

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY (REF. NO. NB101-00222/1-2)

Rev. No.	Revision	Date	Approved
0	Issued in Final	December 15, 2005	KB.

Knight Piésold Ltd.

Box 10 - 34 Commerce Crescent North Bay, Ontario Canada P1B 8G8 Telephone: (705) 476-2165 Facsimile: (705) 474-8095 E-mail: <u>northbay@knightpiesold.com</u>

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY (REF. NO. NB101-00222/1-2)

EXECUTIVE SUMMARY

Various environmental baseline studies were completed for the Shakespeare Project in 2004 and 2005. N.A.R. Environmental Consultants Inc. (NAR) undertook several formal and informal desktop reviews to provide input on environmental permitting and present and future environmental management issues for the Preliminary Feasibility Study. In August 2004, several specific technical tasks were implemented by NAR to determine baseline conditions both within the physical limits of the project and the zone of potential impact, notably the receiving water environment (Agnew Lake).

The field program was expanded in early to mid 2005 to include the collection of benthic macroinvertebrate community and sediment quality data from three stations in Agnew Lake, installation of several groundwater monitoring wells and collection and testing of groundwater samples, acid rock drainage testing of waste rock and tailings samples and the installation of an on-site weather station. The surface water quality and quantity monitoring program continued. In early fall 2005 terrestrial habitat and heritage studies were completed for the project site.

Surface Water

In general, most surface water parameters tested for were well below Provincial Water Quality Objectives (PWQO) and Metal Mining Effluent Regulations (MMER). Some of the surface water samples collected on site (UM-SW-1 through UM-SW-6) exceeded the PWQO for aluminum, ammonia (as N), cadmium, cobalt, copper, iron and zinc. In general the pH values were slightly acidic for the samples collected from on-site locations, ranging from 4.57 to 7.40. There were single sample exceedances for PWQO for lead (location UM-SW-4), nickel (location UM-SW-3A), silver (location UM-SW-5) and vanadium (location UM-SW-1). The only parameter to exceed MMER was pH where values were slightly acidic as indicated above.

For samples collected from Agnew Lake, including where John's Creek flows into the lake, only aluminum (location JC-FF-b), ammonia (as N), cadmium (locations UM-AL-REF-b and UM-AL-FF-b), copper and pH (location JC-FF-b) exceeded PWQO limits. For samples collected from the three embayments, only ammonia (as N) exceeded the PWQO limit. There were no exceedances of MMER for any of these samples.

Flow monitoring is carried out at surface water monitoring location UM-SW-3, in Spellman's Cove. Average recorded flows ranged from zero in August 2004 and September 2004 to approximately 0.16 m³/s in April 2005. Data collection is ongoing.

Groundwater

A total of seventeen groundwater monitoring wells were installed in 2005. Hydraulic conductivities (K) estimated from the rising head tests completed in the wells ranged from 3.4×10^{-6} cm/s in MW-05-01 to 3.1×10^{-4} cm/s in MW-05-07 (average of approximately 7×10^{-5} cm/s). These values are typical for near surface bedrock and the overburden soils encountered at site.

Groundwater samples were collected in August and September 2005. Some of the groundwater samples (MW-05-01 through MW-05-17) exceeded the PWQO for aluminum, ammonia (as N), arsenic, cadmium, cobalt, copper, iron, total cyanide, tungsten and zinc. It should be noted that for some of the samples the method detection limit for total cyanide was greater than the PWQO. The pH values were slightly acidic for almost half of the samples collected, with lower values ranging from 4.91 to 6.43. There were single sample exceedances for PWQO for lead (MW-05-15), mercury (MW-05-03) and uranium (MW-05-01) and two samples exceeded for nickel (MW-05-01 and MW-05-14) and silver (MW-05-05 and MW-05-15).

Sediment

Sediment samples were collected by NAR from the three surface water monitoring locations in Agnew Lake in October 2004 and from locations in Stumpy Bay, Spellman's Cove and Long Bay in May 2005. Results were compared to the Provincial Sediment Quality Guidelines (PSQG) which consist of lowest effect and severe effect levels for various parameters. For some or all of the samples collected the lowest effect levels were exceeded for percent organic, arsenic, cadmium, chromium, copper, lead, manganese, nickel, total kjeldahl nitrogen and zinc. In addition, for some of these samples the severe effect level was exceeded for manganese and total kjeldahl nitrogen.

Terrestrial Habitat

A terrestrial habitat assessment was completed by Maret Tae, R.P.Bio., in the early fall of 2005. The report concludes that the project site exhibits vegetation typical of the landscape of the north shore of Lake Huron. Forest habitat is primarily Transitional Boreal/Great Lakes-St. Lawrence Forest. Close to half the site is covered in very shallow soil with bedrock outcrops with Shallow Soil vegetation community dominated by sometimes stunted jack pine and red oak. The site also has a small amount of swamp and marsh habitat, and is adjacent to a large open water marsh to the northwest on Sutherland Creek. Recommendations were made to conduct vegetation surveys throughout the growing season in order to better document the presence or absence of significant plant species at the project site.

The terrestrial habitat assessment also included mammals, birds and herpetiles. The report concluded that the project site exhibits a variety of wildlife habitat, both upland and wetland, typical of the landscape of the north shore of Lake Huron. The presence of the cliffs and the adjacent Agnew Lake are valuable features for wildlife such as raptors. However, due to the timing and duration of the assessment, it was recommended that additional wildlife surveys, such as amphibian and reptile surveys, waterfowl, raptor and spring songbird surveys, mid summer mist netting of bats and reporting of on-site wildlife sightings on an ongoing basis be conducted in order

Page ii of vi

to provide more complete inventories of the wildlife in and around the project site. In 2004 Ministry of Natural Resources (MNR) Values Maps were reviewed for the project site area by NAR. No areas of nesting, breeding or significant bird habitat were identified by NAR.

Aquatic Habitat

NAR provided information on some fish spawning areas, in particular Northern Pike and Walleye, based on their review of MNR Values Maps. However, due to the drawdown of Agnew Lake caused by the operating of the hydropower dam, which can vary water levels in the lake each year by as much as 3 to 6 m, NAR's assessment concluded that *fisheries resources in Agnew Lake are generally limited by the loss of littoral habitat and the associated benthic productivity.*

Benthic samples were collected from three locations in Agnew Lake by NAR in the spring of 2005, as well as from Spellman's Cove, Stumpy Bay and Long Bay. NAR's report stated that *in general, benthic macroinvertebrate communities at both the lake and embayment stations were dominated by worms, midge and clams. Results were typical of unimpacted shield lakes where numbers of organisms and taxa diversity are typically low. Communities in the embayments are also subject to stress through the annual seasonal draw-down caused by the operation of the hydropower dam.*

A field inspection was conducted by NAR in August 2005 on a series of ponds located north of the open pits. In their report, NAR stated that the observational data collected during the site inspection support that ponds downstream of the proposed waste rock and tailings dump are transitory, and do not support a fishery. As such, these ponds are not fish habitat as defined by the Fisheries Act. Also NAR reported that there was no evidence of undisturbed wetlands which supported unique plant assemblages or rare, threatened or endangered wildlife habitat.

Air and Noise

No air and noise studies have been completed at the site. A scope of work was developed to complete these studies as part of the permitting phase of the project.

Waste Characterization

Modified static Acid Base Accounting and Net Acid Generation tests for the mine rock have indicated the potential for acid generation. Leach test results have determined that most of the parameters, with the exception of pH, for all of the mine rock samples tested reported at concentrations within MMER limits. Humidity cell tests (kinetic tests) were in the 22nd week of testing of a 40 week testing program at the time of writing this report. The kinetic test results for the first 20 weeks of testing show a general decrease in pH from 7.97 (week 0) to 6.23 (week 20) and sulphate concentrations have shown an increasing trend. These kinetic test results indicate a potential for acid generation for the mine rock. Final results are pending.

Generally the results from the testing carried out on the sulphide tailings (F19 tailings) indicated that they have a strong potential for acid generation and may leach nickel and zinc. Humidity cell tests on the F19 tailings were in the 22nd week of testing of a 40 week testing program at the time of

writing this report. The kinetic test results for the first 20 weeks of testing show a general decrease in pH from 8.03 (week 0) to 6.70 (week 20) and sulphate concentrations have steadily increased from 6.5 mg/L (week 0) to 61 mg/L (week 20). These kinetic test results indicate that the F19 tailings have a potential for acid generation. Final results are pending.

Results for the sulphide reduced tailings (F30 tailings) indicated acid generation is unlikely. However, results from the TCLP testing indicated the F30 tailings may have the potential to leach zinc. Humidity cell tests on the F30 tailings were in the 17th week of testing of a 20 week testing program at the time of writing this report. The kinetic test results for the first 15 weeks of testing show a consistent near neutral pH and sulphate concentrations have shown a steady decrease from 33 mg/L (week 0 and 1) to 1.2 mg/L (week 12). These kinetic test results indicate acid generation is unlikely for the F30 tailings. Final results are pending.

Meteorology

The climate in the Shakespeare Property area is characterized by moderately long, cold winters and shorter, warm summers and is typical of continental conditions. A weather station was installed on site in March 2005 to monitor local weather conditions including rainfall, temperature and wind. During the period of record, from March 17 through November 16, 2005, temperatures ranged from -12.3 °C in March to 33.2 °C in July. Total monthly rainfall ranged from 0 mm in March to 89.4 mm in September. A wind rose plot was developed using the recorded wind speeds and directions. As evidenced by the predominantly east and west wind directions shown on the wind rose plot, the wind data recorded by the weather station may be influenced by the location of the cleared corridor for the access road to the project site. The predominantly east and west directions may also be a result of the fact that data has not currently been collected over the winter months.

Heritage Study

Stage 1 and Stage 2 archaeological and heritage impact assessments were completed for the project site by Horizon Archaeology in early fall 2005. Based on the studies completed, they concluded that due to the changes in the water level of Agnew Lake and the inaccessibility of the rocky ridges, the likelihood of discovering cultural remains appeared low. The original shoreline would have been a considerable distance further away than is the case today. The lack of appreciable soil deposits also limited the usefulness of this area...the test pit strategy employed by Horizon Archaeology failed to uncover any signs of cultural activity, nor even locate areas where probability modelling would indicate special need be given. And their report stated that, in the opinion of Horizon Archaeology, there are no concerns related to the destruction of cultural materials by the continued development of this project.

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY (REF. NO. NB101-00222/1-2)

TABLE OF CONTENTS

PAGE

EXECUTIVE SUMMAR	۲۶i	
SECTION 1.0 - INTRO	DUCTION1	
SECTION 2.0 - BASEL	INE STUDIES	
2.1	HYDROLOGY/HYDROGEOLOGY2	
	2.1.1 Regional Surface Flows	
	2.1.2 Surface Water Quality	
	2.1.3 Flow Monitoring	
	2.1.3.1 Groundwater Quality and Quantity	
2.2	SEDIMENT4	
2.3	TERRESTRIAL PLANT AND ANIMAL LIFE	
	2.3.1 Vegetation	
	2.3.2 Birds and Mammals5	
2.4	AQUATIC PLANT AND ANIMAL LIFE	
	2.4.1 Fisheries	
	2.4.2 Benthic Surveys	
	2.4.3 Project Site Ponds	
2.5	AIR AND NOISE STUDIES	
2.6	WASTE CHARACTERIZATION	
	2.6.1 Mine Rock	
	2.6.2 Tailings	
2.7	METEOROLOGICAL DATA9	
2.8	HERITAGE STUDY10	
SECTION 3.0 - REFER	RENCES 11	
SECTION 4.0 - CERTI	FICATION12	

TABLES

Table 2.1	Rev. 0	Summary of Surface Water Quality Results
Table 2.2	Rev. 0	Summary of Flow Monitoring Results
Table 2.3	Rev. 0	Summary of Groundwater Monitoring Wells

Page v of vi

Knight Piésold

Rev. 0	Summary of Groundwater Quality Results
Rev. 0	Summary of QA/QC for Groundwater Quality Results
Rev. 0	Summary of Sediment Quality Results
Rev. 0	Summary of Meteorological Data
	Rev. 0 Rev. 0 Rev. 0 Rev. 0

FIGURES

Figure 1.1	Rev. 0	Project Site Location
Figure 1.2	Rev. 0	Existing Site Arrangement
Figure 2.1	Rev. 0	Regional Plan
Figure 2.2	Rev. 0	Meteorological Data - Rainfall, Potential Evaporation and Temperature
Figure 2.3	Rev. 0	Meteorological Data - Wind Rose Plot
Figure 2.4	Rev. 0	Meteorological Data - Wind Class Frequency Distribution

APPENDICES

Appendix A	Surface Water Quality and Quantity, Groundwater Quality and
	Sediment Quality Results
	A1 - Surface Water and Sediment Quality Results
	A2 - Flow Monitoring Records
	A3 - Groundwater Quality Results
Appendix B	Geotechnical Drilling and Monitoring Well Installation Summary for the
	Shakespeare Project (Knight Piésold)
Appendix C	Pre-Operative Environmental Baseline Study - Shakespeare Deposit,
	Espanola, Ontario - URSA Major Minerals Inc. (N.A.R. Environmental
	Consultants Inc.)
Appendix D	Terrestrial Assessment - URSA Major Access Corridor (Maureen
	Kershaw, N.A.R. Environmental Consultants Inc.)
Appendix E	Terrestrial Habitat Assessment of Shakespeare Project Site - URSA
	Major Minerals Incorporated (Maret Tae)
Appendix F	Acid Rock Drainage and Metal Leaching Characterization Interim
	Reports (SGS Lakefield Research Limited)
	F1 - Waste Rock Interim Report 5
	F2 - Tailings Interim Report 3
Appendix G	Meteorological Data
Appendix H	Stage One and Two Archaeological and Heritage Impact Assessment -
	Proposed Agnew Lake Mine Development, Agnew Lake, Ontario
	(Horizon Archaeology)

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY (REF. NO. NB101-00222/1-2)

SECTION 1.0 - INTRODUCTION

This environmental baseline report has been prepared to fulfill the requirements of the Bankable Feasibility Study currently being completed for the URSA Major Minerals Incorporated (URSA Major) Shakespeare Project. The Shakespeare Project is located in Shakespeare Township, on the north side of Agnew Lake, approximately 75 km southwest of Sudbury, Ontario as shown on Figure 1.1.

If the project advances to operations, the site will consist of two open pits with corresponding on-site mill, waste rock and tailings depositories and other associated components as shown on Figure 1.2. The two pits are adjacent to each other and may ultimately form one pit. Exploration drilling has been ongoing since 2002 and has delineated a significant mineral resource containing nickel, copper, cobalt, platinum, palladium and gold.

N.A.R. Environmental Consultants Inc. (NAR) was retained by URSA Major in 2004 to provide both environmental permitting and management services for the Shakespeare Project for the Prefeasibility Study. For the purpose of that report, NAR undertook several formal and informal desktop reviews to provide input on environmental permitting and present and future environmental management issues.

In August 2004, several specific technical tasks were implemented by NAR to determine baseline conditions both within the physical limits of the project and the zone of potential impact, notably the receiving water environment (Agnew Lake).

In early 2005, Knight Piésold Ltd. (Knight Piésold) was retained by URSA Major to provide similar services for the BFS, with the understanding that NAR would be hired directly by Knight Piésold to continue with the baseline programs they had initiated in 2004.

The field program was expanded in early to mid 2005 to include the collection of benthic macroinvertebrate community and sediment quality data from three stations in Agnew Lake, installation of several groundwater monitoring wells and collection and testing of groundwater samples, acid rock drainage testing of mine rock and tailings samples and the installation of an on-site weather station. The surface water quality and quantity monitoring program continued. In early fall 2005 terrestrial habitat and heritage studies were completed for the project site.

The following sections summarize the baseline studies completed to date.

SECTION 2.0 - BASELINE STUDIES

2.1 <u>HYDROLOGY/HYDROGEOLOGY</u>

2.1.1 Regional Surface Flows

The Spanish River flows south from Biscotasi Lake, becomes Agnew Lake which flows east, and then flows southwest, past Espanola, to discharge into the North Channel of Lake Huron. Agnew Lake was created because the Spanish River in that area was dammed for hydroelectric power generation.

A number of small streams drain the project area as shown on Figure 1.2. These have been classified geomorphically as Order 1 or intermittent streams (Micon 2004).

