Report

of the

2004 – 2005 Linecutting, Geological Mapping, and Geophysical Surveying Program

on the

RESERVE CREEK PROJECT

Veekay Lake Area NTS 42M/12 SE

for

Eastmain Resources Inc. 2.31463

E. Canova W. Brown M. Perkins

27/01/04 January 27, 2006

TABLE OF CONTENTS

			Page
	SUMN	MARY	3
1.0	INTRO	ODUCTION	4
2.0	DISCI	LAIMER	4
3.0	PROP	ERTY DESCRIPTION AND LOCATION	5
4.0	ACCE	SSIBILITY, CLIMATE, LOCAL RESOURCES,	6
	INFR /	ASTRUCTURE AND PHYSIOGRAPHY	
5.0	PROP	ERTY HISTORY/ PAST WORK	9
6.0	GEOL	OGICAL SETTING	11
•	6.1	Regional Geology	11
	6.2	Property Geology	18
	6.3	Structural Geology	18
	6.4	Mineralization and Deposit Type	20
		6.4.1 Zones A, B, and C	20
		6.4.2 Zones D, and E	22
7.0	2004 H	EXPLORATION PROGRAM	23
	7.1	Linecutting and Grid Rehabilitation	24
	7.2	Geological Mapping	24
	7.3	Geophysics	27
		7.3.1 Ground Magnetometer Survey	28
		7.3.2 Induced Polarization Survey	28
	7.4	Sampling Method and Approach	28
		7.4.1 Sample Preparation, Analysis and Security	29
		7.4.2 Quality Control Procedures	30
8.0	ADJA	CENT PROPERTIES	30
9.0	MINE	RAL PROCESSING AND METALLURGICAL TESTING	30
10.0	MINE	RAL RESERVE ESTIMATE	31
11.0	INTE	RPRETATIONS AND CONCLUSIONS	31
12.0	RECC	DMMENDATIONS	32
	REFE	RENCES	34
	CERT	IFICATE OF QUALIFICATIONS	

4

FIGURES

Fig. 1Property Location Map, Ontario, Canada7	age
rig. 2 rioperty Claim Map	
Fig. 3 Location of the Uchi Subprovince in relation to other subprovinces in 1	5
the Superior Province of Ontario (from Stott and Corfu, 1991).	
Fig. 4 Generalized map of greenstone bens and grannie bathorins of the base	6
part of the Uchi Subprovince (from Stott and Corfu, 1991).	
	7
Uchi Subprovince (from Stott and Corfu, 1991).	
	9
Fig. 7 2004-2005 Linecutting Map 2	4

LIST OF TABLES

Table 1	Reserve Creek Property Claims.	6
	Drilling Assays > 10 gpt Au (A, B, C and D Zones).	22
	Significant assay results from 2004 grab samples.	28

LIST OF APPENDICES

- App. 1 Assays > 5 Gpt Au, Previous Diamond Drilling.
- App. 2 ALS Chemex Certificates, 2004 Grab Sample Locations And Descriptions.
- App. 3 Longitudinal Section, Zone A And B
- App. 4 ALS Chemex Internal Quality Control Proceedures, Certificates And Analysis Specifications
- App. 5 Magnetometer Survey By Meegwich Consultants Inc.
- App. 6 Induced Polarization Survey by R.J. Miekle And Associates
- App. 7 Interpretation Of Induced Polarization Survey By L.E. Reed Geophysical Consultant

LIST OF MAPS (back pocket)

Map 1: Property Geology Map

- Map 2: Sample Location Map
- Map 3: Zones A to E, Past Drilling
- Map 4: Ground Magnetometer Survey Map

SUMMARY

The Reserve Creek Property is located in Northwestern Ontario near the community of Fort Hope, 380 km northeast of Thunder Bay. Five zones (A though D) of gold mineralization associated with quartz and calcite veins have been identified by historic work since 1940. Gold zones A and B are contained within 080° trending sheared silicified magnetic tuff units containing disseminated magnetite and pyrrhotite which have historically assayed as high as 84.0 grams per tonne (gpt) gold (Au) over 0.31 m. Previous drill results include 0.34 ounces per tone gold (oz/t Au), over 22 feet (ft), and 0.32 oz/t Au over 19 ft in Zone A, 0.35 oz/t Au over 15 ft and 0.23 oz/t Au over 10 ft in Zone B, and 2.12 oz/t Au over 0.5 ft, 2.45 oz/t Au over 1.0 ft and 0.99 oz/t Au over 2.7 ft in Zone C. A preliminary resource of the A and B zones calculated in 1982 inferred 271,886 tons at 1.41 gpt Au (A zone) and 129,045 tons at 1.61 gpt Au (B zone).

The property is owned by Slam Exploration Ltd and Eastmain Resources Inc. has the option to earn a 50% interest in the property over three years by completing a 1.1 M\$ work commitment and issuing Slam Exploration Ltd 300,000 common shares. Slam Exploration Ltd had completed prospecting, channel sampling and 966.5m of diamond drilling on the property in 2003 and had commenced 166 km of linecutting in 2004 when Eastmain Resources Inc. took over as operator of the joint venture.

Eastmain completed the line cutting, completed several programs of magnetometer and induced polarization geophysics surveys and geological mapping. The property was found to be underlain primarily by east-west trending mafic flows containing interbedded sediments and felsic to intermediate volcanics. These units are intruded by medium to coarse grained gabbros, diorites and cross cutting diabase dykes. Metamorphic grades in the area range from lower to upper greenschist to lower amphibolite facies with carbonate, chlorite and epidote as common alteration assemblage minerals.

Geologic mapping confirmed the location and mineralization of the historic zones and fifty grab samples were collected and submitted for gold analysis. A sample taken from a magnetic mafic tuff assayed 1.85 gpt Au identifying a new gold bearing zone. This "New" zone, located 185 m north east of the A zone, is coincident with the northern of two high magnetic trends identified in the ground magnetic survey that extend over the survey area. In addition conductors defined by the induced polarization surveys completed indicate good mineralization potential along strike of known showings. One conductor recommended corresponds with a sample that assayed 1.85 gpt Au at a showing called the "Pit" zone.

A program of detailed geological mapping, soil sampling geochemistry and trenching has been outlined for future work. Depending on availability a diamond drill hole program is also recommended to test the A and B zones at depth, and laterally along strike and geophysical trends to the east.

1.0 INTRODUCTION

From March 2004 to April 2005 Eastmain Resources Inc. completed linecutting, magnetometer and induced polarization geophysics and geological mapping on the Reserve Creek property. The property, located in Northwestern Ontario near the community of Fort Hope, is currently owned by Slam Exploration Ltd. Eastmain Resources Inc. has the option to earn a 50% interest in the property over three years by completing a 1.1 M\$ work commitment and issuing Slam Exploration Ltd 300,000 common shares.

The Reserve Creek property coves the A and B zones which in 1982 were calculated to contain 271,886 tons at 1.41 gpt Au (A zone) and 129,045 tons at 1.61 gpt Au (B zone) (*Note this estimate is not calculated with acceptable 43-101 guidelines*). Gold is contained within quartz veins and magnetic mafic tuff units within a mafic basalt and pillow flow terrane. Past work in the area has indicated that the potential for gold mineralization within these geological horizons that extend for several kilometres is high.

The Eastmain Resources Inc. 2004-2005 exploration program focused on exploring the known auriferous zones along strike of the favourable geological horizons. Geological mapping confirmed and located the known zones and identified two more. Mapping further identified the possible stratigraphic horizons that host the zones over a five-kilometre distance. This interpretation was confirmed by the geophysical surveys that identified several strong east-westerly trends that extended across the survey area.

Further exploration in the form of detailed geological mapping, detailed geochemical soil sampling and mechanized trenching with follow-up diamond drilling is recommended on the property.

2.0 DISCLAIMER

Initial grid cutting was supervised and managed by Slam Exploration Limited. Dr. D. Robinson (PhD., P.Geo), President, and Ms Cathy Butella, Exploration Manager, of Eastmain Resources Inc. were responsible for the design and conduct of the Eastmain Resources Inc. exploration program on the property.

Warren Brown, a junior geologist employed by Eastmain Resources Inc., supervised and coordinated the logistics and management of the geological and geophysical surveying and grid rehabilitation in the fall of 2004, assisted by Bob Gordon, a contract prospector. Eddy Canova (P.Geo) visited the property 8-17 October 2004 to confirm field activities being completed in and industry acceptable manner. In addition. Mr Frank Kendle, a senior geologist on contract with Eastmain Resources Inc. visited the property on several occasions.

D. Laronde, Meegwich Consultants Inc., and Ray Meikle, R.J. Meikle & Associates. were contracted by Eastmain Resources Inc. to complete the magnetic and induced polarization surveys and their reports and results are attached. Mr. Laurie Reed,

2.01483

a consulting geophysicist was contracted to interpret the geophysical data generated during the program and his recommendations are included in this report.

The work and results in this report have been reviewed and edited by Mr. Mike Perkins, a Project Geologist, on contract with Eastmain Resources Inc.

Due to the remote property location, and other company commitments the 2004 program was plagued with logistical problems. Company liaisons with the local Fort Hope community were favourable, however strong community expectations towards hiring locally led to unanticipated expenses. A cut grid completed in early 2004 required rehabilitation and brushing out at the commencement of the October 2005 program. This complication hampered geological and geophysical crews who were unable to complete their surveys due to commencement of freeze-up. A local contractor hired to continue the grid rehabilitation and expand the existing grid absconded with an advance provided to hire cutting crews. A second contractor (Glenn McBride) from outside of the community was subsequently hired to complete the cutting. His crew, assisted by some local labour completed the grid, however in the unanticipated interval between the camp manager's returning to Eastmain Resources Inc.'s offices and Glenn McBride's arrival, the base camp was robbed of several thousands of dollars of equipment, including a brand new Tundra Ski-doo and sled, and several thousands of dollars of equipment was destroyed. A geophysical crew brought in when the grid had progressed also experienced several thefts.

3.0 **PROPERTY DESCRIPTION AND LOCATION**

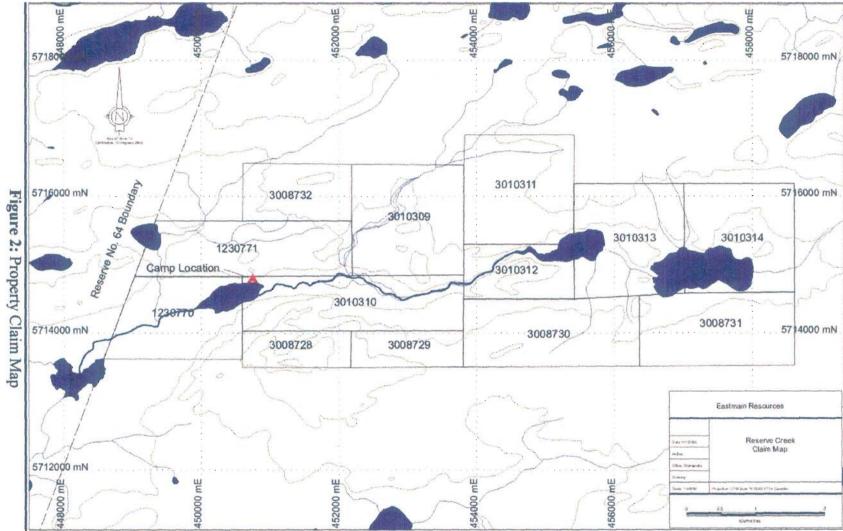
The Reserve Creek property is located in northwestern Ontario, 380 km northnortheast of Thunder Bay and 166 km east of Pickle Lake (**Figures 1 and 6**). The nearest community is Fort Hope, an Indian reserve with a population of 1200, which has a gravel airstrip, floatplane access and winter road access. The property is approximately 12 km from Fort Hope and is located on the NTS sheet 42M12/SE with the coordinates 51° 34' 30"N and 87° 44' 20"W and UTM coordinates 448,900E and 5,714,050N. The base camp is (located at UTM 450750E; 5714800N) on the north shore of a small lake accessible by boat from Fort Hope.

The property comprised of 14 contiguous unpatented mining claims (**Table 1**). All claims are located on crown land making surface rights available from the province as requirements arise. The claims are currently registered in the name of Slam Exploration Ltd.

The claims are located in the Thunder Bay Mining District, Ontario, Map NTS 42M/12SE, Veekay Lake Area ("G" Plan G0440). The property is rectangular in shape, 2.5 km wide and 10 km long adjoining the East boundary of Reserve No. 64, the Eabametoong First Nation (Figure 2 and 6).

Table 1: Reserve Creek Property Claims						
Township	Claim #	Units	Recording Date			
VEEKAY LAKE	1230770	13	16-Sep-02			
VEEKAY LAKE	1230771	15	28-Oct-02			
VEEKAY LAKE	3008728	4	7-Jan-04			
VEEKAY LAKE	3008729	4	7-Jan-04			
VEEKAY LAKE	3008730	12	7 - Jan-04			
VEEKAY LAKE	3008731	12	7-Jan-04			
VEEKAY LAKE	3008732	8	7-Jan-04			
VEEKAY LAKE	3010309	16	28-Oct-02			
VEEKAY LAKE	3010310	16	28-Oct-02			
VEEKAY LAKE	3010311	16	12-Mar-03			
VEEKAY LAKE	3010312	8	12-Mar-03			
VEEKAY LAKE	3010313	16	23-Apr-03			
VEEKAY LAKE	3010314	16	23-Apr-03			

Eastmain Resources Inc. and Slam Exploration Ltd. have signed an agreement whereby Eastmain has the option to acquire a 50% interest on the Reserve Creek property by expending \$1.1 million and issuing 360,000 common shares over three years. The option includes Eastmain Resources Inc. issuing 90,000 common shares and \$300,000 in the first year.


4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Topography of the Reserve Creek Property is generally flat with wet bogs and muskeg and intermediate to thick patches of black spruce and poplars. Elevation on the property ranges from 260 ft to 310 ft. Elevated areas are mainly mounds or ridges of glacial till or boulders with commonly covered by jack pine. Blow down is common in heavier forested areas. Outcrop throughout the property is limited occurring in local concentrations, generally near to Reserve Creek. The weather in the area ranges from - 30°C to 30°C throughout the year, typical of northern boreal forest areas through out Canada.

Access from Thunder Bay to Fort Hope is available by twin prop commercial flights (Nakina Air, North American Charters). Goods may also be transported by land transport to Nakina, 174 km to the southeast, then by helicopter or cargo plane to Fort Hope. Transportation of goods and crew to the property is either helicopter or boat in the summer months or snowmobile in the winter.

Figure 1: Property Location Map, Ontario, Canada

5.0 **PROPERTY HISTORY/ PAST WORK**

Records of exploration on the Reserve Crcek property date back to the early 1940's. Past work defined five gold bearing zones A, B, C, D and E (also described as Veekay Lake occurrence (east), Dome occurrence (west), Pricemore occurrence, Pridemore occurrence, Goldpost occurrence, Willamson zone (A zone), Muir or Tungsten zone (D zone), Bachmann zone (E zone)) (Map 1 and 3). 125 historic drill holes have been completed on these zones. Mason and White (1995) detail the exploration on the property as follows:

1940: According to Prest (1944), J.D. Williamson, on behalf of Dome Mines Limited, "discovered a gold-bearing rusty zone on the north side of Reserve Creek close to the east boundary of the Indian Reserve". One claim was staked and the occurrence became known as the Zone A.

1941: Dome prospectors performed prospecting and chip sampling on Williamson Zones A, B and C. A shear zone 12m wide by 90 m long hosting quartz stringers, pyrite, pyrrhotite, chalcopyrite, scheelite and gold was identified. H. Muir discovered Zone D.

1942: Dome Mines Limited drilled one hole on Zone A, and nine holes on Zone D located in the central part of claim Pa 5783. Zone E was discovered near the east boundary of claim Pa 5780.

1943: Dome Mines Limited diamond drilled 20 holes totalling 575 m (1917 ft) into Zone E.

1945: Dome Mines Limited diamond drilled 24 holes in Zones A, B and C.

1961: Lun-Echo Gold Mines Limited diamond-drilled 12 holes on the A and C zones. Mining Corporation of Canada held 36 claims east of Lun-Echo (Pa 28386 to Pa 28421) and conducted geological and geophysical surveys and diamond drilling.

1970: Selco Exploration Co. Ltd. Completed ground magnetometer and VLF-EM surveys and diamond-drilled at least 4 holes, including Zone E (Bachman zone), to test an EM anomaly noted in ground and airborne EM surveys.

1981: J. Williamson staked and Canterrex Ltd. and Pridemore Resources Inc. acquired 110 mining claims covering zones A to E. Prospecting, linecutting and magnetometer and EM surveys were carried out. Pridemore Resources Inc. changed its name to Pricemore Resources Inc. in September.

1982: Pricemore Resources Inc. completed a 26 hole diamond drill program totalling 1954 m, 19 of which were completed on the A zone (Williamson zone). The D zone (Muir zone) was tested by 5 holes and 2 holes tested magnetic anomalies north of the D zone. A tonnage and grade estimate completed for the A zone.

1983: Pricemore Resources Inc. granted Geddes Resources Limited an option to earn a 50% interest in the Reserve Creek claims. MPH Consulting Ltd., on behalf of Geddes conducted a humus geochemical survey for gold and tungsten. An IP survey was carried out on the southwest portion of the property.

1984: Pricemore Resources Inc.'s name was changed to First China Investment Corp. Diamond drilling was undertaken.

1985: Geddes Resources assigned its interest to Goldpost Resources Inc.

1986: First China Investment Corp. transferred all interest to Goldpost Resources Inc. and seventy-six claims were staked to the east of the main zones. An airborne geophysical survey totalling 520 km was flown by Dighem Surveys Inc.

