
Report on a MMI and B-Horizon Soil Test Sampling Survey
On the Waldman Property
Gillies Limit North Township, Ontario
for
Cabo Mining Enterprises Corp.

March, 2006 Seymour M. Sears, P.Geo.

Table of Contents

INTRODUCTION	2
PROPERTY LOCATION AND ACCESS	
TOPOGRAPHY AND VEGETATION	2
REGIONAL AND PROPERTY GEOLOGY	5
WORK PROGRAM AND RESULTS	6
CONCLUSIONS AND RECOMMENDATIONS	
REFERENCES	
Table of Figures	
Figure 1 Location Map	3
Figure 2 Claim Map	4
Figure 3 Sample Line Location Map	7
Figure 4 Soil Sample Location Map	8
Figure 5 Results for Au	9
Figure 5 Results for Au	
	10
Figure 6 Results for Ag	10

Appendix I Analytical Results

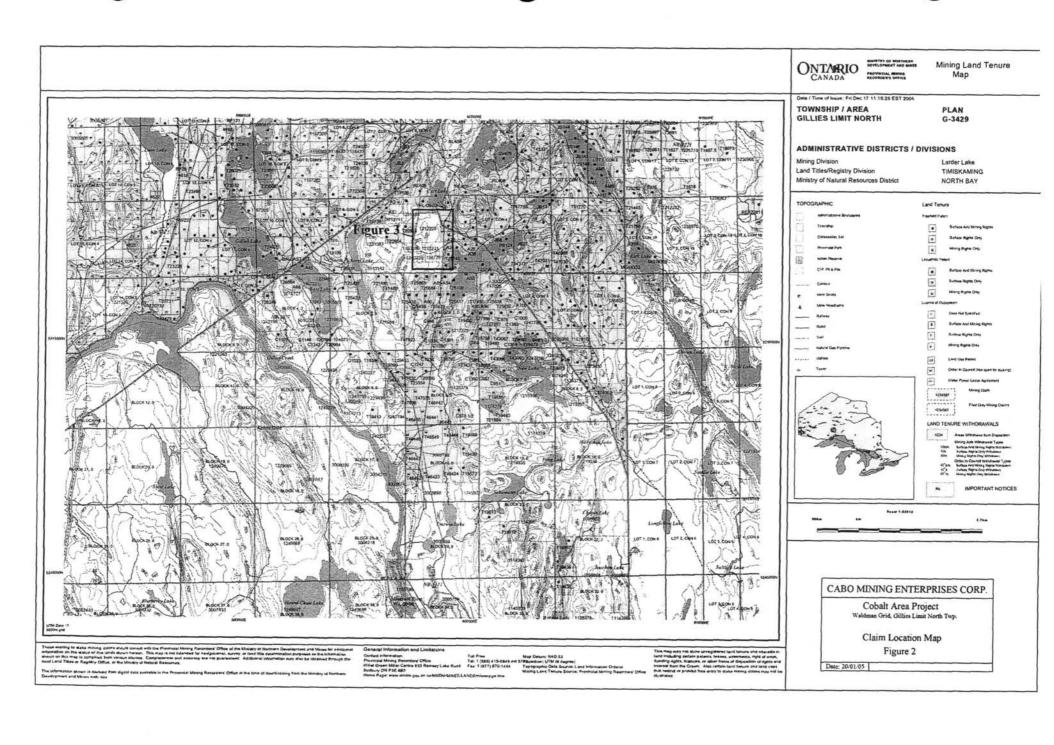
INTRODUCTION

This work program on the Waldman Property (Figures 1 & 2), has been prepared on behalf of Cabo Mining Enterprises Corp. of Vancouver, B.C. The content of the report is based on work planned and supervised by the author. The sampling was completed by Sears, Barry & Associates personnel on behalf of Cabo in July, 2004. Two soil samples were collected from each of 12 locations along a line that passed over the Waldman Ag-Co vein. Samples from the B-horizon were analyzed by standard Fire Assay for Au and ICP for multi-elements at Accurassay Laboratories in Thunder Bay, Ontario and a second set of samples were analyzed by MMI (Mobile Metal Ion) methodology at SGS Canada Inc. in Toronto, Ontario.

PROPERTY LOCATION AND ACCESS

The sample line lies completely within claim # 1212226. This claim is located in the extreme north part of Gillies Limit North Township, Larder Lake Mining Division (Fig 2).

Access is via the Coleman Road that departs eastwards from Highway 11A at the south western end of the town of Cobalt for 1.5 km and for 1 km south along the Houndchutes Road (a Hydro Dam access road) to the old Waldman # 1 Shaft.


TOPOGRAPHY AND VEGETATION

Maximum relief in the area is approximately 20 metres. Topography is generally rolling with local steep ledges and cliffs and occasional swamp. The eastern side of the property drains into Giroux Lake while the western side drains westwards into a small creek, both of which drain into Giroux Creek. This creek flows southward and westward through the area mapped and into the Montreal River.

Overburden is relatively shallow over much of the area except for local swamps. Vegetation consists mainly of mature mixed forest with abundant dense underbrush.

Figure 1: Regional Location Map of Ontario

EXPLORATION HISTORY

The Waldman area was first explored in 1909 by Waldman Silver Mines Ltd. who sunk a shaft (85') and commenced production in 1910. Additional production was attained in 1918, 1919 and 1930. Two other shafts (110' & 105') and a total of 4000 feet of underground drifting and x-cutting was completed on this prospect, including work in 1948 and 1955. In 1944 and 1949, Waldag Mining Co. Ltd. are reported to have completed 33 drill holes (in excess of 10,000 feet) although not all logs are available. No assay results were reported. In 1978, Teck Corp completed a ground Mag and VLF-EM survey over part of the claims.

