

Golden Valley Mines Ltd. Mines de la Vallée de l'Or ltée

RICHORE PROSPECT

Report on the 2004 Exploration Program

Baden Township, Ontario

NTS 42A/02

Larder Lake Mining Division

Prepared for: Golden Valley Mines Ltd.

Prepared by:

2.32290

Michael P. Rosatelli, M.Sc., P.Geo.

May 10, 2006

EXECUTIVE SUMMARY

The Richore Prospect is located in the northwest corner of Baden Township, Ontario. It includes three (3) unpatented mining claims (total of 36 units) covering 576 hectares in Baden Township. Golden Valley Mines Ltd. has 100% interest in all of the claims.

The Richore Prospect is located approximately 20 km northwest of the Town of Matachewan (Figure 1 & 2). Access to the northwestern part of the property is gained by travelling west along Highway 566 from Matachewan and approximately 13.6 km north along the Beaudin Lake forestry access road to where it becomes impassable by truck a short distance away from the property boundary. From here, a drill trail was then cut to the east for approximately 1 km to the first two drillhole locations. Access to the two drillhole locations south and east of Belt Lake was by a secondary forestry road heading east from the Beaudin Lake road (kilometre marker 11.4 approximately) for approximately 1.5 km with a further 100 m and 1 km of new trail established respectively.

The Town of Kirkland Lake and surrounding region including the Matachewan area is well known for its mining heritage and present day gold and base metal mining and processing operations. An experienced mining work force and mining/exploration services and equipment, are readily available in this area of north-eastern Ontario and north-western Quebec that extends over the Timmins to Val-d-Or corridor.

The Richore Prospect is located in the southwestern portion of the Abitibi Greenstone Belt. The greenstone belt is itself located within the Abitibi Subprovince of the Canadian Shield. The Abitibi Greenstone Belt extends in an east-west general direction for over a distance of 500 kilometres from Chibougamau, Quebec (to northeast) to west of Timmins, Ontario, making it the largest greenstone belt in the world.

The Richore Prospect was acquired on the basis of historical exploration work (circa 1930's) including trenching and the sinking of a number of shallow exploration shafts on the property on auriferous quartz veins. In 1932, nine quartz veins were discovered by prospectors while working for the Baden Gold Mines Syndicate. The quartz veins were described as being hosted in andesite, tuff, agglomerate, and syenite, located in an area immediately east and north of Belt Lake.

The results of the 2004 exploration program are considered very positive in light of several new findings to include, possible strike extensions of the historical quartz vein zones, including an intersection of 1.3 g/t (1.46 g/t check) gold at a downhole depth of 54.69-55.0 m in GRO-04-01; drill tested I.P. anomalies remain for the most open-ended, untested I.P. anomalies that are either associated with the historical veins or are located along their inferred strike extensions, and acquisition of prospective ground contiguous to the south of the original property claim.

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	
1.0	INTRODUCTION	
2.0	PROPERTY DESCRIPTION AND LOCATION	
3.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES,	
INFRA	STRUCTURES AND PHYSIOGRAPHY	9
4.0	HISTORY	9
5.0	REGIONAL GEOLOGY	
6.0	PROPERTY GEOLOGY	
7.0	DEPOSIT TYPES AND MINERALIZATION	
8.0	2004 EXPLORATION PROGRAM	
8.1	Objective	
8.2	Phase I Geophysics	
8.3	Phase I Diamond Drilling	
8.4	Summary of Phase I Diamond Drilling Targets and Results	
8.5	Analytical Procedures	
8.6	Re-sampling of Historical Mineralization	
8.7	Phase II Geophysics	
8.8	Phase II Diamond Drilling	
8.9	Summary of GRO-04-04 Diamond Drilling Target and Results	
8.10	Analytical Procedures	
9.0	INTERPRETATIONS AND CONCLUSIONS	
10.0	RECOMMENDATIONS	
11.0	REFERENCES	

LIST OF TABLES

Table 1: Claim Listing - Richore Prospect Property	.8
Table 2: Table of Lithologic units for Argyle and Baden Townshipsi	5

LIST OF FIGURES

Figure 1: Richore Prospect Ontario Location Map	5
Figure 2: Richore Prospect NTS Index Location Map	6
Figure 3: Richore Prospect Claim Map	
Figure 4: Abitibi Greenstone Belt Regional Geology	12
Figure 5: Richore Prospect General Geology	19
Figure 6: Richore Prospect Vein Location Map	

APPENDICES

Appendix IA – Drill Core Assay Certificates	33
Appendix 1B – Rock and Soil Sample Assay Certificates	34
Appendix II – GAR-04-01 to GAR-04-04 Drill Logs	35
Appendix III – GAR-04-01 to GAR-04-04 Drill Sections	36

1.0 INTRODUCTION

The Richore Prospect is located in the northwest corner of Baden Township, Ontario. It includes three (3) unpatented mining claims (total of 36 units) covering 576 hectares in Baden Township. Golden Valley Mines Ltd. has 100% interest in all of the claims.

The following report describes the work program completed on the Richore Prospect during the summer of 2004. The work consisted of a 430 m diamond drilling program and re-sampling of the historical gold showings, undertaken as part of a grassroots exploration program for gold in the Abitibi region of Ontario and Quebec conducted by Golden Valley Mines Ltd. of Val-d'Or, Quebec.

A brief discussion of the regional and property geology, deposit types and mineralization as well as an overview of the historical exploration work completed on the property is provided for in the report. In addition, the report also includes a detailed description of the drillholes followed by an interpretation and conclusion of the results obtained. Based on this information, a series of recommendations are proposed for further work on the Richore Prospect.

2.0 PROPERTY DESCRIPTION AND LOCATION

The Richore Prospect is located approximately 20 km northwest of the Town of Matachewan (Figure 1 & 2). Access to the northwestern part of the property is gained by travelling west along Highway 566 from Matachewan and approximately 13.6 km north along the Beaudin Lake forestry access road to where it becomes impassable by truck a short distance away from the property boundary. From here, a drill trail was then cut to the east for approximately 1 km to the first two drillhole locations. Access to the two drillhole locations south and east of Belt Lake was by a secondary forestry road heading east from the Beaudin Lake road (kilometre marker 11.4 approximately) for approximately 1.5 km with a further 100 m and 1 km of new trail established respectively.

The original property consisted of one unpatented, mining claim (total of 16 units) located along the northwestern boundary of Baden Township with Argyle Township, Ontario (**Figure 3**). The property was subsequently expanded by two (2) claims (total of 20 units), which together encompass an area of 576 hectares (ha). Golden Valley Mines Ltd. has a 100% interest, subject to a 1% NSR on the original claim. The claims are contiguous, forming two rectangular claim blocks oriented 3.5 km north-south, with eastwest dimensions of 2 km (north claim block) and 1.5 km (south claim block). A detailed description of the property is presented in **Table 1** listing the claim numbers, specific claim location, claim size, claim recording and claim expiry dates.

The original and subsequent claims were ground staked and registered with the Ontario Minister of Natural Resources Land Management Branch on July 9, 2002 and April 26 and May 4, 2004 respectively. Individual claims may be renewed yearly in consideration

GOLDEN VALLEY MINES LTD. Richore Prospect 2 Located in N.T.S. 42A/02

1:10,000,000

Kilometers

0

200

2.32290

GOLDEN VALLEY MINES LTD. Richore Prospect Baden Townships, Ontario 2.32290

1:50,000 0 1,000 Meters of any specified type of assessment work, be filed not later than such date earlier than the anniversary date of the claim recording.

Township	Claim	Units	Hectares	Date Recorded	Due Date	
Baden	L-1199893	16	256	2002/07/09	2006/07/09	
Baden	L-3013730	4	64	2004/04/26	2008/04/26	
Baden	L-3003781	16	256	2004/05/04	2006/05/04	
Total		36	576	1		

Table 1: Claim Listing - Richore Prospect Property.

According to section 65 of the Mining Act of Ontario (Mining Act, R.S.O. 1990, c.M.14), the claim holder is not required to complete any assessment work in the first year of recording a mining claim. In the second and all subsequent years, a minimum of \$400 of assessment work per 16 hectare claim unit per year is to be reported until a lease is applied for. The Arbade Prospect assessment work requirements amount to \$6,400 for L-1199893 and 3003781 for renewal on July 9, 2006 and May 4, 2006 respectively; and \$1,600 for L-3013730 for renewal on April 26, 2008 for one-year. A work in reserve of \$35,000 remains intact at the time of writing on claims L-1199893 and L-3013730.

The property has not been surveyed since acquired by ground staking in May 2003 and 2004. The boundaries of the original claim block are defined by Nad83; UTM Zone 17 coordinates: 518516mE / 5325965mN (NE corner), 518529mE / 5324382mN (E corner), 518057mE / 5322821mN (SE corner), 516489mE / 5322817mN (SW corner), 516500mE / 5324376mN (W corner) and 516472mE / 5325993mN (NW corner).

Presently a number of old trenches and 9-metre shaft exists in the area east of Belt Lake following the discovery of nine auriferous quartz veins reported on by Rickaby in 1932 and then by Dyer (1936).

The property is located in the south-western portion of the Abitibi Greenstone Belt, along the area inferred to represent the southwest strike extension of the Larder Lake Deformation Zone (Figure 4).

3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURES AND PHYSIOGRAPHY

The property is readily accessible by roads from Matachewan, Ontario. The municipality itself is accessible by all-weather highways from the Kirkland Lake to the east and Elk Lake southeast. Provincially owned Ontario Northland operates bus and railway services out of Kirkland Lake. Although Kirkland Lake maintains a municipal airport, scheduled air service is currently only available from Timmins or Earlton in Ontario or Rouyn, Quebec.

Climatic conditions are typical for the Canadian Shield, with short, mild summers and long, cold winters. Mean temperatures range from -17°C in January, to +18°C in July. The mean annual precipitation throughout the region ranges from 812 to 876 mm.

The Town of Kirkland Lake and surrounding region including the Matachewan area is well known for its mining heritage and present day gold and base metal mining and processing operations. An experienced mining work force and mining/exploration services and equipment, are readily available in this area of north-eastern Ontario and north-western Quebec that extends over the Timmins to Val-d-Or corridor.

The Richore Prospect area is located in a generally low lying, poorly drained area below an elevation of 320 metres and lower. Drilling on the property has encountered overburden thicknesses from 6.0 to 21.0 metres.

4.0 HISTORY

The earliest reported work over the Richore Prospect area dates back to 1932 to as recently as 1988. Over this period, a number of companies carried out significant exploration programs in the vicinity of the Richore Prospect, following the original discovery of several auriferous quartz veins.

As part of two-year mapping project of Argyle and Baden Townships initiated in 1991, the descriptions of mineral occurrences were grouped according to specific parts of the map area and summarized according to all available information available from the Assessment Files Research Office (AFRO), Ontario Geological Survey in Toronto, and at the Resident Geologist office in Kirkland Lake. In addition, all of the occurrences described below were visited during the course of mapping and many of the old showings were located by the field party. Except for the occurrences which were exposed by recent exploration activity, old trenches were overgrown by vegetation which hampered geological observations, therefore, much of the geological information is based on company reports and historical accounts (OFR 5874, Kresz, 1993). A brief historical account of exploration activity is provided below in chronological order as outlined in Open File Report 5874, detailed descriptions provided by Lovell (Geological Report 51, 1967) and Dyer (Forty-Fourth Annual Report, Vol. XLIV, Part II, 1935) and available assessment reports.

1932- Baden Gold Mines Syndicate discovers nine auriferous quartz veins in 1932 just
1935: east of Belt Lake. Follow-up work program completed consisting of trenching, test pits and 30 foot (9.1 m) shaft. In the winter of 1933-34, the No. 6 vein was tested with 3 small diameter diamond drill holes, but according to reports the small drill used had difficulty in penetrating the broken ground near the vein. In 1935 Baden Lake Gold Mines was incorporated. The company carried out little work, other then a property review report in 1938.

Circa **E.J. Thompson** of Elk Lake Ontario acquires original property consisting of 18 1940: leased claims.

- 1961: J.C. Honsberger of Toronto Ontario acquires property from E.J. Thompson.
- 1964- Val-Nor Exploration Limited options property. Completes a 2,576 foot (785 m),
- 1965: 7-hole drill program on the No. 6 vein. The two best intersections came from Hole No. 4 assaying 1.17 oz/Au over 7.5 feet and 5.84 oz/Au over 2 feet. The option was subsequently dropped and the property reverted back to its registered owner, J.C. Honsberger.
- 1987 Gunnar Gold Inc. acquires 18 leased claims. Completes a 4,061 foot (1,238 m),
- 1988: 13-hole drill program to test the 1, 2, 3, 5 and 6 vein in addition to two I.P. separate I.P. targets. Gold values were low and erratically distributed with the best intersection recorded in BD-87-02 from 76.3-78.2 feet downhole. Three separate 1.9 foot samples assayed individually 11,250 ppb, 16,870 ppb and 9,120 ppb gold reported from a footwall of a shear zone to the No. 1, 2, 3 & 5 veins. On visible gold sighting was noted. However, the drill log stated, drilled down-dip.

5.0 **REGIONAL GEOLOGY**

The Richore Prospect is located in the southwestern segment of the Abitibi Greenstone Belt (Figure 3). The greenstone belt is itself located within the Abitibi Subprovince of the Canadian Shield. The Abitibi Greenstone Belt extends in an east-west general direction for over a distance of 500 kilometres from Chibougamau, Quebec (to northeast) to west of Timmins, Ontario, making it the largest greenstone belt in the world.

A considerable amount of geoscientific studies have been completed over Baden Township and area including maps, reports and other publications. The earliest detailed mapping project was prompted following a significant gold discovery in Powell Township in 1916, on what was to become the Young-Davidson Mine. In 1917, Borrows (1918) of Ontario Department of Mines completed geological mapping of Baden, Alma, Powell, and Cairo townships. During the same year, Cooke (1919) of the Geological Survey undertook regional reconnaissance mapping encompassing Argyle and Baden townships, and adjoining townships. Geological mapping of ten townships east of Matachewan Lake, including Baden Township was carried out by Dyer (1936), following development of the Young-Davidson & Matachewan Consolidated gold deposits in Powell Township. Lovell (1967) remapped the 10 townships as part of a systematic mapping campaigns carried out by the Ontario government in the Kirkland Lake -Matachewan region. In addition, Baden Township and area is within the Timmins -Kirkland Lake geological compilation sheet (Pyke et al., 1972), the lithostratigraphic map of the Abitibi Subprovince (MERQ-OGS, 1983), the Radisson Lake aeromagnetic map (ODM-GSC, 1970) and the airborne electromagnetic - total intensity magnetic maps for Argyle and Baden townships (ODM 1975a, 1975b).

