<u>Geotechnical Submission For Assessment Work</u> <u>Credit</u>

Property Name: Aurum: O'Sullivan Lake Area.

NTS LOCATION: 42L6NE & 42L7NW

CLAIM MAP(S) G-0362 & G-0319

2.32526

Mining claims Included: TB 1196090, 1242501, 1242503 & 1242504, 3012082 to 3012092 incl., 3012351 & 3012352, 3012364. (18 claims)

Type(s) of Work Performed:

Geological Mapping (Kowkash Grid), Sampling/Assaying, Line Cutting, Prospecting Geophysics, Stripping/Trenching, New Prospecting.

Report Author: David E. Christianson

<u>Co-Author</u>: "Geological Mapping, Kowkash Grid A": Dr. John C. Davies Ph. D., Geol

G.I.S. Map Production: Dan Beauchamp P. Geol

Report Date: June 1st, 2006

Contents (Text)

- 1. Executive Summary
- 2. Property Location / Access
- 3. Registered Claim Owner Information
- 4. Local Geology and History
- 5. Project Discussions and Details
- 6. Davies Report, Main
- 7. Davies Report, Field
- 8. Additional Line Cutting
- 9. New Showings
- 10. Ground Geophysical Surveying
- 11. Sampling and Assaying
- 12. Work After Wielezynski (Additional Sampling)
- 13. Visiting Geologists Comments
- 14. Conclusions and Recommendations
- 15. References
- 16. Appendix:
 - a. 13-1 Contractor Information Table
 - b. 13-2 Rental Equipment
 - c. Notes on special Equipment
 - d. The TX27 Transmitter Explained.
 - e. Personnel Work Record.
 - f. Writer's Statement of Qualifications
 - g. Assay Certificates
 - h. Sample Information Tables, 9200 and 9300 Series.

ı

Map(s	;)		
	AS-01	Mineral Occurrence Locations Near The Aurum. Scale: 1	:15,000
	AS-02	2004 Field Work Project Areas.	1:15,000
	AS-07 2	2004 Field Work Projects, Base OGS Map P3377.	1:20,000
	AS-08 M	New Showings and Project Areas.	1:15,000
•	AS-09 (Gagnon Area Grid Layout.	1:2,500
	AS-10A	Ground VLF EM 16 Survey, Kowkash Area, Grid A -VLF Profiles TX-27	
		-VLF Interpretation Map	1:2,500
/	AS-10B	Ground Magnetometer Survey, Raw Data, Diurnally Corrected & Unfiltered, Kowkash, Grid B.	1:2,500
ŀ	AS-10C	Ground VLF EM 16 Survey, VLF Profiles, Gagnon Area.	1:2,500
ŀ	AS-10D	Ground Magnetometer Survey, Kowkash, Grid B, Filtered Data Profiles.	1:2,500
A	АS-10-Е	Ground VLF EM 16 Survey, Kowkash, Grid B, VLF-TX27.	•
A	S-11 S	ample Locations, Sample Series 9200 and 9300.	1:8,000
А	S-12 Si 94	ample Location Plan, Additional Sampling, 400 Series Samples.	1.0.000
			1:8,000
		eological Mapping. @004 Davies Geology Over P3377.	1:5,000
С	laim ma	ps G-0362 and G-0319	1:40,000

Figure(s)

AS-03	Kowkash Area Property, Grid A.
AS-04	Kowkash Area Grids A & B As Cut.
AS-05	Aurum Project Property Location Sketch.
AS-06	Kowkash Area, Actual grid A As Cut.

Note: - Maps are located in Map Pockets at end of Report. - Figure are located on respective pages in Report.

Executive Summary

The following report relates to exploration development work performed on some claims located in the O'Sullivan lake area of north western Ontario, Thunder Bay Mining District.

Shaggy Dog Exploration Inc. (SD), entered into an Option to Purchase Agreement with claim owner Craig M. Maitland, covering the purchase of 18 mining claims which are the subject of this report, on January 31st, 2003. This agreement was subsequently legally assigned to Superior Canadian Resources Inc. (SCRI), [the company] on April 5th, 2004.

The company was attracted to this particular area for several reasons including a lengthy history of past exploration that resulted in no less than 32 mineral occurrences being recorded in the Mineral exploration Index files (MNDM) See Map AS-01 in Map pocket at end of this Report. The old gold hunters analogy relating to 'finding' elephants, in elephant country' fit in here as well, with the proximity of the old Consolidated Louanna Gold Mine (prod. 15,400 oz gold).

During the winter/spring of 2004, SCRI's geological team consisted of, Dr. David Evans Ph. D., Geol, President, Peter Wielezynski M., P. Geol. Vice President, Exploration, Dr. Michael Marchand Ph. D., Geol, Director (Geophysical specialist), and David E. Christianson project manager, (author of this report).

A great deal of time was spent during this period compiling and analyzing the volumes of data and maps relative to the area and its history of past development. Finally an operations plan fell into place and the overall project area was broken into several specific sub project areas. See Map AS-02. The search for competent field personnel then got underway.

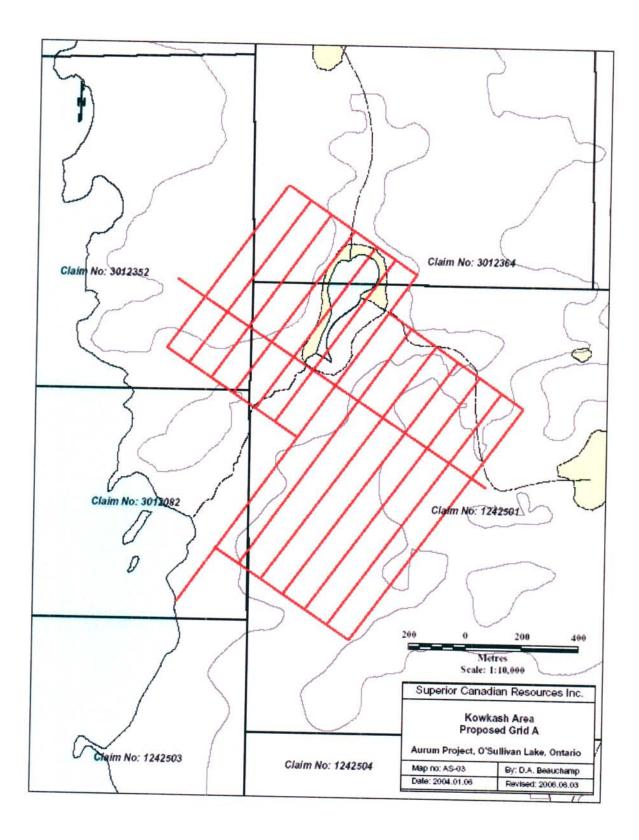
The 'Kowkash' project area would be the subject of small-scale fresh bedrock mapping to start. There was some question as to rock types etc. noted in past reports, therefore this project would start with an accurate description of the rocks and minerals found within a predefined grid area. Old workings would be located, cursorily cleaned up and sampled as appropriate, and all old diamond drill collars would be accurately re-located etc. Needless to say, additional new prospecting would also be undertaken. Due to the excessively harsh bush conditions (recent major blow-down events), a grid would be needed to accommodate mapping etc. The Kowkash 'A' grid was subsequently tentatively laid out. Figure AS-03, on following page.

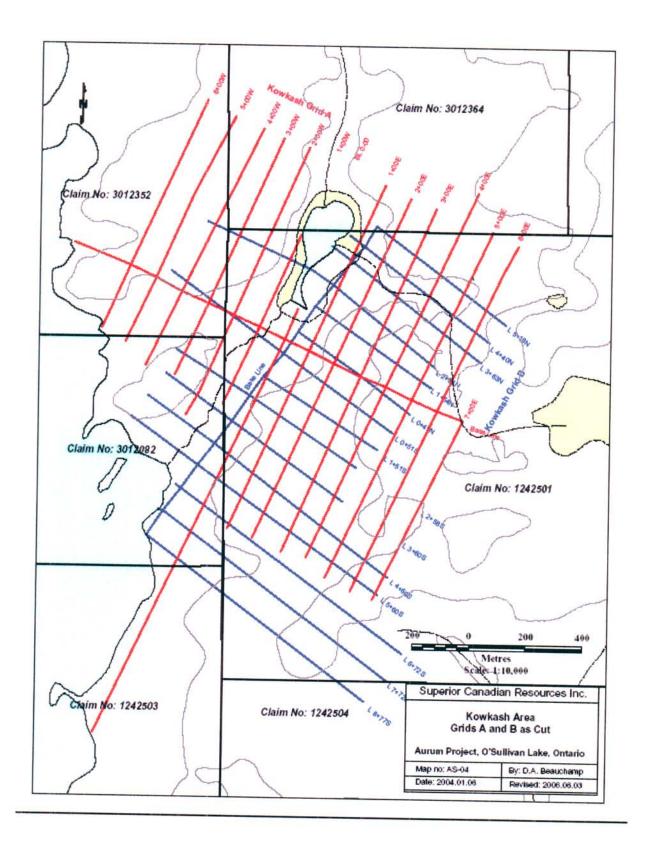
The Kowkash grid area would also be the subject of detailed ground geophysics using an EM 16 unit coupled with a TX 27 transmitter unit (Appendix 3). In order to complete this process it was deemed necessary to brush out parts of the older (1998) 'B' Grid. Figure AS-04 on following page.

The "Gagnon project area' (Map AS-08 & AS-09), would be the subject of a review of the old workings plus new prospecting along strike in both directions. A process of 'prospecting geophysics' (see explanation of process later in this report) would also be undertaken as required and appropriate.

As if this wasn't enough for one season, budget and time provisions would also be made to accommodate some additional general project area prospecting. The goal here was to turn up 'New showings" of which several were found and elaborated on later in this report.

In any event at some point mid-project(s) a general plan review meeting would (did) take place during which all field personnel had an opportunity to report their findings to the group. Coincidental to this time, SCRI V.P. Exploration P. Wielezynski, visited the property and had an opportunity to review the work that had been done.


Although there was some disagreement between the field personnel, (including the project manager) and Wielezynski, a higher priority was attached to doing further prospecting in the Kowkash area and all other projects would be put on hold.


The mapping crew left the project on July 1st and the crew regrouped and prepared for the additional work as outlined by Wielezynski.

Details concerning how and when work was performed in and on the different projects is discussed in the main body of this report.

2004 field work ended on July 31st when the camp was demobed to Thunder Bay and respective personnel returned home.

Reports covering the specifics of each sub-project were compiled after July 31/04.

A few notes on the field personnel selected:

The Project Manager was highly sensitive to getting the right people for the different parts of the project and proved very successful in these regards. The 2004 field crew consisted of:

Dr. John C. Davies Ph. D., P. Geol: would lead the bedrock mapping of the Kowkash project area. According to some of his peers, John *wrote the book on bedrock mapping*, especially at the township scale. In his various roles with the Ontario Geological survey, including a stint as Resident Geologist (Kenora division), he had occasion to do a considerable amount of mapping (Cameron Lake). This writer believes that what made him so good, was the fact that he loved doing it.

John was ably assisted in the field by his son **John-Mark Davies**. JM had spent many enjoyable days/months working with father John in the past and he also had a love for the bush. He recently graduated from University in the field of Biology. Bugs, rocks and water were the topics of many an interesting bush conversation we're sure.

Shaun Parent was chosen to perform new prospecting and geophysical instrument operation as required. Shaun is a born 'bushrat' who also loves what he does. A highly experienced and proficient prospector, Shaun has many '*new showings*' and '*occurrences*' under his belt. The geophysical prospecting technique (explained later) that he used on the Gagnon project proved very efficient.

Paul Beckett C.E.T., a recent graduate from Sault College's Exploration Engineering Technology program, ably assisted Shaun in his endeavours. Paul was not only a quick learner but willing to do anything which is a real bonus in any exploration camp.

Ian McCutchon was the camp's '*jack-of-all*' and helped out in all project areas including camp duties, prospector's helper, expediter etc. Ian was particularly adept at keeping Christianson *vertical* while in the field.

Line Cutting contractor: 'Beaver Head Linecutting' (Fred Ice) provided line-cutting services on the original Kowkash 'A' grid. The project took excessively long due to extreme bush conditions.

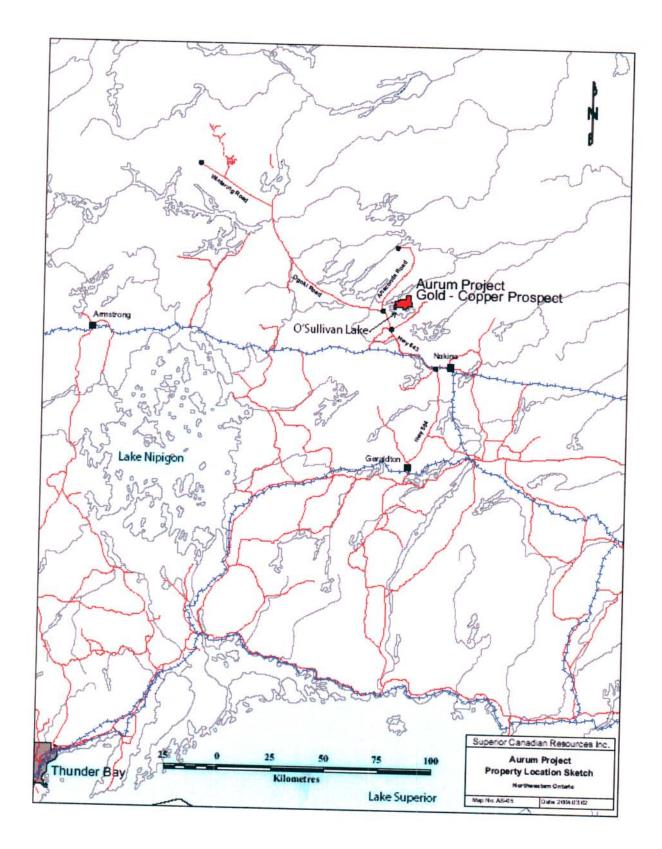
Additional line cutting, including brushing out the old Kowkash 'B' grid, and line extensions, plus line cutting in the Gagnon project area was done by several local native lads from the Aroland Reserve. Their

5

names are found in the 'Contractors Contact Information Table' attached.

Blake Mendowegan and David Besson, both local native boys were contracted to assist with chaining and prospecting, including washing, sawing and blasting samples. These two lads can now proudly call themselves competent '*prospector's helpers'*. The project manager took them under his wing and taught them many tricks of the trade, which they readily learned (and got quite good at).

Property Location / Access


This 18 claim Aurum Property is located in what used to be the Kowkash Mining division, now Thunder Bay North.

Description/Location:

The property known, as the **Aurum Property** is located partly within the O'Sullivan lake area **G Plan # 0362** and adjoining Maun lake Area, **G Plan # 0319.** Copies of both G-Plans are found in the map Pockets at the end of this report. The 18 claim group is located within the Beardmore-Geraldton OGS Resident Geologists Office area of Thunder Bay Mining Division. NTS co-ordinates for the area are **42L6NE** and **42L7NW**. See Figure AS-05 on following page.

Access to the propertyis by road via Provincial highway # 587 north from Geraldton Ontario to highway #643 immediately south of Nakina Ontario. Proceed west on hwy. 643 approximately 42.2 km's (past Aroland FN Reserve) to a junction and proceed east for approximately 1.8 km's to the road to O'Sullivan's Rainbow Resort. Turn right and proceed past the resort (2 km) to the end of the road on Osull lake Peninsula to SCRI base camp on O'Sullivan lake. Access to the claims is then accomplished by boat from camp to various points within the claim group.

Access can also be gained via float plane from Nakina.

Registered Claim Owner(s):

The current registered holder of 100% interest in all (18) claims covered in this report is **Craig M. Maitland** of 310 Cowan St., Thunder Bay ON P7A 1R7.

Superior Canadian Resources Inc. of suite 207, 1039 – 17th Avenue SW, Calgary AB T2T 0B1 has the right to perform and record work on these Mining Lands by virtue of an "Option to Purchase Agreement" dated April 5th, 2004. As the "Assigned Optionee" named in this Agreement, SCRI is granted the right to earn a 100% interest in the claims by performing certain types and amounts of exploration development work along with making such cash/stock payments as outlined in the Agreement.

For more information on SCRI please refer to the company website @ www.superiorcanadian.com .

Local Geology and History

Historically the O'sullivan Lake Area has been explored for gold since the 1930's.Active exploration in the 1980's lead to the development of the O'Sullivan Lake Mine (Louanna Gold Mine) which operated on limited reserves from a decline utilizing a small mill. Gold mineralization was characterized by sulphide (pyrite-arsenopyrite), and gold bearing veins at and within the contact of a feldspar porphyry unit.

There are >32 mineral occurrences hosted within the mafic to intermediate volcanic sequence which is intruded by plutons and dikes of felsic material. Map AS-01. The area is strongly affected by northeast trending structures that have acted as conduits for alteration and gold-bearing fluids. These structures create the shape of the lake and are traceable for many kilometres.

Exploration in the 1990's was limited to prospecting and sampling of the showings assisted by OPAP. Sampling by a group of prospectors has verified the grades and locations of previous explorers gold showings. The gold values range from grams to 10's of grams per tonne in various environments.

Quartz-vein-hosted showings are located throughout the area. These veins may contain: arsenopyrite, pyrite and chalcopyrite; pyrite, tellurides and carbonate; or just visible gold (values up to 1 ounce per ton). Shear zones located in the strongly altered northeast structures contain quartz veinlets, disseminated pyrite and arsenopyrite. Carbonate alteration zones are located within the vicinity of the large structures and can contain quartz veinlets with visible gold. Areas of feldspar and quartz feldspar porphyries are common and have alteration to sericite with pyretic fractures. (assays up to 0.20 ounces per ton). (MNDM MEI Index 42L06NE).

Project discussions and details:

The 'Kowkash' 2004 'A' Grid was started on May 29/04.

Approximately 18 km's of grid lines spaced at 100 metre intervals was installed and completed on June 14/04. See Figure AS-06 on following page. Cutting took much longer than anticipated due to excessively harsh (blow down) conditions. Contract services were provided by Beaver Head Line cutting c/o Fred Ice.

Bedrock Mapping (grid scale) of 'A' grid commenced on June 10/04 and was completed by Dr. John C. Davies and assistant John Mark Davies on July 1/04. Here again, prospecting of grid and between lines was exceptionally difficult due to harsh bush conditions.

A report on the bedrock mapping project was later prepared by Dr. Davies and is included as follows.....

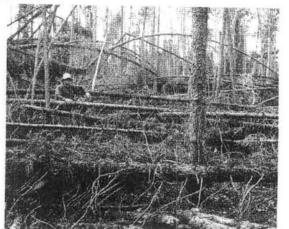
A geological plan showing information gathered during mapping is included in the map section of this report. See Map AS-13, " Geological Mapping, 2004 Davies Geology over P3377" in map Pocket.

Geological Mapping of the Kowkash Grid Aurum Project Superior Canadian Resources Inc.

Introduction

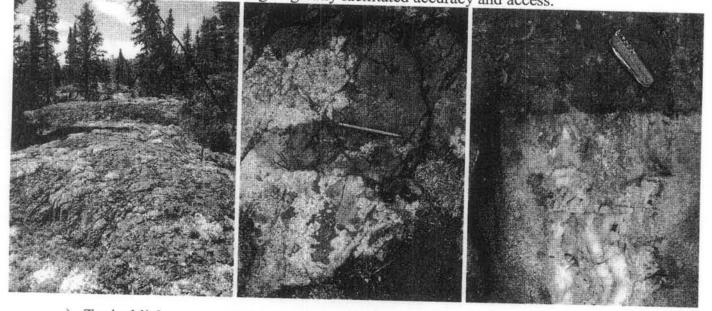
The presence of gold in the O'Sullivan Lake area has been known for over 75 years and the area has been subject to considerable exploration from time to time. In 1983-1984, 15400 ounces of gold were recovered from 70 000 tons of ore at the consolidated Louanna goldmine on Osulake Peninsula, approximately 3 km west of the Kowkash Grid.

Prospecting in 1958 led to the discovery of what was called the Copper Zone. During the following year trenches were sunk, magnetometer and electromagnetic surveys were conducted on a cut grid and 14 holes were drilled on selected targets. Gold was discovered in a number of the holes, but no further work was carried out in the grid area until 1983 when airborne magnetic and electromagnetic surveys were followed by the drilling of 7 more holes. Seven additional holes were drilled in 1986 with interesting but non-economic intersections in four of the holes.


The potential for gold deposition having been demonstrated, Canadian Superior Resources Inc. began, in 2003, a program which might identify new targets for exploration. The primary purpose of the 2004 geological mapping project was to provide more details on the geology of the area, with special emphasis on locating structural features with which gold might be associated.

Topography and Procedures

The Kowkash grid consists of a baseline at 115° which is 1.5 km long, and cross lines every 100 metres that extend 650 m to the north and 300 m to the south (700 m south to the east of line 00). Access is by boat to the west end of the baseline, or to the south end of line 00. Maximum relief in the areas is about 15 m.


Spruce muskeg and cedar swamps cover much of the area, and higher areas have been subject in places to severe wind blow down.

This results in slow and potentially dangerous travel by foot. A major problem is the extensive cover of rock outcrops by lichen, which disguise many textures and structures and which make quick interpretation difficult. Most lichens are brown but a white crustose lichen may falsely suggest the presence a white (felsite) dyke. A black fine crustose lichen which grows preferentially on vein quartz, provides additional confusion. Best exposures are

of

under moss or tree roots. A cut grid greatly facilitated accuracy and access.

- a) Typical lichen covered outcrop, about 325W, 275S
- b) White lichen on black basalt, after moss was removed from basalt, 10W,17N
- c) Bleaching/scrubbing of black lichen reveals quartz veining beneath, 25W, 35S

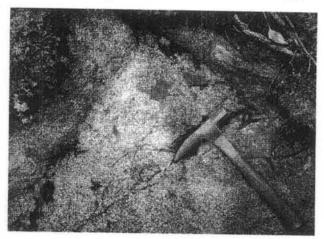
Cut lines were traversed and all visible outcrop was examined. Air-photo study revealed higher areas which were examined for outcrop. All outcrop was tied into the grid using pace and compass methods. The actual outline of some outcrops was drawn, but where outcrops are small, or a collection of small outcrops was seen in one locality, the outline shown on the map has been generalized or circled.

General Geology

Government-sponsored geological work was carried out over parts of the O'Sullivan Lake area in 1904 (Collins), 1916, (Hopkins) and 1929-1930 (Kindle). The authoritative work on the area was done in 1947 and 1948 (Moorhouse, 1955) and this was subsequently incorporated into a study by Parker and Stott (1998).

Basalt underlies much of the Kowkash grid and varies from very fine grained to medium grained. Lichen-covered outcrops give the impression that most of the basalt is massive and featureless, but under up-turned tree roots and beneath mosses there is evidence that pillowed basalts are abundant and, where well exposed, can be used in determining top directions. Clean weathered surfaces are greenish grey and typically display irregular hairline fractures along which there has been bleaching, carbonate deposition, traces of sulphide and, more rarely, quartz. The basalt has experienced low-grade metamorphism and recrystallization but, for the most part, lacks obvious foliation. Local shear zones are widespread but narrow (less than 20 cm) in outcrops, contain chlorite and carbonate, and weather light brown.

Basalt with 1 mm ground mass is common in both massive and pillowed flows. In part these contain sparse 3-5 mm white feldspars which show some resorbtion at edges, and this distinctive rock might serve as marker horizons if the distribution could be better determined. More controversial are mafic rocks with relic 2-4mm grains, which have been considered intrusive gabbro by Parker and Stott but were included with the basalt sequence by Moorhouse.


In other parts of the Wabigoon Subprovince thick flows consisting of both fine- and medium-grained sections, some of which have pillowed upper sections, are clearly extrusive and can be traced for considerable distances, and in the Kowkash grid area most of the medium-grained mafic rocks are similarly considered to be part of thick flows.

Neither intermediate nor felsic volcanic rocks were recognized in the mapping project. Moorhouse did note the presence of minor rhyolite on Cryderman Peninsula and along strike to the east, and thinly bedded tuff on both the Cryderman and Osulake peninsulas. In a number of the holes drilled by Jonsmith Mines, intersections of "rhyolite" were reported. These were described as fine-to medium-grained, dark grey to green, very hard rocks with fine stress fractures. This "rhyolite" has been brecciated in places. Quartz veins up to 4 cm across are associated with some "rhyolite", and both carbonate and sulphides are common associates. Diagnostic features appear to be the hardness and the stress lines.

Gabbro

As noted above, much of the medium-grained mafic rock is considered to be a part of the extrusive pile and metamorphosed similarly to the finer-grained basalt. North of the

baseline, between lines 2W and 6W, many exposures consist of medium- to coarsegrained mafic rock, which appear less stressed than the basalt and are associated with a magnetic high. Textures suggest these rocks may be younger than the basalts. The relationship between the gabbro and basalt is confusing but would be consistent with the gabbro being a postvolcanic intrusion, which encloses blocks of both medium- and fine-grained basalt. In one outcrop, small dark, fine-grained inclusions were noted in the gabbro, as seen in the photo above the hammer head.

Granodiorite

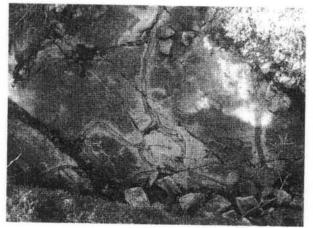
The area east of line 2E and south of 3S appears to be mainly underlain by white weathering grandodiorite. This consists of altered white feldspar and 20-30% grey quartz with angular edges where the quartz abuts against the feldspar. The mafic content is low,

and is mainly biotite, which is partly altered to chlorite. Traces of magnetite are present. In most outcrops, particularly the two larger outcrops near lines 4E and 5E respectively, the granodiorite shows evidence of stress, especially along east-northeast treading zones. Moorhouse reported an aureole of thermal metamorphism around the granodiorite.

The granodiorite presumably correlates with the quartz-diorite noted by Sutherland (1959) in some of the drill core from the East Zone which is described as light grey to green with a sugary texture. The monzonite at the bottom of the Jonsmith hole #3 is described as medium-grained, brown and green, with some epidote, carbonate and hematite, and would seem to be unrelated to the granodiorite.

Porphyry Dikes

Throughout the area of the Kowkash grid, but principally to the east of line 1E, pinkish porphyry dikes intrude the basalt. In contrast to the granodiorite, with which it may be associated, the quartz phenocrysts are rounded. Sutherland (1959) has described many porphyries intersected by drilling as containing abundant albite or albite and quartz phenocrysts in a silicious fine-grained ground mass. The core was light green or grey-green with a variable chlorite content.


Diabase

Outcrops of a reddish brown weathering 20 m – wide diabase dike were found near the east zone. The rock is well jointed and varies in grain size from 1 mm near the contacts to 3-4 mm in the interior. The fresh surface is black and relatively unaltered with clearly defined feldspar laths and ophitic texture. Parker and Stott (1998) have interpreted a "Y" branch in this dyke, but no good evidence for this could be found in the present study. One hole (#23) was drilled entirely in diabase.

Structural Geology

Moorhouse (1955) noted an abundance of pillow lavas, but their distortion made him reluctant to suggest top directions. Parker and Stott (1998, Figure 12.3) have interpreted an east-northeast trending anticline-syncline pair through the central part of the O'Sullivan Lake area so that both the southernmost part of the sequence, adjacent to the Esnagami pluton, and the northernmost part adjacent to the English River Subprovince,

face north. The area between the two fold traces, which includes the Kowkash grid, faces south, and this is consistent with top determinations made during the present survey. Moorhouse also assumed steep dips to the volcanic sequence, but this has not been verified. Indeed a "best fit" in parts of the area indicates relatively shallow dips for some pillows and

relatively little distortion after solidification.

Parallel east-northeast zones of carbonate-flooded schist, typically one to ten metres wide, occur near the southern contact of the volcanic pile with the Esnagami tonalitie pluton. A similar zone of intense shearing and faulting is reported near the northern contact of the pile with metasediments and gneisses of the English River Subprovince. Parker and Stott (1998) attribute these zones, or at least the latest movement along these zones, to the emplacement of the English River rocks, noting that the relative movement is predominantly north side up, opposite to that which would be expected if the emplacement of the Esnagami pluton was the major factor. East-trending shear zones have been recognized on the Osulake and Cryderman peninsulas but not in the Kowkash grid area. A north-trending fault lying near the shore of the O'Sullivan Lake has been interpreted by Moorhouse (1955) and may be a factor in the apparent termination of these east-striking shears.

The examined outcrops of the Kowkash grid do not display broad zones of schisting. Shear zones are generally less than 40 cm across and contain only minor sulphides and quartz. The dominant direction of these narrow shear zones is about 030° , parallel to the edges of many outcrop areas and near to the direction of the latest ice movement, 045° . It is reasonable to assume that any broader zone of 030° shearing may have been gouged by glacial activity. Any associated mineralization must, of necessity, be electrically conductive in order to be traced geophysically,

Other narrow shear zones were mapped. These strike mainly in the northeast quadrant. Moorhouse (1955) delineated two northeast-trending faults based on air-photo lineaments and the apparent sinistral offset of diabase dikes. One 030° shear just south of the Kowkash grid displayed sinistral offset, while an 050° shear near line 00 and the baseline was offset dextrally by a 115° shear. Porphyry dikes are believed to be shear controlled, most trending within 20° of 030° .

Economic Geology

Mineral exploration in the O'Sullivan Lake area has largely focused on the discovery of gold occurrences. Some exploration for copper has taken place, and a viable gold-copper deposit might be discovered, but the emphasis will likely remain on gold. Work in the Kowkash grid area has mainly centered on four areas of mineralization described below as the South Zone, the Discovery Zone, the Copper Zone, and the North Zone.

South Zone

Prospecting by Jonsmith Mines in 1958 uncovered a north-striking quartz vein up to 20 cm wide in or adjacent to a steeply west dipping shear zone. At one point the vein leaves the shear zone and becomes irregular in shape and apparently dies out. A 20 m trench, begun at the point where the vein leaves the shear zone, has been sunk in rusty very fine-grained basalt, trends west-northwest and is up to 2 m wide and 1.5 m deep. The vein, which dips northeast and is essentially unmineralized, lies in the north wall, and the footwall basalts contain chalcopyrite, pyrrhotite and pyrite, mainly along fine fractures. No significant structural control was evident.

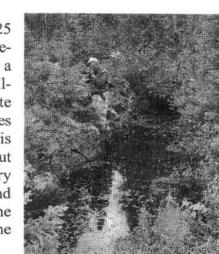
6

Geophysical work showed some association with a weak magnetic anomaly. One map shows a conductive zone along the east side of the outcrop area, but the original map was not available. One hole, drilled parallel and to the north of the trench, intersected a 54 m silicified zone containing pyrrhotite and chalcopyrite and a 57 cm brecciated zone with similar mineralization. The position of the drill-hole collar could not be determined with accuracy.

Discovery Zone

Electromagnetic conductors, which were located by Jonsmith Mines in a 1959 geophysical survey, lie in an area of heavy overburden under and to the southeast of Keyhole Pond. Eight holes were drilled the same year to probe the conductors, and two of these intersected narrow quartz veins containing visible gold at or near the contact between mafic flows and porphyry. One hole drilled across the same north-trending conductor, 180 m north of the "discovery" holes, failed to intersect significant gold, but one hole drilled in 1983 to the south of the "discovery" holes, did encounter visible gold in mafic volcanics.

Two outcrops of 1 mm basalt lie to the west of the "discovery", and a small outcrop of fine-grained basalt, but contain only minor sulphides. A trench (#8) has exposed a carbonatized northwest-dipping shear zone, which likewise contains only minor sulphides. In the immediate vicinity of the "discovery", at 180E,99S, is a water-filled trench (#9) surrounded by muskeg: the muck pile consists of rusty fine-grained basalt containing pyrrhotite, chalcopyrite and pyrite on fine fractures.


which intersected encouraging values of gold, but no further work appears to have been

North Zone

done in this zone.

Copper Zone

An outcrop of basalt west of line 2E and from 200-225 m north of the base line consists of massive finegrained basalt. Along the south edge of the outcrop a 12 m trench (#10) has been sunk and the rusty welljointed rock contains pyrrhotite, chalcopyrite and pyrite along fine irregular fractures. One of the 1959 holes was drilled across the presumed extension of this mineralized zone, 100 metres to the north-northeast, but results were apparently not encouraging. Porphyry dikes do occur in the volcanics to the east and southeast, and may be present but concealed at the trench. There is no evidence of a conductive zone in the vicinity of this trench.

diabase dike, which passes to the southwest of the Discovery Zone. A high-sensitivity magnetometer survey was undertaken in an attempt to discern structural complexities in the area, but apparently no further work was done.

A 1983 hole drilled under this trench had several sections with anomalous gold values.

Kowkash Gold Corp. acquired the property and in 1986 drilled seven more holes to check for the continuity of the gold mineralization and to explore the northeastern contact of the

Prospecting by Jonsmith Mines in 1958 also discovered highly rusty basalt on higher ground to the east of the Discovery Zone and some 50 m north of an exposure of diabase. Three pits and a trench were sunk. The pits exposed well-jointed basalt, which held pyrrhotite and chalcopyrite along thin fractures. Some quartz is present and a porphyry dike lies close to one pit, but no significant structural control was seen along which mineralization might be concentrated. The trench is in lower ground and is presently water filled. The area was tested by five drill holes in 1959, one of which intersected a shear zone in basalt which contained much quartz and a little pyrite, and which assayed 0.31 ounces of gold per ton over a one-metre width. The other four holes contained shear or breccia zones with sulphides, but only low contents of gold. In 1983 five vertical holes were drilled, two of

Conclusions

Many of the trenches and pits that have been sunk in the grid area, are similar in that the suulphide minerals occur along fine fractures in fine-grained massive or pillowed basalts. Quartz or porphyry may be present, but without any clear relationship to the mineralization. There is no obvious structural control, and the gold content of assayed samples is low.

On the other hand, drilling has demonstrated that gold is present in zones of structural weakness, especially where there is contrast in structural competency. There has been a suggestion that a diabase dike has served as a dam to mineralizing fluids.

Initial emphasis should be on identifying conductive zones that may serve as structural controls. The existing interpretation of structural dislocations, as shown on the high-sensitivity magnetometer map, should be reassessed in the light of any newly discovered conductors and in conjunction with an air-photo study of lineaments.

Recommendations

- 1. An electromagnetic survey should be carried out in the Discovery Zone to define conductors. In preparation for this, grid lines at 115° should be cut or flagged every 25 metres in an area between lines 00 and 4E, and 2N and 3S.
- 2. The outcrop adjacent to Trench 10 (200N, 185E) should be cleaned off in an attempt to discern any structural control for the mineralization in the trench.
- 3. 'Local' electromagnetic lines could be tested adjacent to outcrops in which there is evidence of shearing or mineralization. This would include the South Zone, theNorth Zone and the Copper Zone, as well as the eastern edge of outcrops at Line 3W, 3S and line 4W, 1S.
- 4. Drilling should be done on conductors, especially any extending north from the Discovery Zone.

Declaration

- I, John, C. Davies, of 411 Garrison Crescent, Saskatoon, SK, do hereby certify that:
- 1. I am a graduate of the University of Manitoba with the earned degrees of B.Sc. (Honours) 1955, M.Sc. 1956, and Ph.D. 1966.
- 2. I was previously a member of the Geological Association of Canada, the Society of Economic Geologists, and the Association of Professional Engineers of Saskatchewan.
- 3. I have practiced as a professional geologist for over 30 years.
- 4. This report is based on three weeks of field work at O'Sullivan Lake and a review of the public records relating to exploration work in the area of concern,
- 5. I do not presently own, nor do I expect to receive any interest whatsoever, direct or indirect, in the property herein described nor in the securities of Superior Canadian Resources Inc.

l' c Duis

John C. Davies.

Dated at Kenora, ON, this seventh day of July, A.D. 2004.

Line 00 South

From 775 to 725 S; line lies along the western edge of a long narrow outcrop of very fine grained, light grey weathering massive basalt. No clear evidence of pillows. Traces of pyrite. A 10 cm-wide shear zone trending 035, 75° NW, is continuous over 10 m near the south of the outcrop and contains minor quartz and pyrite.

From 725 to 700 S; 6 – 30 E. Outcropping immediately north and east is same basalt, but in the eastern part of the outcrop there is a shear at 035 75° NW within which is a quartz-porphyry dike up to 1.5 m wide, but narrowing to the north. Porphyry contains minor pyrite. SAMPLE 9352 is chips from the western 60 cm and 9353 is chips from the eastern 60 cm. The dike is traceable over the length of the outcrop, about 20 m.

From 710 - 690 S; 20 - 35 W. Oval outcrop area massive fine-grained basalt.

600 S. Broken pieces of creamy weathering quartz porphyry with 1 mm quartz eyes.

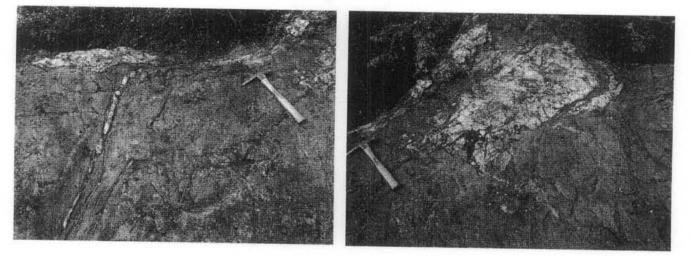
From 580 - 550 S; 15 W to 10 E. A long west edge is creamy quartz porphyry. To east is fine-grained basalt. At extreme west are tiny exposures of basalt, suggesting the western contact is about 160° and the eastern contact about 010° (dike widens from 5 m at the south to 15 m at the north). No significant mineralization was seen.

From 550 - 525 S; 20 - 65 E. Moss and lichen-covered basalt. Pillows at the southwest end and massive ? to east with contact possibly at 050°. Some small slip from 030° to 055° with minor quartz and pyrite.

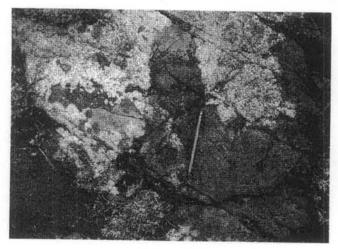
On line 00 at 458 S; cross old picket line marked 14E, 29+25 about 12 m to east (at 120°) and 14 E, 29+50 about 13 m to the west (at 300°).

Follow line east to large outcrop area from 60 - 105 m east. A large trench has been cut, 20 m long, up to 2 m wide and 1.5 m deep. This trench lies about 7 m north of the old picket line and trends 110°, with its east end close to 470 S on line 1 E. The rock is almost entirely massive basalt with hints of pillows in places, obscured by lichen. There are a few narrow shear zones, one of which extends through the east end of the trench, SAMPLE 9368. A quartz vein up to 20 cm wide can be traced over 15m (chips SAMPLE 9354). It is essentially linear, but on the west side of the shear is exposed in the north face of the trench as irregular

1


massive

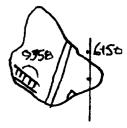
'folds'. The vein is essentially barren but the massive basalt adjacent to it has pyrite, pyrrhotite and chalcopyrite along minute fractures and, to a lesser degree disseminated in the basalt (SAMPLE 9355). Some 5 m west of the trench are two very small pits which explored a small quartz porphyry dike which apparently lies in a shear about 020° steep.


