ANNEX IV Drill hole log

Chris Modela Petero

Hole Number	PRS-00			Proje	d: GOI	UDREAU							Project Number:	05309
Orilling	•	Casing	•	Core				4		Location			Other	••
Azknuth:	180.00	Length:	34.5	Dimension:	NO		•	•• • •		Township:	- Finan		Logged by:	C. Moreton
Dip:	-47.60	Pulled:		Blorage:	Island	Gold Proje	ect			Claim No.:	3817		Relog by:	
Length:	350.00	Capped:		Section:		_				NTS:	42C/08		Contractor:	Orbit Drilling Inc
Starled:	19-Apr-06	Comented:		Hole Type	SEXP	1				Flole:	Gurface		Company:	Mines Richment
Completed:	22-Apr-06												Spotted by:	C. Moreton
Logged:	31-Jul-06							Coordi	inate:				Surveyed:	yes
Comment:	Samples: DC012725-DC012971			Genicom		UTM			Mine		Variable		Surveyed by:	G.Lamothe(GPS)
				East:	15672.8	East	•	691036.7	East:	15672.8	East:	0	Geophysics:	
			•	North:	4899.1	North:		5352292		4809.1		0	Geoph, Contract:	
				Elev.:	5389	Elev.:			Elev.:		Elev.:	D	Left in hole:	
		•				Zone:	16						Making water:	
						NAD;	83						Multi shot surv.:	

D/stance	Azimuth	Olp	Type	Good	Comment
0.00	180.00	-47.00	c	\mathbf{Z}	
45.00	153.10	-50.20	F		56420
78.00	182.90	49.30	F	$\mathbf{\Sigma}$	56530
108.00	183.10	-49.30	F	Z	58580
138.00	180.60	-49.00	F	M i	56770
188.00	183.20	-48.70	F		56960
198.00	183.60	-48.10	F	₩.	58330
228.00	182.60	47.30	F	\mathbf{Z}	58550
258.00	183.50	-47.00	F	i z Z	58520
288.00	182.70	-46.70	F		58330
318.00	183.10	-46.30	F		56200
348.00	184.10	-45.10	F		56420

Hole Number				Projec	t: GOU	DREAU	. National and the contract of		in a company of the contraction of	erenta en un ren esta en en	gyara ya mara	Project Number:	05300
Drilling	in nemerica (n. 1906). Est de esta de la compansión de la compansión de la compansión de la compansión de la c	Casing	s trum seru faturas que minimos ser un medica.	Core			- Start and The Control of the Control		Location			Other	
Azimuth:	180.00	Length:	34.5	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-47.00	Pulled:		Storage:	Island	Gold Proje	ect		Claim No.:	3817		Relog by:	
Length:	350.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Started:	19-Apr-06	Cemented:		Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Completed:	22-Apr-06											Spotted by:	C. Moreton
Logged:	31-Jul-06						Coordi	inate				Surveyed:	yes
Comment:	Samples: DC012725-DC012971			Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
				East:	15672.8	East:	691036.7	East:	15672.8	East:	0	Geophysics:	
				North:	4899.1	North:	5352292	North:	4899.1	North:	0	Geoph. Contract:	
				Elev.:	5389	Elev.:	5389	Elev.:	5389	Elev.:	0	Left in hole:	
						Zone:	16					Making water:	
						NAD:	83					Multi shot surv.:	

Distance	Azimuth	Dip	Туре	Good	Comments
Distance	ALIIIGG	υip	.,,,,		•••••
0.00	180.00	-47.00	С	\checkmark	
48.00	183.10	-50.20	F	✓	56420
78.00	182.90	-49.30	F	\checkmark	56530
108.00	183.10	-49.30	F	✓	56560
138.00	180.60	-49.00	F	✓	56770
168.00	183.20	-48.70	F	\checkmark	56980
198.00	183.60	-48.10	F	\checkmark	56330
228.00	182.60	-47.30	F	\checkmark	56550
258.00	183.50	-47.00	F	✓	56520
288.00	182.70	-46.70	F	\checkmark	56330
318.00	183.10	-46.30	F	\checkmark	56280
348.00	184.10	-46.10	F	\checkmark	56420

e Number		The second section of the second second	Project: GOUDREAU - Capacidade de receivant de capacidade de la capacidade del capacidade	ta tarife (s) on one of our or one of the same	un fragalis de la responsació	Security Code	and the second control of the second	ಎಫ್೬ ಕ್ರಿಸರ್ ಕ್ರಾಮಿ		roject Num	ber: 0 :	5300	ومات كمار را العوام
rom (m)	To (m)		Lithology	Sample #	From	To	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
0.00	34.50	CSG	Casing										
34.50	53.87	T2QFP	INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC012725	34.50	35,50) 1.00		0.03	_	_	_	0.03
		Dark green co	plor overall with pinkish/beige tones due to local potassic alteration around late gtz-carb	DC012726	35.50	36.50			0.36			_	0.36
		veins. Unit is angles reflects	characterized by an intense foliation that has multiple angles to the core axis. The different	DC012727	36.50	37.50			0.00	_	_		0.00
	angles reflects the location of minor fold closures (parallel to ca) and limbs (higher angle to ca). The penetrative fabric is folded around the fold closures. Foliation is in part a banded siliceous feature the	DC012728	37.50	38.50			0.08	_	_	_	0.08		
		has minor ass chlorite.	sociated sericite. Outside of these siliceous zones the interstitial alteration is predominantly	DC012729	38.50	39.50			0.01	_	_	_	0.01
		Late qtz-carb	veins cross cut the main foliation although there are some that are parallel to the main	DC012730	39.50	40.50			0.00	_	-	_	0.00
		gray colored f	e common). Blue qtz crystals are evenly scattered throughout the package. Fine-grained eldspars are present but not as abundant as the qtz crystals.	DC012731	40.50	41.50	1.00		0.00	_	_	_	0.00
				DC012732	41.50	42.50	1.00		0.02	_	-	_	0.02
		diss pyrite.	rich layers locally developed particularly in association with dark green chlorite and minor	DC012733	42.50	43.50	1.00		0.02	-	-	-	0.02
				DC012734	43.50	44.50	1.00		0.09	0.04	-	_	0.06
				DC012735	44.50	45.50	1.00		0.06	-	-	-	0.06
				DC012736	45.50	46.50	1.00		1.96	-	_	-	1.96
				DC012737	46.50	47.50	1.00		0.08	-	_	-	80.0
				DC012738	47.50	48.50	1.00		0.05	-	-	-	0.05
				DC012739	48.50	49.50	1.00		0.16	-	-	-	0.16
				DC012741	49.50	50.50	1.00		0.17	-	-	-	0.17
				DC012742	50.50	51.50	1.00		0.03	-	-	-	0.03
				DC012743	51.50	52.50	1.00		2.19	-	-	-	2.19
				DC012744	52.50	53.50	1.00		0.06	-	-	-	0.06
				DC012745	53.50	53.87	0.37		0.19	-	-	_	0.19

dole Number	PRS-09	Project: GOUDREAU	attende oo de leeste gewonnen oo aan oo	Nilos (vertuatos o modemános es	ata na 🕶 a	emente i de la capación y la constante de la capación de la capación de la capación de la capación de la capac	والمتحا وينسوا ومرادات	P	roject Num	ber: 0	5300	State of the state
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
53.87	55.23	SHZ SHEAR ZONE.	DC012746	53.87	54.15	0.28		0.10	-	-	-	0.10
		Actually the contact zone between the crystal tuffs on the up hole side and the altered granodiorite on the down hole side. Interlayered granodiorite and tuffs over this interval with trace amounts of pyrite. Appears	DC012747	54.15	54.67	0.52		0.00	_	-	-	0.00
		to have tournaline veinlets as well as a relative abundance of carbonate. Has a pale green color locally due to the presence of chlorite. Contorted layering still present in the tuffaceous layers while the granodiorite contains ribbons of secondary qtz, either as silicification or as veins.	DC012748	54.67	55.23	0.56		0.02	0.02	-	-	0.02
		Granodiorite contains shear band fabrics quite common along with grain size reduction features and possible feldspar destruction.										
55.23	78.21	I1DS GRANODIORITE SCHIST. Overall gray color with local greenish patches where chlorite is more abundant. Some sections are light gray to beige in color where the sericite and/or carbonate is more abundant. All of the unit has suffered moderate deformation with the development of shear bands and grain size reduction. Early qtz (carb) veins are oriented parallel to the dominant fabric in this unit. Some of the variations in grain size could be due to primary differences or grain size reduction during deformation. There are places in this unit where the silicification is more intense and it looks like a	DC012749 DC012750 DC012751 DC012752 DC012753	55.23 56.23 57.23 58.23 59.23	56.23 57.23 58.23 59.23 60.23	1.00 1.00 1.00		0.00 2.25 0.02 0.04 0.01	- - -	- - -	- - -	0.00 2.25 0.02 0.04 0.01
		variation of a rhyolite. Tourmaline veinlets present in some sections of the granodiorite.	DC012754	60.23	61.23			0.01	_	-	-	0.01
		70.50m: About 20cm of cemented granodiorite fault breccia with associated qtz veining (shows as broken	DC012755	61.23	62.23			0.03	_	-	_	0.09
		core).	DC012756	62.23	63.23			0.06	_	-	-	0.16
			DC012757	63.23	64.23			0.05	- -	_	-	0.05
			DC012758	64.23	65.23	1.00		0.02	0.02	-	_	0.02
			DC012759	65.23	66.23	1.00		0.31	-	-	-	0.31
			DC012761	66.23	67.23	1.00		0.22	-	-	-	0.22
			DC012762	67.23	68.23	1.00		0.09	-	-	-	0.09
			DC012763	68.23	69.23	1.00		0.09	-	-	-	0.09
			DC012764	69.23	70.23	1.00		0.06	-	-	_	0.06

Hole Number		Project: GOUDREAU	the surface of the second second second	and a residence of the control of th		Antonomic School (1988)	er i i San riginalise rirek		roject Nun			والمراز المراجع والمرازع
From (m)	To (m)	Lithology	Sample #	From		.ength	Zone		Dup AA (ppm)		Metal (ppm)	Au fin (ppm)
			DC012765	70.23	71.23	1.00		0.38	-	-	-	0.38
			DC012766	71.23	72.23	1.00		0.04	-	-	-	0.04
			DC012767	72.23	73.23	1.00		0.03	-	-	-	0.03
			DC012768	73.23	74.23	1.00		0.02	-	-	-	0.02
			DC012769	74.23	75.23	1.00		0.05	-	-	-	0.05
			DC012770	75.23	76.23	1.00		0.15	-	-	-	0.15
			DC012771	76.23	77.23	1.00		0.07	-	-	-	0.07
			DC012772	77.23	78.21	0.98		0.10	-	-	-	0.10
78.21	79.40	QV QUARTZ CARBONATE VEIN.	DC012773	78.21	78.71	0.50		4.97	_	_	_	4.97
		Predominantly a white qtz vein with a few coarse grained pyrite crystals and tourmaline veinlets.	DC012774	78.71	79.40	0.69		52.51	-	-	-	52.51
79.40	80.67	V3BD BASALTIC DYKE.	DC012775	79.40	79.90	0.50		0.10	0.10			0.10
		Moderately to strongly deformed with a penetrative foliation. MM-scale carbonate stringers parallel to the foliation. Some 1cm qtz-carb veins parallel to the dominant fabric. Minor pyrite scattered throughout. Sharp upper and lower contacts.	DC012776	79.90	80.67	0.77		0.10	-	-	-	0.10 0.02

Hole Number PRS-09 Project: GOUDREAU Project Number: 05300

om (m)	To (m)	Lithology	Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
80.67	135.12	I1DS GRANODIORITE SCHIST.	DC012777	80.67	81.67	<u>_</u>		0.12	-	-	-	0.12
		Continuation of previous unit at 55.23m. Tends to have a blue-green color with wider sections that are	DC012778	81.67	82.67	1.00		0.18	_	_	_	0.12
		pale gray. Still same style of deformation along with stringers of tourmaline throughout. Trace pyrite overall. Tourmaline appears to occupy fractures within the granodiorite as well as being a component of	DC012779	82.67	83.67	1.00		0.03	_	_	_	0.03
		qtz-carbonate veins. Some sections have a penetrative foliation over a few cms with a strong being	DC012781	83.67	84.67	1.00		0.05	_	-	-	0.05
		colored silicification component - these appear to be discrete movement zones.	DC012782	84.67	85.67	1.00		0.05	-	-	_	0.05
			DC012783	85.67	86.67	1.00		0.18	_	-	-	0.18
			DC012784	86.67	87.67	1.00		0.23	-	_	-	0.23
			DC012785	87.67	88.67	1.00		0.34	0.35	-	-	0.35
			DC012786	88.67	89.67	1.00		0.03	_	-	-	0.03
			DC012787	89.67	90.67	1.00		0.10	-	-	_	0.10
			DC012788	90.67	91.67	1.00		0.05	-	-	-	0.05
			DC012789	91.67	92.67	1.00		0.01	-	-	-	0.01
			DC012790	92.67	93.67	1.00		0.02	-	-	-	0.02
			DC012791	93.67	94.67	1.00		0.04	-	-	-	0.04
			DC012792	94.67	95.67	1.00		0.02	-	-	-	0.02
			DC012793	95.67	96.67	1.00		0.02	-	-	-	0.02
			DC012794	96.67	97.67	1.00		0.02	-	-	-	0.02
			DC012795	97.67	98.67	1.00		0.00	-	-	-	0.00
			DC012796	98.67	99.67	1.00		0.01	-	-	-	0.01
			DC012797	99.67	100.67	1.00		0.03	-	-	-	0.03
			DC012798	100.67	101.67	1.00		0.01	-	-	-	0.01
			DC012799	101.67	102.67	1.00		0.10	-	-	-	0.10
			DC012801	102.67	103.67	1.00		0.08	-	-	-	80.0
			DC012802	103.67	104.67	1.00		0.06	-	-	-	0.06
			DC012803	104.67	105.67	1.00		0.00	-	-	-	0.00
			DC012804	105.67	106.67	1.00		0.00	0.00	-	-	0.00
			DC012805	106.67	107.67	1.00		0.00	-	-	-	0.00

Hole Number PRS-09 Project: GOUDREAU Project Number: 05300

From To Au AA Dup AA Grav Metal Au fin (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) (m) 107.67 108.67 DC012806 1.00 0.02 0.02 DC012807 108.67 109.67 1.00 0.04 0.04 DC012808 109.67 110.67 1.00 0.15 0.15 DC012809 110.67 111.67 1.00 0.02 0.02 DC012810 111.67 112.67 1.00 0.02 0.02 DC012811 112.67 113.67 1.00 0.02 0.02 DC012812 113.67 114.67 1.00 0.04 0.04 DC012813 114.67 115.67 1.00 0.02 0.02 DC012814 115.67 116.67 1.00 0.00 0.00 DC012815 116.67 117.67 1.00 0.21 0.24 0.22 DC012816 117.67 118.67 1.00 0.17 0.17 DC012817 118.67 119.67 1.00 6.13 6.13 DC012818 119.67 120.67 1.00 0.06 0.06 DC012819 120.67 121.67 1.00 0.51 0.51 DC012821 121.67 122,67 1.00 0.13 0.13 DC012822 122.67 123.67 1.00 0.04 0.04 DC012823 123.67 124.67 1.00 0.00 0.00 DC012824 124.67 125.67 1.00 0.59 0.59 DC012825 125.67 126.67 1.00 0.01 0.01 DC012826 126.67 127.67 1.00 0.03 0.03 0.03 DC012827 127.67 128.67 1.00 0.12 0.12 DC012828 128.67 129.67 1.00 0.15 0.15 DC012829 129.67 130.67 1.00 0.03 0.03 DC012830 130.67 131.67 1.00 0.07 0.07 DC012831 131.67 132.67 1.00 0.01 0.01 132.67 DC012832 133.67 1.00 0.01 0.01 DC012833 133.67 134.67 1.00 0.19 0.19

Hole Number	PRS-09	Project: GOUDREAU	. The control of the second of	and a few second	numan un me u	water or all the second	··· Salah sala salah	P	roject Num	iber: 0	5300	en e	
From (m)	To (m)	Lithology	Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)	
			DC012834	134.67	135.12	0.45		0.05		-		0.05	_
135.12	135.57	QV QUARTZ CARBONATE VEIN. Marks the contact between two units. Carbonate about 15% of the interval and primarily ankerite. A few mm-scale tourmaline veinlets parallel to the vein contacts. Chloritic country rock fragments included in the vein. Wall rock alteration primarily chlorite.	DC012835	135.12	135.57	0.45		0.02	-	-	-	0.02	
135.57	141.06	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Generally green to gray in color with patches that are pink. Latter correspond to bands of silicification that pass through this unit. In general, there are narrow (less than 20cm) bands of QFP interspersed with more tuffaceous units that carry blue qtz crystals and only a few minor gray to pinkish colored feldspars/lapilli. Upper contact marked by the QV while the lower contact is positioned at the increase in more massive feldspar-qtz layers. As usual, the contacts between the different layers are gradational. Minor shear zones (no significant mineralization) over a few cms scattered throughout the package.	DC012836 DC012837	135.57 135.87	135.87 144.21	0.30 8.34		0.01 0.00	0.02	-	-	0.02 0.00	
141.06	144.21	T2LQFP INTERMEDIATE LAPILLI FELDSPAR QUARTZ PORPHYRITIC TUFF. Appears to be a more even distribution of crystals/lapilli in this section. Matrix more massive with a gray color tinged green by incipient chloritic alteration. Lapilli suggest that this unit may be tuffaceous in origin but the matrix appears to be massive - silicified tuff? MAGNETITE scattered throughout but only weakly magnetic.											

Hole Number	PRS-09	- was not by the first of the day for the constant species.	Para Carlo (1967) - French (1967) - Marie (1967) - Marie (1967)	Proje		OUDRE		and the second of the second	oran in entrete i cons	i na kana mada syah		on you got note		roject Nur	nber: 0	5300	un was interessed to the
From (m)	To (m)		Litholog	עע				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
144.21	145.66	T9ZS SCHIST	UNDIFFERENTIATED					DC012838	144.21	145.16	0.95		0.13	-	-	-	0.13
		the lower section (see M potassium addition in the veinlets. Blue qtz crystals scatter crystals in the vein and v	Major Vein) is pink to green e siliceous zones. Potassi ed throughout. Local gray t wall rock. Background carb	gray to green colored in the colored and well banded. The colored sections have 1% pyrite as feldspars but generally feldspare onate in the wall rock. us unit but still as disseminations.	e pink cole either diss ar-poor. A	or reflect seminati	ts ions or	DC012839	145.16	145.66	0.50		0.50	-	-	-	0.50
		Structure Maj.:	Type/Core Angle	Comment													
		144.21 - 145.66	MDF 62	Some sections are WDF													
		Alteration Maj:	Type/Style/Intensity	Comment													
		144.21 - 145.66	TL SP W														
		144.21 - 145.66	CL INT WM														
		144.21 - 145.66	SE PCH W														
		144.21 - 145.66	SIP+														
		Mineralization Maj. : 144.21 - 145.66	Type/Style/%Mineral PY DIS 1	Comment Fine-grained in places													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		145.36 - 145.53	QCT py		5.0	62	0										
145.66	151.49	Distinctively pinkish in co	olor. Portions of the unit ar AGNETITE rich. Fragment least post-D1. The potass	ARTZ-FELDSPAR PORPHYF e fragmental. Some fragment s have a fabric suggesting tha ic alteration appears to be spa	s surroun	cciation	and	DC012841 DC012842	145.66 151.19	145.96 151.49			0.01 0.00	-	-	-	0.01 0.00

ole Number	PRS-09	is väitelessi saavistastates maassa vai siis viisika talkaala	e de la composition	Project:	GOUD	REA	U www.www.co	on the state of th	tisturia rivat		ng samuang samua	. ಭರ್ಮ ಭಂತೆ ಗೌಗ್ ೧೯೭೪ .		oject Num	ber: 0	5300	Julian Commission (1984)
From (m)	To (m)		Litholog	у				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
151. 4 9	158.16	T9ZS SCHIS	T UNDIFFERENTIATED					DC012843	151.49	152.49	1.00		0.00	-	-	-	0.00
				ic in a few places (less than 10%) of				DC012844	152.49	153.49	1.00		0.06	-	-	-	0.06
				abundance of chlorite and MAGNE opper major vein system. Upper vei				DC012845	153.49	154.11	0.62		1.45	-	-	-	1.45
		GOLD flakes and speck	s but there is none in the lo	wer vein.				DC012846	154.11	154.74	0.63		119.68	123.62	-	-	121.65
		lower contact.	sociated with the upper veir	system but only diss in other parts	is or the	uiilt. 3	οπαιρ	DC012848	154.74	155.74	1.00		0.18	-	-	-	0.18
								DC012849	155.74	156.48	0.74		0.05	-	-	-	0.05
		Structure Mai.:	Type/Core Angle	Comment				DC012850	156.48	156.86	0.38		0.47	-	-	-	0.47
		151.49 - 158.16	MDF 48	Not always this intense				DC012851	156.86	157.86	1.00		0.03	-	-	-	0.03
		Alteration Maj:	Type/Style/Intensity	Comment				DC012852	157.86	158.16	0.30		0.03	-	-	-	0.03
		151.49 - 158.16	CB PCH W														
		151.49 - 158.16	SE PCH W														
		151.49 - 158.16	CL P MS														
		151.49 - 158.16	SI P MS														
		<i>Mineralization Maj. :</i> 154.11 - 154.74	<i>Type/Style/%Mineral</i> PY DIS 20	Comment													
		Vein Maj.:	Type/Mineral	%	6 (ca	vg										
		154.11 - 154.74	QCV py	20.	.0	48	12										
		156.48 - 156.86	QCV PY	20.	.0	50	0										
158.16	164.39			RTZ-FELDSPAR PORPHYRY.	14	daler ?-	fin.	DC012853	158.16	158.46			0.04	-	-	-	0.04
		Brownish-green colored	a matrix with distinct blue co	lored qtz crystals and pinkish feldsp	spar. Ma	IVIX IS	tine-	DC012854	164.09	164.39	0.30		0.03	-	-	-	0.03

Hole Number	PRS-09	de la como esta de la como controlar de la como de la c	in the company of the control of the	Project: GOUDREAU	radiodom quaras - sur a is represente e co	· ALMARAGO HARANG	والمحمد والمعادث والمراد	on the contraction of the contra	والمعادد الميداد المعادد	P	roject Nurr		5300	namm kan amento i di akabagi kentangan kan kan
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
				ninor sericite and carbonate enrichment. Even ix grain size suggests flow or intrusion of some kind.										
164.39	165.34	Distinctly gray colored with Diss to veinlet pyrite local	TUNDIFFERENTIATED then compared to the count ally up to 2% of the interval tive chlorite. Qtz crystals sti	ry rocks. Siliceous and locally banded on a cm scale. . Septae to the banding appears to be fine-grained ill present.	DC012855	164.39	165.3	4 0.95		0.46	-	-	-	0.46
		Structure Maj.:	Type/Core Angle	Comment										
		164.39 - 165.34	WDF 45	Not very intense										
		Alteration Maj:	Type/Style/Intensity	Comment										
		164.39 - 165.34	CL B WM											
		164.39 - 165.34	SE INT W											
		164.39 - 165.34	SI P MS	Locally banded										
		Mineralization Maj. : 164.39 - 165.34 164.39 - 165.34	<i>Type/Style/%Mineral</i> MG TR 0.5 PY VN 1	Comment Fine-grained specks										
165.34	169.31	Same as 157.86m excep creation?). Mottled silicif	ot that uppermost section is ication creates beige colore on the matrix tends to be gr	RTZ-FELDSPAR PORPHYRY. Is feldspar poor (feldspar destruction during schist ed patches in an otherwise green colored rock. In the eenish to brownish in color and the feldspars are	DC012856	165.34	165.64	4 0.30		0.14	-	-	-	0.14

Hole Number		Project: GOUDREAU							roject Num			
From (m)	To (m)	Lithology	Sample #	From		-ength	Zone	Au AA	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
169.31	173.79	T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF. Gray to greenish in color with scattered blue qtz crystals. Weak fabric present along with silicification and minor diss pyrite. Maybe that original feldspars (if present) have been destroyed through feldspar destructive alteration. About 5% of interval is pinkish due to potassic alteration. There are also a few qtz-carbonate veins throughout the unit (cm scale) some with chlorite alteration selvages. Aligned parallel to the fabric and boudinaged or later in age and cross-cutting the fabric.	DC012857	173.49	173.79	0.30		0.04	-		-	0.04
173.79	175.47	QCTV QUARTZ CARBONATE TOURMALINE. Cross cuts pieces of country rock that have a strong fabric - fault zone is post-D2 probably. Also contains chloritic selvages from altered country rock.	DC012858 DC012859	173.79 174.79	174.79 175.47	1.00 0.68		0.64 1.76	- -	-	- -	0.64 1.76

ole Number		on that there is no strong which is to a common which is a second	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Compression of the co	والمن المنافقة والمنافقة و	nanggap sakeng akkan	Special Control of the State of the Control of the State	www.comestages.com	atuacing prayby ren		roject Num	_		na radio al la colonia del como de la colonia de la co			
From (m)	To (m)		Litholog	у				Sample #	From	To i	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
175.47	207.10	T9ZS SCHI	ST UNDIFFERENTIATED					DC012861	175.47	175.77	0.30		_	-	-	-	-
			d unit with extensive chloritis				ed	DC012862	175.77	176.65	0.88		0.04	-	_	_	0.04
			eminations. Also contains shi icaceous mineral in the latter					DC012863	176.65	177.15	0.50		0.07	0.09	-	_	0.08
		siliceous zones are pu	rplish in color. Po tends to be	associated with the c	chlorite rich section	ns. Mine		DC012864	177.15	177.68	0.53		0.17	-	-	-	0.17
			oo. Minor MAGNETITE porph radically developed whereas			Relict		DC012865	177.68	178.68	1.00		0.15	-	-	-	0.15
			•		-		ا الله	DC012866	178.68	179.68	1.00		0.03	-	-	-	0.03
		down hole.	erall but some sections are m	ore or less intense. Bo	ecomes more stro	ingly cri	IOTIUC	DC012867	179.68	180.68	1.00		0.03	-	-	-	0.03
								DC012868	180.68	181.68	1.00		0.32	-	-	-	0.32
		Structure Maj.:	Type/Core Angle	Comment				DC012869	181.68	182.68	1.00		0.10	-	•	-	0.10
		175.47 - 207.10	MDF 54	Sometimes less				DC012870	182.68	183.68	1.00		0.07	-	-	-	0.07
		Alteration Maj:	Type/Style/Intensity	Comment				DC012871	183.68	184.68	1.00		0.10	-	-	-	0.10
		175.47 - 207.10	CB VN W	Common				DC012872	184.68	185.68	1.00		0.87	-	-	-	0.87
								DC012873	185.68	186.68	1.00		4.99	5.44	-	-	5.21
		175.47 - 207.10	SE PCH W					DC012874	186.68	187.68	1.00		0.08	-	-	-	80.0
		175.47 - 207.10	CL INT MS					DC012875	187.68	188.56	0.88		0.53	-	-	-	0.53
		175.47 - 207.10	SI P MS					DC012876	188.56	189.29	0.73		6.47	-	-	-	6.47
		Mineralization Maj. :	Type/Style/%Mineral	Comment				DC012877	189.29	190.29	1.00		0.65	-	-	-	0.65
		175.47 - 207.10	CP TR 0.5					DC012878	190.29	191.29	1.00		0.06	-	-	-	0.06
		175.47 - 207.10 175.47 - 207.10	MG TR 0.5 PO DIS 2					DC012879	191.29	192.29	1.00		0.17	-	-	-	0.17
		175.47 - 207.10	PO DIS 2 PY DIS 5	Also veinlet like				DC012881	192.29	193.29	1.00		0.09	-	-	-	0.09
			Type/Mineral	, and volinor into	%	02	va	DC012882	193.29	194.29	1.00		0.05	-	-	-	0.05
		Vein Maj.:	··		% 25.0	ca 30	vg 0	DC012883	194.29	195.29	1.00		0.03	0.06	-	-	0.04
		188.56 - 189.29	QCT py		20.0	30	J	DC012884	195.29	196.29	1.00		0.03	-	•		0.03
								DC012885	196.29	197.29	1.00		0.03	-	-	-	0.03
								DC012886	197.29	198.29	1.00		0.05	-	-	-	0.05
								DC012887	198.29	199.29	1.00		0.15	-	-	-	0.15
								DC012888	199.29	200.29	1.00		2.95	-	-	-	2.95

mineralization.

Although it has a fabric it does not appear to be intense or associated with extensive alteration or

Hole Number		Project: GOUDREAU	al de la companya de	and the second second	Augustus — Norganies	in Marine Service (See See	er anten per treete		oject Num			therefore the other than the state of the st
From (m)	To (m)	Lithology	Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
			DC012889	200.29	201.29	1.00		0.34	_		-	0.34
			DC012890	201.29	202.29	1.00		0.09	-	-	-	0.09
			DC012891	202.29	203.29	1.00		0.09	-	-	-	0.09
			DC012892	203.29	204.29	1.00		0.14	-	-	-	0.14
			DC012893	204.29	205.29	1.00		0.03	0.05	-	-	0.04
			DC012894	205.29	206.29	1.00		0.04	-	-	-	0.04
			DC012895	206.29	207.10	0.81		1.62	-	-	-	1.62
207.10	219.71	T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF.	DC012896	207.10	207.40	0.30		0.03	-	_	-	0.03
		Distinctly green in color with a weak to moderate siliceous banding. Widely scattered gray to blue colored qtz crystals as well as a few qtz-carb veins parallel to the dominant fabric. Some narrow (less than 30cm) qtz-carb-pyt alteration zones but not significant. Trace scattered pyrite crystals. Maybe that this unit is a felsic tuff with a few crystals.		207.40	219.71	12.31		0.05	-	-	-	0.05

Hole Number	PRS-09	and and the second supplied to the control of the c	en kalanda kalanda 1994 ya parajarakan kalanda kalanda kalanda kalanda kalanda kalanda kalanda kalanda kalanda			OUDRE		Land of the second s	on the National Section of the Section (Section Section Sectio	as casas as subsections	order in ordered in	efologija og 10-1802 i	general grant and the		roject Num	_		eder in tipoto disco di con in consequenti	por right of
From (m)	To (m)		Litholog	y					Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)	
219.71	228.43	T9ZS SCHIST	UNDIFFERENTIATED		7				DC012898	219.71	220.7	1.00		0.04	-	-		0.04	
				ompared to last unit it has an ir					DC012899	220.71	221.7	1.00		0.12	-	-	-	0.12	
		of veining and pyritic mil the fabric.	neralization. Around the veil	ning there is generally an increa	ase in ti	he inten	sity	/ Of	DC012901	221.71	222.7	1.00		0.18	-	-	-	0.18	
									DC012902	222.71	223.7	1.00		0.05	-	-	-	0.05	
		Structure Maj.:	Type/Core Angle	Comment					DC012903	223.71	224.54	0.83		0.13	0.10	-	-	0.12	
		219.71 - 228.43	WDF 36	- Commone					DC012904	224.54	225.54	1.00		1.35	-	-	-	1.35	
		Alteration Maj:	Type/Style/Intensity	Comment					DC012905	225.54	225.96	0.42		1.15	-	-	-	1.15	
		219.71 - 228.43	SE INT +	Comment					DC012906	225.96	226.96	3 1.00		0.73	-	-	-	0.73	
									DC012907	226.96	227.96	3 1.00		0.02	-	-	-	0.02	
		219.71 - 228.43	CL P +						DC012908	227.96	228.43	0.47		0.03	-	-	-	0.03	
		219.71 - 228.43	SI P MS																
		<i>Mineralization Maj. :</i> 219.71 - 228.43	Type/Style/%Mineral PY DIS 3	Comment Concentrated in restricted ar	eas														
		Vein Maj.:	Type/Mineral		%	ca		vg											
		224.54 - 225.96	QCV PY		50.0	35	-	0											
228.43	245.70	T2Z INTERI	MEDIATE TUFF UNDIFFER	RENTIATED.					DC012909	228.43	228.73	3 0.30		0.04	-	_	-	0.04	
		Distinctly green in color		grained blue qtz crystal. No obv				tals.	DC012910	240.87	241.17	7 0.30		0.01	-	_	-	0.01	
				s associated qtz-carb veins wit Minor late carb-qtz veins. Loca				diss	DC012911	241.17	241.68	3 0.51		1.29	_	-	-	1.29	
		MAGNETITE porphyrob		Willion Rate Gents-que vents, Euce	ai 300lic	713 WIII	un I	4,00	DC012912	241.68	241.98	3 0.30		0.13	-	-	_	0.13	
				rone with diss pyrite and weak a minor component of sericite.	carb-qt	z veining	g.												

Hole Number	PRS-09	g grande de l'antique en la grand (g. 1987). Establishe	Project: GOUDREAU	The state of the s	eres lus lenses	The that said the entity	a karti tanzinka eta ta	and the same		roject Nun			okaling og skiller skiller for fræmkeling og skiller
From (m)	To (m)		Lithology	Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
245.70	256.13	differentiate a persistent Upper conta	GRANODIORITE. ght gray colored with a relatively uniform texture. No obvious foliation which tends to a it from the other examples of the granodiorite. Mafic minerals altered to chlorite while the trace amount of diss pyrite throughout most of the unit. act is wavy and intrusive-like without any obvious signs of deformation. Upper portion of a is finer-grained than the lower portions.										
256.13	261.02	qtz and coa primary size	INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. I upper and lower contacts. Pea-green colored matrix, fine-grained, abundant scattered by arser-grained primary and secondary feldspars. Latter tend to have a ghosted outline but e. No discernible fabric in the upper parts - becomes slightly better developed further down to the next schist unit. Local patchy silicification and potassic alteration of the feldspars.	retain vn	260.72	261.02	0.30		0.00	-	-	-	0.00

ole Number		ti en entre e la companya di disposa di conserva di conserva di conserva di conserva di conserva di conserva d	tions of the order of the state	Project: GOUDREAU	19 och Septid i Livia svenderndrige	and the specific of the second	, com the statement	to the experience of the experience of	فود د در را را پخه		roject Num			uwwago na was seulung ,s,⊊
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
261.02	270.17	T9ZS SCHIS	T UNDIFFERENTIATED		DC012914	261.02	262.02	1.00		0.03	-	-	-	0.03
				color (due to chlorite - 70% of the unit) although	DC012915	262.02	263.02	1.00		0.00	-	-	-	0.00
				alteration (maximum of 25% of the unit). Silicification es. Pyrite is best in the latter zones but it only amounts	DC012916	263.02	264.02	1.00		0.00	-	-	-	0.00
		to about 3% in these zon	nes. Some of the intense cl	nloritic sections have a relative abundance of diss pyt.	DC012917	264.02	265.02	1.00		0.20	-	-	-	0.20
	About 5% of the interval is layer-parallel and later qtz-carb veins. Structure Maj.: Type/Core Angle Comment			tz-card veins.	DC012918	265.02	266.02	1.00		0.00	-	-	-	0.00
				_	DC012919	266.02	267.02	1.00		0.00	-	-	-	0.00
		-	**	Comment	DC012921	267.02	268.02	1.00		0.09	-	-	-	0.09
		261.02 - 270.17	MDF 56		DC012922	268.02	269.02	1.00		0.04	0.02	-	-	0.03
		Alteration Maj:	Type/Style/Intensity	Comment	DC012923	269.02	269.67	0.65		0.03	-	-	-	0.03
		261.02 - 270.17	CB SP W		DC012924	269.67	270.17	0.50		0.09	-	-	-	0.09
		261.02 - 270.17	SE PCH WM											
		261.02 - 270.17	CL P MS											
		261.02 - 270.17	SI P MS											
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		261.02 - 270.17	PY DIS 1	Concentrated in silica rich zones										
					DALLOT									
270.17	275.85	- 	• • • • • • • • • • • • • • • • • • • •	SPAR PORPHYRITIC TUFF.	DC012925	270.17	270.47	0.30		0.00	-	-	-	0.00
				of secondary cross-cutting carbonate gashes. Matrix crongly silicified. Gradational lower contact.	DC012926	275.55	275.85	0.30		0.00	-	-	-	0.00

Hole Number		i i kanalan je kolonika jamenostine i koji je nistopa salje i govjeti akti.	i gragge, organization intermediate de properties de la company	Proje		OUDRE!		anganggatating ng kaping pilak sa sa makanggata	500 of 5 to be 20 white 50 white 50 white	i s. Granda SEVI SI SSERE	on a second control	n . coloreino		roject Nurr			
From (m)	To (m)		Litholog					Sample			Length	Zone	Au AA	Dup AA (ppm)		Metal (ppm)	Au fin (ppm)
275.85	280.26	T9ZS SCHIST	UNDIFFERENTIATED					DC01292	7 275.85	276.35	0.50		0.00	-	-	-	0.00
				patchy mottled looking silicit				DC01292	8 276.35	277.05	0.70		0.00	-	-	-	0.00
			about 30cm wide). Two qtz- es (re-activation of pre-exist	carb-tourmaline veins in this a ing deformation zone?).	schist alth	nough th	ey	DC01292	9 277.05	277.50	0.45		0.02	-	-	-	0.02
		• •	,					DC01293	0 277.50	278.18	0.68		0.00	-	-	-	0.00
		Structure Maj.:	Type/Core Angle	Comment				DC01293	1 278.18	278.78	0.60		0.00	-	-	-	0.00
		275.85 - 280.26	WDF 28	In the banded section				DC01293	2 278.78	279.78	1.00		0.00	0.01	-	-	0.01
		Alteration Maj:	Type/Style/Intensity	Comment				DC01293	3 279.78	280.26	0.48		0.01	-	-	-	0.01
		275.85 - 280.26	TL VN W														
		275.85 - 280.26	SE PCH W														
		275.85 - 280.26	CL P MS														
		275.85 - 280.26	SI P MS	Locally banded													
		Mineralization Maj. : 275.85 - 280.26	Type/Style/%Mineral PY TR 0.5	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		277.05 - 277.50	QCT Py		80.0	68	0										
		278.18 - 278.78	QCT Py		75.0	65	0										
280.26	282.20		MEDIATE QUARTZ-FELDS	PAR PORPHYRITIC TUFF.				DC01293		_			0.00	-	-	-	0.00
		Same as 256.13m.						DC01293	5 281.26	282.20	0.94		0.01	-	-	-	0.01

Hole Number		audussa siin kassi amaan na ahaasaagii oo o	. 1970 y dest who will the interfer 2006 degles on the Comp. And out of the comp.	Proj	_	OUDRE		ടയ - ആർപ്പ് രൂട്ട്യൂ, പുട്ടില് ശ്രാത്ത് പ്രവൃത്ത് നോട്ട് സ്വര്ദ്ദേശ്	- magnificance out to the	continues of the	e en un la constanta de la cons	Project Number: 05300					
From (m)	To (m)		Litholog	у				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
282.20	289.30	T9ZS SCHIS	T UNDIFFERENTIATED					DC012936	282.20	282.98	0.78		72.10	-	_	-	72.10
				rly qtz vein with abundant V				DC012938	282.98	283.98	1.00		0.10	-	-	=	0.10
				s are pinkish in color. Some ns (cms wide) parallel to the				DC012939	283.98	284.98	1.00		3.72	-	-	-	3.72
		trace amounts overall.		` '.		·		DC012941	284.98	285.98	1.00		0.05	-	-	-	0.05
								DC012942	285.98	286.98	1.00		0.46	0.32	-	-	0.39
		Structure Maj.:	Type/Core Angle	Comment				DC012943	286.98	287.98	1.00		0.16	-	-	-	0.16
		282.20 - 289.30	MDF 50					DC012944	287.98	288.98	1.00		0.33	-	-	-	0.33
		Alteration Maj:	Type/Style/Intensity	Comment				DC012945	288.98	289.30	0.32		0.06	-	-	-	0.06
		282.20 - 289.30	SE PCH W														
		282.20 - 289.30	CL P MS														
		282.20 - 289.30	SI P MS														
		Mineralization Maj.: 282.20 - 289.30	<i>Type/Style/%Mineral</i> PY TR 0.5	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		282.32 - 282.98	QCV AU		60.0	50	30+										
289.30	291.35	T2QFP <i>INTERI</i>	MEDIATE OLIABTZ EEL DS	PAR PORPHYRITIC TUFF				DC012946	289.30	289.60	0.30		0.03				0.00
209.30	281.33			tains a stronger fabric than		the uni	t. Sharp	DC012947	289.60	290.60			0.03	-	-	-	0.03 0.04
		contact with the next un						DC012948	290.60	291.35			0.04	-	-	-	
								DC012946	290.00	291.30	0.75		0.02	-	-	-	0.02

Hole Number	PRS-09	killer og kallen i skrippen og ble og et skripe skripe i førete	and the wester response where the same as a second constant.	ada 1900 - 1908 (1888) dispositi on orași din alternativi din dispositi din dispositi din dispositi din disposi	•	OUDRE		والمسترور والمسترور المسترور المسترور المسترور المسترور المسترور المسترور المسترور المسترور المسترور	o section and factors	a a mentil commence of	in de l'en avière adepte, controlles	description of the control of the co	P	roject Num	nber: 0	5300	anda esta social antica del moderno del performación.
From (m)	To (m)		Litholog	y				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
291.35	293.91	Similar to the unit at 28	T UNDIFFERENTIATED 2.2m except for a paler green naged parallel to the main fall		sericitic alterati	ion. Ear	iy qtz-	DC012949 DC012950 DC012951	291.35 292.35 293.35	292.35 293.35 293.91			1.80 0.59 0.19	-	-	-	1.80 0.59 0.19
		Structure Maj.: 291.35 - 293.91 Alteration Maj: 291.35 - 293.91 291.35 - 293.91 291.35 - 293.91 Mineralization Maj.: 291.35 - 293.91 Vein Maj.: 291.64 - 291.71	Type/Core Angle MDF 65 Type/Style/Intensity SE PCH W CL P MS SI P MS Type/Style/%Mineral PY DIS 1 Type/Mineral QCV PY	Comment Comment Associated with series	citic zones % 95.0	ca 66	vg 0										
293.91	296.36	Similar to the unit at 25 sections have no feldsp	RMEDIATE QUARTZ-FELDS 66.13m except that the feldspoars but do have a moderate remation. It is also possible the	oars appear fresher and fabric suggesting that	d cream to pink the feldspars ha	ave bee		DC012952	293.91	294.21	0.30		0.07	0.07	-	-	0.07
296.36	299.03		LTIC DYKE. ated, finer-grained on both or strongly magnetic.	ontacts. Sharp upper ar	nd lower contact	ts. Trace	e pyrite										

Hole Number PRS-09 GOUDREAU Project: Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) 299.03 305.60 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Green colored fine grained matrix with ghosted large feldspars generally gray to greenish gray in color. Some scattered qtz crystals but their abundance is less than the feldspars. Alteration predominantly chlorite with very fine-grained pyrite throughout. Shape of feldspars suggests that this unit could be an intrusion. 305.60 315.44 11D GRANODIORITE. DC012953 315.14 315.44 0.30 0.05 0.05 Gray color with greenish hues. Mainly medium grained with a spaced cleavage cutting through the unit. Not intensely deformed, just foliated in certain areas. Pale green chlorite after primary mafic minerals. Trace pyrite. Top side is finer grained, bottom contact appears finer grained but is overprinted by silicification.

Hole Number		ikk garikaringan si menganggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalan	en mantagas sa s	Projective and the second section of the sect		UDREA		ti takan madan katawa manaka mata	an Marie (m. 1844). Na Salanna	es a la la material e	i in de Santabelon in Japanier mille vers	tas temperatus de la com		roject Num	_		est transversioner (1988) particular (1988) se se se se se
From (m)	To (m)		Litholog	y				Sample #	From	То	Length	Zone	-	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
315.44	318.60	T9ZS SCHIST	UNDIFFERENTIATED					DC012954	315.44	316.20	0.76		0.46	-		-	0.46
		Generally green in color	although there are lighter of	olored sections that reflect po	otassic ali	eration a	and	DC012955	316.20	316.86	0.66		8.65	-	-	-	8.65
		grained calcite in the ma		with carbonate) and diss pyr	nte in som	ie places	s. rine-	DC012956	316.86	317.86	1.00		0.03	_	-	-	0.03
		Schist marks the contact	t with the granodiorite.					DC012957	317.86	318.60	0.74		0.00	-	-	-	0.00
		Structure Maj.:	Type/Core Angle	Comment													
		315.44 - 318.60	MDF 58														
		Alteration Maj:	Type/Style/Intensity	Comment													
		315.44 - 318.60	SE PCH W														
		315.44 - 318.60	CL B MS														
		315.44 - 318.60	SI P ++														
		Mineralization Maj.: 315.44 - 318.60	<i>Type/Style/%Mineral</i> PY DIS 1	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		316.20 - 316.86	QCV PY		50.0	55	0										
318.60	329.15	T2QFP INTERM Same as 299.03m.	IEDIATE QUARTZ-FELDS	PAR PORPHYRITIC TUFF.				DC012958 DC012959	318.60 328.85	318.90 329.15			0.01 0.01	-	-	-	0.01 0.01

Hole Number	PRS-09	t advicant i september ty diama i geti	ted - Service days 175 ong Apple day 177 sight was 117 sight 177	Projection of the second of th		OUDRE!		ولينا دفع بري المولينية فالوادات المدارات ال	ath their west there is	#www.	. Same (4) (1) (1) (1) (1)	n na na aireann a		oject Num		5300	The second secon
From (m)	To (m)		Litholog	у				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
329.15	332.52	T9ZS SCHIST	UNDIFFERENTIATED					DC012961	329.15	330.15	1.00		0.01	-	-	-	0.01
				ithin a strongly chloritic unit. F				DC012962	330.15	331.15	1.00		0.01	0.01	-	_	0.01
			on (strongly chloritic) has a letite and strong dark greer	l% pyt with associated magne chlorite.	tite. Note	e that the	e major	DC012963	331.15	331.84	0.69		0.01	-	-	-	0.01
		_						DC012964	331.84	332.15	0.31		0.00	-	-	-	0.00
		Structure Maj.:	Type/Core Angle	Comment				DC012965	332.15	332.52	0.37		0.00	-	-	-	0.00
		329.15 - 332.52	WDF 72	Locally steeper													
		Alteration Maj:	Type/Style/Intensity	Comment													
		329.15 - 332.52	SE PCH W														
		329.15 - 332.52	CL P MS														
		329.15 - 332.52	SI PCH WM														
		Mineralization Maj. : 329.15 - 332.52 329.15 - 332.52	Type/Style/%Mineral MG TR 0.5	Comment													
			PY DIS 1	Locally higher	.,												
		Vein Maj.:	Type/Mineral		%	ca	vg										
		331.84 - 332.15	QCV py,mg		15.0	38	0										
332.52	342.45	T2QFP INTERI	MEDIATE QUARTZ-FELDS	PAR PORPHYRITIC TUFF.				DC012966	332.52	332.82	0.30		0.01	-	_	-	0.01
		Same as 299.03m.						DC012967	342.05	342.35	0.30		0.00	-	-	-	0.00

Hole Number	PRS-09	n galle all later i su conservi i stationi men supeli ci statio i qui subsequente di	en das meg melatikansak atap si sebesti si helipsi, post di di di si	Projec	at: GC	OUDRE/	AU	rojan da demaka arakwezantak e	to according when the	e seconos	≠1 0.00 t tate to to the	ety trig denotes		roject Nur	-	5300	Administrative and the control of th
From (m)	To (m)		Litholog	у				Sample	# From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
342.45	344.25	T9ZS SCHIST	UNDIFFERENTIATED					DC01296	8 342.35	342.90	0.55		0.00	-	•	_	0.00
		Strongly chloritic with qtz	c-carb veins and diss pyrite					DC01296	9 342.90	343.90	1.00		0.09	-	-	-	0.09
		At 342.63m there is a 25 the Major Vein but it is re		carb with chloritic fragments o	f wall roo	k. Shov	wn as	DC01297	0 343.90	344.25	0.35		0.01	-	-	-	0.01
		Structure Maj.:	Type/Core Angle	Comment													
		342.45 - 344.25	WDF 70	Locally steeper													
		Alteration Maj:	Type/Style/Intensity	Comment													
		342.45 - 344.25	TL VN +														
		342.45 - 344.25	CB B +														
		342.45 - 344.25	SI PCH W														
		342.45 - 344.25	CL P ++														
		Mineralization Maj. : 342.45 - 344.25	Type/Style/%Mineral PY DIS 2	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		342.63 - 342.88	QCV		70.0	55	0										
344.25	350.00	T2QFP INTERN Same as 299.03m EOH.	MEDIATE QUARTZ-FELDS	PAR PORPHYRITIC TUFF.				DC01297	1 344.25	344.55	0.30		0.07	-	-	-	0.07

Chris Horeka P.GOO

Hole Number	PRS-10A			Project	t GO I	UDREAU						Project Number:	05300
Orling	···· ser s	Cesing		Care		_			Location			Other	
Azimuth:	180.00	Langth:	26	Dimension:	NQ	-			Township:	FINAN		Logged by:	C. Moreton
Dfp:	-80.00	Pulled:		Storaga:	island	Gold Proje	ect		Claim No.:	3617		Relog by:	
Length:	441.00	Cupped:		Section:					NTS:	420/08		Contractor:	Orbit Drilling Inc
Started:	25-Apr-08	Committed:		Hole Type	SEXP	ı			Hole:	Surface		Company	Mines Richmont
Completed:	29-Apr-08						·					Spotled by:	G. Moreton
Logged:	08-Jun-06						Coprdi	inala				Surveyed:	yes
Comment:	Samples: DC011382-DC011758			Gemean		UTM		Mine		Variable	•	Surveyed by:	G.Lamothe(GPS)
				Essi:	15768	Cast:	691118,8	Eest:	15764	East;	0	Geophysics:	
				North:	4911	North:	5352341.8	North:	4911	North:	D	Geoph. Contract:	
				Elev.:	5391	Elev.:	5391	Elev.:	5391	Elev.:	٥	Left in hole:	
						Zone:	16					Making water:	
						NAD:	83					Multi shot surv.:	

Distance	Azimuth	Dίρ	Туре	Good	Comment
0.00	180.00	-60.00	C		
38.00	183.20	-61.10	F	\mathbf{Z}	56820
66.00	161.60	-60.60	F	Z	56390
186.00	179.90	-59.20	F	☑	56710
216.00	180.50	-59.00	F	\mathbf{Z}	56270
246.00	179.70	-58.60	F	\mathbf{Z}	58470
276.00	185.10	-58.20	F	Z	56410
305.00	181.20	-57.00	F		56110
336.00	183.90	-56.30	F	\mathbf{Z}	56250
366.00	181.70	-56.20	F	52	56550
396.00	180.30	-58.00	F	I	\$6520
426.00	180.80	-55.90	F	₹.	58420

Hole Number	PRS-10A	was the week and the same of t		Project	: GOL	IDREAU						Project Number:	05300
Drilling		Casing		Core					Location	and the State Control of the		Other	in the seed of section we see the section of the section of
Azimuth:	180.00	Length:	26	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-60.00	Pulled:		Storage:	island	Gold Proj	ect		Claim No.:	3817		Relog by:	or moroton
Length:	441.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Started:	25-Apr-06	Cemented:		Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Completed:	29-Apr-06											Spotted by:	C. Moreton
Logged:	06-Jun-06						Coord	inate				Surveyed:	yes
Comment:	Samples: DC011382-DC011758			Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
				East:	15768	East:	691118.8	East:	15768	East:	0	Geophysics:	` ,
				North:	4911	North:	5352341.8	North:	4911	North:	0	Geoph. Contract:	
				Elev.:	5391	Elev.:	5391	Elev.:	5391	Elev.:	0	Left in hole:	
						Zone:	16					Making water:	
	t di nesembattanèn kalandara tangka sebesahan penerbana sebesah sebesah sebesah sebesah sebesah sebesah sebesah					NAD:	83					Multi shot surv.:	

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-60.00	С	\checkmark	
36.00	183.20	-61.10	F	\checkmark	56690
66.00	181.60	-60.60	F	\checkmark	56390
186.00	179.90	-59.20	F	\checkmark	56710
216.00	180.50	-59.00	F	\checkmark	56270
246.00	179.70	-58.80	F	\checkmark	56470
276.00	181.10	-58.20	F	\checkmark	56410
306.00	181.20	-57.00	F	\checkmark	56110
336.00	183.90	-56.30	F	\checkmark	56250
366.00	181.70	-56.20	F	\checkmark	56550
396.00	180.30	-56.00	F	\checkmark	56520
426.00	180.80	-55.90	F	\checkmark	56420

ole Number	PRS-10A	and the control of th	en e	Project: GOUDREAU	The light of the second of the	Santa etc. Santa (1822) e e es	Survey of Addition	nak sek lah sala kilaban yang	-industry (Mily day)	P	roject Num	iber: 0:	5300	
From (m)	To (m)		Litholo	ogy	Sample #	From	To	Length	Zone		Dup AA	Grav (ppm)	Metal (ppm)	Au fin (ppm)
0.00	26.00	OB Over Casing sunk to 27m,	e rburden 1m into bedrock.										ier.	(Fe-1)
26.00	32.98	Slightly different than consists of alternatin package has been si gray-green. Blue qtz tend to be smaller an	n other examples - has a stro g siliceous zones and discon licified and there are a few la crystals easily visible but the id more fragmental.	pspar porphyritic tuff. Ing fabric defined by 2-3mm scale layering. The latter tinuous white colored sericite domains. The complete yer parallel cm-scale qtz veins. Color is an intermixed feldspars tend to blend into the color of the matrix and o ca. This differs from the next units where the angle of	DC011382	32.68	32.98	0.30		0.02	-	-	-	0.02
32.98	35.10	Not a great example marked by a significa	int increase in chlorite, some grays. No major vein althoug Ocm wide).	rom the last unit to separate it out. Upper contact times accompanied by diss pyrite. Color changes to n there are a couple of examples of late-stage qtz-	DC011383 DC011384 DC011385 DC011386	32.98 33.48 33.98 34.48	33.48 33.98 34.48 35.10	0.50 0.50 0.50 0.62		0.01 0.03 0.02 0.02			- - -	0.01 0.03 0.02 0.02
		Structure Maj.: 32.98 - 35.10	Type/Core Angle MDF 45	Comment Some local fluctuations.										

ole Number		or New Sides Services and Country of the Country of	a al El mobre des desegnacións al desperío est el mala el alabada	Project: GOUDREAU	ta Birisif atkawa interminasa anake	in the second	et word gaga.	and the transfer than the second	Services on the origin		roject Num		5300	De Edition Co.
From (m)	To (m)		Litholog	ny	Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA		Metal (ppm)	Au fin
		Alteration Maj:	Type/Style/Intensity	Comment										(FF9
		32.98 - 35.10	CL P ++											
		32.98 - 35.10	SI P MS											
		Mineralization Maj. : 32.98 - 35.10	Type/Style/%Mineral PY DIS 0.5	Comment In the chlorite veinlets only.										
35.10	39.61	API ISLAN	D ALTERATION PACKAGI	≣ .	DC011387	35.10	35.60	0.50		0.11	_	_		0.11
		Again, not a great exam	ple. Appears to be a mixtur	e of the T9ZS and API although the latter is ading created by alternating siliceous and sericite rich	DC011388	35.60	36.10			0.03	_	_	-	0.11
		domains. Locally there i	is associated chlorite and to	urmaline veining. Typically, the API layers are nink in	DC011389	36.10	36.60	0.50		0.02	_	-	-	0.02
		color whereas the interv	ening T9ZS is darker greer	due to a relative abundance of chlorite.	DC011390	36.60	37.10	0.50		0.08	0.05	-	-	0.07
		Note that the Major Veir API unit.	n is probably a late vein feat	ure - it happens to be in the strongest alteration of this	DC011391	37.10	37.53	0.43		0.04	-	-	_	0.04
					DC011392	37.53	38.21	0.68		0.06	-	-	_	0.06
		Note too that the main f	abric is folded and oriented	at shallow to moderate angles to the core axis. It serving the primary alteration/vein systems. All of the	DC011393	38.21	38.73	0.52		0.02	-	-	-	0.02
		contacts between these	different units are a little ar	bitrary and definitely gradational.	DC011394	38.73	39.23	0.50		0.09	-	-	-	0.09
					DC011395	39.23	39.61	0.38		0.07	-	-	-	0.07
		Structure Maj.:	Type/Core Angle	Comment										
		35.10 - 39.61	S09 68	Many areas less than this though										
		Alteration Maj:	Type/Style/Intensity	Comment										
		35.10 - 39.61	TL VN											
		35.10 - 39.61	CL PCH MS											
		35.10 - 39.61	SE PCH MS											
		35.10 - 39.61	SI P MS											
		Mineralization Maj.: 35.10 - 39.61	Type/Style/%Mineral PY TR 0.5	Comment Scattered and generally weak										
		Vein Maj.:	Type/Mineral	% ca vg										
		37 53 ₋ 38 73	OV PY	30 n an n										

ole Number		en er fort var valle ett til fin en ett flesklikkeligt. Ellekte skille ett flesklike skille	addieum klenda de er kopy kredoletiker even blette da er	Project: GOUDREAU	la entititation chemic video projection — 15,775	- William Martine Was	over tradesor	andra to the second state of		oject Num	ber: 0	5300	
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
39.61	47.54	Shoulder to the API unit. angles for the prominent	foliation creates a link with	a predominance of chlorite alteration. Multiple core the API. Primary lithology (QFP) generally visible	DC011396 DC011397	39.61 40.61	40.61 41.11	1.00 0.50	0.06 0.03	- -	-	-	0.06 0.03
		beneath the weaker alter	ration. Scattered first gener	ation qtz veins tend to be associated with diss pyrite.	DC011398 DC011399	41.11 41.61	41.61 42.11	0.50 0.50	0.08 0.23	-	-	-	0.08 0.23
		Structure Maj.: 39.61 - 47.54	Type/Core Angle MDF 55	Comment A few low angles but mainly high.	DC011401 DC011402	42.11 42.61	42.61 43.11	0.50 0.50	0.12 0.02	0.16	-	-	0.14
		Alteration Maj: 39.61 - 47.54	Type/Style/Intensity SE INT	Comment	DC011403 DC011404	43.11 43.61	43.61 44.11	0.50 0.50	0.05 0.15		-	-	0.05 0.15
		39.61 - 47.54	CL PCH MS		DC011405 DC011406	44.11 44.61	44.61 45.11	0.50 0.50	0.03 0.18	-	-	-	0.03
		39.61 - 47.54 Mineralization Maj.:	SI P MS Type/Style/%Mineral	Comment	DC011407 DC011408	45.11 45.61	45.61 46.11	0.50 0.50	0.09	-	-	-	0.09
		39.61 - 47.54	PY TR 0.5	Associated with the chloritisation.	DC011409 DC011410	46.11 46.61	46.61 47.11	0.50 0.50	0.02	- 0.02	-	-	0.02
					DC011411	47.11	47.54	0.43	0.02	-	-	-	0.02 0.11
47.54	51.59	Same as 26m. Only real	difference between this un	PAR PORPHYRITIC TUFF. t and the previous one is a reduction in the intensity ne just not as altered as much. Some local variations	DC011412 DC011413	47.54 47.84	47.84 48.19	0.30 0.35	0.02 0.02	-	-	-	0.02 0.02
		in the foliation orientation).	GOLD. This unit sampled because of the qtz vein with	DC011414 DC011415	48.19 48.49	48.49 48.99	0.30 0.50	2.24 0.03	-	-	-	2.24 0.03
		gold.	QTT man a onigio grain or	COLD. This unit sampled because of the qiz vein with	DC011416 DC011417	48.99 49.49	49.49 49.99	0.50 0.50	0.02 0.02	-	-	-	0.02 0.02
					DC011418 DC011419	49.99 50.49	50.49 50.99	0.50 0.50	0.02	-	-	-	0.02
					DC011421	50.99	51.59	0.60	0.02	-	-	-	0.02 0.03

Hole Number				Project: GOUDREAU	eth sacurtasaka, o nesä Messasarintaa hene Taerusattii hil	ta opi taka kathering sist - s	and the specifical	natara	ar engri samun		roject Num			geleggeggggggggggggggggggggggggggggggg
From (m)	To (m)	. On the Manufacture of September 2 and the second	Litholog		Sample #			Length			Dup AA (ppm)		Metal (ppm)	Au fin (ppm)
51.59	56.43	T9ZS SCHIST	UNDIFFERENTIATED		DC011422	51.59	52.09	0.50		0.01	-	-	-	0.01
		Again, a weak example s	similar to the one at 39.61m	n.	DC011423	52.09	52.59	0.50		0.00	-	-	-	0.00
					DC011424	52.59	53.09	0.50		0.02	-	-	-	0.02
		Structure Maj.:	Type/Core Angle	Comment	DC011425	53.09	53.59	0.50		0.00	-	-	-	0.00
		51.59 - 56.43	MDF 32		DC011426	53.59	54.09	0.50		0.02	-	-	-	0.02
		Alteration Maj:	Type/Style/Intensity	Comment	DC011427	54.09	54.59	0.50		0.01	-	-	-	0.01
		51.59 - 56.43	TL VN	Only a few examples.	DC011428	54.59	55.09	0.50		0.61	-	-	-	0.61
		51.59 - 56.43	CL P MS		DC011429	55.09	55.59	0.50		2.98	2.34	-	-	2.66
		51.59 - 56.43	SI P MS		DC011430	55.59	56.13	0.54		0.04	-	-	-	0.04
		Mineralization Maj. : 51.59 - 56.43	Type/Style/%Mineral PY TR 0.5	Comment In chloritic veinlets	DC011431	56.13	56.43	0.30		0.03	-	-	-	0.03
56.43	56.88	Extremely sharp contact	O ALTERATION PACKAGE s on BOTH the top and bot	tom sides - upper contact is 70 degrees to ca while	DC011432	56.43	56.88	0.45		0.15	-	-	-	0.15
		the lower contact is 50 d and extensive diss pyrite		o intense potassic alteration. Flecks of green chlorite										
		Structure Maj.:	Type/Core Angle	Comment										
		56.43 - 56.88	MDF 50	·										
		Alteration Maj:	Type/Style/Intensity	Comment										
		56.43 - 56.88	TL SP											
		56.43 - 56.88	CL Dis +											

ole Number PR		ak differense – 1985 – Jugossofaksiko, stanskako – ak differensiskakon, konsistensisk	elle lateriae — Teory Stoten elle Patrico o auto de San elle tropologico de l'especial de l'especial de l'espe		•	OUDREA		e e els sacso que um cum energiaciono (11), o disso c	aan aan in sansan an sansan sa sa sa	n or a longer and a second	ensk villagens streetig 12	moral solution		oject Num			entreparties, e TTAT best report w.c.
	To (m)		Litholog	у			_	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		56.43 - 56.88	SE P ++														
		56.43 - 56.88	SI P ++														
		Mineralization Maj. : 56.43 - 56.88	<i>Type/Style/%Mineral</i> PY DIS 1	Comment													
56.88	70.39	T9ZS SCHIST	UNDIFFERENTIATED					DC011433	56.88	57.38	0.50		0.03	_	-	_	0.03
			moderate alteration and d					DC011434	57.38	57.88	0.50		0.06	-	-	-	0.06
		gtz and/or gtz-carb veins	that have a pinkish hue. Lo parallel to the fabric. Latte	r is defined by alternating o	chlorite, calc	ite and	qtz-	DC011435	57.88	58.38	0.50		0.01	-	-	-	0.01
		sericite domains. Qtz cry to the fabric.	stals identified and local fra	agments of feldspar. Minor	tourmaline	veinlets	parallel	DC011436	58.38	58.88	0.50		0.01	-	-	-	0.01
		to the lability.						DC011437	58.88	59.38	0.50		0.01	-	-	-	0.01
								DC011438	59.38	59.88	0.50		0.02	-	-	-	0.02
		Structure Maj.:	Type/Core Angle MDF 61	Comment Minor veriations				DC011439	59.88	60.38	0.50		0.01	0.01	-	-	0.01
		56.88 - 70.39	-	Minor variations				DC011441	60.38	60.88	0.50		0.02	-	-	-	0.02
		Alteration Maj:	Type/Style/Intensity	Comment				DC011442	60.88	61.57	0.69		0.01	-	-	-	0.01
		56.88 - 70.39	TL VN					DC011443	61.57	61.87	0.30		0.02	-	-	-	0.02
		56.88 - 70.39	SE INT WM					DC011445	61.87	62.37	0.50		0.01	-	-	-	0.01
		56.88 - 70.39	CL B MS					DC011446	62.37	62.87	0.50		0.01	-	-	-	0.01
		56.88 - 70.39	SI P MS					DC011447	62.87	63.37	0.50		1.74	-	-	-	1.74
		Mineralization Maj.:	Type/Style/%Mineral	Comment				DC011448	63.37	63.87	0.50		0.01	-	-	-	0.01
		56.88 - 70.39	PY TR 0.5	In veinlets				DC011449	63.87	64.37	0.50		0.01	0.01	-	-	0.01
		Vein Maj.:	Type/Mineral		%	ca	vg	DC011450	64.37	64.87	0.50		0.01	-	-	-	0.01
		61.57 - 61.64	QCV AU		100.0	58	1	DC011451	64.87	65.37	0.50		0.01	•	-	-	0.01
		61.64 - 62.00						DC011452	65.37	65.87	0.50		0.18	-	-	-	0.18
								DC011453	65.87	66.37	0.50		0.01	-	-	-	0.01
								DC011454	66.37	66.87	0.50		0.01	-	-	-	0.01

Hole Number	PRS-10A	Project: GOUDREAU	inging the state of	et verset standarden i e	or export of	, 198 - Sections of the section of	s emange in the		roject Num			entroloni, mar dominato (m. 1882), independento
From (m)	To (m)	Lithology	Sample #	From		Length	Zone		Dup AA (ppm)		Metai (ppm)	Au fin (ppm)
			DC011455	66.87	67.37	0.50		0.01	-	-	-	0.01
			DC011456	67.37	67.87	0.50		0.01	-	-	-	0.01
			DC011457	67.87	68.37	0.50		0.01	-	-	-	0.01
			DC011458	68.37	68.87	0.50		0.01	-	-	-	0.01
			DC011459	68.87	69.37	0.50		0.00	-	-	-	0.00
			DC011461	69.37	69.87	0.50		0.01	-	-	-	0.01
			DC011462	69.87	70.39	0.52		0.02	-	-	-	0.02
70.39	75.90	IIDS GRANODIORITE SCHIST.	DC011463	70.39	71.39	1.00		0.00	-	-	_	0.00
		All of this unit is altered to one degree or another. In a few sections the granodiorite is unaltered (chlorite	DC011464	71.39	72.39	1.00		0.00	-	-	-	0.00
		seams only) but it does retain a weak to moderate fabric (the primary blue-gray color is visible). Upper contact is relatively sharp and is marked by a tourmaline-qtz-chlorite vein containing diss pyrite. About	DC011465	72.39	72.99	0.60		0.00	-	-	-	0.00
		30% of the interval consists of a distinctive salmon pink colored granodiorite (sericitised). This altered	DC011466	72.99	73.79	0.80		0.48	-	-	-	0.48
		granodiorite also contains veinlets of tourmaline and diss pyrite.	DC011467	73.79	74.64	0.85		0.42	-	-	-	0.42
		No VG observed.	DC011468	74.64	75.54	0.90		0.00	-	-	-	0.00
			DC011469	75.54	75.90	0.36		0.03	0.02	-	-	0.03
75.90	78.89	V3BD BASALTIC DYKE.	DC011470	75.90	76.20	0.30		0.01	-	_	-	0.01
		Dark green with a 10cm chill margin. Upper contact marked by calcite veinlets parallel to the contact. Uniform grain size throughout with calcite porphyroblasts. Fabric best on the margins with a more homogeneous texture in the lower sections. Some later carbonate-qtz veins at various angles.	DC011471	78.59	78.89	0.30		2.85	-	-	-	2.85

łole Number	PRS-10A	Project: GOUDREAU		P.S. SHIP THERMAN		parties the sign of the second	يوا الاستان رواني	Pi	roject Nun	nber: 0	5300	en in men en e
From (m)	To (m)	Lithology	Sample #	From	To I	.ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
78.89	79.57	QTV QUARTZ TOURMALINE VEIN. Late milky colored qtz vein with stringers of tourmaline and local euhedral pyrite. No VG.	DC011472	78.89	79.57	0.68		4.79	-	-	-	4.79
79.57	82.27	V3BD BASALTIC DYKE. Same as 75.9m.	DC011473	79.57	79.87	0.30		0.01	-	-	-	0.01
82.27	182.23	I1D GRANODIORITE.	DC011474	82.27	82.57	0.30		0.01	-	-	-	0.01
		Into the main mass of the granodiorite. Upper contact marked by a 10cm wide siliceous zone with slight intermixing between the granodiorite and the basalt. Between the upper contact and 96m the granodiorite is blue green to gray in color; after 96m the unit is paler in color due to sericite.	DC011475 DC011476	82.57 83.57	83.57 84.57	1.00 1.00		0.00 0.04	-	-	-	0.00 0.04
		Moderate to locally strong foliation defined by both chlorite and tourmaline veining. Weak alignment of relict qtz and/feldspars crystals. Interestingly, there is an earlier foliation oriented at a low angle to the core axis that is crenulated by the chlorite/tourmaline fabric.	DC011477 DC011478 DC011479	84.57 85.57 86.57	85.57 86.57 87.57	1.00 1.00 1.00		0.01 0.00 0.00	- 0.00	- - -	- - -	0.01 0.00 0.00
		168.40 to 182.23m: pinkish color in the granodiorite due to potassic alteration. Bleaching also intense in this section (beige rather than pink). Belongs to part of a shear zone at the southern contact of the granodiorite.	DC011481 DC011482 DC011483	87.57 88.57 89.57	88.57 89.57 90.57	1.00 1.00 1.00		0.03 0.01 0.02	-	- - -	- -	0.03 0.01 0.02
		Both first and second generation qtz veins are present, the latter invariably with carbonate and /or tourmaline. Sometimes tourmaline defines the primary fabric.	DC011484 DC011485	90.57 91.57	91.57 92.57	1.00 1.00		0.07 0.06	-	-	-	0.07
		Due to the alteration, most of this unit has been sampled. Diss pyt and po in some sections of the granodiorite but not extensive.	DC011486 DC011487	92.57 93.57	93.57 94.57	1.00 1.00		0.03 0.01	-	-	-	0.03 0.01

Hole Number PRS-10A Project: GOUDREAU Project Number: 05300

From To (m) (m) Lithology Sample From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

ו)	(m)	Lithology	Sample #	From	To_L	ength.	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
		144 to 147m: about 40% of interval is broken core.	DC011488	94.57	95.57	1.00		0.01	-	-	•	0.01
			DC011489	95.57	96.57	1.00		0.24	0.26	-	-	0.25
			DC011490	96.57	97.57	1.00		0.04	-	-	-	0.04
			DC011491	97.57	98.57	1.00		0.03	-	-	_	0.03
			DC011492	98.57	99.57	1.00		0.06	-	-	-	0.06
			DC011493	99.57	100.57	1.00		0.02	-	-	-	0.02
			DC011494	100.57	101.57	1.00		0.08	-	-	_	0.08
			DC011495	101.57	102.57	1.00		0.03	-	-	-	0.03
			DC011496	102.57	103.57	1.00		0.04	-	-	-	0.04
			DC011497	103.57	104.57	1.00		0.04	-	-	-	0.04
			DC011498	104.57	105.57	1.00		0.00	-	-	-	0.00
			DC011499	105.57	106.57	1.00		0.00	0.00	-	_	0.00
			DC011501	106.57	107.57	1.00		0.03	-	-	-	0.03
			DC011502	107.57	108.57	1.00		0.07	-	-	-	0.07
			DC011503	108.57	109.57	1.00		0.15	-	-	-	0.15
			DC011504	109.57	110.57	1.00		0.12	-	-	-	0.12
			DC011505	110.57	111.57	1.00		0.35	-	-	-	0.35
			DC011506	111.57	112.57	1.00		0.03	-	-	-	0.03
			DC011507	112.57	113.57	1.00		0.15	-	-	_	0.15
			DC011508	113.57	114.57	1.00		1.58	-	-	-	1.58
			DC011509	114.57	115.57	1.00		0.23	-	-	-	0.23
			DC011510	115.57	116.57	1.00		0.49	-	-	-	0.49
			DC011511	116.57	117.57	1.00		0.04	0.04	-	-	0.04
			DC011512	117.57	118.57	1.00		0.06	-	-	-	0.06
			DC011513	118.57	119.57	1.00		0.15	-	-	_	0.15
			DC011514	119.57	120.57	1.00		0.00	-	-	-	0.00
			DC011515	120.57	121.57	1.00		0.03	-	-	_	0.03

Hole Number PRS-10A GOUDREAU Project: Project Number: 05300

		FIGER. GOUDILA.			san wateran kalandara	FIDJECT NUMBER. 03300						
m m)	To (m)	Lithology	Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
			DC011516	121.57	122.57	1.00		2.24			<u></u>	2.24
			DC011517	122,57	123.57	1.00		0.00	-	_	_	0.00
			DC011518	123.57		1.00		0.01	_	_	_	0.01
			DC011519	124.57		1.00		0.03	-	_	_	0.03
			DC011521	125.57		1.00		0.01	_	_	_	0.01
			DC011522		127.57	1.00		0.01	0.01	_	_	0.01
			DC011523		128.57	1.00		0.03	-	-	_	0.03
			DC011524	128.57		1.00		0.08	-	_	_	0.08
			DC011525	129.57	130.57	1.00		0.01	-	-	_	0.01
			DC011526	130.57	131.57	1.00		0.02	-	-	_	0.02
			DC011527	131.57	132.57	1.00		0.08	-	-	-	0.08
			DC011528	132.57	133.57	1.00		0.11	-	-	_	0.11
			DC011529	133.57	134.57	1.00		0.01	-	-	-	0.01
			DC011530	134.57	135.57	1.00		0.02	-	-	-	0.02
			DC011531	135.57	136.57	1.00		0.01	0.01	-	-	0.01
			DC011532	136.57	137.57	1.00		0.02	-	-	-	0.02
			DC011533	137.57	138.57	1.00		0.07	-	-	-	0.07
			DC011534	138.57	139.57	1.00		0.02	-	-	-	0.02
			DC011535	139.57	140.57	1.00		0.01	-	-	-	0.01
			DC011536	140.57	141.57	1.00		0.01	-	-	_	0.01
			DC011537	141.57	142.57	1.00		0.01	-	-	-	0.01
			DC011538	142.57	143.57	1.00		0.11	-	-	-	0.11
			DC011539	143.57	144.57	1.00		0.26	-	-	-	0.26
			DC011541	144.57	145.57	1.00		0.09	0.08	-	-	0.08
			DC011542	145.57	146.57	1.00		0.11	-	-	-	0.11
			DC011543	146.57	147.57	1.00		0.13	-	-	-	0.13
			DC011544	147.57	148.57	1.00		0.81	-	-	-	0.81

GOUDREAU Hole Number PRS-10A Project Number: 05300 Project: To From Au AA Dup AA Grav Metal Au fin Sample # (m) Lithology From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) (m) DC011545 148.57 149.57 1.00 0.05 0.05 DC011546 149.57 150.57 1.00 0.34 0.34 DC011547 150.57 151.57 1.00 0.09 0.09 DC011548 151.57 152.57 1.00 0.30 0.30 152.57 DC011549 153.57 1.00 0.09 0.09 DC011550 153.57 154.57 1.00 0.00 0.00 DC011551 154.57 155.57 1.00 0.09 0.07 0.08 DC011552 155.57 156.57 1.00 0.22 0.22 DC011553 156.57 157.57 1.00 0.04 0.04 DC011554 157.57 158.57 1.00 0.03 0.03 DC011555 158.57 159.57 1.00 0.03 0.03 0.03 DC011556 159.57 160.57 1.00 0.05 0.05 DC011557 160.57 161.57 1.00 0.04 0.04 DC011558 161.57 162.57 1.00 0.10 0.10 DC011559 162.57 163.57 1.00 0.03 0.03 DC011561 163.57 164.57 1.00 0.02 0.02 DC011562 164.57 165.57 1.00 0.01 0.01 DC011563 165.57 166.57 1.00 0.11 0.11 DC011564 166.57 167.57 1.00 0.01 0.01 DC011565 167.57 168.40 0.83 0.28 0.33 0.30 DC011566 168.40 169,40 1.00 0.02 0.02 DC011567 169.40 170.40 1.00 0.02 0.02 DC011568 170.40 170.70 0.30 0.15 0.15 DC011569 170.70 171.50 0.80 0.04 0.04 DC011570 171.50 172.50 1.00 0.02 0.02 DC011571 172.50 173.50 1.00 0.01 0.01 DC011572 173.50 173.90 0.40 0.05 0.05

le Number	PRS-10A			The state with the state of the	-	UDREA	U		e state ii		and the second s			roject Num	iber: 0	5300	
-rom (m)	To (m)		Litholog					Sample #	From		Length	Zone	Au AA	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
								DC011573	173.90	174.90	1.00		0.16	-	-	_	0.16
								DC011574	174.90	175.90	1.00		0.02	-	-	-	0.02
								DC011575	175.90	176.90	1.00		0.02	0.02	-	-	0.02
								DC011576	176.90	177.90	1.00		3.29	-	-	-	3.29
								DC011577	177.90	178.90	1.00		0.23	-	-	-	0.23
								DC011578	178.90	179.90	1.00		0.02	-	-	-	0.02
								DC011579	179.90	180.90	1.00		0.05	-	-	-	0.05
								DC011581	180.90	181.90	1.00		0.31	-	-	-	0.31
								DC011582	181.90	182.23	0.33		0.02	-	-	-	0.02
182.23	186.44	T9ZS SCHIS	T UNDIFFERENTIATED					DC011583	182.23	183.23	1.00		0.05	-	-	-	0.05
			qtz porphyry - continuation					DC011584	183.23	184.23	1.00		0.09	-	-	-	0.09
			eins in the main foliation - the ted. Local relict feldspars (fi					DC011585	184.23	184.73	0.50		0.16	0.18	-	-	0.17
			leformation and alteration.					DC011586	184.73	185.28	0.55		0.25	-	-	-	0.25
								DC011587	185.28	185.58	0.30		0.95	-	-	-	0.95
		Structure Maj.:	Type/Core Angle	Comment				DC011588	185.58	186.44	0.86		0.04	-	-	-	0.04
		182.23 - 186.44	SDF 52														
		Alteration Maj:	Type/Style/Intensity	Comment													
		182.23 - 186.44	SE INT WM														
		182.23 - 186.44	CL P MS														
		182.23 - 186.44	SI P MS														
		<i>Mineralization Maj. :</i> 182.23 - 186.44	Type/Style/%Mineral PY DIS 1	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		185.28 - 185.44	QCT PY		60.0	52	0										

Hole Number			Project:	GOUDREAU			en d'a France : Cen es			oject Num			
From (m)	To (m)		Lithology	Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
186.44	191.15	T2QFP	INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC011589	186.44	186.74	0.30		0.02		-	-	0.02
			color with scattered small qtz crystals and local gray feldspars. No pe	netrative fabric. Weak DC011590	186.74	187.74	1.00		0.02	-	-	-	0.02
		localized seri	cite alteration but pervasive silicification.	DC011591	187.74	188.74	1.00		0.01	-	-	-	0.01
		187.02: 4cm	wide layer of granodiorite.	DC011592	188.74	189.74	1.00		0.14	-	-	-	0.14
				DC011593	189.74	190.24	0.50		0.14	-	-	-	0.14
				DC011594	190.24	191.15	0.91		0.26	-	-	-	0.26
191.15	192.40	T2A	INTERMEDIATE ASH TUFF	DC011595	191.15	192.10	0.95		0.08	0.12	-	_	0.10
191.10	102.40	Continuation associated p	of the green color but the unit has lost most of the qtz and feldspar cry rite and qtz-carb veinlets, is locally developed. In places it could be a still recognizable.	stals. A fabric, with DC011596	192.10	192.40	0.30		0.01	-	-	-	0.01

Sampled to check for grade continuity/variation.

