surface trenching. However it should be pointed out that the zone may continue along strike to the south west onto claim 1231439. In this vicinity a strong Fugaro airbourne anomaly situated near the mouth of Stumpy Bay and approximately 400 meters of related and untested ground along the Stumpy Bay structure.

3. It would be recommended that the two Fugaro airbourne anomalies, namely the 12 and 5 channel anomalies which are situated immediately to the north (Fig. 10) of the Stumpy Bay Option on claim 1231439 and 1231440 respectively be tested. These anomalies are situated very close to the Stumpy Bay Option property and the possible horizon that may link the two may strike across the NW corner of claim 1231440 and may dip south into the Stumpy Bay Option property area as well. These conductors appear to be on a different stratigraphic level from the Noranda copper occurrence and therefore may not be related to this zone. Some lines of structural evidence may also suggest that these anomalies and the enclosing horizon may in part be a strike equivalent of the Shakespeare Ni-Cu deposit horizon, which through a number of structural complexities and folding, occur in this area. Two drill holes targeting the centre of these anomalies are highly recommended. A program of 2 moderate length holes totaling 500 meters would suffice as a first pass.

4. Previous exploration efforts from the 2004 drill program elsewhere on the Stumpy Bay property have clearly demonstrated that the presence of the partially intact Shakespeare stratigraphy on claim 1203117. Although economic concentrations of Ni and Cu were not encountered in the Macbeth area but the Shakespeare stratigraphic presence supports the notion that the area is still prospective from a Ni-Cu exploration standpoint and the horizon remains open down dip and along strike towards the north east in this area. Further drilling has previously been recommended to examine this possibility.

H. Tracanelli

Harold J. Tracanelli: GETN, P.Geo. Ursa Major Minerals Incorporated.

January 12th., 2006

References

Card K.D., (1976), Geology of the Dunlop-Shakespeare Area, District of Sudbury, ODM Geological Report No. 139, 52 pages.

Certificate of Qualifications

Of

Harold J. Tracanelli, GETN, P.Geo.

I, Harold Joseph Tracanelli, currently reside at 192 North Shore Road, Box 122, Onaping, Ontario POM 2R0, in the City of Greater Sudbury, Ontario.

In 1986 I graduated from Cambrian College of Applied Arts and Technology, Barrydowne Campus in Sudbury, Ontario, with a Geological Engineering Technician Diploma.

I have been involved in prospecting like efforts since 1976, and since 1983 have been actively engaged, as an Exploration Geologist participating in the many required duties and functions and performing an assortment of mineral exploration related work.

I am a member of the Prospectors and Developers Association of Canada, the Sudbury Prospectors and Developers Association, and the Ontario Prospectors Association. I am a member in good standing of the APGO No., 1156.

I have supervised and have been personally involved during the winter of 2004 and 2005 that have involved the various exploration efforts on the Ursa Major Minerals Inc.., Stumpy Bay Option Property in both Shakespeare and Baldwin Townships, Sudbury Mining Division, Ontario.

This report; describing the various exploration activities, results and observations; has been prepared from all pertinent data available both published and or unpublished, and from my personal experiences while working on the Stumpy Bay Option Property Project.

I do not expect to receive, any interest or securities in the company and or its affiliates, as a result of my efforts on this project.

Dated and Signed, in the Greater City of Sudbury, Ontario, this 12th., day of January 2006

H Tracanelle

Harold Joseph Tracanelli; GETN 2. 680

Januar 12th/2006

Appendix I

Drill Hole U10-03 Data Sheets

Ursa Ma	ajor Miner	als	Inc.,	<u>"</u>											
Stumpy Ba	y Option U-10														
ASSAY DAT					1										
	ssay Data for D	rill He	ole U-10-	03	Minina Cl	aim S-355	97(Ursa N	aior. Sha	kespeare P	roperty) ar	nd S-12314	139 (Stum	by Bay Option	Property)	
									1						
DDH. Collar	r Coordinates: L	33+0	00W 20+	13S @ -4	5 dearees	147 Az.			1		<u> </u>				
		<u> </u>			_										
											1		Total		
						Au	Pt	Pd	Ni	Cu	Co	Ag	Precious	Total	Nickel
Sample #	From	<i>m</i> .	To m.	Distance:	Sulphide	FAI 30P	FAI30P	FAI30P	ICAY50	ICAY50	ICAY50	AAS 12E	Metals	Base	vs
	lysis Unit	_		<u>M's</u>	Code	ppb	ppb	dad	_%	_%	%	<u>g/mt</u>	Gold & Silver	Metals	Copper
(Dete	ection Limit)					limit≈1	limit=10	limit=1	limit=0.01	limit=0.01	limit=0.01	limit=0.3	ppb	%	ratio
98903		1.2	42.1	0.9	IN4	0.9	9	0.9	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98904	4	2.1	43	0.9	IN4	1	9	3	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98905		43	43.95		IN4	1	9	7	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98906		3.95	44.8	0.85	P1S	0.9	9	5	0,009	0.009	0.009	n/a	n/a	0.027	1.00
98907		4.8	45.65	0.85	P1S	1	14	11	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98908		5.65	46.65	1	P1S	1	11	8	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98909		53.8	54.35	0.55	P1S	1	9	7	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98910	54	1.35	55	0.65	P1S	2	12	11	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98911		55	55.8	0.8	P1S	1	12	9	0.01	0.009	0.009	n/a	n/a	0.028	1.11
98912		5.8	56.72	0.92	P1S	3	9	9	0.009	0.02	0.009	n/a	n/a	0.038	0.45
98913		2.35	63.35	1	P1S	0.9	9	8	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98914		35.1	85.6	0.5	P1S	2	12	9	0.009	0.01	0.009	n/a	n/a	0.028	0.90
98915		38.5	89.25	0.75	P1S	3	11		0.009	0.01	0.009	n/a	n/a	0.028	0.90
98916		1.25	95.15	0.9	P1S	2	14 11	10	0.009	0.009	0.009	n/a n/a	n/a n/a	0.027	1.00
98917		7.2	97.8	0.6	P1S	2	11	9	0.009	0.009	0.009	n/a	n/a	0.027	0.90
98925		99.6	100.6	1	P1 P1	13	13	11	0.009	0.03	0.009	n/a	n/a	0.028	0.30
98926		00.6 107	<u>101.6</u> 107.4	0.4	P1S	21	19	10	0.009	0.05	0.009	n/a	n/a	0.048	0.30
98918 98919		07.4	107.4	0.4	P15	19	17	5	0.009	0.03	0.009	n/a	n/a	0.048	0.30
98919		08.4	108.4	1	P1S	7	18	9	0.009	0.05	0.009	n/a	n/a	0.040	0.18
98920)9.4	110.3	0.9	P1S	7	16	12	0.009	0.00	0.009	n/a	n/a	0.028	0.90
98922		10.3	111.3		P1S	14	9	3	0.009	0.03	0.009	n/a	n/a	0.048	0.30
98922		11.3	112	0.7	P1S	10	37	4	0.009	0.00	0.009	n/a	n/a	0.028	0.90
98924		4.75	115.4	0.65	P1S	8	27	41	0.009	0.01	0.009	n/a	n/a	0.028	0.90
98927		1.83	122.6	0.77	P1P1S	5	9	4	0.009	0.03	0.009	n/a	n/a	0.048	0.30
98928		34.6	135.21	0.61	P1P1S	6	9	11	0.009	0.05	0.009	n/a	n/a	0.068	0.18
98929		137	137.4	0.4	P1S	0.9	13	18	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98930		35.3	186.1	0.8	P1S	6	9	9	0.02	0.01	0.009	n/a	n/a	0.039	2.00
98931		38.8	189.8		P1	2	13	24	0.03	0.009	0.009	n/a	n/a	0.048	3.33
98932		3.55	209.2		IN4	11	9	6	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98933		09.2	210		IN4	12	9	8	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98934		210	211		IN4	5	9	4	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98935		211	212		IN4	7	9	4	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98936	216	5.47	217.2	0.73	IN4	22	9	2	0.009	0.009	0.009	n/a	n/a	0.027	1.00

							1					Total		
					Au	Pt	Pd	Ni	Cu	Co	Ag	Precious	Total	Nickel
Sample #	From m.	To m.	Distance:	Sulphide	FAI 30P	FAI30P	FAI30P	ICAY50	ICAY50	ICAY50	AAS 12E	Metals	Base	VS
Analysis		<u></u>	<u>M's</u>	Code	ppb	dqq	ppb	%	%	%	g/mt	Gold & Silver	Metals	Copper
(Detectio			<u></u>	0000	limit=1	limit=10	limit=1		limit=0.01	limit=0.01	limit=0.3	ppb	%	ratio
Delectio									1					
98937	217.2	217.72	0.52	IN4	181	9	3	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98938	217.72	218.62	0.9	IN4	41	9	2	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98939	218.62	219.1	0.48	IN4	5	9	3	0.009	0.01	0.009	n/a	n/a	0.028	0.90
98940	219.1	220.1	1	IN4	3	9	4	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98941	222	222.5	0.5	IN4	0.9	9	6	0.01	0.009	0.009	n/a	n/a	0.028	1.11
98942	223.99	224.99	1	IN4	13	9	3	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98943	237.65	238.4	0.75	IN4	8	9	6	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98944	244.13	244.82	0.69	IN4	29	9	3	0.009	0.02	0.009	n/a	n/a	0.038	0.45
98945	259.66	244.02	0.34	IN4	5	9	2	0.009	0.08	0.009	n/a	n/a	0.098	0.11
98946	263.52	264.06	0.54	IN4	32	9	2	0.009	1	0.06	n/a	n/a	1.069	0.01
98947	266.1	266.67	0.57	IN4	370	9	2	0.009	0.31	0.009	n/a	n/a	0.328	0.03
98948	268.5	269.34	0.84	IN4	20	9	2	0.009	0.24	0.009	n/a	n/a	0.258	0.04
98949	274.9	275.55	0.65	IN4	3	9	2	0.009	0.02	0.009	n/a	n/a	0.038	0.45
98950	282.9	283.9		IN4	35	9	2	0.009	0.38	0.03	n/a	n/a	0,419	0.02
98800	283.9	284.5	0.6	IN4	2	9	2	0.009	0.009	0.009	n/a	n/a	0.027	1.00
98800a	284.5	285.2	0.0	IN4	0.9	9	1	0.009	0.01	0.009	n/a	n/a	0.028	0.90
98800b	285.2	286.2	1	IN4	38	9	2	0.009	0.34	0.009	n/a	n/a	0.358	0.03
93721a	203.2	298.25	0.9	IN4	1	9	2	0.009	0.009	0.009	n/a	n/a	0.027	1.00
93728a	301.12	302.12	1	IN4	0.9	9	0.9	0.009	0.009	0.009	n/a	n/a	0.027	1.00
93722a	310.66	311.36	0.7	IN4	5	9	0.9	0.009	0.009	0.009	n/a	n/a	0.027	1.00
93723a	311.36	312.08	0.72	IN4	2	9	0.9	0.009	0.009	0.009	n/a	n/a	0.027	1.00
93724a	314.55	315.4	0.72	IN4	63	9	0.9	0.009	0.61	0.000	n/a	n/a	0.649	0.01
93725a	315.4	315.4		IN4	0.9	9	0.9	0.009	0.03	0.009	n/a	n/a	0.048	0.30
	315.4	310.4		1N4	0.9	9	0.9	0.009	0.009	0.009	n/a	n/a	0.040	1.00
93726a 93727a	320.5	320.75	0.25	IN4	0.9	9	0.9	0.009	0.009	0.009	n/a	n/a	0.027	1.00
	326.55	327.55	0.00	IN4	1	n/a	n/a	0.009	0.009	0.009	0.29	291	0.027	1.00
98601 98602	320.55	328.25	0.7	IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.00
			0.7	IN5	3	n/a	n/a	0.009	0.009	0.009	0.29	293	0.027	1.00
98603	328.25	329 330	0.75	1N5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.00
98604	329	330	1	IN5	9	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	0.18
98605	330 331	331	1	IND IND	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.009	1.00
98606			1	IN5 IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.00
98607	332	333	1	IN5	0.09	n/a n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.00
98608	333	334	0.7	IN5		n/a n/a	n/a	0.009	0.009	0.009	0.29	292	0.027	1.00
98609	334	334.7			6	n/a n/a	n/a	0.009	0.009	0.009	0.29	291	0.027	0.90
98610	334.7	335.7	1	IN5 IN5	15		n/a n/a	0.009	0.01	0.01	0.29	305	0.029	0.90
98611	335.7	336.7	· · · · · · · · · · · · · · · · · · ·			n/a		0.009	0.08	0.02	0.29	305		0.15
98612	336.7	337.7	1	IN5	12 26	n/a	n/a	0.009	0.09	0.02	0.29	302	0.119 0.179	0.10
98613	337.7	338.6	0.9	IN5		n/a	n/a				0.29		0.659	
98614	338.6	339	0.4	IN5	57	n/a	n/a	0.009	0.56	0.09		957		0.02
98615	339	340	1	IN5	5	n/a	n/a	0.009	0.03	0.02	0.29	295	0.059	0.30
98616	340	341	1	IN5	5	n/a	n/a	0.009	0.05	0.04	0.4	405	0.099	0.18

						-	Pd	A12	0	C -		Total	Tatat	
		~	D' 1	0.1-1-1-	Au	Pt		Ni	Cu	Co	Ag	Precious	Total	
Sample #	From m.	<u>To m.</u>	Distance:	Sulphide	FAI 30P	FAI30P	FAI30P	ICAY50	ICAY50	ICAY50	AAS 12E	Metals	Base	
Analysis L			<u>M's</u>	<u>Code</u>	ppb	dgg	<u>ppb</u>	%	%	_%	<u>g/mt</u>	Gold & Silver	<u>Metals</u>	
(Detection	Limit)			1	limit=1	limit=10	limit=1	limit=0.01	limit=0.01	limit=0.01	limit=0.3	ppb	%	
98617	341	342	1	IN5	1	n/a	n/a	0.009	0.009	0.009	0.29	291	0.027	1.0
98618	342	343	1	IN5	5	n/a	n/a	0.009	0.07	0.009	0.29	295	0.027	0.1
98619	343	344	1	IN5	44	n/a	n/a	0.009	0.31	0.009	0.4	444	0.328	0.0
98620	344	344.85	0.85	IN5	16	n/a	n/a	0.009	0.26	0.00	0.6	616	0.279	0.0
98621	344.85	345.6	0.75	IN5	9	n/a	n/a	0.009	0.05	0.009	0.29	299	0.068	0.0
98622	345.6	346.6	1	IN5	22	n/a	n/a	0.009	0.31	0.009	0.4	422	0.328	0.0
98623	346.6	347.6	1	IN5	58	n/a	n/a	0.009	0.7	0.03	1.2	1258	0.739	0.0
98624	347.6	348.6	1	IN5	17	n/a	n/a	0.009	0.25	0.02	0.4	417	0.279	0.0
98625	348.6	349.5	0.9	IN5	56	n/a	n/a	0.02	0.8	0.07	300.1	300156	0.89	0.0
98626	349.5	350.5	1	IN5	28	n/a	n/a	0.009	0.21	0.02	0.5	528	0.239	0.0
98627	350.5	351.45	0.95	IN5	2	n/a	n/a	0.009	0.02	0.009	0.5	502	0.038	0.4
98628	351.45	351.7	0.25	IN5	4	n/a	n/a	0.009	0.05	0.09	0.4	404	0.149	0.1
98629	351.7	352.7	1	IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.0
98630	352.7	353.7	1	IN5	1	n/a	n/a	0.009	0.01	0.009	0.29	291	0.028	0.9
98631	353.7	354.56	0.86	IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.0
98632	354.56	355.2	0.64	IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.0
98633	355.2	356	0.8	IN5	1	n/a	n/a	0.009	0.009	0.009	0.29	291	0.027	1.0
98634	356	357	1	IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.0
98635	357	358	1	IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.0
98636	358	358.9	0.9	IN5	0.09	n/a	n/a	0.009	0.009	0.009	0.29	290.09	0.027	1.0
93729A	365.73	366.33	0.6	IN4	0.9	9	2	0.009	0.009	0.009	n/a	n/a	0.027	1.0
93730A	366.33	367.03	0.7	IN4	0.9	9	2	0.009	0.009	0.009	n/a	n/a	0.027	1.0
93731A	367.03	367.6	0.57	iN4	0.9	9	0.9	0.009	0.009	0.009	n/a	n/a	0.027	1.0
						- <u> </u>		-						
DUP-98601	326.55	327.55	1		2	n/a	n/a	0.009	0.009	0.009	0.29	292	0.027	1.0
DUP-98613	337.7	338.6	0.9		24	n/a	n/a	0.009	0.14	0.03	0.29	314	0.179	0.0
DUP-98625	348.6	349.5	0.9		51	n/a	n/a	0.02	0.81	0.07	300.1	300151	0.9	0.0
DUP-98903	41.2	42.1	0.9		0.9	9	0.9	0.009	0.009	0.009	0.009	0.009	0.027	1.0
DUP-98915	88.5	89.25	0.75		2	11	8	0.01	0.01	0.009	0.01	0.009	0.029	1.0
DUP-98927	121.83	122.6	0.77		5	9	3	0.009	0.03	0.009	0.03	0.009	0.048	0.3
DUP-98939	218.62	219.1	0.48		6	9	0.9	0.009	0.009	0.009	0.01	0.009	0.027	1.0
DUP-98800	282.9	283.9	1		3	9	0.9	0.009	0.009	0.009	0.009	0.009	0.027	1.0
DUP-93730A	366.33	367.03	0.7		0.9	9	0.9	0.009	0.009	0.009	0.009	0.009	0.027	1.0

	€ U10-03 L	_ithology						
Hole-ID	from(m)	To(m)	Dist. M's	from(ft)	To(ft)	Dist in Ft	Lithology (Text)	
U-10-03	0.00	29.90	29.90	0.0	98.1	98.1	Casing	OB
U-10-03	29.90	30.25	0.35	98.1	99.2		Nipissing	3a
U-10-03	30.25	44.95	14.70	99.2	147.5	48.2	Metasediment/Arkosic Sediment	1bc
U-10-03	44.95	57.78	12.83	147.5	189.6	42.1	Nipissing Gabbro	3a
U-10-03	57.78	65.00	7.22	189.6	213.3	23.7	Rheomorphic Breccia	5a
U-10-03	65.00	81.67	16.67	213.3	267.9	54.7	Metasediment/Arkosic Sediment	1bc
U-10-03	81.67	161.58	79.91	267.9	530.1	262.2	Nipissing Gabbro	3a
U-10-03	161.58	167.24	5.66	530.1	548.7	18.6	Rheomorphic Breccia	5a
U-10-03	167.24	174.90	7.66	548.7	573.8	25.1	Nipissing	3a
U-10-03	174.90	176.70	1.80	573.8	579.7		Rheomorphic Breccia	5a
U-10-03	176.70	181.00	4.30	579.7	593.8	14.1	Nipissing	3a
U-10-03	181.00	183.36	2.36	593.8	601.6	7.7	Rheomorphic Breccia	5a
U-10-03	183.36	186.36	3.00	601.6	611.4	9.8	Nipissing	3a
U-10-03	186.36	189.80	3.44	611.4	622.7	11.3	Pyroxenite	3f
U-10-03	189.80	198.95	9.15	622.7	652.7		Rheomorphic Breccia	5a
U-10-03	198.95	202.50	3.55	652.7	664.4	11.6	Pyroxenite	3f
U-10-03	202.50	204.90	2.40	664.4	672.2	7.9	Rheomorphic Breccia	5a
U-10-03	204.90	254.93	50.03	672.2	836.4	164.1	Pecors Fmn. Siltstone	1b
U-10-03	254.93	326.66	71.73	836.4	1071.7	235.3	Quartzite, Siltstone, Arkose	1abc
U-10-03	326.66	335.70	9.04	1071.7	1101.4	29.7	Altered Metasediment	1an1b
U-10-03	335.70	358.90	23.20	1101.4	1177.5	76.1	Silicified Metasediment	1an1a
U-10-03	358.90	381.50	22.60	1177.5	1251.6	74.1	Quartzite	1a
U-10-03	381.50	381.50	0.00	1251.6	1251.6	0.0	EOH	EOH

U10-03 S	Structura	Elemen	ts									
							Rheomorph	hic				Lithology
Hole-ID	from(m)	To(m)	Dist. M's	from(ft)	To(ft)	Dist in Ft	Breccia	Code	S1	S2	S3	Code
U-10-03	31.50	32.50	1.00	103.3	106.6	3.3		fr			18,162	1bc
U-10-03	32.50	33.50	1.00	106.6	109.9	3.3		fr			8	1bc
U-10-03	33.50	33.60	0.10	109.9	110.2	0.3		fr			8,20,160	1bc
U-10-03	37.00	37.10	0.10	121.4	121.7	0.3		f		20		1bc
U-10-03	37.40	37.80	0.40	122.7	124.0	1.3	18	sz,bx	18			1bc
U-10-03	39.10	39.20	0.10	128.3	128.6	0.3		f,fr		38	38	1bc
U-10-03	41.10	44.95	3.85	134.8	147.5	12.6		fz			20,10,175	1bc
U-10-03	43.60	43.70	0.10	143.0	143.4	0.3		f		19		1bc
U-10-03	44.20	44.30	0.10	145.0	145.3	0.3		v			40	1bc
U-10-03	44.50	44.60	0.10	146.0	146.3	0.3		fr			0	1bc
U-10-03	45.00	45.10	0.10	147.6	148.0	0.3		f,fr		12	12	3a
U-10-03	45.10	45.20	0.10	148.0	148.3	0.3		fr,j			20	3a
U-10-03	45.90	46.00	0.10	150.6	150.9	0.3		v			12	3a
U-10-03	46.00	46.10	0.10	150.9	151.2	0.3		fr			38	3a
U-10-03	46.40	46.50	0.10	152.2	152.6	0.3		v			20	3a
U-10-03	46.60	46.70	0.10	152.9	153.2	0.3		v			160	3a
U-10-03	55.50	55.60	0.10	182.1	182.4	0.3		f		20		3a
U-10-03	55.88	55.89	0.01	183.3	183.4	0.0		v			50	3a
U-10-03	56.10	56.20	0.10	184.1	184.4	0.3		V,fr			38,142	3a
U-10-03	56.20	56.30	0.10	184.4	184.7	0.3		v,fr			40,140	3a
U-10-03	56.60	56.70	0.10	185.7	186.0	0.3		v			50	3a
U-10-03	57.50	57.60	0.10	188.6	189.0	0.3		f		18		3a
U-10-03	57.78	57.78	0.00	189.6	189.6	0.0		С		60		3a/5a
U-10-03	58.80	58.90	0.10	192.9	193.2	0.3		f		12		5a
U-10-03	59.80	59.90	0.10	196.2	196.5	0.3		f		18		5a
U-10-03	60.10	60.20	0.10	197.2	197.5	0.3		f		18		5a
U-10-03	60.75	60.80	0.05	199.3	199.5	0.2		f		12		5a
U-10-03	61.82	61.82	0.00	202.8	202.8	0.0		С		20		5a
U-10-03	63.80	63.90	0.10	209.3	209.6	0.3		f		15		5a
U-10-03	64.60	64.70	0.10	211.9	212.3	0.3		g	20			5a
U-10-03	65.00	65.00	0.00	213.3	213.3	0.0		C		19		1bc
U-10-03	65.50	65.60	0.10	214.9	215.2	0.3		f		49		1bc

