

INTRODUCTION

The Goudreau Project is located approximately 50 km northeast of Wawa, Ontario, in the Sault Ste-Marie Mining Division. This project hosts the Goudreau gold zone where in 1989, a global resource of 282,000 tonnes at a grade of 16.6 g/t Au (uncut) and 8.60 g/t Au (cut to 34 g/t) was estimated by Yule. In 2002, Kalio estimated an inferred resource of 756,000 tonnes grading 9.81 g/t Au (uncut) for a total of 238,600 ounces of gold (not 43-101 compliant).

This report presents drilling work completed in 2006 on the Goudreau property. A total of 3,659 metres of diamond drilling in 10 holes for a budget of \$371,226 was completed. The objectives of this program were to verify the lateral and depth extensions of the Goudreau zone, and Richmont Mines/Patricia Mining's geological interpretation.

PROPERTY LOCATION AND CLAIMS STATUS

The Goudreau Project is located approximately 50 km northeast of Wawa, Ontario, in the Sault Ste-Marie Mining Division (figure 1). Dubreuilville is approximately 10 km northwest of the Project. The Goudreau Project consists of 74 patented and leased claims totalling 948 hectares (figure 2 and annex I). These claims are located in the Riggs, Finan, Aguonie and Jacobson townships.

EXPLORATION HISTORY

In 1983, Canamax Resources Inc. (Canamax) and Algoma Steel Inc. (Algoma) formed a joint venture to evaluate the mineral potential of Algoma's 117 patented claims covering the Goudreau Iron Range. In 1985, drilling by Canamax about two kilometres south of the Kremzar Mine intersected a series of sub-parallel lenses containing gold mineralization within deformed rocks of the Goudreau Lake Deformation Zone (GLDZ). Detailed diamond drilling through 1987 and 1988 was used to define the higher-grade lenses, known as the Lochalsh, Island Gold, Shore, and Goudreau Lake Zones. Fifty (50) drill holes were drilled on the Goudreau property for a total of 15,623 meters.

During 1989 and 1990, a 1,280 m long ramp was driven into the Island Deposit beneath Goudreau Lake from an adit on the north shore. Drifts and raises totalling 382 meters were developed on two levels at depths of 125 m and 140 m below the Goudreau Lake elevation at approximately 382 meters.

In 1989, Gord Yule estimated a resource of 282,000 tonnes grading 16.6 g/t Au (uncut) and 8.60 g/t Au (cut to 34 g/t) for the Goudreau zone. In 2002, Kalio estimated an inferred resource of 756,000 tonnes grading 9.81 g/t Au (uncut) for a total of 238,600 ounces of gold (1 m true thickness and 5 g/t Au cut off).

Figure 1

2.33343

CLAIM MAP - GOUDREAU PROJECT

Figure 2

PROPERTY GEOLOGY AND MINERALIZATION

The Goudreau Gold project is underlain by altered and deformed intrusive and metavolcanic rocks belonging to the Michipicoten Greenstone Belt (MGB) inside the Wawa sub-province of the Superior province of Archean age (figure 3).

The Goudreau Project is underlain mainly by northeast striking felsic to intermediate metavolcanic rocks that include quartz-feldspar porphyry, intermediate schist, lapilli tuff and tuff breccia (figure 4). Mafic metavolcanic rocks occur to the north and structurally overlie the felsic metavolcanic rocks. The mafic rocks are mainly massive but locally display pillowed and brecciated textures. Mafic volcanic rocks are also reported in the southem part of the project area. The property hosts the Goudreau Iron Range, which is a regionally continuous marker described as a pyrite rich iron formation. This unit occurs between the Wawa (felsic rock) and Catfish (mafic metavolcanic) formation, two important assemblages of the MGB. Northwest trending diabase dikes crosscut all stratigraphy.

The Webb Lake Stock, a felsic intrusive sill intrudes the felsic tuff in the project area. This intrusion has variously been described to be monzonite, quartz-feldspar porphyry, trondhjemite or granodiorite in composition. The intrusion is elongated northeasterly and dips steeply towards the north. All the gold mineralization on the Magino Mine is reported to be hosted in the northern body of the Webb Lake Stock.