To the south of the Waldman # 1 Shaft area, another shaft was completed on an old prospect from 1909-1913. This is referred to as the "Walingford" (70 ft & 70 ft X-cut) In 1963, Canadian Asteria Minerals Ltd. completed 11 drill holes totalling 2214 feet in the southern part of the Waldman area.

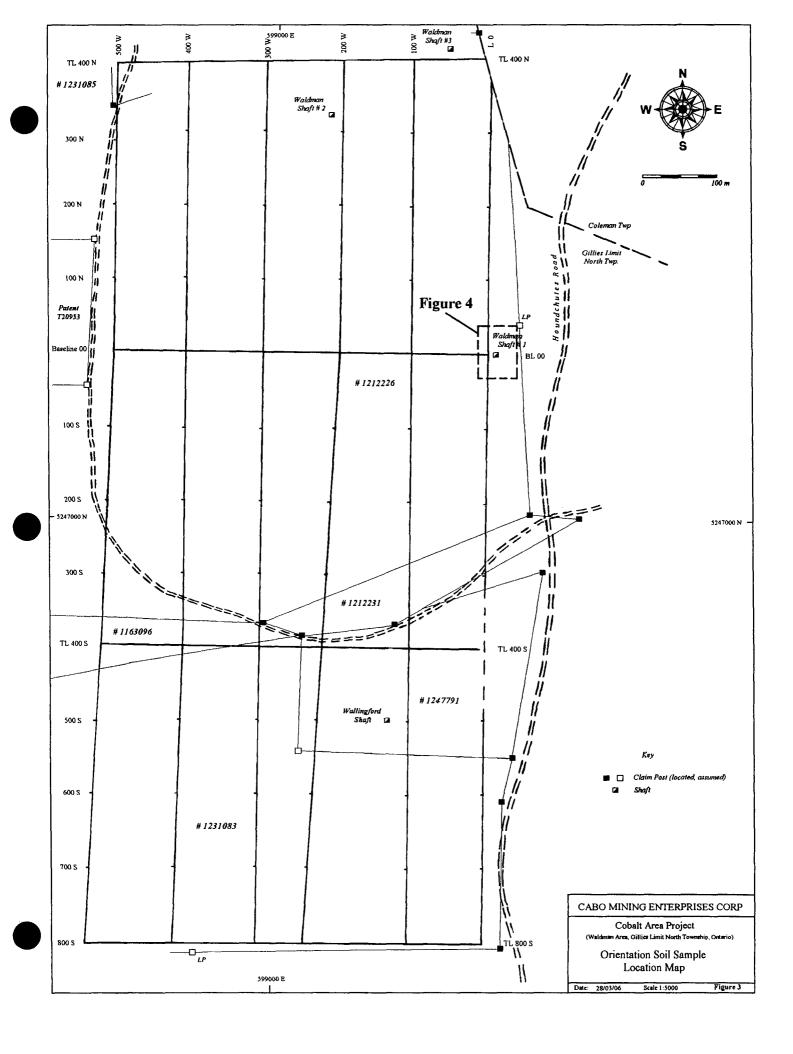
Cabo Mining Corp. (the predecessor of Cabo Mining Enterprises Corp.) completed two drill holes for 237.2 metres, beneath the Waldman shaft in 1999 (Sears, 2000). During 2004, a grid was established over the Waldman Prospect and geological mapping (Douville & Sears, 2004), a ground magnetometer survey (Clearview Geophysics Inc., 2004), prospecting and a small stripping program stripping program completed (Sears, 2004).