							Rheomorpl	hic				Lithology
Hole-ID	from(m)	To(m)	Dist. M's	from(ft)	To(ft)	Dist in Ft	Breccia	Code	S1	S2	S3	Code
U-10-03	66.40	66.50	0.10	217.8	218.2	0.3		f		20		1bc
U-10-03	67.17	67.18	0.01	220.4	220.4	0.0		g	22			1bc
U-10-03	68.40	68.50	0.10	224.4	224.7	0.3		f		38		1bc
U-10-03	72.38	72.45	0.07	237.5	237.7	0.2		v			39	1bc
U-10-03	72.85	72.95	0.10	239.0	239.3	0.3		v			39	1bc
U-10-03	72.20	72.30	0.10	236.9	237.2	0.3		j			50	1bc
U-10-03	75.20	75.30	0.10	246.7	247.0	0.3		i			50	
U-10-03	76.20	76.30	0.10	250.0	250.3	0.3		j			55	1bc
U-10-03	76.60	76.70	0.10	251.3	251.6	0.3		f		40		1bc
U-10-03	81.67	81.67	0.00	267.9	267.9	0.0		С		42		3a
U-10-03	83.60	83.70	0.10	274.3	274.6	0.3		fr			40,166	3a
U-10-03	85.25	85.30	0.05	279.7	279.9	0.2		v			14	3a
U-10-03	86.20	86.30	0.10	282.8	283.1	0.3		fr		·	18,165	3a
U-10-03	87.60	87.70	0.10	287.4	287.7	0.3		fr			17,161	3a
U-10-03	94.50	94.60	0.10	310.0	310.4	0.3		f		38		3a
U-10-03	95.00	95.10	0.10	311.7	312.0	0.3		f,fr		50	10,170	3a
U-10-03	96.70	96.80	0.10	317.3	317.6	0.3		fr			38,162	3a
U-10-03	97.50	97.60	0.10	319.9	320.2	0.3		f,v		38	38	3a
U-10-03	103.00	103.10	0.10	337.9	338.3	0.3	· · · · · · · · · · · · · · · · · · ·	f	10-	45		3a
U-10-03	106.00	106.10	0.10	347.8	348.1	0.3		f		43		3a
U-10-03	109.00	109.10	0.10	357.6	357.9	0.3		f,v		38	38	3a
U-10-03	115.00	115.10	0.10	377.3	377.6	0.3		f		12		3a
U-10-03	85.25	85.39	0.14	279.7	280.2	0.5		v			14	3a
U-10-03	88.50	89.20	0.70	290.4	292.7	2.3		f,v		24	24	3a
U-10-03	94.23	95.15	0.92	309.2	312.2	3.0		f,v		50	50	3a
U-10-03	97.20	97.80	0.60	318.9	320.9	2.0		f,v		38	38	3a
U-10-03	114.75	119.00	4.25	376.5	390.4	13.9		f,v		12	12	3a
U-10-03	119.00	122.60	3.60	390.4	402.2	11.8		f,v		38	38	3a
U-10-03	122.60	123.00	0.40	402.2	403.5	1.3		f,v		40	40	3a
U-10-03	137.05	137.40	0.35	449.6	450.8	1.1		v			50	3a
U-10-03	141.30	141.40	0.10	463.6	463.9	0.3		f,v			38,138	3a
U-10-03	142.60	142.70	0.10	467.8	468.2	0.3		fr			42	3a
U-10-03	144.20	144.30	0.10	473.1	473.4	0.3		fr			38,142	3a
U-10-03	146.00	146.10	0.10	479.0	479.3	0.3		fr			38	3a
U-10-03	146.90	150.00	3.10	482.0	492.1	10.2		fr,v			40	3a

							Rheomorph	nic				Lithology
Hole-ID	from(m)	To(m)	Dist. M's	from(ft)	To(ft)	Dist in Ft	Breccia	Code	S1	S2	S3	Code
U-10-03	150.70	150.80	0.10	494.4	494.8	0.3		fr,v			39	3a
U-10-03	151.30	151.40	0.10	496.4	496.7	0.3		fr			42	3a
U-10-03	154.70	155.21	0.51	507.5	509.2	1.7		f		56		3a
U-10-03	159.40	159.50	0.10	523.0	523.3	0.3		fr			50	3a
U-10-03	161.20	161.30	0.10	528.9	529.2	0.3		v,fr			38	3a
U-10-03	161.58	161.60	0.02	530.1	530.2	0.1		V			20	5a
U-10-03	161.60	161.88	0.28	530.2	531.1	0.9		sz,f	20			5a
U-10-03	164.80	164.90	0.10	540.7	541.0	0.3		f		40		5a
U-10-03	165.50	165.60	0.10	543.0	543.3	0.3		f		38		5a
U-10-03	166.40	166.50	0.10	545.9	546.3	0.3		f		40		5a
U-10-03	167.24	167.30	0.06	548.7	548.9	0.2	· · · · · · · · · · · · · · · · · · ·	f		38		3a
U-10-03	167.50	167.60	0.10	549.5	549.9	0.3		fr			39,164	3a
U-10-03	169.50	169.70	0.20	556.1	556.8	0.7		fr			38,50,130,16	3a
U-10-03	171.55	171.60	0.05	562.8	563.0	0.2		fr			38	3a
U-10-03	174.90	174.90	0.00	573.8	573.8	0.0		с		45		5a
U-10-03	175.10	175.20	0.10	574.5	574.8	0.3		f			19	5a
U-10-03	176.70	176.70	0.00	579.7	579.7	0.0		С		18		5a
U-10-03	177.10	177.20	0.10	581.0	581.4	0.3		fr	~~~~~		38	3a
U-10-03	180.30	180.40	0.10	591.5	591.9	0.3		fr			38,158	3a
U-10-03	181.00	181.00	0.00	593.8	593.8	0.0		С		38		5a
U-10-03	181.00	181.10	0.10	593.8	594.2	0.3		f		38		5a
U-10-03	183.25	183.60	0.35	601.2	602.4	1.1		v			12	5a
U-10-03	184.44	184.78	0.34	605.1	606.2	1.1		f		42		3a
U-10-03	186.36	186.36	0.00	611.4	611.4	0.0	ĺ	С		40		3f
U-10-03	189.80	189.80	0.00	622.7	622.7	0.0		С		55		5a
U-10-03	190.40	190.50	0.10	624.7	625.0	0.3		f		20		5a
U-10-03	191.20	191.30	0.10	627.3	627.6	0.3		f		38		5a
U-10-03	193.80	193.90	0.10	635.8	636.2	0.3		f		38		5a
U-10-03	196.80	196.90	0.10	645.7	646.0	0.3		f		38		5a
U-10-03	198.95	198.95	0.00	652.7	652.7	0.0		С		20		3f
U-10-03	201.20	201.30	0.10	660.1	660.4	0.3		fr,v			45,135	3f
U-10-03	202.50	202.50	0.00	664.4	664.4	0.0		С		12		5a
U-10-03	204.90	204.90	0.00	672.2	672.2	0.0		С		42		1bc
U-10-03	208.55	208.60	0.05	684.2	684.4	0.2		f		55		1b
U-10-03	208.80	208.90	0.10	685.0	685.4	0.3		f		30		1b

							Rheomorpl	hic				Lithology
Hole-ID	from(m)	To(m)	Dist. M's	from(ft)	To(ft)	Dist in Ft	Breccia	Code	S1	S2	S3	Code
U-10-03	209.30	209.40	0.10	686.7	687.0	0.3		f		55		1b
U-10-03	211.10	211.20	0.10	692.6	692.9	0.3		f,sz	38	38		1b
U-10-03	212.10	212.20	0.10	695.9	696.2	0.3		f,sz	40	40		1b
U-10-03	212.04	221.54	9.50	695.7	726.8	31.2		f		52		1b
U-10-03	234.90	235.00	0.10	770.7	771.0	0.3		f		60		1b
U-10-03	236.85	236.90	0.05	777.1	777.2	0.2		f		50		1b
U-10-03	238.50	238.60	0.10	782.5	782.8	0.3		f		50		1b
U-10-03	243.28	243.30	0.02	798.2	798.2	0.1		f		50		1b
U-10-03	244.13	244.82	0.69	801.0	803.2	2.3	-	f		55		1b
U-10-03	256.20	257.35	1.15	840.6	844.3	3.8		fr			35	1abc
U-10-03	256.20	257.35	1.15	840.6	844.3	3.8		j			125	1abc
U-10-03	259.68	260.00	0.32	852.0	853.0	1.0		f		60		1abc
U-10-03	264.06	264.10	0.04	866.3	866.5	0.1		f		60		1abc
U-10-03	266.60	266.70	0.10	874.7	875.0	0.3	1	v,fr			58	1abc
U-10-03	274.90	275.55	0.65	901.9	904.0	2.1		f,v		60	60	1abc
U-10-03	286.36	287.00	0.64	939.5	941.6	2.1		bx		45	140	1abc
U-10-03	297.35	298.23	0.88	975.6	978.4	2.9		f,v		50	50	1abc
U-10-03	301.10	302.36	1.26	987.9	992.0	4.1		f		45		1abc
U-10-03	310.66	312.08	1.42	1019.2	1023.9	4.7		f		58		1abc
U-10-03	312.08	312.10	0.02	1023.9	1024.0	0.1		f,v		55	55	1abc
U-10-03	314.55	315.40	0.85	1032.0	1034.8	2.8		v			55	1abc
U-10-03	320.70	320.75	0.05	1052.2	1052.3	0.2		f,c		45		1abc
U-10-03	326.00	326.10	0.10	1069.6	1069.9	0.3		f		70		1anb
U-10-03	330.00	330.10	0.10	1082.7	1083.0	0.3		f		50		1anb
U-10-03	331.00	331.10	0.10	1086.0	1086.3	0.3		f		40		1anb
U-10-03	334.20	335.70	1.50	1096.5	1101.4	4.9		fz			50	1anb
U-10-03	337.00	337.10	0.10	1105.6	1106.0	0.3		f		50		1an1a
U-10-03	340.00	340.10	0.10	1115.5	1115.8	0.3		f		45		1an1a
U-10-03	341.00	341.10	0.10	1118.8	1119.1	0.3		f		40		1an1a
U-10-03	342.00	342.10	0.10	1122.0	1122.4	0.3		f		50		1an1a
U-10-03	347.00	347.10	0.10	1138.5	1138.8	0.3		f		60		1an1a
U-10-03	348.60	349.50	0.90	1143.7	1146.7	3.0		f,v		55	55	1an1a
U-10-03	354.80	356.05	1.25	1164.0	1168.1	4.1		fz			70	1an1a
U-10-03	356.05	356.25	0.20	1168.1	1168.8	0.7		fz			60,90	1an1a
U-10-03	356.25	357.40	1.15	1168.8	1172.6	3.8		fz	_		50	1an1a

							Rheomorph	nic				Lithology
Hole-ID	from(m)	To(m)	Dist. M's	from(ft)	To(ft)	Dist in Ft	Breccia	Code	S1	S2	S3	Code
U-10-03	365.75	368.20	2.45	1200.0	1208.0	8.0		fz			60	1a
U-10-03	368.20	368.80	0.60	1208.0	1210.0	2.0		fz		45	150	1a
U-10-03	381.50	381.50	0.00	1251.6	1251.6	0.0		f		60		1a

U10-03 E	Borehole	Orientati	on Surv	еу								
Date	Instrument	Hole-ID	Meters	distance (ft)	Dip	Azimuth	Mag Decl.	Corrected	Magnetic	Percent	Magnetic	
									Deflections	Change	Values nt.	
									Change	E or West		
									Posi	tive = Grid \	Vest	
								Nega	ative = Grid			
Mar 04/05	Collar	U-10-03	0.00	0.00	-45	n/a	n/a	147	n/a	n/a	n/a	n/a
Mar04/05	Ez Shot	U-10-03	36.00	118.08	-47.1	154.5	9 deg's W	145.5	-1.5	-1.020	5673	56730
Mar 04/05	Ez Shot	U-10-03	100.00	328.00	-44.7	154.5	9 deg's W	145.5	-1.5	-1.020	5674	56740
Mar 07/05	Ez Shot	U-10-03	331.60	1087.65	-40.5	156.3	9 deg's W	147.3	0.3	0.204	5697	56970
Mar 12/05	Ez Shot	U-10-03	381.00	1249.68	-38.7	156.4	9 deg's W	147.4	0.4	0.272	5683	56830
			· · · · · · · · · · · · · · · · · · ·									
NOTE:	missing tes	ts between	interval 10	00 meters to 3.	31.6 m.	******		•• ···				

Appendix IV

Ursa Major Minerals Inc. Stumpy Bay Option Property

Company-Vendor Option Agreement

And sheet depicting Recorded Holders

THIS OPTION AGREEMENT dated as of the 21st day of March, 2003.

AMONG:

Ł

URSA MAJOR MINERALS INCORPORATED

a corporation duly incorporated under the laws of the Province of Ontario

(the "Optionee")

OF THE FIRST PART

- and -

DAN BRUNNE, MITCHELL BERNARD TURCOTT and BRIAN POLDEN

individuals resident and domiciled in the Province of Ontario

(collectively, the "Optionors")

OF THE SECOND PART

WHEREAS the Optionors are the owners of a 100% undivided interest in the Optioned Property (as hereinafter defined) and seek to grant the Optionee the sole, immediate, exclusive and irrevocable option (the "**Option**") to acquire a 100% undivided interest in the Optioned Property and the Optionee is interested in acquiring the Option, all on and subject to the terms and conditions hereinafter set forth;

AND WHEREAS the Optionors are the owners of a 100% undivided interest in the Baldwin Claim (as hereinafter defined) and the Optionor seeks to sell, assign and transfer to the Optionee a 100% undivided interest in the Baldwin Claims, free and clear of any and all Encumbrances (as hereinafter defined), all on and subject to the terms and conditions hereinafter set forth;

NOW THEREFORE THIS AGREEMENT WITNESSETH that in consideration of the mutual covenants, conditions and premises herein contained, the sum of TWO DOLLARS now paid by each of the Parties (as hereinafter defined) to the other and for other good and valuable consideration (the receipt and sufficiency whereof being hereby acknowledged), the Parties do hereby covenant and agree as follows:

IN WITNESS WHEREOF, the parties hereto have executed and delivered this Royalty Agreement as of the date and year first above written.

URSA MAJOR MINERALS INCORPORATED

1.2,

ness

Per:

Dan Br Inne

St Mitchell Turçett Tard

Brian Polden

Witness

- ~ . . .

government including any ministry, department or administrative or regulatory agency or authority.

"Losses" shall mean actual losses, liabilities, damages, injuries, costs or expenses.

"Option" shall have the meaning set forth in the preambles to this Agreement.

"Optioned Property" shall mean those unpatented mining claims No's. 1231439, 1231440 and 1231441, known as the Stumpy Bay Property, located in Shakespeare Township, in the Sudbury Mining District No. 70, Province of Ontario.

"Optionee" shall mean Ursa Major Minerals Incorporated.

"Optionors" shall mean collectively, Dan Brunne, Mitchell Bernard Turcott and Brian Polden (who shall be treated as one Party for the purposes of this Agreement).

"Option Period" shall mean the period during which the Option is in full force and effect as provided herein.

. it . . .

"Parties" shall mean collectively, the Optionors and the Optionee.

"Party" shall mean either the Optionors or the Optionee.

"Payments" shall have the meaning set forth in section 5.1.

"Person" shall mean any individual, partnership, company, corporation, unincorporated association, person, government or governmental agency, authority or entity howsoever designated or constituted.

"Property" shall mean collectively, the Optioned Property and the Baldwin Claim.

"Royalty Agreement" shall mean the royalty agreement in the form attached hereto as Schedule "A" and forming a part hereof.

"Termination Notice" shall have the meaning set forth in section 9.2.

"Transfer" when used as a verb, shall mean to sell, grant, assign, encumber, pledge or otherwise commit or dispose of, directly or indirectly, including through mergers, consolidations or asset purchases. When used as noun, "Transfer" shall mean a sale, grant, assignment, pledge or disposal or the commitment to do any of the foregoing, directly or indirectly, including through mergers, consolidations or asset purchases.

1. **DEFINITIONS**

1.1 **Definitions**. In this Agreement:

"this Agreement", "herein", "hereby", "hereof", "hereunder" and similar expressions shall mean or refer to this Agreement and any and all agreements or instruments supplemental or ancillary hereto and the expression "section" followed by a number means and refers to the specified section of this Agreement.

"Affiliate" shall mean any person, partnership, joint venture, corporation or other form of enterprise which directly or indirectly Controls, is controlled by or is under common Control with a Party.

"Agents" shall mean servants, employees, agents, workmen and contractors.

"Baldwin Claim" shall mean unpatented mining claim No. 1203117, located in Baldwin Township, in the Sudbury Mining District, No. 70, Province of Ontario.

"Consideration Shares" shall have the meaning ascribed thereto in section 5.1.

"Control" shall mean possession, directly or indirectly, of the power to direct or cause direction of management and policies through ownership of voting securities, contract, voting trust or otherwise.

"Deed" shall have the meaning set forth in section 7.2.

"Effective Date" shall mean March 21, 2003.

"Encumbrances" shall mean any and all mortgages, pledges, security interests, liens, charges, encumbrances, contractual obligations and claims of others, recorded and unrecorded, registered and unregistered.

"Escrow Agent" shall have the meaning set forth in section 7.2.

"Escrowed Documents" shall have the meaning set forth in section 7.2.

"Falconbridge" shall mean Falconbridge Limited.

"Falconbridge Agreement" shall have the meaning set forth in section 7.3.

"Laws" means collectively, all federal, provincial, territorial, municipal or local statutes, regulations and by-laws applicable to the Parties or the Property, or to any activities thereon, including without limitation, all orders, notices, rules, decrees, decisions, codes, guidelines, policies, directions, permits, approvals, licenses and similar authorizations issued, rendered or imposed by any level of

Attached Sheet Depicting the Recorded Holders.

Mitchell Bernard Turcotte Box 338 662A Agnew Lake Road Webbwood, Ontario P0P 2G0

Telephone: (705) 869 – 1984 Fax: (705) 272 – 7183

Client No., 203573

Dan Albert Brunne c/o Lordan Explorations P.O Box 35 Main Street, Whitefish, Ontario P0P 2H0

Telephone: (705) 285 – 4422 Fax: (705) 285 – 0216

Client No., 112992

Appendix V

Diamond Drilling Expenditures-Invoices for D.H. U10-03

Stumpy Bay Option U10-03.

~

-	Drill Hole	METERS	SAMPLES	DRILLING	REFLEX	MOB/DMb	SUPPLIES	15% Handling	INVOICE#	CHECK#	CLAIM#	M/CLAIM	Total\$'s
	U10-03	381.5	62	25763.5	562.5	5376		155.05	SY-000285		1231440	209.8	38288
				6627	560	2520					355 9 7	171.7	31327
							1033.7		SY-000302				
	' .												69615
	\$SubTotal	381.5	1540.7	32390.5	1122.5	7896	1033.7	155.05					44138.45
	\$'s/m			84.90	2.94	20.70	2.71						

Statement of Costs	s for Assessmen	t Credit U07			
ype of work	Units	Cost/meter	Total Cost	Rounded	
NQ Drilling	381.5	85.63	44138.45	44138	
Core Logging		7.68	2929.92	2930	
Proj.Supv'n		9.08	3464.02	3464	
Sampling		6.15	2346.23	2346	
Assays	62	24.85	1540.70	1541	
Mobil'zn		20.7	7897.05	7897	
Materials		2.71	1033.87	1034	
15% Material Handl	ling	15%	155.08	155	
7% Gst		7%	4445.37	4445	
Transporation	0.5	914.25	457	457	
Food/I\Lodging	2	603.75	1,208	1208	Total\$'s/m
	Gross Valu	e Assessment	69615.31	69615	

,

(g, X) = 0

claim	performed	applied	assigned	bank
35597	31327	0	0	31327
1231439	0	800	0	
1231440	38288	4800	2400	31088
1231441	0	1600	0	
totals	69615	7200	2400	62415

Appendix VI

Major Dominik Drill Invoices

INVOICE

...

. - --

Forage MAJOR

.

U-10-

Drilling 180 Cree Crescert, Winnipeg, Manitoba R3J 3W1 / Phone (204) 885-7532 / Fax (204) 831-8548 winnipeg@majordrilling.com

To: Ursa Major Minerals Inc. Suite 1300 8 King Street East Toronto , Ontario M5C 1B5 Canada	Invoice No : Contract ; Customer No : Dat e ;	SY-000285 00455 R22URSMAJ Mar 15, 2005	
Re: URSA MAJOR Shakespeare Period : Mar 1, 2005 - Mar 15, 2005	Drill :	1404 Boyles 3	5A
DRILL DETAIL Drilling	SY-00455-5100		\$25,763.70
CUSTOMER DAY WORK Customer Time	SY-00455-5500		\$1 7,9 79.00
CHARGABLE MATERIALS Materials	SY-00455-5400		\$3,631.01
MISC. OPERATIONS Equipment Rontal	SY-00455-5800-EQUIP		\$1,125.00
LUMP SUM CHARGES Customer Time	SY-00455-5500	ı	\$560.00
Total			\$49,058.71
GST No. R898954896	3055-CAN	7.00 %	\$3,434.11
Invoice Total			\$52,492.82

0.1K. BD appril 26/05

Ursa Major Minerals Inc.

Suite 1300 8 King Street East Toronto, Ontario, Canada M5C 1B5 Involce for Contract # : 00455 URSA MAJOR Shakespeare

Period Start : 01-Mar-2005	Custc ner # :	R22URSMAJ
Period End : 15-Mar-2005	Invoice # : Printed On :	

Drill: 1404 Boyles 35A

ORILI DETAL

	Hole	Size Description	Quantity	Units :	kate per Unit	Calculated	Totai
Drilling							
Overburden							
0.00 - 10.00	DDH-U10-03	NW 0.00 - 10.00	10.00	Meters	3 65.00	\$ 650.00	
		Operation Total :	10.90	Maters			5650.00
Cost Plus Over	ourden Depth						
10.00 - 80.00	DDH-U10-03	NW 10.00 - 29.90	19.90	Meters	\$ 0.00	\$ 0.00	
		Operation Total :	19.90	Meters			S0.00
Coring							
0.00 - 150.00	OOH-U10-03	NQ 22.90 - 150.00	120.10	Meters	\$ 65.00	\$ 7,808.50	
150.00 - 300.00	DDH-U10-03	NQ 150.00 - 300.00	150.00	Meters	\$ 73.00	\$ 10,950.00	
300.00 - 430.00	DDI)-U10-03	NQ 300.00 - 381.50	81.50	Meters	\$ 78.00	\$ 6.357.00	
		Operation Total :	351.60	Meters			\$25,113.50
		Category Total	381.50	Meters	······································	7	\$25,763.50

FUSTOMES D	AY WORK
	网络拉拉马马马马拉马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马

Date	Hole	Description	Additional Equip.	Drill Hours	Man Hours	Rate	Cal	culated	Total
Additional	Equipment								
01-Mar-20	05	Skidder	8.00 hrs			\$ 60.00	/hr	\$ 460.00 🗸	
02-Mar-20	05	Skidder	4.00 hrs			\$ 60.00	/hr	\$ 240.00 ->	
¥ 13-Mar-20	05	Skidder	8.00 hrs			\$ 60.00	/hr	\$ 480.00 ¥	
14-Mar-20	05	Skidder	12.00 hrs			\$ 60 00	/hr	\$ 720.00 🗸	
15-Mar-20	05	Skidder	10.00 hrs			\$ 60.00	/hr	\$ 600.00 🗸	· /.
			42.00 hrs					\$ 2	1,520.00 MG
Drill Hours									•
Custome	r Time								<i>*</i>
	05 008-019-03	Cust Plus Overburden		2.00 hrs		\$ 141.00	/hr	\$ 282.00 🗸	
	05 DDH-L 10-03	Special Operations		6.00 hrs		\$ 141.00	/hr	\$ 846.00 🗸	
	05 DDH-U 10-03	Special Operations		2.00 tars		\$ 141.00	/hr	\$ 282.00	
07-Mar-20	05 DDH-U10-03	Special Operations		2.00 hrs		\$ 141.00	/hr	£282.00√	

Ursa Major Minerals Inc.