Massive Fusty basett 11

070 - 025 S; 25 - 20 W. Walking 20 m west on the old drill road from 00 and 26 m S, an outcrop of massive 1 mm basalt is exposed almost 50 m from NE to SW. Significant stressing about 050° with steep dips is evident in places, and some cross shears occur about 115° . A number of quartz veins, up to 20 cm wide, cut the rock irregularly but generally trend 160° to 170° and are black at exposed surfaces due to black crustose lichens which evidently prefer quartz as a host. At the north tip is a stripped exposure of a 040° shear, which has been offset by a 115° shear, but near the shear intersections are large (up to 90 cm x 50 cm) irregular quartz "clots" (Pictures 1 and 2). Very little pyrite is seen anywhere in the rocks.

From 015 - 040 N; 10 - 20 W. Moss/lichen covered outcrop of 1 mm basalt (Picture 3). Near north end a strong shear over 30 cm wide at 080° , 85° north, cuts the basalt.

3. Moss has been removed from area of pencil revealing brownish-grey basalt. The white crustose lichen is not widespread, but confusing.


To end of 00 N at grassy edge of shallow "key hole" lake, all muskeg.

Line 1 East

To north of baseline, airphotos suggest all spruce muskeg and cedar swamp.

From south end of 1 E

From 655 - 640 S; 070 - 101 E. Massive basalt cut by 1.5 m quartz porphyry at 055, 80 NW. There is a small pit on the line, and 23 m to the west is a curved trench cut into the west slope of the low hill, but to the west of the porphyry. All rock in the trench is very fine grained basalt with minute fractures, along which is minor pyrite (and pyrrhotite?) and carbonate and silica. **SAMPLE 9358.** No structural control is evident.

From 610 S (85 E) to 530 S (75 E). Numerous small outcrops in windfall area. Basalt is partly pillowed (tops east). Near south end are two trenches in massive basalt with fine fractures. The smaller trench trends 135° and is 4 m x 1.5 m x 1.5 m. The larger trends 130° and is 10 m x 2 m x 1.5 m. Little sulphides, some rust, but no controlling structure. Pits at 595 S, 85 E.

At 528 S, 85 E. Small outcrop quartz porphyry with basalt on north side.

522 S, 82 E. Edge showing irregular quartz porphyry cutting basalt about 130°

From 522 S, 80 E to 390 S, 90 E. Large outcrop area with big trench described from 00 notes.

From 350 S to 300 N, spruce muskeg.

Line 2 East

From 700 S to baseline, all spruce muskeg, except: at 120 S, 222 E, a trench has been cut across a low outcrop of basalt exposing a carbonatized shear zone at 045° , 50° NW. Chip **SAMPLE 9364**, and at 99 S and 180 E, a 10 m trench trending 020° and 1.5 m wide has been sunk and is largely water filled. Grab from muck pile **SAMPLE 9365**.

South end to baseline, no outcrop seen.

75 N, 220 - 230 E. Moss-covered outcrop massive to pillowed basalt. Outcrop extends discontinuously to north. One small exposure shows basalt cut by white – weathering glassy dike. Some fine pyrite. **SAMPLE 9366**, 150 N, 203 E.

From 150 N, 205 – 210 E. Moss covered outcrop, basalt, with evidence of pillows.

From 190 N, 210 E. Moss covered outcrop, basalt, with evidence of pillows.

From 200 N, 180-185 E to 225 N, 185 E. Open area of massive basalt with 12 m – long trench at south edge. The trench is 1.5 m wide and 1 m deep ? and trends 145° . Rock is rusty with silicification on some fine fractures. Pyrite, chalcopyrite and pyrrhotite are present in some fractures and minor pyrite is disseminated in the rock. **SAMPLE 9367** grab from muck pile. Pictures showing trench with muskeg on southwest side.

From 575 - 650 N; 145 - 170 E (approx.). Heavy windfall with scattered outcrops of medium-grained (1-2 mm) basalt. A shear zone at 090° , 80° south was noted.

Line 3 East

440 S, 305 E. Small outcrop white-weathering granodiorite, quartz vein.

From 440 S, 285 E to 345 S, 285 E. Series of outcrops, mostly massive medium-grained granodiorite with few inclusions of altered basalt near north end. At extreme west edge is basalt, but may be a large inclusion. The quartz is grey and is interstitial to white feldspar. Minor pyrite in granodiorite.

From 230 S to 200 S, western edge of outcrop of basalt cut by porphyry dikes.

At 190 S, 305 - 310 E. Outcrop of diabase.

From 170 - 150 S, 298 - 320 E. Series of outcrops of fine-grained basalt, cut in one place by a quartz-feldspar porphyry dike. One 20 cm shear zone with dextral slip trends 075° .

From 125 S to baseline and mostly east of line 3 E, up to 325 E, all basalt with evidence of pillows. Some small slips about 030° . 110 - 105 S, 295 E, basalt at edge of slope.

From 0-25 N, scattered outcrops of basalt on both sides of line.

60-95 N, outcrops of basalt, but at 70 N there is a small quartz-porphyry dike.

118 - 165 N fine-grained basalt, in part probably pillowed. At 120 N the west edge of the outcrop is pink weathering quartz porphyry which has an apparent strike of about 115° .

175 - 220 N. Mainly very fine grained basalt, but some quartz porphyry. One dike about 3 m wide is irregular the western contact being about 015° and the eastern contact about 030° . Few very thin quartz veins strike north. At the north end sheared volcanics adjacent quartz porphyry contain traces of sulphides. **SAMPLE 9357**.

At 325 E there is a 25 x 30 m open area with both fine-grained and medium-grained basalt. To the south of this is more fine-grained basalt.

From 325 – 425, muskeg.

From 440 N (260 - 300 E) to 500 N (270 - 290 E). All dense altered mafic rock with relic medium-grained texture evident on weathered surface. There is a distinct fabric in places, with strong foliation locally at about 040° to 060°. Very little sulphides in rock. Some carbonate and silica. Possibly a bit less altered at the north end (much windfall here).

Line 4 E

500 - 460 S, 330 - 395 E. Large open outcrop of white-weathering granodiorite with 1 - 2 mm grey quartz having angular (interstitial) outlines between altered feldspars. The granodiorite has been stressed in many places with foliation about 070° and steep dips. Minor vein quartz. Semblance of dextral shift. Near the north end minor molybdenite is associated with thin quartz veins. **SAMPLE 9359**. An outcrop 25 m north of the north end is similar granodiorite.

At 240 S, 430 E outcrop of diabase. Further east (485 E, 260 S) most of rock is finegrained rusty basalt cut by granitic dikes, but at south is a bit of diabase.

At 220 S, 420 E mainly cove red (moss and blowdown) basalt, but granitic dike at west end.

At 210 S, east tip of outcrop which essentially extends to line 3 E. At 390 E is contact between basalt and diabase. The diabase is 20 m wide and the west contact trends

northwest, terminating both the basalt and an irregular granitic intrusion. Some basalt contains much fine pyrite (**SAMPLE 9360**) but no controlling structure was seen. Further west the basalt is cut by quartz porphyry dikes: one 2 m dike trends 030° at 200 S, 310 E, another at 320 E trends about 040° and is 1 m wide at the north and pinches out to the south. There are a few 2 cm quartz veins trending 010° , but little sulphides.

At 168 S. 386 E. Tiny outcrop of granodiorite, of basalt at 169 S and 395 E.

From 155 - 125 S and about 375 E is scattered low outcrop of basalt with a trench at the south end (171 S, 380 E) and three pits 15 m, 22 m and 30 m to the north. The rock is mainly basalt, with fine fractures, disseminated sulphides, and in one pit an irregular porphyry dike in a minor shear zone. **SAMPLE 9361**.

Line 4 E north goes through windfall from 50 N to 250 N. To the east of the line are some basalt outcrops, with some pillows, mainly from 200 to 250 N. The muskeg begins about 275 N, but no outcrop was located to the north.

Line 5 E

From 500 to 480 S, 460 - 495 E, low moss-covered outcrop of granodiorite with close-spaced fractures about 075°. An inclusion ? of very fine grained porcelainous silicified volcanics?

At 400 S and 375 S, to the west, small outcrops of granodiorite under tree roots.

At 185 S, 503 E, a two-metre granitic dike cuts fine grained basalt at 030°.

From 185 S, 475 E to 135 S, 480 E. Series of small outcrops of fine-grained massive basalt with numerous white-weathering irregular hair-line fractures.

Line 1 West

From 300 S to 350 N, no outcrop seen from line 1 W.

Line 2 West

From 325 S to 200 N, spruce muskeg – no outcrop seen.

At 225 N, 215 W, centre of 30 m – long outcrop of medium grained gabbro. No foliation evident.

At 260 N, 205 W, small moss-covered outcrop of medium grained gabbro.

From 275 N and 235 W, scattered outcrops of gabbro in area of blowdown. The actual location of these small outcrops is difficult to define.

Line 3 West

The south end of the cut line is 300 S, but a large outcrop area lies to the west from about 375 S to 220 S (325 W). The predominant rock type is basalt 1 - 2 mm original grains now metamorphosed so that the original texture is best revealed on a weathered surface. White feldspar phenocrysts up to 5 mm across may constitute 1% of the rock. For the most part, lichens hide textures and structures, but there are a number of small shears between 020° and 035° . One, near the south end of the main outcrop, is about 30 cm wide and contains minor quartz and carbonate and traces of sulphides (SAMPLE 9356). One shear of 110° , 85° north, died out rapidly. There are a few irregular quartz stringers, but no obvious structural control. Near the north end the rock is finer grained and there is evidence of pillows. The outcrop is semi-continuous with a shoreline outcrop which is also 1 mm basalt but which contains pillows. One interesting feature is an absolute straight line of spruce in a probable fracture zone at 030° . The line shows clearly on air photos and might be prospected.

North to the baseline, and on to about 200 N no outcrop seen. From 200 N to 250 N, and about 275 W, a long outcrop consists of fine-grained to 1 mm basalt. One 5 to 15 cm wide quartz vein trends about north, but no sulphides were seen in or adjacent to it.

At about 320 N, 280 W is 1 mm basalt.

At 375 N and 310 W there is a 30 m x 40 m open outcrop of 2 - 3 mm gabbro.

At 410 N, from 245 W to 290 W, and from 330 - 350 W, large outcrops of medium – to coarse-grained gabbro.

From 410 – 425 N and 290 – 300 W, all coarse-grained gabbro.

Line 4 West

South end is spruce muskeg, heavy windfall to south and southwest.

From 190 S (on line) to 175 S, 405 W, medium grained basalt (gabbro?). The south edge is strongly sheared at 090°, vertical, and carbonatized. Some quartz and minor sulphides, mainly pyrite. **SAMPLE 9363**.

From 175 S, 435 W to 145 S, 415 W fine-grained to 1 mm basalt.

At 150 S, 400 - 405 W. Small outcrop 1 mm basalt.

From 123 S to 70 S, 425 W to 360 W. In essence, most of the rock is 1-2 mm gabbro or coarse basalt. Fine-grained massive and pillowed basalt underlie the north 20 m of outcrop, and the contact with the coarser basalt is about east-west. The eastern edge shows some fissility at 045° with steep dips, possible indicating activity to the southeast. A 20 cm quartz vein at 090° appears to be devoid of

sulphides. **SAMPLE 9362** represents a number of chips across a 30 cm shear with some silicification and minor pyrite.

Spruce muskeg from 70 S to 125 N. Gradual up-slope to 300 N, and windfall from 250 to 450.

From 390 – 425. Moss covered outcrops of medium grained gabbro to east and west.

From 450 - 475. Moss covered outcrops of medium grained gabbro to east and west.

Outcrop appears almost continuous between lines 4 W and 5 W, and while some is medium-grained, most is coarse grained.

Line 5 West

South end in alder swamp and spruce muskeg.

From 130 S to 75 S and 465 W to 525 W, large area of outcrop appears to be all basalt, mostly fine grained but some 1 mm. Pillow selvages common. Some small shears predominantly at 20° and 075° with steep dips. Bits of irregular quartz in shears and selvages. Tiny specks of pyrite disseminated and in fine cracks. **SAMPLE 9351** from 15 cm shear.

From 55 S to 30 S. Moss covered light grey fine-grained basalt.

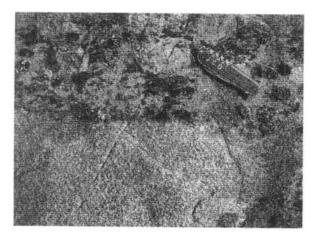
Spruce muskeg to 200 N.

At 235 N, 495 W. Small outcrop 1 mm basalt.

At 238 N, 500 W. 1 mm pillowed basalt.

From 250 N – 240 N, 510 W – 520 W. Moss-covered outcrop of 1-2 mm basalt/gabbro.

At 274 N, 495 W. Small outcrop of 1-2 mm basalt/gabbro.

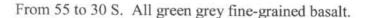

From 325 N – 340 N, 485 – 490 W. Medium-grained gabbro.

From 360 N (430 - 475 W) to 320 (470 - 480 W), large open area of medium grained gabbro. Grain size is 2-3 mm at north and rock gets finer to the south (1-2 mm).

From 375 N - 390 N (530 W - 540 W) moss-covered medium-grained to course-grained gabbro. Spruce muskeg to west.

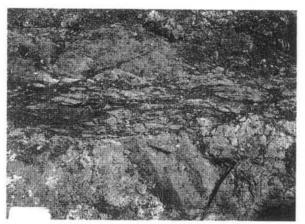
Blowdown concentrated from 350 to 400 north.

From 410 to 430 N, 490 W – 510 W. All coarse-grained gabbro.



Line 6 W

At shore, 5 m east of the line, is pillowed basalt. Tops probably southeast.


North through alder and spruce muskeg.

From 130 to 75 N and 570 - 625 W. Large outcrop area is probably all fine-grained pillowed basalt but at south end grain size is about 1 mm. The basalt appears to consist of low-grade metamorphic minerals. Some small shears, mainly at 020 and 075 with steep dips. Bits of irregular-shaped quartz in shears and pillow selvages. Tiny specks of pyrite in places. **SAMPLE 9351** taken across a 15 cm shear in the northeast part of the outcrop.

To North, all spruce muskeg.

OLD LINE: 10 E - 125-150 at 120° from 8+71 on line 00. Outcrop area of fine-grained pillowed basalt. Large pillows with tops apparently southwest. An 025 shear zone 30 cm wide, dipping 70° east offsets sinistrally two 080 shears. The offset is about 60 cm. A smaller moss-covered outcrop lies 100 metres to the south.

9

NOTES ON ZONE MAPS

<u>SOUTH ZONE:</u> The collar of Hole #11 could not be found in the field. Assuming a five-degree difference between the Jonsmith and Aurum grid lines, the collar of the hole should be 1400 feet (427m) south of Hole #4. This would place the collar approximately in line with the big trench. By contrast, the magnetic intensity map indicates the hole collar to be about 50m north of the trench and at a point at the north end of an 035 degree electromagnetic conductor. The position shown on the Zone map is a compromise, and may be misplaced by as much as 25 metres.

<u>COPPER ZONE:</u> Positions on the Jonsmith grid were available for holes 8, 9, 10, 13, 14, 17, and 20. The position of holes 16, 18, and 19 were derived from the magnetic intensity map. The only hole collars which could be located were numbers 17 and 20. Hole 20 lies close to the Aurum line 4E south, and this permitted the two grids to be combined as shown.

DISCOVERY ZONE: The area covered by this map is larger, and more drill hole collars were available to enable a combination of the grids. The fit is good, but only if the angular difference between the two grids is between 7 and 8 degrees. The location of the electromagnetic conductors is derived from the magnetic intensity map. Of special note is the presence of up to 10% magnetite in the mafic volcanics near the top of Holes #1, thus providing an explanation for the magnetic high in the vicinity of the base line and line 1w.

(Additional) Line Cutting/Chaining

Soon after the 2004 'A' grid was finished in the Kowkash project area (for geological mapping), additional line cutting was commenced using local workers (mostly native) and paid on a day-rate basis See Personnel Tables in Report Appendix..

This work consisted of installing a base and wing lines in the Gagnon project area to facilitate more accurate prospecting plus the brushing out of some of the old grid lines in the 1998 Kowkash cut grid (labelled "B") Map AS-09 Gagnon. Figure AS-05 Kowkash B. This work along with extending some of the lines in 'A' grid was deemed necessary in order to provide more completeness to the VLF and Magnetometer surveying as contemplated. The geophysical prospecting work is reported on separately in this report.

Please refer to the 'Personnel work record table, Appendix 13-1 and 13-5 found later in this report for Contractor contact information and dates/times worked on each project.

Notes re the Kowkash 'A' and 'B' grid locations and Base Line error explanation:

Base line azimuth bearings are different for both the 'A' and 'B' grids.

It was originally intended that the new 2004 'A' grid would share the same base line azimuth as the older 'B' grid cut in 1998.

The base Line (0+00) for 'A' grid was started at location 10+00 south with an azimuth bearing of approx. 36 degrees, (magnetic declination = 6 degrees west). A CDGPS unit (Appendix 13-3 for details concerning the CDGPS unit), was used later to more accurately locate the grid line waypoints plus others. It was during this operation that it was noted that the cut base line azimuth was actually26 degrees. This error was inadvertent and probably resulted from local magnetic attraction. A decision was made to leave the grid 'as cut' and work around the difference using mathematical corrections. It would simply be too much work to re-cut the lines already cut and we could work with the error without any major problems.

New Showings

This part of the Aurum Project 2004 was carried out mainly by Shaun Parent and assistant Paul Beckett under the direct supervision of D. Christianson. For actual dates worked, the reader should refer to the 'Personnel Work Table ', found in Appendix 13-5.

The Parker / Stott, OGS Precambrian Geology Map # P 3377 (West Half) along with the Sixty Fourth Annual ODM Report (W.W. Moorehouse) provided some good hints re the location of possible favourable targets. Map AS-07.

O'Sullivan Lake's many miles of shoreline include a high percentage of out crop exposure which also made prospecting easier. Once a potential area was located/identified, standard prospecting methods were used to locate 'showings'.

A unique prospecting method was used in some areas when the conditions were appropriate. This highly productive/revealing process consisted of prospecting using a VLF instrument (EM 16) and Magnetometer (MF Proton), to more closely locate structures/conductors.

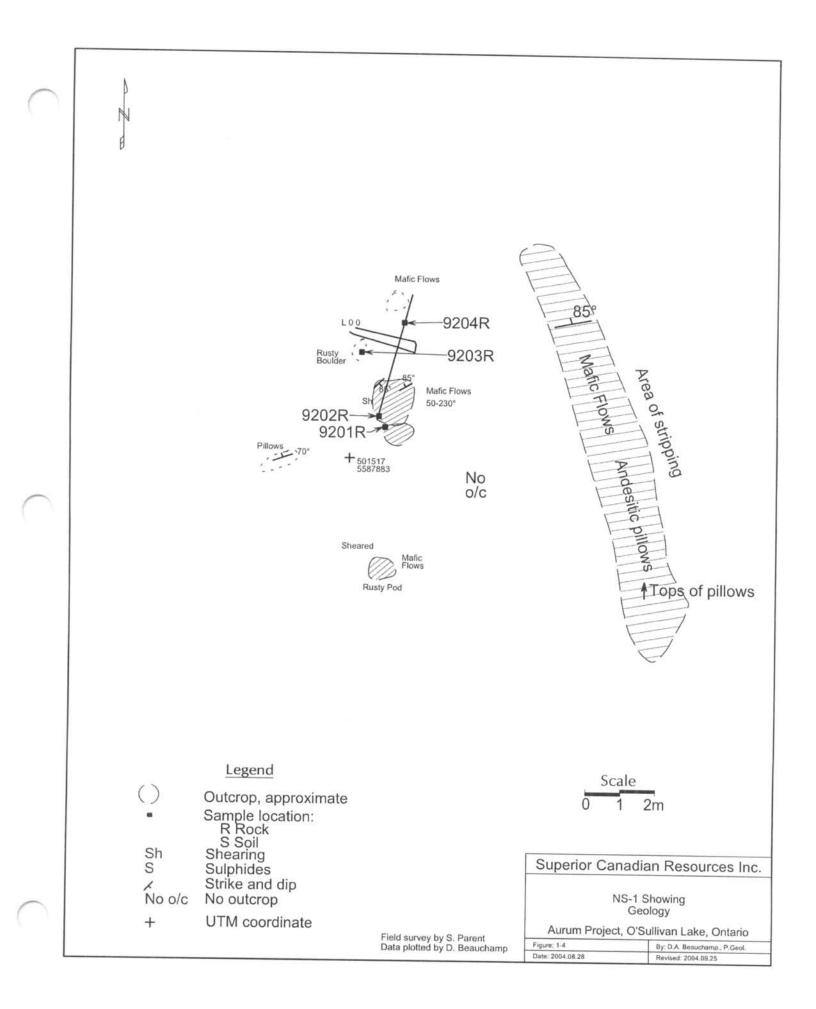
Following physical location of points of interest, the instruments were used to lay out 'crossover' lines that were subsequently prospected for approx 10 m. on either side of a flagged line. Rock samples were collected for assaying from bedrock o'croppings and where no rock was available, samples of B horizon soil were collected, also for assaying. Sample descriptions and tables including relative assay information are included later in this report.

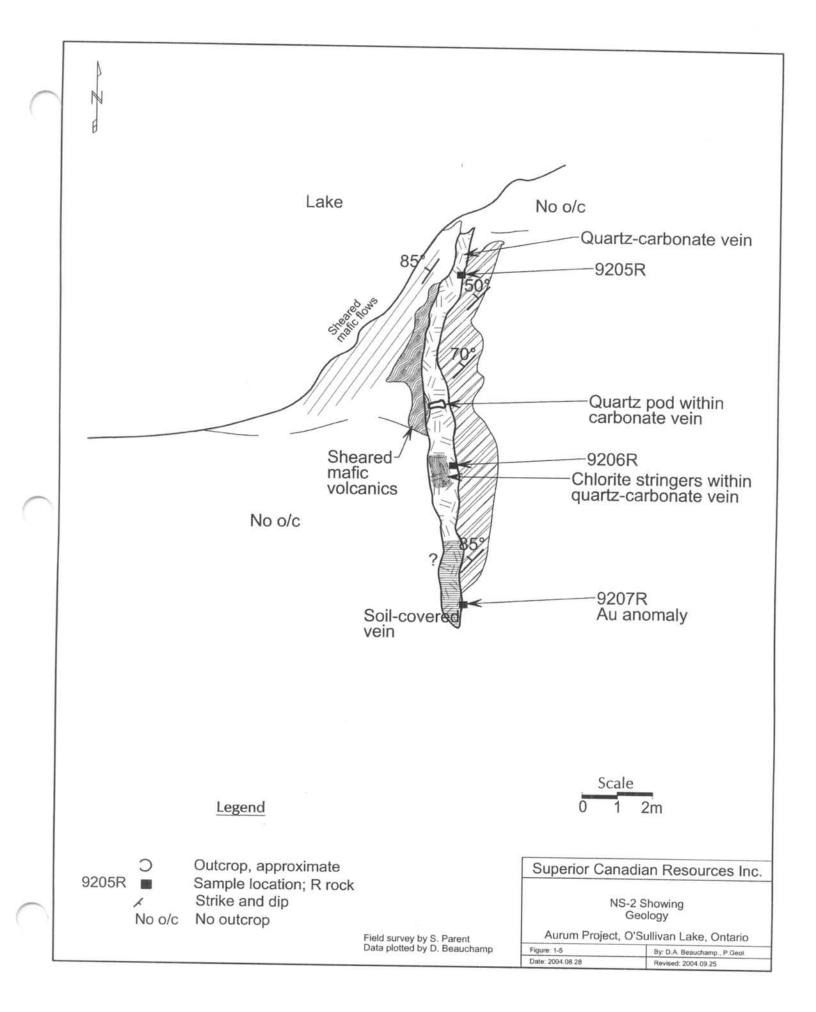
Using the combination of mag and vlf proved very effective in defining geological structures such as shears that were mineralized.

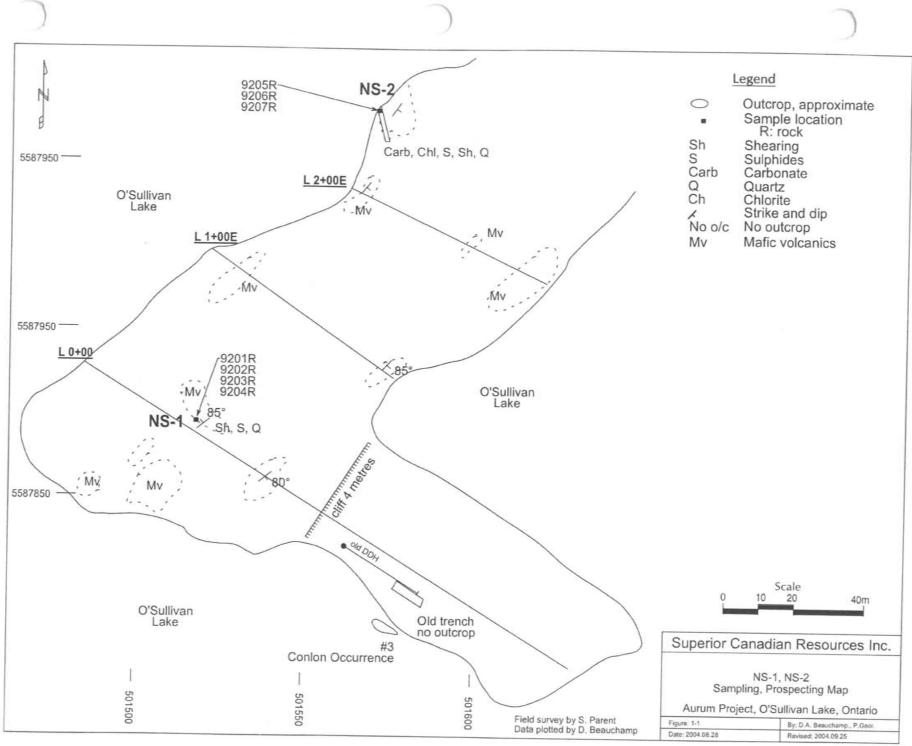
This kind of methodology was corroborated in a Thesis paper written on the rocks of the O'Sullivan Lake area. It suggested that (not an exact quote) "....mineralization is associated with NE/SW shear zones which have flexures due to breaks". Thus locating/tracing 'shear' zones' would/could be conducive to finding mineralization in greater quantities. (Reference. Thesis papers x 3). The following pages contain:

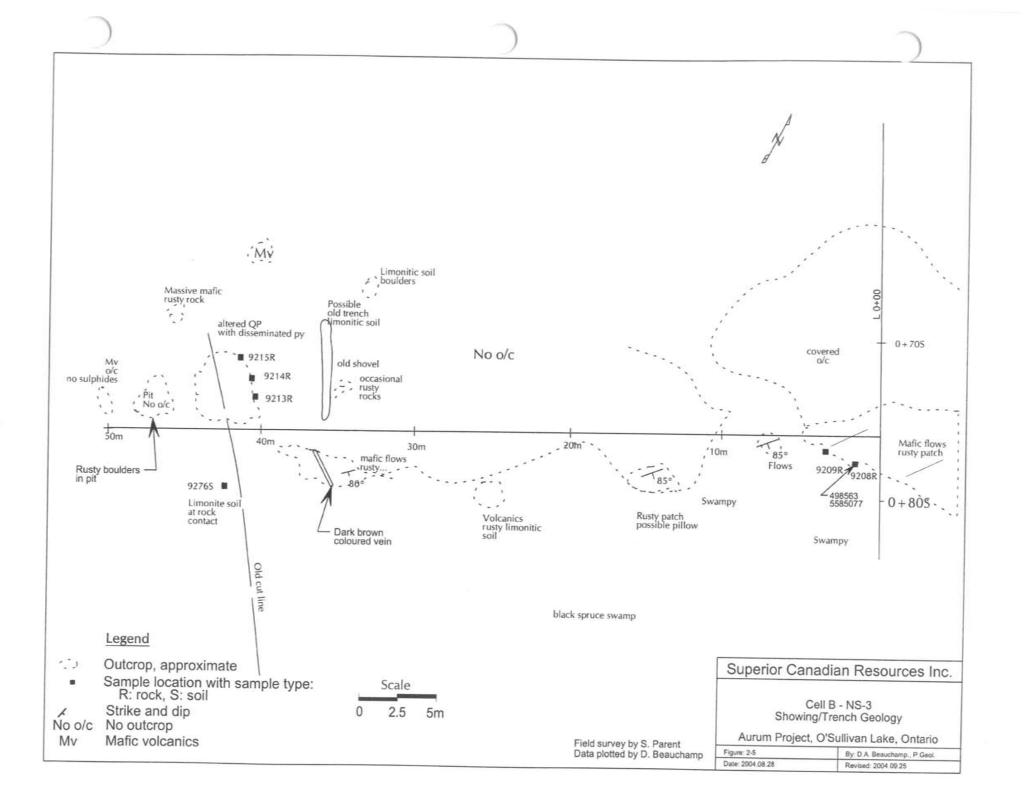
- 1. List of New showings with GPS / Claim # locations. Table T-1
- 2. Property scale map showing New showing (NS) locations. Map AS-08.
- 3. NS sketches showing sample locations and geology and mag and vlf (as applied). Figures for each shown on following pages.
- 4. Sample descriptions for NS samples. Appendix 13-8, Sample Information Tables (9200-9300 series).

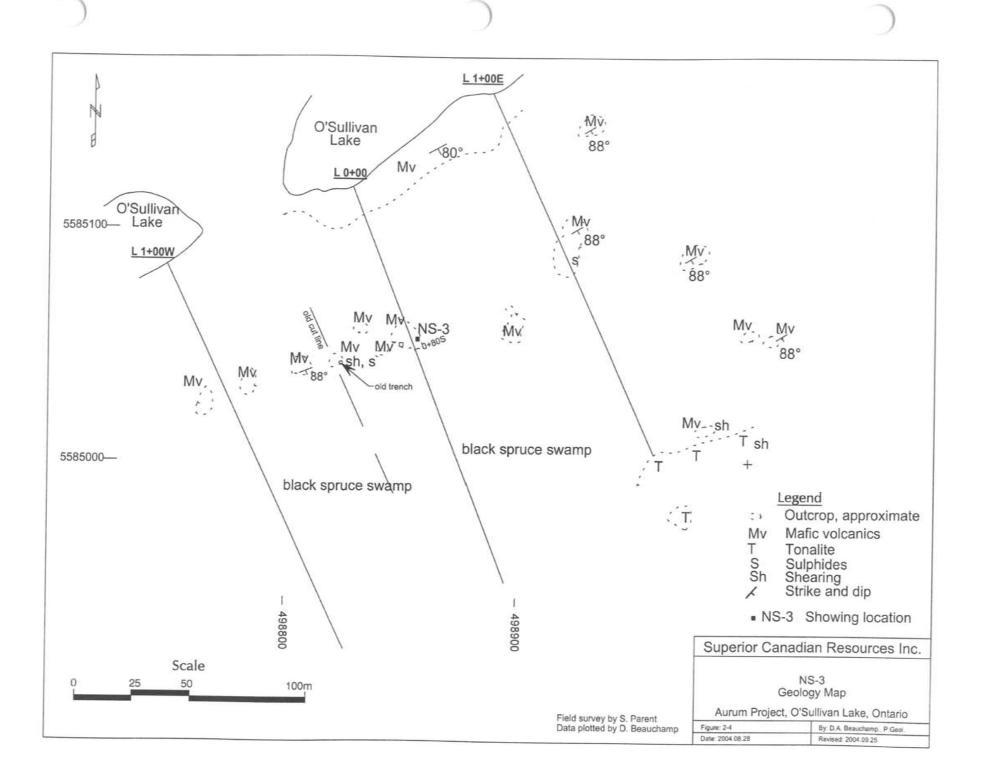
<u>Notes</u>:

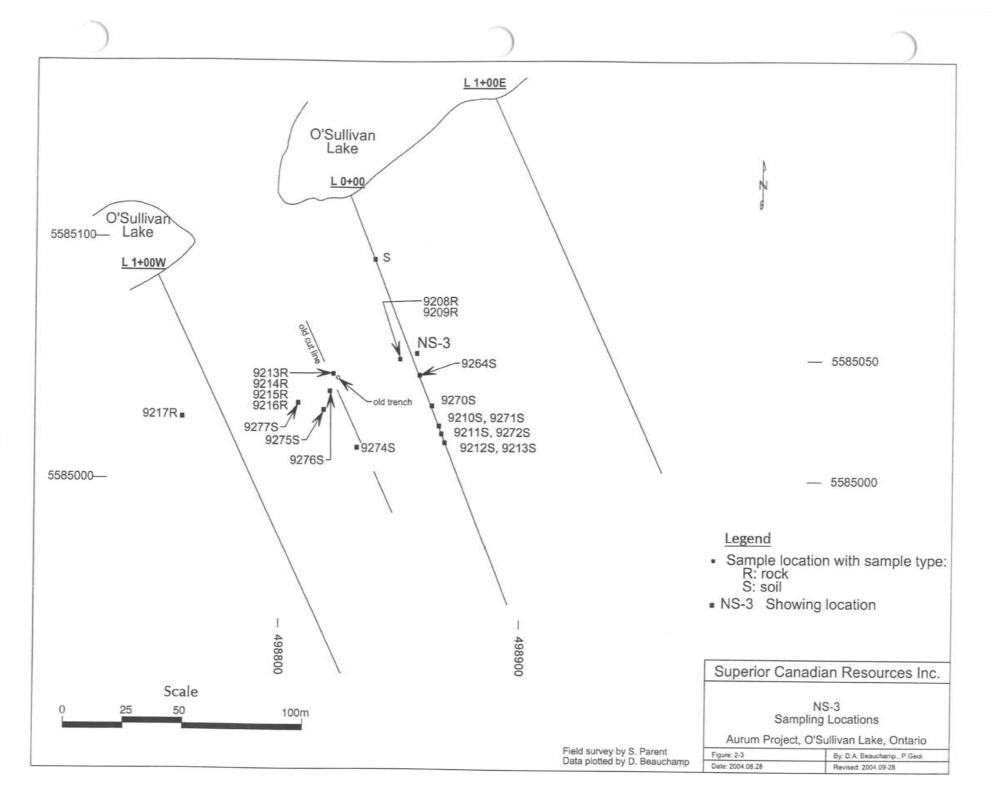

1: NS showing numbers 4 thru 10 are located within the Gagnon sub project area; however the samples collected from these sites are reported on in this discussion area.

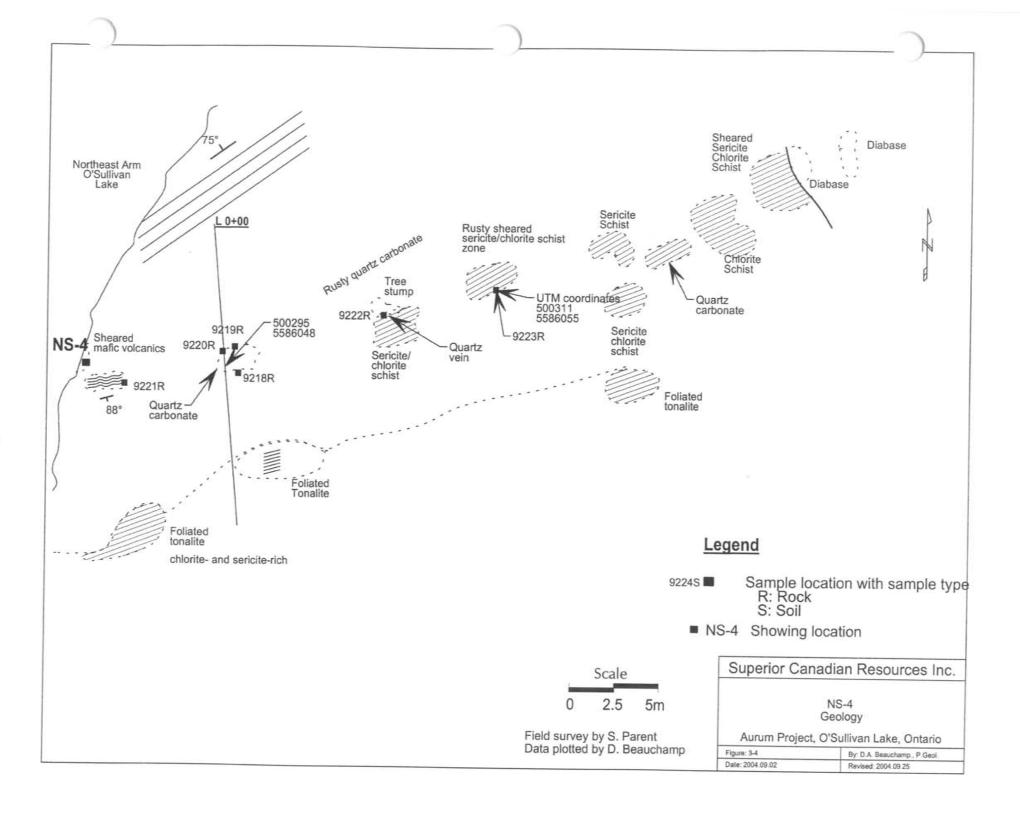

2: Assay results for all samples are found in the Appendix section 13-7, Assay Certificates and 13-8 Sample Tables.