Geoscience activities resumed once again during the 1995 and 1996 field seasons with the Ontario Geological survey undertaking Quaternary geology mapping, regional till sampling and high density lake sediment and lake water sampling within the areas covered by the Peterlong Lake and Radisson Lake 1:50,000 scale NTS map sheets, including Baden Township (OFR 5941 and OFR 5942, 1996). The dataset was reexamined utilizing the archived lake sediment and heavy mineral concentrate samples collected in 1995-96, and results published in 2001 (OFR 6053 and OFR 6060). The Quaternary Geology map of the Radisson Lake area was published in 2000.

The following regional geological information was extracted from Kresz (1993) as follows:

"Argyle and Baden townships are situated in the western part of the Abitibi Subprovince. This subprovince features supracrustal assemblages composed of volcanic rocks ranging in composition from ultramafic to felsic, coeval intrusions, and sedimentary rocks of both epiclastic and chemical origin. The supracrustal rocks are intruded by large tonalitic to granodioritic batholiths and by smaller intrusions of alkalic affinity (MERQ-OGS 1983). Pervasive low rank metamorphism characterized by subgreenschist (prehnite-pumpellyite) and greenshist facies mineral assemblages have affected the volcanic-sedimentary assemblages.

The western boundary of the Abitibi Subprovince is sharply bounded by the Kapuskasing structural zone (e.g., Percival and Card 1983, 1985) and the Proterozoic Grenville Province to the south. The nature of the boundaries represents crustal-scale reverse or thrust faults (Williams, 1991; Goodwin and Ridler 1970).

The Abitibi Subprovince is a Neoarchean greenstone-granite-gneiss terrane that developed between 2.8 and 2.6 Ga (Jackson and Fyon 1991). The western part, exposed in Ontario, is composed of several greenstone belts, the largest of which is the Abitibi greenstone belt (Goodwin and Ridler 1970). This belt stands out because it has a high ratio of supracrustal to intrusive rocks (MERQ-OGS 1983) and it is also the largest exposed single, continuous greenstone belt exposed in the world (Goodwin and Ridler 1970; Jackson and Fyon 1991).

Geological mapping and the use of rock geochemistry has led to the recognition of four main compositional suites of volcanic rocks in the Abitibi greenstone belt - Komatiitic, tholeiitic, calc-alkalic, and alkalic (Jensen 1989, 1985; Jensen and Langford 1985). These suites represent regional scale units referred to as groups, for example the "Kinojevis Group" formed mainly by tholeiitic flows, and the "Blake River Group" is a sequence characterized by calc-alkalic flows and pyroclastic rocks. Stratigraphic studies also pointed towards a cyclical nature of volcanism characterized by the succession of ultramafic, tholeiitic and calc-alkalic volcanism; the alkalic rocks having been deposited in fault related basins. The stratigraphic succession of the various compositional groups constituted supergroups (Jensen and Langford 1985). As many as 4 supergroups (cycles) were postulated for the Abitibi belt (MERQ-OGS 1983). This model was based Subsequent structural studies, the on purely stratigraphic relationships. application of high precision absolute age dating using radiogenic isotopes coupled to further systematic mapping, led to suggest that the Abitibi belt is in assemblage in which correlation between fact a tectonostratigraphic compositionally similar units may be problematic (Jackson and Fyon 1991). The different interpretations have led to the development of several conceptual models (cf. Goodwin and Ridler 1970, Dimroth et al. 1983, Jensen and Langford, Jensen

1986, Hodgson 1986, Ludden et al. 1986, Jackson and Fyon 1991). A review and discussion of the various models is presented by Jackson and Fyon (1991) in Volume 1 of the Geology of Ontario (Thurston et al. 1991).

Precise U-Pb geochronology has been a major step forward in understanding the evolution of the Abitibi Subprovince. From it, it was deduced that the komatiitic, tholeiitic and cal-alkalic volcanic rocks have formed between 2.75 and 2.70 billion years ago and that granitoid intrusions range in age from 2.70 to 2.67 Ga (Jackson and Fyon 1992).

The Abitibi belt has been deformed by tectonic events that climaxed during the continental wide "Kenoran orogeny. These have led to the formation of major folds and faults which have produced a variety of fabrics in the rocks. Two major faults have been recognized from early times – the Cadillac larder Lake break and the Destor-Porcupine zone. These regional faults are well known for their associated gold deposits that constitute the Kirkland Lake, Larder Lake, and Porcupine Camps. The Abitibi region has also been transected by faults that were active during Proterozoic and Phanerozoic times; the expression of these faults is apparent from prominent lineaments on the present erosional surface.

The map pattern and stratigraphic facing indicators suggest that the metavolcanic assemblage has been folded into a syncline whose east trending axis passes through the two townships. The rocks generally show little evidence of deformation except where a tectonic foliation has developed as a result of shearing. An east striking schistosity is well developed in the rocks of southern Baden Township, whereas elsewhere, tectonic fabrics are restricted to discrete shear zones.

Sedimentary rocks of the Huronian Supergroup unconformable overlie the Archean basement in the Cobalt Embayment mainly south of the present area.

The map area is situated within the Watabeag area of Jackson and Fyon (1991). This area is formed by tholeiitic and calcalkalic metavolcanic rocks that occur between the Destor-Procupine and Cadillac-Larder Lake fault zones and east of the Kenogamissi Watabeag Batholith, intrudes the metavolcanic rocks. Parts of the area are covered by Proterozoic sedimentary rocks of geology of this area is known mainly from reconnaissance-scale mapping."

Table 2 presents the various lithologies that underlie Argyle and Baden Townships".

Table 2: Table of lithologic units for Argyle and Baden Townships.

PHANEROZOIC CENOZOIC QUATERNARY RECENT Peat, lake and stream deposits PLEISTOCENE Till, sand and clay

Major Unconformity

PRECAMBRIAN

PROTEROZOIC Huronian Supergroup Cobalt Group Gowganda Formation (Coleman Member) Conglomerate, arkose, wacke with dropstones

Unconformity

Felsic to Alkalic Intrusive Rocks Fine-grained feldspathic dikes

Intrusive Contact

Mafic Intrusive Rocks Diabase dikes (Matachewan swarm)

Intrusive Contact

ARCHEAN

Alkalic Intrusive Rocks Albitite, feldspathic lamprophyre, syenite dikes

Intrusive Contact

Intermediate to Felsic Intrusive Rocks Granitic Rocks Diorite, quartz diorite, tonalite, trondhjemite, Granodiorite, granite, aplite dikes

Intrusive Contact

Ultramafic to Mafic Intrusive Rocks

Peridotite, pyroxenite, gabbro, quartz gabbro, Quartz diorite

Table 2, continued

Intrusive Contact

Intermediate to Felsic Hypabyssal Rocks Plagioclase porphyry, feldspar-pyroxene porphyry, Quartz-feldspar porphyry

Intrusive Contact

Intermediate Intrusive Rocks Diorite, quartz diorite, andesite dikes

Intrusive Contact

Mafic Intrusive Rocks Gabbro

Intrusive Contact

Sedimentary Rocks

Tuff, cherty mudstone, magnetite iron formation, Conglomerate

Conformable Contact

Intermediate Volcanic Rocks

Massive and pillowed flows, flow breccia, Hyaloclastite, tuff, lapilli tuff, tuff breccia

Conformable Contact

Mafic Volcanic Rocks

Massive and pillowed flows, flow and pillow breccia, Hyaloclastite, tuff.

* The terminology used here follows the recommendations of the International Union of Geological Sciences (Streckeisen 1976).

6.0 **PROPERTY GEOLOGY**

Outcrop is well exposed over the original property claim (L-1199893) where the "Baden Syndicate Occurrence" is located, as indicated by the geological mapping carried out by Lovell (1967) at a scale of 1 inch to a $\frac{1}{2}$ mile and more recently by Kresz (1994) at a 1:20,000 map scale.

Based on the work of Kresz (1993), over three-quarters of the map area in Argyle and Baden townships consists of metamorphosed volcanic rocks that have been folded into a large syncline. Mafic tholeiitic flows are representative of the base of the volcanic stratigraphy occurring in south-western Argyle and south-eastern Baden townships. These flows are described as being massive or pillowed, commonly amygdular and locally variolitic. Intermediate volcanic rocks of calc-alkalic affinity overlie the mafic sequence and are composed of roughly equal proportions of flows (massive and pillowed) and fragmental deposits of monolithic lapilli tuff and tuff breccia. Field descriptions indicate these rocks as being typically plagioclase and pyroxene porphyritic and are commonly amygdaloidal as well. Only minor sedimentary interflow rocks were noted in the Kresz mapping. Intrusive rocks within the metavolcanic assemblage are highly diverse, but collectively they form only a small part of the map area.

Occasional northwest-trending shear fabrics have been observed that are accompanied by localized hydrothermal alteration such as carbonatization, sericitization and silicification (Kresz, 1993).

7.0 DEPOSIT TYPES AND MINERALIZATION

Gold was first discovered in the area in 1916 by Jake Davidson in Powell Township to the south of the Arbade Prospect, leading to the eventual development of the Young-Davidson and Matachewan Consolidated mines in 1934. The two mines produced a combined total of 956,117 ounces of gold and 265,699 ounces of silver from 9,663,472 tons of ore (Kresz, 1993) from 1934-1956.

In 1932, nine quartz veins were discovered by prospectors while working for the Baden Gold Mines Syndicate (**Figure 5**). The veins were described as being hosted in andesite, tuff, agglomerate, and syenite, located in an area immediately east and north of Belt Lake. The original detailed vein descriptions were made by Rickaby (1932) and then by Dyer (1936). Lovell and Kresz subsequently re-examined the area during the course of their geological mapping in the area.

The following detailed vein descriptions were extracted from Lovell (1967) as follows:

"Quartz vein No. 1 is on claim MR.7915. It has a maximum width of 1 foot, and is in a shear zone 3 feet wide. The vein strikes N60°E and dips 80°S. Quartz stringers are exposed in a trench 350 feet long in sheared agglomerate. Pyrite constitutes 5 percent of many parts of the quartz stringers. Selected samples taken by the author from the dump gave assays ranging from 0.02 to 0.15 ounces of gold per ton."

"No. 2 vein is also on claim MR.7915. A trench has been blasted for a length of 100 feet in pyrite-bearing quartz that has a maximum width of 1 foot."

No. 3 and No. 5 veins are also on claim MR.7915. The main host rock is agglomerate. Rickaby (1932, p.23) described the veins as follows:

"No. 3 vein has been stripped for 150 feet disclosing 4 inches of quartz in schist, which strikes N.70°E. and dips 70°S. The vein is heavily mineralized with pyrite, and a little native gold was noted in place. At the east end of the trench a cross-shearing discloses a 3-foot vein (No. 5) of mineralized schist and quartz striking N.15°W. and dipping 45°W. A small lamprophyre dike forms the footwall of this vein. A grab sample of the quartz vein from the junction of these two veins assayed \$1.20 (0.06 ounces) in gold."

Two massive sulphide samples containing some chalcopyrite were taken by the author. They gave assays of 0.10 and 0.20 ounces of gold per ton. A sample of quartz containing pyrite, chalcopyrite, and country rock fragments gave an assay of 0.06 ounces of gold per ton.

The description by Rickaby (1932, p.23) of No.4 vein, also on claim MR.7915 follows:

"In No.4 vein, the quartz has widths up to 6 inches in a schist zone 4 feet wide, which strikes N50°E and dips steeply to the southeast. It contains coarse pyrite

Located in N.T.S. 42A/02

and some chalcopyrite channel sample across 4 feet at the bottom of this pit was reported to assay \$4.80 (0.23 ounces) in gold."

Rickaby says that No. 6 vein, which crosses the boundary between claims MR.7915 and MR.8155 (see Figure 2), is mineralized with pyrite and a little chalcopyrite. He saw a considerable amount of fine native gold in the vein at the west end. Dyer (1935, p.44) wrote of No. 6 vein:

"No. 6 vein...is the most important; it has been uncovered by trenches and test pits for a length of 800 feet in an east-northeast direction; it dips steeply to the north. The quartz ranges in width on the surface from 1 to 14 inches, with the greatest width at the west end, but it is reported to widen to about 2 feet at the bottom of the 30 foot shaft, now flooded."

"It is reported that the three completed holes at the west end of the vein, which were approximately 100 feet apart, showed at a vertical depth of 100 feet widths of about 2 feet of quartz carrying from 0.04 to 0.65 ounces per ton, and that in one hole the footwall rock averaged 0.30 ounces over 4 feet."

"The wallrocks of No.6 vein are very fine-grained, massive, bleached, silicified volcanic rocks that are cut by a syenite dike near the east end of the vein. Pink and white calcite, chlorite, sericite, pyrite and chacopyrite are present. Subsidiary shears diverge from the main shear. Assays of grab samples taken by the author were: 0.02 ounces of gold per ton for a sample from the shaft on the west end of no.6 vein; 0.35 ounces at a point 550 feet northeast along the trench from the shaft; and 0.01 to 0.03 ounces in the trench at a point 720 feet northeast of the shaft."

No.8 vein, which is on MR.8156, was described by Dyer (1935, p.450 as follows:

"No.8 vein consist of stringers of quartz in a sheared zone 3 to 5 feet wide, striking east-northeast; values of \$2.50 (0.12 ounces) of gold across 4 feet and some native gold are reported."

Kresz (1993) was only able to locate an old 9 m deep shaft that was sunk on one of the veins at the eastern end of Belt Lake. One sample of vein quartz from a loose rock beside the old shaft was sampled and returned 1210 ppb gold. Loose rocks from the old shaft show signs of some sericitization and silicification near veins. They also show evidence of a spaced fracture cleavage some of which are filled with pyrite. The veins are hosted by intermediate metavolcanic rocks. A recent overburden trench to the east of the old shaft exposes a massive, fine-grained, plagioclase-phyric, amygdular rock representing probably a lava flow. Examination of the core of one of the holes from the 1985 drilling program revealed a fragmental rock.

Three samples of quartz vein material was sampled by the present author from lose rock beside the shaft assaying 4.03 g/t, 0.47 g/t and 1.10 g/t gold respectively. (For complete details, see Section 4.6).

8.0 2004 EXPLORATION PROGRAM

8.1 <u>Objective</u>

A two phase exploration program was completed on the property with the objective of follow-up diamond drill testing of induced polarization (I.P.) anomalies identified by Golden Valley Mines Ltd. field work programs.