U,

HILLIST

Lanutora

Suite 1300 8 King Street East

Toronto, Ontario, Canada M5C 1B5

Invoice for Contract # : 00455 URSA MAJOR Shakespeare

Period Sta Period En	art: 01-Mar Id: 15-Mar	-2005 -2005		łr	ustomer # : nvoice # : rinted On :	\$Y-00	RSIMAJ 10285 ar-2005		
Drill : 14	104 Boyles	35A							
	005 DDH-U10		ciał	18.00 nrs	\$ 141.	00 /hr	\$ 2,258.00 🗸		
(19-Mar-2)	005 DDH-U 10-	•	eralions ecisi	10.00 hrs	\$ 141.	00 /hr	\$ 1,410.00 🗸		
10-Mar-2	005 DDH-U10-	03 Spe	erations Iclai	2.00 ms	\$ 141.	00 /tu	¥ 282.00 🗸		
12-Mar-2	005 DDH-U10-	03 Spa	arations acial grations	3.00 hrs	\$ 14 1 .	00 /hr	\$ 423.00 /		
Reamin	1 D								
	005 DDH-U10-	C3 Rea	eming	3.00 Ins	\$ 141.	00 /hr	\$ 423,00 ->		
	005 DDH-U10-		aming	1,00 hr	\$ 141.	00 /hr	\$ 141.00		, š.,,
				47.00 hrs			\$	6,627.00	4
Man Hour	rs.								
Custor	ner Time						0 4 TO 0 00 - 2		
01-Mar-2	2005 DDH-07+1	4 Mo	ving			.00 Atr	\$ 1,728.00 V		
02-Mar-2	2005 DDH-07-1	4 Mo	ving	36.0		.00 Anr	\$ 1,728.00 /	بحاجبتهم المتحاج الحاصي	
13-Mar-2	2005 DDH-U10	-03 Mo	ving.		-	.00 /hr	\$ 766.00 V		
14-Mar-2	2005 DOH-U10	-03 Mo	wing			.00 /hr	\$ 2,304.00 V		
15-Mar-2	2005 DOH-U10	-03 Me	ving	48.0	0 hrs \$48.	.00 /hr	\$ 2,304.00 V		
				184.	00 hms		\$	8.832.00	1. j. j. 1. j.
			Additional Equipment Drill Hours Man Hours	42.00 hrs 47.00 hrs 184.00 hrs	\$ 14	0.00 /h) 1.00 /h) 8.00 /h)	г \$6	,520.00 ,527.00 ,832.00	
			Total	273.00 hrs			\$ 17	,979.00	
CHARGE	SLE MATER	UALS							
	Date	Hole	Description	Quantity Un	its Rate per l	Jnit	Calculated	Total	
Materials	02 Mar-2005	ODH-07-14	Propena (100lb)	10.00 Ea	-h \$7(0.00	\$ 700.00	/	
	03-Mar-2005			1,00 Ea:			\$ 237.60 ~		
	03-Mar-2005			9.00 Ea			S 1.311.30		
	03-Mar-2005			5.00 Ea		4.90	\$ 274.50~		
	05-Mar-2005			1.00 Ea			\$ 128.50		
	11-Mar-2005			1.00 Ep			S 128.50 V		
	15-Mar-2005			1.00 Ea			\$ 152.00 V	-	
	15-Mar-2005			100.00 Ea		2.25	\$ 225.00 0	/	
							\$	3.157.40	
			Sub - Total				\$ 3	,157.40	
			Mark up on materiai	15.00)%			473.61	
			Total				\$ 3	,631.01	

Pegc 3 of 4

1191

LU UU JUILUA

Suite 1300 8 King Street East Toronto, Ontario, Canada M5C 1B5 Invoice for Contract # : 00455 URSA MAJOR Shakespeare

Period Start : 01-1 Period End : 15-1 Drill : 1404 Boyl	Mar-2005			in	voice # : SY-	2URSMAJ 000285 Mar-2005		
MIBC: OPERATIO Date Dev Equipment Rental 15-Mar-2005 Ren	scription		Quantity 0.50	Unk	Is Rate per Unit \$ 2,250.00	Calculated \$ 1,125.00 \$	Total 1,125.00	~
LUMP SUM CHA	RGEN							
	Hole	Depth	Quantity	Units	Rate per Unit	Calculated	Total	
Customer Time Hole Survey								
	DDH-010-03	36.00, 100.00, 151.80, 200.60, 252.40, 331.60, 381.00	7.60	N/A	\$ 80 00	\$ 550.00		
		•	7.00			. (\$ 560.00	
		Total	7.00				·	1*
					Drill Total :	\$ 49,	058.51	

Groupe Forage	\mathcal{IO}						
) L Internationa	RAPPORT	LS USED OR LOST : DU MATÉRIEL UTILISÉ :			40 . 40
Nont du Contra		4 . MAS	or	Contrast Nu /		mar or 105	Mar
tiole No/ Rou No	Date	Quantity/	A runner working in A runne di buren Videner	RESMENSION OF NOL / Enregimen Tau Remarks (Show Reparques Omliquet	Serial No. of Diamons	Yed.	Continues Indune of Otory
eou nus	Anorth	10 es	- HUNDER		mane		C
	Ave 13	300		24" HOOK	\$		
	103	200	,	24" HEE	5		
	103	lea	·	Nal Casil	6 SHOE	#32777-01	C
	Vog	9 20	•	New Cashi	6 IDFE		C
	103	1 Ron		Cleancial			
	V 03	100				GAUGE	
	× 03	100		NO STAR			
	-03	100	-	NQ LAN	SING RA	46	
	403	100		6pk 121	Light &	ulbs	
	V05	400		Core Lis	TEL CH	545	
	¥ 25	4ca		Core LIA	TER S	5.05.	
	r c5	1 00		20 litre	aid De	W200 Mud.	G
	v 03	500		.	w cast	NG	0
	-06	443-		Core Lip	TER JPR	NES	
	11	lea		P			<u> </u> <u>c</u>
	1			CASING	TEE	2 152.00	
	1			2017 M CASING 100 FT	OF RE	TAN HOSE	
				e	\$ 2, 25	Per/ Foot	-
						/	
	4	ľ					
		1					
				The second			

Appendix VII

MNDN Declaration of Assessment

Ontario Ministry of Northern Development and Mines

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)

Assessment Files Research Imaging

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Personal information collected on this form is obtained under the authority of subsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Instructions: - For work performed on Crown Lands before **recording** a claim, use form 0240. - Please type or print in ink.

1. Recorded holder(s) (Attach a list if necessary)

Name	Client Number	
Ursa Major Minerals	303758	
Incorporated		
Address	Telephone Number	(416) 864-0615
Suite 1300 – 8 King St. East		
Toronto, Ontario M5C 1B5	Fax Number	
	(416) 864-0620	
Name Falconbridge Limited	Client Number	
	130679	
Address	Telephone Number	
Suite 1200-95 Wellington St. W.	(416) 982-7111	
Toronto, Ontario M5J 2V4		
	Fax Number	
	(416) 982-3525	

2. Type of work performed: Check (</) and report on only ONE of the following groups for this declaration.

0							\mathbf{X}		I: drilling st g and asso	ripping, ociated assays		Rehabilitation
Work	Туре										Office Us	e
										Commodity		
NQ Di	amon	d Drilling	g Explor	ation				_		Total \$ Value of Work Claimed		
Dates Perform		From	01 Day	03 Month	2005 Year	То	15 Day	03 Month	2005 Year	NTS Reference		
Global Positioning System Data (if available) Township/Area: Shakespeare Township				Mining Division	Sudbury							
					M or G	i-Plan Nu	mber G-300	1		Resident Geolog District	ist Sudbury	

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;
 - complete and attach a Statement of Costs, form 0212;
 - provide a map showing contiguous mining lands that are linked for assigning work;
 - include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name Harold Tracanelli	Telephone Number (705) 896-6208
Address Ursa Major Minerals Inc	Fax Number
	(705) 896-1033
Name 847 Agnew Lake Road, Box 250	Telephone Number
	Cell: (705) 691-1010
Address Webbwood, Ontario	Fax Number
Name	Telephone Number
E-Mail: Harold.Tracanelli@bellnet.ca	
Address	Fax Number

4. Certification by Recorded Holder or Agent

<u>Harold J. Tracaneu</u>, do hereby certify that I have personal knowledge of the facts set forth in

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder of Agent A. Tracane	Date: 2005 Hor / 2006	
Agent's Address	Telephone Number	Fax Number
Box 122, Onaping, Ontario P0M 2R0	(705) 966-1517	(705) 966-1517

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)

Assessment Files Research Imaging

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Personal information collected on this form is obtained under the authority of subsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Instructions: - For work performed on Crown Lands before **recording** a claim, use form 0240. - Please type or print in ink.

1. Recorded holder(s) (Attach a list if necessary)

Name	Client Number
Dan Brunne	112992
Address	Telephone Number
P.O. Box 35	
Whitefish Falls, ON	Fax Number
P0P 2H3	
Name Mitchell Turcotte	Client Number 203573
Address P.O. Box 35	Telephone Number
Whitefish Falls, ON	
P0P 2H3	
	Fax Number

2. Type of work performed: Check (<) and report on only ONE of the following groups for this declaration.

	Geotechnical: prospecting, surveys, assays and work under section 18 (regs)								Physical: drilling stripping, Rehabilitation trenching and associated assays					
Work	Vork Type											Office Use		
											Commodity			
NQ Di	iamond [Drilling	Explora	ation							Total \$ Valu Work Claim			
Dates Perform		rom	01 Day	03 Month		2005 Year	То	15 Day	03 Month	2005 Year	NTS Refere	ence		
Global Positioning System Data (if available) Township			hip/Area:	Shakespea	re Township)	Mining Divis	Mining Division Sudbury						
	M or G-Plan Nun					Plan Numb	er G-3001			Resident G	Resident Geologist Sudbury			
											District			

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name Harold Tracanelli	Telephone Number
	(705) 896-6208
Address Ursa Major Minerals Inc	Fax Number
	(705) 896-1033
Name 847 Agnew Lake Road, Box 250	Telephone Number
	Cell: (705) 691-1010
Address Webbwood, Ontario	Fax Number
Name	Telephone Number
E-Mail: <u>Harold.Tracanelli@belinet.ca</u>	
Address	Fax Number

4. Certification by Recorded Holder or Agent

1. <u>Harold J. Iraca nelli</u>, do hereby certify that I have personal knowledge of the facts set forth in

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true

Signature of Recorded Holder of Agent H Track	anelli Janua	Date: 2006
Agent's Address Box 122, Onaping, Ontario P0M 2R0	Telephone Number (705) 966-1517	(705) 966-1517

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

work w mining column	Claim Number. Or if as done on other eligible I and, show in this the location number led on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	35597	16 ha	\$31327	\$0	\$0	\$31327
2	1231440	6	\$38288	\$4800	\$2400	\$31088
3	1231441	2	\$0	\$1600	\$0	\$0
4	1231439	1	\$0	\$800	\$0	\$0
5						
6						
7						
- 8						
9						
10						
11						
12						
13						
14						
15						
	Column Totals		\$69615	\$7200	\$2400	\$62415

1, Harold J. Tracanelli, do hereby certify that the above work credits are eligible under

Subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim Where the work was done.

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

□ 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

□ 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only			
Received Stamp	Deemed Approved Date	Date Notification Sent	
	Date Approved	Total Value of Credit Approved	
0241 (03/97)	Approved for Recording by Mining Recorde		-
Signature of Recorded Holder or Agent Authorized in Writing			

Statement of Costs for Assessment Credit

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	Units of work Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cos
NQ Diamond Drilling	381.5 meters	\$85.63/m	\$44138
Core Logging	381.5 meters	\$7.68/m	\$2923
	381.5 meters	\$9.08/m	\$3464
Project Supervision	381.5 meters	\$6.15/m	\$2346
Sampling	62 samples	\$24.85/sample	\$1541
Associated Costs (e.g.	supplies, mobilization and demobilization).		
Diamond Drilling Mobilization-D	Demob	\$20.70/m	\$7896
Drilling Materials and Supplies		\$2.73/m	\$1034
15% Handling Charges on Mate	erials		\$155
GST @ 7% on Goods and Ser			\$4445
т	ransportation Costs		
Truck Rental Charges	.5 months	914.25/month	\$457
Fo	od and Lodging Costs		
Lodging	2 weeks	\$603.75/week	\$1208
	Total	/alue of Assessment Worl	\$69615 k

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

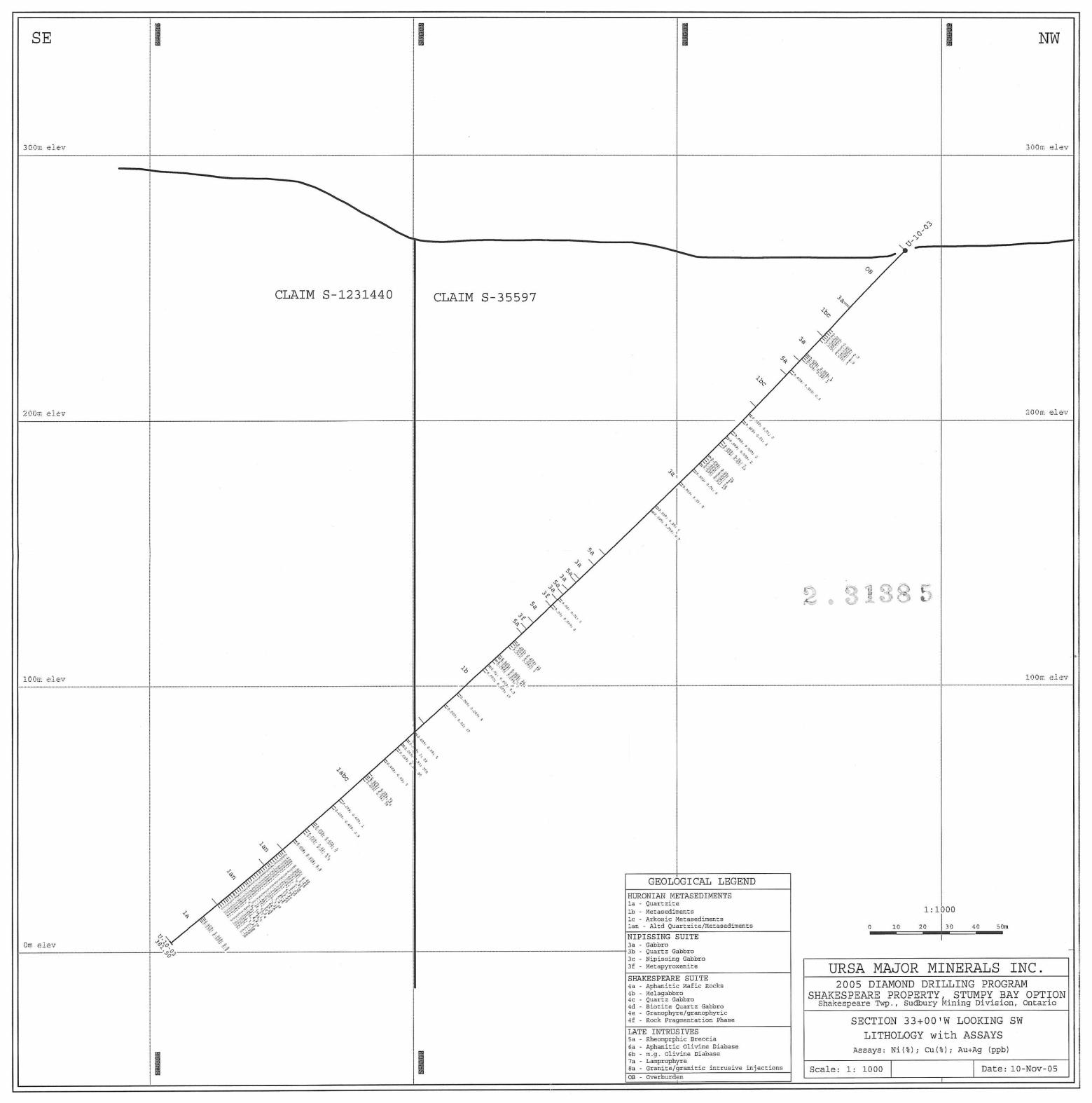
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total

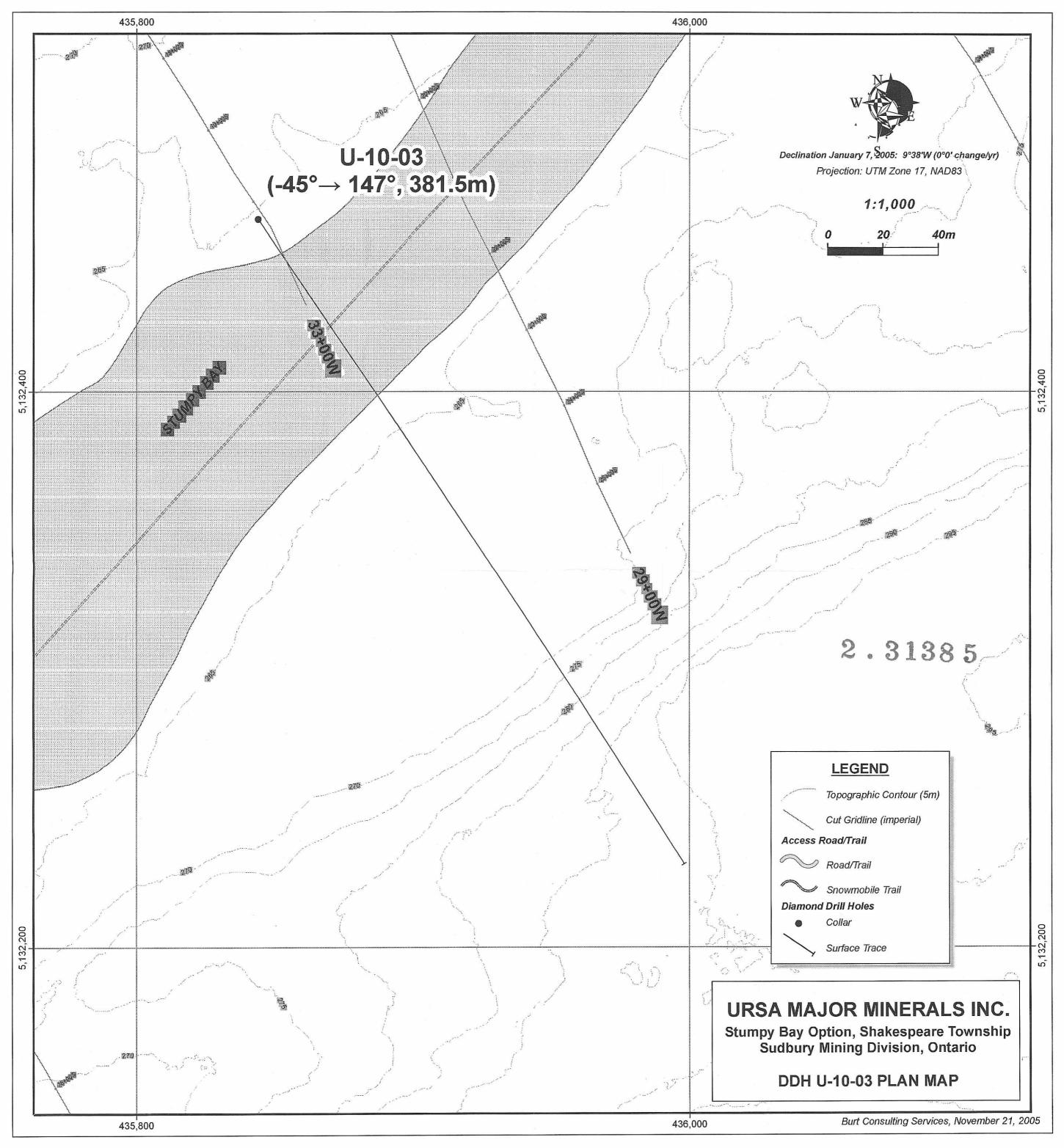
Value of Assessment Work. If this situation applies to your claims, use the calculation below:

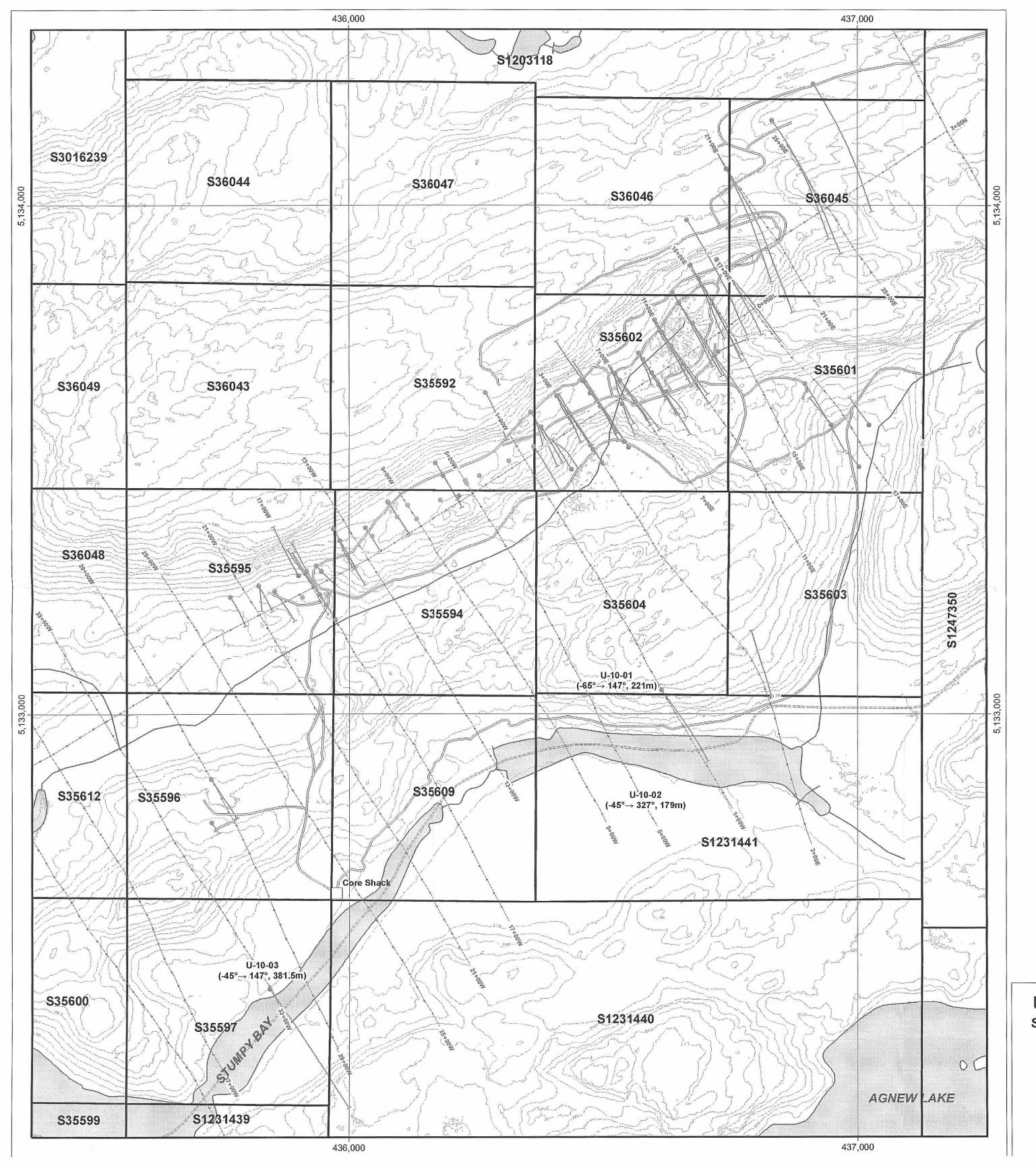
TOTAL VALUE OF ASSESSMENT WORK	x 0.50 =	Total \$ value of worked claimed.

Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request request for verification and/or correction/clarification. If verification and/or correction/clanification is not made, the Minister may reject all or part of the assessment work submitted.

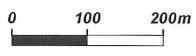

Certification verifying costs:	
Harold J. Tracanelli, do hereby cert	ify, that the amounts shown are as accurate as may reasonably
	g assessment work on the lands indicated on the accompanying
Declaration of Work form as	am authorized to make this certification.
0212 (03/97)	Bignay B Date Date Lancia 12+1/200


IN POCKETS:


D.H.U10-03 1:1000 Scale Section

D.H. U10-03 1:1000 Scale Plan

Stumpy Bay Property Scale Plan 1:5000



Declination January 7, 20	05: 9°38'W (0°0' change/yr)
Projection: UTN	1 Zone 17, NAD83

1:5,000

2.31385

LEGEND

Topographic Contour (5m) Cut Gridline (imperial) Access Road/Trail Road/Trail Snowmobile Trail Diamond Drill Holes Stumpy Bay Collars Shakespeare Collars Shakespeare Trace

URSA MAJOR MINERALS INC. Stumpy Bay Option, Shakespeare Township Sudbury Mining Division, Ontario

> SHAKESPEARE GRID AREA DRILL HOLE LOCATION MAP

Appendix II

Diamond Drill Hole Log for U10-03

Ministry of Northern Deve and Mines	Ministère du elopment et des Mines	du Nord Diam Drilli Log		au M		relate Remp					every page ces cases à page	Eor	e No. age nº	Page No. Page nº
Drilling Company Compagnie de forage	MAJOR DON	INCK.	Collar Elevation Élévation du collier	Bearing of hole from true North/Position du forage per rapport et nord arai forage	du Inclinaison du forage au	Adressa/a		arotte est stor	ckée	Map Referen N° de référe	nce sur la ca	rte N°	im No. de concession 35594	123144
Date Hole Started Date de commencement d	u forage Date Completed Date d'achèverne	int .	Date Logged Date d'inscription au journal	Logged by Inscrit par D. MACMILLAN	FL/PI		33+a 0+13			Emplacemen		concession,	ou latitude et	
	Optionee propriétaire ou titulaire d'option	TANK	Date Submitted Date de dépôt	Submitted by (Signature) Déposé par (signature)	FL/PI	Az 147°.				Property Name Nom de la propriété				
YKSA	MAJOR MI	VERES.	-		FL/Pi					STUMPY BAY OPTION.				N.
Footage/Avancement From/De To/À	Rock Type Type de roche	Des	Description (Colouscription (Couleur, ge	ur, grain size, texture, minerals, alter ranulométrie, texture, minéraux, tran	ation, etc.) sformation, etc.)	Planar Feature Angle 'Angle des carschiristiques planes	Core Specimen Footage † / Longueur en pieds des carpties prélevées	Your Sample No. N° d'échantillon du prospecteur	Sample Feotag Idvament de l'éch From/De	e/Niveau de prá- nantillon (en pieds) To/Å	Sample Length Longueur de ('échantillon	Assays †/A	nalyses mine	Fraturgiques
0 29.9	CIERBURDEN	CASI	NG											
29.9 30 25	NIPISSING			EQUI GRANULA	R, CARBOURTE	39	299	3629	197	SIBLE	Car	LDER	RIT	
	GABBLO	+ CHLOR		PHUE FRACTURE	FIBRAIC ~244				15	FALE	4 EO	FACE	CONTR ADD	rei
	(30)	DIAMET	NO ITALE	e 461 FIPLI	Tertime/GREY 45%			·	NOT	QUI	DIZE		100	
	(Say	BIETTE	= RUPUZY	BROON IMM Y	tracs en 101			-	134.4		PICE			
		4	UFG INTE	ASTITIAL DISSER	us e 2-31	-				_				
		ILMEUNT	$\leq \leq 1/$	B TR CB	en 1%.1									
1.0.					1 1					1444.			No.	1.19
3025 4495	METASEDIMENT	FGTO	FG/NG,	IT WHITEIGH GU	EV, MASSIVE	IC	5075	3420	MODE	RATELY		(RONGE)	REVE	LOPED
	TO APROSIC	TO MOD	GRATTELY	FOLIATED, 1655	SIPLE LAMINATU	Nr			COD J	uGAM	E HAN	RLINE	FRACI	Celes s
	5EI)	IN SEC	TIONS? (SR FOLINE @ 2.	-SAM SPACINES,	-			THRU	Qui	XN, I	ALSO C	HLORIT	TC
	$\langle \dots \rangle$	FRESH	SURFACE	FG MED GRE	Y IN COLOR,				FRAC	Here and Street	SLIPS	+ will	7	CANG
	(lbc)	GTZ U	IFG · FG	e 35% FUPAR	FG LATHS	A			FRACT	leber	FILLEL	BH	INT+C	CHLOR.
		RETWEE	N.5-1		VEOLE LIKE 451	1	e35	OM			~	-		
		BIOTTLE	BLOWZY	PROUN TO BROWN	J DISSEL de 15-20	1		8		<'-	X	2	No.	-A-
		AMPHIPO	DE 1-5%	, CARPONATE -	21. Atwent 17	+	Ren	10	n -	X	X	120	10	
0204 (03/91) * Er	r features such as foliation. It		TROUGLY	MICRO FEACTURE	20 TO 3420M	+ Addie	ional cradit	V	Accord	ent Work B	esulation		VEG	MADITA

*For features such as foliation, bedding, schistosity, measured from the long axis of the core. *Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte. Additional credit available. See Assessment Work Regulation.
 Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation.
Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Ontario Ministry of Northern Devel and Mines	Ministère d lopment Développer et des Mine	nent du Nord		au		relate			Fill in on every Remplir ces ca chaque page		Hole No. Forage nº	Page No. Page nº
Drilling Company Compagnie de forage			Çollar Elevation Elévation du collier	Bearing of hole from true Total Footage North/Position du forage Avancement to par rapport au nord vrai		 Address/L Adresse/e 	ocation when ndroit où la c	e core stored arotte est stockée	Map Reference No. N° de référence su	la carte	Claim No. Nº de concess	ion minière
Date Hole Started Date de commencement du	forage Date Comp Date d'ach	eted èvement	Date Logged by Collar/collier Date d'inscription au journal FL/Pi		0			Location (Twp. Lot, Emplacement (canto	Con. or Lat. an in, lot, concesi	nd Long.) sion, ou latitude	et longitude)	
Exploration Co., Owner or C Compagnie d'exploration, pr	optionee opriétaire ou titulaire d'op	tion	Date Submitted Date de dépôt	Submitted by (Signature) Déposé par (signature)	FL/Pi	•			Property Name			
Francesthurgenerati					FL/Pi	•			Nom de la propriété			
Footage/Avancement From/De To/À	Rock Type Type de roche	Des	scription (Couleur, g	ur, grain size, texture, minerals, a ranulométrie, texture, minéraux, t	Iteration, etc.) ransformation, etc.)	Planar Feeture Angle*/Angle des caractéristiques planes	Footage † / Longueur en pleds des cerottes prélevées	du prospecteur From/De		Length aur de atilion	s †/Analyses mi	néralurgiques
5667 4417	CONTIG	FRACTU	FILE ME		LACTURES R		2920	3617	GEALLY		DORA	
	< >	16 FP		NGS + GAEN FI	XN TO 3420 M	-		FRA		in	HAIRL GS + L	CESSOR
	(bc)	THIS F	E WUIT	in the				OHL		CTURE		3,
	(- >				ALS	> ZAM -	2 CM	SEAMS	OF			
		HAIRLINE FI	R 2 3250 . 8 TOP.					F6	MYLONITIC		MERIPAL	entrat
		OPER FI						0000	LSSONALL'		SHOWT	RC
		HARRINE FI						+ L	ostes litre	ARH	GONORP	HIC BX.
		CREW FT	OLIPHIO	10	20' TCA.	7.75	3730	. /	DISPLAY	AT	UT Y (I	MINATE
		F	OLIMIO	Je Jim	20 100	30	JT -	XN-TTE	1 200 100		WAE'A	1
								Kun		HAIRLIL		C20 TCA
•.		? # RH	6 MORPHU	BX Mylowing 9	GAME 180 TOA.	37.40	37.80	. 44	OVITIC SE	7925 1	RHEDHO	Repenc
			1		10 101			BY		what		
	-a	Fa	IATION /	CB FRS e 39"	1, 38° TGA.			CO	NOTEM BY	1-2 Cm	SA FR	SACHGETS.
		FRACTU.DES	10 7		R20	410	4495	XN	HAS MODO	PATE 1	FRACTO	200
	02	0.14.5	A20 56	5°7					2 VN'q1 FR			1
0204 (03/91) * For	features such as follat	ion bending schistosity	measured from the	long axis of the core		+ Addit	ional credit	available See Acces	ment Work Regulati	00		

*For features such as follation, bedding, schistosity, measured from the long axis of the core.
*Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

 Additional credit available. See Assessment Wark Regulation.
 Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Ontario Ministry of Northern Deve and Mines	Ministère du elopment Développemen et des Mines	nt du Nord Dian Drill Log	ing forage	au		Rem	jir en deux	orm and n duplicate. c exemplaire e et le croqu		Remplir	n every page ces cases à page	i IEc	ole No. orage nº	Page No. Page nº
Drilling Company Compagnie de forage			Collar Elevation Elévation du collier	Bearing of hole from true Total Footage North/Position du forage Avancement to par rapport au nord vrai forage	Dip of Hole at Inclinaison du forage au	Address/ Adress/	ocation when ndroit où la	e core stored carotte est stor	kée	Map Reference No. N* de référence sur la carte			Claim No. N° de conceseiCn minière	
Date Hole Started	Date Complete		Data Loggad	Lagged by	Collar/collier					Location (Tw	D La Con	or Lat. and I	(nn)	
Date de commencement du forage Date d'achèvement		Date Logged Logged by o Date d'inscription au Inscrit par journal FLIPI							Emplacemen	it (camon, let,	concession	Long.) 1, pu latitude e	et longitude)	
Exploration Co., Owner or Compagnie d'exploration, p	Optionee ropriétaire ou titulaire d'optior		Date Submitted Date de dépôt	Submitted by (Signature) Déposé par (signature)	FL/Pi	0								
					FL/Pi	ō				Property Nat Nom de la p	me ropriété			
	10000			<u> </u>	Ft./Pl	_								
Footage/Avancement From/De To/À	Rock Type Type de roche	De	Description (Color scription (Couleur, g	ur, grain size, texture, minerals, a ranulométrie, texture, minéraux, t	teration, etc.) ransformation, etc.)	Planar Feature kngle*/Angle dar toaractéristiques	en pieds des carotte	Your Sample No. Nº d'échantilion du prospecteur	Sample Footag Byement de l'es From/De	e/Niveau (19 přé- tantillon (en pleds) To/A	Sample Length Langueur de l'échantillen	Assays †/	Analyses mil	néralurgiques
3025 4495	Carl					410	4:395		0 0	-10"	CHIO		FR F	ALES
a	_ cept 1.		CLIATION	19 e 47	@ M	+++	12		CON	1	QT	UN	9 aut	
	<i>C</i> ,		CLIMITON						Can	WDE	ord	CB V	1	STRINGER
	(14)	-							es	MILA	Lou	24	TRA	16-20°
	(and									10 UCIN	1	DENT	en ex	MED.
									Foll	NO ITA	HINC	ROASE	HICK	Corregi.
								_	t	BIGTH	F FILL	EY DI	SEEM'	= 25% OR
									XL	HAS	~ 20	FRS	Acros	5 4 MS
								*	GR.	APE	uT	5 F	RS/A	1.4
40									1					
4495 5778	NIPSING	SIM. TO	PREVIO	us unote 2	9.9 M - 302-3N	449	4650		KN	IS M	IOP OR	ATEL	1 TOLI	ATED
	GABBRO .		SSILE. FO		GARBONATE				FG 1	DEE	MG.	lor	HOA	OTZ
		HAIRLIN	E FRACT	LEFE COMMON.	MODERATELY				UNG	the a	nn -	1 cm	CONCE	RUANI
	()	TO HIGI	ILY FOLIA	TED @ 4495 M	-> 4650 M				012+	1-CB -	TRUE	ERS	HAND	Live
	(3a)	AMP41BO	LE 351	BLOTITE 15%	FSPAR 45%				Cp	lek+	Local	150	/	+CPI e 442
		072 2	2-3-1.	CARB 1-2.1.	CHEOR < 1, 11_MEDURE 4	41/					1.			
		CRI +L P	& sitectes		sstid to an way				QVC	4420	n 40	TCA		
					1				FR a	4450	h ó	TCA	1	
							EL-1	HOB FF	NCT @	45001	h 12	HCA		
0294 (03/91) * Fo	or features such as foliatio	n, bedding, schistosity	measured from the	long axis of the core.		† Add	tional credit	available, S	ee Assessm	ent Work R	egulation.			

*For features such as foliation, bedding, schistosity, measured from the long axis of the core. *Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

† Additional credit available, See Assessment Work Regulation.

† Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Ontario Ministry of Northern Deve and Mines	Ministère du lopment Développemen et des Mines	t du Nord Diam Drilli Log		au			relate Remp	lete this for d sketch in lir en deux nte formule		annexé	Remplir chaque p	•	For	e No. age n°	Page No. Page nº
Drilling Company Compagnie de forage			Çollar Elevation Elévation du collier	Bearing of hole from true North/Position du forage par rapport au nord vrai	Total Footage Avancement total du forage	Dip of Hole at inclinaison du forage au	°I Áddress/L Adresse/e	ndroit où la ca	a core stored arone est stocké	e .	Map Referen N° de référen	the Nio. Ince sur la cart	e N°	im No. de concessi	on minière
Date Hole Started Date de commencement du	forage Date Completer	d nent	Date Logged Date d'inscription au Journal	Logged by Inscrit par		Collar/collier FL/Ps	0				Location (Tw Emplacemen	p. Lot, Con. or t (canton, lot, i	Lat, and Lo concession,	ong.) ou latitude e	t longitude)
Exploration Co., Owner or C Compagnie d'exploration, p	optionee opriétaire ou titulaire d'option		Date Submitted Date de dépôt	Submitted by (Signat Déposé par (signatur	ure) e)	Ft/Pi	0								
						Ft/Pi	9				Property Nar Nom de la pi	ne ropriété			
Footage/Avancement From/De To/À	Rock Type Type de roche	Des	cription (Couleur, gr	l ur, grain size, textur ranulométrie, texture	e, minerals, aneratic e, minéraux, transfo	FLIPI on, etc.) rmation, etc.)	Planar Feature Angle*/Angle des tarectéristiques stanes	Core Specimen Footage 1/Longueur en pieds des carottes politieules	You!" Sámple No. Al* Géchantilon du prospecteur	ample Footage smart de l'Ash From/D.e	/Niveau de pré- entilion (en sieds) TG/Å	Sample Length Longueur de l'échantilion			néralurgiques
4495 5778	CONTO	e 4670.	-> 46° N	<u>.</u>	/		44.95	4650		FRAC	rule [BINT	<u>e45 u</u>	=201	A
		Wig	No.	Record	A.	TAA"				az/cr	5 TR	NGERS	245%	= 129	TCA.
		12			126					212/0	1	UGEES	P46 P		TCA
	(lc)			78 FR. FILLI	MGS.								4660	=160.	
							450	5680		XN UZAŁ	15 M		-IV	LACE	
										H Loc MAND	1	04 a 5460	NE M	tion	qC
						· · · · · · · · · · · · · · · · · · ·	530	54.50		20	n OTZ	UTI	0	16 7	GA .
		Гоць	mon e i	55 m		EA.				10-	PLIFF	+ 01	-	mure	2/1
		VNG + FR	FILINGS	5588 m	= 38 .	42° TGA	5580	5,72		Moo	TB ST	2006	QT2 0	NG+	(B)
		THIN RIA	e l Box vils e l	5620 M	- 40	TCA.				TARI	1 1	LOCAL	S VI Polopy	11	HDEREN'
0204 (03/91) * Fo	r features such as foliation			2/12	A.		+ Addit	ional credit	available. See	Assessm	ent Work R			.5%	

*For features such as foliation, bedding, schistosity, measured from the long axis of the core.
*Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.
For the core of the core of the core.
TCA •

† Additional credit available. See Assessment Work Regulation.
 † Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux treveux d'évaluation.
 Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

	finistry of lorthern Deve nd Mines	Ministère du elopment Développement d et des Mines	du Nord Diam Drillin Log		au		relate	lir en deux	orm and 1 duplic¤te. 2 exemplaires la e et le croquis		Remplir	n every page ces cases à page		Hòle Nó. Forage n°	Page No. Page nº
Drilling Com Compagnie	pany de forage			Collar Elevation Elévation du collier	Bearing of hole from true Total Footag North/Position du forage Avancement par rapport au nord vrai forage	e Dip of Hole at total du Inclinaison du forage au Collar/collier	Address/L Adressa/e	ocation when ndroit où la c	e core stored carotte est stockée	•	Map Referen Nº de référe	nce NO- ence sur la carte		Claim No. Nº de concessio	on minière
Date Hole Si Date de com	tarted imencement du	Date Completed Date d'achéveme	nt	Date Logged Date d'inscription au journal	Logged by Inscrit par	Ft.JPI					Location (Tw Emplacemen	p. Lot, Con. er ht (canton, lot, c	Lat. ani oncessi	d Long.) on, ou latitude e	t longitude)
	Co., Owner or d'exploration, p	Optionee ropriétaire ou titulaire d'option		Date Submitted Date de dépôt	Submitted by (Signature) Déposé par (signature)	FL/Pi					Property Nai Nom de la p	me propriété			
						Ft./Pi									
Footage// From/De	Vancement To/À	Rock Type Type de roche	Des	Description (Colou cription (Couleur, gr	r, grain size, texture, minerals, anulométrie, texture, minéraux,	alteration, etc.) transformation, etc.)	Planar Pesture Angle*/Angle des caractéristiques planes	Core Specimen Footage † / Longueur en pleda des carottes prélevées		mple Footag ment de l'éch From/De	e/Niveau de pré- tantilion (en pieds) To/A	Sample Length / Longueur de l'échantillon	Assays	†/Analyses mir	téralurgiques
5178	6500-	RHED MORPHIC	A MK	OF SELE	RAL Book TH	PES INCLUDING						_0			
		BRECCIA.	A MASS	NE TO H	IGHLY FOLIN	TED GABARD			CONT	Act	2	SITO	1 0	2 60'	AST
			Lettich .	S PREDO	MINANT AND I	S TRAUSFECTED									
			BY LEC	SOR UF	6- FG MATEL	GREEN OR UFG.		L				05			
		(5a)	TO FG	MED BRE	SWN GREYISH	UENS, BAND			FOLLA	TION	e	58 M	. 1	2120	TCA
	• ,		OR FR	ACTURES	COLLORDAN	IT TO DISCORDANT	1						_		
_			F6 20	NES TO	UD TO AWAST	COMIZE THREE	-		FOLA	That	C	5980m	e	-18	AST
	-		1.110	OKBURON	'Host' Clt	ATTING SR-SA	-				-	10			
			FRAGM		A BRECCIV	HON TYPE TXTR.			FOLIAT	20m	C	60 m	a	180	TCA
			FABRIL	OF XN I	5 WELL DEL	ELOPED AND	-					13		2	
			IS GELT	ERALLY	AT LOVE J'S	120-20 TCA.			FOLK	Ton	0	60 m	é	123	TCA
	-		GALDON	HE I DT	2 STRIFGERS	> <1 MM-20M			0012410	-	0	6182	-	20'	
			Accom	AND T	HE SECTION	, only Local	6182	62.25	CONTA	a	0		-		Tor
			otta	NATULZA	FRACTURE	2 11 AND @ 5953	61	62-1	1	51274	030	SIM. TO	P	20/10ce c	
			LAMIN	ATED D	LTI FRAG O	L DAMD WOT M			Contract	UNIT	0 30	6225	-	0	
			FOLLAT	TOW @ 6	290n = 150		6225	6340		ED (BABBE		17-50	- <u>20</u>	FIGD+1
-		~	~ Gouge		# 60 M = 70"	in	6340	1125	HIGHLU				-	AABED MDR	16041
			CONTR		-22	*	64.25	6499	1-0.0		EARED	XNEI	Qu	COULDE Q	640
0204 (03/91)	+ 50	r fastures such as foliotion th		near used from the l	B B		1 6 15 151	longel annelle	custing for	1	Contraction of the	a milled and	0-1		<u> </u>

For features such as foliation, bedding, schistosity, measured from the long axis of the core.
 Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

† Additional credit available. See Assessment Work Regulation.
† Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

lana											lumber	6
Ursa										Drill Ho	le Numbe	r
Diamond												
Drill Hole		als in Me		Litho			ervals in		Minor Lithology		ructural Zo	ones
Number	From: M's	<u>To: M's</u>	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
40.03		1.2		11	1							
	6500	8167		Ibc.	METAGENMENT							
					ARESE							
					SIM. TO FREVIOUS UNIT	6520	66 58		FG SED 7 WHICH A MOD		49° e	6550
					@ 3025M -> 4495M.				PERVISIVE GLICIFICATIO		-11	80
					A FGTO UFG LT				+ SOMEWHAT DIFFUSE			
					CHITEN GREY RX				IT CREPANY PILLEY HUGHNS		20° e	6640
			-		WHICH MAY BE WEAK	4			OR PATCHES REPRESENT		100 0	- 90
					TO MODERATELY FOLLATE				ING A POSSIBLE APLITIC			
					A FRESHLY BROTTE	,			COMPONENT, BLOTTE V.			
					SURFACE WHICH RENDER	5			LOW < 51 CHLORITE C			
					A MED GREY LOLOR,				2-3% + DELELOKED ALD	16		
					THIS XN APPEARS TO				FRACTURE PARTINGS.			
1					CENTAIN MORE QTZ							
					THAN FERRIC LANGE				17 FR'S ALROSS 1.3 M VN. OR. 13 FR'S/M			
					PRELIE 3025 4 XN				AN.C. S. S. MA			
					WHICH HAD ESP > QTZ.	6658	6613		BECOMING MORE MG			
					STILL Port XN LOOK				IN TYTE + HORE OT		-	
					MEGHSCOPICALLY SIMILAP				PICH, MODERATELY			
					(917 45 FSP42 30				CHLLOQ'E + EUGL TAL	4		
					BUTTLE 20/			1	ALONG FRACTURE FACT			
					ACCESSORY CHERRITE +	6717	67.18	~~~~	CHERME GOUGE	270	@ 67	Tu
					CARBON ATE + ANP <5-1.				Same 6717 M.	56	GL	PL ·
					TR. PY LOCAL DISSER				aster of M.			
					+ U FILE HAIRLINE FR.	6813	6850		ALTERED 900 SIM TO		3800	180
			1	1	XU FROM 6520 M TO	~~	es.		Plaiaus e 65200		00 4	60 1
					6972 M IS FAIRLY				TE HIGHLY TOLIATION,			
					ALTERED & VEINING.				SILICIPICATION, Q12			
					SILICIFICATION + STRUCTO	RE			UNG + PATCHY APILITIC			
					& HICH IMPORELA STREAG				LIKE PHASES	C Ures =	lajor Minerals	Inc. 2004
					FABRIC ON BUCK UNA	7738	2245		OT UN.	o, orad h	najor minerais	1110., 2004
					FOLIATION OR FRACTURING	2.7- 85	1-02		OTZ UN.	THE A	ANTRA C	702

