Mattawa Canada Garnet Deposit

NC State University MRL Proposal # 71832

8/07/07

By

Robert Carland

Dr. William Miller Dr. Jeffery Reid Por o **35722**

Barton Mines

Executive Summary

The ore sample submitted by Jeff Kinblom for claims in Canada that Barton hold on the deposit called "Mattawa" were processed to generate enough # 80 Grade water jet product to do comparative testing with Barton's existing products. The ore sample was very high in heavy minerals (>2.96 sp) and had several forms of garnet present. The ore sample had 34% by weight of garnet but only 54% was almandine, 29% pyrope, and 18% grossular. From a mineralogy standpoint this spread of garnet coupled with the diopside and hornblende comprised 75% of the ore. The ore was rather difficult to process using sizing, gravity, and low and high strength magnetic fields due to the common specific gravity of the diopside-hornblende-pyrope-grossular minerals. The almandine form of garnet has a high specific gravity around 4.3 which allows it to be easily gravity separated. Because of this, the final product could not be purified beyond 80% garnet grade with the above method. It is believed by the author that if Barton seeks a grade higher than 80%; froth flotation needs to be employed to make the higher grade efficiently. The approach used within was to screen the rock fractions into three size ranges so that gravity as well as magnetic separation would be more effective. This logic was fostered from previous work with garnet ores with lower specific gravity garnet minerals present. The process worked rather well for the removal of the feldspar, biotite and diopside, but to a much lesser extent for the hornblende due to its specific gravity and magnetic properties. The diopside was removed during the magnetic separation. In the final product, the contaminant is mostly hornblende at a 20% level. Mr. Kinblom was contacted and advised on the purity level and further froth flotation work was declined.

The recovery of the above process was not relevant in terms of processing efficiency. The lab work's main emphasis was on sample generation with an attempt to understand the difficulty of processing the ore. There is no doubt to capture the lighter grades of garnet more efficiently thus achieving a reasonable recovery, froth flotation should be considered. Once again, as in a previous study for Barton, Hutton Bay, the high grade of garnet in the ore is not a sole predictor of economic viability. The author believes that a mineralogy study of the garnet and the accompanying minerals in the rock can be a good screen for the ease of processing. This may save Barton both time and money in their efforts to locate easily processed ore deposits.

Mattawa Garnet Ore Processing

Process evaluation of the Mattawa garnet ore has been completed. The unit operations involved in the process included size reduction, gravity concentration and magnetic separation to produce a final product of garnet concentrate. Size reduction was necessary for liberation and proper size gradation of the product concentrate. Both gravity concentration and magnetic separation were for removal of heavy and highly magnetic impurities from the garnet. The procedure for the unit operations are described below:

Size Reduction

Approximately 600 lb of raw ore material was shipped to our facility as rocks, 6-8inches in size, in cardboard boxes on a pallet. The as-received ore material was crushed in a 6 x 12" jaw crusher to produce a suitable feed to the roll crusher. The jaw crusher's discharge opening was set to a product of about $\frac{1}{2}$ " that could be fed straight to the roll crusher. To avoid production of excessive fines, the subsequent size reduction steps involved stage crushing. The jaw crusher product was screened on an 80-mesh screen to remove undersize fraction before feeding to the roll crusher. All the crushed material from the jaw crusher was staged crushed in the roll crusher to produce approximately 1/8 inch product and excess minus 80-mesh fines. The roll crusher product was screened into three size fractions, plus 14-mesh, 14 x 30-mesh and 38 x 80-mesh. The 30 x 80mesh fraction was considered as the desired size for subsequent concentration process whereas the other size fractions were subjected to further size reduction using a cone crusher to generate the final 30 x 80-mesh product. The weight distribution of the size fractions after roll crushing was 72 lb of plus 14-mesh; 215 lb of 14 x 30-mesh; 205 lb of 30 x 80-mesh and 92 lb of minus 80-mesh. After the size reduction, the product was screened into three final size fractions, 30 x 50-mesh, 50 x 80 mesh and 80 x 100-mesh, for the subsequent gravity concentration and magnetic separation steps. All the minus 80-mesh fines were kept separate and stored. The weight distribution after size reduction was 44.2 lb of 30 x 50-mesh fraction; 104 lb of 50 x 80-mesh fraction; 95 lb of 80 x 100mesh fraction and 279 lb of minus 80-mesh

	After Roll Crusher		After All Size Reduction
Size Fraction	lb	Size Fraction	lb
+ 14 Mesh	72	- 30 + 50 Mesh	44.2
- 14 + 30 Mesh	215	- 50 + 80 Mesh	104.0
- 30 + 80 Mesh	205	- 80 + 100 Mesh	95.0
- 80 Mesh	92	- 80 Mesh	279.0
		- 100 Mesh	36.0
Total	584	Total	558.2

Table 1. Mass Balance of Feed Material for Processing

Heavy-Liquid Separation (Sink-Float Analysis)

Initial amount of heavy minerals in the ore feed was determined by heavy liquid separation using tetrabromoethane (TBE) with a specific gravity of 2.94. Three samples from three size fractions of the feed were used for the heavy liquid separation. These were 14×200 mesh, 50×80 mesh and 80×270 mesh size fractions. The results of the sink float analysis are tabulated in Table 2.

	50 x 80 Mesh		80 x 27	0 Mesh	14 x 200 Mesh		
	Weight		We	ight	Weight		
	g	%	g	%	g	%	
H-L Floats	67.49	25.3	79.30	27.3	93.26	21.7	
H-L Sinks	199.52	74.7	211.17	72.7	337.48	78.3	
Total	267.01	100.0	290.47	100.0	430.74	100.0	

Table 2. Results of Heavy Liquid Separation (Sink-Float Analysis)

The results of the sink-float analysis showed that there were about 75% heavy minerals (with specific gravity greater than 2.94) in the ore. However, visual examination indicated that not all the heavy minerals were garnet. The float and sink samples from the test with 14 x 200 mesh fraction were subjected to a mineralogical count to determine the garnet concentration in the sink and float fractions. According to the mineralogical count, the head feed contained 34% garnet, 20.5% diopside, 13.4% hornblende, 14% biotite and 18.1% plagioclase as the major minerals. Table 3 and Table 4 show the mineralogical balances in the head feed (14 x 200 mesh)

Table 3. Mineralogical Balance of the	Ore Feed (14 x 200 Mesh)
---------------------------------------	--------------------------

		Heavy Liq	uid Sink	Heavy Liquid Float				
	Grain	Specific	Equiv.	weight	Grain	Specific	Equiv.	weight
Minerals	Count	Gravity	Count	%	Count	gravity	Count	%
Garnet	603.0	3.6	2,170.8	43.4	0	3.6	0.0	0.0
Diopside	316.0	3.6	1,137.6	22.8	81.0	3.6	291.6	12.4
Hornblende	238.0	3.6	856.8	17.1	0	3.6	0	0.0
HeavyMinerals	1,157.0		4,165.2	83.4	81.0		291.6	12.4
Biotite	305.0	2.6	793.0	15.9	64.0	2.6	166.4	7.1
Plagioclase	15.0	2.6	39.0	0.8	727.0	2.6	1,890.2	80.5
Light Minerals	320.0		832.0	16.6	791.0		2,056.6	87.6
Total	1,477.0		4,997.2		872.0		2,348.2	

Table 4. Mineralogical Balance of Ore Feed (14 x 200 Mesh)

			Wt. %							
	Wt. %	Garnet	Diopside	Hornblende	Biotite	Plagioclase				
Sink	78.3	43.4	22.8	17.1	15.9	0.8				
Float	21.7	0.0	12.4	0.0	7.1	80.5				
Total	100.0	34.0	20.5	13.4	14.0	18.1				

Gravity Concentration by Shaking Table

Three size fractions generated after size reduction, 30×50 -mesh, 50×80 -mesh and 80×100 -mesh were advanced to gravity separation process by shaking table. Each size fraction was run separately with a feed rate of about 60 lb/hr at 25% solids pulp density. The shaking table was set at full tilt at about 200 strokes per minute. The results of the shaking table concentration are tabulated in Table 5. Effective concentration of heavy minerals from light minerals was achieved for all the three size fractions tested.

	30 x 50 mesh		50 x 80) mesh	80 x 100 mesh		
Products	Wt. g Wt. %		Wt. g	Wt. %	Wt. g	Wt. %	
Initial	20,084.0	41.0	47,216.0		43,130.0		
Concentrate	8,099.0	41.0	14,314.0	30.2	5,549.0	13.0	
Middlings	7,140.0	36.1	17,884.0	37.7	9,071.5	21.3	
Tailings	4,530.4	22.9	15,217.0	32.1	27,928.8	65.7	
Total	19,769.4	100.0	47,405.0	100.0	42,549.3	100.0	

Table 5. Mass Balance of Shaking Table Products

The table concentrates and some middlings were advanced to magnetic separation to remove additional impurities.