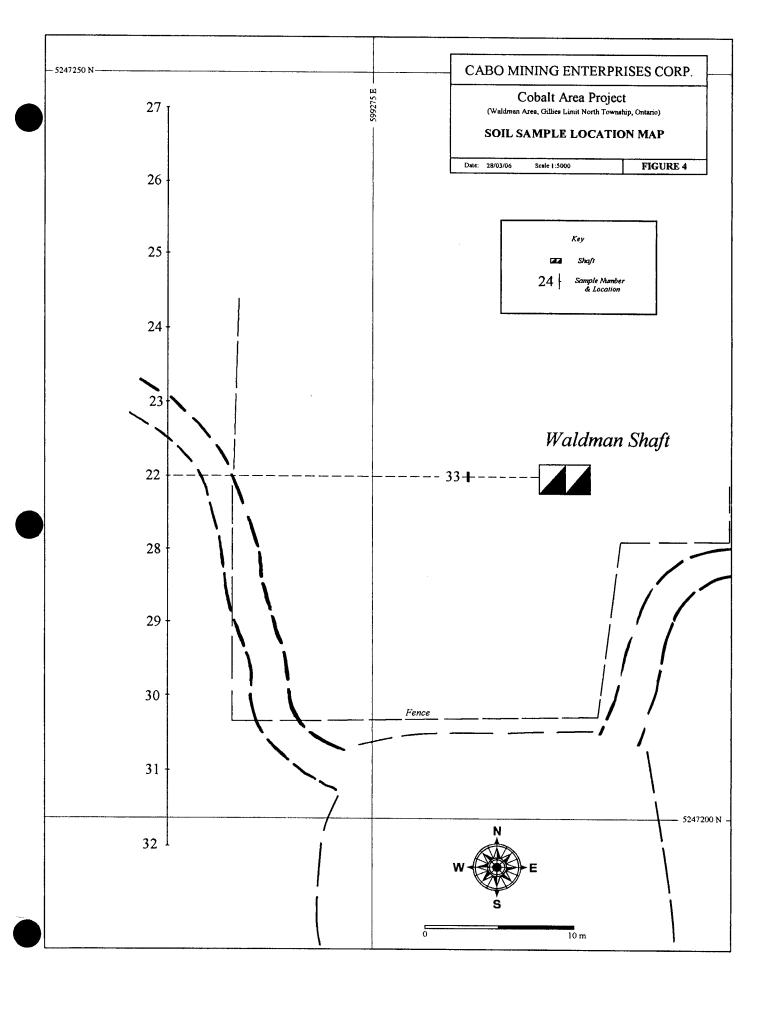
REGIONAL AND PROPERTY GEOLOGY

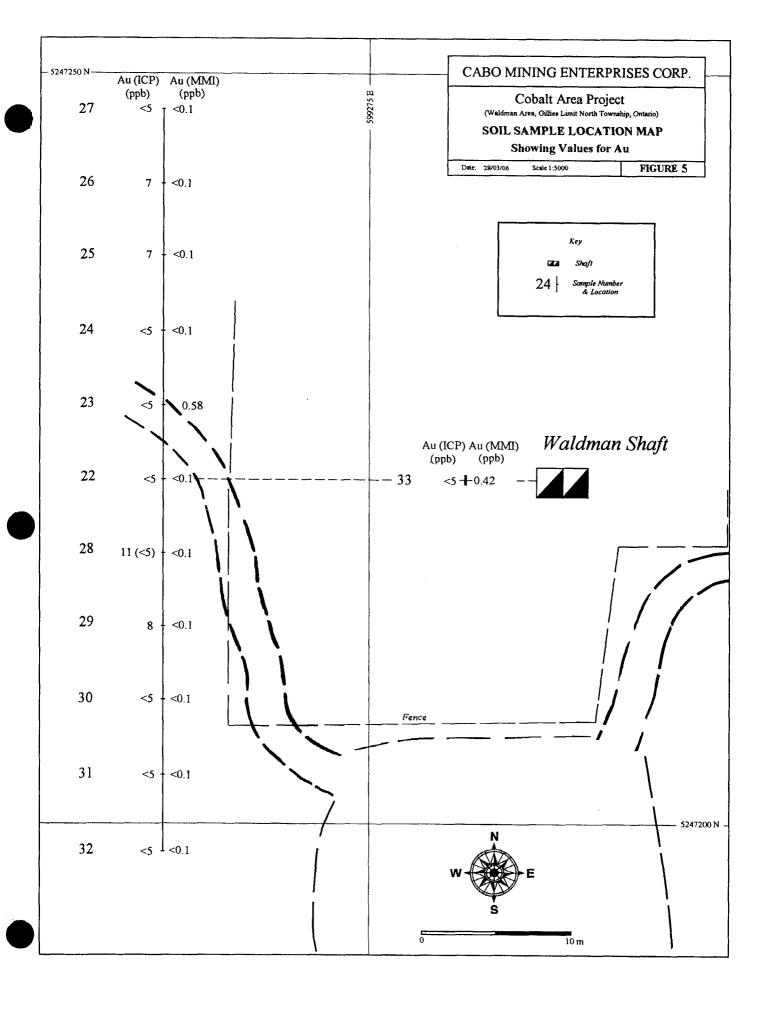
The area is located in the southern part of the main Cobalt mining camp. In the immediate area of the drill holes is located the contact between an inlier of Archean Mafic volcanic rocks, and Huronian aged Coleman Group conglomerate (Gowganda Formation). Previous geological mapping (Thompson, 1963) indicates that a Nipissing diabase sill is exposed approximately 200 metres to the east of the holes. This sill may have once overlain the local area, a geological setting that is similar to that in the immediate Cobalt Lake area two kilometres to the north.

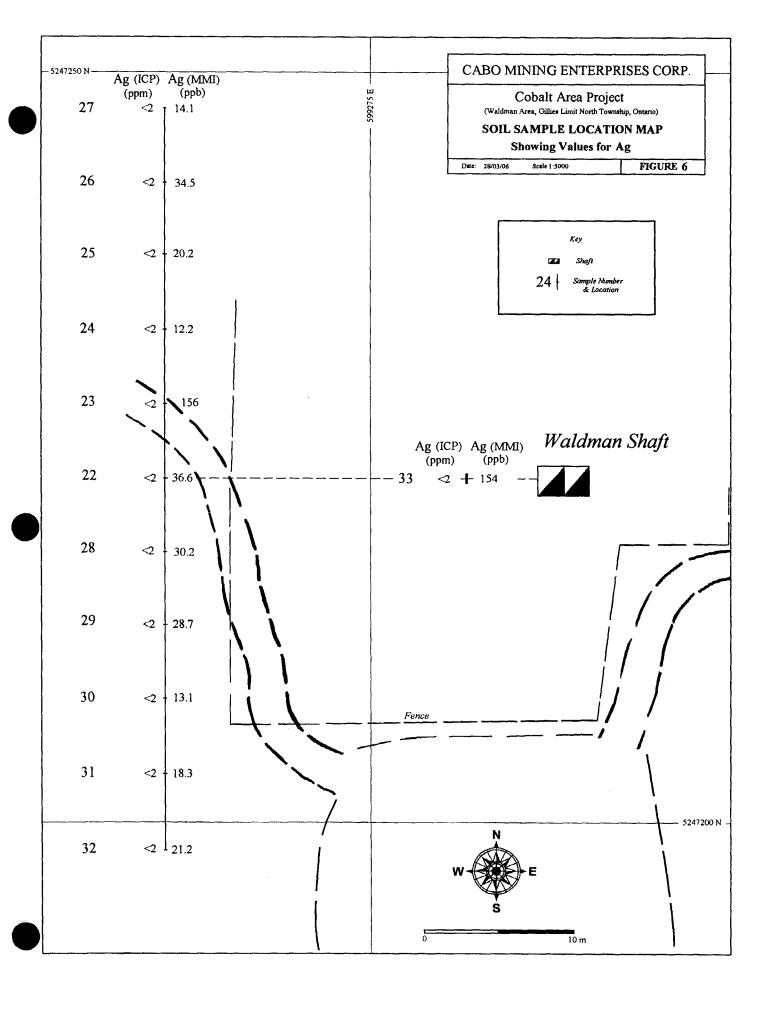
The test soil sample line is located approximately 25 metres west of the Waldman #1 shaft and along the project strike of the Waldman Vein. This deposit is reported to have produced 33,525 oz of silver and 2066 lbs of Cobalt between 1918 and 1919 (Sergiades, 1968). The mineralization in this Prospect occurs in calcite and quartz breccia veins hosted by the Archean volcanic rocks.