Also, on the property, the supracrustal and intrusive rocks have been considerably altered along a regional deformation structure referred to as the Goudreau Lake Deformation Zone (GLDZ). The GLDZ is up to 4.5 km in width and has been traced for more than 25 km. The GLDZ strikes east to northeast and is steeply dipping in a gentle accurate fashion, sub parallel to the stratigraphy. The GLDZ is comprised of systematically arranged brittle-ductile and brittle shear zones that range in width from a few millimetres up to several meters.

The GLDZ hosts the gold mineralization within the quartz-sericite-pyrite-carbonate alteration zones. Gold bearing quartz and quartz-carbonate veins are also associated with this deformation zone. Narrow sub parallel quartz veins carrying gold mineralization are often associated with areas of intense sericitization containing from 2% to 5% pyrite. The quartz stringers and veins vary from 1 cm to 5 cm in width. Visible gold forms clouds of fine gold droplets up to 3 mm in diameter. Series of quartz veins form distinct lenses from 1 m to 20 m in width that may vary from 25 m to 150 m in length. The down plunge extension to the lenses has been reported to be as much as three to four times the strike length. The lenses dip steeply southwards, strike northeast and plunge eastwards at 45° .

The GLDZ hosts the Island Deposit, Lochalsh, Goudreau, North Shear, and Shore Zones in the project area. Past producing mines associated with the GLDZ are the Magino Mine to the southwest, the Edwards Mine to the northeast, and the Cline Mine to the northeast.

REGIONAL GEOLOGY MAP - GOUDREAU PROJECT

2.33343

GEOLOGIC MAP - GOUDREAU PROJECT

•

Goudreau zone

The discovery hole on the Morrison Number One group of claims intersected gold mineralization of 17.70 g/t Au over 7 m, 42.48 g/t Au over 1 m and 6.77 g/t Au over 2 m in 1987. This zone became known as the Goudreau Zone.

The Goudreau Zone is located about 600 m east of the Island Zone and is hosted by a series of deformation zones occurring at the contact of granodiorite (Webb Lake Stock) and felsic metavolcanic rocks within the GLDZ. The Goudreau Zone is thought to be either an extension of the Island Gold Zone that has been offset by faulting or the extension of the North and Shore zones located to the west on the Lochalsh ramp.

The Goudreau zones were defined by some parallel sub zones characterized by pervasive silicification and albitization and quartz-carbonate-tourmaline veining destroying the primary rock fabric. Multiple alteration zones, containing high grade gold in quartz veining or silicification were intersected over a strike of 500 meters. The most important lenses, from surface to depth have been termed the yellow, orange, green and red zones.

Richmont Mines/Patricia's interpretation shows eleven sub parallel gold zones named: GS2, GS1, G2, G1, GA, GB1, GB2, GC, GD, GE and GF (figure 5 and 6). Four of these zones (GA- GB1, GD and GE) show a good potential to increase the resource and theses zones correspond with the old nomenclature (Yellow, Red, Orange and Green lens). The deposit has not been adequately drilled below 200 meters depth and there are some untested areas within the deposit.

2006 DRILLING WORK COMPLETED

A drilling program consisting of 10 holes for 3,659 metres was completed (annex II, III and table 1). This drilling had objective to verify the depth and lateral extensions of the Goudreau gold zones and verified the Richmont Mines/Patricia's interpretation. A potential to identify an additional 200,000 metric tonnes of inferred resource was possible. The drill holes were planned to test the staking of parallel veins in the zone to maximize the investments. An NQ size drill hole was used. The start of the program was performed from February 20 to April 29, 2006. Orbit Drilling from Val-d'Or was the drilling contractor. A total of 2,439 samples were taken, shipped and analyzed by Accurassay Laboratories from Thunder Bay (appendix IV and V).

15750E SECTION - GOUDREAU ZONE

Figure 6

Chris Moreton (P.Geo, number 1229), a qualified person, described the core and supervised the field program. Mahieu Guay, Project geologist and Jules Riopel, Geology and Exploration Manager supervised the program. The drill hole azimuth is based on the grid north which is 22 west from the true north.