										Page N	umber	
Jrsa											le Number	-7-
Diamond												
Drill Hole	Interv	als in Me	eters	Litho		Inte	ervals in	Meters	Minor Lithology		ructural Zo	nes
	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
10 03						25	-				Do	
A10 ~	6500	8167		bc.	CONT'S.	72.95	7:000		FG SED AS PREVIOU	K B	NTERS N	50'
	0.			100					EXCEPT BIOTITE LAU	5		
									EXCEPT BUTTE LOU MUCH LOUER 05-101.			
									+ DISSEMILATED AMP.			
									NOW HIGHER @ 3-7%	TEN	TC7620	55°
									LEHICH IMPARTS A			
									GREGALSH TINGE ON			
									THE RX WHICH WAS			
									FORMERLY OT WHITE GR	EI.		
									OR UT PLEFFY GREAN C	doR.		
						-16-	0.17				4 -	= 60
						7600	8167		(IDIT BECOM ING		40 e	-16 M
									MUCH MORE FRIAPLE			
									+ DEUTOANG THU		40 c	90
									F6 / MM TO I CM		40 C	78 M
									LEIDE FOLIAE OR			
									LANNINGE ??? WHICH			
			_	1000000					TRANSECT AN OTHERN			
									FE MASSIVE D GEPARD		acali	420
									FOLIPTED GODINENT.	CENT	ACT @ 81 4	42
	8167	11,58		70	LUE LEE NO					-		
	810	161	······	39.	KIFISSING GABBRO.							
-					GANDIKO.							
					A VARITEXTURED UNT							
					G. MED. TO COARSE.							
		-			GRAINED YTALS C	E.						
					2 TO MM SIZE RANG XTAL PHOSE VARIAGE	;				Cilimat	Major Minerals	Inc. 2004
					ITY ON A METER SCAL	-				G, DISal	major minerals	1116., 2004

Jrsa Maior	Minerals I	nc.			Diamond Drill Hole Number			Hole Spotted		Page N	Number:	8
	re Project					Date Diam	ond Drill I	Hole Started				
						Date Diam	ond Drill I	Hole Finished		EZ Sho	ot Tests	
alconbride	ge Grid Loo	cation:				Diamond D	rill Hole I	ogged By:		M's	Dip	
	83 Co ordi		Northings			Drill Core S	Sampling	Carried out By				
			Eastings									
Azimuth of	Diamond	Drill Hole:				Assay Lab	Work Or	der Number				
	of Diamon					S1 Modera	te to inte	nse deformatio	n with visible or suspected			
						dislocation	/ separat	tion of rx, devel	opment of fault gouge			
Ursa									widespread foliation			
Diamond						S3 Open, I	ate fractu	ring / rubble de	evel'd in the core, joint sets			
Drill Hole	Interv	als in Me	ters	Litho		Inte	ervals in	Meters	Minor Lithology	SI	tructural Z	ones
	From: M's			Code	Major Lithology	From: M's			Brief Description	S1	S2	S 3
110 07				PROPERTY OF THE OWNER.					~			
	8167	16158		Za	AMPHIBOLE 45-55	-			CB FR'S C. B3 CM GTZ TOURNAL UNC 852 CB FR'S C-8620M			40,16
	01	101		A.	BIOTITE 3-21.			?*	GTZ TOURMAL UNE 852	4		140
					ESPAR. 40.45%.				CB FE'S @ 8620 m			180.16
					012 1-3%				and the second sec			1.0)
					CALBONATE 1-2%.				CB FRS C BZGO M			17, 16
					attoerre 1%				FOLIATION C9450M		38'	1,
					11 MENTE 16				CB FR'S C 876 M FOLIATION C945 A CB FR'S C 950 M			10,170
					HAIPLINE FEACTURE							
					FILLINGS COMMON (2				FOLIPMON 295 M		50'	
					CARBONATE + LESSON							
-				1	CHLORITE, FR'S C.				CB #2 5 @ 216 m			38, 162
					5-2 ha in leiotit.							/
					FR. FILLINGS DELST				FOLLATION, UNG COTPA		-38°	381
					ON OPDER OF 10/M.				~			
					DECREASING THE REDS				FOLIPPIDON @ 1030 M		450	
					100 h DOWN HOLE.	-						
					MINDRAL PATION :		-		FOLIMITON & 106 M		430	
					VEG TRACES OF CPH							
					ARE GASH TO FRAD				For instron, UN'ge 1091	1	38"	
					AS WELL AS SOME PO		-					
					XTALS < MM. DIAM</td <td></td> <td></td> <td></td> <td>FELIPTION @ 115 h</td> <td></td> <td>12°</td> <td></td>				FELIPTION @ 115 h		12°	
			and the second second					0.0	2 g	Cilina	Major Minera	

/

										Page N		9
Jrsa										Drill Ho	e Numbe	er
Diamond												
Drill Hole		als in Me		Litho			ervals in		Minor Lithology		uctural Z	ones
	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
110.3	10	ec										
	8167.	16178		Sa.	STRUCTURE ALTERATION							
	-				•					-		
					THE WAT IS PREDOMIN	8525	8539		QT2-CB-TOURMALING	- / ·		140
					ANTLY MASSINE BUT 15				UEIN .			
					TDANCESTED BULLINGON	5						
					ZOUES OF MOD TO STRAN	550	892		HIGH FOLLAMON +9 QUG	VN.		240
					FOLLATION ILTHIN LETTER		Contraction of the					
			-		ECCUR I MM - ZCM WIDE	9423	9515		HIGH FOLLIAMON + NUM		55°	
					BANDS, LIEWS, SHEARS				ERCUS 1-3 MM LT GR	EL		
					OF FE LT GREEN CHUCK				FG. CHLOR. CARB UND	5		
					TTL 4-CARBONATE MAT-				WHICH TRANSCOT A			
			_		FRIPE attice MAY BE				MODELATELY FOLIATED			
					ACCOMPANIED BY 4 MM				GARRED, LOCAL GET			
					- 4 CM LUDE GTZ/CA UNG				CB STRINGER + W			
					MOD BIOTITIZATION +				BIOTITIZATION.			
					IN PLACES MOD PERUMAN							
					CKEBONITIZATTON.	9720	9780		1-3 cm attaking		38°	
					AT TWO LOTALES				CARB. EB BANDS.			
					ES535H, C				+ CBIOTE UNG TOO			
					here some har at a	1	10		31)			
					OF OTZ-CB+ POSSIBLE	103 TO	109.40)	MOD TO HIGH FOL'N		38	
				-	TOURMPLINE BLK AMP?	>2			+ 3 MM TO 3 OL albE			
					USIDS GCCURIN CONTU				GTZ -1- CB CON CORDNET			
					CTION TO ZONES OF HIGHT				UCINS, AESO IMM SOO	ms		
					FOLLPTION, DETERMINTION				OF F6 CHLOR. BT. 403			
					the second second second	2	1					
					FOLIATION DEFORMATION	114TS	12260		V. COARSE KN, HIGH FLN. BL	12	17.	ellsh.
					MAY BE CH'S WIDE OR	2		+Fr	6. CHLOQUIC FR'SS + ASOCI	TED	380	=119m
					OUTER A METER LIDE.				V. COARSE XN, HICHELY, BU 2. CHLOQUIC FR'SS + MSOCII 872+03 WG/STRINGERS	C. Ursa M	alonineral	112,2004
					the second se	157-05	13740		V. TRONG UNG TO GTZ.C	R	56°	

+ BLACKE MINERAL TOTILE BANDE IN VARIABLE SWA-SCA WIDTHS

Ursa											lumber ble Numl	10 per
Diamond Drill Hole	Inten	als in Me	tore	Litho		Inte	ervals in I	Motors	Minor Lithology	Ci	ructural	Zopor
	From: M's				Major Lithology	From: M's			Brief Description	S1	S2	S3
116.03			1								02	
010 -7	8167	16158		3a.	Contd	12260	12860		MG, MASSIVE, EDWIGE		40	e 122 @
						12860	13022		COARGE TO UTRY CG	-		
				1		120			KN OF GABORD	_		
									TE LOOPL LI (M			
									TE LOCAL LI UM XTAL SUBPECTUON			
									Zoutes.			
						13022	12,60		MG, MASSIE EQUIC	9		
						1	INT		LOOPL 7 CH GTT UN			
									+ CBLOTZ FR AR			
									T COLOR 2 CM GTZ W T COLORZ FR CR STRINGER.			
							1-7-1-10-					
						13460	13705		COARSE GRANLED VIL			
									WARINGE XTAL.			
							-		UARIABLE STAL.			
									GRAIN SIZES 3-8M	1.		
						13705	13725	-	HIGHLY FOUNTED 20		50	-
									In ZONE OF CB CHORE			
									On ZOLE OF CB CB/QCC CT2, FG. OHLORIC + CT2 TOURNALINE??	,		
									GTZ TOUPMALINE??			
									BL BIE AMP?) OperCOD			
									AFT UNG UNG OLDEN IS I AM - 2 CM ADD TH	9		
									15 I man - 2 con Ado TR	Æ		
									OTZ RIACTE MINERAL			
									15 INTORNALLY LAM.			
									IVATED & THE I AM			
									SCALE, LOCAL PO+		Major Mine	rals inc., 2004
									CPY Spect UFGalo	nn.		

										Page N		14
Jrsa										Drill Ho	le Number	ſ
Diamond												
Drill Hole		als in Me		Litho			ervals in	the second se	Minor Lithology		ructural Zo	
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>\$3</u>
110.03	6724	1740			CONT'd.							
						17300	1749.		XN RECEMING INCR			
									EASINGLY FOUNTED			
								_	FROM WE TO MOD.			
									TE INGREASING			
									DEUGLOPHEMIENT OF			
									GTT, CB CONCERUPINT		1 S	
									STRINGERS AS WELL.			
	a	1										
	17470	17670		5a.	KHEDMORPHIC							
				and.	BRECIATION							
									ol			
					SIM TO FREN UPIT	-			Contact C 174"	en la	450	
					@ 16158->16474							
					EXCEPT LIESS WELL				6			
					DEVELOPED WITH				FOLIATIONO 175	m	190	
					ONLY 2-5 CM BAM	X						
					OF GOOD BREACHA				2			
					18 UFG CALL', MAT.				Contract @ 176	M	18°	
					there HOSTIDE LT						10	ĥ.
					GREEN FE TO LT							
					GREY FG SILVER 1-10							
					MM FRAGS FRAGS							
					TYPICALLY STRETCHED					1		
					THE REST OF ZONE							
					HAS CH SCALE FG	>		1				
					CHE'L RICHER UEING							
					letticet TOANSECTS	1						
					A UPPLIPPLIELY MARSH	UE .						
					TO MODERATE					C. Ursa	Major Minerals	s Inc., 200
					FOLIATED GABBLO.							

										Page N	umber	1
Irsa				1							le Numbe	r
Diamond										1		
orill Hole	Interv	als in Me	eters	Litho		Inte	rvals in I	Meters	Minor Lithology	Sti	uctural Zo	ones
Jumber	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	S1	S2	S3
410.02					. (
	8167	16158		Za.	CONTOL.	15740	16170		A PREDOMINANTE	OB FR	2	
	0.			~ (101			MGTOTELY XN WITH	CB FF	KSP	
									A PREDOMINANTLY MG TATE & KN WITH 4-5 (G PHASES	1	14120 e 1479	38,17
									TO ABOUT 14520 M.	FR	e 1479	400
									CG PHASES MULLIT	CBFK	-	1 1000
									LEGOR eS-ZO CA	FILLIU	ss e	4
									IL COLOTH. UNIT		14420 11	38,1
									FAIRLY COMPETENT			
									@ 1-3 FR'S/M.	CB FR	FRLAG	35°
									CB FRACTURING V.	e	146 m	
									COMMON C D CB FR		100	
									FILLINGS PER METER	FRO	146 4	40
									ON THE AUGRAGE			5
						- 20			-	CBF	25 2 493	380
						14770	14790		GRAUMZE XU			
									to MED GRAINED	CBF	201500	390
									GURTBUIGRANULAR			
									WHITE TO PIULISH ESPA	ME	2 151 3PM	. 43°
									OTZ AMPTET + FRA	2		
									OF ALTORED GABAR	FRE	159-0	42°
									SOME CARBONATIZATION	se		
									AG WELL AG XOUTTIN	6		
									CB FR. FILLINGS.			
						2						
	•					15470	15521		MOD. FOLLATED XN.		56	
									FILTER GOMILED +			
									A RET CHLOR'S +			
									A BUT CUTLOR'C + I CUL at 2/CB VV. - + 1-4 UL CB STRI			
									+ 1-4 un CB STRU	CACSUrsa I	Major Mineral	s Inc., 2004
								-	RERHAPS 5 TO GIL			

NOLBER.

										Page N	lumber	12
Jrsa										Drill Ho	ole Numbe	er
Diamond												
Drill Hole		als in Me		Litho			ervals in		Minor Lithology		tructural Z	
	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
110.03	~ (2)			-			10					
	8167	16158		39	(ONT'O	15521	16100		MG, MASSIVE XN	CHL	C FR.	
				· t	<u> </u>				6-12 CB FRACTER	FIL	146	
									6-12 CB FRACTURES FILLINGS POR HERE 3-4 ORGN CHL'C FRACTURES POR M.	2,0	159 Agu	38°
									3-4 OPOL CHL'C	/		
									FRACTURES PERM.	OPER	FRS	
									LOCAL GLORATIL	e	5990m	50
									PLACTURE FILLINGS			
									e <1-2 Par moren			
										FILL	126	
										010	2120m	350
	er	120		~	1							
	16158	16720	/	5a	KHEDMERPHIC BRECCIA.		-					
					BRECCIA.							
					A UTAKLY TO MOD	16158	16160		2 CH QTZ LEN GET	-		20
					ERATELY DELEORED	,	10.		BY WATER OB FRACT	-		
					TECTOME TYPE				UDE FILLINGS			
					BRECCIA WITHUTHE							10
					GABBRO RY CENT	16160	16188		SOME OF MIGHTEL	1	200	21616
					WHICH CONTAIN A	10.	104		SPUE MD GDRA SILL	11		
					WETCORTE OF 4 May				BANDS, 2-10 MM RULY SILLIC STRINGER PATCHES OF BIOTITIZ			
	· · · · · · · · · · · · · · · · · · ·				to say when I all	a,			RUH SILL STUNGE	2c		
					TO SOM WIDE IT GOR FG, CHUL UKINS WHICH TRANSED A				PATCHES OF BIOTITIZ	atra		-71
					WHICH TRANSPORT A				+LOCAL MG 30 SR F	PPG.	42° C	1643
					HG GABBRO + MAY							
					ANASTOMIZE TO A							
					LESSOR OR GREATER							
					DEGREES HELDING							
					A BRECCIPTED APPEAR					C. Ursa	Major Mineral	s Inc., 2004
					ALCE IN PLACES.							

-										Page N	umber	13
Jrsa											le Numb	
Diamond												
Drill Hole	Interv	als in Me	eters	Litho		Inte	ervals in	Meters	Minor Lithology	St	ructural 2	Zones
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
216.03	-											de
AL	16158	172	4	5a	coprid .	16470	6724	•	FILTER GRANNED PX		40	e KA
	1.01	no i				no-t			CHI! , MOD STRONG		10	
									TOLINTION MOSTE CB STRINGERS + PORUASIUE CB THE	-		
									CB STRINGTOPS +			4
									PERUPSIVE CB THERE		78	a 165°
									OUT THIS DEFORING		10	
									XN & CBSTDINGORS			
									ABE 1-6 UN LIDE		Ø	
									FAIRLY DISCONTRACUS		40 1	e 16640
									COULDEDANT TO SIGH!			
									CENCORDANT + COCAR	f	1	
									AS ACUTTING FRIS.			20
									REALL PATCHER OF		28 1	e 1675
									MO, MASSIVE 30 MOUR	1.	~	
					•			¥.	CB CONTENT > 15%.			
		9		4					,			
	6724	17490		Za.	NIMSSING				OB PR'S @ 16759M			39,16
					WIRSSING GABBEO.							
			_				50	7	3	A	K	
					SILTO PREJ UNITS	e	169	769 m.		1/2)38"	1
					@ 440 N 76122			TILLOUG	ALT	A		_
						E	ElEat	ATTONS.	50 10 40	55-		
					I. A MG, MASSIVE				J O ~ 10	22		-
					EQUIGRANICAR BK.				1 1 1 1 2 2			
					CB FRACTURE FILM	4			00 FRSC 17,590	1		380
					RERHAPS > 10 FRS/M.							
					HERHAPS > 10 FRS/M.							_
					+ 1-8 MM UINTHS,							
					LT GREEN FC CLEUD	ME				C. Ursa	Major Miner	als Inc., 2004
7.02					CB FR FILLINGS RES	altr.						

tes verit .

No.

										Page N	umber	15
Jrsa											le Number	r
Diamond												
Drill Hole	Interv	als in Me	ters	Litho		Inte	ervals in	Meters	Minor Lithology	Str	uctural Zo	ones
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	S1	S2	S3
110.03										-		
119 57	17670	18100		Za.	NIPISSING CONBRO.				1.			
	110	201		sec.	CARREN				CB FR'S e 17710	th.		38°
					CERTIFIC							~~
					SIM TO PREV, WITTS							1.4
					Art. 10 Tenor contry				CB FR'S @ 19030	n		25 10
					e 499 n e 16729							1011
					1 1 1 101 19							
					MG MACCINE GRIND							
					MG MACHUE, COMO	-		-				
					Truch practice							
					FILLIAG (PMMON) C 7-14 FRS/ METER							
					T-14 FR 7 METER							
	18100	18186	>	5a	RHED MORPHIC				10,00,000,000		38'	
	101	ide -		20,	BRECIA				OBUTACT & Stan	-	28	
					DRECCIA				FOLIPTION · 18100		700	
					CII + DO-1				TELLATION TOLA		38°	
					SIM TO PREV. OUT							
					@ 16158M-716494	•			E	7	780	
					A FAIRLY WELL DEVEL				FOLIATIONE 1829	M	- 36	
					OPED BREACH WITH				16-9	<	700	
		-			1-10 CH SA GARDON				1821	m	35	
			-		FRAGMENTS SUSPENDE	0				<	- 17	
					IN A EG MAFEL MITH				183	PM	38	
					COMPOSED OF AMPT					-		
					CHLORITE +1- FSPTLILME				CONTACT FOLIATI	on	50°	
					THIS MITH K WELL FOLK				SA.	_		
					TED, THE 30 FRAG ADE MASSINE TO HOD	(@ 183 84 M			
					ARE MASSIVE TO MOD		-					
					FG MARIC MAR : 30 FD	18320	18360		ZONE OF QD (ITZ WG, FRACTURE	(B)		20
					FG MATTIC NTTR : 39 FR	ACC			WG. FRACTLERE	C. Ursa	Major Minerals	s Inc., 2004
					= 40:60 RAMO (CB 5	Ribbergs			FILLINGS 5- 20 May WIDE	-		

+ REALIPSINE OB WIT TO LOCALLY MOD. CB TRANSECTS + BX d QT2.

Ursa										Page N Drill Ho	lumber de Number	16
Diamond							1				1	
Drill Hole	Interva	als in Me	ters	Litho		Intervals in Meters		Meters	Minor Lithology	St	ones	
	From: M's			Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	S1	S2	53
110.03												
0110 0	18389	18650	10 0	Za.	NIPISSING							
	100	100	1		CARBIERO .							
						ALL	- 0					1
					5495 M. C. 167-24 m. + e 17670 m.	15444	18478		ZOLE OF HIGH		42°	
					4495H @ 16724h			1	FOLIATION.			
					+ P 17/ 70 M.	h.						
	1				MOD CB FRACTURE	185 AD	18600		Low > OTZ.CB			
					FILLINGS LOCAL CA LUDE CB STRINGERS				OCTU = A GLEY TO STUDIESY GLEY COLOR			
					LUDE CB STRINGERS				GTZ Z A GLEY TO			
					+ Lay 7 GTZ CB Wg				SUDDEN GREY COLOR			_
					J				CA ULTS BOSTDATE OR			_
									CA ULT'S BOSTDATE OT			
	1 71-	- 54		-	2							
	1836	1898	1.11	3P.	PROKENITE.				CONTACT & 18630	=	40	
	100					76	50					
					FG TO MG, MASSILE, FATELY EDUIDROLULA	18636	18652	T	2-4 an unde			
					FAIRLY EDGUCORDELICA	2	, -		972 STRINGERST			
					EGIN TYTP'd LT TO				GB FRACTURE FILL			
					MED GREEL UTREDUG				INGS CENTING THE OT			
					AUPHBAE & >85%.	,						
					FSPAR V. SUBHEDRA							
		1			e 1/0%, A DULL WHOTE TO IT YELLOWY				100 80			
	68				lestore TO LT YELLOWY				CONTACT e 189 %	=	55°	
					BROWN OPAGUE							
					MINTERAL COMMONIN,							-
					DISSEMINATED, C 3%. ACCESSORY CARBONE							
					ACCESSORY CARBOURE	10 x						
					21-21, CPI TR.							
					UNIT GEARSTERS + RECO	WEL .				C. Ursa	Major Mineral	s Inc., 20/
					MORE WHISSINE DOUNHO	LE .						