Magnetic Separation

Magnetic separation procedure involved the use of high intensity, high-gradient permanent, rare earth (RE) magnetic separation equipment to remove the highly nonmagnetic materials from the heavy minerals concentrate. Next the magnetic fraction from the RE separation was run over a low intensity permanent drum magnetic separator to remove heavy ferromagnetic material from the concentrate.

High Intensity (Rare Earth), High-gradient Permanent Magnetic Separation

The shaking table concentrate from each size fraction was subjected to magnetic separation with the rare earth (RE) Roche model # R144-101 magnetic separator. Four products, two non-magnetic and two magnetic products were generated and their weight distributions are tabulated in Table 6.

	High Non- Magnetic	Low Non- Magnetic	Low Magnetic Minerals	High magnetic Minerals
Size fraction	Minerals	Minerals		
30 x 50 Mesh	630.0	2,119.0	3,670.0	975.0
50 x 80 Mesh	2,056.0	985.0	12,717.0	345.3
80 x 100 Mesh	153.0	73.0	12,864.0	916.0

Table 6. Weight Distribution (grams) of Products from Rare Earth Magnetic Separator

Low Intensity Permanent Magnetic Separation

Finally, the low magnetic minerals from above were treated separately with a low intensity magnetic separation to remove any residual heavy highly magnetic mineral impurities. This separation use Eriez model 24x14 DFA 10 dry low intensity permanent drum magnetic separator that yielded two products, non-magnetic heavy mineral concentrate and magnetic heavy minerals. The non-magnetic heavy mineral was considered as the final garnet concentrate. The weight distribution of the low intensity magnetic separation products is tabulated in Table 7.

Table 7. Weight Distribution (grams) of products from Low Intensity Drum Separator

Size Fraction	Non-Magnetic Concentrate	Magnetic Mineral Impurities
30 x 50 Mesh	3,670.0	0.0
50 x 80 Mesh	12,337.0	380.0
80 x 100 Mesh	11,973.0	891.0

Mineralogical count of this final concentrate indicated about 80% garnet and about 20% other heavy minerals. Approximately 15,500 grams (34 lb) of final garnet concentrate (composite of the three size fractions) was produced which was labeled as Mattawa Garnet Concentrate, 80-grade and shipped to the sponsor. Particle size analysis of the concentrate is presented in Table 8 together with the particle size analysis of Barton's 80 grade garnet for comparison purposes.

SCREEN	SCALE	Mattawa Garnet Concentrate 80-Grade Barton 80-Grade							
ratio 1.4	14	Weight	% Wt.	Cum %	Cum %	Weight	% Wt.	Cum %	Cum %
Ope	ning	between	between	Retained	Passing	between	between	Retained	Passing
Mesh	micromete	sieves	Sieves	on Sieves	Sieves	sieves	sieves	on sieves	sieves
30	600	0.10	0.0	0.0	100.0		0.0	0.0	100.0
35	500	0.00	0.0	0.0	100.0		0.0	0.0	100.0
40	425	0.00	0.0	0.0	100.0		0.0	0.0	100.0
45	355	11.00	3.8	3.8	96.2		2.0	2.0	98.0
50	300	26.30	9.0	12.8	87.2		19.0	21.0	79.0
60	250	46.70	15.9	28.7	71.3		30.0	51.0	49.0
70	212	123.60	42.1	70.8	29.2		27.0	78.0	22.0
80	180	75.90	25.9	96.7	3.3		15.0	93.0	7.0
100	150	7.10	2.4	99.1	0.9		5.0	98.0	2.0
Pan	-150	2.60	0.9				2.0	100.0	
Total		293.30	100.0				100.0		

Table 8. Particle Size Analysis of Processed Mattawa Garnet Concentrate

A PRELIMINARY MINERAL EXAMINATION

OF

SAMPLE 7112 FROM MATAWA, ONTARIO, CANADA

Prepared for:

Mr. Robert Carland Director, Minerals Research Laboratory 180 Coxe Ave., Asheville, North Carolina 28801

Submitted by:

Jeffrey C/ Reid, Ph.D., P.G., CPG President, ForensicGeology, Inc. 8401 Summerspring Lane Raleigh, North Carolina 27615

Date: 28 July 2007

A Preliminary Mineral Examination of Sample 7112 from Mattawa, Ontario, Canada - 7/28/2007

Summary:

This report transmits preliminary mineralogical results of two samples (sink and float) of the 14x200 fraction of Minerals Research Lab (MRL) sample 7112 from Mattawa, Ontario, Canada. Garnet is the primary mineral of interest.

Initiation:

Mr. Robert Carland requested this study. Mr. Carland is Director of the Minerals Research Laboratory (MRL), 180 Coxe Avenue, Asheville, North Carolina 28801. The samples were shipped from the MRL on 28 June 2007 accompanied by a transmittal letter from Dr. Robert Mensah-Biney of MRL. Other size fractions were included in the sample shipment, but were not examined as part of the requested scope of work.

Purpose of study:

The purposes of this study were to:

1. Provide a mineral grain count for each of the sink and float subsamples of the 14x200 fraction of MRL sample 7112 from Mattawa, Ontario, Canada, and

2. Provide additional mineralogy.

Scope of study:

The scope of study is a binocular examination of sink and float fraction subsamples from the 14x200 fraction of MRL sample 7112, Mattawa, Ontario, Canada. This report constitutes the deliverable including grain counts and photoimage documentation.

Previous work:

The author is not aware of previous mineralogical work on this deposit and does not know the geographic location. This does not preclude the existence of previous material. The author had access the report by Miller dated 13 June 2007 (see References).

Procedures:

1. The two samples were weighed upon receipt:

Sample	Sink (weight in grams)
7112 – sink (14x200)	~110.2
7112 – float (14x200)	~36.4

A Preliminary Mineral Examination of Sample 7112 from Mattawa, Ontario, Canada - 7/28/2007

2. Preliminary reconnaissance sample examination:

The samples were examined for general mineralogy using stereozoom binocular microscopes.

Small amounts of the sink and float samples were examined using a petrographic microscope in air without index of refraction oils. Grain size was not reduced for reconnaissance petrographic examination.

Reconnaissance mineral examination notes were made and supplemented with about 50 high resolution digital images taken using the stereozoom microscope.

3. Sample splitting prior to grain counting and imaging:

Samples were split using a Sepor Microsplitter (Jones-type riffle splitter) composed of 14, 1/8"-wide slots and high-backed receiving aluminum pans. Samples were split down to several grams for grain counting using three- to four splits. The Sepor Microsplitter was cleaned between samples that were split.

4. Grain counting:

Samples were examined using a Meiji trinocular stereozoom microscope equipped with super widefield eyepieces, a parfocalizing camera adapter and T-mount ring mated with a Nikon D80 (10.2 megapixel) digital camera. A dual-arm fiber optic light source provided adjustable lighting (position and intensity). A shutter cable-release was used to minimize camera vibration.

Table 1 provides standard field of view for all images included in this report. The stereozoom and camera field of view were calibrated using a 10mm micrometer with 10 divisions per millimeter. All grain count images were done using a 3.0 instrument setting (see Table 1 for all counted images, Table 2). Lower magnification was not as effective in grain counting these samples.

Table 1 – Stereozoom binocular microscope calibrated field of view and camera view field.

Stereozoom setting	Viewable (long field)	Camera (long field)
3.0	~8 mm	~4 mm

Grains from the sink samples were distributed on a white background using a microspatula. Grains from the float fraction were distributed on a dark background. The viewed layer was one grain thick to maximize observation and imaging. The grains were returned to the split container following imaging. This process was repeated three or four

A Preliminary Mineral Examination of Sample 7112 from Mattawa, Ontario, Canada - 7/28/2007

times for each sample. Care was taken not to shake the split to potentially concentrate heavier minerals.

Images were captured as .jpeg images and were processed using Adobe Photoshop CS 2, version 9.0.1. Final images were saved as Photoshop PDF files and printed at full page size (\sim 8.5 x 11 inches) for grain counting. Grain counting was done on translucent, 216mm x 279 engineering graph paper taped over the printed images. Each grain counted was marked with a cross on the overlay transparent paper and tabulated on a tally sheet. The high resolution Adobe images used to make the prints were displayed on a computer screen to help verify grain identity on the transparent overlay.

Results:

Grain count results are tabulated in Table 2 (raw counts and mineral percent totals). A total of 1,477 points were counted for the sink fraction and a total of 872 points were counted for the float fraction.

Discussion:

The following discusses aspects of the minerals:

Garnet – The garnets are brown orange red and typically have a conchoidal fracture. They are also clear and do not appear to have many inclusions. Larger grains are more deeply colored than smaller grains. When viewed with a petrographic microscope the garnets in this fraction are isotropic and do not appear sheared. Only a few garnets in the float fraction appear not liberated from the feldspar.

Pyroxene (diopside) – Diopside is medium green and blocky with pyroxene cleavage angles. Smaller grains are translucent and greener. Thicker grains are more deeply colored. The diopside in the float fraction tends to have a 'nugget' effect and appears as larger grains resulting to some variation in the grain count.

Hornblende – Hornblende forms stubby black crystals with an amphibole cleavage. Smaller crystals are translucent brown to black.