TABLE 1								
Hole	X Mine	Y Mine	UTM	UTM	Azimuth	Dip	Length	Assays
	(meter)	(meter)	LCOX	LOCY	Grid/TN		(meter)	
PRS-01	15,709	4,922	691060.5	5352327.4	180/158	-47	405	210
PRS-02	15,710	4,899	691071.2	5352307.3	180/158	-46	351	208
PRS-03	15,768	4,911	691119.3	5352341.5	180/158	-52	402	324
PRS-04	15,768	4,911	691119.3	5352341.5	180/158	-45	336	219
PRS-05	15,767	4,853	691141.5	5352288.8	180/158	-46	291	168
PRS-06	15,823	4,904	691171.9	5352357.5	180/158	-45	366	253
PRS-07	15,822	4,943	691155.1	5352393.5	180/158	-47	396	175
PRS-08	15,672	4,867	691118.8	5352341.8	180/158	-47	321	259
PRS-09	15,673	4,899	691036.7	5352292.0	180/158	-47	350	247
PRS-10A	15,768	4,911	691118.8	5352341.8	180/158	-60	441	376
Total							3,659	2,439

RESULTS

The drilling program has allowed us to understand the geometry of the zones. Table 2 shows the main results.

TABLE 2								
2006 Drilling Results								
	Inte	rval						
Drill hole	From	То	Core length	Gold grade	Gold grade			
	(m)	(m)	(m)	(g/t)	cut (g/t)			
PRS-01	150.68	152.23	1.55	4.32	4.32			
PRS-02	193.61	197.61	4.00	4.05	4.05			
	286.04	287.21	1.17	4.00	4.00			
	337.13	337.53	0.40	468.42	75.00			
	338.62	340.88	2.26	6.03	6.03			
	342.00	345.70	3.70	46.55	12.10			
PRS-03	69.22	70.72	1.50	23.60	23.60			
	140.50	141.50	1.00	11.69	11.69			
	170.52	172.39	1.87	4.75	4.75			
	275.11	278.74	3.63	194.17	42.13			
	285.10	287.21	2.11	70.49	21.33			
PRS-04	182.00	183.50	1.50	4.76	4.76			
PRS-05	102.39	102.69	0.30	45.45	45.45			
PRS-06	330.35	337.80	7.45	25.02	20.44			
	339.40	342.58	3.18	7.61	7.61			
PRS-07	362.68	364.47	1.79	9.97	9.97			
PRS-08	241.50	245.75	4.25	16.06	16.06			
PRS-09	78.21	79.40	1.19	32.54	32.54			
	153.49	154.74	1.25	62.03	38.52			
	282.20	284.98	2.78	21.60	21.60			
PRS-10A	194.80	196.30	1.50	105.23	50.00			
	239.05	240.58	1.53	7.79	7.79			

DISCUSSION

GEOLOGY: The current drilling program suggests that the lithologies of the Goudreau Project area are predominantly altered, deformed and metamorphosed felsic pyroclastic rocks. In fact, the protolith for the bulk of the units was likely to have been a quartz-(feldspar) crystal tuff; fractured crystals, local lapilli and weak graded bedding all suggest that the depositional environment was dominated by felsic pyroclastic ejecta. Interfingering of different facies of felsic pyroclastic rocks was probably common although this cannot be easily proven due to the strong overprint of alteration and/or deformation. Feldspar destructive processes during the mineralizing event probably created some of the quartz crystal tuffs. Related intense alteration is responsible for the buff-colored sericitealteration associated with the gold zones (see below), as well as the strong chloritic overprint. The latter is locally intense, so much so that these rocks are sometimes referred to as greenstones.

Within this package of felsic rocks there are other lesser units: minor mafic units (diabasic in places) and associated magnetite-rich iron-formation layers have been documented (see the drill logs for further details). Some of these mafic layers may be sub-volcanic sills since they are altered, foliated and have contacts parallel to the main layering. There are other late-dykes cross-cutting the stratigraphy but these tend to have a fresher appearance, no fabric and they cut the geology at a high angle.

The eastern extension of the Webb Lake granodiorite is present in all of the 2006 drill holes. This unit has distinct blue-colored quartz crystals and albitised feldspars. Chloritic pseudomorphs of primary mafic minerals are relatively common, as are locally intense tourmaline-rich alteration zones (the latter are probably related to the gold-rich mineralizing event). The presence of blue quartz crystals suggests that the Webb Lake intrusion is the sub-volcanic feeder since some of the felsic pyroclastic rocks contain an abundance of blue quartz crystals. Minor molybdenite is present in both the matrix of the granodiorite and in younger cross-cutting quartz veins.