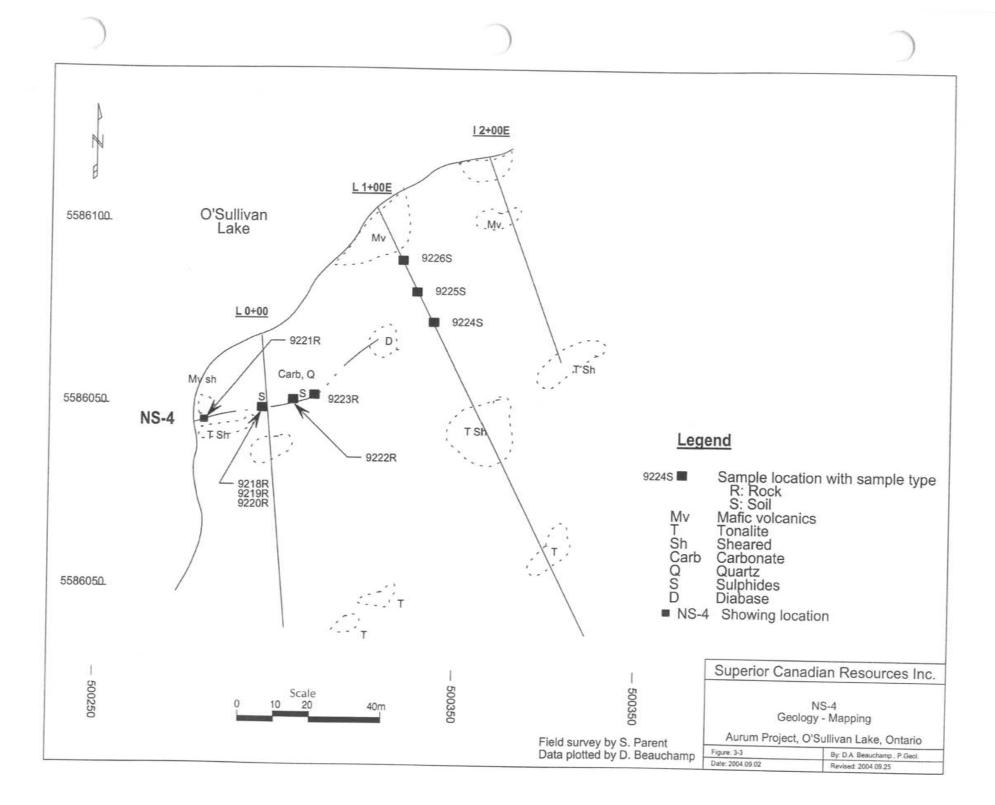

New Showings UTM Co-ordinates Table: T-1

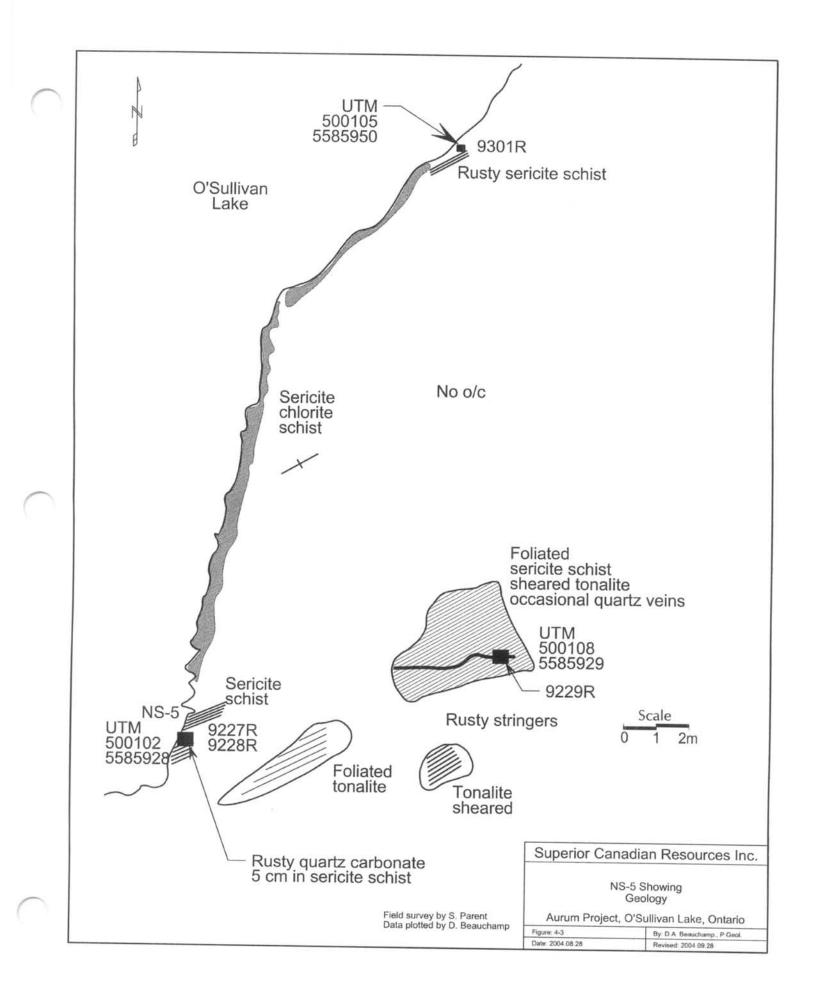

- NS-1: 0501517 E/ 5587883 N
- NS-2: 0501572 E/ 5587972 N
- NS-3: 0498863 E/ 5585077 N
- NS-4: 0500305 E/ 5586035 N
- NS-5: 0500102 E/ 5585928 N
- NS-6: 0502178 E / 5587311 N
- NS-7: 0502182 E/ 5587305 N
- NS-8: 0502169 E/ 5587248 N
- NS-9: 0501293 E/ 5587049 N
- NS-10: 0502160 E/ 5585766 N
- Cryd-2 Strip: 0494583 E/ 5585766 N

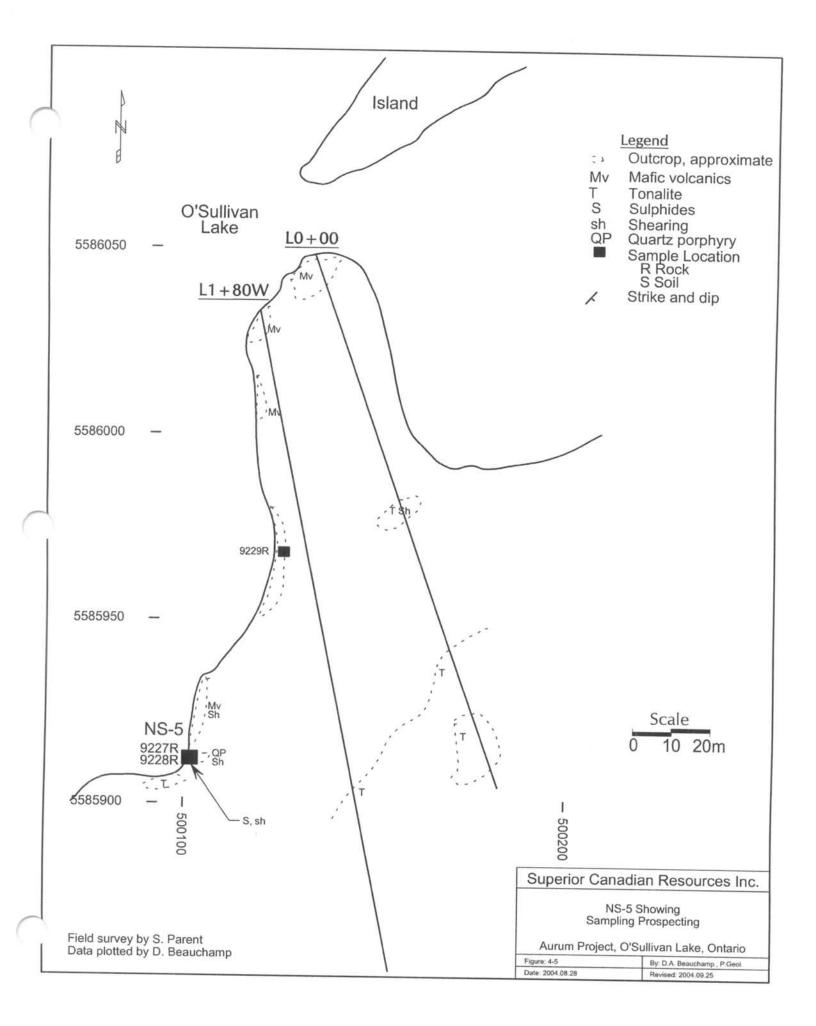

NOTE: See Map # AS-11 for locations in Plan form.

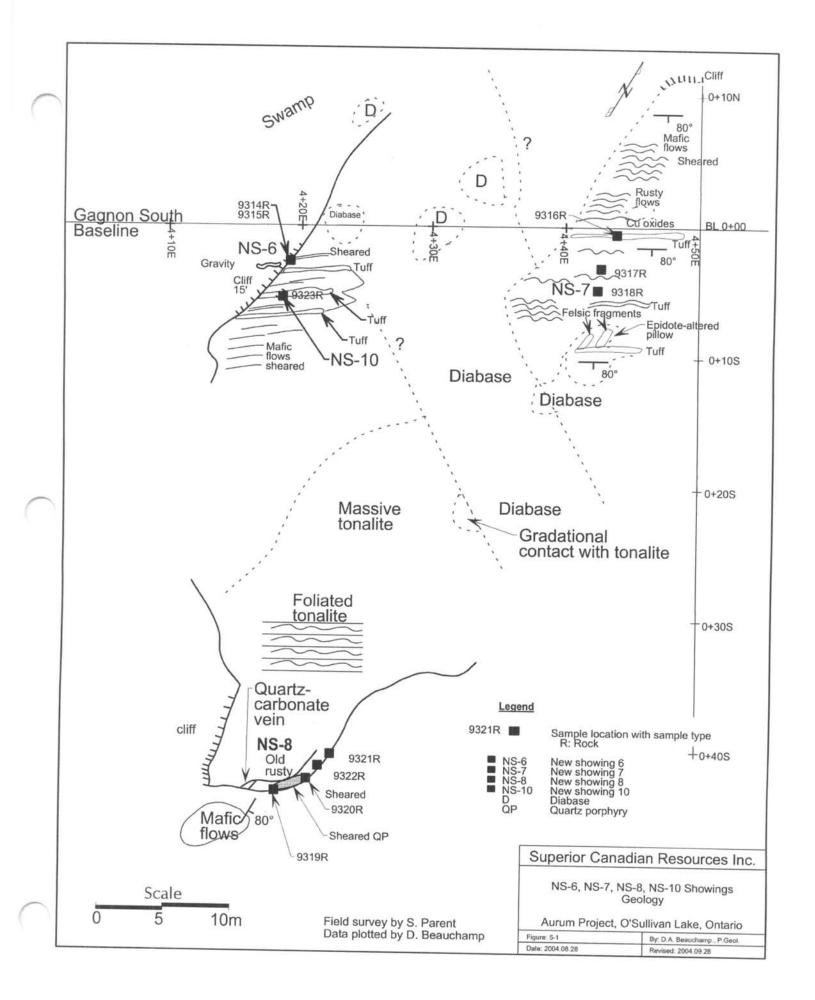


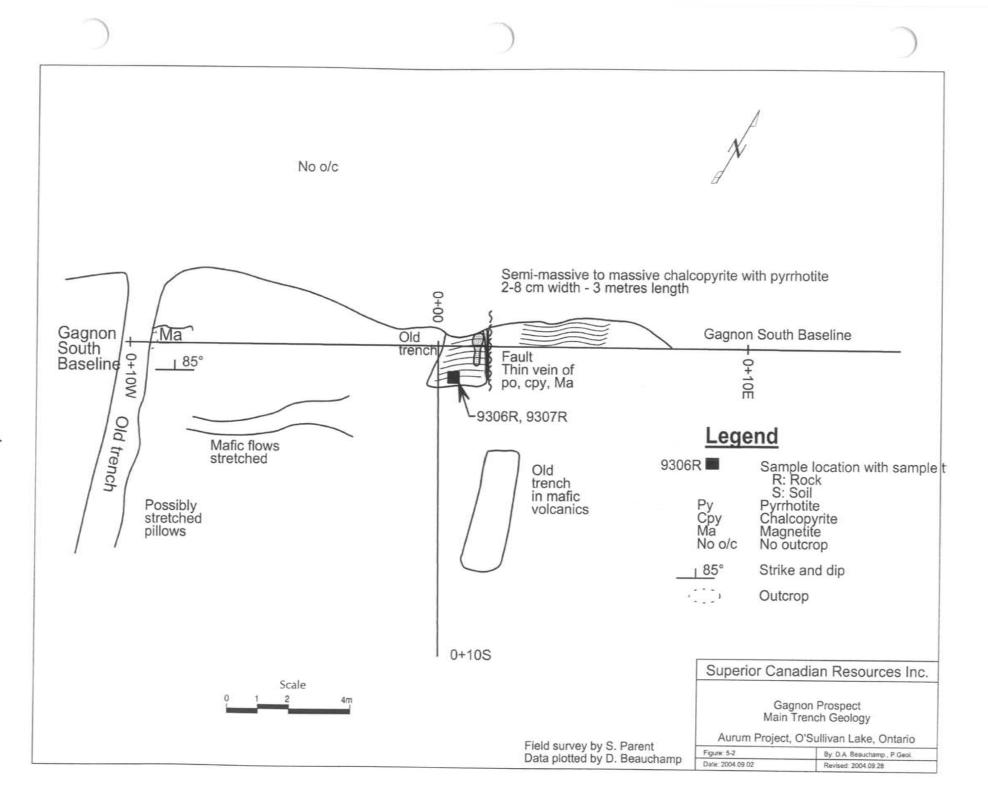


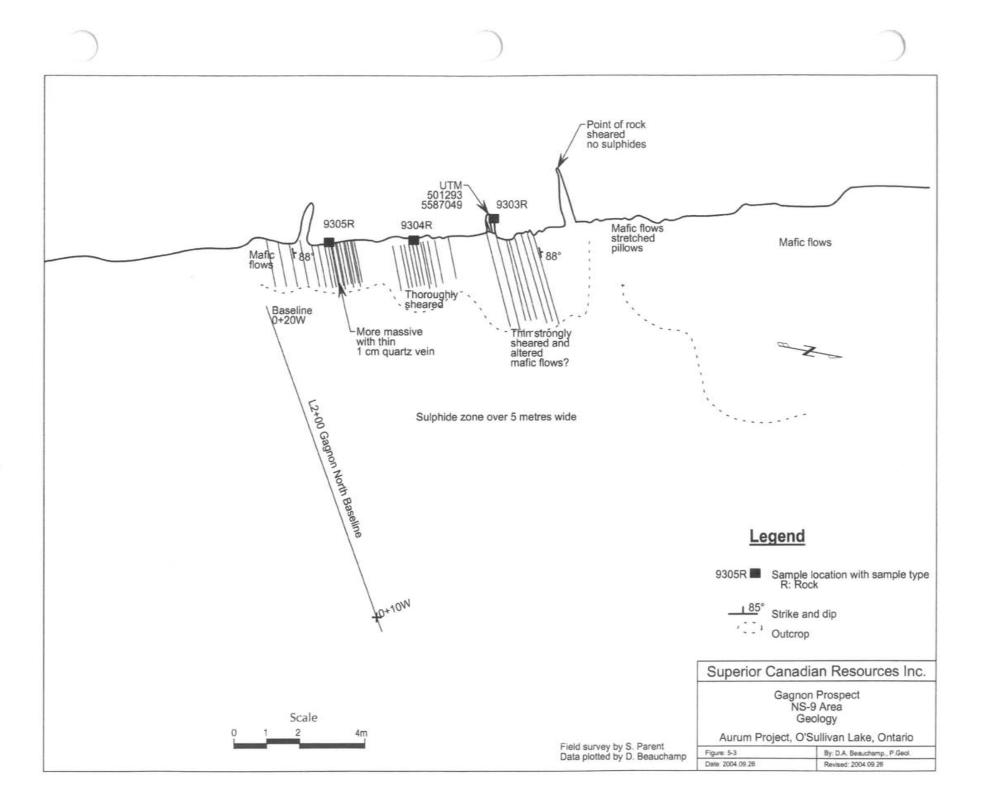


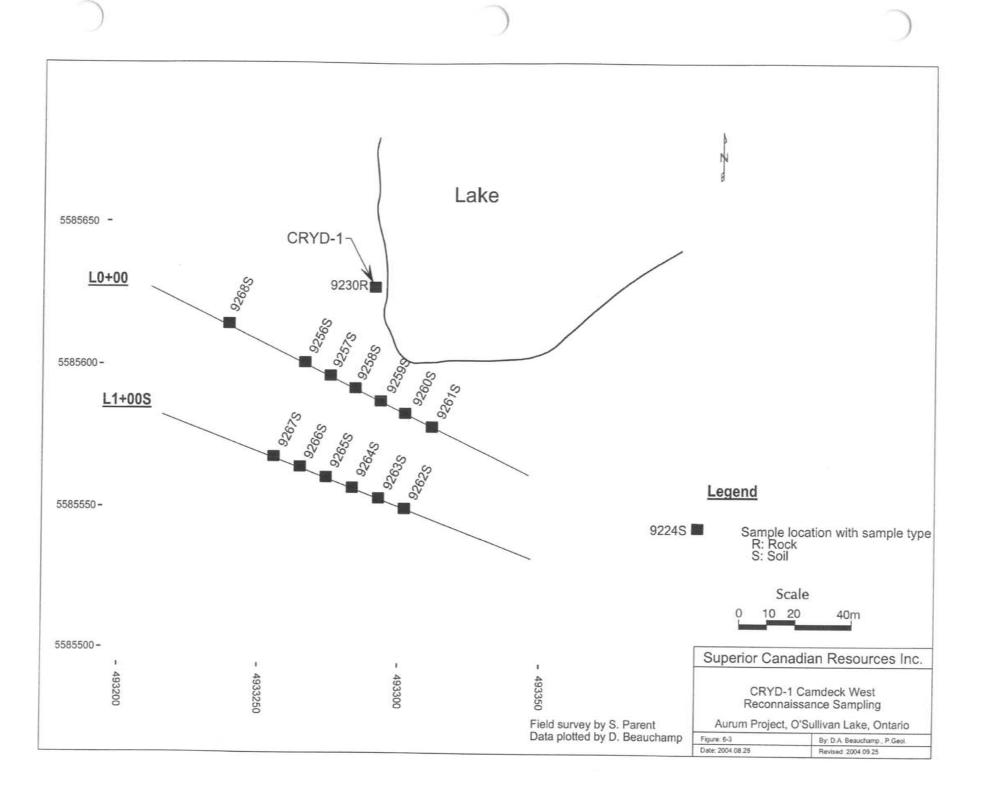


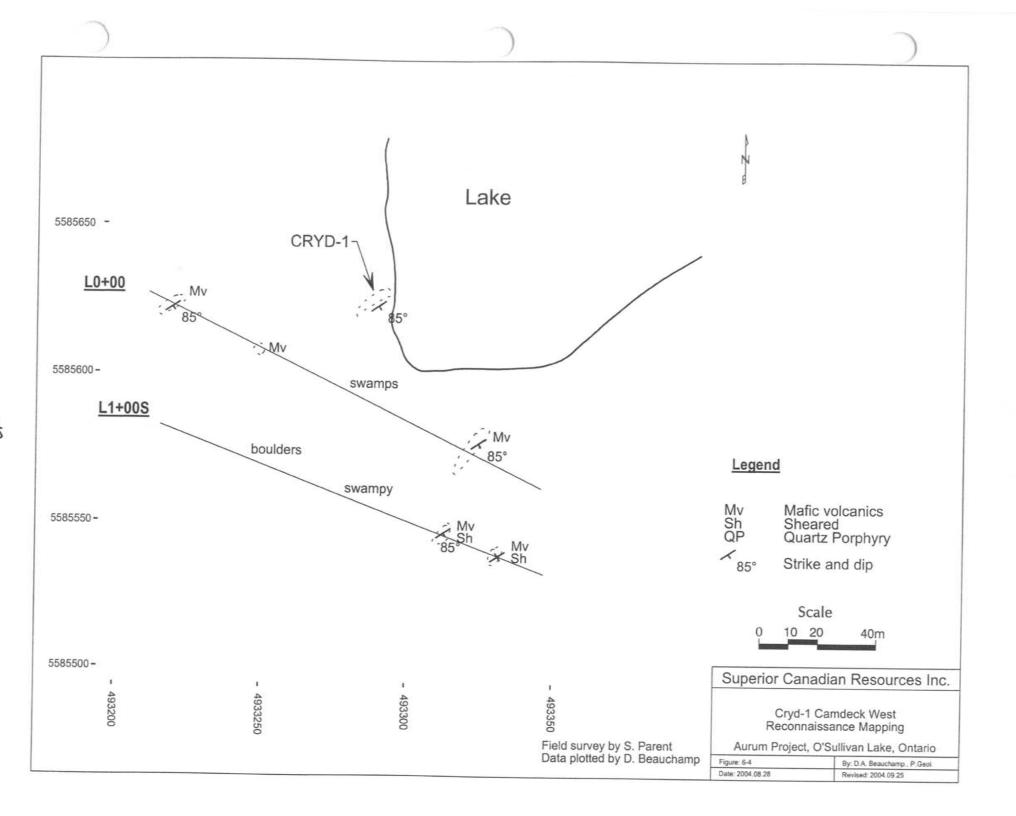


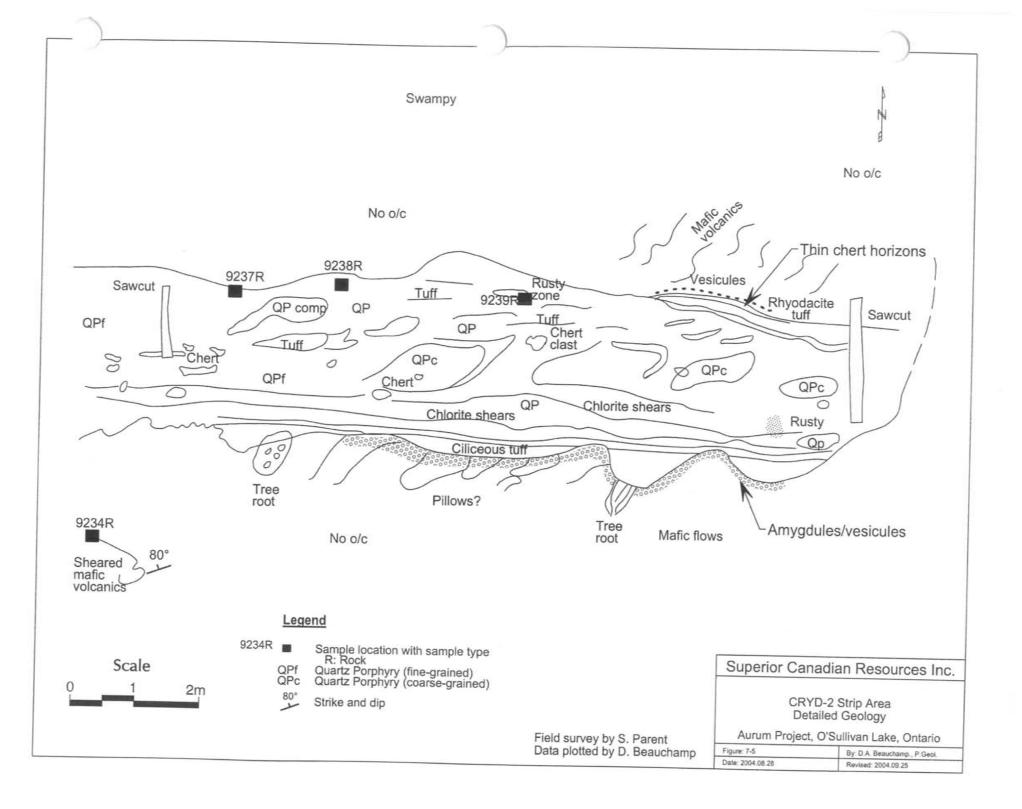


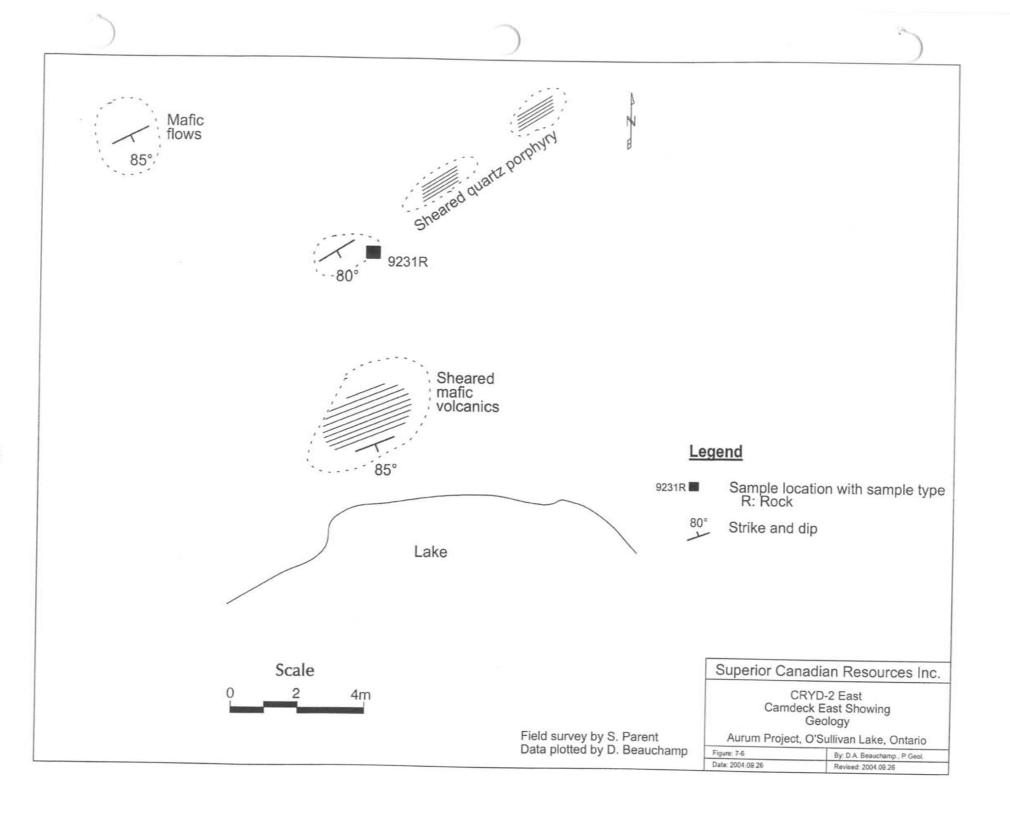










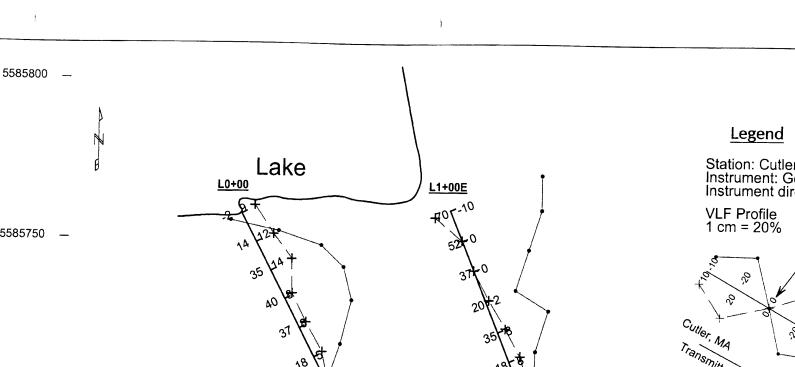


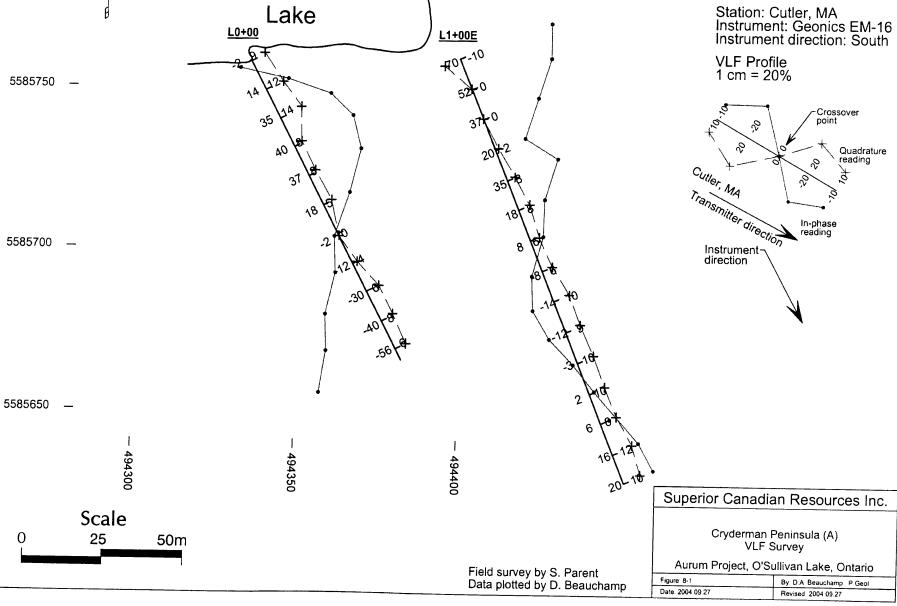
<u>Authors note</u>: Please be advised that the scales noted in the preceding sketches are no longer accurate due to errors caused in the scanning process. These sketches are provided mainly for the purpose of identifying accurate sample locations and geological features in general.

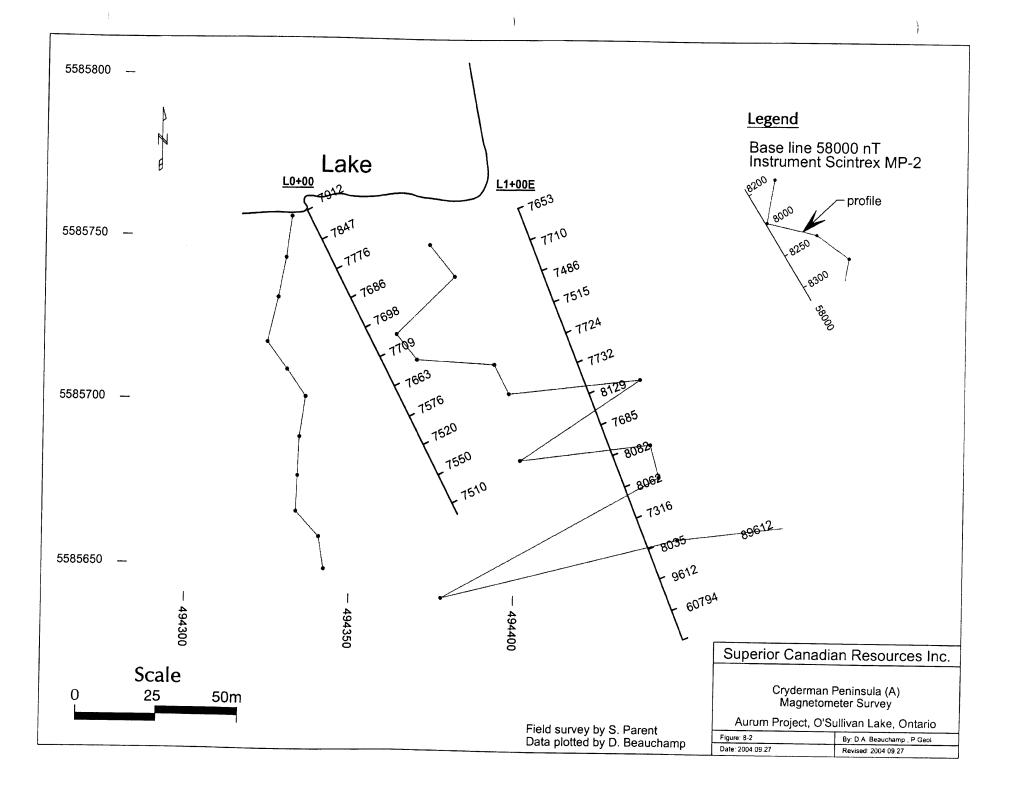
Ground Geophysical Surveying

In the executive summary part of this report mention was made of a ground geophysical component as part of the 2004 overall exploration program.

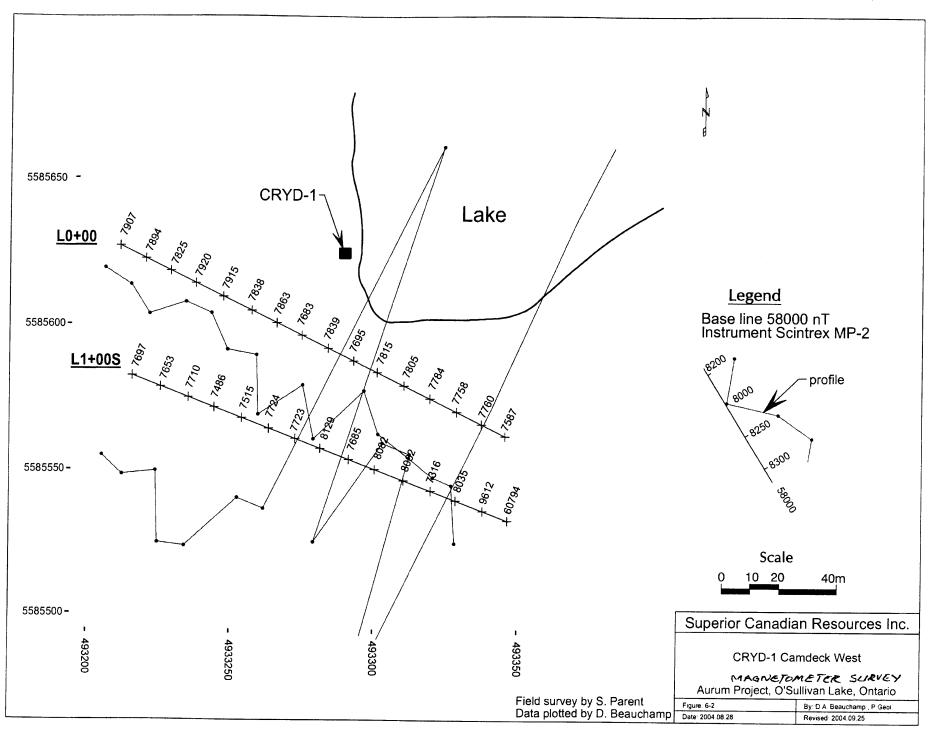
Geophysical prospecting was carried out following the installation of the Kowkash A grid, line clearing of the older B grid, line extensions of same and the completion of gridding in the Gagnon project area. For details re surveying dates see Appendix 13-5, Personnel work Table. Instrument operation and collection of data was performed by Shaun Parent with the assistance of Paul Beckett.

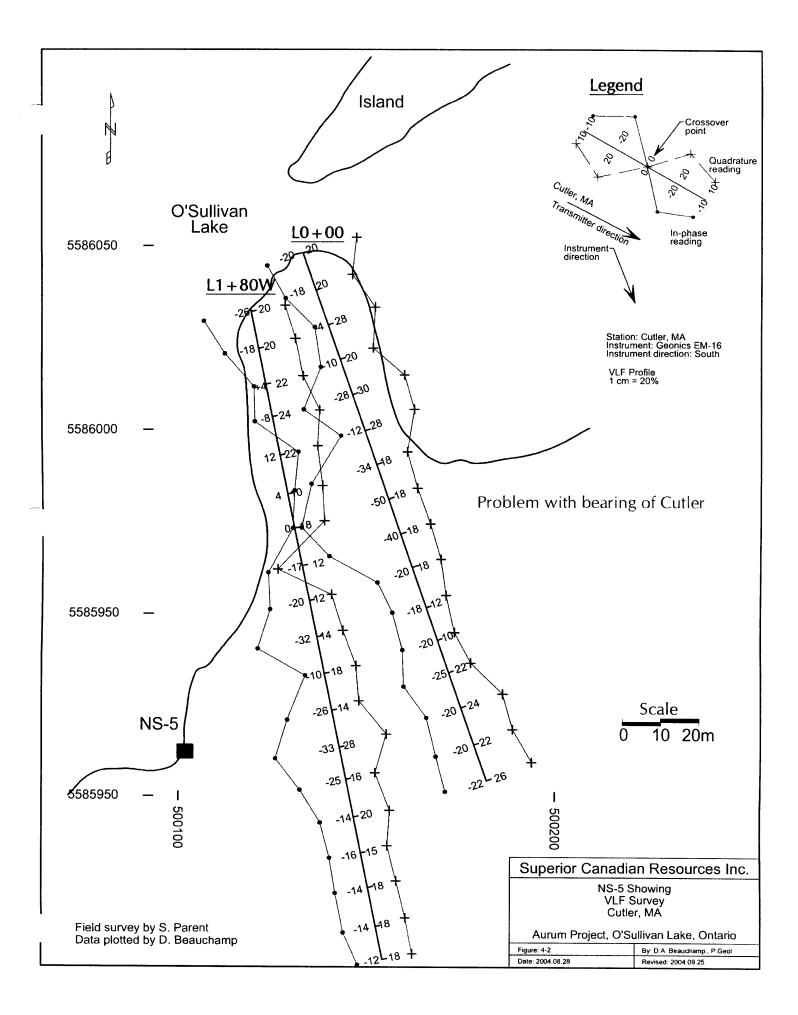

The Kowkash A and B grids (see sketches attached earlier) were the subject of surveying using an EM 16 unit. The Gagnon grid lines were subjected to the same process. All of these areas were also surveyed using a proton magnetometer.

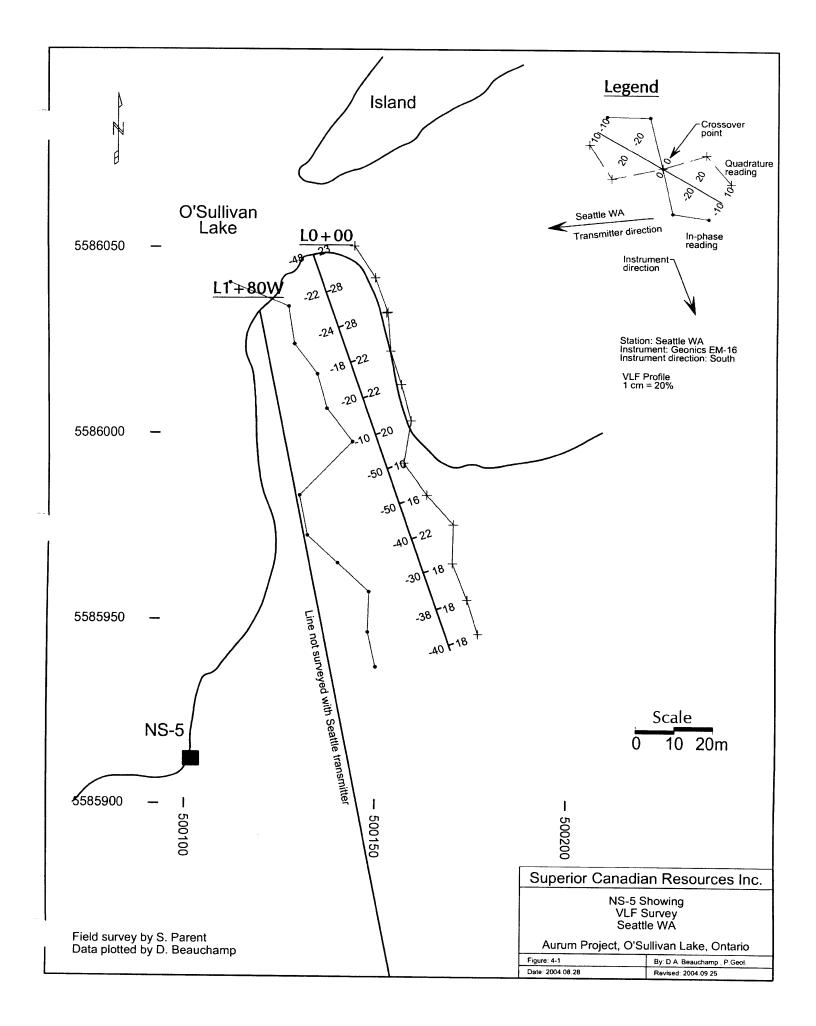

Parts of the Kowkash A and B grids were also the subject of EM 16 surveying using a TX 27 transmitter. The principles and operation re this process are explained in Appendix 13-4, TX 27 Transmitter Explained. This process was selected in hopes of dealing with poor and intermittent radio frequency transmissions from normal/standard EM 16 transmitter sites (i.e. Panama, Cutler etc.) experienced.