										Page N		17
Jrsa										Drill Ho	le Numbe	r
Diamond												
Drill Hole		als in Me		Litho			ervals in		Minor Lithology		ructural Zo	(1.1.1) ·································
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
110.03	100	00										
/	189 80	19893		5R.	KHEOMORATIC.							
					RHEDHORATIC BREACHAT.			-				
									10			
					A MIX OF FE SILTY,				FOLIPTION @ 190 -		20	
					to, SILLIK, FOLME QUASI-GAABBOILT							
					QULASI - GABBROIC +-				0.			
				50	HE ECHAGU. FOLLATED				FOLIATION @ 19120		38	
					ULTRAMATIC FRAG.					1	~~	
					MET TYPE IN							
					PRESET TYPE IN ORDER OF ABUNDAM FRAGMENTS ADE SR AND MODERTENT	(E			FOLIATION @ 19380	4	380	
	1				FDAGNIEUTS ADE							
					KR AND MUDTRATICIT				(
					TO HIGHLY ATTENUAT	5			FOLIATION @ 1968	-	380	
					LOCALLY TEAR DROP							
					SLATER ADE NOTED							
					SHARES ARE NOTED MADRIX = A LT. HD							
					GRAILED FOLLATED							
					GRAILED, FOLLATED, AMP+BT+FSP+OTZ							
					ALD MED GREAN PRODUCT	el.						
					ALD MED GREAN PROUDGB FRAGS: MTX = 70:30	4110.						
						-						
-					SILT > SILLICIC > GAIRP > P	ROKCOLITE-						
		-			FRAGMENTS RANGE							
					FROM 1-244 IN				al			
					DIAMETER TO ZGOCH				CONTACT & 198 %	1	20'	
					ynnerat io x court				1			
		-						•				
										C. Ursa	Major Mineral	s Inc., 200

12		*	
	A 4		

										Page N	umber	18
Jrsa											le Numb	er
Diamond						N.						
Drill Hole	Interv	als in Me	ters	Litho		Inte	ervals in	Meters	Minor Lithology	Str	uctural Z	ones
	From: M's			Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	S1	S2	S3
1052												
	19895	20250		3f.	PYROKEWITE							
	1.0			- Carina,	1.0.0							
					SIM TO PREV. UNIT				OB FRACTURE			
_					C 156 36 M: FRIER	-			FILLINGS			
					NOW WHIT IS COARSER				CB PRACTURE FILLINGS @ 20120 M			45.1
				Ø	MG DARHER GREEN							1.00
					CARBOURTE FRATORE	\$						
					WELL DELEDRED							
					SOME BLOTTE HALS	-						
					PRESCRIT AS BRONZI							
					BROWN DISSEMS 25%.							
					FSPAR SUGSTIL				E			
					DAL DELEDED MG. DAREER GREEN MG. DAREER GREEN GARBOURTE FRACTORES WELL DELEDEDED SOME BUOTTE STALS PRESENT AS BROUZH BROWN DISSEMS 25%. FSPAR SUGGETUS DOWN @ 7-10%?				Cartacte 202	~	12°	
											_	
					OB FR FILLINGS							
					e 20-25 FR'S M							
					CB FR FILUNGS e 20-25 FR'S/M TEHRE THIS UNIT.							
		a di										-
	200 50	20490		5a.	KHEO MORDHIL						-	
		-			RHEO MORDHIL BRECEIA							
					01							
					911 to Pleo Unit							
					1999 BD M.			1				
					March and R. LL	1			2	=	dn°	
					Maglarey hat				CENTRA @ 204	м	42°	
												-
										C Uma	Malor Minor	als Inc., 2004
				-						o. uisa	ajor miller	aie 1110., 2004

										Page N	lumber	19
Ursa										Drill Ho	le Numbe	er
Diamond												
Drill Hole	Interv	als in Me	ters	Litho		Inte	ervals in	Meters	Minor Lithology	St	ructural Z	ones
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
110:03.												
	20490	25493		Б.	PECORS FUN BIATT	ic.						
					SILTY SUDIMENT.							
							d					14
					FG, UELL FALIATED,	20855	21000	nnn			50	2085 M
					LT. GREY BROWN TO				ZONE WITH A HIGHL	4 .		
					MEDIUM BREWN IN COLOR,				FRIABLE FOLIATED R	×		
					FOLIATION DEFINED	1			@ 20-40% SERICITE			050
					IN PART BY ALLENHERT	-			WITH SIX OR SO 4-		30 €	208 80
					OF FG. BISTITE . T. AL	P			30 MM GOUGE SEAM	5.		
					OF FG. BISTITE, 4-AL	/			HAIRINE TO 2 MM			70
					+1- FSPAR THRUBUT	-			CONCORDENT OUZ +LOB		55	209 M
					A EG QUARTZ RICH				STRINGERS TO 4FG			
					OR DUARTO EPIC				PO, TI-P4 -1- COY THESE U. THIN STR			
			4		CROUNDMASS				THESE U. THIN STO			
					MINELOLOGY CAN				1060025 lets flet			
					BE VARIABLE AND				CONSISTERT THRU XN	=1/.	.5%	
					DEPENDENT ON SOME	~				/		10
					LITHOLOGIC + ALTERAT.		212 10		HIGHLY FOLLIPITED		38 6	M 115
					10DA STRUCTURAL				STILL + MODERATELY			
					CHANGES.				SEPICITIC BUT LESS			
				1	BIOTTE 15-30				SO THAN DREV. @ 2055	PM.		
					QTZ 70-85%				STILL GEF OTT 4-CB			
					SERICITE 4-20%				STRINGERC + FG Gt			
									PO AT MY TE UPY MINI	ZZN		10
				8	ENTLORITE =1-10%. FSPAR 5-10/				@ 4 1/. 10 .5%		40 (ZIZE
					AMPHIBOLE 1-21		10		1		-	
	-				CARBONATE 1-31.	21647	22200		A FRINBLE XN OF			
					SUPARE 21-11/				INCLEAGINGLY BIOTHIC			
					ALONG LETTH MUD				SODIMOUT + ,5 MM TO		Major Minera	Is Inc., 2004
					TO STRONG FOLLATION				2 CM OTZ STRINGES			

)

										Page N		20
Jrsa										Drill Ho	le Numbe	er
Diamond												1.1.2
Drill Hole		als in Me		Litho		and the second se	ivals in	a constant of the second se	Minor Lithology		uctural Z	
Number	From: M's	<u>To: M's</u>	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
010-03	a dia	100			1							
	20490	25475		16.	CONT'S.							
					AND OR A LAWINATION	2						
					EFFECT MOST OF							
		1			THIS UNT IS ALSO							
					MODERATELY FRIABLE							
					WITH CONCORDANT CHU							
					GEEASY SLIPPED FR							
					SUPPOCES + FRACTULE	-						
					DEUSITY RANGING,							
					BOTWFFN 14-32 FR/M							
					LOCALLY BETWEEN							
					20855 M-> 21000 M A SCHISTOSE JEL							
					A SCHISTOSE JER							
					CITIC ZOUE WITH A							
					FUMPIER OF GOUGE							
					STRAS 19 GUCOUNTER	0						
	· · · · · · · · · · · · · · · · · · ·				LOCALLY BETWEEN							
					216 AT m - 7 22200 m							
					A ZONE WITH ILCOORS							
					CONCORDANT ET GREY							
					1-20 MM QTZ STRID							
					GERS ARE CONCENTER	TED						
					LESSOR LLI-4 May							
					CB STRINGERS ACCOM	-						
	3				PARY THE OT UN'S.							
					LOCALLY OTO TATOES							
					ON PLUEISH TINGE.							
					SULPHIDE IS ULL + SPORT	τ(C. Ursa	Major Minera	Is Inc., 200
					IT TR AMOUNTS OF PY	PO CPU						

IN FO DISSEN'S + HAIRLINE FRS.

Number From: 1	ntervals in Me M's To: M's 90 25493	Dist M's	Litho Code	Major Lithology	From: M's	ervals in To: M's			Drill Ho St <u>S1</u>	lumber ole Numbe ructural Zo <u>S2</u>	
Diamond Drill Hole In Jumber From: M	M's To: M's	Dist M's	Code		From: M's			Minor Lithology Brief Description THPUSUT XN @ 2- 201 UCLEME MA HAVE LOCAL GULPHIM AS WE SPORACE DISC ASS'TD TO COZ UN'S OR SULPHINDE PRACTURE	St <u>S1</u>	ructural Zo	ones
In I	M's To: M's	Dist M's	Code		From: M's			Brief Description THRUGUT XN @ 2- 207 UCLUME, MN HAVE LOCK GULPHUM AS UK SPORATIC DISCO ASS'TO TO COR UN'G OR SULPHUDE PRACTURE	<u>S1</u>	and the second s	
lumber From: 1	M's To: M's	Dist M's	Code		From: M's			Brief Description THRUGUT XN @ 2- 207 UCLUME, MN HAVE LOCK GULPHUM AS UK SPORATIC DISCO ASS'TO TO COR UN'G OR SULPHUDE PRACTURE	<u>S1</u>	and the second s	
10.02								THRUGUT XN @ 2- 201 UCLUME MA HAVE LOCAL GULPHIM AS WE SPORATIC DISC ASS'TD TE ORZ UN'S OR SULPHIDE FRACTURE		<u>52</u>	
204-	90 254.93		<u>1</u> 5 .	Conty.				201 UCLUME MAY HAVE LOCAL GULPHIM AS UK SPORATIC DIST ASS'TO TO OUT UN'S OR SULPHIDE FRACTURE	E 4'(
			-16 -					201 UCLUME MAY HAVE LOCAL GULPHIM AS UK SPORATIC DIST ASS'TO TO OUT UN'S OR SULPHIDE FRACTURE	5 u'(
								AS WE STORATE DIST ASS'TO TO OT UN'S OR SULPHEDE PRACTURE	E 4' (
								AS WE STORATE DIST ASS'TO TO OT UN'S OR SULPHEDE PRACTURE	б Ц'(
								AS WE STODAME DISS ASS'TO TO OUT UN'S OR SULPHUDE PERCENTE FILHINGS; CH. PO, PN	<u>k'</u> (
			•					ASS'TO TO COZUNG OR SULPHIDE FERCURE FILHIDGS; CH, PO, PN			
								FILLIDES; CH, PO, N			
								FILLINGS; CH, PO, TY			
								TO PALQUETE LACEL			-
								I Counter Count			
					- All	24					
					22104	221		VERY PLOTTIC +		52°	
								DALTOSE BROWN.			
							-	+ CHLORITE AS WEL.			1
					22228	2-47		14-0.1 D		0	
					Let -	2000		VERY ROTTIL OHLDE	C	55°	
								+ CB FR FILLINGS	-		
								DR SIKINGORS MON.			
					22243	0-195		A			
					122.0	2360)	/	ASCOLITED IT GLEN Black to GILM			
								BRACIN 56 GILTY			
								GEDS WITH LOCAL			
								GTZ STRINGER +			
								at MOD BANDS OF			
								PERUASILE SILLIFIC			
				40				ATTON GUER CM-M			
				*# *-				SCAVE WHICH CAN PE			
								ACCOMPENIED BY HAIP			d
								LINE QUARTONE FRAC		60 0	234
							3	TURE FILLINGS WHAT			
							-	BEHAVE MORE LIKE	C. Ursa	Major Mineral	s Inc., 200
								FOLLATION AS THEY MOR CONCORDANT OF FA			-

										Page N	lumber	27
Ursa											le Numbe	er
Diamond												
Drill Hole		als in Me		Litho			ervals in		Minor Lithology		ructural Z	
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
01003	-	03										
	20490	254		16	CONTO	23230	23685		XN BECENUNG MORE			
						-			MASSIVE THAN FOL.			
									LATED + A DECREM	F		
									LATTALOGIC CHARGE?			
									+ LEAKR = LT BROOM GR	EV		
									LITHOLOGIC CHARGE?			
									YIU LOES NOT APROAR			
									SILLYFIED PER SA			
									: LITITOLOGIC EFFECT	t		
												are
						22685	23850		XN BECOMING MAD. ERATELY TO HIGHLY		50	23685
									ERATELY TO HIGHLY		~	
									FOLIATED TE :5-5	way		
									BT' FOLLAGE LT			
									GREY OTZ STRINGERS			
									BUT TURNING CHL'C			
									+ STERLIGUTIC e 2376			
						11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			-> 23840 M WHICH			
									ALGO CONTAINS PO, PU			
									+CPT IN TR AMOUNT			
									AS DISSEN'S, HAIRLIM		-	5
									FR'S + IN ATT STRINGS	es	De	235 m
						2						
						24275	24328		FG/MG RIDITIE. AMP			
							here and		CARBONATE LANTER			
				-					CARBONATE LANTOR +/- BTTZ ALSO, UNIT IS HIGHLY FALINTED. CARBON MUZATION	-	0	21
									IS HIGHLY FOLINTED,		50 1	1-2434
									CALBONITIZATION			
		1							15 STRONG+ PORVASIVE	C. Ursa	Major Mineral	is Inc., 2004

÷.

										Page N		23
Jrsa										Drill Ho	le Numbe	r
Diamond												
Drill Hole		als in Me		Litho	M		rvals in I		Minor Lithology		ructural Zo	
	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
U10 03	20	12		1			1-7					
	20190	254		16.	Gent'd.	24328	2494		A MODERATE' TO SR.			
				~			M 0		ONGLY BIOTITIC +			
	-								FOLLATED (LANNATE)			
									XN OF SEDIMENT			
									WE ATZ STRINGTOR			
									THROUGHOUT +			
									TOWNS TO BE BLOCKY.			
									PATTAGR THAN FRIABLE			
							10				- 0	
						244.5	24484	-	MOD. 2May-2Cm		55°	_
									FE DISSOU'D CPY + PD ASS'TO T UNG			
	1								+ FRACTURE FILLIN	65,		
									FG DISSOU'D CPY +	1		
									PO ASS'TO E UNG.			
		11		11								
	25493	3260		ab	QUARTZITIL							
		1			SEDIMENTS			1				
						102	20					-
					TO A STREAM AND	D. 254	255)		CG GUNCTZITE.			
					TO A STREAD AND	-					1	
4					POSSIBLY LAMINATED	25(20	25735		A PILLEY QUARDITE	CB	FRSE	35
					TYTE 5 1-4 MM BUT				OR ARTICSTE BUT MO	0		
					TITIC RICH BANDS,				OB FR FILLING ALL	5C #	INTS e	125
					IN PART STREADY				WELL DEVELOPSO	4		
					TYTE CONTRIBUTED				+ SOME ATTZ STRINGE	5		
					by IT TO DE GOEL	1	CN	/				
					DUART OD OD FOR	25000	25960)	PRUTE APRESSIC XN			
					ALTERATIONS AND BR							
					ALTERATIONS AND OR NARROW SILICIL BANK OR CONCORDENT GTZ UN	15 25968	26000		CG QUARTZITE		Major Mineral	s Inc., 2004
					OR GONCORDONNT GTZ UN	NTS.			+ CPY DIGASSI + BLER	5	600°	

Ursa										Drill Ho	e Numbe	r 24-
Diamond												
Drill Hole	Interv	als in Me	eters	Litho			rvals in I	tert and the second sec	Minor Lithology	Str	uctural Zo	ones
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
01003				11								
	25493	326	0	labo	XN HAS SOME VARIAB	Lin						
		1 4			IN SED TYPES GUCH A	5						
					IN SED TYPES GUCH A LG COMPETZITE BAND	5 26356	26400		ALTERATION XN, WEL	-		
					e 25494 n e 25960 H				CALLATED 304 CANGROANT OTZUN,			-
					MG PINTON ARTOGIC R				CONCORDANT OTZ UN,			
					@ 25615 h (which				1-3 ON CPY UN SM.			
					MAY BE A ALTERATION				CB GUARTZITE +		0	,66
					PRODUCT FROM CON.				BLOTTIC SILT LANGE		600	264 M
					CORDANT OTZ UN'S +	10	1-	1				
					CB X FRACTURES)	26610	266	-	ZENE OF GTZ UN'S			
					FG/NG STREAM				5-12 ON OTZULS			
					QUARTZINIC SED!		-		+ CPY DISSIEN'S BLE	3		10
					BIETTIC PICH LIME	\$			+ FR. FILLINGS.		580	266 M
					POSSIBLY SILTY GPEY	50	ne	+ 37				
					PESSIBLY SUTY GPEY WACKE OF STRUCTURE	268	2693	2	OTZ JEN + CPY			55°
					Charles I have been			-	AS DISSIGN'S ALLERS			
					TO BE <10% + BLOT				+ FR FILLINGS,			
					ALSO GENERALY <10	1						
					EXCEPT IN LOCAL GILT	2747	27577		+ BLERCOUD GALLE		(ao	60
			_		TO GREYWARDE SED					Y.		
				-	MTERLAHERS UHERE				+ SILLIC BANDE	-		
					RETTRE > 201.450	1.			+ STREAD QUADT			
				-	ALTERATION / MINERAL	2N			HILL FOLINTED SEDS	1		
					OCCUPS CHICRY AS				+ PY FRACTURE FILING	-		
					2 MA TO I CM CHATER				LECSOR DISSENS OF			
					TO SMOKEY GREY TO BL				TR PS, PH, ASPY.			
					TINGER CONCERDANT T	0	7					
					X aming on unly e	282 90	28630		XN RECEMUNG STREAK	+		
					left to wan initalist	1es	~		SILICIFIED + CHOTZ STRING		Major Mineral	s Inc., 2004
									+ FG (24, P) to DISSERVI AL			

HUD STE FOLL PLANES HOOML SULP FR FILLINGS 228340M. THIS XN IS BLOCKY.

Ursa										Drill Ho	e Number	25
Diamond										_		
Drill Hole		als in Me		Litho			ervals in		Minor Lithology		uctural Zo	
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
410-03		1	-	1.1	ALE TWO ELAMPLES LARGER CENTERSH OTZ OCCUP FROM 3-650 BOCOME THEW THE XOU 26050 -> 26050 AND C 26650 -> 26050 AND C 26650 -> 26050 ALE TWO ELAMPLES LARGER SCALE (2) IS CONCERDANT + COTERENT MODE SUL HIDE RICH + CPI, B, PI +/- APY.							
	25493	326		Gbr	1 ARGEL CENTERSH GTZ							
					UNG FREM 3-650	34						
					BEENR THEN THE XW!							
					26615h -> 210059h							
					AND @ 71.45% > 769351							
					ARE TWO ENAUDIES							
					1ADGED SCALE ING							
					IS CALCERDANT +							
					CE BRALLY HADE SUI	2						
					HOF PICH +CPL B R	-				-		
					+L ADU	,						
		1			-141 ·							
							-			_		
	-				0							
			-								-	
		-										-
										C. Ursa I	Major Minerals	s Inc., 2004

Ursa										Drill Ho	le Number	26
Diamond												
Drill Hole		als in Me		Litho			ervals in I		Minor Lithology	St	ructural Zo	nes
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	S1	S2	S3
11003	0.7	0		1 .	- 11				1			
/	25493	3269	0	labe	CONT O	296 56	2870		A BI'D TXTRD ZONE		45°	
						- 00	- 01		TE COLLORDANT OT			
						XV			AUT BY CB, CHIERO KATT BY CB, CHIERO FRACTURE FILLINGS XN 15 ULGGY TOO			140°
						\wedge			X OUT BY CB. CULER			1.10
					The Y	T			FORGE FILLINGS			
						45'		-	XN 15 ULGEN TOO			
					40	45	N					
					~		1.					
						29735	29823		Blacky SARRA SI		50°C	298
									-2 Ch OT UNG +			
									SOME PERUAGIUE			
									SILICIL BANDS, LOCAL			
									SILICIL BANDS, LOCAL ULIGGY PP FR PILLINGS	-		
						29823	3140		XN OF MOD. ALTER.			
									ATTON CHARACTERIZE	5		
									BY A MM-CH SCALE IT / Ot GREY CONCORD. ANT ALTERNATION OF			
									IT / DE GREY CONCORD.			
									ANT ALTERNATION OF			
									SILICIC BANDS OTT			
									STRINGERS + LESS			
									ALTELED OUT BT AT	2 C		
									SCOLATELTS, ALSO A			
									Duty THEF AUF TO			
									I MM KOPAP YTM			
									SILLCIC BANDS, QTZ STRINGERS + LESS ALTERD QT+BT QT STEDIATED QT+BT QT STEDIATEDTS, ALSO A PULKY TINGE DUE TO I MM KSPAR YTM DEVELOPENDET.	_		
										den en e		
						3010	30,36		HOD ACTERATIONY HIGH FOLLIPTION, STRE	1	450	
									HIGH FOLIMITION STRA	C Ursa I	Major Minerals	Inc., 2004
									SLICK DU. OD STRILLS	For		

SHUC RU, QT2 STRINGERS + QT2T'C GOD'S + FG DIGGENING ON + PO <1%.

.

đ.

Ursa										Drill Hol	e Numbe	or 24
Diamond			-				1			01		
Drill Hole		als in Me		Litho			ervals in		Minor Lithology		uctural Z	
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	10: M's	Dist: M'S	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
110.03	25493	- 100		labe	0 11							- 06
	2541-	32600		lape	Contd,	31066	31200		BUE OF MODERATE		>8	e 31066
									TO VERY STRANC			
									MAG SUSEPTIBILITY			
									te VALUES RANGING			
									FROM .56 -> 166.			_
				1.00					SEDIMEUR AVE V.			
									HIGHLY FOLIATED +			
									STOPPAKI TEXTURES			
									L UARIHBLE MM-			
									CHI SCALE ALTERNATI	aur		
									GE OTT STRINGERS			
									IRIEGULAR SILIC			
									BARDS. BIETTIC VEN			
									BANDS, BIOTITIC VEN BANDS + LOCAL PLLY			
									GRANITIC STRINGERS			
									NAVONETITE COCURC			
									AS FILE + MG DISSEM			
									ILATIONS + AS CON			
									COLLENT 1-4 MM			
									STRILLERIS; FG TO			
									MED GRADED CURC.			
									PY DISERI'D @ 21-2%			
									LOCH Fr. CRY IV			
									V. SHALL + DISCARTIN.			
									QUE FRACTURES &			
		1							TR - 25% LOCAL			
									INI CH SCOTT LOOKA	6		
					/				VFG CLORED OF PY+B?	9	55 0	2008
									P - JIM IL ACROCIATIO	C Ures	~	0 Inc. 2004

Te U. HIGH MAC & 166 AUD ATTLITIC STRINGER,

Ursa										Drill Hol	e Number	29
Diamond												
Drill Hole		als in Me		Litho			ervals in 1		Minor Lithology		uctural Zo	
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
010.03	07	1		1.1	1.(-				_	
	25493	326		labo	CEPTO	31435	3,540	1	STRONG QTZ W/ OR STRINGERS + FG		55°	
				ing.	(STRINGERS + FG		_	
									BRIGHT TO OLV. GROOM			
									ANPHIBAE WHICH PER			
									A STROUG FOLIMITA			
									GOOD CPU IN TO DASS UNSPS + MM TEACTOR	EL'I		_
									ULISPS + MM FRACTOR	t l		_
									FILLINGS 4-18, P.			
			W 1th									
						320FC	32075		V. MAGUETIC BAND		450	
									+ BT + QTZ + FGAPLITE	<u>.</u>		
									KT.6 MAG = 133.			
							11					
						32073	32600.		SEDIMENTS CONTINUE	E		
									AS MODEDATTEN TO			
							1		GEDRIGI TALIETTS			
									STREAM IT TO DE GREY CO.R.			
								1	DE GREY CO.R.			
									VALLATIONS, LOCAL			
									GTZ STRINGER, BT	4		
									WALLPRIONS, LICAL GRZ STRINGED, BT UNG, ESPACTELAG			
									CONTROL & 5-10%.			
									LOCAL PATCHES OF	-		
									IG SECOLDARY B.F.			
									E SECOLDANY B.F.			
									OR MM GIZE LEISPS,			
									OR MM GIZE WISPS, FC APILITIC MATER IN STRINGERS MAY,	INC		
									IN STRINGERS MAY			
									ACCOMPANY PAR UN	C. Ursa M	ajor Minerals	s Inc., 200

Ursa										Drill Ho	le Numbe	r 29-
Diamond												,.
Drill Hole	Interv	als in Me	ters	Litho		Inte	ervals in	Meters	Minor Lithology		ructural Z	ones
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
110.03				1.1.1	C Tut							
400)	37666	3350		anb.	ALTERED MARIC LOC.						-	
	Jue					~					700	326h
				MG	FG, GT HD GREY GREEN,	32985	330		HIGHLY FOLIATED.		50° C	330 M
					WELL FOLIPHED WITH A				FG hm QTZ STRINGO	5	-	
					STRONG FARRY DEUELOR	5			CHL' PR SUPS.		40°C	331A
					BY SMALL CONCORDANT							
					2-15 MM WHITE D	33220	33400		XN DISPLANS A			
					CLEUISH OT STRINGERS				MARK/ TOT UDC			
					OR DANDS AND RERV- ASWEN SILICFIED BANDS				Loot DUE TO A LEIS	n		
					ASNED SILICFIED BANDS				PEGREE OF OTZ UN'S			
					TO A MURCH LEGOR DEGRE				+ SILICEN ; AND > 50			
					MARC MATCHIAL RANG				PSP> OTZ>BLE BT.			
					FROM #6 MG COMPSE	0			ALSO BECOMING LED.			
					OF AMPHIBLE + BLK BOT	ALP)			FRACTURED T BROKE	1		
					WHICH ANASTOMAZES THIR	u			TE ANG PETER OF 4- RX +/- LOCAL RUBBLE	10 ch		
	-				A QTZOFSP'L GROUNDER	22			RX 4/- LOCAL RUBBLE			
					LOCAL LESS ALTERD MARTICIDAY VIL Lot ALHO							
					MATICITINT VI Lot ALMO	1	. 74	2	1			70
					TUTTALEDULS TO 1-2 AM	32A.0	3357		FARIT: ACMOST		50 0	2 334
					FELSIL SP-JA BITS.				COMPLOTELY RUBBLE			
					BLUEISH OT EIES CON.				· 5-2 ON PIECES +			
					PRISE SOME OTT WATERIAN	4.			A TE GRIT ON BOT	Br.		1-
					SILICIFU BANDS GNTA	r w			OF GRE TRAIL AS OLE	4.	50 e	33501
					lettre church FSIARS	TALS.						
					DET/MATIC AUTORED VOL		1					
					MGHCH VARIABLE MILLE							
					COMPORTIONS DEPADING			-				
					ON ATTERNTION OR ORIGI	vac.						
					CAMP COTT IN-JOIL AMI	3.5%	1			C. Ursa	Major Mineral	s Inc., 2004
					FIPAR 5-25% BLK AD	P/BT 77.15	5/.					