ALTERATION, MINERALIZATION AND STRUCTURE: At least two styles of goldbearing quartz veins are present in the Goudreau Project area. The better grades are generally carried by an early phase of gray-colored, finer-grained quartz veins developed sub-parallel to the dominant foliation; core-widths are generally narrow (less than 30cm). Younger quartz veins tend to be milky-colored, wider (>30cm) and they rarely carry any significant gold; visible gold is far more abundant in the first generation veins than in the younger ones. Nevertheless, some of the younger veins can carry visible gold where they cross-cut pre-existing gold-rich zones. Gold is also present in the country rocks to the veins but it is rarely visible and has to be detected through assaying techniques.

Many of the gold-rich veins occur in sheets of sub-parallel sericite-carbonate-tourmaline alteration zones. Due to the anastomosing nature of the shear zones hosting the gold mineralization, as well as the presence of gradational (alteration) contacts, it is difficult to connect all of the alteration zones into continuous mappable units. Many of the early quartz veins are boudinaged parallel to the main fabric in the rocks so that they have an orientation that is similar to the strike of the geology and dominant schistosity. However, some of the better gold-rich zones are preserved in veins oriented at a high angle to the main fabric (see holes PRS-03 and PRS-06). These appear to be the remnants of fold closures preserved inbetween the steeper limbs of the dominant folds. These limbs have the same orientation as the regional GLDZ.

A late-stage hematitic and/or potassic alteration overprint is present in the Goudreau Project area. An interpretation of the 3-dimensional geology in this area suggests that these

alteration zones are related to the D3 event. The latter is dominated by flat, open folds and a sub-horizontal cleavage. Brittle deformation features are common in these structures. It is likely that the fluids associated with the hematitic alteration moved along these flat-lying structures (faults really) during the latter stages of a thermal doming event (regional batholithic granite intrusions). At the same time, it is likely that the higher geothermal gradient allowed magnetite porphyroblastesis to occur (magnetite is common in a lot of the units).

INTERPRETATION

Multiple gold-bearing shear zones are present in the Goudreau Project area. They lie within the regionally extensive GLDZ and a few of the layers of higher gold-values are continuous enough to define mappable units. In general, the better gold values tend to be associated with the areas of more intense sericitic alteration. The latter is also associated with ankeritic carbonate and/or tourmaline alteration. Gold-enrichment tends to be within an early set of gray-colored quartz veins that have been re-oriented sub-parallel to the main foliation. Similarly, some of these earlier veins are preserved in what appears to be F2 fold closures these closures are now oriented at a high angle to the main fabric. The macroscopic geometry of the project area is suggestive of tight to isoclinal folds with associated shearzones developed sub-parallel to the axial surface of these folds. A high fluid content created sericitic-carbonate alteration zones and probably facilitated the gold the mobilization/deposition.

An interesting feature of the Goudreau Project area is the existence of an apparent easterly plunge to the gold mineralization. In general, this plunge is about 30-50 degrees and it shows up as sub-parallel 'shoots' on the long section. It is likely that this plunge reflects the presence of the preserved F2 fold closures. This feature can be used to predict the down-plunge extension to many of the mineralized intersections.

BUDGET

To complete this program of 3,659 meters, an expense of \$371,226 was invested (annex VI). The average drilling cost by metre is estimated at \$101/metre. This cost includes all the expenses related to the drilling (table 3).

TABLE 3						
Work type	Work Detail	2006 cost estimated				
Compilation work	Geologist	\$9,166				
	Supplies					
	Drawing consultant					
Drilling (3,659 m)	Contractor (77,0 \$/m)	\$282,846				
	Geologist -Technician	\$35,466				
	Assays	\$33,364				
	Equipment rental + materiel	\$10,383				
Report	Geologist	\$				
	Drawing consultant	\$				
Estimated total expense		\$371,226				

The cost for this program is summarized below:

CONCLUSIONS AND RECOMMENDATIONS

The 2006 drilling program increased the confidence level for the gold-bearing mineral resource in the Goudreau Project area. As an in-fill drilling program it confirmed the existing geological picture (defined by Canamax) and it also intersected some additional high-grade zones. A few of the latter are open down-plunge and it is recommended that these areas be drill-tested at the earliest opportunity. In particular, the area to the east and south of holes PRS-06 and 07 is a prime target area.