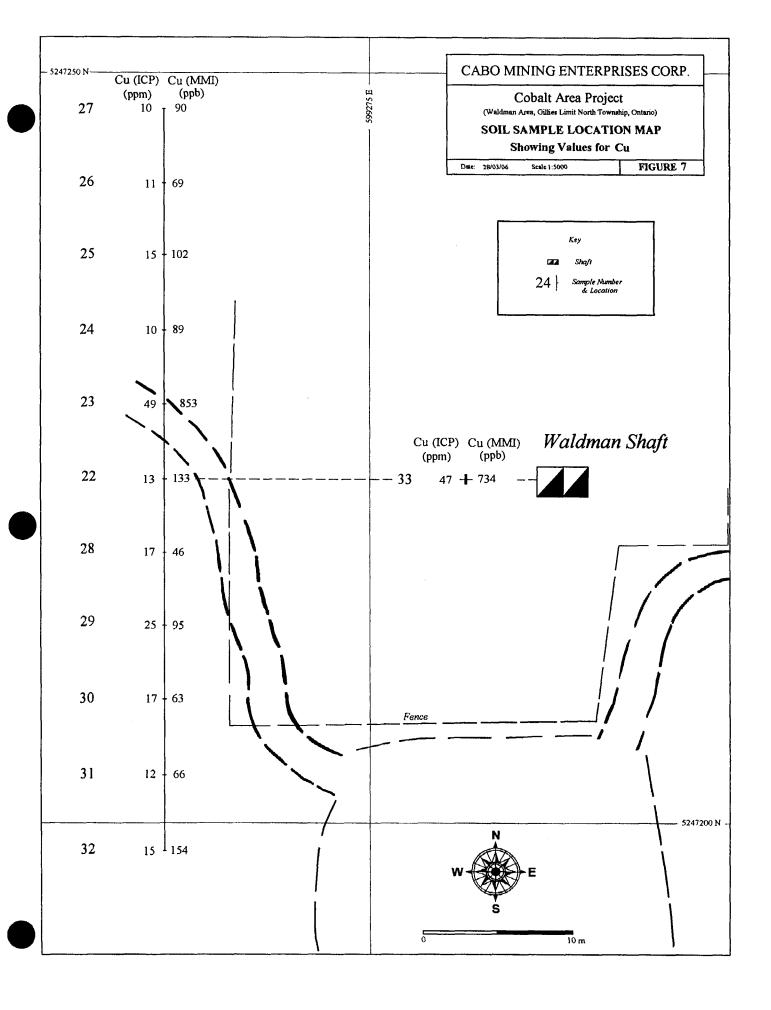
WORK PROGRAM AND RESULTS

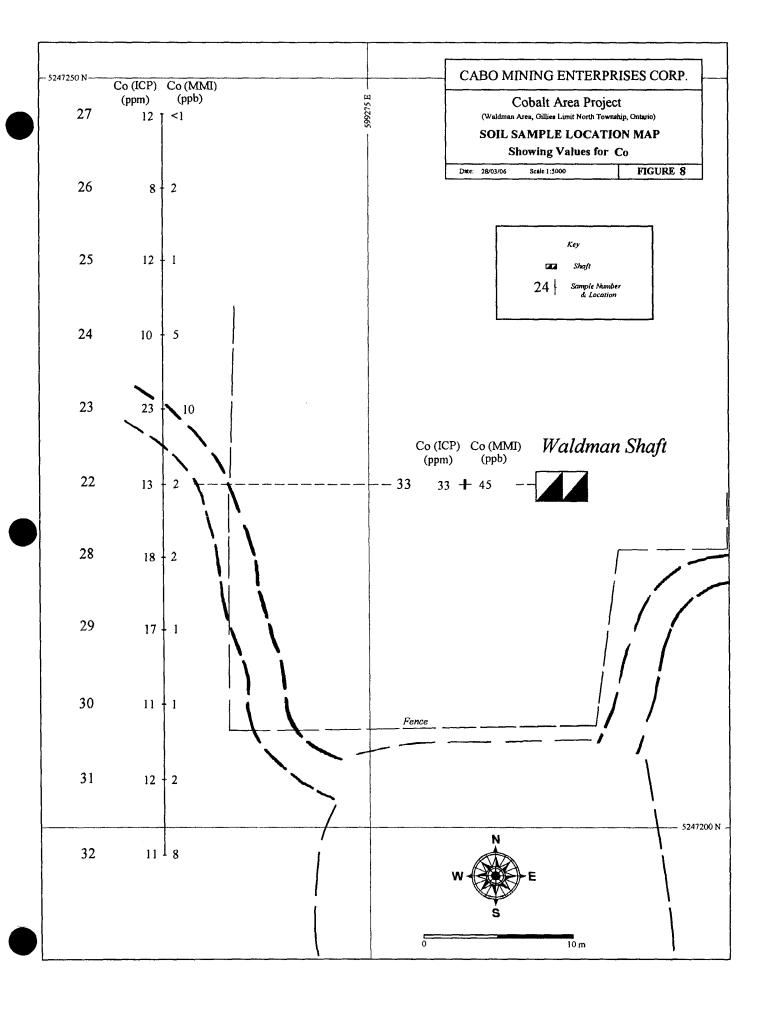

Work Summary


MMI Soil Sampling — Twelve sites were sampled by grub-hoe and spatula. Eleven of these were at 5 metre intervals along a north-south line centered approximately over the vein at a point 25 metres west of the Waldman Shaft and the other single sample directly over the Waldman vein approximately 5 metres west of the shaft (Figures 3 & 4). Holes were dug and a B-horizon sample collected in paper soil sample bags for analysis by ICP (30 element) and Fire Assay (Au) (Accurassay Laboratory in Thunder Bay, Ontario). From the same hole a second sample was collected from between 10 and 20 cm below the active organic layer, regardless of soil type. These were collected by a plastic ladle and placed in sealed plastic sandwich bags, and sent to SGS Mineral Services in Toronto where they were analyzed by Mobile Metal Ion (MMI) methods. The soil sampling was carried out on July 15, 2004.