Hole Number	PRS-10A			Project: GOUDREAU						Р	roject Num	ber: 0	5300	
From (m)	To (m)	and the second s	Litholog	y	Sample #	From	To I	_ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
192.40	197.04	T9ZS SCHIST	T UNDIFFERENTIATED		DC011597	192.40	192.90	0.50		0.02	-	-	_	0.02
				s but it does contain ABUNDANT GOLD in early	DC011599	192.90	193.40	0.50		0.10	-	-	-	0.10
		generation zones of silic sections are bleached w	a veining. Country rock is g ith a higher sericite compor	enerally green in color due to abundant chlorite. Local nent. Edges of the veins contain discrete pyrite	DC011601	193.40	193.90	0.50		0.05	-	-	-	0.05
		crystals and dark green	chloritic selvages.		DC011602	193.90	194.40	0.50		0.23	-	-	-	0.23
		of granodiorite material	iasts overprint the dominan - no chill zone suggesting th	t fabric. About 30% of interval contains narrow zones nat the intrusion occurred at same depth as the	DC011603	194.40	194.80	0.40		0.14	-	-	-	0.14
		deformation.	•		DC011604	194.80	195.30	0.50		74.13	-	-	-	74.13
		Veins and foliation in this	s section are sub parallel to	the core axis. It is possible that this orientation	DC011606	195.30	195.80	0.50		240.71	-	-	-	240.71
			ntation preserved in a fold c ily a D1 event with modifica	losure. Gold, alteration, silicification and granodiorite	DC011608	195.80	196.30	0.50		0.87	-	-	-	0.87
		illiusion may be priman	ny a DT event with mounta	non by younger structures.	DC011609	196.30	197.04	0.74		0.03	-	-	-	0.03
		Structure Maj.:	Type/Core Angle	Comment										
		192.40 - 197.04	SDF 10	Early D1 veining?										
		Alteration Maj:	Type/Style/Intensity	Comment										
		192.40 - 197.04	SE INT											
		192.40 - 197.04	CL P +											
		192.40 - 197.04	SI P ++											
		<i>Mineralization Maj. :</i> 192.40 - 197.04 192.40 - 197.04 192.40 - 197.04	Type/Style/%Mineral PY TR 0.5 MG DIS 0.5 AU FF 0.05	Comment										
197.04	199.28	Dark green colored, wea	akly foliated with darker gre	SPAR PORPHYRITIC TUFF. en chlorite defining this foliation. Silicification crystals, generally small (less than 3mm).	DC011610	197.04	197.34	0.30		0.09	-	-		0.09

chlorite alteration zone.

Sample # From

To Length

Hole Number	PRS-10A	Project: GOUDREAU
From (m)	To (m)	Lithology
199.28	207.92	V2QFP INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. A massive version of the latter unit. Finer-grained gray to greenish matrix with scattered qtz and feldspar crystals. Only a weak fabric developed and it is generally restricted to discrete spaced zones. Relative abundance of carbonate filled late gashes (reflects massive nature?)
207.92	215.12	V2QFP INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. A variation of the latter unit - appears to have an anastomosing foliation defined by dark green chlorite around relatively large fragments/clasts. The latter could primary or tectonically created i.e. it could be the previous volcanic unit that has been fragmented and the induced foliation has been altered. Fragments are porphyritic volcanic rocks, no chill zones. Some of the chlorite foliation has pyrite.
215.12	218.25	I1D GRANODIORITE. Paler gray version of the typical granodiorite. Nevertheless, there is abundant secondary chlorite in the interstices of the qtz and feldspar grains. Upper contact sharp, lower one is gradational with a 10cm

Project Number: 05300

Au AA Dup AA Grav Metal

(ppm)

Hole Number	PRS-10A	Project: GOUDREAU		n der Miller		the second second second	an audensia in the co	Pr	oject Num	iber: 0	5300	
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
218.25	223.71	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 197.04m. Perhaps more siliceous in the lower sections of this unit - silicification has a purplish hue.										
223.71	229.19	IID GRANODIORITE.	DC011611	226.16	226.46	0.30		0.06				0.00
220.71	223.13	More than 80% of the unit is pale gray to green granodiorite. Distinct upper and lower contacts but not							-	-	-	0.06
		sharp.	DC011612	226.46		0.67		0.38	-	-	-	0.38
			DC011613	227.13	228.10	0.97		0.15	-	-	-	0.15
		226.46 to 228.10m: central part of the unit is a sheared and altered version (maybe it is an inclusion of the T2QFP). Upper section (226.46 to 227.13m) is bleached and pyritised whereas the lower section	DC011614	228.10	228.40	0.30		0.10	-	-	-	0.10
		(remainder) is silicified and only weakly mineralized. In the upper section there is a 2cm qtz vein oriented sub parallel to the core axis but there is no VG.	DC011615	228.40	229.19	0.79		0.05	0.01	-	-	0.03

ole Number	PRS-10A	the transfer of the same of the same	Months and the control of the contro	Project: GOUDREAU	e ere e siste e a a company a	· · · · · · .	er William I all the I all the	er Same and a	14 - 4 V	Pr	roject Num	ber: 0	5300	e e a tempo por e
From (m)	To (m)		Litholog	gy	Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
229.19	234.58	T2QP INTER	RMEDIATE QUARTZ PORP	HYRITIC TUFF.	DC011616	229.19	230.19	1.00		0.01				0.01
				a fine to medium grained matrix. Unusually, this unit	DC011617	230.19	231.19	1.00		0.39	-	-	_	0.39
		abundance of pyrite in	rougnout and a moderately	well developed foliation. Sampled because of the	DC011618	231.19	232.19	1.00		0.03	-	-	-	0.03
		Lower contact is gradat	tional and a little arbitrary by	It it is placed at the point where the diss pyrite	DC011619	232.19	233.19	1.00		0.06	-	-	-	0.06
		becomes less abundan		it it is placed at the point where the diss pyrite	DC011621	233.19	234.19	1.00		0.06	-	-	-	0.06
		232.74 to 233.54m: all	broken core.		DC011622	234.19	234.58	0.39		0.02	-	-	-	0.02
234.58	237.38	Loss of some of the py	ST UNDIFFERENTIATED rite and a change in color to derate fabric and silicification	p pale gray and lighter green. Pinkish potassic n.	DC011623 DC011624 DC011625	234.58 235.58 236.58	235.58 236.58 237.38	1.00 1.00 0.80		0.01 0.02 0.05	- -	- - -	-	0.01 0.02 0.05
234.58	237.38	Loss of some of the py alteration patches. Moc	rite and a change in color to derate fabric and silicification		DC011624	235.58	236.58	1.00		0.02		- -		0.02
234.58	237.38	Loss of some of the py	rite and a change in color to		DC011624	235.58	236.58	1.00		0.02	-			0.02
234.58	237.38	Loss of some of the py alteration patches. Moc	rite and a change in color to derate fabric and silicification Type/Core Angle		DC011624	235.58	236.58	1.00		0.02		- - -		0.02
234.58	237.38	Loss of some of the py alteration patches. Mod Structure Maj.: 234.58 - 237.38	rite and a change in color to derate fabric and silicification Type/Core Angle MDF 58	Comment	DC011624	235.58	236.58	1.00		0.02	- - -	-		0.02
234.58	237.38	Loss of some of the py alteration patches. Mod Structure Maj.: 234.58 - 237.38 Alteration Maj:	rite and a change in color to derate fabric and silicification Type/Core Angle MDF 58 Type/Style/Intensity	Comment	DC011624	235.58	236.58	1.00		0.02		- - -		0.02
234.58	237.38	Loss of some of the py alteration patches. Mod Structure Maj.: 234.58 - 237.38 Alteration Maj: 234.58 - 237.38	rite and a change in color to derate fabric and silicification Type/Core Angle MDF 58 Type/Style/Intensity CL PCH WM	Comment	DC011624	235.58	236.58	1.00		0.02				0.02

ole Number	PRS-10A	n en ek vin en versig in der sich der	en de la composition	Proje	ct: GC	UDRE	AU Salata autoria de la comp	e ve to montant to the consequence of	a actor to the theater	. Hada sa		8 to 1	Pi	oject Num	iber: 0	5300	in the state of th
From (m)	To (m)		Litholog	у				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
237.38	240.01	API ISLANI	O ALTERATION PACKAGE	<u> </u>				DC011626	237.38	238.38	1.00		0.08			_	0.08
				ered part of this section and it			or vein	DC011627	238.38	239.05	0.67		0.11	-	-	_	0.11
		of early generation qtz v	eins. Potassic alteration inc	creases and the banding is a l	ittle stron	ger.		DC011628	239.05	239.60	0.55		0.96	-	-	-	0.96
		A few late qtz-carb (tour	maline) veins cross cutting	the main fabric. Carry coarse	-grained p	yrite.		DC011629	239.60	240.01	0.41		24.36	-	-	-	24.36
		Structure Maj.:	Type/Core Angle	Comment													
		237.38 - 240.01	MDF 36														
		Alteration Maj:	Type/Style/Intensity	Comment													
		237.38 - 240.01	TL SP	Local veinlets but tourmalin	e content	is low (overal!										
		237.38 - 240.01	CL INT														
		237.38 - 240.01	SE PCH +														
		237.38 - 240.01	SI P ++														
		Mineralization Maj.: 237.38 - 240.01	Type/Style/%Mineral PY DIS 1	Comment Maximum													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		239.05 - 239.40	QV PY		40.0	16	0										
240.01	242.55	T9ZS SCHIST	T UNDIFFERENTIATED					DC011630	240.01	240.58	0.57		2.45	_	_	_	2.45
				ic veinlets and carbonate para	allel to the	domin	ant	DC011631	240.58	241.08	0.50		0.03	0.02	_	_	0.03
		foliation. Impression of s	strong stretching in this sch	st.				DC011632	241.08	241.58	0.50		0.05	-	-	_	0.05
				Imost up to the previous API.				DC011633	241.58	241.88	0.30		1.66	-	-	-	1.66
			eneration qtz-carbonate vei	rite content (3-5%). About 30 n (barren).	76 OF LITE	API IIKE	uillis	DC011634	241.88	242.25	0.37		0.81	-	-	-	0.81
								DC011635	242.25	242.55	0.30		0.03	-	-	-	0.03
		Structure Maj.:	Type/Core Angle	Comment													
		240.01 - 242.55	MDF 38														
		Alteration Maj:	Type/Style/Intensity	Comment													

ole Number	PRS-10A	errore to the transfer of the second	es - Long Communication (Communication Communication Communication Communication Communication Communication Co	Project	: G0	UDRE/	AU	دميون ۽ دست	and the second second second	adva a.	L 30 152+	ورافي فعراد بالرجم اليوس المع	· Sersan · ·	Pi en autone	roject Num	ber: 0	5300	. Were an in the second of the second
From (m)	To (m)		Litholog	y					Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		240.01 - 242.55	TL VN															
		240.01 - 242.55	CL P MS	Except for central API														
		240.01 - 242.55	SI P MS															
		Mineralization Maj.: 240.01 - 242.55	Type/Style/%Mineral PY DIS 3	Comment Better in the API type unit.														
		Vein Maj.:	Type/Mineral		%	ca	ν	/g										
		241.88 - 242.25	QTV PY		15.0	28	0)										
242.55	246.46		RMEDIATE QUARTZ PORPI qtz crystals, no obvious felds	HYRITIC TUFF. par, decent foliation and local p	oyrite.				DC011636 DC011637 DC011638 DC011639	242.55 243.55 244.55 245.55	244.5 245.5	5 1.00 5 1.00		0.01 0.06 0.00 0.00	- - -	-	- - -	0.01 0.06 0.00 0.00
246.46	257.71	T9ZS SCHIS	ST UNDIFFERENTIATED						DC011641	246.46	247.4	3 1.00		0.01	0.02	_	_	0.01
		Moderately to well folia	ited. Overall gray color with lo	ocal chloritisation. Latter has as	sociate	d discre	te p	oyrite	DC011642	247.46				0.06	-	_	-	0.06
		crystals but is not perv	asive. Patches of pink potass	sic alteration, best in the secon	d alterat	ion zon	e.		DC011643	248.46	249.4	3 1.00		0.14	-	-	-	0.14
				2m and 254.66 to 256.50m. Fin			3		DC011644	249.46	250.4	3 1.00		0.10	_	-	-	0.10
		tournialine veinlets whi	ne the second is characterize	d by pink potassic alteration ar	na qız ve	ining.			DC011645	250.46	251.4	4 0.98		0.40	-	-	-	0.40
									DC011646	251.44	252.0	2 0.58		0.14	-	-	-	0.14
		Structure Maj.:	Type/Core Angle	Comment	40-				DC011647	252.02	253.0	2 1.00		0.08	-	-	-	0.08
		246.46 - 257.71	MDF 40	Some sections of 10 degrees	100.				DC011648	253.02	254.0	2 1.00		0.14	-	-	-	0.14
		Alteration Maj:	Type/Style/Intensity	Comment					DC011649	254.02	254.6	6 0.64		0.07	-	-	-	0.07
		246.46 - 257.71	TL VN	Only in the most altered secti	ion				DC011650	254.66	255.6	3 1.00		0.02	-	-	-	0.02
		246.46 - 257.71	CL VN	As discrete veinlets					DC011651	255.66	256.6	3 1.00		0.13	0.11	-	-	0.12

Properation To Properation	Hole Number PRS-1	0 A	See the second of the see Market 1987 for all 1999	er tre sammer der till som mit mit state er state er state er state er state er s	eri za e Alexanda (Alexanda)	Project:	: GO	UDREA	U			an en altraktione			Pi	roject Num	ber: 0	5300	
26.46 - 257.71 SI P MS Less in the upper part 246.46 - 257.71 SI P MS Less in the upper part DC011653 257.16 257.71 0.55 0.06 - 0.06				Litholog	y					Sample #	From	To I	Length	Zone		•			
265.41 283.50 T9ZS SCHIST UNDIFFERENTIATED Sili green in color but their is a landancy to become gray in the lower parts of the unit. Not the best of examples—locally the original lishology is visible (T2Q(F)P). However, there are a few shear zones that are silicified on tourmaline rich with diss pyrite as well as a couple of dz veins (at least one carries Visible (20LD). Custod the shear zones that are silicified on tourmaline rich with diss pyrite as well as a couple of dz veins (at least one carries Visible (20LD). Custod this does not correct 265.62 to 265.60 to 26.60 m. Primary shear zone appears to be overprinted with late narrow (1-2cm) DC011665 265.10 271.50 271			246.46 - 257.71	SE PCH WM						DC011652	256.66	257.16	0.50		0.01	-	-	-	0.01
Mineralization Maj. : Type/Styler%Mineral As concentrations in veintlets rather than dispersed throughout the unit. As concentrations in veintlets rather than dispersed throughout the unit. As concentrations in veintlets rather than dispersed throughout the unit. Vein Maj. : Type/Mineral % ca vg			246.46 - 257.71	SI P MS	Less in the upper	r part				DC011653	257.16	257.71	0.55		0.06	-	-	-	0.06
251.44 - 282.02 QCT PY 5.0 46 0 254.66 - 256.50 QCV PY 10.0 29 0 257.71 265.41 T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF. Dark green in color with gray undertones. Moderate fabric with mm-scale qtz-carb veins parallel to the main foliation. Later cross cutting carbonate filled gashes. Pervasive silicification and local diss pyrite. 265.41 283.50 T9ZS SCHIST UNDIFFERENTIATED Sili green in color but there is a tendency to become gray in the lower parts of the unit. Not the best of examples - locally the original lithocy is visible (T2Q(F)P). However, there are a few shear zones that are silicide and tournaline rich with diss pyrite as well as a couple of qtz veins (at least one carries VISIBLE GOLD). Usukide of the shear zones that zones there is generally a moderate fabric. Bundaries of shear zones merge gradually into the less sheared portions of the unit. DC011665 265.41 266.41 1.00 0.03 - 0.03 - 0.03 visible QCLD could be less sheared portions of the unit. DC011665 268.41 267.41 1.00 0.03 - 0.03 - 0.03 visible QCLD could be less sheared portions of the unit. DC011669 268.02 08.50 0.30 15.34 - 15.34 visible QCLD could be less sheared portions of the unit. DC011669 268.02 08.50 0.30 15.34 - 0.26 visible QCLD could be pressed and clouds of VISIBLE GOLD. Could this be the DC011665 271.50 1.00 0.11 - 0.011 visible do the control of the unit. DC011664 270.50 271.50 1.00 0.11 - 0.011 visible do the control of the unit. DC011665 271.50 271.80 0.30 0.02 - 0.002 visible QCLD could this be the DC011665 271.50 1.00 0.01 visible QCLD could be pressed and clouds of VISIBLE GOLD. Could this be the DC011665 271.50 1.00 0.01 visible QCLD could be pressed and clouds of VISIBLE GOLD. Could this be the DC011665 271.50 1.00 0.01 visible QCLD could be pressed and clouds of VISIBLE GOLD. Could this be the DC011665 271.50 1.00 0.01 visible visible quarter than the pressed and clouds of VISIBLE GOLD. Could this be the DC011665 271.50 1.00 0.01 visible visible quarter than the pressed and clouds of VISIBLE GOLD. Could this b			•	• •	As concentration		rather t	han disp	ersed										
257.71 265.41 T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF. Dark green in color with gray undertones. Moderate fabric with mm-scale qtz-carb veins parallel to the main foliation. Later cross cutting carbonate filled gashes. Pervasive silicification and local diss pyrite. DC011655 265.11 265.41 0.30 0.01 0.00 DC011655 265.11 265.41 0.30 0.01 0.01 DC011655 265.11 265.41 0.30 0.01 0.01 DC011656 265.41 266.41 1.00 0.01 0.01 DC011657 266.41 267.41 1.00 0.03 0.03 are slicitified and tourmaline rich with diss pyrite as well as a couple of qtz veins (at local concerning to the unit. Not the less of examples - locally the original lithology is visible (T2Q(F)P). However, there are a few shear zones that are slicitified and tourmaline rich with diss pyrite as well as a couple of qtz veins (at local concerning to the less sheared portions of the unit. DC011659 268.20 268.50 0.30 15.34 - 0.15.34 200.00 0.00 0.00 0.00 0.00 0.00 0.00 0			Vein Maj.:	Type/Mineral			%	ca	vg										
257.71 265.41 T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF. Dark green in color with gray undertones. Moderate fabric with mm-scale qtz-carb veins parallel to the main foliation. Later cross cutting carbonate filled gashes. Pervasive silicification and local diss pyrite. DC011655 265.11 265.41 0.30 0.01 0.01 265.41 283.50 T9ZS SCHIST UNDIFFERENTIATED Still green in color but there is a tendency to become gray in the lower parts of the unit. Not the best of examples - locally the original lithology is visible (T2Q(F)P). However, there are a few shear zones that are silicified and tourmaline rich with diss pyrite as well as a couple of qtz veins (abeat one carries visiBLE GOLD). Outside of the shear zones there is generally a moderate fabric. Boundaries of shear zones merge gradually into the less sheared portions of the unit. Broken core: 265.62 to 266.80m. Primary shear zone appears to be overprinted with later narrow (1-2cm) qtz-carbonate veins. Citz vein at 268.32m: narrow but contains small specks and clouds of VISIBLE GOLD. Could this be the down dip connection with the mineralization in hole PRS 037			251.44 - 252.02	QCT PY			5.0	46	0										
Dark green in color with gray undertones. Moderate fabric with mm-scale qtz-carb veins parallel to the main foliation. Later cross cutting carbonate filled gashes. Pervasive silicification and local diss pyrite. 265.41 283.50 T9ZS SCHIST UNDIFFERENTIATED			254.66 - 256.50	QCV PY			10.0	29	0										
Still green in color but there is a tendency to become gray in the lower parts of the unit. Not the best of examples - locally the original lithology is visible (T2Q(F)P). However, there are a few shear zones that are silicified and tourmaline rich with diss pyrite as well as a couple of qtz veins (at least one carries VISIBLE GOLD). Outside of the shear zones there is generally a moderate fabric. Boundaries of shear zones merge gradually into the less sheared portions of the unit. DC011657 266.41 267.41 1.00 0.03 0.03			Dark green in color with main foliation. Later cros	gray undertones. Moderate ss cutting carbonate filled g	fabric with mm-sc ashes. Pervasive s	ale qtz-carb v illicification al	veins pa nd local	rallel to diss pyr	the ite.	DC011655	265.11	265.41	0.30		0.01	-	-	-	0.01
Still green in color but there is a tendency to become gray in the lower parts of the unit. Not the best of examples - locally the original lithology is visible (T2Q(F)P). However, there are a few shear zones that are silicified and tourmaline rich with diss pyrite as well as a couple of qtz veins (at least one carries VISIBLE GOLD). Outside of the shear zones there is generally a moderate fabric. Boundaries of shear zones merge gradually into the less sheared portions of the unit. DC011659 268.20 268.50 0.30 0.17 - - - 0.17	265.41 28	3.50	T9ZS SCHIS	T UNDIFFERENTIATED						DC011656	265.41	266.41	1.00		0.01	-	_	_	0.01
are silicified and tourmaline rich with diss pyrite as well as a couple of qtz veins (at least one carries VISIBLE GOLD). Outside of the shear zones there is generally a moderate fabric. Boundaries of shear VISIBLE GOLD). Outside of the shear zones there is generally a moderate fabric. Boundaries of shear DC011659 268.20 268.50 0.30 15.34 15.34 DC011662 268.50 269.50 1.00 0.26 0.26 DC011663 269.50 270.50 1.00 0.10 - 0.11 Qtz vein at 268.32m: narrow but contains small specks and clouds of VISIBLE GOLD. Could this be the down dip connection with the mineralization in hole PRS 03?			Still green in color but th	ere is a tendency to becom	e gray in the lower	parts of the	unit. No	ot the be	st of	DC011657	266.41	267.41	1.00		0.03	-	-	-	0.03
VISIBLE GOLD). Outside of the shear zones there is generally a moderate fabric. Boundaries of shear zones merge gradually into the less sheared portions of the unit. DC011659 268.20 268.50 0.30 15.34 15.34 DC011662 268.50 269.50 1.00 0.26 0.26 Broken core: 265.62 to 266.80m. Primary shear zone appears to be overprinted with later narrow (1-2cm) DC011663 269.50 270.50 1.00 0.10 0.10 qtz-carbonate veins. DC011664 270.50 271.50 1.00 0.11 0.11 Otz vein at 268.32m: narrow but contains small specks and clouds of VISIBLE GOLD. Could this be the down dip connection with the mineralization in hole PRS 03?			examples - locally the or are silicified and tourma	riginal lithology is visible (T2 line rich with diss pyrite as v	(F)P). However, well as a couple of	there are a for	ew sheat least or	ar zones ne carrie	that s	DC011658	267.41	268.20	0.79		0.17	-	-	-	0.17
Broken core: 265.62 to 266.80m. Primary shear zone appears to be overprinted with later narrow (1-2cm) qtz-carbonate veins. DC011662 268.50 269.50 1.00 0.26 0.26 DC011663 269.50 270.50 1.00 0.10 0.10 DC011664 270.50 271.50 1.00 0.11 0.11 Qtz vein at 268.32m: narrow but contains small specks and clouds of VISIBLE GOLD. Could this be the down dip connection with the mineralization in hole PRS 03?			VISIBLE GOLD). Outsid	le of the shear zones there	s generally a mode					DC011659	268.20	268.50	0.30		15.34	_	-	-	15.34
qtz-carbonate veins. DC011664 270.50 271.50 1.00 0.11 0.11 Qtz vein at 268.32m: narrow but contains small specks and clouds of VISIBLE GOLD. Could this be the down dip connection with the mineralization in hole PRS 03?			zones merge gradually i	nto the less sheared portion	is of the unit.					DC011662	268.50	269.50	1.00		0.26	-	-	-	0.26
Otto vein at 268.32m: narrow but contains small specks and clouds of VISIBLE GOLD. Could this be the DC011664 270.50 271.50 1.00 0.11 0.11 Outziell at 268.32m: narrow but contains small specks and clouds of VISIBLE GOLD. Could this be the DC011665 271.50 271.80 0.30 0.02 0.02 down dip connection with the mineralization in hole PRS 03?				266.80m. Primary shear zor	ne appears to be o	verprinted with	th later	narrow (1-2cm)	DC011663	269.50	270.50	1.00		0.10	-	-	-	0.10
down dip connection with the mineralization in hole PRS 03?			•							DC011664	270.50	271.50	1.00		0.11	-	-	-	0.11
DC011666 271.80 272.80 1.00 0.03 0.03			Qtz vein at 268.32m; na down dip connection wit	rrow but contains small spe	cks and clouds of ' PRS 03?	VISIBLE GO	LD. Cou	ıld this b	e the	DC011665	271.50	271.80	0.30		0.02	-	-	-	0.02
			dominal obligation with	a.o minoranzadon in 11010						DC011666	271.80	272.80	1.00		0.03	-	-	-	0.03

21-Oct-06 6:44:54 PM

GOUDREAU Project Number: 05300 Hole Number PRS-10A Project: From To Au AA Dup AA Grav Metal Au fin (ppm) (ppm) (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) DC011667 272.80 273.30 0.50 0.02 0.02 Structure Maj.: Type/Core Angle Comment 0.64 0.01 DC011668 273.30 273.94 0.01 265.41 - 283.50 MDF 40 DC011669 273.94 274.24 0.30 0.01 0.01 Alteration Mai: Type/Style/Intensity Comment 4.80 DC011670 274.24 274.54 0.30 4.80 265.41 - 283.50 CB VN WM Narrow (1-4mm) and spotty 0.01 DC011672 274.54 274.84 0.30 0.01 265.41 - 283.50 TL VN Not much 275.84 0.14 DC011673 274.84 1.00 0.14 SE PCH 265.41 - 283.50 276.29 0.45 0.02 0.02 DC011674 275.84 265.41 - 283.50 CL INT WM 0.30 0.01 DC011675 276.29 276.59 0.01 0.53 0.37 265.41 - 283.50 SI P MS DC011676 276.59 277.12 0.37 0.05 DC011677 277.12 277.42 0.30 0.05 Mineralization Maj. : Type/Style/%Mineral Comment 265.41 - 283.50 PY TR 0.5 Locally more abundant 0.10 DC011678 277.42 278.42 1.00 0.10 DC011679 278.42 278.92 0.50 0.02 0.02 Vein Maj.: Type/Mineral ca νg 0.63 0.00 268.32 - 268.41 QV PY 32 5 DC011681 278.92 279.55 0.00 0.00 100.0 274.24 - 274.54 QV py 20.0 54 5 DC011682 279.55 279.85 0.30 0.00 0.00 276.59 - 277.12 QCV PY 25.0 34 0 0.01 DC011683 279.85 280.25 0.40 0.01 32 279.85 - 280.95 QCT PY 0 5.0 0.00 DC011684 280.25 280.95 0.70 0.00 0.00 DC011685 280.95 281.25 0.30 0.00 282.25 1.00 0.04 0.04 DC011686 281.25 0.01 DC011687 282.25 282.75 0.50 0.01 DC011688 282.75 283.50 0.75 0.02 0.02 0.30 0.01 283.50 290.79 T2L INTERMEDIATE LAPILLI TUFF. DC011689 283.50 283.80 0.01 Generally gray to green in color. Silicified with minor areas of qtz veins (1-2cm wide) and associated diss 0.06 DC011690 290.49 290.79 0.30 0.06 pvt. Moderate fabric throughout. Lapilli layers vary from 5 cm to 35 cm wide (on average), interlayered with finer-grained tuff horizons (gradational contacts, 50-50 mix). About half of the lapilli layers contain pink colored lapilli due to potassic alteration. Some lapilli zones are pyritic. At least one example of a larger fragment of lapilli tuff (pyritic) within an ash type layer - may indicate D2 boudinaged of D1 mineralized unit?

Project Number: 05300 Hole Number PRS-10A Project: GOUDREAU Metal Au fin From To Au AA Dup AA Grav (ppm) (ppm) (ppm) (m) (m) Lithology Sample # From To Lenath Zone (ppm) (ppm) 0.20 0.30 290.79 305.21 T9ZS SCHIST UNDIFFERENTIATED DC011691 290.79 291.27 0.48 0.10 Stronger fabric overprinting the lapilli-ash unit, Lapilli are generally potassic, 1-2 cm long, stretched 291.27 292.06 0.79 0.17 0.17 DC011692 parallel to the foliation. Pervasive silicification but only trace to diss pyt throughout. Central portion lighter DC011693 292.06 292.71 0.65 0.08 0.08 in color due to sericitisation while the remainder tends to be green colored due to chlorite. Better diss pyt in the sericitic central part. 0.03 DC011694 292.71 293.71 1.00 0.03 0.01 293.71 DC011695 294.71 1.00 0.01 290.79 to 291.27m; and 292.06 to 292.71m; Two layers of dark green chlorite with discontinuous layers and porphyroblasts of magnetite and DC011696 294.71 295.71 1.00 0.10 0.10 scattered pyt crystals. Interestingly, intervening area is brecciated (FAULT) and it is speculated that the 0.01 DC011697 295.71 296.71 1.00 0.01 breccia defines an F2 fold closure. 0.00 296.71 297.71 1.00 0.00 DC011698 298.50 to 299.50m; stronger potassic alteration. Although this unit has been sampled I doubt that it will 297.71 DC011699 298.71 1.00 0.00 0.00 run. DC011701 298.71 299.71 1.00 0.00 0.00 0.00 0.01 DC011702 299.71 300.71 1.00 0.01 Structure Maj.: Type/Core Angle Comment 0.01 DC011703 300.71 301.71 1.00 0.01 MDF 45 290.79 - 305.21 302.71 1.00 0.01 0.01 DC011704 301.71 Alteration Maj: Type/Style/Intensity Comment DC011705 302.71 303.71 1.00 0.01 0.01 290.79 - 305.21 TL VN Minor 303.71 DC011706 304.71 1.00 0.04 0.04 290.79 - 305.21 SE PCH WM Locally banded 0.01 DC011707 304.71 305.21 0.50 0.01 CL P WM 290.79 - 305.21 290.79 - 305.21 SI P MS Mineralization Maj. : Type/Style/%Mineral Comment 290.79 - 305.21 MG TR 0.5 In restricted zones. 290.79 - 305.21 PY TR 0.5 Greater abundance over short distances (up to 1%).

21-Oct-06 6:44:54 PM Page 21 of 29

Hole Number	PRS-10A	Project: GOUDREAU	tantakan managaran salah s	151 0.015 0				Project Nun	nber: 0	5300	
From (m)	To (m)	Lithology	Sample #	From	To Ler	ngth Z		n AA Dup AA pm) (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
305.21	307.55	T2L INTERMEDIATE LAPILLI TUFF. Gray to green in color. Whitish 1-2cm flattened lapilli with local blue qtz crystals and a scattering of gray feldspars closer to the lower contact. Chlorite content relatively high. Silicified throughout with local zones of diss pyt.	DC011708	305.21	305.51	0.30	,	0.00 -	-	-	0.00
307.55	315.52	T1Z UNDIFFERENTIATED FELSIC TUFF. Loss of lapilli; unit is more of a fine-grained tuff with local blue qtz crystals. Moderate to strong fabric locally developed but only a weak association with pyrite. Veining tends to be late carb filled gashes although there a couple of 3cm wide qtz-tour-carb veins parallel to the dominant fabric. Patches and layers of chlorite-pyrite as part of the alteration assemblage. Unit has been sheared but it is not quite a T9ZS. No VG.	DC011709	315.22	315.52	0.30		0.03 -	-	-	0.03
315.52	315.96	API ISLAND ALTERATION PACKAGE. Bleached gray to pale pink. Sugary texture with diss pyt. Minor sheeted 1 cm qtz veins but no VG. Structure Maj.: Type/Core Angle Comment 315.52 - 315.96 MDF 36 Alteration Maj: Type/Style/Intensity Comment 315.52 - 315.96 SE P +	DC011710	315.52	315.96	0.44		0.21 -	-	-	0.21

Hole Number	PRS-10A	Project: GOUDREAU			<u> </u>			Pi	roject Num	ber: 05	300	entre de la companya
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		315.52 - 315.96 SI P ++ <i>Mineralization Maj.</i> : <i>Type/Style/%Mineral Comment</i> 315.52 - 315.96 PY DIS 2										
315.96	325.61	T1Z UNDIFFERENTIATED FELSIC TUFF. Similar to unit at 307.55 except that it is less altered and sheared. Has local accumulations of qtz and/or lapilli but most of it is a green to gray fine to medium grained tuff. Has a distinct green color suggestive of weak to non-existent alteration. Lower contact marked by a 50 cm sheared and chloritic layer (contact movement).	DC011711	315.96	316.20	6 0.30		0.06	0.06	-	-	0.06
325.61	334.17	T2L INTERMEDIATE LAPILLI TUFF. Similar to 305.21m. Gray to green in color, whitish 0.5 to 1cm flattened lapilli. Locally well developed fabric but generally poor. Silicified throughout. Gradational contacts, particularly the lower one.										
334.17	343.29	T2LFP INTERMEDIATE LAPILLI FELDSPAR PORPHYRITIC TUFF. Appears to be an increase the amount of gray colored feldspar crystals. Still the same style of alteration and fabric development (poor on both counts). Feldspars are locally fractured and aligned parallel to the main fabric.										

colored.

Metal

Au fin (ppm)

Hole Number	PRS-10A	Project: GOUDREAU	Company that developes to the	an an Charles and a second	والأواجات	n en		Pi	roject Num	ber: 0!	5300
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Meta (ppm)
343.29	346.78	I1QFP UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC. Purplish colored fine-grained matrix with scattered coarse gray colored feldspars. Many of the feldspars are euhedral. Local small blue qtz crystals. Chlorite pseudomorphs of earlier subhedral mineral. Multiple chlorite filled fractures cross cut the fine matrix. No significant mineralization.									
346.78	347.76	V3BD BASALTIC DYKE. Light to medium green color. Slightly chilled margins. Local pyrite cubes. Weak foliation.									
347.76	352.77	I1QFP UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC. Same as 343.39m. Appears to be subtle phases of the volcanic/intrusive unit but not significant enough to separate. Two distinct feldspar types: finer grained gray colored and coarser grained pale green									

21-Oct-06 6:44:55 PM Page 24 of 29

Hole Number	PRS-10A	es e satura de la compansión de la compa	ert is Michigan by the control of th	Pr	oject: GC	DUDRE	AU	e i i i i i i i i i i i i i i i i i i i				ete i secia	Pi	roject Num	ber: 0	5300	and the second s
From (m)	To (m)		Litholog	у	-			Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
352.77	356.65	V3BD BASAL Same as 346.78m.	TIC DYKE.					DC011712	356.35	356.65	0.30		0.05	-	-	-	0.05
356.65	357.34	and the lapilli tuff.	n: actually is a qtz-pyrite-chl					DC011713	356.65	357.34	0.69		3.24	-	-	-	3.24
		At least one speck of VIS Structure Maj.: 356.65 - 357.34 Alteration Maj: 356.65 - 357.34 356.65 - 357.34 Mineralization Maj.: 356.65 - 357.34 Vein Maj.: 356.65 - 357.34	SIBLE GOLD. Probably cor Type/Core Angle WDF 58 Type/Style/Intensity CL P MS SI PCH MS Type/Style/%Mineral PY DIS 10 Type/Mineral QV Au	relates with the gold in the Comment Difficult to determine Comment Comment	mafic unit o	ca 58	<i>vg</i> 1										
357.34	360.30		MEDIATE LAPILLI FELDSF olored 1cm lapilli and gray			an other	crystal	DC011715 DC011716	357.34 360.00	357.64 360.30	0.30 0.30		0.04 0.01	-	-	- -	0.04 0.01

ole Number	PRS-10A	e e introdución de la companya de l	the first space of the winter of the first space of the first	Project: GOUDREAU			****	مند د دونيد	ar a sa a sa	Pr	oject Num	iber: 0	5300	eli el internacional
From (m)	To (m)		Litholog	עו	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		types. Gradational lower	r contact.											
		Structure Maj.: 357.34 - 360.30	Type/Core Angle MDF 48	Comment										
		Alteration Maj:	Type/Style/Intensity	Comment										
		357.34 - 360.30	TL SP W	Fine needles										
		357.34 - 360.30	SE INT WM											
		357.34 - 360.30	CL P MS											
		357.34 - 360.30	SI P MS											
		Mineralization Maj.: 357.34 - 360.30	Type/Style/%Mineral PY TR 0.5	Comment										
360.30	367.30	Weak example overall a	er of unit is a mixed chlorite	that are mottled with silicification and associated e-silica-carbonate rock with fine grained needles of	DC011717 DC011718 DC011719 DC011721	360.30 361.30 362.30 363.30	362.30 363.30 364.30	1.00 1.00 1.00		0.04 0.18 0.17 0.03	- - - 0.02	- - -	- - -	0.04 0.18 0.17 0.03 0.02
		Structure Maj.:	Type/Core Angle	Comment	DC011722 DC011723	364.30 365.30	365.30 366.30			0.02 0.01	_	-	-	0.02
		360.30 - 367.30	WDF 48		DC011724	366.30				0.01	_	_	_	0.01
		Alteration Maj:	Type/Style/Intensity	Comment	50011121	000.00	000			• • • • • • • • • • • • • • • • • • • •				
		360.30 - 367.30	TL VN											
		360.30 - 367.30	CB VN W											
		360.30 - 367.30	CL P MS											
		360.30 - 367.30	SE MO W											
		360.30 - 367.30	SI P MS											
		Mineralization Maj. :	Type/Style/%Mineral	Comment										

Hole Number	PRS-10A			Project: G	OUDF	REAL	J						Pi	roject Num	ber: 05	300		
From (m)	To (m)		Lithology					Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)	
		Vein Maj.: 366.76 - 366.82	<i>Type/Mineral</i> QCT PY	% 90.0	Ca 3	a 38	vg 0											
367.30	392.14	Sharp upper and lowe (up to 3cm) whitish to lower abundance than Localized narrow (30c carbonate filled gashe 379.5m; feldspars tak 382.39 to 383.19m; page 150.00m.	FFERENTIATED FELSIC INTRUSIVE or contacts. Distinct gray to greenish colorceam colored feldspar crystals with ghin feldspars. Feldspars are generally euhan) deformation zones create weak alignes. e on a pink hue due to potassic alterationartially cemented fault breccia. lot more broken core than is typical.	ored matrix, fine grained. Co osted outlines. Scattered bli ledral and have a close pac nment of the feldspars. Multi	arse ue qtz ked a	grain crys ppea	ned stals,	DC011725 DC011726	367.30 391.84	367.6 392.1			0.01 0.07	-	-	-	0.01 0.07	
392.14	396.13	Actually the transaction the original QFP is still	GIC VOLCANIC UNDIFFERENTIATED. on zone into the granodiorite. Has a mot all identifiable. Local narrow (3cm) qtz veind fine needles. Some of these veins her on of chlorite.	ins with minor pyt and tourn	naline	alter	ration.	DC011727 DC011728 DC011729 DC011730 DC011731	392.14 393.14 394.14 394.64 395.53	393.1 394.1 394.6 395.5 396.1	4 1.00 4 0.50 3 0.89		0.01 0.14 0.02 0.02 0.03			- - -	0.01 0.14 0.02 0.02 0.03	

21-Oct-06 6:44:55 PM Page 27 of 29

Hole Number	PRS-10A			Pro	ject: GO	UDREA	U						Pi	roject Num	ber: 0	5300	
From (m)	To (m)		Litholog	у				Sample #	From	To	Length	Zone	Au AA	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
396.13	410.12		DIORITE.					DC011732	396.13	396.43	0.30		0.03	0.05	-	-	0.04
		Chill zone marks the upp quickly into regular grain veinlets of tourmaline and	size granodiorite. Even the	ersion in the upper portion of bugh fresher this part of the	of the grano granodiorite	diorite p contair	assing ns	DC011733	409.82	410.12	0.30		0.01	-	-	-	0.01
		396.13 to 402m: roughly	the area of increased pota	ssic alteration of the feldspa	ars and loca	lly the n	natrix.										
			anges to the regular blue gas sheaths or microveinlets	gray of other granodiorite int s.	tersections.	Original	mafics										
410.12	417.19	Strongly altered section of by a rapid increase in sili	cification and qtz veining. I	E. sea-green color. Upper cor Bleached areas contain diss ant early generation qtz veii	s pyt and rar	ndomly (DC011734 DC011735 DC011736 DC011737	410.62		0.50 0.50 0.50 0.50 0.50		0.11 0.16 0.15 0.15 0.10	-	- - -		0.11 0.16 0.15 0.15 0.10
		Structure Maj.:	Type/Core Angle	Comment				DC011736		413.12	0.50		0.10	-	-		0.10
		410.12 - 417.19	MDF 60	Obliterated by veining in s	some places	i.		DC011741		413.62	0.50		0.19	-	_	_	0.19
		Alteration Maj:	Type/Style/Intensity	Comment				DC011742		414.12	0.50		0.19	0.28	-	-	0.23
		410.12 - 417.19	TL VN					DC011743	414.12	414.62	0.50		0.42	-	-	-	0.42
		410.12 - 417.19	SE P MS					DC011744	414.62	415.12	0.50		0.21	-	-	-	0.21
		410.12 - 417.19	SI P I					DC011745	415.12	415.62	0.50		0.39	-	-	-	0.39
		Mineralization Maj. :	Type/Style/%Mineral	Comment				DC011746	415.62	416.12	0.50		0.93	-	-	-	0.93
		410.12 - 417.19	PY DIS 1					DC011747	416.12	416.62	0.50		0.49	-	-	-	0.49
		Vein Maj.:	Type/Mineral		%	ca	vg	DC011748	416.62	417.19	0.57		1.94	-	-	-	1.94
		116 DD 116 10	∩T\/ DV		0E 0	60	Λ										

Hole Number PRS-10A Project Number: 05300

From (m)	To	Lithology	Sample #	From	To	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m) 417.19	(m) 434.15	I1QFP UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC.	DC011749	417.19	418.19	1.00		0.10		-	-	0.10
417.19	434.13	Similar to unit at 367.3m (contains localized zones of deformation and alteration but the original lithology	DC011750	418.19	419.19	1.00		0.03	-	-	-	0.03
		is visible).	DC011751	419.19	420.19	1.00		0.02	-	-	-	0.02
		From 417.19 to 426m the unit is silicified and deformed with local qtz-tourmaline veins. No significant	DC011752	420.19	421.19	1.00		0.01	0.01	-	-	0.01
		pyrite. Microveinlets of chlorite throughout the silicified zone (relatively random orientation). After 426m to unit is predominantly green in color although there are patches of pink feldspars.	DC011753	421.19	422.19	1.00		0.02	-	-	-	0.02
		unit lo prodominaria) groot in color annough more and parameter of primitive apparen	DC011754	422.19	423.19	1.00		0.01	-	-	-	0.01
			DC011755	423.19	424.19	1.00		0.01	-	-	-	0.01
			DC011756	424.19	425.19	1.00		0.02	-	-	-	0.02
			DC011757	425.19	426.00	0.81		0.01	-	-	-	0.01
			DC011758	426.00	426.30	0.30		0.00	-	-	-	0.00

434.15 441.00 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.

Upper contact relatively sharp. Unit is typical green colored tuff with blue qtz and finer grained gray feldspars. Has a stronger fabric when compared to the previous more massive unit. Fabric enhanced by qtz-carbonate veinlets. In addition there are abundant carbonate filled gashes. No mineralization.

DRILL HOLE REPORT

lole Number PRS-08					Proje	ct: GD	LEDREAU							Project Number	Chris	1/0
urneo: ompleted: ogged:	180.00 -47,00 321.00 07-34_05 10-Apr-06 21-Apr-08) }	Lm Fu Caj	pgth: 40 Hed; Pped: mented: 001-DC010031;DC011001-DC011057	Core Dimension: Storage; Section: Hole Type	NQ Island SEXF		ıct	Coordin	ate	Location Township: Claim No.: NTS: Hole:	FINAN 3817 42C/08 Surface		Other Lagged by: Raing by: Confractor: Company: Spotted by: Surveyed:	C. Moreton Orbit Orbitog Inc. Mines Richmont C. Moreton yes	
ŕ					Gemoon East: North: Elev.:		UTM East: Marth: Elev.; Zone: NAD:		691116.6 6 352941.8 6 5392 E	lorth:		Varietie East: North: Elev.:	0	Geoph. Contract:	G.Larnothe(GPS)	
	Deviation	<u>Tests</u>								Davis	tion Tests					
Storice Azimust	47.00 -45.90 -45.90 -45.70 -45.60 -45.70 -45.40 -45.40 -45.00 -44.00 -44.80	Type GFAAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAF		56320 5601 5850 58410 5154 58470 5878 58470 5512 56500 5727			Diet 231, 261, 291, 321,	00 00	Azimut 179,90 179,90 179,30 180,30	+46. -46. -43. -43. -42.	90 F 08 F		Continents 56350 56430 56270 56250	•		

5574

Hole Number	PRS-08		Proje	ect: GOL	IDREAU	ensoner i same e servicio		p			Project Number:	05300
Drilling		Casing	Core					Location			Other	
Azimuth:	180.00	Length: 4	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-47.00	Pulled:	Storage:	Island	Gold Proje	ect		Claim No.:	3817		Relog by:	
ength:	321.00 , CR	Capped:	Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
tarted:	07- 3	Cemented:	Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
ompleted:	10-Apr-06										Spotted by:	C. Moreton
ogged:	21-Apr-06					Coordi	nate				Surveyed:	yes
omment:	Samples: DC007830-DC008	000;DC010001-DC010031;DC011001-DC0110	Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
			East:	15672.1	East:	691118.8	East:	15672.1	East:	0	Geophysics:	
			North:	4867.2	North:	5352341.8	North:	4867.2	North:	0	Geoph. Contract:	
			Elev.:	5392	Elev.:	5392	Elev.:	5392	Elev.:	0	Left in hole:	
					Zone:	16					Making water:	
					NAD:	83					Multi shot surv.:	

	<u></u>	eviation	<u> Tests</u>				<u> </u>	<u>Deviation</u>	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth		Type	Good	Comments
				✓		231.00	179.90	-44.40	F	✓	56350
0.00	180.00	-47.00	C		F0000	261.00	179.90	-43.90	F	✓	56430
48.00	178.40	-45.90	F		56320					✓	
51.00	191.10	-46.30	Α	LJ	5601	291.00	179.30	-43.00	F		56270
78.00	167.10	-45.70	Α		5650	321.00	180.30	-42.60	F	✓	56250
81.00	178.50	-45.60	F	\checkmark	56410						
108.00	203.60	-45.70	Α		5154						
111.00	178.80	-45.40	F	\checkmark	56470						
138.00	187.30	-45.40	Α		5678						
141.00	179.20	-45.10	F	✓	56470						
168.00	182.40	-45.00	Α		5512						
171.00	179.50	-44.00	F	✓	56500						
198.00	190.10	-44.80	Α		5727						
201.00	179.10	-44.70	F	\checkmark	56970						

228.00

177.00

-44.40 F

le Number	PRS-08	Project: GOUDREAU	the second control of	the second second second	e en la la	n ar ak i ka sa	۱۳۵۸ شا الالاستان دما مراد و		roject Num	ber: 0	5300	And the second second
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metai (ppm)	Au fin (ppm)
0.00	40.00	CSG Casing Hole on highest point of esker in this area.										
40.00	99.61	I1D GRANODIORITE.	DC007830	40.00	41.00	1.00		0.05	-	-	-	0.05
		Hole is collared in the Webb Lake stock. Has a weak to moderate fabric throughout 70% of the unit. Fabric is a combination of chlorite/sericite alteration veinlets and re-oriented qtz and feldspar crystals.	DC007831 DC007832	41.00 42.00	42.00 43.00	1.00 1.00		0.37 0.22	-	-	-	0.37 0.22
		Trace disseminated pyrite throughout most of the unit. See below for subtle variations descriptions.	DC007833	43.00	44.00	1.00		0.22	_	<u>-</u>	-	0.22
		Variable alteration leading to localized bleaching (almost API like in a few places). Associated chlorite veinlets, qtz-carbonate veining and tourmaline alteration. About 70% of the unit is altered to one degree	DC007834	44.00	44.60	0.60		0.05	_	-	-	0.05
		or another. Veins are generally 2-3cm wide and parallel to the foliation although some of the younger qtz-	DC007835	44.60	45.60	1.00		2.77	-	_	-	2.77
		carbonate veins are wider (and cross cut the fabric). Multiple ages of veins common in this unit with recognizable cross-cutting relationships. Pyrite alteration generally as diss crystals. No VG.	DC007836	45.60	46.00	0.40		0.09	0.07	-	-	0.08
			DC007837	46.00	47.00	1.00		80.0	-	-	_	0.08
		Some of the veins have the appearance of the NORTH SHORE ZONE with coarse grained pyrite associated with white qtz and coarse-grained tourmaline development. Examples of this veining are	DC007838	47.00	48.00	1.00		0.03	-	-	-	0.03
		clearly post-main fabric. Unlike other holes the NS Zone in this hole is represented by multiple narrower veins over a wider section of core (say 56.16m to 80.55m).	DC007839	48.00	49.00	1.00		0.06	-	-	-	0.06
		` * ·	DC007841	49.00	50.00	1.00		0.01	-	-	-	0.01
		Unit has been sampled at wider intervals to check for gold values in this part of the system. Note that the better alteration is within the granodiorite while the better fabric development is along the granodiorite	DC007842	50.00	51.00	1.00		0.09	-	-	-	0.09
		country rock contact.	DC007843	51.00	52.00	1.00		0.57	-	-	-	0.57
		VARIATIONS:	DC007844	52.00	53.00	1.00		0.06	-	-	-	0.06
		44.60 to 45.24m. Intense gray to white qtz veining with local carbonate. Chlorite and sericite alteration	DC007845	53.00	54.00	1.00		0.01	-	-	-	0.01
		within veins and in the wall rock. A few tourmaline veinlets and crystals. Minor pyrite mineralization. Veins occupy about 70% of the interval - appear to be disrupted parallel to the foliation.	DC007846	54.00	55.00	1.00		0.01	-	-	-	0.01
		55.92 to 56.52m; late post-main foliation qtz-tourmaline vein. Oriented almost parallel to the core axis.	DC007847	55.00	56.00	1.00		0.13	-	-	-	0.13
			DC007848	56.00	57.00	1.00		1.47	-	-	-	1.47
		60.00 to 60.48m; Late qtz-tourmaline vein and associated silicification. Some coarse-grained pyrite	DC007849	57.00	58.00	1.00		0.50	-	-	-	0.50
		agglomerations.	DC007850	58.00	59.00	1.00		0.27	-	-	-	0.27

Project Number: 05300 **GOUDREAU** Hole Number PRS-08 Project: The second secon Au AA Dup AA Grav Au fin Metal From To (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone (ppm) Lithology (m) (m) DC007851 59.00 60.00 1.00 0.01 0.01 69.64 to 70.24m; Late gtz-tourmaline vein and associated silicification. Some coarse-grained pyrite agglomerations. DC007852 60.00 61.00 1.00 1.90 1.90 DC007853 61.00 62.00 1.00 0.09 0.09 72.70 to 72.75m: Fault (broken rubble core) 0.01 0.01 DC007854 62.00 63.00 1.00 0.01 75.28 to 75.36m: Late gtz-tourmaline vein. Minor pyrite. DC007855 63.00 64.00 1.00 0.00 0.00 77.69 to 78.04m: Late qtz-tourmaline vein. DC007856 64.00 65.00 1.00 0.10 0.10 79.80 to 80.54m: Late gtz-tourmaline vein with silicification. DC007857 65.00 66.00 1.00 0.00 0.00 0.09 0.09 DC007858 66.00 67.00 1.00 95.69 to 96.42m: Well developed late qtz-tourmaline veins. 0.02 DC007859 67.00 68.00 1.00 0.02 99.43 to 99.61: Pinkish colored unit, possible early aplite now deformed. Mixed qtz feldspar and 68.00 69.00 1.00 0.03 0.03 DC007861 carbonate with secondary tourmaline and chlorite. 0.13 DC007862 69.00 69.64 0.64 0.13 DC007863 69.64 70.24 0.60 6.10 6.10 71.00 0.02 DC007864 70.24 0.76 0.01 0.01 DC007865 71.00 72.00 1.00 0.45 0.45 DC007866 72.00 73.00 0.25 0.25 1.00 Type/Mineral Vein Maj.: DC007867 73.00 74.00 1.00 0.05 0.05 129.70 - 0.00 0.07 DC007868 74.00 75.00 1.00 0.07 DC007869 75.00 76.00 1.00 0.35 0.35 77.00 0.25 DC007870 76.00 1.00 0.25 DC007871 77.00 78.00 1.00 0.05 0.05 DC007872 78.00 79.00 1.00 0.12 0.12 DC007873 79.00 79.80 0.80 0.04 0.04 0.73 DC007874 79.80 80.54 0.74 0.72 0.73 0.06 DC007875 80.54 81.54 1.00 0.06 DC007876 81.54 82.54 1.00 0.06 0.06 DC007877 82.54 83.54 1.00 0.00 0.00 0.05 0.05 DC007878 83.54 84.54 1.00

Hole Number		Project: GOUDREAU	an early and a second and a second	and the second second				P	roject Num	ber: 0	5300	and the second of the second of
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
17	(,,,,		DC007879	84.54	85.54	1.00		0.01	_	-		0.01
			DC007881	85.54	86.54	1.00		0.07	-	_	-	0.07
			DC007882	86.54	87.54	1.00		0.01	-	-	-	0.01
			DC007883	87.54	88.54	1.00		0.03	-	_	-	0.03
			DC007884	88.54	89.54	1.00		0.03	-	-	-	0.03
			DC007885	89.54	90.54	1.00		0.06	-	_	_	0.06
			DC007886	90.54	91.54	1.00		0.06	-	-	-	0.06
			DC007887	91.54	92.54	1.00		0.03	-	-	-	0.03
			DC007888	92.54	93.54	1.00		0.02	0.01	-	-	0.01
			DC007889	93.54	94.54	1.00		0.47	-	-	-	0.47
			DC007890	94.54	95.54	1.00		0.01	-	-	-	0.01
			DC007891	95.54	96.54	1.00		0.17	-	-	-	0.17
			DC007892	96.54	97.54	1.00		0.05	-	-	-	0.05
			DC007893	97.54	98.54	1.00		0.31	-	-	-	0.31
			DC007894	98.54	99.31	0.77		0.01	-	-	-	0.01
			DC007895	99.31	99.61	0.30		0.08	-	-	-	0.08
99.61	101.98	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC007896	99.61	100.61	1.00		0.01	-	-	-	0.01
		Well developed layering due to strong shear fabric. Feldspars generally gray colored and degraded.	DC007897	100.61	101.61	1.00		0.00	-	-	-	0.00
		Overall green color due to abundant chlorite. Qtz crystals typically blue. Some 1-2cm qtz and/or carbonate veins parallel to the fabric.	DC007898	101.61	101.98	0.37		0.02	0.01	-	-	0.02
101.98	102.34	T9ZS SCHIST UNDIFFERENTIATED Weak example. Overall pink color due to potassic alteration. Two 2cm gray qtz veins but no VG. Millimeter tourmaline vein in one place.	DC007899	101.98	102.34	0.36		1.01	-	-	-	1.01

le Number	PRS-08		walling and the second	Project: GOUDREAU	and the second second second second		gradust is de soo			Pi	oject Nun	nber: 0	5300	The state of the s
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		Structure Maj.:	Type/Core Angle	Comment										
		101.98 - 102.34	MDF 47											
		Alteration Maj:	Type/Style/Intensity	Comment										
		101.98 - 102.34	CL SP	Proximal to pyrite.										
		101.98 - 102.34	TL VN	Only one example but some scattered crystals										
		101.98 - 102.34	SE P MS											
		101.98 - 102.34	SI P MS											
		Mineralization Maj. : 101.98 - 102.34	Type/Style/%Mineral PY TR 0.5	Comment										
102.34	105.91	•	MEDIATE QUARTZ-FELDS except that it may be moder	SPAR PORPHYRITIC TUFF. ately more chloritic.	DC007901 DC007902 DC007903	102.34 103.34 105.61	103.34 103.64 105.91	0.30		0.09 0.04 0.00	-	-	- - -	0.09 0.04 0.00
105.91	106.80	Weak version. Has pink	oonate-pyrite-chlorite vein (zones of stronger silicification (purplish tints). Appears 1cm) near the centre of the unit. Both upper and lower	DC007904	105.91	106.80	0.89		0.24	-	-	-	0.24
		Structure Maj.: 105.91 - 106.80	<i>Type/Core Angle</i> MDF 38	Comment										
		Alteration Maj:	Type/Style/Intensity	Comment										
		105.91 - 106.80	TL VN											

ole Number	PRS-08	and the second seco	t the second of the second	Projec	ot: GO	DUDRE	AU	and dealers to the control of	g na minangan sa kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kab		enga ya a sa	0.3 - 4.4 44 , 17.4	se in the second	Pr	oject Nun	nber: 0	5300	and was a second of the control of t
F rom (m)	To (m)		Litholog	у					Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		105.91 - 106.80	CL SP WM															
		105.91 - 106.80	SE PCH WM															
		105.91 - 106.80	SI P MS															
		<i>Minerallzation Maj. :</i> 105.91 - 106.80	<i>Type/Style/%Mineral</i> PY TR 1	Comment Best near central vein														
		Vein Maj.:	Type/Mineral		%	ca	V	g										
		106.52 - 106.53	QCV py		1.0	38	0											
106.80	107.95	T2QFP INTERI	MEDIATE QUARTZ-FELDS	PAR PORPHYRITIC TUFF.					DC007905	106.80	107.10	0.30		0.00	-	_	_	0.00
		Same as 102.34m.							DC007906	107.65	107.95	5 0.30		0.01	-	-	-	0.01
107.95	108.56		T UNDIFFERENTIATED pt that the central vein is m be more chlorite too.	uch wider and there is a grea	er amou	nt of py	rite in	ı	DC007907	107.95	108.56	6 0.61		0.37	-	-	-	0.37
		Structure Maj.:	Type/Core Angle	Comment														
		107.95 - 108.56	MDF 58	Perhaps not as strong as M	IDF													
		Alteration Maj:	Type/Style/Intensity	Comment														
		107.95 - 108.56	CL P MS															
		701.00																
		107.95 - 108.56	SE PCH WM															
			SE PCH WM SI P MS															

ole Number	PRS-08	. The second	Project: GOUDREAU							Section 1 to graph and	Project Number: 05300							
From (m)	To (m)		Litholog	y					Sample#	From	To	Length_	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		Vein Maj.:	Type/Mineral		%	,	ca	vg										
		108.04 - 108.18	QCV py		10.	.0	58	0										
108.56	113.65	T2QFP IN	ITERMEDIATE QUARTZ-FELDS	PAR PORPHYRI	TIC TUFF.				DC007908	108.56	108.86	0.30		0.00	0.00	-	_	0.00
100.00	110.00	Same as 106.80 e	xcept that there is a small increa udinaged and accompanied by fi	se in the amount o	f foliation paralle	el qtz ue to f	veins. (ine-gra	Some iined	DC007909	113.35	113.65	0.30		0.09	-	-	-	0.09
113.65	114.02	Not banded but is	SLAND ALTERATION PACKAGE bleached and gray colored. Cont		n with VISIBLE	GOLD) (a cou	uple of	DC007910	113.65	114.02	2 0.37		38.67	-	35.61	37.83	37.83
		•	t no associated VG).															
		Structure Maj.: 113.65 - 114.02	<i>Type/Core Angle</i> MDF 63	Comment														
		Alteration Maj:	Type/Style/Intensity	Comment														
		113.65 - 114.02	CL SP															
		113.65 - 114.02	SE P MS															
		113,65 - 114.02	SI P MS															
				Comment														
		Mineralization Ma 113.65 - 114.02	nj.: Type/Style/%Mineral PY DIS 3	As clots too														
			- · · · · · · · · · · · · · · · · · · ·		9	6	ca	vg										

Hole Number	PRS-08	Project: GOUDREAU							Project Number: 05300									
From (m)	To (m)	Lithology	Sample #	From	To L	.ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)						
114.02	117.57	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 108.56 except that there is an increase in purplish silicification zones. As with all of these units the contacts are gradational.	DC007912 DC007913	114.02 117.27	114.32 117.57	0.30 0.30		0.13 0.10	- -	-	-	0.13 0.10						
117.57	117.87	QCV QUARTZ CARBONATE VEIN. Post main foliation vine with patches of chloritised country rock and specks of pyrite. Appears to be silicified in the wall rock but this may predate the vein.	DC007914	117.57	117.87	0.30		0.02	-		-	0.02						
117.87	118.56	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 114.02. Fabric sometimes intensely developed. In addition, the qtz and feldspar crystals are scattered.	DC007915 DC007916	117.87 118.17	118.17 118.86	0.30 0.69		0.02 0.03	-	-	-	0.02 0.03						

Hole Number	PRS-08	and Change States and the second second second second	and the second of the second o	Projec	ct: GO	UDREA	AU	al from the following of the basis follows:	a wardere et ee et ee	ي د د د د د د د د د د د د د د د د د د د	a see assess the	and the same of the same of	P i	roject Num	nber: 0	5300	عن المعالمية المنطقة ا
From (m)	To (m)		Litholog	,				Sample #	From	To I	_ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
118.56	119.90	T9ZS SCHIS	T UNDIFFERENTIATED					DC007917	118.86	119.36	0.50		0.50	-	_	-	0.50
		Well banded in the cen with chloritic-pyrite veinl	tral sections - qtz veins in ce ets. Appear to be mylonitic i	entral section are 1cm in diam n some spots.	neter, in pa	arallel s	heets	DC007918	119.36	119.90	0.54		1.49	1.55	-	-	1.52
		Structure Maj.:	Type/Core Angle	Comment													
		118.56 - 119.90	S09 53	Only 20% is strong, remaine	der is mod	derate.											
		Alteration Maj:	Type/Style/Intensity	Comment													
		118.56 - 119.90	SE INT WM														
		118.56 - 119.90	CL INT WM														
		118.56 - 119.90	SI P MS														
		<i>Mineralization Maj. :</i> 118.56 - 119.90	Type/Style/%Mineral PY DIS 2	Comment As stringers in the veins													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		119.08 - 119.28	QV PY		85.0	54	0										
119.90	121.93		MEDIATE QUARTZ-FELDS s except that the alteration is	PAR PORPHYRITIC TUFF. strongly chloritic.				DC007919	119.90	120.20	0.30		0.66	-	-	-	0.66
121.93	122.73	Fine grained version - d	ODIORITE. lyke within the QFP. Upper a or a few cms adjacent to the egraded and chloritic veinlet	and lower contacts are sharp dyke. Pyrite disseminated th s prevalent.	while the nroughout	country this gra	rock y to										

Hole Number	PRS-08	Project: GOUDREAU							Project Number: 05300									
From (m)	To (m)		Lithology	,	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)				
122.73	125.21	Same as 119.90m. Dark	green chlorite seems to be	PAR PORPHYRITIC TUFF. common in many places although there are sections k type. MAGNETITE crystals become common at	DC007921	124.91	125.21	0.30		0.01	-	-	-	0.01				
125.21	126.00	Not the typical type - has	sericite-silica alteration with	ite component and granular silicification. Patches (10- n finely disseminated tourmaline and local magnetite.	DC007922	125.21	126.00	0.79		0.01		-	-	0.01				
		Structure Maj.: 125.21 - 126.00	Type/Core Angle MDF 40	Comment														
		Alteration Maj:	Type/Style/Intensity	Comment														
		125.21 - 126.00	TL SP	Tiny needle crystals														
		125.21 - 126.00	SI PCH WM															
		125.21 - 126.00	CL PCH WM															
		<i>Mineralization Maj. :</i> 125.21 - 126.00	Type/Style/%Mineral MG DIS 1	Comment														

ole Number	PRS-08	المراجع المراج	and the second s	Pro	Project: GOUDREAU									Project Number: 05300							
From (m)	To (m)		Litholog	у				Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)				
126.00	130.67		MEDIATE QUARTZ-FELDS ept that there appears to be					DC007923 DC007924	126.00 130.37	126.30 130.67	0.30 0.30		0.03 0.01	-	-	-	0.03 0.01				
130.67	134.18	Appears to be develope more massive. Upper p	T UNDIFFERENTIATED ed at the contact between tweet of alteration zone (topsicower portion is sericitic. Mm	le of central vein) is predom	inantly band	ded chlo	ritic	DC007925 DC007926 DC007927 DC007928	130.67 131.17 131.70 132.29	131.17 131.70 132.29 133.29	0.50 0.53 0.59 1.00		0.08 0.02 6.71 0.20	- - - 0.13		- - -	0.08 0.02 6.71 0.16				
		sour anoranon types.						DC007929	133.29	134.18	0.89		0.13	-	-	-	0.13				
		Structure Maj.:	Type/Core Angle	Comment Variable locally																	
		130.67 - 134.18	MDF 45 Type/Style/Intensity	Comment																	
		Alteration Maj: 130.67 - 131.70	CB VN	Comment																	
		130.67 - 131.70	SI PCH WM																		
		130.67 - 131.70	CL P MS																		
		132.29 - 134.18	SI PCH WM																		
		132.29 - 134.18	SE P MS																		
		Mineralization Maj. : 130.67 - 134.18 130.67 - 134.18	Type/Style/%Mineral MG TR 0.5 PY DIS 2	Comment																	
		Vein Maj.:	Type/Mineral		%	ca	vg														
		131.70 - 132.29	QV PY		85.0	50	0														

Page 10 of 33

with zones of patchy silicification. Both contacts are gradational.