Given the proximity of the underground Goudreau Exploration drift (from the Island Gold Zone) it is recommended that this area receive a thorough evaluation to (i) estimate the current mineral resource, (ii) define additional drill targets and (iii) determine if the zones are suitable enough to provide incremental feed to the Island Gold Mine.

This report was sign: 24 octuBRe 2006

Jules Riopel, M.Sc, P. Geo, MBA

ANNEX I

List of claims

**	
-	

PROJET	SNRC	CANTON	RANG	LOT	TITRE	CLAIM	DATE_ENR	DATE_EXP	DATE_REN	SUPER	SURPLU_MER	DROITS	TRAVAUX	REN CODE
GOUDREAU	42C08	Riggs			OPA	1087		2006-05-16	2006-05-16	15,54	0,00\$	62,16 \$	0,00 \$	RIC
GOUDREAU	42C08	Riggs			OPA	1088		2006-05-16	2006-05-16	16,84	0,00 \$	67,34 \$	0,00 \$	RIC RIC
GOUDREAU	42C08	Riggs			OPA	1114		2006-05-16	2006-05-16	16,88	0,00 \$	67,50 \$	0,00 \$	RIC
GOUDREAU	42C08	Riggs			OPA	1149		2006-05-16	2006-05-16	13,44	0,00 \$	53,74 \$	0,00 \$	RIC
GOUDREAU	42C08	Finan			OCL	1164079	1996-08-20	2009-08-20	2009-08-20	48,44206	0,00 \$	0,00 \$	1 200,00 \$	S 3 RIC
GOUDREAU	42C08	Finan			OPA	1708		2006-05-16	2006-05-16	15,9	0,00 \$	63,62 \$	0,00 \$	RIC
GOUDREAU	42008	Finan			OPA	1709		2006-05-16	2006-05-16	12,91	0,00 \$	51,64 \$	0,00 \$	RIC
GOUDREAU	42008	Finan			OPA	1710		2006-05-16	2006-05-16	23,51	0,00 \$	94,05 \$	0,00 \$	RIC
GOUDREAU	42008	Finan			OPA	1711		2006-05-16	2006-05-16	12,79	0,00 \$	51,15\$	0,00 \$	RIC
GOUDREAU	42008	Finan			OPA	1769		2006-05-16	2006-05-16	12,91	0,00 \$	51,64 \$	0,00 \$	RIC
COUDREAU	42000	Finan			OPA	1770		2006-05-16	2006-05-16	12,14	0,00 \$	48,56 \$	0,00 \$	S RIC
COUDREAU	42000	Finan			OPA	1771		2006-05-16	2006-05-16	12,79	0,00 \$	51,15 \$	0,00 \$	RIC
GOUDREAU	42000	Fillan				1//2		2005-05-16	2006-05-16	14,77	0,00 \$	59,08 \$	0,00 \$	RIC
GOUDREAU	42000	Finan			OPA	1//5		2005-05-16	2006-05-16	13,8	0,00\$	55,20 \$	0,00 \$	S RIC
GOUDREAU	42000	Finan			OPA	1777		2006-05-16	2006-05-16	19,43	0,00 \$	77,70 \$	0,00 \$	RIC
GOUDREAU	42000	Finan				1770		2006-05-16	2006-05-16	13,68	0,00 \$	54,71 \$	0,00 \$	RIC
GOUDREAU	42000	lacobcon				1012		2006-05-16	2006-05-16	12,51	0,00 \$	50,02 \$	0,00 \$	RIC
GOUDREAU	42008	Jacobson				1013		2006-05-16	2005-05-16	18,54	0,00 \$	74,14 \$	0,00 \$	S RIC
GOUDREAU	42000	lacobson				1014		2000-05-16	2006-05-16	18,25	0,00 \$	/3,00 \$	0,00 \$	
GOUDREAL	42008	Finan				1958		2000-03-10	2000-00-10	10,/1	0,00 \$	00,86\$	0,00 \$	
GOUDREAL	42008	Finan			OPA	1950		2000-00-10	2000-00-16	21,04	0,00 \$	00,56 \$	0,00 \$	
GOUDREAL	42008	Finan			OPA	1960		2000-00-10	2000-00-10	12,79	0,00 \$	51,15 \$	0,00 \$	
GOUDREAU	42008	Finan				1961		2000-05-10	2006-05-16	15,20	0,00 \$	53,03 ⊅ 65 00 ¢	0,00 \$	
GOUDREAU	42C08	Finan			OPA	2054		2006-05-16	2006-05-16	10,47	0,00 \$	60,00 ¥	0,00 \$	
GOUDREAU	42C08	Finan			OPA	2055		2000-00-10	2000-00-10	13 77672	0,00 \$	0,40 \$	0,00 \$	
GOUDREAU	42C08	Finan			OPA	2056		2006-05-16	2006-05-16	9.05	0,00 \$	36 19 \$	0,00 \$	
GOUDREAU	42C08	Finan			OPA	2057		2006-05-16	2006-05-16	19.76	0,00 \$	70.04 \$	0,00 \$	
GOUDREAU	42C08	Finan			OPA	2262		2006-05-16	2006-05-16	20.86	0,00 \$	83.45 \$	0,00 \$	
GOUDREAU	42C08	Finan			OPA	2263		2006-05-16	2006-05-16	24.96	0,00 \$	99.83 \$	0,00 \$	RIC
GOUDREAU	42C08	Finan			OPA	2264		2006-05-16	2006-05-16	16.01	0,00 \$	64 04 \$	0,00 \$	