1987: Ground magnetics, VLF-EM and electromagnetic surveys were completed.

1988: A total of 15 diamond drill holes totalling 1336 m were drilled by Goldpost Resources Inc. Eight holes were drilled in the A zone, 3 in the B zone and 4 to test geophysical anomalies.

1993: In March, Noranda Exploration Company, Limited staked 11 contiguous claim blocks (TB 1196461 to TB 1196467 and TB 1196532 to TB 1196535) covering an east-trending area adjoining the Eabametoong First Nation. This followed the release of a large group of key claims (TB 582438 to TB 582446) by Goldpost Resources Inc. along the western portion of their property in the same year, where most of the occurrences are located. In August and September, Noranda (under Hemlo Gold Mines Inc.) cut a 24.5 km control grid and conducted preliminary mapping and a magnetometer survey.

1994:In June, Hemlo Gold Mines Inc. conducted a detailed geological mapping and sampling program. Much of this work, including a three-hole (522 m) drill program was concentrated along the boundary on claim TB 1196463. Two holes (RC-94-1 and RC-94-2) were drilled on what is known as the A zone and the third hole (RC-94-3) was drilled approximately 2 km to the east.

2002: Slam Exploration Ltd. acquired five claims (60 units) covering mineralized zones.

2003: Airborne Geophysical Survey that covers the Reserve Creek property released by the Province of Ontario.

2003: Slam Exploration Inc. completed prospecting, channel sampling and diamond drilling. A total of 7 holes were drilled on Zone A and B totalling 966.5m.

6.0 GEOLOGICAL SETTING

The Fort Hope area is situated within the Uchi Subprovince of the Superior Province. The Uchi Subprovince a 600 km long greenstone belt hosts the world class gold mining camps of Pickle Lake, Rice Lake and Red Lake. Several gold mining prospects, including the Fort Hope Gold mine, Rice Lake, Opikeigen Lake, and Reserve Lake showings have been found in the immediate property area. The Uchi Subprovince Greenstone Belt has historically produced approximately 3 million ounces of gold from mines near Pickle Lake.

6.1 Regional Geology

The Reserve Creek Property lies within the Northern Ontario Superior Province, Uchi Subprovince, Miminiska-Fort Hope greenstone belt, St Joeseph Assemblage rocks. The 10 km wide Fort Hope greenstone belt consists of an assemblage of east trending Archean age metavolcanic and metasedimentary rocks. Mason and White (1995) summarize the regional geology of the Fort Hope-Winisk Area as follows:

The Fort Hope area occurs in the eastern portion of the Uchi Subprovince. It consists of a tabular, east-trending (080°) belt of metavolcanic and metasedimentary rocks forming a semicontinuous supracrustal network. The Uchi Subprovince, in turn, extends for over 625 km. (Figure 3)

Stott and Corfu (1991) describe the geology of the Uchi Subprovince:

The Uchi Subprovince contains a linear, belt-like collage of volcanic and sedimentary assemblages that represent discrete magmatic and erosional pulses during approximately 280 million years of Archean history. These supracrustal rocks, underlain by synvolcanic plutons, were invaded by younger felsic plutons and were preserved being the Kenoran Orogeny, which culminated in this part of the Superior Province about 2.7 Ga. Some clastic and chemical sedimentary sequences comprise the voungest units in the volcanic assemblages. Other sedimentary rocks form separate assemblages lying unconformably upon the volcanic units and formed mainly during the Kenoran Orogeny. Some volcanic assemblages are dominantly composed of tholeiitic basalt and komatiitic rocks, interpreted to have originated as oceanic mafic plan sequences, probably in a back-arc setting; most assemblages are composed of cycles or sequences comprising tholeiitic basalt platforms overlain by calc-alkalic andesite, dacite and rhyolite, interpreted to have originated in continental or oceanic arcs. The U-Pb isotopic ages of felsic volcanic rocks permit us to recognize that the present stacking of volcanic strata locally forms repetitions of individual volcanic cycles (e.g., the Confederation assemblage) or locally forms volcanic sequences staked out of normal stratigraphic order, presumably by thrusting, as in the Confederation and St. Joseph assemblages.

Distinct orogenic periods are each interpreted to compose all or most of the following sequence of magmatic, sedimentary and structural events: a) intrusion of synvolcanic plutons into older volcanic sequences, in places stitching 2 assemblages and providing age constraints on the sequence of events; b) thrust stacking and tilting of volcanic and sedimentary strata within assemblages; c) erosive exhumation of deformed strata and plutons, with detritus collecting in synorogenic troughs; d) continued regional, horizontally directed shortening; and e) emplacement of late to posttectonic plutons. Only the final orogenic event (the Kenoran Orogeny) can be clearly shown to terminate with regional transcurrent displacement (transpression) across faults accompanied by crustal block rotation. Post-Archean faulting has occurred at least locally.

The collage of assemblages in the subprovince shows a general southward younging; one could postulate from the geological patterns and sequence of events that the assemblages of the Uchi Subprovince reflect episodic additions of crustal units to the margin of a growing continent. More complex age distributions and dramatic changes in stratigraphic orientations are interpreted to reflect allochthonous or parautochthonous, northward transport of some assemblages.

Within the Miminiska-Fort Hope greenstone belt, Stott and Corfu (1991) outlined 5 tectono-stratigraphic subdivisions based on limited agedating and structural and regional stratigraphic considerations. The 5 subdivisions are discussed under the following sub-headings by Stott and Corfu (1991) and are outlined on Figure 4:

Keezhik Lake area	3	subdivisions
St. Joseph Assemblage (volcanic rocks)	1	subdivision
Miminiska Lake (sedimentary rocks)	1	subdivision

Keezhik Lake Area

In the northern part of the belt, the authors have provided a provisional subdivision of strata into 3 unnamed assemblages (see Figure 5) based on stratigraphic and geophysical features. The northernmost assemblage, labelled 3 on Figure 5, is composed of basaltic flows with a marker unit of banded magnetite iron formation. This assemblage may correlate with the McGruer assemblage in the North Caribou greenstone belt (Thurston et al. 1991). It trends at a high angle to a second unnamed assemblage in the vicinity of Keezhik Lake labelled 4 on Figure 5. The possible correlation with the McGruer assemblage is based on similar rock types and particularly a magnetite iron formation unit forming a discontinuous aeromagnetic anomaly extending between the North Caribou greenstone belt and the northern Keezhik Lake area.

A comparison with the arrangement of assemblages in the Pickle Lake area (see Figure 5) leads one to suggest that the second "assemblage" may in future be shown to be a composite of 2 assemblages, correlative with the Pickle composite of 2 assemblages, correlative with the Pickle Crow and Woman assemblages of the Pickle Lake greenstone belt. This sequence of rocks faces consistently southward and is composed of massive to pillowed basalt flows with a marker unit of banded magnetite iron formation that may correspond to a prominent iron formation unit of the Pickle Crow assemblage on First Loon Lake in the Pickle Lake greenstone belt (Stott et al. 1989a, 1989b). This is succeeded southward by a basaltic pile supporting a unit of dacitic pyroclastic rocks accompanied by a quartz porphyry intrusion. The pyroclastic unit is speculated to be an extension of the Woman assemblage from the Pickle Lake greenstone belt.

A third unnamed assemblage in the northern part of the belt is labelled 4-5 on Figure 5 and is composed of basaltic flows and minor felsic volcanic units. It appears, west of Keezhik Lake, to lie unconformably upon a narrow sedimentary unit west of Keezhik Lake that lies at the top of the assemblage labelled 4 on Figure 5. This third assemblage also faces stratigraphically southward. Its southern contact with the St. Joseph assemblage, the fourth assemblage of this belt, is not well established, but is provisionally located where there is a regional change in the stratigraphic younging directions, from south facing amongst these northern rocks, to north facing amongst rocks that are clearly part of the St. Joseph assemblage in the vicinity of Miminiska Lake.

These interpreted subdivisions in the Keezhik Lake region are projected eastward into the northeastern region of the belt from aeromagnetic patterns. The northeasternmost region is dominated by basalt interbedded with some iron formation units (Thurston and Carter 1970) and is comparable with the lithological characteristics of the older units preserved locally in the northern half of Uchi Subprovince and in that part of the North Caribou terrane described farther to the north by Thurston, Osmani et al. 1991.

St. Joseph Assemblage (Volcanic)

The southern half of the Miminiska-Fort Hope greenstone belt is interpreted to be dominated by young volcanic sequences of tholeiitic and calc-alkalic basaltic flows (Wallace 1981a) and overlain by calc-alkalic pyroclastic deposits ranging form andesitic to rhyolitic compositions. This range and the abundance of andesitic volcanic material corresponds with the uppermost cycle of the St. Joseph assemblage on Lake St. Joseph. Quartz-phyric felsic pyroclastic rocks at 3 locations in this assemblage (see Figure 5) show a range in age from 2723 to 2716 Ma (F. Corfu, unpublished data). This assemblage is interpreted to continue eastward, beyond Fort Hope, where it is interleaved on a regional scale with clastic sedimentary sequences in the eastern part of the belt (see Figure 5). the boundary between the St. Joseph assemblage and older volcanic rocks to the north is interpreted to project eastward beyond Fort Hope ^fsee Figure 5), based on aeromagnetic interpretations only.

Sedimentary Rocks of the Miminiska Lake Area

The sedimentary rocks of Miminiska Lake area composed of medial to distal turbidite wacke sediments and interbeds of banded magnetite iron formation. There is some folding of the beds, but with an overall northward sense of younging. The top of the assemblage is marked locally by conglomerate with a mix of volcanic, iron formation and granitoid clasts. Since there is uncertainty about the source of the detritus in this sequence and the original depositional setting of the assemblage, the sedimentary rocks are treated as an unnamed assemblage for the present. It is speculated that the assemblage evolved in its present position; it is just as conceivable that this sequence, which does not appear to be an original synclinal basin in the belt, was separated as a tectonic wedge from the northernmost part of the English River assemblage and transported northward to its present position. In this respect, the relationship of this sedimentary assemblage to the apparently interleaved volcanic and sedimentary sequences that characterize the east half of this belt 'see Figure 5) merits an assessment of similarities to the northern part of the Quetico Subprovince east of Lake Nipigon, where Williams (1987, 1990) and Devaney and Williams (1989) documented features, in a similarly interlayered set of rocks, which are consistent with a fore-arc accretionary prism. The interlayering of strata in the easternmost Uchi Subprovince may correspond to a comparable pattern of interlayered volcanic and sedimentary units that characterizes the La Grande River Subprovince (Card and Ciesielski 1986) in Quebec.

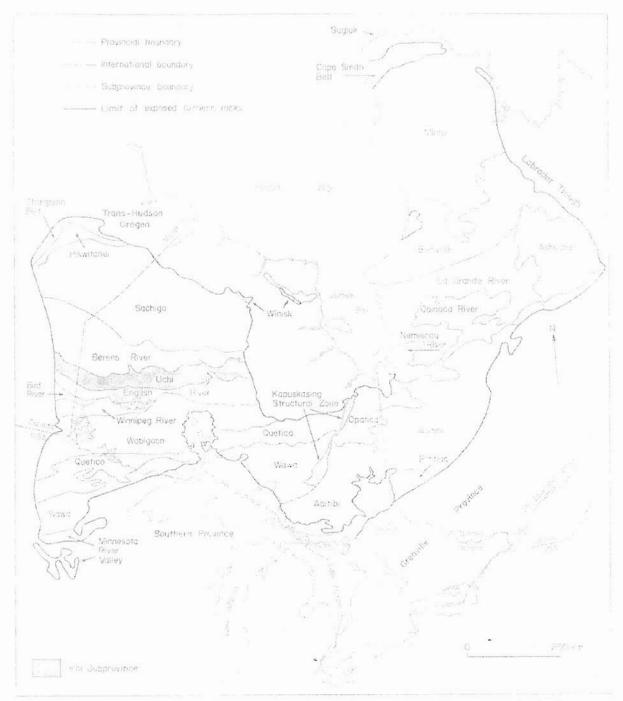


Figure 3: Location of the Uchi Subprovince in relation to other Subprovinces in the Superior Province of Ontario (from Stott and Corfu, 1991).

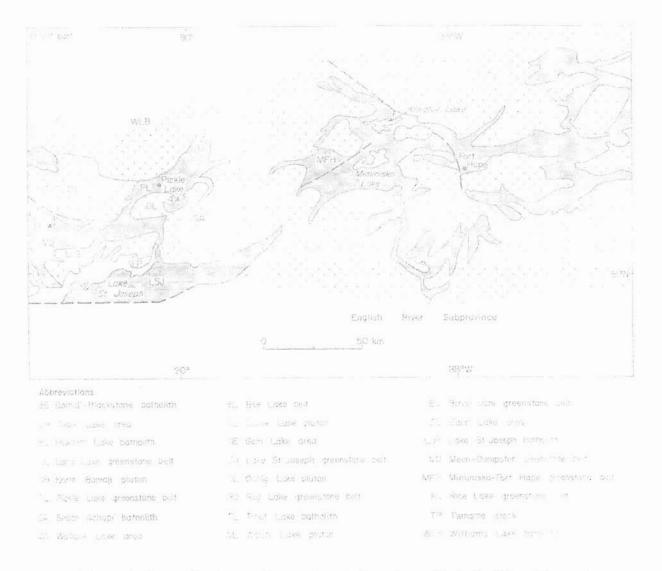


Figure 4: Generalized map of greenstone belts and granitic batholiths of the east part of the Uchi Subprovince (from Stott and Corfu, 1991).

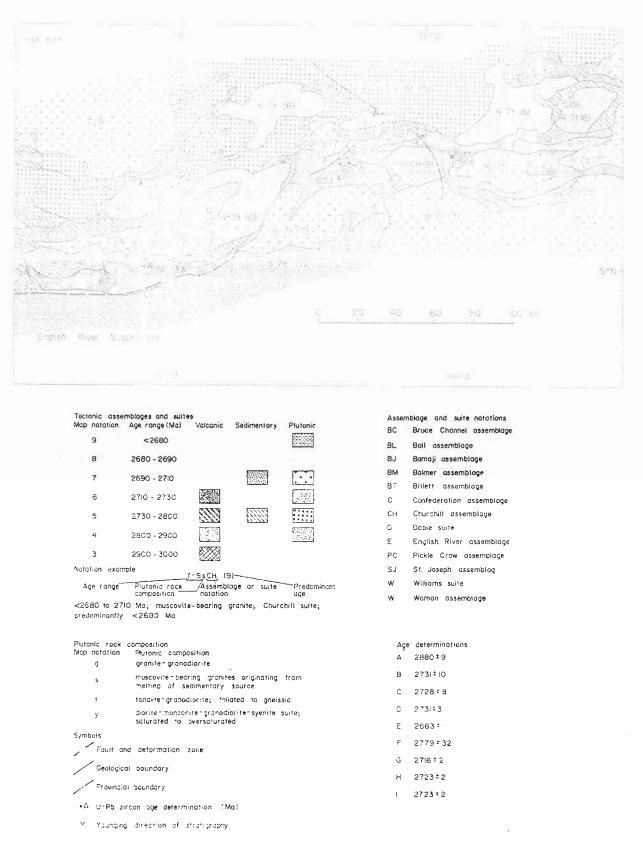
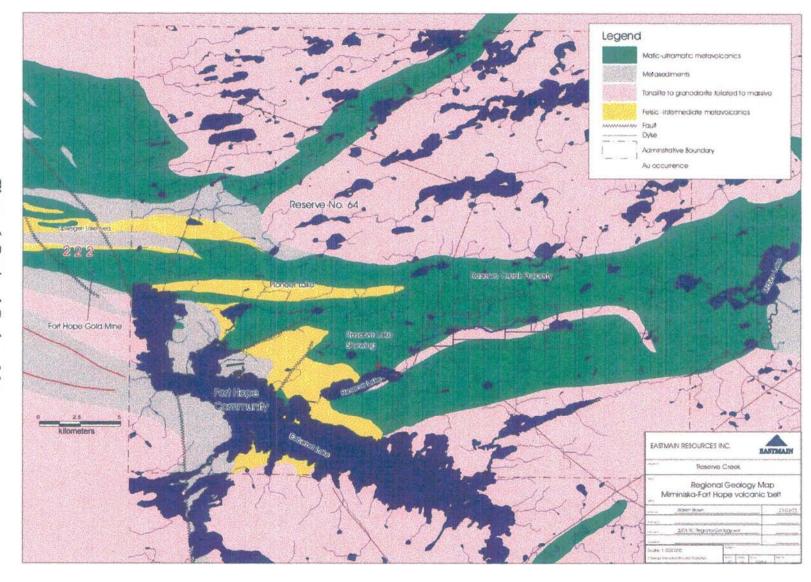


Figure 5: The tectonic assemblages and plutonic suites of the east part of the Uchi Subprovince (from Stott and Corfu, 1991).


6.2 Property Geology

As discussed above the Reserve Creek Property is underlain by east-west trending mafic flows made up of sheared pillow basalts, mafic tuffs and schists of the St Joseph (Volcanic) Assemblage. The mafic volcanics are interbedded with felsic to intermediate volcanics consisting of rhyolite, agglomerate and tuffs and sediments (Figure 6). All units are intruded by medium grained to coarse grained gabbros and diorites which trend 070°, parallel to the strike of the mafic volcanics. The above units are cross-cut by diabase dykes (Map 1). The metamorphic grade is lower to upper greenschist facies and lower amphibolite facies, with chlorite, epidote and actinolite as common alteration assemblages.