2.1.2 Surface Water Quality

Surface water quality monitoring was initiated by NAR in 2004 as part of the baseline studies for the project. URSA Major has been monitoring surface water quality at several on-site stream locations while NAR has collected samples from reference, near-field and far-field stations located on Agnew Lake as well as from John's Creek outlet, Spellman's Cove, Stumpy Bay and Long Bay. The surface water sampling locations are shown on Figures 1.2 and 2.1. The Agnew Lake sampling locations are labelled UM-AL-REF, UM-AL-NF and UM-AL-FF. The John's Creek locations are labelled JC-NF and JC-FF and the embayment locations are labelled SB, SP and LB for Stumpy Bay, Spellman's Cove and Long Bay, respectively. The on-site sampling locations are labelled UM-SW-1 through 6.

The baseline surface water quality results are summarized on Table 2.1 with the field notes and analytical reports provided in Appendix A1. Results were compared to Provincial Water Quality Objectives (PWQO) and the federal Metal Mining Effluent Regulations (MMER). In general, most parameters tested were well below PWQO and MMER limits. Some of the surface water samples collected on site (UM-SW-1 through UM-SW-6) exceeded the PWQO limit for aluminum, ammonia (as N), cadmium, cobalt, copper, iron and zinc. In general the pH values were slightly acidic for the samples collected from on-site locations, ranging from 4.57 to 7.40. There were single sample exceedances for PWQO for lead (location UM-SW-4), nickel (location UM-SW-3A), silver (location UM-SW-5) and vanadium (location UM-SW-1). The only parameter to exceed MMER was pH where values were slightly acidic as indicated above.

For samples collected from Agnew Lake, including where John's Creek flows into the lake, only aluminum (location JC-FF-b), ammonia (as N), cadmium (locations UM-AL-REF-b and UM-AL-FF-b), copper and pH (location JC-FF-b) exceed the PWQO limits. There were no exceedances of MMER for these samples.

For samples collected from the three embayments, only ammonia (as N) exceeded the PWQO limit. There were no exceedances of MMER for these samples.

It should be noted the above water quality results are from the pre-production phase and should be considered as background values.

2.1.3 Flow Monitoring

In 2004 a culvert and data logging flow meter were installed by NAR on one of the sub-catchments within the Shakespeare Project area. The location of the flow monitoring station corresponds to the location of surface water sampling location UM SW-3. The flow monitoring location is shown on Figures 1.2 and 2.1.

Flow monitoring is being conducted at UM SW-3 through the use of a Star Flow meter estimating flows through a 910 mm (36 inch) diameter corrugated steel culvert. This intermittent creek drains the watershed which includes a large portion of the Shakespeare Project area, including the open pits. Monitoring records for the period from August 18, 2004 through November 15, 2005 were provided by NAR. The data are summarized on Table 2.2 while the daily data are provided in Appendix A2. Average recorded flows range from 0 m³/s in August and September 2004 to approximately 0.16 m³/s in April 2005. Data collection is ongoing.

2.1.3.1 Groundwater Quality and Quantity

A total of seventeen groundwater monitoring wells were installed on site in 2005 and their locations are shown on Figure 1.2. Details of the well installation program are provided in Appendix B with a summary provided on Table 2.3. Recorded groundwater depths ranged from 0.75 m above surface in MW-05-08 (artesian conditions) to 13.79 m below surface in MW-05-15.

Rising head tests were conducted in all of the wells in order to estimate the hydraulic conductivity (permeability) of the overburden soil or bedrock adjacent to the screened interval of each well. Hydraulic conductivities (K) calculated from these tests ranged from 3.4×10^{-6} cm/s in MW-05-01 to 3.1×10^{-4} cm/s in MW-05-07 (average of approximately 7×10^{-5} cm/s). These values are typical for near surface bedrock and the overburden soils encountered at site.

A single vertical drillhole, U-03-66, was completed in the area of the proposed bulk sample. The primary purpose of this hole was to confirm the depth to groundwater and the geology of the bulk sample area. Groundwater was measured in this drillhole at a depth of approximately 1.2 m. No water quality sampling was conducted in this hole as no monitoring well was installed.

To date, one partial set and one complete set of groundwater quality samples have been collected. The baseline groundwater quality results are summarized on Table 2.4 with the

Page 3 of 12

field notes and analytical reports provided in Appendix A3. Results were compared to PWQO and in general, most parameters tested were well below PWQO limits. Some of the groundwater samples collected on site (MW-05-01 through MW-05-17) exceeded the PWQO for aluminum, ammonia (as N), arsenic, cadmium, cobalt, copper, iron, total cyanide, tungsten and zinc. It should be noted that for some of the samples the method detection limit for total cyanide was greater than the PWQO. The pH values were slightly acidic for almost half of the samples collected, with lower values ranging from 4.91 to 6.43. There were single sample exceedances for PWQO for lead (MW-05-15), mercury (MW-05-03) and uranium (MW-05-01) and two samples exceeded for nickel (MW-05-01 and MW-05-14) and silver (MW-05-05 and MW-05-15).

Groundwater quality results for QA/QC samples are summarized on Table 2.5. In general lab results for the metals and general parameters were very similar for duplicate samples. The one exception was the total suspended solids results for well MW-05-16. This may be due to the original sample being collected when the water in the well was still turbulent after purging the well.

It should be noted that the above water quality results are from the pre-production phase and should be considered as background values.

2.2 SEDIMENT

Sediment samples were collected by NAR from the three surface water monitoring locations in Agnew Lake in October 2004 and from locations in Stumpy Bay, Spellman's Cove and Long Bay in May 2005. The Agnew Lake sampling locations are labelled UM-AL-REF, UM-AL-NF and UM-AL-FF, while the embayment locations are labelled SB, SP and LB for Stumpy Bay, Spellman's Cove and Long Bay, respectively. All locations are shown on Figure 2.1. The results are summarized on Table 2.6 and the analytical reports are included in Appendix A1. There is additional information included in NAR's report (Appendix C).

Results were compared to the Provincial Sediment Quality Guidelines (PSQG) which consist of lowest effect and severe effect levels for various parameters. For the samples collected from Agnew Lake, the lowest effect levels for percent organic, arsenic, cadmium, chromium, copper, lead, manganese, nickel, total kjeldahl nitrogen and zinc were exceeded for some or all samples collected. All three far field samples exceeded the severe effect level for percent organic, while two of the reference and two of the far field samples exceeded the severe effect level for manganese.

For the samples collected from the embayments, the lowest effect levels were exceeded for percent organic, arsenic, cadmium, chromium, copper, lead, manganese, nickel, total kjeldahl nitrogen and zinc for some or all samples collected. One or more samples from each embayment exceeded the severe effect level for manganese while one sample from Spellman's Cove and two from Stumpy Bay exceeded the severe effect level for total kjeldahl nitrogen.

These sediment quality results are from the pre-production phase and are representative of background values.

Page 4 of 12

2.3 TERRESTRIAL PLANT AND ANIMAL LIFE

2.3.1 Vegetation

Local vegetation, as described by Micon in the Prefeasibility Study, is summarized below.

The property is covered in relatively dense bush consisting of coniferous and deciduous bushes and small and large trees. The timber resources consist mostly of second growth birch, poplar, oak, maple, jackpine and spruce.

A forest resource inventory was completed by NAR (Maureen Kershaw) in 2004 for some of the project area, in particular for potential haulage road options. A copy of this report is provided in Appendix D. Based on the information in this report, vegetation in and around the site may be described as mature white pine, mixed wood forests (white and yellow birch, soft maple, eastern hemlock and spruce) and red oak-white pine and mixed hardwood forests.

A terrestrial habitat assessment was completed by Maret Tae, R.P.Bio., in the early fall of 2005. A copy of the report is provided in Appendix E. The report concludes that the project site exhibits vegetation typical of the landscape of the north shore of Lake Huron. Forest habitat is primarily Transitional Boreal/Great Lakes-St. Lawrence Forest. Close to half the site is covered in very shallow soil with bedrock outcrops with Shallow Soil vegetation community dominated by sometimes stunted jack pine and red oak. The site also has a small amount of swamp and marsh habitat, and is adjacent to a large open water marsh to the northwest on Sutherland Creek. Recommendations were made to conduct vegetation surveys throughout the growing season in order to better document the presence or absence of significant plant species at the project site.

2.3.2 Birds and Mammals

Ministry of Natural Resources (MNR) Values Maps were reviewed for the project site area by NAR in 2004. Figure 2.1 provides information on the location of moose feeding and wintering grounds. No areas of nesting, breeding or significant bird habitat were identified by NAR.

The terrestrial habitat assessment completed by Maret Tae also included mammals, birds and herpetiles. The report concluded that the project site exhibits a variety of wildlife habitat, both upland and wetland, typical of the landscape of the north shore of Lake Huron. The presence of the cliffs and the adjacent Agnew Lake are valuable features for wildlife such as raptors. However, due to the timing and duration of the assessment, it was recommended that additional wildlife surveys, such as amphibian and reptile surveys, waterfowl, raptor and spring songbird surveys, mid summer mist netting of bats, and reporting of on-site wildlife sightings on an ongoing basis be conducted in order to provide more complete inventories of the wildlife in and around the project site.

Page 5 of 12

2.4 AQUATIC PLANT AND ANIMAL LIFE

2.4.1 Fisheries

Figure 2.1 provides information on some fish spawning areas, in particular Northern Pike and Walleye. This information was provided by NAR and is based on MNR Values Maps.

A general assessment of fisheries and fish habitat was completed by NAR in 2005 to address the presence or absence of fish populations in the project site area. In particular, habitat descriptions of the three embayment areas were completed in the spring of 2005. Details of this work are provided in Appendix C. Also included in NAR's report are the results of a Fall Walleye Index Netting (FWIN) study completed for the MNR by Laurentian University in 1998 and 1999.

Due to the drawdown of Agnew Lake caused by the operating of the hydropower dam, which can vary water levels in the lake each year by as much as 3 to 6 m, NAR's assessment concluded that *fisheries resources in Agnew Lake are generally limited by the loss of littoral habitat and the associated benthic productivity.*

2.4.2 Benthic Surveys

Benthic samples were collected from three locations in Agnew Lake by NAR in the spring of 2005, as well as from Spellman's Cove, Stumpy Bay and Long Bay. Results are provided in Appendix C.

In their report NAR concluded that in general, benthic macroinvertebrate communities at both the lake and embayment stations were dominated by worms, midge and clams. Results were typical of unimpacted shield lakes where numbers of organisms and taxa diversity are typically low. Communities in the embayments are also subject to stress through the annual seasonal draw-down caused by the operation of the hydropower dam.

2.4.3 Project Site Ponds

NAR conducted a field inspection of a series of ponds located north of the open pits in August 2005. These ponds were inspected because they are located downstream of the proposed waste rock and tailings dump. At the time of the inspection in August 2005, however, only one of the ponds existed, most likely due to the very dry weather which occurred throughout the summer.

Details of NAR's findings are provided in Appendix C. In their report NAR states that the observational data collected during the site inspection support that ponds downstream of the proposed waste rock and tailings dump are transitory, and do not support a fishery. As such, these ponds are not fish habitat as defined by the Fisheries Act. NAR also reported that there was no evidence of undisturbed wetlands which supported unique plant assemblages or rare, threatened or endangered wildlife habitat.

Page 6 of 12

2.5 AIR AND NOISE STUDIES

No air and noise studies have been completed at the site. A scope of work was developed to complete these studies as part of the permitting phase of the project.

2.6 WASTE CHARACTERIZATION

The waste characterization program was implemented based the Guidelines for the Prediction of Acid Rock Drainage (ARD) and Metal Leaching for Mines in British Columbia (which the Ministry of Northern Development and Mines (MNDM) has adopted by regulation under the Ontario Mining Act). The amount of testing conducted was for a Feasibility Study and not for final project permitting.

2.6.1 Mine Rock

The testing on potential mine rock (waste rock) was completed on core samples collected from the project site during the exploration drilling. The initial phase of leach tests and Acid Base Accounting (ABA) tests were completed by Testmark Laboratories Ltd. (Testmark) in September 2004. Results of these tests are included in the Prefeasibility Study and in the Closure Plan for Advanced Exploration for the Shakespeare Project.

The remaining environmental characterization of the mine rock was completed or is ongoing by SGS Lakefield Research Limited (SGS). Testing completed by SGS included:

- US EPA toxicity characteristic leach procedure (TCLP) method 1311 on 16 samples
- US EPA synthetic precipitation leach procedure (SPLP) method 1312 on 16 samples
- Modified static ABA tests on 10 samples
- Net Acid Generation (NAG) tests on 10 samples

Testing that is ongoing by SGS includes:

 Humidity Cell testing (kinetic ABA tests) on 4 individual samples and 3 composite samples

The mine rock samples tested were representative of the major bedrock units found in the proposed open pit at the Shakespeare Project site and included:

- Quartz Gabbro
- Disseminated Sulphide Mineralization
- Footwall Gabbro
- Hanging Wall Quartzite

Results from the TCLP tests completed on the mine rock samples revealed that all parameters, with the exception of pH, reported at concentrations within the MMER limits.

Page 7 of 12

Results from the SPLP tests determined that all parameters reported at values within the MMER limits for the mine rock samples.

The modified static ABA test results for the Quartz Gabbro samples, the Disseminated Sulphide Mineralization sample, the Footwall Gabbro sample and the Hanging Wall Quartzite samples all indicated the potential for acid generation.

The NAG test results for the Quartz Gabbro samples, the Disseminated Sulphide Mineralization sample and the Hanging Wall Quartzite samples were indicative of the potential for acid generation. The NAG test result for the Footwall Gabbro sample suggested a slight possibility for the potential to generate acid.

Humidity cell tests (kinetic tests) were in the 22nd week of testing of a 40 week testing program at the time of writing this report. The kinetic test results for the first 20 weeks of testing show a general decrease in pH from 7.97 (week 0) to 6.23 (week 20) and sulphate concentrations have shown an increasing trend. These kinetic test results indicate the mine rock has a potential for acid generation. Final results are pending. Interim results of the leachate quality from the humidity cell tests indicate that all the parameters are within the MMER limits.

Details of the interim results from SGS are included in Appendix F.

2.6.2 Tailings

Environmental characterization of tailings samples generated from metallurgical testing of ore from the Shakespeare Project was completed or is ongoing by SGS to identify the ARD potential and the metal leaching characteristics of the tailings samples. Testing completed by SGS included:

- Mineralogical examination
- Rietveld XRD analyses
- Whole rock analyses
- ICP-OES/MS strong acid digest trace metal scans
- Modified ABA tests
- NAG tests
- US EPA TCLP method 1311
- US EPA SPLP method 1312

Testing ongoing by SGS includes:

- Humidity Cell testing (kinetic ABA tests)
- Supernatant aging tests
- Daphnia magna LC50 acute lethality tests

The tailings samples tested included:

- Combined flotation tailings (F19 flotation tailings pulp)
- Rougher tailings (F30 sulphur reduced rougher flotation tailings)

Generally the results from the testing carried out on F19 tailings indicated that they have a strong potential for acid generation and may leach nickel and zinc. Results for the F30 tailings testing indicated acid generation is unlikely. However, results from the TCLP testing indicated the F30 tailings may have the potential to leach zinc.

Humidity cell tests (kinetic tests) on the F19 tailings were in the 22^{nd} week of testing of a 40 week testing program at the time of writing this report. The kinetic test results for the first 20 weeks of testing show a general decrease in pH from 8.03 (week 0) to 6.70 (week 20) and sulphate concentrations have steadily increased from 6.5 mg/L (week 0) to 61 mg/L (week 20). These kinetic test results indicate that the F19 tailings have a potential for acid generation. Final results are pending.

Humidity cell tests on the F30 tailings were in the 17th week of testing of a 20 week testing program at the time of writing this report. The kinetic test results for the first 15 weeks of testing show a consistent near neutral pH and sulphate concentrations have shown a steady decrease from 33 mg/L (week 0 and 1) to 1.2 mg/L (week 12). These kinetic test results indicate that acid generation is unlikely for the F30 tailings. Final results are pending.

Details of the interim results from SGS are included in Appendix F.

2.7 METEOROLOGICAL DATA

The climate in the Shakespeare Property area is characterized by moderately long, cold winters and shorter, warm summers and is typical of continental conditions. The area experiences a wide variation in temperature throughout the year. In winter months, the temperature may drop below -20°C for extended periods. In the summer, the maximum daily temperature may reach over 25°C for extended periods. The daily mean temperatures typically fall below freezing from December through March. Precipitation in the region is characterized as moderate and is generally distributed evenly throughout the year, with only minor seasonal trends. However, the wettest months generally occur from May to October.

The estimated average annual total precipitation is 899 mm, with 657 mm falling as rain and 242 mm falling as water equivalent to snow. This is based on the Canadian Climate Normals for the meteorological station located at the Sudbury airport, approximately 85 km northeast of the site, for the period from 1971 through 2000.