GOUDREAU	42C08	Jacobson			OPA	2438		2006-05-16	2006-05-16	14.56	0.00 \$	58 27 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	2439		2006-05-16	2006-05-16	13.35	0.00 \$	53.42 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	2440		2006-05-16	2006-05-16	14,974	0.00 \$	59,90 \$	0.00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	2441		2006-05-16	2006-05-16	17.81	0.00 \$	71.22 \$	0.00 \$	RIC
GOUDREAU	42C08	Finan			OPA	2490		2006-05-16	2006-05-16	9,31	0,00 \$	37.23 \$	0.00 \$	RIC
GOUDREAU	42C08	Finan			OPA	2491		2006-05-16	2006-05-16	13,76	0,00 \$	55,04 \$	0.00 \$	RIC
GOUDREAU	42C08	Finan			OPA	2666		2006-05-16	2006-05-16	15,38	0,00 \$	61,51 \$	0,00 \$	RIC
GOUDREAU	42C08	Finan			OPA	2667		2006-05-16	2006-05-16	19,83	0,00 \$	79,32 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	2705		2006-05-16	2006-05-16	15,14	0,00 \$	60,54 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	2775		2006-05-16	2006-05-16	18,48	0,00 \$	73,93 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	2776		2006-05-16	2006-05-16	12,34	0,00 \$	49,37 \$	0,00 \$	RIC
GOUDREAU	42C08	Finan			OPA	28240		2006-05-16	2006-05-16	14,44	0,00 \$	57,76 \$	0,00 \$	RIC
GOUDREAU	42C08	Finan			OPA	28241		2006-05-16	2006-05-16	12,19	0,00 \$	48,76 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	28242		2006-05-16	2006-05-16	12,03	0,00 \$	48,12 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	28243		2006-05-16	2006-05-16	6,39	0,00 \$	25,58 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	28244		2006-05-16	2006-05-16	14,77	0,00 \$	59,08 \$	0,00 \$	RIC
GOUDREAU	42008	Jacobson			OPA	2994		2006-05-16	2006-05-16	12,55	0,00 \$	50,18 \$	0,00 \$	RIC
GOUDREAU	42008	Jacobson			OPA	2995		2006-05-16	2006-05-16	11,74	0,00 \$	46,94 \$	0,00 \$	RIC
COUDREAU	42008	Jacopson			OPA	2996		2006-05-16	2006-05-16	14,97	0,00 \$	59,89 \$	0,00 \$	RIC
GOUDREAU	42000	Jacobson			OPA	2997		2006-05-16	2006-05-16	10,52	0,00 \$	42,09 \$	0,00 \$	RIC
COUDREAU	42000	r Ilidii			OPA	3017		2006-05-16	2006-05-16	21,04	0,00 \$	86,18 \$	0,00 \$	RIC
GOUDREAU	42000	Jacobson			OPA	4205		2006-05-16	2006-05-16	15,86	0,00 \$	63,46 \$	0,00 \$	RIC
GOUDREAU	42000	Jacobson			OPA	4207		2006-05-16	2006-05-16	17,69	0,00 \$	70,74 \$	0,00 \$	RIC
GOUDREAU	42000	lacobeon				7412 6765		2000-05-16	2000-05-16	16,59	0,00 \$	66,37 \$	0,00 \$	RIC
GOUDREAU	42008	Jacobeon				7210		2000-00-16	2000-05-16	11,62	0,00 \$	47,27 \$	0,00 \$	RIC
GOUDREAU	42008	Jacobeon				7220		2000-00-16	2000-05-16	10,35	0,00 \$	65,40 \$	0,00 \$	RIC
GOUDREAL	42C08	Jacobson				7221		2000-05-16	2000-00-16	474	0,00 \$	70,58 \$	0,00 \$	
GOUDREAU	42008	Jacobeon				7282		2000-00-16	2000-05-16	17,4	0,00 \$	09,60\$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	7283		2000-00-10	2000-00-16	15,09	0,00\$	10,33 \$	0,00 \$	RIC
GOUDREAU	42C08	Jacobson			OPA	7284		2000-05-16	2000-00-10	10,95	0,00 \$	7600 #	0,00 \$	KIC DIO
GOUDREAU	42C08	Jacobson			OPA	9108		2000-00-10	2000-00-10	10,90	0,00 \$	13,323	0,00 \$	
GOUDREAU	42C08	Aquonie			OPA	AC42		2000-00-10	2000-00-10	5 530705	0,00 \$	13,703	0,00\$	
GOUDREAL	42C08	Aquonie			OPA	AC43				6 157000	0,00 \$	0,00\$	0,00 \$	
		ge								9,197330	0,00 \$	0,00 \$	0,00 \$	RIC
	_		_		-	_					-	_		