Flow tops of pillow basalts observed at McIntyre Lake, Reserve Creek and Reserve Lake face north suggesting a continuous mafic volcanic unit extending approximately 30 km in length. The Pioneer Lake occurrence, Reserve Lake prospect and the Reserve Creek property is located within this trend (Figure 6). Presumably the gold bearing zones at Reserve Lake and on the Reserve Creek Property may exist along the entire the length of this unit east to McIntyre Lake, where mineralization was uncovered by prospectors on the portage route to the chain of small lakes near the north end of McIntyre Lake (Prest, 1941). Futhermore, continuous anomalous magnetic trends extend over 17 km from Reserve Lake to the end of the property. One of these trends appears to be indicative of a continuous magnetic sulphide horizon containing the A and B zones on the property.

6.3 Structural Geology

The sheared pillow basalts, mafic tuffs and schists, rhyolite, felsic agglomerate, tuffs and sediments underlying the Reserve Creek Property generally trend 060° - 070°, dipping 85°N. They have all been deformed, folded and compressed to a variable extent with basalt pillow salvages flattened and stretched. Deformation of quartz veins within the mafic tuffs on the property indicates a fold axis at 210° plunging 75°.

Figure 6: Regional Geology Map

6.4 Mineralization and Deposit Type

Since 1940 five gold zones A, B, C, D and E have been on the found Reserve Creek Property (Map 1 and 3). Locally the lode type gold occurrences are found within east-west geologic trends, presumably continuous stratigraphic units. Previous drilling completed by other companies, and Slam Exploration Ltd. has confirmed and defined these multiple high grade, gold bearing zones.

6.4.1 Zones A, B, and C

Gold zones A and B consist of associated sulphide mineralization within a sheared silicified magnetic mafic tuff unit. This unit is light green to dark grey, finegrained with 5 - 8 % disseminated magnetite and 0.5 % pyrrhotite. The magnetic nature of this unit is due to this occurrence of magnetite and pyrrhotite. Quartz carbonate veins and veinlets occur within the unit and are boudinaged along the foliation plane and contain pyrite and chalcopyrite. The unit is oxidized and chlorite altered and weakly carbonatized.

Zone C is a quartz vein system approximately 67 m east of Zone A. Past drill results include 0.34 ounces per tone gold (oz/t Au), over 22 feet (ft), and 0.32 oz/t Au over 19 ft in Zone A, and 0.35 oz/t Au over 15 ft and 0.23 oz/t Au over 10 ft in Zone B, and 2.12 oz/t Au over 0.5 ft, 2.45 oz/t Au over 1.0 ft and 0.99 oz/t Au over 2.7 ft in Zone C. The mineralized zones are shown on Map 2.

Zones A, B and C have been described by MacLeod (1981):

Gold is found in two settings; narrow high-grade veins with free gold and associated with sulphides in sheared altered zones. The shears occur in pillowed lavas and felsic tuffs, which strike N70E and dip 70N. The shear zones contain quartz stringers and mineralized rock carrying pyrite, pyrrhotite, chalcopyrite, scheelite, ilmenite and small amounts of visible gold. The gold appears to be mainly associated with the pyrite. In the following description of the zones assays are in ounces per ton of gold.

The A Zone consists of a 40-foot wide shear zone exposed in a single outcrop 80 feet by 150 feet located 850 feet east of the east boundary of Indian Reserve No. 64 and 150 feet north of Reserve Creek. A sample across 30 feet of this shear assayed 0.12 Au and 20 feet west another trench sample assayed 0.35 over 12 feet. Dome drilled 9 short holes and Lun Echo 4 holes under this zone. Three or four lenses of mineral grading 0.1 to 0.2 are suggested by the intersections in these holes. Hole 10A, the first hole drilled in the gold zones, gives an idea of the values encountered; from 20' to 27' - 0.13 gpt Au over 7.0 feet, from 33.8' to 35.0' - 0.34 gpt Au over 1.2 feet, and from 52.5' to 59.5' - 0.38 gpt Au over 7.0 feet. Considerably more drilling will be required to establish continuity and the tonnage potential of these sulphide zones.

Two of the holes drilled by Lun Echo under the A Zone cut a vein carrying visible gold 100 feet south of the A Zone. The vein in L-8 assayed 2.45 over 1.0 foot and L-12 assayed 0.99 over 2.7 feet.

Zone B is an isolated pit located 750 feet west of the A Zone. Here a pit sample assayed 0.18 over 9.0 feet. Drilling of 7 holes by Dome and three by Lun Echo in this area indicates the presence of mineralization similar to the A Zone. Of three holes drilled in one section, two (L-1 and Dome 10) show correlation of 4 lenses which grade between 0.10 and 0.20, the deeper hole, L-2, intersected mineralization from 110 to 180 feet a core length of 70 feet which averages 0.053.

Zone C is a quartz vein located 220 feet east of A Zone. A surface sample here assayed 0.79 over 7 inches. Of 5 holes drilled in this area Dome hole 22 cut a vein that assayed 2.12 over 0.5 feet and L-9 assayed 0.54 over 1.0 ft. Hole L-9 also cut two sulphide type zones, 0.105 over 4.8 feet and 0.057 over 19.0 feet.

Horner (1989) describes the mineralization of the A and B zones as follows:

Most of the gold-in the A and B Zones occurs in a distinct magnetic sulphide zone within basalt (which is commonly foliated). The magnetic character of the zone is due to the presence of scattered magnetite crystals and pyrrhotite. Pyrrhotite and pyrite occur in varying amounts (up to 30%) throughout the zone and are present either as massive aggregates or disseminated grains. Quartz and calcite veinlets are common. The zone is usually a dark grey to greenish colour. Specks of visible gold were frequently noted usually within a quartz or quartzcalcite veinlet which also contained pyrite and pyrrhotite. Most of the higher gold values are associated with silicification within the magnetic sulphide zone.

The magnetite-pyrrhotite-pyrite zone has the following outline:

	<u>Width (feet)</u>	<u>Dip</u>	<u>Strike</u>
A-Zone	25 to 55	80^{o} to 88^{o} N	69 °
B-Zone	12 to 68	76° to 86° N	71°

The gold values of 0.1 oz/ton or greater tend to define "shoots" which commonly have the same dip as the enclosing alteration envelope (are conformable within the magnetite-sulphide zone). The position of the anomalous gold "shoots" within the magnetite-sulphide envelopes varies from section to section.

Along strike the magnetite-sulphide zone pinches and swells, however, down dip the width of the zone is fairly constant with some minor pinching and swelling. Based on compiled data from previous work, cross sections and current work, the magnetic sulphide horizon hosting Zones A and B appears continuous from L47+00E to L64+00E, apparently pinching and swelling along strike (Map 2 and 3). Drill hole RC94-3, collared at L65+65E / 32+24N, also intersected a magnetic sulphide horizon at 90.65 - 113.6 m indicating that mineralization possibly extends further east. The gold bearing zones within the magnetic sulphide horizon also exhibit similar pinching and swelling along strike. Based on current data, Zones A and B appear to be separate "shoots" within the magnetic sulphide zone and may represent a structurally thickened plunge to the pinching and swelling seen along surface.

Down dip the width of the magnetic sulphide horizon appears to be fairly consistent with only minor pinching and swelling. Based on previous diamond drilling, gold assays appear to be more consistent down dip than they are along strike (Longitudinal section, Appendix III).

6.4.2 Zones D, and E

Zone D and E have been described by MacLeod (1981) as follows:

The D Zone consists of a steeply dipping shear in andesitic volcanics. The shear is terminated at its easterly end by a diabase dike. The surface exposure consists of one small outcrop where quartz stringers in the shear are mineralized with pyrite, pyrrhotite and scheelite. A sample from a pit assayed 1.78% WO3 over 3.0 feet. Nine holes totalling 809 feet were drilled here in 1942. The holes were drilled at -30• and designed to cut the zone 35-40 feet below surface. Only hole 3 which intersected 1.99% W03 over 2.5 feet returned results comparable to the surface values.

The E Zone consists of scheelite along fractures and disseminated in a coarse grained andesitic flow close to the flow top. The flow top is well defined by a narrow band of agglomerate and a few inches of tuff. The stratabound nature of the mineralization has tonnage implications. The flows and mineralization strike N70E and dip 75-N. A fault terminates the zone at the east end of the exposure.

Gold assays greater than 10 gpt, for zones A, B, C and D, intercepted in previous drill holes are summarised in **Table 2**. Appendix 1 details all assays > 5 gpt Au intersected in diamond drilling.

Company	Drill Hole	From	То	Zone	Length (m)	Au (gpt)
Slam Exploration Ltd.	R\$03-01	66.30	67.10	A Zone	0.80	13.6
Slam Exploration Ltd.	RS03-01	67.70	68.00	A Zone	0.30	12.4
Slam Exploration Ltd.	RS03-02	114.65	115.30	A Zone	0.65	10.4

Table 2: Drilling Assays > 10 gpt Au (A, B, C and D Zones).

Company	Drill Hole	From	Το	Zone	Length (m)	Au (gpt)
Slam Exploration Ltd.	RS03-05	60.80	61.20	A Zone	0.40	13.9
Goldpost Resources Inc.	G88-1	25.91	27.43	A Zone	1.52	12.6
Goldpost Resources Inc.	G88-1	32.00	33.53	A Zone	1.53	13.2
Goldpost Resources Inc.	G88-4	55.17	56.69	A Zone	1.52	13.1
Goldpost Resources Inc.	G88-13	33.83	35.36	A Zone	1.53	10.7
Pricemore Resources	P8201	45.72	47.24	A Zone	1.52	21.1
Pricemore Resources	P8201	47.24	48.77	A Zone	1.53	11.1
Pricemore Resources	P8204	73.76	75.29	A Zone	1.53	14.5
Pricemore Resources	P8204	75.29	76.20	A Zone	0.91	28.5
Lun-Echo Gold Mines	L-7	24.99	25.91	A Zone	0.92	10.3
Lun-Echo Gold Mines	L-7	33.53	35.36	A Zone	1.83	14.4
Lun-Echo Gold Mines	L-8	68.12	68.43	A Zone	0.31	84.0
Lun-Echo Gold Mines	L-12	57.85	58.67	A Zone	0.82	33.9
Slam Exploration Ltd.	RS03-04	21.75	22.25	B Zone	0.50	12.7
Slam Exploration Ltd.	RS03-04	38.90	39.40	B Zone	0.50	40.9
Goldpost Resources Inc.	G88-6	26.21	27.74	B Zone	1.53	20.3
Goldpost Resources Inc.	G88-6	38.40	39.93	B Zone	1.53	12.5
Goldpost Resources Inc.	G88-7	64.74	65.65	B Zone	0.91	10.0
Pricemore Resources	P8219	37.49	38.40	B Zone	0.91	19.1
Lun-Echo Gold Mines	L-9	42.49	42.79	C Zone	0.30	18.5
Hemlo Gold	RC-94-1	122.75	123.3	D Zone	0.60	11.8

7.0 2004 EXPLORATION PROGRAM

Eastmain Resources Inc. completed line cutting, geological mapping and ground geophysics between March 2004 and April 2005.

A grid was cut over part of the Reserve Creek Property from January to March 2004 while a induced polarization survey was completed at the same time. Geological mapping started 1 October 2004 over the grid and continued into late November when mapping was concluded due to snowfall. The work revealed that improvements would be necessary to use the winter cut grid for further exploration. Infill linecutting and rehabilitation of existing lines was started during the mapping program. Geological mapping, re-picketing and brushing out of the grid was completed from the west boundary of the property to line 120+00 E. A total of 50 grab samples were collected and submitted to ALS Chemex for analysis. A ground magnetometer survey was completed from L50E to L89E in late November. The cut grid was expanded during February to March 2005 and a geophysical crew continued the induced polarization survey, previously started in 2004, at this time.

The information presented in this report was obtained by Eastmain Resources Inc. through previous work compiled by Slam Exploration Ltd. and through assessment and technical files available through the Ministry of Northern Development and Mines, Thunder Bay, Ontario and through direct field observations by the qualified person and support staff.

7.1 Linecutting and Grid Rehabilitation

Line cutting over the property was initiated by Slam Resources in early 2004 and continued by Eastmain Resources Inc. when it started as operator of the joint venture in the summer of 2004. The grid has a 070° oriented base line at 30N from L49E to L60E which steps north to 32N from L60E to L122E (Figure 7). Tie-lines were cut at the ends of the grid (Figure 7) for control. Lines are cut every 100 m in 2004, and every 200m in 2005, oriented 340° with picket stations every 25 m. Lines west of L120E were winter cut with tree stumps standing up approximately 30 cm to 50 cm and all the line pickets on the ground. These lines were brushed out and re-chained from October to December 2004. The grid was extended to L148E in February 2005 (Figure 7).



Figure 7: 2004-2005 Linecutting Map

In total 219.3 km. of line was cut over the grid. In the winter of 2004, 166.6 km. was cut including 7.0 km. of baseline and 13. km. of tie-lines. The grid was extended by 52.7 km. during the winter of 2005, including 3.0 km. of baseline and 6.0 km. of tie-lines.

7.2 Geological Mapping

Geological mapping was started 1 October 2004 using the cut grid (Figure 7) from L50E to L120E at a scale of 1:2500. Results from geological mapping are shown on **Maps 1 and 2**, which details outcrop locations and types with respect to the cut grid. Gold mineralization on the property was found at several locations, such as L51E; 28+15N (Zone A) where quartz veins containing chalcopyrite and pyrite and occasionally visible gold cut oxidized magnetic mafic tuffs.

The western part of the cut grid north of Reserve Creek is underlain by a series of interlayered basalts, pillow basalts and gabbro-diorite or coarser phase flows. The basalts are green to dark green, fine to medium grained, with local amygdules, weakly magnetic, foliated but deformed and occasionally cut by quartz veins. The unit also has weak to moderate carbonate and chloritic alteration with local epidote alteration especially along

fractures. The foliation is generally oriented at 070° and dipping steeply to the northnorthwest. Evidence of pillow basalts is further observed at L60E; 32N to 30N, where pillow salvages are stretched along the 070° orientation. A number of 070° to 075° trending gabbroic to dioritic sills or coarser phases of basaltic flows were mapped in this area. The units are green to green-black, medium grained massive, weakly magnetic, equigranular, crystalline and homogeneous, a combination of plagioclase, amphiboles and pyroxenes, and containing less than 1% pyrite, pyrrhotite and trace chalcopyrite. Some of the basalt outcrops illustrate shearing and are penetrated with quartz veining mineralized with pyrite and chalcopyrite, especially between L59E and L61E at the base line 32+00N (Warren Zone).

Two occurrences of magnetic mafic tuffs were observed on the property at L52E; 29+70N (New Zone) and L51E; 28+10N (A Zone), with widths of 5.0m and 17.0 m respectively. The tuffs contain mafic minerals, feldspar, minor quartz and biotite, trace to 0.5% pyrite and pyrrhotite, and exhibit carbonate and chlorite alteration. As well 0.3- 1.0 m quartz carbonate veinlets, veins, and blows contain some chalcopyrite, pyrite and traces of pyrrhotite on the margins of the quartz veins. Chip sample #31797 from A zone veins assayed 2.41 gpt Au. The unit should be traceable with magnetic and induced polarization (IP) geophysics. The tuff units are in contact with foliated basalts and gabbros to the north and south.

South of Reserve Creek a 75 m wide gabbroic unit occurs on L50E to L52E; 27+00N that appears traceable for more than 1 km trends 070° to L61E. The gabbro is green, medium grain, homogenous, equigranular, massive with 65% to 70% plagioclase, 1-2% blue quartz, and minor pyroxenes and amphiboles. Locally the gabbro has surface oxidization occurring along fractures from the weathering of 1-2 % pyrrhotite and trace chalcopyrite.

South of the gabbro is a 75 m wide mafic volcanic basalt, with possible tuffaceous horizons. The mafic volcanic is green, fine grained, foliated to locally massive and cut by a number of quartz veins especially near its northern contact with the gabbro. The gabbro and basalts appear to be defined by high magnetic signature (slightly lower than the sulphide magnetite tuffs north of the Reserve Creek), and associated with a good IP chargeability anomaly. The quartz veins in the basalt vary from 0.3 m to 1.0 m in width, oxidized along their margins, and mineralized with chalcopyrite and pyrite. The veins have been observed at surface on L51E; 26+50N to L61E. Several samples have been collected from within this unit and one sample (#31770) within the basalts adjacent to the contact with gabbroic units where massive sulphide from an old pit at L60E; 26+10N (Pit Zone, Map 2) assayed 1.82 gpt Au.

South of the basalts, from L54E; 26N to L57E is a 30m thick mafic schist horizon (Low Zone). The mafic schists are green, fine to medium grained, well foliated, schistose trending 067° and dipping 84°N. Mineral assemblages include actinolite, chlorite and other amphiboles, feldspars-plagioclase in subhedral crystal laths, and some 2.0m wide oxidized quartz-carbonate veins with <1% pyrite and chalcopyrite. To the east the schist appears to become coarser grained and grade into a mafic pyroclastic and lapilli tuff

observed at L61E; 28+25N. The lapilli tuff contains 35% to 40%, 1.0-30.0 cm. deformed and flattened clasts in a fine to medium grain matrix with carbonate and chlorite alteration. A zone of increased quartz veining (Low Zone) composed of oxidized 0.3-2.0 m quartz veins containing pyrite, chalcopyrite and some pyrrhotite, is located in the basalt immediately north of the mafic schist contact at L54E; 26+00N.

On L54E, the mafic tuffs are followed to the south by a 25m thick gabbroic unit with intercalated narrow intervals of basalt. The gabbro is massive, weakly magnetic, locally oxidized, green-black, medium grained, primarily composed of 65% amphiboles and pyroxenes with plagioclase and trace actinolite, and contains 1% pyrrhotite and traces of chalcopyrite. South of the gabbro is a 20m wide basalt showing pyrite oxidation and cut by narrow quartz veins.