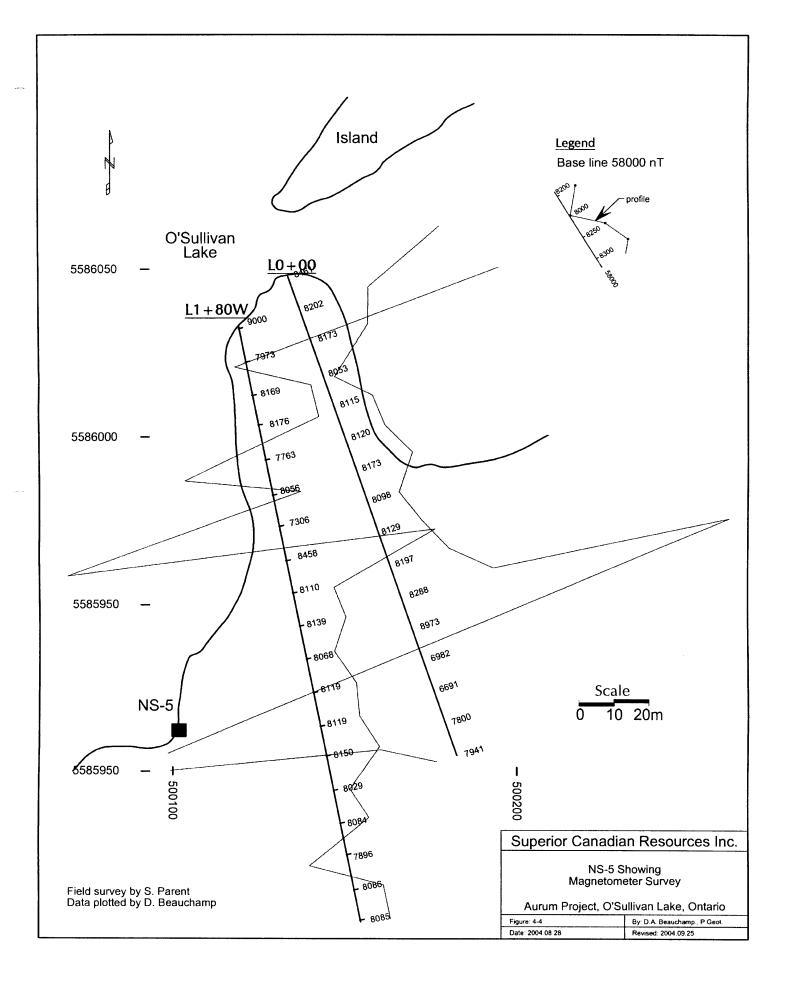

As it turned out, the system did in fact aid in overcoming these problems however; it was later learned that the transmitter cable had been (possibly) placed in the wrong location for the directional surveying done. An effort is now being made to salvage these data in whatever manner/degree possible.

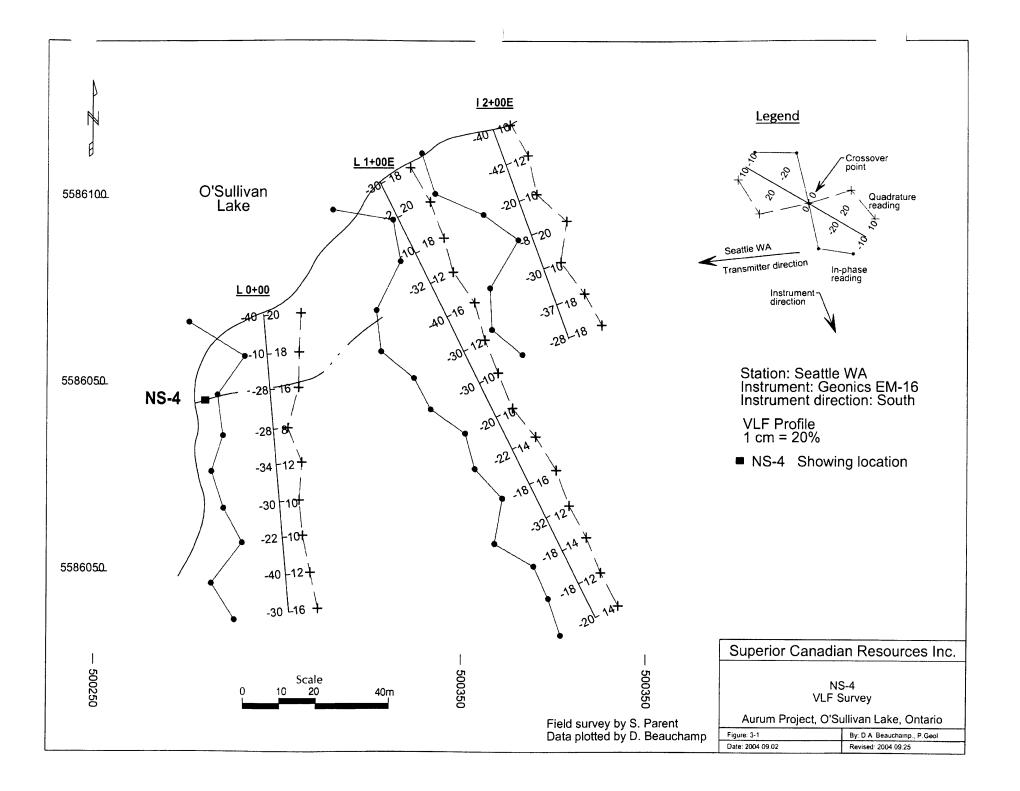
Details and results of all of the ground surveying are described in/on the following Maps: AS-10A, Ground VLF EM16 Survey, Kowkash Grid A. *VLF Profiles, TX-27. *VLF interpretation map. Scale: 1:2500. AS-10B, Ground Magnetometer survey, Raw Data, Diurnally corrected and Unfiltered, Kowkash B Grid. Scale: 1:2500. AS-10C, Ground VLF EM16 Survey. VLF Profiles. Gagnon Area. Scale: 1:2500. AS-10D, Ground mag Survey, Kowkash Grid B. Filtered Data Profiles. Scale: 1:2500. AS-10E, Ground VLF EM 16 Survey, Kowkash Grid B. VLF TX-27. Scale: 1:2500. AS-11.

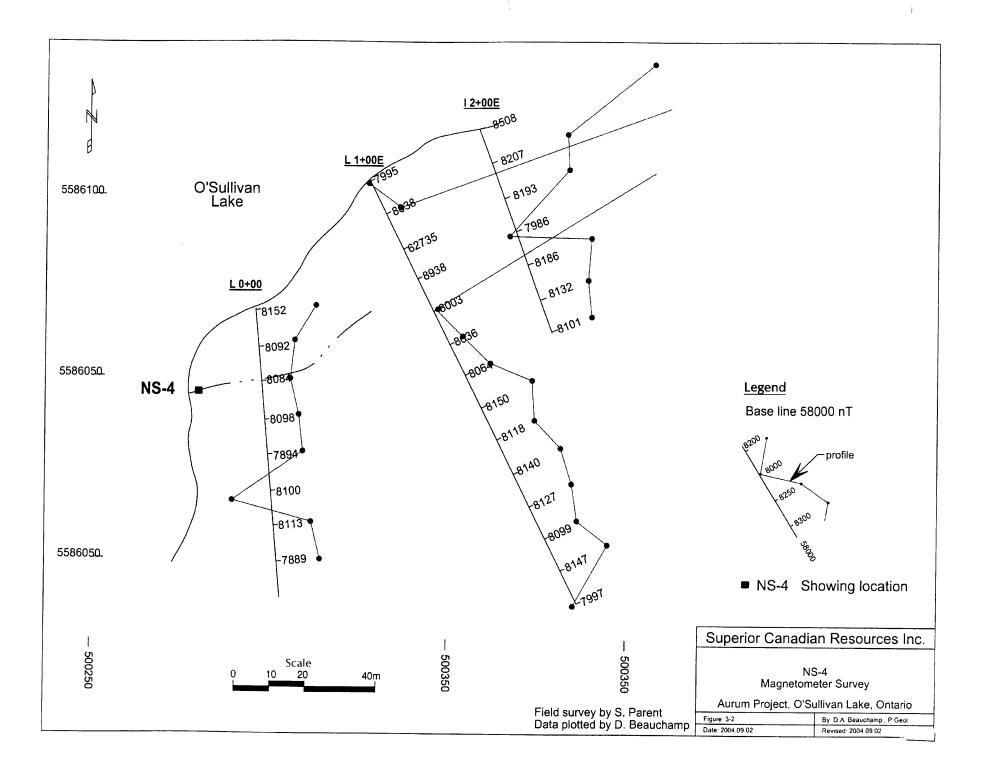

No attempt has been made by this writer to level any formal interpretation to any/all of these results, rather they will be considered along with the interpretation of Airborne survey data now in hand.

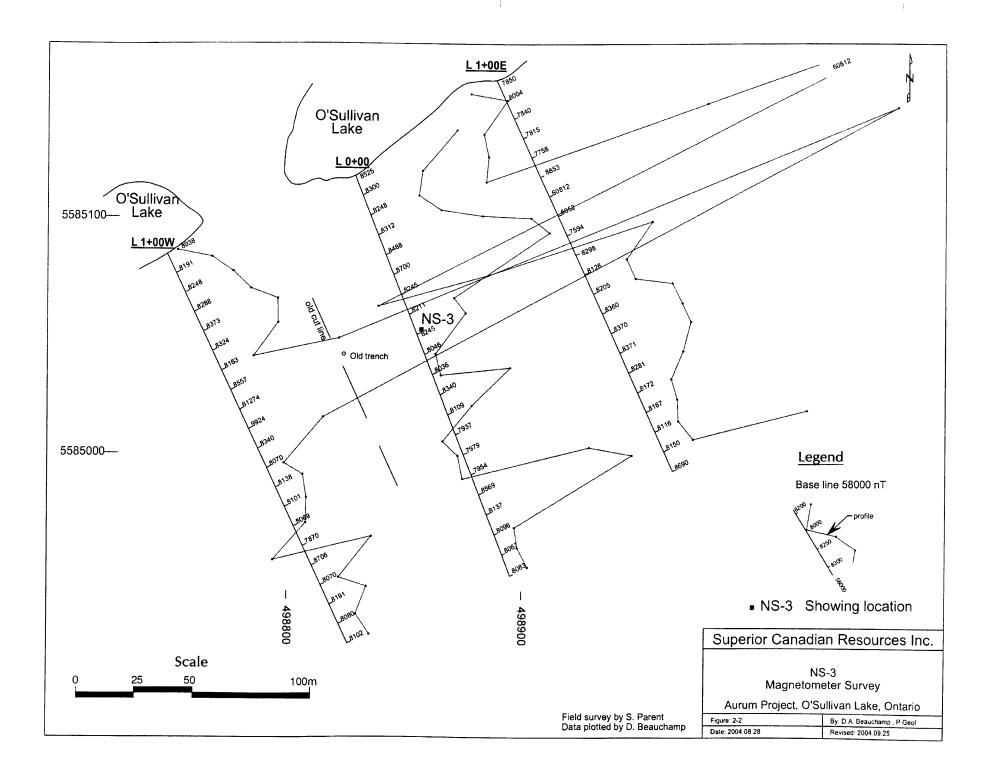


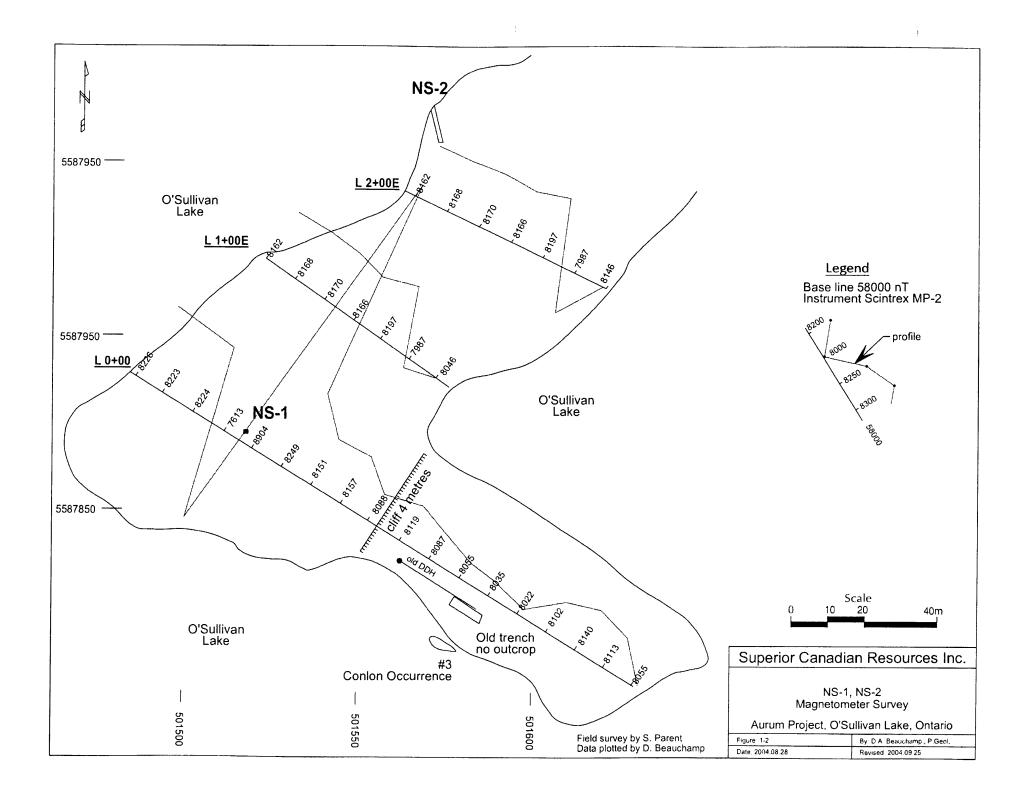


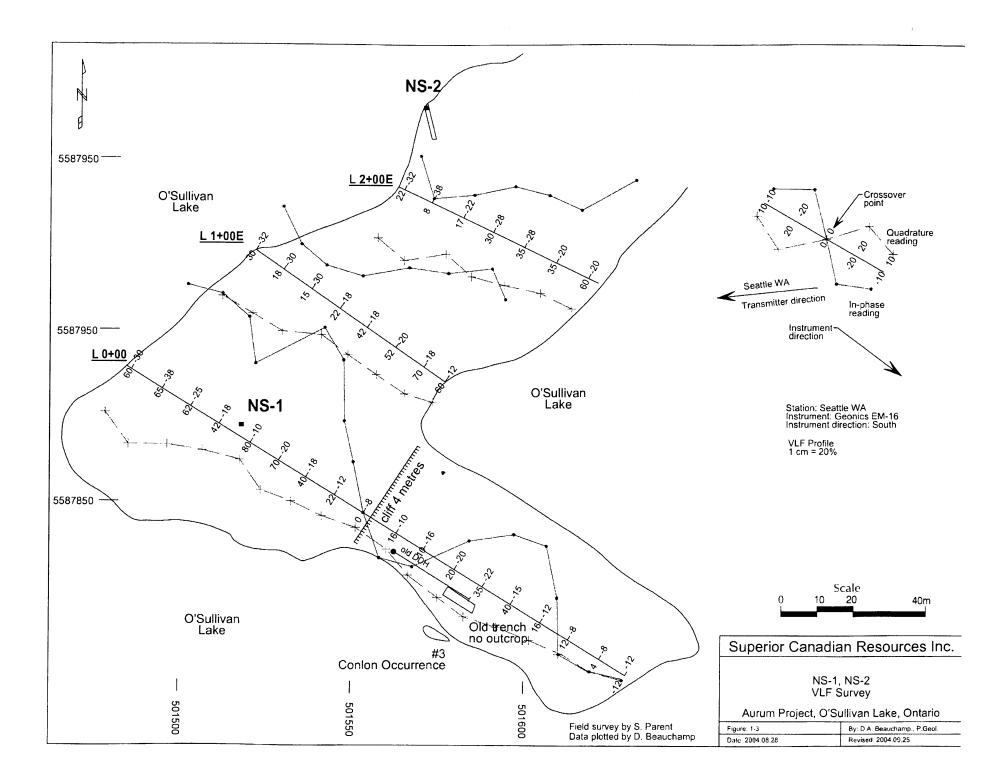

Lake Legend 5585650 -CRYD-1 -Crossover point L0+00 æ Quadrature reading ŝ Cutler, MA ţ, Transmitter direction In-phase reading 5585600-Instrument-direction L1+00S ³⁵ #28 Station: Cutler, MA Instrument: Geonics EM-16 Instrument direction: South 5585550-VLF Profile 1 cm = 20% Scale 10 20 40m 5585500-Superior Canadian Resources Inc. I. 1 1 I. 4933250 493300 493350 493200 Cryd-1 Camdeck West VLF Reconnaissance Field survey by S. Parent Data plotted by D. Beauchamp Aurum Project, O'Sullivan Lake, Ontario Figure: 6-1 By: D.A. Beauchamp., P Geol. Date: 2004.08.28 Revised: 2004.09.25




}







Sampling and Assaying

As one would expect from a grassroots prospecting project, a good many samples were collected and assayed during the program duration.

A list of samples collected along with UTM co-ordinates and descriptions for each is found in appendix 13-8, Sample Information Table.

Assay (lab) results for those samples subjected to analysis for various elements is included in the form of Assay Certificates found in the appropriate Appendix (13-7) of this report.

No attempt to formally assimilate all of these data has been made yet. It is expected that this will be undertaken at the same time as the various geophysical data that have been collected, is formally analyzed. The results of both endeavours will be utilized as aids for future exploration planning.

A summary of Samples collected is found on the following page:

Sample Information Summary: PW + 9200-9300 series

The following 79 rock and 38 soil samples were subject to lab analysis for various elements as noted in the tables:

(Field) Sample numbers:

PW 1-11 incl.	rock
9201 - 9223	rock
9240 - 9278	soil
9301 - 9302	rock
9303 - 9323	rock
9339 - 9351	rock
9356 - 9365	rock
9366 - 9368	rock
Jonsmith 1 – 2	old core

Additional stripping /blasting / sampling after Wielezynski

VP Exploration (SCRI) visited the camp on June 27th and 28th. J. Davies, S. Parent and P. Wielezynski visited all project areas to date including the Gagnon area, all New Showings, Cryderman Penninsula and the Kowkash grid area.

Shortly after returning to head office Wielezynski produced a directive that effectively put a stop to the general project plans as originally contemplated.

A copy of that directive follows:

"AURUM PROJECT PRIORITY REVIEW AND WORK TO BE COMPLETED BY JULY 31, 2004"

I visited the Aurum camp June 27 & 28 and reviewed field activities since the beginning of the field season. Based on overall potential of the area, discussions I had with John Davies and Shaun Parent and initial assay results I decided on the following priorities:

Priority 1 – Kowkash Occurrence

- Cut or clear approximately 5 km of new lines (sketched lines were provided on the original, new grid map and left in the camp) to better define mineral occurrences around trench T-7; trenches: T-1, T-2, T-3 and T-4 and drill holes: DDH 10 and DDH 20; trench T-9 and drill holes: DDH 4 and DDH 5; as well as trench T-10 (see attached maps 130 and 139)
- > Trench T-7
 - the occurrence is associated with rusty, sometimes sheared mafic metavolcanic rocks and rusty quartz veins containing pyrite and chalcopyrite, arsenopyrite and pyrrhotite (common), marcasite/ melnikovite and native bismuth Bi (less common), sphalerite, cubanite and goethite (minor), bismuthinite and galena (trace),
 - grab samples, so far, yielded 0.66 to 0.98 oz/t Ag and 0.01 oz/t Au,
 - examine the showing in detail and collect more mineralized samples,
 - map it's possible extension to the south and north along EM conductor identified by previous ground geophysical survey (see

attached map 130 and 139), by conducting magnetometer and EM-16 geophysical surveys; the above conductor was confirmed by recent Aeroquest survey (see attached maps 148a and 148b),

- the drill hole DDH 11 (north of the trench) encountered chalcopyrite and pyrrhotite (2-4%) mineralization at various depths,
- map similar EM conductor to the NW of the trench (sub parallel to the first one), which is associated with very strong magnetic anomaly (see attached map 130 and 139) and never been evaluated by drilling before, it can open the area to the SW and NE,
- conduct stripping of the overburden,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous areas,
- provide GPS coordinates for the trench and DDH drilled
- > Trenches: T-1, T-2, T-3, T-4 and drill holes: DDH 10 and DDH 20
 - the occurrence is associated with rusty, sometimes sheared mafic metavolcanic rocks and rusty quartz veins containing pyrite and chalcopyrite, arsenopyrite and pyrrhotite mineralization,
 - DDH 10 (0.16 oz/t Au over 45 ft of sludge) and DDH 20 (3.33 oz/t Au over 0.2 ft of core and 0.38 oz/t Au over 20 ft of sludge) – see attached map 130 and 139,
 - examine the showings in detail and collect more mineralized samples,
 - map it's possible extension to the SE, NW and perhaps NE, passed DDH 20, by conducting magnetometer and EM-16 geophysical surveys,
 - the entire area is associated with very strong magnetic high (see attached map 139),
 - the drill holes drilled in the area encountered disseminated chalcopyrite and pyrrhotite at various depths,
 - conduct stripping of the overburden,
 - collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous areas,
 - provide GPS coordinates for trenches and DDH drilled
- Trench T-9 and drill holes: DDH 4 and DDH 5
 - the occurrence is associated with rusty, sometimes sheared mafic metavolcanic rocks and rusty quartz veins containing pyrite and chalcopyrite, arsenopyrite and pyrrhotite mineralization,
 - DDH 4 (7.99 oz/t Au over 0.3 ft of core) and DDH 5 (1.06 oz/t Au

over 0.5 ft of core),

- the area extends from the previous occurrence along the diabase dyke,
- examine the showing in detail and collect more mineralized samples,
- determine extension to the NE and SW of the mineralization identified in DDH 4 & 5, by conducting magnetometer and EM-16 geophysical surveys,
- map EM conductor situated north of DDH 4 & 5 and extending to the NE pass trench T-10 and associated with strong magnetic anomaly (see attached map 139),
- this conductor has been evaluated only by one drill hole DDH 6, which encountered mineralized rhyolite with chalcopyrite and pyrrhotite and sheared chloritic andesite and porphyry dyke closely resembling porphyry dyke adjacent to gold bearing quartz vein in DDH 4 & 5,
- conduct stripping of the overburden,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area,
- provide GPS coordinates for the trench and DDH drilled
- > Trench T-10
 - the occurrence is associated with rusty, mainly massive, mafic metavolcanic rocks containing pyrite and chalcopyrite, arsenopyrite and pyrrhotite mineralization,
 - grab samples, so far, yielded 5.14 to 15.01% Cu, 3.82 to 8.14 oz/t Ag and 0.01 to 0.04 oz/t Au.
 - examine and analyze the occurrence in detail, collect more mineralized samples,
 - conduct magnetometer and EM-16 geophysical surveys to determine the extension of the mineralized zone to the north, south and perhaps east (see attached map 139),
 - conduct stripping of the overburden,
 - collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area,
 - provide GPS coordinates for the trench
- > Area north of the trench T-10
 - the area is underline by mafic metavolcanic rocks,
 - the Aeroquest survey over this area displays numerous magnetic and NW-SE trending TEM anomalies (see attached map 148b and 148c), that should be examine on the ground,

, ---

- the most interesting area from the geophysical point of view is situated at the intersection of flight line L 230 and tie line T 9908, the anomaly looks very similar to the anomaly over the Louanna Mine,
- map and prospect the area to see if some of these anomalies are caused by MVS or disseminated mineralization,
- *if found, conduct magnetometer and EM-16 geophysical surveys to determine the extension of the mineralized zones,*
- pay special attention to the sheared zones,
- conduct stripping of the overburden,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area

Priority 2 – Crydyman Peninsula and islands between peninsula and patented claims (Farley Island, Camdeck and Crydyman Occurrences)

- the occurrences are associated with sheared quartz porphyry, carbonate-quartz crystalline schist (listvenite?) and rusty quartz veins containing arsenopyrite (dominant), pyrite (common), galena, chalcopyrite, sphalerite (minor), cubanite and covelite (trace),
- grab samples collected on Farley Island and Crydyman Peninsula yielded up to 0.2 oz/t Au
- map and prospect the area to see if some of these earlier identified EM conductors (see attached map 138) and Aeroquest TEM and magnetic anomalies are caused by MVS or disseminated mineralization,
- *if found, conduct magnetometer and EM-16 geophysical surveys to determine the extension of the mineralized zones,*
- conduct stripping of the overburden,
- pay special attention to the sheared zones,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area,
- at the end we would have to make a decision as to possibility of staking some additional claims,
- locate 11 DDH drilled in the area and provide their GPS coordinates

Priority 3 – Frank Gagnon Occurrence

 the occurrence is associated with rusty, sometimes sheared mafic metavolcanic (silicified actinolite schist), quartz porphyry rocks and rusty quartz veins containing pyrrhotite, melnikovite/ marcasite, chalcopyrite, pyrite and goethite (common), arsenopyrite (less common),

- grab samples collected yielded up to 35.86 oz/t Ag, up to 0.26 oz/t Au and up to 8.9% Cu,
- map and prospect the area to see if some of these earlier identified EM conductors and magnetic anomalies are caused by MVS or disseminated mineralization (see attached map 137),
- if found, conduct magnetometer and EM-16 geophysical surveys to determine the extension of the mineralized zones,
- pay special attention to the sheared zones,
- conduct stripping of the overburden,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area,
- locate trenches and 3 DDH drilled in the area, provide their GPS coordinates

Priority 4 – Copper Jim Occurrence

- the occurrence is associated with rusty, sometimes sheared mafic metavolcanic rocks and rusty quartz veins containing pyrrhotite, chalcopyrite, pyrite and arsenopyrite mineralization,
- grab samples collected yielded up to 35.86 oz/t Ag, up to 0.26 oz/t Au and up to 8.9% Cu (see attached map 138),
- map and prospect the area to see if some of these earlier identified EM conductors and magnetic anomalies are caused by MVS or disseminated mineralization,
- if found, conduct magnetometer and EM-16 geophysical surveys to determine the extension of the mineralized zones.
- pay special attention to the sheared zones,
- conduct stripping of the overburden,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area,
- locate 7 DDH drilled in the area, provide their GPS coordinates

Priority 5 – Northeast Arm of O'Sullivan Lake, New Occurrences identified by Shaun (NS-1, 60 m from Conlon Occurrence, NS-2, NS-3, NS-4 and NS-5)

- all of these occurrences are associated with rusty, sheared, mafic metavolcanic rocks and rusty quartz veins containing chalcopyrite, arsenopyrite, sphalerite and pyrite mineralization,
- grab samples collected yielded up to 0.025 oz/t Au (see attached map 137),

- map and prospect the area to see if some of these earlier identified EM conductors and magnetic anomalies are caused by MVS or disseminated mineralization,
- pay special attention to the sheared zones,
- conduct stripping of the overburden,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area,
- locate trenches and DDH drilled in the area, provide their GPS coordinates

Priority 6 – Hurd Lake Occurrences (Northeast Zone, Cell C Area)

- all of these occurrences are associated with rusty, sheared, mafic metavolcanic and in some cases quartz porphyry rocks and rusty quartz veins containing chalcopyrite, arsenopyrite, sphalerite and pyrite mineralization,
- grab samples collected yielded up to 0.07 oz/t Au and 0.59% Cu,
- 3 DDH drilled yielded 0.41 to 0.7% Ni and 0.54 to 1.09% Cu over averaged 5 ft,
- map and prospect the area to see if some of these earlier identified EM conductors and magnetic anomalies are caused by MVS or disseminated mineralization (see attached map 145),
- pay special attention to the sheared zones,
- conduct stripping of the overburden,
- collect samples of any mineralized rocks and if outcrops are not available collect soil samples to determine geochemically anomalous area,
- locate trenches and DDH drilled in the area, provide their GPS coordinates

Peter L. Wielezynski

8 Attachments

July 14, 2004

The 2004 summer field Work program had to be terminated on July 31st due to budget constraints, therefore not all of Wielezymski's directives were able to be accomplished.

The following discussion will outline what was able to be done during this approximate 2 week period.

Persons involved in the work during this project were as follows:

<u>Washing, stripping, sawing</u>: Blake Mendowegan, David Besson, Ian McCutchon, Paul Beckett.

Sample collecting: Shaun Parent, Paul Beckett, Dave Christianson, Ian McCutchon, Blake Mendowegan, David Bisson.

Blasting: Dave Christianson, Blake Mendowegan, David Besson, Ian McCutchon.

....dates worked as per Personnel Information Table in Appendix 13-5.

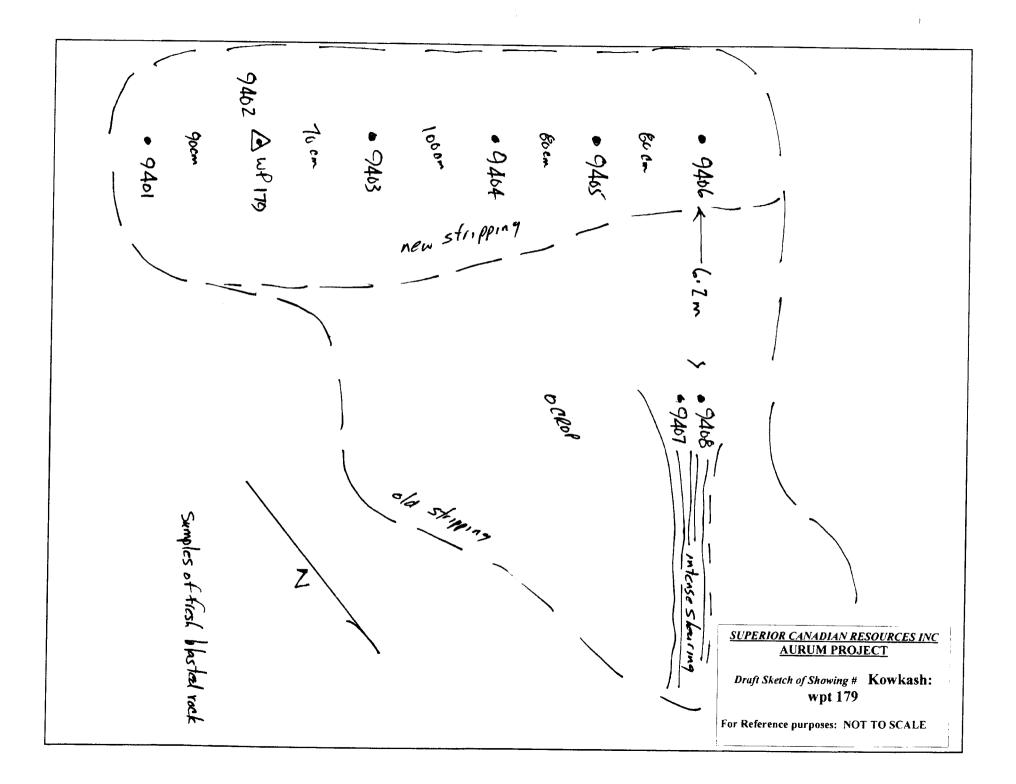
Work commenced on this phase of the program on July 17th with stripping (cleaning up sample sites), washing as required.

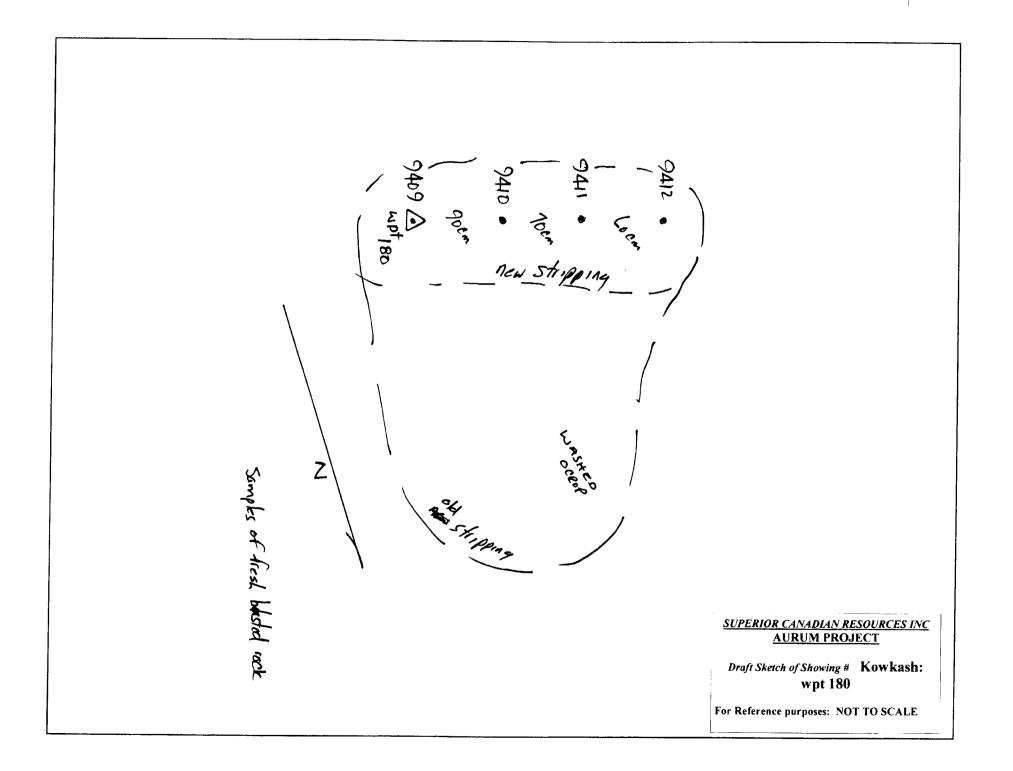
A supply of blasting materials was picked up on July 23rd and blasting and sampling commenced shortly then after.

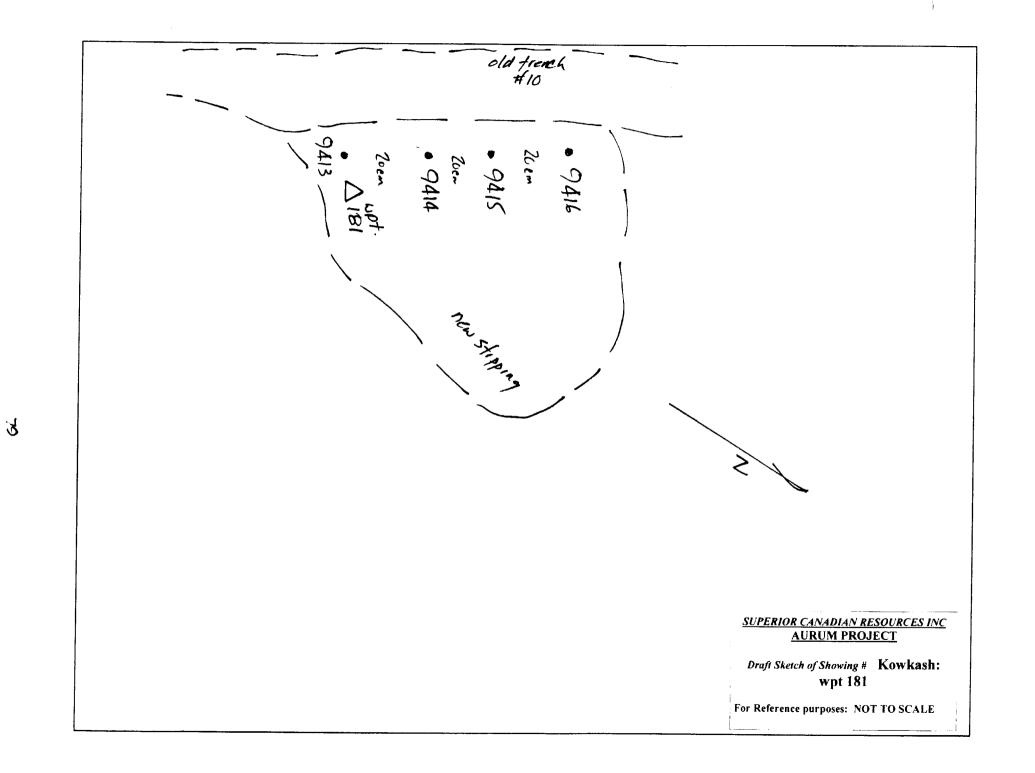
Sites that were amenable to channelling with a rock saw were washed and an approximately 2" wide channel was sawn across outcrop as shown on sample location sketches. Sample location sketches for the 9400 series samples are shown in the figures following the information table below.

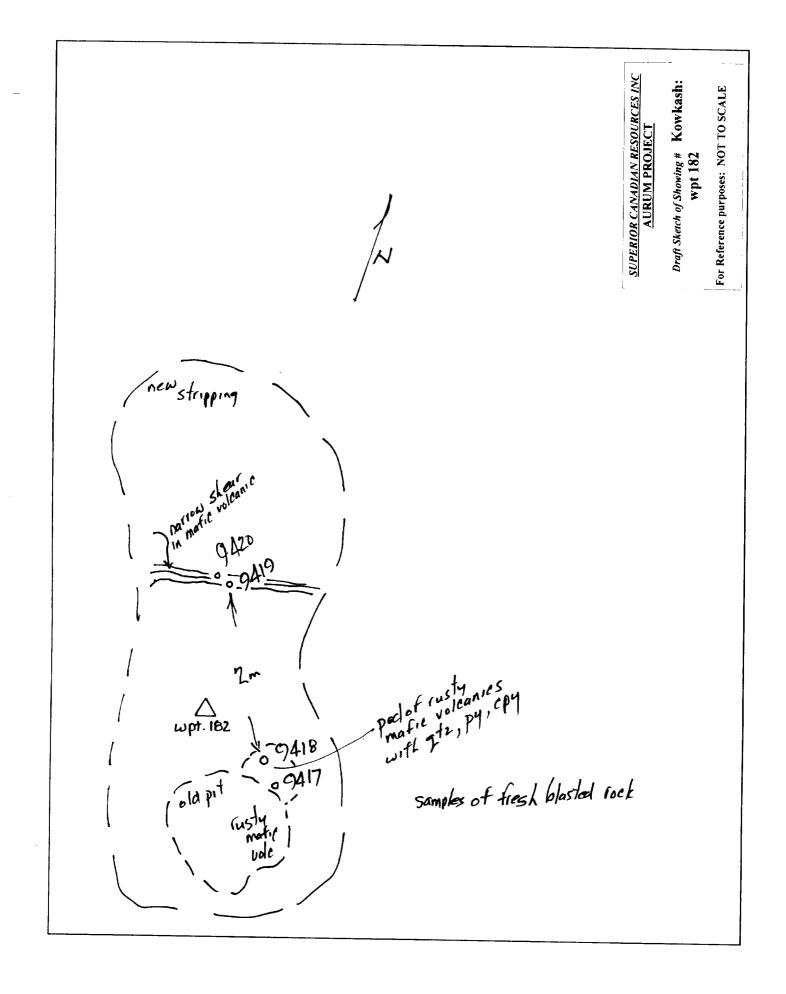
Details concerning the location of these particular areas are noted in the 'Additional stripping/washing/blasting/sampling information Table' as follows.