Hole Number	PRS-08	Project: GOUDREAU	and the second of the second o	ne og kommutete og	same and the	eksen kilo	t e company of the s	P	roject Nun	nber: 0	5300	
From (m)	To (m)	Lithology	Sample #	From	To Le	ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
134.18	139.66	Altered to chlorite along the boundaries of the qtz and/or feldspar crystals. Not as fresh looking as other granodiorite dykes - also has inclusions of the wall rock lapilli tuff (next unit). Both upper and lower contacts appear to be gradational. Some hematization around late cross cutting veins.	DC007930	134.18	134.48	0.30		0.02	-	-	-	0.02
139.66	142.50	T2LQP INTERMEDIATE LAPILLI QUARTZ PORPHYRITIC TUFF. Distinctive QFP lapilli (up to 5cm in length) in a green colored matrix that contains finer lapilli, qtz crystals and locally feldspar clasts. Upper and lower contacts are gradational. Could make a good marker horizon - some of the larger lapilli have a dark colored matrix that contrasts with the green matrix.										
142.50	145.06	T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF. Predominantly a QP but there are scattered lapilli in the unit too. Has a moderately well developed fabric	DC007931	144.76	145.06	0.30		0.01	-	-	-	0.01

Project Number: 05300 Project: **GOUDREAU** Hole Number PRS-08 Au AA Dup AA Grav Metal Au fin To From (ppm) (mag) Sample # From To Length Zone (ppm) (ppm) (ppm) Lithology (m) (m) DC007932 145.06 146.06 1.00 0.02 0.02 SCHIST UNDIFFERENTIATED 158.45 T9ZS 145.06 Wide zone of shearing with weak to moderate fabric development. Overall green color but there are 146.06 1.00 0.02 0.02 DC007933 147.06 patches that are gray colored rock too. Qtz-carb-pyt veinlets (1-3mm) as well as diss pyt. DC007934 147.06 148.06 1.00 0.09 0.11 0.10 The central vein is predominantly qtz with altered wall rock fragments (sericitic or chloritic). Pyrite is finegrained and disseminated. Some magnetite crystals associated with the chlorite-rich fragments. DC007935 148.06 149.06 1.00 0.11 0.11 Blue qtz crystals are scattered throughout and there are local areas of lapilli and/or feldspar crystals. DC007936 149.06 150.06 1.00 0.35 0.35 DC007937 150.06 1.00 0.14 0.14 151.06 Structure Maj.: Type/Core Angle Comment 0.60 DC007938 151.06 152.06 1.00 0.60 MDF 52 Sometimes lower 145.06 - 158.45 DC007939 152.06 153.06 1.00 0.07 0.07 Alteration Maj: Type/Style/Intensity Comment 1.00 DC007941 153.06 154.06 0.42 0.42 Veinlets, early and old, some porphs CB VN 0.17 145.06 - 158.45 DC007942 154.06 155.00 0.94 0.17 DC007943 155.00 155.47 0.47 3.05 3.05 145.06 - 158.45 SE PCH DC007945 155.47 156.03 0.56 6.88 6.88 145.06 - 158.45 SI P MS DC007947 156.03 157.03 1.00 1.19 1.19 CL P + 145.06 - 158.45 DC007948 157.03 158.03 1.00 0.01 0.01 Mineralization Mai. : Type/Style/%Mineral Comment DC007949 158.03 158.45 0.42 0.09 0.09 145.06 - 158.45 PY DIS 2 Best in association with veins 158.45 158.75 0.30 0.05 0.05 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007950 158.45 160.80 T2QFP Not a great example - strong silicification and alteration of the feldspars creates a variable unit. Generally 0.30 0.03 DC007951 160.50 160.80 0.03 gray colored but chloritisation creates patches that are greener in color.

Project: GOUDREAU Project Number: 05300 Hole Number PRS-08 Au AA Dup AA Grav Metal Au fin From To Sample # From Zone (ppm) (ppm) (ppm) (ppm) (ppm) Lithology To Length (m) (m) 160.80 161.64 0.84 0.02 0.02 DC007952 167.17 T9ZS SCHIST UNDIFFERENTIATED 160.80 Moderately well developed foliation on the margins of three qtz-carb-tourmaline vein systems. The upper DC007953 161.64 162.32 0.68 2.34 2.34 vein has a late carbonate vein overprint whereas the other two have a primary vein appearance (gray qtz 162.82 1.79 DC007954 162.32 0.50 1.74 1.85 vein parallel to the foliation). DC007955 162.82 163.32 0.50 0.66 0.66 160.40 to 160.46m: breccia with gouge. DC007956 163.32 164.10 0.78 1.10 1.10 0.73 DC007957 164.10 164.50 0.40 0.73 Structure Maj.: Type/Core Angle Comment DC007958 0.12 164.50 164.80 0.30 0.12 MDF 45 Locally variable around the veins 160.80 - 167.17 DC007959 164.80 165.80 1.00 0.01 0.01 Type/Style/Intensity Comment Alteration Mai: DC007961 165.80 166.80 1.00 0.01 0.01 160.80 - 167.17 SE INT Weak component DC007962 166.80 167.17 0.37 0.02 0.02 CB VN Associated with pyrite in veinlets 160.80 - 167.17 CL P + 160.80 - 167.17 160.80 - 167.17 SI P MS Mineralization Maj. : Type/Style/%Mineral Comment PY DIS 2 Up to 10% when associated with veinlets 160.80 - 167.17 Vein Maj.: Type/Mineral ca vg QCT PY 85.0 55 0 161.64 - 161.84 28 0 QCV py 50.0 162.32 - 162.65 164.10 - 164.50 QCT PY 35.0 52 0 DC007963 167.17 167.47 0.30 0.00 0.00 INTERMEDIATE LAPILLI FELDSPAR PORPHYRITIC TUFF. 167.17 178.76 T2LFP Silicified adjacent to the schist. Matrix is gray to green in color and may have originally been siliceous and now has a weak silicification overprint. Lapilli are chloritic, green colored and variably flattened. A few atz crystals are scattered throughout but they are uncommon. Minor chlorite rich alteration zones (1-3cm) carrying diss pyrite. MAGNETITE crystals scattered throughout, tend to be larger than the pyrite but not as frequent. A few carbonate-filled gashes.

Hole Number	PRS-08	Project: GOUDREAU							Project Number: 05300								
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)					
178.76	181.52	V3Z UNDIFFERENTIATED MAFFIC VOLCANIC. Darker green than the previous unit. Distinctly magnetic in most places. Patchy carbonate alteration with associated finer-grained pyrite and pyrrhotite. Patches of epidote alteration. Contacts are vague over a few cms.															
181.52	184.21	T2LQFP INTERMEDIATE LAPILLI FELDSPAR QUARTZ PORPHYRITIC TUFF. Gray, silicified with only scattered qtz and feldspar crystals. Interstitial chlorite and weak diss pyrite. Minor amounts of magnetite. Lapilli are sporadically developed.	DC007964	183.91	184.2	1 0.30		0.00	0.00	-	-	0.00					
184.21	185.70	T9ZS SCHIST UNDIFFERENTIATED Weak example of the schist. Strong multi-phase silicification with later local carbonate veining. Pyrite present but there is also an amount of pyrrhotite and local cp. Fabric is only weakly developed. Structure Maj.: Type/Core Angle Comment 184.21 - 185.70 WDF 56	DC007965 DC007966	184.21 185.05	185.0 185.7			0.47 8.20	-	-	-	0.47 8.20					

Hole Number	PRS-08	Pakhan Managara Santahan Kalayan and Santah Kabasa	و المراكب المراكب المستقدم والمستقدم المراكب المراكب المراكب المراكب المراكب المراكب المراكب المراكب	Project: GOUDREAU	والمراد المعارض والمرادات الأرادي والمراد المراد ال	nyantan interesia		an e taga at eserte a a n		Pi	roject Num	ber: 0	5300	and the second second second second
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		Alteration Maj:	Type/Style/Intensity	Comment										
		184.21 - 185.70	TL SP	Scattered crystals										
		184.21 - 185.70	CL INT WM											
		184.21 - 185.70	SI P MS											
		Mineralization Maj.: 184.21 - 185.70 184.21 - 185.70 184.21 - 185.70	Type/Style/%Mineral CP TR 0.5 MG TR 0.5 PY DIS 1	Comment Tends to be associated with the po Tends to be associated with veinlets of alteration										
185.70	192.36	Not a great example - c	crystals of gtz are few and th	PAR QUARTZ PORPHYRITIC TUFF. Here are only a few locations that are relatively rich in hit. Local gray silicification but generally the unit is e.	DC007967	185.70	186.00	0.30		0.10	-	-	-	0.10
192.36	200.14	Gradational contact with magnetite porphyroblas chlorite, granular lookin wide) while the qtz and	h the previous unit. Still bas sts and semi-massive accur		DC007968	199.84	200.14	0.30		0.03	-	-	-	0.03

Hole Number		and the second process of the second	oonessa, johtaa ja jooni kun 18 käytekkoonestikkoos oli kun elitoi	Proje		OUDREA		g radio in septiti da escuencia	was sidawas awas	المارات والمساولات	e sike was was bear	tana makanan katatan	P	roject Nun	nber: 0	5300	والمنافرة
From (m)	To (m)		Litholog					Sample #	From	To l	ength.	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
200.14	201.21	T9ZS SCHIST	T UNDIFFERENTIATED					DC007969	200.14	200.46	0.32		0.23	-	_	-	0.23
		Poor example for the mo	ost part. Foliation in this uni	t is developed quickly over a	short dist	ance.		DC007970	200.46	200.92	0.46		3.35	-	-	-	3.35
								DC007971	200.92	201.21	0.29		0.80	-	-	-	0.80
		Structure Maj.: 200.14 - 201.21	<i>Type/Core Angle</i> MDF 34	Comment													
		Alteration Maj:	Type/Style/Intensity	Comment													
		200.14 - 201.21	SE PCH	Much less than chlorite													
		200.14 - 201.21	CL PCH WM	Tends to be on periphery of	f vein												
		200.14 - 201.21	SI P MS														
		Mineralization Maj. : 200.14 - 201.21 200.14 - 201.21	Type/Style/%Mineral PY DIS 1 PY STR 2	Comment													
		Vein Maj.:	Type/Minerai		%	ca	vg										
		200.46 - 200.92	QV PY		25.0	34	0										
201.21	204.63	T2QP <i>INTERI</i>	MEDIATE QUARTZ PORP	HYRITIC TUFF.				DC007972	201.21	201.51	0.30		0.06	_	-	-	0.06
		Fine grained blue qtz cr colored, with a weakly d	eveloped fabric. Sporadic r	enerally a fine to medium grain pyrite (fine grained). Carbonal Id be part of the alteration zon	te veins a	s gashes	s across	DC007973	204.37	204.67	0.30		0.10	-	-	-	0.10

Hole Number	PRS-08	Project: GOUDREAU	a Pala Martin and Carlothy Carlothy and sever	orthodox of the control	المهاري المارية المرايات	s an Pallacher de la colonia d	ara , o la seco		oject Num	ber: 0	5300	dana ili neco di seri
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
204.63	223,47	IID GRANODIORITE.	DC007974	204.67	205.17	0.50		0.02	0.02	_	_	0.02
20 1.00		Change in color to gray. Finer-grained chilled margin down to about 207m. Contact zone involved in a	DC007975	205.17	205.84	0.67		0.05	-	-	-	0.05
		movement zone with localized qtz-carb-tourmaline veins. Although there is a fabric in the granodiorite the veins appear to cross cut this fabric. Most of the qtz-tourmaline veins are associated with dark green	DC007976	205.84	206.14	0.30		0.00	-	-	-	0.00
		chlorite.	DC007977	206.14	206.44	0.30		0.02	-	-	-	0.02
		Chlorite patches also present in the wall rock along with disseminated pyrite. Original blue qtz crystals still	DC007978	208.30	208.60	0.30		0.16	-	-	-	0.16
		visible but no feldspars due to extensive silicification. Central vein looks to be a later qtz-carbonate-	DC007979	208.60	209.24	0.64		0.06	-	-	-	0.06
		tourmaline vein that may have been reactivated during the tourmaline deposition.	DC007981	209.24	209.93	0.69		0.02	-	-	-	0.02
		A few of the better alteration zones have been sampled.	DC007982	209.93	210.54	0.61		0.15	-	-	-	0.15
		Variable potassic alteration throughout but it becomes more pervasive after 223.50m (unit has a brick red	DC007983	210.54	210.84	0.30		0.46	_	-	-	0.46
		hue after this depth). Pyrite associated with the potassic alteration is generally less than the pyrite with the localized shear zones.	DC007984	216.68	216.98	0.30		0.10	0.11	-	-	0.11
		the localized sheat zones.	DC007985	216.98	217.98	1.00		0.43	-	-	-	0.43
			DC007986	217.98	218.28	0.30		0.18	-	-	-	0.18
			DC007987	223.27	223.67	0.40		0.00	-	-	=	0.00

223.47 223.67 I1QFP UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC.

Narrow section (continues later) of this unit. Tends to be finer grained than rest of the intrusion due to movement zone at the upper contact with the granodiorite. Similarly the granodiorite is finer grained at it's lower contact. See description below.

Hole Number	PRS-08	agricon desse access no han in war on the first on the last	to complete and another constitution of	Project: GOUDREAU	ostove o a la della sella di Alba di Laba			e i se se propie de la S	. deal of the	P	roject Nun	nber: 0	5300	e de la grada, la collège de despeda esta esta el colon de la grada.
From (m)	To (m)		Litholog	у	Sample #	From	To L	ength_	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
223.67	225.59	Gradual transition into a crystals. Fabric is well d	leveloped and the central pa	hyry. Feldspars are locally preserved as are the qtz art has a magnetite accumulation. In addition, there . Secondary carbonate parallel to the foliation and	DC007988 DC007989	223.67 224.67	224.67 225.59	1.00 0.92		0.01 0.03	- -	-	-	0.01 0.03
		Structure Maj.: 223.67 - 225.59 Alteration Maj: 223.67 - 225.59 223.67 - 225.59 223.67 - 225.59 Mineralization Maj.: 223.67 - 225.59	Type/Core Angle MDF 45 Type/Style/Intensity CB PCH WM CL P MS SI P MS Type/Style/%Mineral MG DIS 1	Comment Comment Narrow layer (5cm) at 225m exactly.										
225.59	228.34	Overall gray to green or matrix. Qtz crystals are feldspars along the mar predates the regional de	olor. Coarse grained whitish smaller but they are as abu gins of this unit - tends to be eformation.	feldspar (2cm) evenly distributed in the finer-grained ndant as the feldspars. Weak alignment of the e more massive in the central portions. Unit definitely assic alteration in the movement zone along the	DC007990 DC007991	225.59 228.04		0.30 0.30		0.01	-	-	-	0.01 0.00

Hole Number	PRS-08	the the transfer of the control of t	raine je najvaja ir teorokaja (1831. din 1866.) se etc. 1	Pro	oject: GC	UDREA	.U 	and the second second second second	and and an experience of the	and the transfer of	a network to a sale	er errin	P	roject Num	nber: 0!	5300	t difference of the control of the c
From (m)	To (m)		Litholog	у				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
228.34	229.15		TUNDIFFERENTIATED to within the porphyry. This e veinlets.	shear has a couple of qtz-	carbonate v	eins with	local	DC007992	228.34	229.15	0.81		0.00	-	-	-	0.00
		Structure Maj.: 228.34 - 229.15	Type/Core Angle WDF 55	Comment Sometimes more intense	•												
		Alteration Maj:	Type/Style/Intensity	Comment													
		228.34 - 229.15	CB PCH WM														
		228.34 - 229.15	CL PCH WM														
		228.34 - 229.15	SI P WM														
		Mineralization Maj. : 228.34 - 229.15	Type/Style/%Mineral MG TR 0.5	Comment Discrete crystals													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		228.49 - 228.56	QCT		100.0	72	0										
		228.76 - 229.15	QCT		60.0	55	0										
229.15	234.07		FERENTIATED FELSIC IN pt for a lack of potassic alte		SPAR POR	PHYRITI	C.	DC007993 DC007994	229.15 233.77	229.45 234.07	0.30 0.30		0.00	- 0.00	-	-	0.00
		Jame as 220.03m exce	pt for a lack of potabble after	adion of the loluspais.				DC007994	233.11	234.07	0.30		0.00	0.00	-	-	0.00

Hole Number	PRS-08	et dag a salat a dagaa ka aan ka aan ka aa	destruir o de la compaction de la responsación de la responsación de la responsación de la responsación de la r	Proj		UDRE	AU	an albania da seria da seria da seria de seria	A LONG TO ME SERVE		.Str nee∗!	No or section was	P	roject Num	nber: 0	5300	na ike wasarasa sa tuan katika ili
From (m)	To (m)		Litholog	у				Sample #	From	To .	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
234.07	235.42	T9ZS SCHIS	T UNDIFFERENTIATED				·	DC007995	234.07	235.07	1.00		0.00	-	-	-	0.00
		Weak example of a schi	ist. Strongly chloritic but onl	y about 50% of the unit is fo	liated.			DC007996	235.07	235.42	0.35		0.01	-	-	-	0.01
		Structure Maj.: 234.07 - 235.42	Type/Core Angle WDF 48	Comment													
		Alteration Maj:	Type/Style/Intensity	Comment													
		234.07 - 235.42	TL VN														
		234.07 - 235.42	CB VN WM														
		234.07 - 235.42	CL P MS														
		234.07 - 235.42	SI P MS														
		<i>Mineralization Maj. :</i> 234.07 - 235.42	Type/Style/%Mineral PY TR 0.5	Comment Not much really													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		234.57 - 234.75	QCV		50.0	74	0										
235.42	240.22	I1QFP <i>UNDIFI</i>	FERENTIATED FELSIC IN	TRUSIVE QUARTZ-FELDSI	PAR PORF	PHYRIT	TC.	DC007997	235.42	235.72	0.30		0.00	-	-	-	0.00
		Same as 229.15m exce matrix.	pt that the feldspars look a	little cloudy and there is an i	ncipient sili	icificatio	on of the	DC007998	239.92	240.22	0.30		0.01	-	-	-	0.01

Project Number: 05300 Hole Number PRS-08 Project: **GOUDREAU** Au AA Dup AA Grav Metal Au fin From To (ppm) (ppm) (ppm) (ppm) Lithology Sample # From To Length Zone (ppm) (m) (m) 0.03 246.11 T9ZS DC007999 240.22 241.20 0.98 0.03 240.22 SCHIST UNDIFFERENTIATED Significant zone of GOLD mineralization, Upper contact looks sharp although this could be primary or 0.30 0.10 0.10 DC010001 241.20 241.50 alteration related (oriented 40 degrees to core axis). 20.27 20.27 DC010002 241.50 241.80 0.30 23.54 240.22 to 241.50m: foliated but not extensively veined (less than 1%). This section does not appear to 0.50 18.88 18.60 18.60 DC010003 241.80 242.30 contain any visible gold. Underlying rock type could be a Q(F)P but it is conceivable that the shear is 0.50 16.49 17.72 17.72 DC010005 242.30 242.80 developed within the intrusive porphyry. Some sections look like stretched and flattened feldspar crystals. Generally green due to strong chlorite. 32.06 0.50 37.74 32.06 DC010007 242.80 243.30 0.50 11.67 11.67 DC010009 243.30 243.80 11.18 241.50 to 246.11m; extensive qtz veins, some carrying carbonate and many carrying FREE GOLD. Although some of the veins are at an angle to the foliation there are many that are foliation parallel (1-DC010011 243.80 244.25 0.45 0.12 0.12 2cm wide). Alteration is predominantly chlorite so that the unit is green colored. There are a few patches 32.10 32.10 27.63 DC010012 244.25 244.75 0.50 of pale pink sericite. Interestingly, there is no obvious tourmaline. Almost every vein has diss pyrite in the immediate wall rock. Again the underlying unit could be a Q(F)P or an altered intrusion. 2.93 2.67 244.75 245.25 0.50 2.41 DC010014 0.50 9.42 DC010015 245.25 245.75 9.42 1.13 Structure Maj.: Type/Core Angle DC010016 245.75 246.11 0.36 1.13 Comment WDF 64 Variable around veins 240.22 - 246.11 Alteration Maj: Type/Style/Intensity Comment 240.22 - 246.11 CB VN 240.22 - 246.11 SE PCH 240.22 - 246.11 CL P MS 240.22 - 246.11 SI P MS Mineralization Mai. : Type/Style/%Mineral Comment 240.22 - 246.11 PY DIS 1 Around veins Vein Maj.: Type/Mineral ca vg QCV 30.0 73 0 241.50 - 241.80 241.80 - 242.30 QCV AU 30.0 64 15 48 5 242.30 - 242.80 QCV AU 5.0 10 242.80 - 243.30 QCV AU 15.0 64 62 243.30 - 243.80 QCV AU 20.0 5 0.5 42 0 243.80 - 244.25 CB

Page 21 of 33

lole Number	PRS-08	such har much harmon is the common section of the common section of the common section of the common section of	and the record of the second o	Project: Go	OUDRE		talista liitaasiteet kiiteet	north and the second	a alikasika salah 1900-190	t who with	والمراجع المحاسبة	ngar era	PI	roject Num	ber: 0	5300	postore da presidente de
From (m)	To (m)		Litholog	ıy				Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		244.25 - 244.75	QCV AU	45.0	44	19											
		244.75 - 245.25	QCV	0.5	48	0											
		245.25 - 245.75	QCV	10.0	75	0											
		245.75 - 246.11	QCV AU	5.0	65	1											
04044	040.00						_		24244	242.4							0.00
246.11	248.68	I1QFP UND Same as 235.42m.	IFFERENTIATED FELSIC IN	TRUSIVE QUARTZ-FELDSPAR POR	PHYRI	HC.		DC010018	246.11				0.02	-	-	-	0.02
		Jaille as 255.42111.						DC010019	246.41				0.03	-	-	-	0.03
								DC010021 DC010022	247.41 248.38				0.68 0.05	-	-	-	0.68 0.05
248.68	251.84		RMEDIATE QUARTZ-FELDS					DC010023	248.68	249.18	0.50		5.11	-	-	-	5.11
		Weak to moderately v	well developed foliation. Gene e. fine grained and generally a	rally green in color although some sec around the veins. This unit could be a	continu	re gray	. [f	DC010024	249.18	249.68	3 0.50		2.51	2.88	-	-	2.69
		the I1QFP.	o, imo gramou ana gonoranj c		oona.	20011 0	ı	DC010026	249.68	250.18			0.17	-	-	-	0.17
		FREE GOLD in one o	of the veins.				I	DC010027	250.18	250.68	3 0.50		3.01	-	-	-	3.01
							I	DC010028	250.68	251.5	4 0.86		0.15	-	-	-	0.15
		Structure Maj.:	Type/Core Angle	Comment			I	DC010029	251.54	251.84	4 0.30		0.09	-	-	-	0.09
		248.68 - 251.84	WDF 72	Comment A little variable in places - sometime deformation	es stron	ger											
		Alteration Maj:	Type/Style/Intensity	Comment													
		248.68 - 251.84	CB VN	As tension gashes too													
		248.68 - 251.84	CL P WM	-													
		248.68 - 251.84	SI P MS														
		Mineralization Maj. :	Type/Style/%Mineral	Comment													

e Number	PRS-08	No to the State of Body and State of St	ing access of the control of the con	Project:	GO	UDREA	.U	and the second seco	and the second of the second	and a skip of the t	Market and a substance of	i y se e	Pr	oject Num	nber: 05	300	was a state of the
rom (m)	To (m)		Litholog	у				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metai (ppm)	Au fin (ppm)
		Vein Maj.: 249.18 - 249.68	<i>Type/Mineral</i> QCV au		% 1.0	ca 70	vg 4										
251.84	252.60		SALTIC DYKE. s. Involved in the deformation.	Central qtz-carb vein with extens	sive wal	rock p	yrite	DC010030	251.84	252.60	0.76		10.96	-	8.19	-	8.19
252.60	256.78		ERMEDIATE QUARTZ-FELDS prior to the dyke. It is possible to	PAR PORPHYRITIC TUFF. hat this unit is an altered and de	eformed	I1QFP.		DC010031 DC011001	252.60 256.48				0.23 0.04	-	-	-	0.23 0.04
256.78	258.33	Strongly foliated in the associated pyrite and	d a veinlet (0.5mm) rich in cp. :	multi generational qtz vein syst Strong dark green chloritic altera qtz and local feldspar crystals).				DC011002 DC011003	256.78 257.59				20.92 0.03	- 0.02	25.01 -	-	25.01 0.02
		Structure Maj.: 256.78 - 258.33	<i>Type/Core Angle</i> MDF 64	Comment													
		Alteration Maj:	Type/Style/Intensity	Comment													
		256.78 - 258.33	SI PCH WM	Locally more intense													

le Number	PRS-08	ومهامين ويراعد المحمد عابد عقد عاريدعو	member - State and a subject to a control of the second	Project: GOI	JDRE/	AU	a de la estre de la caractería de la car	82		an to the same the statement		P	roject Num	ber: 0	5300	en et na ee a
From (m)	To (m)		Litholog	y			Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		256.78 - 258.33 Mineralization Maj.: 256.78 - 258.33	CL P MS Type/Style/%Mineral PY TR 0.5	Darker green in wall rock to qtz veins Comment Just a few specks around small qtz ve												
		Vein Maj.: 257.59 - 258.30	Type/Mineral QCV Py	% 55.0	ca 68	vg 0										
258.33	262.41	Again this has sections gray silicification and a	that resemble the I1QFP - s weak foliation locally. A few o sample. Only one of these	PAR PORPHYRITIC TUFF. some of the feldspars have euhedral out small (1-2cm) shear zones overprint the e veinlets contains weak diss pyrite. Upp	unit b	ut thev	DC011004 DC011005	258.33 262.11	258.63 262.41			0.07 0.04	-		-	0.07 0.04
262.41	262.83		T UNDIFFERENTIATED n zone in the QFP unit. Cor gh.	sists of a strong fabric, chlorite alteratio	n and	1-2%	DC011006	262.41	262.83	3 0.42		0.05	-	-	-	0.05
		Structure Maj.: 262.41 - 262.83	Type/Core Angle MDF 59	Comment												
		Alteration Maj: 262.41 - 262.83 262.41 - 262.83	Type/Style/Intensity SI P WM CL P MS	Comment												

ole Number	PRS-08	and a second second	and the second of the second o	Project: GOUDREAU	was tradest with the even w	er we to w	. And the state	a seed of the seed	and some so	Pr	oject Num	ber: 05	300	n seeme side of the
From (m)	To (m)		Lithology		Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
262.83	264.42	T2QFP	INTERMEDIATE QUARTZ-FELDSI	PAR PORPHYRITIC TUFF.	DC011007	262.83	263.13	0.30		0.02	-	-	-	0.02
				trusive unit. General green to gray color. The qtz crystals are smaller than the feldspars.	DC011008	264.12	264.42	0.30		0.01	-	-	-	0.01
264.42	266.08	Has a moderate	present but altered to chlorite. Blue	YRITIC TUFF. the QFP but only a weak alteration overprint. Relict qtz crystals present. No significant mineralization but	DC011009 DC011010	264.42 265.42		1.00 0.89		0.01 0.01	-	-	-	0.01 0.01
		Alteration Maj:	Type/Style/Intensity	Comment										
		264.42 - 266.08		- Common										
		264.42 - 266.08												
000.09	266.31	T2QFP	INTERMEDIATE QUARTZ-FELDSI	DAD DODDUVDITIC TUEE										
266.08	200.31	Same as unit pr	•	tact. Strongly suggests that the QP is a derivative of										

21-Oct-06 6:10:40 PM Page 25 of 33

Hole Number	PRS-08	gget a line to the line of	w. security. Brown and the control of the control o	Proje	ct: GC	UDREA	AU	. Property and the second second	and the second	sar saasa	and the second of the	*********	Pi	roject Nurr	ber: 0	5300	ro a tracello constantion to entre the
From (m)	To (m)		Litholog	y				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
266.31	267.00	Distinct zone of veining a Appears to be part of the	dyke (so the dyke contact	t between the QFP and a unit is 26.31m) but it has been se PRS 03 (at about 300m dow	eparated o			DC011011	266.31	267.00	0.69		3.48	-	-	-	3.48
		Structure Maj.: 266.31 - 267.00	Type/Core Angle WDF 62	Comment													
		Alteration Maj:	Type/Style/Intensity	Comment													
		266.31 - 267.00	SI P WM														
		266.31 - 267.00	CL P MS														
		Mineralization Maj. : 266.31 - 267.00 266.31 - 267.00	Type/Style/%Mineral MG TR 0.5 PY DIS 5	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		266.71 - 267.00	QCV Py		85.0	58	0										
267.00	270 27	V3BD <i>BASAL</i>	TIC DYKE.					DC011012	267.00	267.30	0.30		0.06	_			0.06
207.00	270.37			ed fine-grained MAGNETITE	and some	local p	yrite.	DC011012	270.07	270.37			0.00	0.02	-	-	0.02

Hole Number	PRS-08	BOTTLE CONTINUES OF THE THIRD SECTION SECTION AND THE SECTION	1904 - Amerikan San San Selato () o et 18 mai 18 Million (Selato 1888 - Selato 1884).	Project: Go	OUDRE		erwood on to the own of access a make the large	e produktorno i del te	er, kun heriot u	r Consumble in	harra wasaw	P	roject Num	ber: 0	5300	· · · · Promit The War State of the
From (m)	To (m)		Litholog	ıy			Sample #	From	To i	Length	Zone	Au AA (ppm)	Dup AA	Grav (ppm)	Metal (ppm)	Au fin (ppm)
270.37	276.19	T9ZS SCHIS	T UNDIFFERENTIATED		-		DC011014	270.37	271.37	1.00		0.23	-			0.23
		Strongly foliated at the o	contact with the basalt - felo	Ispar crystals flattened and locally pota	assic. A	way from	DC011015	271.37	272.37	1.00		0.07	_	_	_	0.07
		have a moderate silicific	enerally gray colored and le cation overprint).	ss foliated (has a uniform grain size ar	nd appe	ars to	DC011016	272.37	273.17	0.80		0.00	-	_	_	0.00
			YRITE from 270.37m to at	out 272 27m			DC011017	273.17	274.17	1.00		0.00	-	_	_	0.00
		Contains fine-grained M	AGNETITE from about 272	3.37m to 274.47m.			DC011018	274.17	274.78	0.61		0.00	-	-	_	0.00
		At about 273,17m there	is a perceptible increase in	the amount of potassic alteration of th	a faldei	nare	DC011019	274.78	275.08	0.30		0.00	-	-	-	0.00
		culminating in strong po	tassic overprint associated	with a white colored qtz vein between	274.86r	n and	DC011021	275.08	275.58	0.50		0.00	-	-	-	0.00
		275.08m.					DC011022	275.58	276.19	0.61		0.00	-	-	-	0.00
		Structure Maj.:	Type/Core Angle	Comment												
		270.37 - 276.19	WDF 66													
		Alteration Maj:	Type/Style/Intensity	Comment												
		270.37 - 276.19	CL SP	Also as veinlets locally												
		270.37 - 276.19	SE PCH WM	·												
		270.37 - 276.19	SI P MS													
		<i>Mineralization Maj. :</i> 270.37 - 273.17	Type/Style/%Mineral PY DIS 2	Comment Fine grained												
		273.17 - 274.47	MG TR 0.5	Locally up to 1%												
		Vein Maj.:	Type/Mineral	%	ca	vg										
		274.86 - 275.08	QV PY	100.0	38	-										
276.19	279.48		MEDIATE FELDSPAR POF				DC011023	276.19	276.49	0.30		0.01	0.02	_	_	0.01
		there is virtually no signi	attering of blue qtz crystals. ficant alteration - tends to h he contact is gradational bu	Fabric is weakly developed in only a fe ave a green to gray color (perhaps sor at rather rapid.	ew plac ne loca	es and I	DC011024	279.18	279.48	0.30		0.04	-	-	-	0.04

Hole Number PRS-08				Project: GOUDREAU	Project: GOUDREAU						Project Number: 05300							
From (m)	To (m)		Litholog	y	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)				
279.48	280.69	T9ZS SCHIST	UNDIFFERENTIATED		DC011025	279.48	279.98	3 0.50		0.34	-	-	-	0.34				
		alteration. Portions of the	SCHIST UNDIFFERENTIATED al unit: fine-grained gray silicification with abundant diss pyrite and associated veinlet chloritic on. Portions of the unit has strong mixed chlorite and sericite but only over about 10% of the I. Silicification has a granular appearance almost like sugar. Locally there are small crystals of line.				280.69	0.71		1.03	-	-	-	1.03				
		Structure Maj.:	Type/Core Angle	Comment														
		279.48 - 280.69	WDF 42															
		Alteration Maj:	Type/Style/Intensity	Comment														
		279.48 - 280.69	TL SP															
		279.48 - 280.69	CL VN															
		279.48 - 280.69	SE P +															
		279.48 - 280.69	SI P ++															
		Mineralization Maj. : 279.48 - 280.69	<i>Type/Style/%Mineral</i> PY DIS 5	Comment														
280.69	284.65		TIC DYKE.	wais size with disa MACNETITE and lead over	DC011027	280.69				0.15	-	-	-	0.15				
		associated with minor sh	ear zones. Towards the bo	rain size with diss MAGNETITE and local pyrite ttom of the unit there is a brittle shear zone that has	DC011028	280.99				0.19	-	-	-	0.19				
			ins within the chloritic matre siliceous alteration, this b	ix. Due to the pyrite and local alteration, as well as the	DC011029	281.99				0.25	-	-	-	0.25				
		proximity or the unit to the	e sinceous aneration, this c	asan nas been sampleu.	DC011030	282.99				0.06	-	-	-	0.06				
					DC011031	283.99	284.6	0.66		0.05	-	-	-	0.05				

Hole Number PRS-08				Project: GOUDREAU									Project Number: 05300						
From (m)	To (m)		Litholog	Jy	Sample #	From	To I	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)					
284.65	295.47	Not so many qtz crysta scattered blue qtz crys	RMEDIATE QUARTZ-FELDS als in the first 1m but then it to tals. Most of the unit has suf- res filled with qtz-carbonate in the roblasts after 291m.	DC011032 DC011033	284.65 295.17	284.95 295.47			0.01 0.01	0.01	-	-	0.01 0.01						
295.47																			
295.47	296.65	Narrow zone of alterati possible rhodocrosite.	Original QFP lithology relative	ted with a distinctive qtz-tourmaline vein that contains vely easy to discem beneath the alteration.	DC011034 DC011035	295.47 295.95	295.95 296.65	0.48 0.70		0.01 0.01	-	-	- -	0.01 0.01					
295.47	296.65	Narrow zone of alterati possible rhodocrosite. Structure Maj.:	on and deformation associat Original QFP lithology relativ Type/Core Angle	vely easy to discem beneath the alteration. Comment							-	-	-						
295.47	296.65	Narrow zone of alterati possible rhodocrosite. Structure Maj.: 295.47 - 296.65	on and deformation associat Original QFP lithology relativ <i>Type/Core Angle</i> WDF 35	vely easy to discem beneath the alteration. Comment Appears to be steeper around the vein							-	-	-						
295.47	296.65	Narrow zone of alterati possible rhodocrosite. Structure Maj.:	on and deformation associat Original QFP lithology relativ <i>Type/Core Angle</i> WDF 35 <i>Type/Style/Intensity</i>	Comment Appears to be steeper around the vein Comment							-	-	-						
295.47	296.65	Narrow zone of alterati possible rhodocrosite. Structure Maj.: 295.47 - 296.65 Alteration Maj:	on and deformation associat Original QFP lithology relativ <i>Type/Core Angle</i> WDF 35	vely easy to discem beneath the alteration. Comment Appears to be steeper around the vein							-	-	- -						
295.47	296.65	Narrow zone of alterati possible rhodocrosite. Structure Maj.: 295.47 - 296.65 Alteration Maj: 295.47 - 296.65	on and deformation associat Original QFP lithology relativ <i>Type/Core Angle</i> WDF 35 <i>Type/Style/Intensity</i> TL SP	Comment Appears to be steeper around the vein Comment							-	-	-						
295.47	296.65	Narrow zone of alterati possible rhodocrosite. Structure Maj.: 295.47 - 296.65 Alteration Maj: 295.47 - 296.65 295.47 - 296.65	on and deformation associat Original QFP lithology relativ <i>Type/Core Angle</i> WDF 35 <i>Type/Style/Intensity</i> TL SP CL INT	Comment Appears to be steeper around the vein Comment							-	-	-						
295.47	296.65	Narrow zone of alterati possible rhodocrosite. Structure Maj.: 295.47 - 296.65 Alteration Maj: 295.47 - 296.65 295.47 - 296.65	on and deformation associat Original QFP lithology relative Type/Core Angle WDF 35 Type/Style/Intensity TL SP CL INT SE INT WM	Comment Appears to be steeper around the vein Comment							-	-	-						

Hole Number	PRS-08	energy constitution to the constitution of the	Project: GOUDREAU	a sala escrit	* *#. M. A	Project Number: 05300								
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
296.65	300.00	T2QFP INTERI	MEDIATE QUARTZ-FELDS	PAR PORPHYRITIC TUFF.	DC011036	296.65	296.95	0.30		0.01		-	_	0.01
				nate porphyroblasts overgrow the weak fabric. It is	DC011037	296.95	297.45			0.01	-	-	-	0.01
				revious shear zone yet it is present in the adjacent ng carbonate or b) a lack of carbonate in the shear	DC011038	297.45	298.02	0.57		0.01	-	-	-	0.01
		zone to begin with. Perh	naps it indicates that this she	ear zone post-dates a period of metamorphism - could	DC011039	298.02	298.32	0.30		0.02	-	-	-	0.02
		it be used for the relative	e dating of the shear zones	using carbonate genesis as a clue.	DC011041	298.32	299.32	1.00		0.10	-	-	-	0.10
					DC011042	299.32	299.70	0.38		0.01	-	-	-	0.01
					DC011043	299.70	300.00	0.30		0.01	0.01	-	-	0.01
300.00	301.81	Very weak shear zone. Has an overall green color with late carbonate porphyroblasts. Some patches of pre-existing lithologies (principally QFP). Tiny tourmaline crystals scattered throughout. Trace amounts pyrite. Unlikely to return any significant values.		with late carbonate porphyroblasts. Some patches of naline crystals scattered throughout. Trace amounts of	DC011044 DC011045	300.00 301.00	301.00 301.81			0.01 0.01	-	-	-	0.01 0.01
		Structure Maj.:	Type/Core Angle	Comment										
		300.00 - 301.81	WDF 58	Not present everywhere										
		Alteration Maj:	Type/Style/Intensity	Comment										
		300.00 - 301.81	TL SP											
		300.00 - 301.81	CL INT MS											
		300.00 - 301.81	SI P WM											
		Mineralization Maj.: 300.00 - 301.81	Type/Style/%Mineral PY TR 0.5	Comment										
301.81	304.18	T2QFP INTERI	MEDIATE QUARTZ-FELDS	PAR PORPHYRITIC TUFF.	DC011046	301.81	302.11	0.30		0.01	<u>-</u>	_	-	0.01
		Unaltered, typical green	altered, typical green color to matrix, less carbonate porphyroblasts than is typical. Blue qtz eyes a			303.88	304.18	0.30		0.01	-	-	-	0.01

Hole Number	PRS-08	and the second of the second o	Project: GOUDREAU			Project Number: 05300								
From (m)	To (m)		Lithology fragmental gray colored feldspars. Gradational upper and lower contacts.				То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		fragmental gray colored to	feldspars. Gradational uppo	er and lower contacts.										
304.18	304.71	-	UNDIFFERENTIATED		DC011048	304.18	304.71	0.53		0.02	-	-	-	0.02
		Narrow weak shear zone fractures. No central veir		Disseminated pyrite, a few late qtz-carb filled										
		Structure Maj.: 304.18 - 304.71	Type/Core Angle WDF 45	Comment										
		Alteration Maj:	Type/Style/Intensity	Comment										
		304.18 - 304.71	CB INT											
		304.18 - 304.71	CL PCH											
		304.18 - 304.71	SE PCH WM											
		304.18 - 304.71	SI P WM											
		<i>Mineralization Maj. :</i> 304.18 - 304.71	Type/Style/%Mineral PY TR 0.5	Comment Not much at all										
304.71	309.53	Starts off similar to the Q Feldspars are locally pini	FP at 301.81 but becomes kish in color and have diffu	PAR PORPHYRITIC TUFF. distinctly coarser grained with depth (at about 307m). se outlines due to alteration. Minor shear zones ons have dark green chlorite suggestive of distal iron	DC011049 DC011050	304.71 309.23	305.01 309.53			0.01 0.01	-	-	-	0.01 0.01

Hole Number	PRS-08	Project: GOUDREAU							Project Number: 05300								
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)					
309.53	310.54	T9ZS SCHIST UNDIFFERENTIATED Same as 304.18m except for a slightly greater amount of original lithology.	DC011051	309.53	310.53	3 1.00		0.10	-	-	-	0.10					
310.54	315.86	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as the lower portions of the last unit at 304.71m. Diffuse looking feldspars and a weak to moderate fabric but no mineralization.	DC011052 DC011053	310.53 315.56				0.03 0.02	0.02	- -	-	0.03 0.02					
315.86	318.67	T9ZS SCHIST UNDIFFERENTIATED Same as 304.18m except for addition of a few stringers of tourmaline.	DC011054 DC011055 DC011056	315.86 316.86 317.86	317.86	1.00		0.01 0.71 0.20	- - -	- - -	-	0.01 0.71 0.20					
318.67	319.35	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 310.54m.	DC011057	318.67	318.97	0.30		0.05	-	-	-	0.05					

Hole Number PRS-08 Project: GOUDREAU Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From Zone (ppm) (ppm) (ppm) (ppm) To Length

319.35

321.00 I1D

GRANODIORITE.

Overall pinkish color due to potassic alteration. 320.50 to 320.75m: qtz-tourmaline vein.

DRILL HOLE REPORT

													Chris MA	retur f
Hole Number	PRS-07			Proje	ect: GO	LIDREALI				•		Project Number:		
Drilling Azimuth: Dip: Length: Started: Completed: Logged: Comment:		Casing Length: Pulled: Capped: Camented:	29	Care Dimension: Storaga: Section: Hole Type Geracom East: North: Elav.:	SEXP	UTM East: North: Elev.: Zone:	Coards 691155.1 6352393.5 5391	Mine East:	Location Township: Claim No.: NTS: Hole: 15822:2 4943.4 6391		0	Other Logged by: Relog by: Contractor: Company: Spotted by: Surveyed: Burveyed by: Geophysics: Geoph. Contract: Left in hole: Maiting water:	C. Moreton Orbit Dritting Inc Mines Rictmont C. Moreton yes G.Lamolhe(GPS)	
						NAD:	83					Multi shot surv.:		

Devi	stion	7	es.	b

Distance	Azimuth	Ωlp	Туре	Good	Commen
0.00	180.00	-47.00	C	₩:	
42.00	179.90	49.10	F	<u>~</u>	5656
00.00	170.20	-48.10	A		5688
90.00	179.80	-47.70	F	Ø	5700
120.00	180.50	47.60	F	8	5669
150.00	178.50	-47.70	F	Z	5864
180.00	180.00	-47.50	F	€	5068
210.00	180.60	-47.00	F	Ē	5660
240.00	179.50	-45.80	F	52	5881
270.00	178.60	-45.50	F	Ø	5639
300.00	179.10	45.00	F	2	5663
330.00	179.10	-44.80	F	Z	5647
360.00	179.20	-44.30	F	₹.	8223
390.D0	179.40	-44.20	F	V	5853

Hole Number	PRS-07			Projec	t: GOU	DREAU						Project Number:	05300
Drilling		Casing		Core					Location			Other	
Azimuth:	180.00	Length:	29	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-47.00	Pulled:		Storage:	Island	Gold Project	ct		Claim No.:	3817		Relog by:	
Length:	396.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Started:	30-Mar-06	Cemented:		Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Completed:	03-Apr-06											Spotted by:	C. Moreton
Logged:	06-Apr-06						Coordi	inate				Surveyed:	yes
	Samples: DC007655-DC007829			Gemcom	•	UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS
	·			East:	15822.2	East:	691155.1	East:	15822.2	East:	0	Geophysics:	
				North:	4943.4	North:	5352393.5	North:	4943.4	North:	0	Geoph. Contract:	
				Elev.:	5391	Elev.:	5391	Elev.:	5391	Elev.:	0	Left in hole:	
						Zone:	16					Making water:	
						NAD:	83					Multi shot surv.:	

Deviation Tests

Distance	Azimuth	Dip	Type	Good	Comments
0.00	180.00	-47.00	С	✓	
42.00	179.90	-49.10	F	✓	5658
60.00	176.20	-48.10	Α		5688
90.00	179.60	-47.70	F		5700
120.00	180.50	-47.60	F	✓	5669
150.00	178.50	-47.70	F	✓	5664
180.00	180.00	-47.50	F	✓	5668
210.00	180.60	-47.00	F	✓	5660
240.00	179.50	-45.80	F	✓	5681
270.00	178.60	-45.50	F	✓	5639
300.00	179.10	-45.00	F	✓	5663
330.00	179.10	-44.80	F	✓	5647
360.00	179.20	-44.30	F	✓	5658
390.00	179.40	-44.20	F	✓	5653

Deviation Tests

Casing

Hole Number PRS-07 Project: GOUDREAU Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm)

29.00 36.85 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.

Overall green to gray color. Weakly foliated, locally contorted (two intersecting foliations), some early qtz veins, without alteration or mineralization, parallel to the main foliation. Distinct 1-3mm blue qtz crystals and slightly larger (generally) gray feldspar crystals.

34.20 to 34.31m: strong banded silicification but no pyritic mineralization and no significant wall rock alteration outside of the zone. Other zones of silicification with weak pyrite but not banded. Pervasive carbonate alteration throughout, interstitial and as gashes/veinlets.

36.85 41.19 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.

Intra-formational upper contact between two relatively distinct QFP layers (contact oriented 25 degrees to the core axis).

This unit tends to be darker green in color and less foliated. Still has the same style of qtz and feldspar crystals. A lot less carbonate alteration so that more of the matrix texture is visible.

37.62 to 38.19m: Late milky white qtz vein. No mineralization. Minor intense chloritic alteration on the selvages and within the vein.

0.00

29.00

CSG

Hole Number PRS-07 Project: **GOUDREAU** To From (m) (m) Lithology Sample # From To Length 41.19 41.95 V1DD DACITE DYKE. Distinct light beige color with sub-rounded qtz crystals. No obvious feldspars. Foliated throughout so it predates the main deformation. Intrudes the QFP only. Has a finer-grained chill zone. Resembles the dacite encountered in the underground drilling. Upper and lower contacts are sharp. 41.95 42.22 **T2QFP** INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same unit as that prior to the dyke. Has chloritic alteration in the wall rock of the dyke. No mineralization in the chloritic zone. 42.22 V3BD BASALTIC DYKE. 46.41 Distinct medium green color, foliated, strongly carbonated rock. Disseminated minor PYRROHTITE throughout. Finer grained upper and lower contacts (less so for the lower). Both contacts are sharp.

Unit has a uniform grain size. Fabric oriented 60 degrees to core axis.

Project Number: 05300

Au fin

(ppm)

(ppm)

Au AA Dup AA Grav

(ppm)

Zone (ppm)

Hole Number PRS-07 Project: GOUDREAU Project Number: 05300 To From Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm)

T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.

Continuation of the same unit prior to the dyke.

49.80 54.40 T9ZS SCHIST UNDIFFERENTIATED

Previous unit grades into a intensely foliated unit (start of a significant shear zone). Appears to be strongly chloritised/carbonated down to about 52.50m, after which there is an increase in the silicification so that the unit is more massive. Even in the chloritised section there is still a scattering of blue qtz eyes although there are few, if any, feldspar crystals. Principal feature of this originally felsic unit seems to be the abundant chlorite and associated carbonate stringers.

Structure Maj.: 49.80 - 54.40	Type/Core Angle MDF 70	Comment Locally shallower by 20 degrees (lithons)
Alteration Maj:	Type/Style/Intensity	Comment
49.80 - 54.40	SI PCH MS	Locally banded
49.80 - 54.40	CB B WM	Locally stronger over a few cms
49.80 - 54.40	CL B MS	
Mineralization Maj. :	Type/Style/%Mineral	Comment
49.80 - 54.40	PY TR 0.5	Generally in discrete zones associated with the veining.

54.40 54.50 **FZ Fault**

46,41

49.80

Hole Number PRS-07 Project: GOUDREAU Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Cemented brittle fault zone with mm scale gouge on the upper and lower contacts. Oriented parallel to the wall rock foliation (78 degrees to core axis) - re-activated main foliation or original fault parallel to the main fabric. 54.50 84.43 T9ZS SCHIST UNDIFFERENTIATED DC007655 64.97 65.27 0.30 0.01 0.01 Continuation of the same unit prior to the fault. Tends to be an intermixed unit of chloritic and silicified DC007656 65.27 65.77 0.50 0.08 0.08 QFP. Some 2-3cm qtz veins, unmineralized, with darker green chloritic alteration. Some zones of DC007657 65.77 66.07 0.30 0.01 0.01 carbonate banding, these tend to be associated with increased amounts of darker green chlorite. DC007658 67.62 67.92 0.30 0.06 0.06 Foliation intensity is strong throughout and the dominant alteration mineral is chlorite. Some places have DC007659 67.92 68.22 0.30 6.67 6.67 banded chlorite-carbonate mixtures reminiscent of an altered mafic unit. Parts of the core have zones of relict earlier foliations overprinted by a relatively younger foliation. DC007661 68.52 0.30 0.28 68.22 0.28 DC007662 70.39 70.69 0.30 0.52 0.52 Only a few sections have pyritic mineralization, sometimes associated with first generation at sweats. DC007663 70.69 70.99 4.45 0.30 4.45 This should be the location of the NORTH SHEAR ZONE - wide movement zone without the qtz-pyrite DC007664 70.99 71.29 0.30 0.00 0.00 zones? DC007665 0.30 0.03 73.73 74.03 0.03 This shear zone has been sampled wherever there is pyrite and alteration. In addition, samples were DC007666 74.03 74.53 0.50 0.11 0.11 taken up and down hole of the granodiorite contact. DC007667 74.83 0.04 0.04 74.53 0.30 DC007668 79.43 80.43 1.00 0.03 0.03 Structure Mai.: Type/Core Angle Comment DC007669 0.05 80.43 81.43 1.00 0.05 54.50 - 84.43 MDF 64 Locally shallower in the lithons DC007670 81.43 82.43 1.00 0.01 0.01 Alteration Mai: Type/Style/Intensity Comment DC007671 0.05 82.43 83.43 1.00 0.05 54.50 - 84.43 CB B + Locally less, partic if silicification DC007672 83.43 84.43 1.00 0.07 0.07 54.50 - 84.43 TL VN Very minor 54.50 - 84.43 SI PCH + 54.50 - 84.43 SE PCH

Hole Number	PRS-07			Project:	GOUDREAU						Pro	oject Num	ber: 0 5	300	
From (m)	To (m)		Lithology	,		Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		54.50 - 84.43	CL PCH +	Locally strong											
		Mineralization Maj.: 54.50 - 84.43	Type/Style/%Mineral PY TR 0.5												
84.43						DC007673	84.43	85.43	1.00		0.17	-	-	-	0.17
		QUICK LOGGING FROM	HERE: database upgrade			DC007674	85.43	86.43	1.00		0.01	0.01	-	-	0.01
				stance from the contact (away f		DC007675	86.43	87.43	1.00		0.01	-	-	-	0.01
				id re-oriented feldspar (gray). Se ne granodiorite has a gray to blu		DC007676	87.43	88.43	1.00		0.02	-	-	-	0.02
				,	J	DC007677	88.43	89.43	1.00		0.00	-	-	-	0.00
				ection but no significant pyrite. Fispect to the relatively weak folia		DC007678	89.43	90.43	1.00		0.04	-	-	-	0.04
		generation gray que vents	but difficult to date with res	spect to the relatively weak lona	uon.	DC007679	90.43	91.43	1.00		0.03	-	-	-	0.03
						DC007681	91.43	92.43	1.00		0.04	-	-	-	0.04
						DC007682	92.43	93.43	1.00		0.01	-	-	-	0.01
						DC007683	93.43	94.43	1.00		0.00	-	-	-	0.00
						DC007684	94.43	95.43	1.00		0.00	0.00	-	-	0.00
						DC007685	99.54	99.84	0.30		0.01	-	-	-	0.01
99.84	100.20	API ISLAND	ALTERATION PACKAGE			DC007686	99.84	100.20	0.36		0.10	-	-	-	0.10
		A strongly aftered section colored qtz veins (unknow vein there is an increase in	n generation). A few speck												

system has 1% tourmaline and 5% pyrite disseminations.

Hole Number	PRS-07	Project: GOUDREAU						Pi	roject Num	ber: 05	5300		
From (m)	To (m)	Lithology	Sample #	From	To L	ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)	
100.20	103.68	I1DS GRANODIORITE SCHIST Same as 84.43m.	DC007687 DC007688	100.20 103.38	100.50 103.68	0.30 0.30		0.02	-	-	-	0.02 0.00	
103.68	106.86	V3BD BASALTIC DYKE. Strongly deformed - probably took most of the strain. Has a green colored streaky appearance due to alignment of chlorite and carbonate stringers. Foliation oriented 50 degrees to ca. Some scattered later qtz-carb veins as well as a few gray colored qtz veins (both sets in order of 2-3cm wide maximum). Upper contact has a qtz-carbonate vein (5-7cm wide) cross cutting the main fabric. Lower contact more complicated with both generations of veining (in both the basalt and the granodionite). Lower veining	DC007689 DC007690 DC007691 DC007692	103.68 104.47 105.47 106.47	104.47 105.47 106.47 106.77	0.79 1.00 1.00 0.30		0.01 0.10 0.01 0.01			- - -	0.01 0.10 0.01 0.01	

Hole Number PRS-07 Project Number: 05300

rom	То									Au AA	Dup AA	Grav	Metal	Au fin
(m)	(m)		Litholog	ay	Sample #	From	То	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
106.86	139.85	IID GRANC	DDIORITE		DC007693	106.77	107.08	0.31		8.05	-	-	-	8.05
		Variably altered and frac	ctured (rather than foliated) very little chlorite in this par	. Has a beige to gray color due to stronger silicification	DC007694	107.08	107.38	0.30		0.28	0.17	-	-	0.22
			•	•	DC007695	107.38	108.38	1.00		0.42	-	-	-	0.42
				ate boundaries of a zone of fractured core. Minor fault to have stronger sericite showing up as a yellowish	DC007696	108.38	109.38	1.00		0.06	-	-	-	0.06
		tinge to the rock.	scale slip sulfaces. Terius	to flave stronger sericite showing up as a yellowish	DC007697	109.38	110.38	1.00		0.23	-	-	-	0.23
		QTZ-TOUR VEIN: 112.1	16m to 112 65m		DC007698	110.38	111.38	1.00		0.23	-	-	-	0.23
		Q12-100K VEHV. 112.1	1011110 1 12.00111		DC007699	111.38	112.16	0.78		0.04	-	-	-	0.04
					DC007701	112.16	113.16	1.00		0.06	-	-	-	0.06
					DC007702	113.16	114.16	1.00		0.06	-	-	-	0.06
					DC007703	139.55	139.85	0.30		0.01	-	-	-	0.01
139.85	143.37		O ALTERATION PACKAGI		DC007704	139.85	140.35			0.02	0.02	-	-	0.02
139.85	143.37	Not a banded siliceous t	ype but it is a strongly alter	red package within the granodiorite. Generally it is	DC007705	140.35	140.85	0.50		0.03	0.02	-	-	0.03
139.85	143.37	Not a banded siliceous to beige to gray in color due	ype but it is a strongly alter e to pervasive silicification.		DC007705 DC007706	140.35 140.85	140.85 141.35	0.50 0.50		0.03 3.22	0.02	- - -	- - -	0.03 3.22
139.85	143.37	Not a banded siliceous to beige to gray in color due	ype but it is a strongly alter e to pervasive silicification.	red package within the granodiorite. Generally it is Multiple qtz-carb veins of different ages as well as	DC007705 DC007706 DC007707	140.35 140.85 141.35	140.85	0.50 0.50 0.50		0.03 3.22 0.04	0.02 - - -		- - -	0.03 3.22 0.04
139.85	143.37	Not a banded siliceous to beige to gray in color due	ype but it is a strongly alter e to pervasive silicification.	red package within the granodiorite. Generally it is Multiple qtz-carb veins of different ages as well as	DC007705 DC007706 DC007707 DC007708	140.35 140.85 141.35 141.85	140.85 141.35 141.85 142.37	0.50 0.50 0.50 0.52		0.03 3.22 0.04 0.02	0.02 - - - -		- - -	0.03 3.22 0.04 0.02
139.85	143.37	Not a banded siliceous to beige to gray in color dure scattered needles and ve	ype but it is a strongly alter e to pervasive silicification. eins of tourmaline. Dissem	red package within the granodiorite. Generally it is Multiple qtz-carb veins of different ages as well as inated pyrite and localized clots of dark green chlorite.	DC007705 DC007706 DC007707 DC007708 DC007709	140.35 140.85 141.35 141.85 142.37	140.85 141.35 141.85 142.37 142.87	0.50 0.50 0.50 0.52 0.50		0.03 3.22 0.04 0.02 0.15	0.02 - - - - -		- - - -	0.03 3.22 0.04 0.02 0.15
139.85	143.37	Not a banded siliceous to beige to gray in color due scattered needles and versions.	ype but it is a strongly alter e to pervasive silicification. eins of tourmaline. Dissem Type/Core Angle	red package within the granodiorite. Generally it is Multiple qtz-carb veins of different ages as well as inated pyrite and localized clots of dark green chlorite. Comment	DC007705 DC007706 DC007707 DC007708	140.35 140.85 141.35 141.85	140.85 141.35 141.85 142.37	0.50 0.50 0.50 0.52 0.50		0.03 3.22 0.04 0.02	0.02 - - - - - -		-	0.03 3.22 0.04 0.02
139.85	143.37	Not a banded siliceous to beige to gray in color du scattered needles and von Structure Maj.:	ype but it is a strongly alter e to pervasive silicification. eins of tourmaline. Dissem **Type/Core Angle** WDF 60	red package within the granodiorite. Generally it is Multiple qtz-carb veins of different ages as well as inated pyrite and localized clots of dark green chlorite. Comment Locally shallower. Not a well developed banding.	DC007705 DC007706 DC007707 DC007708 DC007709	140.35 140.85 141.35 141.85 142.37	140.85 141.35 141.85 142.37 142.87	0.50 0.50 0.50 0.52 0.50		0.03 3.22 0.04 0.02 0.15	0.02 - - - - - -		-	0.03 3.22 0.04 0.02 0.15
139.85	143.37	Not a banded siliceous to beige to gray in color due scattered needles and versattered maj.: 139.85 - 143.37 Alteration Maj:	ype but it is a strongly alter e to pervasive silicification. eins of tourmaline. Dissem Type/Core Angle WDF 60 Type/Style/Intensity	red package within the granodiorite. Generally it is Multiple qtz-carb veins of different ages as well as inated pyrite and localized clots of dark green chlorite. Comment Locally shallower. Not a well developed banding.	DC007705 DC007706 DC007707 DC007708 DC007709	140.35 140.85 141.35 141.85 142.37	140.85 141.35 141.85 142.37 142.87	0.50 0.50 0.50 0.52 0.50		0.03 3.22 0.04 0.02 0.15	0.02 - - - - -		-	0.03 3.22 0.04 0.02 0.15
139.85	143.37	Not a banded siliceous to beige to gray in color du scattered needles and viscattered needles and viscattered Maj.: 139.85 - 143.37 Alteration Maj: 139.85 - 143.37	ype but it is a strongly alter e to pervasive silicification. eins of tourmaline. Dissem Type/Core Angle WDF 60 Type/Style/Intensity TL VN WM	Multiple qtz-carb veins of different ages as well as inated pyrite and localized clots of dark green chlorite. Comment Locally shallower. Not a well developed banding. Comment	DC007705 DC007706 DC007707 DC007708 DC007709	140.35 140.85 141.35 141.85 142.37	140.85 141.35 141.85 142.37 142.87	0.50 0.50 0.50 0.52 0.50		0.03 3.22 0.04 0.02 0.15	0.02		-	0.03 3.22 0.04 0.02 0.15
139.85	143.37	Not a banded siliceous to beige to gray in color du scattered needles and volume scattered needles nee	ype but it is a strongly alter e to pervasive silicification. eins of tourmaline. Dissem Type/Core Angle WDF 60 Type/Style/Intensity TL VN WM CL PCH WM	Multiple qtz-carb veins of different ages as well as inated pyrite and localized clots of dark green chlorite. Comment Locally shallower. Not a well developed banding. Comment	DC007705 DC007706 DC007707 DC007708 DC007709	140.35 140.85 141.35 141.85 142.37	140.85 141.35 141.85 142.37 142.87	0.50 0.50 0.50 0.52 0.50		0.03 3.22 0.04 0.02 0.15	0.02		-	0.03 3.22 0.04 0.02 0.15

lole Number	PRS-07			Project: GO	UDREA	AU						Pro	oject Num	ber: 05	5300	
From (m)	To (m)		Lithology				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
	-	Vein Maj.: 140.35 - 141.35	Type/Mineral QCT PY	% 50.0	ca 60	vg 0										
143 37	165.00	IID GRA	NODIORITE				DC007711	143.37	143.67	0.30		0.05	-	-	-	0.05
140.01	143.37 165.00	Locally strongly silicific of tourmaline but each	ed but no pyrite - silicification generally ness than 1mm. Fractured (but cohere ous portions. Scattered pyrite but only	ent) in some places due to def	oradic v formatio	einlets on of	DC007712	164.70	165.00	0.30		0.01	-	-	-	0.01
		Variations exist but no bleached look become	ot distinctive enough to large enough to es more prevalent towards the bottom of	separate from the bulk granoof the unit.	diorite.	Α										
		Note the following: HE	EMATITIC VARIATION: 156.56m to 158	8.64m. Gradational upper and	lower	contacts.										
165.00	168.90	I1DS GRA	NODIORITE SCHIST				DC007713	165.00	166.00	1.00		0.01	-	-	-	0.01
		Locally has a strong for	abric although there are sections that a orly stage qtz veins but no accompanyin	re more massive and resembl g pyrite or VG. Local late qtz-	le the carb ve	einlets.	DC007714	166.00	167.00	1.00		0.02	0.04	-	-	0.03 0.11
		_					DC007715	167.00	168.00 168.97	1.00 0.97		0.11 0.01	-	-	-	0.11
			rmaline veinlets (mm-scale). Overall it films along the incipient cleavage.	nas a blue gray to green color	uue IU	uic	DC007716	168.00	100.97	0.97		0.01	-	-	-	0.01

GOUDREAU

Project:

Hole Number PRS-07 Au fin Au AA Dup AA Grav Metal From To (ppm) (ppm) Sample # From To Length Zone (ppm) (ppm) Lithology (m) (m) 0.01 168.97 169.27 0.30 0.01 DC007717 168.90 191.43 I1D GRANODIORITE 0.09 Over 90% of the intersection is hematitic and distinctive (particularly in the lower part). Has a mottled 0.30 0.09 DC007718 191.13 191.43 appearance due to hematitic feldspars and chloritic films. Most of the unit has a uniform grain size except for the localized areas of shearing (only over a few cms). Type/Mineral Vein Maj.: 345.00 - 0.00 0.03 192.00 0.57 0.03 DC007719 191.43 SCHIST UNDIFFERENTIATED 191.43 197.06 T9ZS Variably hematitic and foliated QP (protolith). Mottled and pervasive silicification and patchy to layered 0.18 0.18 DC007721 192.00 193.00 1.00 chlorite. Multiple generation QV some carrying trace pyrite (wall rock too) and carbonate. Not much 0.05 DC007722 193.00 194.00 1.00 0.05 tourmaline. Has an overall green color particularly towards the bottom of the unit. 0.07 0.07 DC007723 194.00 195.00 1.00 0.05 DC007724 195.00 196.00 1.00 0.05 Type/Core Angle Comment Structure Maj.: 0.06 0.06 0.06 DC007725 196.00 196.50 0.50 191.43 - 197.06 WDF 72 Weak in silicified zones 0.06 DC007726 196.50 197.06 0.56 0.06 Alteration Maj: Type/Style/Intensity Comment 191.43 - 197.06 SE MO 191.43 - 197.06 CL PCH WM SI MO WM Locally intense. 191.43 - 197.06 Mineralization Maj. : Type/Style/%Mineral Comment PY TR 0.5 191.43 - 197.06

Project Number: 05300

Hole Number PRS-07 Project Number: 05300

rom	To		,		0	_	_		_		Dup AA		Metal	Au fin
(m)	(m)		Litholog		Sample #	From	10	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
197.06	201.04		AND ALTERATION PACKAG		DC007727	197.06	197.56	0.50		1.53	-	-	-	1.53
				ritic and weakly banded. Upper contact is relatively color overall. Specks of tourmaline scattered	DC007728	197.56	198.06	0.50		0.87	-	-	-	0.87
		throughout (need len	is to see) as well as spotted ch	nlorite generally associated with pyritic mineralization.	DC007729	198.06	198.56	0.50		0.59	-	-	-	0.59
		The better veinlet to	urmaline tends to be associate	d with the slightly younger veining (qtz-carb).	DC007730	198.56	199.06	0.50		1.25	-	-	-	1.25
		Silicification tends to	have a sugary texture in this	section.	DC007731	199.06	199.56	0.50		0.27	-	-	-	0.27
					DC007732	199.56	200.06	0.50		2.25	-	-	-	2.25
					DC007733	200.06	200.56	0.50		0.20	-	-	-	0.20
		Alteration Maj:	Type/Style/Intensity	Comment	DC007734	200.56	201.06	0.50		0.34	-	-	-	0.34
		197.06 - 201.04	CL SP	Associated with pyrite										
		197.06 - 201.04	TL SP	Tiny crystals										
		197.06 - 201.04	SE B WM											
		197.06 - 201.04	SI P MS											
201.04	202.64		HIST UNDIFFERENTIATED I unit. Silicified with a weak lay	ering.	DC007735 DC007736	201.06 201.94		0.88 0.70		0.94 0.27	-	-	-	0.94 0.27
					50007750	201.54	202.04	0.70		0.21	_	_	_	0.21
		Structure Maj.:	Type/Core Angle	Comment										
		201.04 - 202.64	WDF 40	Locally steeper										
		Alteration Maj:	Type/Style/Intensity	Comment										
		201.04 - 202.64	CL INT	Minor										
		201.04 - 202.04	3											
		201.04 - 202.64	SE INT	Gives pinkish hue										

lole Number	PRS-07			Project: GO	UDREA	U						P	roject Num	ber: 0	5300		
From (m)	To (m)		Litholo	gy				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
202.64 202.9		FZ Fault More or less flat lying s the primary layering. A shallower in other parts	structure created by the inter t this location the angle betv s of the T9ZS.	rsection of a younger cle veen the two layers is ab	eavage (and son bout 90 degrees	ne motio - could i	n) with De	DC007737	202.64	202.94	0.30		0.02	-	-	-	0.02
202.94	208.12	Continuation of unit price	ST UNDIFFERENTIATED or to the fault zone. Weakly cting slight increase in chlori	layered overall, tends to ite. Significant vein - see	be greener in code details.	color than	1	DC007738 DC007739 DC007741 DC007742	202.94 203.94 204.94 205.82	203.94 204.94 205.82 206.12	1.00 1.00 0.88 0.30		0.01 0.02 0.03 0.27	- - 0.02	-	-	0.01 0.02 0.02 0.27
		Structure Maj.:	Type/Core Angle	Comment				DC007743	206.12		0.57		4.81	-	-	-	4.81
		202.94 - 208.12	MDF 58	0				DC007744	206.69	206.99	0.30		0.06	-	-	-	0.06
		Alteration Maj: 202.94 - 208.12	Type/Style/Intensity CL MO WM	Comment				DC007745	206.99		0.50		0.13	-	-	-	0.13
		202.94 - 208.12	TL VN	As cleavage films				DC007746	207.49	208.12	0.63		0.03	-	-	-	0.03
		202.94 - 208.12	SE PCH WM														
		202.94 - 208.12	SI B MS	Locally pervasive													
		Mineralization Maj. :	Type/Style/%Mineral	Comment	al vaine (5mm)												
		202.94 - 208.12	PY VN 0.5	Only abundant in loca	ai veiris (Sillill)												
		202.94 - 208.12 Vein Maj.:	PY VN 0.5 Type/Mineral	Only abundant in loca	%	ca	vg										

Hole Number	PRS-07			Project: GOUDREAU						Р	roject Num	ber: 05	5300	
From (m)	To (m)		Litholog	·	Sample #	From	To L	ength	Zone		Dup AA (ppm)	Grav (ppm)	Metai (ppm)	Au fin (ppm)
208.12	213.17	- -	MEDIATE VOLCANIC QUA z crystals in a weakly altered	DC007747	208.12	208.42	0.30		0.04	-	-	-	0.04	
213.17	224.50	Really just a sheared Qi fabric. Chlorite is the do	T UNDIFFERENTIATED FP with the general loss of feminant alteration mineral and oric. Gradational lower and universely.	eldspar and the development of a moderate to strong d silicification is only minor. A couple of qtz veins pper contacts.										
		Structure Maj.: 213.17 - 224.50	Type/Core Angle MDF 38	Comment										
		Alteration Maj:	Type/Style/Intensity	Comment										
		213.17 - 224.50	CL P WM											
		Mineralization Maj. : 213.17 - 224.50	Type/Style/%Mineral PY TR 0.5	Comment Best in association with the dark green chlorite.										
224.50	234.92	No significant fabric in the Majority of feldspars are distinguish from flattene Secondary carbonate in	his unit. Has euhedral feldsp altered to a micaceous min d altered feldspars.	RTZ-FELDSPAR PORPHYRY. ars (5mm) and scattered smaller bluish qtz crystals. eral. Possible lapilli although these are difficult to rall gray to green color. Appears to have wholesale sation.	DC007748	234.62	234.92	0.30		0.03	-	-	-	0.03

Hole Number	PRS-07			Project	t: GC	UDREA	'n						Pr	oject Num	ber: 0	5300	
From (m)	To (m)		Litholog	y				Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
234.92	241.62	T9ZS SCHIST	UNDIFFERENTIATED					DC00 7 749	234.92	235.25	0.33		0.03	-	-	-	0.03
				ns a distinctive pinkish beige ve	ein with	needles	of	DC007750	235.25	235.75	0.50		0.34	-	-	-	0.34
		tourmaline (scattered an	d few). Lower boundary is v	ague and difficult to define.				DC007751	235.75	236.50	0.75		0.37	0.40	-	-	0.38
								DC007752	236.50	237.02	0.52		0.18	-	-	-	0.18
		Structure Maj.:	Type/Core Angle	Comment				DC007753		237.32	0.30		0.08	-	-	-	0.08
		234.92 - 241.62	MDF 54					DC007754	237.32	238.32	1.00		0.04	-	-	-	0.04
		Alteration Maj:	Type/Style/Intensity	Comment				DC007755	238.32	239.32	1.00		0.34	-	-	-	0.34
		234.92 - 241.62	SI PCH WM					DC007756	239.32		0.30		0.47	-	-	-	0.47
		234.92 - 241.62	CL PCH WM					DC007757		240.62	1.00		0.41	-	-	-	0.41
		<i>Mineralization Maj. :</i> 234.92 - 241.62	Type/Style/%Mineral PY TR 0.5	Comment Tiny specks in the layering				DC007758	240.62	241.62	1.00		0.02	-	-	-	0.02
		Vein Maj.:	Type/Mineral		%	ca	vg										
		236.50 - 237.02	QCT PY		100.0	62	0										
241.62	261.57	T2LQP INTERMEDIATE LAPILLI QUARTZ PORPHYRITIC TUFF. Generally a dull green color. No significant alteration zones except for a few qtz-carb veins. Lapilli are not distinct but there are portions of the unit that are richer in the fragments. Gradational contacts between any variations in this unit. 251.80 to 253.93m: three discrete qtz-carbonate veins in the chloritic LQP. Minor pyrite but no VG.					are not veen	DC007759	241.62	241.92	0.30		0.01	-	-	-	0.01
		251.80 to 253.93m: three															
		240.10m: qtz crystals be 256.28m: lapilli tend to b	come fewer after this depth e more abundant after this	n. depth.													