Immediately south of the gabbro/basalt unit above is a +80m thick strongly foliated quartz-sericite schist, possibly a sheared felsic tuff to rhyolite unit at L55E; 25+75N. The quartz-sericite schist is siliceous, buff white, oxidized, fine grained, foliated at 060°/-80°N, with 0.5% pyrite, with minor quartz veining locally that contain 1% to 2% pyrite. South of the quartz-sericite schist are poorly exposed basalt and mafic tuff units for a further 200m until a white, medium grained; massive to weakly foliated albite granite intrudes the volcanic pile along the southern margin of the property

The contact with the albite granite in the south trends northeast and appears to intrude north into the mafic volcanic pile to 32+00N, between L64E and L75E. This contact is medium grained, light brown, locally oxidized, banded, and foliated quartz-feldspar gneiss containing 1 % pyrite.

In the eastern part of the cut grid, east from L71E, the quartz-feldspar gneiss can be traced along the creek up to L83E (Map 1). Outcrop is non-existent between L84E -L100E, with only a few boulders occurring between L75E and L79E. At L100E; 28+50N, a massive, dark green, medium grained diabase dyke with disseminated magnetic and pyrrhotite trends 015° NNE. Immediately south along the same line a medium grained dark green, strongly foliated diorite or gabbro is exposed that possibly correlates with the gabbroic unit at L50E; 27N. Auriferous rocks may be located north of this unit and covered by overburden.

From L104E - L112E a similar stratigraphy as L54E - L60E was discovered. The geology east of L104E, from north to south, consists of fine to medium grained, weak to moderate foliated, weakly oxidized basalts with quartz veinlets. Parallel to the basalts are a series of coarser grained gabbros and diorites trending $080^{\circ}/-70^{\circ}$ N, with minor associated pyrrhotite, pyrite and magnetite.

A mafic agglomerate/lapilli tuff with 30-40% clasts ranging 0.5-20.0 cm in a fine grained dark green matrix was mapped at L104+60E; 29+30N. The unit is strongly foliated and is very similar to the lapilli tuff observed at L61E; 28+25N (Pit zone). A siliceous, very fine grained, foliated rhyolite/welded tuff, located between L110E and L112E; 27+50N is very similar to the unit mapped between lines 55E and 56E; 25+75N.

These units suggest that a mappable stratigraphy exists across the grid and that further auriferous mineralization may possibly be found in the area from L97E to L120E near baseline 32N. This area is currently covered by overburden. From L112E to L120E outcrop is scarce and are primarily 061°/-68°N foliated, moderate chlorite altered, basalts and mafic schists.

The similiarity of units between those found around L55E and those 5 kilometres east at L110E units suggest that a mappable stratigraphy exists across the property. In stratigraphy association with additional geophysical and geochemical surveys, should enhance targeting auriferous horizons outside of the known zones.

A new area of potential mineralization was located north of Reserve Creek in 2004. Approximately 185 m north east of the A zone an oxidized silicified mafic tuff at L52E; 29+70N (New Zone) assayed 1.85 gpt Au (grab sample #31758). This zone is exposed in outcrop for approximately 5m thickness and 6m strike length (Map 2). The sample was taken from a quartz vein hosted within a mafic tuffaceous chlorite schist. The unit is magnetic and has a strong foliation trending $098^{\circ}/-75^{\circ}$ N. The ground magnetic survey indicates a definite magnetic high coincident with the sample location.

There were also three new potential mineralized horizons south of Reserve Creek. The first (Pit Zone) just south of Reserve Creek, occurs within the basalts adjacent to the contact with gabbroic units where massive sulphide from an old pit at line 60E; 26+10N (Map 2) assayed 1.82 gpt Au (#31770). Sample 31770 was taken from massive sulphide blocks in the old test pit (Map 2). The second mineralized zone (Sericite Schist zone) is in a felsic quartz-sericite schist at L61E; 25+20N which assayed 0.11 gpt Au (#31771). The quartz-sericite schist has disseminated pyrite in it and it appears very similar to units hosting gold mineralization at the Bousquet Mine, Quebec.

7.3 Geophysics

Between March 2004 and April 2005 parts of the Reserve Creek Property were surveyed using magnetometer and induced polarization (IP) geophysics. Magnetic geophysical surveying was completed by D. Laronde, Meegwich Consultants Inc., and magnetic and IP surveying was completed by Ray Meikle, R.J. Meikle & Associates. The initial geophysical surveying by R. Meikle in March-April 2004 was halted due to weather (break-up) and delays in expanding the cut grid. Due to several factors, the magnetometer survey was not restarted until November 2004 by Meegwich, which due to an unfortunate miscommunication ended up duplicating part of the earlier program. In March 2005 R. Meikle returned to the property to continue the IP program, but due to weather considerations, and the inability to obtain good conductive connections with the surface, the program ended prematurely. By the time weather allowed the survey to continue other issues, such as numerous thefts at the camp and company commitments elsewhere, prevented the resumption of the program.

7.3.1 Ground Magnetometer Survey

From November 10 to 20, 2004 Meegwich Consultants Inc. of Temagami, Ontario, completed a program of magnetometer surveying over 78 km. of the cut grid. The results of survey are detailed in **Appendicies V and VII** and summarized on **Map 4**. The survey identifies two main east-west magnetic trends across the survey area. The northern feature, located approximately 36N, averages 100m in width, while the other, at approximately 30N, trends southwest from L75E, 32N to the western boundary of the property.

7.3.2 Induced Polarization Survey

IP surveying was completed on the property by Ray Meikle, R.J. Meikle & Associates. Maps, psuedosections and analysis of results have been included in **Appendix VI**.

Results of the 2004 IP survey were reviewed by L. Reed (**Appendix VII**) who identified four targets for follow-up drilling. At L54E, 27+25N, a broad IP and resistivity high, which is magnetic along strike from the L60E target discussed below. This anomaly is resistive high but may possibly represent a response caused by gabbro. At L60E, 28+50N has a weaker IP response along its northedge and a stronger event on the south side. It lies on the south flank of the southern magnetic trend. Airborne EM responses are observed correlating with resistivities on this line at 29+75N. At L57E, 33+75N, the northern magnetic linear trend has flanking IP anomalies that may be significant. At L62E, 25+25N, an isolated IP response appears to mark the north edge of a magnetic low feature that has generally elevated IP response.

7.4 Sampling Method and Approach

During the 2004 exploration program a total of 50 rock grab and chip samples were collected over the property from L50E to L120+00E (Map 2). All samples were shipped to ALS Chemex in Mississauga, Ontario for gold analysis. Sample procedures, assay results, sample descriptions and locations are attached in Appendix 2. Significant assays are summarized below in Table 3.

Sample Number	Easting (NAD27 Zone 16)	Northing (NAD27 Zone 16)	Zone	Au gpt Au
31758	449043	5714256	New zone	1.85
31770	449898	5714263	Pit zone	1.82
31791	448755	5713987	B zone	1.59
31797	448972	5714084	A zone	2.41
31798	448972	5714079	A zone	2.60

 Table 3: Significant assay results from 2004 grab samples.

During mapping two types of rock samples were taken: grab and chip. Grab samples were taken during initial mapping to sample small structures or veins. A geological hammer/chisel was used to get a representative sample of the unit of interest. Chip samples were taken with a chisel over wider intervals where a grab sample would not have been representative of the entire interval. Generally chip samples were composed of material taken in a continuous line normal to the strike of the unit being sampled. When possible, several sample profiles would be taken along the length of a vein or unit.

7.4.1 Sample Preparation, Analysis and Security

Samples were described, recorded and placed in plastic sample bags. A sample tag was inserted in each bag with the corresponding number recorded on the bag's exterior. Sample bags were sealed and placed into standard fiber rice shipping bags, which were sealed for shipment with cable ties and fiber tape. These samples were then shipped to ALS Chemex for lab preparation and analysis.

ALS Chemex Labs analyzed a total of 50 grab and chip samples (Appendix 2, Analytical Certificates). Samples are generally run in lab batches of 84 samples, which for the purposes of quality control included internal duplicates, internal lab reference standards and an internal lab blank.

Core and rock samples were prepared at ALS-Chemex Labs in Mississauga, Ontario. All samples underwent custom crushing and pulverizing techniques. The entire sample was passed through a primary crusher to yield a fine crushed product where greater than 95% of the sample passes through a 2mm (-10 mesh) screen. Samples were then riffle split to obtain approximately a one-kilogram sub-sample. When the crushed sample yielded approximately one kilogram the entire sample was pulverized.

A one-kilogram crushed sample split was ground using a ring mill pulverizer. All samples were pulverized to greater than 70% of the ground material passing through a 75-micron screen. Samples were analyzed at ALS Chemex Labs in Vancouver, British Columbia.

All samples were analyzed for gold. 50-g samples were analyzed for gold using fire assay with atomic absorption finish, giving a lower limit of detection of 5 ppb and an upper limit of detection of 10,000 ppb Au. For samples with > 500 ppb Au, a 50-g sample was re-assayed using fire assay methods with a gravimetric finish, giving a lower limit of 0.05 g/t and an upper limit of 1,000 g/t. Single samples containing >10.0 g/t were re-assayed twice using fire assay techniques with a gravimetric finish (Appendix 2).

All samples with >500 ppb Au were also analyzed for a suite of 47 trace elements using inductively coupled plasma (ICP) methods. The element suite included silver, bismuth, copper, cadmium, cobalt, lead, nickel, zinc, arsenic, antimony, manganese, molybdenum, tellurium, vanadium, barium and several others. A prepared 0.50-gram

sample was digested with perchloric, nitric and hydrofluoric acids. The residue was dissolved in nitric and hydrochloric acids and diluted to a final volume with de-ionized water. The resulting solution was analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Following this analysis, the results were reviewed to ensure that base metal concentrations are less than 1%, with the exception of silver, bismuth, and tungsten which have upper analytical limits of 100, 500, and 1000 ppm. Samples that met this criterion were then diluted and analyzed by inductively coupled plasma - mass spectrometry (ICP-MS). Results were corrected for spectral inter-element interference.

7.4.2 Quality Control Procedures

Quality Control (QC) samples were used by ALS Chemex to detect and measure any errors associated with measurement of contained gold in a sample. QC data verifies and monitors a lab(s) performance with respect to the consistency and accuracy of reporting assays (Appendix 4 and QC Certificate TO04081783 Appendix 2). The results reported by ALS Chemex for internal QC samples fall within acceptable industry standards.

Given the small number of samples taken during the program (50) Eastmain Resources Inc. did not institute an external quality control check sampling program during the 2004 mapping program.

7.5 Data Verification

The information presented in this report was obtained through direct field observations and a data search of past work completed on the property compiled by Slam Exploration Ltd. from assessment and technical files available through the Ministry of Northern Development and Mines, Thunder Bay.

All relevant information gathered prior to and after the 2004 exploration program was compiled using a software package called MapInfo Professional v. 7.8. Drill hole data and downhole survey information were entered into a drill hole plotting program, Lagger, to generate cross sections. All maps were created using MapInfo. Data was confirmed against original reports and documentation were-ever possible.

8.0 ADJACENT PROPERTIES

Eastmain Resources Inc. has no interest in any other properties in the immediate area of the Reserve Creek Property and the property area covered by this report is clearly outlined on Figures 2 and 6. Any other showings indicated on adjacent properties (ie. Fort Hope Gold Mine, Figure 6) are for reference only.

9.0 MINERAL PROCESSING AND METALLURGICAL TESTING

To the authors knowledge no mineral processing and metallurgical testing studies have been completed for minerals present on the property.

10.0 MINERAL RESERVE ESTIMATE

As discussed in the past work completed on the property in 1982 Pricemore Resources Inc. completed 26 diamond drill holes on the A and B zones (Williamson zone as it was known at the time). A tonnage and grade estimate completed at that time (Kidd, 1982) for the A and B zones indicated:

A-Zone - 271,886 tons averaging 0.0411 ounce Au (1.41 gpt)

B-Zone - 129,045 tons averaging 0.0469 ounce Au (1.61 gpt)

This estimate predates 43-101 and CIM Resource and Reserve Definition requirements and should be considered to represent an inferred mineral resource category. The authors of this report have not confirmed the accuracy of this calculation.

11.0 INTERPRETATIONS AND CONCLUSIONS

The 2004 exploration program successfully relocated and identified previously known mineralized zones and discovered two new auriferous zones, as well as delineated at least six new areas for follow-up exploration. Ground magnetic surveying identified two magnetic trends, one of which is coincident with gold bearing zones A, B and C that exists for at least the length of the survey area.

The Reserve Creek Property was found to be underlain by a series of interlayered basalts, pillow basalts and gabbro-diorite or coarser phase flows oriented at 070° and dipping steeply to the north-northwest and penetrated with quartz veining mineralized with pyrite and chalcopyrite. Gold mineralization was found to be associated with quartz veining within this package. Several units, such as two magnetic mafic tuff units were recognized to be important in that gold mineralization appeared to be concentrated within them. The two magnetic mafic tuffs were observed with widths of 5.0m and 17.0 m respectively. These units, hosting the A and B zone quartz veins, should be traceable with magnetic and induced polarization (IP) geophysics.

Quartz veins in the basalt are mineralized with chalcopyrite and pyrite, vary from 0.3 m to 1.0 m in width, and a sample from an old pit at L60E; 26+10N (Pit Zone) assayed 1.82 gpt Au. A another new area of potential quartz hosted gold mineralization was located 185 m north-east of the A zone in a oxidized silicified mafic tuff at L52E; 29+70N (New Zone) which assayed 1.85 gpt Au. The mafic tuff is coincident with the northern magnetic trend which was identified extending to the east end of the survey area.

A +80m thick strongly foliated siliceous. buff white, oxidized, fine grained, foliated at 060%-80°N, quartz-sericite schist, with minor quartz veining that locally contain 1% to 2% pyrite was identified within the mafic volcanic package at L55E, 25+50N. Samples from this quartz-sericite schist unit assayed 0.11 gpt Au and the unit

appears similar to units hosting gold mineralization at the Bousquet Mine, Quebec. Two hundred metres south of the quartz-sericite schist unit basalt and mafic tuff units are intruded by an albite granite along the southern margin of the property

The similiarity of units between those found around L55E and those 5 kilometres east at L110E units suggest that a volcanic stratigraphy may exist across the surveyed grid. This stratigraphy indicates that further auriferous mineralization may possibly exist in the area from L97E to L120E near baseline 32N. This area is currently covered by overburden. Further geological mapping in association with additional geophysical and geochemical surveys, should enhance targeting auriferous horizons in these areas.

12.0 RECOMMENDATIONS

It is recommended that the six areas defined below be followed along strike to the east and west.

1. Zone A (L51E, 28+15N) is a series of oxidized quartz veins within magnetic mafic tuffs. The quartz veins have chalcopyrite and pyrite along the margins and have visible gold occurrences at surface. The mineralized magnetic mafic tuff can easily be traced with the use of the ground magnetics. Exploration along this horizon to the east and west should be completed.

2. The "New Zone" gold occurrence (1.85 gpt Au) in a mafic tuff with some oxidized quartz veins at L52E, 29+75N. The quartz vein is 30 cm wide and well oxidized with 1% to 2% pyrite and traces of chalcopyrite.

3. Series of occurrences in the basalts south of the Reserve Creek at the basalt/gabbro contact at L51E, 26+90N to L59E, 28+10N were a series of 0.30 - 2.00 m oxidized quartz veins mineralized with pyrite, chalcopyrite and traces of malachite occur approximately 130 m south of Zone A.

4. A section of basalts between L59E to L61E at 31+00N are penetrated with oxidized, boudinaged, 0.30 - 0.80 m quartz veins with pyrite, local chalcopyrite and malachite mineralized occurring. The veins appear to occur along shears and are mineralized along their vein margins.

5. A horizon of actinolite bearing mafic tuffs between L60E and L61E at 28+80N is cut by oxidized 0.30 - 1.50 m quartz veining with pyrite, chalcopyrite and minor malachite

6. The strongly foliated felsic quartz-sericite schist / felsic tuff to rhyolite between L61E and L62E at 25+20N is mineralized with 0.5% disseminated pyrite and cut by a number of quartz veins containing minor pyrite. The unit is similar to the felsic volcanics found in the Bousquet Mine in Quebec.

Prospecting, detailed geological mapping and sampling, and mechanical trenching will provide better information on controls of mineralization. "A" and "B" horizon soil sampling of the cut grid at 25 m sample spacing is recommended over the entire grid to identify any extensions of the gold mineralization currently covered by overburden.

After a thorough compilation of all information IP and magnetic anomalies identified at L54E; 27+25N, L60E; 28+50N, L57E; 33+75N, and L62E; 25+25N, should be drilled as well as testing the A and B zones at depth, and along strike to the east.

Negotiations should be started with the Eabametoong First Nation (Reserve No. 64) to determine the possibilities of following the mineralized zones west onto the Reserve lands. Past work completed west of the reserve boundary indicates the auriferous mineralization continues westerly.

E. Canova (P.Geo)

Dated:

Michael Perkins MAR 27/01/04

REFERENCES

Card, K.D., and Ciesielski, A., 1986. DNAG#1, Subdivisions of the Superior Province of the Canadian Shield, Geoscience Canada, v13, p.5-13.

Devaney, J.R., and Williams, H.R., 1989. Evolution of an Archean Subprovince boundary: A sedimentological and structural study of part of the Wabigoon-Quetico boundary in northern Ontario, Canadian Journal of Earth Sciences, v26, p.1013-1026.

Kidd, R., 1982. Report on Diamond Drilling, Pricemore Resources, Reserve Creek, Fort Hope area, Ontario, assessment files, Resident Geologist office, Beardmore-Geralton District, Thunder Bay, 9p.

Mason, J. K. and White, G. D., 1995. Mineral Occurrences and Prospects in the Fort Hope-Winisk Area,; Ontario Geological Survey, Open File Report 5926, 225p.