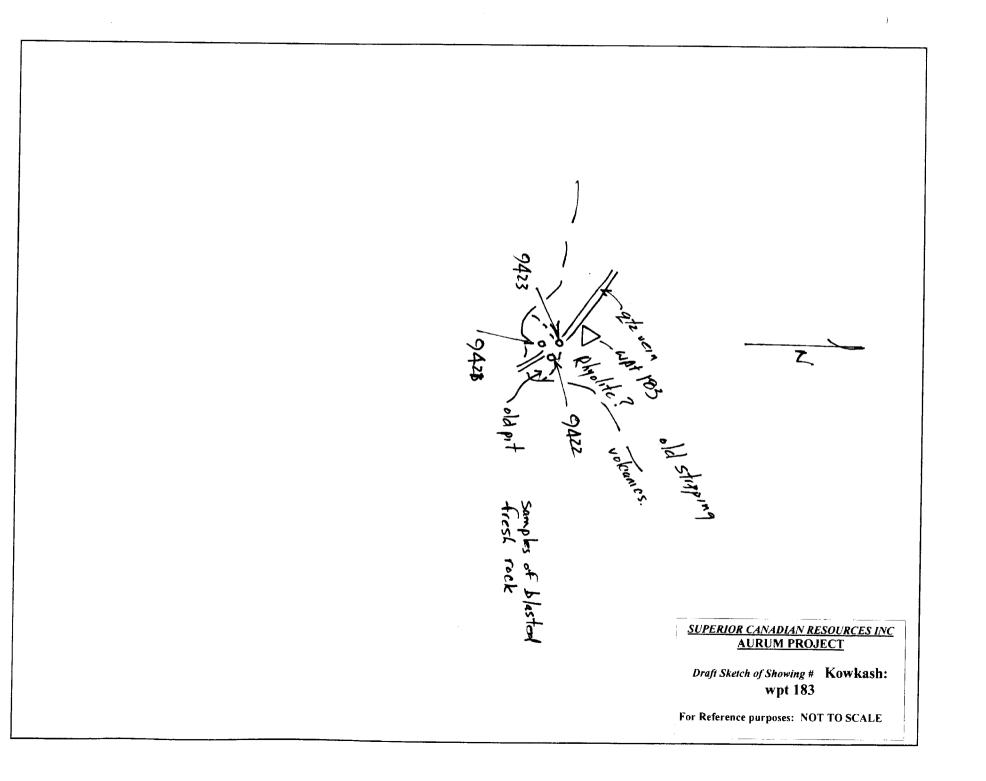
Sample #	Wpt. #	Location: Northing/Easting	Comments	
9401	179 -1	90 cm's S of wpt.	(Kowkash.) 1 of 8 samples, Samples of fresh blasted rock, near this wpt	
9402	179-2	5587838 / 0497484	2 of 8,	
9403	179-3	70 cm N of 9402	3 of 8,	
9404	179-4	100 cm N of 9403	4 of 8,	
9405	179-5	80 cm N of 9404	5 of 8,	
9406	179-6	80 cm N of 9405	6 of 8.	
9407	179-7	Samp site = 6.m E of 9406	80 cm's N from 6.2 m E	
9408	179-8	n n	80 cm's S from 6.2 m E	
9409	180 -1	5588110 / 0497572	1 of 4 samples near this wpt. Samples of fresh blasted rock.	
9410	180-2	90 cm's WNW of wpt	2 of 4	
9411	180-3	70 cm's WNW of 9410	3 of 4	

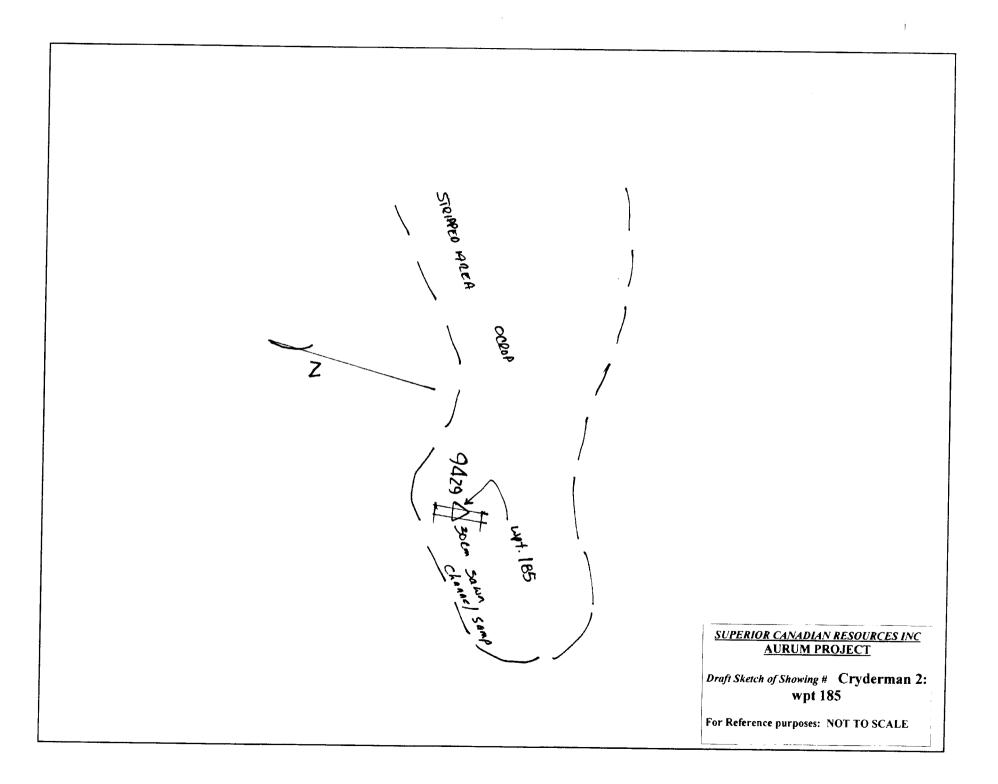

_				
9412	180-4	60 cm's WNW of 9411	4 of 4	
9413	181 -1	5588167 / 0497555	1 of 4 near this wat Complete of fact the	
9414	181-2	20 cm's NW of 9413	1 of 4 near this wpt. Samples of fresh blasted rock. 2 of 4	
9415	181-3	20 cm's NW of 9414	3 of 4	
9416	181-4	20 cm's NW of 9415	4 of 4	
9417	182 -1	2 m S of 5588175 / 0497622	1 of 4 near this wpt. Samples of fresh blasted rock.	
9418	182-2	30 cm's N of 9417	2 of 4	
9419	182-3	2 m N of wpt.	3 of 4	
9420	182-4	30 cm's W of 9419	4 of 4	
9421	183- 1	5585858 / 0494668	1 of 3 Samples of frsh blasted rock.	
9422	183-2	Approx.30 cm's E of wpt	2 of 3	
9423	183-3	Approx. 30 cm's SW of wpt	3 of 3	
9429	185	5585748 / 0494543	(Cryderman 2.) 30 cm sawn channel sample	
9432	186 -1	5585954 / 0495427	1 of 10, 10 samps @ 30 cm intervals ESE from wpt. Sawn channel samples	
9433	186-2	30 cm's ESE from 9432	2 of 10	
9434	186-3	30 cm's ESE from 9433	3 of 10	
9435	186-4	30 cm's ESE from 9434	4 of 10	
9436	186-5	30 cm's ESE from 9435	5 of 10	
9437	186-6	30 cm's ESE from 9436	6 of 10	
9438	186-7	30 cm's ESE from 9437	7 of 10	
9439	186-8	30 cm's ESE from 9438	8 of 10	
9440	186-9	30 cm's ESE from 9439	9 of 10	
9441	186-10	30 cm's ESE from 9440	10 of 10	
9442	187 -1	5585706 / 0497535	1 of 7 Samples rom sawn channel	
9443	187-2	30 cm's SSE from wpt	2 of 7	
9444	187-3	30 cm's SSE of 9443	3 of 7	
9445	187-4	30 cm's SSE of 9444	4 of 7	
9446	187-5	20 cm SSE of 9445	5 of 7 (qtz vein)	
9447	187-6	10 cm's SSE of 9446	6 of 7	
9448	187-7	30 cm's SSE of 9447	7 of 7	
9449	192 -1	5585965 / 0495433	(Farley Island) 1 of 6 Samples from sawn channel	
9450	192-2	30 cm's NW of 9449	2 of 6	
9451	192-3	30 cm's NW of 9450	3 of 6	
9452	192-4	30 cm's NW of 9451	4 of 6	
9453	192-5	30 cm's NW of 9452	5 of 6	
9454	192-6	30 cm's NW of 9453	6 of 6	
9455	188 -1	5585705 / 0497520	(Rusty Point) 1 of 5 Samples from sawn channel	
9456	188-2	30 cm's S of 9455	2 of 5	
9457	188-3	30 cm's S of 9456	3 of 5	
9458	188-4	30 cm's S of 9457	4 of 5	
9459 9460	<u>188-5</u> 189 -1	30 cm's S of 9458 5585709 / 0497536	5 of 5 1 of 6 Samples from sawn channel	
0461		(5 m N of wpt 187)		
9461 9462	<u>189-2</u> 189-3	30 cm's E of 9460 30 cm's E of 9461	2 of 6 3 of 6	
9463	190.2	(sm qtz vein)		
9463	189-3	30 cm's E of 9462	4 of 6	
9465 9465	189-4	30 cm's E of 9463	5 of 6	
7403	189-5	Sm qtz vein	6 of 6	


9466	190 -1	5585750 / 0497534 (15 m E of 189)	1 of 4 Samples from sawn channel	
9467	190-2	30 cm's S of 9466	2 of 4	
9468	190-3	30 cm's S of 9467	3 of 4	
9469	190-4	30 cm's S of 9468	4 of 4	
9470	194 -1	5587077 / 0501808	(Gagnon main showing) 1 of 2 Samples from sawn channel	
9471	194-2	30 cm's N of 9470	2 of 2	
9472	195 -1	5587288 / 0502157	(Gagnon Bat cave [NS 6]) 1 of 2 Samples from sawn channel	
9473	195-2	20 cm's WNW of 9472	2 of 2	

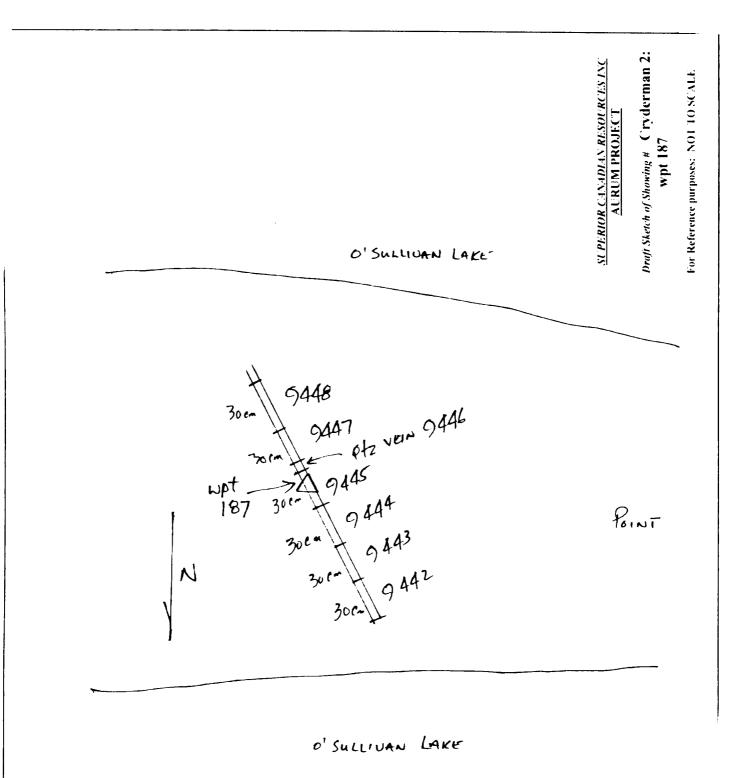

66 samples

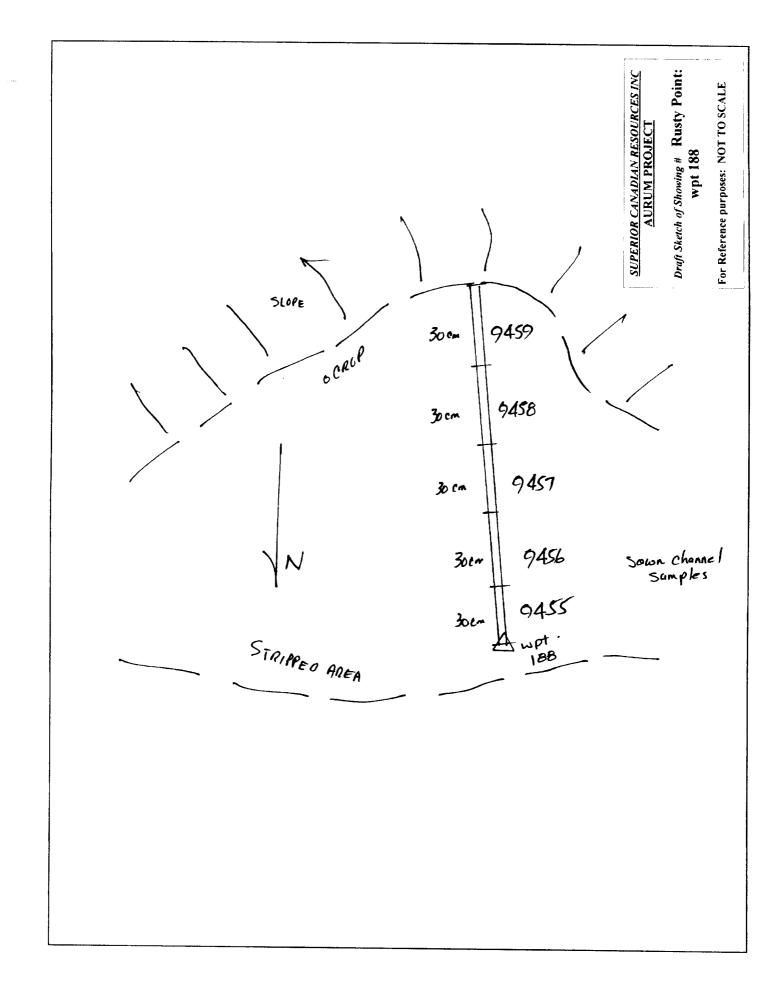

The following 'Location' sketches. These 'sketches' are provided for the purpose of identifying accurate locations for sample points relative to CDGPS corrected UTM waypoint data which is included in the preceding information table.

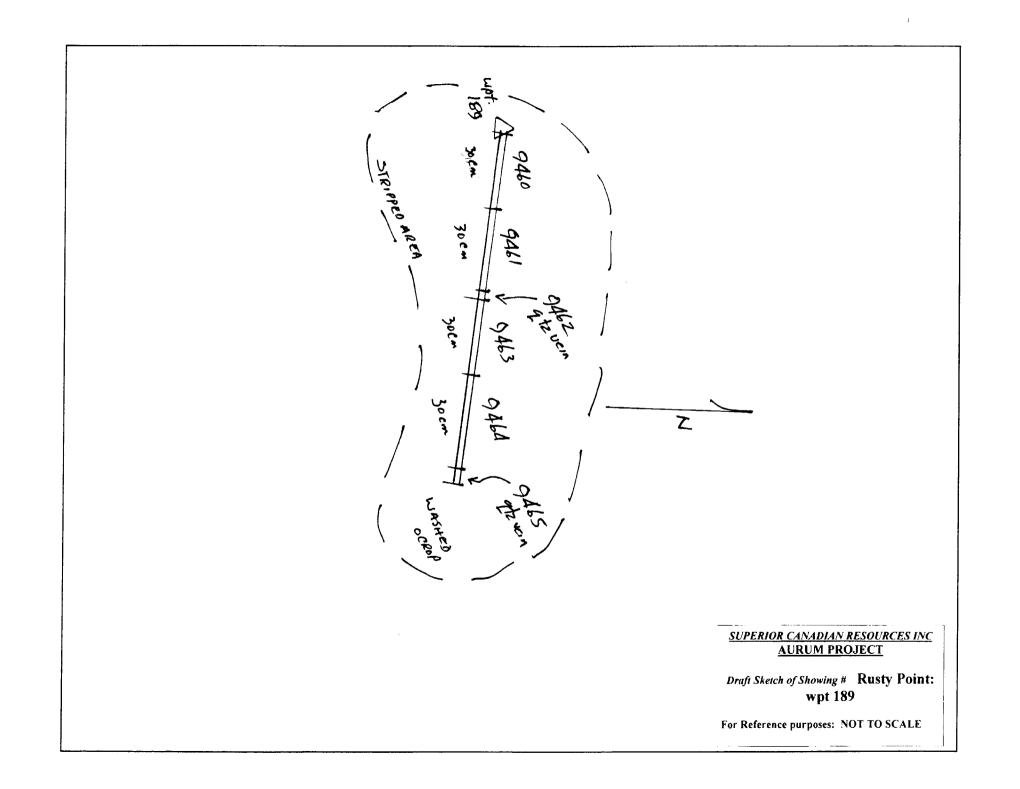

Please note: these sketches are not drawn to any particular scale.

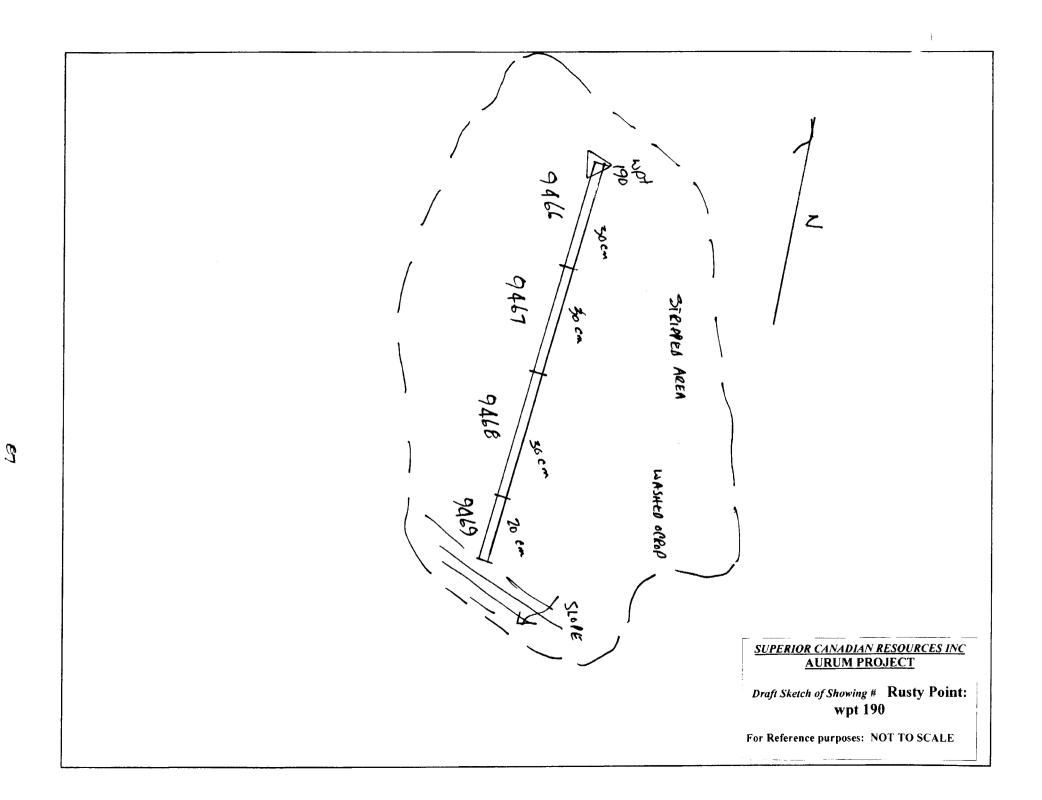


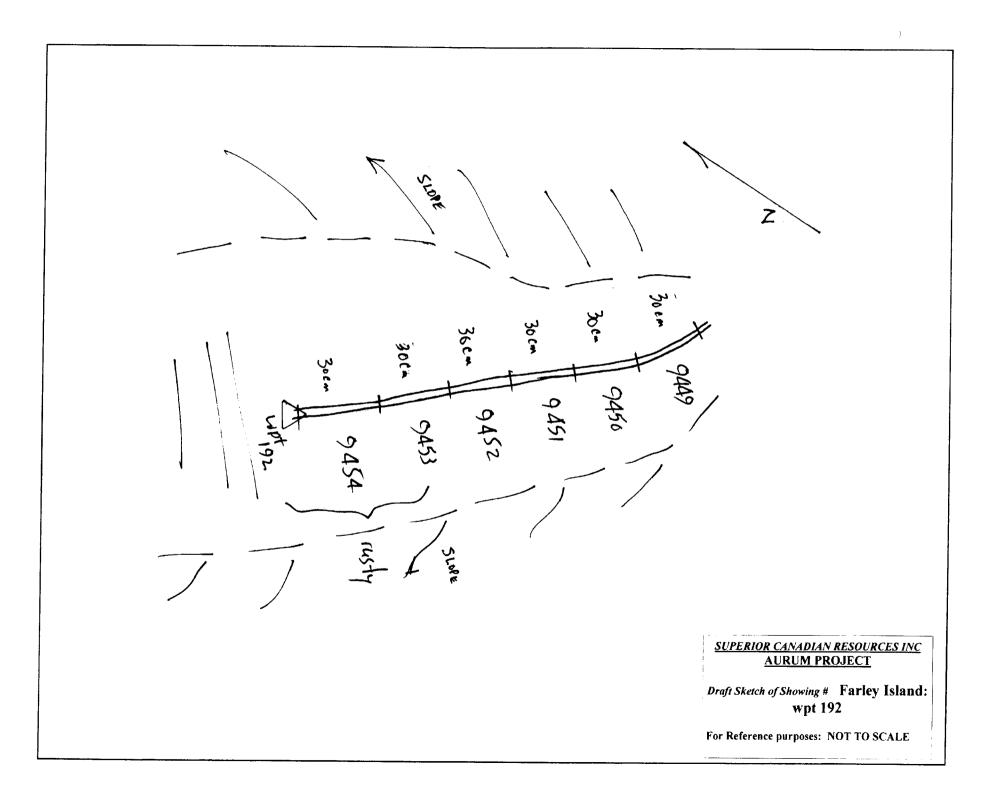


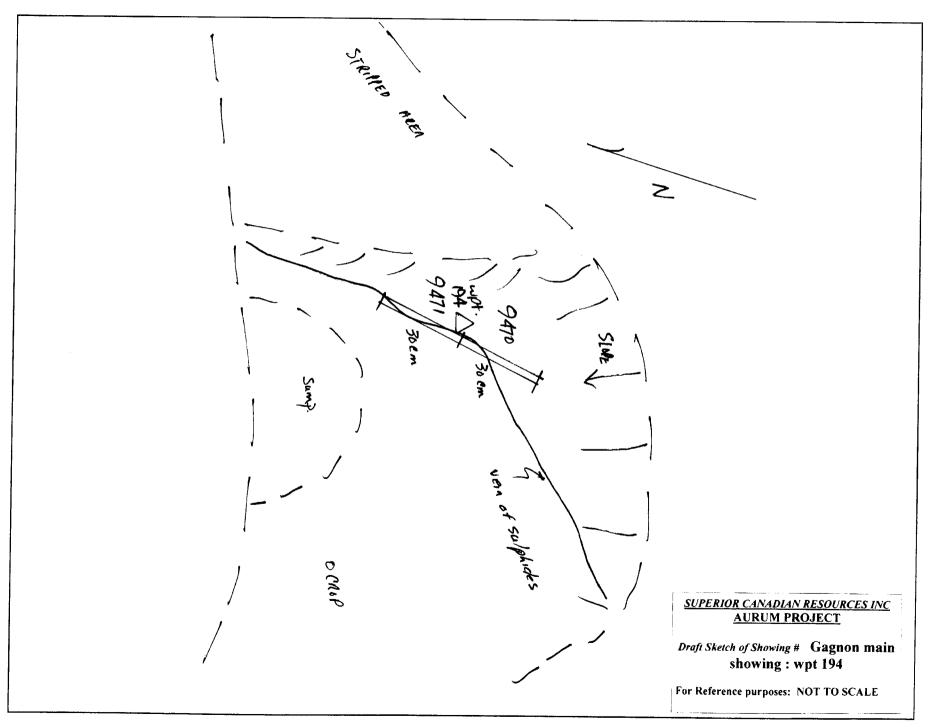


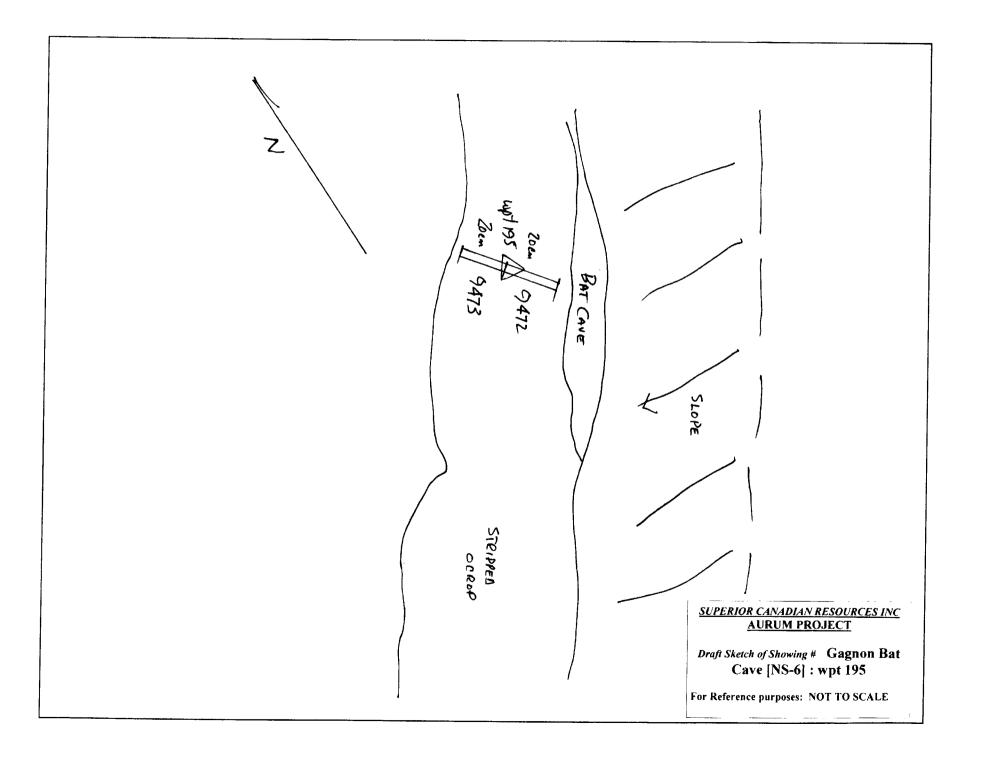












Q

Sample Description Table: 9400 Series Samples, Aurum Project 2004

Sample #	Description
9401	Basalt, massive, f.g. small clots chlorite. Reacts to Hcl. Some fine dissem sulphides, mostly py. Some small qtz crystals. Rock is dark grey/black colour.
9402	Mixed sample. Dark grey/black, f.g. volc. Some sheared, some not. Rusty (not magnetic). No vis min. No react to Hcl
9403	Volc. Black, f.g. (Basalt) with qtz and carbonate stringers and blebs/crystals (chlorite?). Some minor sulphide mineralization, mostly py. Not magnetic.
9404	Volc. Black/green f.g. (Basalt) No vis min. Massive. Unaltered, no shearing.
9405	Similar to 04 above. Fairly massive. F.g. black,/green volc with seams carbonate?. 1-2% dissem sulphides, cubes py and some cpy?
9406	Similar to 05 above. A few more sulphides (py), more fine qtz/carb stringers. Reacts to Hcl.
9407	Basalt, sheared, alterated/foliated, black rock. Carbonate rich (strong react to Hcl) plus minor sulphides (py). Some qtz blebs and crystals.
9408	Similar to 9407. Basalt, sheared/foliated black. Some minor sulphides. No react to Hcl. Not magnetic.
9409	Same as 08 and 9410. Dissem sulphides. Not magnetic. No react Hcl
9410	Basalt, rusty, qtz flooded. Some py min. similar to 9408
9411	Basalt. Foliated/altered. Some qtz with carb stringers (Hcl react). No vis min. Not magnetic.
9412	Similar to 9411. Qtz rich with some minor cubes py. Carb stringers and black and rusty mineral.
9413	Basalt, dark green/black. Some fine seams carb (Hcl) Dissem sulphides Po (lightly magnetic)
9414	Basalt, f.g. black. Fine seams carb (Hcl). Splashes py and dissem py, Po., cpy. Locally magnetic.
9415	Same as 9414. more sulphide mineral (po) locally magnetic. Little carb.
9416	Volc., grey/green, f.g. carb flooded. Seams & inclusions of carbonate. Up to 2% very fine dissem sulphides py, cpy
9417	Basalt, v.f.g. dense black rock. Lightly silicified, vugs contain rotting sugary qtz with biotite?. Weathers to rusty brown surface. No react to Hcl.
9418	Similar to 9417, some fresher qtz with fine specks sulphides py, cpy and possibly aspy. Rock is very brittle and fractures in many planes.
9419	Similar to 9418 with significantly more fine dissem sulphides (up o 10%) py, po, cpy, & aspy. No react to Hcl. Locally magnetic.
9420	Similar to 9419 ets with fewer sulphides. Slightly more silicification. No react to Hcl. Highly magnetic. Fracture planes include rotting vuggy, sugary qtz.
9421	QFP?, altered, blebs & crystals sulphides, mostly py, some cpy and steel grey min (aspy?) in qtz. Some hematite and other brown (ankerite?) alteration. Qtz phenocrysts. Very light react (local) to Hcl.

	Not magnetic.
9422	Qtz veins in sheared volc matrix. Grey colour. Brown rusty rind. Lg
	(10mm) blebs and crystals py in qtz. Some arsenopyrite (aspy) in
	qtz. Not magnetic. Very light local react to Hcl.
9423	Felsic? Volc., highly altered/sheared/foliated (or altered QFP ?) Much
	brown (ankerite?) alteration. Some broken gtz crystals, blebs
	sulphides up to 5 mm, mostly py. Brown surface rind.
9424	Volc. Felsic?, light green, some fine dissem sulphides. White rind on
	surface. More qtz, less chlorite, low Hcl reaction. Some brown frat
	filling/alteration ankerite?
9425	Volc., silicified, light green/grey, very sparse f.g. sulphides, some
	larger blebs Po. White rind on surface. Some black fracture filling.
	Very light reaction to Hcl.
9426	Volc., qtz rich, highly silicified, dull white with grey/brown. Some
	hematite alt along fracture planes and on surface. Sparse sulphide
	mineralization, specks aspy. Very light react to Hcl. Many black,
	vuggy vertical-trending fractures (biotite?)
9427	Volc., very f.g. massive, grey/green , no vis min. Fine black hairline
	fractures. High reat to Hcl. Not magnetic.
9428	Same as 9449. volc, felsic?, f. grained, light green, few sulphides,
	much chlorite (clots and blebs), some black mineral associated with
	chlorite clots (biotite?)
9430	Volc, silicified, light green/grey, very sparse sulphides, some qtz
	stringers/phenocrysts. Much black min (biotite?). Local high react to
	Hcl. Brown colour surface rind, not magnetic.
9431	Volc. Light green, intensely sheared, carb flooded and carb seams.
	Strong react to Hcl. Some more felsic bands (vertical) with qtz and
	specks/blebs sulphides (py)
9432	Similar to 9431. Slightly less sheared but appears otherwise altered
	(foliated?). Carb flooded with seams of brown carb. Appears to
	include some form of altered QFP that weathers more quickly. Some
	Qtz veining. Surface rind is thick, brown and rusty.
9433	Sim to 9432. less sheared/foliated. More massive. No evid of QFP
	incl. some minor specks sulphides and QTZ veining.
9434	Volc. F.G. massive to lightly sheared. Light green. Vert shear
	planes/fractures contain carb and/or another black mineral. Some
	fine sulphides in rock mass. Rock is more 'felsic'? bleached looking.
9435	Same as 34. Some fine disemm. Sulphides in rock mass. Shearing is
	fairly intense.
9436	Same as 35. Qtz blebs have some specks steely grey min, suspect
	aspy ?
9437	Volc f.g. dark colour, sheared. No vis min.
9438	Volc, massive, f.g. Carb rich (Hcl). Minor sulphides. Grey/green,
	massive to lightly foliated.
9439	Same as 9437
9440	QFP? Altered/sheared/folited. No vis min. Some light local react to
	Hcl. Lg qtz phenocrysts. Heavy brown rusty rind.
9441	Volc. (felsic?), light green, massive, silicified. No vis min. surface
	weathers to light green. Carb rich (high react to Hcl)
9442	Identical to 9440. some sparse dissem sulphides.
9443 Same as 9447. No react to Hcl. Not magnetic. A bit less	
	alter/sheared.

9446	QFP? Alteredsimilar to 9442. Very small sample.		
9447	Identical to 9448. some fine specks steel grey min (aspy?) otherwis		
	no vis min.		
9448	QFP? Or felsic volcanic?, lightly altered. Some sparse sulphide specks		
2110	(cpy?). Strong brown surface rind. Light sugary textured qtz/feldspar		
	phenocrysts are highly stress fratured.		
9449	Sim to 9450, volc, felsic?, f.grained, light green, less sulphides, black		
5.15	fracture filling some stz mostly carbonato, chloritic, react to list act		
	fracture filling, some qtz, mostly carbonate, chloritic, react to Hcl, not magnetic		
9450			
5450	Volcanic rock, felsic?, silicified, fine grained, light green colour, shot		
	with blebs/crystals py, cpy, some black mineral fills fractures. Highly		
9451	chloritic, heavy reaction to Hcl 10%, not magnetic.		
5451	Volc (felsic?) light green, carb rich, f.g. massive rock. Some fine carb		
9452	seamlets and other brown coloured alteration (ankerite?)		
9453	Same as 51 above. Note all light green coloured samples are sheared.		
9433	Volc. F.g. light green, similar to 9452 with slightly more fine dissem		
9454	sulphides (py)		
	Same as 9453. lighter green colour, fewer sulphides.		
9455	QFP(?) highly altered, sheared/foliated. Very sparse sulphide min. No		
	react to Hcl. Not magnetic. Surface weathers to rusty brown		
0456	(crumbly).		
9456	Similar to 9455. more intensely sheared. More fine dissem sulphides.		
0450	Sample mostly weathered.		
9458	QFP, altered/foliated. Few specks sulphides incl aspy. Weathers to		
0450	rusty brown rind. Moderate reaction to Hcl.		
9459	Similar to 9458. Considerable number of fine vertical veinlets contain		
0460	carbonate. Some chlorite/epidote ? clotting. Sparse mineralization.		
9460	QFP. Altered. Coarse to med grained, pegmatized. No vis min. Qtz		
0462	and feldspar phenocrysts all buggered up.		
9462	Qtz pegmatite. No vis min		
9463	Same as above, lightly pegmatized ? Some fine specks py and aspy.		
0464	Not as rotten.		
9464	Same as 9463		
9465	QFP highly altered, pegmatized. Stingers black mineral (biotite). Very		
	coarse grained.		
9466	Basalt, f.g. black. Same as 9465. Some sparse sulphides.		
9467	Basalt. Highly silicified, dark green/black volc rock. Lightly sheared		
	with veinlets/seams carbonate. Mod Hcl react. Some feldspar		
	phenocrysts in matrix.		
9468	Same as 67. surface weathers to thick rusty brown. ? Could this unit		
	be a highly altered QFP ?		
9469	Same as 68. more intensely sheared.		
9470	Volc dark green/black. Sheared with some qtz (silicification). Minor		
	sulphides. Sludge turns to brighter green when sawn. Py splashed on		
	fracture planes.		
9471	Basalt, sheared, dark green Hand-sized piece contains near massive		
	sulphides including py, cpy, po, aspy and some qtz. No carb. No react		
	to Hcl. Strongly magnetic.		
9472	QFP altered. Lg qtz crystals. Feldspar phenocrysts are pink, green,		
	and brown rimmed. Lightly foliated. Blebs of sulphides mostly py plus		
	fine mixed sulphides. Some chlorite or epidote ? (green staining)		
9473	Basalt f.g. black. Highly fractured, vuggy, matrix colour is lighter		

	(more felsic?). 68 samples
Note:	A total of 5 samples had bag and tag numbers obscured during storage and are not included in this table.

Visiting Geologists Comments

Several MNDM (OGS) staff geologists visited the Aurum property during the summer field program described in this report.

Some of their project-related comments are noted as follows:

Greag Stott, Geoscientist, Ontario Geological Survey, Precambrian Geology Section. During his overnight visit to the camp on June 29/30th Gregg the crew had an opportunity to pick his brain re his knowledge of the area. It was he and Jack Parker who were responsible for producing the Precambrian Geology Map(s) # P 3377 in 1997. He was also able to visit several of the project areas before departing.

The following e-mail correspondence to D. Christianson, Project Manager, is a summary of his visit along with some interesting comments re the regional geology and showing areas visited:

"Report of Observations and Comments on the setting of O'Sullivan Lake mineralization" For: Dave Christianson Project Manager Superior Canadian Resources Inc. Email: <u>dchris@tbaytel.net</u>

Introduction

I was asked to visit two sites on O'Sullivan Lake for comment and the following is a brief report on my observations and interpretations of those two sites in the context of the regional geology. Jack Parker and I mapped the O'Sullivan Lake area during six weeks of 1997 and published two 1:20 000 scale maps, the western sheet covering the areas of interest here (OGS map P.3377). This map serves as a useful reference to the larger context for the descriptions and comments below.

Gagnon East Occurrence

Observations

I visited an area of the Gagnon occurrence with Shaun Parent. Frank Gagnon had prospected several sulphide occurrences in the Northeast arm and Conlon Bay of O'Sullivan Lake. Some of these occurrences contain chalcopyrite-bearing veins in basaltic host rocks that possess various hydrothermal alterations at different outcrops, including widespread calcite; iron carbonate +/- sericite; pyrite-sericite; epidote +/pyrite-chalcopyrite. (See OGS map P.3377 for a general distribution of these alterations

in the Northeast Arm.) The Gagnon "main occurrence" [location: easting 501803, northing 5587083, NAD83], contains a chalcopyrite-rich vein obliquely crossing the foliation in the mafic volcanic host. The flow-banded basaltic host contains epidotemagnetite +/- quartz veins and epidote-quartz pods and bands. Magnetite grains are scattered in the basalt in association with the epidote and in fractures. There is minor sulphidization of the basalt in spots.

A site at the base of a cliff [location: easting 502157 northing 5587305] contains a horizontal, sheared quartz-epidote-chlorite vein formed by extensional fracturing and displaying malachite staining. The top of this cliff area displays pillowed basalt and a zone of strongly foliated mafic volcanic flows separated by thinly bedded felsic tuff beds. The flows are each about 1 metre thick. We noted malachite in a quartz vein in a granodiorite dyke intruding parallel to the foliation in the mafic volcanic flow breccia. The flow breccia contains small epidote-rich pods and locally disseminated chlorite + quartz +/- calcite +/- pyrite + chalcopyrite. A 10 metre wide zone of brown weathered basaltic flow and flow breccia lies between a massive basalt and a pillowed basalt unit. The flow breccia contains chlorite-carbonate alteration. In thick granodiorite dykes cutting the basalt, there are pods of chlorite-carbonate-quartz and very fine-grained pyrite.

Another stripped area [location: easting 501690 northing 5587110] of northwestyounging basaltic pillows contains a zone of flow breccia and a large albite-epidote pod, some sulphide alteration in the pillow selvages and local sulphide "burns" on the weathered surfaces of the pillows.

Comments

The flow breccia appears to form local structural traps for sulphides and the epidote-bearing alteration appears more concentrated in the more thinly banded basalt flows and flow breccia. The widespread, moderate development of epidote + magnetite +/- quartz +/- chlorite here is similar to "epidosites" widely reported in disseminated zones or fractures within basaltic flows underlying volcanic-hosted massive sulphide (VMS) deposits.

The cliff outcrop appears to be in a large "raft" of basalt enveloped at least partially by the granodiorite intrusion to the south of the greenstone belt. Hence the site is on the southeast edge of the belt and the alteration plus sulphides in fractures suggests evidence of a region of hydrothermal discharge upwards (northwestwards) through the basaltic pile. It would appear that if any massive sulphides were preserved, associated with this primary hydrothermal event, they would be somewhere higher up in the volcanic stratigraphy towards the northwest. Since most of the epidote alteration around O'Sullivan Lake and eastwards is concentrated in the southern half of the belt on either side of the main syncline (see OGS map P.3377), one could argue that the hydrothermal system was discharging upwards towards the axis of the syncline. The Camdeck and Farley Island occurrences at Cryderman Peninsula are close to the syncline axis. Observations at Cryd-2 strip on the peninsula are relevant and described below.