Evaporation data are not collected at the Sudbury airport. The evaporation data from Amos, Quebec, approximately 380 km northeast of the site, may be used in the future for design

Page 9 of 12

purposes. The recorded average annual evaporation for Amos is 746 mm (Environment Canada, 1968 - 1992).

A weather station was installed on site by Knight Piésold on March 16, 2005 to monitor local weather conditions including rainfall, temperature and wind. The location of the weather station is shown on Figure 1.2.

During the period of record, from March 17 through November 16, 2005, temperatures ranged from -12.3 °C in March to 33.2 °C in July. Total monthly rainfall ranged from 0 mm in March to 89.4 mm in September. Table 2.7 and Figures 2.2 through 2.4 provide summaries of the temperature, rainfall and wind data collected while details are included in Appendix G.

Figure 2.3 shows a wind rose developed using the wind speeds and corresponding directions recorded on site while Figure 2.4 shows the distribution of wind speeds. As evidenced by the predominantly east and west directions of the wind on the wind rose plot, the wind data recorded by the weather station may be influenced by the location of the cleared corridor for the access road to the project site. The predominantly east and west directions may also be a result of the fact that data has not yet been collected over the winter months.

2.8 <u>HERITAGE STUDY</u>

Stage 1 and Stage 2 archaeological and heritage impact assessments were completed for the project site by Horizon Archaeology in early fall 2005. Based on the studies completed, they concluded that due to the changes in the water level of Agnew Lake and the inaccessibility of the rocky ridges, the likelihood of discovering cultural remains appeared low. The original shoreline would have been a considerable distance further away than is the case today. The lack of appreciable soil deposits also limited the usefulness of this area...the test pit strategy employed by Horizon Archaeology failed to uncover any signs of cultural activity, nor even locate areas where probability modelling would indicate special need be given. And their report stated that, in the opinion of Horizon Archaeology, there are no concerns related to the destruction of cultural materials by the continued development of this project. Further details of the heritage study are included in Appendix H.

SECTION 3.0 - REFERENCES

- 1. British Columbia. Ministry of Energy and Mines. Guidelines for Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. Prepared by Price, William A. and Errington, John C. Victoria: Province of British Columbia, 1998.
- 2. Canada. Department of Fisheries and Oceans. Fisheries Act Metal Mining Effluent Regulations (SOR/2002-222). Published in the Canada Gazette II on June 5, 2002.
- 3. Canada. Environment Canada. Canadian Climate Normals 1971-2000 Ontario. A publication of the Canadian Climate Program.
- Micon International Limited. <u>Ursa Major Minerals Incorporated Preliminary Feasibility Study</u> for the Shakespeare Mineral Deposit, Shakespeare Township, Ontario. Volume 1. Toronto: Micon International Limited, 2004.
- 5. N.A.R. Environmental Consultants Inc. <u>Ursa Major Access Corridor.</u> Prepared by Kershaw, Maureen. Sudbury: N.A.R. Environmental Consultants Inc., 2004.
- Ontario. Ministry of Environment and Energy. <u>Guidelines for the Protection and Management</u> of Aquatic Sediment Quality in Ontario. Prepared by Persaud, D., Jaagumagi, R., and Hayton, A. Queen's Printer for Ontario, 1993.
- Ontario. Ministry of the Environment and Energy. <u>Water Management Policies, Guidelines,</u> <u>Provincial Water Quality Objectives of the Ministry of Environment and Energy, Province of</u> <u>Ontario</u>. Province of Ontario, 1994, reprinted February 1999.

SECTION 4.0 - CERTIFICATION

This report was prepared, reviewed and approved by the undersigned.

Prepared by:

Duff, P.Eng. Deena

Project Engineer

Reviewed by:

Steven R. Aiken, P. Eng. Manager Environmental Services

Approved by:

Ken D. Embree, P.Eng. Managing Director

This report was prepared by Knight Piésold Ltd. for the account of URSA Major Minerals Incorporated. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third party. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party, as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

Page 12 of 12

NB101-00222/1-2 Revision 0 December 15, 2005

OFESSION

OF

VEEH

Knight Piésold

TA8LE 2.1

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF SURFACE WATER QUALITY RESULTS

Parameter	Units	Criteria	-	<u> </u>																																		
Onto Sempled		PWQO	MMER	18-041-84	20-540-05	17- hun A4	48-54	97.4mm.05	UM-SW-1	16 Mar 05	44 Fab 67	40. Jac. 05. 1	40 Mars 04		5 Mar. 66	44 Mar 06	17. 1		UM-SW-2	ti Eab AC	10.100.04	10 Nov 01	4. Nov. 64	(Det AL	20 F M	49.4	11 1 2 11 1			1.1.1.1	UM-SW-3		10 fee 44	40 May 04	4.000004	26.0-2-04	M. Frankl	(T-Aurod)
Field Alt Temperature	*c			9	17	13	18	2/-Apt-03	4-Apr-03	13-4481-05	11440-05	-1	10-100-04	21-061-04	2-1104-05	21	- <u>41-App-05</u>	4-401-05	12-11-12	110700-00		19-1109-04	4-1107-04	0	10	22	17-306-05	18-May-05	27-Apr-05	4-Apr-05	12-111-02	11-Peb-03	10-340-03	10-10-04	4-110V-V4	21-021-04	7	17-2000-000
Field Water Sample Temperature	•c			9	14	12	13	3	,	0.5	0		4		,	12			1	0	1		5	9	10	10	15	12		0.5	0.5	-1		3	3	5	5	14
Field D/D	mg/L			2.5	4.5	25	5.5	0	7	4	6	6.5	4.6	3.5	4.5	7		10	55	9	11	5	0	4.5	5.5	4.5	4.5	9		10	9		9	9	8	7	1	
Alumanum	Hor	15 (lor pH 4.5 to 0.5)		200	398	201	266	276	260	284	283	287	288	405	268	251	306	296	229	291	307	330	332						239	100	111	102	124	137	100			
		75 (for pH 6.5 to 9.0)																						50	152	80	122	126								67	69	77
Ammonia (st N)	mg/L	0.02		0.013	0.040	0.040	0.03	0.038	0.022	0.044	0.05	0.0085	0.035	9.18	0.00	0.027	0.013	0.012	0.02	0.003	0.0074	0 9071	0.916	0.0064	0.02	0.032	0.08	0.042	0.037	0.044	0.11	0.1	0.018	<0.002	0 0002	0.062	0.022	6.058
Antimony		20		<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4	<1	4		<1	<1	<1 	<1	<1	<1	<1		-1	<1	- 1	<1	<1	4	<1	
Arbenic	indi	5	1000			<1	<1	<1	<1	<1	<u><1</u>	<1	<1	<1	<1	<1	<1		<u>(1</u>		<1	<1		<1	1.1		<1	<1	<1		<1	<1	×1	-1	- 1	<1	1	
Berview	- MOVE	11 (for horringes as CaCOs <75 mml.)		<u>21</u>		<11 61	- 18		15	20	- 19	- 18		25	18	10	14	- 14	14	- 14	17	18	20	13		<1	15		12		- 14		12	13	- 14	15		
	Jugit	1,100 (for hardness as CaCO ₃ >75 mg/L)																									····											
Bismuth	Lon			<1	<1	<1	51		<1	<1				<1	- 1	<1	<1	c1	<1	<1	<1	<1	<1 K1	<1	*1	<1	<1		-		<1	41		<1	<1	<1	<1	ন
Boron	HOL.	200		5.1	76	5.5	43	1	~2	- 2	3.8	52	4.1	~	4.5	3.7	<2	4	<2	30	3.2	<2	22	7.1	28	8.4	7.4	3.8	42	4	*2	5.1	4.4	2.3	3.5	<2	8.1	7.5
Cadmium	HO1	0.1 (for herdness as CaCO1 < 100 mg/L)		0.30	0.65	0.12	0.15	0.29	0.17	0.13	9.17	0.12	0.12	9.5	0.25	0,1	<0.1	-11	<01	0.12	0.15	0.15	0.1	<0.1	9.22	<0.1	<01	<0.1	<0.1	<0.1	<0.1	<0.1	0.14	<01	9.11	<0.1	<0.1	1
	Hor I	0.5 (for hardness as CoCO ₂ >100 mg/L)																																				(
Calcium	_JOH_			1,000	3,500	1.100	1,100	050	2 70	1,100	950	1,000	1,200	2,200	2,200	1,700	1,600	1,400	1,500	1,500	1,700	2,200	2,000	6,900	6,390	7,280	0.480	3,700	2,500	2,400	4,200	3,400	3,100	3,900	3,600	7,000	0,750	5,620
Cerkum	Hol			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<u>\$1</u>	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cenium	Hol.			_ <1	<1	- 41	<1	<1	<1	<1	<1	<1	<1	<1	<1	٩	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	.<1	<1	<1	<1	<1	<1		<1	<1
Chiende	mg/L			0.01		<0.2	0.28	<0.2	0.28	0.\$3	033	0.48	0.4	0.53	1.4	0.38	0.23	0.31	0.37	0.3	0.33	0.57	0 63	1	1.3	<0.2	<0.2	0.25	<0.2	0,37	0.51	0.45	0.67	0.81	0.81	1.2	0,75	0.04
Cohall	Linght .	45		26.6	2.0	30 4	41		87	1.5	10	41	47.4	<u></u>	- <1	41					6.9		<1	031	12	0.57	12	<1	<1	<1	4 98	13	41		0.21	0.38		
Contuctwity	uStem			31	53	25	74.00	22.24	21.02	26.63	12.4	18.6	36.24	35.2	7.7	94 72	25.07	1.7	9,0	20.40	9.3	- 7,5	7.9	53	78	87	57	26.96	26.82	1,2	45	38.03	34.35	10.07	37.65	507	1.0	52
Copper	µg/L	1 (for Hardness as CaCO3<20 mpl.)	090	<1	<1	<1	<1	<1	2.2	2.2	<1	<1	<1	2	<1	<1	<1	1.5	1	<1	<1	<1	1.3	2.6				1.9	1.3	3.0	3	1.8	2.4	3.0	4.1			2.4
	Hg/L	5 (for Hardness as CaCO, >20 mg/L)												-		·									2.5	2.0	2.3									2.7	<1	
Dissolved Organic Carbon	mg/L			3.8	42	4.3	1.2	5.8	5.7	50	7.7	\$.3	72	9	41	1.0	8.2	4.8	5	0.0	5.3	6.3	7.5	8	13	8.5	13	2.8	12	4.7	6.7	12	6.5	8.4	10	8.3	8.4	11
Europium	No1			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<u><1</u>	<1
Fluorida	mail			0.012	0 034	<0.01	0.013	<0.01	0 028	0.034	0.052	0.045	0.015	0.013	<0.0)	<0.01	0.016	0.02	0.023	0.029	0.038	0.017	0.017	≪0.01	0,913	<0,01	<0.01	0.011	<0.01	0.011	0.023	0.012	0.011	<0.01	<0.01	<0.01	<0.01	0.022
Galhau	994			<1		<1	<1	-1	-1		<1	<1	<1	<1	<1	<1	<1	. 1	<1	<1	<1	<1	<1	<۱	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	- 4	<1	-1
lron	Har	300		72	<u> </u>	990	220	54	40	340	26	100	210	1,300	<20	<20	35	8	<20	<20	-70	<20	30	88	220	230	800	150	87	76	120	29	71	100	120	110	240	420
Lanthanum	HOL	1 //m Attainty as CrCO, Citi and 1	400					<1		4		<1	<1		4		<1		<t< th=""><th><1</th><th></th><th><1</th><th></th><th></th><th></th><th><1</th><th><1</th><th></th><th></th><th></th><th></th><th></th><th></th><th>- (1</th><th></th><th></th><th></th><th></th></t<>	<1		<1				<1	<1							- (1				
	unt	3 (for Aliminity as CeCO, 30-50 mol.)	~							<u> </u>												~	~,															
	Jug A.	5 (for Alkalinity as CoCO ₃ >60 mg/L)				-																																
Lithium	LISA.			<5	<5	<5	<5	<5	<5	<5	< 5	<5	-	<5	<5	<5	<5	.6	<5	4	45	<5	4	<5	4	<5	<5	<6	4	<5	. <5	<5	<5	-4		હ	4	10
Magneskam	Agu			260	1,350	390	330	290	300	340	320	330	390	809	408	410	370	350	413	401	429	583	481	1,210	2,180	1,900	1,690	974	681	834	1,120	903	797	1,010	874	1,870	1,670	1,330
M-Alkelinity as CoCO ₃ (pH 4.5)	mg/L			<10	≺10	< 10	<10	×10	<10	<10	25	1.3	<10	<10	<10	<10	<10	<10	<10	3.8	1.3	<10	<10	14	21	14	27	11	<10	<10	11	7.6	7.5	<10	<10	<10	17	16
Monganese	_µg/L			370	607	776	251	118	137	317	220	263	329	803	112	68	48	54	45	64	50	100	115	9.5	512	39	260	47	33	43	60	23	27	25	30	20	228	110
Mercury	. yon	0.2		<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	-001	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40,1	<0,1	<0.1	<0.1	<0.1	<0.1	40,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0,1	<0.1	<0.1	<0,1
Molybdonum	MON.	40	1000		<1		<1		<1	<1	<1	=1	1	<1	<1	<u>51</u>	<1	4	<1		<1	<1	41	<1	<u><1</u>	<1	<1	<1	<1	×1	<1	<1		<1				
Ninhian	HOL		1000		- 11	4.0			5.1	6.2	61	84	6,5		0.4	5.2	4.2	4,0	42	4.0		1.5	612			6,5	10		6.7	- 1.1				=1	- 12		0.5	
Nitrate (as N)	nio/			<0.1	0.2	40.1	10.1	\$0.1	40.1	0.11	01	<01	50.1	40.1	×0.1	<0.1	<0.1	401	<0.1	<0.1	\$0.1	40.1	40.1	40.1	<01	<0.1	\$0.1	40.1	<01	40.1	0.14	0.11	60.1	<01	<0.1	<0.1	40.1	<0.1
Nitrito (as N)	mg/L			<0.05	<0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-0.05	<0.05	<0.05	<0.05	<0.06	<0.05	<0.05	<0.06	<0.05	<0.05	<0.05	<0.05	\$0.05	<0.06	<0:05	<0.05
pH.	рH	6.5 - 8.5	0.0-0.0	4.44	4.77	4.92	4.87	4.78	4.81	4.92	4.80	4.83	4.82	5.04	4.32	5.11	4.79	479	5.04	4.92	4.83	4.92	4.84	6.91	6.63	6.53	6.62	0.54	4.1	8,30	8.45	0.29	Ö.(8	0,41	6.27	6,58	8.9	7.12
Phosphona	Jug/L			<\$0		<50	<50	<\$0	<50	<50	<50	<50	< 50	\$8		<60	<50	450	<\$0	<50	<50	<50	<50	<\$0		<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<\$0	<50	<50
Polavskim	mg/L																																					<u> </u>
Rubidium	ugi.			-1	1.5	1.5	1.3	11	1.4	1.3	1.2	1.3	13	1.8	<1	<1	1	4	دا	<1	<1	<1	<1	2.1	3.2	1	1.2	<1	12	1.1	1	<1	11	<1	1,3	1.3	1.1	1
Scandium .	. vol			<1		1.2	<1	<1	<1	<1 	<1	1.4	<1	12	<1	<1.	<1	1	<1	<1	14	<1	1.1	<1	3,0	<1	4	<1	12	1.1	1.4		1.8			- 19	<1	<1
Skar	Hor					<u> </u>	<1	<1	<1				<1	<1	<1			9	<1 (1)				<1		<1	1		4		<1		= = = = = = = = = = = = = = = = = = = =		-	<1 (D.1			
Sodam	unt						NO.1						~0.1		KU.1	40.1			~~.1				50.1		50,1		40.1										-0.1	
Strontium	Harl			8.9	32	7.7	8	2.0	8.0	8.2	7.7	8.9	8.0	14	11	8.9	8	7.5	8.0	9.2	10	13	11	25	35	30	24	15	11	10	10	16	14	16	15	24	25	22
Sulphate	mg/L			7.7	17	74	6.7	4.2	20	7.2	72	6.7	7	14	7.1	6.7	5,2	7.4	7.8	7.1	7.1	8.1	7.8	7.9	18	12	2.6	8.2	4.7	5.9	7.4	7,6	7.1	8,5	Ð	16	6,9	5
TheRen	UQ1	0.3		<0.1	<0.1	<01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<9.1	<0,1	<0,1	<0.1	40.1	<0.1	<01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<0,1	<0.1	×01	×0.1	₩01	<0,1
Thorium	_ugl_			<1	<1	<1	<1	•1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ব	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
<u>Tin</u>	-Nov			<1	41	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	×1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1		<1	<1	<1	<1	<1 -
18anam Yestel Diseased Rokes	Jou				4.3	- 11	<1	- 41	<1	<u><1</u>		1.7	<1		<1		1,0	- 11	<1	41	1.6		<1	2	0.6	3.1	3.1	2.4		4.3	2.0	2.4		1.4	2.6		2.8	4
Total Hardness (as Ca(203)	man			36		- 85	43		34	- 63	- 30		67	<20	<30	<30		51	55		-50	- 64	31	<30	31	26	45	93	- 32	-30	16	12.1		13.8	12.6		20.7	- 00 105
Total Kieldahi Nimono	mort			0.27	0.49	n 18	1.22	0.24	0.24	0.71	075	0.10			0.057	0.28	0.0	0.22	0.36	0.25	0.16	0.15	071	0.45	0.03	0.43	04	0.47	0.33	0.31	0.73	0.26	0.31	0.24	0.3	0.36	0.33	0.5
Total Phosphonus [as P]	mgi			0.027	0.014	0.046	0,028	0.012	0.015	0.025	0.014	0.013	0.012	0.017	0.043	0.017	0.012	0.013	0.023	0.014	0.013	0.015	0.021	0.03	0.014	0.036	0.045	0.023	0.023	0.02	0.028	0,021	0.021	0.015	0.021	0.019	0.018	0.035
Total Suspended Solids	mgi		30		<0	4	<6	<0	<6	1	-	<5	45	10	<6	7	<6	4	<0	<0	<8	8	3	<6	-45	-45	8	<8	c8	-0	40	45	48	<0	4	4	3	4
True Colour	TCU			12	4	10	7.5	14	9.8	4	9	. 9	13	21	લ	8.4	34	29	4.7	13	11	9	17	32	35	34	63	36	48	27	18	22	34	39	40	28	47	70
Tungelen	ugi	30		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<u> </u>	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-<1	<1	<1	<1	<1	<1	<1	<1	4
Turbidity	NTU			0.22	0.8	1.1	0.42	0.28	0.36	12	0.22	0.26	0.48	073	<0.2	0.22	0.94	0.55	11	0.58	40.2	0.24	<0.2	0.98	33	29	3.4	1.7	3.6	41	22	0.71	0,65	1.5	0.87	1.1	23	5.5
Unenium	HOL	5		<1	<1	- 1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 1	<1	<1	<1	<1	4	<1	<1	<1	<1	<1	<1	<1	<1		<1	4		<1	<1	<1	4
Vertegiustin	-124	5			7.4	<1	<1	<1	.<1	<u> </u>	<1	<1	<1	<1	- 4	<1	*1			1	<1	<1	<1	4	2.5	- <1	<u>e1</u>		-9								<1	<1
Zinc	100	70	1000	21	33	17	<) 10		<1 20	- C1	<1			<u></u>		<u> </u>			e1 94				<1		<1		87		97	12	16	15	17	14	20	0.0	47	61
Zirconium	Hgr.	4		4		<1	<1	<1	1.5	<1	<1	<1	<1	<1	<1	<1	<1	2,5	1.5	<1	<1	<1	<1	st	<1	<1	<1	<1	<1	2.2	<1	51	<1	4	<1	<1	< <u>1</u>	<1
																																		1101-00222-11	anter a Report	loport 2. Rev O(Tabl	ins 2 1 and 2.4 and	125xh/1000 21 (*
Notes:																																						18-Den-05