ALTEN MOD C 40.50% OF XN.

Diamond								1		DIII HO	IC INVIIIDE	er 30
the second s										-		
Drill Hole	Interva	als in Me	ters	Litho		Inte	ervals in M	Aeters	Minor Lithology	St	ructural Z	ones
Number Fr	rom: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	S1	S2	S3
010.03				1								
	33570	35890		and	OR OBNO SILVER							
				many	- ZONE.							
						1-						
					FG WHITEISH TO LT	3460	34860		BECOMING MORE OT	_	50 0	337 M
					CARALISH STREAKY LOOK	6			RICH LEHTTER RTZ UM	(
					ST2 UN'S HIGHLY FUL:				LIFESTER MATEL COMPONT			
		1.000			IATOD TO SUB MM AND	-			+ SULP CONTENT UP)	45 C	540 ª
					4 BOLITIC FOLLAE AND				RELATIVE TO PREV.			
					5-20 MM CONCOLONNY						40 0	3AI M
					Folge MATILITUR S							
					BAMDS Cartical OCCUR	1	1				50 2	3424
					THREEDOT THE HEATLY	34860	34950		GULPHIDE PICH ZOLE			
					QTZ UN'S SEQUENCE.				10+15 an upe		60° e	347-14
					RTZ CH'S ACOUNTS FOR				POTCPY RICH BANDS			
					7851. OF SECTION.				WHICH INTER AWY			
					7851. OF SECTION. MIDERALZAMON				ARE NET TYTE'S SUP			
					R TE-15/ 1 04 TE-3	1. ,			THREE BY'S WHETE OTZ			
					P/ TR-15 %. MARTE	5/			EGELHERE POTCH	_	55 6	349 h
					SULPHIDE AS UF6 TO				1-10 Mm B/CPY FR		-	
					MG DISSEM'S BLEBS,				FILLINGS/ BUBBS CEIT			
					HAIRLINE FR'S FRATUL	E	1		LIHTE AND LORGOR			
					FILLINGS + SOMI MASS	UE .			GERLISH GTZ AND		55 0	89 B
					& BANDS LOCALLY.				ACCOMPANYING MATTICS.		2.5	· ·
					MARAGITE FAIRLY				B 15% ay 3,			
			101			60	-7		1 1 9			
			1		SMEANON ALLOSS	34950	35470	-	SIM TO PRES KU			
					MARY FRACTURE FACES				@ 33570 m -3460 h			
									WITH WHITEIGH TO			
									GREY STREAM OTZING	C. Ursa I	Major Minera	Is Inc., 2004
									WITH MARIC FOLIMET			

BANDS DEVELOPING FABRIC. PO TR-17. CPM TR-11. PU TR-15/. (LOCAL UNGGY VN)

Ursa									D	rill Hole	Numbe	r 311
Diamond												
Drill Hole		als in Me		Litho		Inte	ervals in i	Meters	Minor Lithology	Struc	ctural Zo	ones
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	S1	S2	<u>S3</u>
410.03					[0					
	33570	35840		bulg.	CONT d.	354 30	358%		MOD TO HIGHLY TR'			
									OR BLOCK WITH THE			
									DO ELOPENENT OF			
									SALMON PLE PATCHER			
									+ FR'd CONTROLLED			
									POTASSIC ALTORATION			
									THREE A UMALPARY			
									WHITE TO GREATSH OTZ			
									W'y WITH SOME SUB	_		
									May MAFER LEISPE +	-		
									FALPETION.			
									MINDEALIZATION 15			
									PRIMARLY A VEG TO			
									VUEG PY DISSEM		_	
		1							MG GLIND YTHIG + OWIDS			
									+ HAIDLINE FRANKIDE			
									e.5-21 cerri			
		· · · · · · · · · · · · · · · · · · ·							C. 5-2% certi TR Amounts B. CA			
					e 356 n , e 357 n	35480	35515)	VIERY BROTHER BK.	1.1		70
							1					19
						35515	35682	-	NUS. BLOCKER ORE.			
									5 1000			
					T30 60 TA	35605	35625	-	VERY BROKEN RY.			60,90'
									1 On PLECKER @			
					1				1 On PIECER C. HIGH >'S TCA.			
					1							
						35625	35740		MODERINGS TO HIGHIN		50 0	3574
									BRODEN BLOCK OPEN	C. Ursa Majo	or Minerals	s Inc., 2004
									MOD. SALAND. PILIT ACTN. DIFFUSIC PRICHEST POTETUS			,
									DIFFUSE PHILMESTEPHEIU	les.		

,

Jrsa										Drill Ho	le Numbe	er 32
Diamond												
Drill Hole		als in Me		Litho		and the second se	ervals in i	and the second se	Minor Lithology		ructural Z	ones
Number	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief Description	<u>S1</u>	<u>S2</u>	<u>S3</u>
	0								let wo Frent		1	
	35890	76520		19.	CALANTZITE	36573	7/20		POLE OF MODERATE		FOS	45,150
		5-0				-	20		FRACTURING SOLE			1
					FG-MG. V. LT GREY.				CB FLACTURE FILLING			
					FG-MG, V. LT GREY, MOD TO STRONG TELIKTION				CHUC FR FACES, BLOCH CORE, dE	1	60 1	Zd N
					WITH SOME SERVICE				BLOCKY CORE, OFF			
					DELELOPENENT IN PLACE				FRACTLERES LOCAL			
					LOCAL SILICIFICATION	2			PY- CHLORITE FR.			
					IN 1-20 CM BANDS,				FILLINGS + PATCH	1		
					LOCAL 2-5 MM ATZ				+ FRACTURE IDA.			
					STRINGERS, LOCAL				tRaited Hearing	TCN .		
					APPEARALCES DE CLARS	E			UK PY B DISCERIO			
					GRAND COTO FLAGS				+ HOIRINE FR MIN			
					SO + UP TO SAMDIA	e1.			CRALIZAMON 4-1%			
_									· · · · · ·			
					LIMITED & < 5-1.	36 0	3630		V FRACTURED +			
							*		BLOCKY WITH SEURI KUBBLE ZONES	J.		
									RUBBLE ZONES .			
						35890	3610		UEAK ALTERATION			
									Te Locke SILKIC.			
									BANDS, OF HIGH	25		
									BANDS OF HIGH			
									FOLLATION + SERVICE	5		
									+ UK FG GRATTERE	0		
									DISCOULD PY-LAY GENERALLY EL.			
									GENERALLY EL.			
	-									C. Ursa	Major Minera	Is Inc., 2004

Jrsa											Drill Ho	le Numbe	1 22
Diamond													
Drill Hole	Interv	als in Me	ters	Litho		Inte	ervais in i	Meters	M	inor Lithology	St	ructural Zo	ones
lumber	From: M's	To: M's	Dist M's	Code	Major Lithology	From: M's	To: M's	Dist: M's	Brief De	scription	<u>S1</u>	<u>S2</u>	<u>S3</u>
CALD. NZ													
1.0	36820	3815			GUARTZITIC SEDIMENT								
	- JACU											0	
					MED-COARSE GRAND	36820	36880		MOD.	FRACTURING		45	
					MED-COARSE GRAND	D,			+ FR	Contraliso			150°
					SEDIMENT (BNSISTS				HOMM	HZATION.			
					OF 7 MM- ZCM SR								
					B SA WHITE, COS								
					GR BLUEISH QUART								
					REBBLES & 85% WITH	IN							
					A RE MED SERICITIC								
					MATRIX 4- AMP 4- BT								
					REPORTS C 85% WITH A RE MED SERICITIC MATRIX 4- AMP 4-BT 42076 DISSEM PD, PICT HIGH DEGREGE OF FOLIAT	R-251.							
					HIGH DEGREE OF FOLIAT	ION							50
					THELOUT THIS XN.		1					60 0	381
									_				
									_				
					tet e 38 M.								
					DA FITA	NA: al	ohe	En D.					
					the mera	HANL 21	(90)	5:00 PM			C. Ursa	Major Mineral	s Inc., 2004

Sulphide I	Mineralizatio	n Details				-	-	+	-	-								L	
	S. C. A. A.	Sample	Sample		1	% 0	f Sulr	hide	Mine	eraliza	tion	Dim	ensior	is of	Sulc	o's Asso	c'd with or	Occurring	as:
DDH	Sample	Runs		Sample	Sulphide	1.0 0	- Cuip	T		GAL							Intercon'd		
lumber	Number	From	То	Thickness	Code	Po	Cpy	Pn	Py		Marc	qtz	carb	chl	bio	Blebs	Blebs	Dissm's	Comments
16.03			1				1	-											
	98903	4120	420		The				TR									4	VFG HAIRLORE PY FR FILL
	98904	4210	4300		Inf	TR			TR		TR							41	VEC SPECKS + MARC'
	98905	4300	4395		IN4	TR	TR		TR									<1-1	SMALL 4-1 DISSEN.
	98900	4395	4496		PIS		.5											4-3	DISSER BLOG IN IS CA G
	98907 98968 98969	4480	4565		PIS	TR		1							1			14	UFG B. CPY SPECTS L
	95968	4565	4665		PIS	.25	.5		TR									4-1	SULP ASST'd The CER STRI
	96969	5286	5435		PIS	.5	TR					1				3-16			BEBS IN 2 ON WIDE OU
	96910	5435	5500		PIS	125	TR											1-2	DISSERS IN I CHUNE ON.
	98911	5500	5580		PIS .	1	TR	1										221	UFG CPU SPECK ?? ?
	98942	5580	5672		Pls	1	.5									3-4		4-1	MOD THE WAY REZ- (B AND FR
	90913	6135	6335		PIS	25			TR	TR								41	
	98914	8516	8560		PIS	TR						1					e)	44	1 Cn OP / 8/TEUPHALINE IN.
~	96915	8850	8925		PIS	.5	TR					1				4	-48	21	1 Ch OR COTOURNALING W. PS ALGO + CPP PISSEN 14 901
	96916 96915 96915 96915 96916 96916	g125	GE 15	1	DIS	TP	1.25	1								1		221	CKIMZ TRS TO ALL RASE
E Conce	95917	9720	9780		DIS	TD	TK											<21	PE " FE CITIC OB SERVIS OF
	1 7 8 718	101	104		PIS	:25	15		1						-	4		<1	CPI PLOSS N. 4 OL QU + FG FOC
	98919	10740	10840		PIS		TR											cel	IVVOI
	98920	10840	10940		PIS	.25	,25											41	4 MM - 4 CM OTZ/CB VNG FE CH
	96921	10940	11030			TV	TR											44.4	atic FR+ FGLEGEREN CHER
	100977	11.30	11,30			1.5	TR											4-4	NOD FOLLY LT GREEN PL STON Ro PLEB IN I CM RUN + 12
	98923 96923	11130	11700		PIS	1.5	TR	-								4		41	PS PLEPS IN I CM QUN + PS
	GC 924	11475	11540		RS	125	,22		1									14-4	STRONG FOL'N + CM allon + CB B
	100					-		v.											
	98925	9960	10060		PI	5												4	
	98926	1000	10160		PL	15									-			41,	
	48.972	12185	17760		PIPIS	ſ	:5	-					16 C					C. Usa Main	Minerals Inc., 2004 CG XTALS, RUL FSP
100	98927 98929	13460	3521		PIPIS	i	.25	1			1					3		4-1-1	MG-CG. I an OZUN.

12.PJ

ett, OB OTZ, TEULAALME? oug.

1

		Sample	Sample			% 01	Sulp	hide I	Mine	raliza	tion						c'd with or		ng as:	
DDH	Sample	Runs	Runs	Sample	Sulphide							Fra	cture	Fillin	gs	Isolat'd	Intercon'd			
lumber	Number	From	То	Thickness	Code	Po	Сру	Pn	Py	Asp	Marc	qtz	carb	chl	bio	Blebs	Blebs	Dissm's	Comments	
110-03		a										5								
	98930	18520	18610		PIS		TR												1-4 on atzles WOL	ow Th
/	980.31	18880	1898		PI.		TR													
/	98031	20855	20920		IN4	.25	TR		_	1										
	98033	20920	21000		INA	.25	772	-		()								4-1	FG SILLOC CUSPS+ FOLK I	DESER
1	98034	21000	21100		INA	.25	TR											4-1	FG SILLOK (DISPS+ ROLA)	LINGER
	98035	21100	21200		IN4	.5	TR		.20	5								<1-1	V. THIN QUICE FE'S+STZI	INGERS
	98036	21647	21720		1124				.5					-				4	DISSERIE + IN AT STEIN	<i>TERS</i>
1	96427	21720	171772		104	.25	TR											4	PO + OTZ STRINGERS.	E
N. /	18038	21772	21862		124	TR												4	41-6 mm 0002 STRIAG	Els
]./	98029	21862	21910		164	TR								_				41	L1-2 am 11 11	
all	28640	71910	700		104		,25		TR	*									CPY DISSEN COT STRINGE	RI TEPI
7-1	98041.	27.200	22255		14				.5									4	CPU DISGON CON STRUCT	NICIC BA
. \	98042	22299	794.99		114	TR	_	-	TR							3		4-1	LOCAL OTZ STRESH TO FRE	+ DISS
	28093	23765	23840		ING	TR	TR		TP	-						4.4		4	GULP FR. FILLINGS +	PISS
	98044	24413	24482	-	INA	TR	TR									C		4	OTZ STRINGERS + GUL	PFR
	9504S	2596	26000		104	-25	.5		•							3		1		
	98046 98047	26352	26406		104	TR	5		1								10-30	21-2	2-3 SMULLOF CPY, HI	DIGGEN-
	98 AT	26610	2664		14	TP	2		TR							う		21-2	Q UNG + SILICAL E	-
11	98048	26850	26934		1014	TR	3									3		4-2		
1	98049	27490	275 55		104.		TR		1	TP.						3		4-1	1 4 4 11	
1	92050	28290	28390		1104	TR	2		Ż							3-5		<<	MIGGY PI CRY FR FILLIN	165.
	98800	28390	28490	19	te4	TR	TR		TR							0		41		
	aftart	70450	79520		ti4	TR	TR		TR	()								11		
	99800B	25520	78620		TRA		1.5		TR									141-1		
	93721A	79735	29825	-X-	Tut.		TR		.5	TR	GALTR	NAT	A					41-1	OTZ STRIVEGRS APILITIL M	MERIN
	98800B 9-3721A 93722A 93722A 93722A	3106	3136		DN4		.25		.5					2				C. Ursa Ma	Jor Minerals Inc., 2004 V, MAGNTC	
	93727A	31136	31000		1114	TR	TD		T				1						in the second se	

LHITE FIRAR, BL. OZ CHEF. CHL FLAGEI ANDSTOMIZING ERECALLY IN MODE FOLSIC BANDS, MARICS = FC, BRIGHTOR GR AND, BLE AND, CHL (FT)? OTE ES/.?

suipniae I	Mineralizatio	Details					-				-				-				
		Sample	Sample			% 0	f Sulp	hide	Mine	eraliza	ation	Dim	ensio	ns of	Sul	o's Asso	oc'd with or	Occurring	as:
DH	Sample	Runs	Runs		Sulphide			1				Fra	acture	Fillir	ngs	isolat'd	Intercon'c	1	1
lumber	Number	From	То	Thickness	Code	Po	Сру	Pn	Py	Asp	Marc	qtz	carb	chl	bio	Blebs	Blebs	Dissm's	Comments
10.63	-														-				
		326 55				.5			.5		TR		- h -	. 1	•				FE DISCONT + SUBMIN WSPS LOLT OT
	98602	32,755	32825			.25	TR		1		th		12						FG-HG PY DISSENS FR FILLINGS
	98603	32825	32900						1		th				-		· ·		FG-46 RY DOSCON TYPE SUBJEM LEISPS.
	9860A	32900	33000				TR		1.5	51	FV. 5	TROA	HIX	TR FE	MA	Fict 3	10 ma at 2 9	RINGERS)	VEGTO HIG PI MISSERIE + STREWE OUT A
	98605	33000	53100				.25		1	1	EU S	REA	HTY	TR	FGM	AFFIL :	-15AM RT	2. STRINGS	B) FG/MG PIFOCH DUSSIDETURE LISPS
	98 606	33100	332 00				TR		.5		TR								\$6 RB MSSE STRUCE OUT ALONG H
	98 607	337 00	332.00			125			.5	X	V.F	RAC	talts	0 60	RE	WELL TO	40 TG HAFN	INT+GTZ	FG DISSERS, V. FRANCED
	96600	333.00	321:00			.25	TE		1	1	V. F	LAC	TURG	2 00	RE	. 3-	15 mm pr	7 STRINGER	FG MIGAGENT FR WISPS
	94 609	32,400	334-20			TR	TR		.5	TIL	V.V.	R	Actu	Ren	17.	REHE	ACO ;VU	day.	
	98 610	53470	3350			- 14	TR		TR		VD.	FR	Id.	Ru	ABLE	F .	(
	98 GII	3350	34670			TR	125		.5	-	QV-1	UK	4 M	AFIC	MA	GUAL			
	98 612	33670	33270				.5		.5										02-+(- MATIC SELLOSTES
	98613	33670	33860				1		1		STR	EANS?	DN	AFE	6		Allenso mil	en.	
	198 614	325400	72900	1			3		1		QU	1A +	FRIG	OF					
	98,616	33900	34000				.25		.5		av	4	MARY	0	2158	5-			
	98,610	34000	39100		· 15				.5		STL	totol	61			-			
	98617	34100	34200				TR		TR										V.FR. d OR WG WHITE GREY STRE
	98618		34300				25		.5										FG-HG DISSIEN'S EUTO + MATE R
	98619	34300	34400				15					-							V FR'd, MOSTLY OTZ.
	98620	3,4400	34485				.5		TT		TR		-		-				V FRY , ULLGOS TR FILLINGS .
	98621	34485	34560				.25		.25		TR								OTZ STEPARTED & 1-20 MM MATIC BAN
	98622	34560	34662	•	5	TR	1												On 1 a a c2ol
	99623	34600	24760			.25	2				TR								WHITEIGH OT + 4M HAVEN FOLLO
	98624	34760	3486			125	1		.25		TR								
	98625	34860	399 50			15	3		/				1						TWO 10 CM SM PO BANK, WHITEISH
	98620	34950	35050			1	Y		1			F6	CP1 B	D145-1	41490	, MG V	GGS PY ()X)	C. Ursa Majo	r Minerals Inc., 2004
	98677.	35050	35145			.5	.5		TR			FG	CALLED	F	~	1 h6 t	FLIND PA XTA	45.	

		Sampla	Sample			06 01	F Sule	hide	Mine	eraliza	ation	Dime	ensio	ns of	Sul	n's Asen	c'd with o	Occurring	as
DDH	Sample	Runs		Sample	Sulphide	70 0	Suit	Inde	IVIIII	anzo		Fra	cture	Fillin	as	Isolat'd	Intercon'o	1	
	Number			Thickness	Code	Po	Cnv	Pn	Pv	Asn	Marc	atz	carb	chi	bio	Blebs	Blebs	Dissm's	Comments
110-03																			
	98628	35145 35170 35370 3539-2 35456	35170				TR		15										VEG BURY DISSERS MGCB PH STE UFG BCPH IL MARC PAUSS, FE
	98629	35170	352.70				TR	-					QT2	MAP	1C	60/40	2 Pario		UTE BOOM IL MATER BANDS, FE
	98636	35570	35370			.25	.25				TR		11	4		11 11	1.1		Feau v a es
	GA63	35390	35456			TR			,5		TR		CR31	atte	EC	ta Fel	KUS, FE	for Rougo	PINTER HEARTIZAS / KHT?
	99632 -	35456	35520			.5			.3		1.5		FG I	BIPY	H	HAIRLING	SPT MA	FILLING	PINER HERITIZAL (KH?) 5 U PE'& GRES. OF VECPY, OTO - PUER BOTTON
	98635	35520	35600						2		TR		VF6_	- 46	Pf	DISSOLS	ALMOST	Degry doub	OF UPC PY, OT TO PILLY BATTAS
	98629 98629 98630 98630 98632 98632 98633 98633	35600	35700			TR	TR		.5		TR-		VFG	Fe	PI	+ HAI	KILE P	R PHLUN	AND STREADED OTZ.
	98635	35700	35800			TR			35				VFG	DI	590	ous.	MOD PE	29	AND STRATED OTZ.
	98635	35800	35840			:25	TR		.5				GPO	<u>·</u> E	61	0.4421	Lock	LiG PL)	toustavoios? MOD PR'g
Ţ																			· · · · · · · · · · · · · · · · · · ·
		1																	
									-			-							
								-										+	
								-											
					-								_						
						-		-	-						-				
_																			
								-				-							Minerals Inc., 2004

- -

.

4

)

Sulphide I	Mineralizatio	n Details				1		-		-									
	1	0	0		1	01			A 41-	- Ker	1	Die			Cul		old with an	Converies	
			Sample	-	0.1.1.1	% 0	t Sulp	phide	Mine		ation	Dim	ensio	ns or	Suip	D'S ASSO	c'd with or	Occurring	as:
DH	Sample			Sample	Sulphide			-	-	-		Fr	acture	Fillin	igs	Isolato	Intercon'c		2
lumber	Number	From	То	Thickness	Code	Po	Сру	Pn	Py	Asp	Marc	qtz	carb	chi	DIO	Blebs	Blebs	Dissm's	Comments
110.63	9							-	-						-				
	93724A	31455	31540		IN4.	TR	2		.5										STR QTZ UNI + PPIGHT DW.C
	93724A 93725A 93726A 93727A 93728A 93728A 93729A 93730A 93730A	3 540	3640		JU4.	TR .25	TR	-	:5		1								
	93726A	37050	32073		IN4	TR	TR	_	.5		-							_	V. MAGNETIC IV. SOM MA RT'C UN'S WAT CU? A
	93727A	32.95	32141	1	IL4	TR	HR		.5		W. T	1.							BT'CUN'S WAT CY? A
	95778A	30112	302-12:	-	TAA	15	.5		TR		04.							22-2	
	93729 A	76573	34633		ENF	TR	TR.		T									24-1	
	93730A	36633	36703	2	-tot-	TP	TR	1	.5		METT	2?						44-1	
	93731A	7(703	36760	· · · ·	ENA.	TD	TR		T									41-1	
		CALCO I				- 18	13	1	1									1	
						1		1			-								
_							-	1 -											
						1		-		1			1	3					
	-					-	1	-	-		1	-							
		0					-	1	1			1			-				
						-	15	1	-						-				
				-		-	32	-		-		-			-				
							-	-	-			-	-						
						1		-							-		-		
	19					-					-	-							
				Company of	1.1				-	-	-	-						-	
					and and				-			-							
								-	-							1			
						-			-										
																	· · ·		- 10
	10.00																	C. Ursa Majo	r Minerals Inc., 2004

.