Project Number: 05300 GOUDREAU Project: Hole Number PRS-07 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) To Length Zone (ppm) (ppm) Sample # From Lithology (m) (m)

265.72 T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF.

Dark to pale green in color, fine to medium grain size with a weak to locally moderate fabric. Scattered qtz crystals and carbonate filled gashes.

MAGNETITE bands and weak disseminations in this unit. Chlorite is the dominant silicate mineral. Localized silicification. Blue qtz crystals suggest it is a felsic unit that is altered and weakly schistose. Alternatively it could be a chlorite facies iron formation with qtz crystals.

265.72 267.68 I1DD GRANODIORITE DYKE.

Slightly finer grained than other examples. Gray in color with relict feldspar and blue qtz crystals. Anastomosing chlorite films surround the relict crystals. Both upper and lower contacts marked by milky white qtz yeins. Has same fabric intensity as the country rock.

267.68 270.75 T2LQP INTERMEDIATE LAPILLI QUARTZ PORPHYRITIC TUFF.

Green colored with scattered qtz crystals and more abundant whitish colored moderately flattened lapilli. Possible gray colored feldspars in some locations but not abundant.

261.57

Hole Number	PRS-07							Pi	roject Num	ber: 05	300							
From (m)	To (m)		Litholog	y				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)	
										2001							0.05	
270.75	276.29		UNDIFFERENTIATED		DC007761	274.42				0.05	0.05	-	-	0.05				
		alteration and weak silici	with a central qtz carb tourr ification (purplish hues). Be	naline vein. Above the vein th low the vein the alteration is o	nere is stri chloritic w	ong cnic ith trace	riuc	DC007762	274.72				1.05	-	-	-	1.05	
		stringers of pyrite. Carbo	onate stringers are variably earlier qtz-tourmaline syste	dary	DC007763	275.32	276.29	0.97		0.38	-	-	-	0.38				
		Structure Maj.:	Type/Core Angle	Comment														
		270.75 - 276.29	MDF 47	Variably around the veins.														
		Alteration Maj:	Type/Style/Intensity	Comment														
		270.75 - 276.29	SI PCH WM															
		270.75 - 276.29	CL P MS															
		Mineralization Maj. : 270.75 - 276.29	Type/Style/%Mineral PY DIS 1	Comment As stringers sometimes														
		Vein Maj.:	Type/Mineral		%	ca	vg											
		274.72 - 275.32	QCT py		70.0	58	0											
		276.12 - 276.29	QCT py		75.0	45	0											
276.29	283.65	A moderately well foliate	s of qtz-carb veins (each les	IYRITIC TUFF. as the typical green color and sthan 1cm) parallel to the fo	d scattere oliation. No	d qtz cry o minera	vstals. Alization	DC007764	276.29	276.59	0.30		0.18	-	-	-	0.18	

Project Number: 05300 **GOUDREAU** Hole Number PRS-07 Project: Au AA Dup AA Grav Metal Au fin From To (ppm) (ppm) (ppm) (ppm) (ppm) Lithology Sample # To Length Zone (m) (m) INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 283.65 T2QFP 291.46 Moderately well foliated QFP with typical qtz and feldspar crystals. Overall color is green with no distinct zones of alteration. Some silicification locally. Upper contact is gradational while the lower one is sharp against the mafic dyke. 291.46 292.87 V3BD BASALTIC DYKE. Deformed with late carbonate filled gashes. Same as other dykes except that only the upper contact is finer-grained and it is possible that it is a flow. Contains carbonate porphyroblasts and trace diss pyrite. 0.03 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007765 301.75 302.05 0.30 0.03 292.87 302.05 Coarse-grained version with distinctive pink colored feldspars (up to 5% of the interval does not contain pink feldspars). Weakly developed shear zones are present throughout so that the feldspars are aligned parallel to a poor foliation. However, no veining or significant alteration - some post-main foliation gashes filled with white colored fine-grained qtz-carbonate mixture.

Hole Number PRS-07 **GOUDREAU** Project: Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin Lithology (m) (m) Sample # From To Length (ppm) (ppm) (ppm) (ppm) (ppm) Zone 301.61: 1cm cemented late fault breccia. 302.05 304.72 **T9ZS** SCHIST UNDIFFERENTIATED DC007766 302.05 302.55 0.50 0.01 0.01 General increase in foliation intensity with a slight pinkish coloration due to increased potassic alteration. DC007767 302.55 303.12 0.57 0.01 0.01 Weak localized diss pyrite. Disrupted gray colored qtz veins parallel to the main foliation in some spots. A 303.12 303.42 DC007768 0.30 0.03 0.03 single central qtz-tourmaline vein system (see details) - appears to be at a slightly lower angle to ca than the country rock. DC007769 303.42 303.92 0.02 0.02 0.50 DC007770 303.92 0.03 0.03 304.42 0.50 Lower contact is relatively sharp - passes into a more massive QFP. DC007771 304.42 304.72 0.30 0.16 0.17 0.16 Structure Maj.: Type/Core Angle Comment 302.05 - 304.72 MDF 25 Locally steeper Alteration Maj: Type/Style/Intensity Comment 302.05 - 304.72 TL VN Only in the vein. 302.05 - 304.72 SE PCH + 302.05 - 304.72 CL B WM 302.05 - 304.72 SI P MS Locally banded Mineralization Mai. : Type/Style/%Mineral Comment 302.05 - 304.72 PY TR 0.5 Appears to be best in the vein. Vein Maj.: Type/Mineral ca vg 303.12 - 303.32 QTV py 50.0 25 0

lole Number	PRS-07			Project:	GOUDREAU						Pi	oject Num	ber: 05	300	
From	To		Litholog	·		Sample #	From	To I	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)	T2QFP INTE	RMEDIATE QUARTZ-FELDS			DC007772	304.72	305.02	0.30		0.03	-	-	-	0.03
304.72	314.00	Continuation of same feldspars. Feldspars a	unit at 292 87m except that it	is more massive with many distind k of a fabric. Overall gray to green	ctive pink colored a colored but not										
244.00	000.47	FZ Fault	4			DC007773	320.17	320.47	0.30		0.00	_	-	<u>-</u>	0.00
314.00	320.47	About 15% of the inte broken rubble core. R	erval is late stage white colored	d qtz vein cross cutting the main fa ored QFP unit. Appears to be a lat ior amounts of tourmaline along w of country rock fragments.	e drittie fault with										
		No pyrite or significan	nt intemal or external alteration	n so not sampled.											
320.47	320.77	T9ZS SCH	IIST UNDIFFERENTIATED			DC007774	320.47	320.77	0.30		0.02	-	-	-	0.02
		Early stage vein syste different to the secon zone angle is similar	d generation carbonate veinin	te is finer-grained than the qtz and g. Some diss pyrite but no obvious	l is macroscopically s tourmaline. Shear										
		Structure Maj.: 320.47 - 320.77	Type/Core Angle WDF 72	Comment											
		Alteration Maj:	Type/Style/Intensity	Comment											
		320.47 - 320.77	CL INT	Within the qtz vein as tiny string	iers										

ole Number	PRS-07			Project: GOUDREAU						Р	roject Num	ber: 0	5300	
From (m)	To (m)		Litholog	ny	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		320.47 - 320.77	SE PCH +						**********					
		320.47 - 320.77	SIP+											
		Mineralization Maj.: 320.47 - 320.77	<i>Type/Style/%Mineral</i> PY TR 0.5	Comment Minor component										
		Vein Maj.:	Type/Mineral	% ca vg										
		320.47 - 320.77	QCs py	30.0 72 0										
320.77	322.87	T2QFP INTERI	MEDIATE QUARTZ-FELDS	SPAR PORPHYRITIC TUFF.	DC007775	320.77	321.07	0.30		0.01	-	_	-	0.01
		Continuation of previous altered significantly.	T2QFP. Contains porphyro	oblastic carbonate (?) in this section, otherwise not	DC007776	322.57	322.87	0.30		0.01	-	-	-	0.01
222.07	202.40	To To Course			D0007777	200.07	202.40	0.00		0.05				0.05
322.87	323.19	Similar to unit at 320.47	TUNDIFFERENTIATED m except that there is a greeneration qtz veins. Also me	ater abundance of secondary qtz carb in the same ore tourmaline and diss pyrite.	DC007777	322.87	323.19	0.32		0.05	-	-	-	0.05
		Structure Maj.:	Type/Core Angle	Comment										
		322.87 - 323.19	WDF 65											
		Alteration Maj:	Type/Style/Intensity	Comment										
		322.87 - 323.19	SE INT	Straw yellow.										
		322.87 - 323.19	CL INT	Locally intense										
		322.87 - 323.19	TL VN	Mm scale veinlets										
		322.87 - 323.19	SIP+											
			 ·											

Project Number: 05300 GOUDREAU Project: Hole Number PRS-07 Au AA Dup AA Grav Metal Au fin From To (ppm) (ppm) (ppm) (ppm) Zone (ppm) To Length Sample # From Lithology (m) (m) 322.87 - 323.19 PY DIS 0.5 vg Type/Mineral Vein Maj.: 65 0 50.0 322.87 - 323.19 QCT py 0.02 0.02 0.30 DC007778 323.19 323.49 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 323.19 336.20 0.11 Same as the previous unit at 320.77m. However, there are two shear zones that are better developed 0.40 0.11 DC007779 326.71 327.11 than the others although they do not quite qualify as T9ZS: 0.02 0.02 DC007781 327.11 327.79 0.68 0.03 327.11 to 327.79m. Has early generation qtz veining accompanied by younger veining that has 0.03 0.30 DC007782 327.79 328.09 tourmaline. Chloritic selvages and weak diss pyrite. 0.03 0.30 0.03 DC007783 330.77 331.07 331.07 to 331.50m: Similar to previous alteration zone at 327.11m. 0.03 0.03 DC007784 331.07 331.50 0.43 Adjacent to these two zones there is an increase in the foliation intensity. Samples taken in these two 0.02 0.02 0.30 DC007785 331.50 331.80 zones.

Page 20 of 27

336.20

339.64

FΖ

Fault

due to healed nature.

Healed fault zone with large blocks of country rock cemented by white colored unmineralized qtz veins. Appears to be a little early shearing in the country rock blocks. No gouge associated with this fault. No rubble core either but it is definitely a brittle movement zone. May not show on topography or geophysics

ole Number	PRS-07			Project: GOUDREAU						Pi	oject Num	nber: 0	5300	
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
339.64	340.02		TERMEDIATE QUARTZ-FELDS T2QFP units (323.19m).	PAR PORPHYRITIC TUFF.										
340.02	343.99	Green to gray color lower than previous	TERMEDIATE QUARTZ PORPI red with scattered qtz crystals ar s unit although the crystal type is development of qtz-tourmaline ve	nd local pink feldspar clasts. Crystal content much the same. Higher strain zones marked by stronger	DC007786	343.69	343.99	0.30		0.05	0.02	-	-	0.04
343.99	345.00		CHIST UNDIFFERENTIATED nit - each is about 10-15cms wid	e and both have at least two generations of veins. One	DC007787 DC007788	343.99 344.30				0.01 0.01	-	-	-	0.01 0.01
		generation is late-fi	irst stage (qtz-carb) and the sec remainder of the unit.	ond set is a younger qtz-tourmaline. Not much of a	DC007789	344.70	345.00	0.30		0.03	-	-	-	0.03
		Structure Maj.: 343.99 - 345.00 Alteration Maj: 343.99 - 345.00 343.99 - 345.00 343.99 - 345.00	Type/Core Angle WDF 50 Type/Style/Intensity AM INT TL VN SE PCH WM	Comment Locally variable Comment Possible actinolite										

iole Number	PRS-07	<u>-</u>			Project: G (OUDREA	ΑU						Pr	oject Num	ber: 0	5300	
From (m)	To (m)		Litholog	gy				Sample #	From	To L	.ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		343.99 - 345.00	SI P WM	Sometimes patchy													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		343.99 - 344.30	QTV		60.0	64	0										
		344.70 - 345.00	QCT		35.0	45	0										
345.00	350.85	T2QFP INTER	RMEDIATE QUARTZ-FELDS	SPAR PORPHYRITIC	TUFF.			DC007 7 90	345.00	345.30	0.30		0.02	-	-	-	0.02
		Similar to unit at 339.64	4m except that the crystals lak. Matrix appears to have a	have a closer-packed a silicified look. Some la	appearance and ate carbonate fill	the felds ed gash	spars es.	DC007 7 91	350.55	350.85	0.30		0.02	-	-	-	0.02
		Appears to have coarse grained crystals toward	e-grained crystals near the olds the down hole contact (yo	up hole contact (2-4cm ounging down hole?).	n in some instan	ces) and	l finer-										
		At 350.55m there is a lo Interestingly, the shear QFP.	oss of small carbonate porp zone begins shortly after th	hyroblasts and the star iis and ends in contact	rt of lapilli instea with a more ma	d of feld: ssive sili	spar. ceous										
350.85	355.24	T9ZS SCHIS	ST UNDIFFERENTIATED					DC007792	350.85	351.64	0.79		0.02	-	-	-	0.02
		Probably one of the bet	tter shear zones in this part	of the hole. Discrete q	tz-carb-tourmali	ne vein i	1	DC007793	351.64	352.07	0.43		0.05	-	-	-	0.05
		centre - multiple genera intersection is altered to	ations but confused and cor o T9ZS status while the res	ιτοπεα so αιπιсиιτ το se t is weakly altered and	gregate. About : sheared.	00% OT U	ie	DC007795	352.07	353.07	1.00		0.02	-		=	0.02
						-4:		DC007796	353.07	354.07	1.00		0.04	0.03	-	-	0.03
		Good examples of 0.5 t	to 1cm qtz veins parallel to	schistosity in some pai	rts of the interse	ction.		DC007797	354.07	354.67	0.60		0.05	-	-	-	0.05
								DC007798	354.67	355.24	0.57		0.03	_		_	0.02
								DC001130	334.01	333.Z4	0.51		0.03	-	_	-	0.03
		Structure Maj.:	Type/Core Angle	Comment				DC001130	004.01	000.E4	0.57		0.03	_	_	-	0.03

Project Number: 05300 **GOUDREAU** Hole Number PRS-07 Project: Au AA Dup AA Grav Metal Au fin From To Zone (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Lithology (m) Alteration Maj: Type/Style/Intensity Comment TL VN 350.85 - 355.24 350.85 - 355.24 CL PCH + 350.85 - 355.24 SE PCH WM SI P MS 350.85 - 355.24 Mineralization Maj. : Type/Style/%Mineral Comment 350.85 - 355.24 PY TR 0.5 Not abundant overall ca vg Vein Maj.: Type/Mineral 75.0 75 351.64 - 352.07 QCT py 0 0.01 0.01 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007799 355.24 355.54 0.30 355.24 361.98 T2QFP 0.01 Same as unit at 345m. Appears to be silicified as it approaches the API 0.01 361.68 361.98 0.30 DC007801 0.03 DC007802 361.98 362.68 0.70 0.03 SCHIST UNDIFFERENTIATED 361.98 362.68 T9ZS Slightly stronger fabric in this unit compared to the country rock. Altered but not strongly mineralized. Not as good as the T9ZS at 350.85 except that it is attached to the API. The underlying rock type is still visible although the feldspars are altered for the most part.

Hole Number PRS-07

Project: GOUDREAU

rom	То												Au AA	Dup AA	Grav	Metal	Au fin
(m)	(m)		Litholog	y				Sample #	From	To L	ength	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
362.68	364.47	API ISLANI	ALTERATION PACKAGE	= .				DC007803	362.68	363.00	0.32		3.03	-	-	-	3.03
		Light gray to pale green	in color with a moderately	well-developed siliceous band	ding. Not a	s good	as	DC007804	363.00	363.60	0.60		12.07	-	-	-	12.07
		hole PRS 03 at about 27		API in hole PRS 02. May co	rrelate witr	good z	one in	DC007806	363.60	364.10	0.50		9.13	9.05	-	-	9.09
		VISIBLE GOLD in a few	of the veins (see details).					DC007808	364.10	364.47	0.37		13.83	-	-	-	13.83
		Structure Maj.:	Type/Core Angle	Comment													
		362.68 - 364.47	MDF 45														
		Alteration Maj:	Type/Style/Intensity	Comment													
		362.68 - 364.47	CL INT	Locally banded													
		362.68 - 364.47	SE B WM														
		362.68 - 364.47	SI B MS	Weak banding													
		Mineralization Maj. :	Type/Style/%Mineral	Comment													
		362.68 - 364.47	PY DIS 1	Diss are in veinlets													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		362.68 - 364.47	QCs AU		10.0	45	9										
364.47	365.84		T UNDIFFERENTIATED					DC007810	364.47	364.97	0.50		0.05	-	-	-	0.05
		Same as 361.98m						DC007811	364.97	365.44	0.47		0.20	-	-	-	0.20
								DC007812	365.44	365.84	0.40		0.02	-	-	-	0.02

LITHOLOGY REPORT
- Detailed -

Hole Number PRS-07 Project Number: 05300

rom (m)	To (m)	Lithology	Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
365.84	371.17	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC007813	365.84	366.14	0.30		0.01	_	-	-	0.01
		Same as 355.24m. Also silicified - between the API and the next intrusion. Lower contact with the intrusion is sharp although the last 30cm of this unit is moderately well foliated (part of the larger	DC007814	366.14	367.14	1.00		0.01	-	-	-	0.01
		movement zone)	DC007815	367.14	368.14	1.00		0.02	-	-	-	0.02
			DC007816	368.14	369.14	1.00		0.03	0.02	-	-	0.03
			DC007817	369.14	370.14	1.00		0.02	-	-	-	0.02
			DC007818	370.14	370.87	0.73		0.01	-	-	-	0.01
			DC007819	370.87	371.17	0.30		0.03	-	-	-	0.03
371.17	376.49	IID GRANODIORITE.	DC007821	371.17	371.67	0.50		2.30	-	-	<u>-</u>	2.30
		Upper contact marked by a 3-5cm carbonate rich shear zone (mylonitic?). Upper parts of granodiorite (down to 374.66m) is a movement zone that is hematised. Movement zone contains discrete 5-10cm gtz-	DC007823	371.67	372.17	0.50		0.10	-	-	-	0.10
		carbonate-tourmaline veins that locally have diss pyrite halos.	DC007824	372.17	373.17	1.00		0.02	-	-	-	0.02
		MOVEMENT ZONE sampled. One of the veins contains VISIBLE GOLD.	DC007825	373.17	374.17	1.00		0.12	-	-	-	0.12
		MOVEMENT ZONE Sampled. One of the Vents Contains Violote COLD.	DC007826	374.17	375.17	1.00		0.09	0.10	-	-	0.10
376.49	381.64	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC007827	381.34	381.64	0.30		0.05	-	-	-	0.05
		Same rock type as 365.84m except that the feldspar crystals are distinctly hematitic/potassic. Matrix is dark gray and there is a lot of broken core (378.66m to 380.42m) - still part of the movement zone.										
		378.15m: 1-3cm QTZ-CARB-TOUR vein with weak to non-existent shoulder alteration. Minor pyrite. No VG.										

Hole Number PRS-07 Project: GOUDREAU Project Number: 05300 Au AA Dup AA Grav Metal Au fin From To Sample # (ppm) (ppm) (ppm) (ppm) (ppm) (m) (m) Lithology From To Length Zone 381.64 382.04 T9ZS SCHIST UNDIFFERENTIATED DC007828 381.64 382.04 0.40 5.01 5.01 Mixed unit of alteration and multiple generation qtz veins. Predominantly chloritic alteration in the veins with sericite alteration on the vein selvages. Structure Maj.: Type/Core Angle Comment 381.64 - 382.04 WDF 85 Alteration Maj: Type/Style/Intensity Comment 381.64 - 382.04 CL FF 381.64 - 382.04 SE PCH WM 381.64 - 382.04 SI P WM Mineralization Maj. : Type/Style/%Mineral Comment 381.64 - 382.04 PY DIS 1 More with veins than in wall rock Vein Maj.: Type/Mineral ca vg 381.69 - 381.89 QCV 90.0 80 0 382.04 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007829 382.04 382.34 0.30 2.60 2.60 382.47 Continuation of unit at 376.49m. 382.47 T2LQP INTERMEDIATE LAPILLI QUARTZ PORPHYRITIC TUFF. 394.49 Green colored, unaltered, weak to moderate foliation/fabric. Lapilli flattened parallel to the fabric (about 42 degrees to ca). Gradational upper and lower contacts.

Sample # From

Zone (ppm)

(ppm)

To Length

(ppm)

(ppm)

Hole Number PRS-07 Project: GOUDREAU Project Number: 05300

From To Au AA Dup AA Grav Metal Au fin

394.49

(m)

399.00

(m)

T2QP

INTERMEDIATE QUARTZ PORPHYRITIC TUFF.

Loss of the lapilli over a gradational contact. Still green to gray colored with very little alteration.

Lithology

DRILL HOLE REPORT

Chris	Moreky	PIGED
-------	--------	-------

Hole Number PRS	-06			Projec	t: GO	UDREAL						Project Number:	05300
Oriting		Casing		Core					Location			Other	
Azimuth:	180.00	Langin:	36 (Dimen slon:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dfp:	-45.00	Pulled:	8	Storage;	laland	Gold Prop	ect		Cipim No.:	3817		Raiog by:	
Length:	366.00	Capped:	8	Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Blanted:	03-Apr-06	Comented:	,	Hole Type	SEXP	•			Hole:	Surface		Company:	Mines Richmont
Completed:	07-Apr-08											Spotted by:	C. Moreton
.agged:	15-Jul-06						Coon	linate				Surveyed:	yes
Comment: Samp	##: DC012472-DC012724			Gencom		UTM		Mine		Yer lable		Surveyed by:	G1amothe(GPB)
			1	East:	15822.9	East:	891171.9	East:	15822.9	East:	0	Geophysics:	
				North:	4903.7	North:	5352357.5	North:	4903.7	North:	0	Geoph. Contract:	
			(Elav.:	5394	Elev.:	5394	Elev.:	5394	Elev.:	0	Left is hole:	
						Zons:	16					Making water:	
						MAD.	82					Middlehoterma	

Deviation Tests

Distance	Azimuth	Dip	Type	Good	Comments
0.00	180.00	-45.00	C	\mathbf{Z}	
45.00	186.20	-46.10	F		5351
60.00	182.20	-46.10	F	₽.	5875
90.00	182.20	-45.90	F	Z	5705
120.00	176.50	-45.40	F	\mathbf{Z}	5594
150.00	184.90	-45.00	F	\mathbf{Z}	5366
180.00	161.00	-44.60	F		5172
210.00	175.90	-44.00	F	\mathbf{Z}	5520
240.00	190.30	-43.90	F	₹	5599
270,00	191.90	-43.90	F	\mathbf{Z}	4951
200.00	187.20	43.80	F	M	6573
330.00	62.70	43.10	F	[]	1857
360.00	190.00	-42.70	F	Z	5357

DRILL HOLE REPORT

Hole Number	PRS-06			Projec	t: GOU	DREAU						Project Number:	05300
Drilling		Casing		Core					Location			Other	
Azimuth:	180.00	Length:	36	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-45.00	Pulled:		Storage:	Island	Gold Project	ct		Claim No.:	3817		Relog by:	
Length:	366.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Started:	03-Apr-06	Cemented:		Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Completed:	07-Apr-06											Spotted by:	C. Moreton
Logged:	15-Jul-06						Coordi	nate				Surveyed:	yes
Comment:	Samples: DC012472-DC012724			Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
				East:	15822.9	East:	691171.9	East:	15822.9	East:	0	Geophysics:	
				North:	4903.7	North:	5352357.5	North:	4903.7	North:	0	Geoph. Contract:	
				Elev.:	5394	Elev.:	5394	Elev.:	5394	Elev.:	0	Left in hole:	
						Zone:	16					Making water:	
						NAD:	83					Multi shot surv.:	

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-45.00	С	✓	
45.00	186.20	-46.10	F	\checkmark	5351
60.00	182.20	-46.10	F	✓	5675
90.00	182.20	-45.90	F	\checkmark	5705
120.00	176.50	-45.40	F	\checkmark	5594
150.00	184.90	-45.00	F		5566
180.00	161.00	-44.60	F	V	5172
210.00	175.90	-44.00	F	\checkmark	5520
240.00	190.30	-43.90	F	\checkmark	5599
270.00	191.90	-43.90	F	\checkmark	4951
300.00	187.20	-43.80	F	\checkmark	5573
330.00	62.70	-43.10	F		1857
360.00	190.00	-42.70	F	✓	5357

Hole Number PRS-06 Project SOUDREAU Project Number: 05300

rom (m)	To (m)		Litholog	у	Sample #	From	To L	ength.	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
0.00	36.00	CSG Casin	ng											
36.00	44.77	T9ZS SCHI	ST UNDIFFERENTIATED		DC012472	36.00	37.00	1.00		0.07	-	-	-	0.07
				s. Some sections have an API appearance but only appearance. At least two fabric orientations, one	DC012473	37.00	38.00	1.00		0.01	-	-	-	0.01
		more or less parallel to	o the axis while the other is at	a high angle to the first fabric. Some tourmaline t much mineralization though - trace pyrite.	DC012474 DC012475	38.00 39.00	39.00 40.00	1.00 1.00		0.02	-	-	-	0.02 0.03
		·			DC012476	40.00	41.00	1.00		0.46	_	-	-	0.46
		younger barren qtz ve	ins cross cutting the main fab	lel to the dominant fabric. In addition, there are rics. Qtz crystals (no feldspars left) locally have strain	DC012477	41.00	42.00	1.00		0.02	-	-	-	0.02
		shadows when overpr	inted by a high strain fabric (fi	rst or the second one).	DC012478	42.00	43.00	1.00		0.03	0.02	-	-	0.02
					DC012479	43.00	44.00	1.00		0.00	-	-	-	0.00
		Structure Maj.: 36.00 - 44.77	Type/Core Angle IDF 24	Comment Average - quite variable in this section	DC012481	44.00	44.77	0.77		0.00	-	-	-	0.00
		Alteration Maj:	Type/Style/Intensity	Comment										
		36.00 - 44.77	TL VN W	As fine needles in some locations.										
		36.00 - 44.77	SE B WM											
		36.00 - 44.77	CL B MS											
		36.00 - 44.77	SI INT WM	Not as pervasive as some of the other locations.										
		Mineralization Maj.: 36.00 - 44.77	Type/Style/%Mineral PY TR 0.5	Comment Less in some places										

Hole Number PRS-06 Project: GOUDREAU Project Number: 05300

m m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
44.77	49.60	I1D GRANODIORITE.	DC012482	44.77	45.77	1.00		0.13	-	-	-	0.13
		Upper and lower contacts marked by cm-scale qtz-carbonate veins. In between the granodiorite has a	DC012483	45.77	46.77	1.00		0.02	-	-	-	0.02
		strong fabric with intermittent qtz veins (locally accompanied by tourmaline). Bleached appearance locally but generally it is green to gray in color. Some stringers of gray qtz boudinaged parallel to the main fabric.	DC012484	46.77	47.77	1.00		0.17	-	-	-	0.17
			DC012485	47.77	48.77	1.00		0.06	-	-	-	0.06
		45.08 to 45.20m: appears to be a piece of a mafic unit caught up in the deformation and alteration.	DC012486	48.77	49.60	0.83		0.01	-	-	-	0.01
49.60	55.00	V3BD BASALTIC DYKE.	DC012487	49.60	50.60	1.00		0.02	-	-	-	0.02
		Typical medium to dark green early dyke. Finer-grained margins with a weak fabric in the central portion.	DC012488	50.60	51.60	1.00		0.02	0.02	-	-	0.02
		Carbonate stringers and veinlets throughout most of the unit. Appears to be carbonate porphyroblasts too overgrowing the main fabric.	DC012489	51.60	52.60	1.00		0.01	-	-	-	0.01
			DC012490	52.60	53.60	1.00		0.00	-	-	-	0.00
			DC012491	53.60	54.60	1.00		0.01	-	-	-	0.01
			DC012492	54.60	55.00	0.40		0.00	-	-	-	0.00

GOUDREAU

Project:

Hole Number PRS-06

3

om	To		010 #	F	т.	1 4h	7		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)	Lithology	Sample #	From		Length	Zone	(ppm)	(ppni)	(ppiii)	(ppin)	
55.00	88.19	I1D GRANODIORITE.	DC012493	55.00	56.00			0.11	-	-	-	0.11
		From 55m to 63m the granodiorite is blue gray to greenish in color. After 63m the granodiorite changes to a gray to beige color. This bleaching appears to reflect the addition of iron carbonate and sericite	DC012494	56.00	57.00			0.00	-	-	-	0.00
			DC012495	57.00	58.00	1.00		0.01	-	-	-	0.01
		From 55 to 56m: intense foliation similar to the one in the country rock at 36m. After 56m the main foliation weakens - a foliation is still present but it appears to be a spaced cleavage defined in part by	DC012496	58.00	59.00	1.00		0.01	-	-	-	0.01
		tourmaline, iron carbonate and chlorite. The earlier fabric is present between the cleavage planes. There	DC012497	59.00	60.00	1.00		0.09	-	-	-	0.09
		are also places where the granodiorite appears to be fractured/disrupted and injected with qtz veins of multiple orientations (sometimes parallel to the cleavage). Most of these veins are barren although there	DC012498	60.00	61.00	1.00		0.02	0.02	-	-	0.02
		can be associated tourmaline and/or iron carbonate and/or pyrite and/or po.	DC012499	61.00	62.00	1.00		0.04	-	-	-	0.04
		Pyrite is only present in trace amounts and as subhedral disseminations within the bulk of the	DC012501	62.00	63.00	1.00		0.00	-	-	-	0.00
		granodiorite. Locally there are specks of po	DC012502	63.00	64.00	1.00		0.00	-	-	-	0.00
			DC012503	64.00	65.00	1.00		0.01	-	-	-	0.01
			DC012504	65.00	66.00	1.00		0.00	-	-	-	0.00
			DC012505	66.00	67.00	1.00		0.00	-	-	-	0.00
			DC012506	67.00	68.00	1.00		0.04	-	-	-	0.04
			DC012507	68.00	69.00	1.00		0.02	-	-	-	0.02
			DC012508	69.00	70.00	1.00		0.06	0.06	-	-	0.06
			DC012509	70.00	71.00	1.00		0.07	-	-	-	0.07
			DC012510	71.00	72.00	1.00		0.03	-	-	-	0.03
			DC012511	72.00	73.00	1.00		0.06	-	-	-	0.06
			DC012512	73.00	74.00	1.00		0.06	-	-	-	0.06
			DC012513	74.00	75.00	1.00		0.63	-	-	-	0.63
			DC012514	75.00	76.00	1.00		0.07	-	-	-	0.07
			DC012515	76.00	77.00	1.00		0.02	-	-	_	0.02
			DC012516	77.00	78.00	1.00		0.06	-	-	-	0.06
			DC012517	78.00	79.00	1.00		0.08	-	-	-	0.08
			DC012518	79.00	80.00	1.00		0.13	-	-	-	0.13
			DC012519	80.00	81.00	1.00		0.02	0.02	-	-	0.02
			DC012521	81.00	82.00			0.02	_	-	_	0.02

Project Number: 05300 **GOUDREAU** Hole Number PRS-06 Project: Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) Lithology Sample # From To Length Zone (ppm) (m) (m) 82.00 83.00 1.00 0.02 0.02 DC012522 0.01 DC012523 83.00 1.00 0.01 84.00 0.76 DC012524 84.00 85.00 1.00 0.76 0.04 DC012525 85.00 86.00 1.00 0.04 0.11 DC012526 86.00 87.00 1.00 0.11 87.00 87.40 0.40 0.23 0.23 DC012527 0.53 0.53 DC012528 87.40 88.19 0.79 0.30 88.82 0.63 0.28 0.33 88.19 88.82 V3BD BASALTIC DYKE. DC012529 88.19 Same as previous examples except that this is fine-grained throughout with a strong foliation. Narrow (5mm) gtz veins parallel to the main foliation. About 30% of the interval is secondary barren milky white qtz (carb) veins. 89.82 1.00 0.00 0.00 DC012530 88.82 88.82 95.57 I1D GRANODIORITE. Not as bleached as previous section. Shows some variation in primary grain size - finer-grained versions 0.01 DC012531 89.82 90.82 1.00 0.01 of the granodiorite are present here. 0.01 DC012532 90.82 91.82 1.00 0.01 DC012533 91.82 92.82 1.00 0.01 0.01 0.24 DC012534 92.82 93.82 1.00 0.24 0.04 DC012535 1.00 0.04 93.82 94.82 0.04 DC012536 94.82 95.57 0.75 0.04

DC012537

95.57

96.45

0.88

0.02

0.02

95.57

V3BD

porphyroblasts.

96.45

BASALTIC DYKE.

Same as 88.19m except there appears to be a greater abundance of secondary carbonate

Project Number: 05300 GOUDREAU Project: Hole Number PRS-06 Au AA Dup AA Grav Au fin From To (ppm) Zone (ppm) (ppm) (ppm) (ppm) To Length Sample # From Lithology (m) (m) 0.01 DC012538 96.45 96.87 0.42 0.01 96.82 11D GRANODIORITE. 96.45 Same as 88.82m

97.02 V3BD BASALTIC DYKE.

Narrow foliated basaltic dyke with about 15% barren qtz veins (at the lower contact).

96.82

Hole Number PRS-06

Project: GOUDREAU

From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
97.02	120.17	IID GRANODIORITE.	DC012539	96.87	97.87	1.00		0.23	-	-	-	0.23
01.02		Same as 88.82m except that the granodiorite tends to have a uniform coarse grain size. Alteration is	DC012541	97.87	98.87	1.00		0.02	0.01	-	-	0.01
		restricted to discrete zones and can sometimes be pink in color due to more intense potassic alteration. Bleaching is minor so that the unit has a blue-gray to locally green color. Tourmaline microveinlets	DC012542	98.87	99.87	1.00		0.21	-	-	-	0.21
		scattered throughout along with sheaths of chloritic alteration in the matrix to the qtz grains.	DC012543	99.87	100.87	1.00		2.21	-	-	-	2.21
		A few 10cm scale barren late qtz veins. On the down hole side the contact with the next shear zone is relatively sharp.	DC012544	100.87	101.87	1.00		0.11	-	-	-	0.11
		Telatively Sharp.	DC012545	101.87	102.87	1.00		1.03	-	-	-	1.03
			DC012546	102.87	103.87	1.00		0.01	-	-	-	0.01
			DC012547	103.87	104.87	1.00		0.01	-	-	-	0.01
			DC012548	104.87	105.87	1.00		0.03	-	-	-	0.03
			DC012549	105.87	106.87	1.00		0.00	-	-	-	0.00
			DC012550	106.87	107.87	1.00		0.02	0.03	-	-	0.03
			DC012551	107.87	108.87	1.00		0.09	-	-	-	0.09
			DC012552	108.87	109.87	1.00		0.06	-	-	-	0.06
			DC012553	109.87	110.87	1.00		0.01	-	-	-	0.01
			DC012554	110.87	111.87	1.00		1.72	-	-	-	1.72
			DC012555	111.87	112.87	1.00		0.01	-	-	-	0.01
			DC012556	112.87	113.87	1.00		0.07	-	-	-	0.07
			DC012557	113.87	114.87	1.00		0.01	-	-	-	0.01
			DC012558	114.87	115.87	1.00		0.02	-	-	-	0.02
			DC012559	115.87	116.87	1.00		0.02	-	-	-	0.02
			DC012561	116.87	117.87	1.00		0.02	-	-	-	0.02
			DC012562	117.87	118.87	1.00		0.04	-	-	-	0.04
			DC012563	118.87	119.87	1.00		0.00	-	-	-	0.00
			DC012564	119.87	120.17	0.30		0.00	-	-	-	0.00

deformed sections.

Hole Number PRS-06

blue-gray color with local pink and green patches. Silicification seems to be more abundant in the less

Project: GOUDREAU

From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metai (ppm)	Au fin (ppm)
120.17	132.64	I1DS GRANODIORITE SCHIST.	DC012565	120.17	121.17	1.00		0.01	-	-	-	0.01
120.17	102.04	Sheared granodiorite that probably corresponds to the Shore Zone.	DC012566	121.17	122.17	1.00		0.00	-	-	-	0.00
		120.17 to 125.40m: original granodiorite textures and compositions still recognizable. Closer to 125.40m	DC012567	122.17	122.80	0.63		0.00	0.00	-	-	0.00
		the discrete shear zones (cm-scale) coalesce to create a more penetrative fabric (lasts until about 128m).	DC012568	122.80	123.35	0.55		0.10	-	-	-	0.10
		Shears tend to be defined by chloritic minerals although there are some that have tourmaline crystals.	DC012569	123.35	124.35	1.00		0.15	-	-	-	0.15
		125.40 to 130.31m: strong potassic alteration so that the interval is predominantly salmon pink in color.	DC012570	124.35	124.90	0.55		0.00	-	-	-	0.00
		Darker minerals include chlorite and tourmaline veinlets/stringers. About 5% of the interval is gray colored 1-2cm foliation-parallel qtz veins. Some of these veins are boudinaged parallel to the fabric. No VG in	DC012571	124.90	125.40	0.50		0.01	-	-	-	0.01
		these veins and only trace amounts of pyrite in the country rock and/or the veins. Fe carbonate abundant	DC012572	125.40	126.40	1.00		0.03	-	-	-	0.03
		in this section.	DC012573	126.40	127.40	1.00		0.00	-	-	-	0.00
			DC012574	127.40	128.40	1.00		0.14	-	-	-	0.14
			DC012575	128.40	129.40	1.00		0.29	-	-	-	0.29
			DC012576	129.40	130.31	0.91		0.31	-	-	-	0.31
			DC012577	130.31	131.31	1.00		0.04	0.04	-	-	0.04
			DC012578	131.31	132.31	1.00		0.01	-	-	-	0.01
			DC012579	132.31	132.64	0.33		0.01	-	-	-	0.01
132.64	136.50	I1D GRANODIORITE.	DC012581	132.64	132.94	0.30		0.05	-	-	-	0.05
132.64	130.30	Relatively undeformed although there are chloritised mafics and local potassic alteration of the feldspars. Local microveinlets of tourmaline cross-cutting the unit. Specks of pyrite but only trace amounts. Overall	DC012582	136.20	136.50	0.30		0.02	-	-	-	0.02

Hole Number PRS-06 Project Number: 05300

rom	То							A A 4	Dup AA	Cmass	Metal	A
(m)	(m)	Lithology	Sample #	From	To L	.ength	Zone	(ppm)	(ppm)	(ppm)	metai (ppm)	Au fin (ppm)
136.50	138.88	IIDS GRANODIORITE SCHIST.	DC012583	136.50	137.50	1.00		0.01	-	-	-	0.01
		Not the same as the previous schist at 120.17 - does not have the abundant potassic alteration. Instead	DC012584	137.50	138.50	1.00		0.01	-	-	_	0.01
		the alteration is predominantly chloritic although the foliation is relatively intense. Upper and lower contacts are gradational but over a few cms only.	DC012585	138.50	138.88	0.38		0.01	-	-	-	0.01
138.88	141.15	I1D GRANODIORITE. Weakly deformed with narrow (1cm) discrete shear zones defined by anastomosing chlorite.	DC012586 DC012587	138.88 140.85	139.18 141.15	0.30 0.30		0.02 0.02	- 0.06	-	- -	0.02 0.04
141.15	142.16	I1DS GRANODIORITE SCHIST. Same as 136.50m.	DC012588 DC012589	141.15 141.65	141.65 142.16	0.50 0.51		0.14 0.09	-	-	- -	0.14 0.09
142.16	145.87	I1D GRANODIORITE. Undeformed section of the granodiorite although there is a strong potassic alteration of the component feldspars. Blue qtz common and all of the internal mafics have been altered to chlorite.	DC012590 DC012591	142.16 145.57	142.46 145.87	0.30 0.30		- 0.02	. -	-	-	- 0.02

Hole Number PRS-06 GOUDREAU Project: Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) GRANODIORITE SCHIST. 145.87 150.79 **I1DS** DC012592 145.87 146.87 1.00 0.15 0.15 This section has a weak to moderate foliation intensity along with a central qtz vein system. Some DC012593 146.87 147.87 1.00 0.06 0.06 sections have retained their granodiorite look while other portions, particularly on either side of the vein. DC012594 147.87 148.48 0.61 0.06 0.06 have an intense foliation and do not resemble a plutonic rock. DC012595 148.48 148.86 0.38 8.75 8.75 DC012596 148.86 149.86 1.00 0.02 0.02 Structure Maj.: Type/Core Angle Comment DC012597 149.86 150.79 0.93 0.04 0.04 0.04 145.87 - 150.79 SDF 59 Alteration Maj: Type/Style/Intensity Comment 145.87 - 150.79 CB INT + 145.87 - 150.79 TL VN W 145.87 - 150.79 SE PCH WM 145.87 - 150.79 CL INT WM 145.87 - 150.79 SI P ++ Mineralization Maj. : Type/Style/%Mineral Comment 145.87 - 150.79 MO TR 0.1 145.87 - 150.79 PY TR 0.5 Vein Maj.: Type/Mineral ca vg QCV py 148.48 - 148.86 95.0 57 0

Hole Number PRS-06 Project: GOUDREAU Project: 05300

rom (m)	To (m)		Litholog	ıy	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
150.79	161.88	I1DS GRAN	ODIORITE SCHIST.		DC012598	150.79	151.79	1.00		0.05	-			0.05
				unit that is derived from the granodiorite but it doesn't	DC012599	151.79	152.79	1.00		0.06	-	_	_	0.06
				onite with local foliation parallel qtz and/or iron may carry in the background (Magino-like?). All of the	DC012601	152.79	153.79	1.00		0.69	-	-	-	0.69
		feldspars have been de	stroyed and the predominar	nt alteration minerals are silica, ankerite and chlorite	DC012602	153.79	154.79	1.00		0.65	-	-	-	0.65
		discrete pods or as vein	einlets scattered throughout. Nets parallel to the main foli	Perhaps 35% of the interval is ankerite, either as ation. Pyritic veinlets are also relatively common.	DC012603	154.79	155.79	1.00		0.09	-	-	-	0.09
		•	r	,	DC012604	155.79	156.79	1.00		0.03	-	-	-	0.03
		Structure Mai.:	Type/Core Angle	Comment	DC012605	156.79	157.79	1.00		0.07	-	-	-	0.07
		150.79 - 161.88	IDF 48	variable	DC012606	157.79	158.79	1.00		0.08	-	-	-	0.08
		Alteration Mai:	Type/Style/Intensity	Comment	DC012607	158.79	159.79	1.00		0.12	0.13	-	-	0.12
		-	,, ,	Comment	DC012608	159.79	160.79	1.00		2.52	-	-	-	2.52
		150.79 - 161.88	TL VN W		DC012609	160.79	161.29	0.50		0.31	-	-	-	0.31
		150.79 - 161.88	CB VN WM		DC012610	161.29	161.88	0.59		0.20	-	-	-	0.20
		150.79 - 161.88	SE PCH W											
		150.79 - 161.88	CL PCH MS											
		150.79 - 161.88	SI PCH MS											
		Mineralization Maj. : 150.79 - 161.88	Type/Style/%Mineral PY DIS 1	Comment As veinlets of pyrite, about 1mm wide.										
161.88	166.04	I1D GRANG	ODIORITE.		DC012611	161.88	162.18	0.30		0.36	-	_	_	0.36
		Disseminated to stringe cms. A lot of the interva	r pyrite is locally developed I contains recognizable grai ntact is gradational over a f	there are still some anastomosing chlorite veinlets. and there are pink sericite shear zones over a few nodiorite with both blue colored qtz and pinkish ew cms while the lower contact is a little more	DC012612	165.74	166.04	0.30		0.03	-	-	-	0.03

Project Number: 05300 Project: **GOUDREAU** Hole Number PRS-06 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 0.02 167.04 1.00 0.02 DC012613 166.04 SCHIST UNDIFFERENTIATED 166.04 182.12 T9ZS 1.75 Thick sequence of finely foliated rock. It is possible that the upper portion may still be derived from the 1.00 1.75 DC012614 167.04 168.04 granodiorite although given the gray to green color and the relative abundance of blue qtz crystals it 1.00 0.37 0.37 169.04 DC012615 168.04 appears to be derived form a crystal tuff unit. Discrete layers (2mm) of pyrite better developed in the upper portions of the unit. There is one significant 0.01 DC012616 169.04 169.61 0.57 0.01 qtz-carbonate vein system although there are minor veins (2mm wide) parallel to the foliation in a few 0.50 0.01 170.11 0.01 0.01 DC012617 169.61 places. 0.00 170.41 0.30 0.00 DC012618 170.11 170.41 171.41 1.00 0.05 0.05 DC012619 Type/Core Angle Comment Structure Maj.: 0.01 0.01 DC012621 171.41 172.41 1.00 **SDF** 50 166.04 - 182.12 0.00 1.00 0.00 DC012622 172.41 173.41 Type/Style/Intensity Comment Alteration Maj: 0.01 174.41 1.00 0.01 DC012623 173.41 in the central vein TL VN W 166.04 - 182.12 0.00 DC012624 174.41 175.41 1.00 0.00 SE MO + 0.05 166.04 - 182.12 176.41 1.00 0.05 DC012625 175.41 0.01 0.01 Locally pervasive 1.00 166.04 - 182.12 CL INT MS DC012626 176.41 177.41 1.00 0.04 0.03 0.03 DC012627 178.41 SI MO + Also patchy 177.41 166.04 - 182.12 0.00 DC012628 178.41 179.41 1.00 0.00 Type/Style/%Mineral Comment Mineralization Maj. : 1.00 0.14 0.14 Sometimes as veinlets DC012629 180.41 166.04 - 182.12 PY TR 0.5 179.41 1.00 0.01 0.01 DC012630 180.41 181.41 vg Type/Mineral ca Vein Maj.: 0.03 36 DC012631 181.41 182.12 0.71 0.03 90.0 0 QCT 170.11 - 170.32 0.03 0.03 DC012632 182.12 182.42 0.30 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 182.12 209.98 Overall green color with no distinct internal layering or bedding planes. Generally a tuffaceous matrix with 0.01 192.18 0.30 0.01 DC012633 191.88 scattered blue qtz crystals and local areas richer in feldspar. Feldspars are gray and appear to become 0.06 192.48 0.30 0.06 DC012634 192.18 more common down hole. Possible pinkish colored felsic lapilli (1 to 2cm) but only very minor. Carbonate 0.30 0.01 0.01 192.48 192.78 DC012635 filled gashes cross cut the fabric. The fabric is generally weak but it becomes stronger in a few places. In the latter case the earlier fabric is crenulated by the regional fabric - in some cases there is calcite veining parallel to the regional foliation. Chlorite is the dominant alteration mineral in this unit - local patches that carry diss pyrite.

Hole Number PRS-06

Project:

GOUDREAU

Project Number: 05300

From To (m)

Lithology

Sample # From

To Length

Au AA Dup AA Grav Zone (ppm) (ppm) (ppm)

(ppm) (ppm)

Metal Au fin (ppm) (ppm)

192.18 to 192.48m: qtz-carb-tourmaline vein with wall rock alteration. Latter is banded silica-chlorite alteration with scattered ankerite and tourmaline. No VG and no pyrite.

209.98

215.51

T9ZS

SCHIST UNDIFFERENTIATED

Not a good example. Still green colored but the fabric is perceptibly stronger. Pyrite content higher (maybe up to 1% from trace amounts). Transition from upper unit is gradual over decimeters but the contact is placed at the first location of MAGNETITE and the apparent loss of feldspar. Although not abundant there is some magnetite in other parts of this schist.

Some late qtz-carb veins but no mineralization. Carbonate porphyroblasts throughout most of the unit. Some of the pyrite is euhedral and overgrows the fabric.

Structure Maj.: 209.98 - 215.51	Type/Core Angle MDF 78	Comment
Alteration Maj:	Type/Style/Intensity	Comment
209.98 - 215.51	TL VN W	
209.98 - 215.51	CL P MS	
209.98 - 215.51	SI PCH MS	Pervasive over short sections
Mineralization Maj. :	Type/Style/%Mineral	Comment
209.98 - 215.51	MG BL 1	Locally higher
209.98 - 215.51	PY STR 1	

DC012636 215.21 215.51 0

0.30

0.02

0.02

GOUDREAU

Project: Hole Number PRS-06 Metal Grav Au fin Au AA Dup AA To From (ppm) (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) 0.34 0.34 0.82 215.51 216.33 DC012637 ISLAND ALTERATION PACKAGE. 215.51 216.33 API Banded, beige colored, qtz-carb-tourmaline veins (1cm) carrying/associated with 3-4% pyrite. Chlorite in pressure shadows of pyrite. Type/Core Angle Comment Structure Maj.: SDF 64 215.51 - 216.33 Type/Style/Intensity Comment Alteration Maj: Ankerite CB PCH + 215.51 - 216.33 215.51 - 216.33 SE B WM SI P MS Also banded 215.51 - 216.33 Type/Style/%Mineral Comment Mineralization Maj. : PY DIS 4 215.51 - 216.33 0.14 216.33 216.63 0.30 0.14 DC012638 SCHIST UNDIFFERENTIATED 216.33 218.50 T9ZS Similar to unit at 209.98m except that there is less pyrite. In detail there is fine-grained tourmaline scattered throughout as well as ankerite (?) porphyroblasts. Type/Core Angle Comment Structure Maj.: MDF 66 216.33 - 218.50 Type/Style/Intensity Comment Alteration Maj: CL P MS 216.33 - 218.50 Pervasive and/or banded in some spots SI PCH + 216.33 - 218.50 Type/Style/%Mineral Comment Mineralization Maj. : PY DIS 1 216.33 - 218.50

Sample #

From

To Length

Zone

Hole Number PRS-06 Project: GOUDREAU From To (m) (m) Lithology 218.50 220.80 V3BD BASALTIC DYKE. Not an easy unit to recognize - both the upper and lower contacts are gradational with the adjacent units. In detail it has a darker green color with scattered pyrite and a moderately well developed fabric. Some qtz-carb veins parallel to the main fabric. 220.80 222,70 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. More of tuffaceous unit rather than a crystal rich one. Scattered finer-grained blue qtz crystals and slightly larger gray colored feldspar crystals in a green to locally gray colored matrix. Moderately well developed fabric -could be a continuation of the T9ZS intersected before the dyke. Locally contains fine-grained MAGNETITE. 222.70 224.90 V2QFP INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. Massive matrix, green colored due to chloritic alteration. Appears to have two types of feldspars - gray colored and fractured as well as a ghosted type. The latter has calcite associated with it suggesting that the primary feldspar has been altered to albite. Both types of feldspar are subhedral and suggest that this

is an intrusive unit. Upper contact gradational while the lower one id relatively sharp.

21-Oct-06 6:13:16 PM

Project Number: 05300

(maa)

Metal

(ppm)

Au fin

(ppm)

Au AA Dup AA Grav

(ppm)

To From Au AA Dup AA Grav Metal Au fin (m)(m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) 224.90 235.30 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC012639 233.25 233.55 0.02 0.30 0.02 Same as 220.80m except for 233.55 to 234.03m: sericitic and siliceous zone with 2% pyrite. Scattered DC012641 233.55 3.36 2.95 234.03 0.48 3.16 magnetite porphyroblasts and an increase in the foliation intensity in the down hole contact area.

DC012642

234.03

234.33

0.30

0.02

GOUDREAU

Project:

235.30 244.47 V1QFP UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY.

Unusual unit: mottled pinkish silicification overprints a siliceous gray to green colored unit that contains relatively abundant feldspar and qtz crystals. Two feldspar types present (as 222.70m) but distribution not uniform. It is likely that this is the start of the massive porphyry unit that is present after the next fault zone.

Some zones of high strain with a better foliation - in other areas the main foliation is spaced probably due to poor development in the siliceous host rock. Younger carbonate filled gashes throughout this unit.

244.47 247.30 FZ Fault

Late sealed brittle fault zone. Chaotic mixture of qtz, carbonate, tourmaline, chlorite, potassic-altered fragments and local coarse-grained pyrite. Definitely post-dates the regional fabric. Probably is a significant structure. Upper and lower contacts are sharp to mildly gradational.

Hole Number PRS-06

0.02

Hole Number	PRS-06	Project: GOUDREAU	Project Number: 053
From (m)	To (m)	Lithology	Au AA Dup AA Grav (ppm) (ppm) (ppm)
247.30	274.12	V1FP UNDIFFERENTIATED FELSIC VOLCANIC FELDSPAR PORPHYRIE. Massive unit with distinct euhedral feldspars, some of which are potassic (down to at least 261.65m). At this depth the feldspars change to a white colored but are still euhedral. Some are skeletal. Blue qtz crystals are few and far between. Weak alteration manifested by potassic alteration of feldspars and some secondary overgrowths. Also, the feldspars in the potassic section appear to be ghosted probably due to the fluids passing through. No pyrite or veining.	
274.12	284.28	V1FP UNDIFFERENTIATED FELSIC VOLCANIC FELDSPAR PORPHYRIE. Continuation of previous unit except that this section has ghosted feldspars that are indistinct. Contact between the two is gradational over a few cms. Feldspar:qtz ratio drops to about 3:1 from the previous 7:1. No distinct white or pink colored (few) feldspars. Gray to locally green color.	

284.28 FΖ 290.24 Fault

> Identical to the fault zone at 244.47m. Developed within the chloritic FP so it post-dates the main alteration/deformation. Up to 50% of the interval is qtz-carb veining with local additions of tourmaline. Local pink color due to potassic alteration. Minor sections that are strongly chloritic and dark green in color.

Metal Au fin (ppm)

(ppm)

lole Number	PRS-06			Project: GOUDREAU						Pr	roject Num	ber: 0	5300	
From (m)	To (m)		Litholog	у	Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
290.24	291.02		FERENTIATED FELSIC VC untry rock - same as 274.1	DLCANIC FELDSPAR PORPHYRIE. 2m.	DC012643	290.72	291.02	0.30		0.03	-	-	-	0.03
291.02	292.31	Poor example of a T9ZS altered (beige colored wi	th pyrite) while the remaind	o the next unit (API). Only about 30% of the unit is ler is chloritic F(Q)P. Gradational upper and lower bric - part of the fault system?	DC012644 DC012645	291.02 291.87		0.85 0.44		0.19 0.09	-	- -	-	0.19 0.09
		Structure Maj.: 291.02 - 292.31	Type/Core Angle WDF 80	Comment										
		Alteration Maj:	Type/Style/Intensity	Comment										
		291.02 - 292.31	SE PCH W	Localized development										
		291.02 - 292.31	CL P +											
		291.02 - 292.31	SI P MS											
		Mineralization Maj. : 291.02 - 292.31	Type/Style/%Mineral PY TR 0.5	Comment Concentrated in the strongly altered sections										
292.31	294.80	API ISLAND	ALTERATION PACKAGE	<u>.</u>	DC012646	292.31	293.19	0.88		0.45	-	-	-	0.45
		Daine solar cortuetave	na (4. Oama) with an latival va	househouse to the NO through Orac couls is seed as		10								
		Vein is locally variable.	ns (1-3cm) with relatively a	bundant pyrite. No VG though. Core angle in major	DC012647	293.19	293.86	0.67		1.64	-	-	-	1.64

Hole Number PRS-06 Project: GOUDREAU Project Number: 05300 Au AA Dup AA Grav Metal Au fin From To Sample # (ppm) (ppm) Lithology From To Length Zone (ppm) (ppm) (ppm) (m) (m) Structure Maj.: Type/Core Angle Comment MDF 68 292.31 - 294.80 Variable due to veining Alteration Maj: Type/Style/Intensity Comment 292.31 - 294.80 TL VN W In major vein, local spots. 292.31 - 294.80 CL SP W Associated with pyrite 292.31 - 294.80 SE INT MS 292.31 - 294.80 SI P ++ Mineralization Maj. : Type/Style/%Mineral Comment 292.31 - 294.80 PY DIS 3 Higher over shorter sections Type/Mineral Vein Maj.: vg 90.0 60 293.19 - 293.86 QCT py 0 0.03 DC012649 0.30 0.03 294.80 299.22 V1FP UNDIFFERENTIATED FELSIC VOLCANIC FELDSPAR PORPHYRIE. 294.80 295.10 A few blue qtz crystals but essentially a minor variation of the same unit at 290.24m. Chloritic alteration with diss pyrite but not intense. Overall green color with late qtz-carbonate veins/ fractures. Carbonate porphyroblasts. 299.22 305.75 I1D GRANODIORITE. Finer grained in the upper contact area. Gray colored down to 304m while the remainder displays stronger pinkish potassic alteration. Core is broken in this potassic section and there a few larger qtztourmaline veins that cross-cut the main fabric - appears to be a movement zone (late, potassic and pyritic). Lower contact broken.

Hole Number	PRS-06			Project: GOUDREAU						P	roject Num	ber: 05	5300	
From (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
305.75	315.65	V1QFP UND	IFFERENTIATED FELSIC VO	DLCANIC QUARTZ-FELDSPAR PORPHYRY.	DC012650	310.95	311.25	0.30		0.02	0.07	-	-	0.04
				tion spots. Relatively uniform distribution of two	DC012651	311.25	311.55	0.30		0.31	-	-	-	0.31
		feldspars (gray, finer of feldspar). A few narro	grained and coarser-grained p w (less than 20cm) pyritic alte	inkish colored) and blue qtz crystals (less qtz than ration zones (T9ZS like) - sampled. Some of the more	DC012652	311.55	311.85	0.30		0.10	-	-	-	0.10
			tions have calcite-filled gashe		DC012653	313.08	313.38	0.30		0.02	-	-	-	0.02
					DC012654	313.38	313.68	0.30		0.12	-	-	-	0.12
					DC012655	313.68	313.98	0.30		0.30	-	-	-	0.30
					DC012656	314.20	314.50	0.30		0.04	-	-	-	0.04
					DC012657	314.50	315.05	0.55		0.41	-	-	-	0.41
					DC012658	315.05	315.35	0.30		0.08	-	-	-	0.08
					DC012659	315.35	315.65	0.30		0.06	-	-	-	0.06
315.65	322.10	API ISLA	ND ALTERATION PACKAGE	Ī.	DC012661	315.65	316.65	1.00		0.70	0.63	-	_	0.66
				le green. Over 80% of the intersection is API while the	DC012662	316.65	317.65	1.00		1.93	-	-	-	1.93
		in bands within the AF	Pl proper. Early qtz veins (5-10	rite is relatively abundant but is generally concentrated ()cm) are evenly distributed throughout the unit as are	DC012663	317.65	318.65	1.00		0.61	-	-	-	0.61
		post-main fabric qtz-c	arb veins. Relict blue qtz crys	tals in the API but no feldspar.	DC012664	318.65	319.65	1.00		1.27	-	-	-	1.27
		Gradational upper and	Diower contacts.		DC012665	319.65	320.65	1.00		0.80	-	-	-	0.80
					DC012666	320.65	321.65	1.00		0.71	-	-	-	0.71
		Structure Maj.: 315.65 - 322.10	Type/Core Angle MDF 52	Comment	DC012667	321.65	322.10	0.45		1.15	-	-	-	1.15
		Alteration Maj:	Type/Style/Intensity	Comment										
		315.65 - 322.10	TL SP W	Not obvious										
		315.65 - 322.10	CL SP W	With the pyrite										

Hole Number PRS-06 GOUDREAU Project: Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin Lithology (m) (m) Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) SE P MS 315.65 - 322.10 315.65 - 322.10 SI P ++ Mineralization Mai.: Type/Style/%Mineral Comment 315.65 - 322.10 Up to 30% in narrow bands PY DIS 5 322.10 329.85 V1QFP UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. DC012668 322.10 322.40 0.30 0.13 0.13 Similar to the unit at 305.75m except that the API like sections are better developed. Overall pale green DC012669 322.40 323.40 0.06 1.00 0.06 color with intense being colored sections. All of unit sampled because of proximity to gold mineralization DC012670 323.40 324.40 1.00 0.07 0.09 0.08 (next unit). DC012671 324.40 325.40 1.00 0.36 0.36 DC012672 325.40 326.21 0.25 0.81 0.25 DC012673 326.21 327.21 0.34 0.34 1.00 DC012674 327.21 328.21 1.00 0.06 0.06 328.21 DC012675 329.21 0.12 0.12 1.00 DC012676 329.21 329.85 0.64 0.10 0.10 329.85 337.80 API ISLAND ALTERATION PACKAGE. DC012677 329.85 330.35 0.50 0.78 0.78 Significant GOLD mineralization in this unit. Interestingly, most of the gold specks occur in late relatively DC012678 330.35 330.85 0.50 5.64 5.64 wide (5-15cm) qtz veins. About 40% is API, 35% second generation qtz veins with gold and 15% pale DC012681 330.85 331.35 0.50 22.82 22.82 green weakly altered QFP. API is beige colored and it does contain some early generation gray colored qtz veins but it is difficult to determine if these are gold bearing. This unit probably corresponds to the DC012683 331.35 331.85 0.50 97.61 97.61 E/E1 zones? DC012685 331.85 332.35 0.50 1.25 1.25 See the Major Vein section for sample details, Chloritic alteration predominant in the weakly altered DC012686 332.35 332.85 0.50 0.45 0.45 country rock sections, sericite common in the areas of intense gtz veining. 332.85 DC012687 333.35 0.50 0.85 0.85 DC012688 333.35 333.85 0.50 34.51 34.51 Structure Maj.: Type/Core Angle Comment DC012690 333.85 334.35 0.50 17.93 17.93 329.85 - 337.80 WDF 52 Locally more intense deformation

Hole Number PRS-06 Project: GOUDREAU Project Number: 05300

From	То											Au AA	Dup AA	Grav	Metal	Au fin
(m)	(m)		Litholog	ıy			Sample #	From	To	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
		Alteration Maj:	Type/Style/Intensity	Comment			DC012692	334.35	334.85	0.50		-	-	-	19.19	19.19
		329.85 - 337.80	CL SP WM	With the pyrite and in the weakly alt	ered co	untry rock	DC012693	334.85	335.35	0.50		-	-	-	21.08	21.08
		329.85 - 337.80	SE P MS				DC012695	335.35	335.85	0.50		-	-	-	120.68	120.68
		329.85 - 337.80	SI P MS	Weaker in the chloritic country rock	section	s	DC012697	335.85	336.35	0.50		-	-	-	2.62	2.62
		Mineralization Maj. :	Type/Style/%Mineral	Comment			DC012698	336.35	336.85	0.50		-	-	-	0.53	0.53
		329.85 - 337.80	PY DIS 4	Comment			DC012699	336.85	337.35	0.50		-	-	-	17.07	17.07
		Vein Maj.:	Type/Mineral	%	ca	vg	DC012702	337.35	337.80	0.45		-	-	-	11.78	11.78
		329.85 - 330.35	QCV py	10.0	-	0										
		330.35 - 330.85	QCV py	10.0		3										
		330.85 - 331.35	QCV py	50.0		30+										
		331.35 - 331.85	QCV py	15.0		1										
		331.85 - 332.35	QCV py	5.0		0										
		332.35 - 332.85	QCV py	1.0		0										
		332.85 - 333.35	QCV py	15.0		0										
		333.35 - 333.85	QCV py	35.0		30+										
		333.85 - 334.35	QCV py	30.0		4										
		334.35 - 334.85	QCV py	30.0		0										
		334.85 - 335.35	QCV py	80.0		25+										
		335.35 - 335.85	QCV py	70.0		30+										
		335.85 - 336.35	QCV py	1.0		0										
		336.35 - 336.85	QV py	0.5		0										
		336.85 - 337.35	QCV py	75.0		20+										
		337.35 - 337.80	QCV py	50.0		5										

Hole Number PRS-06 GOUDREAU Proiect: Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) 337.80 339.40 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC012703 337.80 338.30 0.50 0.09 0.09 Distinct green color with a relatively even scattering of qtz and gray colored feldspar crystals. A few late DC012704 338.30 338.80 0.50 0.02 0.02 carbonate filled fractures. DC012705 338.80 339.40 0.60 0.05 0.05 339.40 342.58 ISLAND ALTERATION PACKAGE. DC012706 339.40 339.90 0.50 7.23 7.23 Continuation of previous unit at 329.58m. Good GOLD mineralization in this section. See Major Vein for DC012707 339.90 340.40 0.50 5.62 5.62 sample details. DC012709 340.40 340.90 0.50 19.90 19.90 DC012711 340.90 341.40 0.50 0.04 0.04 Structure Maj.: Type/Core Angle Comment DC012712 341.40 341.90 0.50 4.39 4.39 339.40 - 342.58 MDF 60 DC012714 341.90 342.58 0.68 8.24 8.24 Alteration Maj: Type/Style/Intensity Comment CL SP W 339.40 - 342.58 With pyt 339.40 - 342.58 SE P MS Adjacent to gtz veins 339.40 - 342.58 SI P MS Generally as qtz veins Mineralization Maj. : Type/Style/%Mineral Comment 339.40 - 342.58 PY DIS 5 In the wall rock Vein Maj.: Type/Mineral % ca vg 339.40 - 339.90 QCV py 10.0 0 339.90 - 340.40 QCV py 95.0 9 340.40 - 340.90 QCV py 95.0 30+ 340.90 - 341.40 QCV py 99.0 0 341.40 - 341.90 QCV py 5.0 341.90 - 342.58 QCV py 70.0

Hole Number PRS-06 Project SOUDREAU Project Number: 05300

From (m)	To (m)	Lithology	Sample #	From	To I	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
342.58	348.05	T9ZS SCHIST UNDIFFERENTIATED	DC012716	342.58	342.88	0.30		_	_	-	0.07	0.07
		Tends to have a dark green to black color. Foliation development relatively intense in a few places but	DC012717	342.88	343.88	1.00		0.02	-	-	-	0.02
		decreases in intensity towards the bottom of the unit. Tourmaline veining is common between 345 and 346.50m but there is no sericitic alteration or abundant pyrite. Silicification common throughout the unit.	DC012718	343.88	344.88	1.00		0.01	-	-	-	0.01
		Qtz-carbonate veins locally developed (5-10% of the interval).	DC012719	344.88	345.88	1.00		0.01	-	-	-	0.01
			DC012721	345.88	346.88	1.00		0.20	0.18	-	-	0.19
			DC012722	346.88	347.38	0.50		0.01	-	-	-	0.01
			DC012723	347.38	348.05	0.67		0.18	-	-	-	0.18
348.05	350.50	T1QP FELSIC QUARTZ PORPHYRITIC TUFF. Has a massive gray colored silcic matrix with scattered large (5mm) blue qtz crystals. No obvious feldspar crystals but there is some scattered diss pyrite. Fine-grained chlorite within the matrix.	DC012724	348.05	348.35	0.30		0.32	-	-	-	0.32

350.50 360.10 T2FP INTERMEDIATE FELDSPAR PORPHYRITIC TUFF.