The phase one work program consisted of a diamond drilling program testing I.P. anomalies defined over the area covering the nine historical quartz veins. Phase two of the work program involved re-sampling of the old shaft and trenches, and a phase II magnetic and I.P. survey along the projected east extension of the known gold mineralization.

In-house geophysical interpretation of the data received from the contractor was completed by Plante (April and May 2004). Following a comprehensive geological and historical exploration work compilation, the proposed drill program plan was completed (May and July 2004) and subsequently executed by the author of this report.

8.2 Phase I Geophysics

Consisted of magnetic (30.3 kilometres of total field and vertical gradient) and resistivity / induced polarization surveys (26.8 kilometres of "TIME domain", Dipole-dipole array) carried out over claim L-1199893, in February and then March 2004 by Abitibi Geophysics under contract to Golden Valley Mines.

8.3 Phase I Diamond Drilling

A total of three (3) diamond-drill holes (310 m) tested three (3) different priority geophysical targets on the Richore Prospect original claim L-3011254, over the period from May 11 to May 27, 2004. The drilling service provider used was Forage Orbit Inc., based in Val d'Or, Quebec. Food and accommodations was provided by Matachewan Outfitters Inc, Marg's Log Cabin Restaurant. Assay certificates and diamond drill logs for GRO-04-01, GRO-04-02, and GRO-04-03 are provided for in Appendix I and II respectively at the end of this report. The surface plan for the drill hole locations are provided on figure 6 and the compilation map attached, including I.P. anomaly traces from the geophysical survey.

8.4 <u>Summary of Phase I Diamond Drilling Targets and Results</u>

<u>GRO-04-01:</u>

The purpose of the drill hole was to test a weak (up to 2.8 mV/V), but well defined, moderate I.P. anomaly associated with moderately low resistivities near surface. A weak magnetic anomaly may be related to the I.P. response. The axis of the I.P. trend is NW

over a distance of 200 m with a suggestive eastern strike extension to the area tested by GRO-04-02.

The diamond drill hole was collared in the north-central part of claim 1199893 at L8+00W, 2+05N. The azimuth of the drill hole was 360° (or grid north) and -45° inclination. The total depth of the hole was 100 m, including 21.0 m of overburden.

GRO-04-01 is mainly characterized by intermediate volcanic rocks (tuff-porphyritic) locally strongly altered (chlorite schist with quartz-calcite filling fractures).

The inferred causative source of the I.P. anomaly was attributed to an intermittent pyritic fractured and veined zone intersected from 42.75-55 m. The shallower depth of penetration indicates a much more shallow dip to the south then indicated by I.P. data.

This drillhole intersected three gold mineralized zones. The first zone is hosted in a quartz-carbonate (ankerite)-calcite vein breccia that was heavily mineralized with semimassive pyrite from 43.30-43.39 m, and is inferred to be the southwest fault extension of the # 9 Vein from 1932 Baden Syndicate Occurrence. It ran 0.39 g/t (0.31 g/t check) gold over 0.09 m. Further down the hole from 46.06-46.37 m, a glassy grey quartz-calcite fractured zone hosted in a chlorite±sericite schist with a late hematization alteration overprint. This zone ran 0.7 g/t (0.68 g/t check) gold over 0.31 m.

The best intersection from the hole was received at 54.69-55.0 m grading 1.3 g/t (1.46 g/t check) gold over 0.31 m, with a lower intercept of 0.2 g/t over 0.10 m from 55.0-55.10 m. This mineralized zone is hosted in a quartz vein breccia unit. The higher grade gold interval is associated with $\pm 40\%$ glassy grey quartz fractures that are strongly deformed with sericitized and silicified wallrock contacts and cross-cute by late pyrite-hematite hairline fracturing. The lower 10 cm is characterized by a well developed vein breccia comprised of a quartz-carbonate (ankerite)-calcite composition similar to the first intercept minus the semi-massive pyrite.

Although the results are not very wide, the significance is that the historical Baden Lake Gold Mines # 9 Vein and/or either of the # 4, 1, 3 & 2 Veins possible western strike extensions was intersected at shallow depths. These veins are located approximately 300 m or 700-800 m distances to the east of GRO-04-01. In addition, the I.P. axis tested by GRO-04-01 is well defined and untested 200 m to the northeast with a possible 250 m extension to the west. A 200 m untested I.P. anomaly occurs immediately to the northeast and is now thought to reflect the actual # 9 Vein (located east of shore pond) western extension.

<u>GRO-04-02:</u>

The purpose of the drill hole was to test a moderate (6.7 mV/V) I.P. anomaly with a small volume (limited depth extent?) associated with a resistivity high. The geophysical target is located on line 4+00E, station 1+45S with an expected downhole intersect of the I.P.

anomaly source at 55 metres with the assumption of a sub-vertical orientation. The hole is located approximately 400 m east of GRO-04-01 (see above).

The diamond drill hole was collared in the northeast part of claim 1199893 at L4+00W, 1+10N. The azimuth of the drill hole was 360° (or grid north) and -45° inclination. The total depth of the hole was 100 m, including 9.0 m of overburden.

GRO-04-02 rock units are similar to GRO-04-01. A thin chlorite schist zone is dominant from 33.90-36-97 m, and is characterized by coarse grained tectonic breccia and quartz-ankerite alteration (fracture controlled). This unit intersected a number of pyrite (3-10%) mineralized quartz vein structures with an upper fault bounded contact at 34.62 m. This zone is inferred to be the southwest extension of the # 4 Vein from 1932 Baden Syndicate Occurrence, in an area of overburden cover. This zone from 34.62-34.71 ran 0.56 g/t (0.54 g/t check) gold over 0.09 m.

The inferred causative source of the I.P. anomaly was attributed to an intermittent pyritic fractured and veined zone intersected from 34.62-35.12 m.

<u>GRO-04-03:</u>

The geophysical target is located on line 9+00W, station 5+85N with an expected downhole intersect of the I.P. anomaly source at ~ 70 m with the assumption of a subvertical orientation.

The purpose of the drill hole was to test a to moderate (up to 6.5 mV/V) and well defined I.P. anomaly located in a resisitivity low (\pm 7700 Ω ·m versus > 50000 Ω ·m) over two lines (100 m). The axis of the I.P. anomaly is in a SW orientation, with a possible 400 m extension.

The diamond drill hole was collared in the south-central part of claim 1199893 at L9+00W, 5+85S. The azimuth of the drill hole was 360° (or grid north) and -45° inclination. The total depth of the hole was 110 m, including 6.0 metres of overburden.

GRO-04-03 is characterized by intermediate volcanic rocks (tuff-porphyritic) locally strongly altered (chlorite schist with quartz-calcite filling fractures). These units are intersected by a moderately altered syenite (<3 metes thick) at three different levels.

No clear causative source of the I.P. anomaly was evident in the drill core, with a number of disseminated and altered zones intersected from 44.10-82-59 m. If the source of the I.P. anomaly is the pyretic syenite from 44.10-47.78 m, the shallower depth of penetration (estimated downhole penetration depth @~70 m) indicates a much more shallow dip to the south then indicated by I.P. data.

The quartz-calcite flooded vein zone intersected from 15.78-16.0 m with pyretic contacts may represent the southwest extension of the # 7 (south) or # 6 (north) Veins from 1932

Baden Syndicate Occurrence on the east side of Belt Lake in the area of the old shaft, in an area of overburden cover.

No significant results were intersected in that hole.

8.5 <u>Analytical Procedures</u>

Core logging and sampling was completed at a rented core shack facility located in Matachewan. The core was then transported to Val d'Or, Quebec for splitting at the Golden Valley Mines Ltd. office facility.

The total number of samples submitted for analysis was 89 split core samples, including a series of sample duplicates and standards where applicable for each separate drill hole prior to submittal to the laboratory. In addition, the laboratory completed its own check assaying and QA/QC. All assaying was completed by Swastika Laboratories Ltd. at their facilities in Swastika, Ontario for gold and copper in some occasions. Elements assayed are listed below:

Au g/t / Cu ppm

8.6 <u>Re-sampling of Historical Mineralization</u>

One day of prospecting and re-sampling of the historical quartz vein mineralization was completed on May 26, 2004 by the author of this report and Golden Valley Mines prospector, Randon Ferderber. Only the historical 9 m deep shaft that was sunk on the No. 6 vein and associated trench was located.

Three random samples were collected from dump material from the No. 6 vein shaft

Sample No.	Au g/t	Cu ppm
283553	4.03	33
283554	0.47	112
283555	1.10	181

Sample 283553 consisted of quartz vein material with 10-30% sheared (laminated) wallrock inclusions hosting fine, bronze-coloured cubic pyrite. Very fine specks of visible gold were observed in a couple of places. The very low copper grade indicates it was not chalcopyrite. A screen metallic fire assay test is recommended based on the results obtained and the documented gold nugget effect.

The second sample 283554 is similar to above, with a much reduced pyrite content. A screen metallic fire assay would be interesting to run to test for any free gold.

Sample 283555 was collected for analysis as it represented a pyritic quartz vein stockwork hosted in a sheared and altered intermediate volcanic unit.

Assay certificates for the 4 samples are provided for in **Appendix IB** at the end of this report. The sample locations are provided on the **compilation map** attached.

8.7 <u>Phase II Geophysics</u>

Consisted of magnetic (12.1 kilometres of total field and vertical gradient) and resistivity / induced polarization surveys (10.1 kilometres of "TIME domain", Dipole-dipole array). The survey included data collection over new claim L-3013730 and detailed 50 metre infill along the boundary of claim L-1199893 during the period of May 10 to May 14, 2004, by Abitibi Geophysics under contract to Golden Valley Mines.

8.8 Phase II Diamond Drilling

A single diamond-drill hole tested a priority geophysical target on the Richore Prospect original claim L-3011254, over the period from July 13 to July 17, 2004. The drilling service provider used was Forage Orbit Inc., based in Val d'Or, Quebec. Food and accommodations was provided by Matachewan Outfitters Inc, Marg's Log Cabin Restaurant. Assay certificates and diamond drill log for GRO-04-04 is provided for in **Appendix I and II** respectively at the end of this report. The surface plan for the drill hole locations are provided on **figure 6** and the **compilation map** attached, including I.P. anomaly traces from the geophysical survey.

Prior to commencing the drill program, a permit for a temporary creek crossing immediately south of Belt Lake was obtained from the Ministry of Northern Development of Mines, to provide access to the drill site.

The drill rig and equipment was demobilized from the property over the period from August 26 to August 30, 2004.

8.9 Summary of GRO-04-04 Diamond Drilling Target and Results

GRO-04-04:

The purpose of the drill hole was to test a well defined and moderate I.P. anomaly (up to 7 mV/V, verses a background of 3-4 mV/V) that was identified on the eastern boundary of the property (the best of both surveys). It is associated with a resistivity high with a pocket of relative lower readings suggestive of a fault or alteration. On the basis of these results, a 4-unit claim was added to the properties eastern boundary.

The diamond drill hole was collared in the eastern-central limit claim 1199893 at L0+50E, 1+25S. The azimuth of the drill hole was 360° (or grid north) and -45° inclination. The total depth of the hole was 120 m, including 10.5 m of overburden.

GRO-04-04 is characterized by intermediate volcanic rocks (tuff-breccia). These units are gradually carbonatized as indicated by light green alteration of feldspars or intense grey

bleached zones. The best mineralized in this section is associated with a 2 cm wide glassy grey quartz veinlet, sugary recrystallized texture & calcite altered, inferred to represent the possible #6 Vein eastern strike extension). The best value recorded in the drillhole graded 0.48 g/t Au over 1 m from 54.5-55.5 m. Quartz-calcite fractured zones are also commonly developed.

No clear causative source of the I.P. anomaly was evident in the drill core.

8.10 Analytical Procedures

Core logging, sampling and splitting was completed at the Golden Valley Mines Ltd. office facilities in Val d'Or, Quebec.

The total number of samples submitted for analysis was 27 split core samples, including a series of sample duplicates and standards where applicable for each separate drill hole prior to submittal to the laboratory. In addition, the laboratory completed its own check assaying and QA/QC. All assaying was completed by Swastika Laboratories Ltd. at their facilities in Swastika, Ontario for gold and copper in some occasions. Elements assayed are listed below:

Au g/t / Ag g/t

9.0 INTERPRETATIONS AND CONCLUSIONS

The Richore Prospect was acquired on the basis of historical exploration work (circa 1930's) including trenching and the sinking of a number of shallow exploration shafts on the property on auriferous quartz veins. In 1932, nine quartz veins were discovered by prospectors while working for the Baden Gold Mines Syndicate. The quartz veins were described as being hosted in andesite, tuff, agglomerate, and syenite, located in an area immediately east and north of Belt Lake.

The results of the 2004 exploration program are considered very positive in light of several new findings which are:

- 1. Possible strike extensions of the historical quartz vein zones, including an intersection of 1.3 g/t (1.46 g/t check) gold at a downhole depth of 54.69-55.0 m in GRO-04-01;
- 2. Drill tested I.P. anomalies remain for the most open-ended;
- 3. Untested I.P. anomalies that are either associated with the historical veins or are located along their inferred strike extensions; and
- 4. Acquisition of prospective ground contiguous to the south of the original property claim.

10.0 RECOMMENDATIONS

The program presented below is recommended for follow-up based on the results of the 2004 exploration program to include, additional prospecting and a soil sampling program, and extension of the grid and geophysical surveying (magnetic and I.P.) over the new continuous claim (L-3003781) to the south, staked prior to the original property claims acquisition.

Phase I

Total	\$	61,930
10% Management Fees	\$	5,630
Sub-Total	\$	56,300
- Logistical support, supervision	2	2,500
- 20 line kilometres of I.P. surveying @ \$900/km	¢	18,000
- 20 line kilometres of ground magnetic surveying @ \$90/km	\$	1,800
- 20 line kilometres of new grid establishment @ 400/km	\$	8,000
Reconnaissance Geophysical Survey - Over claim L-3003781		
- Logistical support, supervision	\$	2,000
- Assaying @ \$30/sample x 500	\$	15,000
- Supplies, Room & Board	\$	4,000
- 2 Prospectors @ \$500/day x 15-days	\$	7,500
- Prospecting and Soil Sampling Program		

A follow-up **Phase II** prospecting, mapping and sampling, in-fill geophysical surveying and diamond drilling program will be contingent on the results received from the above described work outline.