ANNEX II

Drill hole map 1:1000

ANNEX III

Drill holes sections

5100.0 Y			5100.0 Y
5050.0 Y			5050.0 m
		ROCKTYPE DESCRIPTION CSG CASING API ISLAND AL TERATION PACKAGE 11D GRANODIORITE 11D GRANODIORITE DYKE 11D GRANODIORITE DYKE 11DS GRANODIORITE DYKE 11DS GRANODIORITE SCHIST 11QPP UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC 11QP FELSIC QUARTZ PORPHYRITIC TUFF 12LPP INTERMEDIATE LAPILLI FELDSPAR PORPHYRITIC TUFF 12LQPP INTERMEDIATE LAPILLI FELDSPAR PORPHYRITIC TUFF 12LQPP INTERMEDIATE LAPILLI PORPHYRITIC TUFF 12LQPP INTERMEDIATE LAPILLI PORPHYRITIC TUFF 12LQPP INTERMEDIATE QUARTZ PORPHYRITIC TUFF 12LQPP INTERMEDIATE QUARTZ PORPHYRITIC TUFF 12LQP INTERMEDIATE QUARTZ PORPHYRITIC TUFF 12LQP INTERMEDIATE QUARTZ PORPHYRITIC TUFF 12LQP INTERMEDIATE QUARTZ PORPHYRITIC TUFF 12QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF	500.0 m
500.0 Y		SHZ SHEAR ZONE STRUCTURE DESCRIPTION S09 LITAGE/STRATIFICATION MDF 60 MODERATE DEFORMATION, CORE ANGLE SDF STRONG DEFORMATION WDF WEAK DEFORMATION ALTERATION DESCRIPTION CB CARBONATE CL OHLORITE SE SERICITE SI SILICA TL TOURMALINE VEIN TYPE DESCRIPTION 65 QOS % VEIN, Qz/Cb stringer QCV Quartz-Carbonate QTV Quartz-Carbonate QTV Quartz vein NOTE : Assays shown are greater than 1 g/t Au	