Abundant 1-3mm gray colored fragmental looking feldspars in a finer-grained green colored siliceous matrix. Scattered blue qtz crystals but not abundant. Some alignment to the crystals in areas of weak fabric development. A few zones of increased alteration so that the unit takes on a beige color with veinlets of tourmaline and/or carbonate. Diss tourmaline in the matrix as well as veinlets/stringers of chlorite. Patchy potassic alteration of the matrix and local feldspar crystals.

Project:

GOUDREAU

Project Number: 05300

From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm)

360.10 365.50 V1QFP

UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY.

Reddish to green in color. Potassic alteration creates the reddish color while stringers of chlorite create a greenish tinge. Appears to contain fine-grained feldspars that have been altered to a potassic type and it is possible the this unit is simply a more strongly altered version of the previous rock type. Qtz crystals are scattered throughout but not abundant. Some places however contain what appear to be secondary feldspars (coarse-grained). Upper contact sharp over a few cms.

365.50

366.00 V3BD

)

BASALTIC DYKE.

Typical dark green colored dyke with carbonate porphyroblasts.

180.00

-46.00

291.00

22-Apr-06

24-Apr-06

18-May-06

Samples: DC011214-DC011381

Hole Number PRS-05

Orling

Azimuth:

Started:

Logged:

Completed

Comment:

Dip: Leagth:

Cesing

Length:

Pulled:

Capped:

Cornented:

DRILL HOLE REPORT

···										Chris Morcha P.GED
	Proje	d: 001	JOREAU						Project Number;	
	Core					Location			Other	
48	Dimension:	NO				Township:	FINAN		Logged by:	C. Moreton
	Storage;	Island	Gold Proj	ect		Cisto No.:	3817		Relog by:	
	Section:					NTS:	42C/08		Contractor;	Orbit Brilling Inc
	Hale Type	SEXP				Hole:	Surface		Company:	Mines Richmons
									Spotted by:	C. Moreton
				Coord	inata				Surveyed:	yes
	Gemcom		UTM		Mine		Veriable		Surveyed by:	G.Lamothe(GPS)
	Esti:	15787.1	East:	691141.5	East:	15767.1	East:	0	Geophysics:	
	North:	4853.4	North:	5352288.8	North:	4853.4	North:	0	Geoph. Contract:	
	Elev.:	5393	Elev.:	5393	Elev.:	6393	Elev.:	0	Left in hole:	
			Zone:	16					Making water:	
			NAD:	83					Multi shot surv.:	

Deviation Tests

Distance	Azimuth	Dip	Type	Good	Comments
0.00	180.00	-46.00	C	\mathbf{Z}	
57.00	179.60	-47.10	F		56580
90.00	179.40	-48.90	F	Y	56790
120.00	182.30	45.50	F	Zì	15410
150.00	179.00	45.20	ND	2	58610
180.00	179.60	-44.40	F	6	56420
210.00	179.20	-43.60	F		56600
Z41.00	181.00	-41.00	F	\mathbf{Z}	58470
270.00	179.60	-41.60	F	\mathbf{z}	56450
241.00	181.00	-41.00	F	2	58470

Hole Number	PRS-05			Projec	t: GOL	IDREAU						Project Number:	05300
Drilling		Casing		Core					Location			Other	
Azimuth:	180.00	Length:	48	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-46.00	Pulled:		Storage:	Island	Gold Projec	t		Claim No.:	3817		Relog by:	
Length:	291.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Started:	22-Apr-06	Cemented:		Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Completed:	24-Apr-06											Spotted by:	C. Moreton
Logged:	18-May-06						Coordi	nate				Surveyed:	yes
Comment:	Samples: DC011214-DC011381			Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
				East:	15767.1	East:	691141.5	East:	15767.1	East:	0	Geophysics:	
				North:	4853.4	North:	5352288.8	North:	4853.4	North:	0	Geoph. Contract:	
				Elev.:	5393	Elev.:	5393	Elev.:	5393	Elev.:	0	Left in hole:	
						Zone:	16					Making water:	
						NAD:	83					Multi shot surv.:	

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-46.00	С	✓	
57.00	179.60	-47.10	F	✓	56580
90.00	179.40	-46.90	F	✓	56790
120.00	182.30	-45.50	F	✓	15410
150.00	179.00	-45.20	ND	✓	56610
180.00	179.60	-44.40	F	✓	56420
210.00	179.20	-43.60	F	✓	56600
241.00	181.00	-41.00	F	✓	58470
270.00	179.60	-41.60	F	✓	56450

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-05 Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) Sample # To Length Zone (ppm) From Lithology (m) (m) 0.10 47.00 48.00 1.00 0.10 DC011214 CSG Casing 0.00 48.00 Although casing block at 48m the bedrock starts at 47m 0.05 0.05 48.00 49.00 1.00 DC011215 GRANODIORITE. I1D 48.00 67.08 Variably altered and deformed. Blue gray in color where least altered. Some sections have a schistose 0.02 1.00 0.02 DC011216 49.00 50.00 fabric with localized tourmaline veining. In these sections the color is buff to beige. Mafic minerals in the 0.30 DC011217 50.00 51.00 1.00 0.30 granodiorite are now chlorite. 0.00 0.00 DC011218 51.00 52.00 1.00 Qtz veins, with or without carbonate and tourmaline, may be parallel to the schistosity (where developed) 0.03 1.00 0.03 DC011219 52.00 53.00 or they may cross cut the fabric. Trace to diss pyrite in the veins but slightly better in the wall rock within the altered and deformed sections. Some of the carbonate is ankeritic. 0.17 0.17 53.00 54.00 1.00 DC011221 0.01 54.00 55.00 1.00 0.01 DC011222 58.25 to 59.00m: QFP dyke cross-cutting the granodiorite. Contains a weak fabric so probably pre-dates 0.01 the first deformation. 55.00 56.00 1.00 0.01 0.02 DC011223 0.03 0.03 DC011224 56.00 56.75 0.75 Samples taken throughout this unit. 0.01 0.01 56.75 57.50 0.75 DC011225 0.03 DC011226 57.50 58.25 0.75 0.03 0.14 DC011227 58.25 59.00 0.75 0.14 0.04 0.04 DC011228 59.00 60.00 1.00 0.07 60.00 61.00 1.00 0.07 DC011229 0.54 0.54 DC011230 61.00 62.00 1.00 0.02 0.02 DC011231 62.00 63.00 1.00 0.01 0.01 DC011232 63.00 64.00 1.00 0.01 DC011233 64.00 65.00 1.00 0.01 0.01 0.00 1.00 0.00 DC011234 65.00 66.00 0.01 DC011235 66.00 66.50 0.50 0.01

Hole Number PRS-05 GOUDREAU Proiect: Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length (ppm) Zone (ppm) (ppm) (ppm) DC011236 66.50 67.08 0.58 0.00 0.00 67.08 70.83 T9ZS SCHIST UNDIFFERENTIATED DC011237 67.08 67.58 0.50 0.00 0.00 Start of a ~10m wide shear zone WITHIN the granodiorite. Fabric intensifies down hole due initially to DC011238 67.58 68.08 0.50 4.16 4.16 chlorite and then sericite. Silicification seems strong throughout. No main vein but there area few qtz veins carrying MOLYBDENITE. Other veins DC011239 68.08 68.58 0.50 0.00 0.00 DC011241 68.58 69.08 0.50 0.41 0.41 DC011242 69.08 69.58 0.50 0.75 0.75 Structure Maj.: Type/Core Angle Comment DC011243 69.58 70.08 0.50 0.20 0.21 0.20 67.08 - 70.83 MDF 46 DC011244 70.08 70.48 0.40 0.51 0.51 Alteration Mai: Type/Style/Intensity Comment DC011245 70.48 70.83 0.35 3.16 67.08 - 70.83 TL VN Only local. 67.08 - 70.83 SE INT WM 67.08 - 70.83 CL INT WM 67.08 - 70.83 SI P MS Mineralization Mai.: Type/Style/%Mineral Comment 67.08 - 70.83 PY TR 0.5 70.83 71.75 API ISLAND ALTERATION PACKAGE. DC011246 70.83 71.75 0.92 0.17 0.12 0.14 Moderately well banded with a beige to buff color. Tourmaline veinlets parallel to the dominant fabric. Also tourmaline needles in the silicified sections. Strongly silicified with additional sericite and carbonate. Only scattered pyrite though. Structure Maj.: Type/Core Angle Comment 70.83 - 71.75 SDF 58 Some variability Alteration Maj: Type/Style/Intensity Comment 70.83 - 71.75 TL VN Also as needles 70.83 - 71.75 SE PCH WM

e Number	PRS-05			Project: GO I	UDREA	NU						Pi	roject Num	ber: 0 !	5300	
r om (m)	To (m)		Litholog	y			Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		70.83 - 71.75	SI P MS													
		Mineralization Maj.: 70.83 - 71.75	<i>Type/Style/%Mineral</i> PY TR 0.5	Comment												
		Vein Maj.:	Type/Mineral	%	ca	vg										
		71.28 - 71.45	QCT PY	20.0	64	0										
71.75	76.70	T9ZS SCHIST	UNDIFFERENTIATED				DC011247	71.75	72.25	5 0.50		0.01	_	_	_	0.01
71.75	70.70	Similar to the previous T	9ZS at 67.08m except that	the chloritic alteration is anastomosing	and the	9	DC011248	72.25	73.25			0.00	-	-	-	0.00
		sericite is slightly more p	enetrative. Original litholog	y still discernible - predominantly green	color.		DC011249	73.25	74.25	1.00		0.01	-	-	-	0.01
							DC011250	74.25	75.25	1.00		0.02	-	-	-	0.02
		Structure Maj.:	Type/Core Angle	Comment			DC011251	75.25	76.25	1.00		0.01	-	-	-	0.01
		71.75 - 76.70	WDF 66	Some evidence of an earlier fabric			DC011252	76.25	76.70	0.45		0.01	-	-	-	0.01
		Alteration Maj:	Type/Style/Intensity	Comment												
		71.75 - 76.70	CL MO WM													
		71.75 - 76.70	SE INT WM													
		71.75 - 76.70	SI P MS													
		Mineralization Maj.: 71.75 - 76.70	Type/Style/%Mineral PY TR 0.5	Comment												
							D0044070	70.70	77.0	0.00		0.04				0.01
76.70	78.66		DDIORITE.	ill altered to oblorite. No readily recogni	zabla fa	phric	DC011253	76.70	77.00			0.01 0.00	-	-	-	0.01 0.00
		More massive section be Gray to locally green col		ill altered to chlorite. No readily recognize	caule la	IUIIC.	DC011254	77.00	78.00			0.00	-	-	-	0.00
		, , 0					DC011255	78.00	78.6	00.0		0.01	-	-	-	0.01

Project Number: 05300 GOUDREAU Project: Hole Number PRS-05 Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) Sample # From Zone (ppm) (ppm) To Length Lithology (m) (m) 0.01 DC011256 78.66 79.16 0.50 0.01 0.01 T9ZS SCHIST UNDIFFERENTIATED 78.66 85.59 0.03 The lower depth marks the granodiorite - country rock contact; however, the shear zone overlaps both DC011257 79.16 80.16 1.00 0.03 units. In this section the foliation is well developed and is dominated by chlorite. Some sericite parallel to 0.28 0.28 DC011258 80.16 81.16 1.00 the fabric and minor (1cm) qtz veins that locally have carbonate. Microveinlets of tourmaline parallel to 1.20 1.20 1.00 DC011259 81.16 82.16 the cleavage. 82.16 0.02 0.02 83.16 1.00 DC011261 0.02 DC011262 83.16 84.16 1.00 0.02 Structure Mai.: Type/Core Angle Comment 0.04 DC011263 84.16 85.16 1.00 0.04 SDF 64 78.66 - 85.59 0.02 0.02 DC011264 85.16 85.59 0.43 Type/Style/Intensity Comment Alteration Maj: Local 78.66 - 85.59 TL VN SE PCH WM 78.66 - 85.59 78.66 - 85.59 CL INT MS SI P MS 78.66 - 85.59 Type/Style/%Mineral Comment Mineralization Maj. : PY TR 0.5 78.66 - 85.59

Project: GOUDREAU

Project Number: 05300

From	То		1:44-1					Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)		Litholog	<u>y</u>				DC011265	85.59	86.59	1.00		0.32				0.32
85.59	116.87		UNDIFFERENTIATED	developed within an altered	feleic volca	anic uni	t rather	DC011265	86.59	87.59	1.00		0.02	0.08	_	_	0.09
		than a granodiorite. Folia	ation is strong over at least	90% of the unit with a locally	/ well-devel	loped fa	abric.	DC011267	87.59	88.59	1.00		0.03	-	_	_	0.27
		Chloritic alteration is more sericite associated with the series of the control o	re common after about 96n	n. Prior to this there is a relat	tive abunda	ance of	pinkish	DC011267	88.59	89.59	1.00		0.26	•	_	_	0.26
								DC011269	89.59	90.59	1.00		1.84	_	_	_	1.84
		The second vein system	(at 104.85m) is a late feati	ure overprinting an earlier we of the early silicified zones l	akly silicific have a wea	ed zone klv dev	e. The eloped	DC011209	90.59	91.59	1.00		0.54	_		_	0.54
		banding that is reminisce	ent of API. Also have associ	siated pyrite and weak tourm	aline locally	y.	•	DC011271	91.59	92.59	1.00		0.44	_	-	_	0.44
		After about 108m the fab	oric is less intense and the	original feldspar volcanic uni	t is easier t	to see.		DC011272	92.59	93.59	1.00		0.03	-	_	_	0.03
								DC011273	93.59	94.59	1.00		0.00	-	-	_	0.00
		112.07 to 114.0m: appea	ars to be a deformed and a	iterea granodionte.				DC011274	94.59	95.59	1.00		0.12	-	-	-	0.12
								DC011275	95.59	96.59	1.00		2.15	-	-	-	2.15
		Structure Maj.:	Type/Core Angle	Comment				DC011276	96.59	97.59	1.00		0.07	0.07	-	-	0.07
		85.59 - 116.87	MDF 50	Locally shallower				DC011277	97.59	98.59	1.00		0.26	-	-	-	0.26
		Alteration Maj:	Type/Style/Intensity	Comment				DC011278	98.59	99.59	1.00		0.02	-	-	-	0.02
		85.59 - 116.87	TL SP					DC011279	99.59	100.59	1.00		0.06	-	-	-	0.06
		85.59 - 116.87	CL P MS					DC011281	100.59	101.59	1.00		0.14	-	-	-	0.14
		85.59 - 116.87	SE PCH +					DC011282	101.59	102.39	0.80		0.36	-	-	-	0.36
		85.59 - 116.87	SIP +					DC011283	102.39	102.69	0.30		40.89	50.02	-	-	45.45
		Mineralization Maj. :	Type/Style/%Mineral	Comment				DC011285	102.69	103.69	1.00		0.04	0.04	-	-	0.04
		85.59 - 116.87	PY STR 1	Slightly higher in silicified	zones.			DC011286	103.69	104.19	0.50		0.10	-	-	-	0.10
		Vein Maj.:	Type/Mineral		%	ca	vg	DC011287	104.19	104.85	0.66		0.03	-	-	-	0.03
		102.39 - 102.64	QCT AU		75.0	25	3	DC011288	104.85	105.84	0.99		3.60	-	-	-	3.60
		104.85 - 105.84	QCT py		90.0	90	0	DC011289	105.84	106.84	1.00		0.22	-	-	-	0.22
								DC011290	106.84	107.84	1.00		0.25	-	-	-	0.25
								DC011291	107.84	108.84	1.00		0.05	-	-	-	0.05
								DC011292	108.84	109.84	1.00		0.02	-	-	-	0.02
								DC011293	109.84	110.84	1.00		0.32	-	-	-	0.32

the same volcanic unit - feldspars greater than qtz.. A few late qtz and/or qtz-carbonate veins.

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-05 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 0.08 80.0 DC011294 110.84 111.34 0.50 80.0 80.0 0.73 0.08 DC011295 111.34 112.07 0.07 DC011296 112.07 113.07 1.00 0.07 0.04 113.07 114.00 0.93 0.04 DC011297 0.02 DC011298 114.00 115.00 1.00 0.02 0.19 0.19 DC011299 115.00 115.87 0.87 0.12 DC011301 115.87 116.87 1.00 0.01 116.87 117.17 0.30 0.01 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC011302 116.87 135.41 T2QFP Typical green to gray colored unit with scattered gray colored feldspar and blue colored crystals. Crystal distribution is heterogeneous although the size is relatively uniform. Locally weakly foliated and silicified. Silicification is patchy but relatively common. Minor qtz-pyrite veinlets parallel to the fabric. Some late qtz-carb gashes cross-cutting the main fabric (tend to be mm in size). Ankeritic carbonate appears to be quite common. DC011303 159.50 159.80 0.30 0.01 0.01 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 135.41 159.80 Same as previous unit except that the matrix is coarser-grained and the feldspars are also white colored. In addition there may be lapilli and a few altered (potassic) feldspars. Just represents a different facies of

GOUDREAU

Project:

Au AA Dup AA Grav Metal Au fin To From (ppm) Sample # To Length Zone (ppm) (ppm) (ppm) (ppm) From Lithology (m) (m) 0.03 0.03 DC011304 159.80 160.80 1.00 T9ZS SCHIST UNDIFFERENTIATED 161.54 159.80 Strongly banded and silicified with local mm scale qtz-carbonate veins. Qtz crystals preserved but DC011305 160.80 161.54 0.74 0.01 0.01 0.01 feldspars are destroyed. No central vein in this unit. Structure Maj.: Type/Core Angle Comment SDF 59 159.80 - 161.54 Type/Style/Intensity Comment Alteration Maj: CL P + 159.80 - 161.54 159.80 - 161.54 SE B + SI P ++ 159.80 - 161.54 Mineralization Maj. : Type/Style/%Mineral Comment 159.80 - 161.54 PY TR 0.5 Locally in veinlets. 0.01 161.84 0.30 0.01 DC011306 161.54 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 163.54 161.54 Same as unit prior to T9ZS except for the addition of MAGNETITE porphyroblasts and extensive 0.02 DC011307 163.24 163.54 0.30 0.02 chloritisation in the wall rock of the following qtz vein. 0.01 0.01 DC011308 163.54 164.02 0.48 164.02 QV QUARTZ CARBONATE VEIN. 163.54 Actually more qtz than carbonate (90:10). About 20% of the interval is chloritised wall rock fragments. No VG. Vein appears to be second generation.

Project Number: 05300

Hole Number PRS-05

Hole Number	PRS-05	Project: GOUDREAU						Р	roject Nun	nber: 05	5300	
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
164.02	170.03	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as prior to the vein - that is, same as the unit at 135.41m. Whiter feldspars have diffuse outlines and amount to about 70% of the interval. Matrix is fine to medium grained, generally gray colored with green tinge over most of the interval. Some late qtz filled (minor carbonate) gashes cross-cutting the foliation.	DC011309	164.02	164.3	2 0.30		0.02	-	-	-	0.02
170.03	170.58	T1Z UNDIFFERENTIATED FELSIC TUFF. Gray colored with a predominantly sugary texture. Minor patchy chlorite throughout with local MAGNETITE (?) and pyrite crystals. No obvious qtz and/or feldspar crystals. Upper and lower contacts are sharp so it is possible that this is a dyke.										
170.58	175.06	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Typical gray colored unit with gray colored feldspars dominant over blue colored qtz crystals. Fabric is moderate with flattened feldspar crystals oriented parallel to the main foliation. Some lapilli and blue qtz crystals. Local crystal poor layers probably represent internal tuff units. All of the units have a silicification overprint.	DC011310	174.76	175.0	06 0.30		0.02		-	-	0.02

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-05 Au fin Au AA Dup AA Grav From To (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) 0.03 0.03 176.06 1.00 DC011311 175.06 Undifferentiated felsic volcanic QFP V1ZQFP 175.06 176.81 0.03 0.75 Underlying unit is a QFP but there is a strong chlorite-epidote alteration overprint. Unit also contains 176.81 DC011312 176.06 disseminated MAGNETITE and local veinlets of pyrite. No mafics nearby so the presence of epidote is unusual. Sampled to see if there is anything significant about this alteration. 0.02 0.30 176.81 177.11 DC011313 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 183.76 T2QFP 176.81 0.01 0.30 0.01 183.46 183.76 DC011314 Same as 170.58m. 0.02 184.76 1.00 0.02 183.76 DC011315 SCHIST UNDIFFERENTIATED 183.76 186.97 T9ZS 0.14 Not a great example but there is an increase in the intensity of the foliation on the shoulder of the next 184.76 185.76 1.00 0.14 DC011316 API unit. This silicified schist is predominantly green colored due to chloritic with epidote colored patches. 0.01 0.01 0.50 DC011317 185.76 186.26 Scattered late qtz filled gashes cross-cutting the foliation. Typically some of the underlying unit is visible. 0.01 0.01 0.71 186.26 186.97 DC011318 Veinlets of gtz-carb parallel to the main fabric, locally quite prominent.

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-05 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) Type/Core Angle Comment Structure Maj.: WDF 61 183.76 - 186.97 Type/Style/Intensity Comment Alteration Maj: 183.76 - 186.97 EP PCH Sporadic occurrences. SE PCH Not a large component 183.76 - 186.97 Better near the upper contact. CL PCH WM 183.76 - 186.97 SI P MS 183.76 - 186.97 Type/Style/%Mineral Comment Mineralization Maj. : MG TR 0.5 183.76 - 186.97 PY TR 0.5 183.76 - 186.97 1.21 186.97 187.38 0.41 1.17 1.25 DC011319 ISLAND ALTERATION PACKAGE. API 186.97 187.38 Gray to beige in color due to a relative abundance of sericite and silica. Abundant diss pyrite in mm scale veinlets oriented parallel to the fabric. Tourmaline present in the alteration zone as semi-continuous mm scale veinlets but not abundant. Structure Maj.: Type/Core Angle Comment SDF 58 186.97 - 187.38 Comment Type/Style/Intensity Alteration Maj: TL VN 186.97 - 187.38 186.97 - 187.38 CL INT SE P + 186.97 - 187.38 SI P ++ 186.97 - 187.38 Comment Type/Style/%Mineral Mineralization Maj. : PY DIS 5 186.97 - 187.38 vg Type/Mineral Vein Maj.: 50 N OCT DV 107 10 107 04

lole Number	PRS-05			Project: GOUDREAU						Р	roject Num	ber: 0	5300	
From (m)	To (m)		Lithology		Sample #	From	To I	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
	()													
					DC011321	187.38	187.88	0.50		0.38	_	_	_	0.38
187.38	188.60	Same as 183.76. Also co	UNDIFFERENTIATED ontains diss pyrite and magradational but relatively rapid	netite. As with previous examples the contacts with .	DC011322	187.88	188.60	0.72		0.67	-	-	-	0.67
188.60	189.93	Same as 186 97m. No co	ALTERATION PACKAGE entral qtz vein - instead, the oly amount to 20% of the in	re are multiple sheeted narrow veins over the terval). This style of veining creates a pseudo-	DC011323 DC011324 DC011325	188.60 189.10 189.60	189.60	0.50 0.50 0.33		1.00 1.74 1.86	-		- - -	1.00 1.74 1.86
		Alteration Maj:	Type/Style/Intensity	Comment										
		188.60 - 189.93	TL VN											
		188.60 - 189.93	SE B +											
		188.60 - 189.93	SI P ++											
		Mineralization Maj. : 188.60 - 189.93	Type/Style/%Mineral PY DIS 5	Comment Within narrow mm scale veinlets.										

Project Number: 05300 Project: GOUDREAU Hole Number PRS-05 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) Zone To Length Sample # From Lithology (m) (m) 0.17 0.17 189.93 190.23 0.30 DC011326 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 196.61 189.93 0.05 Similar to previous examples with distinct gray colored feldspar crystals. Fabric is weak to moderate and 0.05 0.30 190.23 190.53 DC011327 there are narrow patches of increased sericitisation. Overall, the unit is green colored and pervasively 0.03 0.03 0.30 196.31 196.61 DC011328 silicified. Late qtz-carb filled gashes cross cutting the fabric. 0.24 0.25 0.24 DC011329 196.61 197.26 0.65 ISLAND ALTERATION PACKAGE. 196.61 197.26 API Actually two narrow silica-pyritic shear zones (20 and 13 cm wide) bounding a relatively unaltered section of QFP (gray colored, weakly foliated). Type/Core Angle Comment Structure Maj.: Only in the two narrow zones MDF 64 196.61 - 197.26 Type/Style/Intensity Comment Alteration Maj: CL PCH 196.61 - 197.26 SE PCH 196.61 - 197.26 SI P MS 196.61 - 197.26 Type/Style/%Mineral Comment Mineralization Maj. : Within tow narrow zones PY DIS 4 196.61 - 197.26 0.04 0.04 0.30 197.26 197.56 DC011330 BASALTIC DYKE. V3BD 197.26 197.92 Dark green, fine grained with local carbonate alteration and diss MAGNETITE crystals. Weakly foliated so pre-deformational.

Hole Number	PRS-05	Project: GOUDREAU						Pi	roject Num	ber: 05	300	
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
197.92	201.23	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 189.93m.										
201.23	205.04	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Similar to unit at 164.02m. Upper contact with previous T2QFP is gradational but rapid. This unit looks intrusive in places but the interlayered gray feldspar QFP suggests, as well as the consistent gradational contacts, imply a tuffaceous origin. White feldspars are diffuse and have a weak alignment parallel to the fabric.	DC011331	204.74	205.0	4 0.30		0.01	-	-	-	0.01
		Blue qtz crystals are present but much lower in abundance than the feldspars. As with other interpretations, this unit probably is a facies of the felsic pyroclastic units - there are local euhedral feldspars but these could have been shielded in the ash flow?										
205.04	206.54	T9ZS SCHIST UNDIFFERENTIATED Gradational upper and lower contacts but over a short distance. Alteration is mixed chlorite and sericite with up to 30% unaltered QFP. Silicification is pervasive. Late carbonate-qtz filled fractures. Most of the unaltered sections are the gray QFP unit with finer grained feldspars.	DC011332 DC011333	205.04 206.04				0.38 0.24		-	-	0.38 0.24

Project Number: 05300 GOUDREAU Proiect: Hole Number PRS-05 Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) From 205.04 to 205.28m: strong chloritic alteration with diss MAGNETITE. Structure Mai.: Type/Core Angle Comment WDF 58 Locally stronger 205.04 - 206.54 Type/Style/Intensity Comment Alteration Maj: CL PCH WM 205.04 - 206.54 205.04 - 206.54 SE PCH 205.04 - 206.54 SI P MS Type/Style/%Mineral Comment Mineralization Maj. : PY DIS 5 205.28 - 205.44 Type/Mineral vg Vein Maj.: 55 0 205.28 - 205.44 QCV PY 0.01 0.30 0.01 206.84 DC011334 206.54 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 206.54 210.58 0.01 210.28 210.58 0.30 0.01 Generally a coarse-grained QFP with feldspars>qtz. Feldspars initially whitish then at 207.30m they DC011335 change to pink colored. Still have diffuse outlines. Weak fabric overall. 0.03 0.03 1.00 DC011336 210.58 211.58 SCHIST UNDIFFERENTIATED 211.88 T9ZS 210.58 0.02 Rapid increase in the intensity of the foliation with strong potassic alteration (sericite?) and interlayered 0.02 211.58 211.88 0.30 DC011337 chlorite. Not much pyrite, only a few micro veinlets of tourmaline. Relict qtz crystals and local feldspar fragments. Overall the unit is green in color but there are also larger pink areas that dominate the color. Structure Maj.: Type/Core Angle Comment MDF 65 210.58 - 211.88

Project Number: 05300 GOUDREAU Project: Hole Number PRS-05 Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) Zone (ppm) To Length Sample # From Lithology (m) (m) Comment Type/Style/Intensity Alteration Maj: TL VN 210.58 - 211.88 CL PCH + 210.58 - 211.88 SE PCH + 210.58 - 211.88 SI P ++ 210.58 - 211.88 Type/Style/%Mineral Comment Mineralization Maj.: 210.58 - 211.88 PY TR 0.5 Not abundant 0.39 0.39 DC011338 211.88 212.23 0.35 ISLAND ALTERATION PACKAGE. 212.23 API 211.88 Not banded but strongly altered with a couple of 2cm qtz-carb veins and relatively abundant pyrite. Has a lighter color due to increased silica an sericite. Contacts are relatively sharp. Comment Type/Core Angle Structure Maj.: MDF 68 211.88 - 212.23 Type/Style/Intensity Comment Alteration Maj: CL PCH 211.88 - 212.23 SE B + 211.88 - 212.23 SI P ++ 211.88 - 212.23 Type/Style/%Mineral Comment Mineralization Maj.: PY TR 0.5 211.88 - 212.23 vg Type/Mineral Vein Maj.: 15.0 0 QCV py 211.88 - 212.23

e Number	PRS-05	Project: GOUDREAU						Pi	roject Num	ber: 05	5300	
rom	То	Lithology	Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)		DC011339	212.23	212.53	0.30		0.02	0.02	•	-	0.02
212.23	214.62	T9ZS SCHIST UNDIFFERENTIATED Same as 210.58m except that lower contact is knife-sharp and there is a greater abundance of	DC011341	212.53	213.53	1.00		0.02	-	-	-	0.02
		chloritisation.	DC011342	213.53	214.03	0.50		0.05	-	-	-	0.05
			DC011343	214.03	214.62	0.59		0.02	-	-	-	0.02
214.62	238.46	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 206.54m. Pinkish color to feldspars is lost at 221.36m. After this the feldspars are white and the matrix is gray colored. Some sections have distinctly euhedral crystals with reaction rims - could this be an intrusive section of the unit? Is this the porphyry that has a genetic association with certain gold deposits? Although there are sections that have a distinct porphyritic texture there are other portions that are more heterogeneous.	DC011344 DC011345	214.62 238.16		0.30 0.30		0.02 0.02		-	-	0.02 0.02
		218.49 to 219m; small alteration zone with late contorted 2cm qtz vein and associated extensive pink colored potassic alteration.										
		231.86 to 232.50m: qtz vein (2cm) with associated wall rock alteration. Cubic coarse grained pyrite and diss magnetite in the alteration halo.										

Hole Number PRS-05 Project: GOUDREAU Project Number: 05300

rom	To		Litholog	v				Sample #	From	To L	.ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)	T070 COUIC	T UNDIFFERENTIATED					DC011346	238.46	238.96	0.50		1.66	-	-	-	1.66
238.46	241.00	Silicification predominan	nt - annears to have a blotch	y distribution in this unit with v	weak serio	cite and	local	DC011348	238.96	239.46	0.50		0.55	-	-	-	0.55
		dice nurite. Locally the te	exture resembles in-situ bre	cciation with fractures healed	by the qu	z veins.	mere	DC011349	239.46	239.96	0.50		0.72	-	-	-	0.72
		are early generation qtz veins too (barren).	veins carrying VISIBLE GC	LD and there are second gene	crauon qu	2 001001	uto	DC011350	239.96	240.46	0.50		0.06	0.04	-	-	0.05
		Overall gray color to 239	9.46m. Color changes to gre leveloped outside of the stre	een from 239.46m to 241m du onger silicified zones.	e to more	abunda	ınt	DC011351	240.46	241.00	0.54		0.09	-	-	-	0.09
		Structure Maj.:	Type/Core Angle	Comment													
		238.46 - 241.00	WDF 60	Variable due to silicification													
		Alteration Maj:	Type/Style/Intensity	Comment													
		238.46 - 241.00	CL PCH														
		238.46 - 241.00	SE PCH WM														
		238.46 - 241.00	SI MO MS														
		Mineralization Maj. : 238.46 - 241.00	Type/Style/%Mineral PY DIS 1	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		238.60 - 238.85	QCV AU		15.0	60	3										
		239.57 - 239.90	QCT py		70.0	90	0										
241.00	244.87	T2QFP INTER	MEDIATE QUARTZ-FELDS	SPAR PORPHYRITIC TUFF.				DC011352	241.00	241.30	0.30		0.03		-	-	0.03
241.00	244.01	Weakly silicified and ch		n overall green color. Small pa	atch of mo	ore inter	se	DC011353	244.57	244.87	0.30		0.03	3 -	-	-	0.03

Project Number: 05300 Project: **GOUDREAU** Hole Number PRS-05 Metal Au fin Au AA Dup AA Grav To (ppm) From (maga) (ppm) (ppm) (ppm) Zone To Length Sample # From Lithology (m) (m) 0.36 0.36 0.99 244.87 245.86 DC011354 SCHIST UNDIFFERENTIATED T9ZS 257.87 244.87 0.51 0.51 Weak example with mottled silicification local associated diss pyrite. Late cross cutting qtz filled gashes, 1.00 245.86 246.86 DC011355 one with tourmaline. Original rock type generally visible through the alteration. 0.12 0.12 1.00 246.86 247.86 DC011356 0.03 0.03 0.80 The main vein is a late qtz (carb) vein that is essentially barren. DC011357 247.86 248.66 4.03 4.03 0.34 249.00 DC011358 248.66 0.10 0.10 249.00 250.00 1.00 DC011359 Comment Structure Maj.: Type/Core Angle 0.13 0.12 250.00 251.00 1.00 DC011361 Weak due to silicification WDF 68 244.87 - 257.87 1.88 1.88 1.00 251.00 252.00 DC011362 Comment Type/Style/Intensity Alteration Maj: 0.12 0.12 252.00 253.00 1.00 DC011363 SE MO WM 244.87 - 257.87 0.32 1.00 0.32 DC011364 253.00 254.00 SI MO MS 244.87 - 257.87 0.25 0.25 1.00 254.00 255.00 DC011365 Type/Style/%Mineral 0.23 Comment Mineralization Mai. : 0.23 1.00 255.00 256.00 DC011366 PY DIS 1 244.87 - 257.87 0.24 0.24 256.00 257.00 1.00 DC011367 vg Type/Mineral 0.81 Vein Maj.: 0.81 257.00 257.87 0.87 DC011368 48 0 75.0 QCT PY 248.66 - 249.00 0.07 0.07 0.30 257.87 258.17 DC011369 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 263.44 T2QFP 257.87 0.19 0.19 0.30 0.19 Fine-grained version of the QFP with small gray feldspars. Local chloritic alteration and local weak DC011370 263.14 263.44 silicification but overall it has a gray color. Not much of a fabric, probably due to the silicification. Numerous late qtz-carbonate gashes. 0.35 0.35 DC011371 0.35 263.44 263.79 SCHIST UNDIFFERENTIATED T9ZS 263.79 263.44 Not the correct term - more of a strongly chloritic shear zone overprinting the QFP. Loss of feldspars but preservation of the qtz crystals. Dark green in color with a slightly lighter colored core due to carbonate. Diss and veinlet pyrite in the chloritic zones. Gradational upper and lower contacts.

ole Number	PRS-05			Project: GOUDREAU						Pi	roject Num	iber: 05	300	
From (m)	To (m)		Litholog	y	Sample #	From	To I	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		Structure Maj.: 263.44 - 263.79 Alteration Maj: 263.44 - 263.79 263.44 - 263.79 Mineralization Maj. : 263.44 - 263.79	Type/Core Angle MDF 45 Type/Style/Intensity CB PCH CL P MS Type/Style/%Mineral PY DIS 0.5	Comment Comment Over the whole unit										
263.79	269.83	Less crystals than typic the silicified (weak) mat	al QFP - both blue qtz and f rix. Fine grained chlorite thr	SPAR PORPHYRITIC TUFF. ine grained gray feldspars are scattered throughout oughout gives a pale green tinge to an otherwise gray with diss pyt. A few second generation qtz veins (1-vell developed fabric but not significant enough to	DC011372 DC011373	263.79 269.53	264.09 269.83	0.30 0.30		0.26 0.03		-	-	0.26 0.03
269.83	270.16	Increased foliation devi	T UNDIFFERENTIATED elopment with narrow bouding d fine grained needles of to Type/Core Angle	naged qtz veins. Single 10cm wide API looking zone urmaline. Comment	DC011374	269.83	270.16	0.33		0.54	i -	-	-	0.54
		269.83 - 270.16 Alteration Maj: 269.83 - 270.16	MDF 65 Type/Style/Intensity CL PCH WM	Comment										

Project Number: 05300 Project: GOUDREAU Hole Number PRS-05 Metal Au fin Grav Au AA Dup AA (ppm) To (ppm) From (ppm) (ppm) (ppm) To Length Sample # From Lithology (m) (m) SE PCH WM 269.83 - 270.16 SI P MS 269.83 - 270.16 Type/Style/%Mineral Comment Mineralization Maj. : PY DIS 1 269.83 - 270.16 2.43 2.43 DC011375 270.16 270.58 0.42 ISLAND ALTERATION PACKAGE. API 270.16 270.58 About 50% of the interval is beige colored with distinct diss pyrite. The remainder is strongly foliated but it is predominantly chloritic interlayered with sericite. The Major Vein is actually a second generation qv overprinting a qtz-tourmaline vein set. No VG in the latter. vg ca Type/Mineral Vein Mai.: 38 0 80.0 QCV PY 270.28 - 270.35 0.18 0.18 270.58 271.50 0.92 DC011376 SCHIST UNDIFFERENTIATED 274.11 T9ZS 270.58 1.74 1.74 Another weak example - the original QFP is identifiable and the feldspars are whitish at this location. Has 1.00 DC011377 271.50 272.50 a distinct fabric with a strong silicification overprint. Some of the high strain fabrics are associated with 0.05 0.90 0.05 273.40 272.50 DC011378 tourmaline microveinlets. Minor amounts of pyrite in restricted zones. 4.33 4.33 274.11 0.71 DC011379 273.40 Comment Type/Core Angle Structure Maj.: MDF 43 270.58 - 274.11 Comment Type/Style/Intensity Alteration Maj:

BASALTIC DYKE.

Distinct fine grained green unit with secondary carbonate porphyroblasts.

V3BD

291.00

Project Number: 05300 Project: GOUDREAU Hole Number PRS-05 Au fin Metal Au AA Dup AA Grav (ppm) (ppm) To (ppm) From Zone (ppm) (ppm) To Length Sample # From Lithology (m) (m) TL VN 270.58 - 274.11 SE PCH WM 270.58 - 274.11 CL P MS 270.58 - 274.11 SI P MS 270.58 - 274.11 Type/Style/%Mineral Comment Mineralization Maj. : PY TR 0.5 270.58 - 274.11 0.02 0.02 0.02 DC011381 274.11 274.41 0.30 SCHIST UNDIFFERENTIATED T9ZS 274.11 290.46 Although labeled the same as the previous unit there are subtle differences between these two layers. This layer has less pyrite than the previous one and it contains structurally interlayered silica and chlorite rich layers. The latter creates a gray-green banding in the higher strain portions of the unit. Banding is generally on a cm scale although there are some areas that have wider bands. In some cases there are wider units of silicified tuffaceous rock (generally crystal poor). It is difficult to pull out separate layers although it undoubtedly has some - there are areas of strong dark green chloritisation that contain magnetite porphyroblasts. The latter also has extensive secondary carbonate.

21-Oct-06 6:50:06 PM

290.46

DRILL HOLE REPORT

lole Number	DB4.A4									· · · · · · · · · · · · · · · · · · ·			Chris	Moreha P.GE
We Helen				Projec	X: 60	UDREAU						Project Number	: 05300	
Orlling	encore employed	Casing		Core					Location			Ofher		
wimuth:	180.00	Length:	33	Dictension	NO				Township:	FINAN		Logged by:	C. Moreton	•
ip:	-45.00	Pulled:		Storage:	(stare)	Gold Proje	sci		Cialm No.:	3817		Relog by:		
engin:	336.00	Capped:		Section:					NTS:	420/08		Contractor:	Orbit Drilling Inc	
terted:	18-Mar-08	Comented:		Hole Type	SEXP	•			Hale:	Surface		Company:	Mines Richmont	
ompleted:	30-Mar-06											Spotted by:	C. Moreton	
ogged:	94-Apr-06						Ca	ordinate				Surveyed:	yes	
iomment: {	Samples; DC007438-DC007854			Gemeoin		UTM		Mine		Variable	•	Surveyed by:	G.Lamothe(GPS)	
				Esst;	15768.3	East	69111	9.3 East :	15768.3	East:	D	Geophyeise:		
				North:		North	535234	1.5 North:	4910.6	North:	0	Geoph, Contract:		
				Elev.:	5391	Elev.;	5	191 Elev.:	5391	Elev.:	0	Left in hole:		
						Zone:	16					Making water:		
						NAD:	83					Multi shot surv.:		

Daviation Tests

Distance	Azimuth	Οlp	Туре	Good	Comment
0.00	180.00	-45.00	C	$\mathbf{\Sigma}$	
42.00	1B1.70	-45.40	F	₩	5898
68.00	182.40	-45.20	F		5694
96.00	180.20	-45.20	F	\mathbf{y}	5688
126.00	181,00	-45.30	F	Z	5680
158.00	182.10	-45.20	F	Ø	5708
188.00	181.20	-44.90	F	Z	5686
216.00	180.00	-44.70	F	$\mathbf{\tilde{Z}}$	5687
246.00	180.10	-44.30	F	⋈	5672
276.00	179.90	-44.10	F	\Delta	5664
305.00	180,80	43.60	F	æ i	5670
336.00	181.59	-43.30	F	E	5674

DRILL HOLE REPORT

Hole Number	PRS-04			Project	t: GOU	IDREAU						Project Number:	05300
Drilling		Casing		Core					Location	-		Other	
Azimuth:	180.00	Length:	33	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-45.00	Pulled:		Storage:	Island	Gold Project	:t		Claim No.:	3817		Relog by:	
Length:	336.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Started:	18-Mar-06	Cemented:		Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Completed:	30-Mar-06											Spotted by:	C. Moreton
Logged:	04-Apr-06						Coordi	nate				Surveyed:	yes
Comment:	Samples: DC007436-DC007654			Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
• • • • • • • • • • • • • • • • • • • •	•			East:	15768.3	East:	691119.3	East:	15768.3	East:	0	Geophysics:	
				North:	4910.6	North:	5352341.5	North:	4910.6	North:	0	Geoph. Contract:	
				Elev.:	5391	Elev.:	5391	Elev.:	5391	Elev.:	0	Left in hole:	
						Zone:	16					Making water:	
						NAD:	83					Multi shot surv.:	

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-45.00	С	✓	
42.00	181.70	-45.40	F	✓	5698
66.00	182.40	-45.20	F	✓	5694
96.00	180.20	-45.20	F	\checkmark	5688
126.00	181.00	-45.30	F	\checkmark	5680
156.00	182.10	-45.20	F	\checkmark	5708
186.00	181.20	-44.90	F		5686
216.00	180.00	-44.70	F	✓	5687
246.00	180.10	-44.30	F	✓	5672
276.00	179.90	-44.10	F	✓	5664
306.00	180.80	-43.60	F	✓	5670
336.00	181.50	-43.30	F	✓	5674

Project Number: 05300 **GOUDREAU** Proiect: Hole Number PRS-04 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) CSG Casing 33.00 0.00 As with hole PRS 03 the first unit appears to be a shear zone. Type/Mineral Vein Maj.: 34.50 - 0.00 0.08 33.50 0.50 0.08 DC007436 33.00 SCHIST UNDIFFERENTIATED 33.00 34.50 T9ZS Moderately well foliated with a variable fabric orientation (same as hole 03). Distinct blue qtz crystals, 1-0.01 DC007437 33.50 34.00 0.50 0.01 3mm in diameter, some with pressure fringes. Matrix is green colored overall but there is a gray DC007438 0.10 0.10 34.00 34.50 0.50 feldspathic component visible under the hand lens. In the sheared sections the feldspars in the matrix have been converted to sericite and the latter is accompanied by interstitial chlorite. Minor pyrite crystals. Some millimeter carbonate veinlets parallel to the main fabric. Comment Structure Maj.: Type/Core Angle MDF 20 Very variable 33.00 - 34.50 Comment Type/Style/Intensity Alteration Maj: TL SP Not prominent. 33.00 - 34.50 33.00 - 34.50 SE INT + CL INT + 33.00 - 34.50 33.00 - 34.50 SI MO WM

GOUDREAU

Project:

Au AA Dup AA Grav Metal Au fin To From (ppm) Zone (ppm) (ppm) (ppm) (ppm) Sample # From To Length Lithology (m) (m) 0.25 0.25 DC007439 34.50 35.00 0.50 ISLAND ALTERATION PACKAGE. 34.50 37.05 API Not a bleached, banded API but it is a zone of strong alteration. Has pinkish hues due to presence of fine-0.15 DC007441 35.50 0.50 0.15 35.00 grained sericite or Kspar. Stringers and disseminations of pyrite. Greater abundance of fine-grained DC007442 35.50 36.00 0.50 0.13 0.13 tourmaline, generally as veinlets. Dark green fine-grained chlorite associated with the pyrite. Pods and veins of gray colored early stage qtz contorted with the earlier foliation. Multiple foliation orientations. 1.46 1.46 DC007443 36.00 36.55 0.55 0.26 0.26 DC007444 36.55 37.05 0.50 Structure Maj.: Type/Core Angle Comment Extremely variable 34.50 - 37.05 MDF 76 Alteration Maj: Type/Style/Intensity Comment 34.50 - 37.05 TL VN 34.50 - 37.05 CL SP + Generally with the pyrite SE B WM Locally intense 34.50 - 37.05 SI B MS Locally pervasive. 34.50 - 37.05 Type/Style/%Mineral Comment Mineralization Maj. : Some as diss in veinlets 34.50 - 37.05 PY DIS 1 0.50 0.00 DC007445 37.05 37.55 0.00 SCHIST UNDIFFERENTIATED T9ZS 37.05 39.00 Opposite shoulder of the API. Similar to 33m unit. In both the API and the T9ZS units the primary qtz 37.55 38.05 0.50 0.02 0.01 0.02 DC007446 crystals are visible but any other rock forming crystals are generally absent. 0.02 DC007447 38.05 38.55 0.50 0.02 0.15 DC007448 38.55 39.00 0.45 0.15 Type/Core Angle Comment Structure Maj.: MDF 45 37.05 - 39.00 Extremely variable Type/Style/Intensity Comment Alteration Maj: CB INT 37.05 - 39.00 Domainal with the silicification CL B WM 37.05 - 39.00 Locally pervasive. SI B 37.05 - 39.00

Project Number: 05300

Hole Number PRS-04

Hole Number	PRS-04	Project: GOUDREAU						Pi	roject Num	nber: 0 !	5300	
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
39.00	55.78	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. As with hole PRS 03 there is an abundance of blue qtz crystals relative to feldspars. A weak to locally moderate fabric is present along with localized alteration (sericitic and silicification) - the latter are narrow and do not carry significant mineralization. Some patchy to pervasive silicification. Microveinlets of tourmaline associated with the stronger alteration zones. 48.72 to 48.79m: Narrow MAGNETITE chlorite carbonate vein(?). At about 49.75m the silicification becomes pervasive and dominant. Original lithology still visible though. Reflects proximity to the granodiorite? Sampled to check for mineralization.	DC007449 DC007450 DC007451	39.00 54.28 55.28	39.30 55.28 55.78	1.00		0.05 0.00 0.02		-	- - -	0.05 0.00 0.02
55.78	57.53	I1DS GRANODIORITE SCHIST Upper contact is sharp but marked by a 1cm qtz vein parallel to the main fabric. This portion of granodiorite is strongly sheared. Generally a green color with packed relict qtz crystals (not necessarily blue) with selvages of sericite. Veinlets of chlorite and tourmaline but no obvious gray colored qtz parallel to the fabric. Scattered pyrite crystals, some euhedral. Minor calcite or carbonate in later cross-cutting structures. Suggestion of earlier carbonate parallel to the main fabric. Fabric in shear oriented: 42 degrees to core axis.	DC007452 DC007453 DC007454	55.78 56.28 56.78	56.28 56.78 57.53	0.50		0.00 0.05 0.01	-			0.00 0.05 0.01

that this unit is a chloritised felsic.

Hole Number PRS-04

Project:

GOUDREAU

Project Number: 05300

From	То								_		Dup AA	Grav	Metal	Au fin
(m)	(m)		Litholog	у	Sample #	From	То	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
57.53	65.68	I1DS GRA	NODIORITE SCHIST		DC007455	57.53	58.03	0.50		1.80	-	-	-	1.80
31.55		Actually a mixed unit	consisting of sheared, altered	granodiorite with 5 distinct qtz-carbonate-tourmaline	DC007456	58.03	58.44	0.41		5.60	5.90	-	-	5.75
		veins (up to 73cm wid	de). Beige colored bleaching a	ssociated with some of the veins (comes close to the , the remainder of the protolith being destroyed.	DC007457	58.44	59.04	0.60		2.37	-	-	-	2.37
		Tourmaline compone	ent quite high in the veins (abo	ut 10% on average). Veins amount to about 30% of	DC007458	59.04	59.80	0.76		0.27	-	-	-	0.27
		the interval.			DC007459	59.80	60.50	0.70		1.47	-	-	-	1.47
			itic cubes in both the veins an	d the country rock Indicative of the NORTH SHEAR	DC007461	60.50	61.00	0.50		0.02	-	-	-	0.02
		ZONE.			DC007462	61.00	61.50	0.50		0.00	-	-	-	0.00
					DC007463	61.50	62.00	0.50		0.01	-	-	-	0.01
		Structure Maj.:	Type/Core Angle	Comment	DC007464	62.00	62.50	0.50		4.29	-	-	-	4.29
		57.53 - 65.68	MDF 42	Locally steeper (up to 65 degrees)	DC007465	62.50	63.00	0.50		0.00	-	-	-	0.00
		Alteration Maj:	Type/Style/Intensity	Comment	DC007466	63.00	63.50	0.50		0.02	0.02	-	-	0.02
		57.53 - 65.68	TL VN WM		DC007467	63.50	64.07	0.57		0.05	-	-	-	0.05
		57.53 - 65.68	CL INT		DC007468	64.07	64.57	0.50		0.08	-	-	-	0.08
		57.53 - 65.68	SE INT WM		DC007469	64.57	65.07	0.50		0.03	-	-	-	0.03
		57.53 - 65.68	SI P MS		DC007470	65.07	65.68	0.61		1.24	-	-	-	1.24
				0.04.99	DC007471	65.68	66.18	3 0.50		0.01	_	_	_	0.01
65.68	66.79		DIFFERENTIATED MAFFIC V		DC007471	03.00	00.10	0.50		0.01	_	_		0.01
		Dark green colored f	ine grained rock with syn- and	post-fabric tourmaline-carbonate veinlets. Some										

Upper and lower contacts are sharp and it may represent a wall rock inclusion.

suggestion of qtz crystals but not abundant. Post-tectonic euhedral pyrite. Given qtz crystals it is likely

Vein at the contact. No VG.

Hole Number PRS-04

Project:

GOUDREAU

Project Number: 05300

rom (m)	To	Lithology	Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metai (ppm)	Au fin (ppm)
(m)	(m) 96.73	IID GRANODIORITE	DC007472	80.20	80.50	0.30		0.01	-	-	-	0.01
66.79	90.73	Weekly to locally moderately altered and deformed. Alteration is weakly pervasive with sericite and minor	DC007473	80.50	81.50	1.00		0.02	-	-	-	0.02
		chlorite so that the unit varies from blue-gray to green in color. The deformation tends to be concentrated into narrow shear zones (5-10cm wide). Tourmaline veinlets associated with the stronger alteration and/or	DC007474	81.50	82.50	1.00		0.01	-	-	-	0.01
		deformation zones.	DC007475	82.50	83.50	1.00		0.04	-	-	-	0.04
		A bleached section is present in the middle of the granodiorite (sampled). Abundant 1-5cm qtz and	DC007476	83.50	84.50	1.00		0.07	0.09	-	-	80.0
		carbonate veins/gashes of various styles and cross-cutting relationships. None carry VG.	DC007477	84.50	85.50	1.00		0.02	-	-	-	0.02
			DC007478	85.50	86.50	1.00		0.07	-	-	-	0.07
		Fabric is about 65 degrees to core axis, generally consistent.	DC007479	86.50	87.50	1.00		0.31	-	-	-	0.31
			DC007481	87.50	88.50	1.00		0.33	-	-	-	0.33
			DC007482	88.50	89.50	1.00		1.78	-	-	-	1.78
			DC007483	89.50	90.50	1.00		0.42	-	-	-	0.42
			DC007484	90.50	91.50	1.00		0.03	-	-	-	0.03
			DC007485	91.50	92.50	1.00		0.08	-	-	-	0.08
			DC007486	92.50	93.50	1.00		0.03	0.02	-	-	0.02
96.73	98.70	V3BD BASALTIC DYKE. Darker green, uniform fine grain size, orange carbonate specks, possible amphiboles, late calcite (?) porphyroblasts. Finer grained margins (weakly) suggest dyke. Fabric indicates pre-main deformation.	DC007487	98.40	98.70	0.30		0.01	-	-	-	0.01
98.70	98.92	QCTV QUARTZ CARBONATE TOURMALINE.	DC007488	98.70	99.00	0.30		2.72	-	-	-	2.72

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 0.15 99.00 99.30 0.30 0.15 DC007489 **GRANODIORITE SCHIST** 98.92 104.92 11DS Same as previous granodiorite schist. Not an intense schistose fabric but it is stronger than the adjacent DC007490 99.93 100.23 0.30 0.04 0.04 units. Bleached in some sections (sampled at 1m intervals) and these sections have veinlets of 0.12 DC007491 100.23 101.23 1.00 0.12 tourmaline (each about 1-3mm). Chloritisation locally developed as veinlets in the matrix. Secondary qtzcarbonate gashes in some parts of the bleached zones - reactivated movement zones. 0.63 DC007492 101.23 102.23 1.00 0.63 0.21 DC007493 102.23 103.23 1.00 0.21 DC007494 103.23 104.23 1.00 0.03 0.03 0.69 0.00 0.00 DC007495 104.23 104.92 104.92 0.30 0.00 0.00 DC007496 105.22 **GRANODIORITE** 129.73 I1D 104.92 More massive than the previous unit although it is still altered - pervasive silicification and chloritised 0.09 DC007497 129.43 129.73 0.30 0.09 mafic minerals (no primary mafics left). Has a blue gray color with a few localized shear zones that have a stronger fabric and local tourmaline. The latter are randomly distributed throughout this unit. Tends to have a greater abundance of cross-cutting qtz and/or qtz-carb veins. Some of these later veins may or may not have tourmaline too. 120.62m to 127.87m: Granodiorite but different facies. Tends to be greener colored with an abundance of white finer-grained feldspar crystals that are 'packed' in the matrix. Appears to intrude the other granodioritic phase. Does not have a distinct fabric although there are second generation qtz veins cross cutting a crystal layering. A few solid tourmaline veins with potassic alteration selvages within this unit. It is possible that this granodiorite came in later.

Project:

GOUDREAU

Project Number: 05300

(ppm)

Metal

(ppm)

Au fin (ppm)

0.02

0.77

0.09

Au AA Dup AA Grav

(ppm)

Zone (ppm)

0.02

0.09

To Length

0.75

0.63

0.75

Sample #

DC007498

DC007499

DC007501

From

130.48

129.73 130.48

131.11 131.86

131.11

From (m)	To (m)		Litholog	ıy			
129.73	131.86	QCTV QUAR	TZ CARBONATE TOURMA	LINE.			
		the qtz and tourmaline -	al is vein or vein-related ma · strong tourmaline in the ve ive salmon pink alteration e	ins (up to 50%). Some spo	oradic cubic p	antly less byrite, ge	s than enerally
		Appears to be a later ve	ein system. No VG.				
		Structure Maj.:	Type/Core Angle	Comment			
		129.73 - 131.86	WDF 20	Appears to be a second a weak earlier fabric	generation s	tructure	on top of
		Alteration Maj:	Type/Style/Intensity	Comment			
		129.73 - 131.86	CL INT WM				
		129.73 - 131.86	TL VN MS				
		129.73 - 131.86	SE P +				
		129.73 - 131.86	SI P MS				
		Mineralization Maj. :	Type/Style/%Mineral	Comment			
		129.73 - 131.86	PY CG 0.5	Not very abundant			
		Vein Maj.:	Type/Mineral		%	ca	vg
		129.73 - 131.11	QCT PY		40.0	20	0

Project: GOUDREAU

Project Number: 05300

From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
131.86	154.07	IIDS GRANODIORITE SCHIST	DC007502	131.86	132.1	6 0.30		0.17	-	-	-	0.17
101.00	10	About 80% of this interval is a strongly foliated granodiorite; remainder is more massive varieties of the	DC007503	133.49	134.4	9 1.00		0.28	-	-	-	0.28
		granodiorite. Strong mica-rich fabric tends to anastomose around the qtz phenoclasts and the relict feldspar crystals. Has a distinctive pinkish to brick red hue throughout with the underlying green to gray	DC007504	134.49	135.4	9 1.00		6.31	-	-	-	6.31
		coloration (chlorite-sericite effect) showing through locally. Some of the heterogeneous deformation	DC007505	135.49	136.4	9 1.00		0.06	-	-	-	0.06
		zones are accompanied by localized early gray qtz veins and pervasive silicification zones.	DC007506	136.49	137.4	9 1.00		0.06	-	-	-	0.06
		Later cross-cutting qtz carb tourmaline veins (2-5cm) throughout this section. Earlier tourmaline mm	DC007507	137.49	138.4	9 1.00		0.05	-	-	-	0.05
		veinlets parallel to main fabric are rarer. Fine grained pyrite is in trace amounts and is best in the silicified zones.	DC007508	138.49	139.4	9 1.00		0.06	-	-	-	0.06
			DC007509	139.49	140.4	9 1.00		0.29	-	-	-	0.29
		This movement zone has been sampled at 1m intervals.	DC007510	140.49	141.4	9 1.00		0.03	-	-	-	0.03
			DC007511	141.49	142.4	9 1.00		0.75	0.71	-	-	0.73
			DC007512	142.49	143.4	9 1.00		0.41	-	-	-	0.41
			DC007513	143.49	144.4	9 1.00		0.00	-	-	-	0.00
			DC007514	144.49	145.4	9 1.00		0.02	-	-	-	0.02
			DC007515	145.49	146.4	9 1.00		0.01	-	-	-	0.01
			DC007516	146.49	147.4	9 1.00		0.32	-	-	-	0.32
			DC007517	147.49	148.4	9 1.00		1.15	-	-	-	1.15
			DC007518	148.49	149.4	9 1.00		0.01	-	-	-	0.01
			DC007519	149.49	150.4	9 1.00		0.01	-	-	-	0.01
			DC007521	150.49	151.4	9 1.00		0.02	0.02	-	-	0.02
			DC007522	151. 4 9	152.4	9 1.00		0.05	-	-	-	0.05
			DC007523	152.49	153.4	9 1.00		0.11	-	-	-	0.11
			DC007524	153.49	154.0	7 0.58		0.01	-	-	-	0.01

Project: GOUDREAU

Project Number: 05300

r om (m)	To (m)	Lithology	Sample #	From	To	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	АИ ТІП (ррт)
154.07	163.07	T9ZS SCHIST UNDIFFERENTIATED	DC007525	154.07	155.07	1.00		0.05	-	-	-	0.05
		Strong fabric in this unit, almost mylonitic in places. Upper portion (down to 158.33m) appears to be a	DC007526	155.07	156.07	1.00		0.04	-	-	-	0.04
		strongly deformed silicified zone adjacent to the granodiorite (original contact aureole?). At 158.33m (gradational over a few cms) the unit color changes to greens and interspersed grays and this may reflect	DC007527	156.07	157.07	1.00		0.07	-	-	-	0.07
		the original country rock adjacent to the intrusion.	DC007528	157.07	158.07	1.00		0.09	-	-	-	0.09
		Narrow zones (10-20cm) of beige alteration are developed in some places within the greener unit -	DC007529	158.07	159.07	1.00		0.11	-	-	-	0.11
		approaching API but only has weak pyrite and little banding. Scattered bluish qtz crystals in both the	DC007530	159.07	160.07	1.00		0.03	-	-	-	0.03
		aureole rock and the green colored unit. Narrow (1cm) early qtz veins and slightly more abundant younger qtz-carb-tourmaline veins/gashes. Tourmaline also present as wisps in the foliated rock.	DC007531	160.07	161.07	1.00		0.10	0.10	-	-	0.10
			DC007532	161.07	162.07	1.00		0.10	-	-	-	0.10
		162.34 to 162.84m: MAGNETITE rich layer (about 80% of interval). Mixed with chlorite carbonate, minor pyrite - strong banding.	DC007533	162.07	163.07	1.00		0.07	-	-	-	0.07

Structure Maj.:	Type/Core Angle	Comment
154.07 - 163.07	SDF 54	Relatively constant
Alteration Maj:	Type/Style/Intensity	Comment
154.07 - 158.33	TL SP	
154.07 - 158.33	CL INT	
154.07 - 158.33	SE INT WM	
154.07 - 158.33	SI P MS	
158.33 - 163.07	TL VN	
158.33 - 163.07	CB B +	
158.33 - 163.07	SI B MS	
158.33 - 163.07	CL B MS	
Mineralization Maj. :	Type/Style/%Mineral	Comment
154.07 - 163.07	MG TR 0.5	Minor scattered clusters
154.07 - 163.07	PY TR 0.5	

ole Number	PRS-04			Proj	ject: GC	UDREA	NU						Pr	roject Num	nber: 0	5300	
From (m)	To (m)		Litholog	у				Sample ‡	From	To L	ength	Zone		Dup AA (ppm)	Grav (ppm)	Metai (ppm)	Au fin (ppm)
				_				DC007534	163.07	163.91	0.84		0.85	-	-	_	0.85
163.07	163.91		ALTERATION PACKAGE rongly banded with diss pyr scattered chlorite.	:. ite, late qtz-carb veinlets (u	ip to 1cm w	de).		2000.00									
		Structure Maj.:	Type/Core Angle	Comment													
		163.91 - 163.91	SDF 58														
		Alteration Maj:	Type/Style/Intensity	Comment													
		163.07 - 163.91	CB VN MS														
		163.07 - 163.91	SE B MS														
		163.07 - 163.91	SI B MS														
		Mineralization Maj. : 163.07 - 163.91	Type/Style/%Mineral PY VN 3	Comment Diss within the veinlets													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		163.30 - 163.76	QCV py		40.0	58	0										
													0.07				0.07
163.91	174.06			SPAR PORPHYRITIC TUF				DC00753			1.00		0.07 0.02	-	-	-	0.07 0.02
		dimor aroined then th	io atz crustal so they are di	rs are scattered. In addition fficult to spot. Green colore	ed matrix wi	n scaue	erea	DC00753 DC00753		165.21 174.06	0.30 0.30		0.02		-	-	0.02
		munita apparativ or voint	ate. Alteration as weak to m	noderate silicification with lo some of the chlorite has n	ocal diz-car) veime	is. Some	DC00753	1 113.10	174.00	0.50		0.04				0.0
		local pyrite crystals. Bou	induriae to those chlorite ri	there are parts that are rich ch zones are gradational. T z-carb veinlets with minor a crystals are still visible.	ne tabno is	Sun reia	ilively										
		No sampling of this unit	-														
		171.73m to 173.03m: B	ROKEN CORE (70% of inte	erval).													

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) 0.22 0.22 174.06 174.83 0.77 DC007538 SCHIST UNDIFFERENTIATED T9ZS 174.83 174.06 Different from the other schist's - has distinct dark green chlorite accumulations on the 'walls' of the upper and lower contacts. Central part of the unit is purplish colored silicification with finer-grained pyrite disseminations. The chlorite rich layers tend to have coarser-grained, locally skeletal, pyrite. A banding is weakly developed. Note that the layering is shallower in the zone (typical?) - around 30 degrees. Comment Type/Core Angle Structure Maj.: Some veining parallel to fabric 174.06 - 174.83 WDF 30 Comment Type/Style/Intensity Alteration Maj: SE INT 174.06 - 174.83 Central part of unit SI P MS 174.06 - 174.83 Outer parts of unit CL P MS 174.06 - 174.83 Comment Type/Style/%Mineral Mineralization Maj. : Focussed in local zones PY DIS 2 174.06 - 174.83 0.02 174.83 175.13 0.30 0.02 DC007539 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 174.83 178.44 0.03 0.03 Same as unit at 163.91m including the presence of some strongly chloritic zones (with diss pyrite). 0.30 0.03 178.14 178.44 DC007541

Project:

GOUDREAU

From (m)	To (m)		Litholog	y	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
178.44	184.59	API ISLANI	D ALTERATION PACKAGE	<u>.</u>	DC007542	178.44	178.94	0.50		0.10	-	-	-	0.10
170.44	104.00			weak fabric and scattered finer-grained pyrite in a	DC007543	178.94	179.44	0.50		0.04	-	-	-	0.04
		predominantly siliceous	matrix.		DC007544	179.44	179.81	0.37		0.03	-	-	-	0.03
		The central core of the	zone (from about 179.81m t	o 182m) is predominantly chlontic (green) rather than	DC007545	179.81	180.81	1.00		0.02	-	-	-	0.02
		sericitic-siliceous (gray)	. Calcite (acid test) is also a	bundant in the central core along with minor diss teration style in parts of the T9ZS above although	DC007546	180.81	181.41	0.60		0.01	-	-	-	0.01
		there may be less calcit	te in the T9ZS.	or and or any	DC007547	181.41	182.00	0.59		0.01	-	-	-	0.01
		Note that the siliceous A	API is shallower dipping that	n the chloritic type - maybe the strain has been taken	DC007548	182.00	182.50	0.50		0.93	-	-	-	0.93
		up by the chloritic section	ons and the siliceous section	ns act as lithons?.	DC007549	182.50	183.00	0.50		7.23	-	-	-	7.23
					DC007550	183.00	183.50	0.50		2.28	-	-	-	2.28
		Structure Maj.:	Type/Core Angle	Comment	DC007551	183.50	184.00	0.50		0.31	0.25	-	-	0.28
		178.44 - 179.81	WDF 60		DC007552	184.00	184.59	0.59		0.08	-	-	-	0.08
		179.81 - 182.00	MDF 32											
		182.00 - 184.59	WDF 30	Locally steeper										
		Alteration Maj:	Type/Style/Intensity	Comment										
		178.44 - 179.81	SE INT WM											
		178.44 - 179.81	SI P MS											
		179.81 - 182.00	CB P WM											
		179.81 - 182.00	CL P MS											
		182.00 - 184.59	SE INT WM											
		182.00 - 184.59	SI P MS	0										
		Mineralization Maj. :	Type/Style/%Mineral PY VN 2	Comment										
		178.44 - 184.59 178.44 - 184.59	PY DIS 1											

193.28m: approximately 30cm broken core in the middle of the intrusion.