Michael P. Contille

11.0 REFERENCES

Abitibi Geophysics, (2004): Logistics and Interpretation Report on Magnetic Field and Resistivity / IP Surveys on the Rich'Ore Prospect. Baden Township, Ontario, Canada, Submitted to Golden Valley Mines Ltd. (03N738), March 2004, 17p.

Abitibi Geophysics, (2004): Magnetic Field and Resistivity / IP Surveys, Rich'Ore Prospect (Phase II). Baden Township, Ontario, Canada. Logistic and Interpretation Report, Submitted to Golden Valley Mines Ltd. (04N654), June 2004, 17p.

Bachman, O.L. (1935): Report on Baden syndicate, Baden Township, Matachewan area, Ontario.

Burrows, A.G. (1918): The Matachewan Gold Area, Ontario Bureau of Mines, Annual Report volume 27 part I, p. 215-240, accompanied by Map 27a, scale 1:47, 520.

Burrows, A.G. (1920): Matachewan Gold Area, Ontario Department of Mines, Annual Report volume 29 part 3, p.53-64.

Campbell, A.P. (1933): Report on Baden Syndicate Property, Baden Township.

Cooke, H.C. (1919): Geology of Matachewan District, Northern Ontario, Geological Survey of Canada Memoir 115, 60p. Accompanied by 1 geological map, scale 1: 63 360, issued 1920.

Dimroth, E., Imreh, L., Goulet, N. and Rocheleau, M. (1983): Evolution of the southcentral segment of the Archean Abitibi belt, Quebec, Part III: Plutonic and metamorphic evolution and geotectonic model; Canadian Journal of Earth Sciences, v.20, p.1374-1388.

Dyer, W.S. (1936): Geology and Ore Deposits of the Matachewan-Kenogami Area, Ontario Department of Mines, Annual Report for 1935, volume 44 part 2 p. 1-55, accompanied by Map 44a, scale 1:24 000 and Map 44b, scale 1:63 360.

Goodwin, A.M. and Ridler, R. (1970): The Abitibi Orogenic Belt; *in* Symposium on Basins and Geosynclines of the Canadian Shield, Geological Survey of Canada, Paper 70-40, p.1-30.

Gunnar Gold Inc. (1987): Logs on 13 DDH.

Hodgson, C.J. (1986): Abitibi greenstone belt, Ontario, Canada; transactions of the Institution of Mining and metallurgy, v.95, p.B183-194.

Jackson, S.L. and Fyon, J.A. (1991): he Western Abitibi Subprovince in Ontario; *in* Geology of Ontario, Ontario Geological survey, Special Volume 4, Part 1, p.405-482.

Jensen, L.S. 1985. Stratigraphy and petrogenesis of Archean metavolcanic sequences, southwestern Abitibi Subprovince, Ontario; *in* Evolution of Archean Subpracrustal sequences, Geological Association of Canada, Special Paper 28, p.65-87.

Jensen, L.S. and Langford, F.F. (1985): Geology and Petrogenesis of the Abitibi Belt in the Kirkland Lake area, Ontario; Ontario Geological Survey, Miscellaneous Paper 123, 130p.

Kresz, D.U. (1991): Geology of argyle and Baden Townships, District of Timiskaming; *in* Summary of field work and other Activities 1991, Ontario Geological survey, Miscellaneous Paper 157, p. 91-94.

Kresz, D.U. (1993): Geology of Argyle and Baden Townships; Ontario Geological Survey, Open File Report 5874, 114p., accompanied by Map P3245, 1:20 000. Lovell, H.L. (1967): Geology of the Matachewan Area, District of Timiskaming, Ontario Department of Mines, Geological Report 51, 61p., accompanied by maps 2109 and 2110, scale 1:31 680.

Ludden, J., Hubert, C. and Gariepy, C. (1986): The Tectonic Evolution of the Abitibi greenstone belt of Canada; Geological Magazine, v.123, p.153-166. MERQ-OGS (1983): Lithostractigraphic map of the Abitibi Subprovince; Ontario Geological Survey and Ministère de l'Énergie et des Ressources, Québec, Map 2484 in Ontario and DV 83-16 in Quebec.

ODM (1932): Bannockburn Gold Area, Ontario Department of Mines, ANNUAL Report for 1932, volume 41, part 2, p.1-24, accompanied by Map 41a, scale 1 : 47 520.

ODM (1975a): Airborne Electromagnetic and Total Intensity Magnetic Survey, Baden Township, District of Timiskaming, Ontario Division of Mines, map P.1018, compilation 1974.

ODM (1975b): Airborne Electromagnetic and Total Intensity Magnetic Survey, Argyle Township, District of Timiskaming, Ontario Division of Mines, map P.1019, compilation 1974.

ODM-GSC (1970): Radisson Lake, Timiskaming District; Ontario Division of Mines-Geological Survey of Canada, aeromagnetic series, Map 290G (Rev.), scale 1 : 50 000.

Plante, L. (2004): April 13 and May 21 2004 Internal Golden Valley Mines Ltd. Document.

Pyke, D.R., Ayres, L.D. and Innes, D.G. (1772): Timmins-Kirkland Lake geological compilation sheet; Ontario Division of Mines, Map 2205, scale 1: 253 440.

Rosatelli, M.P. (2004): April 23 and May 21, 2004 Internal Golden Valley Mines Ltd. Document.

Thoday, G.P. (1964): Logs of 9 DDH and Plan.

Appendix IA

Í

Drill Core Assay Certificates

Assaying - Consulting - Representation

Assay Certificate

4W-1603-RA1

Date: AUG-03-04

Company:	GOLDEN VALLEY MINES LTD
Project:	GRO
Attn:	M. Rosatelli

We hereby certify the following Assay of 27 Core samples submitted JUL-26-04 by .

Sample	Au	Au Check	
Number	g/tonne	g/tonne	
206001	Nil		
206002	0.48	0.38	
206003	Nil	-	
206004	Nil	-	
2060 0 5	0.07	-	
206006	0.02		
2060 0 7	0.14	0.13	
2060 0 8	Nil	-	
206009	Nil	-	
206010	0.01	-	
206011	Nil		
206012	Nil	-	
206013	Nil	-	
206014	Nil	-	
206015	Nil	-	
206016	Nil		
206017	Nil	-	
206018	Nil	-	
206019	Nil	-	
206020	0.01	-	
2060 2 1	0.01		
206022	0.18	0.27	
206023	Nil	-	
206024	0.05	-	
2060 2 5	Nil	-	
2060 2 6	0.04		
206027	0.01	-	
206028 not rec	'd -	-	
Blank	Nil	-	
STD OxK18	3.47	-	

Certified by Danis Chant

Assaying - Consulting - Representation

Page 1 of 2

Date: JUN-02-04

Assay Certificate

4W-1056-RA1

Company:GOLDEN VALLEY MINES LTDProject:GROAttn:M. Rosatelli

We hereby certify the following Assay of 46 Core samples

submitted MAY-25-04 by .

Sample	Au	Au Check	Cu	
Number	g/tonne	g/tonne	PPM	
16551	0.01	-	-	
16552	0.10	0.11	-	
16553	0.10	-	-	
16554	Nil	-	-	
16566	0.04	-	-	
16567	Nil	-	-	
16568	Nil	-	-	
16569	Nil	-	-	
16570	Nil	-	-	
16571	Nil	-	-	
16572	Nil		-	
16573	Nil	-	-	
16574	Nil	-	-	
16575	Nil	-	-	
16576	0.02	0.02	-	
16577	0.03			
16578	Nil	-	-	
16579	Nil	-	-	
16580	0.01	-	-	
16581	0.19	0.15	-	
16582	0.01		-	
16601	Nil	-	498	
16602	0.02	Nil	967	
16603	0.02	-	-	
16604	Nil	-	-	
16605	Nil	-		
16606	0.01	-	-	
16607	0.08	-	-	
16608	0.02	-	-	
16609	0.06	-		

Certified by Denis Charts

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

4W-1056-RA1

Date: JUN-02-04

Company: GOLDEN VALLEY MINES LTD Project: GRO Attn: M. Rosatelli

We hereby certify the following Assay of 46 Core samples submitted MAY-25-04 by .

Sample	Au	Au Check	Cu	
Number	g/tonne	g/tonne	PPM	
16610	0.01		-	
16611	0.01	-	-	
16612	0.09	0.07	-	
16613	0.01	-	-	
16614	0.01	-	-	
16615	0.03			
16616	Nil	-	-	
16617	Nil	-	-	
16618	0.02	-	-	
16619	0.03	-	-	
16620	Nil		-	
16621	0.01	-	-	
16622	0.01	Nil	-	
16623	Nil	-	-	•
16624	0.01	-	-	
16625	Nil		-	
Blank	Nil	-	-	
STD OxK18	3.40	-	-	

Certified by Duis chart

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

4W-0995-RA1 Date: MAY-25-04

Company:	GOLDEN VALLEY MINES LTD
Project:	GRO
Attn:	M. Rosatelli

We hereby certify the following Assay of 43 Core samples submitted MAY-18-04 by .

Sample	Au	Au Check	
Number	g/tonne	g/tonne	
16501	Nil		
16502	Nil	Nil	
16503	Nil	-	
16504	Nil	-	
16505	Nil	-	
16506	Nil		
16507	0.01	-	
16508	Nil	-	
16509	Nil	-	
16510	Nil	-	
16511	0.02		
16512	0.34	0.31	
16513	0.05	-	
16514	Nil	-	
16515	0.02	-	
16516	0.02	-	
16517	0.70	0.68	
16518	0.04	-	
16519	0.09	-	
16520	0.12	-	
16521	Nil		
16522	0.01	-	
16523	Nil	-	
16524	Nil	-	
16525	0.01	-	·
16526	0.06	-	
16527	0.01	-	
16528	1.30	1.46	
16529	0.20	0.23	
16530	Nil		

Certified by Dem Charte

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

4W-0995-RA1

Date: MAY-25-04

Company:GOLDEN VALLEY MINES LTDProject:GROAttn:M. Rosatelli

We hereby certify the following Assay of 43 Core samples submitted MAY-18-04 by .

Sample	Au	Au Check	
Number	g/tonne	g/tonne	
16531	Nil		
16532	0.03	-	
16555	0.01	-	
16556	Nil	-	
16557	0.02	-	
16558	0.56	0.54	
16559	0.04	-	
16560	0.02	-	
16561	0.10	0.13	
16562	Nil	-	
16563	0.01		
16564	0.17	-	
16565	0.07	-	
Blank	Nil	-	
STD OxK18	3.50	-	

Certified by Den chant,

LABORATOIRE D'ANALYSE BOURLAMAQUE LTÉE. BOURLAMAQUE ASSAY LABORATORIES LTD.

CLIENT	Golden Valley Mines Ltd.
PROJET PROJECT	Projet GRO
ÉCHANTILLONS SAMPLES	Roche
REÇU DE RECEIVED FROM	Michael Rosatelli

<u>Échantillon</u>	<u>Au g/t</u>	<u>Cu ppm</u>
283553	4.03	33
283554	0.47	112
283555	1.10	181

CERTIFICAT D'ANALYSES CERTIFICATE OF ANALYSIS

No. 80951

VAL D'OR (QUÉBEC) le 7 juin 2004 ANALYSES ASSAYS 3 Au Py-Gr., 3 Cu

J9P 4P5

> ANALYSTE / ASSAYER L. - D. Melnbardis

APPENDIX II

Hole ID		4	Iole Locatio	on		Hole	Bearing	Dip	Start	End	Drilled By	Logged By	Claim	Assays
		(UTM) (C		(Grid Point)		Length	(deg.)	(deg.)						(Total)
	East North Elevation		Elevation	East	North	(m)		(deg.)						
			(m)											
GRO-04-01	517184	5325508	316	-800	205	100.0	360	-45	May 12, 2004	May 13, 2004	Forage Orbit	M. Rosatelli	1199893	32
GRO-04-02	517184	5325417	319	-400	110	100.0	360	-45	May 14, 2004	May 16, 2004	Forage Orbit	M. Rosatelli	1199893	32
GRO-04-03	517075	5324729	331	-900	-585	110.0	360	-45	May 17, 2004	May 18, 2004	Forage Orbit	M. Rosatelli	1199893	25
GRO-04-04	511803	5325193	326	50	-125	120.0	360	-45	May 16, 2004	May 17, 2004	Forage Orbit	M. Rosatelli	1199893	27

Golden Va	lley Mines Lt	I. Drill Log		Hole No:	GRO-04-01		Page: 1/4
Property:	Rich'Ore			Coordinates:	L8+00W	2+05N	
District:	Kirkland Lake	<u> </u>		NAD 83	17U 517184	5325508	316 masl
NTS:	42 A/02			Started:	May 12, 2004		
Twp/Area:	Baden			Completed:	May 13, 2004		
Claim No.:	5225508			EOH:	100		
Drilled By:	Forage Orbit	Inc.		Core Size	BQ		
Logged By:	M. Rosatelli	in	Posstelli	Bearing	Grid N-360°	Dip -45°	
Objective:	Test a weak	out well defin	ed I.P. Anomaly	Dip Tests:	100	-45	
Core Stora	ge	Golden Valle	ey Mines, Ltd., Val d'Or, QC				
Metres	To	[]nit	Description	0		-	
0.00	21.00		Averburden	Sample #	From	10	Interval
0.00	21.00	010					
21.00	29.10						
21.00	30.13	V2 10A					
<u> </u>			Providing grey to grey single on the granied groundmass.				
			white to greenish fine to medium grained phenospists set within a chorty, aphanitic groundmass beating 10 15% year fine ground awayers at east within a chorty.				
			while to greenish mile to mediating alled phenocrysis set within a cherry, aphannic groundmass nosting 10-15% very line-grained pyroxene phenocrysis and				
			Esser mer chery grey to greensh redspanic hagments - rhagments are sub-angular to sub-rounded and vary from me-gramed to coarse-gramed.				
	<u> </u>						
	1	[FLT]	27.0-30.5: Fault Zone: Diffuse contacts - Well developed groundmass chloritization and increased calcite alteration of feldspar phenocrysts in groundmass and				
			fragments via well developed pitting - Margins of fault marked by orange-brown alteration and calcilication of feldspar phenocrysts.				
		(sil)	33.0-35.4: Silicified Zone: Cherty grey - Predominately comprised of altered feldspathic fragments and groundmass coarser with increased fine to medium-	16501	33.00	34.00	1.00
			grained - Addition now of 7-10% hairline calcite fracturing forming a poorly developed stockwork.	16502	34.00	35.00	1.00
			Gradational upper and lower contacts.	16503	35.00	35.40	0.40
		(bx)	35.4-36.72: Densely packed breccia zone - As above sub-unit, comprised dominantly by grey to greenish feldspathic fragments.				
		(sil)	36.72-38.19: Silicified Zone: Same as above with addition of the occasional pyritic quartz-calcite veinlets (see below) - +10% calcite stockwork below 38.0 m.	16504	36.72	37.50	0.78
				16505	37.50	38.19	0.69
38.19	43.30	V2J MAS	Intermediate Massive Metavolcanic Flow				
			Sharp upper flow contact @ 60-70°TCA - Partially faulted with <1 cm sinistral displacements along micro slips,	16506	38.19	39.00	0.81
			Medium greyish-green, very fine-grained with abundant fine-grained chloritized pyroxene phenocrysts.	16507	39.00	40.00	1.00
			Gradual increase in shearing downhole with development of millimetric chlorite segregations (wisps & laminations) and quartz-calcite fractures.	16508	40.00	41.00	1.00
			- Fracture volumes range from 10-20% volumes to locally +30% over short centimetre widths forming a well developed stockwork - Mostly in form of stringers	16509	41.00	42.00	1.00
			and tension gashes, and are occasionally heavily mineralized with individual cubic disseminations up to coarse-grained aggregates within larger veinlets.	16510	42.00	42.75	0.75
	1						
			42.75-43.3: Altered, sheared and mineralized lower contact - Variable altered, mottled green strongly chloritized and bleached grey carbonatized, well foliated	16511	42.75	43.30	0.55
			hostrock increased occurrence of pyritic veinlets, ~3-5% volumes, locally 10% to lower contact - Gradational upper contact.				