5100.0 Y	PRS-07		5100.0 Y
<u>5050.0 Y</u>		ROCKTYPE DESCRIPTION	5050.0 m
		CSG CASING API ISLAND ALTERATION PACKAGE 11D GRANODIORITE 11D GRANODIORITE DYKE 11D GRANODIORITE SCHIST 11DS GRANODIORITE SCHIST 11QP FELSIC QUARTZ PORPHYRITIC TUFF T2FP INTERMEDIATE FELDSPAR PORPHYRITIC TUFF T2LQP INTERMEDIATE LAPILLI QUARTZ PORPHYRITIC TUFF	
5000.D Y		T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF T92S SCHIST UNDIFFERENTIATED V1DD DACITE DYKE V1FP UNDIFFERENTIATED FELSIC VOLCANIC FELDSPAR PORPHYRY V1QFP UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY V2QFP INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY V3BD BASALTIC DYKE FZ FAULT	5000.0 m
		STRUCTURE DESCRIPTION IDF 60 INTENSE DEFORMATION, CORE ANGLE MDF MODERATE DEFORMATION SDF STRONG DEFORMATION WDF WEAK DEFORMATION ALTERATION DESCRIPTION CB CARBONATE CL CHLORITE SERICITE SERICITE	
		SI SILICA TL TOURMALINE VEIN TYPE DESCRIPTION 65 QCs % VEIN, Qz/Cb stringer QCT Qz/Cb/T vein QCV Quartz-Carbonate QTV Quartz-Tourmaline QV Quartz vein NOTE : Assays shown are greater than 1 g/t Au	

5100.0 Y
Status DESCRIPTION GS OLSING AH BLAND ALTERNITOR PACKAGE ID OBMONDER ID MONDER ID OBMONDER ID MONDER ID TOP ID MONDER ID
STRUCTURE DESCRIPTION FA0 FAU FA0 FAU S60 LITAGEISTRUTIFICATION MDF 60 MUDERATE DEPONIANTON WDF STROKS DEPONIANTON WDF DESCRIPTION ALTERATION DESCRIPTION C1 CARBONATE C1 CARBONATE C2 CARBONATE S6 SERCITE S1 SEICOF S1 SEICOF C1 OCK CARBONATE C2 CALORITE HM HEMATITE S6 SERCITE S1 SEICOF C1 OCK CARBONATE C2 CALORITE HM HEMATITE S6 SERCITE S1 SEICOF GC1 CARBONATE GC1 CARBONATE GC1 CALORITE GC2 CALINET CALORITE

51000 Y	PS-01 BS-0 BS-0 BS-0 BS-0 BS-0 BS-0 BS-0 BS-0			5000 Y
590.0 Y			ROOKTYPE GSO CASING API BLANG ALTERATION PACKA ID GRANGODISTE DYKE IDG ANDEPRENTITE DFELGE TDGP MITSINEDATE LIGHTANE TDGP MITSINEDATE TUFF LIGHTANE TDGP MITSINEDATE TUFF LIGHTANE TDGP MITSINEDATE VOLCANIC VGPP MORPERENTATE DFELGE VGP MORPERENTATE DEVOLUTION <td< th=""><th>DESCRPTON Acce CRITUIAVE GUARTZAFELOSPAR PORPHYRITIC TO TUP* DESCRPTON DESCRPTON COMMO GUARTZAFELOSPAR PORPHYRITIC TO TUP* DESCRPTON COMMO GUARTZAFELOSPAR PORPHYRITIC TO TUP* DESCRPTON COMMO GUARTZAFELOSPAR PORPHYRITIC COMMO GUARTZAFELOSPAR PORPHYRY SOULD IN DESCRPTON COBER MOGET COBER ANDELE DESCRPTON COBER ANDELE COBER ANDELE</th></td<>	DESCRPTON Acce CRITUIAVE GUARTZAFELOSPAR PORPHYRITIC TO TUP* DESCRPTON DESCRPTON COMMO GUARTZAFELOSPAR PORPHYRITIC TO TUP* DESCRPTON COMMO GUARTZAFELOSPAR PORPHYRITIC TO TUP* DESCRPTON COMMO GUARTZAFELOSPAR PORPHYRITIC COMMO GUARTZAFELOSPAR PORPHYRY SOULD IN DESCRPTON COBER MOGET COBER ANDELE DESCRPTON COBER ANDELE COBER ANDELE
19000 n	4200 N	13500 N	H 19201 N 19201 N 19202 N 1920 N 19202 N 19202 N 1920	0 10 20 30 m.
		STORE DESCRIPTION BY DES. LEAD APPL.	DES. AUTH. APPL	DESIGNED: MM/DD/YY AREA Goudreau Zone DRAWN: JSTG 10/23/06 TITLE Vertical Section DRAWN: JSTG 10/23/06 TITLE Vertical Section DESIGN LEAD APPROVAL: MM/DD/YY MM/DD/YY Claim 3817 DESIGN AUTH. APPROVAL: MM/DD/YY DWG. No. PRS01-02.dwg REV 2 33324 3 3 3 3 3 3 3