Biotite – Biotite has perfect cleavage and tends to occur in 'books.' Thinner 'books' or flakes are reddish brown.

Feldspar – The plagioclase feldspar is white to colorless, and clear to translucent. Plagioclase twinning is distinct in many grains. Crystals may be stubby or elongated – especially the translucent crystals. Some grains are stained by iron oxide resulting in a reddish cast.

Reference cited:

Miller, J. W., 13 June 2007 (Memorandum), "Chemical analysis of Mattawa garnet ore, Methods, Results, and Minerals."

Appendix:

1. Table 2 - Grain count results.

2. Paper grain count overlays taped to original images (image labels taped to the back of each image). Tally sheets included.

Sink fraction

- 7112_sink_3a1
- 7112_sink_3b1

Float fraction

- 7112_float_3a1
- 7112_float_3c1
- 7112_float_3e1

Table 2 - Sample 7112 grain count summary - Mattawa, Ontario, Canada										
Mineral	7112 Sink	7112 Sink	Total	Percent		Float	Float	Float	Total	Percent
	3a1	3b1				3a1	3c1	3e1		
Garnet	308	295	603	40.83	-					
Diopside	201	115	316	21.39		2	74	5	81	9.29
Hornblende	141	97	238	16.11						
Biotite	151	154	305	20.65		13	38	13	64	7.34
Plagioclase	5	10	15	1.02		220	276	231	727	83.37
			=======	=======					======	=======
Total grains counted=======>		1477	100					872	100	

J. William Miller, Jr., Ph.D., P.G.

Consulting Geologist 604 Sweet Hollow Road jwmiller@unca.edu Burnsville, NC 28714-5712

828-232-5182 voice 828-251-6041 fax

Memorandum

To: Robert Carland, Director North Carolina State University Minerals Research Laboratory 180 Coxe Avenue Asheville, North Carolina 28801

J.W. Miller From:

Date: 13 June 2007

Re: Chemical analyses of Mattawa garnet ore

Methods

Six samples from the Mattawa garnet deposit were characterized by plain light microscopy, polarizing light microscopy, powder X-ray diffraction (XRD), and scanning electron microscope/energy dispersive spectrometry (SEM/EDS). Samples analyzed included the following:

Sample	size fraction
7112-sink	14x200
7112-float	14x200
7112-sink	50x80
7112-float	50x880
7112-sink	-80+270
<u>7112-float</u>	-80+270

All percentages in this report are in weight percent unless otherwise noted.

Mineral Identification

Minerals initially were identified with a dissecting microscope and polarizing microscope (grains in index oil). Individual minerals were separated by hand and identified with a Philips PW 3040 powder X-ray diffractometer and an FEI Quanta 400 scanning electron microscope with an Oxford Inca 450 energy dispersive spectrometer. Identification of individual minerals was accomplished for the coarsest samples (7112-14x200 fraction) while mineral identifications for other splits were confirmed with the dissecting microscope and XRD.

Results

XRD Results

Powder XRD scans easily identify mineral structural groups but only extended, careful scans pinpoint the specific mineral variety without confirming chemical analyses. For this project, the clinoamphibole mineral, hornblende, was identified in XRD scans as hornblende, pargasite, actinolite, tremolite, etc., and compositions from the SEM/EDS analysis pinpointed the mineral variety as hornblende. The same is true for the other mineral groups, such as garnet, clinopyroxene, and biotite. Copies of XRD scans follow this report.

Sample	XRD number	size fraction	mineral fraction*	minerals detected
7112-sink	7112sc	14x200	(all)	almandine, hornblende, diopside, biotite
				("phlogopite"), albite
7112-sink	7112scb	1 4 x200	biotite	biotite, diopside
7112-sink	7112sca	1 4 ×200	garnet	almandine, diopside, albite
7112-sink	7112scg	1 4x 200	green	diopside, almandine, biotite
7112-sink	7112scp	1 4 x200	black	almandine, hornblende, diopside, biotite
				("phlogopite")
7112-sink	7112scx	1 4 x200	black aggregate	almandine, amphibole ("pargasite"), diopside,
				biotite ("phlogopite")
7112-float	7112fc	14x200	(all)	albite, amphibole ("tremolite"), diopside
7112-float	7112fcfq	14x200	white, colorless	albite
		Fa a a	(11)	
7112-sink	7112sm	50x80	(all)	almandine, diopside, amphibole
5 110 d	B 4 4 3 4	50.00	(11)	("magnesioriebeckite"), biotite ("annite")
/112-float	/112tm	50x80	(all)	albite, amphibole ("actinolite")
7112 .:	7112-6	80, 270	(211)	almonding amphihala ("agtinglite") alhita
1112-SINK	(11251	-00+270	(all)	annandine, amphibole (actinotite), albite

Minerals

7112-float

<u>7112ff</u>

Relative percentages of minerals (detailed in a separate report) within each sample differed according to separation processing, but all mineral species identified for the deposit were found in each sample (Table 1). Minerals present included garnet (pyralspite), clinopyroxene (diopside), clinoamphibole (hornblende), and plagioclase (albite) (Figs. 1,2). Mineral groups were identified/corroborated with XRD and mineral varieties were determined by compositions revealed by SEM/EDS. Individual SEM/EDS scans follow this report, where sample numbers correspond to different mineral grains, with one analysis per grain (e.g. MG-gar-6 of Table 1 is labeled on the SEM/EDS report as Mattawa garnet (top-left side), Spectrum 6 (top-right side).

albite

(all)

-80+270

Garnet $(A_3B_2(SiO_4)_3, where A=Fe^{2+}, Mg, Ca, and B=Al, Fe^{3+})$

Mattawa garnets are brownish orange-red in plain light (Fig. 1) with typical conchoidal fracture (Figs. 1, 2). They are best characterized as "pyralspite" garnets with a dominant almandine composition (Table 1, Fig. 3). The approximate average atomic percentage of the components is

54% almondine (Fe₁Al₂(SiO₄)₃) 29% pyrope $(Mg_Al_2(SiO_4)_3)$ 18% grossular (Ca₁Al₂(SiO₄)₃) or and radite (Ca₁Fe₂(SiO₄)₃).

The composition may be written also as $(Fe_{1.6}Mg_{0.9}Ca_{0.5})(Al,Fe)_2(SiO_4)_3$, with iron content ranging evenly from 21-26 weight percent.

Clinopyroxene/diopside ($CaMgS_2O_2$)

In plain light, the clinopyroxene appeared medium-green with typical 87°x93°cleavage angles. Powder X-ray diffraction and SEM/EDS identified the clinopyroxene as diopside, with a minor augite $((Ca,Na)(Mg,Fe,Al)(Si,Al)_{O_6})$ component.

Clinoamphibole/hornblende ((Ca,Na)₂₃(Mg,Fe,Al)₅Si₆(Si,Al)₂O₂₂(OH)₂)

Hornblende was black in plain light with typical 56°x124° cleavage angles. The black color, massive form, XRD results, and composition (significant magnesium, and iron; small amount of sodium compared to calcium) confirmed the identification.

Biotite $(K(Mg,Fe)_3(AlSi_3O_{10})(OH)_2)$

Biotite appeared as typical dark brown grains with one direction of perfect cleavage.

J. William Miller, Jr., Ph.D., P.G.

Plagioclase/albite ($NaAlSi_3O_8 - CaAl_2Si_2O_8$) Plagioclase was ranged from transparent and colorless to translucent and white or orange (probably iron oxide stain). Twin striations were obvious, and the composition was within the albite (sodium end-member) range.

Figure 1. Top picture is in plane light, and bottom picture is SEM photo. Note that the bottom picture is oriented approximately 60° clockwise from the top picture.

Figure 2. SEM photos of Mattawa minerals. Top two photos are different garnets than those shown in Figure 1, and the other minerals are magnified images from Figure 1.

Figure 3. Chemical analyses of Matawa garnets, plotted in increasing order of FeO.