Hole Number PRS-04

Project:

GOUDREAU

rom (m)	To (m)		Litholog	,	Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
								4.00		0.00				0.00
184.59	192.07		UNDIFFERENTIATED		DC007553	184.59	185.59	1.00		0.00	-	-	-	0.04
		Really an extension to the	e API except that it is not a	s well banded, bleached or pyritic. Still has a gray	DC007554	185.59	186.59	1.00		0.04	-	-	-	0.04
		color, weak banding, relic	ct qız crystais and sporadic ı pervasive silicification and	patches of dark green chlorite with diss cubes of interstitial chloritisation.	DC007555	186.59	187.59	1.00		0.01	-	-	-	0.03
					DC007556	187.59	188.59	1.00		0.03	-	-	-	0.03
		At 186.33m: feldspars dis	sappear over a few cms dis	stance. Protolith is now a qtz-porphyry.	DC007557	188.59	189.59	1.00		80.0	-	-	-	
					DC007558	189.59	190.59	1.00		0.04	-	-	-	0.04
		Structure Maj.:	Type/Core Angle	Comment	DC007559	190.59	191.41	0.82		0.00	-	-	-	0.00
		184.59 - 192.07	WDF 40		DC007561	191.41	192.07	0.66		0.10	0.10	-	-	0.10
		Alteration Maj:	Type/Style/Intensity	Comment										
		184.59 - 192.07	CL INT WM											
		184.59 - 192.07	CL PCH											
		184.59 - 192.07	SI P WM											
		Mineralization Maj.:	Type/Style/%Mineral	Comment										
		184.59 - 192.07	PY DIS 1	Much less than the previous API										
					D.0007500	400.07	402.07	1.00		0.00	_	_	_	0.00
192.07	195.35			TRUSIVE QUARTZ-FELDSPAR PORPHYRITIC.	DC007562	192.07	193.07			0.00		_	_	0.00
		Appears to be less defor	rmed than the other units a	though there is still a weak fabric and a degree of y reflects proximity to the T9ZS alteration zone. Upper	DC007563	193.07	194.07	1.00		_		-	_	0.00
		chloritisation in the uppe and lower contacts are are degraded and look g	fine grained over about 10	cms. Both contacts are sharp. Some of the feldspars	DC007564	194.07	195.35	1.28		0.00	-	-	-	0.00

203.29 to 203.41m: Qtz-carb-tourmaline vein with local wall rock chloritisation. Minor pyrite in vein.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Au fin Au AA Dup AA Grav Metal To (ppm) From (ppm) (ppm) (ppm) (ppm) Sample # To Length Zone From Lithology (m) (m) 0.04 196.35 1.00 0.04 DC007565 195.35 SCHIST UNDIFFERENTIATED T9ZS 195.35 199.35 0.02 0.02 Appears to be a continuation of the previous T9ZS except that it may have a lower degree of alteration 196.35 197.35 1.00 DC007566 and deformation. Randomly distributed veinlets of diss py accompanied by dark green chlorite. Matrix 0.01 1.00 0.01 198.35 DC007567 197.35 also has a green coloration due to incipient chloritisation. Qtz crystals and local feldspar crystal s are 0.05 sometimes visible beneath the weak alteration. Upper contact is strongly chloritic over a few cms - may 0.05 1.00 198.35 199.35 DC007568 reflect channeling of the fluids along the contact? Type/Core Angle Comment Structure Maj.: **WDF 48** 195.35 - 199.35 Type/Style/Intensity Comment Alteration Maj: Gives green color CL INT WM 195.35 - 199.35 195.35 - 199.35 SE INT WM SI P MS 195.35 - 199.35 Type/Style/%Mineral Comment Mineralization Maj. : PY TR 0.5 Diss and veinlets 195.35 - 199.35 0.00 199.35 199.65 0.30 0.00 DC007569 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 204.04 T2QFP 199.35 Gradual transition from previous unit. Still a green to dark gray color but weaker banding and less alteration. A few discrete zones of strong chloritic alteration generally accompanied by trace amounts of diss pyrite.

GOUDREAU Project: Hole Number PRS-04 Metal Au fin Grav Au AA Dup AA From To (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) 0.09 0.09 212.22 212.52 0.30 INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. DC007570 V2QFP 212.52 204.04 More massive with only minor localized shears (generally identified as a more penetrative fabric with green chlorite enrichment). Overall the unit is gray to green in color with minor chlorite and sericite alteration. Matrix tends to be coarser-grained than previous unit. Pseudomorphed mafic minerals present - original shape of biotite (?) still visible, now replaced by chlorite. A few specks of pyrite. Feldspars are whitish, euhedral and relatively fracture free. Tend to be larger than the qtz crystals. Variation in feldspar content and size creates different lithotypes with gradational contacts. Appears to be an intrusive/sub-volcanic unit that has been shielded from the deformation but not necessarily the alteration. Lower contact appears to be finer grained towards the bottom of the hole and the lower contact is relatively sharp (flow top?). FAULT BRECCIA: Cemented breccia 209.25m to 209.47m. Unit could be a variety of granodiorite. 0.10 0.09 DC007571 212.52 212.84 0.32 SCHIST UNDIFFERENTIATED 212.84 T9ZS 212.52 Shoulder unit to the API. Weak fabric with minor trace pyrite disseminations. Nothing special to sample. 0.37 0.37 DC007572 212.84 213.51 0.67 ISLAND ALTERATION PACKAGE. 213.51 API 212.84 Beige to gray silicification with a core of dark green chlorite and stringers /disseminations of pyrite. Fabric not well developed. Some late carbonate-qtz fractures and gashes. Comment Structure Maj.: Type/Core Angle 212.84 - 213.51 WDF 50

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Au fin Au AA Dup AA Grav Metal (ppm) (ppm) To From (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) Type/Style/Intensity Comment Alteration Maj: 212.84 - 213.51 SE INT SI P MS 212.84 - 213.51 CL PCH MS 212.84 - 213.51 Type/Style/%Mineral Comment Mineralization Maj. : MG DIS 0.5 212.84 - 213.51 PY DIS 5 Some as stringers 212.84 - 213.51 vg Type/Mineral Vein Maj.: 50 0 20.0 C/L py 212.84 - 213.51 0.04 0.04 213.51 213.81 0.30 DC007573 SCHIST UNDIFFERENTIATED T9ZS 213.51 215.57 0.01 0.01 Shoulder unit to the API. Similar to other T9ZS in that there is just a moderate fabric but no mineralization 213.81 214.81 1.00 DC007574 0.00 0.00 and only weak alteration. Not sampled. 0.76 DC007575 214.81 215.57 0.00 0.00 215.87 0.30 215.57 DC007576 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 215.57 222.00 0.00 0.00 Green to gray, fine grained bluish qtz and broken feldspar fragments. Some fabric development but weak 0.30 DC007577 221.20 221.50 0.01 and sporadic. Late carbonate veinlets and gash fillings. 0.01 0.30 221.80 221.50 DC007578 Narrow vein in narrow shear (see vein details) - no mineralization but sampled. 0.01 221.80 222.10 0.01 0.30 DC007579

tourmaline vein (not sampled).

There are numerous examples of late stage carbonate veins but no early qtz veins.

224.72m to 224.83m: strongly chloritic zone with diss pyrite, interstitial calcite and a 1cm qtz-carb-

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Metal Au fin Au AA Dup AA Grav To (ppm) From (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) ca vg Type/Mineral Vein Maj.: 0 5.0 221.50 - 221.70 QCT INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. V2QFP 222.00 223.43 Same as unit at 204.04m. Appears to have two types of feldspar - one is cream to white in color while the other has an orange coloration. Upper contact is broken core (fault zone) while the lower contact appears to be gradational with the country rock. Could be a granodiorite. 0.02 0.02 0.30 0.03 227.78 228.08 DC007581 INTERMEDIATE LAPILLI FELDSPAR QUARTZ PORPHYRITIC TUFF. T2LQFP 223.43 228.08 Still gray to green except that the unit now contains flattened lapilli, some of which are orange in color.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Au fin Metal Au AA Dup AA Grav To (ppm) (ppm) From (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) 0.00 0.00 0.33 DC007582 228.08 228.41 SCHIST UNDIFFERENTIATED 231.62 T9ZS 228.08 0.03 1.00 0.03 Not a good example but does have a stronger fabric and increased alteration/veining when compared to DC007583 228.41 229.41 0.01 0.01 0.80 the last unit. 229.41 230.21 DC007584 0.01 0.01 0.44 230.21 230.65 DC007585 0.02 0.02 230.65 231.62 0.97 Comment DC007586 Type/Core Angle Structure Maj.: Locally variable MDF 52 228.08 - 231.62 Comment Type/Style/Intensity Alteration Maj: Fine grained and local TC SP WM 228.08 - 231.62 CL PCH MS 228.08 - 231.62 SE INT WM 228.08 - 231.62 SI P MS 228.08 - 231.62 Type/Style/%Mineral Comment Mineralization Maj. : In the two main veins but also in the rest of theunit. PY DIS 4 228.08 - 231.62 Type/Mineral Vein Maj.: 74 0 5.0 228.08 - 228.41 QCT PY 5.0 56 QCs PY 230.21 - 231.12 0.01 0.01 231.62 231.92 0.30 DC007587 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 237.44 T2QFP 231.62 Typical green color with scattered qtz crystals and finer-grained gray colored feldspar clasts (appear fractured). Some of the qtz crystals are 1cm in diameter and they have a distinct blue color. Other qtz crystals (most abundant) are gray colored and finer grained. Weak fabric to this unit.

237.44

237.98

V3BD

BASALTIC DYKE.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Metal Au fin Au AA Dup AA Grav From To (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) Uniform fine grain size with a weak fabric. No crystals. Both contacts are sharp although the upper one contains a narrow (5mm) vein of qtz-carb. Has a pale green to yellowish color. 0.00 0.00 0.30 DC007588 246.80 247.10 247.10 FZ Fault 237.98 An unoriented mass of qtz veins, locally containing carbonate, and fragments of wall rock The latter contain a fabric that predates the development of this structure - that is, this fault is later than the main mineralizing event. There isn't much mineralization - only one small section (5cm) contains diss pyrite. Dark green fine grained chlorite appears to be dominant in the matrix around the clasts and the disrupted vein systems. Orientation of crystal growth in the qtz-carb veins coincides with the extension direction associated with a younger cleavage - reorientation of this structure in the hole suggests either a flat lying late fault or a sub-vertical east west oriented fault. 0.04 0.04 1.00 247.10 248.10 DC007589 SCHIST UNDIFFERENTIATED 249.87 T9ZS 247.10 0.03 0.03 Not a very good example - the moderate foliation becomes weaker with depth through this unit. Lower 1.00 248.10 249.10 DC007590 0.01 contact is sharp against the intrusion looking QFP. 0.77 0.01 0.01 249.10 249.87 DC007591 Type/Core Angle Comment Structure Maj.: WDF 55 247.10 - 249.87 Type/Style/Intensity Comment Alteration Maj: SE INT Weak 247.10 - 249.87

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) CL INT 247.10 - 249.87 Becomes pervasive with depth 247.10 - 249.87 SIB+ Mineralization Maj. : Type/Style/%Mineral Comment Localized around alteration zones 247.10 - 249.87 PY DIS 0.5 0.01 0.30 0.01 250.17 DC007592 249.87 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 258.16 249.87 0.14 0.14 More variable than previous units due to grain size variation and distribution. Some sections look like the DC007593 257.86 258.16 0.30 regular green colored QFP with gray feldspar crystals while other sections have beige to orange colored feldspars. No internal contacts are identifiable so grouped as one unit. LATE QTZ VEIN: 254.11 to 25.12m. Has mixed qtz-carbonate mineralogy, post-dates main fabric, no mineralization. Wall rock alteration is dark green chlorite. With minor pyrite cubes, diss magnetite and carbonate alteration. 0.71 258.16 259.00 0.84 0.71 DC007594 SCHIST UNDIFFERENTIATED 259.00 T9ZS 258.16 Moderately foliated with one qtz-carb-tourmaline vein and associated alteration in the wall rock. Vein is parallel to the main foliation but there are secondary structural overprints that complicate the picture. Pyritic alteration is weak but best in the immediate vicinity of the vein. Pink potassic alteration tends to be the dominant alteration around the veins. Comment Structure Maj.: Type/Core Angle MDF 62 258.16 - 259.48 Type/Style/Intensity Comment Alteration Maj: 258.16 - 259.48 CL INT +

Project Number: 05300 GOUDREAU Hole Number PRS-04 Project: Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 258.16 - 259.48 TL VN 258.16 - 259.48 SE PCH + 258.16 - 259.48 SIP+ Mineralization Maj. : Type/Style/%Mineral Comment 258.16 - 259.48 PY DIS 1 Generally around the veins Vein Maj.: Type/Mineral ca vg QCT PY 10.0 62 0 258.16 - 259.00 0.34 0.30 0.34 DC007595 259.00 259.30 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 259.00 260.62 T2QFP 0.04 Similar to the unit at 249.87 except that it is generally the standard green colored QFP with gray feldspars. 0.30 0.04 260.32 260.62 DC007596 0.02 DC007597 260.62 260.92 0.30 0.02 **SCHIST UNDIFFERENTIATED** 260.62 260.92 T9ZS Similar to the unit at 258.16m except that it may have a moderately higher proportion of carbonate. Structure Maj.: Type/Core Angle Comment 260.62 - 260.92 WDF 62 Alteration Maj: Type/Style/Intensity Comment TL VN WM 260.62 - 260.92 CL INT WM 260.62 - 260.92 SE PCH WM 260.62 - 260.92 260.62 - 260.92 SI P MS Mineralization Maj. : Type/Style/%Mineral Comment PY DIS 1 Probably lower 260.62 - 260.92

Sample #

DC007598

From

260.92 261.22

GOUDREAU Project: Hole Number PRS-04 From To Lithology (m) (m) Type/Mineral vg Vein Maj.: 60 0 35.0 260.62 - 260.74 QCT py INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. **V2QFP** 260.92 264.23 Has distinct coarse grained feldspars that are whitish to orange in color. Has an intrusive look with plenty of late qtz-carbonate gashes. DIABASE DYKE. 13DD 264.23 265.42 Distinct green colored unit with a weak fabric. Finer grained upper contact (chill margin) with disseminated scattered MAGNETITE crystals. Abundant carbonate as wispy veinlets parallel to the main fabric. Some late qtz-carbonate gashes. INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 265.87 T2QFP 265.42 Gray to greenish, silicified and weakly banded. Fine-grained blue qtz crystals and disaggregated gray colored feldspars. Amount of foliation parallel carbonate increases towards the bottom of the hole.

Page 22 of 33

Project Number: 05300

(ppm)

Au AA Dup AA Grav

(ppm)

(ppm)

0.04

Zone

To Length

0.30

Au fin

(ppm)

0.04

(ppm)

pinkish colored feldspar accumulations although the edges of the feldspars are generally diffuse. It is

possible that this unit is simply a variation of the previous intrusion?

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-04 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) QUARTZ CARBONATE VEIN. 265.87 267.43 QCV Only about 10% of the intersection is vein material, the rest is an alteration product - generally the latter is chlorite with local areas of carbonate enrichment. Latter is calcite (acid). Magnetite is present as porphyroblasts - no pyrite. Appears to be a late stage vein system overprinting the dominant fabric. INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. 267.43 273.85 V2QFP Could be an intrusion rather than a volcanic . Contains coarse-grained white to orange colored feldspars, some are euhedral while other examples have diffuse boundaries. In most cases the feldspars are larger than the qtz crystals. Only has a weak fabric with minor associated alteration. 0.01 DC007599 279.74 280.14 0.40 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 273.85 280.14 Predominantly a green matrix with blue qtz crystals and gray colored feldspars. Some sections contain

Due to massive nature there are many qtz-carbonate veinlets and gashes.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-04 Au fin Metal Au AA Dup AA Grav From To (ppm) (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) 0.09 0.08 280.14 281.14 1.00 0.09 DC007601 SCHIST UNDIFFERENTIATED 280.14 281.57 T9ZS 0.39 Increase in foliation intensity within the same QFP type of rock. Bands of weak potassic alteration as well 0.43 0.39 DC007602 281.14 281.57 as silicification and pyritisation. Some interstitial chlorite and carbonate. Broken core in the last 30cm of this unit. Structure Maj.: Type/Core Angle Comment 280.14 - 281.57 **WDF 40** Some steeper sections Type/Style/Intensity Comment Alteration Mai: CB PCH 280.14 - 281.57 280.14 - 281.57 CL INT WM 280.14 - 281.57 SE PCH + 280.14 - 281.57 SIP+ Mineralization Maj. : Type/Style/%Mineral Comment PY DIS 1 280.14 - 281.57 0.02 0.02 DC007603 281.57 281.87 0.30 UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. V1QFP 281.57 283.88 0.02 0.02 Has a more massive appearance compared to the tuffaceous units. Finer grained gray colored matrix 0.30 283.58 283.88 DC007604 with orange feldspar and bluish qtz crystals. Feldspars are generally euhedral. Lower contact appears gradational into the shear zone.

GOUDREAU

Project:

Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) Sample # From To Length Zone (ppm) Lithology (m) (m) 0.42 0.50 0.42 DC007605 283.88 284.38 SCHIST UNDIFFERENTIATED 288.24 T9ZS 283.88 1.37 1.37 Relatively wide shear zone with at least 3 qtz-tourmaline veins. The widest zone could be called API in DC007606 284.38 285.02 0.64 places (uppermost zone). This unit may correlate with the GOLD rich zone in hole PRS 03. 0.03 0.42 0.03 285.02 285.44 DC007607 0.15 BRITTLE FAULT: 287.42 to 287.58m. Cemented brittle fault that post-dates the main deformation. Matrix 0.15 0.30 DC007608 285.44 285.74 to fragments appears to be chlorite in some places although there is also some carbonate and qtz filling 0.05 285.74 286.24 0.50 0.05 DC007609 the fractures. 0.01 286.74 0.50 0.01 DC007610 286.24 0.03 0.02 0.03 0.50 DC007611 286.74 287.24 Type/Core Angle Structure Maj.: Comment 0.02 287.93 0.69 0.02 DC007612 287.24 But lower in the vein systems MDF 52 283.88 - 288.24 0.18 0.18 DC007613 287.93 288.24 0.31 Type/Style/Intensity Comment Alteration Maj: CB SP 283.88 - 288.24 TL VN 283.88 - 288.24 CL INT WM 283.88 - 288.24 SE PCH WM 283.88 - 288.24 283.88 - 288.24 SI P MS Type/Style/%Mineral Comment Mineralization Maj.: Tends to be associated with the veining rather than in PY DIS 1 283.88 - 288.24 the matrix. ca vg Vein Maj.: Type/Mineral 0 20.0 40 QTV py 283.88 - 285.02 60 0 20.0 QTV 285.44 - 285.62 70.0 35 0 QTV 287.93 - 288.03 0.02 288.24 288.54 0.30 0.02 DC007614 UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. 290.73 V1QFP 288.24 0.01 0.30 0.01 DC007615 290.43 290.73 Same as 281.57m.

Project Number: 05300

Hole Number PRS-04

Hole Number PRS-04 Project: GOUDREAU Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin Sample # (ppm) (ppm) (ppm) (ppm) (ppm) (m) (m) Lithology From To Length Zone 290.73 0.02 291.07 T9ZS SCHIST UNDIFFERENTIATED DC007616 290.73 291.07 0.34 0.02 Rapid but gradational transition from the previous unit. Contains a qtz-tourmaline vein with diss pyrite in the immediate wall rock. Structure Maj.: Type/Core Angle Comment 290.73 - 291.07 WDF 40 Alteration Maj: Type/Style/Intensity Comment 290.73 - 291.07 CB SP 290.73 - 291.07 TL VN + 290.73 - 291.07 SE PCH Pinkish patches 290.73 - 291.07 SIP + Mineralization Maj. : Type/Style/%Mineral Comment 290.73 - 291.07 PY DIS 1 Vein Maj.: Type/Mineral ca vg 290.82 - 290.88 QTV PY 0.08 40 0 0.02 291.07 296.46 V1QFP UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. DC007617 291.07 291.37 0.30 0.02 Looks like an intrusion again - similar in mineralogy and texture to unit at 288.40m. Some local variations in crystal distribution but not enough for mapping.

Hole Number	PRS-04	Project: GOUDREAU		<u></u>			Pi	roject Num	ber: 05	300	
From (m)	To (m)	Lithology	Sample #	From	To Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
296.46	297.90	T9ZS SCHIST UNDIFFERENTIATED Weak shear within the QFP. Sharp contact with the next unit.	DC007618	297.60	297.90 0.30		0.01	-	-	-	0.01
297.90	299.43	QV QUARTZ CARBONATE VEIN. About 40% of the interval is late-stage milky qtz vein. Dark green chloritic alteration accompanied by carbonate makes up the remainder of the unit. Latter looks like a mafic unit but it is probably the effects of the wall rock hydrothermal alteration. Not sampled: no pyrite or VG, second generation veining at least.	DC007619 DC007621	297.90 298.81	298.81 0.91 299.43 0.62		0.01 0.01	0.02	-	- -	0.01 0.02
299.43	300.83	V1QFP UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. Same as 288.40m. Becomes finer-grained towards the bottom of the unit - approach of shear zone?	DC007622	299.43	299.73 0.30		0.01	-	-	-	0.01
300.83	301.07	T9ZS SCHIST UNDIFFERENTIATED Not the typical T9ZS - actually consists of 30% MAGNETITE, 40% chlorite, 20% carbonate and other minor minerals. Looks to be an extreme alteration zone within the QFP. Fabric only weakly developed -									

throughout. Matrix may have been glassy prior to the alteration.

Hole Number PRS-04 Proiect: GOUDREAU Project Number: 05300 From To Au fin Au AA Dup AA Grav Metal (m) (m) Lithology Sample # From (ppm) (ppm) To Length Zone (ppm) (ppm) it's the mineralogy that's distinctive. Structure Maj.: Type/Core Angle Comment WDF 27 300.83 - 301.07 Alteration Maj: Type/Style/Intensity Comment 300.83 - 301.07 CB PCH WM 300.83 - 301.07 CL PCH MS Mineralization Maj. : Type/Style/%Mineral Comment MG CG 30 300.83 - 301.07 301.07 306.41 V1QFP UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. DC007623 306.11 306.41 0.30 0.08 0.08 Similar but not identical to previous units. Gray to green colored, weak chlorite alteration, late carbonate filled gashes. Feldspar present but not easy to see due to mottled texture. Qtz crystals scattered

Project: GOUDREAU

Project Number: 05300

om (m)	To (m)		Litholog		Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
306.41	313.07	T9ZS SC	HIST UNDIFFERENTIATED		DC007624	306.41	306.72	0.31		11.03	-	10.23	-	10.23
				nterval contains bleached sections that approach API.	DC007626	306.72	307.22	0.50		0.11	-	-	-	0.11
		Larly generation qtz	•	ns VISIBLE GOLD. This section may connect with the	DC007627	307.22	307.72	0.50		0.75	-	-	-	0.75
		3			DC007628	307.72	308.22	0.50		0.06	-	-	-	0.06
		Structure Maj.:	Type/Core Angle	Comment	DC007629	308.22	308.72	0.50		0.51	-	-	-	0.51
		306.41 - 313.07	WDF 58	Slight variations	DC007630	308.72	309.22	0.50		0.41	-	-	-	0.41
		Alteration Maj:	Type/Style/Intensity	Comment	DC007631	309.22	309.72	0.50		0.09	0.14	-	-	0.12
		-		Comment	DC007632	309.72	310.06	0.34		1.64	-	-	-	1.64
		306.41 - 313.07	CL PCH WM		DC007633	310.06	310.41	0.35		1.41	-	-	-	1.41
		306.41 - 313.07	SE PCH WM		DC007634	310.41	311.05	0.64		0.16	-	-	-	0.16
		306.41 - 313.07	SI P MS		DC007635	311.05	311.76	0.71		0.32	-	-	-	0.32
		Mineralization Maj.	.,,	Comment	DC007636	311.76	312.28	0.52		0.14	-	-	-	0.14
		306.41 - 306.66	AU F		DC007637	312.28	313.07	0.79		0.13	-	-	-	0.13
313.07	314.00		_	PLCANIC QUARTZ-FELDSPAR PORPHYRY. teration with later tension gashes (carbonate filled).	DC007638	313.07	313.37	0.30		0.01	-	-	-	0.01

314.00 315.00 QV QUARTZ CARBONATE VEIN.

Milky late-stage qtz vein with chloritic inclusions and pieces of country rock. Minor amounts of tourmaline but not dominant. A few specks of pyrite but not significant. There is very little wall rock alteration.

and fractured gray feldspars.

Hole Number PRS-04 Project: GOUDREAU Project Number: 05300 Au AA Dup AA Grav Metal Au fin From To Sample # (ppm) (ppm) (ppm) (ppm) (ppm) (m) Lithology From To Length Zone (m) 315.00 T9ZS SCHIST UNDIFFERENTIATED DC007639 315.00 315.23 0.23 0.02 0.02 317.60 Not a great example - up to 40% of the interval could be classed as the original protolith (T2QFP). 0.05 DC007641 315.23 316.23 1.00 0.06 0.04 Alteration zones are marked by beige to pale green sericitic and/or increased siliceous zones. Boundaries 0.04 DC007642 316.23 316.83 0.60 0.04 are gradational but rapid. Trace diss pyrite throughout but better (more abundant and coarser) in association with the few 1-2cm qtz veins within this unit. 0.53 DC007643 316.83 317.60 0.77 0.53 Structure Maj.: Type/Core Angle Comment 315.00 - 317.60 WDF 68 Sometimes a little stronger Alteration Maj: Type/Style/Intensity Comment 315.00 - 317.60 CL INT Not very abundant 315.00 - 317.60 SE PCH WM Yellow to green in color 315.00 - 317.60 SI P MS Locally banded but only weak Mineralization Maj. : Type/Style/%Mineral Comment 315.00 - 317.60 PY TR 0.5 Vein Maj.: Type/Mineral vg QV PY 40.0 72 0 317.00 - 317.12 0.01 317.60 318.46 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007644 317.60 317.90 0.30 0.01 Similar to the relict protolith in the last T9ZS - pale to dark green colored matrix with scattered blue qtz 0.04

0.30

318.16 318.46

DC007645

0.04

Project Number: 05300 Hole Number PRS-04 Project: **GOUDREAU** Au AA Dup AA Grav Metal Au fin From To (ppm) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (m) (m) 0.07 DC007646 318.46 319.46 0.07 318.46 319.95 T9ZS SCHIST UNDIFFERENTIATED 1.00 Similar to T9ZS at 315m. No central vein system though so probably a little weaker in terns of alteration 0.16 DC007647 319.46 319.95 0.49 0.16 and deformation. 0.03 V1QFP UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. DC007648 319.95 320.25 0.30 0.03 319.95 328.95 Some sections of the unit are green in color and could be classed as intermediate. No significant DC007649 328.65 0.30 0.01 0.01 328.95 alteration or deformation zones - some minor carbonate filled gashes. 0.06 0.32 0.06 328.95 T9ZS SCHIST UNDIFFERENTIATED DC007650 328.95 329.27 329.27 Has a distinct pink hue due to presence of sericite - potassium redistribution. Not a very intense zone of alteration or deformation. Structure Maj.: Type/Core Angle Comment WDF 52 328.95 - 329.27 Alteration Maj: Type/Style/Intensity Comment 328.95 - 329.27 CB PD 328.95 - 329.27 SE MO + 328.95 - 329.27 SI PCH WM Best around the vein Mineralization Maj. : Type/Style/%Mineral Comment 328.95 - 329.27 PY TR 0.5

Hole Number	PRS-04			Pi	roject: GO	UDREA	AU							P	roject Num	ber: 0	5300	
From (m)	To (m)		Litholog	ıy					Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		Vein Maj.:	Type/Mineral		%	ca	vg											
		329.17 - 329.25	QCV py		50.0	52	0											
329.27	330.27	V1QFP <i>UNDIF</i>	FERENTIATED FELSIC VO	DLCANIC QUARTZ-FELD	SPAR PORP	HYRY.		ı	DC007651	329.27	329.57	0.30		0.02	0.02	_	-	0.02
		Maybe an intermediate	QFP. Essentially a continua	ation of unit at 319.95m.					DC007652	329.97	330.27			0.01	-	-	-	0.01
		FAULT BRECCIA: Frag Oriented 20 degrees to	ments cemented with seco core axis.	ndary qtz. Cross cuts the r	main fabric so	a late f	feature	e.										
330.27	331.16	T9ZS SCHIS	T UNDIFFERENTIATED					ı	DC007653	330.27	331.16	0.89		0.04	_	_	_	0.04
		is generally sericitic (pir	east it has two discrete qtz-tokish hues) with carbonate, as needles and not very pr	secondary qtz and chlorite	th wall rock al e. Trace to dis	teratior s pyrite	n. Latte in the	er e										
		Structure Maj.:	Type/Core Angle	Comment														
		330.27 - 331.16	WDF 65	Variable - some foliation	high angle o	ontacts												
		Alteration Maj:	Type/Style/Intensity	Comment														
		330.27 - 331.16	TL SP	But weak.														
		330.27 - 331.16	CL INT															
		330.27 - 331.16	SE MO WM															
		330.27 - 331.16	SI PCH WM															
		Mineralization Maj. : 330.27 - 331.16	Type/Style/%Mineral PY TR 0.5	Comment														

Project: GOUDREAU

From (m)	To (m)		Lithology				Sample #	From	To	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		Vein Maj.:	Type/Mineral	%	ca	vg										
		330.52 - 330.60	QCT PY	70.0	72	0										
		330.71 - 330.81	QCT PY	40.0	70	0										
331.16	336.00	V1QFP UN Same as 329.27m.	DIFFERENTIATED FELSIC VOLCANIC Q	UARTZ-FELDSPAR PORPH	IYRY.		DC007654	331.16	331.46	0.30		0.02	-	-	-	0.02

DRILL HOLE REPORT

Hole Numb	er PRS-03						n ·											Chris 1		
,		•					Proje	el: GD	UDREAU								Project Number:	05300		
D <i>itting</i>				Ce	aling		Core						Location				Cither			
kimuth:		180.00		Ler	igth:	33	Dimension:	NQ.					Township	FINAN			Other	6 314.	.	
Dîp:		-82.00		Pul	led:		Storage:		Gold Proj	eri			Claim No.:				Logged by:	C. Moreton		
angih:		402.00		Caj	opad:		Section:			~			NTS:				Relog by:			
terled:		13-Mar-08		Cer	nented;		Hote Type	8EXP	,					42C/08			Contractor:	Orbit Orbling Inc		
ompieled	:	18-Mar-08					views 13pe	OLA!					Hole:	Surface			Company:	Mines Füghmon!		
ogged:		25-Mar-06															Spotted by:	C. Moteton		
omment:	Samples:	DC007112-	DC00743	5			C				Coordin						Surveyed:	yes		
	,			•			Gemeen	4====	UTM			yezi M		Variable	•		Surveyed by:	G.Lamothe(GP\$)		
							East:	15766.3			91119.3		15768.	East:		0	Geophysics:			
							North:	4910.6		5	52341.5			North:		0	Geoph. Contract:			
							Elev.:	5391	El sv .;		5391	Hev.:	5391	Elev.:		0	Left in hole:			
									Zane:	16							Making water:			
			•						NAD:	83							Multi shot curv.:			
		Dougotton:	Tank-																	
		Deviation	44.12									Devi	elion Testa							
Distanc e	Azimulb	ĐΙρ	Type	Good	Comments				Dis	tance	Azimo	th i	Ofp Type	Good	Соглан	nts				
.00	180.00	-52.00	C						402	.00	174.76		.40 A		5654					
2.00	181.70	-53.60	F	Ø	5691															
2.00	188.80	-52,20	A	23	5546															
)2.00 20.00	179.00	-51.60	F	2	5688															
	179.60 190.10	-51.00	f	2	5674															
		·52.30	•		8218															
12.00			_																	
12.00 12.00	181.50	-50.60	F	K.	5415															
12.00 12.00 12.00	181.50 173.80	-50.60 -50.10	F A		5521															
52.00 52.00 52.00 52.00 52.00	161.50 173.60 188.00	-50.60 -50.10 -49.60	•		5521 5702															
52.00 52.00 52.00 52.00 52.00	181.50 173.80 188.00 174.90	-50.60 -50.19 -49.60 -48.20	•		5521 5702 5437															
32.00 62.00 92.00 22.00 52.00 52.00	161.50 173.60 188.00 174.90 19.00	-50.60 -50.10 -49.60 -48.20 -49.70	•		5521 5702 5437 6545															
32.00 62.00 92.00 22.00 52.00 52.00 12.00	181.50 173.80 188.00 174.90	-50.60 -50.19 -49.60 -48.20	•		5521 5702 5437															

Started: 13-Mar-06 Cemented: Hole Type SEXP Hole: Surface Company: Mines Richmed Completed: 18-Mar-06 Spotted by: C. Moreton Samples: DC007112-DC007435 Gemcom UTM Mine Variable Surveyed by: G. Lamothe (Gemcom Logged: 15768.3 East:	Hole Number	PRS-03			Projec	t: GOU	DREAU						Project Number:	05300
Azimuth: 180.00 Length: 33 Dimension: NQ Township: FINAN Logged by: C. Moreton Dip: -52.00 Pulled: Storage: Island Gold Project Claim No.: 3817 Relog by: Pulled: Orbit Drilling Island Company: Orbit Drilling Island Company: Mines Richm August Drived: Surface Company: Mines Richm Company: Surveyed: Spotted by: C. Moreton Spotted by: C. Moreton Surveyed: Spotted by: C. Moreton Spotted by: C. Moreton<	Drilling		Casing		Core					Location			Other	
Dip: -52.00 Pulled: Storage: Island Gold Project Claim No.: 3817 Relog by: Length: 402.00 Capped: Section: NTS: 42C/08 Contractor: Orbit Drilling Started: 13-Mar-06 Cemented: Hole Type SEXP Image: SEXP NTS: 42C/08 Company: Mines Richmed Completed: 18-Mar-06 25-Mar-06 Samples: DC007112-DC007435 Surveyed: Surveyed: yes Comment: Samples: DC007112-DC007435 Gemcom UTM Mine Variable Surveyed by: GLamothe(Gold Contract) Light: 15768.3 East: 691119.3 East: 15768.3		180.00	Length:	33	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Length: 402.00 Capped: Section: NTS: 42C/08 Contractor: Orbit Drilling			Pulled:		Storage:	Island	Gold Proj	ect		Claim No.:	3817		Relog by:	
Started: 13-Mar-06 Cemented: Hole Type SEXP Hole: Surface Company: Mines Richm Completed: 18-Mar-06 25-Mar-06 Coordinate Surveyed: Surveyed: yes Comment: Samples: DC007112-DC007435 Gemcom UTM Mine Variable Surveyed by: G.Lamothe(G East: 15768.3 East: 691119.3 East: 15768.3 East: 0 Geophysics: North: 4910.6 North: 5352341.5 North: 4910.6 North: 0 Geoph. Contract: Elev.: 5391 Elev.: 5391 Elev.: 5391 Elev.: 0 Left in hole:	•	402.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Completed: 18-Mar-06		13-Mar-06			Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Logged: 25-Mar-06 Coordinate Coordinate Surveyed: yes Comment: Samples: DC007112-DC007435 Gemcom UTM Mine Variable Surveyed by: G.Lamothe(Government) Fast: 15768.3 East: 691119.3 East: 15768.3 East: 0 Geophysics: North: 4910.6 North: 5352341.5 North: 4910.6 North: 0 Geoph. Contract: Elev.: 5391 Elev.: 5391 Elev.: 5391 Elev.: 0 Left in hole: Akking water: Cone: 16													Spotted by:	C. Moreton
Comment: Samples: DC007112-DC007435 Gemcom UTM Mine Variable Surveyed by: G.Lamothe (Gemcom UTM UT		25-Mar-06						Coord	inate				Surveyed:	yes
East: 15768.3 East: 691119.3 East: 15768.3 East: 0 Geophysics: North: 4910.6 North: 5352341.5 North: 4910.6 North: 0 Geoph. Contract: Elev.: 5391 Elev.: 5391 Elev.: 5391 Elev.: 5391 Elev.: 0 Left in hole: Zone: 16 Making water:			007435		Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
Elev.: 5391 Elev.: 5391 Elev.: 5391 Elev.: 0 Left in hole: Zone: 16 Making water:	0					15768.3	East:	691119.3	East:	15768.3	East:	0	Geophysics:	
Zone: 16 Making water:					North:	4910.6	North:	5352341.5	North:	4910.6	North:	0	Geoph. Contract:	
					Elev.:	5391	Elev.:	5391	Elev.:	5391	Elev.:	0	Left in hole:	
NAD: 83 Multi shot surv.:							Zone:	16					Making water:	
IIID. 00							NAD:	83					Multi shot surv.:	
Deviation Tests		Deviation Tes	sts						<u>D</u> ev	iation Tests				
	Distance	Azimuth Dip	Type Good Comments							Dip Type	Good	Comments		
Distance Azimuth Dip Type Good Comments	0.00	180.00 -52.00	c 🗹				402	2.00 174.70) -4	6.40 A		5654		

120.00	179.60	-51.00	F	✓	5674	
132.00	190.10	-52.30	Α		8218	
162.00	181.50	-50.60	F	✓	5415	
192.00	173.80	-50.10	Α		5521	
222.00	188.00	-49.60	Α		5702	
252.00	174.90	-48.20	Α		5437	
282.00	19.00	-49.70	Α		6545	

-53.80

-52.20

-51.60

-47.60

-47.40

-46.80

5691

5546

5688

5653

5404

5664

Azimuth 174.70		 Comments 5654

42.00

72.00

102.00

312.00

342.00

372.00

181.70

188.80

179.00

178.20

199.30

181.50

03

Project: GOUDREAU

rom (m)	To (m)		Litholog	у	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
0.00	33.00	CSG Casing Appears that the hole is	collared into a weak shear	zone.										
33.00	37.63	T9ZS SCHIS	T UNDIFFERENTIATED		DC007112	33.00	33.63	0.63		0.09	-	-	-	0.09
		Overall green color although a payasive in most place	ough about 10% is gray to p	ink in color and is tending towards API. Pink color is ssium redistribution from the original felsic rocks. Blue	DC007113	33.63	34.13	0.50		0.04	-	-	-	0.04
		qtz crystals are common	n but any primary feldspars	are lost.	DC007114	34.13	34.63	0.50		0.01	-	-	-	0.01
		Fabric is variable and w	eak to moderate in most of	the intersection. Polyphase folding evident suggesting	DC007115	34.63	35.13	0.50		0.01	-	-	-	0.01
		that the fabric is actually	y a transposition layering. E	arly generation qtz veins parallel to the fabric but no	DC007116	35.13	35.63	0.50		0.00	-	-	-	0.00
		VG. Diss pyrite through	out but only to trace amount	s. Locally higher amounts in veinlets.	DC007117	35.63	36.13	0.50		0.01	-	-	-	0.01
					DC007118	36.13	36.63	0.50		0.09	-	-	-	0.09
		Structure Maj.:	Type/Core Angle	Comment	DC007119	36.63	37.13	0.50		0.06	-	-	-	0.06
		33.00 - 37.63	MDF 60	Extremely variable - parallel to ca in some places.	DC007121	37.13	37.63	0.50		0.01	0.01	-	-	0.01
		Alteration Maj:	Type/Style/Intensity	Comment										
		33.00 - 37.63	TL VN	Microveinlets really.										
		33.00 - 37.63	CL SP	Associated with pyrite										
		33.00 - 37.63	SE INT WM											
		33.00 - 37.63	SI PCH WM	Locally banded										
		Mineralization Maj.: 33.00 - 37.63	Type/Style/%Mineral PY TR 0.5	Comment										

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-03 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) Zone (ppm) (ppm) To Length Sample # From Lithology (m) (m) 0.73 0.73 DC007122 37.63 38.13 0.50 API ISLAND ALTERATION PACKAGE. 38.92 37.63 0.25 Not as strong as the Island Zone but it is better than the alteration in hole PRS 02. No discrete central qtz 0.25 DC007123 38.13 38.53 0.40 vein but there are a few 1-3cm gray veins. Pyritic veinlets are tightly folded with the dominant cleavage 0.18 0.39 0.18 DC007124 38.53 38.92 parallel to the axial surfaces. Type/Core Angle Comment Structure Mai.: MDF 60 37.63 - 38.92 Type/Style/Intensity Comment Alteration Mai: Microveinlets occasionally 37.63 - 38.92 TL VN CB PCH Not very abundant 37.63 - 38.92 37.63 - 38.92 CL SP Generally with the pyrite SE INT WM 37.63 - 38.92 SI P MS 37.63 - 38.92 Type/Style/%Mineral Comment Mineralization Maj. : Maybe up to 1% in places 37.63 - 38.92 PY TR 0.5 0.10 0.10 39.42 0.50 DC007125 38.92 T9ZS SCHIST UNDIFFERENTIATED 38.92 43.08 Down hole envelope to the API. Similar in character to the previous T9ZS. Variation in fabric orientation 0.17 39.92 0.50 0.17 DC007126 39.42 due to refolding within the zone. Lower contact is gradational over a couple of meters - some minor pyritic 0.40 DC007127 40.42 0.50 0.40 39.92 zones actually in the next unit but the intensity of alteration/deformation tends to die out around 43.08m 0.02 0.50 0.02 DC007128 40.42 40.92 0.67 41.42 0.50 0.67 DC007129 40.92 Type/Core Angle Comment Structure Maj.: 0.00 DC007130 41.42 41.92 0.50 0.00 MDF 60 Variable though. 38.92 - 43.08 0.00 42.42 0.50 0.00 0.00 DC007131 41.92 Type/Style/Intensity Comment Alteration Mai: 0.10 43.08 0.66 0.10 DC007132 42.42 Slightly more chlorite than in upper section CL INT WM 38.92 - 43.08 SE INT 38.92 - 43.08

Hole Number PRS-03			Project: GOUDREAU								Project Number: 05300								
From (m)	To (m)		Lithology			Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)				
		38.92 - 43.08 Mineralization Maj.: 38.92 - 43.08	SI B WM Type/Style/%Mineral PY TR 0.5	Comment															
43.08	57.09	Pale sea green color with colored. Moderate fabric, I	local qtz veins with strongly nlets. Carbonate microveinle	AR PORPHYRITIC TUFF. feldspars. Generally the feld chloritic selvages. Minor pyri ts over about 70% of the un	te throughout but better	DC007133 DC007134	43.08 56.79	43.38 57.09	0.30 0.30		0.01 0.00	-	-	-	0.01 0.00				
57.09	57.91	Distinctive unit - actually h	EDIATE QUARTZ PORPHY nas relatively high proportion seminated pyrite. Fabric is p	of dark green chlorite and N	MAGNETITE. Patchy	DC007135	57.09	57.91	0.82		0.01	-	-	-	0.01				
57.91	59.73		EDIATE QUARTZ-FELDSP, 8 except that it has a higher	AR PORPHYRITIC TUFF. dark green chlorite content a	and an increased	DC007136 DC007137	57.91 59.43	58.21 59.73	0.30 0.30		0.04 0.04	-	- -	-	0.04 0.04				

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-03 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone (ppm) To Length Sample # From Lithology (m) (m) 0.02 60.23 0.50 0.02 DC007138 59.73 ISLAND ALTERATION PACKAGE. 59.73 68.72 API 0.00 Not a strong example of an API but it is the best one in this hole so far. The upper meter is weaker and 60.73 0.50 0.00 DC007139 60.23 could be classified as a T9ZS. Upper contact of the API is gradational. The foliation and alteration 0.03 0.03 0.04 DC007141 60.73 61.23 0.50 intensity increases towards the bottom of the hole and the unit becomes bleached, gray to beige in color. Significantly, the shear zone overlaps a contact between two units - T2QFP on the upper side stops at 0.00 0.00 0.50 DC007142 61.23 61.73 about 63,77m and passes into an altered deformed granodiorite unit. 0.04 DC007143 61.73 62.23 0.50 0.04 0.00 No significant central vein but there are a few early and second generation veins (2-5cm) in the unit. 62.23 62.73 0.50 0.00 DC007144 Minor tourmaline but as microveinlets parallel to the cleavage. 0.05 63.20 0.05 DC007145 62.73 0.47 From 67.18 to end of unit there is approximately 35% massive white qtz-carbonate veining. Carry up to 0.03 DC007146 63.20 63.77 0.57 0.03 5% coarse-grained pyrite but no VG. 0.01 0.01 DC007147 63.77 64.27 0.50 0.03 0.50 0.03 64.77 DC007148 64.27 Comment Structure Mai.: Type/Core Angle 0.00 0.50 0.00 DC007149 64.77 65.27 MDF 45 Locally variable core angle 59.73 - 68.72 0.00 65.27 65.77 0.50 0.00 DC007150 0.00 Alteration Maj: Type/Style/Intensity Comment 66.27 0.50 0.00 0.00 DC007151 65.77 0.02 0.50 0.02 59.73 - 68.72 TL VN Microveinlets really. DC007152 66.27 66.77 0.00 0.00 67.18 0.41 DC007153 66.77 59.73 - 68.72 CL SP 0.45 DC007154 67.18 67.68 0.50 0.45 59.73 - 68.72 SE PCH WM 5.75 5.75 68.18 0.50 DC007155 67.68 SI P MS 59.73 - 68.72 1.04 0.54 1.04 DC007156 68.18 68.72 Type/Style/%Mineral Comment Mineralization Maj. : 0.05 DC007157 68.72 69.22 0.50 0.05 SCHIST UNDIFFERENTIATED 68.72 70.72 T9ZS 1.25 69.72 0.50 1.25 Although small sections look like API the dominant rock type is a strongly foliated chloritic unit. The DC007158 69.22 interplay of chlorite-silica within the strong fabric areas creates a domainal appearance within this green 64.58 74.29 74.29 0.50 69.16 69.72 70.22 DC007159 colored rock. This is similar to the textures associated with the granodiorite schist in hole PRS 01 at 0.43 70.72 0.50 0.40 0.47 78.26m.- portions of this unit could be termed granodiorite schist. DC007161 70.22 As with previous unit, about 35% of the unit contains secondary qtz-carbonate (tourmaline) veins. Some

Project Number: 05300 Project: GOUDREAU Hole Number PRS-03 Au fin Metal Au AA Dup AA Grav From To (ppm) (ppm) Zone (ppm) Sample # From To Length Lithology (m) (m) carry coarse-grained pyrite but no VG. All of the shear zone at the contact with the granodiorite has been sampled. THIS IS PROBABLY THE NORTH SHEAR ZONE. Alteration Maj: Type/Style/Intensity Comment 68.72 - 70.72 CB SP WM As local porphyroblasts 68.72 - 70.72 SI PCH WM 68.72 - 70.72 CL B MS 0.02 0.30 0.02 DC007162 70.72 71.02 77.08 **I1D GRANODIORITE** 70.72 0.01 Weak to moderately deformed, generally green to gray in the upper parts (down to 77.08m). Chloritisation DC007163 76.78 77.08 0.30 0.01 stronger than silicification although there are some examples of early generation gray qtz veins parallel to

It seems clear that the granodiorite predated the mineralizing event.

patches as well as strongly chloritic inclusions within the granodiorite.

the weak fabric. Chloritic alteration is anastomosing although the primary lithology is still visible beneath this alteration. Minor tourmaline veinlets at various angles to the schistosity. Some carbonate veinlets in

Project: GOUDREAU

From	To							Au AA	Dup AA	Grav	Metal	Au fin
(m)	(m)	Lithology	Sample #	From	То	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
77.08	88.53	I1D GRANODIORITE	DC007164	77.08	77.58	0.50		0.04	-	-	-	0.04
		Part of the previous unit but it has been subdivided on the basis of alteration. At 77.08m the color	DC007165	77.58	78.08	0.50		0.07	-	-	-	0.07
		changes to gray and the amount of secondary silicification increases. This section of the granodiorite has been sampled.	DC007166	78.08	78.58	0.50		0.36	-	-	-	0.36
		•	DC007167	78.58	79.08	0.50		0.02	-	-	-	0.02
		Number of tourmaline filled microveinlets also increases.	DC007168	79.08	79.58	0.50		0.01	-	-	-	0.01
			DC007169	79.58	80.08	0.50		0.02	-	-	-	0.02
			DC007170	80.08	80.58	0.50		0.01	-	-	-	0.01
			DC007171	80.58	81.08	0.50		0.00	0.00	-	-	0.00
			DC007172	81.08	81.58	0.50		0.00	-	-	-	0.00
			DC007173	81.58	82.08	0.50		0.18	-	-	-	0.18
			DC007174	82.08	82.58	0.50		0.10	-	-	-	0.10
			DC007175	82.58	83.08	0.50		0.07	-	-	-	0.07
			DC007176	83.08	83.58	0.50		0.01	-	-	-	0.01
			DC007177	83.58	84.08	0.50		0.03	-	-	-	0.03
			DC007178	84.08	84.58	0.50		0.02	-	-	-	0.02
			DC007179	84.58	85.08	0.50		0.01	-	•	-	0.01
			DC007181	85.08	85.58	0.50		0.03	0.04	-	-	0.03
			DC007182	85.58	86.08	0.50		0.01	-	-	-	0.01
			DC007183	86.08	86.58	0.50		0.01	-	-	-	0.01
			DC007184	86.58	87.08	0.50		0.01	-	-	-	0.01
			DC007185	87.08	87.58	0.50		0.00	-	-	-	0.00
			DC007186	87.58	88.08	0.50		0.01	-	-	-	0.01
			DC007187	88.08	88.53	0.45		0.05	-	-	-	0.05

Project:

GOUDREAU

rom	То				C	5	To	l amerik	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)		Litholog	у	Sample #	From		Length	Zone					3.42
88.53	94.23		D ALTERATION PACKAGE		DC007188	88.53	89.03			3.42	-	-	-	0.05
		Although part of the gra	modiorite it has been subdivi oughout as well as some loc	ided due to the increase in alteration. Appears to have	DC007189	89.03	89.53			0.05	-	-	-	0.05
		specks of pyrmone this	DC007190	89.53	90.03			0.07	-	-	-	0.07		
			T (O A I I I	Comment	DC007191	90.03	90.53			0.09	0.13	-	-	0.00
		Structure Maj.:	<i>Type/Core Angle</i> MDF 60	Not well defined due to silicification	DC007192	90.53	91.03			0.00	-	-	-	0.06
		88.53 - 94.23			DC007193	91.03	91.53			0.06	-	•	-	
		Alteration Maj:	Type/Style/Intensity	Comment	DC007194	91.53	92.03			2.64	-	-	-	2.64
		88.53 - 94.23	TL VN	A few veinlets	DC007195	92.03	92.53			0.06	-	-	-	0.06
		88.53 - 94.23	SE INT +		DC007196	92.53	93.03			0.11	-	-	-	0.11
		88.53 - 94.23	SI P ++		DC007197	93.03	93.53			0.17	-	-	-	0.17
		Mineralization Maj.: 88.53 - 94.23	<i>Type/Style/%Mineral</i> PO TR 0.5	Comment	DC007198	93.53	94.23	0.70		0.04	-	-	-	0.04
		88.53 - 94.23	PY TR 0.5	Overall, not very abundant										
94.23	108.34	I1D GRAN	ODIORITE		DC007199	94.23	94.73	0.50		0.01	-	-	-	0.01
		Same as 77.08m excep	are a little more altered and approach an API. Blue	DC007201	94.73	95.23	0.50		0.02	0.01	-	-	0.02	
		green color is dominant Disseminated pyrite is	DC007202	95.23	95.73	0.50		0.24	-	-	-	0.24		
		Disserimented pyrite is i	DC007203	95.73	96.23	0.50		0.03	-	-	-	0.03		
					DC007204	96.23	96.73	0.50		0.21	-	-	-	0.21
					DC007205	96.73	97.23	0.50		0.01	-	-	-	0.01
					DC007206	97.23	97.73	0.50		1.92	-	-	-	1.92
					DC007207	97.73	98.23	0.50		0.83	-	-	-	0.83
					DC007208	98.23	98.73	0.50		0.16	-	-	-	0.16
					DC007209	98.73	99.23	0.50		0.02	-	-	-	0.02
						99.23	99.73	0.50		0.12				0.12

Project Number: 05300 Project: **GOUDREAU** Hole Number PRS-03 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 0.07 108.34 0.30 0.07 0.08 DC007211 108.04 0.02 0.02 DC007212 108.34 108.84 0.50 111.71 T9ZS **SCHIST UNDIFFERENTIATED** 108.34 Distinctive chloritic alteration zones on both sides of a central qtz vein (109.41 to 109.71m). It may be that 0.57 1.68 1.68 DC007213 108.84 109.41 the upper section of this unit (from 108.34 to 109.41m) is actually an altered basic dyke. The section 7.06 0.30 7.06 DC007214 109.41 109.71 below the gtz vein has equal amounts of chlorite, sericite and silicification. 0.03 DC007215 109.71 110.21 0.50 0.03 Both the upper and lower contacts are sharp. Some minor tourmaline veinlets. 0.04 0.04 DC007216 110.21 110.71 0.50 0.04 0.50 0.04 DC007217 110.71 111.21 Structure Mai.: Type/Core Angle Comment 0.03 0.50 0.03 DC007218 111.21 111.71 **SDF 60** 108.34 - 111.71 Alteration Mai: Type/Style/Intensity Comment 108.34 - 111.71 CB VN WM Sheeted veinlets mainly in the chloritic zones. SE PCH MS 108.34 - 111.71 108.34 - 111.71 SI PCH MS 108.34 - 111.71 CL P MS Mineralization Maj. : Type/Style/%Mineral Comment PY TR 0.5 Not as abundant as in other alteration zones. 108.34 - 111.71 Vein Mai.: Type/Mineral vg 90.0 60 0 109.41 - 109.71 QV 0.30 0.00 DC007219 111.71 112.01 0.00 125.96 I1D **GRANODIORITE** 111.71 0.01 Back into the relatively unaltered granodiorite. A few narrow shear zones are present but they are 0.30 0.01 0.01 DC007221 125.66 125.96 unmineralized. Most of the alteration is background chloritisation with a local overprint of silicification. Minor tourmaline veinlets parallel to the main fabric in some places.

Project Number: 05300 Project: GOUDREAU Hole Number PRS-03 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 0.09 126.26 0.30 0.09 DC007222 125.96 125.96 T9ZS SCHIST UNDIFFERENTIATED 126.56 0.00 One of the better shear zones within the granodiorite. Patchy silicification with minor tourmaline veinlets. 126.26 126.56 0.30 0.00 DC007223 Disseminated pyrite. Weak sericitic alteration. Type/Core Angle Comment Structure Maj.: 125.96 - 126.56 WDF 60 Not strongly sheared. Alteration Maj: Type/Style/Intensity Comment 125.96 - 126.56 TL VN A few veinlets. 125.96 - 126.56 SE B WM 125.96 - 126.56 SI PCH MS Mineralization Maj. : Type/Style/%Mineral Comment PY TR 0.5 125.96 - 126.56 0.01 0.30 0.01 DC007224 126.56 126.86 126.56 138.00 I1D GRANODIORITE 0.01 137.70 138.00 0.30 0.01 Same as shear zone at 111.71m. DC007225

Project: GOUDREAU

From	To								_	_		_		Dup AA	Grav	Metal (ppm)	Au fin (ppm)
(m)	(m)		Litholog	y				Sample #	From	То	Length	Zone	(ppm)	(ppm)	(ppm)	(ppiii)	
138.00	147.44	T9ZS SCHIST	UNDIFFERENTIATED					DC007226	138.00	138.50	0.50		0.36	-	-	-	0.36
100.00		Granodiorite has stronge	r silicification and local inci	reases in shear related fabrics. Color changes from intrusive features although it retains the primary qtz		DC007227	138.50	139.00	0.50		0.12	-	-	-	0.12		
		blue gray to whitish gray.	Silicification destroys the			DC007228	139.00	139.50	0.50		0.01	-	-	-	0.01		
		crystals generally as a packed texture. Chloritic and/or tourmaline veinlets anastomosing through the unit.						DC007229	139.50	140.00	0.50		0.37	-	-	-	0.37
		Central portion of the zone contains a qtz-tourmaline vein with gouge and broken core (142 to 142.54 Intensity of shear fabric tends to be greater on the bottom side of the vein.			54m).	DC007230	140.00	140.50	0.50		0.13	-	-	-	0.13		
		Intensity of shear fabric to	ends to be greater on the t	ottom side of the vein.		DC007231	140.50	141.00	0.50		14.20	14.68	20.32	-	20.32		
			ome of the early generation	qtz veins. One early dark gray q	tz vein	vein contains 2 DC007233	DC007233	141.00	141.50	0.50		3.06	-	-	-	3.06	
		specks of VG.					DC007234	141.50	142.00	0.50		0.36	_	-	-	0.36	
							DC007235	142.00	142.54	0.54		0.34	-	-	-	0.34	
		Structure Maj.:	Type/Core Angle	Comment				DC007236	142.54	143.00	0.46		0.02	_	-	-	0.02
		138.00 - 147.44	MDF 55	Enveloping surface - some steeper.		DC007237	143.00	143.50			0.16	_	_	-	0.16		
		Alteration Maj: Typ	Type/Style/Intensity	Comment			DC007238	143.50	144.00			0.01	_	-	-	0.01	
		138.00 - 147.44	TL SP	Small needles				DC007239	144.00	144.50			0.02	_	_	-	0.02
		138.00 - 147.44	CL SP WM					DC007241	144.50	145.00			0.02	0.02	_	-	0.02
		138.00 - 147.44					DC007241	145.00	145.50			0.01	-	_	_	0.01	
								DC007242	145.50				0.09	_	_	_	0.09
		138.00 - 147.44	SI P MS										0.16		_	_	0.16
		Mineralization Maj. :	Type/Style/%Mineral	Comment				DC007244	146.00	146.50				•	_		0.02
		138.00 - 147.44	PY TR 0.5	Not a lot				DC007245	146.50	147.00			0.02	-	-	-	
		Vein Maj.:	Type/Mineral		%	ca	vg	DC007246	147.00	147.44	0.44		0.05	-	-	-	0.05

LITHOLOGY REPORT - Detailed -

Hole Number PRS-03

Project: GOUDREAU

-rom	То							Au AA	Dup AA	Grav	Metal	Au fin
(m)	(m)	Lithology	Sample #	From	To	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
147.44	163.69	I1DS GRANODIORITE SCHIST	DC007247	147.44	147.74	0.30		0.08	-	-	-	80.0
147.44	100.00	Amount of shearing reduced in the first few meters and then the intensity of shearing increase	DC007248	147.74	148.24	0.50		0.18	-	-	-	0.18
		dramatically as the contact with the country rock approaches. At about 149.20m the amount of POTASSIC alteration increases so that the available feldspars are pink colored - this alteration appears	DC007249	148.24	148.74	0.50		0.10	-	-	-	0.10
		to coincide with the increase in the fabric. Diss pyrite throughout the sheared sections although probably	DC007250	148.74	149.24	0.50		0.16	-	-	-	0.16
		<1% overall	DC007251	149.24	149.74	0.50		0.05	-	-	-	0.05
		All of the sheared sections have been sampled.	DC007252	149.74	150.24	0.50		0.26	-	-	-	0.26
			DC007253	150.24	150.74	0.50		0.04	-	-	-	0.04
			DC007254	150.74	151.24	0.50		0.06	-	-	-	0.06
			DC007255	151.24	151.74	0.50		0.01	0.01	-	-	0.01
			DC007256	151.74	152.24	0.50		0.00	-	-	-	0.00
			DC007257	152.24	152.74	4 0.50		0.01	-	-	-	0.01
			DC007258	152.74	153.24	4 0.50		0.02	-	-	-	0.02
			DC007259	153.24	153.74	4 0.50		0.11	-	-	-	0.11
			DC007261	153.74	154.24	4 0.50		0.04	-	-	-	0.04
			DC007262	154.24	154.74	4 0.50		0.03	-	-	-	0.03
			DC007263	154.74	155.24	4 0.50		0.01	-	-	-	0.01
			DC007264	155.24	155.74	4 0.50		0.02	-	-	-	0.02
			DC007265	155.74	156.24	4 0.50		0.01	0.01	-	-	0.01
			DC007266	156.24	156.7	4 0.50		0.09	-	-	-	0.09
			DC007267	156.74	157.2	4 0.50		0.07	-	-	-	0.07
			DC007268	157.24	157.7	4 0.50		0.21	-	-	-	0.21
			DC007269	157.74	158.2	4 0.50		0.43	-	-	-	0.43
			DC007270	158.24	158.7	4 0.50		0.03	-	-	-	0.03
			DC007271	158.74	159.2	4 0.50		0.03	-	-	-	0.03
			DC007272	159.24	159.7	4 0.50		0.46	-	-	-	0.46
			DC007273	159.74	160.2	4 0.50		0.62	-	-	-	0.62
			DC007274	160.24	160.7	4 0.50		0.01	-	-	-	0.01

Mineralization Maj. :

163.69 - 164.02 Vein Maj.:

163.69 - 164.02

Type/Style/%Mineral

PY TR 0.5

Type/Mineral

QCT PY

Comment

vg

90 0

Hole Number PRS-03 Project: GOUDREAU Project Number: 05300

Hole Nun	nber PKS-03			riojest. Goodhand									
From (m)	To (m)		Litholog	ıy	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	
					DC007275	160.74	161.24	0.50		0.02	0.03	-	
					DC007276	161.24	161.74	0.50		0.07	-	-	
					DC007277	161.74	162.24	0.50		0.19	-	-	
					DC007278	162.24	162.74	0.50		0.03	-	-	
					DC007279	162.74	163.24	0.50		0.02	-	-	
					DC007281	163.24	163.69	0.45		0.06	-	-	
163.	69 164.02	Narrow vein at the co	ther contains any VG. Tourmal	ALINE. e and the volcanic country rock. Mixed generations ine is parallel to the dominant fabric in the rock. Pir le but generally greater than 75 degrees to core ax	nk	163.69	164.02	2 0.33		0.05	-	-	
		Structure Maj.:	Type/Core Angle	Comment									
		163.69 - 164.02	MDF 80										
		Alteration Maj:	Type/Style/Intensity	Comment									
		163.69 - 164.02	TC VN										
		163.69 - 164.02	SE B WM										
		163.69 - 164.02	SI B MS										

15.0

Metal

(ppm)

Au fin

0.02 0.07 0.19 0.03 0.02 0.06

0.05

Hole Number PRS-03

Project:

GOUDREAU

m To m) (m)		Litholog	y	Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
64.02 172.39	T9ZS SCHIS	T UNDIFFERENTIATED		DC007283	164.02	164.52	0.50		0.04	-	-	-	0.04
	Dark green colored, stre	ongly foliated, scattered sma	Il blue colored qtz crystals. Silicification as a defined	DC007284	164.52	165.02	0.50		0.07	-	-	-	0.07
	banded fabric atternation veinlets parallel to the or	ng with chlorite. More diss py Hominant fabric	rite than other parts of the schist or vein. Carbonate	DC007285	165.02	165.52	0.50		0.06	0.04	-	-	0.05
	·			DC007286	165.52	166.02	0.50		1.62	-	-	-	1.62
	Between about 165.52r Although the alteration	m and 160.02m there is abo and pyritic mineralization are	ut 3-5% cp as blebs and vein related disseminations. e relatively strong there is not an abundance of	DC007287	166.02	166.52	0.50		0.05	-	-	-	0.05
	primary qtz veins with \		3	DC007288	166.52	167.02	0.50		0.03	-	-	-	0.03
				DC007289	167.02	167.52	0.50		0.00	-	-	-	0.00
	Structure Maj.:	Type/Core Angle	Comment	DC007290	167.52	168.02	0.50		0.06	-	-	-	0.06
	164.02 - 172.39	MDF 58		DC007291	168.02	168.52	0.50		0.08	-	-	-	0.08
	Alteration Maj:	Type/Style/Intensity	Comment	DC007292	168.52	169.02	0.50		0.07	-	-	-	0.07
	164.02 - 172.39	TL VN	Not as abundant as in API.	DC007293	169.02	169.52	0.50		0.04	-	-	-	0.04
	164.02 - 172.39	CB B +		DC007294	169.52	170.02	0.50		1.09	-	-	-	1.09
	164.02 - 172.39	SI PCH WM	As bands generally.	DC007295	170.02	170.52	0.50		0.12	-	-	-	0.12
			As ballus generally.	DC007296	170.52	171.02	0.50		12.03	-	11.15	-	11.15
	164.02 - 172.39	CL P MS		DC007297	171.02	171.52	0.50		0.37	-	-	-	0.37
	Mineralization Maj. :	Type/Style/%Mineral PY DIS 1	Comment Sometimes within veinlets	DC007298	171.52	172.02	0.50		4.70	-	-	-	4.70
	164.02 - 172.39	ו פוע זין	Someumes within veniers	DC007299	172.02	172.39	0.37		2.08	2.11	-	-	2.09
172.39 175.68	API ISLAN	ID ALTERATION PACKAGE		DC007301	172.39	172.96	0.57		0.46	-	-	-	0.46
172.00	Zone of more intense a	alteration and fabric developr	nent. Tends to be paler gray to locally purple in color	DC007302	172.96	173.45	0.49		0.02	-	-	-	0.02
	in the upper part, become	ming more green gray with d mental appearance in places	epth. Interference of chloritic foliations creates a	DC007303	173.45	173.95	0.50		0.01	-	-	-	0.01
	distinctive pseudo tragi	mental appearance in places	- Seen in outer notes.	DC007304	173.95	174.45	0.50		0.03	-	-	-	0.03
	Tourmaline veinlets pa	rallel to main foliation and as	needles.	DC007305	174.45	174.95	0.50		0.04	-	-	-	0.04
	Structure Maj.: Type/Core Angle Comm		DC007306	174.95	175.68	0.73		0.19	-	-	-	0.19	
		Comment											
	172.39 - 175.68 MDF 50												
	Alteration Maj:	Type/Style/Intensity	Comment										
	172.39 - 175.68	TL VN WM											

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-03 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) CL B MS 172.39 - 175.68 SE INT WM 172.39 - 175.68 SI B MS 172.39 - 175.68 Comment Type/Style/%Mineral Mineralization Maj. : 172.39 - 175.68 PY TR 0.5 0.26 0.26 0.50 175.68 176.18 DC007307 SCHIST UNDIFFERENTIATED 175.68 179.44 T9ZS 0.11 0.11 0.50 DC007308 176.18 176.68 Same as section before API (164.02 to 172.39m). 0.04 176.68 177.18 0.50 0.04 DC007309 0.09 0.09 177.18 177.68 0.50 DC007310 0.10 0.10 177.68 178.18 0.50 DC007311 0.28 0.28 DC007312 178.18 178.68 0.50 0.24 0.24 DC007313 178.68 179.44 0.76 1.00 1.00 DC007314 179.44 179.74 0.30 INTERMEDIATE QUARTZ PORPHYRITIC TUFF. T2QP 179.44 182.90 Light green to gray colored. Moderately to weakly foliated in some places but generally massive. Silicification moderate to locally intense but it is pervasive rather than banded. Diss and stringers of pyrite along with minor cp and local po. Overall the amount of mineralization is less than 1%. Broken core between 180.00 and 181.04m. Qtz crystals are not abundant and there is a scattering of feldspars. FELSIC QUARTZ-FELDPAR PORPHYRITIC TUFF. 182.90 184.67 T1QFP

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-03 Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m)

> Sharp upper contact with the T9ZS. Gray to green colored with whitish large feldspars and smaller gray qtz crystals. Chloritic matrix and scattered pyrite crystals. Finer grained matrix partially silicified and this differentiates it from the granodiorite - superficial resemblance to the latter.

184.67

189.00

FΖ

Only a small amount of gouge (over 10cm max) - most of it is fractured and broken core. Host rock is the same as 182.9m except that it is more silicified.

A large late white qtz vein is present between 185.03m and 185.88m. No significant mineralization in the vein although there is a strong shearing in the wall rock and some associated diss pyrite.

Structure Maj.:

Type/Core Angle

Comment

184.67 - 189.00

FA9

Angle not easy to define - fault is post-D1 event.

Alteration Maj:

Type/Style/Intensity

Comment

184.67 - 189.00

SI P MS

Mineralization Mai.:

Type/Style/%Mineral

Comment

184.67 - 189.00

PY DIS 1

Not very abundant

Vein Maj.:

Type/Mineral

ca vg

0

185.03 - 185.88

QV

45 99.0

189.00

191.75 T1QFP

FELSIC QUARTZ-FELDPAR PORPHYRITIC TUFF.