Magnetic Susceptobility Readings

1

		Sample	Sample			% 0	f Sulp	hide	Mine	raliza	tion	Dim	ensio	ns of	Sulp	's Asso	c'd with or	Occurring	as:
DDH	Sample	Runs	Runs	Sample	Sulphide												Intercon'd		
lumber	Number	From	To	Thickness	Code	Po	Cpy	Pn	Py	Asp	Marc	qtz	carb	chl	bio	Blebs	Blebs	Dissm's	Comments
10:03																			
	3	.6A		58 59	,40				85		.63					12	-53	138	.36
		.71		59	.38						. 42						.49		138
	33	-41		60	.36						.44						153	140	.42.
	34	.36		61	,45						.36						,52		,29
	35	-22		62	.33						.43					115	+41	-	: 36
	35	.33			.36				90		.49					1	. 41	(4)	. 34
	37	.6		64	. / /						,45					•	. 44		. 32-
	38	115			.08						.38						.71	,	.31
	39	-17		66	. 02						.44						144		.32
	40	.27			11						.42					170	.46		.38
	41	.2		68	.67						.4						39		. 34
- 12 m	47	. 16			,49						,40						2.27		-38 -34 -37
1.0	43	125		70	,37						.49						. 31_	150	- 37 - 37 - 37 - 37 - 37 - 37 - 37 - 37
	44	.41		,	.15						.42						.32		.35
	45	,42		72	.68						.45					•	.34		.38
	46	.49			13				00		,89						.36	1	.45
	42	.63		74	12						92						.39	,	,35
	48	.44			. 3						.59						133		- 34-
	49	.36		76	. 16	· · · · ·					.5(¥	-39		. 39
	50	44			. 6						47					130	.74		. 40
	51	125		78	,10				12		.48						, 35		150
	52	.45			. 13						.46						.31		.42
	53	.42			16				8.1		-53						130	60	,31
	54	,73.			15				•		53					L. Lat	.44	14	. 38
	55	.44		82	.44						.00					135	1.36	· .	.35
	56	.47			.48				10		164						.40	C. Ursa Major	Minerals Inc., 2004 .3.3
	57	145		84	156	T					1.92						, 32-	16A	139

)

Mag Susc.

-		Comple	Sample			04 0	f Sulp	hida	Mine	aratiza	tion	Dime	ansio	e of	Sulp	's Asso	c'd with o	r Occurring	be'
DDH	Sample	Runs	Runs	Sample	Sulphide	70 0	Jouip	niue	IVINIE	aliza							Intercon'		as.
Number	Number	From	То	Thickness	Code	Po	Сру	Pn	Pv	Asp	Marc						Blebs	Dissm's	Comments
010-03		Troiti	10	192	.39		opj			1.00	220	:12		••••		,		2.76	.69
110 0 2	165.	.40		Iaz	11					1	221	19					11	277	,20
	10	.25		194	.46	-					272	23				250	12	276	. 21
		.32	10	1975	,13						223					~9	15	279	,01
		.37		196	-,63						224						14	290	. 12_
		.37		19.7	IF						225	.25				•	.19	29	.04
	170	. 42		198 -	. 17.						226						.12	152	.14
		. 35		199	.37.						227	.14					:07	283	.18
		.46		200	.39						228	14				256	. 05	284	,02
		136		201	.ht						220	.05				257	-01	285	.09
		40		202	.31						250	.10				258	.09.	286	.12
		,51 +		203	.23			1			2-31	.01				259	.19	257	. 04
		.4B		264	.39	1 million					232	,07	-			260	.14	256	.10
	•	.34			·42						233	.10				26	.05	289	.02
		32	*		.17											262	.15	290	.07
_		.39			,20	-			-		235					263	.06	291	.24
	182	.39		•	.20 .32 .35					-	236	11				264	.08	792	.04
	10-	135			.32				-		237	.20				265	.14	293	:18
	182.	.34		210 216 212	.25	-						.13				266	.11	294	.17
		135		216	131						239	12				262	05	295	.10
		.26			.2	-				-	240	17				265	.02	296	-03-
	•	.23	4	213	.11	-					241	12			2	269	-02-	297	.13
	· · · · · · · · · · · · · · · · · · ·	.27	-	214	,10							14				270	-06	298	103
		.36		215							•	134	-			271	.01	299	. 06
	•	3		216	.11	-		-				17	-			272	.05	366	.42
2	10.	.31		217	.13				-	-	•	16				273	125	301	. 05
	190	74		215	. 68	-			-			,25				274	1.21	C. Ursa Major	Minerals Inc., 2004
	191	.4		217	13					1	•	.30				275	.37	502	,23

)

4

I.

may Suse.

Ursa Majo	or Minerals	Inc.	1	-2	Diamond Drill Hole Number			Hole Spotted		Page N	lumber:	
	eare Project					Date Diam	ond Drill	Hole Started				
						Date Diam	ond Drill	Hole Finished		EZ Sho	ot Tests	
Falconbri	dge Grid Lo	cation:				Diamond D	orill Hole	Logged By:		M's	Dip	
	0 83 Co ordi		Northings					Carried out By	1			
			Eastings									
Azimuth o	of Diamond	Drill Hole				Assay Lab	Work Or	der Number				
	n of Diamon								on with visible or suspected			
monnation							and a second sec		lopment of fault gouge			
Ursa				1					widespread foliation			-
Diamond									evel'd in the core, joint sets			
Drill Hole	Inton	als in Me	tore	Litho			ervals in		Minor Lithology	St	ructural Z	ones
	From: M's	and the second design of the s	and a second sec	Code	Major Lithology	From: M's			Brief Description	S1	S2	S3
UI0 B	FIOH, WS	10. WS	DISCIMS	Coue	Major Litrology	11011.1015	10.115	DISt. 101 5	Difer Description	01	02	
410.07	201			326	- 04	216	2.62			-		
	304 305 366			046	- 01	366	. 83					-
	207					367	,06					
	307	15				368	.07					
	20-7	.05		-								-
1	368	.16			· · · · · · · · · · · · · · · · · · ·	369	,00					
				-		370	.12					
	310	.08					.57					
		.02				372	1.02			-		
	312	6.67				375	,13					
	313 314	.11				374 375	.63				-	
	514	.03				376	. 97			-		
	315	11				201	.20					
	316	.65				377 378	.10	2 Audet				-
	317	.11				210		/ MILLED_		-		
	318	.04				21		S BOX.				
	319	.34				350 350 391	1.21	D DOX.				
	320	.19				394	.14				-	-
	321	.05									-	
	322	133	-				*			-		
	223	01										
	324	.04	-				1			-		
	325	125								C. Ursa	Major Minera	Is Inc., 20

								mag	Suse.			
Ursa Maj	or Minerals	Inc.			Diamond Drill Hole Number	Date Diam	ond Drill	Hole Spotted		Page N	Number:	
Shakesp	eare Project					Date Diam	ond Drill	Hole Started				
						Date Diam	ond Drill	Hole Finished	1	EZ Sho	ot Tests	
Falconbr	idge Grid Lo	cation:				Diamond [Drill Hole	Logged By:		M's	Dip	
UTM NA	D 83 Co ord	inates:	Northings			Drill Core	Sampling	Carried out E	3y			
			Eastings									
Azimuth	of Diamond	Drill Hole	: 1			Assay Lab	Work Or	der Number				
Inclinatio	n of Diamon	d Drill Ho	le:			S1 Modera	ate to inte	nse deformat	ion with visible or suspected			
						dislocation	/ separat	tion of rx, dev	elopment of fault gouge			
Ursa						S2 Weak t	o intense	/ intact local	to widespread foliation			
Diamond									devel'd in the core, joint sets		1	
Drill Hole		als in Me	ters	Litho			ervals in		Minor Lithology	St	tructural Z	ones
Number	From: M's			Code	Major Lithology	From: M's			Brief Description	S1	S2	S3
116.05												
frank /	328	.04				350	10					1
	329	. 11				351	,12					
	370	.21				351	.11					
	331	.20				355	125				1	1
	337	.33				354	112					
	333	.13				355	.15					
	334	.22				356	.01					1
	334	.12				357	.10					
	326	.11				35%	.09					
	337	,05		12								
	238	,18										1
	338	077										
	740	:09										
	ZA	.66										
	247 .	108										
	343	.42										
	394.	.06					1					
	345	.12										
	346	,14										
A. A.	347	,24	Δ,			1					T	
23	348	.56						1			-	
	340	1.22								C. Ursa	Major Mineral	Is Inc., 2004

may Supe.

Sulphide	Mineralizatio	n Details												0		Suc				
		Sample	Sample			% 0	f Sulp	hide	Mine	raliza	ation	Dim	ensio	ns of	Suir	's Asso	c'd with or	Occurring	as:	
DDH	Sample	Runs	Runs	Sample	Sulphide	100	T										Intercon'd			
Number	Number	From	То	Thickness	Code	Po	Сру	Pn	Pv	Asp	Marc	atz	carb	chl	bio	Blebs	Blebs	Dissm's	Comments	
110.03	BOX 1	29.9	3350		29	144	88		149		1			57		75100	25985		11.5	368 36
	2	3350	3738	1	35	149	90		155	07	1	1		58		25985	26361	1,80	36850	372 93
	3	37.38	4143	11	31	153	07		157	28	11			59		7650	267-35	1,87	37793	77719
	4	4143	4526	1	37	157	28		161	32	17	1		60		26735	77970	1 58	377.19	380 04
	5	4526	49.45	1	-52				165	56	1			61		27070	244.50	59.	38084	381 50
	C.	4945	5386	1	34		56	1	169	80	//			62		27450	278 GA	1		
	7	5388	5807	1	35	169	80		173	B	11	1		63		7746	287 86			
	8.	5807	6209	1/	36	173	B		178	11,	11			64		25786	754,58	1		
	ä	6209	6605	11	31	178	U V	e.	192	44-	//			65		25658	29677	1		
61	< 10	6605	73 55	-/.	38	182	44		156	50	11			106		79077	29500			
	12	7355	7695	1	39	Sh	50		190	60	//			67		2950%	29862	\cup	and the second	
	13	7695	8125	1	40	190	60		PA.		1)	1	*	68.		79962	30236	-)	1	
	14	8125	8537		91	194	90			26	11		6	69.		30230	30632			
	15	8537	8987	VI	42	199	26		202	60	11	1		70		3023	516 43			
	16	8987	9410	1/	43	202	60		207		11			71		3643	31447	->		
	17	9410	98 33	. /,	44	207	-60			60	11	/		77		3447	31805	5		
	18	9833	10257		43	211	60		215	69	11	1		73			322 32			
	19	102.57	106 89	1	46	215			218		1	K		74		32232	32636	4		
	20	106 89	11124	11	47	218	88			96	-/	1,		75.				V		
		11(24	11540	1/.	48	222	96		Keelen O.	92	1	1		76						
	22	11540	11971	-/-		226			31	00	1	1		77		-				
	:		1 Stand	1	.50	231			23A		11	1		78						
	23	11971	12312	-/-	51	234	60			13	1			79.					1.6	
	24	232	12800	1	52	238				74	1	-		86			ŧ			
	25	2808	13230	1	53	241	74	1	245	25	1			81						
	26	3236	3600	1	54	245			1	60	11			82	-					
	22	3600	4085	J	55	248			626	40	1			83				C. Ursa Major	Minerals Inc., 2004	
	28	14085	144.88		56 '	257	10		256	60	-			84						

Appendix III

SGS -- Xral Assay Certificates for D.H. U10-03 Samples

Work Order:	083725	Dat	e: 04/11/05
Element.	Au	Pt	Pd
Method.	FAI30P	FA130P	FA130P
Det.Lim.	1	10	1
Units.	ррь	քթԵ	րբԵ
*Bik PREP-BLANK	п.а.	n.a.	n.a.
*Bik BLANK	<1	< 10	<1
98903	<1	< 10	<1
98904	1	< 10	3
98905	1	< 10	7
98906	<1	< 10	5
98907	1	14	11
98908	1	11	8
98909	1	< 10	7
98910	2	12	11
98911	1	12	9
98912	3	< 10	9
98913	<1	< 10	8
98914	2	12	9
98915	3	11	7
98916	2	14	10
98917	2	11	8
98918	21	19	10
98919	19	17	5
*Std PG109	33	63	42
98920	7	18	9
98921	7	16	12
98922	14	< 10	3
98923	10	37	4
98924	8	27	41
98925	7	13	9
98926	13	17	11
98927	5	< 10	4
98928	6	< 10	11
98929	<1	13	18

Page 1 of 6

Work Order:	083725	Dat	te: 04/11/05
Element.	Au	Pt	Pd
Method.	FAI30P	FA130P	FAI30P
Det. Lim.	1	10	1
Units.	ppb	ppb	ppb
98930	6	< 10	9
*Blk BLANK	<1	< 10	<1
98931	2	13	24
98932	11	< 10	6
98933	12	< 10	8
98934	5	< 10	4
98935	7	< 10	4
98936	22	< 10	2
98937	181	< 10	3
98938	41	< 10	2
98939	5	< 10	3
98940	3	< 10	4
98941	<1	< 10	6
98942	13	< 10	3
98943	8	< 10	6
98944	29	< 10	3
98945	5	< 10	2
98946	32	< 10	2
98947	370	< 10	2
98948	20	< 10	2
*Std WPR_1	40	324	270
98949	3	< 10	2
98950	35	< 10	2
98800	2	< 10	2
98800A	<1	< 10	1
98800B	38	< 10	2
93721A	1	< 10	2
93722A	5	< 10	<1
*Bik BLANK	< 1	< 10	<1
93723A	2	< 10	<1

Page 2 of 6

Work Order:	083725	Dat	e: 04/11/05
Element	Au	Pt	Pd
Method.	FAI30P	FA130P	FA130P
Det.Lim.	1	10	1
Units.	ррЪ	ppb	ppb
93724A	63	< 10	<1
93725A	<1	< 10	<1
93726A	< 1	< 10	<1
93727A	<1	< 10	<1
93728A	<1	< 10	<1
93729A	<1	< 10	2
93730A	<1	< 10	2
*Std PG109	33	60	39
93731A	<1	< 10	1
*Rep 98800B	34	< 10	< 1
*Dup 98903	<1	< 10	< 1
*Dup 98915	2	11	8
*Dup 98927	5	< 10	3
*Dup 98939	6	< 10	<1
*Dup 98800	3	< 10	< 1
*Dup 93730A	<1	< 10	<1

Page 3 of 6

Work Order:	083725	Dat	e: 04/11/05	FINAL
Element.	Ni	Cu	Co	
Method.	ICA50	ICA50	ICA50	
Det.Lim.	0.01	0.01	0.01	
Units.	%	%	%	
*Blk PREP-BLANK	< 0.01	< 0.01	< 0.01	
98903	< 0.01	< 0.01	< 0.01	
98904	< 0.01	< 0.01	< 0.01	
98905	< 0.01	< 0.01	< 0.01	
98906	< 0.01	< 0.01	< 0.01	
98907	< 0.01	< 0.01	< 0.01	
98908	< 0.01	< 0.01	< 0.01	
98909	< 0.01	< 0.01	< 0.01	
98910	< 0.01	< 0.01	< 0.01	
98911	0.01	< 0.01	< 0.01	
98912	< 0.01	0.02	< 0.01	
98913	< 0.01	< 0.01	< 0.01	
98914	< 0.01	0.01	< 0.01	
98915	< 0.01	0.01	< 0.01	
98916	< 0.01	< 0.01	< 0.01	
98917	< 0.01	< 0.01	< 0.01	
98918	< 0.01	0.05	< 0.01	
98919	< 0.01	0.03	< 0.01	
98920	< 0.01	0.05	< 0.01	
98921	< 0.01	0.01	< 0.01	
98922	< 0.01	0.03	< 0.01	
98923	< 0.01	0.01	< 0.01	
98924	< 0.01	0.01	< 0.01	
98925	< 0.01	0.01	< 0.01	
98926	< 0.01	0.03	< 0.01	
98927	< 0.01	0.03	< 0.01	
98928	< 0.01	0.05	< 0.01	
98929	< 0.01	< 0.01	< 0.01	
98930	0.02	0.01	< 0.01	
98931	0.03	< 0.01	< 0.01	

Page 4 of 6

Work Order:	083725	Date	e: 04/11/05
Element.	Ni	Cu	Co
Method.	ICA50	ICA50	ICA50
Det. Lim.	0.01	0.01	0.01
Units.	%	%	%
98932	< 0.01	< 0.01	< 0.01
98933	< 0.01	< 0.01	< 0.01
98934	< 0.01	< 0.01	< 0.01
98935	< 0.01	< 0.01	< 0.01
98936	< 0.01	< 0.01	< 0.01
98937	< 0.01	< 0.01	< 0.01
98938	< 0.01	< 0.01	< 0.01
98939	< 0.01	0.01	< 0.01
98940	< 0.01	< 0.01	< 0.01
98941	0.01	< 0.01	< 0.01
98942	< 0.01	< 0.01	< 0.01
98943	< 0.01	< 0.01	< 0.01
98944	< 0.01	0.02	< 0.01
98945	< 0.01	0.08	< 0.01
98946	< 0.01	1.00	0.06
98947	< 0.01	0.31	< 0.01
*Blk BLANK	< 0.01	< 0.01	< 0.01
*Std SU1A	1.21	0.97	0.04
98948	< 0.01	0.24	< 0.01
98949	< 0.01	0.02	< 0.01
98950	< 0.01	0.38	0.03
98800	< 0.01	< 0.01	< 0.01
98800A	< 0.01	0.01	< 0.01
98800B	< 0.01	0.34	< 0.01
93721A	< 0.01	< 0.01	< 0.01
93722A	< 0.01	< 0.01	< 0.01
93723A	< 0.01	< 0.01	< 0.01
93724A	< 0.01	0.61	0.03
93725A	< 0.01	0.03	< 0.01
93726A	< 0.01	< 0.01	< 0.01

Page 5 of 6

Work Order:	083725	Dat	te: 04/11/05	
Element.	Ni	Cu	Co	
Method.	1CA50	ICA50	ICA50	
Det. Lim.	0.01	0.01	0.01	
Units.	%	%	%	
93727A	< 0.01	< 0.01	< 0.01	
93728A	< 0.01	< 0.01	< 0.01	
93729A	< 0.01	< 0.01	< 0.01	
93730A	< 0.01	< 0.01	< 0.01	
93731A	< 0.01	< 0.01	< 0.01	
*Rep 98800B	< 0.01	0.34	< 0.01	
*Dup 98903	< 0.01	< 0.01	< 0.01	
*Dup 98915	0.01	0.01	< 0.01	
*Dup 98927	< 0.01	0.03	< 0.01	
*Dup 98939	< 0.01	0.01	< 0.01	
*Dup 98800	< 0.01	< 0.01	< 0.01	
*Dup 93730A	< 0.01	< 0.01	< 0.01	
*BIK BLANK	< 0.01	< 0.01	< 0.01	
*Std SU1A	1.21	0.96	0.04	

Page 6 of 6

Work Order:	082926	Date:	04/11/05	FINAL	Page 1 o	f 6
Element.	Au					
Method.	FAI303					
Det.Lim.	1					
Units.	ppb					
98601	1					
98602	<1					
98603	3					
98604	<1					
*Std OXE21	610					
98605	9					
98606	<1					
98607	<1					
98608	2					
98609	1					
98610	6					
98611	15					
98612	12					
98613	26					
98614	57					
98615	5					
98616	5					
98617	1					
98618	5					
98619	44					
98620	16					
98621	9					
*Blk BLANK	< 1					
98622	22 58					
98623	58					
98624	17					
98625	56					
98626	28					
98627	2					
98628	4					

Work Order:	082926	Date:	04/11/05	FINAL	Page 2 of 6	
Element. Method. Det.Lim. Units.	Au FAI303 1 ppb					
98629 98630 *Bik Blank 98631 98632	<1 <1 <1 <1					
98633 98634 98635 98636 *Dup 98601	1 <1 <1 <1 2					
*Dup 98613 *Dup 98625 *Std OX123	24 51 1793					

Work Order:	082926	Dat	e: 04/11/05
Element.	Ni	Cu	Co
Method.	ICA50	ICA50	ICA50
Det.Lim.	0.01	0.01	0.01
Units.	%	%	%
98601	< 0.01	< 0.01	< 0.01
98602	< 0.01	< 0.01	< 0.01
98603	< 0.01	< 0.01	< 0.01
98604	< 0.01	< 0.01	< 0.01
98605	< 0.01	0.05	0.01
98606	< 0.01	< 0.01	< 0.01
98607	< 0.01	< 0.01	< 0.01
98608	< 0.01	< 0.01	< 0.01
98609	< 0.01	< 0.01	< 0.01
98610	< 0.01	0.01	0.01
98611	< 0.01	0.06	0.02
98612	< 0.01	0.09	0.02
98613	< 0.01	0.14	0.03
98614	< 0.01	0.56	0.09
98615	< 0.01	0.03	0.02
98616	< 0.01	0.05	0.04
98617	< 0.01	< 0.01	< 0.01
98618	< 0.01	0.07	< 0.01
98619	< 0.01	0.31	< 0.01
98620	< 0.01	0.26	0.01
98621	< 0.01	0.05	< 0.01
98622	< 0.01	0.31	< 0.01
98623	< 0.01	0.70	0.03
98624	< 0.01	0.25	0.02
98625	0.02	0.80	0.07
98626	< 0.01	0.21	0.02
98627	< 0.01	0.02	< 0.01
98628	< 0.01	0.05	0.09
98629	< 0.01	< 0.01	< 0.01
98630	< 0.01	0. 0 1	< 0.01

Page 3 of 6

4

Work Order:	082926	Dat	te: 04/11/05
Element.	Ni	Cu	Co
Method.	ICA50	ICA50	ICA50
Det.Lim.	0.01	0.01	0.01
Units.	%	%	%
98631	< 0.01	< 0.01	< 0.01
98632	< 0.01	< 0.01	< 0.01
98633	< 0.01	< 0.01	< 0.01
98634	< 0.01	< 0.01	< 0.01
98635	< 0.01	< 0.01	< 0.01
98636	< 0.01	< 0.01	< 0.01
*Dup 98601	< 0.01	< 0.01	< 0.01
*Dup 98613	< 0.01	0.14	0.03
*Dup 98625	0.02	0.81	0.07
*BIk BLANK	< 0.01	< 0.01	< 0.01
*Sid SUIA	1.20	0.97	0.04

FINAL

Page 4 of 6

work Order	082920	Date:
Element.	Ag	
Method.	AAS12E	
Det. Lim.	0.3	
Units.	g/mt	
	C C	
98601	< 0.3	
98602	< 0.3	
98603	< 0.3	
98604	< 0.3	
98605	< 0.3	
00000	-0.2	
98606 98607	< 0.3 < 0.3	
98608		
	< 0.3	
98609	< 0.3	
98610	< 0.3	
98611	< 0.3	
98612	< 0.3	
98613	< 0.3	
98614	< 0.3 0.9	
98615	< 0.3	
30013	< 0.5	
98616	0.4	
98617	< 0.3	
98618	< 0.3	
98619	0.4	
98620	0.6	
98621	< 0.3	
98622	0.4	
98623	1.2	
98624	0.4	
98625	> 300.0	
98626	0.5	
98627	0.5	
98628	0.4	
98629	< 0.3	
98630	< 0.3	

Work Order:	082926	Date:	04/11/05	FINAL	Page 5 of 6
ment.	Ag				
hod.	AAS12E				
Lim.	0.3				
ts.	g/mt				
98601	< 0.3				
98602	< 0.3				
98603	< 0.3				
98604	< 0.3				
98605	< 0.3				
98606	< 0.3				
98607	< 0.3				
98608	< 0.3				
98609	< 0.3				
98610	< 0.3				
98611	< 0.3				
98612	< 0.3				
98613	< 0.3				
98614	0.9				
98615	< 0.3				
98616	0.4				
98617	< 0.3				
98618	< 0.3				
98619	0.4				
98620	0.6				
98621	< 0.3				
98622	0.4				
98623	1.2				
98624	0.4				
98625	> 300.0				
98626	0.5				

Work Order:	082926	Date:	04/11/05	FINAL	Page 6 of 6
Element.	Ag				
Method.	AAS12E				
Det.Lim.	0.3				
Units.	g/mt				
98631	< 0.3				
98632	< 0.3				
98633	< 0.3				
98634	< 0.3				
98635	< 0.3				
98636	< 0.3				
*Dup 98601	< 0.3				
*Dup 98613	< 0.3				
*Dup 98625	> 300.0				
*Blk BLANK	< 0.3				
*Sid AA_CONTROL	19.2				