Golden Va	lley Mines	Ltd. Drill Lo	DQ	Hole No:	GRO-04-01		Page: 2/4
Property:	Rich'Ore						
Meters					<u> </u>		
From	To	Unit		Sample #	From	To	Interval
			Associated with moderately broken and blocky core throughout sub-unit.				<u> </u>
43.30	43.39	QCAC-	Quartz-Carbonate(Ankerite)-Calcite Vein Breccia	16512	43.30	43.39	0.09
L	L	BXV	Sharp sheared contacts (top broken) @ 60°TCA.				
	L		Heavily mineralized with semi-massive cubic pyrite hosted by well foliated chloritized and lesser sericitized hostrock laminations.				
	L		Less then 30% fine to coarse vein fragment remnants - Locally reddish-brown alteration of carbonate - Minor calcite composition (likely related to late fracturing	l		<u> </u>	<u> </u>
	L		observed up-hole).				
					ļ		
43.39	45.80	V2 MAS	Altered Intermediate Massive Metavolcanic Flow				
			Similar to 38.19-43.30 m, but increased intensity level of shearing and alteration of hostrock and fractures.				
			Well foliated with strongly developed schistosity @ 60° TCA.				
	1		Predominately light greyish-green sericitization with a mottled (proximal upper contact) to wispy and laminated dark green chloritization alteration banding.				
			Continuation of quartz-calcite fracturing as described in upper unit with best development at upper contacts:		1		
	1		-43.39-44.2: 10-15% volumes - Strongly deformed and locally transposed along foliation plane - Well mineralized with fine disseminated cubic pyrite with best	16513	43.39	44.20	0.81
	1	1	mineralization hosted along stringers/veinlets conformable to foliation - Gradual decrease in fracture intensity and	16514	44.20	45.06	0.86
			-44.6: Development of late red hematization of fractures with depth.			[
			-45.06-45.80: 15-25% fractures downhole with well developed stockwork @ lower contact - Increased shearing with dominance of foliation parallel stringers or	16515	45.06	45.80	0.74
		<u> </u>	fragments - Well developed hematization of ~ 80-90% of fractures - Marked decrease in pyrite content to trace amounts - Morphological change to	16516	45.80	46.06	0.26
	1		plassy grey guartz dominate @ lower contact over 3 cm, strongly sheared, sericitized laminated wallrock contacts and <30% hematization.				1
	1		Sharp upper fractured/hematized upper contact with mottled fushitic alteration to 45.3 m (gradational alteration front contacts).	1			1
	1	†					1
45.80	46.37	cs	Chlorite Schist	1			1
10.00			Sharn sheared upper contact @ 80°TCA		1		
	+		Intensely sheared and dark green		·		
	+		Fine grained with abundant visible light grey-greenish feldspar phenocrysts suggestive of a pombwritic flow with a late muscovite alteration overgrint visible to	+			+
	<u>+</u>	†					
<u> </u>	+	<u>├</u>		1	+	<u> </u>	+
			A6 06.46.31: Strongly fractured lower zone - Sharp unper contact with development of well developed sericitization @ 60° TCA over 6 cm and increasing quarter	16517	46 06	46.37	0.31
	+	t	addite fracturing to 120% volumes downhole - Gives way to a late raddish hometization alteration overration overration of the service of the	+	+		+
	+	+	10 cm downhole. Remainder of alteration to lower contract is obligitization with corresponding ingreasing wagtweet of fractures to lower contract is obligitization with corresponding ingreasing wagtweet of fractures to lower contract.	+	+	<u> </u>	+
			To chi downinole - nemainder or alteration to lower contact is chionization with corresponding increasing vuggyriess or inactures to lower contact.				+
	+	<u> </u>	Upper and lower wainock contacts marked by a distinctive tension gash pattern at low-angles TCA that is oblique (x-cutting) to rollation/snearing.	+	+		+
	╂		Mineralization contined to lower transitional nematized to chlonitized alteration facies with 2-3% the cubic disseminations in altered wallfock adjacent	<u> </u>		 	+
	+	<u> </u>	Tractures - Abundance of associated visible fine specular nematite.		<u> </u>	<u> </u>	
}	+	<u> </u>			+	 	+
46.37	7 54.69	V2 TBX	Altered Intermediate Tuff Breccia		<u> </u>	<u> </u>	<u> </u>
ļ	<u> </u>	ļ	Sharp upper undulating flow contact varying from 60-80°TCA.		 	 	-l
	<u> </u>		Similar to upper unit described from 21.0-38.19 m, however now appears to be more fragment supported via well developed light greyish green alteration with a	+			
1			minor component of chloritized interstitial finer grained material - Interbedded with minor finer and less densely packed fragmental beds of decreased alteration.	1	1		1

Golden Va	lley Mines	Ltd. Drill Lo		Hole No:	GRO-04-01	1	Page: 3/4
Property:	Rich'Ore			1		<u> </u>	
Meters	.	11.1					
From	10			Sample #	From	To	interval
			46.37-46.82: Finer grained, fragmental poor and weakly altered section - Well developed quartz-carbonate (ankerite) stockwork through 10-15% crack-seat	16518	46.37	46.82	0.45
	L		tension gashes & stringers - Fine disseminated cubic pyrite hosted proximal to upper contact, traces to 1% volumes - Minor morphological change to				
	L		glassy grey quartz component near lower contact, trace visible cubic pyrite.				
			46.82-51.4: Strongly altered zone - Sharp upper bedded contact @ 60° TCA - Less fracturing as described above with odd pyritic glassy grey-quartz+carbonate	16519	46.82	48.08	1.26
			(ankerite) individual or sets of stringers/veinlets - Best developed fractured section from 48.0-49.88 m:		T		<u> </u>
			48.08-48.50: Variable developed from 10 to +20% volumes - At high-angles TCA.	16520	48.08	48.50	0.42
				16521	48.50	49.05	0.55
·			49.05-49.88: Series of millimetric wide veinlets @ 10-20°TCA - ~7-10% volumes	16522	49.05	40.88	0.83
			Outbroad pyritic replacement of feldspar phenocrysts in fragments	16523	40.00	50.50	0.00
	1			16524	50.50	51.40	0.02
			51 4-52 84' Equivalent to 46 37-46 82 Diffuse gradational alteration 8 (regrested contacts	10524	50.30	51.40	0.90
	<u> </u>		52.84.54.69: Densely packed fragmental and altered beings. Increased intensity of periodicist	16525	51.40	52.84	1.44
	┣────		122.04-04.05. Densely packed haginerital and allered holizon - increased intensity of sencilization to a light green colouration and fracturing to 8-15%, however	10526	52.84	54.00	1.16
	<u> </u>		Ino quariz constituent and addition of 3-5% fate quariz-calcite naimne fractures of which some host specular hematite or are hematized red.	16527	54.00	54.69	0.69
				<u> </u>	ļ		L
54.69	55.10	QV BX	Quartz Vein Breccia	· · · · · · · · · · · · · · · · · · ·			
	<u> </u>		Sharp veined, sheared contacts @ 70°TCA.		L		
			Comprised of up to 40% strongly deformed glassy grey quartz fractures hosted in a sericitized & silicified altered hostrock (upper wallrock equivalent) - Pyritic,	16528	54.69	55.00	0.31
			vein and wallrock hosted, 1-2% fine cubic disseminations - Weak late calcite overprint of veining and wallrock.				
			Addition of a well developed late hairline pyrite-hematite fracture alteration event - Strongest @ upper contact with a gradual decrease with depth to <10%				
			volumes.				
							<u> </u>
			55.0-55.1: Quartz Vein Breccia: Very similar quartz-carbonate (ankerite)-calcite composition and tectonic breccia as per 43.3-43.39 m. minus semi-massive	16529	55.00	55.10	0.10
			pyrite, now in 10% range, locally hematized reddish-brown and occasional specular hematite appreciates with corresponding decrease in chioritized				
			hostrock (and not sericitized) - Increased vein material to +60% with calcite dominated lower contact				
55.10	89.36	V2 TBX	Intermediate Tuff Breccia	<u> </u>			
			Similar to unit at top of hole but in general is a fragment poor sub facing with intermittent continetre to mate wide herizons of denors packed, economic at				
			barizans with diffuse boundaries				
			In ragments are now a consistent relospar porphyntic composition.				
·····			Upper sericitization (preferential to fragments only) gradual disperses downhole and is not recognizable below 55.7 m - Associated +10 cm wide section of	16530	55,10	55.70	0.60
			broken & blocky ground.				
			76.64: Quartz-Calcite Vein: 6 cm wide - Sharp undeformed contacts @ 10-20° & 30° TCA - Fine-grained tectonic breccia and recrystallized with interstitial calcite	16531	76.42	76.71	0.29
	L		alteration - Hosts up to 10-15% fine pyroxene phenocrysts (wallrock inclusions), increased content along upper contact as strongly				
	L		sheared chloritized laminations, well developed fine disseminated cubic pyrite along vein/wallrock selvages, decreasing intensity downhole.				
			Weakly sericitized wallrock contacts.			· · · · · · · · · · · · · · · · · · ·	

Golden Va	lley Mines	Ltd. Drill Lo	9	Hole No:	IGB0-04-01	r	Pane: A/A
Property:	Rich'Ore						1 ugo. 4/4
Meters							t
From	To	Unit	Description	Sample #	From	To	Interval
		L	88.67: Chilled cherty aphanitic lower contact - Silicified?				
							
89.36	91.20	V2J POR	Intermediate Porphyritic (Feldspar) Metavolcanic Flow				<u> </u>
			Gradational lower contact.				
			Gradual coarsening downhole with development of well recognizable fine to medium-grained grey to greenish subhedral to euhedral feldspar (plagioclase)				h
			phenocrysts hosted in a medium greyish-green, very fine and hard groundmass - Equivalent of fragments in upper unit.				
			Increasing pervasive carbonatization of groundmass with depth.				t
			Sharp lower underrating flow contact @ 70° TCA - Narrow (5 cm) chilled margin with fining of phenocrysts uphole.				
							<u>├</u> ───┤
91.20	96.64	V2J MAS	Intermediate Massive Metavolcanic Flow				
			Very similar to unit intersected from 38.19-43.30 m, but is now more of a lighter colouration due to penetrative carbonatization				<u>├</u>
			94.0: Strongly fractured zone over +10 cm with deformed glassy grey quartz veinlets - Grade outboard into typical quartz-calcite fractures	16532	03.00	94.10	0.20
				10302	33.30	34.10	0.20
96.64	100.00	V2J POR	Intermediate Porphyritic (Feldspar) Metavolcanic Flow				<u>├</u>
			Continuation of upper flow unit.				
			Sharp upper flow contact @ 60-70° TCA5 cm wide dextral slip along late quartz-calcite veinlet x-cutting contact @ low angle				
			Narrow chilled margin with gradual coarsening and development of feldspar phenocrysts downhole				
					·		
100.00	100.00	EOH	End of Hole			·	
		·····					L]

Hole No. GRO-04-01 Sample From To Width Au30 Au Check (m) (m) (m) g/t g/t 16501 33.00 34.00 1.00 Nil 1 16502 34.00 35.00 1.00 Nil Nil 16503 35.00 35.40 0.40 Nil 1 16504 36.72 37.50 0.78 Nil 1 16505 37.50 38.19 0.69 Nil 1 16506 38.19 39.00 0.81 Nil 1 16507 39.00 40.00 1.00 Nil 1 16508 40.00 41.00 1.00 Nil 1 16509 41.00 42.00 1.00 Nil 1 16510 42.00 42.75 0.75 Nil 1 16511 42.75 43.30 0.55 0.02 1 16512								
Sample	From	То	Width	Au30	Au Check			
	(m)	(m)	(m)	g/t	g/t			
16501	33.00	34.00	1.00	Nil				
16502	34.00	35.00	1.00	Nil	Nil			
16503	35.00	35.40	0.40	Nil				
16504	36.72	37.50	0.78	Nil				
16505	37.50	38.19	0.69	Nil				
16506	38.19	39.00	0.81	Nil				
16507	39.00	40.00	1.00	0.01				
16508	40.00	41.00	1.00	Nil				
16509	41.00	42.00	1.00	Nil				
16510	42.00	42.75	0.75	Nil				
16511	42.75	43.30	0.55	0.02				
16512	43.30	43.39	0.09	0.34	0.31			
16513	43.39	44.20	0.81	0.05				
16514	44.20	45.06	0.86	Nil				
16515	45.06	45. 8 0	0.74	0.02				
16516	45.80	46.06	0.26	0.02				
16517	46.06	46.37	0.31	0.7	0.68			
16518	46.37	46.82	0.45	0.04				
16519	46.82	48.08	1.26	0.09				
16520	48.08	48.50	0.42	0.12				
16521	48.50	49. 0 5	0.55	Nil				
16522	49.05	49.88	0.83	0.01				
16523	49.88	50. 5 0	0.62	Nil				
16524	50.50	51.40	0.90	Nil				
16525	51.40	52. 8 4	1.44	0.01				
16526	52.84	54. 0 0	1.16	0.06				
16527	54.00	54. 6 9	0.69	0.01				
16528	54.69	55. 0 0	0.31	1.3	1.46			
16529	55.00	55.10	0.10	0.2				
16530	55.10	55.70	0.60	Nil				
16531	76.42	76.71	0.29	Nil				
16532	93.90	94.10	0.20	0.03				