		Sec. 1								
Table 1. Ma	ittawa miner	al analyses	(EDS)							
	Oxide weigh	t percent								
garnet	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	total*
MG-gar-6	42.14	0.00	22.22	21.40	0.49	7.25	6.49			99.99
MG gar1-1	41.71	0.00	22.12	21.96	0.53	7.20	6.49			100.01
MG-gar-10	43.50	0.00	21.62	22.30	0.51	4.60	7.46			99.99
MG-gar-11	41.43	0.00	22.01	22.83	0.55	5.65	7.53			100.00
MG-gar-2	40.55	0.75	20.44	24.01	0.52	7.29	6.44			100.00
MG-gar-9	40.63	0.00	21.46	24.05	0.74	5.73	7.39			100.00
MG-gar-3	40.14	0.66	20.50	24.48	0.67	7.18	6.37			100.00
MG-gar-7	40.26	0.00	20.85	24.52	0.75	5.24	8.38			100.00
MG-gar-1	38.79	0.83	19.41	25.76	0.67	8.50	6.04			100.00
gar ave	41.02	0.25	21.18	23.48	0.60	6.52	6.95	,		
MG-amph-1	45.24	2 79	13.21	12.18		12.36	9.56	3 31	1 14	99.79
MG-amph-2	44.93	2.73	13.26	12.23		12.33	9.74	3.26	1.23	99.71
MG-amph-4	42.24	6.05	13.82	12.31		11.07	10.05	2.90	1.32	99.76
MG-amph-3	42.62	5.34	13.87	12.36		11.29	10.14	2.87	1.24	99.73
amph ave	43.76	4.23	13.54	12.27		11.76	9.87	3.09	1.23	
MG-cny-1	55.67		2 30	7 47		14 36	19.02	1 22		99 99
MG-cnx-2	55.48		2 52	8 12		14 11	18.46	1 31		100.00
cpx ave	55.58		2.41	7.77		14.24	18.74	1.27		100100
MG-biot-1	39.63	6.26	15.27	15.16		13.53		0.37	9.55	99.77
MG-biot-2	39.62	6.30	14.98	15.57		13.60		0.33	9.33	99.73
biot ave	39.63	6.28	15.13	15.37		13.57		0.35	9.44	
MG-plag-1	67.76		20.00				1.49	10.13	0.61	99,99
MG-plag-3	68.02		19.87				4.06	8.05	0.00	100.00
plag ave	67.89		19.94				2.78	9.09	0.31	
%error**	±0.05	±0.08	±0.04	±0.04	±0.19	±0.03	±.0.05	±0.12	±0.05	
*remainder o	f amphibole ar	nd biotite co	mpositions	are volatile	5					
**%error x w	t% = error ra	nge								

1

.

_ File: C:\APDW\TMP\SCORELST.TMP

Philips Analytical

PC-APD, Diffraction software

SCORE LIST SHORT NAME:

Analysed DI file :	C:\MILLER\DATA\7112FC.DI
Sample identification:	7112fc
Database used :	C:\APDW\IDENTDB
Restrictions file :	MINERALS.RES

Results:

+	+		++	+	+			+	+
1	ICard Id	Match	Rel mi	T⊗∣	Displ	Names	Qual	IТ	I
÷	Cara ra	score	scorel	101	DIOPI				i
+			5COIC	ا + ـ ـ ـ ـ ـ ـ	++		+	+	+
1	1 09-0457	8.25	0.41	3	-128	Albite, calcian, ordered	I	ļ	Ì
d.	2 09-0467	7.45	0.39	21	-13	Bytownite, low	0		
1	3 09-0466	17.64	0.39	11	-67	Albite, ordered	l S	*	
1	4 10-0360	7.15	0.38	2	-13	Anorthite, sodian, disordered,	0		
1	5 10-0359	7.64	0.36	2	31	Andesine, low	I		
	6 41-1480	22.23	0.35	13	-98	Albite, calcian, ordered	II		
1	7 09-0465	6.39	0.34	2	56	Anorthite, sodian, ordered	0		
1	8 20-1310	7.94	0.33	3	8	Tremolite, syn	I	*	I
1	9 26-0909	4.27	0.33	2	50	Annite-1M, aluminian	I		
	10 18-1221	10.02	0.32	2	-98	Acmite-augite	0		
	11 20-0554	24.21	0.32	4	-131	Albite, ordered	C	l	
	12 41-1370	22.45	0.31	4	-58	Diopside	S	*	
	13 38-0466	22.40	0.31	4	-98	Diopside, aluminian	I	1	
1	14 19-0239	17.46	0.31	3	116	Diopside, syn	I		
3	15 18-1202	15.84	0.30	2	56	Anorthite, sodian, intermediat	I	ł	
	16 41-1483	13.05	0.30	3	-22	Augite, aluminian	I I		
	17 23-0666	8.76	0.30	4	65	Tremolite, sodian, syn	I		1
	18 31-1285	8.76	0.30	4	65	Tremolite, sodian, syn	0		1
5	19 19-1184	37.50	0.30	3	-141	Albite, ordered	I		
	20 17-0318	16.92	0.30	3	116	Diopside	S	1	
3	21 41-1486	20.70	0.30	11	65	Anorthite, ordered	S	;	
Č.	22 20-0528	25.64	0.29	9	-45	Anorthite, sodian, ordered	C	:	
	23 10-0393	12.09	0.29	2	41	Albite, disordered	S	1	
	24 20-0020	23.27	0.28	3	31	Anorthite, ordered	C	;	
1	25 12-0301	25.43	0.28	3	41	Anorthite, ordered	1		
i.	26 11-0654	15.73	0.28	6	83	Diopside	1	1	
	++	+	+	+	+	+	+	·+-	

Sample ident.: 7112fcfq

File: C:\APDW\TMP\SCORELST.TMP

11-jul-2007 10:4-

Philips Analytical

PC-APD, Diffraction software

SCORE LIST SHORT NAME:

Analysed DI file :	C:\MILLER\DATA\7112FCFQ.DI
Sample identification:	7112fcfq
Database used :	C:\APDW\IDENTDB
Restrictions file :	MINERALS.RES

Results:

+		++ Card Id	Match	Rel m	⊦ %I	Displ	Names	⊦+-+ Oual I
			score	score				code
1	1	09-0466	17.59	0.39	6	-23	Albite, ordered	S *
	2	09-0457	7.20	0.36	2	-45	Albite, calcian, ordered	I
	3	20-0554	24.78	0.331	3	-70	Albite, ordered	I CII
	4	10-0360	6.17	0.321	2	-13	Anorthite, sodian, disordered,	
	5	09-0467	6.16	0.32	2	-13	Bytownite, low	0
1	6	10-0359	6.80	0.321	2	-21	Andesine, low	I
	7	09-0456	6.03	0.32	2	-13	Albite, calcian, disordered, s	011
	8	09-0465	5.89	0.31	2	12	Anorthite, sodian, ordered	0
	9	41-1480	19.75	0.31	6	-67	Albite, calcian, ordered	I
8	10	18-1202	15.92	0.31	2	83	Anorthite, sodian, intermediat	I
	11	20-0572	23.53	0.31	2	-83	Albite, disordered	C
	12	19-1184	38.38	0.301	2	I -70	Albite, ordered	I
	13	25-0814	7.45	0.30	2	83	Eudialyte, yttrian	
1	14	20-0548	22.60	0.30	3	116	Albite, calcian, ordered	C
	15	12-0301	26.23	0.29	3	37	Anorthite, ordered	I
	16	20-0020	23.65	0.29	3	-23	Anorthite, ordered	C
)	17	20-0528	25.20	0.28	2	62	Anorthite, sodian, ordered	C
	18	10-0393	11.57	0.28	9	-23	Albite, disordered	I SI I
	19	24-0894	9.05	0.26	3	30	Stilbite	I
19	20	41-1486	17.59	0.25	2	-23	Anorthite, ordered	S
	21	33-0257	8.00	0.24	1	116	Crandallite-H	I
10	22	14-0285	6.55	0.24	2	-83	Aenigmatite	0
	23	35-0590	12.53	0.24	2	-91	Monticellite, syn	S
	24	43-0677	23.09	0.24	4	1 12	Neptunite	I
	25	6 33-0659	6.71	0.24	1	12	Ferrocolumbite	S
	26	5 44-1428	9.30	0.24	1	-70	Nanpingite-2M1	S
	27	39-0364	4.72	0.24	2	98	Gysinite-(Nd)	01
	28	8 02-0538	7.07	0.24	1	-78	Jordanite	0
	29	000-0143	5.66	0.24	1	-83	Florencite-(Ce)	0
	30	0 25-0119	6.79	0.23	1	-50	lCrandallite	0
	+	-+		+		+	+	•++++