Prest, V. K., 1944. Geology of the Fort Hope Area; Ontario Department of Mines, 51 Annual Report, 1942, v. 51, pt. 3, p. 1-28.

Stott, G.M., and Corfu, F., 1991. Uchi Subprovince; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.145-238.

Stott, G.M., Brown, G.H., Coleman, V.J., Green, G.M., and Reilly, B.A.,

1989a. Precambrian Geology of Pickle Lake area, western part; Ontario Geological Survey, Preliminary Map P3065, scale 1:50,000.

Stott, G.M., Brown, G.H., Coleman, V.J., Green, G.M., and Reilly, B.A.,

1989b. Precambrian Geology of Pickle Lake area, eastern part; Ontario Geological Survey, Preliminary Map P3057, scale 1:50,000.

Taylor, M., 2004. 2003 Channel Sampling; Prospecting and Diamond Drilling Program, Reserve Creek Property; Slam Exploration LTD., Assessment Report, p. 1-19.

Thurston, P. C. and Carter M. W., 1970. Operation Fort Hope; Ontario Department of Mines, Miscellaneous Paper 42, p. 49-51.

Thurston, P.C., Osmani,I.A., and Stone, D., 1991. Northwestern Superior Province, Review and Terrane Analysis in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.81-142.

Wallace, H., 1981a. Geology of the Miminiska Lake area, Ontario Geological Survey, Report 214, 96p.

Williams, H.R., 1987. Structural studies in the Wabagoon and Quetico Subprovinces, Ontario Geological Survey, Open File Report 5668, 163p.

Williams, H.R., 1990. Subprovince accretion tectonics in the south-central Superior Province, Canadian Journal of Earth Sciences, v27, p.570-581.

•

Certificate of Qualifications

Warren Brown

I, Warren Brown, of 9 Hilltop Crescent, L9W 2Y9, Orangeville, Ontario, do hereby certify that:

- 1. I graduated with BSc Geology, from Memorial University of Newfoundland in 2001.
- 2. I have worked as a geologist for a total of 4 years since my graduation.
- 3. I am, in part, responsible for the organization and preparation of the technical report titled "Reserve Creek Project", Report on the 2004 2005 Exploration Activities for Eastmain Resources Inc., Ontario (the "Technical Report") relating to the Reserve Creek Project. I managed the Reserve Creek Project from October 5 16 November, 2004.
- 4. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 5. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 6. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.
- 7. I was present on the Reserve Creek Project while the work covered up to November 16 in the 2004 - 2005 Report of Work was completed, and supervised all aspects of that work.

Dated this 6th day of April, 2005.

Warren Brown

Certificate of Qualifications

Eddy Canova

I, Eddy Canova, P.Geo., of 161 Lorratt Lane, Richmond Hill, Ontario, do hereby certify that:

- 1. I am a consultant geologist.
- 2. I graduated with a Bachelor of Science (Geology), from the University of McGill, in 1977.
- 3. I am a Fellow of the Geological Association of Canada.
- 4. I am a member of the Association of Professional Geoscientists of Ontario.
- 5. I am a member of the Ordre des Geologues du Québec (OGQ No. 403).
- 6. I have worked as a geologist for a total of 25 years since my graduation from university.
- 7. I have read the definition of "qualified person", set out in National Instrument 43-101 (NI 43-101), and certify that by reason of my education, affiliation with a professional association (as defined by NI 43-101) and past relevant work experience, I fulfil the requirements to be a "qualified person" for the purposes of NI 43-101.
- 8. I visited the Reserve Creek Property covered by the report titled "2004-2005 Linecutting, Geological Mapping, and Geophysical Surveying Program on the Reserve Creek Project for Eastmain Resources Inc." (the "Technical Report") from 8-17 October, 2004.
- 9. I have had no prior involvement with the property that is the subject of the Technical Report.
- 10. I am independent of Eastmain Resources Inc, applying all the tests in section 1.5 of NI 43-101.
- 11. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 12. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated this 27th day of January, 2006.

Eddy Canova

Certificate of Qualifications

Michael Perkins

I, **Michael Perkins**, of 981 North Bay Drive, PO Box 42, Coboconk, Ontario, do hereby certify that:

- 1. I graduated with a 3 yr Diploma in Geology, from Sir Sandford Fleming College, in 1983.
- 2. I have worked as a geotechnologist and geologist for a total of 22 years since my graduation.
- 3. I am responsible for the organization and preparation of the technical report titled "2004-2005 Linecutting, Geological Mapping, and Geophysical Surveying Program on the Reserve Creek Project for Eastmain Resources Inc." (the "Technical Report") relating to the reserve Creek Project. I have never visited the property and have based the Technical Report on data supplied to me by Eastmain Resources Inc., and geologists that have worked on the project.
- 4. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 5. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 6. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated this 27th day of January, 2006.

Michael Perkins

Appendix I

ASSAYS > 5 GPT AU, PREVIOUS DIAMOND DRILLING

2004-2005 Reserve Creek Report

DDH	From	То	Sample #	Metres	Au (gpt)	Gram*m
G88-1	24.99	25.91	127007	0.92	5.01	4.6
G88-1	27.43	28.96	127009	1.53	6.27	9.6
G88-1	30.48	32.00	127011	1.52	8.54	13.0
G88-1	25.91	27.43	127008	1.52	12.62	19.2
G88-1	32.00	33.53	127012	1.53	13.23	20.2
G88-13	33.83	35.36	127351	1.53	10.70	16.4
G88-14	56.69	58.22	127371	1.53	6.31	9.7
G88-14	71.63	73.15	127437	1.52	7.30	11.1
G88-2	41.45	42.98	127025	1.53	5.01	7.7
G88-2	55.17	56.69	127035	1.52	5.04	7.7
G88-2	44.50	45.72	127027	1.22	5.83	7.1
G88-2	45.72	46.63	127028	0.91	5.97	5.4
G88-2	62.48	64.01	127040	1.53	6.93	10.6
G88-3	30.54	32.00	127057	1.46	9.39	13.7
G88-3	38.10	39.62	127062	1.52	9.46	14.4
G88-4	61.26	62.79	127088	1.53	5.93	9.1
G88-4	55.17	56.69	127084	1.52	13.10	19.9
G88-6	23.16	24.69	127125	1.53	7.99	12.2
G88-6	24.69	26.21	127126	1.52	8.13	12.4
G88-6	38.40	39.93	127135	1.53	12.45	19.0
G88-6	26.21	27.74	127127	1.53	20.30	31.1
G88-7	64.74	65.65	127157	0.91	10.01	9.1
L-1	41.61	42.67	2023	1.06	6.86	7.3
L-12	57.85	58.67	2183	0.82	33.94	27.8
L-2	53.34	54.86	2042	1.52	5.49	8.3
L-7	28.96	30.48	2089	1.52	6.17	9.4
L-7	27.43	28.96	2088	1.53	8.57	13.1
L-7	24.99	25.91	2086	0.92	10.29	9.5
L-7	33.53	35.36	2092	1.83	14.40	26.4
L-8	68.12	68.43	2105	0.31	84.00	26.0
L-9	20.06	21.95	2111	1.89	5.49	10.4
L-9	22.56	23.47	2113	0.91	8.23	7.5
L-9	42.49	42.79	2114	0.3	18.51	5.6
P8201	48.77	50.29	9514	1.52	6.96	10.6
P8201	36.64	38.04	9506	1.40	7.03	9.8
P8201	47.24	48.77	9513	1.53	11.11	17.0
P8201	45.72	47.24	9512	1.52	21.05	32.0
P8204	76.20	77.72	9557	1.52	7.71	11.7
P8204	72.54	73.76	9554	1.22	9.05	11.0
P8204	73.76	75.29	9555	1.53	14.47	22.1
P8204	75.29	76.20	9556	0.91	28.46	25.9
P8215	33.53	35.05	9676	1.52	5.73	8.7

.

.

DDH	From	То	Sample #	Metres	Au (gpt)	Gram*m
P8216	65.78	66.45	9697	0.67	5.35	3.6
P8217	33.22	34.75	9717	1.53	6.07	9.3
P8217	24.08	25.60	9711	1.52	7.17	10.9
P8218	60.66	62.18	9744	1.52	5.38	8.2
P8219	37.49	38.40	9772	0.91	19.13	17.4
RC-94-1	122.75	123.3	RC-94-1-	0.6	11.84	6.5
			122.75			
RS03-01	56.50	57.20	181006	0.70	5.74	4.0
RS03-01	60.50	61.30	181012	0.80	5.89	4.7
RS03-01	67.70	68.00	181021	0.30	12.40	3.7
RS03-01	66.30	67.10	181019	0.80	13.60	10.9
RS03-02	116.30	117.30	181057	1.00	5.20	5.2
RS03-02	101.60	102.20	181039	0.60	5.30	3.2
RS03-02	115.30	116.30	181056	1.00	7.07	7.1
RS03-02	114.00	114.65	181054	0.65	7.23	4.7
RS03-02	117.30	118.10	181058	0.80	9.94	8.0
RS03-02	114.65	115.30	181055	0.65	10.40	6.8
RS03-04	21.75	22.25	181113	0.50	12.65	6.3
RS03-04	38.90	39.40	181138	0.50	40.90	20.5
RS03-05	60.80	61.20	181171	0.40	13.85	5.5
RS03-06	129.20	129.80	181227	0.60	7.10	4.3
RS03-06	127.80	128.70	181225	0.90	9.03	8.1
					Average	11.8

.

Appendix II

ALS CHEMEX CERTIFICATES, 2004 GRAB SAMPLE LOCATIONS AND DESCRIPTIONS.

2004-2005 Reserve Creek Report

San	ple	UTM (NAD	27, Zone 16)	Au	Description	Cert #
#	Туре	Easting	Northing	(ppb)	•	
31751	Grab	448923	5714323	2.5	qtz.carb. veinlets, oxidized zone, tr. py	TO05007056
31752	Grab	448927	5714342	2.5	QV sample, tr. py, +act.	TO05007056
31753	Grab	448971	5713988	8	gabbro sample, 1-2% diss. po, tr. cpy.	TO05007056
31754	Grab	449013	5713969	23	QV(0.7-1m) sample, tr. po, cpy, py	TO05007056
31755	Grab	449064	5713964	187	QV(1-2m) sample, cpy, po, oxidized	TO05007056
31756	Grab	448979	5713885	31	QV(1-1.5m) sample, cpy, po, oxidized w. malachite	TO05007056
31757	Grab	448996	5713961	17	QV(2m) sample, cpy, po, oxidized	TO05007056
31758	Grab	449044	5714257	1845	QV sample, 2 veins	TO05007056
31759	Chip	449051	5714257	169	1.0n chip across mafic tuffaceous schist	TO05007056
31760	Grab	449322	5713871	12	QV sample in gabbro boulder, oxidized	TO05007056
31761	Grab	449322	5713919	58	QV(30cm) sample, py, tr. cpy, oxidized	TO05007056
31762	Grab	449314	5713913	2.5	gabbro sample, 1-2% po, tr. mag., oxidized	TO05007056
31763	Grab	449317	5713955	9	n. margin of vein, oxi., w. tr. cpy. +malachite, +- py.	TO05007056
31764	Grab	449392	5714083	124	QV sample, po, py, oxidized	TO05007056
31765	Grab	449413	5714089	169	1-2% cpy. w. py, qtz. float sample	TO05007056
31766	Grab	449395	5714022	8	QV(5 cm) sample, tr. py, po	TO05007056
31767	Grab	449531	5713962	10	Oxidized Trend 1% py.	TO05007056
31768	Grab	449803	5714239	2.5	QV(1m) sample, oxidized	<u>TO05007056</u>
31769	Grab	449908	5714265	161	silicified carb. zone(1-1.5m) sample, Qtz.carb. veins	TO05007056
31770	Grab	449898	5714264	1815	blocks sample from pit, 4-8% cpy, 2% py	TO05007056
31771	Grab	450084	5713988	110	QV's (1-5cm) sample. tr. po, py	TO05007056
31772	Grab	449597	5714673	22	QV(30-50cm),sample, oxi., 1-2 % py +epy.	TO05007056
31773	Grab	449652	5714676	2.5	QV(10cm-1m) "qtz Blow", 1% py., calcite x-stals (1.5cm)	TO05007056
31774	Grab	449728	5714588	2.5	1-3% py. zone, dark. green v.f.g.	TO05007056
31775	Grab	449802	5714538	8	QV(20cm) sample, tr. py	TO05007056

San	ple	UTM (NAD	27, Zone 16)	Au	Description	Cert #
#	Туре	Easting	Northing	(ppb)		
31776	Grab	449778	5714546	84	QV sample, tr. py	TO05007056
31777	Grab	449791	5714532	2.5	QV(10cm) sample, tr. py	TO05007056
31778	Grab	449881	5714593	18	QV(40-60cm), sample, oxi. tr.	TO05007056
					ру	
31779	Grab	449889	5714575	47	QV sample, oxi. w.	TO05007056
					py+cpy.,+malachite at margins,	
				·	carb.	
31780	Grab	449916	5714586	2.5	QV, sample, oxi. tr. py	TO05007056
31781	Grab	450725	5714459	7	granitic sample, oxidized zone,	TO05007056
					1% py.	
31783	Grab	453798	5715107	2.5	gabbric sample, diss., py. qtz.	TO04081783
					carb.	
31782	Grab	453778	5715133	2.5	diabase sample, diss. mag.,	TO04081783
					oxidized	
31784	Grab	454160	5715082	2.5	QV sample, tr. py., + carb.	TO04081783
31785	Grab	454175	5715088	2.5	basalt sample, tr. py. + carb.	TO04081783
31786	Grab	454385	5715128	2.5	gabbro sample, diss. sulphides	TO04081783
31787	Grab	454768	5715350	2.5	gabbro sample, diss. sulphides	TO04081783
31788	Grab	455689	5715824	2.5	altered basalt sample, tr. Py,	TO04081783
					qtz. carb.	
31789	Grab	454789	5715084	2.5	rhyolite sample, diss. Py	TO04081783
31790	Grab	454795	5715082	2.5	basalt band sample, tr.py, po	TO04081783
31791	Chip	448756	5713987	1590	qtz. vein chips, in trench, B-	TO04081783
					zone	
31792	Grab	448756	5713986	147	magnetic mafic tuff, in trench,	TO04081783
					B-zone	
31793	Grab	448757	5713985	2.4	mafic schist, in trench, B-zone	TO04081783
31794	Chip	448988	5714084	174	qtz. vein chips, in trench, A-	TO04081783
					zone	
31795	Grab	448983	5714082	112	magnetic mafic tuff, in trench	TO04081783
					A-zone	
31796	Grab	448981	5714084	2.5	mafic schist, friable, Bo, Py, in	TO04081783
					trench, A-zone	
31797	Grab	448972	5714085	2140	qtz. vein, tr. Py, Bo, in trench,	TO04081783
					A-zone	
31798	Grab	448972	5714079	2600	wk. magnetic mafic schist, 5-	TO04081783
					10%py, in trench A-zone	
31799	Grab	449897	5714262	2.5	massive Cpy., Po, High Cu>	TO04081783
					10000	
31800	Grab	449908	5714262	183	test pit sample, altered zone,	TO04081783
					Bo, act.Py, Cpy	

.

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

.

North Vancouver BC V7J 2C1 Canada Phone, 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8

Au-AA23

ME-ICP41

Au 30g FA-AA finish

34 Element Aqua Regia ICP-AES

Page: 1 Finalized Date: 2-DEC-2004 Account: MVR

AAS

ICP-AES

CERTIFICATE TO04081783		SAMPLE PREPARATIO	N
	ALS CODE	DESCRIPTION	
Project: Reserve Creek P.O. No.: This report is for 19 Rock samples submitted to our lab in Toronto, ON, Canada on 22-NOV-2004. The following have access to data associated with this certificate:	WEI-21 PUL-31 SPL-21 CRU-31 LOG-22	Received Sample Weight Pulverize split to 85% <75 um Split.sample - riffle splitter Fine crushing - 70% <2mm Sample login - Rcd w/o BarCode	
CATHY BUTELLA DON ROBINSON		ANALYTICAL PROCEDUR	RES
	ALS CODE	DESCRIPTION	INSTRUMENT
	Cu-AA46	Ore grade Cu - aqua regia/AA	AAS

To: EASTMAIN RESOURCES INC. ATTN: CATHY BUTELLA RR 1 ORANGEVILLE ON L9W 2Y8

ALS Canada Etd 212 Brooksbank Avenue

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

1

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue

ALSIEIIEXRR 1EXCELLENCE IN ANALYTICAL CHEMISTRYORANGEVILLE ON L9W 2Y8

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

To: EASTMAIN RESOURCES INC.