Continuation of same unit outside of the brecciated zone. Towards the bottom of this interval there is an increase in the amount of hematitic feldspars.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-03 Au fin Metal Au AA Dup AA Grav From To (ppm) (ppm) (ppm) (ppm) To Length Sample # From Lithology (m) (m) FELSIC QUARTZ-FELDPAR PORPHYRITIC TUFF. T1QFP 191.75 194.51 Fine-grained version of previous unit - gray colored with 1-2mm feldspar and qtz crystals in a fine-grained siliceous matrix. Could be chilled margin of a flow? 0.02 0.02 0.30 DC007315 194.95 195.25 INTERMEDIATE QUARTZ PORPHYRITIC TUFF. T2QP 194.51 195.25 Gray to green colored, not very distinctive. Possible secondary silicification. Qtz crystals are present but not prominent. Type/Core Angle Comment Structure Maj.: Not a well developed angle. WDF 55 194.51 - 195.25 0.05 0.05 195.25 196.36 1.11 DC007316 SCHIST UNDIFFERENTIATED 196.36 T9ZS 195.25 Not a very prominent T9ZS - actually a silicified pyritic zone with minor chlorite alteration. Type/Style/Intensity Comment Alteration Maj: CL PCH 195.25 - 196.36 SE INT WM 195.25 - 196.36

are smaller and local absent due to the intense local alteration.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-03 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone (ppm) Sample # From To Length Lithology (m) (m) SI P MS 195.25 - 196.36 Mineralization Maj. : Type/Style/%Mineral Comment PY DIS 1 Some veinlets. 195.25 - 196.36 0.02 0.02 DC007317 196.36 196.66 0.30 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 204.59 T2QFP 196.36 Similar to unit at 194.51 except for the addition of gray 1-3mm feldspar crystals. Contains a minor granodiorite dyke between 198.13 and 198.67m. Below the granodiorite dyke there are different phases of the QFP that are distinguished on the basis of the qtz:feldspar ratio. Contacts between the different types are gradational so they have been grouped into one unit. 0.02 0.30 0.02 DC007318 205.94 206.24 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 204.59 206.24 Different from the previous unit - contact between the two is sharp and it may be that there are two separate tuffaceous units here. This unit is strongly chloritic and has a dark green color. The feldspars

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-03 Au fin Metal Au AA Dup AA Grav From To (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) 0.00 0.00 0.00 206.74 0.50 206.24 DC007319 SCHIST UNDIFFERENTIATED T9ZS 206.24 207.11 0.02 Pale gray to locally green in color. Moderate to strong foliation with local veinlets of diss pyrite. A 5-7cm 0.37 0.02 206.74 207.11 DC007321 wide qtz-carb vein occupies the upper contact - no VG. Comment Structure Maj.: Type/Core Angle MDF 45 Locally parallel to ca. 206.24 - 207.11 Comment Type/Style/Intensity Alteration Maj: TL VN 206.24 - 207.11 Generally associated with the pyrite. CL VN WM 206.24 - 207.11 206.24 - 207.11 SE PCH + Not as uniform as first expected SI PCH + 206.24 - 207.11 Type/Style/%Mineral Comment Mineralization Maj. : PY DIS 1 206.24 - 207.11 0.01 207.11 207.50 0.39 0.01 DC007322 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 207.50 207.11 T2QFP Same as 204.59m. 0.00 0.30 0.00 208.55 208.85 DC007323 INTERMEDIATE QUARTZ PORPHYRITIC TUFF. 207.50 208.85 T2QP Dark green in color with a well developed fabric. Some carbonate veins parallel to the fabric, some later ones cross cutting. About 1-2% diss pyrite. Upper contact marked by a 2-3cm wide strongly chloritic unit that is moderately MAGNETIC. This marks an inter-tuff region and it may be incipient iron formation.

Hole Number	PRS-03				Project: GO	UDREA	NU						Р	roject Num	ber: 0 5	5300	
From (m)	To (m)		Litholog	y				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
208.85	209.44		IST UNDIFFERENTIATED					DC007324	208.85	209.44	0.59		0.44	-	-	-	0.44
		Similar to previous so tourmaline vein. Incluformation.	chist except that it has 60% of ides fragments of foliated cour	the interval occupied try rock so it clearly p	by a secondary qt post-dates the mai	z-carb- n fabric	;										
		Structure Maj.:	Type/Core Angle	Comment													
		208.85 - 209.44	MDF 46														
		Alteration Maj:	Type/Style/Intensity	Comment													
		208.85 - 209.44	CL PCH														
		208.85 - 209.44	SE INT WM														
		208.85 - 209.44	SI P MS														
		Mineralization Maj. : 208.85 - 209.44	Type/Style/%Mineral PY DIS 2	Comment Veinlets too.													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		209.05 - 209.42	QCT PY		60.0		0										
209.44	216.58		ERMEDIATE QUARTZ PORPI cept for the local addition of fel		⁄hitish lapilli.			DC007325 DC007326					0.08		-	-	0.08 0.00

Project Number: 05300 GOUDREAU Project: Hole Number PRS-03 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) INTERMEDIATE LAPILLI QUARTZ PORPHYRITIC TUFF. 218.88 T2LQP 216.58 Gradational upper contact. Lower contact also gradational but over a shorter distance. Also the next unit has a stronger chloritic alteration and so is green rather than gray. In this unit the lapilli are whitish and flattened parallel to the foliation. 0.02 0.30 0.02 DC007327 227.00 227.30 INTERMEDIATE QUARTZ PORPHYRITIC TUFF. 218.88 227.30 T2QP Relatively strong fabric in some places, otherwise more of a massive green to gray colored unit that doesn't have much alteration. Some indications of bedding. At 224.19m there is a 2cm zone of chlorite with 2-4% pyrite and minor cp. Some secondary carbonate throughout. 0.00 DC007328 227.30 227.60 0.30 0.00 227.30 227.60 QCTV QUARTZ CARBONATE TOURMALINE. Late generation structure overprinting an earlier shear zone. Not much mineralization although there is some tourmaline - unlikely to carry any gold. Comment Type/Core Angle Structure Maj.: Variably due to later veining disrupting the primary 227.30 - 227.60 WDF 72 layering. Type/Style/Intensity Comment Alteration Mai: 227.30 - 227.60 TL VN CL INT WM 227.30 - 227.60

Project Number: 05300 GOUDREAU Project: Hole Number PR\$-03 Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) 227.30 - 227.60 SE PCH WM SI PCH WM 227.30 - 227.60 Comment Mineralization Maj. : Type/Style/%Mineral PY TR 0.5 Not much minerlization. 227.30 - 227.60 vg ca Type/Mineral Vein Maj.: 72 0 227.30 - 227.60 QCT 0.01 0.01 0.30 DC007329 227.60 227.90 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 227.60 239.97 Superficially similar to unit at 218.8m except for the addition of gray fractured feldspar crystals (about 1-2mm in size). Shearing is variably developed although the silicification seems pervasive. Minor amounts of pyritic veinlets with diss crystals but less than 1% of the interval. These veinlets invariably have an alteration selvage of chlorite (dark green). Second generation qtz-carbonate veinlets. A couple of white qtz-tourmaline veins, non-pyritic and no VG. Clearly cross-cut the foliation. **GRANODIORITE** 11D 239.97 240.96 Sharp up hole contact but lower contact runs into a vein and has a strong foliation. The latter two features are related to the movement zone described below. Has distinctive white and pink feldspars with diffuse boundaries as well as blue colored qtz. Primary mafic minerals appear to have been replaced by chlorite and there is a scattering of pyrite. Probably a dyke but it has a mineralogy that is consistent with the volcanic units as well as a weakly developed fabric - these suggest that the dyke is early.

GOUDREAU Project Number: 05300 Hole Number PRS-03 Project: Grav Au fin Au AA Dup AA To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 240.96 242.50 FΖ Fault There are a couple of 1-5cm wide gouge zones and portions of cemented breccia in this section. Overall the core is broken and fractured suggesting a prominent fault in this area. By orienting the fabric in the core with the attitude of the drill hole it is possible to determine the probable attitude of the faults - there appear to be two orientations, conjugate, with the strongest one vertical and oriented about 40 degrees to the main foliation (probably 110 regional then). Other one appears flatter but it is more difficult to orient. There are later qtz-carbonate veins but they are not associated with any mineralization. Fault will make water. 242.50 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 250.10 Weakly to locally moderately foliated - better in proximity to the fault zone above. No significant alteration. Typical blue qtz crystals associated with larger gray fractured feldspars. Some suggestion of internal bedding (narrow ash units). 0.02 0.02 DC007330 260.64 260.94 0.30 0.01 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 250.10 260.94 T2QFP Actually inter-layered QP and distinctive QFP. The latter has brown to orange colored larger feldspar crystals (as opposed to gray). Overall, the two litho types are green colored suggesting a low intensity of alteration. Fabric development is generally weak although there is some alignment of the feldspar crystals. Narrow strongly chloritic zones (with pyrite) are locally developed. The best one is between 254.05 and 254.58m -this one has secondary carbonate and scattered MAGNETITE. Not sure if they are incipient

Hole Number	PRS-03	Project: GOUDREAU						Pi	roject Nurr	ber: 05	5300	
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		iron formation. Some sections of the QP/QFP zone have diss magnetite crystals as well as diss pyt.										
260.94	262.00	T9ZS SCHIST UNDIFFERENTIATED Not a strong T9ZS - has dark green chlorite and pyrite in the upper section that passes into a zone of POTASSIC alteration. Latter appears to be spatially associated with second generation qtz-carbonate veining. Unlikely to contain any gold (no VG) but it has been sampled. No detailed descriptions because too weak.	DC007331	260.94	262.0	0 1.06		0.06	-	-	-	0.06
262.00	269.57	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Similar to the unit at 242.5m. Becomes lighter gray colored (altered?) at about 264m.	DC007332	262.00	262.30	0.30		0.01	-	-	-	0.01
269.57	271.68	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Slightly different than previous QFP due to the abundance of larger whitish to greenish feldspar crystals. In detail the feldspars are mostly altered to greenish sericite and other minerals with only small relicts of the feldspar left. Distinctive enough to separate this unit from the previous QFP.										

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-03 Au AA Dup AA Grav Metal Au fin From To (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 0.05 0.05 273.87 274.17 0.30 DC007333 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 274.17 271.68 Back to the green matrix with gray colored feldspars/blue qtz (same as 242.5m). Fabric increases in this unit up until the shear zone (relatively sharp contact). 0.18 274.17 274.67 0.50 0.18 DC007334 274.17 275.41 T9ZS SCHIST UNDIFFERENTIATED 0.16 Strongly foliated QFP with greenish matrix and minor pyrite at the contact with the gold-rich vein. 275.11 0.44 0.16 DC007335 274.67 Feldspars are flattened but tend to be removed by the alteration. 2.49 2.49 275.11 275.41 0.30 DC007336 Type/Core Angle Comment Structure Maj.: MDF 36 274.17 - 275.41 Comment Type/Style/Intensity Alteration Maj: 274.17 - 275.41 SE PCH Better at top of intersection CL INT WM 274.17 - 275.41 274.17 - 275.41 SI INT WM Type/Style/%Mineral Comment Mineralization Maj. : PY VN 0.5 in wall rock of gold vein. 274.17 - 275.41

Sample # From

DC007337 275.41 275.95

Hole Number PRS-03

Project: GOUDREAU

Project Number: 05300

Au AA Dup AA Grav

Zone (ppm)

822.52

To Length

Metal Au fin

944.12 794.90 794.90

(ppm)

From (m)	To (m)		Litholog	ıv	
(117)	(///				
275.41	275.95	400	RTZ CARBONATE VEIN.		
		No carbonate but cou estimate around 1000 to the fabric orientation) g/t Au. The qtz vein is a gray	y. Abundant gold specks and clouds in this sample - colored early generation type parallel (more or less)	
		zone). Next good tag meterage issues. The error has been consu the new meterage pla	appears to be 300m. In betwee tags have been adjusted with the interval of broken acements. The true meterage value starts	known good tag is 276m (just below the upper gold een there are zones of broken core to account for the hin this interval (276 to 300m) and the initial ~1.5m core. Sample intervals have been adjusted to match - not sure where they did a bit change after this depth	
		Structure Maj.:	Type/Core Angle	Comment	
		275.41 - 275.95	MDF 20	Tends to be shallower here than in the rest of the hol	e.
		Alteration Maj:	Type/Style/Intensity	Comment	
		275.41 - 275.95	CL FF		
		Vein Maj.:	Type/Mineral	% ca vg	
		275.41 - 275.95	QV Au	100.0 20 50	

LITHOLOGY REPORT - Detailed -

Hole Number PRS-03

Project: GOUDREAU

From	To					Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)			Litholog	y					20		(FF7			11.39
275.95	284.08	API	ISLAND ALTERA			DC007341	275.95		0.29		11.91	•	11.39	-	
		Not well band	led but moderately to	strongly altered.	Contains more stringer to diss pyrite than some of to the veinlets of pyrite. A couple of late-stage qtz-	the DC007342	276.24	276.74	0.50		1.29	-	-	-	1.29
					rall, the unit is gray colored.	DC007343	276.74	277.24	0.50		0.24	-	-	-	0.24
				0 , 7		DC007344	277.24	277.74	0.50		37.17	-	38.20	-	38.20
		Whole unit ha	as been sampled.			DC007345	277.74	278.24	0.50		0.59	-	-	-	0.59
		Down hole co	ntact is sharp.			DC007346	278.24	278.74	0.50		1.68	-	-	-	1.68
		Can't seem to	any details so	it will be nut here:	moderate to strong silicification, pervasive but not	DC007347	278.74	279.24	0.50		0.52	-	-	-	0.52
		banded. Inter	stitial chlorite and se	ricite. Strong diss	pyrite sometimes as veinlets.	DC007348	279.24	279.74	0.50		0.05	-	-	-	0.05
						DC007349	279.74	280.24	0.50		0.05	-	-	-	0.05
		Structure Ma	i.: Type/	Core Angle	Comment	DC007350	280.24	280.74	0.50		0.31	0.33	-	-	0.32
		275.95 - 284.8	•	•		DC007351	280.74	281.24	0.50		1.95	-	-	-	1.95
		Alteration Ma		Style/Intensity	Comment	DC007352	281.24	281.74	0.50		0.93	-	-	-	0.93
				•		DC007353	281.74	282.24	0.50		0.13	-	-	-	0.13
		275.95 - 284.8	-	/N WM	With the pyrite generally	DC007354	282.24	282.74	0.50		0.12	-	-	-	0.12
		275.95 - 284.8	88 SE I	PCH WM		DC007355			0.50		2.51	-	-	-	2.51
		275.95 - 284.8	88 SI P	CH MS	Sometimes pervasive over short sections.	DC007356			0.50		1.21	_	_	-	1.21
		Mineralizatio	n Maj. : Type/	Style/%Mineral	Comment	DC007357					0.82	_	_	_	0.82
		275.95 - 284.8	88 PY I	DIS 3		DC007337	200.14	204.00	0.04		0.02				
284.08	286.00	V3BD	BASALTIC DYKE.		DC007358	284.08	284.58	0.50		0.19	-	-	-	0.19	
		Uniform grain	rain size except for possible fine-grained chill z	chill zone at the contacts. Pyrite is relatively evenly	DC007359	284.58	285.10	0.52		0.04	0.04	-	-	0.04	
		distributed as		tinct dark green c	olor with very little in the way of alteration except for	DC007361	285.10	285.60	0.50		6.81	-	-	-	6.81
		iate carbonat	e vening.			DC007362	285.60	286.00	0.40		5.55	-	-	-	5.55

Hole Number PRS-03

Project:

GOUDREAU

Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) Sample # From To Length Zone (ppm) (ppm) Lithology (m) (m) 313.70 361.57 328.00 328.00 286.00 286.41 DC007363 0.41 QUARTZ CARBONATE VEIN. 286.00 286.41 QV Not a carbonate vein but this is the only available code. About 40% of the interval is occupied by early generation qtz veins with specks and clouds of GOLD. Country rock to the veins is a basaltic dyke that doesn't appear to be altered (it is chloritic but not sencitic or siliceous). It is interesting that the orientation of this vein system is at a high angle to the ca compared to the upper gold zone. Structure Maj.: Type/Core Angle Comment WDF 86 Doesn't appear to be a shear zone - just veins in the 286.00 - 286.41 basalt. Alteration Maj: Type/Style/Intensity Comment CL P MS 286.00 - 286.41 Type/Mineral vg Vein Maj.: 86 30 QV Au 40.0 286.00 - 286.41 18.74 18.74 286.41 286.71 0.30 18.63 DC007365 BASALTIC DYKE. 286.41 292.21 V3BD 6.01 Continuation of unit at 284.08m. Perhaps more pyritic veinlets and a stronger fabric - the latter indicates 0.50 6.01 DC007366 286.71 287.21 that the dyke pre-dates at least one of the deformation events. 2.58 2.58 DC007367 287.21 287.71 0.50 1.23 0.50 1.23 DC007368 287.71 288.21 0.09 0.09 0.50 DC007369 288.21 288.71 0.02 288.71 289.21 0.50 0.02 0.03 DC007370 0.03 289.21 289.71 0.50 0.03 DC007371 0.02 0.50 0.02 DC007372 289.71 290.21 0.06 0.06 290.21 290.71 0.50 DC007373 0.22 0.22 DC007374 290.71 291.21 0.50 0.14 0.50 0.14 DC007375 291.21 291.71

Hole Number PRS-03

Project: GOUDREAU

From	То							Au AA	Dup AA	Grav	Metal	Au fin
(m)	(m)	Lithology	Sample #	From	To L	Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
			DC007376	291.71	292.21	0.50		0.37	-	-	-	0.37
292.21	300.00	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC007377	292.21	292.71	0.50		0.06	-	-	-	0.06
		Similar to the unit at 271.68m just prior to the upper gold zone. Upper contact of this unit is chloritic	DC007378	292.71	293.21	0.50		0.05	-	-	-	0.05
		adjacent to the dyke. Contains a couple of API like units (narrow) that have been sampled.	DC007379	293.21	293.75	0.54		0.10	0.09	-	-	0.10
			DC007381	293.75	294.05	0.30		0.12	-	-	-	0.12
			DC007382	297.18	297.48	0.30		0.05	-	-	-	0.05
			DC007383	297.48	297.90	0.42		0.33	-	-	-	0.33
			DC007384	297.90	298.20	0.30		0.04	-	-	-	0.04
			DC007385	298.20	299.03	0.83		0.02	-	-	-	0.02
			DC007386	299.03	299.33	0.30		0.07	-	-	-	0.07
			DC007387	299.33	299.70	0.37		0.42	-	-	-	0.42
			DC007388	299.70	300.00	0.30		0.15	-	-	-	0.15
300.00	301.40	V3BD BASALTIC DYKE.	DC007389	300.00	300.50	0.50		0.47	-	-	-	0.47
		Foliated mafic unit with relatively abundant secondary carbonate. Some weakly pyritic zones with gray	DC007390	300.50	301.00	0.50		0.72	0.67	-	-	0.69
		colored first generation qtz veins parallel to the fabric (sampled).	DC007391	301.00	301.40	0.40		0.58	-	-	_	0.58

Hole Number PRS-03 Project: GOUDREAU Project Number: 05300

	То				Coio #	Erc	T	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)		Litholog		Sample #	From			Zone			(ppiii)		
301.40	315.68		RMEDIATE QUARTZ-FELDS		DC007392	301.40		0.30		0.45	-	-	-	0.45
		Similar to the unit at 2	71.68m at least in the upper p	parts. At about 304m there is a noticeable increase in ge in color from whitish to greenish with some pinker	DC007393	302.32	302.62	0.30		0.09	-	-	-	0.09
		looking varieties. Blue	gtz crystals are slightly larger	than the blue crystals in the tuffaceous units.	DC007394	302.62	302.92	0.30		1.03	-	-	-	1.03
		Lithology variations ar	e present but they all appear	to be facies of the same volcanic/tuffaceous unit.	DC007395	302.92	303.22	0.30		0.09	-	-	-	0.09
		A few minor shear zor	nes creating a more intense fa	bric. Two pyritic shear zones have been sampled. At	DC007396	304.82		0.30		0.01	-	-	-	0.01
		314.42m there is a str	onger more prominent shear : led even though it is not heav	zone fabric that grades into the next unit (API). This	DC007397	305.12	305.42	0.30		0.02	-	-	-	0.02
		Sileai ilas beeli samp	ed even though it is not near	ny pyriuo.	DC007398	305.42	305.72	0.30		0.06	-	-	-	0.06
					DC007399	314.12	314.42	0.30		0.02	-	-	-	0.02
					DC007401		314.92	0.50		0.03	-	-	-	0.03
					DC007402	314.92	315.32	0.40		0.13	-	-	-	0.13
					DC007403	315.32	315.68	0.36		0.03	-	-	-	0.03
315.68	316.98	API ISLA	ND ALTERATION PACKAGE	<u>.</u>	DC007404	315.68	316.18	0.50		0.54	-	-	-	0.54
315.68	316.98	Beige to gray-green in	color, moderately banded. A	few 1cm qtz-carbonate bands parallel to the main	DC007405	316.18	316.68	0.50		0.57	- - 0.15	-	-	0.57
315.68	316.98	Beige to gray-green in fabric although none s	color, moderately banded. A	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated							- - 0.15		- - -	
315.68	316.98	Beige to gray-green in fabric although none s	n color, moderately banded. A seem to contain VG. Diss pyri	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated	DC007405	316.18	316.68	0.50		0.57	- - 0.15		- - -	0.57
315.68	316.98	Beige to gray-green in fabric although none s with minor dark green	n color, moderately banded. A seem to contain VG. Diss pyri chlorite. No distinctive centra	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated I qtz vein.	DC007405	316.18	316.68	0.50		0.57	- - 0.15			0.57
315.68	316.98	Beige to gray-green in fabric although none swith minor dark green Structure Maj.:	n color, moderately banded. A seem to contain VG. Diss pyri chlorite. No distinctive centra Type/Core Angle	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated I qtz vein.	DC007405	316.18	316.68	0.50		0.57	- - 0.15	-		0.57
315.68	316.98	Beige to gray-green in fabric although none s with minor dark green Structure Maj.: 315.68 - 316.98	n color, moderately banded. A seem to contain VG. Diss pyri chlorite. No distinctive centra Type/Core Angle WDF 58	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated qtz vein. Comment	DC007405	316.18	316.68	0.50		0.57	- - 0.15			0.57
315.68	316.98	Beige to gray-green in fabric although none swith minor dark green Structure Maj.: 315.68 - 316.98 Alteration Maj:	n color, moderately banded. A seem to contain VG. Diss pyri chlorite. No distinctive centra Type/Core Angle WDF 58 Type/Style/Intensity	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated qtz vein. Comment	DC007405	316.18	316.68	0.50		0.57	- - 0.15	-		0.57
315.68	316.98	Beige to gray-green in fabric although none swith minor dark green Structure Maj.: 315.68 - 316.98 Alteration Maj: 315.68 - 316.98	n color, moderately banded. A seem to contain VG. Diss pyrichlorite. No distinctive centra Type/Core Angle WDF 58 Type/Style/Intensity CL INT WM	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated qtz vein. Comment	DC007405	316.18	316.68	0.50		0.57	- - 0.15	-		0.57
315.68	316.98	Beige to gray-green in fabric although none swith minor dark green Structure Maj.: 315.68 - 316.98 Alteration Maj: 315.68 - 316.98	r color, moderately banded. A seem to contain VG. Diss pyrichlorite. No distinctive centra Type/Core Angle WDF 58 Type/Style/Intensity CL INT WM SE PCH WM SI P +	few 1cm qtz-carbonate bands parallel to the main te up to about 3% of the interval, always associated qtz vein. Comment	DC007405	316.18	316.68	0.50		0.57	- - 0.15			0.57

Project Number: 05300 **GOUDREAU** Hole Number PRS-03 Project: Au AA Dup AA Grav Metal Au fin From To (ppm) (ppm) (ppm) (ppm) (ppm) Lithology Sample # From To Length Zone (m) (m) 0.12 316.98 317.68 0.70 0.12 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007407 316.98 318.24 T2QFP 0.00 0.00 Strongly sheared variety but not much mineralization (sampled though). DC007408 317.68 318.24 0.43 DC007409 318.24 318.74 0.50 0.43 GRANODIORITE 318.24 325.53 I1D Distinctive bluish to pinkish color with moderately chloritised matrix. Upper ~ 2 meters is strongly foliated and hematitic probably due to proximity to the previous shear zone. Grain size only slightly finer-grained at the contacts - this is still apparent in the sheared sections. 0.00 DC007410 336.42 336.72 0.30 0.00 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 325.53 336.72 Same geology as unit at 301.40m. Scattered, but abundant, later carbonate gashes and veinlets. Towards the bottom of the unit there is a rapid increase in the amount of carbonate porphyroblasts (proximity to next shear zone, then later porphyroblastesis?). Most of the unit has a massive matrix and there is a local development of hematitic staining to some of the larger feldspar crystals.

vg

30

DC007423 341.50 341.95

0.45

62

Hole Number PRS-03

From

(m)

336.72

To

(m)

340.20

T9ZS

Structure Maj.:

336.72 - 340.20

Alteration Mai:

336.72 - 340.20

336.72 - 340.20

336.72 - 340.20 336.72 - 340.20

336.72 - 340.20

338.48 - 338.60

gold distribution).

Vein Maj.:

T2QFP

Mineralization Maj. :

Project:

Lithology

Same late qtz-carbonate gashes and veinlets are present within the shear zone. API looking rock

INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.

Same as 325.53m. Minor patchy silicification but not part of the shear zone (sampled though to assess

Broad zone of shearing, not very intense but it is better than the country rocks. Generally a green colored silicified unit on the either side of a central GOLD-bearing qtz vein. However, for about 50cm on either side of the qtz vein there is a sericitic silicified zone that looks more like an API. Pyrite is present but not

Comment

Comment

Comment

Narrow millimetric.

Tends to be a constant fabric orientation.

Sometimes diss or microveinlets

95.0

SCHIST UNDIFFERENTIATED

sometimes has a pinkish hue that may be due to potassic re-distribution.

Type/Core Angle

SE PCH WM

CL P MS

SI PCH MS

PY TR 0.5

Type/Mineral

QCV Au

Type/Style/%Mineral

Type/Style/Intensity

MDF 62

TL VN

abundant - disseminated pyrite that is locally as veinlets.

GOUDREAU

Sample #	From	To Le	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)	
DC007411	336 72	337 22	0.50		0.00	-	_	_	0.00	
							_	-		
							_			
							_			
							_			
							-			
							-			
DC007419	339.60	340.20	0.40		0.02	-	-	-	0.02	
DC007421	340.20	340.50	0.30		0.01	-	-	-	0.01	
DC007422	340.50	341.50	1.00		0.02	-	-	-	0.02	
	DC007411 DC007412 DC007413 DC007414 DC007416 DC007417 DC007419 DC007419	DC007411 336.72 DC007412 337.22 DC007413 337.72 DC007414 338.30 DC007416 338.60 DC007417 338.90 DC007418 339.40 DC007419 339.80	DC007411 336.72 337.22 DC007412 337.22 337.72 DC007413 337.72 338.30 DC007414 338.30 338.60 DC007416 338.60 338.90 DC007417 338.90 339.40 DC007418 339.40 339.80 DC007419 339.80 340.20	DC007411 336.72 337.22 0.50 DC007412 337.22 337.72 0.50 DC007413 337.72 338.30 0.58 DC007414 338.30 338.60 0.30 DC007416 338.60 338.90 0.30 DC007417 338.90 339.40 0.50 DC007418 339.40 339.80 0.40 DC007419 339.80 340.20 0.40	DC007411 336.72 337.22 0.50 DC007412 337.22 337.72 0.50 DC007413 337.72 338.30 0.58 DC007414 338.30 338.60 0.30 DC007416 338.60 338.90 0.30 DC007417 338.90 339.40 0.50 DC007418 339.40 339.80 0.40 DC007419 339.80 340.20 0.40	Sample # From To Length Zone (ppm) DC007411 336.72 337.22 0.50 0.00 DC007412 337.22 337.72 0.50 0.01 DC007413 337.72 338.30 0.58 0.16 DC007414 338.30 338.60 0.30 205.23 DC007416 338.60 338.90 0.30 1.00 DC007417 338.90 339.40 0.50 0.06 DC007418 339.40 339.80 0.40 0.05 DC007419 339.80 340.20 0.40 0.02	DC007411 336.72 337.22 0.50 0.00 - DC007412 337.22 337.72 0.50 0.01 - DC007413 337.72 338.30 0.58 0.16 - DC007414 338.30 338.60 0.30 205.23 - DC007416 338.60 338.90 0.30 1.00 1.19 DC007417 338.90 339.40 0.50 0.06 - DC007418 339.40 339.80 0.40 0.05 - DC007419 339.80 340.20 0.40 0.02 -	Sample # From To Length Zone (ppm) (ppm) (ppm) DC007411 336.72 337.22 0.50 0.00 - - DC007412 337.22 337.72 0.50 0.01 - - DC007413 337.72 338.30 0.58 0.16 - - DC007414 338.30 338.60 0.30 205.23 - 219.12 DC007416 338.60 338.90 0.30 1.00 1.19 - DC007417 338.90 339.80 0.40 0.05 - - DC007418 339.80 340.20 0.40 0.02 - - DC007419 339.80 340.20 0.40 0.02 - -	Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) DC007411 336.72 337.22 0.50 0.00 - - - DC007412 337.22 337.72 0.50 0.01 - - - DC007413 337.72 338.30 0.58 0.16 - - - DC007414 338.30 338.60 0.30 205.23 - 219.12 205.33 DC007416 338.60 338.90 0.30 1.00 1.19 - - DC007417 338.90 339.40 0.50 0.06 - - - DC007418 339.40 340.20 0.40 0.02 - - - DC007419 339.80 340.20 0.40 0.02 - - -	Sample # From To Length Zone (ppm) (ppm) <th< td=""></th<>

0.01

Project Number: 05300

0.01

340.20

341.95

Project Number: 05300 Hole Number PRS-03 Project: GOUDREAU Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) Sample # From To Length Zone (ppm) (ppm) (ppm) Lithology (m) (m) 0.03 0.45 0.03 QCTV QUARTZ CARBONATE TOURMALINE. DC007424 341.95 342.40 341.95 342.40 Multiple qtz-carbonate tourmaline veins. No VG but patchy chlorite, sericite and silicification. Structure Maj.: Type/Core Angle Comment 341.95 - 342.40 WDF 62 Not very intense. Alteration Maj: Type/Style/Intensity Comment 341.95 - 342.40 TL VN WM SE PCH 341.95 - 342.40 CL PCH WM 341.95 - 342.40 341.95 - 342.40 SI PCH WM Vein Maj.: Type/Mineral ca vg QCT 68 0 341.95 - 342.40 DC007425 342.70 0.30 0.02 0.02 342.40 360.80 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 342.40 Has the typical green colored matrix with c-g distinctive feldspars and finer-grained blue colored qtz 0.01 DC007426 360.50 360.80 0.30 0.01 crystals. Fabric is only weakly developed although there are a few narrow (<10cm) zones of more intense foliation development. Late QTZ vein: 352.46m to 353.16m. Cross cuts the fabric, minor carbonate component, minor tourmaline, no pyrite. More than 90% of vein is milky colored qtz. Below the vein the feldspars are euhedral, more abundant and generally orange to pink in color. The latter appears to reflect alteration of pre-existing feldspars. Portions of the unit look to be intrusive but margins difficult to determine. Relatively abundant late carbonate veins and gashes.

Hole Number	PRS-03			Project: GOUDREAU						Pr	oject Num	ber: 05	300	
From (m)	To (m)		Litholog	y	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
360.80	363.50	Weak to very loca silicification. Relic	SCHIST UNDIFFERENTIATED ally moderately deformed. No sign at country rock still present locally. as - sampled at 1m intervals.	ificant pyrite although there is moderate patchy Weak alteration gives the rock a pinkish hue locally.	DC007427 DC007428 DC007429	360.80 361.80 362.80	361.80 362.80 363.50	1.00		0.02 0.01 0.01	- - -	- - -	- -	0.02 0.01 0.01
		Structure Maj.: 360.80 - 363.50 Alteration Maj: 360.80 - 363.50 360.80 - 363.50 360.80 - 363.50 360.80 - 363.50	Type/Core Angle WDF 32 Type/Style/Intensity TL VN CL INT SE INT SI PCH WM	Comment Sometimes steeper. Comment Very minor.										
363.50	366.00	T2QFP // Same as 342.40r	NTERMEDIATE QUARTZ-FELDS n.	SPAR PORPHYRITIC TUFF.	DC007430 DC007431	363.50 365.70	363.80 366.00			0.00		-	-	0.00 0.00

Project Number: 05300 Hole Number PRS-03 Proiect: GOUDREAU Au AA Dup AA Grav Metal Au fin From To (ppm) Sample # From To Length Zone (ppm) (ppm) (ppm) Lithology (m) (m) 0.00 T9ZS SCHIST UNDIFFERENTIATED DC007432 366.00 367.00 1.00 0.00 366.00 367.84 Similar to schist at 360.80m except that it may have a stronger fabric. Also has a central early vein 0.00 DC007433 367.00 367.56 0.56 0.00 system with associated carbonate alteration. Vein is qtz-carb, chlorite and tourmaline. 0.00 0.00 DC007434 367.56 367.84 0.28 Structure Maj.: Type/Core Angle Comment 366.00 - 367.84 MDF 62 Alteration Maj: Type/Style/Intensity Comment 366.00 - 367.84 SI PCH WM 366.00 - 367.84 TL VN WM 366.00 - 367.84 INT WM 366.00 - 367.84 CL P MS Vein Maj.: Type/Mineral ca vg 367.32 - 367.56 **QCT** 56 0 0.00 0.00 DC007435 367.84 368.16 0.32 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 367.84 372.50 Typical monotonous green colored coarse-grained QFP with distinct blue qtz crystals and gray colored feldspars. Fabric is only weakly developed. 372.50 386.08 V2QFP INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. Distinctly different to the last unit - has 0.5 to 1cm feldspar crystals as well as finer-grained blue qtz. Feldspars are either white or orange colored randomly dispersed in the green colored fine-grained matrix. Feldspars generally euhedral although appear to be resorbed (magmatic?). Looks like an intrusion with a

Hole Number PRS-03 Project Number: 05300

From To
Au AA Dup AA Grav Metal Au fin
(m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm)

slightly finer-grained upper portion. Upper contact is difficult to discern and appears to be marked by a 3cm qtz-carb-tourmaline vein. Lower contact is marked by a gradual increase in the foliation intensity.

386.08 389.28 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.

Different from the previous unit - tends to have fine-grained feldspars and qtz crystals in a moderately well foliated matrix. Lower contact marked by broken core but it appears to be gradational with the lapilli rich QFP.

389.28 402.00 T2LQFP INTERMEDIATE LAPILLI FELDSPAR QUARTZ PORPHYRITIC TUFF.

Still has a weak to moderate fabric with flattened feldspar and whitish 5mm lapilli. Strong chlorite component in the matrix as well as a few scattered pyrite crystals. Fabric is about 42 degrees to core axis - a lot of the fabric is made up of mm scale zones rich in green chlorite. A few minor qt-carb veinlets with localized tourmaline.

At 400.50m there is a barren late qtz vein.

Some sections have scattered MAGNETITE crystals.

180,00

-48.00

351.00

20-Feb-08

24-Feb-06

28-Oct-06

Logging change at 171,30m (CM)

\$amples: DC002801-DC002828;DC002851-DC002878; DC011058-DC011213.

Hole Number PRS-02

Dritting Azimuttic

Dip:

Langth:

Started:

Logged:

Completed:

Length;

Pulled:

Capped:

Comented:

DRILL HOLE REPORT

(P.									ę	hris Moreka
	Proje	ct: 60 1	JDREAU						Project Number:	95380
	Core					Location			Other	age tame t
33	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton / M. Guay
	Storage;	isia nd	Gald Proj	ect .		Claim No.:	3817		Releg by:	
	Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
	Hole Type	SEXP				Hote:	Suitace		Company:	Mines Richmont
									Spotted by:	C. Moreton
				Coord	inste				Surveyed:	yes
	Gerncom		UTM		Military		Variable		Surveyed by:	G.Lamothe(GPS)
	East:	15710.4	East:	691071.2	East:	15710.4	East:	0	Geophysics:	
	North:	4898.9	North:	5352307.3	North:	4896.9	North:	0	Geoph. Contract:	
	Elev.:	5388	Elev.:	5388	Eiey.:	5388	Elev.:	6	Left in bole:	
			Zons:	16					Making water:	
			NAD:	83					Multi shot surv.:	

Deviation Tests

Distance	Axlanath	Dip	Type	Good	Comment
0.00	180,06	-46.00	С	Ø	
42.00	177.60	-45.30	F	\mathbf{Z}	5672
72.00	175.40	-44.70	F		5686
102.00	177.90	-44.20	F	\square	5668
132.00	177.40	-44.20	F	\mathbf{Z}	5687
162.00	177.20	-44.00	F	\mathbf{Z}	5006
192.00	176.30	-43.50	F	2	5765
222.00	175.90	-43.70	F	\mathbf{Z}	5671
252.00	176.90	-42.70	F	\mathbf{z}	5659
262.00	177.80	-42.60	r		5685
312.00	176.00	-42.50	F	5	5670
342.00	176.20	42.50	F	\mathbf{Z}	5650

DRILL HOLE REPORT

Hole Number				Projec	t: GOU	DREAU						Project Number:	05300	
Drilling Azimuth: Dip: Length: Started:	180.00 -46.00 351.00 20-Feb-06	Casing Length: Pulled: Capped: Cemented:	33	Core Dimension: Storage: Section: Hole Type	NQ Island SEXP	Gold Proje	ect		Location Township: FINAN Claim No.: 3817 NTS: 42C/08 Hole: Surface			Other Logged by: Relog by: Contractor: Company: Spotted by:	C. Moreton / M. Guay Orbit Drilling Inc Mines Richmont C. Moreton	
Completed: Logged:	24-Feb-06 28-Oct-06						Coord	inate Mine		Variable		Surveyed: Surveyed by:	yes G.Lamothe(GPS)	
Comment:	Samples: DC002801-DC0028 DC011058-DC011213. Logging change at 171.30m (Gemcom East: North: Elev.:	15710.4 4898.9 5388		691071.2 5352307.3 5388 16 83	East: North:			0 0	Geophysics: Geoph. Contract:		

NAD:

83

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-46.00	С	✓	
42.00	177.60	-45.30	F	✓	5672
72.00	176.40	-44.70	F	\checkmark	5686
102.00	177.90	-44.20	F	✓	5668
132.00	177.40	-44.20	F		5687
162.00	177.20	-44.00	F	\checkmark	5686
192.00	176.30	-43.50	F	✓	5755
222.00	175.90	-43.70	F	✓	5671
252.00	176.90	-42.70	F	\checkmark	5669
282.00	177.60	-42.60	F	\checkmark	5685
312.00	176.90	-42.50	F	Y	5670
342.00	176.20	-42.50	F	✓	5660

Project Number: 05300 GOUDREAU Project:

110,1120,	PRS-02			Project: GOUDREAU										
F rom (m)	To (m)		Lithology	,	Sample #	From	To L	ength	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
0.00	33.00	CSG Casing												
	54.70	T070 CCUIC	T UNDIFFERENTIATED		DC002801	36.00	37.00	1.00		0.01	-	-	-	0.01
33.00	33.00 54.73 T9ZS SCHIST UNDIFFERENTIATED Pale greenish grey to green. Well developed shear zone. Relic blues quartz eyes are common. More alteration in carbonate and chlorite. Few section are sericitised and silicified. Locally quartz bouding Veinlets of carbonate transposed in the schistosity plane. Average schistosity at 70 degrees c.a. Transport throughout the unit. The contact with the next unit is almost sharp at 70 degrees c.a.	zone. Relic blues quartz eyes are common. Moderate	DC002802	37.00	38.00	1.00		0.01	-	-	-	0.01		
		sencinsen ann shichleu. Locany quarz boudins.	DC002803	38.00	39.00	1.00		0.16	-	-	-	0.16		
		unit is almost sharp at 70 degrees c.a.	DC002804	39.00	40.00	1.00		0.65	-	-	-	0.65		
				DC002805	43.50	44.50	1.00		1.82	-	-	-	1.82	
		Structure Maj.:	Type/Core Angle	Comment	DC002806	44.50	45.00	0.50		0.03	-	-	-	0.03
		33.00 - 54.73	SDF 70		DC002807	45.00	45.45	0.45		0.17	-	-	-	0.17
		Alteration Maj:	Type/Style/Intensity	Comment	DC002808	45.45	45.95	0.50		0.00	-	-	-	0.00
			SE PCH		DC002809	53.73	54.73	1.00		0.06	-	-	-	0.06
		33.00 - 45.00	CB P ++											
		33.00 - 45.00												
		33.00 - 45.00	CL P ++											
		45.00 - 45.45	CB P +											
		45.00 - 45.45	SI P ++											
		45.00 - 45.45	SE P ++	•										
		45.45 - 54.73	SE PCH											
		45.45 - 54.73	CB P ++											
		45.45 - 54.73	CL P ++											
		Mineralization Maj.: 33.00 - 45.00	Type/Style/%Mineral PY DIS 0.5	Comment										

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) PY DIS 1 45.00 - 45.45 PY DIS 0.5 45.45 - 54.73 ca νg Type/Mineral Vein Mai.: 2.0 70 33.00 - 54.73 Qs pytr 0.12 0.13 58.40 0.70 0.11 57.70 DC002811 **GRANODIORITE** 54.73 134.62 I1D 0.06 Pale grey to medium green. Coarse grained. Massive. Many little shear zone and quartz vein inside. Two 62.40 0.60 0.06 61.80 DC002812 major type. Quartz tourmaline and quartz carbonate. Weak to strong sericitisation. Locally trace of pyrite. 0.00 0.00 DC002813 62.40 63.00 0.60 Weak to strong sencitisation. 0.17 0.17 65.60 66.71 1.11 DC002814 0.05 0.05 0.67 DC002815 69.66 70.33 Type/Core Angle Comment Structure Maj.: 0.00 82.53 82.83 0.30 0.00 DC002816 MDF 30 61.80 - 63.00 3.85 3.85 1.01 DC002817 94.86 95.87 82.57 - 82.83 SDF 70 0.88 0.88 108.37 1.00 DC002818 107.37 MDF 65 107.37 - 108.27 0.33 0.84 0.33 108.37 109.21 DC002819 115.02 - 115.32 **WDF 70** 0.04 0.01 0.07 DC002820 111.34 112.02 0.68 WDF 60 115.93 - 116.34 0.04 0.04 112.50 0.48 DC002821 112.02 121.52 - 121.90 SDF 50 0.30 0.30 0.46 112.50 112.96 DC002822 122.01 - 122.01 SDF 55 0.09 0.30 0.09 115.02 115.32 DC002823 126.42 - 130.83 MDF 60 0.00 0.00 MDF 60 DC002824 115.32 115.93 0.61 133.95 - 134.62 0.93 0.93 115.93 116.34 0.41 DC002825 Comment Type/Style/Intensity Alteration Maj: 0.01 0.52 0.01 121.00 121.52 DC002826 CL P + 82.57 - 82.83 1.47 121.90 0.38 1.47 DC002827 121.52 CB P + 82.57 - 82.83 1.31 1.31 DC002828 121.90 122.35 0.45 SE P + 121.52 - 121.90 0.28 0.28 0.77 DC002851 126.42 127.19 CL P + 121.52 - 121.90 0.47 0.30 0.47 127.19 127.49 DC002852 SE P + 0.39 122.01 - 122.11 0.39 127.49 128.49 1.00 DC002853

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Grav Metal Au fin Au AA Dup AA From To (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) 0.02 0.02 DC002854 128.49 129.55 1.06 122.01 - 122.11 CL P + 0.12 0.12 129.55 0.61 DC002855 130.16 CB P + 126.42 - 130.83 0.21 130.16 130.83 0.67 0.21 DC002856 SE P + 126.42 - 130.83 0.14 0.14 DC002857 133.95 134.62 0.67 0.13 0.13 0.78 134.62 135.40 UNDIFFERENTIATED FELSIC VOLCANIC SCHIST WITH QUARTZ EYES. DC002858 V1ZSQP 134.62 135.40 Medium greenish grey color. Few relic blues quartz eyes. Weak sericitisation and carbonatization. Moderate schistosity at 60 degrees c.a. Few carbonate veinlets. UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. 135.40 137.13 V1QFP Medium grey matrix. Reddish feldspar porphyrys 15% vol.. Few blue quartz eyes. 0.21 0.21 0.75 DC002859 137.13 137.88 SCHIST UNDIFFERENTIATED 137.13 137.88 T9ZS Medium green to reddish color. Few relic blue quartz eyes. Strong deformation at 60 degrees c.a. Weak chloritisation carbonatization and hematization. Type/Core Angle Comment Structure Maj.: 137.13 - 137.88 SDF 60 Alteration Maj: Type/Style/Intensity Comment HM PCH 137.13 - 137.88

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au fin Au AA Dup AA From To (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m)CB PCH 137.13 - 137.88 CL PCH 137.13 - 137.88 Type/Style/%Mineral Comment Mineralization Maj.: PY DIS 0.5 137.13 - 137.88 0.00 0.00 137.88 138.55 0.67 DC002861 UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. 137.88 141.05 V1QFP 0.01 0.56 0.01 Same as 135.4 to 137.13 m. Locally hematised and carbonatized. Trace of pyrite. DC002862 138.55 139.11 0.07 1.00 0.07 139.11 140.11 DC002863 10.62 10.62 0.38 144.50 144.88 INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. DC002864 146.55 V2QFP 141.05 0.48 Medium green color. Few carbonate veinlets in the schistosity plan. Moderate schistosity at 60 degrees. 146.03 146.55 0.52 0.48 DC002865 Type/Mineral Vein Maj.: 144.50 - 144.88 QTV 146.40 - 146.55 Q۷ UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC. 11QFP 146.55 148.22 Medium green matrix. Reddish feldspar porphyrys. Rare quartz eyes porphyrys. Massive and

149.00 - 150.28

149.00 - 150.28

149.00 - 150.28

Mineralization Maj.:

CB PCH + CL P +

PY CU 1

Type/Style/%Mineral

Comment

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) homogeneous. No sharp contact. INTERMEDIATE VOLCANIC QUARTZ-FELDSPAR PORPHYRY. 148.22 149.00 V2QFP Same as 141.05 to 146.55 m. 0.50 0.50 149.00 150.28 1.28 DC002866 SCHIST UNDIFFERENTIATED 149.00 150.28 T9ZS Medium green color. Moderate chloritisation and carbonatization. Very heterogeneous. Few quartz boudins. Type/Core Angle Comment Structure Maj.: MDF 50 149.00 - 150.28 Comment Type/Style/Intensity Alteration Maj:

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au fin Au AA Dup AA Grav Metal To (ppm) From (ppm) (ppm) (ppm) Zone To Length From Sample # Lithology (m) (m) 0.19 0.19 0.48 DC002867 150.28 150.76 UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ-FELDSPAR PORPHYRY. V1QFP 158.10 150.28 Medium greenish grey color. Well define feldspar porphyrys. Rare blue quartz eyes. No sharp contact with the underlying unit. Few carbonate veinlets. 0.10 0.68 0.10 167.05 167.73 DC002868 INTERMEDIATE TUFF UNDIFFERENTIATED. T2Z 158.10 167.73 Medium green color. Weak chloritisation and carbonatization. Weak schistosity at 45 degrees c.a. Trace of pyrite. Carbonate veinlets. Comment Type/Core Angle Structure Maj.: MDF 40 158.10 - 167.73 Comment Alteration Maj: Type/Style/Intensity CB P 158.10 - 167.73 CL P 158.10 - 167.73 1.68 1.68 1.07 167.73 168.80 DC002869 ISLAND ALTERATION PACKAGE. API 171.30 167.73 0.01 0.01 Medium to pale grey color. Well develop and altered. Strong alteration in carbonate and silica and 0.64 168.80 169.44 DC002870 sericite. Few quartz boudins. Strong schistosity at 45 to 55 degrees c.a. Few relic blue quartz eyes. 0.24 0.24 0.36 DC002871 169.44 169.80 0.24 0.55 0.24 170.35 DC002872 169.80 0.87 0.87 171.00 0.65 170.35 Type/Core Angle Comment DC002873 Structure Maj.: 0.80 0.80 171.00 171.30 0.30 MDF 50 DC002874 167.73 - 169.80 **SDF 45** 169.80 - 171.30 Type/Style/Intensity Comment Alteration Maj:

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone To Length Sample # From Lithology (m) (m) CL P + 167.73 - 169.44 CB P + 167.73 - 169.44 SE P + 167.73 - 169.44 SI P ++ 169.44 - 171.30 CB P ++ 169.44 - 171.30 SE P ++ 169.44 - 171.30 Type/Style/%Mineral Comment Mineralization Maj. : PY DIS 2 167.73 - 169.44 PY DIS 7 169.44 - 171.30 ca vg Type/Mineral Vein Maj.: 5.0 45 QV 167.73 - 171.30 0.20 171.87 0.57 0.20 171.30 DC011058 SCHIST UNDIFFERENTIATED T9ZS 171.30 172.89 0.06 Weak to locally moderate schistosity. Blue qtz crystals (5mm) within a dark green foliated matrix with a 0.06 1.02 DC011059 171.87 172.89 few 1cm ribbon qtz bands - these have trace diss pyrite in the vein but more so in the wall rock. Type/Core Angle Comment Structure Maj.: MDF 35 171.30 - 172.89 Comment Type/Style/Intensity Alteration Maj: 171.30 - 172.89 CL P MS Concentrated in a few zones. SI PCH WM 171.30 - 172.89 Type/Style/%Mineral Comment Mineralization Maj. : PY TR 0.5 171.30 - 172.89

Hole Number PRS-02

Project:

GOUDREAU

Project Number: 05300

(ppm)

Au AA Dup AA Grav

(ppm)

0.38

(ppm)

0.02

0.37

0.46

Zone

To Length

172.89 173.54

174.30 174.77

174.30

173.54

0.65

0.76

0.47

Sample # From

DC011061

DC011062

DC011063

Metal

(ppm)

Au fin

(ppm)

0.02

0.37

0.42

Hole Number	PR3-02										
From	То		l ish a la ma								
(m)	(m)		Litholog								
172.89	174.77		ALTERATION PACKAGE								
		Not a good example of an API but it is more bleached and altered than the adjacent T9ZS. A weak fabric in the central portion but there is no central vein. Central part has a stronger blue-gray silicification with better py and po mineralization.									
		Structure Maj.:	Type/Core Angle	Comment							
		172.89 - 174.77	MDF 36								
		Alteration Maj:	Type/Style/Intensity	Comment							
		172.89 - 174.77	CL PCH								
		172.89 - 174.77	SE PCH WM								
		172.89 - 174.77	SI P MS								
		Mineralization Maj. :	Type/Style/%Mineral	Comment							
		172.89 - 174.77	PO BL 0.5								
		172.89 - 174.77	PY STR 1	Also diss							
174.77	178.71		UNDIFFERENTIATED								
		Shoulder unit to the API of blue-gray silicification unit.	. Variably altered and mode and associated veinlet pyr	erately deformed. Generally a green color with patches ite mineralization. Doesn't appear to be any po in this							
		177.83: 10cm qtz-carb v	ein cross-cutting the main	fabric.							
		Alteration Maj:	Type/Style/Intensity	Comment							
		174.77 - 176.31	CL PCH MS								
		174.77 - 176.31	SI P MS								
		Mineralization Maj. : 174.77 - 176.31	Type/Style/%Mineral PY STR 1	Comment Folded and elongate pyt veinlets							

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) 0.24 0.24 0.30 193.31 193.61 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC011064 178.71 193.61 T2QFP Similar to other examples: scattered blue qtz crystals and fractured gray colored feldspar clasts. Some sections are silicified with a moderately well developed fabric but the width and intensity of alteration is not sufficient enough to separate out as sub-units. Some sections contain diss MAGNETITE and PYRITE crystals but these are not common. Late carbonate-filled tension gashes in this unit. Only a few qtz-carbonate veins (early?) parallel to the main fabric. 1.85 1.85 193.61 194.61 1.00 DC011065 197.97 FΖ Fault 193.61 1.96 Late brittle fault: appears to be a RE-ACTIVATED early shear zone. Qtz veins are disrupted into partial 1.96 1.00 DC011066 194.61 195.61 boudins. About 60% of the interval is vein qtz while the remainder is a mixture of sericite and chloritic 1.20 1.20 196.61 1.00 DC011067 195.61 alteration. Schistosity is well developed in this waste rock. A few specks of pyrite but no VG in the qv 11.19 11.19 while there is 2-3% pyt in the wall rock (suggests that this mineralization is early). Some of the veins 11.11 1.00 DC011068 196.61 197.61 contain tourmaline and minor carbonate. 1.14 0.36 1.14 197.97 DC011069 197.61 Any values probably reflect the mineralization in the early shear zone.

Weakly altered and foliated - just a less altered portion of the larger shear zone.

Hole Number PRS-02

Project:

GOUDREAU

Project Number: 05300

rom (m)	To (m)		Litholog	v	Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
197.97	199.38	T9ZS SCHIS	T UNDIFFERENTIATED		DC011070	197.97	198.27	0.30		0.31	-	_	-	0.31
151.51	133.30	Predominantly a chloriti	ic T9ZS with local zones of p	oinkish sericite and a few layer-parallel qtz veins.	DC011071	198.27	198.87	0.60		1.18	-	-	-	1.18
		Contains a weak to loca	ally moderate fabric with pate veins). Some veins contain	chy silicification and pyritic mineralization (generally	DC011072	198.87	199.38	0.51		0.26	-	-	-	0.26
		Structure Maj.:	Type/Core Angle	Comment										
		197.97 - 199.38	MDF 65											
		Alteration Maj: Type/Style/Intensity Comment		Comment										
		197.97 - 199.38	TL SP											
		197.97 - 199.38	SE PCH WM											
		197.97 - 199.38	SI PCH WM											
		197.97 - 199.38	CL P +											
		Mineralization Maj.: 197.97 - 199.38	Type/Style/%Mineral PY DIS 1	Comment Locally as veinlets. Stronger with the chlorite.										

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) Zone (ppm) (ppm) Sample # From To Length Lithology (m) (m) 0.17 DC011074 200.16 201.16 1.00 0.17 200.16 205.71 T9ZS SCHIST UNDIFFERENTIATED Really a continuation of the T9ZS at 197.97m. Has a stronger fabric locally and is more strongly bleached 0.51 0.51 0.60 DC011075 201.16 201.76 in the central section (but not up to API quality). 2.42 0.60 2.42 201.76 202.36 DC011076 1.04 203.16 to 203.60m: qtz injection within brittle fault zone. Small amount of gouge. 202.36 202.96 0.60 1.04 DC011077 2.27 2.27 DC011078 202.96 203.75 0.79 0.04 1.96 0.04 DC011079 203.75 205.71 Type/Core Angle Comment Structure Maj.: 200.16 - 205.71 MDF 47 Comment Type/Style/Intensity Alteration Maj: TL SP 200.16 - 205.71 CL P WM 200.16 - 205.71 200.16 - 205.71 SE PCH WM SI P MS 200.16 - 205.71 Type/Style/%Mineral Mineralization Maj. : Comment 200.16 - 205.71 CP VN 0.5 At 200.50m PY DIS 1 200.16 - 205.71 0.02 205.71 206.01 0.30 0.02 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC011081 205.71 209.97 T2QFP Brownish gray to green color with a couple of late brittle fractures filled with qtz, carbonate and 5-7% 0.04 0.30 0.04 DC011082 209.67 209.97 pyrite. Unit appears to have a silicification overprint with weak alteration of the feldspars (have a cloudy

appearance locally). Some of the feldspars are euhedral and evenly distributed so that it is possible that

this unit is flow of some sort. Weak shear zones overprint the unit.

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au fin Grav Metal Au AA Dup AA From To (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) 0.01 210.97 1.00 0.01 0.01 DC011083 209.97 SCHIST UNDIFFERENTIATED T9ZS 211.85 209.97 0.05 0.05 Again, another weak example of this type of unit. Fabric is moderate as is the silicification. Chlorite DC011084 210.97 211.85 0.88 alteration predominates over sericite. Diss pyrite but only in trace amounts. Minor MAGNETITE and local late carbonate filled fractures. Structure Maj.: Type/Core Angle Comment WDF 34 209.97 - 211.85 Comment Alteration Maj: Type/Style/Intensity CL PCH WM 209.97 - 211.85 209.97 - 211.85 SI P WM Mineralization Maj. : Type/Style/%Mineral Comment PY TR 0.5 209.97 - 211.85 0.01 0.30 0.01 DC011085 211.85 212.15 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 218.66 211.85 0.01 0.01 Typical example although some areas are weakly altered and mildly deformed. Minor intense areas of 0.30 218.36 218.66 DC011086 silicification and associated veinlet pyrite mineralization. Patchy sericite alteration and minor amounts of disseminated MAGNETITE. Some late carbonate filled tension gashes. 0.18 0.50 0.18 DC011087 218.66 219.16 SCHIST UNDIFFERENTIATED 220.41 T9ZS 218.66 0.04 0.04 Weak example -compared to the country rock it shows an increased foliation intensity and silicification, DC011088 219.16 219.76 0.60 particularly in the centre of this unit over about 25cm. Small vein in the centre (3cm wide) has tourmaline 0.02 0.02 219.76 220.41 0.65 DC011089 crystals too - the sericitic alteration surrounds this vein. Relict feldspars still visible with scattered blue qtz crystals.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Au fin Metal Au AA Dup AA Grav (ppm) (ppm) (ppm) To Zone To Length From Sample # From Lithology (m) (m) Comment Type/Core Angle Structure Maj.: MDF 56 218.66 - 220.41 Type/Style/Intensity Comment Alteration Maj: 218.66 - 220.41 TL VN CL P MS 218.66 - 220.41 SE PCH 218.66 - 220.41 SI P MS 218.66 - 220.41 Type/Style/%Mineral Comment Mineralization Maj. : Generally within vicintiy of alteration PY DIS 1 218.66 - 220.41 vg Type/Mineral Vein Maj.: 0 90.0 61 QCT py 219.36 - 219.37 0.01 0.67 0.01 220.41 221.08 DC011090 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 0.01 T2QFP 223.29 220.41 0.01 0.30 Green matrix, discrete gray feldspars with blue qtz. Feldspars greater than qtz. Locally mild fabric. 222.99 223.29 DC011091 220.41 to 221.08m: 60% vein qtz. Looks like a late movement zone. 0.02 0.02 1.00 223.29 224.29 SCHIST UNDIFFERENTIATED 0.04 T9ZS 224,96 0.05 223.29 0.67 0.04 Increase in foliation. Gradational upper contact but only over a few cms. Overall green color with darker 224.29 224.96 DC011093 patches that appear to reflect weak tourmaline alteration. There does not appear to be a great amount of sericitic alteration. Comment Type/Core Angle Structure Maj.: MDF 57 223.29 - 224.96

Project Number: 05300 Project: GOUDREAU Hole Number PRS-02 Au fin Au AA Dup AA Grav Metal From To (ppm) (ppm) Zone (ppm) (ppm) (ppm) Sample # From To Length Lithology (m) (m) Type/Style/Intensity Comment Alteration Maj: CB PCH + 223.29 - 224.96 TL SP 223.29 - 224.96 CL P MS 223.29 - 224.96 223.29 - 224.96 SIP+ Type/Style/%Mineral Comment Mineralization Maj. : 223.29 - 224.96 PY TR 0.5 Not much really Vein Maj.: Type/Mineral vg 100.0 37 0 223.54 - 223.61 QCT py 0.02 0.02 DC011095 224.96 225.26 0.30 T2QP INTERMEDIATE QUARTZ PORPHYRITIC TUFF. 224.96 231.00 Also contains a scattering of feldspar crystals within the predominantly green colored matrix. Patchy green gray silicification. Local weak fabric as well as a few narrow sencitic-pyritic alteration zones but not wide enough to separate out. Scattered disseminate MAGNETITE. It is possible that there are flattened altered lapilli in this unit. 0.05 232.64 1.00 DC011097 231.64 SCHIST UNDIFFERENTIATED 231.64 233.39 T9ZS 0.02 Weak example. Generally green in color due to heavy chlorite although there is a gray area in the centre 0.02 DC011098 232.64 233.39 0.75 (over about 35cm) that has better silicification and sericitisation. Diss pyrite evenly scattered throughout the unit some in veinlets. Minor carbonate throughout with locally important euhedral diss MAGNETITE. Structure Maj.: Type/Core Angle Comment WDF 56 231.64 - 233.39 Alteration Maj: Type/Style/Intensity Comment

ole Number	PRS-02			Project: GOUDREAU						P	roject Num	ber: 0	i300	
From (m)	To (m)		Litholog	y	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		231.64 - 233.39	CB PCH											
	•	231.64 - 233.39	CL P MS											
		231.64 - 233.39	SE PCH											
		231.64 - 233.39	SI P ++											
		Mineralization Maj. : 231.64 - 233.39 231.64 - 233.39	Type/Style/%Mineral MG DIS 0.5 PY DIS 1	Comment										
233.39				DC011099	233.39	233.69	0.30		0.01	-	-	-	0.01	
		Only a few small (5mm) green to gray color with	qtz crystals with locally abu a weak to non-existent fabr	indant feldspars in the last 50cm of the unit. Has a ic. Upper and lower contacts are gradational.	DC011101	233.69	234.34	0.65		0.01	-	-	-	0.01
					DC011102	234.34	235.2	3 0.94		0.03	_	_	_	0.03
234.34	237.16		of the previous shear zone	Weak to moderate fabric that has 1cm otz-carbonate	DC011102	235.28	236.2			0.03		-	_	0.03
	Probably a continuation of the previous shear zone. Weak to moderate fab veins parallel to the foliation. Diss pyrite but scattered. Some patches of distourmaline in some places with some in qtz veins/veinlets. Some relatively original rock but only about 10% of the interval - some sections contain ghound lower contacts gradational.		ed. Some patches of diss MAGNETITE. Minor einlets. Some relatively unaltered patches of the	DC011104	236.28				0.04		-	-	0.04	
		Structure Maj.:	Type/Core Angle	Comment										
		234.34 - 237.16	WDF 50	Locally moderate deformation										
		Alteration Maj:	Type/Style/Intensity	Comment										

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Au AA Dup AA Grav Metal Au fin To (ppm) From (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) SE PCH 234.34 - 237.16 SI P WM 234.34 - 237.16 CL MO WM 234.34 - 237.16 Type/Style/%Mineral Comment Mineralization Maj. : As discrete crystals but only local. MG TR 0.5 234.34 - 237.16 Not very abundant 234.34 - 237.16 PY DIS 1 vg Type/Mineral Vein Maj.: 56 100.0 0 QCT 235.28 - 235.33 0.61 0.52 0.61 DC011105 237.16 237.68 ISLAND ALTERATION PACKAGE. 237.68 API 237.16 Strong silicification and pyritic mineralization with local sericitisation. Gray silicification has a granular almost sugary look (probably the central qtz vein). Upper and lower contacts are gradational over a few cms. Comment Type/Core Angle Structure Maj.: MDF 47 237.16 - 237.68 Comment Type/Style/Intensity Alteration Maj: Also as needles locally. TL VN 237.16 - 237.68 Associated with pyrite. CL VN 237.16 - 237.68 SE PCH WM 237.16 - 237.68 SI P MS 237.16 - 237.68 Type/Style/%Mineral Comment Mineralization Maj. : PY VN 4 Also diss 237.16 - 237.68 vg Type/Mineral Vein Maj.: 0 46 60.0 QV py 237.27 - 237.41

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone (ppm) Sample # From To Length Lithology (m) (m) 0.07 0.07 DC011106 237.68 238.68 1.00 SCHIST UNDIFFERENTIATED 240.02 T9ZS 237.68 Similar to unit (prior to API) at 234.34m. Perhaps a couple of patches of more intense pyritic 0.32 0.32 DC011107 238.68 239.68 1.00 mineralization (see details at 234.34m). 1.73 239.68 240.02 0.34 1.73 DC011108 0.50 1.84 1.84 DC011109 240.02 240.52 ISLAND ALTERATION PACKAGE. API 240.02 241.73 Almost identical to previous API at 237.16m Well developed silicification and medium grained diss to 240.52 241.02 0.50 0.33 0.33 DC011110 veinlet pyrite. Chlorite tends to be spatially associated with the pyrite. Some tourmaline as veinlets but 0.89 DC011111 241.02 241.73 0.71 0.89 generally as discrete fine crystals. The central vein is actually sheeted 5mm qtz veins that have a granular and/or sugary texture. Strong silicification in this zone. Type/Core Angle Comment Structure Mai.: MDF 60 240.02 - 241.73 Comment Alteration Maj: Type/Style/Intensity 240.02 - 241.73 TL SP Needles 240.02 - 241.73 CL VN WM Associated with pyrite SE PCH WM In the central vein really 240.02 - 241.73 SI P MS 240.02 - 241.73 Type/Style/%Mineral Comment Mineralization Maj. : Microveinlets really PY STR 5 240.02 - 241.73 ca vg Vein Maj.: Type/Mineral 70.0 60 QTV py 240.10 - 240.32 70.0 52 0 QTV py 241.31 - 241.57

crystals but not abundant.

Project Number: 05300 Project: GOUDREAU Hole Number PRS-02 Au fin Au AA Dup AA Grav Metai (ppm) (ppm) To (ppm) (ppm) From To Length Zone (ppm) Sample # From Lithology (m) (m) 0.04 0.04 0.30 241.73 242.03 DC011112 SCHIST UNDIFFERENTIATED T9ZS 241.73 245.00 0.04 1.00 0.04 Weak example - intensity of foliation decreases dramatically towards the bottom of the unit. Chloritic 242.03 243.03 DC011113 veinlets common until the end of the unit but they become further apart. Bigger sections of onginal unit 0.10 0.10 243.03 244.03 1.00 DC011114 towards bottom of unit. 0.03 0.03 0.97 244.03 245.00 DC011115 Comment Type/Core Angle Structure Maj.: WDF 60 241.73 - 245.00 Type/Style/Intensity Comment Alteration Maj: SE PCH 241.73 - 245.00 CL VN 241.73 - 245.00 CL PCH WM 241.73 - 245.00 SI P WM 241.73 - 245.00 Comment Type/Style/%Mineral Mineralization Maj.: PY TR 0.5 241.73 - 245.00 0.03 0.30 0.03 245.00 245,30 DC011116 INTERMEDIATE FELDSPAR PORPHYRITIC TUFF. T2FP 245.00 249.21 0.02 0.02 3.91 Predominantly feldspar crystals in a green colored medium grained matrix. Two styles of crystals: the 245.30 249.21 DC011117 typical gray colored euhedral crystals as well as crystals with diffuse outlines and whitish colors. Local qtz

Project Number: 05300 Project: GOUDREAU Hole Number PRS-02 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) 0.17 249.21 250.21 1.00 0.17 DC011118 SCHIST UNDIFFERENTIATED 251.00 T9ZS 249.21 0.10 Another weak example. Moderately well foliated compared to the previous unit but not as strong as in 0.10 251.00 0.79 DC011119 250.21 other T9ZS units. Some mm scale veinlets of diss pyrite. Type/Core Angle Comment Structure Maj.: WDF 52 249.21 - 251.00 Type/Style/Intensity Comment Alteration Maj: SE PCH 249.21 - 251.00 CL P WM 249.21 - 251.00 SI PCH WM Patchy over broad areas 249.21 - 251.00 Comment Type/Style/%Mineral Mineralization Maj. : As veinlets rather than throughout 249.21 - 251.00 PY TR 0.5 0.02 0.02 0.76 DC011121 251.00 251.76 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 251.00 251.76 T2QFP Same as unit at 245m. 0.04 DC011122 251.76 252.41 0.65 0.04 SCHIST UNDIFFERENTIATED 252.41 T9ZS 251.76 Stronger deformation and alteration than previous T9ZS. Contains a weak central vein with very minor tourmaline and sericitic alteration. Comment Type/Core Angle Structure Maj.: WDF 66 251.76 - 252.41

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) Type/Style/Intensity Comment Alteration Maj: TL VN Not abundant 251.76 - 252.41 251.76 - 252.41 SE INT 251.76 - 252.41 CL PCH WM SI PCH WM Best near the central vein 251.76 - 252.41 Type/Style/%Mineral Comment Mineralization Maj. : PY DIS 1 Not much in the other parts of this unit 252.00 - 252.06 Vein Maj.: Type/Mineral 50.0 66 0 QTV py 252.00 - 252.06 0.01 DC011123 252.41 252.71 0.30 0.01 0.00 INTERMEDIATE FELDSPAR PORPHYRITIC TUFF. 252.41 256,20 T2FP Predominantly medium grain size pinkish colored feldspars (with diffuse outlines) in a green colored 252.71 253.17 0.01 DC011124 0.46 0.01 matrix. Some sections have fractured remnants of gray colored feldspars. There is only a minor amount 0.05 DC011125 253.17 253.51 0.34 0.05 of blue colored atz crystals. Mildly deformed in some places. 253.51 0.02 0.02 DC011126 253.81 0.30 252,41 to 252.59m: late qtz-carbonate vein. DC011128 256.20 256.64 0.44 1.13 1.13 SCHIST UNDIFFERENTIATED 256.20 256.64 T9ZS Same as other examples in this hole. Type/Core Angle Comment Structure Maj.: WDF 62 256.20 - 256.64 Comment Type/Style/Intensity Alteration Maj: 256.20 - 256.64 SE PCH WM

Hole Number	PRS-02				Project: GO	UDREA	AU						P	roject Num	nber: 0	5300	
From (m)	To (m)		Litholog	у				Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
		256.20 - 256.64 256.20 - 256.64 Mineralization Maj. : 256.45 - 256.53 Vein Maj.: 256.45 - 256.53	CL PCH WM SI P WM Type/Style/%Mineral PY DIS 5 Type/Mineral Qs PY	Comment As veinlets too	% 50.0	ca 66	vg 0										
256.64	257.81	Same as unit at 252 41n	MEDIATE FELDSPAR POR n. Still contains a scattering s). Massive matrix sugges rily knife sharp.	of blue atz crystals. N	Matrix green color e intrusive in part.	red with Lower	whitish contact	DC011129 DC011130 DC011131 DC011127	256.64 256.94 257.51 257.90	257.8°	1 0.57 1 0.30		0.01 0.01 0.01 0.02		- - -	- - -	0.01 0.01 0.01 0.02
257.81	258.24	T9ZS SCHIST Same as 256.2m - see o	T UNDIFFERENTIATED details there.					DC011132	257.81	258.24	4 0.43		0.06	-	-	-	0.06
258.24	259.35	T2FP INTERI Same as 256.64m.	MEDIATE FELDSPAR PO	RPHYRITIC TUFF.				DC011133	258.24	258.5	4 0.30		0.01	0.01	-	-	0.01

Hole Number PRS-02 Project: GOUDREAU Project Number: 05300

From To
(m) (m)

Lithology

Au AA Dup AA Grav Metal Au fin
Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

259.35 262.03 I1DD GRANODIORITE DYKE.