______ 1

11-jul-2007 10:44

Philips Analytical PC-APD, Diffraction softward S C O R E L I S T S H O R T N A M E : Analysed DI file : C:\MILLER\DATA\7112FF.DI Sample identification: 7112ff Database used : C:\APDW\IDENTDB Restrictions file : MINERALS.RES Results:	File: C:\APDW\TMP\SCORELST.TMP 11-jul-2007):45		
S C O R E LIST SHORT NAME: Analysed DI file : C:\MILLER\DATA\7112FF.DI Sample identification: 7112ff Database used : C:\AFDW\IDENTDB Restrictions file : MINERALS.RES Results: 	P	Philips Analytical PC-APD, Diffraction se										
Analysed DI file : C:\MILLER\DATA\7112FF.DI Sample identification: 7112ff Database used : C:\APDW\IDENTDB Restrictions file : MINERALS.RES Results: 	5	сс) R E L	IST	S Н О	RТ	ΝΑΜ	E :				
Sample identification: 7112ff Database used : C:\APDW\IDENTDB Restrictions file : MINERALS.RES Results:		nal	used DT f	ile	• C•\	MILLE	יפ\ המיד	N7112EF DI				
Database used : C:\APDW\IDENTDB Restrictions file : MINERALS.RES Results: 	Sample identification: 7112ff											
Results: / Card Id Match Rel m I% Displ Names Qual II / I / Scorel score / / code / I / loop0457 7.83 0.39 1 -67/Ablte, calcian, ordered II / 2 / 209-0457 7.83 0.39 1 -45/Bytownite, low OI / alop-0467 7.09 0.37 1 -45/Bytownite, low OI OI / 5 / 09-0465 6.63 0.35 1 -45/Bytownite, sodian, ordered OI / 6 / 39-1425 9.85 0.35 6 -35/Cristobalite, syn SI / 109-0465 6.68 0.35 1 -103/Ablte, calcian, ordered I * / 9 / 29-1489 1.71 0.34 3 -45/Halloysite-10A SI / 1011-0695 9.94 0.34 6 50/Cristobalite, syn II II / 112/20-058 19.7	I F	atak	base used	filo	: C:\ • MTN	APDW	IDENTI S BES	DB				
Results: Card Id MatchIRel m I% Displ Names [Qual I] i score score 1 10-0359 8.34 0.40 1 -58 Andesine, low 2 09-0457 7.83 0.39 1 -67 Albite, calcian, ordered 3 10-0360 7.09 0.37 1 -45 Bytownite, low 6 39-1425 9.85 0.35 6 -35 Cristobalite, syn 7 09-0456 6.68 0.35 1 -103 Albite, calcian, disordered, s 9 29-1489 1.71 0.34 3 -45 Halloysite-10A 10 11-0695 9.94 0.34 6 50 Cristobalite, syn 10 24-0058 19.70 0.34 2 -45 Ralloysite-10A 11 24-0058 9.94 0.34 6 50 Cristobalite, syn 10 11-0695 9.94 0.34 1 -17 Jadeite	Ľ		. 10010115	L L L C	• 1111		.1120					
Card Id Match Rel m I% Displ Names [Qual I] score score ccode score score ccode ccode ccode code ccode l code ccode l code ccode l l cloe cloe <	F	Resul	lts:									
Card Id Match Rel m I% Displ Names Qual II score score 1 10-0359 8.34 0.40 1 -58 Andesine, low I 2 09-0457 7.83 0.39 1 -67 Albite, calcian, ordered I 3 10-0360 7.09 0.37 1 -45 Bytomite, low 0 4 09-0467 7.08 0.37 1 -45 Bytomite, low 0 5109-0465 6.93 0.36 1 -45 Bytomite, low 0 6 39-1425 9.85 0.35 6 -35 Cristobalite, syn 7 09-0456 6.668 0.35 1 -103 Albite, calcian, disordered, s 10 11-0695 9.94 0.34 6 50 Cristobalite, syn 12 39-0313 11.5 0.34 2 -45 Anilite 14 14-0247 9.05 0.34 1 -17 Jadeite	-		- +		+					+-+		
			Card Id	Match	Rel m	IS	Displ	Names	Qual	II		
1110-0359 8.34 0.40 1 -58 [Andesine, low I 2 09-0457 7.83 0.39 1 -67 [Albite, calcian, ordered I 3 10-0360 7.09 0.37 1 -45 [Anorthite, sodian, disordered, 0 4 09-0467 7.08 0.37 1 -45 [Anorthite, sodian, ordered 0 6[39-1425] 9.85 0.35 6 -35 [Cristobalite, syn S] 7 09-0456 6.68 0.35 1 -103 [Albite, calcian, ordered I 9 29-1489 1.71 0.34 3 -45 [Halloysite-10A S] 10111-0695 9.94 0.34 6 50 [Cristobalite, syn I I 112[39-0313] 11.15 0.34 2 -45 [Anilite I I 1302-0723 7.75 0.34 1 -17 Jadeite I I 14 40-0247 9.05 0.33 1 -55 [Capgaronnite I I 14]14-02477 9.05 0.33 1 -17 [Celsian I I 14]14-02477 9.05 0.33				score	score				code			
2 09-0457 7.83 0.39 1 -67 Albite, calcian, ordered 1 3 110-0360 7.09 0.37 1 -45 Anorthite, sodian, disordered, 0 4 09-0467 7.08 0.37 1 -45 Bytownite, low 0 5 09-0465 6.93 0.36 1 -45 Anorthite, sodian, ordered 0 6 39-1425 9.85 0.35 6 -35 Cristobalite, syn S 7 109-0456 6.68 0.35 1 -103 Albite, calcian, disordered, s 0 8 41-1480 22.29 0.35 9 -67 Albite, calcian, ordered 1 1* 9 29-1489 1.71 0.34 3 -45 Halloysite-10A S 1 10 11-0695 9.94 0.34 6 50 Cristobalite, syn 1 1 12 39-0313 11.15 0.34 1 -17 Jadeite 0 1 14 14-0247 9.05			10-0359	8.34	0.40	 1	-58	Andesine, low	⊢———— 	++		
3 10-0360 7.09 0.37 1 -45 Anorthite, sodian, disordered, 0 4 09-0467 7.08 0.37 1 -45 Anorthite, low 0 5 09-0465 6.93 0.36 1 -45 Anorthite, sodian, ordered 0 6 39-1425 9.85 0.35 6 -35 Cristobalite, syn S 7 09-0456 6.68 0.35 1 -103 Albite, calcian, disordered, s 0 8 41-1480 22.29 0.35 9 -67 Albite, calcian, ordered 1 * 9 29-1489 1.71 0.34 3 -45 Halloysite-10A S 10 11-0695 9.94 0.34 6 50 Cristobalite, syn I 12 39-0313 11.15 0.34 2 -45 Anilite 0 14 14-0247 9.05 0.34 1 -13 Paravauxite 0 16 18-0153 8.33 0.33 1 -55 Capgaronnite 0 16 18-0153 8.33 0.33 1 -41 Albite, ordered S 20 18-202 16.99 <td< td=""><td></td><td>2</td><td>09-0457</td><td>7.83</td><td>0.39</td><td> 1</td><td>-67</td><td>Albite, calcian, ordered</td><td>I</td><td>İİ</td></td<>		2	09-0457	7.83	0.39	1	-67	Albite, calcian, ordered	I	İİ		
4 09-0467 7.08 0.37 1 -45 Bytownite, low 0 5 09-0465 6.93 0.36 1 -45 Anorthite, sodian, ordered 0 6 39-1425 9.85 0.35 6 -35 Cristobalite, syn S 7 09-0456 6.68 0.35 1 -103 Albite, calcian, disordered, s 0 8 41-1480 22.29 0.35 9 -67 Albite, calcian, ordered I * 9 29-1489 1.71 0.34 3 -45 Halloysite-10A S 10 11-6695 9.94 0.34 6 50 Cristobalite, syn I 11 24-0058 19.70 0.34 2 -45 Anilite C 11 24-0058 19.70 0.34 1 -17 Jadeite O 14 14-0247 9.05 0.34 1 -17 Jadeite O 15 25-1326 7.37 0.33 1 -17 Celsian I 17 30-0100 5.96 0.33 3 -16 Arsenolamprite C 18 29-0926 2.97 0.33 1 -23 Anorthite, sodi		3	10-0360	7.09	0.37	1	-45	Anorthite, sodian, disordered,	0			
5 5 09-0465 6.93 0.36 1 -45 Anorthite, sodian, ordered 0 6 39-1425 9.85 0.35 6 -35 Cristobalite, syn S 1 7 09-0456 6.68 0.35 1 -103 Albite, calcian, disordered, s 0 1 8 41-1480 22.29 0.35 9 -67 Albite, calcian, ordered 1 ** 9 29-1489 1.71 0.34 3 -45 Halloysite-10A S 1 10 11-0695 9.94 0.34 6 50 Cristobalite, syn I I 12 29-0313 11.15 0.34 2 -45 Anilite 0 I 14 14-0247 9.05 0.34 1 -17 Jadeite 0 I 15 25-1326 7.37 0.33 1 -55 Capgaronnite 0 I 16 18-0153 8.33 0.33 1 -16 Arsenolamprite 0 I		4	09-0467	7.08	0.37	1	-45	Bytownite, low	0			
6 39-1425 9.85 0.35 6 -35 Cristobalite, syn S 7 09-0456 6.68 0.35 9 -103 Albite, calcian, disordered, s O 8 41-1480 22.29 0.35 9 -67 Albite, calcian, ordered I * 9 29-1489 1.71 0.34 3 -45 Halloysite-10A S 1 10 11-0695 9.94 0.34 6 50 Cristobalite, syn I 1 11 24-0058 19.70 0.34 2 -45 Anilite C 1 12 39-0313 11.15 0.34 3 8 Sabugalite I 1 13 02-0723 7.75 0.34 1 -17 Jadeite O 1 44 14-0247 9.05 0.34 1 -13 Paravauxite O 1 525-1326 7.37 0.33 1 -55 Capgaronnite O 1 61 18-0153 8.33 0.33 1 -16 Arsenolamprite O 1 71 30-0100 5.96 0.33 1 -41 Albite, ordered S 20 18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat I 21 09-0456 14.75 0.32 1 -78 Nyerereite O 22 45-1470 10.02 0.32 1 -78 Nyerereite O 23 33-1221 13.72 0.32 1 -58 Nyerereite O O 24 42-1403 7.89 0.32 1 -71 Ferrarisite		5	09-0465	6.93	0.36	1	-45	Anorthite, sodian, ordered	0			
1 7/09-0436 6.087 0.351 1 -103/ABD16, Calcian, disordered, S 0/ 8 41-1480 22.29 0.35 9 -67 Albite, calcian, ordered I * 9 29-1489 1.71 0.34 3 -45 Halloysite-10A S I 10 11-0695 9.94 0.34 6 50 Cristobalite, syn I I 11 12 39-0313 11.15 0.34 3 8 Sabugalite I I 13 02-0723 7.75 0.34 1 -17 Jadeite O I 14 14-0247 9.05 0.34 1 -13 Paravauxite O I 15 15 25-1326 7.37 0.33 1 -17 Celsian I I 16 18-0153 8.33 0.33 1 -17 Celsian I I 17 30-0100 5.96 0.33 3 -16 Arsenolamprite C I 16			39 - 1425	9.85	0.35	6	-35	Cristobalite, syn				
1 9 29-1480 1.71 0.34 3 -05/Halloysite-10A S 1 10 11-0695 9.94 0.34 6 50 Cristobalite, syn I 1 11 24-0058 19.70 0.34 2 -45 Anllite C 1 12 39-0313 11.15 0.34 3 8 Sabugalite I 1 13 02-0723 7.75 0.34 1 -17 Jadeite O 14 14-0247 9.05 0.34 1 -13 Paravauxite O 15 25-1326 7.37 0.33 1 -55 Capgaronnite O 16 18-0153 8.33 0.33 1 -17 Celsian I 17 30-0100 5.96 0.33 3 -16 Arsenolamprite C 18 29-0926 2.97 0.33 1 -41 Albite, ordered S 19 09-0466 14.75 0.33 1 -23 Anorthite, sodian, intermediat I 21 09-0454 12.74 0.32 1 -70 Wiserite I I 23 33-1221 13.72		/ Q	109-0456;	22 20	0.35		-103	Albite, calcian, disordered, s				
1011-0695 9.94 0.34 6 50 Cristobalite, syn I 11124-0058 19.70 0.34 2 -45 Anilite C 1239-0313 11.15 0.34 3 8 Sabugalite I 1302-0723 7.75 0.34 1 -17 Jadeite 0 1414-0247 9.05 0.34 1 -13 Paravauxite 0 15125-1326 7.37 0.33 1 -55 Capgaronnite 0 1618-0153 8.33 0.33 1 -17 Celsian I 17/30-0100 5.96 0.33 3 -16 Arsenolamprite 0 18 29-0926 2.97 0.33 1 144 Carrboydite 0 19 09-0466 14.75 0.33 1 -23 Anorthite, sodian, intermediat I 22 18-1202 16.99 0.33 1 -55 Afwillite 0 0 22 45-1470 10.02 0.32 1 70 Wiserite 1 1 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 0		0 9	29-1489	1 71	1 0 34	<i>2</i> 3	-07 -45	Hallovsite-10A				