Cryd-2 Strip – Cryderman Peninsula

Observations

At the Cryd-2 strip outcrop [location: easting 494536, northing 5585748] we observed a unit of felsic tuff bounded by pillowed basalt on the south and massive basalt flow on the north. A quartz-feldspar porphyry sill, containing tabular hematitic jasper chert fragments, intruded the felsic tuff. The porphyry formed lobes and finger-like shapes that intruded into the tuff. The tuff appears more siliceous close to the contact with the basalt flows. The pillows on the south contact appear to have formed by sagging onto unconsolidated tuff. This is consistent with the lobe/finger-like appearance of the porphyry sill in the tuff; the porphyry appears to have partially separated into ball-like lobes, typical of magma emplacement into unconsolidated sediment or tuff.

Comments

The relation between the tuff and porphyry and the apparent relatively soft, unconsolidated condition of the tuff at the time of porphyry intrusion and overlying pillowed basalt deposition suggests that the porphyry and tuff were deposited close in time and likely represent contributions from the same magma chamber. Since this tuff horizon is close to the axis of the major NE-trending syncline, it could mark a change in volcanism from dominantly mafic to more felsic composition.

The porphyry appears to be representative of several quartz-feldspar porphyry intrusions observed across the O'Sullivan Lake area, which have been dated by U-Pb analysis of zircons at about 2734 to 2738 million years (Ma) (see the table of ages in OGS map P.3449, which I provided). This age range generally coincides with the age of dacite tuff (2733 Ma) mapped along the northern part of the greenstone belt (see OGS map P.3377). This implies that the felsic volcanism preserved along the northern flank of the regional anticline in the northern part of the belt coincides in age with the felsic tuff near the axis of the regional syncline on Cryderman Peninsula.

Regional Comments

If we were to unfold the regional anticline and syncline pair that can be traced along the length of the O'Sullivan Lake area, we would find that the hydrothermal alteration observed at the Gagnon occurrence in the Northeast Arm stratigraphically underlies the felsic tuff that lies near the syncline axis. It would appear to also underlie the larger unit of dacitic tuff and tuff breccia in the vicinity of the Odman Lake occurrence of pyrite-pyrrhotite-bearing trenches at the north edge of the belt. Tuff breccia and pyroclastic breccia were observed (see map P.3377) locally on the Anaconda Road and side roads in the northwest part of the belt. These breccias represent the coarsest facies of the pyroclastic rocks in this area and might identify proximity to a volcanic vent. Amphibole-garnet alteration was locally observed south of Odman Lake in those rocks. This alteration is a common syn-volcanic hydrothermal alteration observed in other parts of

the Onaman-Tashota belt and forms a regional alteration of felsic volcanic rocks comparable to the syn-volcanic epidosite alteration of mafic volcanic rocks observed at the Gagnon occurrence.

Summary

In summary, observations at the Gagnon occurrence and on Cryderman Peninsula, in conjunction with our knowledge of the regional fold structure across this greenstone belt suggest that the numerous occurrences of sulphide and epidote alteration in mafic volcanics are all related to a common period of hydrothermal discharge. This would have happened during volcanism and subvolcanic porphyry intrusion about 2734 million years ago. The mineralization is therefore best compared with VMS-style Cu-rich massive sulphide deposits. The best VMS deposits are commonly associated with sizeable subvolcanic heat engines that provided the convection for the hydrothermal activity. It would appear that the many subvolcanic porphyry intrusions in this belt are associated with a subvolcanic magma chamber that provided the heat of convection for this hydrothermal activity. In essence, the regional volcanism, hydrothermal alterations and numerous Cu mineralization occurrences on O'Sullivan Lake all appear to be related to a common period of syn-volcanic hydrothermal activity 2734 million years acommon period of syn-volcanic hydrothermal activity 2734 million years ago.

Recommendations

On this basis, it is recommended that exploration could focus in future:

- 1) Along the axis of the syncline east of the Cryderman Peninsula in search of the extension of the felsic tuff, northwest of the Northwest Arm of O'Sullivan Lake, in the uppermost part of the mafic volcanic pile where there is the potential for finding a stratigraphic cap overlying massive or stringer sulphides.
- 2) In the vicinity of Anaconda road, south and west of Odman Lake where previous trenching has identified sulphide zones in the vicinity of airborne EM conductors (OGS map P.3377) and where there are larger pyroclastic breccia fragments that might mark the presence of a volcanic vent and flanking discharge sites.

Greg Stott Ontario Geological Survey 933 Ramsey Lake Road Sudbury, ON P3E 6B5 Ph: 705 670-5978 Email: greg.stott@ndm.gov.on.ca **John Mason,** NW Regional manager, Mines and Minerals division, MNDM, Resident Geologist Program.

John Mason and John Scott (Geologist, Thunder Bay south) visited the camp On July 5/6th. Along with SCRI director Dave Sim they toured th various project areas and got a flavour for some of the work done to date. John Scott provided valuable advice/assistance re GPS information and John Mason provided valuable insights into one of the project areas in particular. Mason's comments re The Cryderman Penninsula showing (Camdeck East) are included as follows:

CAMDECK EAST STRIP OCCURRENCE

The Camdeck East Strip Occurrence is located on the north side of Cryderman Peninsula immediately west of the original Camdeck East Occurrence worked in 1952. What might be interpreted as an easterly trending felsic intrusive unit, potentially highlevel subvolcanic was observed in contact with mafic metavolcanics. Specifically, feldspar quartz porphyry textures were observed and a fine-grained rhyolitic unit at the north contact. Angular chert fragments 1 to 3 cm across were noted throughout the unit making up 2 to 3 % of the unit. The chert fragments may represent an original thin exhalite unit in the felsic unit. The entire felsic unit has been strongly foliated to sheared. Anastomosing felsic shear bands surround large less deformed feldspar quartz porphyry elliptical "ball" shapes that are up to 60 cm across. Shear bands and the "rhyolite" unit within the felsic unit may be strain equivalents of the feldspar quartz porphyry and individual feldspar and quartz phenocrysts have been destroyed by the imparted strain. The mafic metavolcanics display "vesicular' degassing (?) alteration textures at both irregular contacts.

Chlorite fragments (1%), black chlorite bands (1 to 2 %) and epidote fragments (1%) were observed and may represent altered mafic volcanics (footwall) and hanging wall equivalents). Up to 1% weathered out sulphide "knots and blebs" were noted. The voucrop is very difficult to sample due to its smooth / hard nature. Ninety-five (95%) of the unit is felsic.

Strain may be equivalent to a protomylonite and one theory may be that the felsic unit was a feldspar quartz dike that has undergone grain-size reduction of quartz and feldspar phenocrysts from the strain. Strong undulose foliation and anastomosing shear bands are evidence of protomylonite. The original chert exhalite unit contained within the sheared unit would have deformed and fractured in a brittle fashion resulting in presently observed tabular and lenticular clasts. The felsic rocks would have behaved in a more ductile manner.

A second theory is the exhalite unit and the felsic rhyolite unit are vent proximal targets for volcanogenic massive sulphides. The exhalite unit may suggest sampling and assaying of the felsic unit and may be appropriate for copper, zinc and silver as well as gold once it is trenched. Observations suggest a VMS target, as well as lode gold should be investigated. Although a large felsic volcanic pile is not present, massive sulphide deposits can be present in such an environment. The Muriel Lake area east of O'Sullivan Lake, specifically the Galena Trench Prospect, is an example of a VMS prospect (4' of 12% Cu).

The lode gold model holds the most potential on the Camdeck East Strip between Camdeck East and West occurrences. The occurrences occur in a 50 to 100 m wide east trending lineament/fault zone that may represent a significant zone of permeability for porphyry emplacement and subsequent gold mineralization deposition. Porphyry systems are likely sourced from the Esnagami Pluton and remain key to identifying gold mineralization at O'Sullivan Lake.

John Mason.

Authors Note: The writer/project manager wishes to thank these folks for providing their input to the program. These kinds of property visits by MNDM / OGS personnel are an invaluable-to-prospectors component of the Resident Geologists Program. They are also much appreciated by all concerned.

Conclusions and Recommendations

Not all of the original objectives were met during this summer field program, i.e. by the time the project(s) were terminated due to lack of funding, not enough work had been done in order to pin point potential diamond drill targets.

Most other objectives were able to be met. The database concerning rock types, styles of mineralization, location of old workings and expansion of some old showings along with locating several new showings was accomplished. This along with the information gathered from the limited ground geophysics that was done, should put the company in good stead with respect to complimenting the information gathered from an earlier airborne (TEM) survey.

Some recommendations have been made by other professionals as noted in this report. The Writer will not attempt to make any specific recommendations at this time other than, mentioning the need to assimilate/correlate the various data gathered to date. This includes a formal interpretation of all of the airborne geophysical data along with those data gathered from ground work done to date.

The results of this effort will without doubt, aid in narrowing the search for 'drill targets'.

References

- 1. Parker, J.R. and Stott, G.M. 1998. "Precambrian Geology, O'Sullivan Lake Area (west half), Northwestern Onamom-Tashota greenstone belt, eastern Wabigoon Subprovince", Ontario Geological Survey, Preliminary Map P 3377, scale 1:20,000.
- 2. Moorehouse, W.W. "Sixty Fourth Annual Report of the Ontario Department of Mines", Vol. LXIV, Part 4, 1955. Geology Of The O'Sullivan Lake Area.
- 3. MNDM Assessment Work filed Reports (Mineral Exploration Index 42L06NE and 42L07NW).
- 4. Thesis: "Mineralization Of The O'Sullivan Lake Area". By E.C. Speers, Oct. 12th 1950.
- 5. Thesis: "PETROGENISI OF THE DIORITIC ROCKS (METADIABASES) OF THE O'SULLIVAN LAKE AREA, ONTARIO". BY: H.W. PFEFFER, Ph.D. 1951.
- 6. Thesis: "GEOLOGY AND PETROLOGY OF THE LOUNANNA GOLD MINE AREA O'SULLIVAN LAKE, ONTARIO". BY: JAMES p. MUCKLOW, April, 1985.
- 7. "Geotechnical Report covering work performed on the Aurum Property". Shaggy Dog Exploration, David E. Christianson, March 30th 2004. (MNDM assessment work files).

Appendix

Contents:

- 13-1 Contractor Information Table
- 13-2 Rental Equipment
- 13-3 Notes on special Equipment
- 13-4 The TX-27 Transmitter Explained
- 13-5 Personnel Work Record
- 13-6 Writer's Statement of Qualifications
- 13-7 Assay Certificates
- 13-8 Sample Information Tables, 9200 & 9300 series.

Appendix 13-1

-

.....

Contractors Information Table

NAME	ADDRESS	TITLE / WORK
David E. Christianson	4067 Dog Lake Rd Thunder Bay ON P7B 5E5 Ph: 807-767-4670	Project Manager
Ian McCutchon	3071 Oriole Pl., Thunder Bay ON P7K 1B9 PH:807-627-4753	Prospector Helper
Paul Beckett	902 Adelaide St., Sudbury ON P3E 4B9	Prospector Helper
Shaun Parent	Gen Delivery, Montreal River Harbour ON P7B 4E6	Geologist
Dr. John C. Davies	411 Garrison Crescent, Saskatoon SK S7H 2Z9 Ph: 306-374-4357	Geologist
John Mark Davies	#209-221 George Rd E., Victoria BC V9A 1L1	Geologist assistant
Blake Mendowegan	47 Algoma St., Nakina ON POT 2H0	Line cutter/prospector helper
David Besson	204 Wardrope St., Box 171, Geraldton ON POT 1M0	Line cutter/prospector helper
Kevin Kashkeesh	P.O. Box 226 Nakina ON POT 2H0	Linecutter
Ian Magiskan	P.O. Box 144 Aroland ON POT 1B0	Linecutter
Fred Towedo Jr.	P.O. Box 38 Aroland ON POT 1B0	Linecutter
Beaver Head Line Cutting/ Fred Ice	P.O. Box 1532 Geraldton ON POT 1M0	Line cutting contractor

Appendix 13-2 <u>Rental Equipment...Sources</u>

Equipment type	Rented from	Location
Base camp and equipment for 6 – 8 men includes tents, cookery, bunkhouse, bath, field office etc.	Erling Ventures	RR 14 Dog Lake Rd., Thunder Bay ON P7B 5E5 Ph: 807-767-4670
Prospecting tools, gps units, portable electronics, powers saws etc. Magnetometer	Erling Ventures	n n n n
Boats, motors, marine equip	*O'Sullivan Lake Lodge *Erling Ventures *Frank Gagnon	O'Sullivan lake ON As above 47 Algoma St. Nakina ON POT 2H0.
EM 16 Geophys unit	Phantom Geophysics	736 Alice Ave., Thunder Bay ON P7G 1W9
TX 27 Geophys Transmitter unit	Geonics Limited	1745 Meyerside Dr., Mississuaga ON L5T 1C6
Hi pressure water pumps, Channel Saw, Blasting tools/equip incl Magazines etc	Erling Ventures	RR 14 Dog lake Rd., Thunder Bay ON P7B 5E5
Personal vehicles	D. Christianson, I. McCutchon, J. Davies	
4X4 pickup truck for duration of project	D. A. Sim	207-1039-17 th Ave SW, Calgary AB T2T 0B1
CDGPS unit	D.A. sim	N N N N

Appendix 13-3 Notes on specialized equipment used:

The TX 27 Transmitter explained:

This unit was rented from Geonics Limited and was used in conjunction with an EM 16 unit to survey parts of the Kowkash A & B grids as per the project report found elsewhere in this report.

"In VLF –EM surveying poor coupling from existing VLF navigation transmitters at times becomes a serious problem". (which was the case in this area/time)."The portable VLF transmitter TX27 was especially designed to overcome these adverse conditions. The TX27 gives a flexibility and versatility to VLF-EM surveying not previously available. The ability to choose the location and orientation of the VLF source fills a gap in VLF-EM surveying practice and will permit a more effective use of this approach in solving structural problems as well as defining more conventional exploration targets."

"The equipment consists of a VLF generator feeding into a long grounded wire to produce an appropriate primary magnetic field".

"A portable power source 50 – 400 Hz, 115 V, 300 W (i.e. Honda E300) is needed to supply power".

The CDGPS (Canada wide digital real-time GPS Service) **unit explained:**

"The CDGPS service uses "wide-area" technology deriving corrections from real-time positioning information collected across the country. This data is transmitted to Ottawa where mathematical algorithms produce a single GPS*C correction data stream which is uplinked to the MSAT satellite for broadcast across Canada.

This real-time signal is accessed by end-users with a small custom-built CDGPS receiver which translates the data stream into localized RTCM-SC104 messages which correct the positions of single frequency GPS receivers."

Appendix 13-4 The TX 27 Transmitter Explained:

This unit was rented from Geonics Limited and was used in conjunction with an EM 16 unit to survey parts of the Kowkash A & B grids as per the report found elsewhere in this report.

"In VLF –EM surveying poor coupling from existing VLF navigation transmitters at times becomes a serious problem". (as was the case in this area/time). "The portable VLF transmitter TX27 was especially designed to overcome these adverse conditions. The TX27 gives a flexibility and versatility to VLF-EM surveying not previously available. The ability to choose the location and orientation of the VLF source fills a gap in VLF-EM surveying practice and will permit a more effective use of this approach in solving structural problems as well as defining more conventional exploration targets."

"The equipment consists of a VLF generator feeding into a long grounded wire to produce an appropriate primary magnetic field".

"A portable power source 50 – 400 Hz, 115 V, 300 W (i.e. Honda E300) is needed to supply power".

LINE CUTTING AURUM ASSESSMENT REPORT

NAME: Blake Mendowegan

DATE	KOWKASH	GAGNON	CRYDERMAN
July 2, 2004		X	
July 3, 2004	X		
July 4, 2004	X		
July 5, 2004		X	
July 6, 2004		Χ	
July 7, 2004		X	
July 8, 2004		X	
July 9, 2004	X		
July 10, 2004	X		
July 11, 2004	X		
July 12, 2004	X		
July 13, 2004	X		
July 14, 2004	X		
July 15, 2004	X		
July 16, 2004	X		
July 17, 2004	Χ		
July 18, 2004	Χ		
July 19, 2004	X		
July 20, 2004	X		
July 21, 2004	X		
July 22, 2004	X		
July 23, 2004			X
July 24, 2004	X		
July 25, 2004	X		
July 26, 2004			X
July 27, 2004	X		
July 28, 2004			X
July 29, 2004			X
July 30, 2004		X	<u> </u>

107

Supervision - Prospecting AURUM ASSESSMENT REPORT

NAME: Dave Christianson

DATE	
14-May-04	Yes - Field
21-May-04	Yes - Field
28-May-04	Yes - Field
29-May-04	Yes - Field
30-May-04	Yes
31-May-04	Yes
1-Jun-04	Yes
2-Jun-04	Yes - Field
3-Jun-04	Yes - Field
4-Jun-04	Yes - Field
5-Jun-04	Yes - Field
6-Jun-04	Yes - Field
7-Jun-04	Yes - Field
8-Jun-04	Yes
9-Jun-04	Yes
10-Jun-04	Yes
11-Jun-04	Yes - Field
12-Jun-04	Yes - Field
13-Jun-04	Yes - Field
14-Jun-04	Yes - Field
15-Jun-04	Yes - Field
16-Jun-04	Yes
17-Jun-04	Yes
18-Jun-04	Yes
19-Jun-04	Yes - Field
20-Jun-04	Yes - Field
21-Jun-04	Yes - Field
22-Jun-04	Yes - Field
23-Jun-04	Yes - Field
24-Jun-04	Yes - Field
25-Jun-04	Yes
26-Jun-04	Yes
27-Jun-04	Yes - Field
28-Jun-04	Yes - Field
29-Jun-04	Yes - Field
30-Jun-04	Yes - Field
1-Jul-04	Yes - Field
2-Jul-04	Yes - Field
3-Jul-04	Yes - Field

DATE	
4-Jul-04	Yes - Field
5-Jul-04	Yes - Field
6-Jul-04	Yes - Field
7-Jul-04	Yes
8-Jul-04	Yes - Field
9-Jul-04	Yes
10-Jul-04	Yes - Field
11-Jul-04	Yes - Field
12-Jul-04	Yes - Field
13-Jul-04	Yes - Field
14-Jul-04	Yes
15-Jul-04	Yes
16-Jul-04	Yes
17-Jul-04	Yes - Field
18-Jul-04	Yes - Field
19-Jul-04	Yes - Field
20-Jul-04	Yes - Field
21-Jul-04	Yes
22-Jul-04	Yes
23-Jul-04	Yes - Field
24-Jul-04	Yes - Field
25-Jul-04	Yes - Field
26-Jul-04	Yes - Field
27-Jul-04	Yes - Field
28-Jul-04	Yes - Field
29-Jul-04	Yes - Field
30-Jul-04	Yes - Field
31-Jul-04	Yes - Field

LINE CUTTING AURUM ASSESSMENT REPORT

NAME: David Besson

DATE	KOWKASH	GAGNON	CRYDERMAN
July 2, 2004		X	
July 3, 2004	X		
July 4, 2004	X		
July 5, 2004		X	
July 6, 2004		X	
July 7, 2004		X	
July 8, 2004		X	
July 9, 2004	X		
July 10, 2004	X		
July 11, 2004	X		
July 12, 2004	X		
July 13, 2004	X		
July 14, 2004	X		
July 15, 2004	Х		
July 16, 2004	X		
July 17, 2004	X		
July 18, 2004	X		
July 19, 2004	X		
July 20, 2004	X		
July 21, 2004	X		
July 22, 2004	X		
July 23, 2004	X		
July 24, 2004	X		
July 25, 2004	X		
July 26, 2004			X
July 27, 2004	X		
July 28, 2004			X
July 29, 2004			X
July 30, 2004		X	

LINE CUTTING AURUM ASSESSMENT REPORT

NAME: Fred Towed Jr.

DATE	KOWKASH	GAGNON	OTHERS
July 14, 2004	X		
July 15, 2004	X		
July 16, 2004	X		
July 17, 2004	X		
July 18, 2004	X		
July 19, 2004	X		
July 20, 2004	X		

Prospecting - Geological AURUM ASSSESSMENT REPORT

NAME: Ian McCutchon

DATE	KOWKASH	GAGNON	OTHERS
May 14, 2004			X
May 21,2004			X
May 28, 2004			X
May 29, 2004			X
May 30, 2004			X
May 31, 2004	OFF		
June 1, 2004	OFF		
June 2, 2004	X		
June 3, 2004	X		
June 4, 2004	X		
June 5, 2004	X		
June 6, 2004	X		
June 7, 2004	X		
June 8, 2004			X
June 9, 2004			X
June 10, 2004			X
June 11, 2004	OFF		
June 12, 2004	OFF		
June 13, 2004	OFF		
June 14, 2004			X
June 15, 2004	X		
June 16, 2004			X
June 17, 2004			XX
June 18, 2004			X
June 19, 2004			X
June 20, 2004			X
June 21, 2004			XX
June 22, 2004	X		X
June 23, 2004			X
June 24, 2004			X
June 25, 2004	X		XX
June 26, 2004	X		X
June 27, 2004			X
June 28, 2004			X
June 29, 2004	X		X
June 30, 2004	X		X
July 1, 2004	OFF		
July 2, 2004	OFF		

DATE	KOWKASH	GAGNON	OTHERS
July 3, 2004	OFF		
July 4, 2004	OFF		
July 5, 2004	OFF		
July 6, 2004			X
July 7, 2004			X
July 8, 2004			X
July 9, 2004		X	X
July 10, 2004	X		X
July 11, 2004	X		X
July 12, 2004			X
July 13, 2004	X		X
July 14, 2004	X		X
July 15, 2004	X		X
July 16, 2004	X		X
July 17, 2004			X
July 18, 2004	X		X
July 19, 2004			X
July 20, 2004	X		X
July 21, 2004	X		X
July 22, 2004	X		X
July 23, 2004	X		X
July 24, 2004	X		X
July 25, 2004	X		X
July 26, 2004			X
July 27, 2004	X		X
July 28, 2004			X
July 29, 2004			X
July 30, 2004		X	X
July 31, 2004			

.....

Geological AURUM ASSESSMENT REPORT

NAME: John C. Davies

DATE	KOWKASH	GAGNON	OTHERS
June 10, 2004	X		
June 11, 2004	X		
June 12, 2004	X		
June 13, 2004	X		
June 14, 2004	X		
June 15, 2004	X		
June 16, 2004	Х		
June 17, 2004	X	······································	·····
June 18, 2004	Х		
June 19, 2004	Х	······································	
June 20, 2004	X		
June 21, 2004	X		
June 22, 2004	X		
June 23, 2004	X		
June 24, 2004	X		
June 25, 2004	X		
June 26, 2004	X		
June 27, 2004	X	· · · · · · · · · · · · · · · · · · ·	
June 28, 2004	X		
June 29, 2004	X	······································	
June 30, 2004	X		

Geological AURUM ASSESSMENT REPORT

NAME: John-Mark Davies

DATE	KOWKASH	GAGNON	OTHERS
June 13, 2004	X		
June 14, 2004	X	······································	· · · · · · · · · · · · · · · · · · ·
June 15, 2004	Х		
June 16, 2004	X		······································
June 17, 2004	X		
June 18, 2004	X		
June 19, 2004	X		La <u>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>
June 20, 2004	X		······································
June 21, 2004	X		
June 22, 2004	X		
June 23, 2004	Х		······································
June 24, 2004	Х		ана ала станици, на стани и
June 25, 2004	X		
June 26, 2004	X		
June 27, 2004	Х		
June 28, 2004	Х		
June 29, 2004	X		
June 30, 2004	X		
July 1, 2004	X		·····

LINE CUTTING AURUM ASSESSMENT REPORT

NAME: Kevin Kashkeesh

DATE	KOWKASH	GAGNON	OTHERS
July 10, 2004	X		
July 11, 2004	X		
July 12, 2004	X		
July 13, 2004	X		<u> </u>

Prospecting - Geological - VLF Survey AURUM ASSESSMENT REPORT

NAME: Paul Beckett

г

DATE	KOWKASH	GAGNON	OTHERS
May 29, 2004	T		
May 30, 2004		······································	
May 31, 2004			
June 1, 2004			
June 2, 2004		······································	
June 3, 2004			
June 4, 2004			
June 5, 2004		······································	
June 6, 2004		····	······································
June 7, 2004			
June 8, 2004			X
June 9, 2004			X
June 10, 2004			X
June 11, 2004			X
June 12, 2004	X		
June 13, 2004	X		
June 14, 2004		X	· · · · · · · · · · · · · · · · · · ·
June 15, 2004	X		
June 16, 2004			X
June 17, 2004	OFF		
June 18, 2004	OFF		
June 19, 2004	OFF		
June 20, 2004	OFF		
June 21, 2004	OFF		
June 22, 2004			X
June 23, 2004			X
June 24, 2004			X
June 25, 2004		X	
June 26, 2004			X
June 27, 2004			X
June 28, 2004			X
June 29, 2004		X	
June 30, 2004		X	
July 1, 2004		X	
July 2, 2004		X	
July 3, 2004		X	-
July 4, 2004	X		
July 5, 2004		X	
July 6, 2004		X	
July 7, 2004		X	
July 8, 2004		X	
July 9, 2004		X	
July 10, 2004	X		

DATE	KOWKASH	GAGNON	OTHERS
July 11, 2004	X		
July 12, 2004		X	
July 13, 2004	X		
July 14, 2004	X		**************************************
July 15, 2004	X	X	
July 16, 2004	X		
July 17, 2004			X
July 18, 2004	X		
July 19, 2004	X		
July 20, 2004			X
July 21, 2004		····	X
July 22, 2004			X
July 23, 2004			X
July 24, 2004	X		
July 25, 2004	X		
July 26, 2004			X
July 27, 2004	X		
July 28, 2004			X
July 29, 2004			X
July 30, 2004		X	
July 31, 2004			X

Prospecting - Geological - VLF Survey AURUM ASSESSMENT REPORT

NAME: Shaun Parent

-

DATE	KOWKASH	GAGNON	OTHERS
May 29, 2004	TRAVEL		
May 30, 2004	X		
May 31, 2004	X		
June 1, 2004	X	· · · · · · · · · · · · · · · · · · ·	
June 2, 2004	X		
June 3, 2004			X
June 4, 2004		·····	X
June 5, 2004			X
June 6, 2004			X
June 7, 2004			
June 8, 2004	VLF		
June 9, 2004	VLF		X
June 10, 2004	VLF		
June 11, 2004			X
June 12, 2004			X
June 13, 2004	VLF	X	
June 14, 2004		X	
June 15, 2004	VLF		
June 16, 2004	VLF	······································	
June 17, 2004	OFF		
June 18, 2004	OFF		
June 19, 2004	OFF		
June 20, 2004	OFF		
June 21, 2004	OFF		
June 22, 2004			×
June 23, 2004			X
June 24, 2004			X
June 25, 2004		X	^
June 26, 2004	VLF		
June 27, 2004	X		
June 28, 2004			V
June 29, 2004		X	X
June 30, 2004		X	
July 1, 2004		X	
July 2, 2004		X	
July 3, 2004	X	↓^	
July 4, 2004	X		
July 5, 2004	X	+ <u>v</u>	
July 6, 2004		X X	
July 7, 2004	· · · · · · · · · · · · · · · · · · ·	X	
July 8, 2004		X	
July 9, 2004		X	VLF
July 10, 2004	X		VLF
July 10, 2004	<u>^</u>	VLF	

DATE	KOWKASH	GAGNON	OTHERS
July 11, 2004		VLF	VLF
July 12, 2004		X	
July 13, 2004		VLF	VLF
July 14, 2004		VLF	
July 15, 2004		VLF	VLF
July 16, 2004		X	
July 17, 2004			- x
July 18, 2004			× × ×
July 19, 2004	VLF		^
July 20, 2004	VLF		
July 21, 2004	VLF		
July 22, 2004	VLF		
July 23, 2004	VLF		
July 24, 2004	VLF		
July 25, 2004	VLF		
July 26, 2004	VLF		
July 27, 2004	VLF	·	
July 28, 2004		+	
July 29, 2004			
July 30, 2004	- x	V	
July 31, 2004	^	X	
5417 517 2004			X

Appendix 13-6 Statement of Qualifications

I, <u>David E. Christianson</u> of the Township of Gorham, in the District of Thunder Bay, do hereby certify the following:

I am the Author of this Report entitled, "Geotechnical Report covering work performed on the Aurum Property" dated June 1st, 2006.

I have been prospecting and subsequently managing exploration projects in Ontario and Canada for over 35 years.

I have first-hand knowledge of the work described in this report by providing on-site supervision for the duration of the project.

I hereby give permission to the company for whom this report was written, for the use of, and for disclosure of information in this report under the Freedom of Information and Protection of Privacy Act.

Signed this 1st day of June, 2006:

David E. Christianson

4067 Dog lake Rd. RR14 Thunder Bay ON P7B 5E5

Phone: 807-767-4670 e-mail: <u>dchris@tbaytel.net</u>

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringli@telus.net

File No : 467365 Date : July 13, 2004 Samples : Rock

To: SUPERIOR CANADIAN RESOURCES Suite 400, 441 - 5th Avenue S.W. Calgary, Alberta T2P 2V1

Attn: Peter Wielezynski

Certificate of Assay

Sample No.	Gold ppb	
SCR PW #1	3850	
SCR PW #2	80	
SCR PW #3	75	
SCR PW #4	60	
SCR PW #5	35	
SCR PW #6	230	
SCR PW #7	220	
SCR PW #8	225	
SCR PW #9	55	
SCR PW #10	75	
SCR PW #11	80	
	4h	l C n

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

ssayer

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE: 46735

DATE: July 14, 2004

TO: SUPERIOR CANADIAN RESOURCES

Suite 400, 441 - 5th Avenue S.W. Calgary, Alberta T2P 2V1

Attn: Peter Wielezynski

123

30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	B	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sb	Sr	Th	Ti	Ű	V	W	Zn
No.	ppm	%	ppr	n ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
PW - 1	1.3	1.24	1 907	0 3	19	53	<1	3.11			77		4.55	0.14	20	0.84	653	<1	0.02	86	0.04	14	19	18	7	0.01	<1	37	2	20
PW - 2	<0.5	1.9	34	3 <1	21	81	<1	1.52	2	45	13 9	514	2.24	0.05	13	1.09	471	<1	0.15	70	0.01	13	<1	24	6	0.18	<1	54	<1	33
PW - 3	4.5	2.9	€ 1	7 <1	18	272	<1	4.91	3	74	220	2610	4.04	0.03	18	1.85	975	2	0.06	114	0.01	15	<1	18	<1	0.20	<1	125	91	52
PW - 4	<0.5	2.20) <	1 <1	22	67	<1	1.51	2	70	143	368	3.22	0.04	15	0.8 9	56 6	<1	0.15	146	0.02	15	3	36	<1	0.25	<1	66	<1	53
PW - 5	<0.5	3.4() <	1 <1	21	90	<1	1.99	4	83	1 0 6	21	6.25	0.08	16	2.69	880	3	0.03	102	0.07	21	<1	19	<1	0.01	<1	195	<1	91
PW - 6	2.3	1.6	5 <	1 <1	26	32	<1	1.45	4	167	175	1880	7.12	0.01	13	1.10	523	<1	0.07	182	0.01	8	4	12	<1	0.19	<1	61	<1	45
PW - 7	<0.5	0.6	<	1 <1	23	107	<1	1.65	1	26	115	16	1.01	0.22	17	0.65	330	8	0.08	27	0.03	8	<1	29	4	0.01	<1	13	<1	14
PW - 8	<0.5	1.7	5 763	0 <1	22	20	<1	0.90	3	94	168	92	5.75	0.20	12	1.16	299	<1	0.04	173	0.01	15	61	10	<1	0.01	<1	48	<1	59
PW - 9	<0.5	0.9	52	3 <1	23	39	3	1.71	1	21	54	49	1. 48	0.10	18	0.79	699	2	0.02	24	0.02	. 7	1	5	4	0.03	<1	4	<1	66
PW - 10	3.6	0.30) 7	2 <1	20	11	4	7 <i>.</i> 66	4	48	66	43	3.92	0.02	18	4.70	53 <mark>94</mark>	<1	0.02	68	<0.0 ⁻	1 680	5	44	3	<0.0	· <1	17	<1	356
PW - 1 1	2.5	3.02	2	8 <1	16	14	<1	1.06	4	128	176	2990	7.28	0.08	15	2.71	1372	2	0.01	161	0.02	25	6	21	<1	0.27	<1	140	<1	96
STD	1.9	4.6	5 83	<1	18	49	<1	1.82	3	64	103	87	3.74	0.16	23	1.59	722	4	0.51	222	0.05	103	30	88	<1	0.17	<1	121	2	171

0.500 Gram sample is digested with Aqua Regia at 98 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for AI, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Certified by:

Accurassay Laboratories

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 TH PHONE (807) 626-1630 FAX (807) 623 6820 EM

THUNDER BAY, ONTA EMAIL accuracy@tbaytel.net

ONTARIO P7B 6G3 tel.net WEB www.accurassay.com

Certificate of Analysis

Thursday, June 10, 2004

Superior Canadian Res. Inc.	Date Received : 08-Jun-04							
Suite 400, 441-5th Avenue S.W.	Date Completed : 08-Jun-04							
Calgary, AB, CA	Job # 200440)566						
T2P2V1	Reference :							
Ph#: (403) 232-8555	Sample #: 23	Rock						
Fax#: (403) 262-1169	oumple #. 25	ICOVA						
Email peterw@orcaoil.com								

A		Au	Au	Au	
Accurassay #	Client Id	ppb	oz/t	g/t (ppm)	
30038	9201	<5	<0.001	<0.005	
30039	9202	<5	<0.001	<0.005	
30040	9203	5	<0.001	0.005	
30041	9204	<5	<0.001	<0.005	
30042	9205	27	<0.001	0.027	
30043	9206	<5	<0.001	<0.005	
30044	9207	843	0.025	0.843	
30045	9208	<5	<0.001	<0.005	
30046	9209	<5	<0.001	<0.005	
30047	9210	<5	<0.001	<0.005	
30048 Check	9210	<5	<0.001	<0.005	
30049	9211	<5	<0.001	<0.005	
30050	9212	46	0.001	0.046	
30051	9213	<5	<0.001	<0.005	
30052	9214	99	0.003	0.099	
30053	9215	<5	<0.001	<0.005	
30054	9216	34	0.001	0.034	
30055	9217	<5	<0.001	<0.005	
30056	9218	6	<0.001	0.006	
30057	9219	35	0.001	0.035	
30058 Check	9219	30	<0.001	0.030	
30059	9220	31	<0.001	0.031	
30060	9221	9	<0.001	0.009	
\sim				_	

PROCEDURE CODES ALAAU3, ALAICPAR

Certified By:

The provides included on this report relate only to the items tested

Derek Demianiuk H.Bsc., Laboratory Manager

The Certificate of Analysis should not be reproduced except in full, without the written

AL903-0361-06/10/2004 08:29 AM

Page 1 of 2

ccurassay aboratories

A DIVISION OF ASSAY LABORATORY SERVICES INC MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, FAX (807) 623 6820 EMAIL accuracy@tbaytel.net PHONE (807) 626-1630

ONTARIO P7B 6G3 WEB www.accurassay.com

Certificate of Analysis

Thursday, June 10, 2004

Superior Canadian Re Suite 400, 441-5th Av Calgary, AB, CA T2P2V1		Date Comple	ived : 08-Jun- eted : 08-Jun- Job # 200440 ence :	04	
Ph#: (403) 232-8555 Fax#: (403) 262-1169 Email peterw@orcaoil.com	n	Sam	ble # : 23	Rock	
Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)	
30061	9222	31	<0.001	0.031	
30062	9223	68	0.002	0.068	

PROCEDURE POL	ESALA	Au3, AL	4ICPAR	
Certified By:	Q	\mathcal{D}	.(
Derek De	mianiuk H	I.BSC., La	boratory Ma	nager

Page 2 of 2 The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

125

AL903-0361-06/10/2004 08:29 AM

Accurassay Laboratories A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

of the laboratory.