Notes: 1. privation to the Wolte Monogeneral Publicles, Coldmines, Provincial Water Quality Objective 3. private Series (Second Second Secon ves of the Ministry of Er ince of Ontario, July 1994, reprinted February 1999 and Energy. I

NB101-002222/1-2 Revision 0 Decamber 15, 2005

Knight Piésold

TABLE 2.1

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY LTS

SUMMARY OF SURFACE	WATER	QUALITY	RESULT

Parameter	Units	Criteria	UUCD 1								_												Surface W	Vater Sample L	ocation				_														UM-SW-6
Date Sampled		Fildo	mmer -	18-Oct-85	20-5ep-05	18-Aug-0	5 17-Jun	n-05 18-M	lay-05 3	7-Apr-05	4-Apr-05	15-Mar-05	11-Feb-05	10-Jan-05	19-Nov-04	Allowald	25-0-1-04	17-610-04	15-Jul-04	18-May-05	22.4m.04	4-Apr-05	15-Mar-05	11-Feb-05	10-Jan-05	19-Nov-04	21-Oct-04	18-Dc1-05	20-540-05	A.A.10.05	te bei et	7. 5-06	(Bubley-05	27-Apr-05	UM-5W-5	15 Mar.05	11-Feb-05	10-Jan-05	19-Nov-84	21-Oct-04	21-Sep-04	17-Aug-04	2-Nov-05
Field Air Temperature	°c			9	17	21	10		19	7	10	2	-1	-1		-	21-001-04	17	NA	14	2/-4 -43		-1	-2		4	5		10	24	14-205-05	/-Jun-05	17	7	******	1	-7	3	4	6	8	17	1
Field Water Sample Temperature	°C			9	14	15	15		11	4	0.5	1	1	1	4	4	6	13	NA	0		0,5	0.5	0	1	4	6	10	15	15	20	12	9	5		1	0	1	4	6	8	13	5
Field D/O	ngt			3.5	3	<1	1.5		4.5	9	11	4.5	7	9	5	6	2.5	NA	NA	11		11	11	12	10	8	6	5.5	4.5	5.5	5	5.5	9	9	11	11	P	0	9	٥	0	5	11
Alaminan	1 ppt	15 (for pH 4,5 to 0 5)		121	544	224	222	2 1	143	212	143	122	144	150	t01	218	100	178	335	430	48	398	41B	453	431	485	500	\$3	87	101	260	177	111	213	145	174	185	215	194	221	204	185	423
		75 (for pH 0.5 to 9.0)														_																	-					L					
Ammonie (as N	mgit	0.02		0.02	0.078	9.1	0.080	.0 0.	829	¢.023	0.047	0.836	0.059	0 0027	0.0085	0.01	0.03	0.032	0,015	0.027	0.825	0.016	0.040	0.053	0.0005	0.0046	0.09	0.04	0.097	0.14	0.17	0.D82	0.018	0.022	0.039	0 18	0.18	0.054	0.037	0.13	0.10	6.Z	0.054
Antimony	- MAL	20		<1	<1	<1	<1		<u>•1</u>	<1	<1	<1	<1	<1	<1	<1	<1 .	-1	<1	<1	4	£1	<1	<1	<1	<1	<1	<1	- 4	<1	<1	<1	<1	-1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Araenic	Pin	5	1000	<1	<1	1			<1	<1	- 1	<1	<1	<1	<1	~1	- 41	<1	<1	- <1	et		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-1	<1	<1	<1	<1	<1	<1		<1	<1
Barken	14pt	11/1/2 1-21 - 2-00 - 21		15	32	28	23		14	<u>Q.4</u>	85	10	12	13	13	15	17	17	13	18	- 16	15	16	17	18	18	22	22	31	17	16	13	15	15	13	13	14	17	11	10	8.5		- 20
Derywoon		1 100 (for bentimers as CaCO ₃ < 75 mpl.)		····	1./				• <u> </u>			4		<1	<1	1		1	- <1	<u> </u>		- 1		- · ·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<1	•	<1	<1	<1	<1			<1		<u>+ ''</u>						
Berryth	100	(, tor (for the other as Caroos >15 ingrc)			~1		-						-	1																											61	<1	<1
Barron	Lingt .	200			21	- 0	67		-	23				42	21	20		<1			- 1		0		24			43		10	41	<1						23	24		3.8	31	5.4
Cadmium	LUN.	0 1 (for hardness as CaCO ₃ < 100 mg/L)		0.21	0.29	0.29	0.10		401	41	<0.1	<0.1	<0.1	41	<0.1	50.1	0.13	0.11		0.19		40.1	0.24	9.25	0.18	0.18	0.24	9.27	0.23	50.1		0.23	0.11	<0.1	<0.1	<0.1	<01	0.14	0.11	<0.1	<0.1	<0.1	0.17
	Har	0.5 (for harringes as CaCO3 >100 mg/l.)																																									
Calcium	inte			3,700	4,500	6,350	5,610	0 4)	.000	2,700	2,300	3,700	3,400	3,300	3,500	3,500	4,500	4,400	3 100	1,000	820	800	840	910	700	960	1,300	2,100	2,300	2.000	1,600	1 300	1,100	1,200	1,100	1,200	1,400	1,300	1,200	1,200	1,200	1.100	3,800
Cerium	Age 1			<1	<1	1,1	<1		<1	<1	<1	4	<1	<1	<1	<1	<1	<1	1.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.6	<1	<1	<1	<1	<1	<1	<1	-1	<1	<1	-1	<1
Cesken	PUR			<1	<1	<1	<1		<1	<1	<1	<۱	<)	<1	<1	<1	<1	<1	.<1	<1	<	<1	<1	<1	<1	<1	~	<1	<1	<1	<1	<1	<1	<1	<1	<1	s1	<1	<1	<1	e1	<1	-1
Chloride	Nem			1.4	1.2	0.7	0.57	70	35	0.26	0.63	0.76	0.58	0.89	0.88	0.9	1.5	0,6	0.75	0.24	<0.2	<0.2	0.26	<0.2	0.26	0.44	0.65	0.24	0.52	0.25	0.5	5.0	<0.2	<0.2	0,35	0.55	0.46	0.52	0.5	<0.2	0.4	0.33	0.63
Chromium P	m	8,9		<1	23	5,5	<1		<1	<1	<1	<1	1.3	<1	<1	<1	<1	<1	~1	<1	4	<1	<1	<1	<1	<1	<1	<1	-1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4	<1	<1	<1
Cobal	491	ون		10.7	34.2	48.2	21		0.5	0.45	0.85	0.25	0.24	0.27	0.35	0.33	0.97	10.3	1.8	9.3	72	7.4	9.5	9.9	10.9	11.4	16.4	4.5	6.8	7,1	12.5	4.4	2.1	2.9	3.6	2.4	3.3	4	3,4	4	0.7	2.6	3.4
Conductivity	USEM			38	67	60	44	3	443	25 52	20 53	30.9	30.23	31.32	34 45	34.21	40.1	38		27.77	20.40	20.03	27.74	27.9	27 97	30.74	31.93	34	47	32	24	21	19.53	27.9	20.25	. 24.78	24,00	22.8	20.71	10.69	17 18	17	43
Capper	Line 1	5 (for Hardness as CaCO ₃ < 20 mg/l)	~~ H	3.7	3.6	21	0.5	<u> </u>		2.3	3.0	2.9	3	3.3	4.5	5.6	5.1	6.3	5.5	<1	<	<1	<1	<1	<1	<1	<1	~1			2.1	<1	<1	<1	~1	3.2	- 1	×1	<1		•1	41	
Disentent Oronaic Carbor	m32	(Internet as Caroo) - 20 mg/L)		70	6.4		70				£ 9		7.4									20		4.			45	3.0	27	20						6.2		5.6	8.5	81	10	12	17
Europium	µm.			<1	<1	<1					6.0	6.0		6.8	<u>v.o</u>		0.5	14	1	61		30 <1	<1	- 1.1	3.3	4.0	e.0		×1	<u>2.9</u>	61		<1	51	5.2	¢.2	<1	<1	<1	<1	61	<1	<1
Fhoride	mail			<0.01	0.012	<0.01	0.01	1 <	0.01	10.01	0.012	0.013	0.927	0.014	0.013		0.014	0.024	0.01	0.013	0.00	0.019	0.05	0.077	0.031	0.024	603	<0.01	0.014	10.01	<0.01	0.012	10.01	40.01	0.017	0.02	0.018	0.032	0.025	<0.01	0.026	0.011	0.014
Galian	MOT.			<1	<1	×1	<1		<1	<1	<1	<1	<)	=1	<1		<1	<1	<1	<1	51	<1	<1	51	<1	51	<1	<1	<1	<1	×1	<1	<1	<1	*1	<1	<1	<1	<1	<1	<1	<1	<1
tron	HAR.	300		450	\$20	300	490	> <	20	28	<20		<20	<28	<20	50	30	350	93	<20	<20	<20	<20	<20	<20	<20	<20	<20	210	1100	\$420	870	54	300	57	679	330	270	340	\$30	2,140	1,200	390
Lanherten	µ91.			* 1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	*1	5)	<1	4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ব	<1	<1	×1	<1	<1	<1	<1
Lead	P91	1 (for Alkalinity as CaCO ₃ <30 mg/L)	400	<1	<t< th=""><th><1</th><th><1</th><th>-</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th>29</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th></t<>	<1	<1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	29	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	hāų	3 (for Alkelinity as CaCO ₃ 30-80 mg/L)																																			I	<u> </u>					
	Part	5 (for Alkalinity as CaCO ₃ >60 mg/L)														-																											
	_ ugi			-4	- 45	<6	<5	-	<5	ও	-45	<5	-5	<5	<5	4	<5	<5	- 4	<5	4	4	<5	<5	<5	<5	<5	4	<5	<5	<5	<6	<5	<5	<6	<6	<5		<6	<5	<5	<5	
Makainity as CaCO, (pH 4.5)	1997	<u>+ </u>		628	21	1,200	1.13		R0/	567	496	734	727	864	729	715	1,030	804	548	420	320	360	370	400	350	400	501	641	1,240	700	652	500	380		370	442		24	437	421	413	 <10	<10
Linguages	uni			274	852	1840					10	10			*10	<10	<10	15	6.0	~ 10	<10 101	10	174	2.5	41	410	100	10			200	447	64	21	116	61	87	112	107	100	346	373	97
Marcury	LIGH.	0.2		\$0.1	<0.1	1010			201	-01	- M1	1.3					10	000							140	13/			<u>207</u>		101		-	<01	<0.1	50.1	50.1	<0.1	<0.1	59.1	50.1	<0.1	<0.1
Molybdenum	MAR	40		<1	<1	<1	-1		<1	-	<1	<1	<1	<1	<1	<1	51	<1	<1	51			<1	<1	51	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	MON.	25	1000	15	24	21	19	5	99	8.1	6,5	7.8	8.8	92	9.7	17	11	10	13	7.3	5.8	53	6.4	6.4	74	7.7	D.4	6.4	6.4	4.5	9.1	3,2	3,7	4	3.4	3,5	4	5.4	3.0	42	5	6	72
Nichium	ug/L			<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1_	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 *	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nitzala (no N)	mgit.			<0.1	<0.1	<0.1	<0.1	1 4	<u>e</u> 1	4 1	<01	<01	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	<0,1	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	13	<0.1	<01	0.13	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<01	⊲0,1	×0.1	<0.1
Nikie (as.N)	mg/L			<0.05	<0.05	<0.05	<0,05	6 <0	0.06	<905	<0.05	<0.05	<0.05	<0.05	<0.06	<0.05	<0.05	<0.05	<0.06	<0.05	<0.85	<0,05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0,05	<0,05	<0,06	<0,05	<0,06	<0.05	<0.05
<u>pti</u>	PI	0.5 - 0.5	0.5-9.5	9,40	5.94	0.11	5.94		13	6.21	6,28	8.09	6,07	\$.97	5.93	8.04	5.97	8,47	8.43	4.05	4.8	4.05	4.67	4.64	4.58	4.57	4.81	5,39	5.47	5.76	5.91	5.65	5.32	5.11	5.3	5.82	5.50	1.3	5,21	5,4	8.10	6,07	6.12
Priosphorus				<50		<50			-50	-450	- 49		<\$0	<50	<50	<50	<50	<50	<50	<50		<50	<50	<60	<\$0	<50	<50	<\$0		<50	<50	<50	<50	<50	<50	<50	< 50	< 60	<50	<90	- 460	< 50	<u> </u>
Dubitson .	und.			, 1		7.8																-1							-				-		12	10	1.6	- 13	1.7	1.2		22	
Scandam	Jon 1		-		35	1.6	14									- 13	1.2	1.9	1.2						47				28	-2.5					×1	<1 <1	1.3	13	51	<1	<1	<1	<1
Selenium	1991	100		<1	<1	<1	4		0	4		<1	<1	< <u>-</u>			<1.3	<1 <1	61	51		<1	<1	<1	<1		4	41	<1	<1	<1	-		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	Had.	0.1		<0,1	<0.1	<0.1	40.1	1 4	0.1	<01	<0.1	401	<0.1	<01	-101	-40,1	<0.1	<0.1	<1	<0.1	<0,1	50.1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	0,12	<0.1	<0.1	<0.1	<0.1	<u><0.1</u>	<0,1	<0,1	<0.1	<0.1	<0,1	<0.1	<0.1	<0.1	<01
Sodum	494				26		-																						25														
Stronitum	UQ1		_	14		23	19		13	9	7.8	11	11	ม	12	13	15	16	9.7	8.7	7,4	2.0	7.8	8.5	8.8	8.8	10	18		15	12	9	0.8	92	8.2	9.5	11	12	8.9	7.7	7.9	7,7	24
Sulphate	mg/,	t +		1.7	13	31	0.03		6	42	5.4	6.6	6.3	6.3	7	6.7	5.8	0 51	14	8.6	6.3	8.1	8.9	8.1	81	7.0	9	10	11	82	3	4.1	6,3	5.3	0	5.8	5.0	6.1	4.3	4.2	1,8	1.9	
Themen	-49%	0.3		<0.1	40.1			4	0.1	<0.1	-0.1	40.1	<0.1	<0.1	<01	<01	<0,1	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	<0.1	40 ,1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	40.1	40.1	<01	<0.1	<0,1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0,1
Te		· · · · · · · · · · · · · · · · · · ·		<1 (1	4	0				-	4			_ <1			<1	<1	<1	<1	4	<1	<1	<1	<1	<1	<1	<1						1	4								
Tenner						20	1					<u>د</u>						<1			a d	<1		<1		<1	<1		40			10	-		1.0	1.8	1.1	2	14	26	27	1.6	3.0
Total Dissolved Solids	mail			45	<30	30	67			-						54	- 12				~	d10	60				30			57	65	N0	40	< 30	31	55	<30	34	35	<20	20	42	70
Total Hardness (as CaCO3)	mgt.			13.0	17	20.8	18.7	2 12	33	81	7.9	12.2	11.5		11.8	11.7	16.5	14.3	20	4.3	3.4	3.4	3.6	3.9	34	4	5.2	7.9	10.9	8.1	7.1	6.3	4.3	4.7	4.2	4.9	5.5	5,1	4.9	4.6	4.7	4.5	16 2
Total Kjeklahi Nårogen	mg/L			0.43	0.57	0.32	0.27	7 0.	23	0.29	6 23	0.17	0.36	0.23	0.21	0.27	0.20	0.34	0.31	0,12	0,17	0.13	0.1	0.17	0.17	0,1	0.28	0,53	0,7	0.33	0.81	0.3	0,31	0.22	0.27	0.45	0.46	0.41	0.26	0.37	0.52	0.50	0.25
Total Phosphorus (es P)	mgi			0.031	0.014	0,043	0.057	7 8.0	018	8.015	0.019	0.020	0.017	0.017	0.015	0.021	0.024	0.030	0.03	0.02	C10.0	0,015	0 021	0.016	0.015	0.017	D.026	0 032	0.003	0.032	0.049	0.024	0.000	0.012	0.015	0.022	0,019	0.021	0 013	0.012	0 020	0.035	0.036
Total Suspended Solide	mgi		30	-46	-40	- 40			<8	4	4	<8	<6	<8	0	4	4	0	43	<0	đ	<8	<8	<6	<0	10	0	<6	<8	<6	13	<8	-	7	-6	<⊄	- 40	<0	<8	4	4	\$	
True Colour	TCU		_	30	15	35	31		21	58	29	14	20	35	30	45	27	43	72	7.5	11	4	a	5	6	9	લ	11	5.0	23	62	28	11	10	12	30	40	45	71	100	150	140	83
Tungstan	HOL	30		<1	<1	<1	<1		4	<1	</th <th>- 1</th> <th><1</th> <th>=</th> <th><</th> <th><1</th> <th><1</th> <th>41</th> <th></th> <th><1</th>	- 1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	=	<	<1	<1	41		<1
A URDANITY	NTU	1		0.30	0.92	14	1.1	0.	.87	079	1	1.5	0 26	0.23	0.4	0.24	13	14	1	0.27	0.58	0.57	0.58	0.43	<0.2	D.41	<0.2	1.3	1.3	7	11	1.1	0.45	6.3	1.3	0.95	0.81	0.5	1.3	14	(3	5.4	0.00
Vande an		5			<1			-		<1	-1	<u><1</u>	<1	<1	<1	- 1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 1	-1	<1	<1	<1	<1	<1	4	<1		<1	<1	<1		<u>e</u>	-
Version	190	•	-	41	21		1 1			<1	<1	<1	. 4	<1	<1		<1	<1	<1	<1			<1	<1	4	<1	<1		1.1	-1	1.4	-	¥1		4								
Znc	 Unit	20	1000	11		1 17					<1 0.1	1	1>	<1			41	<1	<1					<1	<u> </u>	41 97		-	41	13	16	17	45	10	18	18	8.2	1 1		10	65	14	31
Ziroanium	ugi	4		<1	<1	1				<1	21	8.6	17	15	15	14	16	17			<1	1.0	10	20	23 61	30			51	<1	3.5	<1	<1	<1	<1	<1	12	<1	<1	<1 K1	1	<1	<1
										~ 1								- 1						1.2	I I	-1								_									