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
31782+		3.02	<0.005	<0.2	3.34	2	10	40	<0.5	<2	2.05	<0.5	22	22	65	4 14
31783		2.83	<0.005	<0.2	0.82	<2	<10	120	<0.5	<2	10.35	<0.5	36	262	272	2.19
31784		1.10	<0.005	<0.2	0.93	2	<10	10	<0.5	<2	0.57	<0.5	11	41	63	2.21
31785.		1 90	<0 005	<0.2	2.75	<2	<10	20	<0.5	<2	2,73	<0.5	24	15	196	6.72
31786		3.04	<0.005	<0.2	1.91	<2	<10	10	<0.5	<2	2,53	<0.5	29	21	169	3.84
51787-		1.57	•0.005	<0.2	2.58	<2	<10	10	<0.5	<2	1,88	<0.5	27	90	144	4.90
31788		1.40	<0.005	<0.2	1.17	4	<10	<10	<0.5	<2	1.02	<0.5	18	65	160	2.24
.31789+		2.40	<0.005	<0.2	2.18	3	<10	70	<0.5	<2	1.44	<0.5	14	4	96	3.43
31790		83.0	<0.005	<0.2 ×	4.29	з	<10	30	<0.5	<2	2.31	<0,5	42	120	134	6.88
.317910	_	2.16	1.590	0.2	1.12	19	<10	30	<0.5	<2	0.98	<0.5	6	10	27	3 55
31792 -		1.86	0,147	<0.2	3.45	<2	<10	50	<0.5	<2	2.00	<0.5	18	1	9	9.12
31793		3.67	<0.005	1.7	1.81	<2	<10	30	<0.5	8	0.79	<0.5	18	6	191	10.05
31794 -		3.19	0.174	<0.2	0.28	12	<10	20	<0.5	<2	0.52	<0.5	5	11	19	2.14
31 7 95 ^{t.}		1.22	0,112	0.4	1.98	2	<10	50	<0.5	<2	0,56	<0.5	14	2	72	9,19
31796 -		1.34	<0.005	4.3	1.26	2	<10	30	<0.5	22	0.28	0.9	16	2	288	11.55
31797 1		3.45	2.41-	0.8	0.45	17	<10	10	<0.5	2	0.53	21.9	4	10	23	2.06
317980	•	2 75	2.60 ~	0.8	2.13	73	<10	50	<0.5	2	1.46	5.6	21	1	42	7.47
31799-		2 34	<0.005	68.6	0.72	<2	<10	20	2.4	203	1,52	48.3	148	1	>10000	10.50
31800-		2.71	0.183	6.7	1,44	<2	<10	60	4,0	13	2.12	3.8	17	56	3230	2.33

EXCELLENCE IN ANALYTICAL CHEMISTRY

At S Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-JCP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-1CP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb µpm 2	ME·ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
31782		10	<1	0.14	10	1.12	348	<1	0.44	79	610	<2	0.14	<2	3	59
31783		<10	<1	0.18	10	0.87	1175	<1	0.09	403	420	<2	0.16	<2	4	354
31784		<10	<1	0.03	<10	0.71	232	<1	0.08	37	130	<2	0.04	<2	.3	16
31785		10	1	0.10	<10	1.19	761	<1	0.39	51	850	<2	0.35	<2	21	11
31786		10	<1	0.09	10	1.14	532	<1	0.24	96	720	<2	0.21	<2	10	32
31787		10	×1	0.05	<10	1.97	640	<1	0.18	48	380	<2	0.05	• ?.	19	8
31788		<10	<1	0.02	<10	0.88	317	<1	0.11	85	190	5	0.12	<2	6	9
31789		10	<1	0.72	20	0.74	480	<1	0.14	43	1300	3	0.16	<2	4	23
31790		10	~1	0.16	<10	3.12	923	<1	0.08	152	330	<2	0.14	<2	9	21
31791		10	<1	0.16	<10	0.68	520	<1	0.04	22	480	<2	1.05	<2	6	5
31792		20	<1	0.24	10	1.58	1595	<1	0.05	14	1430	<2	0.17	<2	20	13
31793		10	<1	0.98	10	1,08	721	<1	0.07	8	1120	<2	4 46	<2	21	6
31794		<10	<1	80.0	<10	0.17	337	<1	0.02	22	130	</td <td>1.02</td> <td><2</td> <td>2</td> <td>3</td>	1.02	<2	2	3
31795		20	<1	0.64	10	1.14	765	<1	0.09	10	1450	<2	1.80	<2	19	9
31796	-	<10	<1	0.49	<10	0.49	383	<1	0.04	5	990	3	6.45	<2	6	4
31797		<10	<1	0.19	<10	0.23	247	<1	0.03	15	250	<2	1.13	<2	2	3
31798		10	<1	1.19	10	1.22	704	<1	0.08	11	1360	<2	5.23	<2	11	10
31799		10	<1	0.12	<10	0.15	539	771	0.06	180	200	8	8.25	<2	1	24
31800		10	<1	0.31	<10	0.65	570	2510	0.14	61	240	2	0.84	<2	1	39

Г

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01	
31782		0.29	<10	<10	145	<10	73		
31783		0 10	<10	<10	33	<10	32		
31784		0.07	<10	<10	29	<10	29		
31785		0.20	<10	<10	160	<10	70		
31786		0.22	<10	<10	98	<10	39		
31787		0.18	<10	<10	154	<10	49		
31788		0 24	<10	<10	55	<10	28		
31789		0.16	<10	<10	34	<10	65		
31/90		0.23	<10	<10	119	<10	103		
31791	•	0.09	<10	<10	5	10	94		
31792		0 18	<10	<10	7	<10	197		
31793		0.21	< 10	<10	15	20	142		
31794		0.03	<10	<10	1	<10	26		
31795		0.20	<10	<10	7	40	165		
31796		0.11	<10	<10	3	30	69		
31797		0.06	<10	<10	1	10	462		
31798		0.21	<10	<10	4	60	325		
31799		0.02	<10	<10	70	20	1595	3.52	
31800		0.04	<10	<10	48	100	167		

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

To: EASTMAIN RESOURCES INC. RR 1 **ORANGEVILLE ON L9W 2Y8**

Ag-AA46

Cu-AA46

Au-AA23

Page: 1 Finalized Date: 10-FEB-2005 This copy reported on 22-FEB-2005 Account: MVR

AAS

AAS

AAS

CERTIFICATE TO05007056		SAMPLE PREPARATION	J
	ALS CODE	DESCRIPTION	· · · · · · · · · · · · · · · · · · ·
Project: Reserve Creek P.O. No.: This report is for 31 Rock samples submitted to our lab in Toronto, ON, Canada on 3-FEB-2005. The following have access to data associated with this certificate: CATHY BUTELLA DON ROBINSON	WEI-21 DRY-21 PUL-31 SPL-21 CRU-31 LOG-22	Received Sample Weight High Temperature Drying Pulverize split to 85% <75 um Split sample - riffle splitter Fine crushing - 70% <2mm Sample login - Rcd w/o BarCode	ES
	ALS CODE	DESCRIPTION	INSTRUMENT
	ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: EASTMAIN RESOURCES INC. ATTN: CATHY BUTELLA **RR 1 ORANGEVILLE ON L9W 2Y8**

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Ore grade Ag - aqua regia/AA

Ore grade Cu - aqua regia/AA

Au 30g FA-AA finish

Signature:

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218

To: EASTMAIN RESOURCES INC. **RR 1** ORANGEVILLE ON L9W 2Y8

Page: 2 - A Total # Pages; 2 (A - C) Finalized Date: 10-FEB-2005 Account: MVR

Project: Reserve Creek

Sample Description B031751 B031752 B031753 B031754 B031755 B031755 B031755	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0,02 1.57 0.55	Au-AA23 Au ppm 0.005 <0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm	ME-ICP41 Ba ppm	ME-ICP41 Be ppm	ME-ICP41 Bi	ME-ICP41 Ca %	ME-ICP41 Cd	ME-ICP41 Co	ME-ICP41 Gr	ME-ICP41 Cu	ME-ICP41 Fø
B031752 B031753 B031754 B031755 B031755			<0.005				10	10	0.5	2	0.01	0.5	ppm 1	ppm 1	ppm 1	% 0.01
B031752 B031753 B031754 B031755 B031756				<0.2	2.19	29	<10	10	<0.5		4.75	0.5	<u></u>			
8031753 8031754 8031755 8031756	•		<0.005	<0.2	2.56	<2	10	<10	<0.5	<2	1.75	< 0.5	24	67	105	3 56
B031754 B031755 B031756		3.71	0.008	0.5	2.76	<2	<10	<10	<0.5	<2	0.26	<0.5	20	17	37	4 60
B031755 B031756		2.78	0.023	0.5	0.14	4	<10	<10		<2	1.34	<0.5	56	20	593	7.23
		1.63	0.187	32.9	0.14	4	<10	<10	<0.5 <0.5	272 854	0.08 0.11	<0.5 2 5	20 20	12 17	271 2160	2 20 2 0 1
8031757		4.69	0.031	4 5	0.12	<2	<10	<10	<0.5	6	0.07	<0.5				
		2 12	0.017	2.3	0.20	2	<10	<10	<0.5	357	0.07	< 0.5	3	17	802	0.96
13031758		1 51	1 845	0.5	0.69	3	<10	10	<0.5	<2	0 23	3.0	10 7	16	250	1.58
5031759		2.85	0 169	0.3	4.51	3	<10	10	<0.5	2	1.63	2.0	37	27	58	2.10
8031760		1.13	0.012	<0.2	0.42	<2	<10	10	< 0.5	<2	0.23	2.0 <0,5	37	150 15	146 26	7 09 0 88
B031761		1.11	0.058	<0.2	1,66	<2	<10	30	<0,5	<2	0.78	<0.5	10			
B031762		2.08	<0.005	<0.2	2.43	<2	<10	40	<0.5	<2	2.18	<0.5	29	23	84	3 53
8031763		4.74	0 009	1.6	0.10	<2	<10	<10	<0.5	<2	0.16	<0.5 0.9	29	22	276	4.96
8031764		1.82	0.124	1.3	0.09	2	<10	<10	<0.5	140	0.08			28	763	0.68
Bu31765		1.68	0.169	14.6	0.50	<2	<10	<10	<0.5 <0.5	688	0.08	<0.5 2.9	13 8	12 35	555 4700	2.53 2.82
B031766		0.47	0.008	1.6	2.24	2	<10	10								
8031767		1.16	0 010	1.5	1.34	<2	<10		<0.5	12	2.26	<0.5	21	78	1465	6.10
8031768		1.63	<0.005	0.8	0,75	<2		120	< 0.5	8	0.11	<0.5	1	3	684	5.62
8031769		3.75	0.161	0.8 6.9		<2	<10	<10	<0.5	<2	0.31	<0 5	7	29	314	1.76
Be 11770		1,79	1 815	>100	1.79 0.64	<2	<10	130	2.0	31	3.64	2.9	18	87	3000	4.00
							<10	20	1.4	314	0.24	49.7	147	- 1	~10000	15.6
8031771 8031772		0.24	0 110	8.7	1.26	2	<10	30	<0.5	29	0.70	1.5	17	33	3960	5.39
b031773		1.56	0.022	3.2	0.13	12	<10	<1()	<0.5	6	0.06	1.2	9	10	1170	0.80
		1.03	<0.005	<0.2	1.20	2	<10	<10	<0.5	<2	0.30	<0.5	10	52	126	2.43
B031774 B031775		1.45	<0.005	<02	2.52	<2	<10	40	<0.5	<2	1.39	<0.5	30	6	218	8.30
		2.88	800.0	0.5	0.88	2	<10	<10	<0.5	<2	1.04	<0.5	9	41	198	1.86
B031776		1.23	0 084	4.6	1,50	3	<10	<10	<0.5	<2	0.30	0.7	21	46	2470	3,42
B031777		2.21	<0 005	<0 2	0.43	<2	<10	<10	<0.5	<2	0.16	<0.5	6	21	107	1 33
B031778		0.98	0.018	<0.2	0.28	≺2	<10	<10	<0.5	<2	0.10	<0.5	2	18	208	1.03
B031779		2.09	0.047	2.4	2.49	5	<10	<10	<0.5	<2	1.52	0.5	33	98	1845	4 94
8031780		1.11	<0 005	<0.2	0.34	<2	<10	<10	<0.5	<2	0.17	<0.5	4	13	55	1 10
B031781		1.28	0.007	1.1	0,58	2	<10	50	<0.5	6	0.15	<0.5	2	7	273	0.96

Comments: ** CORRECTED COPY for Project Name **

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Etd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 10-FEB-2005 Account: MVR

Project: Reserve Creek

CERTIFICATE OF ANALYSIS TO05007056

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hq ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 Р ррт 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sh ppim 2	ME-ICP41 Sc ppm 1	ME:ICP4 Sr ppm 1
B031751	••••	<10	<1	0.05	<10	1.47	608	<1	0.12	95	230	<2	0.03	<u>~2</u>	- Q	9
8031752		<10	<1	0.01	<10	1.92	570	<1	<0.01	56	170	<2	0.02	<2	2	2
8031753		10	<1	0.03	<10	1.90	566	<1	0.09	80	670	<2	1.88	-2	10	12
B031754		<10	<1	0.01	<10	0.09	58	3	<0.01	15	10	4	1.19	<2	-1	1
B031755		<10	<1	0.02	<10	0.13	88	<1	<0.01	21	30	60	0.76	-2	1	1
B031756		<10	<1	0.02	<10	0.08	46	1	<0.01	16	10	<2	0.10	<2	1	1
B031757		<10	<1	0.04	<10	0.11	70	<1	<0.01	20	10	10	0,73	< 2	1	2
B031758		<10	<1	0.02	<10	0.62	327	<1	0.02	20	100	114	0.30	< 2.	3	3
8031759		10	<1	0.04	<10	3.45	724	<1	0.13	100	280,	64	0.80	-2	16	10
8031760		<10	< 1	0.06	<10	0.17	133	<1	0.06	16	130	3	0.03	+ 2	1	10
B031761		10	<1	0.13	<10	1.12	488	338	0.08	12	250	8	0.06	· 2	11	12
B031762		10	1	0.17	<10	1.38	683	1	0.23	42	420	<2	0.54	< 2	16	17
8031763		<10	<1	0.01	<10	0.07	65	7	<0.01	27	50	<2	0.10	· 2	1	2
B031764		<10	<1	0.01	<10	0.05	64	2	<0.01	15	40	<2	0.48	<2	1	1
8031765		<10	<1	0.02	<10	0.40	166	1	<0.01	12	60	7	0.87	<2	3	1
БОЗ1766		10	<1	0.09	<10	1.45	661	<1	0.20	65	350	2	1.20	<2	12	10
8031767		10	< 1	0.71	10	0.52	661	62	0.09	7	230	4	1.20	<2	3	12
8031768		<10	<1	0.02	<10	0.64	200	<1	0.02	20	30	<2	0.09	<2	3	3
8031769		20	<1	0.76	<10	0.95	1085	1225	0.10	79	660	2	0.99	<2	1	37
B031770		10	<1	0.16	<10	0.11	291	763	0.03	164	110	10	8.53	<2	1	8
8031771		10	<1	0.19	<10	0,81	300	1990	0.08	45	1910	4	1.12	<2	7	13
B031772		< 1 0	<1	0.03	<10	0.02	46	23	0.04	15	30	<2	0.23	-2	< 1	1
Bu31773		<10	<1	0.02	<10	1.02	269	26	0.02	37	60	<2	0.05	-2	1	2
B031774		10	<1	0.29	10	1.12	851	1	0.14	28	880	4	0.20	< 2	0	17
B031775		<10	<1	0.02	<10	0.47	349	1	0.05	26	70	<2	0.06	· 2	5	10
B031776		10	<1	0.01	<10	1.14	345	<1	0.02	48	100	5	0.22	· 2	8	2
6031777		<10	<1	<0.01	<10	0.32	147	<1	<0.01	21	30	<2	0.03	- 2	1	1
B031778		<10	<1	0.01	<10	0.17	89	<1	0.03	13	60	<2	0.04	-2	1	2
B031779		10	1	0.01	<10	1.80	603	<1	0.04	120	220	2	0.12	<2	6	9
B031780		< 1 0	<1	<0.01	<10	0.26	120	<1	0.01	16	30	<2	0.03	<2	2	1
		<10	<1	0.28	10	0.10	189	1	0.08	6	170	14	0.15	<2	1	4

Comments: ** CORRECTED COPY for Project Name **

EXCELLENCE IN ANALYTICAL CHEMISTRY

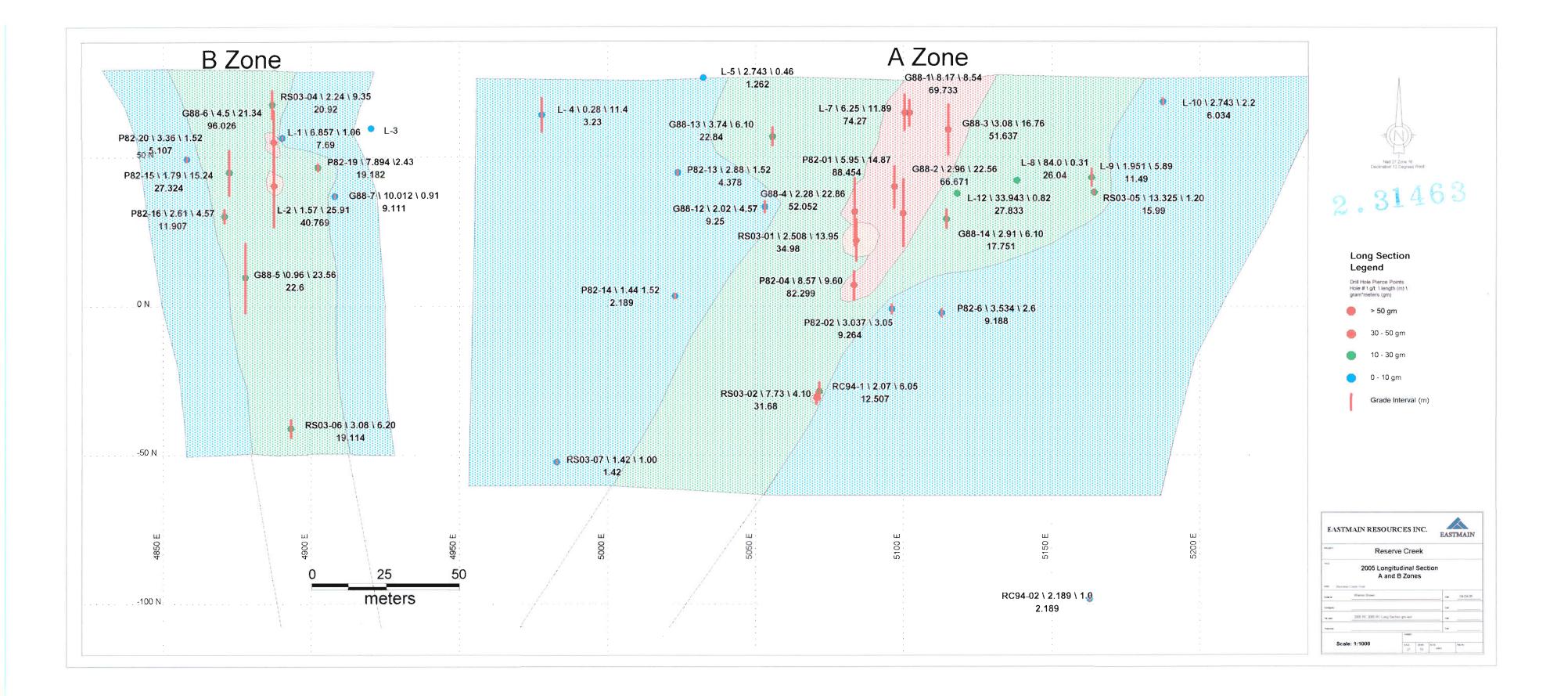
.