11 24-0058 19.70 0.34 2 -45 Anilite C 12 39-0313 11.15 0.34 3 8 Sabugalite I 13 02-0723 7.75 0.34 1 -17 Jadeite 0 14 14-0247 9.05 0.34 1 -13 Paravauxite 0 15 25-1326 7.37 0.33 1 -55 Capgaronnite 0 16 18-0153 8.33 0.33 1 -17 Celsian I 17 30-0100 5.96 0.33 3 -16 Arsenolamprite 0 18 29-0926 2.97 0.33 1 44 Carrboydite 0 19 09-0466 14.75 0.33 1 -23 Anorthite, sodian, intermediat I 20 18-1202 16.99 0.33 1 -55 Afwillite 0 22 45-1470 10.02 0.32 1 70 Wiserite I 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 24 42-1403 7.89 0.32 1 -17 Ferrarisite 0		10	111-0695	9.94	0.34	6	50	Cristobalite. svn		1 1		
12 39-0313 11.15 0.34 3 8 Sabugalite I 13 02-0723 7.75 0.34 1 -17 Jadeite 0 14 14-0247 9.05 0.34 1 -13 Paravauxite 0 15 25-1326 7.37 0.33 1 -55 Capgaronnite 0 16 18-0153 8.33 0.33 1 -17 Celsian 1 17 30-0100 5.96 0.33 3 -16 Arsenolamprite 0 18 29-0926 2.97 0.33 1 44 Carrboydite 0 19 09-0466 14.75 0.33 1 -23 Anorthite, sodian, intermediat I 20 18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat I 21 09-0454 12.74 0.33 1 -55 Afwillite 0 0 22 45-1470 10.02 0.32 1 70 Wiserite I 1 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 0 25 41-1387 8.83 0.32 1			24-0058	19.70	0.34	1 2	-45	Anilite	i c			
13 02-0723 7.75 0.34 1 -17 Jadeite 0 14 14-0247 9.05 0.34 1 -13 Paravauxite 0 15 25-1326 7.37 0.33 1 -55 Capgaronnite 0 16 18-0153 8.33 0.33 1 -17 Celsian 1 17 30-0100 5.96 0.33 3 -16 Arsenolamprite 0 18 29-0926 2.97 0.33 1 144 Carrboydite 0 19 09-0466 14.75 0.33 4 -41 Albite, ordered S 20 18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat I 21 09-0454 12.74 0.32 1 -55 Afwillite 0 22 45-1470 10.02 0.32 1 -58 Nyerereite 0 24 42-1403 7.89 0.32 1 -58 Nyerereite 0 25 41-1387 8.83 0.32 2 45 Celestine, barian 1 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0		12	39-0313	11.15	0.34	3	8	Sabugalite	i I	ii		
14 14-0247 9.05 0.34 1 -13 Paravauxite 0 15 25-1326 7.37 0.33 1 -55 Capgaronnite 0 16 18-0153 8.33 0.33 1 -17 Celsian 1 17 30-0100 5.96 0.33 3 -16 Arsenolamprite 0 18 29-0926 2.97 0.33 1 144 Carrboydite 0 19 09-0466 14.75 0.33 1 -41 Albite, ordered S 20 18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat I 21 09-0454 12.74 0.33 1 -55 Afwillite 0 22 45-1470 10.02 0.32 1 70 Wiserite I 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 24 42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 25 41-1387 8.83 0.32 1 -17 Ferrarisite 0 26 29-0295 11.98 0.32 1 -17 Fe		13	02-0723	7.75	0.34	1	-17	Jadeite	i o	İİ		
15 25-1326 7.37 0.33 1 -55 Capgaronnite 0 16 18-0153 8.33 0.33 1 -17 Celsian 1 17 30-0100 5.96 0.33 3 -16 Arsenolamprite C 18 29-0926 2.97 0.33 1 144 Carrboydite 0 19 09-0466 14.75 0.33 4 -41 Albite, ordered S 20 18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat I 21 09-0454 12.74 0.33 1 -55 Afwillite 0 22 45-1470 10.02 0.32 1 70 Wiserite I 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 24 42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 25 41-1387 8.83 0.32 1 -17 Ferrarisite 0 27 24-0542 8.16 0.31 1 93 Schubnelite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 <	Ξ.	14	14-0247	9.05	0.34	1	-13	Paravauxite	0			
16 18-0153 8.33 0.33 1 -17 Celsian I 17 30-0100 5.96 0.33 3 -16 Arsenolamprite C 18 29-0926 2.97 0.33 1 144 Carrboydite 0 19 09-0466 14.75 0.33 4 -41 Albite, ordered S 20 18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat I 21 09-0454 12.74 0.33 1 -55 Afwillite 0 122 45-1470 10.02 0.32 1 70 Wiserite I 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 24 42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 25 41-1387 8.83 0.32 1 -17 Ferrarisite 0 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 0 29 10-0390 12.46 0.31 1 17 Fairfieldi	1	15	25-1326	7.37	0.33	1	-55	Capgaronnite	0			
17/30-0100 5.96 0.33 3 -16 Arsenolamprite C 18/29-0926 2.97 0.33 1 144 Carrboydite 0 19/09-0466 14.75 0.33 4 -41 Albite, ordered S 20/18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat I 21/09-0454 12.74 0.33 1 -55 Afwillite 0 22/45-1470 10.02 0.32 1 70 Wiserite I 23/33-1221 13.72 0.32 1 -58 Nyerereite 0 24/42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 25/41-1387 8.83 0.32 2 45 Celestine, barian I 1 26/29-0295 11.98 0.32 1 -17 Ferrarisite 0 0 27/24-0542 8.16 0.31 1 93 Schubnelite 0 0 29/10-0390 12.46 0.31 1 17 Fairf		16	18-0153	8.33	0.33	1	-17	Celsian	II	1 1		
18/29-0926 2.97 0.33 1 144/Carrboydite 0 19/09-0466 14.75 0.33 4 -41/Albite, ordered 5 20/18-1202 16.99 0.33 1 -23/Anorthite, sodian, intermediat 1 21/09-0454 12.74 0.33 1 -55/Afwillite 0 122/45-1470 10.02 0.32 1 70/Wiserite 1 23/33-1221 13.72 0.32 1 -58/Nyerereite 0 24/42-1403 7.89 0.32 1 93/Unnamed mineral, syn [NR] 0 25/41-1387 8.83 0.32 2 45/Celestine, barian 1 26/29-0295 11.98 0.32 1 -17/Ferrarisite 0 27/24-0542 8.16 0.31 1 93/Schubnelite 0 29/10-0390 12.46 0.31 1 17/Fairfieldite 0 30/35-0478 11.21 0.31 3 83/Sterlinghillite 0	- 6	17	30-0100	5.96	0.33	3	-16	Arsenolamprite				
19 09-0466 14.75 0.33 4 -41 Albreice, ordered 5 20 18-1202 16.99 0.33 1 -23 Anorthite, sodian, intermediat 1 21 09-0454 12.74 0.33 1 -55 Afwillite 0 122 45-1470 10.02 0.32 1 70 Wiserite 1 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 24 42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 25 41-1387 8.83 0.32 2 45 Celestine, barian 1 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 27 24-0542 8.16 0.31 1 93 Schubnelite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 29 10-0390 12.46 0.31 1 17 Fairfieldite 0	1	1 10	29-0926	1 2.97	0.33			[Carrboydite				
1 20110 1202 10.33 1 -231Anorthitle, souran, intermediat 1 1 21 09-0454 12.74 0.33 1 -55 Afwillite 0 1 22 45-1470 10.02 0.32 1 70 Wiserite 1 1 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 1 24 42-1403 7.89 0.32 1 -58 Nyerereite 0 1 25 41-1387 8.83 0.32 1 -58 Nyerereite 0 1 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 1 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 1 27 24-0542 8.16 0.31 1 93 Schubnelite 0 1 28 15-0284 10.91 0.31 2 -17 Barysilite 0 1 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 1 30 35-0478 11.21 0.31 3 83 Sterlinghillite		1 20	118-1202	14.75 16 99	1 0 33	<u>4</u> 1	<u>-41</u> _23	Anorthito sodian intermediat				
1 22 45-1470 10.02 0.32 1 70 Wiserite 1 1 1 23 33-1221 13.72 0.32 1 -58 Nyerereite 0 1 24 42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 1 25 41-1387 8.83 0.32 2 45 Celestine, barian 1 1 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 1 27 24-0542 8.16 0.31 1 93 Schubnelite 0 1 28 15-0284 10.91 0.31 2 -17 Barysilite 0 1 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 1 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0	2	1 21	109-0454	10.99	0.33	 1	-55	Afwillite				
23 33-1221 13.72 0.32 1 -58 Nyerereite 0 24 42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 25 41-1387 8.83 0.32 2 45 Celestine, barian 1 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 27 24-0542 8.16 0.31 1 93 Schubnelite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0		1 22	145-1470	10.02	0.32		1 70	Wiserite				
24 42-1403 7.89 0.32 1 93 Unnamed mineral, syn [NR] 0 25 41-1387 8.83 0.32 2 45 Celestine, barian 1 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 27 24-0542 8.16 0.31 1 93 Schubnelite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0		23	33-1221	13.72	0.32	1 1	-58	Nverereite				
25 41-1387 8.83 0.32 2 45 Celestine, barian I 26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 27 24-0542 8.16 0.31 1 93 Schubnelite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0		24	42-1403	7.89	0.32	i 1	93	[Unnamed mineral, syn [NR]	i c			
26 29-0295 11.98 0.32 1 -17 Ferrarisite 0 27 24-0542 8.16 0.31 1 93 Schubnelite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0		25	41-1387	8.83	0.32	2	45	Celestine, barian	I			
27 24-0542 8.16 0.31 1 93 Schubnelite 0 28 15-0284 10.91 0.31 2 -17 Barysilite 0 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0		26	29-0295	11.98	0.32	1	-17	Ferrarisite	C)		
28 15-0284 10.91 0.31 2 -17 Barysilite 0 29 10-0390 12.46 0.31 1 17 Fairfieldite 0 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0		27	24-0542	8.16	0.31	1	93	Schubnelite	I C			
29 10-0390 12.46 0.31 1 1/ Fairfieldite 0 30 35-0478 11.21 0.31 3 83 Sterlinghillite 0		28	115-0284	10.91		2	-17	Barysilite				
- 50 22-04/0 11.21 0.31 5 05 5ter11ngn1111te 0		29	125-0479	12.46	0.31	1 J		FalrIleLOITe		가 두		
	_	+	+	∣ ⊥⊥•∠⊥ +~	+	.j .J		o cer 11 ngn1 11 1 Ce) I	ハート		