Page 2 al 3

 Note:
 1.

 1.
 NextO:
 next NextO:
 NextO:

 2.
 Market NextO:
 NextO:
 NextO:

 3.
 Market NextO:
 NextO:
 NextO:

 3.
 Market NextO:
 NextO:
 NextO:

 3.
 Market NextO:
 NextO:
 NextO:

 4.
 Indeprinting view: Induction results encodering both NextO:
 NextO:
 NextO:

 5.
 Betwidt on the Induction results encodering both the PWOD and MadER values
 NextO:
 NextO:

 6.
 PMOD for theteric University installer.
 NextO:
 NextO:
 NextO:

 7.
 Betwidt Cale Market results
 NextO:
 NextO:
 NextO:
 NextO:
 and Energy,

· · ·

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF SURFACE WATER QUALITY RESULTS

Image Image <t< th=""><th>Parameter</th><th>Units</th><th>Criteria</th><th></th><th colspan="12">Surface Water Sample Location MMER LB SP SB JC-FF JC-NF UM-AL-REF UM-AL-NF</th></t<>	Parameter	Units	Criteria		Surface Water Sample Location MMER LB SP SB JC-FF JC-NF UM-AL-REF UM-AL-NF															
Desc Desc <thdesc< th=""> Desc Desc <thd< th=""><th></th><th></th><th>PWQD</th><th>MMER</th><th>B</th><th>SP</th><th>SB</th><th>JC</th><th>-FF b</th><th>JC</th><th>-NP</th><th></th><th></th><th>S</th><th>ь</th><th></th><th></th><th>L-NF</th><th></th><th></th></thd<></thdesc<>			PWQD	MMER	B	SP	SB	JC	-FF b	JC	-NP			S	ь			L-NF		
Prime Prima Prime Prime <t< th=""><th>Date Sampled</th><th></th><th></th><th></th><th>5-May-05</th><th>4-May-05</th><th>4-May-05</th><th>20-Aug-04</th><th>20-Aug-04</th><th>20-Aug-04</th><th>20-Aug-04</th><th>4-May-05</th><th>6-Oct-04</th><th>19-Aug-04</th><th>19-Aug-04</th><th>5-May-05</th><th>6-Oct-04</th><th>19-Aug-04</th><th>19-Aug-04</th><th>5-</th></t<>	Date Sampled				5-May-05	4-May-05	4-May-05	20-Aug-04	20-Aug-04	20-Aug-04	20-Aug-04	4-May-05	6-Oct-04	19-Aug-04	19-Aug-04	5-May-05	6-Oct-04	19-Aug-04	19-Aug-04	5-
schede sched sched sched <td>Field Air Temperature</td> <td>°c</td> <td></td> <td></td> <td>NA</td> <td></td>	Field Air Temperature	°c			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
bes def	Field Water Sample Temperature	°C			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ander Math <	Field D/O	mg/L			NA	NA	NA	NA	NA	ŅA	NA	NA	NA	NA	NA	NA	NA	NA	NA	L
memory memory met med	Aluminum	µg/1.	15 (for pH 4.5 to 6.5) 75 (for pH 6.5 to 9.0)		<u>.</u>			35	71	64	39		24	29	31		23	28	35	
defm def def<	Ammonia (as N)	mg/L	0.02		0.054	0.05	0.12	0.044	0.024	0.027	0.04	0.055	0.022	0.034	0.025	0.058	0.049	0.06	0.023	
seam seam <t< td=""><td>Antimony</td><td>µg/L</td><td>20</td><td></td><td></td><td></td><td></td><td><1</td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td></td></t<>	Antimony	µg/L	20					<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	
mam max max <thmax< td="" th<=""><td>Arsenic</td><td>µg/L</td><td>5</td><td>1000</td><td></td><td></td><td></td><td><1</td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td>L</td></thmax<>	Arsenic	µg/L	5	1000				<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	L
when of of of of of	Barium	Harl						57	7	5.8	6.9		5.5	5.3	5.6		5.5	5 5	6.1	
bind dep dep </td <td>Beryllium</td> <td>μg/L μg/L</td> <td>11 (for hardness as CaCO₃ <75 mg/L) 1,100 (for hardness as CaCO₃ >75 mg/L)</td> <td></td> <td></td> <td></td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td></td>	Beryllium	μg/L μg/L	11 (for hardness as CaCO ₃ <75 mg/L) 1,100 (for hardness as CaCO ₃ >75 mg/L)					<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	
betw max max </td <td>Bismuth</td> <td>µg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td>-</td>	Bismuth	µg/L						<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	-
chanse of a of a of a of a <t< td=""><td>Boron</td><td>µg/L</td><td>200</td><td></td><td></td><td>ł</td><td></td><td>24</td><td><2</td><td><2</td><td>2.4</td><td>L</td><td>29</td><td>2.3</td><td>2.2</td><td></td><td>2.2</td><td><2</td><td><2</td><td></td></t<>	Boron	µg/L	200			ł		24	<2	<2	2.4	L	29	2.3	2.2		2.2	<2	<2	
chan pp pp< pp< <td>Cadmium</td> <td>hâyr hâyr</td> <td>0.1 (for hardness as CaCO₃ < 100 mg/L) 0.5 (for hardness as CaCO₃ >100 mg/L)</td> <td></td> <td></td> <td></td> <td></td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td></td> <td><0.1</td> <td><0 1</td> <td>0.35</td> <td></td> <td><0 1</td> <td><0.1</td> <td><0.1</td> <td></td>	Cadmium	hâyr hâyr	0.1 (for hardness as CaCO ₃ < 100 mg/L) 0.5 (for hardness as CaCO ₃ >100 mg/L)					<0.1	<0.1	<0.1	<0.1		<0.1	<0 1	0.35		<0 1	<0.1	<0.1	
Same Mode Mode <t< td=""><td>Calcium</td><td>րել</td><td></td><td></td><td>3,000</td><td>3,200</td><td>3,000</td><td>4,200</td><td>3,600</td><td>4.700</td><td>6.060</td><td>3,200</td><td>4.700</td><td>3,900</td><td>4,100</td><td>3.200</td><td>4.700</td><td>4,000</td><td>4,200</td><td> </td></t<>	Calcium	րել			3,000	3,200	3,000	4,200	3,600	4.700	6.060	3,200	4.700	3,900	4,100	3.200	4.700	4,000	4,200	
bin pp l pp l pp l pp pp<	Cerium	_pg/L					I	<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	
choom phi dia dia <thdia< th=""> <thdia< t<="" td=""><td>Cesium</td><td>µg/L</td><td></td><td></td><td></td><td></td><td></td><td><1</td><td><1</td><td><1</td><td><u><1</u></td><td></td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td>-</td></thdia<></thdia<>	Cesium	µg/L						<1	<1	<1	<u><1</u>		<1	<1	<1		<1	<1	<1	-
man non- non- <th< td=""><td>Chloride</td><td>mg/L</td><td></td><td></td><td>0.86</td><td>0.94</td><td>0.91</td><td>1.1</td><td>0.95</td><td>0 97</td><td>1.4</td><td>1- 1</td><td>1.1</td><td>23</td><td>1.5</td><td>0.93</td><td></td><td>1.2</td><td>1.1</td><td>I</td></th<>	Chloride	mg/L			0.86	0.94	0.91	1.1	0.95	0 97	1.4	1- 1	1.1	23	1.5	0.93		1.2	1.1	I
Desc Desc <thdesc< th=""> Desc Desc <th< td=""><td></td><td>pg/L</td><td>8.9</td><td></td><td></td><td></td><td>1 —</td><td>¢1</td><td></td><td></td><td><0.1</td><td></td><td><0.1</td><td></td><td>0.2</td><td></td><td>-01</td><td></td><td></td><td><u> </u></td></th<></thdesc<>		pg/L	8.9				1 —	¢1			<0.1		<0.1		0.2		-01			<u> </u>
Dame Lip Up result as GGD, SP MJ GO Do Do <th< td=""><td>Conductivity</td><td>uS/cm</td><td>V.8</td><td></td><td>33.59</td><td>33.03</td><td>33.00</td><td>41</td><td>-U.1 36</td><td>41</td><td>53</td><td>34 3</td><td>42.8</td><td>40</td><td>41</td><td>35.07</td><td>42.4</td><td>40</td><td>41</td><td></td></th<>	Conductivity	uS/cm	V.8		33.59	33.03	33.00	41	-U.1 36	41	53	34 3	42.8	40	41	35.07	42.4	40	41	
mm	Copper	un/L	1 (for Hardness as CaCO, <20 mg/L)	600	33.56	30.83	33.89		1.4	2.3			<1	<1	2.3	00.07	<1	<1	1.2	-
Diama Data Data Diama Data Di		µg/L	5 (for Hardness as CaCO ₃ >20 mg/L)								1.1									┣
and pp pp<	Dissolved Organic Carbon	mgn					I													
Data Data <t< td=""><td>Europium</td><td>pg/L</td><td></td><td></td><td></td><td>····</td><td></td><td><u> </u></td><td></td><td><1</td><td>-<u></u></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></t<>	Europium	pg/L				····		<u> </u>		<1	- <u></u>		<u> </u>						<u> </u>	
imei	Galium	ung/L				<u> </u>			<1		<1		<1	<1	<1		<1	<1	<1	
unchannel main	iron		300			-		46	180	43	140		76	73	87		55	68	140	
ind ind <td>Lenthanum</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td>1</td> <td><1</td> <td><1</td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td></td>	Lenthanum	ug/L						<1	<1	<1	<1	1	<1	<1	<1		<1	<1	<1	
bit bit </td <td>Lead</td> <td>µg/L</td> <td>1 (for Alkalinity as CaCO₃ <30 mg/L)</td> <td>400</td> <td></td> <td></td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td></td>	Lead	µg/L	1 (for Alkalinity as CaCO ₃ <30 mg/L)	400				<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	
LaherLaherLaherLab <td></td> <td>µg/L µg/L</td> <td>3 (for Alkalinity as CaCO₃ 30-80 mg/L) 5 (for Alkalinity as CaCO₃ >80 mg/L)</td> <td></td>		µg/L µg/L	3 (for Alkalinity as CaCO ₃ 30-80 mg/L) 5 (for Alkalinity as CaCO ₃ >80 mg/L)																	
bar 	Lithium	ug/L						<5	<5	<5	<5		<5	<5	<5		<5	<5	<5	
AdvancesImpl<	Magnesium	ug/L		<u> </u>	880	881	869	1,200	967	1,160	1,290	915	1.300	1,180	1,150	919	1,290	1,130	1,160	
Image <th< td=""><td>M-Alkalinity as CaCO₃ (pH 4.5)</td><td>mg/L</td><td></td><td>_</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td>11</td><td><10</td><td>13</td><td><10</td><td><10</td><td><10</td><td>12</td><td><10</td><td>10</td><td></td></th<>	M-Alkalinity as CaCO ₃ (pH 4.5)	mg/L		_	<10	<10	<10	<10	<10	<10	11	<10	13	<10	<10	<10	12	<10	10	
interpressintWindshinmai	Manganese	µg/L						7.6	69	8.5	20		16	18	30		21	34	98	
bind bind	Mercury	րցչլ	0.2					<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0,1		<0.1	<0 1	<0.1	L
WeakedppA <t< td=""><td>Molybdenum</td><td>µg/L</td><td>40</td><td></td><td></td><td></td><td></td><td><1</td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td><u> </u></td></t<>	Molybdenum	µg/L	40					<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	<u> </u>
Media Mpd Mpd </td <td>Nickel</td> <td>µg/L</td> <td>25</td> <td>1000</td> <td></td> <td></td> <td></td> <td><1</td> <td>1.4</td> <td>3.4</td> <td>1.2</td> <td></td> <td><1</td> <td><1</td> <td>2.7</td> <td></td> <td><1</td> <td><1</td> <td>1,1</td> <td></td>	Nickel	µg/L	25	1000				<1	1.4	3.4	1.2		<1	<1	2.7		<1	<1	1,1	
Watch (and) mpd	Niobium	µg/L						<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	
mpd mpd <td>Nitrate (as N)</td> <td>mg/L</td> <td></td> <td></td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>0.14</td> <td><0.1</td> <td><0,1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><u.1< td=""><td><0.05</td><td><0.0</td><td><u> </u></td></u.1<></td>	Nitrate (as N)	mg/L			<0.1	<0.1	<0.1	<0.1	0.14	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<u.1< td=""><td><0.05</td><td><0.0</td><td><u> </u></td></u.1<>	<0.05	<0.0	<u> </u>
ph b3 b3 b30 b30 <td>Nitrae (as N)</td> <td>mg/L</td> <td>65 AF</td> <td>0.00</td> <td><0.05</td> <td><0,05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td>6.02</td> <td><0.05 7.02</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td>7.16</td> <td>7.05</td> <td>0.07</td> <td></td>	Nitrae (as N)	mg/L	65 AF	0.00	<0.05	<0,05	<0.05	<0.05	<0.05	<0.05	<0.05	6.02	<0.05 7.02	<0.05	<0.05	<0.05	7.16	7.05	0.07	
maxim pd max max </td <td>Pri Rhoenhorue</td> <td>100</td> <td>0.0 - 0.0</td> <td>0.0-9.5</td> <td>D.69</td> <td>6.67</td> <td>0.9)</td> <td>7.04</td> <td>0.44</td> <td>(.1)</td> <td><50</td> <td>0.00</td> <td><50</td> <td><50</td> <td><50</td> <td>0.84</td> <td><50</td> <td><50</td> <td><50</td> <td></td>	Pri Rhoenhorue	100	0.0 - 0.0	0.0-9.5	D.69	6.67	0.9)	7.04	0.44	(.1)	<50	0.00	<50	<50	<50	0.84	<50	<50	<50	
Belf Sector Sector <td>Potassium</td> <td>mo/t</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>~~~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	Potassium	mo/t			1			~~~										-		
Sandum 194 Cond	Rubidium	LIQ/L		-	1			1.2	1.1	1.2	1,1		1.2	<1	1.1		12	1	1.1	
Selection pd 100 lo	Scandium	HQ/L						<1	<1	<	<1		<1	<1	<1		<1	<1	<1	
Sheft IpAL Op1 Op1 Co1 Co1<	Selenium	µg/L	100					<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	-
Sodium mpd, <	Silver	µg/L	0.1	L				<0.1	<0.1	<0.1	<0 1		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	
Storthum yph mod.	Sodium	mg/L																		
Substate mpL 0.3 4.7 4.8 6.4 5.8 6.8 4.9 6.2 5.2 4.7 4.8 5.3 5.8 Thailam ppL 0.3 1 1 6.01	Strontium	µg/L						18	15	19	31		20	16	16		18	16	17	
instam jpd 0.3 0 0 0.1 <th0.1< th=""> 0.1 <th0.1< th=""> <th0.1< th=""> <th0.1< th=""></th0.1<></th0.1<></th0.1<></th0.1<>	Sulphate	mg/L_			4.7	4.7	4.8	5.4	5.4	5.3	5.8	4.8	4.9	6.2	5.2	4.7	4.8	5.3	5.6	
incrum byb. c1 c1 <thc1< th=""> c1 <thc1< th=""> c1</thc1<></thc1<>	Therein	HO/L	0.3				-	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1		×0.1	<0.1		1
initial jph initial in	Tin	100/1		I	I		t —	4		<1				<1 	<1 			1	<1	1
Instant Instant <t< td=""><td>Titepium</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>17</td><td>10</td><td>4.2</td><td>21</td><td></td><td>21</td><td></td><td></td><td></td><td><1 <1</td><td>1</td><td>>1</td><td>1</td></t<>	Titepium					1		17	10	4.2	21		21				<1 <1	1	>1	1
Number Value States Ingl No No </td <td>Total Discolund Solids</td> <td></td> <td></td> <td><u> </u></td> <td>53</td> <td></td> <td></td> <td>1.3</td> <td>47</td> <td>50</td> <td>55</td> <td>44</td> <td>A1</td> <td>43</td> <td>40</td> <td>56</td> <td>41</td> <td>37</td> <td>35</td> <td>1</td>	Total Discolund Solids			<u> </u>	53			1.3	47	50	55	44	A1	43	40	56	41	37	35	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Hardness (as CeCO3)	ma/l			11.1	11.6	11.1	15.5	13	18.4	20.5	11.7	17.1	14.7	15	11.8	16.9	14.7	15.2	1
Total Phosphorus (as P) mg/L	Total Kjeldahl Nitrogen	ma/L		l	0.24	0.25	0.32	0.27	0.33	0.24	0.3	0.22	0.31	0.33	0.33	0.41	0.3	0.31	0.36	
Total Suspended Solids mg/L mg/L mg/L mg/L 30 45 66 43 <	Total Phosphorus (as P)	mo/L						0.01B	0.021	0.016	0.022		0.0073	0.016	0.016		0.0083	0.016	0.16	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Suspended Solids	mg/L		30	<6	45	<6	<3	3	<3	<3	<6	<3	<3	<3	<6	<3	<3	<3	
Jupic 30 5 5 6 5 6 <td>True Colour</td> <td>TCU</td> <td></td>	True Colour	TCU																		
Introdity NTU Image: style st	Tungsten	µg/L	30					<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	
Unnum ypl 5 I </td <td>Turbidity</td> <td>NTU</td> <td></td> <td></td> <td>1.1</td> <td>1.6</td> <td>1.2</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	Turbidity	NTU			1.1	1.6	1.2					1				1				
Vanadium ypl 6 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td>Uranium</td><td>µg/L</td><td>5</td><td></td><td></td><td></td><td></td><td><1</td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td></td><td><1</td><td><1</td><td><1</td><td>+</td></t<>	Uranium	µg/L	5					<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	+
Yutrium yg/L C1	Vanadium	µg/L	66					<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	
Zinc yg/L 20 1000 2.1 5.8 7.8 3.8 <1 1.7 20 <1 1.4 3.7 Zirconium yg/L 4 <1	Yttrium	HO/L						<1	<1	<1	<1		<1	<1	<1		<1	<1	<1	1
Zirconium 1991 4 c1	Zinc	HOL	20	1000				2.1	5.B	7.8	3.8		<1	1.7	20		<1	1.4	3.7	1
	Zirconium	µg/L	4					<1	<1	<1	<1		<1	1 <1	<1		<1	<1	< <u> </u>	