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 10-FEB-2005 Account: MVR

Project: Reserve Creek

CERTIFICATE OF ANALYSIS TO05007056


Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ррт 10	ME-ICP41 Zn Ppm 2	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	
B031751		0.29	<10	<10	82	<10	46			
B031752		0.04	<10	<10	52	<10	55			
B031753		0 18	<10	<10	89	<10	88			
B031754		<0.01	<10	<10	2	<10	2			
B031755		0.01	<10	<10	6	<10	56			
8031756		<0.01	<10	<10	6	<10	19			
80.31757		<0.01	<10	<10	4	<10	4			
B031758		0.04	<10	<10	29	1010	70			
80.31759		0.21	<10	<10	209	290	172			
8031760		0.02	<10	<10	8	20	8			
B031761		0.14	<10	<10	113	10	57			
B031762		0.26	<10	<10	139	<10	69			
B031763		0.02	<10	<10	5	<10	19			
B031764		0.01	<10	<10	4	10	3			
B031765		0.05	<10	<10	28	<10	58			
8031766		0.28	<10	<10	108	10	41			
8031767		0.13	<10	<10	13	<10	73			
B031768		0.05	<10	<10	27	<10	28			
B031769		0.08	<10	<10	117	20	184			
B031770		0.03	<10	<10	86	40	1745	147	5.90	
8031771		0.06	<10	<10	49	<10	96			
B031772		<0.01	<10	<10	1	<10	37			
B031773		0.07	<10	<10	32	<10	20			
B031774		0.61	<10	<10	344	<10	56			
B031775		0.12	<10	<10	44	<10	18			
B031776		0.06	<10	<10	96	<10	46			
B031777		0.03	<10	<10	16	<10	7			
B031778		0.02	<10	<10	10	<10	7			
B031779		0.23	<10	<10	98	<10	66			
8031780		0.01	<10	<10	17	<10	10			
B031781		0.03	~ 10	<10	4	< 10	19			

Comments: ** CORRECTED COPY for Project Name **

Appendix III

LONGITUDINAL SECTION, ZONE A AND B

,

Appendix IV

ALS CHEMEX INTERNAL QUALITY CONTROL PROCEEDURES, CERTIFICATES AND ANALYSIS SPECIFICATIONS

2004-2005 Reserve Creek Report

ALS CHEMEX INTERNAL QUALITY CONTROL PROCEEDURES AND ANALYSIS SPECIFICATIONS

Quality Control (QC) samples were used by ALS Chemex to detect and measure the magnitude of errors associated with the measurement of contained gold in a sample. Tracking of QC data allowed an acceptable degree of confidence in the assay values to be maintained by monitoring the performance of the lab(s) on these reference samples.

The Batch System

The batch system was used to track samples through the analytical process. Individual batches were comprised of eighty-four samples - including five blind and randomly placed QC samples – three duplicates, one blank and two reference standards. The commercial furnace used to prepare samples held 84 samples; a batch of 78 samples allowed room on a single furnace tray for the addition of the five internal QC samples. The assay results from each batch were reported in a single report, along with the lab's internal QC results. If QC results were not acceptable, using the batch method, it was immediately known which samples were possibly contaminated.

Blank samples were generally placed after higher-grade samples, as this is the best position to detect any contamination in the sample preparation process. Standards could be placed anywhere within the batch, however were best inserted adjacent to highergrade samples so that they did not stand out at the assay lab amongst a string of lowgrade samples. Duplicate samples were always split from the preceding sample; therefore they were not placed in the first position of each batch.

Standard Reference Material

Quality control standards (reference material) were used to monitor accuracy of the assay method. Chemex labs added two of their own internal standards, which were reported along with all core-sample assays.

Blank Samples

Blank samples were used to monitor any contamination of samples during the sample preparation process. Blank samples were placed into each batch randomly and material was added at the preparation lab.

Duplicate Samples

Duplicate samples were used to monitor the lab's precision and give a good idea of the type of variability one might be dealing with on a given deposit. One type of duplicate was used during the program, the (first) pulp duplicate. Chemex Labs routinely inserted pulp duplicates for the first sample in every batch. This sample was created from a second cut of the pulverized material. The relative error (precision) on these duplicates was expected to be less than 10%. This means that at the 95% confidence level (19 times out of 20) the duplicate pulp analysis will be +/- 10% of the original assay for a given assay range. Reject duplicates were not used because the vast majority of samples were completely pulverized. The second half of all split cores remains intact and labeled within the core boxes for later reference.

Analysis Procedures

Fire Assay (Au-AA24, Au-GRA22) and Multi-Element (ME-MS61) Procedures are as follows:

<u>Fire Assay Procedure</u> – Au-AA24 Fire Assay Fusion

Sample Decomposition:Fire Assay FusionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested for $\frac{1}{2}$ hour in dilute nitric acid. Hydrochloric acid is then added and the solution is digested for an additional hour. The digested solution is cooled, diluted to 7.5 ml with demineralized water, homogenized and then analyzed by atomic absorption spectrometry.

International Units:

Routine Code	Rush Code	Element	Sample Weight (grams)	Symbol	Detection Limit	Upper Limit
3583		Gold	50	Au	5 ppb	10,000 ppb

<u>Fire Assay Procedure</u> –Au-GRA22 Previous Metals Analysis Methods

Sample Decomposition: Fire Assay Fusion Analytical Method: Gravimetric

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents in order to produce a lead button. The lead button containing the precious metals is cupelled to remove the lead. The remaining gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold.

International Units:

Routine Code	Element	*Sample Weight	Symbol	Detection Limit	Upper Limit
3597	Gold	50 grams	Au	0.07 g/t	1,000 g/t
448	Gold	all	Au	0.002 mg	30 mg

American/English Units:

Routine Code	Element	*Sample Weight	Symbol	Detection Limit	Upper Limit
3596	Gold	50 grams	Au	0.001 oz/ton	30 oz/ton

*Note:	$\frac{1}{2}$ assay ton	=	14.5883 grams
	1 assay ton	=	29.166 grams
	2 assay ton	=	58.322 grams
	5 assay ton	=	145.83 grams

<u>Geochemical Procedure</u> – ME-MS61 Ultra-Trace Level Methods Using ICP-MS and ICP-AES

Sample Decomposition: HF-HNO₃-HClO₄ acid digestion, HCl leach Analytical Methods: Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.500 gram) is digested with perchloric, nitric and hydrofluoric acids to dryness. The residue is taken up in nitric and hydrochloric acids and diluted to a final volume with deionized water. The resulting solution is analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed to ensure that base metal concentrations are less than 1%, with the exception of Silver, Bismuth, and Tungsten which have upper analytical limits of 100, 500, and 1000 ppm. Samples that meet this criteria are then diluted and analysed by ICPMS. Results are corrected for spectral interelement interferences.

Chemex			Detection	Upper	Analytical
Code	Element	Symbol	Limit	Limit	Technique
9327	Silver	Ag	0.02 ррт	100 ppm	AES+MS
9301	Aluminum	Al	0.01%	25%	AES
9340	Arsenic	As	0.2 ppm	10,000 ppm	AES+MS
9302	Barium	Ba	0.5 ppm	10,000 ppm	AES
9303	Beryllium	Be	0.05 ppm	1000 ppm	AES+MS
9304	Bismuth	Bi	0.01 ppm	10,000 ppm	AES+MS
9306	Calcium	Ca	0.01%	25%	AES
9305	Cadmium	Cd	0.02 ppm	500 ppm	AES+MS
9307	Cerium	Ce	0.01 ppm	500 ppm	MS
9310	Cobalt	Со	0.1 ppm	10,000 ppm	AES+MS
9309	Chromium	Cr	l ppm	10,000 ppm	AES
9308	Cesium	Cs	0.05 ppm	500 ppm	MS
9311	Copper	Cu	0.2 ppm	10,000 ppm	AES
9315	Iron	Fe	0.01%	25%	AES
9312	Gallium	Ga	0.05 ppm	500 ppm	MS
9313	Germanium	Ge	0.05 ppm	500 ppm	MS
9243	Hafnium	Hf	0.1 ppm	500 ppm	MS
9314	Indium	In	0.005 ppm	500 ppm	MS
9325	Potassium	K	0.01%	10%	AES
9316	Lanthanum	La	0.5 ppm	500 ppm	MS

٠

<u>Geochemical Procedure</u> – ME-MS61

Chemex		1 r roccuur	Detection	Upper	Analytical
Code	Element	Symbol	Limit	Limit	Technique
9318	Lithium	Li	0.2 ppm	500 ppm	MS
9319	Magnesium	Mg	0.01%	15 %	AES
9320	Manganese	Mn	5 ppm	10,000 ppm	AES
9321	Molybdenum	Мо	0.05 ppm	10,000 ppm	AES
9328	Sodium	Na	0.01%	10 %	AES
9323	Niobium	Nb	0.1 ppm	500 ppm	MS
9322	Nickel	Ni	0.2 ppm	10,000 ppm	AES+MS
9324	Phosphorus	Р	10 ppm	10,000 ppm	AES
9317	Lead	Pb	0.5 ppm	10,000 ppm	AES+MS
9326	Rubidium	Rb	0.1 ppm	500 ppm	MS
9349	Rhenium	Re	0.002 ppm	50 ppm	MS
9351	Sulfur	S	0.01%	10 %	AES
9341	Antimony	Sb	0.05 ppm	1,000 ppm	MS
9350	Selenium	Se	1 ppm	1,000 ppm	MS
9352	Tin	Sn	0.2 ppm	500 ppm	MS
9329	Strontium	Sr	0.2 ppm	10,000 ppm	AES+MS
9330	Tantalum	Та	0.05 ppm	100 ppm	MS
9331	Tellurium	Te	0.05 ppm	500 ppm	MS
9333	Thorium	Th	0.2 ppm	500 ppm	MS
9334	Titanium	Ti	0.01%	10 %	AES+MS
9332	Thallium	Tl	0.02 ppm	500 ppm	MS
9336	Uranium	U	0.1 ppm	500 ppm	MS
9337	Vanadium	V	1 ppm	10,000 ppm	AES
9335	Tungsten	W	0.1 ppm	10,000 ppm	AES+MS
9338	Yttrium	Y	0.1 ppm	500 ppm	MS
9339	Zinc	Zn	2 ppm	1 %	AES
9353	Zirconium	Zr	0.5 ppm	500 ppm	MS

<u>Geochemical Procedure</u> – ME-MS61 (cont

MS - Results are from the ICP-MS scan

AES - Results are from the ICP-AES scan

AES+MS - Results are a combination of ICP-AES and ICP-MS scans

Samples which fail to meet the Upper Concentration limits as outlined above, will be treated as regular T24 digestions and all detection limits will apply as per that method.

ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

To: EASTMAIN RESOURCES INC. **RR 1** ORANGEVILLE ON L9W 2Y8

Page: 1 Finalized Date: 2-DEC-2004 Account: MVR

QC CERTIFICATE TO04081783

Project: Reserve Creek

P.O. No.:

This report is for 19 Rock samples submitted to our lab in Toronto, ON, Canada on 22-NOV-2004.

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

The following have access to data associated with this certificate:

ALS Canada Ltd. 212 Brooksbank Avenue

CATHY BUTELLA

DON ROBINSON

,

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
PUL-31	Pulverize split to 85% <75 um
SPL-21	Split sample - riffle splitter
CRU-31	Fine crushing - 70% <2mm
LOG-22	Sample login - Rcd w/o BarCode

SCRIPTION	INSTRUMENT
e grade Cu - aqua regia/AA	AAS
30g FA-AA finish	AAS
Element Aqua Regia ICP-AES	ICP-AES
	SCRIPTION e grade Cu - aqua regia/AA 30g FA-AA finish Element Aqua Regia ICP-AES

To: EASTMAIN RESOURCES INC. ATTN: CATHY BUTELLA RR 1 **ORANGEVILLE ON L9W 2Y8**

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

.

Signature:

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

Method Analyte Units Sample Description Lor	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-JCP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fo % 0,01	MF ICP41 Ga PPIN 10
						STAN	DARDS				-				
BM-10 Target Range - Lower Bound Upper Bound G2600 Target Range - Lower Bound Upper Bound GBM399-5 Target Range - Lower Bound Upper Bound GS-3A Target Range - Lower Bound Upper Bound Upper Bound Upper Bound	3,50 2,93 3,39 0,798	4.6 4.5 6.0 3.2 2.9 3.9	0.45 0.39 0.50 1.81 1.66 2.06	826 700 861 490 434 534	<10 <10 <10 20	70 60 90 830 740 920	<0.5 1.0 <0.5 1.0	181 152 190 2 <2 4	0.07 0.05 0.09 0.49 0.46 0.58	123.0 109.5 134.5 7.0 6.3 8.9	350 293 361 25 22 29	668 574 704 72 64 80	1720 1570 1925 309 272 334	10 45 8.66 10.60 3.80 3.41 4 19	<10 10 <10 20
Target Range - Lower Bound Upper Bound	0.741 0.863		,			RI A	NKS								
BLANK	<0.005														
BLANK BLANK BLANK	<0.005	<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	<1	<0.01	-1 0
Target Range - Lower Bound Upper Bound	<0.005 0.010	≪0.2 0.4	<0.01 0.02	<2 4	<10 20	<10 20	<0.5 1.0	<2 4	<0.01 0.02	<0.5 1.0	<1 2	<1 2	<1 2	<0 01 0 02	<10 20
						DUPLI	CATES								
31783 DUP Target Range - Lower Bound Upper Bound	<0.005 <0.005 <0.005 0.010														

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Мя % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 NI ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01
							STAN	DARDS								
BM-10 Target Range - Lower Bo Upper Bo G.2000 Farget Range - Lower Bo Upper Bo GBM300 5 Target Range - Lower Bo Upper Bo	ound ound ound	<1 2	0.01 0.43 0.38 0.48	<10 20 <10 40	0.20 0.17 0.23 0.68 0.60 0.76	2810 2390 2930 567 506 630	79 85 106 5 4 8	0.04 0.03 0.02 0.04	1435 1175 1440 291 256 316	60 <10 40 950 840 1050	2360 2030 2490 670 601 739	1.42 1.29 1.59 0.28 0.22 0.30	214 207 257 22 19 27	25 20 26 7 6 9	7 5 9 68 59 74	0 02 0 05 0 04 0 07
GS-3A Target Range - Lower Bc Upper Bo OxF28 Target Range - Lower Bc Upper Bo	ound			,												
							BLA	NKS								
BLANK BLANK HLANK Target Range - Lower Bc Upper Bo		<1 <1 2	<0.01 <0.01 0.02	<10 <10 20	<0.01 <0.01 0.02	<5 <5 10	<1 <1 2	<0.01 <0.01 0.02	<1 <1 2	<10 <10 20	<2 <2 4	<0.01 <0.01	<2 <2	<1 <1	<1 <1	<0.01
		2	0.02	20	0.02	10			2	20	4	0.02	4	2	2	0.02
31783 DUP Target Range - Lower Bo Upper Bo							DUPLI	CATES								