* The results included on this report relate only to the items tested

*The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

Superior Canadian Res. Inc. Date Created: 04-06-14 09:09 AM Job Number: 200440566 Date Recieved: 6/8/2004 Number of Samples: 23 Type of Sample: Rock Dete Completed: 6/8/2004 F lct ID:

Y Zn TI V w Fe Mn Мо Na Ni Ρ Рb Sb Se Si Sr Ti Co Cr Cu κ Mg Ba Be Ca Cd Client Tag Ag AL As B Accur. # % ppm % % % % ppm % ppm DDM ppm ppm % ppm ppm ppm ppm <10 104 17 2786 <1 5 6 123 3.09 0.08 1.12 541 < 0.01 66 185 4 <10 <5 0.04 1.02 <3 38 47 0.53 <10 38 163 <1 30038 9201 <2 <1 <10 73 17 149 2 <10 <5 0.06 12 3121 <1 17 6 37 15 194 120 2.87 0.10 1.11 536 <1 0.01 56 30039 9202 <2 1.00 <3 <1 0.44 <10 1862 <10 3 73 33 125 <10 <5 0.05 6 <1 8 1.05 505 < 0.01 4 26 179 187 3.12 0.05 <1 30040 9203 <2 0.91 <3 38 33 <1 0.20 <10 3278 6 <10 7 47 <1 331 < 0.01 30 237 <10 <5 0.05 14 17 139 25 1.88 0.23 0.80 <1 1 30041 9204 <2 0.84 16 30 159 <1 0.52 <10 2 <10 18 0.05 < 0.01 26 123 3 <10 <5 0.02 92 <100 94 4 147 21 2.06 1.54 864 1 <3 31 <10 <1 6.91 9 30042 9205 <2 0.22 <10 85 <100 4 170 <10 -3 25 < 0.01 17 <100 4 <10 <5 0.02 2.65 1.68 1241 <1 <3 32 <10 9.26 7 27 11 0.01 30043 9206 <2 0.18 <1 <10 <100 <1 4 <10 44 <5 0.04 21 1 1.08 359 < 0.01 141 201 6 <10 30044 0.87 19 37 18 <1 1.16 <10 51 129 44 3.58 0.16 <1 9207 <2 66 <5 0.07 16 3908 <1 21 <10 4 166 3.28 < 0.01 0.98 987 <1 0.01 43 181 4 <10 <3 35 <10 0.90 <10 32 85 <2 0.94 <1 30045 9208 93 1020 55 233 <10 <5 0.04 5 4611 <1 53 <10 5 <1 4 186 57 1.17 0.01 0.97 <3 38 <10 <1 0.63 <10 32 3.25 < 0.01 30046 9209 <2 <5 0.02 9 <100 <1 <2 <10 <1 5 182 4 <10 < 0.01 0.07 <100 <1 < 0.01 4 30047 9210 <2 0.05 <3 28 15 <1 0.89 <10 <1 8 2 0.09 2 <2 <10 5 3 181 <10 <5 0.02 9 <100 <1 30 <1 2 0.09 < 0.01 0.07 <100 <1 < 0.01 4 0.05 <3 15 <1 0.92 <10 8 30048 9210 <2 <2 3 < 0.01 <1 195 -5 <10 <5 0.02 9 <100 <1 <10 <1 2 0.05 <100 <1 <3 31 15 <1 0.89 <10 <1 3 0.06 <0.01 30049 9211 <2 0.04 0.02 13 <100 <1 <2 <10 <1 5 2 364 7 <10 <5 3 0.08 <100 <1 < 0.01 0.19 0.01 30050 9212 <2 0.06 <3 30 16 <1 1.13 <10 <1 4 69 7 2 10 <100 3 <10 <5 0.06 <5 955 <1 <10 < 0.01 <3 36 30 <1 0.31 <10 3 315 42 2.12 0.07 0.75 478 1 30051 9213 0.62 <2 77 0.02 <5 1914 <1 9 <10 -5 640 <1 < 0.01 26 141 23 <10 <5 36 84 149 8.62 0.04 0.87 30052 0.71 90 63 12 <1 0.33 <10 9214 <2 <10 <5 0.05 <5 4188 <1 73 <10 9 115 0.02 261 3 13 185 162 4.05 0.04 1.41 1131 <1 44 16 <1 0.53 <10 30053 9215 <2 1.01 <3 41 3 230 0.06 828 <1 5 <10 21 20 <10 <5 <5 691 <1 < 0.01 <100 0.59 101 57 <10 <1 2.01 <10 155 83 197 8.34 0.04 0.78 30054 9216 <2 3091 <1 28 <10 -5 35 230 <10 <5 0.06 18 71 2.71 < 0.01 1.19 1106 <1 0.02 68 3 10 32 <1 1.21 <10 38 151 30055 9217 <2 0.94 <10 171 80 236 18 <10 <5 0.02 <5 <100 <1 10 <10 1 < 0.01 38 <10 31 111 24 3.89 0.03 1.11 760 8 1.07 64 13 <1 0.17 30056 9218 <2 3 67 <10 4 1099 465 <5 0.02 41 <100 1.30 2527 <1 < 0.01 98 <100 <10 79 2.64 0.02 1057 9219 0.18 237 32 <10 <1 6.91 <10 20 92 4 <5 0.02 41 <100 2 68 <10 4 1120 99 471 <10 20 89 80 2.66 0.02 1.30 2551 <1 < 0.01 <100 30058 0.18 239 34 <10 <1 7.00 <10 9219 4 364 <100 2 156 1.50 2928 <1 < 0.01 102 <100 251 <10 <5 0.01 37 <10 4 <10 26 43 80 3.21 <0.01 0.08 252 34 <10 <1 8.48 30059 9220 -5

126

-Certified By Derek Demianiuk, H.Bsc

Accurassay Laboratories A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Superior Cana Date Created: Job Number: 2 Date Recieved Number of Sar Type of Sampl Date Complete F	04-06-1 2004405 i: 6/8/20 mples: 2 le: Rock	4 09:0 66 04 23				 * The results included on this report relate only to the items tested * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory. *The methods used for these analysis are not accredited under ISO/IEC 17025 																									
Accur. # Client	Tag	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
30060 30061 30062	9221 9222 9223	2 5 <2	0.98 0.61 0.68	58 69 152	36 35 65	23 17 <10	<1 <1 <1	1.63 1.05 1.74	<10 <10 <10	18 21 20	158 88 45	84 146 187	3.24 2.38 9.15	0.16 0.03 0.01	1.08 0.65 0.60	1025 1218 532	6 <1 1	0.01 <0.01 <0.01	59 33 35	182 <100 186	183 332 42	<10 <10 <10	<5 <5 <5	0.05 0.03 0.02	14 8 20	<100 <100 <100	2 <1 <1	13 6 31	<10 <10 <10	2 1 <1	838 770 74

~ Certified By: Derek Demianiuk, H.Bsc.

1 .

ţ

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 PHONE (807) 626-1630 FAX (807) 623 6820

THUNDER BAY, **ONTARIO P7B 6G3** EMAIL accuracy@tbaytel.net

WEB www.accurassay.com

Certificate of Analysis

Thursday, July 01, 2004

Superior Canadian Res. Inc.	Date Received : 25-Jun-04
Suite 400, 441-5th Avenue S.W.	Date Completed : 30-Jun-04
Calgary, AB, CA	Job # 200440671
T2P2V1	Reference :
Ph#: (403) 232-8555 Fax#: (403) 262-1169	Sample #: 39 Soil
Email peterw@orcaoil.com	

A 2011/2020/14	Client Id	Au	Au	Au	
Accurassay #	Client Id	ppb	oz/t	g/t (ppm)	
33840	9240	<5	< 0.001	<0.005	
33841	9241	<5	< 0.001	< 0.005	
33842	9242	<5	< 0.001	<0.005	
33843	9243	<5	< 0.001	<0.005	
33844	9244	<5	< 0.001	<0.005	
33845	9245	<5	< 0.001	< 0.005	
33846	9246	<5	< 0.001	<0.005	
33847	9247	68	0.002	0.068	
33848	9248	<5	< 0.001	<0.005	
33849	9249	<5	< 0.001	<0.005	
33850 Check	9249	<5	<0.001	< 0.005	
33851	9250	<5	<0.001	< 0.005	
33852	9251	<5	< 0.001	<0.005	
33853	9252	<5	<0.001	<0.005	
33854	9253	<5	< 0.001	<0.005	
33855	9254	<5	< 0.001	< 0.005	
33856	9255	<5	<0.001	<0.005	
33857	9256	<5	< 0.001	< 0.005	
33858	9257	<5	< 0.001	<0.005	
33859	9258	<5	<0.001	<0.005	
33860 Check	9258	<5	<0.001	<0.005	
33861	9259	<5	<0.001	<0.005	
33862	9260	<5	<0.001	< 0.005	

Page 1 of 2

The results included on this report relate only to the items tested

Derek Demianiuk H.Bsc., Laboratory Manager

PROCEDURE CODES: AL4Au3, AL4ICPAR

Certified By:

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0361-07/01/2004 08:31 AM

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 FAX (807) 623 6820 PHONE (807) 626-1630

THUNDER BAY, **ONTARIO P7B 6G3** EMAIL accuracy@tbaytel.net

WEB www.accurassay.com

Certificate of Analysis

Thursday, July 01, 2004

Superior Canadian Res. Inc.	Date Received : 25-Jun-04								
Suite 400, 441-5th Avenue S.W.	Date Completed : 30-Jun-04								
Calgary, AB, CA	Job # 200440671								
T2P2V1	Reference :								
Ph#: (403) 232-8555	Sample #: 39 Soil								
Fax#: (403) 262-1169									
Email peterw@orcaoil.com									

Accurassay #		Client Id	Au ppb	Au oz/t	Au g/t (ppm)
33863		9261	<5	< 0.001	<0.005
33864		9262	<5	< 0.001	<0.005
33865		9263	<5	<0.001	<0.005
33866		9264	<5	<0.001	<0.005
33867		9265	<5	< 0.001	<0.005
33868		9266	<5	< 0.001	<0.005
33869		9267	32	<0.001	0.032
33870	Check	9267	No	o Sample	
33871		9268	<5	<0.001	< 0.005
33872		9269	<5	< 0.001	< 0.005
33873		9270	<5	< 0.001	<0.005
33874		9271	<5	<0.001	< 0.005
33875		9272	<5	< 0.001	<0.005
33876		9273	<5	< 0.001	< 0.005
33877		9274	<5	< 0.001	<0.005
33878		9275	<5	<0.001	<0.005
33879		9276	<5	<0.001	<0.005
33880		9277	<5	<0.001	<0.005
33881	Check	9277	<5	< 0.001	<0.005
33882		9278	<5	<0.001	<0.005

129

PROCEDURE CODES: AL4AU3, AL4ICPAR Certified By:

Page 2 of 2

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory AL903-0361-07/01/2004 08:31 AM

Accurassay Laboratories A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Job Num Date Rec Number of Type of S	ated: 04-07-0 ber: 2004406 ieved: 6/25/2 of Samples: 3 iample: Soil npleted: 6/30):	671 2004 39												* This	Certifi of the	cate of labora	Analy tory.	sis sho	ould no	ate only t be rep are not	oroduce	d exce	pt in fu	ull, with			n appr	roval			
Accur. #	Client Tag	Ag	AI	As	в	Ba	Be	Са	Cd	Co	Cr	Cu	Fe	к	Mg	Mn	Мо	Na	Ni	Р	0	C h	0.	O ¹		-					
		ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti	TI	V	W	Y	Zn
33862	0000	-0		-													••		F F ····		P.P	ppm	ppm	70	ppm	ppm	ppm	ppm	ppm	ppm	ppm
33863	9260	<2	1.46	8	40	52	<1	1.19	<10	12	45	46	2.06	0.15	0.56	460	<1	0.03	45	622	13	<10	<5	0.02	33	1578	<1	6	12	11	25
33864	9261	<2	1.26	/	41	36	<1	0.96	<10	15	41	51	1.79	0.12	0.49	310	<1	0.04	64	312	12	<10	<5	<0.01	23	1231	<1	5	<10	8	23 31
33865	9262 9263	<2	0.75	<3	32	25	<1	0.18	<10	8	19	4	1.25	0.07	0.15	131	1	0.02	12	112	12	<10	<5	<0.01	13	978	<1	9	36	3	18
33866		<2	1.29	<3	45	42	<1	2.08	<10	10	35	18	1.72	0.15	1.02	213	<1	0.04	33	330	10	<10	<5	0.02	31	1323	4	8	<10	11	20
33867	9264 9265	<2	1.20	6	38	32	<1	0.60	<10	10	33	9	2.07	0.11	0.39	251	<1	0.03	62	310	8	<10	<5	0.02	19	1397	<1	9	<10	6	22
33868		<2	0.99	16	39	129	<1	4.26	<10	14	27	77	1.70	0.10	0.37	2751	<1	0.03	22	1088	8	<10	9	<0.01	60	516	3	4	<10	10	21
33869	9266 0267	<2	1.31	24	35	157	<1	2.20	<10	17	29	58	2.41	0.11	0.32	4038	<1	0.02	16	1128	13	<10	<5	<0.01	38	713	<1	3	<10	12	23
33870	9267 9267	<2	1.22	9	20	63	<1	0.53	<10	13	38	12	1.72	0.08	0.51	329	<1	0.02	15	219	12	<10	<5	<0.01	21	1614	<1	18	17	4	36
33870	9267	<2	0.85		~~	•••		npie Red																			-			-	
33872	9269	~2 <2		11	35	24	<1	0.25	<10	9	28	5	1.83	0.0 9	0.27	124	2	0.02	17	208	11	<10	<5	0.01	13	1263	<1	14	<10	3	15
33873	9209	~2 <2	1.40 0.25	5	34	62	<1	3.89	<10	10	33	82	1.67	0.04	0.17	193	2	0.02	47	740	5	<10	<5	<0.01	21	662	<1	<2	11	4	31
33874	9270	<2	0.25	<3 5	37 33	51	<1	3.11	<10	5	6	15	0.18	0.02	0.11	258	<1	0.02	12	185	11	<10	<5	0.01	29	<100	<1	<2	<10	<1	33
33875	9272	<2	0.18	<3	33 37	50	<1	2.85	<10	4	5	11	0.15	0.02	0.14	<10 0	1	0.02	5	225	12	<10	6	0.02	30	<100	3	<2	30	<1	24
33876	9273	<2	0.18	<3	38	48 45	<1 <1	2.85 2.93	<10	4	5	8	0.12	0.02	0.11	<100	<1	0.02	9	183	8	<10	<5	<0.01	29	<100	<1	<2	28	<1	28
33877	9274	<2	0.20	<3	39	45 55	<1		<10	2	5	6	0.13	0.02	0.11	<100	2	0.02	7	214	12	<10	<5	<0.01	30	<100	<1	<2	<10	<1	25
33878	9275	<2	2.87	6	17	65	<1	1.88 0.52	<10	3	3	8	0.10	0.01	0.05	<100	1	0.02	8	107	8	<10	<5	<0.01	24	<100	10	<2	27	<1	41
33879	9276	<2	4.18	63	27	39	<1	0.52	<10	16	55	149	2.41	0.16	0.52	153	<1	0.03	45	640	17	<10	<5	0.01	20	1181	<1	<2	14	24	70
33880	9277	<2	4.05	60	27	38	<1	0.24	<10 <10	40 27	113	408	>10.00	0.09	1.02	489	3	0.02	109	371	42	<10	<5	0.03	<5	2079	<1	20	<10	20	240
3881	9277	<2	2.53	<3	38	99	<1	4.30	<10 <10	37 15	108	387	>10.00	0.08	1.00	487	3	0.02	108	356	46	<10	<5	0.02	<5	1998	<1	18	<10	19	231
33882	9278	<2	2.14	4	41	33 76	<1	1.13	<10 <10	13	50 60	44 23	2.61 2.24	0.20	1.25	348	<1	0.04	40	348	15	<10	<5	0.04	44	1574	<1	3	<10	12	43
		-		•				1.15	~10	15	00	23	Z.24	0.19	0.84	239	<1	0.03	30	452	8	<10	<5	0.02	32	1729	<1	4	11	12	29

130

Superior Canadian Res. Inc.

Certified By Derek Demianiuk, H.Bsc.

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

Superior Ca Date Create Job Numbe Date Reciev Number of S Type of Sar Date Compl F ct ID:	ed: 04-07- r: 200440 ved: 6/25// Samples: nple: Soil	01 01: 671 2004 39	:08 PM											1.01	of the	icate o e labora	i Anal Itory.	n this re ysis she hese ar	ould no	ot be re	produce	ed exce	pt in fi	ull, with			n app	roval			
Accur. # Cli	ent Tag	Ag	AI	As	в	Ba	Be	Ca	Cd	Co	Cr	^	F .			_															
		ppm	%	ppm	ppm	ppm	ppm		ppm	ppm	ppm	Cu ppm	Fe %	K v	Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Se	Si	Sr	Ti	П	v	w	Y	Zn
										PP	PP	ppm	70	%	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
33840	9240	<2	1.15	3	40	22	<1	0.52	<10	8	26	13	1.24	0.08	0.33	137	<1	0.03	20		••										••
33841	9241	<2	0.96	3	46	40	<1	>10.00	<10	10	27	9	1.31	0.20	2.99	304	<1	0.05	29	450	13	<10	<5	0.03	19	1100	<1	<2	19	6	32
33842	9242	<2	1.16	4	54	55	<1	>10.00	<10	9	32	12	1.58	0.31	3.18	430	2		21	454	6	<10	<5	0.02	87	1305	<1	35	<10	9	27
33843	9243	<2	0.75	<3	47	27	<1	7.89	<10	6	22	9	1.12	0.16	1.87	231	∡ <1	0.06	20	458	5	<10	<5	0.02	97	1376	<1	37	<10	10	34
33844	9244	<2	0.95	<3	53	39	<1	>10.00	<10	8	29	9	1.37	0.26	3.37	319	1	0.04	25	363	14	<10	<5	0.02	61	1080	<1	22	23	7	26
33845	9245	<2	1.01	<3	50	41	<1	>10.00	<10	9	29	10	1.40	0.27	3.01	313	1	0.05	23	459	9	<10	<5	0.02	99	1386	<1	48	<10	10	26
33846	9246	<2	0.89	4	52	41	<1	>10.00	<10	8	26	9	1.30	0.23	3.00	357	2	0.05	22	441	10	<10	<5	0.02	88	1345	1	37	19	10	28
33847	9247	<2	1.99	18	49	45	<1	1.53	<10	3 9	33	9	6.22	0.07	0.83	1168	∡ <1	0.05	29	467	4	<10	<5	0.02	87	1309	<1	40	19	9	27
33848	9248	<2	1.67	4	54	65	<1	6.54	<10	11	43	14	1.94	0.27	2.88	306	4	0.04	60	634	19	<10	<5	0.01	26	<100	<1	25	<10	2	88
33849	9249	<2	0.94	4	48	33	<1	>10.00	<10	8	28	13	1.37	0.21	2.65	264	-1	0.05	33	550	15	<10	<5	0.02	58	1657	<1	22	32	12	28
33850	9249	<2	0.93	4	42	26	<1	3.63	<10	9	28	5	1.30	0.21	2.05	204 252	<1	0.05	17	453	10	<10	<5	0.02	83	1343	<1	32	37	10	22
33851	9250	<2	0.98	3	36	33	<1	>10.00	<10	11	30	17	1.37	0.22	2.70	252 269	<1	0.03	22	366	9	<10	<5	0.02	38	1225	<1	12	<10	8	20
33852	9251	<2	0.90	3	48	24	<1	0.47	<10	9	27	4	1.37	0.09	0.33	209 196	2	0.05	20	476	13	<10	<5	0.02	86	1370	<1	35	<10	10	23
33853	9252	<2	1.24	3	53	54	<1	>10.00	<10	10	34	12	1.60	0.32	0.33 3.14	367	1	0.03	23	397	9	<10	<5	0.02	21	1269	<1	6	19	7	21
33854	9253	<2	0.90	<3	48	37	<1	>10.00	<10	9	28	10	1.29	0.32	2.84	280	<1	0.05	18	458	9	<10	<5	0.02	98	1413	5	35	10	10	26
33855	9254	<2	0.85	<3	50	34	<1	>10.00	<10	8	25	10	1.25	0.17	3.00	273	<1	0.05	16	455	9	<10	<5	0.02	78	1216	7	36	29	9	20
33856	9255	<2	1.67	<3	20	44	<1	0.70	<10	9	39	24	1.51	0.08	0.42	-	1	0.05	16	370	10	<10	<5	<0.01	84	949	<1	40	<10	9	19
33857	9256	<2	1.17	7	32	97	<1	3.33	<10	15	21	43	1.17	0.00	0.42	108	<1	0.03	34	161	13	<10	<5	0.01	21	1340	<1	4	37	5	28
33858	9257	<2	1.03	14	38	75	<1	2.64	<10	11	27	50	1.65	0.14		1214	2	0.03	18	816	21	<10	<5	<0.01	44	559	6	2	<10	6	38
j 3859	9258	<2	1.38	8	48	57	<1	4.44	<10	10	40	18	1.89	0.10	0.40	1146	<1	0.03	14	987	12	<10	<5	<0.01	39	778	4	4	10	10	22
33860	9258	<2	1.42	3	45	59	<1	4.50	<10	12	42	18	1.96	0.23	2.03	454	2	0.05	19	642	13	<10	6	0.02	45	1457	<1	15	<10	11	25
33861	9259	<2	1.35	8	47	55	<1	6.84	<10	11	38	24	1.82	0.23 0.24	2.06	454	2	0.04	19	613	12	<10	<5	0.02	47	1526	<1	17	14	11	24
										••		£-7	1.02	0.24	2.23	411	<1	0.04	37	584	10	<10	5	0.02	60	1498	<1	20	20	11	23
																				-											

131

Derek Demianiuk, H.Bsc.

Certified B

Certificate of Analysis

Thursday, April 13, 2006

3

Superior Canadian Res. Inc.	Date Received : 13-Jul-04
Suite 400, 441-5th Avenue S.W. Calgary, AB, CA	Date Completed : 20-Jul-04 Job # 200440789
T2P2V1 Ph#: (403)232-8555	Reference :
First. $(403) 252-8555$ Fax#: $(403) 262-1169$	Sample #: 24 Rock
Email peterw@orcaoil.com	

Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)
39408	9303	8	<0.001	0.008
39409	9304	6	<0.001	0.006
39410	9305	25	< 0.001	0.025
39411	9306	414	0.012	0.414
39412	9307	1633	0.048	1.633
39413	9308	17	< 0.001	0.017
39414	9309	12	< 0.001	0.012
39415	9310	20	<0.001	0.019
39416	9311	<5	< 0.001	< 0.005
39417	9312	<5	<0.001	< 0.005
39418 (Check 9312	<5	<0.001	< 0.005
39419	9313	18	< 0.001	0.018
39420	9314	133	0.004	0.133
39421	9315	125	0.004	0.125
39422	9316	401	0.012	0.401
39423	9317	36	0.001	0.036
39424	9318	36	0.001	0.036
39425	9319	79	0.002	0.079
39426	9320	65	0.002	0.065
39427	9321	211	0.006	0.211
39428 C		231	0.007	0.231
39429	9322	166	0.005	0.166
39430	9323	14	< 0.001	0.013

PROCEDURE CODES: ALJAUS, ALAICPAR Certified By:

The results included on this report relate only to the items tested

Page 1 of 2

Derek Demianiuk H.Bsc., Laboratory Manager

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Certificate of Analysis

Thursday, April 13, 2006

Superior Canadian Re: Suite 400, 441-5th Av Calgary, AB, CA T2P2V1 Ph#: (403) 232-8555		Date Comple Refere		04 0789
Fax#: (403) 262-1169 Email peterw@orcaoil.com	I	Samp	ole #: 24	Rock
Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)
39431	9366	9	<0.001	0.009
39432	9367	13	<0.001	0.013
39433	9368	72	0.002	0.072

PROCEDURE CODES: AL3AU3, AL4ICPAR Page 2 of 2
Certified By
Derek Demianiuk H.Bsc., Laboratory Manager
Derek Demianiuk H.Bsc., Laboratory M.Bsc., Laboratory M.Bsc., Laboratory M.Bsc., Laboratory M.B

Certificate of Analysis

Thursday, April 13, 2006

Superior Canadian Res. I Suite 400, 441-5th Avenu Calgary, AB, CA T2P2V1 Ph#: (403) 232-8555 Fax#: (403) 262-1169		Date Comple Refere	ived : 19-Jul- eted : 22-Jul- Job # 200440 ence : ole #: 2	04
Email peterw@orcaoil.com				
Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)
40052	9301	422	0.012	0.422
40053	9302	5	<0.001	0.005
40054 Check	9302	5	< 0.001	0.005

PROCEDURE CODES: AL3AU3, AL4ICPAR	Page 1 of 1
Certified By:	
Tibe Certificate of Analysis should not be reproduced excent	
Defet Demanut H.BSC., Laboratory Manager approval of the laboratory	AL903-0361-04/13/2006 11:40 AM
/34	

Accurassay Laboratories Mineral Assay Division of Assay Laboratory Services Inc.

<1

<1

39429

9322

13

0.71

30

14

<10

0.94

0.97

135

<10

<10

46

28

75

105

>5.000

>5.000

3.53

1.99

0.05

0.06

1046 GORHAM STREET THUNDER BAY, ONTARIO P7B 5X5 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: assay@accurassay.com WEB: www.accurassay.com

Superior Canadian Res. Inc. Date Created: 04-07-26 08:40 AM * The results included on this report relate only to the items tested Job Number: 200440789 * This Certificate of Analysis should not be reproduced except in full, without the written approval Date Recieved: 7/13/2004 of the laboratory Number of Samples: 24 *The methods used for these analysis are not accredited under ISO/IEC 17025 Type of Sample: Rock Date Completed: 7/20/2004 iect ID: Accur. # Client Tag Ag AI As В Ba Be Са Cd Co Cr Cu Fe κ Mg Mn Мо Na Ni Р Pb Sb Se Si Sr Ti TI v ppm % w Y Zn ppm % ppm ppm ppm ppm ppm ppm ppm % % % % ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm 39408 9303 <2 0.60 <3 19 16 <1 0.04 <10 -3 91 21 4.09 0.11 0.22 543 0.03 1 5 189 21 <10 <5 0.08 <5 39409 9304 542 <1 <2 <2 1.01 4 16 21 <10 <1 63 <1 0.07 <10 4 70 17 2.73 0.13 0.54 1009 1 0.02 6 279 7 <10 <5 0.04 <5 853 39410 9305 <2 <1 <2 1.15 8 23 <10 <1 72 10 <1 0.07 <10 20 210 46 5.62 0.03 0.69 1022 <1 0.05 18 115 14 <10 <5 0.06 <5 39411 1747 <1 17 9306 33 1.26 8 23 <10 <1 57 <10 <1 0.19 <10 50 141 >5,000 7.16 0.04 0.74 553 4 < 0.01 92 303 13 <10 <5 0.05 11 1296 39412 9307 <1 34 1.57 10 9 29 25 <10 <1 76 <1 0.27 <10 63 131 >5.000 7.14 0.04 0.94 679 4 < 0.01 84 303 14 <10 <5 0.07 16 1574 39413 <1 9308 <2 1.15 <3 13 146 2 92 16 <10 <1 0.36 <10 16 146 1079 2.48 < 0.01 0.69 532 <1 0.04 18 190 -5 <10 <5 0.08 <5 39414 9309 3348 <1 21 <2 <10 1.19 <3 16 3 44 <10 <1 1.41 <10 35 107 390 2.74 < 0.01 0.71 700 <1 0.04 65 211 4 <10 <5 0.11 9 2389 <1 39415 9310 <2 0.97 10 <10 16 3 21 <10 <1 62 0.29 <10 35 126 168 5.00 < 0.01 0.58 367 <1 0.04 37 192 11 <10 <5 0.07 <5 3221 39416 <1 21 9311 <2 1.64 <3 17 <10 2 49 <10 <1 0.29 <10 20 88 49 3.17 < 0.01 1.06 708 <1 0.02 31 180 5 <10 <5 0.07 5 2432 39417 9312 <2 <1 5 1.37 4 16 <10 82 15 1 <1 0.47 28 <10 68 91 3.05 0.01 0.89 520 <1 0.02 35 176 4 <10 <5 7 0.09 2338 39418 <1 9 9312 <2 1.36 <10 2 <3 16 71 15 <1 0.47 <10 28 67 87 3.03 0.01 0.89 515 <1 0.02 35 174 5 <10 <5 0.09 7 2283 39419 <1 8 9313 <2 1.65 <3 17 <10 1 72 <10 <1 0.21 17 <10 72 63 4.13 < 0.01 1.06 578 <1 0.02 12 228 6 <10 <5 0.10 <5 3176 39420 9314 13 1.63 <1 15 <3 18 <10 1 67 <10 <1 0.34 <10 46 116 >5,000 3.83 0.02 0.98 507 <1 0.03 129 281 7 <10 <5 0.05 13 1799 39421 9315 12 <1 13 1.65 <10 3 6 20 86 12 <1 1.16 <10 52 109 >5.000 4.95 0.07 1.00 619 <1 0.04 140 262 11 <10 <5 0.10 16 1793 <1 39422 9316 15 1.69 15 19 <10 21 11 4 105 <1 0.72 <10 42 115 >5,000 5.01 0.03 1.01 583 4 0.04 89 309 9 <10 <5 0.08 10 2199 <1 39423 9317 <2 1.67 30 7 19 <10 83 12 6 <1 1.76 <10 40 136 536 3.63 0.10 0.97 534 <1 0.10 71 234 7 <10 <5 0.09 26 1604 39424 9318 3 1.60 7 <1 24 <10 3 19 18 49 <1 4.72 <10 85 117 2793 4.17 0.10 0.98 842 <1 0.06 176 210 14 <10 <5 0.11 25 1293 27 39425 <1 9319 <2 0.67 <3 <10 13 17 <1 -5 48 2.35 <10 10 75 1267 1.48 0.10 0.65 592 <1 0.04 20 279 5 <10 <5 0.04 37 <100 39426 <1 <2 9320 4 1.33 9 16 17 <10 3 30 <1 1.55 <10 19 94 2563 2.88 0.06 0.85 859 <1 0.03 34 189 21 <10 <5 0.08 14 <100 39427 9321 12 <1 <2 <10 1.11 35 3 17 12 126 <1 0.97 <10 48 78 >5,000 3.64 0.06 0.77 900 <1 0.01 54 352 24 <10 <5 0.05 9 <100 <1 39428 9321 <2 11 1.09 <10 33 17 3 113 11

Certified By: Derek Demianiuk, H.Bsc

0.75

0.57

869

565

<1

<1

0.01

0.04

53

21

323

264

22

126

<10

<10

<5

<5

0.05

0.07

8

10

<100

<100

<1

<1

<2

<2

<10

<10

3

3

109

255

Accurassay Laboratories Mineral Assay Division of Assay Laboratory Services Inc.

1046 GORHAM STREET THUNDER BAY, ONTARIO P7B 5X5 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: assay@accurassay.com WEB: www.accurassay.com

Superior Canadian Res. Inc. Date Created: 04-07-26 08:40 AM Job Number: 200440789 Date Recieved: 7/13/2004 Number of Samples: 24 Type of Sample: Rock Date Completed: 7/20/2004 iject ID: Accur. # Client Tag Ag Al As B Ba Be Ca Cd Co Cr Cu												* This	Certific of the	cate of Iabora	Analy tory.	rsis sho	ouid noi	t be rep	y to the produce accred	ed exce	pt in fu	ull, with			n appr	oval					
Accur. # Client	t Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	Ti ppm	V ppm	W	Y	Zn ppm
39430	9323	<2	0.61	51	13	96	<1	0.11	<10	9	93	112	4 70	0.00	0.05												F F	PP-11	ppm	ppin	ppm
39431	9366	<2	1.29	<3	12	14	<1	0.76	<10	18			1.73	0.28	0.25	<100	<1	0.03	31	237	7	<10	<5	0.02	<5	1812	<1	10	11	2	10
39432	9367	<2	1.38	<3	15	<10					72	190	1.36	0.06	0.38	232	<1	0.17	47	146	4	<10	<5	0.07	19	862	<1	<2	<10	2	32
39433	9368	<2		_	-	-	<1	1.06	<10	38	87	397	2.46	0.07	0.53	311	<1	0.13	96	224	5	<10	<5	0.06	21	1322	<1	<2	-	~	
00400	3000	~2	1.23	92	15	11	<1	4.17	<10	28	99	115	3.41	0.31	1.09	1063	<1	0.02	80	206	7	<10	<5	0.04	67	508	<1	~2 10	<10 <10	4 2	57 47

136

Certified By: Derek Demianiuk, H.Bsc.

Accurassay Laboratories Mineral Assay Division of Assay Laboratory Services Inc.

1046 GORHAM STREET THUNDER BAY, ONTARIO P7B 5X5 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: assay@accurassay.com WEB: www.accurassay.com

Superior Canadian Res. Inc. Date Created: 04-07-26 08:44 AM Job Number: 200440809 Date Recieved: 7/19/2004 Number of Samples: 2 Type of Sample: Rock Date Completed: 7/22/2004 iject ID: Accur. # Client Tag Ag Al As B Ba Be Ca Cd Co Cr. Cu														" I his	of the	cate of labora	[:] Analy itory.	/sis sho	ouid no	t be rep	oroduce	items t ed excer ited und	ot in fu	ll, with			n appr	⁻ oval			
Accur. # Client	t Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	Ti ppm	V ppm	W	Y	Zn ppm
40052 40053 40054	9301 9302 9302	<2 <2 <2	0.44 0.38 0.38	76 <3 5	10 12 12	17 27 27	<1 <1 <1	0.03 7.21 7.30	<10 <10 <10	6 10 10	221 54 55	40 25 24	3.81 3.43 3.45	0.07 0.08 0.08	0.06 0.79 0.80	<100 2002 2024	2 <1 <1	0.06 0.02 0.02	7 13 13	286 110 108	13 11 10	<10 <10 <10	<5 <5 <5	0.06 0.03 0.03	8 72 73	<100 <100 <100	<1 <1 <1	<2 31 31	<10 <10 <10	3 4 4	3 22 23

137

Certified By Derek Demianiuk, H.Bsc.

curassay boratories

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 ONTARIO P7B 6G3 THUNDER BAY, PHONE (807) 626-1630 FAX (807) 623 6820 EMAIL accuracy@tbaytel.net WEB www.accurassay.com

Certificate of Analysis

Friday, July 23, 2004

Superior Canadian Res. I Suite 400, 441-5th Avenu Calgary, AB, CA T2P2V1 Ph#: (403) 232-8555		Date Comple , Refere	job # 20044(04
Fax#: (403) 262-1169 Email peterw@orcaoil.com			nc # . 2	
Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)
40052	9301	422	0.012	0.422
40053	9302	5	<0.001	0.005
40054 Check	9302	5	<0.001	0.005

5

< 0.001

0.005

PROCEDURE SODES; ALATAN3, ALAICPAR	The results included on this report relate only to the items to	Page 1 of 1
	The Certificate of Analysis should not be reproduced except	in full, without the written
Derek Demlaniuk H.Bsc., Laboratory Manager	approval of the laboratory	AL903-0361-07/23/2004 10:44 AM

Accurassay Laboratories

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION 1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Superior Canadian Res. Inc. Date Created: 04-07-26 08:44 AM Job Number: 200440809 Date Recieved: 7/19/2004 Number of Samples: 2 Type of Sample: Rock Date Completed: 7/22/2004 F jct ID:												 * The results included on this report relate only to the items tested * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory. *The methods used for these analysis are not accredited under ISO/IEC 17025 																			
Accur. # Client	t Tag	Ag ppm	AI %	As ppm	8 ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	TI ppm	V ppm	W	Y ppm	Zn ppm
40052 40053 40054	9301 9302 9302	<2 <2 <2	0.44 0.38 0.38	76 <3 5	10 12 12	17 27 27	<1 <1 <1	0.03 7.21 7.30	<10 <10 <10	6 10 10	221 54 55	40 25 24	3.81 3.43 3.45	0.07 0.08 0.08	0.06 0.79 0.80	<100 2002 2024	2 <1 <1	0.06 0.02 0.02	7 13 13	286 110 108	13 11 10	<10 <10 <10	<5 <5 <5	0.06 0.03 0.03	8 72 73	<100 <100 <100	<1 <1 <1	<2 31 31	<10 <10 <10	3 4 4	3 22 23

Certified By: Derek Demianiuk, H.Bsc.

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 PHONE (807) 626-1630 FAX (807) 623 6820

THUNDER BAY, ONTARIO P7B 6G3 EMAIL accuracy@tbaytel.net WEB www.accurassay.com

Certificate of Analysis

Thursday, June 24, 2004

Superior Canadian Res. Inc.	Date Received : 18-Jun-04							
Suite 400, 441-5th Avenue S.W.	Date Completed : 24-Jun-04							
Calgary, AB, CA	Job # 200440616							
T2P2V1	Reference :							
Ph#: (403) 232-8555	Sample #: 18	Deals						
Fax#: (403) 262-1169	Sample #. 18	Rock						
Email peterw@orcaoil.com								

Accurassay #	Client Id	Au	Au	Au	
-		ppb	oz/t	g/t (ppm)	
31774	9351	<5	<0.001	<0.005	X
31775	9352	<5	<0.001	<0.005	
31776	9353	30	<0.001	0.030	
31777	9354	78	0.002	0.078	
31778	9355	12	<0.001	0.012	
31779	9227	65	0.002	0.065	
31780	9228	45	0.001	0.045	
31781	9229	175	0.005	0.175	
31782	9230	45	0.001	0.045	
31783	9231	436	0.013	0.436	
31784 Check	9231	487	0.014	0.487	
31785	9232	7	<0.001	0.007	
31786	9233	39	0.001	0.039	
31787	9234	<5	<0.001	<0.005	
31788	9235	<5	<0.001	<0.005	
31789	9236	<5	<0.001	<0.005	
31790	9237	<5	<0.001	<0.005	
31791	9238	<5	<0.001	<0.005	
31792	9239	<5	<0.001	<0.005	

PROCEDURE CODI 4 CPAR 1111 Certified By: Dei de m Hasc., Laboratory Manager

esuits included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

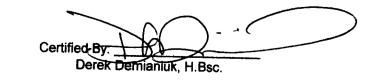
Page 1 of 1

AL903-0361-06/24/2004 03:47 PM

140

Accurassay Laboratories

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION 1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com


Superior Canadian Res. Inc. Date Created: 04-06-28 12:11 PM Job Number: 200440616 Date Recieved: 6/18/2004 Number of Samples: 18 Type of Sample: Rock Completed: 6/24/2004 С Project ID:

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

*The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. #	Client Tag	Ag ppm	AI %	As ppm	B ppm	Ва ррт	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sr ppm	Ti ppm	Ti ppm	V	W	Y ppm	Zn ppm
31774	9351	<2	1.28	<3	33	<10	<1	1.98	<10	21	242	55	0.70	-0.04													•••			PP	ppin
31775	9352	<2	0.65	10	26	58	<1	0.44	<10	4	177	- 55 12	9.78	< 0.01	1.08	682	<1	0.01	44	109	4	<10	<5	0.04	6	1321	<1	16	<10	A	46
31776	9353	<2	0.67	41	26	37	<1	0.38	<10	5	108	20	2.54	0.23	0.22	141	<1	0.05	7	174	4	<10	<5	0.01	8	498	<1	<2	<10	1	15
31777	9354	4	0.07	206	22	<10	<1	0.17	<10	2	410	20 914	3.32	0.15	0.35	177	<1	0.02	8	196	6	<10	<5	0.01	<5	652	<1	<2	<10	2	29
31778	9355	<2	1.21	23	28	<10	<1	1.41	<10	20	236	727	1.79	0.01	0.05	<100	2	<0.01	6	<100	5	<10	<5	<0.01	<5	<100	<1	<2	<10	<1	12
31779	9227	<2	0.44	40	27	16	<1	1.47	<10	18	162	727 8	6.12	0.03	0.56	320	<1	0.09	39	136	3	<10	<5	0.02	31	1615	<1	2	<10	8	31
31780	9228	<2	0.62	38	30	20	<1	0.99	<10	24	296		7.64	0.13	0.59	529	<1	<0.01	32	<100	13	<10	<5	0.02	32	<100	<1	2	<10	2	39
31781	9229	<2	0.50	141	29	29	<1	0.89	<10	12	250	10	9.88	0.16	0.54	682	2	0.03	42	<100	18	<10	<5	0.02	15	<100	<1	3	<10	3	59 54
31782	9230	<2	0.39	24	24	45	<1	0.43	<10	4	230	17 12	7.64	0.23	0.41	319	1	0.02	23	138	50	<10	<5	0.02	16	<100	<1	<2	<10	2	58
31783	9231	<2	0.29	392	24	16	<1	0.37	<10	4	198		2.52	0.17	0.09	115	<1	0.03	4	230	7	<10	<5	0.02	7	478	<1	<2	<10	2	11
31784	9231	<2	0.31	385	25	17	<1	0.36	<10	- 	205	10	3.64	0.10	0.08	110	1	0.02	6	205	7	<10	<5	0.01	7	<100	<1	<2	<10	1	11
31785	9232	<2	0.80	5	26	50	<1	0.55	<10	6	205 67	10	3.60	0.11	0.08	109	1	0.02	7	204	6	<10	<5	0.01	7	<100	<1	<2	<10	1	10
317 8 6	9233	<2	1.20	18	39	41	<1	1.83	<10	35	116	4	4.67	0.16	0.39	215	<1	0.03	7	315	4	<10	<5	0.02	7	<100	<1	<2	<10	1	36
31787	9234	<2	1.46	<3	36	<10	<1	1.90	<10	33	54	30 31	>10.00	0.16	0.72	9 88	<1	0.01	40	440	6	<10	<5	0.02	16	<100	<1	15	<10	2	65
31788	9235	<2	0.63	<3	25	47	<1	0.21	<10	4	106	31	>10.00	<0.01	1.17	751	<1	0.02	42	396	6	<10	<5	0.03	30	4858	<1	54	<10	16	72
31789	9236	<2	0.56	4	22	31	<1	0.22	<10	3	64	27	2.73	0.15	0.27	153	<1	0.01	6	247	3	<10	<5	0.02	<5	<100	<1	<2	<10	<1	26
31790	9237	<2	0.57	<3	22	52	<1	0.13	<10	2	59	21	2.64	0.11	0.28	129	<1	0.02	9	182	3	<10	<5	0.02	<5	<100	<1	<2	<10	<1	28
31791	9238	<2	0.62	5	24	47	<1	0.04	<10	3	148	2	1.66	0.20	0.20	<100	<1	0.02	5	142	3	<10	<5	0.02	<5	<100	<1	- <2	<10	<1	20 19
31792	9239	<2	0.52	6	23	40	<1	0.05	<10	2	105	10	2.73	0.19	0.24	<100	<1	0.02	7	176	3	<10	<5	0.02	<5	<100	<1	<2		<1	24
2						-	-			5	105	12	2.55	0.15	0.20	<100	<1	0.02	5	203	4	<10	<5	0.01	<5	<100	<1	-		<1	24 20

Type of Sample: Soil Completed:

,

Г

Y

3

Zn

ppm

68

19

48

40

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION 1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

Superior Canadian Res. Inc. Date Created: 04-06-28 12:11 PM Job Number: 200440617 Date Recieved: 6/18/2004	 * The results included on this report relate only to the items tested * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
Number of Samples: 3	

*The methods used for these analysis are not accredited under ISO/IEC 17025

F. Jet ID: Accur. # Client Tag Aq AL As В Ba Be Ca Cđ Co Cr Cu Fe κ Mg Mn Мо Na Ni Ρ Pb Sb ppm % Se Si Sr ppm Ti TI ppm nda ppm % v W ppm ppm ppm % ppm % % ppm % ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm 31793 9224 <2 1.04 13 32 12 <1 0.14 <10 17 54 54 8.78 0.02 0.60 255 31794 <1 < 0.01 28 150 8 <10 9225 <2 0.73 <5 0.02 <3 29 19 7 2453 <1 <1 0.11 32 <10 <10 5 17 6 3.68 0.03 0.14 <100 <1 < 0.01 9 150 6 31795 9226 <10 <5 <2 1.08 0.02 8 791 6 30 60 <1 <1 <2 0.48 <10 8 <10 2 31 13 4.38 0.10 0.44 423 <1 0.01 17 31796 209 8 9226 <10 <2 1.11 <5 0.02 18 4 33 62 1144 <1 <1 0.50 <10 <2 <10 8 9 32 14 4.53 0.09 0.46 444 <1 0.01 18 228 10 <10 <5 0.02 19 1203 <1 <2 <10 9

- -Certified By: Derek Demianiuk, H.Bsc.