Golden Va	lley Mines	Ltd. Drill Lo	9	Hole No:	GB0-04-02	r	Baco: 1/4
Property:	Rich'Ore			Coordinates:	L4+00W	L1+10N	Fage. 1/4
District:	Kirkland La	ike		Nad83	17U 517184	5325417	319 masl
NIS:	42 A/02			Started:	May 14, 2004		
1 wp/Area:	Baden			Completed:	May 16, 2004		
Claim No .:	5225508			EOH:	100		
Drilled By:	Forage Or	bit Inc.	<i>Л</i>	Core Size	BQ		
Logged By	M. Hosate		Knatilli	Bearing	Grid N-360°	Dip -45°	
Objective:	Test a mod	lerate I.P. An	omaly	Dip Tests:	100	-45	
Core Stora	ge I	Golden Valle	ay Mines, Ltd., Val d'Or, QC				
Metres							
From	To	Unit	Description	Sample #	From	То	Interval
0.00	9.00	OVB	Overburden				
9.00	33.90	V2 TBX	Intermediate Tuff Breccia				
			Equivalent to unit intersected in GRO-04-01 from 21.0-38.19 m.				
			Well developed carbonatization of feldspar phenocrysts in fragments downhole to 20.35 m.				
			Generally near 100% core recoveries with minor centimetre to 20 cm wide extremely broken & blocky core sections from top of hole to 11.6 m.				
	<u> </u>						
			20.8: Gradual increasing alteration of fragments with depth with a weak light greyish-green sericitization of feldspar component to fragments and occasional				
			mottled silicification further downhole.				
			24.6-27.4: Sericite Altered Zone: Well developed light green alteration of feldspar component to fragments and groundmass with interstitial weakly chloritized	16551	24.60	25.10	0.50
			groundmass and pyroxene phenocrysts - Associated with a densely packed and coarse-grained fragmental horizon - Gradual contacts.				
			25.1-25.71: Hematite-Calcite Fracture Zone: Intensely fractured with 30-40% fine to coarse-grained crack-seal hematite (brick red)±calcite	16552	25.10	25.71	0.61
			alteration, wispy foliation via post deformation shearing @ 60°TCA and addition of a late micro tension gash fracture event - Gradational upper contact				
			25.44-25.5: Shear Zone: Gradational contacts - Strongly developed schistosity @ 70° TCA of hematite alteration & flattened				
			sericitized fragment - Lower contact marked by a deformed/brecciated glassy grey guartz veinlet - Post hematite=calcite alteration fracturing				
			Glassy grey quartz (as per described above) veined lower contact.				
			25.71-26.23: Chlorite-Sericite Schist (Shear Zone): Sharp upper contact @ 50°TCA - Hematized as per described above with decrease late fracturing & valued	16553	25 71	26.23	0.52
			(10 and 5 cm wide vein/flooded @ 25.86-25.95 & 2 individual veinlets @ lower contact) - Glassy grey quartz composition as intersected above with late	16554	26.23	27.40	1 17
			hematite±calcite alteration as noted above) zone, pitted.	10004	20.20		
			Gradual decreasing shearing & micro-quartz fracturing below 26.05 m with increasing occurrence of coarse tragments				
			general designed and select select in this including bootheneo of coalse fragments.				
			Continuation of weak light grevish-green sericitization of feldspar component to fragments as described @ 20.8 m with addition of a grevinterative and a series interative and a series interative and a series interative and a series interative and a series of a green series of a gre				———
			(ankerite)-calcite alteration of proundmass				
			33.25: Gradual fining and shearing downhole with development of a well developed area to light areas a biotective.				
			sol tonsion dashes and stringers to lover contrast and lete in outline placements of a well developed grey to light green schistosity - Increasing cherty quartz-carbonate crack-				
			seal, tension gashes and sinnigers to lower contact and late, x-cutting glassy grey quartz-calcite veinlets @ low angles TCA.	16555	33.45	33.90	0.45

Golden V	alley Mines	Ltd. Drill L	.09	Hole No:	1680-04-02		Dage: 2/4
Property:	Rich'Ore	T		11010 110.	10-04-02	· <u> </u>	Faye. 2/4
From	10					+	+
33.9	36.97			Sample #	From	То	Interval
00.0	00.37						
			Sharp sheared inhological (medium greyish-green) upper contact @ 70°TCA.	_			
	+	<u> </u>	33.30-34.02. Coarse-grained tragmental breccia hostrock, densely packed, flattened & sericitized with strongly chloritized interfragment material laminations	16556	33.90	34.12	0.22
		<u> </u>	W ~60/40% ratio - Foliation decreases to 60° TCA from upper contact - Continued increasing development of cherty quartz-carbonate fracturing (as described				
	+	┼────	w above contact) to ~7-10% volumes, strongly deformed, brecciated and transposed along foliation planes, single veinlet of glassy grey quartz-ankerite				
	+	<u> </u>					
<u> </u>	<u> </u>	ł					
			33.96-34.06: Broken & blocky ground - Occurs just above quartz-ankerite veinlet.				1
	<u> </u>	<u> </u>				[1
<u> </u>		<u> </u>	34.56-34.62: Fault Zone: Extremely broken & blocky core, gradational upper & sharp lower contact - Increase in visible fine disseminated cubic pyrite hosted in	16557	34.12	34.62	0.50
	<u> </u>	<u> </u>	quartz-carbonate (ankerite) fractures.		1		1
	┨─────			1	1		1
	 	<u> </u>	34.62-35.12: Quartz Vein Breccia/Vein: Two distinctive phases recognizable:	1	1		
	ł	<u> </u>	34.62-34.71: Well developed fine to coarse-grained tectonic breccia - Morphological change (~half way) from quartz-ankerite	16558	34.62	34.71	0.09
	<u> </u>	<u> </u>	to glassy to milky quartz (~40% volumes) - Well mineralized with fine disseminated cubic pyrite hosted by chloritized	1	1		+
			and late carbonate(ankerite)-calcite altered interstitial vein material along wallrock selvages (3-5% to 10% locally)	1			+
	ļ		in addition to 1-2% vein hosted.	1	1		<u>+</u> -
			34.71-35.12: Milky quartz vein (glassy near top contact) - Hosts ~ 10-20% micro chlorite-pyrite fractures (wallrock inclusions),	16559	34.71	35.12	0.41
	L		late carbonate(ankerite)-calcite altered, host average of 2-3% fine to medium-grained individual cubes of pyrite	+	+		+
	ļ		or as coarse aggregates.	1	1		+
				+	t		<u>+</u>
			35.12-36.97: Equivalent to sub-unit at upper contact to 34.62, but marked decrease in shearing with addition of individual to zones of pyritic glassy grey quartz	16560	35.12	35.57	0.45
	ļ		veinlets.	+	1		+
			35.12-35.57: Variable silicified glassy grey hostrock gradual decreasing from upper contact grading into well defined veinlets with depth to ~10% volumes	+	<u>+</u> −−−−+		+
			Well mineralized with +10% fine disseminated cubic pyrite hosted in mottled silicified zones and as 3-5% cubic disseminations hosted by	+	+	······	+
	L		late carbonate(ankerite)-calcite altered wallrock inclusions (varies from +30% to 10% or less downhole).	+	tł		+
			Distinctive vuggy silicification and quartz fractures proximal to upper contact.	+	++		
			35.57-35.78: Quartz Veined Zone of two separate fracture intensities:	16561	35.57	25.67	1 0 10
			35.57-35.67: +70% quartz with fine to coarse wallrock inclusion blocks - Sharp contacts @ 70 & 80° TCA - Strongly mineralized with +10%			33.07	+
			massive pyrite replacement of wallrock inclusions.	 	++		+
			35.67-35.78: +30% deformed to fragmented veinlets - Silicified glassy grey wallrock - Marked decrease in pyrite content to -10% as fine	16562	25.67	25 70	
			disseminated individual cubes and coarse massive aggregates at lower contact.	10002	35.07	35./8	+- <u>0.11</u> -
			Noticeable decrease in late carbonate(ankerite)-calcite alteration as noted uphole	 	╂────┤		╉────
			35.78-36.20: Similar to top of sub-unit with the occasional glassy grey quartz veinlet	16500			<u> </u>
			36.20-36.36: Quartz Veined - Sericite Schist Zone: Contacts marketed by 5.8.2.5 cm wide veinlets @ 90° TCA - Honor united transport	10003	35.78	36.20	0.42
			Ifoliation & fragmented - Remainder of zone comprised of ~20% fractures/flooding with intersolv foliated	16564	36.20	36.36	0.16
			sericitized hostrock - Fractures are well mineralized with up to 20% fine cubic pyrite discominations with	<u>+</u>	╉────┤		ļ
		L		1	1		1

Golden Val	lley Mines	td. Drill Lo	g	Hole No:	GRO-04-02		Page: 3/4
Property:	Rich'Ore			1			1
Meters							
From	To	Unit		Sample #	From	То	Interval
			corresponding increase of late carbonate(ankerite)-calcite wallrock inclusion alteration.	<u> </u>	ļ		
L			36.36-36.97: Gradation lower contact with decreasing shearing and chloritization with depth - Equivalent to upper sub-unit @ top contact with similar	16565	36.36	36.97	0.61
			quartz-carbonate (ankerite) fracturing but minus recognizable breccia fragments suggestive of tops downhole.				
			Sharp lower lithological (medium greyish-green) contact @ 70°TCA.	T			1
				1	1		1
36.97	48.40	V2J POR	Intermediate Porphyritic (Feldspar) Metavolcanic Flow	+	<u> </u>		+
			Similar to unit intersected in GBO-04-01 from 89.36-91.20 m including narrow centimetric chilled upper margin and gradual coarsening and development of	+	1		+
			recognizable feldsnar phenocryst	+		[+
			Now medium to coarse grained of generally subbedral feldsnar development and gravish-green altered	+			┼╼╼╼┥
				+	}	}	+
			40.04.40.93. Ownets Vaired Zeney (50%) determed and fragmented alegay arey quests calate valete	16566	40.24	40.92	
	-	·······	40.24-40.33. Guariz Veried Zone. +00% deronned and hagmented glassy grey quariz-carcile Verifiets - Trace to 1% the disseminated cubic pyrite.	10000	40.24	40.33	0.09
				+	<u> </u>		<u>↓</u>
			47.2: Fining of phenocrysts downhole with development of 1-3 cm wide grey fractures to light greyish-green quartz-carbonate flooded/sheared altered hostrock	+		L	┥────┤
	L		banding (47.75-48.1 m) in center of section to lower contact.	┥────	L	ļ	\vdash
				<u></u>		L	
			Sharp fractured lower contact @ 50° TCA.	16567	47.75	48.40	0.65
48.40	78.55	V2 TBX	Intermediate Tuff Breccia				
		(Carb)	Similar to 46.37-54.69 m intersected in GRO-04-01.				
			6 cm wide chilled cherty margin,	1			t1
			48.40-50.45: Fine grained upper margin - Poorly fragmental with minor amounts of visible fine to medium-grained rounded fragments or possible pyroxene clots.	1			1
			Gradual coarsening and increasing densities of weakly sericitized tragments with depth.	+	1		t
			I ocalized sections of increased light grevish-green quartz-carbonate flooded/sheared altered hostrock (two zones sampled) - Weakly pyritic with traces to 1%	+	F		<u>├</u> {
	<u>↓</u>		fine discominated cubes	+	<u> </u>		┼╾──┤
			Lower contract of upper alteration zone marked by a classy grey pyritic quarta calcite veinlet as per 40.24.40.23 m	16568	51.00	51 50	0.50
			- Lower contact of upper alteration zone marked by a glassy grey pyrite quartz-calcite venifier as per 40.24-40.35 m	16560	56.00	57.40	0.50
	}			10509	50.90 65.00	07.40	0.50
<u>├</u>	}		164.0-65.65: Hemalized allered zone with very line disseminations to coarse aggregates of specular nematite - increasing visible line disseminated cubic pyrite	16570	65.00	60.60	0.05
	ļ		below 65.0 m with increasing intensities of late micro calcite fracturing (x-cut quartz-carbonate banding) - Gradual decrease in alteration with depth.	+	 		┝┥
				- 	l		ļ]
	ļ		65.65-65.95: Chlorite altered zone consisting of black hairline to 1 cm wide fractures @ 30° TCA - Hostrock is distinctively bleached grey quartz-carbonate	16571	65.65	65.95	0.30
	ļ		flooded with sharp upper contact and gradational lower contact.	16572	65.95	66.55	0.60
<u> </u>	<u> </u>			16573	66.55	68.00	1 45
			barretized developed w upper contract to 0035 granical noticent variable contract light green register they need to be upper contract to 05.5 m, tocally	+			<u> </u>
}	}	<u> </u>	memanzeu downinole - omoniuzeu dark biackish-green anereu interstitiar groundnass, weakty sneareu, very weakty pynitic with rare to 1% Visible line	+	<u> </u>	<u></u>	╃────┤
	ļ		loisseminated cudes and abundant the disseminated to coarser specular nematite aggregates.	+	l		┢┈───┤
1				1	1	ł	1

.