File: C:\APDW\TMP\SCORELST.TMP

11-jul-2007 10:52

Philips Analytical

SCORE LIST SHORT NAME:

Analysed DI file :	C:\MILLER\DATA\7112FM.DI
Sample identification:	7112fm
Database used :	C:\APDW\IDENTDB
Restrictions file :	MINERALS.RES

Results:

+		h		+	+			+	+	Ł
		Card Id 	Match score	Rel m score	Io	Displ	Names	Qual code	I 	
I	1	09-0457	8.43	0.42	3	-121	Albite, calcian, ordered	I		
1	2	10-0359	7.50	0.36	2	-98	Andesine, low	I		
1	3	41-1480	22.46	0.35	16	-128	Albite, calcian, ordered	I	*	ļ
1	4	09-0466	15.04	0.33	8	~55	Albite, ordered	l S		
1	5	20-0554	23.52	0.31	4	-121	Albite, ordered	C		
	6	18-1202	15.87	0.31	2	-53	Anorthite, sodian, intermediat	I		
1	7	19-1184	37.12	0.29	4	-55	Albite, ordered	I		l
1	8	20-0020	23.44	0.29	3	25	Anorthite, ordered	C		ł
	9	20-0528	22.27	0.25	11	-45	Anorthite, sodian, ordered	C		
	10	41-1486	17.35	0.25	13	40	Anorthite, ordered	S		
	11	10-0490	4.43	0.21	1	40	Muscovite-2M2, barian	0		
	12	34-0175	8.84	0.21	1	-46	Muscovite-2M2	I C		
	13	41-1366	15.16	0.15	5	16	Actinolite	I	*	l
	14	33-1215	11.56	0.15	1	83	Borax, syn	S		
	15	22-0339	5.40	0.15	16	-17	Koninckite	I		I
1	16	45-1332	4.90	0.14	2	48	Euchlorine	1 0	1	
	17	14-0369	1.62	0.13	1	144	Murmanite	0)	ļ
- 1	18	14-0222	4.95	0.13	3	93	Picropharmacolite	0	1	
	19	44-0681	5.64	0.12	19	11	[Unnamed mineral [NR]	0)	
	20	12-0523	2.45	0.11	1	40	Volborthite	0		
	21	35-0574	1.02	0.09	3	-88	Niahite	I	.	
1	22	13-0526	2.46	0.08	3	16	Polyhalite			
	23	35-0608	1.92	0.08	3	-98	Wallkilldellite			
	24	35-0641	3.32	0.08	1	-88	Janhaugite	1		
	25	25-0322	0.39	0.08	4	-30	[Brass, syn [NR]			
	26	39-1380	2.49	0.07	2	83	Faujasite		-	
÷.,	27	103-0178	0.80		1	-98	Beideilite)	
6	28	129-1497	0.25	ol 0.03	1 9	93	Nontronite-15A	1 2	5	
C)	29	126-0527	0.13	s 0.01	5	28	Briartite, syn		- 	
	30	140-1251	-0.03	s -0.01	1 100	-17	Mgriite, syn	1	-	
. 2	+	-+	+	+	+	+	+==	-+	-+-	~ ·

and the second second second second second second second second second second second second second second second

Sample ident.: 7112scb

11-jul-2007_11:04

File: C:\APDW\TMP\SCORELST.TMP

11-jul-2007 11:04

Philips Analytical

PC-APD, Diffraction software

SCORE LIST SHORT NAME:

Analysed DI file :	C:\MILLER\DATA\7112SCB.DI
Sample identification:	7112scb
Database used :	C:\APDW\IDENTDB
Restrictions file :	MINERALS.RES

Results:

4	+	+-	+	+-			+-	+-+
	Card Id	Match F	Rel m	I%∣:	Displ Na	mes	I Ç	Qual I
		score	score	ļ				code
14	+++	+-	+	+	+		+-	+-+
2	1 17-0318	15.05	0.26	13	131 Di	opside 🥂	1	S *
	2 19-0239	15.05	0.26	13	131 Di	opside, syn		I
	3 11-0654	13.69	0.24	33	73 Di	opside		I
	4 33-1016	4.28	0.20	91	93 An	nite-1M, manganoan		I
	5 42-1413	7.22	0.20	28	73 An	nite-1M		I
E.	6 42-0604	9.90	0.19	19	-78 Zi	nnwaldite-1M		0
	7 42-1437	4.48	0.19	28	16 Bi	otite-1M		I *
	8 42-1414	5.73	0.18	28	-108 Bi	otite-1M		0
	9 10-0492	4.61	0.18	9	-58 Ph	logopite-3T	1	I
	10 10-0495	4.37	0.17	9	-78 Ph	logopite-1M	1	ΙII
	11 10-0493	4.79	0.17	9	103 Ph	logopite-2M1	l.	I
	+++	+	+	+	+		+.	+-+