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 626-1630 FAX (807) 623 6820 EMAIL accuracy@tbaytel.net WEB www.accurassay.com

Certificate of Analysis

Tuesday, July 06, 2004

Superior Canadian Res. Suite 400, 441-5th Aver Calgary, AB, CA T2P2V1 Ph#: (403) 232-8555 Fax#: (403) 262-1169 Email peterw@orcaoil.com				e Comple , Refere	ived : 25- eted : 29- Job # 200 ence : ble #: 10	Jun-04 9440670	lock	
		Ag	Со	Cu	Fe	Ni	Pb	Zn
Accurassay #	Client Id	ppm	ppm	ppm	ppm	ppm	ppm	ppm
33829	9356							
33830	9357							
33831	9358							
33832	9359							
33833	9360							
33834	9361			4678				
33835	9362							
33836	9363							
33837	9364							
33838	9365							
33839 Check	9365							

PROCEDURE CODES: AL4Au3, AL4ICPAR

Certified By: Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested
The Certificate of Analysis should not be reproduced except in full, without the written
approval of the laboratory AL901-0361-07/06/2004 12:50 PM

Page 1 of 1

Accurassay Laboratories

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 626-1630 FAX (807) 623 6820 EMAIL accuracy@tbaytel.net WEB www.accurassay.com

Certificate of Analysis

Wednesday, June 30, 2004

Superior Canadian Res. Inc.	Date Received : 25-Jun-04
Suite 400, 441-5th Avenue S.W.	Date Completed : 29-Jun-04
Calgary, AB, CA	Job # 200440670
T2P2V1	Reference :
Ph#: (403) 232-8555	Sample #: 10 Rock
Fax#: (403) 262-1169	
Email peterw@orcaoil.com	

Accurassay #	¥	Client Id	Au	Au	Au
Accurassay 7	r		ppb	oz/t	g/t (ppm)
3382	9	9356	<5	<0.001	<0.005
3383	0	9357	<5	<0.001	<0.005
3383	1	9358	<5	<0.001	<0.005
3383	2	9359	6	<0.001	0.006
3383	3	9360	<5	<0.001	<0.005
3383	4	9361	<5	<0.001	<0.005
3383	5	9362	<5	<0.001	<0.005
3383	6	9363	<5	<0.001	<0.005
3383	7	9364	10	<0.001	0.010
3383	8	9365	96	0.003	0.096
3383	9 Check	9365	93	0.003	0.093

PROCEDURE CODES: ALTAUS, ALAICPAR

Page 1 of 1

Certified By

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written

AL903-0361-06/30/2004 09:41 AM

approval of the laboratory

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

* The results included on this report relate only to the items tested

*The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE: (807) 626-1630 FAX: (807) 623-6820 EMAIL: accuracy@tbaytel.net WEB: www.accurassay.com

of the laboratory.

Superior Canadian Res. Inc. Date Created: 04-07-01 01:08 PM Job Number: 200440670 Date Recieved: 6/25/2004 Number of Samples: 10 Type of Sample: Rock D-*- Completed: 6/29/2004 ct ID:

Accur. # Clie	nt Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	NI ppm	P ppm	Pb	Sb	Se	Si	Sr	Ti	TI	v	w	Y	Zn
33829	9356	<2	5.61	<3	53	21	<1	7.90	<10	60	070								F.F	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
33830	9357	<2	6.42	29	80	17	<1	9.44	<10	66 71	276 401	183 295	>10.00			1913	<1	0.03	145	169	3	<10	<5	0.04	22	2006	<1				
33831 33832	9358	<2	3.71	<3	35	16	<1	3.58	<10	28	312	182	>10.00 2.71	0.23 0.13	4.95	1749	2	0.04	162	248	7	<10	<5	0.10	71	5519	<1	22 53	<10 <10	14	97
33833	9359 9360	<2 <2	0.80	4	28	71	<1	0.14	<10	5	464	45	1.35	0.13	0.73 0.13	459 110	1 929	0.59	58	147	4	<10	<5	0.04	81	2399	<1	<2	43	19 10	103 33
33834	9361	~2 6	4.00 3.15	3 <3	40 40	22	<1	3.24	<10	37	276	277	3.60	0.19	1.42	670	929 15	0.07 0.40	8 95	231 224	9	<10	<5	0.03	13	381	6	<2	41	2	27
33835	9362	<2	3.71	~3 <3	40 43	<10 <10	<1 <1	4.32 2.20	<10	76	332	>5,000	5.13	0.05	0.45	434	9	0.16	81	224 547	9 ∡	<10 <10	<5 <5	0.04	95	3048	<1	2	40	6	27
33836	9363	<2	6.00	4	61	<10	<1	2.20 5.80	<10 <10	37 78	173	121	5.37	0.03	2.22	909	<1	0.06	92	126	6	<10	<5 <5	0.03 0.02	101 42	4520	<1	9	15	19	67
33837	9364	<2	4.67	4	46	32	<1	8.26	<10	53	197 288	298 135	>10.00	0.03	4.85	2020	<1	0.04	83	289	11	<10	<5	0.02	42 57	2361 2363	<1 <1	<2 28	25	7	56
33838 33839	9365	5	5.00	35	56	<10	<1	>10.00	<10	163	357	4825	7.47 9.61	0. 4 3 0.10	3.64	1823	1	0.15	131	167	14	<10	<5	0.05	32	2177	<1	20 32	<10 18	29 16	121
00009	9365	6	4.89	34	56	<10	<1	>10.00	<10	160	347	4647	9.45	0.10	2.87 2.81	1242 1210	3	0.09	159	209	9	<10	<5	0.10	31	3026	<1	37	23	16	119 71
															2.31		4	0.09	149	209	6	<10	<5	0.10	31	3206	<1	40	37	16	71

Certified B Derek Demianiuk, H.Bsc.

A DIVISION OF ASSAY LABORATORY SERVICES INC. MINERAL ASSAY DIVISION

1070 LITHIUM DRIVE, UNIT 2 PHONE (807) 626-1630 FAX (807) 623 6820

THUNDER BAY, ONTARIO P7B 6G3 EMAIL accuracy@tbaytel.net WEB www.accurassay.com

Certificate of Analysis

Monday, July 19, 2004

Superior Canadian Res. Inc.Date Received : 13-Jul-04Suite 400, 441-5th Avenue S.W.Date Completed : 19-Jul-04Calgary, AB, CAJob # 200440788T2P2V1Job # 200440788Ph#: (403) 232-8555Reference :Fax#: (403) 262-1169Sample #: 2Email peterw@orcaoil.comRock

		Ai ₂ O ₃	CaO	Fe ₂ O ₃	K, 0	MgO	MnO	Na ₂ O	P. O.	SiO	TiQ	LOI	Total
Accurassay #	Client Id	%	%	%	- %	%	%	%	25 %	-	2		
39406	Jonsmith 1	15.216	3.166	3.162	1.206	0.608	0.037	5.534	70 0.067	% 66.738	% 0.330	% 3.226	% 99.290
39407	Jonsmith 2	29.069	10. 189	10.203	0.290	5.124	0.160	2.317	0.063	39.475	0.768	1.413	99.071

PROCEDURE CODES: A **Certified By:**

Derek Demianiuk H.Bsc., Laboratory Manager

Page 1 of 1 The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL918-0361-07/19/2004 12:35 PM

14/L

SUPERIOR CANADIAN RESOURCES INC. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: GAGNON AREA

. 22

SUPERIOR CANADIAN RESOURCES INC. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: GAGNON AREA

Accur. # Barn	nple # Samp Type	le Area	UTM Northing	UTM Easting	Ag ppm	AI %	As ppm	Au PPB	Au 02/t	Au PPM	B 	Ba ppm	Be	Ca %	Cd.	Co	Cr	Cu	Fe %s	к %	Mg	Mn	Mo	Na	Ni	Р	РЪ	6b	Se	Si	Sr	π	ŤI	v	w	Y	Zn
39408 9303 34409 9304 39410 9305 39411 9300 39413 9305 39414 9312 39416 9311 39416 9312 39418 9312 39418 9312 39418 9312 39420 9314 39422 9316 39423 9317 39423 9321 39425 9321 39429 9322 39439 9322 39439 9323	3 rock 4 rock 5 rock 6 rock 7 rock 9 rock 1 rock 2 rock 3 rock 4 rock 5 rock 6 rock 7 rock 8 rock 9 rock 10 rock	NS-9 NS-9 main sho trench 2 trench 2 south BL south BL south BL NS-8 NS-6 NS-7 NS-7 NS-7 NS-7 NS-7 NS-7 NS-7 NS-8 NS-8 NS-8 NS-8 NS-8 NS-8 NS-8 NS-8	5587049 5587049 5587049 5587049 v. 5587077	501283 501283 501283 501821 501821 501825 501825 501825 501825 501825 501825 501825 501825 501825 501825 501821 50183 501893 502143 502143 502175 502175 502175 502175 502175 502180		0.6 1.01 1.15 1.26 1.57 1.15 1.57 1.67 1.67 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63	ppm 3 4 8 8 8 10 3 3 16 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 3 3 3 6 5 15 7 7 7 9 3 5 3 3 3 30 5 1	6 6 25 414 1633 17 12 20 20 5 5 5 5 18 1333 125 401 36 36 36 211 231 106 14	 -€0.001 -€0.002 -€0.002 -€0.005 -€0.005 -€0.005 -€0.005 -€0.001 	PPM 0.000 0.002 0.025 0.414 1.633 0.017 0.019 <0.005	ррт 19 16 23 23 23 24 21 16 16 16 16 17 18 20 21 17 18 20 21 17 18 21 17 18 10 17 18 10 17 18 10 16 16 16 17 18 10 17 18 10 16 17 17 18 10 17 18 10 17 18 10 17 18 10 17 18 17 18 17 18 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 18 17 17 18 17 17 18 17 18 17 18 17 18 19 19 13 16 17 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 19 19 13 16 17 18 18 18 18 18 18 18 17 18 18 18 18 18 18 17 18 18 18 18 18 18 18 18 18 18		 १ १ १ १ १ १ १ १ १ १ १ १ १ १ १ १	% 0.04 0.07 0.08 0.19 0.27 0.38 1.41 0.29 0.47 0.47 0.34 1.72 2.35 1.55 0.97 0.94 0.94 0.97 0.91 0.91	ppm. <10	ppm 3 4 20 50 63 16 35 20 28 28 28 46 52 46 52 46 52 10 19 48 48 48 48 48 9 9	91 70 210 214 145 134 146 107 126 88 88 88 88 72 116 115 136 117 75 93	ppm 21 17 46 >5,000 >5,000 1079 390 188 49 91 87 5,000 >5,000 >5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000	% 4.09 2.73 5.62 7.16 7.14 2.74 3.05 3.05 3.05 3.05 3.05 3.65 5.01 3.65 4.17 1.48 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64	%6 0.11 0.13 0.04 0.04 €0.01 €0.01 €0.01 0.01 0.02 0.03 0.1 0.07 0.03 0.1 0.1 0.08 0.066 0.28	% 0.22 0.54 0.690 0.74 0.89 0.71 0.69 0.71 0.89 1.06 0.89 1.01 0.87 0.65 0.65 0.65 0.65 0.77 0.75 0.75 0.25		אס דר דר א א א א א א א א א א א א א א א א א א א	% 0.03 0.05 40.01 - 0.04 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.053	ppm 5 6 16 92 84 18 65 37 35 35 35 35 32 12 9 71 129 140 89 71 176 20 34 53 21 31	ppm 189 279 115 303 303 190 211 192 180 176 174 228 176 174 2281 262 309 234 210 234 210 234 230 279 189 234 223 284 237 237 237 237 237 237 237 237	ppm 21 7 14 13 14 5 4 11 5 6 7 11 9 7 14 5 21 13 14 5 6 7 14 5 21 27 14 5 7 7 14 5 7 7 14 5 7 7 14 5 7 7 14 5 7 7 7 14 5 7 7 7 14 5 7 7 7 14 5 7 7 7 7 14 5 7 7 7 7 14 5 7 7 7 7 7 7 7 7 7 7 7 7 7	bpm <10	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34 56 0.06 0.04 0.05 0.05 0.11 0.07 0.09 0.11 0.07 0.09 0.11 0.05 0.09 0.11 0.05 0.09 0.11 0.05 0.09 0.11 0.05 0.09 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.09 0.01 0.09 0.09 0.05 0.09 0.00 0.09 0.05 0.09 0.04 0.09 0.05	57 27 57 57 57 57 57 57 57 57 57 5	Ppm 542 653 1747 1296 1574 3348 2389 3221 2432 2389 3223 2432 2283 376 1799 1793 2199 1793 2199 1793 2199 1793 2199 1793 2190 (100 <100 <100 <100 <100 <100 <100 <10	ם שייייייייייייייייייייייייייייייייייי	v _ppm v v v v 17 9 13 21 10 21 5 9 8 15 13 19 24 27 v v v v v v v v v v v v v v v	W ppm <10	Y Ppm <1 <1 <1 2 3 2 1 2 1 2 1 3 4 6 3 3 3 3 3 3 3 3 3 3 3 3 3	Zn ppm 63 72 57 52 57 52 44 62 46 62 71 72 67 83 49 48 30 105 83 49 48 109 2255 109 2255 109 2255 109 2255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 255 109 109 109 109 109 109 109 109

2.32526

SUPERIOR CANADIAN RESOURCES INC. AURUM PROJECT O'SULLIVAN LAKE AREA CELL A: KOWKASH

SUPERIOR CANADIAN RESOURCES INC. AURUM PROJECT O'SULLIVAN LAKE AREA CELL A: KOWKASH

Accur.	# Sample	* Samp Type	le Area	UTM Northing	UTM Easting	Ag ppm	A1 %6	As ppm	Au PPB	Au oz/t	Au PPM	B	Ba	Be	Ca %	Cđ	Co	Cr ppm	Cu	Fe	ĸ	Mg	Mn	Ma	Na	Ni	P	Рь	Sb	Se	Si	Sr	т	п	v	w	Y	Zn
31774 31775 31777 31777 31778 33829 33831 33832 33833 33834 33835 33836 33836 33836 33836 33836 33837 33839 339433 3394433 339443 3394433	9352 9353 9355 9355 9357 9358 9359 9360 9361 9362 9363 9364 9365 9365 9365 9365 9365 9365	rock rock rock rock rock rock rock rock	5+70W 0+80S 0+35E 7+00S 1+00E 4+773 3+65W 3+25S 2+99E 2+10H 0+77E 6+50S 3+45E 4+80S 3+70E 2+2S 3+75E 1+40S 3+62W 0+78S 3+62W 0+78S 1+20S 2+22E 0+98S 1+80E 0+98S 1+80E 2+00N 1+85E 1+00E 4+77S	5587900 5587900 5588100 5588170	497446 497446 497593 497508	û û û û a « û û û û û û û û û û û û û û û	1.28 0.65 0.07 1.21 5.61 8.42 3.71 0.8 4 3.71 6 4.67 5 4.69 1.29 1.38 1.23	0 10 41 88 72 70 78 70 4 73 79 70 4 4 55 34 79 79 82	\$ \$ 30 78 12 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 10 66 83 9 13 72	0.001 40.001	 40.005 40.005 40.005 0.03 0.012 40.005 40.005 40.005 40.005 40.005 40.005 40.005 40.005 40.005 40.005 <th>33 26 26 22 18.5 53 80 35 26 40 43 61 46 58 56 12 15 15</th><th><10 56 37 <10 21 17 18 71 22 18 71 21 40 <10 32 <10 32 <10 32 <10 14 <10 11</th><th></th><th>1.96 0.44 0.38 0.17 -0.63 7.9 9.44 3.58 0.14 3.58 4.32 2.2 2.2 5.8 8.28 >10.00 >10.00 0.78 1.06 4.17</th><th><pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre></th><th>21 4 5 2 6 6 6 6 7 1 28 5 37 76 37 76 37 76 37 76 37 76 37 183 183 180 18 38 28</th><th>242 177 108 410 343 276 401 312 464 278 332 173 332 177 288 357 347 72 87 99</th><th>55 12 20 914 898.5 183 295 182 45 277 >5,000 121</th><th>9.78 2.54 3.32 1.79 -1.44 >10.00 2.71 1.35 3.6 5.13 5.37 >10.00 7.47 9.61 9.45 1.36 2.46 3.41</th><th>₹0.01 0.23 0.15 0.01 0.17 0.17 0.23 0.19 0.03 0.03 0.03 0.03 0.1 0.1 0.1 0.06 0.07 0.31</th><th>1,08 0.35 0.05 -0.315 -1 4.72 4.85 0.73 1.42 0.45 2.22 4.85 3.84 2.87 2.81 2.87 2.81 0.53 1.09</th><th>ppm 662 141 177 <100 71.667 1913 1749 459 110 670 434 909 2020 11823 1242 1242 1242 1242 1242 311 1063</th><th><u>pp</u>m <1 <1 <1 2 <1 2 1 2 2 15 9 20 <1 5 9 20 <1 3 2 <1 3 2 <1 5 9 20 <1 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>% 0.01 0.05 0.02 0.01 0.030 0.04 0.07 0.4 0.06 0.06 0.04 0.17 0.09 0.17 0.13 0.02</th><th>Ppm 44 7 6 6 -12 2 162 58 8 95 8 8 95 8 92 83 131 159 149 47 96 80</th><th>ppm 109 174 196 <100 16.6667 169 248 147 231 224 547 126 289 167 209 209 209 209 209 209 209 209</th><th>ppm 4 4 5 8 3 7 4 9 9 4 6 11 14 9 6 4 5 7</th><th>ppm <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</th><th>85 85 87 87 87 87 87 87 87 87 87 87 87 87 87</th><th>% 0.04 0.01 0.01 -0.01 0.04 0.1 0.04 0.04 0.04 0.03 0.04 0.03 0.05 0.05 0.05 0.1 0.1 0.01 0.04</th><th>ppm 8 5 5 10 15 22 71 81 13 95 101 42 57 32 31 31 19 21 67</th><th>ppm 1321 498 652 (100 40667 5519 2399 381 3048 4520 2381 2381 2381 2383 2177 3026 862 3026 862 508</th><th>אמי ליל ליל ליל ליל ליל ליל ליל ליל ליל לי</th><th>ppm 16 √2 √2 17 22 53 √2 2 9 √2 28 327 40 √2 10</th><th>ppm <10 <10 <10 <10 <10 <10 <10 <10 43 41 40 15 25 25 25 210 18 23 37 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</th><th></th><th></th>	33 26 26 22 18.5 53 80 35 26 40 43 61 46 58 56 12 15 15	<10 56 37 <10 21 17 18 71 22 18 71 21 40 <10 32 <10 32 <10 32 <10 14 <10 11		1.96 0.44 0.38 0.17 -0.63 7.9 9.44 3.58 0.14 3.58 4.32 2.2 2.2 5.8 8.28 >10.00 >10.00 0.78 1.06 4.17	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	21 4 5 2 6 6 6 6 7 1 28 5 37 76 37 76 37 76 37 76 37 76 37 183 183 180 18 38 28	242 177 108 410 343 276 401 312 464 278 332 173 332 177 288 357 347 72 87 99	55 12 20 914 898.5 183 295 182 45 277 >5,000 121	9.78 2.54 3.32 1.79 -1.44 >10.00 2.71 1.35 3.6 5.13 5.37 >10.00 7.47 9.61 9.45 1.36 2.46 3.41	₹0.01 0.23 0.15 0.01 0.17 0.17 0.23 0.19 0.03 0.03 0.03 0.03 0.1 0.1 0.1 0.06 0.07 0.31	1,08 0.35 0.05 -0.315 -1 4.72 4.85 0.73 1.42 0.45 2.22 4.85 3.84 2.87 2.81 2.87 2.81 0.53 1.09	ppm 662 141 177 <100 71.667 1913 1749 459 110 670 434 909 2020 11823 1242 1242 1242 1242 1242 311 1063	<u>pp</u> m <1 <1 <1 2 <1 2 1 2 2 15 9 20 <1 5 9 20 <1 3 2 <1 3 2 <1 5 9 20 <1 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	% 0.01 0.05 0.02 0.01 0.030 0.04 0.07 0.4 0.06 0.06 0.04 0.17 0.09 0.17 0.13 0.02	Ppm 44 7 6 6 -12 2 162 58 8 95 8 8 95 8 92 83 131 159 149 47 96 80	ppm 109 174 196 <100 16.6667 169 248 147 231 224 547 126 289 167 209 209 209 209 209 209 209 209	ppm 4 4 5 8 3 7 4 9 9 4 6 11 14 9 6 4 5 7	ppm <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	85 85 87 87 87 87 87 87 87 87 87 87 87 87 87	% 0.04 0.01 0.01 -0.01 0.04 0.1 0.04 0.04 0.04 0.03 0.04 0.03 0.05 0.05 0.05 0.1 0.1 0.01 0.04	ppm 8 5 5 10 15 22 71 81 13 95 101 42 57 32 31 31 19 21 67	ppm 1321 498 652 (100 40667 5519 2399 381 3048 4520 2381 2381 2381 2383 2177 3026 862 3026 862 508	אמי ליל ליל ליל ליל ליל ליל ליל ליל ליל לי	ppm 16 √2 √2 17 22 53 √2 2 9 √2 28 327 40 √2 10	ppm <10 <10 <10 <10 <10 <10 <10 <10 43 41 40 15 25 25 25 210 18 23 37 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		

Superior Canadian Resources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL A: CRYD-1

. . Superior Canadian Resources Inc.. AURUM PROJECT O'SULLIVAN LAKE AREA CELL A: CRYD-1

Accur. #		le # Samp Type		UTM Northing	UTM Easting	Aq ppm	AI %	As ppm	Au PPB	Au oz/t	Au PPM	B ppm	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Мя %	Min ppm	Moppm	Na %	Ni ppm	P ppm	Pb	Sb ppm	Se ppm	Si %	Sr	Ti	Ti ppm	V	W	Y ppm	Zn
31782	9230		Cryd-1	5585625	493280	<2	0.39	24	45	0.001	0.045	24	45	<1	0.43	<10	4	226	12	2.52	0.17	0.09	115		0.03			-									PP://	
33857	9256	80	L00 0+60S			<2	1.17	7	<5	<0.001	<0.005	32	97	<1	3.33	<10	15	21	40	1.17	0.14					4	230		<10	<5	0.02	7	478	<1	<2	<10	2	11
33858	9257	soil	L00 0+70S			<2	1.03	14	<5	<0.001	<0.005	38	75	<1	2.64	<10	11	27	43	1.17	0.14	0.34	1214	2	0.03	18	816	21	<10	<5	<0.01	44	559	6	2	<10	6	38
33859	9258	soil	L00 0+80S			~2	1.38	8	<5	< 0.001	<0.005	48	57	-1	4 44	<10		21	50	1.65	0.1	0.4	1146	<1	0.03	14	987	12	<10	<5	<0.01	39	778	4	4	10	10	22
33860	9258	601	L00 0+80S			0	1.42	3	<5	<0.001	<0.005	45	59		4.44	10	10	40	18	1.89	0.23	2.03	454	2	0.05	19	642	13	<10	6	0.02	45	1457	<1	15	<10	11	25
33861	9259	soil	L00 0+90S			ō	1.35	Å	-5	<0.001	<0.005	43	55		4.5	<10	12	42	18	1.96	0.23	2.06	454	2	0.04	19	613	12	<10	<5	0.02	47	1520	<1	17	14	11	20
33862	9260	soil	L00 1+00S			~	1.46			<0.001				<1	6.84	<10	11	38	24	1.82	0.24	2.23	411	<1	0.04	37	584	10	<10	5	0.02	60	1498		20	20		24
33663	9261	soil	L00 1+10S			~	1.46	-			< 0.005	40	52	<1	1.19	<10	12	45	46	2.06	0.15	0.56	460	<1	0.03	45	622	13	<10	<5	0.02	33	1578	-1	20	20		23
33864	9262	soil	L1W 0+50N			~		-	5	< 0.001	<0.005	41	36	<1	0.96	<10	15	41	51	1.79	0.12	0.49	310	<1	0.04	64	312	12	<10	<5	<0.01	22				12	11	25
33865	9263					~2	0.75	<3	<5	<0.001	<0.005	32	25	<1	0.18	<10	8	19	4	1.25	0.07	0.15	131	1	0.02	12	112	12	<10	-5	<0.01	23	1231	</td <td>5</td> <td><10</td> <td>8</td> <td>31</td>	5	<10	8	31
		501	L1W 0+60N			<2	1.29	<3	<5	<0.001	<0.005	45	42	<1	2.08	<10	10	35	18	1.72	0.15	1.02	213	<1	0.04	22	330	12	<10	-5		13	9/8	<1	9	36	Э	18
33866	9264	soil	L1W 0+70N			<2	1.2	6	<5	< 0.001	<0.005	38	32	<1	0.6	<10	10	33	9	2.07	0.11	0.39	261		0.03		330	10		<5	0.02	31	1323	4	8	<10	11	20
33867	9265	soil	L1W 0+90N			<2	0.99	16	<5	<0.001	<0.005	39	129	<1	4.26	<10	14	27	77	17	0.1	0.37	2751			62	310	8	<10	<5	0.02	19	1397	<1	9	<10	6	22
33868	9266	soil	L1W 1+00N			<2	1.31	24	<5	< 0.001	<0.005	35	157	<1	2.2	<10	17	29	58	2 41	0.11				0.03	22	1088	8	<10	9	<0.01	60	516	3	4	<10	10	21
33869	9267	soit	L1W 1+10N			~2	1.22	9	32	<0.001	0.032	20	63	<1	0.53	<10	12	38	10	4.70		0.32	4038	<1	0.02	16	1128	13	<10	<5	<0.01	38	713	<1	э	<10	12	23
33870	9267	soil	L1W 1+10N					NO SAMP	LE REC			10	50		0.00	-10	13	30	12	1.72	0.08	0.51	329	<1	0.02	15	219	12	<10	<5	<0.01	21	1614	<1	18	17	4	.36
33871	9268	soil	L00 0+30S			<2	0.85	11	<5	<0.001	<0.005	35	24	<1	0.25	<10	9	26	5	1.83	0.09	0.27	124	2	0.02	17	NO SAMPI 208	LE RECEIV 11	/ED <10	<5	0.01	13	1263	<1	14	<10	,	15

Superior Canadian Resources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL A: CRYD-2

.....

Superior Canadian Resoources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL A: CRYD-2

Superior Canadian Resources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-1, NS-2

-

Superior Canadian Resources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-1, NS-2

Accur. #	Sample	# Sample Type	Area	UTM Northing	UTM Easting	Ag ppm	AI %	As ppm	Au A PPB o	Au Au z/t PPM	B	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni _ppm	P	Pb	Sb	Se ppm	Si %	Sr ppm	Ti pom	Ti moq	V maq	W	Y	Zn
30038 30039 30040 30041 30042 30043 30043	9201 9202 9203 9204 9205 9206 9206 9207		NS-1 NS-1 NS-1 NS-2 NS-2 NS-2 NS-2	5587883 5587883 5587883 5587883 5587883 5587972 5587972 5587972	501517 501517 501517 501517 501572 501572 501572	<2 <2 <2	1.02 1 0.91 0.84 0.22 0.18 0.87	<3 <3 16 <3 <3 19	<5 <0.00 5 <0.00 <5 <0.00		38 30 31	47 56 33 159 <10 <10 18	ব ব ব ব ব ব ব	0.44 0.2 0.52	<10 <10 <10 <10 <10 <10 <10	38 15 26 17 9 7 51	163 194 179 139 147 27 129	187 25 21 11	3.09 2.87 3.12 1.88 2.06 2.65 3.58	0.05 0.23 0.05	1.12 1.11 1.05 0.8 1.54 1.68 1.08		<1 <1 <1 1 <1	<0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01	66 17 33 30 26	185 149 125 237 123 <100 201	4 2 4 1 3 4 6	<10 <10 <10 <10 <10 <10 <10 <10	<5 <5 <5 <5 <5 <5 <5	0.04 0.06 0.05 0.05 0.02 0.02 0.02	17 12 6 14 92 85	2786 3121 1862 3278 <100 <100 <100	<1 <1 <1 <1 <1 2 4 <1	5 17 8 6 94 170 4	<10 <10 <10 <10 <10 <10 <10 <10	<u>ррт</u> 6 3 7 4 3 1	104 73 73 47 18 25 44

Superior Canadian Resources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-3

۰.

Superior Canadian Resources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-3

Accur. # 30045 30046 30047 30048 30049 30050	Sample # 9208 9209 9210 9210 9211 9212	Sample Type rock rock soil soil soil soil	Area NS-3 L00 1+00S(a) L00 1+00S(a) L00 1+10S(a) L00 1+20S(a)	UTM Northing 5585077 5585039 5585039 5585039 5585039	UTM Easting 498863 498863 498855 498855 498855	Ag ppm <2 <2 <2 <2 <2 <2 <2 <2	Al % 0.94 0.97 0.05 0.05 0.04	As ppm <3 <3 <3 <3 <3 <3 <3	<5 < <5 < <5 < <5 <	0.001 <0. 0.001 <0. 0.001 <0. 0.001 <0. 0.001 <0.	005 005 005 005 005	B ppm 35 38 28 30 31	Ba ppm <10 <10 15 15 15	Be ppm <1 <1 <1 <1 <1 <1 <1	Ca % 0.9 0.63 0.89 0.92 0.89	Cd ppm <10 <10 <10 <10 <10 <10 <10	Co ppm 32 32 <1 <1 <1 <1	Cr ppm 166 186 8 8 3	Cu ppm 85 57 2 2 2 2	3.25 0.09 0.09	K %		Mn ppm 987 1020 <100 <100 <100	<1 <1 <1	Na 0.01 0.01 <0.01 <0.01 <0.01 <0.01	Ni ppm 43 55 4 3	P ppm 181 233 182 181 195	Pb _ppm 4 4 4 4	Sb ppm <10 <10 <10 <10 <10 <10	Se ppm <5 <5 <5 <5 <5 <5	Si % 0.07 0.04 0.02 0.02 0.02	9 9	Ti ppm 3908 4611 <100 <100 <100	TI ppm <1 <1 <1 <1 2	V ppm 21 53 <2 <2	W <u>ppm</u> <10 <10 <10 <10	Y ppm 4 5 <1 <1	Zn ppm 66 93 5 5
30051 30052 30053 30055 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33881 33882	9213 9214 9215 9216 9217 9269 9270 9271 9272 9273 9274 9275 9276 9277 9277 9277 9277	rock rock rock rock rock soil soil soil soil soil soil soil soil	Old Trench Old Trench Old Trench Old Trench Old Trench Off L1W L00 0+80S L00 0+90S L00 0+90S L00 1+00S(b) L00 1+20S(b) VLFx-over VLFx-over VLFx-over	5585039 5585057 5585057 5585057 5585037 5585037 5585037 5585088 5585088 5585048 5585054 5585054	498855 498817 498817 498817 498745 498745 498745 498822 498816 498810 498810	<2 <2	0.06 0.62 0.71 1.01 0.59 0.94 1.4 0.25 0.19 0.18 0.18 0.18 0.18 0.18 0.2 2.87 4.18 4.05 2.53 2.14	<pre><3 < 3 < 9 < 3 < 10 < 5 < 3 < 3 < 6 < 3 < 6 < 3 < 4</pre>	99 () <5	0.001 <0. 0.003 0. 0.001 <0.	005 099 005 034 005 005 005 005 005 005 005 005 005 00	30 36 63 41 57 32 34 37 33 37 38 39 17 27 27 27 38 38 28.6 63.	16 30 12 40 51 50 48 45 55 55 39 38 99 .467	いいいいい いいいいいいいい いいいいい いいい いいい いいい いいい い	1.13 0.31 0.33 2.01 1.21 3.89 3.11 2.85 2.93 1.88 0.52 0.24 0.24 4.3 0313	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<1 3 36 13 155 38 10 5 4 2 3 16 40 37 15 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	4 315 84 185 83 151 33 6 5 5 5 5 5 5 113 108 50 20 .133 20	3 42 149 162 197 71 82 15 11 8 6 8 408 >1 387 >1 44 67.53 0.	1.67 0.18 0.15 0.12 0.13 0.1 2.41 0.00 0.00 2.61	0.01 0.16 0.09 0.08 0.2	0.75 0.87 1.41 0.78 1.19 0.17 0.11 0.14 0.11 0.11	<100 478 640 1131 691 1106 193 258 <100 <100 <100 <100 <100 153 489 487 348 323	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	26 44 21 68 47 12 5 9 7 8 45 109 108 40	364 <100 141 261 <100 230 740 185 225 183 214 107 640 371 356 348	7 3 23 3 20 3 5 11 12 8 12 8 17 42 46 15 33	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	5 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5	0.02 0.06 0.05 0.06 0.06 <0.01 0.01 0.02 <0.01 <0.01 0.01 0.01 0.01 0.03 0.02 0.04	13 <5 <5 5 18 29 30 29 20 24 <5 <5	 <100 <955 1914 4188 828 3091 662 <100 <100 <100 <100 <100 <100 <100 <100 	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<pre>>2 < 7 9 73 5 28 < 2 < 2 < 2 < 2 2 2 0 18 3 < 2 </pre>	<10 <10 <10 <10 <10 <10 <10 <10 11 <10 28 <10 27 14 <10 <10 <10	<1 <1 2 5 9 3 5 4 <1 <1 <1 <1 24 20 12	3 69 77 115 230 35 31 33 24 28 25 41 70 240 231 240 231 240 231 57 13

Superior Canadian Resources Inc.. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-4

A. . .

Superior Canadian Resources Inc. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-4

Accur. #	Sample #	f Sample Type	Area	UTM Northing	UTM Easting	Ag ppm	Al %	As ppm	Au Au PPB oz/t	Au PPM ppr	3 Ba n ppm	-	Ca %	Cd ppm	Со ррт	Cr ppm	LD maa	Fe	ĸ	Mg	Mn	Mo	Na	Ni	P Pt	Sb	Se	Si	Sr	Ti	TI	v	w	Y	Zn
30056 30057 30058 30059 30060 30061 30062 31793 31794 31795 31796	9218 9219 9220 9221 9222 9223 9224 9225 9226 9226	rock rock rock rock rock rock soil soil soil	NS-4 NS-4 NS-4 NS-4 NS-4 NS-4 L1E 1+10N L1E 1+00N L1E 0+90N L1E 0+90N		500295 500295 500295 500295 500295 500305 500305 5003011	<2 <2 <2	1.07 0.18 0.08 0.98 0.61 0.68 1.04 0.73 1.08 1.11	64 237 239 252 58 69 152 13 <3 6 4	35 0.001 (30 <0.001 31 <0.001 (9 <0.001 (31 <0.001 (31 <0.001 (0.006 3 0.035 3 0.031 3 0.031 3 0.069 3 0.068 6 3 0.068 6 3 2 2 3 3 3 3	B 13 2 <10	२ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २	0.17 6.91 7 8.48 1.63 1.05 1.74 0.14 0.11 0.48 0.5	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	31 20 20 26 18 21 20 17 5 8 9	111 92 89 43 158 88 45 54 17 31 32	24 79 80 84 146 187 54 6 13 14	3.89 2.64 2.66 3.21 3.24 2.38 9.15 8.78 3.68 4.38 4.53	70 0.03 0.02 0.02 <0.01	1.11 1.3 1.3 1.5 1.08 0.65 0.6 0.6	760 2527 2551	<1 <0 1 <0 <1 <0 <1 <0 <1 0	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	98 <1	36 18 20 465 20 471 20 251 32 183	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	קאַש לא גע גע גע גע גע גע גע גע גע גע גע גע גע ג	% 0.02 0.02 0.01 0.05 0.03 0.02 0.02 0.02 0.02 0.02 0.02	41 41 37 14 8 20 7 8 18	ppm <100	ppm <1 3 2 2 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		ppm <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		ppm 171 1099 1120 364 838 770 74 68 19 48 49 48 40

SUPERIOR CANADIAN RESOURCES INC. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-5

SUPERIOR CANADIAN RESOURCES INC. AURUM PROJECT O'SULLIVAN LAKE AREA CELL B: NS-5

Accur. # Sample # Samp Type 31779 9227 rock	Northing Eastin		AI %	As ppm	Au PPB	Au oz/t	Au PPM	B	Ba ppm	Be ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к ——%	Mg %	Ma ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb	Sb ppm	Se	Si %	Sr ppm	Ti	Ťi PPPM	V	W	Y	Zn
317780 9228 rock 31761 9229 rock 40052 9301 rock	NS-5 area 5585928 50010 NS-5 area 5585928 50010 NS-5 area 5585929 50010 NS-5 area 5585950 50010	2 ~2 8 ~2	0.44 0.62 0.5 0.44	40 38 141 76	65 45 175 422	0.002 0.001 0.005	0.065 0.045 0.175	27 30 29 10	16 20 29 17	<1 <1 <1 <1	1.47 0.99 0.89 0.03	<10 <10 <10 <10	18 24 12 6	162 296 250 221	8 10 17 40	7.64 9.88 7.64 3.81	0.13 0.16 0.23 0.07	0.59 0.54 0.41 0.06	529 682 319 <100	<1 2 1 2	<0.01 0.03 0.02 0.06	32 42 23 7	<100 <100 138 286	13 18 50 13	<10 <10 <10 <10	<5	0.02 0.02 0.02 0.02	32 15 16 8	<100 <100 <100 <100 <100	বা বা বা বা	2 3 2 2 2	<10 <10 <10 <10 <10	3 3 2 3	39 54 58 3

•

154