Golden Va	lley Mines	Ltd. Drill L	pg	Hole No:	GRO-04-02	L	Page: 4/4
Property:	Rich'Ore						
Meters		l 				I	
From	To	Unit	Description	Sample #	From	To	Interval
	ļ		68.0-69.5: Strongly sheared section of predominately sericite alteration - Center of shear/alteration zone marked by 20 cm wide zone of glassy grey	16574	68.00	69.50	1.50
			quartz flooding @ 20° TCA - Hosts traces of fine disseminated cubic pyrite.	16575	69.50	71.00	1.50
			Weakly developed late calcite fracturing throughout sub-unit to 3-5% volumes.	16576	71.00	72.50	1.50
L				16577	72.50	74.00	1.50
			78.0: Decreasing amounts of fragments to lower contact - Increasing penetrative carbonatization of both fragments and groundmass (GR for this term).	16578	74.00	75.50	1.50
				16579	75.50	77.00	1.50
			Extremely broken & blocky core at lower contact over 20-30 cm.	16580	77.00	78.55	1.55
					1		
78.55	81.55	V2 MAT	Intermediate Massive Tuff				1
			Extremely broken & blocky core at lower contact over 10-20 cm.		1	[
			Differs from units intersected in GRO-04-01 as fine-grained granular texture with abundant coarser pyroxene phenocrysts.	T	1		1
			Penetrative carbonatization, very fine crack-seal alteration - May reflect coarser grained nature of rock due to recrystallization.	1	1		1
				1	<u> </u>	<u> </u>	
			Fragmental with occasional rounded glassy grey guartz and coarser subangular cherty hematized to greenish fragments.	+	1		1
<u> </u>				1	+	<u> </u>	<u> </u>
			81.0: Abruot fining downhole and increasing shearing with depth.		1		+
		· · · · · · · · · · · · ·	81.3-81.55: Shear Zone: Well banded foliation developed via millimetric wide calcite segregations and lesser wispy to very thinly laminated chlorite @ 70° TCA.	16581	81.30	81.55	0.25
<u>├</u> ────			I ower contact marked by 3 cm wide late glassy grey quartz-calcite veiolet conformable, but overorinting foliation		1		
					<u>+</u>		1
81.55	100.00	V2 TBX	Intermediate Tuff Breccia	+			
		(Carb)	Similar to upper intersected zone with alteration development at a decreased level and penetrative carbonatization extending as far downhole to 86.0 m	1	1		1
		·	imparting a bleached appearance to rock.		1		<u> </u>
			Gradual decrease in shearing with depth, corresponds with best sericite alteration development to 81.8 m.	+		<u>†</u>	1
			Glassy bluish-grey quartz-calcite flooded and chloritized upper contact over 3 cm.	16582	81.55	82.00	0.45
				1	1	<u> </u>	<u>}</u>
100.00	100.00	EOH	End of Hole		+	<u> </u>	
					+	<u> </u>	<u> </u>
	<u> </u>			+		<u> </u>	<u> </u>
<u> </u>				+	+	<u> </u>	t
<u> </u>			+	+	+	<u> </u>	+
	<u> </u>				+	<u>├</u>	+
<u>├</u>	<u> </u>			+	+	<u> </u>	+
	<u> </u>		+	+	+	<u> </u>	
	 	<u> </u>			+	<u> </u>	+
}	┟			+	+	├ ─────	╉────
<u> </u>	<u> </u>			+	<u> </u>	<u>├</u> ────	
1	1	1		1	1	1	1

	Hole No. GRO-04-02										
Sample	From	То	Width	Au30	Au Check						
	(m)	(m)	(m)	g/t	g/t						
16551	24.60	25.10	0.50	0.01							
16552	25.10	25.71	0.61	0.1	0.11						
16553	25.71	26.23	0.52	0.1							
16554	26.23	27.40	1.17	Nil							
16555	33.45	33.90	0.45	0.01							
16556	33.90	34.12	0.22	Nil							
16557	34.12	34.62	0.50	0.02							
16558	34.62	34.71	0.09	0.56	0.54						
16559	34.71	35.12	0.41	0.04							
16560	35.12	35.57	0.45	0.02							
16561	35.57	35.67	0.10	0.1	0.13						
16562	35.67	35.78	0.11	Nil							
16563	35.78	36.20	0.42	0.01							
16564	36.20	36.36	0.16	0.17							
16565	36.36	36.97	0.61	0.07							
16566	40.24	40.33	0.09	0.04							
16567	47.75	48.40	0.65	Nil							
16568	51.00	51.50	0.50	Nit							
16569	56.90	57.40	0.50	Nil							
16570	65.00	65.65	0.65	Nil							
16571	65.65	65.95	0.30	Nil							
16572	65.95	66.55	0.60	Nil							
16573	66.55	68.00	1.45	Nil							
16574	68.00	69 .50	1.50	Nil							
16575	69.50	71.00	1.50	Nil							
16576	71.00	72.50	1.50	0.02	0.02						
16577	72.50	74.00	1.50	0.03							
16578	74.00	75.50	1.50	Nil							
16579	75.50	77.00	1.50	Nil							
16580	77.00	78.55	1.55	0.01							
16581	81.30	81.55	0.25	0.19	0.15						
16582	81.55	82.00	0.45	0.01							

•

Golden Va	lley Mines L	td. Drill Lo		Hole No:	GRO-04-03		Page: 1/3
Property:	Rich'Ore			Coordinates:	L9+00W	5+85S	
District:	Kirkland La	ke		NAD 83	17U 517075	5324729	331 masi
NTS:	S: 42 A/02				May 17, 2004		_
Twp/Area:	Baden			Completed:	May 18, 2004		
Claim No .:	5225508			EOH:	110		
Drilled By:	Forage Orb	pit Inc.		Core Size	BQ		
Logged By	M. Rosatell	i M.	Losatelli,	Bearing	Grid N-360°	Dip -45°	
Objective:	Test weak t	to a moderate	e but well defined I.P. Anomaly	Dip Tests:	110	-45	
Core Stora	ge	Golden Valle	y Mines, Ltd., Val d'Or, QC				
Metres	<u> _</u>			Samala #	Erom	To	intonyal
From	10			Sample #	FIOIN	10	IIIGIVAI
0.00	6.00	OAR	Overburgen				
<u> </u>							
6.00	28.91	V2 BX	Intermediate Metavoicanic Breccia				
			Similar to intermediate Turr Dreccia units intersected in GHO-04-01 and GHO-04-02, nowever now well developed line to coarse-grained sub-angular				
			brecciated texture with a dominate matrix supported cherry grey to locally light greyish-green to occasional tine-grained sericite altered quartz-carbonate				
			Hostrock fragments are dominately of fine-grained porphyritic (feldspar) composition.				
ļ			Late penetrative carbonatization increasing from top of hole and is preferential to fragments and less so to matrix - Associated with a minor occurrence				
			of glassy grey quartz crack-seal fracturing of earlier quartz-carbonate alteration.				
ļ			Odd fine to coarse bleb of chalcopyrite visible with or without fine disseminated cubic pyrite, late as overprinting either fragments or interstitial matrix.				
			6.15: 2 x 2 cm area of fine to medium blebby chalcopyrite observed	16601	6.00	6.30	0.30
			14.7-15.0: Numerous isolated fine blebs to a 1 x 2 cm area similar to above downhole - Noticeable increase in sericite altered fragments to ~10%	16602	14.70	15.00	0.30
				16603	15.00	15.50	0.50
			15.78-16.0: Quartz-Calcite Flooded Vein Zone: Sharp contacts @ 50° TCA - +40-60% wallrock inclusions, intensely carbonatized with depth with some early	16604	15.50	15.78	0.28
			remnant sericite alteration proximal to upper contact - Generally weakly pyritic with trace to 1% fine disseminated inclusion-hosted	16605	15.78	16.00	0.22
		 	pyrite with exception to contacts via micro fracture & .5-1 cm wide band of consisting of individual disseminations or coarse aggregates.	16606	16.00	16.10	0.10
			Strongly altered contacts with a increased intensity of cherty grey quartz-carbonate inter-fragment alteration from 15.0-17.0 m to ~70% levels.	16607	16.10	17.00	0.90
			Fractured immediate wallrock contacts: 10 cm wide at upper contact with micro calcite (hematite altered wallrock fragments @ upper contact) fractures with				
			inner (5 cm wide) strongly sericitized contact with ~10% quartz-calcite fractures emanating outwards from lower vein @ oblique angles - Lower		L		
			wallrock contact is strongly fractured and mineralized with ~10% quartz-calcite hosted mineralization of fine to medium-grained blebby concentrations.				
			23.0-25.5: Increased intensity of quartz-carbonate flooding through a fine-grained flooding of breccia fragments imparting a more bleached colouration to				
			hostrock. Marked decrease in pervasive carbonatization.				
			Gradational contacts.				
	1						
28.9	1 30.80	12D	Syenite				
	1	t	Sharp intrusive contacts @ 30°TCA with interfingered lower contact.				
	1	t	Narrow (6 cm wide) chilled grevish-green to reddish chilled margins.				
	1		Cherty, hard and reddish-brown with poorly developed K-feldspar phenocrysts, locally a salmon pink to reddish colouration.		[

Golden Va	lley Mines	Ltd. Drill Lo	og	Hole No:	GBO-04-03	<u>. </u>	Page: 2/3
Property:	Rich'Ore			1			1 490.00
Meters	<u> _</u>						1
	10	Unit	Description	Sample #	From	То	Interval
	L	<u> </u>	Well developed fine speckled carbonatization.				
ļ	<u> </u>		Banded appearance with millimetric-wide mafic segregation banding averaging 50° TCA.				
	L	<u> </u>	Weakly pyritic with traces to 1% fine pyrite disseminations - Increased concentrations locally via calcite-guartz fractures (3-5% volumes) hosted mineralization,	16608	28.91	29.50	0.59
	Ļ	<u> </u>	best developed proximal to contacts, especially at top of unit.	16609	29.50	30.84	1.34
			Fine-grained bleb of chalcopyrite at lower wallrock contact along one of syenite fingers (sampled).	1			1
	<u> </u>						1
30.80	44.10	V2 BX	Intermediate Metavolcanic Breccia		1	1	1
			Continuation of upper unit.	T			1
				1			1
	L	<u> </u>	35.0-37.2: More bleached grey quartz-carbonate altered zone as per 23.0-25.5 m.	16610	35.00	36.00	1.00
				16611	36.00	37.40	1.40
			37.4-37.7: Calcite-Quartz Fractured Zone: Gradational contacts - Centre of zone defined by increased intensities of tension gashes, stringers and millimetric	16612	37.40	37.70	0.30
			wide veinlets hosting fine to medium-grained intermittent cubic pyrite.	1	1		+
						<u> </u>	1
44.10	47.78	3 I2D	Syenite	+	<u> </u>	†	+
			Equivalent to upper intersected unit with addition of well developed banded chilled margins over 50 & 30 cm respectively.		<u> </u>	<u> </u>	+
			Sharp irregular intrusive contacts @ 75° & 60° TCA.	16613	44.10	45 50	1 40
			Increased fine to medium-grained disseminated cubic pyrite from ~2-3% levels hosted in matic segregation banding, decreasing quantities downhole - Very	16614	45.50	47.00	1.50
			weakly developed calcite-quartz fracturing over top portions with increasing intensities below 47.0 m to 3-5% levels, but no visible pyrite association	16615	47.00	47.78	0.78
				+			
47.78	82.59	V2 BX	Intermediate Metavolcanic Breccia	+	1		f
			Continuation of upper unit.	+		<u> </u>	+
			47.78-49.45 : More bleached grey quartz-carbonate altered zone as per 37.4-37.7m.	16616	47.78	49.45	1.67
				+			+
			66.45-67.42: Sericite Altered Zone: Light grey, buff to light green colouration - Weakly developed sheared zone - Gradational contacts	16617	66.45	67.42	0.97
			Late penetrative carbonatization alteration.				+
			Steady increase in late calcite-quartz micro fracturing with depth and locally widen with a predominate glassy grey quartz	+			+
			morphology hosting significant fine blebby chalcopyrite around 67.0 m.	+	<u> </u>		+
			67.23: 2 cm wide milky (glassy) guartz veinlet @ 30° TCA - Hosts 1-2% fine to medium blebby chalconvrite hosted in calcite late	+	<u>+</u>	<u> </u>	+
		1	crack-seal alteration fracturing.			<u> </u>	<u>+</u>
		1		+	+		+
		1	82,0-82,59: Altered & fractured lower contact with increasing sericitized fragments (+10% volumes) beavily mineralized with fine discominated which with	16619	82.00	82.50	1 050
			lesser outboard fine disseminations bosted in unaltered fragments - Associated with 3-5% unmineralized ouadz-calcite to alongy drag stringers to violate		02.00	02.39	0.59
	1	<u>† </u>	Aboolated million of the standard of the standard of the standard and standard with standard quartz-calcine to glassy grey stringers to verniers.	+		<u> </u>	
82.59	82 7	512D	Svenite	+	┼────	<u> </u>	+
	1		Similar to 44 10.47 78 minus puritic mineralization and fracture intensition and 40 cm wide fine to medium exclored dark and in the second dark	10010	1 00.00	00.75	+
	<u> </u>	<u>+</u>	15 cm wide intensely broken acro proving to lower margin of intrusive care	10019	82.59	82.75	0.16
	1	L	1 - 10 on most mensery broken core provina to lower margin or initiusive core - +20 cm of lost core with 55 cm of core sampled.	1	1	1	1

Golden Val	ley Mines	Ltd. Drill L	og	Hole No:	GRO-04-03	1	Page: 3/3
Property:	Rich'Ore				1	1	1
Meters						1	<u></u>
From	То	Unit		Sample #	From	To	Interval
			Sharp planar intrusive contacts @ 30° & 40° TCA.				
		<u> </u>					
82.75	92.69	I2D BX	Intermediate Metavolcanic Breccia				
L			Unaltered and fractured upper contact.	16620	82.75	83.20	0.45
			Continuation of upper unit.	1	1	<u> </u>	+
					1	<u> </u>	
			83.2-92.4: Sheared and deformed zone rendering fragments almost unrecognizable, flattening and suggestive late recrystallization via quartz-carbonate	1	<u>+</u>	╂╼────	<u>├</u> ───
			precursor alteration zonation - Also appearance of medium-orained porphyritic K-spar phenocrysts (~5-7% volumes) reflecting a possible late	<u> </u>			+
		<u> </u>	possible potassic alteration event - Is still penetrative carbonatized	1		<u> </u>	<u>+</u>
		1	Gradational contacts				╄
		<u>+</u>		<u> </u>	+	╂━───	╂────
		<u> </u>	92 5-92 69: Fractured lower contact with 2-3% weakly pyritic quartz carbonate calcite micro fracturing - Horts occasional find to modium grained blobby to a bio	16621	02.50	00.00	
	<u> </u>	<u> </u>	late overprinting disseminations	10021	92.50	92.09	0.19
		<u> </u>		╄	<u> </u>		
02.60	02.01	120	Orașila	<u> </u>			+
52.05	93.01	120				<u> </u>	<u></u>
		┢────	Different then above intersected units as massive tine-grained and reddish coloured.	ļ	ļ		<u> </u>
		 	Sharp irregular upper contact to 70° TCA.	L	ļ		
		<u> </u>	Increased fine disseminated cubic pyrite to 3-5% levels.	16622	92.69	93.01	0.32
		<u> </u>	Late calcite-quartz micro fracturing developed only proximal to lower contact.	1			
		<u> </u>	Sharp planar lower contact to 30° TCA.				
		L					
93.01	110.00	I2D BX	Intermediate Metavolcanic Breccia				
			Continuation of upper unit.	1	1		
			Fractured upper contact to 96.5 m with 2 to 5% late calcite-quartz fractures, truncate against upper contact, poorly pyritic - Gradual decreasing intensity with	16623	93.01	94.00	0.99
			increasing depth.	16624	94.00	95.00	1.00
		T	Less quartz-carbonate altered compared to upper units.	1	1		
							<u>├──</u>
			96.5-97.5: Sheared, deformed and porphyritic altered section as per 92 5-92 69 m	16625	95.00	96.50	1.50
		<u> </u>			00.00		1.50
110.00	110.00	FOH	End of Hole	<u> </u>	<u> </u>		
110.00					 		ļ
		t		<u> </u>	<u> </u>		<u> </u>
		<u> </u>	+	<u> </u>	<u> </u>		<u> </u>
				<u> </u>			L
		<u> </u>					
		Į					
		ļ					