Overall pinkish color due to potassic feldspars (altered?). Scattered coarse-grained blue qtz crystals. Multiple mm-scale chloritic veinlets throughout the unit some with a few specks of pyrite. Upper and lower contacts are not sharp. Original mafic minerals now altered to chlorite. Late fracture in the granodiorite is filled with dark green chlorite.

262.03 267.88 T2FP INTERMEDIATE FELDSPAR PORPHYRITIC TUFF.

Same as 256.64m.

267.88 269.69 **V3BD BASALTIC DYKE**.

Distinct dark green. Scattered MAGNETITE porphyroblasts. Moderately well foliated with mm scale stringers of qtz and/or carbonate in some places. Finer-grained upper and lower contacts over a few cms. Pre-dates the main deformation.

Hole Number PRS-02 Project Number: 05300

From To

Au AA Dup AA Grav Metal Au fin

(m) (m) Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

269.69 273.40 T2FP INTERMEDIATE FELDSPAR PORPHYRITIC TUFF.

Although the same name this unit is different from the unit at 262.03m. Here the unit has a fine-grained green colored matrix with distinct subhedral gray colored feldspar crystals. Fabric is weak to non-existent and it may be that it was shielded from the deformation. Brittle fractures filled with secondary qtz are locally abundant.

273.40 277.13 **V3BD BASALTIC DYKE.**

Same as 267.88m except for a weaker fabric and more distinct MAGNETITE porphyroblasts.

277.13 278.88 T2FP INTERMEDIATE FELDSPAR PORPHYRITIC TUFF.

Same as the unit at 262.03m except for extensive potassic alteration around a late stage vein. Feldspars are whitish in color and diffuse.

Project Number: 05300 Project: GOUDREAU Hole Number PRS-02 Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) Zone (ppm) Sample # From To Length Lithology (m) (m) V3BD BASALTIC DYKE. 278.88 280.90 Same as 267.88m. Fabric may be slightly stronger. At 278.94m there is a 5mm qtz vein with diss pyrite and local cp. INTERMEDIATE FELDSPAR PORPHYRITIC TUFF. 281.41 T2FP 280.90 Same as 269.69m. 0.04 DC011134 283.82 284.12 0.30 0.04 INTERMEDIATE FELDSPAR PORPHYRITIC TUFF. 284.12 **T2FP** 281.41 Although labeled the same as the last unit this layer is different in that it contains distinct silica-sericite alteration patches. The latter are buff colored and ellipsoidal in places and are associated with late fractures (haloes). The underlying rock type is still identifiable so the alteration event was localized to the fractures. Gradational lower contact into the API.

deposits. In the last couple of meters the feldspars become orange to red in color.

LITHOLOGY REPORT - Detailed -

Hole Number PRS-02

Project:

GOUDREAU

Project Number: 05300

rom (m)	To (m)		Litholog	y				Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
	287.67	API ISLANI	D ALTERATION PACKAGE					DC011135	284.12	284.62	0.50		0.03	-	-	-	0.03
284.12	201.01	Good example of an AP	1 Unusual in that there is no	ot significant T9ZS on either	side of the	API (or	the	DC011136	284.62	285.12	0.50		1.22	-	-	-	1.22
		T9ZS is extremely narro	w). The central vein actually	has a fair amount of sericite	and inter	stitial ch	lorite.	DC011137	285.12	285.62	0.50		0.03	-	-	-	0.03
								DC011138	285.62	286.04	0.42		0.03	-	-	-	0.03
		Structure Maj.:	Type/Core Angle	Comment				DC011139	286.04	286.41	0.37		4.15	-	-	-	4.15
		284.12 - 287.67	SDF 60	Uniform throughout the unit	t			DC011141	286.41	286.91	0.50		1.48	-	-	-	1.48
		Alteration Maj:	Type/Style/Intensity	Comment				DC011142	286.91	287.21	0.30		8.08	-	-	-	8.08
		284.12 - 287.67	SE PCH	Around the two veins	Around the two veins				287.21	287.67	0.46		0.02	0.02	-	-	0.02
		284.12 - 287.67	CL P WM														
		284.12 - 287.67	SI P MS														
		Mineralization Maj.: 284.12 - 287.67	Type/Style/%Mineral PY DIS 1	Comment 5% in the veins													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		286.04 - 286.41	QTV py		40.0	52	0										
		286.91 - 287.07	QTV Py		40.0 60 0												
								DC011144	287.67	287.97	0.30		0.01	-	_	-	0.01
287.67	298.43		MEDIATE FELDSPAR PO		a4 4ban 4ba	o o o o o tito o	ing of		298.13				0.01		_	_	0.01
		blue qtz crystals. Matrix the feldspars are zoned	k is green to dark gray color I yet euhedral and it may be	utlines and far more abundar with a poor to non-existent fat that these units were formed become grange to red in col	abric. A go d as pyroc	og prop	OLIMIT OF	DC011145	290.13	290.43	0.30		0.01	_			

middle of the unit. A few late fractures (5mm wide) filled with secondary qtz and/or carbonate.

Hole Number PRS-02

Project:

GOUDREAU

Project Number: 05300

Au AA Dup AA Grav Metal A

From (m)	To (m)		Litholog	n v				Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
298.43	302.55	T9ZS SCHIS	T UNDIFFERENTIATED					DC011146	298.43	298.89	0.46		0.03	-	-	_	0.03
230.40	302.33			discrete shear zones. Most o	f the shea	r zones	are	DC011147	298.89	299.26	0.37		0.02	-	-	_	0.02
		silicified with sericite ar the shear zones.	nd disseminated pyrite. Bour	ndaries between zones are gr	adational	. Pyrite b	est in	DC011148	299.26	299.76	0.50		0.03	-	-	-	0.03
		the shear zones.						DC011149	299.76	300.26	0.50		0.02	-	_	-	0.02
			T (0 A -1-	0				DC011150	300.26	300.56	0.30		0.07	-	-	-	0.07
		Structure Maj.:	Type/Core Angle	Comment				DC011151	300.56	301.34	0.78		1.66	-	-	-	1.66
		298.43 - 302.55	WDF 62					DC011152	301.34	301.84	0.50		0.02	-	-	-	0.02
		Alteration Maj:	Type/Style/Intensity	Comment				DC011153	301.84	302.55	0.71		0.06	0.07	-	-	0.06
		298.43 - 302.55	SE PCH	In the shear zones only													
		298.43 - 302.55	CL P ++														
		298.43 - 302.55	SI P MS														
		<i>Mineralization Maj. :</i> 298.43 - 302.55	Type/Style/%Mineral PY DIS 2	Comment Best in shear zones (up to	mment st in shear zones (up to 10%)												
		Vein Maj.:	Type/Mineral		%	ca	vg										
		300.56 - 301.34	QV PY		35.0	60	0										
302.55	306.00	T2FP INTER	MEDIATE FELDSPAR POI	RPHYRITIC TUFF.				DC011154	302.55	302.85	0.30		0.02	-	-	-	0.02
012.00	220.00		=	h feldspars. One discrete she	ear zone (over 5cm	n in the										

269.69m - has brittle fractures filled with qtz.

Hole Number PRS-02

Project:

GOUDREAU

Project Number: 05300

rom (m)	To (m)		Litholog	ıy	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
306.00	309.80	T9ZS S	SCHIST UNDIFFERENTIATED		DC011155	306.00	306.30	0.30		0.07	-	-	-	0.07
		Similar to previou	us T9ZS unit at 298.43m; consists	of intermixed waste rock and pyritic shear zones.	DC011156	306.30	306.60	0.30		2.19	-	-	-	2.19
		Latter account fo	r about 30% of the interval. Obviou	usly this shear zone is petering out in this area.	DC011157	306.60	306.90	0.30		0.21	-	-	-	0.21
		From 306 to 306.	.60m there is a zone of API like m	aterial.	DC011158	306.90	307.20	0.30		0.01	-	-	-	0.01
					DC011159	307.20	307.80	0.60		0.05	-	-	-	0.05
		Structure Maj.:	Type/Core Angle	Comment	DC011161	307.80	308.80	1.00		0.01	-	-	-	0.01
		306.00 - 309.80	WDF 53		DC011162	308.80	309.80	1.00		0.05	-	-	-	0.05
		Alteration Maj:	Type/Style/Intensity	Comment										
		306.00 - 309.80	SE PCH	In the shear zones only										
		306.00 - 309.80	CL P ++											
		306.00 - 309.80	SI P ++											
		Mineralization M	laj. : Type/Style/%Mineral	Comment										
		306.00 - 309.80	MG DIS 0.5	Locally in the waste rock										
		306.00 - 309.80	PY DIS 2	In shears										
309.80	315.52	T2FP	INTERMEDIATE FELDSPAR POI	RPHYRITIC TUFF.	DC011163	309.80	310.10	0.30		0.02	0.01	-	-	0.01
	Matrix is more massive and siliceous - could be a flow or sub volcanic intrusion. Scattered blue crystals but not abundant - dominated by feldspars. Scattered euhedral pyrite. Unit looks similar			low or sub volcanic intrusion. Scattered blue qtz . Scattered euhedral pyrite. Unit looks similar to one at	DC011164	315.22	315.52	0.30		0.02	-	-	-	0.02

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Grav Metal Au fin Au AA Dup AA From To (ppm) (ppm) (ppm) Sample # From To Length Zone (m) (m) Lithology 0.20 0.20 315.52 316.52 1.00 DC011165 315.52 316.96 T9ZS SCHIST UNDIFFERENTIATED Green to locally orange in color. Moderately well developed fabric. Pyrite is weak but concentrated in 0.11 DC011166 316.52 316.96 0.44 0.11 veinlets and local patches. Type/Core Angle Comment Structure Maj.: MDF 60 315.52 - 316.96 Alteration Mai: Type/Style/Intensity Comment 315.52 - 316.96 TL VN In the vein principally CL PCH With the pyrite generally 315.52 - 316.96 315.52 - 316.96 SE P WM Appears as pink potassic alteration SI P MS 315.52 - 316.96 Mineralization Maj.: Type/Style/%Mineral Comment PY VN 1 Discrete scattered veinlets 315.52 - 316.96 Vein Maj.: Type/Mineral ca vg QCT PY 60 0 316.62 - 316.73 0.16 DC011167 316.96 317.79 0.83 0.16 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 316.96 317.79 T2QFP Typical example. Weakly foliated with distinct fine-grained gray colored feldspars and scattered blue qtz crystals. Abundant fine-grained late stage carbonate porphyroblasts. DC011168 317.79 318.50 0.71 0.02 0.00 0.02 SCHIST UNDIFFERENTIATED T9ZS 317.79 318.50 Similar to previous T9ZS at 315.52m. Type/Core Angle Structure Mai.: Comment 217 70 210 EN WIDE ES Clichthy voriable

Project Number: 05300 Hole Number PRS-02 Project: GOUDREAU Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) Type/Style/%Mineral Mineralization Maj. : Comment 318.30 - 318.36 PY DIS 2 Only in the vein not in the wall rock Vein Maj.: Type/Mineral ca vg QCT PY 40.0 50 n 318.30 - 318.36 0.01 DC011169 318.50 318.80 0.30 0.01 328.52 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 318.50 0.03 Slight variations within this package - locally the feldspars are gray colored and in other places they are DC011170 325.67 325.97 0.30 0.03 whitish. Some of the gray crystals are coarse grained. Probably indicates multiple tuffaceous events. 326.27 0.30 0.06 0.06 DC011171 325.97 Carbonate porphyroblasts throughout. 326.27 326.57 0.30 0.01 0.01 DC011172 At 327.19: 5cm QCT vein with chloritic alteration and pyritic mineralization. 0.01 0.30 0.02 0.01 DC011173 328.22 328.52 Between 324m and 328m: orange colored feldspars are common. 0.02 1.00 0.02 **SCHIST UNDIFFERENTIATED** DC011174 328.52 329.52 328.52 331,19 T9ZS Different than previous T9ZS units. Generally a light gray color with weak anastomosing chlorite veinlets 0.02 1.00 0.02 329.52 330.52 DC011175 and a few scattered blue qtz crystals. Relict feldspars upon closer inspection - appears to be an 330.52 331.19 0.02 0.02 DC011176 0.67 altered/silicified T2QFP with diss pyrite. Type/Core Angle Structure Maj.: Comment 328.52 - 331.19 WDF 56 Alteration Maj: Type/Style/Intensity Comment

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) SE PCH 328.52 - 331.19 CL VN WM 328.52 - 331.19 328.52 - 331.19 SI P MS Type/Style/%Mineral Comment Mineralization Maj. : 328.52 - 331.19 PY TR 0.5 2.20 0.41 2.20 331.19 331.60 DC011177 ISLAND ALTERATION PACKAGE. 332.14 API 331.19 1.33 Buff to beige in color, silicified, diss pyrite (with chlorite fringes) and a few foliation parallel qtz veins. 1.33 331.60 332.14 0.54 DC011178 Type/Style/Intensity Comment Alteration Maj: TL VN 331.19 - 332.14 CL VN 331.19 - 332.14 SE P MS 331.19 - 332.14 SI P MS 331.19 - 332.14 Type/Mineral Vein Maj.: 68 331.63 - 331.79 QTV py 0.36 0.61 0.36 DC011179 332.14 332.75 SCHIST UNDIFFERENTIATED 332.75 T9ZS 332.14 Shoulder to the API. More chloritic than the previous T9ZS but not strongly deformed or mineralized.

Project Number: 05300 Hole Number PRS-02 Project: GOUDREAU Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) 0.82 333.05 0.30 0.82 DC011181 332.75 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 332.75 334.80 T2QFP Coarse grained QFP with local orange colored feldspars. Patchy silicification and sericitisation but not a 0.03 334.50 334.80 0.30 DC011182 lot of pyritic mineralization. Given it's location between the two API units it is not surprising that this unit is weakly deformed. Overall green color. 0.98 DC011183 334.80 335.29 0.49 0.97 1.00 334.80 335.29 API ISLAND ALTERATION PACKAGE. A narrow weaker example of this type of unit. Has the buff color due to sericitisation but it is not strong. The main vein appears to consist of sheeted qtz veins parallel to the dominant fabric. Type/Core Angle Comment Structure Maj.: MDF 55 334.80 - 335.29 Type/Style/Intensity Comment Alteration Maj: TL SP 334.80 - 335.29 334.80 - 335.29 CL INT 334.80 - 335.29 SE PCH WM SI P MS 334.80 - 335.29 Mineralization Maj.: Type/Style/%Mineral Comment 334.80 - 335.29 PY TR 0.5 Up to 3% in the central vein system Vein Maj.: Type/Mineral ca vg 75.0 52 0 QTV py 335.16 - 335.29

Project Number: 05300 Hole Number PRS-02 GOUDREAU Project: Au fin From To Au AA Dup AA Grav Metal (ppm) (ppm) (ppm) (ppm) (m) (m) Lithology Sample # From To Length Zone 335.29 336.30 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC011184 335.29 335.59 0.30 0.15 0.15 Same as 332.75. 0.09 336.30 0.30 DC011185 336.00 0.09 336.30 337.13 T9ZS SCHIST UNDIFFERENTIATED 336.30 337.13 0.83 0.26 0.26 DC011186 Weak example. Just a stronger deformed and altered version of the T2QFP at 335.29m. Feldspars are orange colored (where present) and it is possible that this unit has a few felsic lapilli. Structure Maj.: Type/Core Angle Comment 336.30 - 337.13 WDF 55 Alteration Maj: Type/Style/Intensity Comment 336.30 - 337.13 TL SP 336.30 - 337.13 CL P WM 336.30 - 337.13 SI P MS Mineralization Maj. : Type/Style/%Mineral Comment 336.30 - 337.13 PY TR 0.5 337.13 DC011187 337.13 337.53 0.40 456.97 468.42 468.42 337.53 API ISLAND ALTERATION PACKAGE. Good example of an API unit. Buff colored from abundant sericite, silicified and pyritic (chloritic fringes). About 60% of the interval is gtz veins with SIGNIFICANT GOLD. Comment Structure Maj.: Type/Core Angle S09 60 337.13 - 337.53 Locally shallower

Project Number: 05300 GOUDREAU Project: Hole Number PRS-02 Au fin Metal Au AA Dup AA Grav From To (ppm) (ppm) (ppm) Sample # From (ppm) To Length Zone Lithology (m) (m) Type/Style/Intensity Comment Alteration Maj: 337.13 - 337.53 TL VN CL PD 337.13 - 337.53 SE P MS 337.13 - 337.53 SI P MS 337.13 - 337.53 Comment Type/Style/%Mineral Mineralization Maj. : Best in association with the main vein. 337.13 - 337.53 PY DIS 5 vg Type/Mineral Vein Maj.: 60 50 337.25 - 337.53 QTV AU 0.34 337.53 338.02 0.49 0.34 DC011189 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. T2QFP 337.53 338.02 Same as 332.75m 0.45 338.02 338.62 0.60 0.45 DC011190 ISLAND ALTERATION PACKAGE. 340.80 API 338.02 25.47 Has a main qtz vein that carries GOOD GOLD. Bulk of the unit is pink in color due to potassic alteration. 0.32 25.47 DC011191 338.62 338.94 0.26 0.29 0.24 DC011193 338.94 339,24 0.30 0.41 0.50 0.41 339.24 339.74 DC011194 Type/Core Angle Comment Structure Maj.: 0.31 339.74 340.24 0.50 0.31 DC011195 Locally variable MDF 56 338.02 - 340.80 7.88 7.88 0.64 DC011196 340.24 340.88 Type/Style/Intensity Comment Alteration Maj: TL VN 338.02 - 340.80 SE P MS 338.02 - 340.80

rock rather than the vein. Carbonate locally in the vein.

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-02 Au fin Metai Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) Zone (ppm) Sample # From To Length Lithology (m) (m) SI P MS 338.02 - 340.80 Type/Style/%Mineral Mineralization Maj. : Comment PY DIS 1 338.02 - 340.80 ca vg Type/Mineral Vein Maj.: 15 57 15.0 QTV au 338.62 - 338.94 0.30 0.60 0.30 340.88 341.48 DC011197 SCHIST UNDIFFERENTIATED 346.51 T9ZS 340.80 0.30 0.30 Green to gray in color - less intense alteration and deformation in this particular schist. Still has a DC011198 341.48 342.00 0.52 significant component of silicification though. Two sections of veining carry GOOD GOLD. 43.20 43.20 342.00 342.40 0.40 34.35 DC011199 0.96 0.96 DC011202 342.40 342.80 0.40 0.14 0.60 0.15 0.12 Type/Core Angle Comment DC011203 342.80 343.40 Structure Maj.: 499.82 499.82 Silicified rather than deformed. 0.30 716.94 340.80 - 346.51 WDF 55 DC011204 343.40 343.70 3.76 0.50 3.76 DC011206 343.70 344.20 Type/Style/Intensity Comment Alteration Maj: 1.00 1.00 344,20 344.70 0.50 DC011207 SE P MS 340.80 - 346.51 4.34 4.34 DC011208 344.70 345.20 0.50 SI P MS 340.80 - 346.51 0.40 0.40 0.50 DC011209 345.20 345.70 Mineralization Maj. : Type/Style/%Mineral Comment 0.51 0.50 0.51 346.20 345.70 DC011210 PY DIS 1 340.80 - 346.51 1.63 1.63 346.20 346.57 0.37 DC011211 νg Type/Mineral Vein Maj.: 1.47 1.47 347.09 0.52 DC011212 346.57 QUARTZ TOURMALINE VEIN. 347.09 QTV 346.51 About 90% of the interval is vein while the remainder is sericitic foliated rock. Diss pyrite in the foliated

Hole Number PRS-02 Project: GOUDREAU Project Number: 05300

From (m)	To (m)	Lithology	Sample #	From	To Length	_		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)	
347.09	351.00	T2FP INTERMEDIATE FELDSPAR PORPHYRITIC TUFF.	DC011213	347.39	347.39 0.0	00	0.02	0.02	-	-	0.02	

Has a weak fabric with patchy diffuse silcification of the matrix.

180,00

47.00

405.00

08-Mar-06

13-Mar-08

20-Mar-06

Samples: DC002901-DC003000; DC007001-DC007111

Hole Number PRS-01

Drilling

Azimuth:

Dip:

Length:

Sturted:

Logged:

Completed:

Comment:

Casing

Length:

Pulled:

Capped:

Comunicate

DRILL HOLE REPORT

Chris Moreta P.GEO Project Number: 05300 GOUDREAU Project: Other Core Location C. Moreton Logged by: Township: FINAN Dimension: 3817 Relog by: Claim No.: Island Gold Project Storage: Orbit Drilling Inc 42C/08 Contractor: NTS: Section: Mines Richmont Company: Hole: Surface SEXP Hale Type C. Moreton Spotted by: Surveyed: Coordinate G.Lamothe(GPS) Surveyed by: Variable UTM Mige Gemcom Geophysics: 15708.9 East: 15708.0 East: 891060.5 East: East: Geoph. Contract: 5352327.4 North: 4921.7 North: 4921.7 North: North: Left in hole: 5388 Elev.: 5388 Elev.: Elev.: 5388 EIN.: Making water: 16 Zone: Multi shot surv.: 83 NAD:

<u>**Deviation Tests**</u>

Distance	Azirovth	Dip	Type	Good	Comments
0.00	180.00	-47.00	C	\mathbf{Z}	
42.00	177.20	-48.20	F	\mathbf{Z}	5692
60.00	176.40	-48.20	F		5694
90.00	177.20	-46.20	F		
120.00	168.10	-47.70	Α		5630
135.00	177.00	-47.60	F		5680
165.00	176.40	-47.50	F	M	5690
1 95.0 0	175.70	-47.20	F	Ø	5703
225.00	176.20	-47.00	F	æ	5670
255.00	178.20	-46.70	F	Œ	5650
255,00	176.50	-48.50	F	Z.	5558
315.00	168.80	-46.10	A	9	5670
345.00	173.00	-46.0 0	٨	Ō	5656
375.00	176.70	-48.00	F	Z	5662

Deviation Tests

Distance 405.00	ونو 45.80	Good 2	Comments 5660

Hole Number	PRS-01			Projec	t: GOU	DREAU						Project Number:	05300
Drilling		Casing		Core					Location			Other	
Azimuth:	180.00	Length:	33	Dimension:	NQ				Township:	FINAN		Logged by:	C. Moreton
Dip:	-47.00	Pulled:		Storage:	Island	Gold Proje	ect		Claim No.:	3817		Relog by:	
Length:	405.00	Capped:		Section:					NTS:	42C/08		Contractor:	Orbit Drilling Inc
Started:	08-Mar-06	Cemented:		Hole Type	SEXP				Hole:	Surface		Company:	Mines Richmont
Completed:	13-Mar-06											Spotted by:	C. Moreton
Logged:	20-Mar-06						Coordi	nate				Surveyed:	yes
Comment:	Samples: DC002901-DC0030	000;DC007001-DC007111		Gemcom		UTM		Mine		Variable		Surveyed by:	G.Lamothe(GPS)
	•			East:	15708.9	East:	691060.5	East:	15708.9	East:	0	Geophysics:	
				North:	4921.7	North:	5352327.4	North:	4921.7	North:	0	Geoph. Contract:	
				Elev.:	5388	Elev.:	5388	Elev.:	5388	Elev.:	0	Left in hole:	
						Zone:	16					Making water:	
						NAD:	83					Multi shot surv.:	•

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-47.00	С	✓	
42.00	177.20	-48.20	F	✓	5692
60.00	176.40	-48.20	F	✓	5694
90.00	177.20	-48.20	F	✓	
120.00	168.10	-47.70	Α		5539
135.00	177.00	-47.60	F	\checkmark	5680
165.00	176.40	-47.50	F	✓	5690
195.00	175.70	-47.20	F	✓	5703
225.00	176.20	-47.00	F	✓	5670
255.00	178.20	-46.70	F	✓	5659
285.00	176.50	-46.50	F	✓	5668
315.00	168.80	-46.10	Α		5670
345.00	173.00	-46.00	Α		5656
375.00	176.70	-46.00	F	✓	5662

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
405.00	177.30	-45.80	F	✓	5660

Project Number: 05300 GOUDREAU Project: Hole Number PRS-01 Au AA Dup AA Grav Metal Au fin From To (ppm) (ppm) (ppm) (ppm) Zone (ppm) Sample # From To Length Lithology (m) (m) 0.00 33.00 CSG Casing 0.03 42.24 0.30 0.03 DC002901 41.94 INTERMEDIATE TUFF UNDIFFERENTIATED. T2Z 44.51 33.00 Sheared, dark green unit with a fine grained matrix, local isolated blue qtz crystals. Well developed 0.01 42.24 42.59 0.35 0.01 DC002902 abundant carbonate layers/veinlets/bands (1-2mm) throughout. Some white to buff colored qtz veins 0.01 DC002903 42.59 42.89 0.30 0.01 (1cm) sub parallel to the carbonate layers. Minor diss pyrite in some portions but not common. Folds of the carbonate layering common. Some second generation qtz veins cross cut this folded lavering. 42.24 to 42.59m; qtz-tourmaline veining. Sheeted multiple veinlets, minor pyrite. Sampled but unlikely to run. Tourmaline is black to green in color, only about 1% of the interval (as veinlets rather than needles). Veinlets are weakly boudinaged. 0.03 0.50 0.03 DC002904 77.10 77.60 UNDIFFERENTIATED FELSIC VOLCANIC SCHIST WITH QUARTZ EYES. 78.26 V1ZSQP 44.51 0.03 0.03 Gradational upper contact. Lighter in color than previous unit. Predominantly a gray to pale green unit 78.26 0.66 DC002905 77.60 although there are sections that strongly chloritic. Blue qtz crystals are more abundant along with local zones rich in flesh colored feldspars (?) and/or flesh colored lapilli. Latter are about 1-3cm in size aligned parallel to the foliation. Matrix is fine-grained qtz-feldspar with interstitial sericite-chlorite, patchy silicification. Some of the pink zones are wider than the lapilli and probably reflect patches of alteration. Most of the unit is strongly foliated and sheared. Minor scattered porphyroblastic pyrite; some pyrite concentrated into 5-10cm zones with associated silicification. Local late otz-carb veins cross cutting main fabric. Minor amounts of tourmaline in veinlets,

Project Number: 05300 Project: GOUDREAU Hole Number PRS-01 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) generally associated with the patchy potassic alteration or qtz veining. 50.36 to 50.55m: late brittle fault zone. Gouge and cemented fault breccia. 77.66 to 78.26m: chloritic alteration increases adjacent to the granodiorite. 0.09 78.26 78.66 0.40 0.09 DC002906 11DS **GRANODIORITE SCHIST** 86.05 78.26 0.03 Margin of the intrusion is strongly foliated. Veinlets of tourmaline and qtz as well as minor chloritic 0.50 0.03 DC002907 78.66 79.16 alteration. Some early generation gray qtz veins parallel to the dominant fabric. A few later qtz-carbonate 0.09 80.16 1.00 0.09 DC002908 79.16 veins locally parallel o and cross cutting the dominant fabric.. 0.08 Foliation intensity decreases with depth although the contact with the undeformed granodiorite is 80.0 DC002909 80.16 81.16 1.00 relatively sharp (over a few cms). This sheared section has been sampled throughout it's length although 0.03 82.16 1.00 0.03 DC002910 81.16 no VG identified. 0.04 0.04 83.16 1.00 DC002911 82.16 0.01 0.01 1.00 DC002912 83.16 84.16 0.07 1.00 0.07 DC002913 84.16 85.16 0.02 0.02 DC002914 85.16 86.16 1.00

Hole Number PRS-01

Project:

GOUDREAU

Project Number: 05300

r om (m)	To (m)	Lithology	Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
86.05	163.16	Becomes more massive, gray to locally pale green color. Coarse feldspar-qtz grain size evident in most places although tectonism has created local grain size reduction. Most of the unit is foliated (ser-chl) and in some places there are weak to moderate shear zones (sampled). Stronger deformation in these shear zones associated with local bleaching and qtz-tourmaline veinlets. Many of the wider shear zones have been reactivated as shown by abundant barren qtz (local tourmaline) veining. Latter are wider and whiter than the early generation veins. No VG in either type of vein. Trace diss pyt throughout the unit but better in the shear zones. Boundaries of the stronger shear zones are generally gradational. Blue qtz crystals in the granodiorite are identical to the crystals in the volcanic/tuffaceous units suggesting a genetic link. All of the primary mafic minerals have been altered to chlorite.	DC002915	86.16	87.16	1.00		0.07	-	-	-	0.07
00.03	, 100.10		DC002916	87.16	88.05	0.89		0.04	-	-	-	0.04
			DC002917	97.90	98.20	0.30		0.00	-	-	-	0.00
			DC002918	98.20	98.60	0.40		0.01	-	-	-	0.01
			DC002919	98.60	98.90	0.30		0.07	-	-	-	0.07
			DC002921	100.59	100.89	0.30		0.00	-	-	-	0.00
			DC002922	100.89	101.89	1.00		0.01	0.04	-	-	0.03
			DC002923	101.89	102.89	1.00		2.04	-	-	-	2.04
			DC002924	102.89	103.89	1.00		0.02	-	-	-	0.02
			DC002925	103.89	104.89	1.00		0.01	-	•	-	0.01
		From 161.10 to 164.74m (part of the massive granodiorite and all of the schist) there is a strong pink (hematite?) overprint. Minor tourmaline in parts of the hem alteration zone. Lost core in some of the	DC002926	104.89	105.89	1.00		0.01	-	-	-	0.01
		hematitic section even though the pieces of remaining core look massive.	DC002927	105.89	106.89	1.00		0.01	-	-	-	0.01
			DC002928	106.89	107.89	1.00		1.19	-	-	-	1.19
			DC002929	107.89	108.89	1.00		0.04	-	-	-	0.04
			DC002930	108.89	109.89	1.00		0.02	-	-	-	0.02
			DC002931	109.89	110.89	1.00		0.06	-	-	-	0.06
			DC002932	110.89	111.89	1.00		0.05		-	-	0.04
			DC002933	111.89	112.89	1.00		0.08	-	-	-	0.08
			DC002934	112.89	113.89	1.00		0.05	-	-	-	0.05
			DC002935	113.89	114.19	0.30		0.01	-	-	-	0.01
			DC002936	114.19	114.4	0.30		0.01	-	-	-	0.01
			DC002937	120.73	121.0	3 0.30		0.01	-	-	-	0.01
			DC002938	121.03	122.0	3 1.00		0.03		-	-	0.03
			DC002939	122.03	123.0	3 1.00		0.05		-	-	0.05
			DC002941	123.03	123.4	9 0.46		0.61		-	-	0.61
			DC002942	123.49	123.7	9 0.30		0.01	0.01	-	-	0.01
			DC002943	134.14	134.4	4 0.30		0.01	-	-	-	0.01

Hole Number PRS-01

Project: GOUDREAU

Project Number: 05300

o m (m)	To (m)	Lithology	Sample #	From	To	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
	(111)		DC002944	134.44	135.44	1.00		0.05	_	-	-	0.05
			DC002945	135.44	136.04	0.60		0.24	-	-	-	0.24
			DC002946	136.04	136.64	0.60		0.13	-	-	-	0.13
			DC002947	136.64	137.50	0.86		0.11	-	-	-	0.11
			DC002948	137.50	137.80	0.30		0.02	-	-	-	0.02
			DC002949	144.22	144.52	0.30		1.58	-	-	-	1.58
			DC002950	144.52	145.02	2 0.50		3.73	-	-	-	3.73
			DC002951	145.02	145.96	6 0.94		0.33	-	-	-	0.33
			DC002952	145.96	146.26	0.30		0.02	-	-	-	0.02
			DC002953	148.05	148.35	5 0.30		0.11	-	-	-	0.11
			DC002954	148.35	149.00	0.65		0.17	-	-	-	0.17
			DC002955	149.00	149.65	5 0.65		0.06	-	-	-	0.06
			DC002956	149.65	150.03	3 0.38		0.61	-	=	-	0.61
			DC002957	150.03	150.33	3 0.30		0.04	-	-	-	0.04
			DC002958	150.33	150.68	0.35		0.26	0.23	-	-	0.24
			DC002959	150.68	150.98	3 0.30		0.45	-	-	-	0.45
			DC002961	150.98	151.73	3 0.75		8.08	-	-	-	8.08
			DC002962	151.73	152.23	3 0.50		1.00	-	-	-	1.00
			DC002963	152.23	152.87	7 0.64		0.04	-	-	-	0.04
			DC002964	152.87	153.17	7 0.30		0.01	-	-	-	0.01
			DC002965	160.80	161.10	0.30		0.02	-	-	-	0.02
			DC002966	161.10	162.10	0 1.00		0.07	-	-	-	0.07
			DC002967	162.10	163.10	6 1.06		0.02	-	-	-	0.02
163.16	164.72	I1DS GRANODIORITE SCHIST	DC002968	163.16	163.6	4 0.48		0.19	0.19	-	-	0.19
100.10	101.12	Foliated variety of the granodiorite. Minor narrow gouge zones. Has a weak hematitic coloration and a	DC002969	163.64	164.1	4 0.50		0.13	-	-	-	0.13
		sharp upper contact. Generally brownish to green in color.	DC002970	164.14	164.7	4 0.60		0.11	-	-	-	0.11

ole Number	PRS-01							Project Number: 05300						
From (m)	To (m)		Litholog	y	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
164.72	167.47	Variably foliated but ger white feldspar crystals.	Latter are generally euhedra e. Minor flattened lapilli. e more common towards bo	PAR PORPHYRITIC TUFF. chistose. Distinct blue qtz crystals along with large off- I. Minor diss pyt and a local band/vein (3cm) of ttom of interval. Gradational contact over a few	DC002971 DC002972	164.74 167.17				0.01 0.04	- -		- -	0.01 0.04
167.47	171.14	T9ZS SCHIS	ST UNDIFFERENTIATED		DC002973	167.47	167.99	9 0.52		0.11	-	-	-	0.11
101.41		Schistosity moderate to	intense, local early 1-2cm o	tz veins parallel to foliation. Strong chlorite and	DC002974	167.99	168.49	0.50		0.02	-	-	-	0.02
		sericite alteration but only moderate silicification. Mi with patchy associated silicification. Only minor diss		ddle of sequence has a 2-5cm qtz-tourmaline vein	DC002975	168.49	168.99	0.50		0.03	-	-	-	0.03
					DC002976	168.99		4 0.45		1.59	-	-	-	1.59
		Blue qtz crystals scatte	red throughout but no prima	ry feldspars identifiable. No VG in this shear zone.	DC002977	169.44		4 0.30		2.34	-	-	-	2.34
					DC002978	169.74	170.2	4 0.50		1,22	1.21	-	-	1.22
		Structure Maj.:	Type/Core Angle	Comment	DC002979	170.24	170.7	4 0.50		0.24	-	-	+	0.24
		167.47 - 171.14	MDF 68	Narrow zones of intense shearing	DC002981	170.74	171.1	4 0.40		0.01	-	-	-	0.01
		Alteration Maj:	Type/Style/Intensity	Comment										
		167.47 - 171.14	SI P WM	Generally stronger next to vein.										
		167.47 - 171.14	SE INT WM											
		167.47 - 171.14	CL INT WM											
		Mineralization Maj. :	Type/Style/%Mineral	Comment										· · · · · · · · · · · · · · · · · · ·

ole Number	PRS-01				Project: GC	UDRE/	AU						Pro	ject Num	ber: 05	5300	
From (m)	To (m)		Litholog	ıy				Sample #	From	To I	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
	1111			(but still diss).													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		169.44 - 169.74	QCT Py		15.0	68	0										
171.14	172.64	T2QP INTER	RMEDIATE QUARTZ PORPI	HYRITIC TUFF.				DC002982	171.14	171.44	0.30		0.01	-	-	-	0.01
171.13	172.04		tinct blue qtz and a lack of a		one of low strai	in within	n the	DC002983	172.34	172.64	0.30		0.09	-	-	-	0.09
172.64	173.20	T9ZS SCHIS	ST UNDIFFERENTIATED					DC002984	172.64	173.20	0.56		0.57	-	-	-	0.57
1,2,0			ear zone except that it tends	more towards API but it	does not have	a centra	al qtz-										
		Structure Maj.: 172.64 - 173.20	Type/Core Angle WDF 62	Comment													
				Comment Comment													
		172.64 - 173.20	WDF 62														
		172.64 - 173.20 Alteration Maj:	WDF 62 Type/Style/Intensity														
		172.64 - 173.20 Alteration Maj: 172.64 - 173.20	WDF 62 Type/Style/Intensity SI P														
		172.64 - 173.20 Alteration Maj: 172.64 - 173.20 172.64 - 173.20	WDF 62 Type/Style/Intensity SI P SE INT WM														

Project Number: 05300 Project: GOUDREAU Hole Number PRS-01

From (m)	To (m)	Lithology	Sample #	From	To L	.ength	Zone	, ,	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
173.20	177.45	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Generally lower strain with only limited significant alteration. Latter predominantly silicification accompanied by chlorite.	DC002985	173.20	173.50	0.30		0.02	-	_	-	0.02
177.45	180.50	T2Z INTERMEDIATE TUFF UNDIFFERENTIATED. Not a good name for the unit - contains abundant MAGNETITE, intense green chlorite and calcite alteration. Looks like a facies of iron formation with a scattering of volcanic crystals. Presence of blue qtz										

crystals suggests that this is not a mafic unit - could be a strongly altered felsic flow/tuff but the iron formation option is also likely.

Down hole tests in this are should be checked. Not sampled.

INTERMEDIATE QUARTZ PORPHYRITIC TUFF. T2QP 180.50 186.06

Typical blue qtz crystals and local feldspars - latter become more common down hole. Upper contact is relatively distinct while the lower one is gradational over a meter or more. Fabric is locally strong but alteration not always intense. Minor pyritic diss associated with some of the weak shears.

185.14 to 185.40m: about 60% of interval is a qtz-carbonate vein system. Minor diss pyrite in the wall rock but no VG. Vein system cross cuts earlier foliation. No tourmaline. Not sampled.

Project Number: 05300 Project: **GOUDREAU** Hole Number PRS-01 Au fin Au AA Dup AA Grav Metal To From (ppm) (ppm) (ppm) (ppm) Zone Sample # From To Length Lithology (m) (m) GRANODIORITE DYKE. 186.06 196.27 11DD Upper and lower contacts are slightly finer-grained than the internal part of the unit. Has a blocky fracture in the central part as well as more abundant K feldspar. In fact the unit is a quartz porphyritic two feldspar rock in some spots. Primary mafic minerals are now chloritic. Overall the alteration is weak. 0.00 0.00 197.15 197.45 0.30 DC002986 INTERMEDIATE TUFF UNDIFFERENTIATED. 196.27 197.45 **T2Z** Fine-grained siliceous unit with minor fine grained qtz crystals and possible ghosted feldspars (also fine grained). Scattered magnetite porphyroblasts (fine grained). Matrix is weakly to moderately foliated. Narrow carbonate-qtz veinlets parallel to the fabric, some with fine-grained pyrite. 0.02 0.65 0.02 DC002987 197.45 198.10 SCHIST UNDIFFERENTIATED T9ZS 198.10 197.45 Same as 172.64m. except that it is moderately magnetic throughout. Local pyrite and carbonate layers. Unit has a purple tinge that may be due to fine-grained hematite.

GOUDREAU

Project:

Hole Number PRS-01 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone (ppm) Lithology (m) (m) 198.10 198.40 0.30 0.01 0.01 0.01 DC002988 198.10 200.31 T9ZS SCHIST UNDIFFERENTIATED Same as 196.27m. - green to brown in color. Fabric is better developed at about 45 degrees to ca. Upper 0.01 DC002989 200.01 200.31 0.30 0.01 contact of this unit is a little vague - it could be a few meters higher. 200.31 200.75 0.03 0.03 DC002990 0.44 QUARTZ CARBONATE TOURMALINE. 200.31 QCTV 200.75 Coarse grained sugary texture with needles of tourmaline. Minor pyrite and possible magnetite but no VG. White colored with sharp contacts - contrasts strongly with the country rock. Appears to be a fold nucleation zone - yein fills the nose of the fold so the main fabric is at a shallow angle to the core axis. Structure Maj.: Type/Core Angle Comment Paralle to fabric that is at a low angle to ca in this spot. WDF 25 200.31 - 200.75 Type/Style/%Mineral Mineralization Maj. : Comment 200.31 - 200.75 PY TR 0.5 Minor constituents Type/Mineral ca vg Vein Maj.: 25 100.0 0 200.31 - 200.75 QCT 0.01 DC002991 200.75 201.18 0.43 0.01 SCHIST UNDIFFERENTIATED T9ZS 200.75 201.18 Continuation of the unit on the up hole side of the qtz-carbonate-tourmaline vein. Minor py diss. Fabric has picked up to 45 degrees to core axis. Down hole contact is relatively sharp. In both instances, the undifferentiated schist is not very spectacular.

Project Number: 05300 GOUDREAU Project: Hole Number PRS-01 Au fin Au AA Dup AA Grav To From (ppm) Zone (ppm) (ppm) (maa) To Length Sample # From Lithology (m) (m) UNDIFFERENTIATED FELSIC VOLCANIC QUARTZ PORPHYRYTIC BRECCIA. V1QPBX 201.18 219.07 Distinctive new unit: purple to greenish in color. Matrix weakly foliated throughout with minor scattered diss pyt and local magnetite porphyroblasts. Contains fragments of sub-volcanic porphyritic rock (some similar to previous granodiorite dyke in this hole). Sizes vary from 15-20cm down to a few cms. Other fragments present that are not necessarily porphyritic - a few may be altered tuffaceous material. Margins of fragments are sharp in general although there are some diffuse contacts. Blue qtz crystals in the matrix and locally in the fragments. Chloritisation of the matrix is the most common alteration product. Some bands of carbonate-qtz veinlets in restricted (20cm about) zones.

219.07 222.92

11DD

GRANODIORITE DYKE.

Pale gray to greenish in color. Weakly foliated with a few late qtz-carbonate veinlets. Chloritic alteration of primary mafic minerals. Some blue qtz crystals suggest genetic link to volcanic rocks. Upper contact is extremely sharp but only slightly chilled. Lower contact is more diffuse and chilled.

DC002992 222.62 222.92 0.30 0.03

Hole Number PRS-01

Project: GOUDREAU

From	To		Litholog	v	Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
(m)	(m)	T070 CC18C	T UNDIFFERENTIATED		DC002993	222.92	223.42	0.50		0.01		-	_	0.01
222.92	233.88			is are lighter gray (226.42 to about 227.42m).	DC002994	223.42		0.50		0.17	_	-	-	0.17
		Contacts between the di	ifferent alteration facies are	gradational. Primary lithologies still vaguely	DC002995		224.42	0.50		0.09	-	-	-	0.09
		recognizable beneath the tourmaline vein although	e alteration - quartz crystal n there are small-scale exan	relsic volcanic/tuffaceous rocks. No distinct central qtz- nples in some parts of the unit.	DC002996	224.42	224.92	0.50		0.33	-	-	-	0.33
					DC002997	224.92	225.42	0.50		0.06	-	-	-	0.06
		less pyrite but more 1cm	zation present between abo n parallel qtz-carbonate veir	ut 223.42m and 225.92m. At lower depths there is llets.	DC002998	225.42	225.92	0.50		0.37	0.47	-	-	0.42
				orientation of the layering by younger folds. Estimate	DC002999	225.92	226.42	0.50		0.04	=	-	-	0.04
		75% of the core width a	s the true width.	One matter of the layering by younger to less beautiful	DC007001	226.42	226.92	0.50		0.01	-	-	-	0.01
		No VG identified.			DC007002	226.92	227.42	0.50		0.00	-	-	-	0.00
		140 VO Identified.			DC007003	227.42	227.92	0.50		0.02	-	-	-	0.02
		Otania Mai c	Tuna/Cara Angla	Comment	DC007004	227.92	228.42	0.50		0.01	-	-	-	0.01
		Structure Maj.: 222.92 - 233.88	Type/Core Angle MDF 45	Extremely variable in this unit	DC007005	228.42	228.92	0.50		0.01	-	-	-	0.01
				Comment	DC007006	228.92	229.42	0.50		0.09	-	-	-	0.09
		Alteration Maj:	Type/Style/Intensity	Comment	DC007007	229.42	229.92	0.50		0.05	-	-	-	0.05
		222.92 - 233.88	SE INT WM		DC007008	229.92		0.50		0.01	0.01	-	-	0.01
		222.92 - 233.88	CL INT WM		DC007009	230.42	230.92	0.50		0.04	-	-	-	0.04
		222.92 - 233.88	SI PCH +		DC007010	230.92		0.50		0.05	-	-	-	0.05
		Mineralization Maj. :	Type/Style/%Mineral	Comment	DC007011	231.42	231.92	0.50		0.01	-	-	-	0.01
		222.92 - 233.88	PY DIS 0.5	Better developed at top of intersection	DC007012	231.92		0.50		0.02	-	-	-	0.02
					DC007013		232.92	0.50		80.0	-	-	-	0.08
					DC007014	232.92		0.50		0.01	-	-	-	0.01
					DC007015	233.42	233.88	0.46		0.02	-	-	-	0.02
233.88	242.70	T2QFP INTER	MEDIATE QUARTZ-FELDS	SPAR PORPHYRITIC TUFF.	DC007016	233.88	234.18	0.30		0.01	-	-	-	0.01
		Overall green color - no rocks and finer-grained difficult to determine so throughout but none are	inter-layered sequence of QFP volcanic/tuffaceous s. Contacts between these various litho types are buped together, Minor narrow (20-30cm) shear zones	DC007017	242.40	242.70	0.30		0.01	-	e'	-	0.01	
	Local dull gray qtz veins parallel to the foliation but no VG. More abundant later cross cutting carbonate-											_		

Same as 233.38.

GOUDREAU Project Number: 05300 Hole Number PRS-01 Project: Au AA Dup AA Grav Metal Au fin To From Sample # From (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone (m) (m) Lithology gtz veinlets. No samples taken in this section. 242.70 243.30 0.02 0.02 0.02 242.70 243.80 T9ZS SCHIST UNDIFFERENTIATED DC007018 0.60 Slightly stronger alteration and pyritic mineralization than the other shear zones in the previous unit. DC007019 243.30 243.80 0.50 0.00 0.00 Structure Maj.: Type/Core Angle Comment MDF 45 Some parts are only weakly deformed 242.70 - 243.80 Alteration Maj: Type/Style/Intensity Comment 242.70 - 243.80 SE INT SI B WM 242.70 - 243.80 242.70 - 243.80 CB B WM 242.70 - 243.80 CL B MS Type/Style/%Mineral Mineralization Maj. : Comment 242.70 - 243.80 PY TR 0.5 Vein Maj.: Type/Mineral vg ca QCT py 35.0 45 0 242.90 - 243.18 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007021 243.80 244.10 0.30 0.01 0.01 243.80 248.11

Hole Number PRS-01 **GOUDREAU** Project Number: 05300 Project: Au fin Au AA Dup AA Metal From To Grav (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone (ppm) (m) (m) Lithology 0.01 248.11 T9ZS SCHIST UNDIFFERENTIATED DC007022 248.31 248.61 0.30 0.01 248.91 Weak example of this style of alteration (weaker than previous unit). Centre of intersection contains a 0.05 DC007023 248.61 248.91 0.30 0.05 3cm qtz-carbonate-chlorite vein with trace pyrite. The chlorite is actually the dominant silicate in the zone - contacts of the vein are sharp and the margins are strongly foliated. Structure Maj.: Type/Core Angle Comment 248.11 - 248.91 WDF 44 Alteration Maj: Type/Style/Intensity Comment 248.11 - 248.91 SI INT 248.11 - 248.91 CB B + 248.11 - 248.91 CL B ++ Mineralization Maj. : Type/Style/%Mineral Comment 248.11 - 248.91 PY TR 0.5 Vein Maj.: Type/Mineral vg 248.73 - 248.76 C/L py 0 248.91 261.51 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007024 248.91 249.21 0.30 0.02 0.02 Similar to 233.38 except for lesser amounts of crystals.

Hole Number PRS-01 Project Number: 05300

r om (m)	To (m)		Litholog	ıy				Sample #	From	To L	.ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
261.51	266.23	T9ZS SC	HIST UNDIFFERENTIATED	-			-	DC007025	261.51	261.81	0.30	·	0.00	-	-		0.00
		Weak example agai	in. Texturally and mineralogical	y similar to the schist a	at 248.11m.			DC007026	261.81	262.69	0.88		0.00	-	-	-	0.00
								DC007027	262.69	263.19	0.50		0.01	-	-	_	0.01
		Structure Maj.:	Type/Core Angle	Comment				DC007028	263.19	263.49	0.30		0.00	0.00	-	-	0.00
		261.51 - 266.23	WDF 44					DC007029	263.49	264.00	0.51		0.01	-	-	-	0.01
		Alteration Maj:	Type/Style/Intensity	Comment				DC007030	264.00	264.50	0.50		0.00	-	-	-	0.00
		261.51 - 266.23	CB VN					DC007031	264.50	265.00	0.50		0.03	-	-	-	0.03
		261.51 - 266.23	SI MO WM					DC007032	265.00	265.50	0.50		0.00	-	-	-	0.00
		261.51 - 266.23	CL P MS					DC007033	265.50	266.23	0.73		0.00	-	-	-	0.00
		Mineralization Maj. 261.51 - 266.23	: Type/Style/%Mineral MG DIS 0.5	Comment													
		Vein Maj.:	Type/Mineral		%	ca	vg										
		264.68 - 264.75	QCT Magnetite		90.0	50	0										
266.23	277.01	T2QFP INT	EDMENIATE OHADTZEEL D	SDAD DODDHVDITIC	THEE			DC007034	266.23	266.53	0.30		0.00				0.00
200.20	211.01	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 233.38m with local 10-29cm zones of hard pale gray silicification (mylonitic). Some sericite						DC007034	276.71	277.01	0.30		0.00	•	-	-	0.00
		associated with the	latter but no mineralization. Sor s the darker green color.					DC007033	210.11	211.01	0.30		0.00	-	-	-	0.00

Hole Number PRS-01

Project:

GOUDREAU

	_							A A.A	Dum AA	C	Metal	Au fin
rom (m)	To (m)	Lithology	Sample #	From	To	Length	Zone	(ppm)	Dup AA (ppm)	Grav (ppm)	(ppm)	(ppm)
	(m)		DC007036	277.01	277.51	0.50		0.02				0.02
277.01	278.68	T9ZS SCHIST UNDIFFERENTIATED Again, a poor example of an alteration zone. Centre contains a couple of 1cm qtz-carbonate veinlets with	DC007030	277.51	278.01	0.50		0.02	-	_		0.02
		a relative abundance of pyrite (20%). However, these veinlets are a minor component of the intersection.						0.04	0.00	-	-	0.04
		Moderately developed fabric with carbonate streaks parallel to the foliation.	DC007038	278.01	278.68	0.07		0.00	0.00	-	-	0.00
278.68	280.20	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC007039	278.68	278.98	0.30		0.02	-	-	-	0.02
		Same as previous at 233.38m.	DC007041	279.90	280.20	0.30		0.00	-	-	-	0.00
280.20	281.10	T9ZS SCHIST UNDIFFERENTIATED	DC007042	280.20	280.65	0.45		0.00	_	_	_	0.00
200.20	201.10	Weak alteration (chloritic) with no mineralization or significant veining - single 1cm qtz-carbonate vein at 280.28m. Blue qtz crystals present but the feldspars are now degraded.	DC007043	280.65				0.04	-	-	-	0.04
	281.82	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF.	DC007044	281.10	281.40	0.30		0.01	_	-	-	0.01
281.10	201.02											

Hole Number PRS-01 Project Number: 05300

From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)		
281.82	283.67	T9ZS SCHIST UNDIFFERENTIATED Similar to 280.20m.	DC007046 DC007047 DC007048 DC007049	282.82	282.32 282.82 283.32 283.67	0.50 0.50		0.00 0.00 0.00 0.02	- - 0.01 -	- - -	- - -	0.00 0.00 0.01 0.02		
283.67	285.11	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. Same as 233.38m	DC007050 DC007051	283.67 284.81	283.97 285.11			0.05 0.01	-	-	-	0.05 0.01		
285.11	285.59	T9ZS SCHIST UNDIFFERENTIATED Similar to previous schist except that the lower contact has ladder carbonate veining against the more massive intrusion. Still has an abundance of chlorite alteration over sericite and/or silica. No VG.	DC007052	285.11	285.59	0.48		0.17	-	-	-	0.17		

Project Number: 05300 GOUDREAU Project: Hole Number PRS-01 Au fin Metal Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) 0.00 0.00 285.89 0.30 285.59 DC007053 UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC. 303.00 11QFP 285.59 0.00 Upper section down to about 290m is relatively finer grained reminiscent of a chilled margin. This section 303.00 0.30 0.00 DC007054 302.70 also has a very weak fabric although it is less intense than the previous schist and QFP. Color is generally shades of gray with some pale green sections. Feldspar crystals are euhedral, sometimes resorbed, sometimes with reaction rims. Most are cream colored and in general they are the largest of the phenocrysts. Blue qtz crystals are present but they are significantly less common than the feldspars. Some of the feldspars may be potassic. A mafic mineral has a similar abundance to the qtz crystals although it is now pseudomorphed by chlorite - euhedral shape suggests amphibole. Most of the unit contains a crudely developed fabric although it is not the same intensity as the fabric in the country rocks. The composition and structural relationships suggest that this intrusion may be subvolcanic or a thick porphyritic lava flow. Millimeter scale chlorite veinlets are sporadically developed in this unit and there is some suggestion of crystal degradation in a few spots -the implication is that the intrusion pre-dates some of the deformation history. 0.00 0.00 0.37 303.00 303.37 DC007055 SCHIST UNDIFFERENTIATED 303.00 304.78 T9ZS 0.00 Strong foliation but only a chloritic shear zone. Contains a central vein system (see details) and some 0.00 0.58 303.37 303.95 DC007056 0.06 relict pockets of QFP. 303.95 304.78 0.83 0.06 DC007057 Comment Type/Core Angle Structure Mai.: Variable orientation due to re-folding 303.00 - 304.78 MDF 47 Comment Alteration Maj: Type/Style/Intensity CL P + 303.00 - 304.78 Type/Style/%Mineral Comment Mineralization Maj. : PY TR 0.1 Not much 303.00 - 304.78 ca νg Type/Mineral Vein Maj.: 0 65.0 QCT 303.37 - 303.95

Hole Number PRS-01		Project: GOUDREAU		Project Number: 05300								
From (m)	To (m)	Lithology	Sample #	From	То	Length	Zone		Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)
304.78	309.45	T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. A continuation of the previous QFP country rock - has same textures and mineralogies to these units.	DC007058	304.78	305.08	0.30		0.00	0.00	-	-	0.00
309.45	309.52	QCV QUARTZ CARBONATE VEIN. Minor vein at the contact with the dyke(?). No VG - contains white qtz and minor carbonate along with fragments of the chilled margin of the granodioritic dyke.										
309.52	311.40	I1QFP UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC. Distinct fine grained gray colored chilled margin for about 50cm. Passes quickly into the same porphyry encountered at 285.59m. Lower contact is very sharp suggesting that the unit is a flow or a high level subvolcanic intrusion.										
311.40	314.66	V3BD BASALTIC DYKE. Uniform medium grain size except for the margins that are finer grained. Clearly shows that this dyke	DC007059	314.36	314.66	0.30		0.03	-	-	-	0.03

Project Number: 05300 Hole Number PRS-01 Project: GOUDREAU From To Au AA Dup AA Grav Metal Au fin (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) (m) post-dates the QFP intrusion. Only weakly magnetic at best. No alteration although there is a weakly developed fabric - not as intense as the other lithologies. 314.66 **I1QFP** DC007061 314.66 315.16 0.50 0.13 316.90 UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC. 0.13 Same as previous I1QFP except that is strongly hematitic - reflects hematization associated with a 1cm 0.50 0.02 DC007062 315.16 315.66 0.02 shear zone containing qtz-tourmaline at 316.45m. Shearing reflects movement along the dyke/QFP DC007063 315.66 316.16 0.50 0.00 0.00 contact. Some late gtz-carbonate veins cross cut the fabric and contain coarse grained pyrite. No VG in the vein and no distinct gray colored early generation gtz veins. 0.03 DC007064 316.16 316.90 0.74 0.03 This unit has been sampled. Structure Maj.: Type/Core Angle Comment MDF 44 314.66 - 316.90 Alteration Maj: Type/Style/Intensity Comment 314.66 - 316.90 SI B WM 314.66 - 316.90 HM B MS Vein Maj.: Type/Mineral vg 316.45 - 316.46 QCT 80.0 0.33 316.90 317.91 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007065 316.90 317.38 0.48 0.33 Narrow intersection of same lithologies at 233.38m. 0.02 DC007066 317.61 317.91 0.30 0.02

Hole Number PRS-01 GOUDREAU Project: Project Number: 05300 From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) 317.91 318.25 T9ZS SCHIST UNDIFFERENTIATED DC007067 317.91 318.25 0.34 0.76 0.76 Probably the best alteration so far - may approach a weak API in places. Structure Maj.: Type/Core Angle Comment MDF 44 317.91 - 318.25 Alteration Maj: Type/Style/Intensity Comment 317.91 - 318.25 CL PCH WM 317.91 - 318.25 SE B + 317.91 - 318.25 SIB+ Mineralization Mai. : Type/Style/%Mineral Comment 317.91 - 318.25 PY DIS 1 Vein Maj.: Type/Mineral vg 317.91 - 318.25 Q۷ 10.0 44 0 318.25 319.98 **I1QFP** UNDIFFERENTIATED FELSIC INTRUSIVE QUARTZ-FELDSPAR PORPHYRITIC. DC007068 318.25 318.55 0.30 0.48 0.46 Upper contact is gradational over a few cms. Lower contact is sharp against a basaltic dyke (shear and DC007069 319.68 319.98 0.30 0.01 0.01 altered). This appears to be the unit that is cut by the dyke and then altered into T9ZS and API (next few intervals).

Hole Number PRS-01 Project Number: 05300

rom	To					_	_		_		Dup AA	Grav	Metal	Au fin
(m)	(m)		Litholog	У	Sample #	From		Length	Zone	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
319.98	322.32		LTIC DYKE.		DC007070	319.98	320.32			0.23	-	-	-	0.23
		Similar to previous dyke mineralized and altered	e with a chilled margin on up (weakly) - contains arrays (per and lower contacts. This dyke though is of qtz-carbonate veinlets and a central zone of qtz	DC007071	320.32	320.91			0.44	-	-	-	0.44
		veining (320.32 to 320.9	91m). Outside of the central	vein there is a moderately strong fabric as well as the	DC007072	320.91	321.41			0.18	-	-	-	0.18
		veiniets. The central ve	in also contains second gen	eration carbonate veining.	DC007073	321.41	321.91			0.09	-	-	-	0.09
					DC007074	321.91	322.22	0.31		0.14	-	-	-	0.14
		Structure Maj.: 320.32 - 320.91	Type/Core Angle MDF 60	Comment										
				0. 4										
		Alteration Maj:	Type/Style/Intensity	Comment										
		320.32 - 320.91	CL PCH WM											
		<i>Mineralization Maj. :</i> 320.32 - 320.91	<i>Type/Style/%Mineral</i> PY MG 5	Comment										
		Vein Maj.:	Type/Mineral	% ca vg										
		320.32 - 320.91	QCV	75.0 60 0										
322.32	325.70		T UNDIFFERENTIATED	CH : I'M I O of the older of the	DC007075	322.22				0.65	-	-	-	0.65
				ns of the primary lithology. Some of the alteration but the unit is predominantly T9ZS. There is a central h.	DC007076	322.82	323.28			0.03	-	-	-	0.03
			s chloritic selvage alteration		DC007077	323.28	323.95			0.70	- 	-	-	0.70
					DC007078	323.95				0.60	0.57	-	-	0.59
		Structure Maj.:	Type/Core Angle	Comment	DC007079	324.26				0.29	-	-	-	0.29
		322.32 - 325.70	MDF 60		DC007081	324.76	325.26			0.05	-	-	-	0.05
		Alteration Maj:	Type/Style/Intensity	Comment	DC007082	325.26	325.70	0.44		0.04	-	-	-	0.04
		322.32 - 325.70	CL INT											
		322.32 - 325.70	SE PCH WM											
		322.32 - 325.70	SI PCH WM											
		Mineralization Maj. :	Type/Style/%Mineral	Comment										

Project Number: 05300 GOUDREAU Hole Number PRS-01 Project: Metal Au fin Au AA Dup AA Grav To From (ppm) (ppm) (ppm) (ppm) (ppm) Lithology Sample # From To Length Zone (m) (m) Vein Maj.: Type/Mineral % ca vg 42 0.08 0 323.95 - 324.26 QV Py 0.28 0.28 325.70 326.74 API ISLAND ALTERATION PACKAGE. DC007083 325.70 326.20 0.50 Weak version but definitely stronger than the adjacent T9ZS. Beige to blue gray color with secondary qtz 0.54 0.82 326.20 326.74 0.82 DC007084 veining (second generation predominantly). QV occupy about 20% of the intersection. No VG. Tiny chloritic wisps associated with pyritic disseminations. Structure Maj.: Type/Core Angle Comment Core angle variable around the qtz veins. 325.70 - 326.74 MDF 60 Alteration Maj: Type/Style/Intensity Comment SE PCH WM 325.70 - 326.74 325.70 - 326.74 SI PCH WM Type/Style/%Mineral Mineralization Maj. : Comment PY DIS 1 325.70 - 326.74 Type/Mineral Vein Maj.: vg 20.0 60 0 325.70 - 326.74 QV 0.52 327.34 0.60 T9ZS **SCHIST UNDIFFERENTIATED** DC007085 326.74 0.52 326.74 328.63 1.97 Shoulder to the API. Similar to T9ZS on up hole side of the API. About 20% of the interval has 327.34 327.90 0.56 DC007086 1.97 silicification and pyritic-chlorite alteration that could warrant the term API. DC007087 327.90 0.43 0.02 0.02 328.33 0.02 0.02 DC007088 328.33 328.63 0.30 0.01 Structure Maj.: Type/Core Angle Comment 326.74 - 328.63 WDF 35 Varaible though up to 60 degrees. Alteration Maj: Type/Style/Intensity Comment Tends to be the dominant alteration product. 326.74 - 328.63 CL PCH ++

Hole Number	PRS-01	Project: GOUDREAU							Project Number: 05300									
From (m)	To (m)		Lithology			Sample #	From	To L	ength	Zone	Au AA (ppm)	Dup AA (ppm)	Grav (ppm)	Metal (ppm)	Au fin (ppm)			
		326.74 - 328.63	SE MO WM															
		326.74 - 328.63	SI MO WM															
		Mineralization Maj. : 326.74 - 328.63	Type/Style/%Mineral PY DIS 1	Comment Concentrated in zones.														
328.63	328.93	QV <i>QUARTZ</i>	Z CARBONATE VEIN.			DC007089	328.63	328.93	0.30		0.00	-	-	-	0.00			
02000		Late stage veining with from		k. Marks the contact between	the two units. Minor													
				_		5.000	200.00	000.00	0.00		0.00				0.00			
328.93	341.72	T2QFP INTERM Typical green colored we are lesser in total amount 1cm in max diameter) and that are smaller(1-2mm) these are not easily logger	DC007090 DC007091	328.93 341.50	329.23 341.72	0.30 0.22		0.00 0.01	-	-	-	0.00 0.01						
341.72	342.02		Z CARBONATE TOURMALE ction is occupied by the vei	<i>INE.</i> n. No VG. Appears to be multip	ole vein systems with	DC007092	341.72	342.02	0.30		0.01	-	-	-	0.01			

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-01 Au AA Dup AA Grav Metal Au fin To From (ppm) (ppm) (ppm) (ppm) (ppm) Sample # From To Length Zone Lithology (m) (m) concomitant alteration of the country rock into dark green chlorite. Structure Maj.: Type/Core Angle Comment 341.72 - 342.02 WDF 85 Not stroing shearing with this vein. Type/Style/Intensity Comment Alteration Maj: CL PD WM 341.72 - 342.02 Type/Mineral ca vg Vein Maj.: 85 341.72 - 342.02 QCT 0.00 DC007093 342.02 342.32 0.30 0.00 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 342.02 348.63 T2QFP 0.01 0.01 Same as 328.93m. Variable tectonism creates minor variations in textures. DC007094 348.33 348.63 0.30 0.07 348.63 349.06 0.43 0.07 DC007095 SCHIST UNDIFFERENTIATED 349.06 T9ZS 348.63 Not really a typical T9ZS - has hematitic zones of silicification and minor disseminated pyrite. Probably a weak shear zones tending towards a mylonite. Unlikely to carry any significant mineralization - no VG.

GOUDREAU

Project:

From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length (ppm) (ppm) (ppm) Zone 353.11 T2QFP INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 349.06 349.36 349.06 DC007096 0.30 0.01 0.01 Same as previous examples - feldspar crystals more abundant than blue quartz crystals. DC007097 352.81 353.11 0.30 0.00 0.00 353.11 353.52 QTV QUARTZ TOURMALINE VEIN. DC007098 353.11 353.52 0.00 0.00 0.00 Appears to be a second generation vein with less than 5% tourmaline and minor amounts of Fecarbonate. Some silicification of the wall rock and re-incorporation into the vein as enveloped fragments. Less than 1% pyrite as diss in micro veinlets. No VG. T2QFP 353.52 353.52 365.36 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007099 353.82 0.30 0.00 0.00 Back into variations of the felsic crystal rich unit. Again, the feldspars outnumber the qtz crystals by about 0.30 DC007101 365.06 365.36 0.01 0.01 3:1. Minor sections that are finer-grained and crystal poor along with some sections that are altered (over a few cm only). Some discrete 1-2cm qtz veins parallel to the main foliation but no VG. Relict pieces of the country rock resemble porphyritic rhyolite. Some portions are darker green in color and these areas tend to be associated with more abundant secondary qtz-carbonate veinlets.

Hole Number PRS-01

GOUDREAU

Project:

From To Au AA Dup AA Grav Metal Au fin (m) (m) Lithology Sample # From To Length Zone (ppm) (ppm) (ppm) (ppm) (ppm) 365.36 369.57 T9ZS SCHIST UNDIFFERENTIATED DC007102 365.36 366.36 1.00 1.09 1.09 Not a very good example - pale green to gray in color with local pink colored siliceous zones that tend DC007103 366.36 367.36 1.00 0.25 0.25 towards API. Minor veinlets of diss pyrite and local 1-2cm gtz carbonate veins. Moderately well developed DC007104 367.36 368.36 1.00 0.48 0.48 fabric. Sampled but probably low grade. No VG in the few veins that are present. DC007105 368.36 369.57 1.21 0.73 0.73 T2QFP 369.57 391.10 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. DC007106 369.57 369.87 0.30 0.05 0.05 Same as previous unit. DC007107 390.80 391.10 0.30 0.06 0.06 391.10 392.82 T9ZS SCHIST UNDIFFERENTIATED DC007108 391.10 391.55 0.45 0.02 0.03 0.03 Not a great example. Feldspars are generally absent although there is a scattering of blue qtz crystals. DC007109 391.55 391.85 0.30 0.87 0.87 Most of the pyrite is concentrated in a few veinlets. Carbonate porphyroblasts overgrow the fabric. DC007110 391.85 392.82 0.97 0.04 0.04 Structure Maj.: Type/Core Angle Comment **WDF 35** 391.10 - 392.82 Altered rather than deformed Alteration Maj: Type/Style/Intensity Comment 391.10 - 392.82 CB PCH WM 391.10 - 392.82 CL INT

391.10 - 392.82

391.10 - 392.82

SE INT

SI B WM

Hole Number PRS-01

Project Number: 05300 **GOUDREAU** Project: Hole Number PRS-01 Au AA Dup AA Grav Metal Au fin From To (ppm) (ppm) (ppm) To Length Zone Sample # From Lithology (m) (m) Type/Style/%Mineral Comment Mineralization Maj. : 391.10 - 392.82 PY TR 0.5 Very minor Vein Maj.: Type/Mineral ca νg 391.55 - 391.85 QV PY 80.0 35 0 0.02 0.02 DC007111 392.82 393.12 0.30 INTERMEDIATE QUARTZ-FELDSPAR PORPHYRITIC TUFF. 392.82 398.08 T2QFP Same as previous except for the local addition of late carbonate porphyroblasts. Some of the feldspar crystals have hematitic staining but this is not a common occurrence.

398.08 405.00 **I1D GRANODIORITE**

Upper contact is not sharp. Appears to have a weak fabric in places as well as localized chloritic alteration. Some late second generation qtz-carbonate (tourmaline) veins are present but no significant mineralization or VG. Could be a sub-volcanic intrusion or part of a flow sequence intruding it's own carapace.