The MMI ProcessTM was developed by Wamtech Pty. Ltd in Australia and is performed by exclusive license at SGS Minerals' full service accredited laboratory facilities in Toronto, Ontario, Canada. According to the SGS literature, the Mobile Metal Ion (MMI) ProcessTM "..uses a weak partial extraction and ICP-MS ultra trace element analysis to improve the conventional geochemical response over buried ore deposits." In theory, the weak extraction compounds extract only the elements that are weakly bonded to the soil particles and thus are considered to be related directly to underlying mineralized zones.


Two different extraction methods were used by the MMI method and two separate groups of elements were analysed for. These include:


The sample numbers and locations are shown on Figure 4. Results for Au, Ag, Cu and Co from both sets of samples are shown on Figures 5 to 8. All of the results are included in Appendix I. As can be seen on these 4 figures, the MMI results directly over the location where the Waldman vein is projected (Samples # 33 and # 23) were clearly anomalous in Au, Ag, Cu and Co. On the other hand, Ag an Au were completely undetected in the B-Horizon using the standard analytical techniques and values for Cu and Co were only weakly elevated (although detectable) over the vein.



CONCLUSIONS AND RECOMMENDATIONS

A test line consisting of 24 soil samples were collected from 12 sites along a line that crosses over a known silver bearing vein zone in the Cobalt Ag camp of northeastern Ontario. Twelve of the samples were collected from the B-horizon and analyzed for Au and 30-element ICP; the other twelve were collected from between 10 cm and 20 cm below the interface between organic and inorganic material regardless of soil type and analyzed by the MMI method. The results from this test line suggest that the MMI method is a very good indication of the presence of underlying Ag-Co mineralization with anomalous values in Ag, Au, Cu and Co. The anomalous values appear to be directly over the narrow vein system. The sample spacing is very small (5 metres) and indications are that the signature of the vein system is from 1 to 2 stations. Therefore, a very detailed sampling program would be required to identify an unexposed zone.

A larger test survey is recommended in an area of favourable geology and structure but with no known Ag-Co occurrences.

Sudbury, Ontario March 29, 2006 Respectfully submitted,

Seymour M. Sears, P.Geo.

REFERENCES

- Lashbrook, R.; 2002: Report on a Magnetometer Survey on the North Cobalt Property, Bucke Township, Ontario; an Assessment report for Cabo Mining Corp.
- Money, D.P.; 1993: Assessment Report for Geological Survey on Claims L1179119, L1179116, L1179117, L1179118 and L1179119, Bucke Township; an Assessment report for Falconbridge Limited (Exploration), file 2.15180
- Nicholson, J; 1999: Report of Prospecting and Geochemical Surveys on the North Cobalt Property; an Assessment report for Cabo Mining Corp.
- Sears, S.; 2000: Report on a Work Program on the North Cobalt Property, Bucke Township, Ontario; an Assessment report for Cabo Mining Corp.
 - 2003: Report on the 2003 Work Program on the North Cobalt Property, Bucke Township, Ontario; an Assessment report for Cabo Mining Corp.
 - 2004: Report on a 2004 Work Program on the North Cobalt Property, Bucke Township, Ontario; an Assessment Report for Cabo Mining Enterprises Corp.
- Thompson, R. 1960: Preliminary Report on Bucke Township, District of Timiskaming, Description of Properties, Ontario Department of Mines Report, P.R. 1960-62.
 - 1963: Cobalt Silver Area, Northern Sheet. Ontario Department of Mines Map 2050, Scale 1:12,000.

APPENDIX I

(Amalytical Results)

CERTIFICATE OF ANALYSIS

Work Order: 080089

To:

CABO Mining Enterprises Corp.

Attn:

Seymour Sears

Date

14/10/04

Suite 201 - 289 Cedar Street

SUDBURY

ON/CANADA/P3B 1M8

Copy 1 to

P.O. No.

Project No. No. of Samples

СОВ

32 Soil (MMI)

Date Submitted

17/09/04

Report Comprises

Cover Sheet plus Pages 1 to

Distribution of unused material:

Pulps: Rejects: **STORE** STORE

Certified By

Tim Elliott, Operations Manager

ISO 9002 REGISTERED

ISO 17025 Accredited for Specific Tests. SCC No. 456

Report Footer:

L.N.R.

= Listed not received

I.S.

= Insufficient Sample

n.a.

= Not applicable

= No result

*INF

= Composition of this sample makes detection impossible by this method ${\it M}$ after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Subject to SGS General Terms and Conditions

SGS Canada Inc. | Mineral Services 1885 Leslie Street Toronto ON M3B 2M3 t (416) 445-5755 f (416) 445-4152 www.sgs.ca