Notes: 1. PWQO refers to the "Water Management Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of Environment and Energy. Province of Ontario, July 1994, reprinted February 1999." 2. MMER - Matal Mining Effluent Regulations, June 2002. 3. Bolded values indicate results exceeding the MMER values. 4. <u>Underlined</u> values indicate results exceeding the MMER values. 5. Bolded and <u>Underlined</u> values indicate results exceeding both the PWQO and MMER values. 6. PWQO for trivalent chromium used 7. Blank cells Indicate no data available 8. Testing by Testmark Laboratories Ltd.

	UM-4	L-FF	
May-D5	7-00+04	5	5 19-Aur-04
NA NA	7-Oct-04	19-Aug-04	NA NA
NA	NA	NA	NA
NA	NA	NA	NA
	23	34	32
0.054	0.043	0.052	0.045
	<1	<1	<1
	<1	<1	<1
	5.6	6	5.6
	<1	<1	<1
	<1	<1	<1
	<2	2.7	2.2
	<0.1	×0.1	0.13
0.000	4.500	4 200	3 800
2,000	4.500	4,300	3,000
0.86		11	13
0.00	<1	<1	<1
	<0.1	<0.1	<0.1
33.97	42.4	41	41
	1.7	<1	1.9
	<1	<1	<1
	<1	<1	<1
	57	76	110
	<1	<1	<1
	<1	<1	<1
	<5	<5	<5
811	1,270	1,200	1,080
<10	10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10
	1/	35	93
		<0.1	
	<pre><1</pre>	11	2
	<1 <1	<1	
<0.1	<0.1	<0.1	<0.1
<0.05	<0.05	<0.05	<0.05
6.89	7.14	6.97	6.75
	<50	<50	<50
	1.1	1.2	1.1
	<1	<1	<1
	<1	<1	<1
	<0.1	<0.1	<0.1
	18	18	16
4.8	4.9	5.4	5.5
	<0.1	<0,1	<0.1_
			11
38	43	48	52
10.3	16.4	15.6	13.9
0.41	0.29	0.38	0.28
	0.0091	0,017	0.018
<6	<3	<3	<3
	.<1	<1	<1
1.3			
	_<1	<1	<1
	1	<1	<1
	<u></u>	-	
	<1	<1	<1
	<1 <1	<1 1,4	<1 9.1

, ,

,

URSA MAJOR MINERALS INCORPORATED

SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF FLOW MONITORING RESULTS

Flow Patame	ter			1					D	ate							
		Aug-04(1)	Sep-04	Oct-04	Nov-84	Dec-04	Jan-05	Feb-05	Mar-05	Apr-05	May-05	Jun-05	Jul-05	Aug-05	Sep-05	Oct-05	Nov-05 (2)
	min	0.0000	0.0000	0,0000	0.0630	0.0470	0.0565	0.0366	0.0185	0.2041	0.0605	0.0000	0.0000	0.0000	0.0226	0.0000	0.0437
Flow Depth (m)	max	0.0094	0.0525	0.2261	0.3370	0.1660	0.5206	0.1027	0.0814	2.1214	0.3142	0.0920	0.0756	0.1647	0.1337	0.0756	0.3571
	mean	0.0039	0.0058	0.0618	0.1106	0.0895	0.1487	0.0643	0.0323	0.7725	0,1287	0.0268	0.0036	0.0291	0.0474	0.0037	0.1704
	min	0.0000	0.0000	0.0000	0.4960	0.3370	0.2238	0.2552	0.0000	0.2321	0.0991	0.0000	0.0000	0.0000	0.0407	0.0000	0.0690
Velocity (m/s)	mex	0.0000	0.0443	0.9233	1.2330	0.8660	0.8170	0.5245	0.5696	0.9686	0,5035	0.3578	0.2359	0.3967	0.2990	0.2359	0.7732
	mean	0.0000	0.0048	0.2010	0.6464	0.4990	0.4852	0.3837	0.1997	0.4224	0.3112	0.0591	0.0089	0.0591	0.0982	0.0098	0.3527
	min	0.0000	0.0000	0.0000	0.0119	0.0043	0.0069	0.0026	0.0000	0.0344	0.0022	0.0000	0.0000	0.0000	0.0002	0.0000	0.0011
Flow (m ³ /s)	max	0.0000	0.0007	0.1167	0.2709	0.0705	0.1938	0.0225	0.0174	0.5655	0.0803	0.0138	0.0105	0.0383	0.0196	0.0105	0.1951
	mean	0.0000	0.0000	0.0097	0.0384	0.0192	0.0395	0.0090	0.0029	0.1599	0.0216	0.0013	0.0003	0.0019	0.0022	0.0004	0.0531

.,

ent/Report/Report 2, Rev DUTable 2.2 - Monthly Average: Flows. 11101-00222-1\Assign s Monthly Avg

13-Dec-05

Notes: 1. Aug-04 averages based on August 18 - August 31 flow results. 2. Nov-05 averages based on November 1 - November 15 flow results.

3. August 2004 to January 2005 raw data was provided by N.A.R. Environmental Consultants Inc. (NAR), flows were estimated by Knight Plésold Ltd.

. . .

4. January to November 2005 data was provided by NAR.

Stown monitoring data are based on automatic instrumentation in the field. Data collection is orgoing.
 Depths from August 10, 2005 to November 15, 2005 were extrapolated by NAR from historical velocity readings.
 Minimum, maximum and mean values are based on average daily data.

ť

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF GROUNDWATER MONITORING WELLS

Well	URSA	Proposed	Northing	Easting	Elevation	Well	Overburden	Drillhole	Well Tip	Well	Groundwater Depth and Elevation		Permeability		
Name	Name	Site Name			(topo)	Completion	Depth	Depth	Depth	Stickup	Date	Depth BGS	Elevation	Date	к
			(m)	(m)	(m)	Date	(m)	(m)	(m)	(m)		(m)	(m)		(cm/s)
MW-05-01	SWMW-U-03-01	WMS-13	5,132,944	435,545	267	15-Mar-05	14.63	14.63	7.84	1.03	20-Sep-05	1.07	266.46	18-Mar-05	3.4E-06
MW-05-02	SWMW-U-03-02	WMS-09	5,133,372	436,378	290	16-Mar-05	1.50	31.10	29.81	1.07	20-Sep-05	3.76	287.31	23-Mar-05	3.0E-05
MW-05-03	SWMW-U-03-03	WMS-06	5,132,989	437,027	266	17-Mar-05	9.45	9.45	7.63	1.03	20-Sep-05	2.63	264.15	18-Mar-05	1.7E-05
MW-05-04	SWMW-U-03-04	WMS-02	5,133,775	437,582	328	20-Mar-05	2.10	10.10	8.77	1.14	21-Sep-05	0.41	328.73	21-Mar-05	1.3E-04
MW-05-05	SWMW-U-03-05	WMS-03	5,134,346	437,633	339	21-Mar-05	0.30	10.10	8.85	1.16	20-Sep-05	2.20	338.26	23-Mar-05	2.0E-04
MW-05-06	SWMW-U-03-06	WMS-08	5,133,929	436,583	366	1-Apr-05	0.00	49.50	48.77	1.32	20-Sep-05	9.18	357,64	4-Aug-05	1.3E-05
MW-05-07	SWMW-U-03-07	WMS-05	5,132,993	435,960	272	28-Jun-05	8.80	8.80	7.90	0.80	20-Sep-05	3.12	269.18	28-Jun-05	3.1E-04
MW-05-08	SWMW-U-03-08	WMS-01	5,133,782	437,802	306	7-Jul-05	0.92	9.76	8.53	0.75	21-Sep-05	-0.75	307.75	7-Jul-05	5.0E-06
MW-05-09	SWMW-U-03-09	WMS-07	5,135,377	437,149	284	12-Jul-05	1.37	9.76	7.93	0.91	21-Sep-05	1.70	283.01	12-Jul-05	8.3E-05
MW-05-10	SWMW-U-03-10	WMS-04	5,135,256	437,987	334	15-Aug-05	0.00	9.76	1' 7.93	1.00	21-Sep-05	dry	-	-	-
MW-05-11	SWMW-U-03-11	WMS-10	5,134,697	436,377	293	17-Aug-05	2.44	9.76	7.62	1.03	22-Sep-05	0.59	293.44	8-Sep-05	7.7E-05
MW-05-12	SWMW-U-03-12	WMS-11	5,134,465	436,166	303	19-Aug-05	0.00	9.45	8.23	0.82	22-Sep-05	0.96	302.86	22-Sep-05	6.2E-05
MW-05-13	SWMW-U-03-13	WMS-14	5,134,432	436,554	307	20-Aug-05	0.60	9.76	8.53	1.04	22-Sep-05	0.22	307.82	22-Sep-05	2.7E-05
MW-05-14	SWMW-U-03-14	WMS-15	5,135,120	437,100	325	27-Aug-05	0.15	9.76	8,84	1.13	21-Sep-05	3.00	322.63	21-Sep-05	9.9E-05
MW-05-15	SWMW-U-03-15	WMS-04B	5,135,256	437,987	334	31-Aug-05	0.00	20.73	19.66	1.06	21-Sep-05	13.79	321.27	21-Sep-05	4.7E-06
MW-05-16	SWMW-U-03-16	WMS-17	5,134,893	437,891	334	2-Sep-05	0.00	9.30	8.69	0.87	21-Sep-05	3.44	331.43	21-Sep-05	6.5E-06
MW-05-17	SWMW-U-03-17	WMS-13	5,134,642	437,905	350	7-Sep-05	0.00	8.84	8.23	1.20	21-Sep-05	4.70	346.50	21-Sep-05	1.5E-05

Notes:

1. Northing and Easting coordinates are in NAD83 datum, zone 17T.

Doph BGS means below Ground Surface. A negative depth indicates artesian condition.
 K refers to coefficient of permeability (hydraulic conductivity). K data measured using a rising head test and K calculated by the Hvorslev method.