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Eax: 604 984 0218

ALS Canada Ltd

212 Brooksbank Avenue

To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

H3-10 Lanet Range Lower Bound Upper Bound <10 -40 -40 -44 -40 -44 -40 -40 -40 -40 -4	Sample Description	Method Analyte Units LOR	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu . % 0.01]
HA-10 Tarret Range - Lower Bound Upper Boun								STANDARDS	
Tardet Range - Lower Bound -10 -10 -2920 0.7000 -10 -10 07 -2920 1ardet Range - Lower Bound -10 -10 59 -10 1205 1ardet Range - Lower Bound -10 -10 59 -10 1130 1-4100 Jb	BM-10		<10	< 10	40	<10	3310		
Upper Bound		ound	-10	-10		<10			
10.000 <10									
larget Range - Lower Bound <10	6.000		<10	<10		<10			
Upper Bound 20 20 74 20 1385 CoMLeeD 5 3.01 2.83 3.01 2.83 Upper Bound 4 4 3.06 3.06 GS:3A 3.06 3.06 3.06 Target Range - Lower Bound 4 4 4 3.06 OXF28 5 5 5 5 Target Range - Lower Bound 4 5 5 5 BLANK <10			<10	<10					
Larget Range - Lower Bound 00per Bound 3.06 GS-3A 3.06 Target Range - Lower Bound 00per Bound Upper Bound 00per Bound 10 0 0 0 11 ANK 00 0 0 0 12 arget Range - Lower Bound 00 0 0 0 131783 00P 0 0 0 0 131783 00P 0 0 0 0 131783 0 0 0 0 0 131783 0 </td <td></td> <td>bund</td> <td>20</td> <td>20</td> <td>74</td> <td>20</td> <td>1385</td> <td></td> <td></td>		bund	20	20	74	20	1385		
Upper Bound 3.06 GS:3A Target Range - Lower Bound 5.06 Upper Bound Upper Bound 5.06 Target Range - Lower Bound 5.07 Upper Bound 5.07 Upper Bound 5.07 Target Range - Lower Bound 5.00 Upper Bound 5.00 BLANK 5.00 BLANK <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.01</td><td></td></td<>								3.01	
GS:3A Target Range - Lower Bound Upper Bound OXF28 Target Range - Lower Bound BI ANK <10									
Target Range - Lower Bound Upper Bound - Target Range - Lower Bound Upper Bound - BLANK <10		buna			*				
Upper Bound OXF28 Target Range - Lower Bound BLANK <10		aund							
OXF28 Target Range - Lower Bound Upper Bound BLANK BLANK <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
Target Range - Lower Bound Upper Bound Upper Bound Upper Bound BLANK Starter Duper Bound Starter BLANK									
Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Stanks		ound							
BLANK <10									
BLANK <10								BLANKS	
BLANK <10 <1 <10 <2 BLANK <0.01 Target Range - Lower Bound <10 <1 <10 <2 <0.01 Upper Bound <10 <1 <10 <2 <0.01 Starget Range - Lower Bound <10 <1 <10 <2 <0.01 Upper Bound <10 <1 <10 <2 <0.01 Upper Bound <10 <1 <10 <2 <0.01 DUP BLANK Starget Range - Lower Bound Target Range - Lower Bound Starget Range - Lower Bound Starget Range - Lower Bound Starget Range - Lower Bound	()) A.11								
BLANK Target Range - Lower Bound Upper Bound 31783 DUP Target Range - Lower Bound UP									
arget Range - Lower Bound Upper Bound <10			<10	~ 10	<1	<10	<2		
Upper Bound 20 20 2 20 4 0.02 DUPLICATES 31783 DUP Target Range - Lower Bound		bund	<10	< 10	-1	~10	-0		
DUPLICATES 31783 DUP Target Range - Lower Bound						20			
31783 DUP Target Range - Lower Bound				1.0		20 /	4		
DUP Target Range - Lower Bound								DUPLICATES	
Target Range - Lower Bound									
Upper Bound								-	
	Upper Bo	bund							
		[

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

CHIGORNAL URUP Target Range - Lower floand Upper Bound	1 ME-ICP41 Ga рат 10	ME-ICP41 Fe % 0.01	ME-ICP41 Cu ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Co ppm 1	ME-ICP41 , Cd ppm 0.5	ME-1CP41 Ca % 0.01	ME-ICP41 Bi ppm 2	ME-ICP41 Be ppm 0.5	ME-ICP41 Ba ppm 10	ME-ICP41 B ppm 10	ME-ICP41 As ppm 2	ME-ICP41 AI % 0.01	ME-ICP41 Aq ppm 0.2	Au-AA23 Au ppm 0.005	Method Analyte Units ŁOR	ample Description
DUP* Target Range - Lower Bound Upper Bound <0.005 <0.005 ORIGINAL DUP <0.005 < 0.005									CATES	DUPLI							
DUP Target Range - Lower Bound Upper Bound <0.005 <0.005 0.010 < < </td <td></td> <td><0.005 <0.005</td> <td></td> <td>)니ච Farg<mark>et Range - Lower</mark> Bo</td>															<0.005 <0.005)니ච Farg <mark>et Range - Lower</mark> Bo
DUP 0.2 2.50 <2 <10 250 1.0 <2 2.44 <0.5 21 84 160 8.61 Target Range - Lower Bound Upper Bound <0.2													•		<0.005 <0.005		DUP Farget Range - Lower Bo
	20 20 <10 40	8 61 8 20	160 149	84 79	21 18	<0.5 <0.5	2.44 2.32	<2 <2	1.0 <0.5	250 230	<10 <10	<2 ' <2	2.50 2. 34	02 <0.2			DUP Farget Range - Lower Bo
					_												
																-	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-1CP41 Tł % 0.01
							DUPL	CATES								
ORIGINAL DUP Target Range - Lower Bo Upper Bo				,												
ORIGINAL DUP Target Range - Lower Bo Upper Bo																
ORIGINAL DUP Target Range - Lower Bo Upper Bo		<1 <1 <1 2	0.95 0.96 0.89 1.02	10 10 <10 20	0.70 0.71 0.65 0.76	1010 994 942 1060	16 17 14 19	0.07 0.06 0.04 0.09	2 3 <1 5	1290 1300 1210 1380	<2, <2 <2 <2 4	1 06 1.05 0.98 1.13	<2 <2 <2 <2 4	12 12 9 15	29 30 26 33	0 20 0 20 0 17 0 23
				,												

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone. 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 2-DEC-2004 Account: MVR

Project: Reserve Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01				
ORIGINAL DUP Target Range - Lower Boi Upper Boi	und						DUPLICATES				
ORIGINAL DUP Target Range - Lower Boy Upper Boy	und und							 		 	
ORIGINAL DUP Target Range - Lower Bou Upper Bou		<10 <10 <10 20	<10 <10 <10 20	2 1 <1 , 2	<10 <10 <10 20	101 100 91 110		 	. — —		
	-										

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

At S Canada Etd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. **RR 1** ORANGEVILLE ON L9W 2Y8

Page: 1 Finalized Date: 10-FEB-2005 This copy reported on 11-FEB-2005 Account: MVR

AAS

AAS

AAS

Reserve Creek - grab Samples

Ag-AA46

Cu-AA46

Au-AA23

QC (CERTIFICATE' TO05007056	5		SAMPLE PREPARATION					
			ALS CODE	DESCRIPTION					
3-FEB-2005.	to data associated with this certific	ON, Canada on	WEI-21 DRY-21 PUL-31 SPL-21 CRU-31 LOG-22	Received Sample Weight High Temperature Drying Pulverize split to 85% <75 um Split sample - riffle splitter Fine crushing - 70% <2mm Sample login - Rcd w/o BarCode					
				ANALYTICAL PROCEDURES	S				
	•		ALS CODE	DESCRIPTION	INSTRUMENT				
			ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES				

To: EASTMAIN RESOURCES INC. ATTN: CATHY BUTELLA **RR 1 ORANGEVILLE ON L9W 2Y8**

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Ore grade Ag - aqua regia/AA

Ore grade Cu - aqua regia/AA

Au 30g FA-AA finish

Signature:

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 10-FEB-2005 Account: MVR

Project: CLEARWATER

			0.01	2	ррт 10	ррт 10	Ве рµт 0.5	Bl ppm 2	Ca % 0.01	Cd ppm 0.5	Co ppm 1	Cr ppm 1	Cu Ppm 1	Fе % 0.01	Ga ppm 10
						STAN	DARDS								
		5.4	0.46	839	<10	70	<0.5	182	0.06	15 3,5	249	204	1705		
		53	0.45	905	<10	70	<0.5	185	0.06	120.0	348 338	684	1785	10.15	<10
nd		4.8	0.41	737	<10	60	<0.5	170	0.05	120.0	338 316	670 617	1730	9.92	<10
nd		6.3	0,53	905	20	100	1.0	212	0.09	152.0	388	757	1605	9.19	<10
			۲						0.00	102.0	300	151	1960	11.25	20
nd nd															
		3.5	1.84	491	<10	810	0.9	<2	0.48	74	24	60	207	0.70	
		7.8	1.89	495	<10	840									10
nd		3.0	1.66	434	<10	740									10
nd		4.1	2.06	534	20	920	1.0	4							<10 20
ndi ndi										0,0	23	. 00	334	4.19	20
-	0.781														
nd 1d	0.741 0.863														
nd nd	3.24 3.74														
						BLA	NKS								
		<0.2	<0.01	<2	< 1 0	<10	<0.5	<2	<0.01	<0.5	~1	-1			
		<0.2	<0.01	<2	<10	<10									<10
	<0.005							-	-0.01	-0.0			< I	<0.01	<10
nd				<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	-1	<0.01	<10
d	0.010	0.4	0.02	4 ::.	20	20	1.0	4							20
												-	. ~	0.02	20
יי יי יי		d d d d d d d d d d d d d d d d d d d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

1

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

At S Canada Hd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 10-FEB-2005 Account: MVR

Project: CLEARWATER

Sample Description	Method Analyta Unita LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ÍCP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo pum 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01
				,			STAN	DARDS					<u></u>	<u> </u>		
BM 10 BM 10		<1 1	0.01 0.01	<10 < 1 0	0.19 0.19	2750 2690	76 79	0.02 0.03	1420 1375	70 60	2240 2180	1.36 1.37	247 240	25 24	7 7	0.02 0.02
Larget Range - Lower Bo Upper Bo CU-106		<1 2	<0.01 0.02	<10 20	0.17 0.23	2510 3080	71 89	0.02 0.04	1260 1545	40 70	2100 2580	1.25 1.55	214 266	21 28	6 9	<0.01 0.04
Farget Range - Lower Bo Upper Bo			0.111	•0												
G2000 G2000 Flarget Range - Lower Bo	-	1 <1 <1	0 42 0 43 0.38	20 20 <10	0.68 0.68 0.60	561 551 5 06	4 5 4	0.02 0.03 0.02	281 280 25 6	940 940 840	659 657	0.26 0.29	26 25	7 7	67 70	0 05 0 05
Upper Bo GBM399 5 Target Range - Lower Bo Upper Bo OλF28	und	2	0.48	40	0.76	630	8	0.02	316	1050	601 739	0.22 0,30	19 27	6 9	59 74	0.04 0.07
OXF28 Target Range - Lower Bo Upper Bo OXK35 OXK35 Target Range - Lower Bo Upper Bo	und ·															
							BL	ANKS								
EFEATIN 18EANIN 18EANIN 18EANIN 18EANIN		, ≺1 <1	<0.01 <0.01	<10 <10	<0.01 <0.01	<5 <5	<1 <1	<0.01 <0.01	<1 <1	<10 <10	<2 <2	<0.01 <0.01	<2 <2	<1 <1	<1 <1	<0.01 <0.01
Faiget Range - Lower Boi Upper Boi		<1 2	<0.01 0.02	<10 20 :::	<0.01 0.02	. <5 ≈ 10 .		<0,01		<10 	<2	<0.01 0.02	<2 4	<1 2	<1 2	<0.01 0.02

EXCELLENCE IN ANALYTICAL CHEMISTRY At S Canada Ltd.

,

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax. 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8

Page: 2 - (Total # Pages: 3 (A - C Finalized Date: 10-FEB-200 Account: MVI

QC CERTIFICATE OF ANALYSIS TO05007056

Project: CLEARWATER

		[
	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	Ag-AA46	Cu-AA46
	Analyte	Í ті	U	v	w	Zn	Ag	Cu
Sample Description	Units	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOR	10	10	1 '	10	2	1	0.01
							STAN	DARDS
BM 10		×10	<10	42	<10	3130		
BM 10		<10	<10	42	<10 <10	3130		
Larget Range - Lower B	ound	<10	<10			2900		
Upper B		20	20	36 46	20			
CU 106	ound	20	20	40	20	3550	10.	
Larget Range - Lower B	ound -						134	1.42
Upper B							131	1.37
62000	bung	<10	<10	67	40	1005	142	1.49
G2000		<10	<10	68	10	1265		
Larget Range - Lower B	ound				<10	1245		
		<10	<10	59	<10	1130		
Upper Be GBM399-5	uuna	20	20	74:	20 :	1385	:	
							25	3.03
Target Range - Lower B	ound						22	32.12 2.83
Upper Bo	ound						26	3.06
OXF28								
OXE28								
Farget Range - Lower Bo								
Upper Bo	ound							
Охкар								
OXK35								
Target Range - Lower Bo								
Upper Bo								
							BLA	NKS
BLANK		<10	<10	<1	<10	<2		
BLANK		<10	<10	<1	<10	<2		
BLANK								
BLANK	ļ						<1	<0.01
BLANK								
Larget Range - Lower Bo	ound	<10	<10	<1	<10	<2	<1	<0.01
Upper Bo	ound	20	20	2	20	4		0.02
					· · · · · · · · · · · · · · · · · · ·		٤. ٠	V.V .

Upper Bound

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ć.,

ALS Canada Ltd 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

<0.2

0,4

3,55

3.96

47

60

<10

20

· · ·

90

150

<0.5

1.0

<2

<0.01

0.05

<0.5

1.0

8

13

18

24

33

41

6.45

7.18

<10

20

To: EASTMAIN RESOURCES INC. RR 1 **ORANGEVILLE ON L9W 2Y8**

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 10-FEB-2005 Account: MVF

QC CERTIFICATE OF ANALYSIS TO05007056

Project: CLEARWATER

Sample Description	Method Analyte Units LOR	Au-AA23 Au ppm	ME-ICP41 Ag ppm	ME-ICP41 AI %	ME-ICP41 As ppm	ME-ICP41 B ppm	ME-ICP41 Ba ppm	ME-ICP41 Be ppm	ME-ICP41 Bi ppm	ME-ICP41 Ca %	ME-ICP41 Cd ppm	ME-ICP41 Co ppm	ME-ICP41 Cr ppm	ME-ICP41 Cu ppm	ME-ICP41 Fe %	ME-ICP4 Ga ppm
		0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10
							DUPLI	CATES								
ORIGINAL	•	<0 005														
DCH-		<0.005														
Farget Range - Lower		<0.005														
Upper	Bound	0.010		_												
ORIGINAL		0.008		•						<u> </u>						
DUP		<0.005														
Target Range - Lower		<0.005														
Upper	Bound	0.010														
B031752		<0.005														
900		<0. 0 05														
Farget Range - Lower		<0.005														
Upper	Bound .	0,010														
8031770																
DOB																
Larget Range - Lower I Upper I																
B031772		0.022														
DOB.		0.035														
Target Range - Lower I	-	0.017														
Upper I	Bound	0,040														
8031780			<0.2	0.34	<2	<10	<10	<0.5	<2	0.17	<0.5		13	55	1 10	
DUP			<0.2	0.34	<2	<10	<10	<0.5	<2	0.18	<0.5	4	13	52	1.10 1.14	<10 <10
Larget Range - Lower I	Bound		<0.2	0.30		<10	<10	<0,5	<2	0.15	<0.5	2	. 12	52 49	1.04	<10 <10
Upper I	Bound		0.4	0.38	4 .1	20	20	1.0	4	0.20	1.0	6	17	58	1,20	20
ORIGINAL			<0.2	3.73	53	<10	120	<0.5	<2	0.03	<0 .5	10	21	37		
1)(1)*			<0.2	3.78	54	<10	120	<0.5	<2	0.03	<0.5	10	21	37	6.83 6.80	10 10
Target Range - Lower I	Bound		<0.2	3.55	47	<10	90	<0.5	~2	<0.00	<0.5	0	∠ I 10	37	0.00	10

To: EASTMAIN RESOURCES INC. **RR 1 ORANGEVILLE ON L9W 2Y8**

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 10-FEB-2005 Account: MVR

Project: CLEARWATER

Sample Description	Method Analyto Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppin 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Мо ррт 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01
							DUPL	ICATES								
ORIĜINAL DUP Larget Range - Lower Br Upper Br				•												
ORIGINAL DUP Target Range - Lower Bi Upper Bo																
B031752 DUP Larget Range - Lower B Upper B																
B031770 DUP Target Range - Lower B Upper B																
B031772 DUP Farget Range - Lower B Upper B																
13031780		<1	<0.01	<10	0.26	120	<1	0.01	16	30	<2	0.03	<2	2	1	0.01
DUP		<1	<0.01	<10	0.26	123	<1	0.01	17	30	<2	0.03	<2	2	1	0.01
Farget Range - Lower B		<1	<0.01	<10	0.23	105	<1 2	<0.01	. 14	<10 50	<2 4	<0.01 0.05	<2	<1 4	<1 2	<0.01 0. 0 2
Upper B	ouna	2	0.02	20	.0.29		. 4	0.02		, DC, ;	. 4	0.05	·	4	<u> </u>	0.02
ORIGINAL		<1	0.24	<10	0.17	606	1	0.05	15	220	6	<0.01	<2	24	27	0.02
DOP		<1	0.25	<10	0. 18	600	2	0.05	16	220	6	<0.01	<2	24	28	0.02
Faiget Range - Lower B		<1	0.21	<10	0,15	563	<1 .	. 0.03		190	, <2 .	< 0 .01	<2	21	24	<0.01
Upper B	ound	2	0.28	20	0.20	643	2 .	0.07	18	250	. 10	0.02	. 4	27	31	0.04

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

*

At S Canada Hd 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 To: EASTMAIN RESOURCES INC. RR 1 ORANGEVILLE ON L9W 2Y8 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 10-FEB-2005 Account: MVR

Project: CLEARWATER

Sample Description	Method Analyte Units LOR		ME-ICP41 U µµт 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppni 2	Ад-АА46 Ад µрт 1	Cu-AA46 Cu % 0.01				
ORIGINAL							DUPLI	ICATES	 			
DUP Target Range - Lower Bo Upper Bo												
ORIGIHAL DUP Target Range - Lower Bo Upper Bo									 			
B031752 DDP Target Range - Lower Bo Upper Bor									 		 	
B031770 DUP Target Range - Lower Bo Upper Bo							147 148 142 153	5.90 5.90 5.73 5.73			 	
B031772 DUP Target Range - Lower Bo Upper Bo									 		 	
B0317a0 DUP Target Range - Lower Boi Upper Boi		<10 <10 <10 20	<10 <10 <10 20		<10 <10 <10 20,	10 8 5 13			 	_		
ORIGINAL DUP Target Range - Lower Bor Upper Bor		<10 <10 <10 20	<10 <10 <10 20			75 77 68 44			 		 	
	!								 		 	