Work Order: 080089 Date: 14/10/04 FINAL Page 1 of 4

Element. Method. Det. Lim. Units.	Cu MMI-A5 5 ppb	Zn MMI-A5 5 ppb	Cd MMI-A5 10 ppb	Pb MMI-A5 20 ppb
CT- 1	223	27850	76	461
CT- 2	435	2134	34	188
CT- 3	245	1484	22	329
CT- 4	197	643	24	106
CT- 5	1420	16860	116	47200
CT- 6	244	1804	44	256
CT- 7	130	674	32	186
CT- 8	318	257	13	92
CT- 9	175	612	34	215
CT-10	191	1325	36	281
CT-11	239	174	< 10	60
CT-12	165	377	20	154
CT-13	72	78	15	21
CT-14	54	175	17	42
CT-15	33	182	10	47
CT-17	161	249	17	95
CT-18	178	390	17	44
CT-19	7 9	84	< 10	< 20
CT-20	36	512	17	56
CT-21	158	130	< 10	28
CT-22	133	757	37	80
CT-23	853	72	21	239
CT-24	89	1233	25	110
CT-25	102	1792	54	210
CT-26	69	320	18	105
CT-27	90	659	29	150
CT-28	46	765	3 9	73
CT-29	95	767	33	121
CT-30	63	610	24	67
CT-31	6 6	553	31	88

Work Order: 080089

Date: 14/10/04

FINAL

Element. Method. Det.Lim. Units.	Cu MMI-A5 5 ppb	Zn MMI-A5 5 ppb	Cd MMI-A5 10 ppb	Pb MMI-A5 20 ppb
CT-32	154	224	21	109
CT-33	734	1720	38	113
*Dup CT- 1	248	25630	83	455
*Dup CT-13	82	78	15	39
*Dup CT-26	82	317	18	107
*BIK BLANK	<5	<5	< 10	<20
*Std MMISRM14	309	370	< 10	175

Page 2 of 4

Work Order: 080089 Date: 14/10/04 FINAL

Element.	Au	Co	Ni	Pd	Ag
Method.	MMI-B5	MMI-B5	MMI-B5	MMI-B5	MMI-B5
Det.Lim.	0.1	1	3	0.1	0.1
Units.	ppb	ppb	ppb	ppb	ppb
CT- 1	0.12	8	68	< 0.1	608
CT- 2	0.39	2	64	< 0.1	621
CT- 3	< 0.1	7	27	<0.1	44.5
CT- 4	0.18	14	72	< 0.1	270
CT- 5	0.45	315	335	< 0.1	602
CT- 6	< 0.1	9	37	< 0.1	53.1
CT- 7	0.11	I	28	< 0.1	53.3
CT- 8	0.30	10	43	< 0.1	128
CT- 9	0.10	2	56	< 0.1	47.5
CT-10	< 0.1	3	49	< 0.1	71.4
CT-11	< 0.1	10	24	< 0.1	2.84
CT-12	< 0.1	2	31	< 0.1	5.74
CT-13	< 0.1	2	60	< 0.1	10.4
CT-14	< 0.1	4	74	< 0.1	7.74
CT-15	0.11	89	144	< 0.1	1.73
CT-17	< 0.1	10	16	< 0.1	2.21
CT-18	< 0.1	5	79	< 0.1	1.17
CT-19	< 0.1	4	115	< 0.1	4.84
CT-20	< 0.1	2	60	< 0.1	0.31
CT-21	0.26	11	140	< 0.1	5.52
CT-22	< 0.1	2	83	< 0.1	36.6
CT-23	0.58	10	39	< 0.1	156
CT-24	< 0.1	5	26	< 0.1	12.2
CT-25	< 0.1	l	42	< 0.1	20.2
CT-26	< 0.1	2	24	< 0.1	34.5
CT-27	< 0.1	<1	46	< 0.1	14.1
CT-28	< 0.1	2	54	< 0.1	30.2
CT-29	< 0.1	1	41	< 0.1	28.7
CT-30	< 0.1	1	72	1.0>	13.1
CT-31	< 0.1	2	42	< 0.1	18.3

Page 3 of 4

Work Order: 080089

Date: 14/10/04

FINAL

Element. Method. Det.Lim. Units.	Au MMI-B5 0.1 ppb	Co MMI-B5 1 ppb	Ni MMI-B5 3 ppb	Pd MMI-BS 0.1 ppb	Ag MMI-B5 0.1 ppb
CT-32	< 0.1	8	60	< 0.1	21.2
CT-33	0.42	45	215	< 0.1	154
*Dup CT- 1	0.12	10	61	< 0.1	698
*Dup CT-13	<0.1	1	56	< 0.1	11.2
*Dup CT-26	< 0.1	2	25	< 0.1	34.1
*Blk BLANK	< 0.1	<1	<3	< 0.1	<0.1
*Std MMISRM14	39.2	33	201	32.5	19.0

Page 4 of 4

A DIVISION OF ASSAY LABORATORY SERVICES INC MINERAL ASSAY DIVISION

PHONE (807) 626-1630

1070 LITHIUM DRIVE, UNIT 2 FAX (807) 623 6820

THUNDER BAY,

ONTARIO P7B 6G3

EMAIL accuracy@tbaytel.net

WEB www.accurassay.com

Certificate of Analysis

Monday, July 26, 2004

Cabo Mining Corp. Suite 20-289 Cedar St. Sudbury, ON, CA

P3B1M8

Ph#: (705) 560-0286 Fax#: (705) 560-7468

Email

Date Received: 21-Jul-04 Date Completed: 25-Jul-04

Job # 200440827

Reference:

Sample #: 33

Soil

					_
Accurassay #	Client Id	Au	Au	Au	
40661	CT-1	ppb	oz/t	g/t (ppm)	
40662	CT-2	6	<0.001	0.006	
40663	CT-3	<5	< 0.001	<0.005	
40664	CT-4	<5	<0.001	<0.005	
40665	CT-5	<5	<0.001	<0.005	
40666	CT-6		No Sample		
40667		<5	< 0.001	<0.005	
40668	CT-7	<5	<0.001	<0.005	
	CT-8	<5	< 0.001	<0.005	
40669	CT-9	<5	< 0.001	< 0.005	
40670	CT-10	<5	<0.001	<0.005	
40671 Check	CT-10	<5	<0.001	<0.005	
40672	CT-11	<5	<0.001	<0.005	
40673	CT-12	<5	<0.001	<0.005	
40674	CT-13	<5	<0.001	<0.005	
40675	CT-14	<5	<0.001	<0.005	
40676	CT-15	<5	<0.001		
40677	CT-16		lo Sample	<0.005	
40678	CT-17	<5			
40679	CT-18	<5	<0.001	<0.005	
40680	CT-19		<0.001	<0.005	
40681 Check	CT-19	<5	<0.001	<0.005	
40682	CT-20	<5	<0.001	<0.005	
40683	CT-21	<5	<0.001	<0.005	
	- · - ·	<5	<0.001	<0.005	