. `. . 1/101-00222-1/Assignment/Report 2, Rev 0)[Table 2.3 Well Summary.ds]Table 2.3 -Well Summary 13-Dec-05

Knight Piésold

TABLE 24

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF GROUNDWATER QUALITY RESULTS

F at all the V	Cinica -	Cristia					-								Well Number									
		PWQO	MW-	-05-01	MW-	05-02	MW-	05-03	MW-	05-04	MW-	05-05	WW4	05-06	MW-	05-07	MW-	05-08	MW-	05-09	MW-05-11	MW-05-12	MW-05-13	MW-05-14
Date Sampled			21-Sep-05	2-Aug-05	21-Sep-05	2-Aug-05	21-8-00-05	2-Aug-05	21-Sep-05	3-Aug-05	21-Sep-05	2-Aug-05	21-Sep-05	3-Aug-05	21-Sep-05	2-Aug-05	21-Sec-05	3-Aug-05	21-Sap-05	3-Aug-05	22-Sep-06	22-Sep-05	22-500-05	21-Sep-05
Field PH	pH .		8 37	8.22	7 48	7.91	8.66	8.22	6 50	7.26	5.84	60	8.1	6,88	7.40	8.2	6.70	6,87	7.18	7,05	6.24	6.59	7.15	6 22
Field Conductivity	uS/cm		358	310	250	220	205	180	55	50	20	22	45	30	100	55	60	75	144	135	57	147	92	60
Acidity	mof		4.2	26		8.8	. 2	3.8	× 2	16	12.0		62	10	* 2	20	12	11	< 2	10	52	< 2	< 2	52
Athabath				<u> </u>				0.0									24		69		19	40	49	
Auxannity					120		210		12		• 2		- 9		44		3)		00		10	49	42	^
Aluminum	mg/L	0.015 (for pH 4.5 to 6 5)	0 006	0.036	< 0 DQ4	0.002	0.015	0 040	0.019	0.005	0.191	0.347	0.031	0.017	0.018	. D.017	0 004	0.009	< 0.004	0004	D.080	0.127	< 0.004	0.094
	_	0.075 (for pH 6.5 to 9.0)											-											
Ammonia (as N)	mgl	0.02		0.324		0.055		9.355		0.033		0.035		0.025		0.017		0.064		0.100				
Antimony	mo/L	0.62	< 0.0004		< 0.0004		< 0.0004		< 0.0004		< 0.0004		< 0.0004		< 0.0004		< 0.0004		< 0.0004		< 0.0004	< 0.0004	< 0.0004	< 0.0004
Amenic	mon	0.005	0.0090	0.0170	0.0080	0.0140	< 0.005	0.0080	< 0.005	0.0016	< 0.005	<0.001	< 0.005	<0.001	< 0.005	<0.001	< 0.005	<0.001	< 0.005	<0.001	< 0.005	< 0.005	< 0.005	< 0.005
Darhum	mod		0.030		0.004		0.010		0.005		0.015		0.007		0.005		0.004		0.005		0.005	0.018	0.008	0.015
Reulium	mon	0.011 (in hardness as CaCO <75 mol.)	< 0.006		< 0.005		< 0.005		10,005		< 0.005		< 0.005		< 0.005		< 0.005		< 0.005		< 0.005	< 0.005	< 0.005	< 0.005
Del ynau'r																					0.000			
	mg/L_	1.1 (ibr haidiless as CaCQ //b mgr.)																						
Bismuth	mg/L		< 0.0003		< 0.0003		< 0.0003		< 0 0003		< 0 0003		< 0.0003		< 0.0003		< 0.0003		< 0.0003		< 0.0003	< 0,0003	< 0.0003	< 0.0003
Boron	mgfL	0.2	0.044		0 020		0.039		0.005		< 0.005		< 0.005		D.005		0.006		< 0 005		0.007	0.007	0 007	0.015
Cadmium	աք.	0.0001 (for hardness as CaCO = 100 mg/L)	< 0.0001	< 0.0001	< 0 0001	<0.0001	< 0.0001	0.00014	< 0.0001	<0.0001	< 0.0001	0.00915	< 0.0001	<0 0001	< 0 0001	<0.0001	< 0.0001	0.00025	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	mg/L	0.0005 (for hardness as CaCQ > 100 mg/L)																						
Calcium	mol		38.0	45.7	43.5	48.0	25.7	14.5	40	37	17	14	3.8	3.6	7.9	91	83	7.3	22.7	17.9	33	12.4	10.0	3.5
Calum	mat		00.0		40.0	40.0			4.0								0.0							
	- MAR																							
	mgr							· · · ·							1									
Chloride	mg/L																							
Chroinkan 14	mg/L		< 0.001		< 0.001		< 0.001		< 0.001		< 0.001		< 0.001		< 0.001		< 0.001	—	< 0.001		< 0.001	0.001	< 0.001	< 0.001
Cobalt	mgil	0.0000	< 0.0003		0.0011		< 0.0003		0.0063		0.0090		0.0116		0.0036		0.0244		0 0004		0.0038	0.0005	0.0011	0.0184
Conductivity	µS/cm		320	340	250	253	230	241	51	49	29	25	46	48	100	100	75	71	150	150	65	98	92	70
Copper	mg1.	0.001 (for Hardness as CaCQ <20 mg/L)	0 0013	0.0034	< 0.0008	<0.001	< 0.0008	D.0015	0.0017	0.0024	0.0186	0.017	0.0113	0.014	0.0025	0.0026	0.0012	0.0034	< 0 000B	0.0017	0.0036	< 0.0008	< 0.0008	0.018
	mgil	0 005 (for Hardness as CaCQ > 20 mg/L)																						
Dissolved Ormanic Cathols	mo?								l	1					1									
European Company	- mark																					-		
Europium	mgn																							
Fluoride	mon																							
Galium	mg/L																							
Iron	n	0.3	< 0.02	0.09	9.43	<0.02	0.03	<0.02	2.09	1.50	0.04	0.13	0.06	<0.02	0.13	0 20	1.61	1.50	0.44	0.32	0.00	10.40	2.31	0.92
Lanihanum	mpl																							
Lead	mg/L	© DO1 (for Alkalitely as CaCO, <30 mg/L)	< 0.0002	<0.001	< 0 0002	<0.001	< 0.0002	<0.001	< 0.0002	<0.001	< 0.0002	<0.001	< 0.0002	<0.001	< 0.0002	<0.001	< 0.0002	<0,001	< 0.0002	<0.001	< 0.0002	< 0.0002	< 0.0002	0.0002
	mg/L	0.003 (for Alkalinely as CaCO, 30-80 mp/L)																						
	ma/L	0.005 (for Alkalinity as CaCO, >80 mo/L)																						
t mat			10.001				< 0.00F				< 0.006		< 0.005		< 0.006		10.005		< 0.005		< 0.005	< 0.00E	= 0.005	< 0.005
	UNIT		- 0.005	7.04	× 0.005	6.000	- 0.005		10.005	1.07	0.00	0.00	1.70	1.04	- 0.000	0.40	- 0.000	0.04	4 40	4.10	4.74	4.05	2.40	1.02
Magnesium	mg/L		7.720	7.24	5.44	<u>6.</u> 38	6.59	3,38	2 12	19/	0.65	0.50	1.73	1.64	2 31	2.45	2.38	2,25	4.10	4 10	7.34	4,05	2.40	1.02
M-Alkalesty 2s CaCCJ (pH 4.5)	mon			1/0		110		110		74		<10		12		3/		21						
Manganesc	mg/L		0,049		D 141		0.045		0.127		0.047		0.028		0.451		0.186		0.376	L	0.060	2 0.177	0.201	0,069
Mercury	HQ1	0.2	< 0.1	-<0.1	< 0.1	<0.1	9.3	<0.1	< 0.1	<0.1	< 0.1	<01	< 0.1	<0.1	< 0.1	<0,1	< 0.1	<0.1	0.1	<0.1	< 0.0001	< 0.0001	< 0.0001	< 0.1
Molybdenum	.ngA	0.04	0.0116	0.0074	0 0011	<0.001	0.0148	0.0510	< 0.0003	<0.001	< 0 0003	0.0013	< 0.0003	<0.001	0.0014	0.0018	D.001	<0.001	0.0007	<0.001	0,0004	\$3000.0	0.0015	0,0022
Nickel	mgA.	0.025	0.002	2.49	0.006	0.007	0.002	0.0024	0 006	0.005	0.014	0.015	0,019	0,015	0.018	0.016	0.000	0.009	0.002	0.0017	0.003	< 0,001	0.002	0.030
Nichkum	mot																				_			
Nirale (ps N)	mat			1																				
Ablaite tas Mi															· · · ·									
	mart			1													0.00				0.60	0.70	0.20	(0)
NH3+NH9	mgn_		0.70		0.20		D.40		0.20		0.20		0.30		0.20		040		0.20		0.50	0.76	020	
pri	PH	65-85	6.38	8.35	7,44	7.39	8.13	7.85	5.97	5.81	<u>5.1/</u>	4.91	6.11	5.9/	6.83	6.00	6.01	8.43	7.16	- PEC	0.30	0.04		2,90
Phosphorus	.mgA								1									-						
Potassium	mg/L		114		1.20		1.79	<u> </u>	0.76		0.62		1.05		0,81		1.40		171		0.60	2.01	2.68	3.54
Electron	mg/l,																							
Scandium	mgfL																							
Selenium	mg/L	01	< 0.005		< 0.005		< 0.005		< 0.005		< 0.005		< 0.005		< 0.005		< 0.005		< 0.005		< 0.005	< 0.005	< 0.005	< 0,005
6#ver	mg/l	0.0001	< 0.0003		< 8.0001		< 0.0001		< 0.0001		0.0014		< 0.0001		< 0.0001		< 0.0001		< 0.0001		< 0.0001	< 0.0001	< 0.0001	0.0001
Sodium	1004		25.30		3.48		18,70		0.87		0.87		0.81		1 75		1.12		1.80		8,41	1.97	1.79	4.34
Shonling	mont		0.174		0.072		0.116		0.012		0.010		0.013		0.030		0.021	1	0.041		0.023	0.038	0.036	0.021
Subbala	and a		14.0	12	110	120	41.0	42.0	0.012	110	74	80	0.1	0.0	70		100	7.	0.0	110	110	11	6.8	16.0
т	mgri.		11,0	4.3	11.0	12.0	11.0	13.0	8.5	11.0	1.0	0.0	40,000		10000	0.8	0.3		10,0000	.11.0	* 0.0000	1.00000	< 0.000	(0.0000
Inapport .	mort	0.0003	< 0.0002		< 0.0002		< 0.0005	· · · · · · · · · · · · · · · · · · ·	< 0.0002		< 0.0002		× 0.0002		< 0.0002		< 0.0002		40.0002			- V.0002	~ 0,0002	3 0.000Z
1 DORSITI	mg/L											-					-							10.000
Tin	mol		< 0.001		< 0.001		< 0.001		< 0.001		< 0.001		< 0.001	<u> </u>	< 0.001		< 0.001		< 0.001		< 0.001	< 0,001	< 0.001	< 0 001
Titankum	Age.		< 0.003		< 0.003		< 0.003		< 0.003		< 0.003		< 0.003		< 0 003		< 0.003	-	< 0,003		< 0.003	< 0.003	< 0.003	< 0.003
Total Cyanide ⁽⁷⁾	.mut.	0.005	< 0.006	<0.001	< 0.002	<0.001	< 0.006	<0.001	< 0.095	<0.001	< 0.002	<0,001	< 0.002	<0.001	< 0.002	<0.001	< 0.002	<0.001	< 0.002	<0.001	< 0.006	< 0.006	< 0.006	< 0.002
Total Dissolved Solids	mg/L		220	320	169	160	146	490	43	130	43	<50	< 30	64	69	59	< 30	60	91	80	97	120	150	97
Total Hardness (as CaCQ)	mg/L		129 0	144.0	131.0	142.0	87.3	50.2	18.8	17.3	7.0	5.8	167	16.7	29.1	32.8	30.5	27.6	73.6	61.0	13.8	47.8	35.1	13.0
Total Kiektzhi Nitrogen	mat								t	1							1	1						
Total Phoenboons (as P)																1								
Total Data and ad Datida			44000	30 005			10.300	40.000		1.000	010	720	12	200	70 500	01.400	170			600	3 210	328	2 540	1 040
1904 SUSPENDED SONDS	TOOL		4400.02	36,900	<2	32	18,700	10,800	900	1,100	210		t"	200	28,000	21,400	130	630			2.6.19	540	2,040	1,000
True Colour	TCU																	-				0.0046	0.000	
Tungston	mg/L	0.03	0,0019		0.0018		0.0024		0.0017		0.0079		0.0073		6.1090		0.0047		0.0007		0.0232	0.0018	0.002	0.1330
Furbidity	NTU								L		L		I	L							·			
Uranium	mg/L	0.005	0.0147		0.0006		0.0023		0 0005		8000.0		0.0002		< 0.0002		< 0.0002		0.0017		< 0.0002	0.0005	× 0.0002	0.0096
Vanadium	mg/L	0,006	0.004		0.002		0.002		< 0.0000		< 0.0009		< 0.0009		< 0.0000		< 0.0009		< 0.0009		< 0.0009	0.0019	< 0.0009	< 0 0000
Yttrium	mg/L		< 0.0001		< 0.0001		< 0 0001		< 0.0001		0.0004		0.0002		0.0002		< 0.0001		0.0002		0.0002	0.0008	< 0.0001	0.0005
Zinc	med	0.02	0.003	0.007	< 0.001	0.0054	0.002	0.0027	0.012	0.014	0.014	0.014	0.000	0.017	0.015	0.011	0.037	0.053	0.002	0.0075	0.031	0.003	0.018	0,035
Zerostism	mail	0.00	0.000	0.007		0,0000	0.002	0.0020	0.012			1	1			0,011								
Pre 200 milli	enrs.	<u> </u>											-				· · · · · ·				-		an anona lution in	

ncial Water Quality Objectives of the Ministry of Environment and Energy

orefers to the "Water Management Policies, Guidel to of Onbario, July 1994, reprinted February 1999." Id visues indicate results, exceeded PWOO values

2. Bolded values indicate results ascence revolves
3. Bolded values indicate results ascence revolves
3. Block cells indicate no data swatch
4. Block cells indicate no data swatch
6. Source relation by 1 setsmit Laboratorians Ld.
6. Fail texting completed by SGS Laborate Research
7. Normally SGS uses a method detection finit for bina cynolide of 0.002 mplL. However there was some making indicatence for some samples that resulted in elevated reporting limits to 0.006 mplL.
7. Normally SGS uses a method detection finit for bina cynolide of 0.002 mplL.