Hole No. GRO-04-03										
Sample	From	То	Width	Au30	Au Check	Cu PPM				
	(m)	(m)	(m)	g/t	g/t	ppm				
16601	6.00	6.30	0.30	Nil		498				
16602	14.70	15.00	0.30	0.02	Nil	967				
16603	15.00	15.50	0.50	0.02						
16604	15.50	15.78	0.28	Nil						
16605	15.78	16.00	0.22	Nil						
16606	16.00	16.10	0.10	0.01						
16607	16.10	17.00	0.90	0.08						
16608	28.91	29.50	0.59	0.02						
16609	29.50	30.84	1.34	0.06						
16610	35.00	36.00	1.00	0.01						
16611	36.00	37.40	1.40	0.01						
16612	37.40	37.70	0.30	0.09	0.07					
16613	44.10	45.50	1.40	0.01						
16614	45.50	47.00	1.50	0.01						
16615	47.00	47.78	0.78	0.03						
16616	47.78	49.45	1.67	Nil						
16617	66.45	67.42	0.97	Nil						
16618	82.00	82.59	0.59	0.02						
16619	82.59	82.75	0.16	0.03						
16620	82.75	83.20	0.45	Nil		1				
16621	92.50	92.69	0.19	0.01						
16622	92.69	93.01	0.32	0.01	Nil					
16623	93.01	94.00	0.99	Nil						
16624	94.00	95.00	1.00	0.01						
16625	95.00	96.50	1.50	Nil						

Golden Va	lley Mines L	td. Drill Lo	9	Hole No:	GRO-04-04		Page: 1/3
Property:	Rich'Ore			Coordinates:	L0+50E	1+25S	
District:	Kirkland La	ke		NAD 83	17U 5118036	5325193	326 masl
NTS:	42 A/02		Started:	May 16, 2004			
Twp/Area:	Baden			Completed:	May 17, 2004		
Claim No.:	1199893			EOH:	120		
Drilled By:	Forage Orb	oit Inc.		Core Size	BQ		
Logged By:	M. Rosatell	i M	Rostelli	Bearing	Grid N-360°	Dip -45°	
Objective:	Test a mod	lerate but we	I defined I.P. Anomaly	Dip Tests:	120	-45	
Core Stora	ge	Golden Valle	y Mines, Ltd., Val d'Or, QC				
Metres				Sample #	From	To	Interval
From	10	Unit		Sample #	FIOIN	10	IIIICI VOI
0.00	10.56	OVB	Overburden				
10.56	57.86	V2 BX	Intermediate Metavolcanic Breccia				
			Similar to Intermediate Tuff breccia unit intersected in GHO-04-03 from 6.00-28.91 m - well developed fine to coarse-grained (poony sorted) sub-angular	}			
			brecciated texture - Dominate matrix-supported medium greenish-grey groundmass.				
			Locally bleached, carbonatized (groundmass) and sericitized (fragments) sections over 1-2 m widths.				├
			Breccia fragments are dominately of a fine-grained feldspar composition. Grade downhole from feldspathic-rich (porphymic texture set within a cherty grey	l			<u> </u>
	ļ		groundmass, occasionally exhibit well developed millimetric-scale wide finer feldspar-rich alteration rims) to well developed fine to medium-grained porphyritic			 	<u> </u>
			fragments of light to greyish-green to medium-dark compositions, subtle coarsening downhole - Lesser cherty greyish-green, weakly porphyritic component	 		 	
			(decreasing amounts with depth).				L
			Weakly developed glassy grey quartz-calcite fracturing with the occasional more carbonate (calcite-ankerite) dominated veinlet	ļ			┟
			53.6: Gradual increasing pervasive carbonatization and light green alteration of feldspars with depth.	206001	53.60	54.50	0.90
				206002	54.50	55.50	1.00
			56.5-57.8: Carbonatized and Sericitized Altered Zone:	206003	55.50	56.50	1.00
Ĺ			Intense penetrative carbonatization (bleached section) overprint - Gradational upper contact.	206004	56.50	57.13	0.63
			Overprints early, well developed sericite altered hostrock - Increasing intensity downhole with increasing fracturing.				
			- Corresponding mottled chloritization of porphyritic breccia fragment matrix.				
			- Alteration renders breccia texture almost unrecognizable.				
			-57.13-57.4: Quartz-Calcite Fractured Zone - Comprised of ~ +30% glassy grey (fine-grained recrystallized calcite altered) veinlets @ 30°TCA - Variable pyritic	206005	57.13	57.40	0.27
			hosting traces to 1% very fine cubic pyrite to localized heavily mineralized vein segments (downhole) - Sharp veined contacts.	206006	57.40	57.62	0.22
			-57.62: Strongly sheared, banded lower contact @ 40°TCA.	206007	57.62	57.86	0.24
57.86	59.42	12D CARB	Altered Syenite				
		(HEM)	Sharp intrusive (sheared) upper contact @ 40°TCA.				
		, ,	Very fine-grained, light greenish-grey and intensely altered upper margin - Bleached, pervasive carbonatization.	206008	57.86	59.00	1.14
			59.0-59.42: Cherty, hard and reddish-brown to grey (@ lower contact) - Pervasive carbonatization, minus bleaching.	206009	59.00	59.42	0.42
			Related increase in fine disseminated cubic pyrite to ~3-5% volumes and associated glassy grey, pyritic quartz-calcite micro fracturing.				
			Sharp lower intrusive/lithogical (flow) contact @ 30°TCA - May represent altered and mineralized fine-grained flow margin/top?				

Golden Va	alley Mines	Ltd. Drill L	.09	Hole No:	IGB0-04-04	1	Page: 2/3
Property:	Rich'Ore	T				· · · · · · · · · · · · · · · · · · ·	1 age. 2/3
From	To		Description				+
59.42	> 03.30	V2 BY		Sample #	From	То	Interval
33.44	33.30			206010	59.42	60.00	0.58
		<u> </u>	Norren (2 om vide) blasshad sea hui blashad sea hui blashad sea hui blashad sea hui blasshad sea hui blashad sea	206011	60.00	61.00	1.00
			Cradual diseased a financial statistical and the statistical appendix				
		·	Gradual dispersal of pervasive carbonatization downhole.				
			Subtle increased intensity of fracturing from equivalent uphole unit and light green alteration of feldspar phenocrysts.				
	+						
	+	<u> </u>	85.4-89.0: Fine-grained tragmental lower contact - Decreasing volumes of recognizable porphyritic breccia fragments.				
	+		Weakly developed fine interstitial carbonatization of groundmass.				
		<u> </u>					T
			89.0-93.24: Carbonatized Altered Zone:	206012	89.00	90.00	1.00
			- Similar to zone intersected from 56.5-57.8 m with increased level of bleaching (carbonatization) and lack of visible sericite alteration reflecting finer grained	206013	90.00	91.00	1.00
			nature of unit - Gradational upper contact over 35 cm.	1		-	1
			- Gradual increasing intensity of fracturing downhole with corresponding well developed carbonatization to ~ 3-5% volumes at lower contact - Calcitic				1
			dominated composition over quartz - Two distinctive conjugate sub-sets forming well defined stockwork, low-angle stringers/veinlets x-cut higher-angle tension	·······	1		
	_		gashes/stringers.		1	1	+
			- Late stringers are locally heavily mineralized with fine banded to disseminated pyrite or less commonly along chloritized wallrock contacts and are sometimes	1			+
	ļ	ļ	composed primarily of chlorite when of micro scales.			÷	+
			- Hostrock is weakly mineralized with traces to 1-2% fine cubic pyrite concentrated in unaltered, chloritized segregates (impart a spotted texture to rock).	+			+
	ļ			+	· · · · · · · · · · · · · · · · · · ·		+
 	L		-92.0-92.3: Intensely broken and blocky core section - ~60% recoveries.	206014	91.00	92.30	1 30
						02.00	
			-92.3-93.3: Coarse-grained and fragment dominated lower contact - Increased level of fracturing to 10-+20% volumes to lower contact, poorly mineralized as	206015	92 30	03.30	1.00
	<u> </u>		per uphole. Well developed fine-grained spotted to mottled texture comprised of chloritized matrix (+30% volumes) interstitial carbonatized fragment material		02.00	30.00	1.00
			Increase in chlorite-hosted cubic pyrite to a consistent 1-2% volume.	+	+		
				+			+
93.30	94.53	V2 DK	Intermediate Dyke	+		·	+
			Sharp veined (calcite±quartz veinlet - 3 cm wide and equivalent to those described above) upper contact @ 60°TCA	206016	02.20	04.52	1.00
			Fine grained, medium grevish-green, weakly chloritized with a penetrative carbonatization overprint	200010	93.30	94.55	1.23
			Well developed fractured contacts over 20 and 50 cm widths respectively - Well mineralized with fine disseminated purite along contacts	+			
			Sharp lower contact @ 50°TCA.	+	<u> </u>		<u> </u>
				+	<u> </u>	<u> </u>	<u> </u>
94.53	120.00	V2 BX	Intermediate Metavolcanic Breccia	 			<u> </u>
			Continuation of altered and fractured coarse-grained, fragment dominated braccia unit intercoated unbelo fragment and a second				<u></u>
			Well mineralized and fractured down to 102.4 m	206017	94.53	95.00	0.47
		· · · · · · · · · · · · · · · · · · ·	- Gradual decrease in fracturing and mineralization from upper contract from 10% to 0.5% and 40% to 1.5%	206018	95.00	96.00	1.00
			walknock and fractures to depth - Localized sorialized walknock adiagant larger for time of	206019	96.00	97.00	1.00
			locreased chlorite composition successive of a mars later reliate to use finances internet in the second seco	206020	97.00	9 8 .00	1.00
· · · · · · · · · · · · · · · · · · ·	L	L	moreased chrome composition suggestive or a more intermediate to matic composition for breccia unit.	206021	98.00	98.60	0.60

Golden Va	lley Mines	Ltd. Drill Lo		Hole No:	GRO-04-04		Page: 3/3
Property:	Rich'Ore						
Meters							1
From	То	Unit	Description	Sample #	From	То	Interval
	ļ		98.7: Syenite Dyke: 8 cm wide - Sharp intrusive contacts @ 50°TCA - Very fine-grained, light greenish-grey, pervasively carbonatized - Sericitized contacts.	206022	98.60	98.80	0.20
			Intensely fractured upper and lower wallrock contacts over 3-4 cm's - Glassy grey pyritic quartz-calcite, x-cut by low-angle calcite±quartz tension gashes	206023	STD	STD	
			as typical of unit.	206024	98.80	99.00	0.20
				206025	99.00	100.00	1.00
		······	Gradual decrease in pervasive carbonatization and fracturing downhole to approximately 107.0 m.	206026	100.00	101.00	1.00
	<u> </u>		Grades downhole into Intermediate Breccia similar to top of hole	206027	101.00	102.40	1.40
	<u> </u>	<u> </u>			1	l	
120.00	120.00	FON		+	+	<u>+</u>	+
120.00	120.00	EUN		<u> </u>	+		<u> </u>
	<u> </u>			+	<u> </u>	<u> </u>	
					<u> </u>	ļ	<u> </u>
	ļ						┥───
L	L				ļ		<u> </u>
						Γ	T
						1	1
	†			<u>+</u>	<u> </u>		<u> </u>
						1	<u>+</u>
	+	····-		+	+	<u></u> +−−−−	<u> </u>
	┼───	<u> </u>		+		<u> </u>	+
						<u> </u>	+
		 		+	÷		
L		<u> </u>				ļ	_
				I		L	1
		<u> </u>		1	l	i	
L							
				1			
	1	 			1	1	<u>† </u>
	1	 		1	1	<u> </u>	<u>† </u>
	+	<u> </u>			†·	<u> </u>	+
	+	<u> </u>		+	<u> </u>		}
 	+	 			+	 	<u> </u>
ļ	<u> </u>			<u> </u>	<u> </u>		
							<u> </u>
							1
	+	1		1	1	<u> </u>	t
L				1		1	L

.

Hole No. GRO-04-04										
Sample	From	То	Width	Au30	Au Check					
	(m)	(m)	(m)	g/t	g/t					
206001	53.60	54.50	0.90	Nil	-					
206002	54.50	55.50	1.00	0.48	0.38					
206003	55.50	56.50	1.00	Nil	-					
206004	56.50	57.13	0.63	Nil						
206005	57.13	57.40	0.27	0.07	-					
206006	57.40	57.62	0.22	0.02	-					
206007	57.62	57.86	0.24	0.14	0.13					
206008	57.86	59.00	1.14	Nil	-					
206009	59.00	59.42	0.42	Nil	-					
206010	59.42	60.00	0.58	0.01	-					
206011	60.00	61.00	1.00	Nil	-					
206012	89.00	90.00	1.00	Nil	-					
206013	90.00	91.00	1.00	Nil						
206014	91.00	92.30	1.30	Nil	-					
206015	92.30	93.30	1.00	Nil	-					
206016	93.30	94.53	1.23	Nil	-					
206017	94.53	95.00	0.47	Nil	-					
206018	95.00	96.00	1.00	Nil	-					
206019	96.00	97.00	1.00	Nil	-					
206020	97.00	98.00	1.00	0.01	-					
206021	98.00	98.60	0.60	0.01	-					
206022	98.60	98.80	0.20	0.18	0.27					
206023	STD	STD		Nil						
206024	98.80	99.00	0.20	0.05						
206025	99.00	100.00	1.00	Nil	-					
206026	100.00	101.00	1.00	0.04	-					
206027	101.00	102.40	1.40	0.01	-					

APPENDIX III

GRO-04-01 to GRO-04-04 Drill Sections

· ____