PROCEDURE CODES; AL4Au3, AL4ICPAR

Certified By:

The results included on this report relate only to the items tested

Derek Demianiuk H.Bsc., Laboratory Manager

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory AL903-0437-07/26/2004 10:16 AM

Page 1 of 2

1070 LF PHONE (807) 626-1630

1070 LITHIUM DRIVE, UNIT 2 -1630 FAX (807) 623 6820 THUNDER BAY, ONTA EMAIL accuracy@tbaytel.net

ONTARIO P7B 6G3

WEB www.accurassay.com

Certificate of Analysis

Monday, July 26, 2004

Cabo Mining Corp. Suite 20-289 Cedar St. Sudbury, ON, CA

P3B1M8

Ph#: (705) 560-0286 Fax#: (705) 560-7468

Email

Date Received : 21-Jul-04 Date Completed : 25-Jul-04

Job # 200440827

Reference:

Sample #: 33

Soil

Accurassay #	Client Id	Au	Au	Au
40684	CT-22	ppb	oz/t	g/t (ppm)
40685		<5	<0.001	<0.005
	CT-23	<5	< 0.001	< 0.005
40686	CT-24	<5	<0.001	<0.005
40687	CT-25	7	<0.001	0.007
40688	CT-26	7	<0.001	0.007
40689	CT-27	<5	< 0.001	<0.005
40690	CT-28	11	< 0.001	0.011
40691 Check	CT-28	<5	< 0.001	<0.005
40692	CT-29	8	< 0.001	0.008
40693	CT-30	<5	< 0.001	<0.005
40694	CT-31	<5	<0.001	<0.005
40695	CT-32	<5	<0.001	<0.005
40696	CT-33	<5	<0.001	<0.005

PROCEDURE CODES: ALAAU3, AL4ICPAR

Certified By:

Derek Demianluk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0437-07/26/2004 10:16 AM

Page 2 of 2

2.31794 A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVÍSION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Cabo Mining Corp.

Date Created: 04-08-05 03:30 PM

Job Number: 200440827 Date Recieved: 7/21/2004 Number of Samples: 33 Type of Sample: Soil

Date Completed: 7/25/2004

Project ID:

- * The results included on this report relate only to the items tested
- * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
- *The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Client Tag	Ag	Al	As	В	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	Р	Рb	Sb	Se	Si	Sr	Ti	TI	٧	W	Y	Zn
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
				-																		_					_		_	
40661 CT-1	4	1.07	18	30	47	<1	0.17	<10	14	36	26	1.98	0.04	0.22	206	<1	0.01	28	408	27	<10	<5	0.01	15	738	<1	<2	<10	2	140
40662 CT-2	2	1.15	8	32	58	<1	0.15	<10	11	43	19	1.70	0.04	0.29	272	<1	0.01	29	259	18	<10	< 5	0.01	11	790	<1	<2	<10	2	70
40663 CT-3	<2	1.15	6	36	50	<1	0.20	<10	13	56	28	1.92	0.07	0.40	256	<1	0.02	34	376	26	<10	<5	0.01	13	766	<1	<2	<10	5	44
40664 CT-4	<2	1.16	8	34	48	<1	0.26	<10	16	54	30	1.82	0.06	0.43	257	<1	0.02	39	473	25	<10	<5	0.02	13	762	<1	<2	<10	4	35
40665 CT-5							No San	ipie Rec	eived													_					_		_	
40666 CT-6	<2	1.30	8	30	56	<1	0.16	<10	15	57	21	2.11	0.05	0.32	234	<1	0.01	39	327	22	<10	<5	0.01	11	798	<1	<2	<10	3	55
40667 CT-7	<2	1.23	10	35	49	<1	0.17	<10	12	50	18	2.00	0.04	0.31	191	<1	0.02	34	419	18	<10	<5	0.01	12	954	<1	<2	<10	3	56
40668 CT-8	<2	0.96	8	32	37	<1	0.76	<10	12	44	21	1.67	0.06	0.52	328	<1	0.02	27	342	15	<10	<5	0.01	15	769	<1	<2	<10	5	32
40669 CT-9	<2	0.99	5	31	29	<1	0.13	<10	8	37	20	1.66	0.04	0.21	341	<1	0.01	27	265	14	<10	<5	<0.01	9	672	<1	<2	<10	3	41
40670 CT-10	<2	1.13	6	36	51	<1	0.18	<10	10	41	45	1.80	0.04	0.27	263	<1	0.01	28	276	16	<10	<5	0.01	11	795	<1	<2	<10	3	58
40671 CT-10	<2	1,12	5	27	51	<1	0.17	<10	9	41	19	1.79	0.03	0.26	257	<1	0.01	27	267	16	<10	<5	0.01	10	756	<1	<2	<10	2	57
40672 CT-11	<2	0.92	<3	31	26	<1	0.19	<10	8	37	32	1.28	0.05	0.26	111	<1	0.01	30	336	9	<10	<5	0.01	11	644	<1	<2	<10	3	26
40673 CT-12	<2	0.81	4	33	36	<1	0.23	<10	8	37	17	1.22	0.05	0.27	149	<1	0.01	21	306	12	<10	<5	0.01	11	646	<1	<2	<10	3	24
40674 CT-13	<2	1.01	<3	31	41	<1	0.36	<10	10	51	17	1.55	0.06	0.47	207	<1	0.02	28	253	8	<10	<5	0.01	19	994	<1	<2	<10	4	29
40675 CT-14	<2	0.89	<3	26	34	<1	0.31	<10	8	41	10	1.32	0.04	0.38	159	<1	0.02	23	148	7	<10	<5	0.01	18	947	<1	<2	<10	3	30
40676 CT-15	<2	0.91	<3	30	44	<1	0.47	<10	8	43	15	1.37	0.05	0.43	173	<1	0.02	23	211	12	<10	<5	0.01	22	883	<1	<2	<10	5	32
40677 CT-16							No San	iple Red	eived																					
40678 CT-17	<2	1.06	4	31	42	<1	0.26	<10	10	46	15	1.67	0.04	0.41	160	<1	0.02	27	190	8	<10	<5	0.01	18	1001	<1	<2	<10	3	32
40679 CT-18	<2	0.94	<3	30	47	<1	0.44	<10	10	47	38	1.41	0.06	0.44	242	<1	0.02	26	267	12	<10	<5	0.01	23	934	<1	<2	<10	4	39
40680 CT-19	<2	0.93	<3	32	39	<1	0.39	<10	9	48	13	1.50	0.04	0.47	255	<1	0.02	25	168	8	<10	<5	0.01	25	1164	<1	2	<10	5	31
40681 CT-19	<2	0.92	<3	32	38	<1	0.37	<10	9	47	13	1.45	0.04	0.46	247	<1	0.02	23	161	8	<10	<5	0.01	23	1107	<1	<2	<10	4	31
40682 CT-20	<2	1.14	<3	33	74	<1	0.59	<10	11	58	21	1.80	0.08	0.51	321	<1	0.02	32	260	13	<10	<5	0.01	31	1135	<1	<2	<10	8	52