MW-05-15	MW-05-16	MW-05-17					
21-Sep-05	21-Sep-05	21-Sep-05					
6.22	6.47	6.02					
105	70	40					
< 2	19.0	9.0					
24	14	11					
4,670	0.024	0.047					
< 0.000+	< 0.000+	< 0.0002					
< 0.005	< 0.005	< 0.005					
0.017	0.010	0.004					
< 0,005	< 0,005	< 0.005					
< 0,0003	< 0.0003	< 0.0003					
0 005	0.008	0.005					
< 0.0001	0.9002	0.0002					
0.0	4.0	4.0					
0.002	< 0.001	\$0.001					
0.002	0.0114	0.0414					
110	81	53					
0.0154	0.0045	0.007					
	6.00	0.05					
U.\$0	ə.26	0.95					
0.005	< 0.0002	0 0002					
< 0,005	< 0.005	< 0.005					
0.20	1.20	1.14					
	0.07	0.94					
4 A 1	<0.2/3	4.0.1					
0.0006	0.0004	0.0008					
0.010	0.012	0 023					
0.20	0,40	6.40					
p. 16	0.00						
1.49	2.18	1.52					
< 0.005	< 0.005	< 0.005					
0.0003	< 0.0001 4 37	1.0001					
21.90	9,33	0.0**					
27.0	11.0	10.0					
< 0.0002	< 0.0002	< 0.0002					
< 0.001	< 0.001	< 0.001					
0.006	< 0.003	< 0.003					
< 0.002	< 0.006 **	4 0.006 P					
29	14.9	14.6					
-							
7	2,680	5,900					
	1						
0.0416	0.0165	0.0018					
0.000	0.000	0.0000					
< 0.0699	< 0.0004	< 0.0000					
0.0082	0.0005	0.0003					
0.021	0.051	0.069					
		L					
2 De- MIT-L		of 3 & sin Water 3					

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF QA/QC FOR GROUNDWATER QUALITY RESULTS

Parameter	Units	Criteria			IM-11.1				
e al allicitat	Office		4.0.4		Well I	sumber 1			
		PWQO	MW	05-08	MW-	05-16	MW-	05-04	
Data Recorded			21-Sec.05	21-Sep-05	Original 21-Sec OF	Replicate 21-Sec.05	Original 2. Aug. OF	Replicate	
Date Sampled			21-540-03	21-3409-03	21-360-03	21-540-00	3-400-05	3-AU0-03	
Acidity	mg/L			10	19	14	18	20	
Aikeuraty	mg/L		0.071	0,000	0.074	0.018	0.0075	0.0033	
Aluminum	mg/L	0.015 (for pH 4.5 to 0.5)	0.031	0.030	0.424	0.018	0.0075	0.0033	
		0.075 (for pH 6.5 to 9.0)	-						
Ammonia (as N)	mg/L	0.02					0.933	0.082	
Antimony		0.02	< 0.0004	< 0.0004	< 0.0004	< 0.0004			
Arsenic	mg/L	0.01	< 0.005	< 0.005	< 0.005	< 0.005	0.0016	0.0015	
Barlum	mg/L	A Ditt (fra kandrass or CaCO , c25 and)	0.0070	0.0070	0,0100	0.0100			
Beryillum	mgn.		× 0.003	× 0.005	10,005	- 0.005			
	mgr.	(.) (for naroness as CaCO 3 >/3 mgr.)							
Bismuth			< 0,0003	< 0.0003	< 0.0003	< 0.0003			
Boron	mg/l.	0.2	< 0.005	< 0.005	0.008	0.005	10 0001	10 0001	
Cadmium	mg/L	0.0001 (for hardness as CaCO 3 < 100 mg/L)	< 0.0001	< 0,0001	0.0002	0.0002	<0.0001	<0.0001	
	mg/L	0.0005 (for hardness as CaCO 3 >100 mg/L)							
Calcium	mg/L_		3.82	3.85	4.00	4.09	3.70	3.10	
Gerium	mg/L								
Cesium	mg/L								
Chlorida	mg/L								
Chromium ⁽³⁾	mg/L	0.0089	< 0,001	< 0.001	< 0.001	< 0.001			
Cobalt	mg/L	0.0009	0.0116	0.0118	0.0114	0.0127			
Conductivity	µS/cm		46	47	81	65	49	48	
Copper	mg/L	0.001 (for Hardness as CaCO 3<20 mg/L)	0.0113	0.0104	0.0045	0.0026	0.0024	<0.001	
	mg/L	0.005 (for Hardness as CaCO 3>20 mg/L)							
Dissolved Organic Carbon	mg/L								
Europium	mg/L								
Fluaride	mg/L								
Gellium	mg/L								
Iron	mg/L	0.3	0.1	0.1	5.3	5.0	1.5	1.4	
Lanthanum	µg/L								
Lead	mg/L	0.001 (for Alkalinity as CaCO 3 <30 mg/L)	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.001	<0.001	
	mg/L	0.003 (for Alkalinity as CaCO 3 30-80 mg/L)		1					
	mg/L	0.005 (for Alkelinity as CaCO 3 >60 mg/L)							
Lilhum	mg/L		< 0.005	< 0.005	< 0.005	< 0.005			
Magnesium	rng/L		1.73	1.75	1.20	1.22	1.97	1.74	
M-Alkalinity as CaCO ₃ (pH 4.5)	mg/L						0.014	0.014	
Manganese	mg/L		0.0281	0.0287	0.2730	0.3010			
Mercury	µg/L	0.2	< 0.1	< 0.1	< 0.1	0.10	<0.1	<0.1	
Molybdenum	mg/L	0.04	< 0.0003	< 0.0003	0.0004	0.0005	<0.001	<0.001	
Nickel	mg/L	0.025	0.019	0.017	0.012	0.013	0.006	0.0051	
Nioblum	mg/L								
Nitrate (as N)	mg/L								
Nitrite (as N)	mg/L.								
NH3+NH4	.Agm		0.30	0.20	0.40	0.40			
pH	pH	8.5 - 8.5	8.11	6.01	6,00	5.49	5.81	5.75	
Phosphorus	mg/L								
Potassium	mg/L		1,05	1.05	2.18	2.21			
Rubichum	mg/L								
Scandium	ma/L								
Selenium	ma/L	0.1	< 0.005	< 0.005	< 0.005	< 0.005			
Silver	mg/L	0.0001	< 0.0001	< 0.0001	< 0,0001	< 0.0001			
Sodium	mg/L		0.8100	0.8000	4.3300	4.4300			
Strontium	mg/L		0.0129	0.013	0.0333	0.0343			
Sulphate	mg/L		9.3	9.3	11.0	11.0	11.0	11.0	
Thaillum	mg/L	0.0003	< 0.0002	< 0.0002	< 0.0002	< 0.0002			
Thorium	mg/L								
Tin	ug/L		< 0.001	< 0.001	< 0.001	< 0.001			
Titanium	ma/L		< 0.003	< 0.003	< 0.003	< 0.003			
Total Cyanide	ma/L	0.005	< 0.002	< 0.002	< 0.006	< 0.006	<0.001	<0.001	
Total Dissolved Solids	ma/L		< 30	< 30	74	83	130	<30	
Total Hardness (as CaCO)	mg/L		18.7	18.8	14.9	15.2	17.3	14.9	
Total Kieldahi Nitrogen	maA								
Total Phosphonus (as P)	mail								
Total Suspended Solide	mat		12	18	2680	727	1100	1000	
True Colour	TCU						1100		
Turbashen		0.030	0.0073	0.0078	0.0185	0.0188			
rungston Tishidhi	NTT .	0.030	0.0073	0.0076	0.0103	0.0100		-	
	m-1	0.005	0.0000	< 0.0000	0.0004	0.0002			
Vanadium	mg/L	0.005	C.0002	< 0.0002	< 0.0004	0.0003			
		0.006	0.0009	0.0009	0.0009	0.0009			
Tee	mg/L	0.02	0,0002	0.0002	0.0005	0.0005	0.014	0.0082	
Zinc	mg/L	0.02	0.009	0.010	0.0510	0.0510	0,014	0.0083	
LINOITUN	_ mg/L	0.004	14 101	00722-114-seles	nillen AD.	d 2 Rev OlT	m 21 and 24 and	2.5 ybiTable 2.5	
Notes:			12101-	00222-100300000	ere tehor to teho	1. 2, Hay of 180	na 2 1 800 24 800	13-Dec-05	

NB 101-00222/1-2 Revision 0 December 15, 2005

1 . ,

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF SEDIMENT QUALITY RESULTS

Parameter	Units	PS	QG	Sediment Sample Locations at Agnew Lake																	
		LEL	SEL	AL SB				SP			LB			UM-AL-REF			UM-AL-NF			UM-AL-FF	
				1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Date Sampled				4-May-05	4-May-05	4-May-05	4-May-05	4-May-05	4-May-05	5-May-05	5-May-05	5-May-05	7-Oct-04	7-Oct-04	7-Oct-04	6-Oct-04	6-Oct-04	6-Oct-04	6-Oct-04	6-Oct-04	6-Oct-04
% Carbonate	%																				1.63
% Moisture	%			82.2	78.8	85.9	82.4	66.9	72.7	71.7	76.5	68.1	77.4	76.1	75.2	70.8	70.5	79.6	73.9	77.9	66.7
% Organic	%	1	10	9.17	5.88	7.98	4.4	3	3.3	4.3	3.8	3	9.47	9.35	9.16	8.87	8.49	11.8	20.7	12.9	10.8
								-													
Atuminum	ua/a			12700	11500	10300	12600	7430	9830	9760	11700	9760	13,300	12,200	12,500	14,400	13,400	16,500	10,000	17,800	15,900
Antimony	ua/a			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	μα/α	6	33	6.3	5.2	6.6	13	2.4	1.9	4.4	6.2	3.5	3.6	0.99	2.2	1.1	1.8	2.1	11	9.4	5.4
Barium	ug/g			111	123	132	151	69.6	92.7	52.8	112	78.6	116	112	129	74.1	80.8	85.6	90.3	110	79.4
Bervilium	La/a			0.83	0.77	0.69	0.88	<0.5	<0.5	<0.5	0.66	<0.5	0.84	0.61	0.72	0.54	0.61	0.72	<0.5	0.62	<0.5
Bismuth	ug/g			0.59	0.59	<0.5	0.56	<0.5	<0.5	<0.5	0.56	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.63	<0.5
Boron	La/a												6.8	5.6	3.4	5.3	4.8	4.7	3	1.1	<1
Cadmium	Lig/g	0.6	10	1.4	1.4	1.2	1.4	0.51	0.68	0.43	0.9	0.51	1	0.9	1.1	0.57	0.64	0.89	0.97	1.2	0.49
Calcium	µg/g			3120	3270	3130	3210	2200	2540	2570	2960	2870	3,280	3,100	3,270	2,850	2,960	3,070	3,220	2,920	2,300
Cerium	1/g/g			80.3	78.2	69.4	83.9	52.1	61.5	58.2	81.3	68.9	75	72	73	68	72	77	58	77	54
Cesium	pla/g			1.1	1.2	1	0.99	0.6	0.72	0.65	0.94	0.75	1	0.87	0.92	0.79	0.88	0.82	1.1	1.1	0.88
Chromium	µg/g	26	110	37	38	31	36	22	25	23	34	27	<u>40</u>	36	40	33	34	37	23	<u>35</u>	27
Cobalt	µg/g	50		19.3	20	18.8	28.2	9.96	11.1	8.76	18.3	12.6	18.6	16.8	19.7	11.7	11.8	12.6	10.9	18.6	9.97
Copper	µg/g	16	110	39	41	29	34	19	22	18	35	24	31	29	35	24	29	33	25	36	19
Europium	ug/g			1	0.93	0.93	0.99	<0.5	0.58	0.52	0.81	0.61	0.95	0.83	0.89	0.65	0.71	0.77	0.63	0.78	0.56
Gallium	µg/g			7.6	8.2	7	7.9	5.1	5.5	4.9	7.2	5.8	7.5	6.9	7.7	6.2	6.8	6.7	5.5	7.5	8
Iron	µg/g			36000	28000	32000	65000	17000	21000	18000	36000	17000	36,000	30,000	33,000	24,000	22,000	40,000	18,800	29,000	22,000
Lanthanum	pg/g			48	43	43	46	22	27	24	38	28	48	41	44	31	33	36	30	40	29
Lead	µg/g	31	250	<u>56.7</u>	<u>60</u>	<u>40</u>	45	21	32	22	<u>49.9</u>	29	38	36	42	27 -	35	46	31	46	25
Lithium	µg/g			12	13	11	12	8.2	9.6	7.8	11	9.9	14	13	14	12	12	12	7.2	12	8.1
Magnesium	µg/g			4900	4970	4310	5530	3180	3910	3200	4760	3940	5,860	5,660	5,720	5,790	6,090	5,850	2,680	4,460	<u>3,1</u> 20
Manganese	µg/g	460	1,100	726	1,530	2,000	2,500	945	1,400	617	1,780	621	1,020	د 1,280	2,130	420	478	543	1,170	1,110	666
Mercury	pa/a	0.2	2	0.12	0.096	0.1	0.11	<0.05	<0.05	<0.05	0.089	<0.05	0.14	<0.05	0.079	<0.05	<0.05	<0.05	0.076	0.17	0.14
Molybdenum	µ9/9			1.4	1.8	1.3	1.6	0.75	0.87	0.88	1.5	0.82	1.4	1.1	1.4	0.89_	0.94	1,1	1.4	1.9	1.7
Nickel	µg/g	16	75	48	52.6	<u>41</u>	<u>58.4</u>	24	36	21	<u>48</u>	32	40	37	<u>41</u>	28	35	<u>40</u>	28	46	21
Niobium	µg/g			3.8	3.7	2.8	3.2	2.8	2.5	3.1	3.6	3.4	2.8	2.3	2.5	2.6	2.5	2.6	1.3	2.6	2.7
Phosphorus	µg/g			1300	850	1900	1300	480	1100	800	1000	860	1,000	770	900	680	720	870	590	1,000	800
Rubidium	µg/g			12	14	11	11	7.7	8.8	8.8	11	9.8	11	11	12	11	11	11	8.2	11	8.5
Scandium	µg/g			5.1	4.6	4.2	4.9	2.7	3.1	2.9	4.1	3.3	4.2	3.8	4	3.2	3.4	3.6	1.8	3.6	2.3
Selenium	µg/g			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	1.3	1
Silver	µg/g			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	µg/g			18	19	18	19	12	14	16	17	17	16	15	16	14	14	14	18	19	16
Thallium	µ9/9			<0.5	<u><0.</u> 5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thorium	hð/ð			21	19	15	23	12	15	15	24	19	12	13	13	9.7	10	12	3.4	8.8	5.3
Tin	µg/g_			1.8	2.1	1.3	1.7	0.95	0.99	0.89	1.6	1.1	1.3	1.1	1.4	1.2	1.4	1.6	1	1.6	1.2
Titanium	µg/g			1070	1010	796	1100	763	995	1060	999	1120	888	818	853	933	991	872	357	684	820
Total Kjeldahl Nitrogen	µg/g	550	4,800	6,000	4,300	5,500	4,900	2.400	2.300	2.600	3.000	2.000	698	572	700	632	597	703		755	749
Tungsten	µg/g			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g			8.2	7.5	7.4	8.1	3.2	3.7	3.1	5.8	3.6	8	6.9	7	4.5	5	5.4	4	5.9	4.8
Vanadium	µg/g			53.2	55.6	44	57.6	33	36	33	51.5	39	55		53	40	45	64	67	51	45
Yttrium	hð/ð			12	12		12	5.9	6.9	6.8	10	7.3	12	10	11	7.9	8.2	8.9	100	9.9	6.8
Zinc	µg/g	120	820	150	160	110	200	65.2	87.7	53.6	130	73.3	140	130	140	110	120	160	14	140	74
Zirconium	µg/g			12	6.4	3.3	13	<u>5.</u> 7	3.3	5.5	5.8	4.8	8.3	6.6	ti ti	1.1	<u> </u>	6.6	14	11	10

Notes: 1. Blank cells Indicate no data available. 2. Criteria based on Provincial Sediment Quality Guidelines (PSQG), From: MOE, 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. 3. LEL = Lowest Effect Level, SEL = Severe Effect Level. 4. Underlined values exceed LEL. 5. Bold values exceed SEL.

14101-00222-1Ussignment/Report 2. Rev 0\Table 2.6 - Sediment Testing Tables xisjTable 2.6 13-Dec-05

NB101-00222/1-2 Révision 0 December 15, 2005

1.

,

i I

34-1-1

URSA MAJOR MINERALS INCORPORATED SHAKESPEARE PROJECT

ENVIRONMENTAL BASELINE REPORT FOR FEASIBILITY STUDY

SUMMARY OF METEOROLOGICAL DATA

Month	Mean Max	Mean	Mean Min	Extreme Max	Extreme Min	Total	Direction of	Speed of Max	
	Temperature	Temperature	Temperature	Temperature	Temperature	Rainfall	Max Wind Gust	Wind Gust	
	(°C)	(°C)	(°C)	(°C)	۲ (°C)	(mm/month)	(degrees)	<u>(km/h)</u>	
March	5.71	-0.14	-6.17	13.32	-12.29	0.00	348.2	38.74	
April	12.02	6.15	0.82	24.4	-3.37	2.94	341.2	41.41	
May	16.46	10.86	4.77	27.12	-4.33	17.60	278	41.41	
June	24.91	19.24	13.74	31.12	8.63	26.80	271	47.42	
July	26.17	20.34	14.40	33.17	7.03	75.22	273.8	38.07	
August	23.89	18.66	13.66	30.71	9.03	89.22	280.8	52.77	
September	21.38	15.92	10.65	29.5	2.89	89.42	143.2	44.08	
October	12.84	8.65	5.19	20.80	2.16	37.80	275.2	36.74	
November	7.10	3.12	-0.32	8.45	-0.67	72.01	276.6	55.44	

Notes:

I:\101-00222-1\Assignment\Report Report 2, Rev 0\[Table 2.7 and App G Met Data.xls]Monthly Summary

13-Dec-05

1. Rainfall data was recorded from April 5, 2005 to November 16, 2005. All other data was recorded from March 17, 2005 to November 16, 2005.

2. Data recorded by an on-site HOBO meteorological station.

. \