Derek Demianiuk, H.Bsc.

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Cabo Mining Corp.

Date Created: 04-08-05 03:30 PM

Job Number: 200440827 Date Recieved: 7/21/2004 Number of Samples: 33 Type of Sample: Soil

Date Completed: 7/25/2004

Project ID:

* The results included on this report relate only to the items tested
* This Certificate of Analysis should not be reproduced except in ful

I, without the written approval of the laboratory.

Accur. # Client Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	Sb ppm	Se ppm	St %	ppm	ppm	ppm	ppm	ppm	ppm	ppm
				00	67	<1	0.51	<10	10	51	20	1.56	0.08	0.48	220	<1	0.02	29	290	16	<10	<5	0.01	29	974	<1	<2	<10 <10	6 3	44 52
40683 CT-21	<2	1.02	<3	32	57			•	12	41	13	1.74	0.04	0.27	199	<1	0.01	25	236	15	<10	<5	0.01	9	682	< 1	-		40	
40684 CT-22	<2	0.86	22	27	39	<1	0.25	<10	13		40	2.21	0.14	0.57	482	≮1	0.02	50	437	17	<10	<5	0.01	13	755	<1	2	<10	12	36
40685 CT-23	<2	1.03	14	34	50	<1	0.31	<10	23	78	49			0.26	175	1	<0.01	24	279	21	<10	<5	0.01	7	777	<1	3	<10	2	71
40686 CT-24	<2	0.97	12	26	35	<1	0.11	<10	10	43	10	2.38	0.04	•		· ≮1	0.01	29	290	20	<10	<5	0.01	7	646	<1	<2	<10	2	56
40687 CT-25	<2	1.03	12	32	45	<1	0.12	<10	12	44	15	1.99	0.04	0.31	226			19	218	14	<10	<5	0.01	7	616	<1	2	<10	2	45
40688 CT-26	<2	0.82	9	25	31	<1	0.11	<10	8	35	11	1.65	0.03	0.23	152	<1	<0.01		288	14	<10	<5	0.01	8	782	<1	<2	<10	2	57
	<2	1.05	7	29	54	<1	0.16	<10	12	39	10	1.95	0.04	0.30	206	<1	0.01	27			<10	<5	0.01	9	818	<1	<2	<10	3	64
40689 CT-27			40	31	53	<1	0.17	<10	17	58	17	2.38	0.06	0.44	190	<1	0.01	39	255	18		•		-	761	<1	<2	<10	3	63
40690 CT-28	<2	1,17	10				0.16	<10	16	55	25	2.26	0.06	0.42	178	<1	0.01	42	255	18	<10	<5	0.01	8			_		3	66
40691 CT-28	<2	1.15	8	30	50	<1			47	54	17	2.36	0.07	0.39	260	<1	0.01	40	307	22	<10	<5	0.01	9	784	<1	<2	<10	3	
40692 CT-29	<2	1.18	10	32	56	<1	0.16	<10	17	-		1.75	0.05	0.40	261	<1	0.01	28	213	14	<10	<5	0.01	9	751	<1	<2	<10	3	67
40693 CT-30	<2	1.00	4	31	54	<1	0.26	<10	11	49	10		0.00	0.43	213	<1	0.01	34	326	12	<10	<5	0.01	11	807	<1	<2	<10	4	35
40694 CT-31	<2	0.99	5	32	38	<1	0.22	<10	12	59	12	1.62	0.06	-			0.01	25	166	15	<10	<5	0.01	8	623	<1	2	<10	3	44
	<2	0.87	10	28	35	<1	0.19	<10	11	47	15	1.87	0.04	0.36	283	<1	0.01		399	18	<10	<5	0.01	14	455	<1	<2	<10	7	50
40695 CT-32	-	0.77	46	30	30	<1	1.52	<10	33	46	47	1.56	0.06	0.78	424	1	0.02	32	399	10	-10	•	2.01	•	_					
40696 CT-33	<2	Ų.77	40	30	50	- •																								

Derek Demianiuk, H.Bsc.

^{*}The methods used for these analysis are not accredited under ISO/IEC 17025