File: C:\APDW\TMP\SCORELST.TMP

11-jul-2007 11:01

Philips Analytical

PC-APD, Diffraction software

SCORE LIST SHORT NAME:

112SCA DT
1120011.01
/

Results:

+		~ + .			+			+	⊢	+
		Card Id	Match score	Rel m score	1% 	Displ	Names	Qual	I 	
	11	33-06641	5 1 G	+	11	+	Homatito sup	רז ו כ'	,	T I
١,	211	09-04271	1 23	0.24	28	671	Almandino		 *	1
	31	24 - 0201	6 71		16	581	Augite		1 	÷
	41	19-0239	18 12		11	-1281	Dionside syn		 *	
1	51	03-08601	9 31		8	1 781	Diopside syn		1	1
	61	09-0466	13 93		40	-301	Albite ordered		 *	1
		17-03181	17 58		11	1 -128	Dionside		ł	1
1	81	09-04561	5 84		8		Albite calcian disordered s		1	
267	91	24-02031	9 81	0.31 0.31	11	-981	Augite		1	
	1 101	11 - 06541	16 59		28	1 -128	Dionside		1	1
2		09-0465	5 63		20	1 651	Diopside		I I	1
		09-0467	5 60	0.201	8	-22	Bytownite low		ì	
		18-1202	15 23	1 0 291	q	116	Anorthite sodian intermediat	I T	1	ï
٢.		41-1480	18 60	1 0 291	28	<u>-</u> 78	Albite calcian ordered		ł	
	1 151	20-0554	21 41	0.291	11	-88 -88	Albite ordered		i	1
Ľ.	1 161	20-05481	21 53	0.23	13	1 111	Albite calcian ordered		Ì	Ì
63		10-0360	5 16		8	1 44	Anorthite, sodian, disordered.		1	
51	1 181	41-1486	18 91	0.27	9	1 58	Anorthite, ordered			
	1 191	25-0160	12 36		g	1 50	Hedenbergite magnesian		1 4	
1	1 201	19-1184	33 68	0.27	8	-50	Albite, ordered	I T	ì	
	1 211	12 - 0301	23 69	0.26	11	58	Anorthite, ordered		i	
	1 221	20-0572	20.00	0.26	8	-28	Albite, disordered		ι.	
	1 231	09-04571	5.19	0.26	8	-98	Albite, calcian, ordered	I T	Ì	
	1 241	33-06591	7.22	0.26	9	-17	Ferrocolumbite	1 5	; [
	1 251	25-03061	11.67	0.25	16	1 83	Clinopyroxene, titanian, alumi		:i	
2	1 26	20-0020	20.78	0.25	11	45	Anorthite, ordered			
	1 271	10-0359	5.30	0.25	8	65	Andesine, low	I T		
_	1 28	34-01851	8.76	0.25	, ° 9	i -116	Aegirine, svn		5	
	2.91	33-08991	8.50	0.25	8	-16	[Manganocolumbite, svn		5	
	301	20-0528	21.91	0.25	8	40	Anorthite, sodian, ordered	Í		
	++			· · · · · · · · · · · · · · · · · · ·	+ — — — —	+	+=====================================	-+	- -	

Sample_ident.: 7112scg

11-jul-2007 11;11

File: C:\APDW\TMP\SCORELST.TMP

11-jul-2007 11:11

Philips Analytical

PC-APD, Diffraction software

SCORE LIST SHORT NAME:

Analysed DI file :	C:\MILLER\DATA\7112SCG.DI
Sample identification:	7112scg
Database used :	C:\APDW\IDENTDB
Restrictions file :	MINERALS.RES

Results:

+			+				
I.	Card Id	Match	Rel m	I 8 1	Displ Names	 Qu	al I
		score	score			CO	de
+-	++	+	+	+	t	+	+-+
1	1 02-0992	7.23	0.52	40	116 Spessartine	ļ	0
1	2 33-0658	7.28	0.36	8	-144 Almandine, manganoan		S *
11	3 17-0318	10.99	0.19	4	-224 Diopside		S
	4 19-0239	10.99	0.19	4	-224 Diopside, syn	I	I *
1	5 42-1437	3.03	0.13	6	-67 Biotite-1M		I *
1	6 41-1480	4.71	0.07	16	-213 Albite, calcian, ordered		I
+-	++	+	+	+	+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		+-+

Sample ident.: 7112sc

11-jul-2007 10:59

File: C:\APDW\TMP\SCORELST.TMP

11-jul-2007 10:59

Philips Analytical

PC-APD, Diffraction software

SCORE LIST SHORT NAME:

Analysed DI file :	C:\MILLER\DATA\7112SC.DI
Sample identification:	7112sc
Database used :	C:\APDW\IDENTDB
Restrictions file :	MINERALS.RES

Results:

+				+	+		+	-+
	Card Id	Match score	Rel m score	%]	Displ	Names	Qual code	I
+	++-	+	+	+	· +		++	-+
1	1 02-0992	6.421	0.461	9	116	Spessartine	0	1
İ	2 33-0658	8.54	0.431	9	-131	Almandine, manganoan	S	*
Εİ	3 13-0499	6.89	0.381	3	171	Magnesioriebeckite, syn	I	İ
li	4 21-0149	8.41	0.371	4	1231	Magnesiohornblende, ferroan	I	Ì
	5 23-1406	7.77	0.34	6	-451	Pargasite	I	I
	6 23-0663	6.03	0.33	3	301	Eckermannite, syn	I	
1	7 31-1281	6.03	0.33	3	301	Eckermannite, calcian, syn	I	
1	8 23-1405	7.69	0.33	3	-83	Edenite	I	
1	9 23-0667	7.49	0.33	5	62	Richterite, calcian, syn	S	
	10 20-0469	12.38	0.32	3	-13	Hastingsite, magnesian	0	
	11 13-0294	12.31	0.32	3	861	Cordierite, syn	I	ļ
	12 39-0373	10.67	0.31	4	65	Potassium pargasite	I	
	13 10-0428	12.18	0.31	3	-45	Richterite, fluor, syn	S	
	14 45-1371!	23.33	0.31	3	-70	Magnesiohornblende, ferroan	I	*
	15 23-0666	8.98	0.31	4	-13	Tremolite, sodian, syn	I	ļ
	16 31-1285	8.98	0.31	4	-13	Tremolite, sodian, syn	0	
	17 41-1366	29.74	0.30	4	-50	Actinolite	I	
	18 41-1430	13.31	0.30	3	-13	Pargasite, syn	I	1
5/2	19 19-0239	16.31	0.29	6	46	Diopside, syn	I	*
	20 20-0656	12.76	0.28	23	-88	Magnesioriebeckite	0	l –
	21 19-1061	9.67	0.26	13	-83	Riebeckite	S	l I
12	22 18-1222	7.09	0.24	3	-50	Aegirine	I	
	23 34-0185	8.12	0.23	4	50	Aegirine, syn	S	
	24 10-0492	5.78	0.23	5	-78	Phlogopite-3T	I	*
Ľ.	25 42-0604	11.63	0.22	5	-22	Zinnwaldite-1M	0	
	26 41-1480	11.73	0.18	16	-50	Albite, calcian, ordered	I	*
	27 07-0032	4.56	0.12	3	-58	Muscovite 2M1, syn	0	
_	++		++		+	+	-+	+ - 1

File: C:\APDW\TMP\SCORELST.TMP 11-jul-2007 11:15 ********************* _____ PC-APD, Diffraction software Philips Analytical SCORE LIST SHORT NAME: Analysed DI file : C:\MILLER\DATA\7112SCP.DI Sample identification: 7112scp Database used : C:\APDW\IDENTDB Restrictions file : MINERALS.RES Results:

		Card Id	Match	Rel m	_ I %	Displ	Names	Qual	I	ļ
			score	score				code		ļ
+		-++		++	+	110	Magnagicheunhlande ferreen	++		r L
			0.02		5	100	Magnesionornbiende, lerroan			1
			0.24		10	-108	Pargasile Magnagianishagkita gum		1	1
2		1122 14051	7 90		22	-ZI 124	Magnesioriebeckile, syn		1	1
			1.00	0.34	23	-124			i I	1
_		5 02-0992	4.09	0.221	2	-141	Spessaltine		1	I I
		7127 14621	12.75		12				1	1
	1	7 37-1403 9 32 0666	0.21		10		Suffere, Syn		1	1
	'	0121 12051	9.51		4	-50	Tremolite, Sodian, Syn		1	1
	 1	9 31-1203	10 07		4	52	Detagaium pargagita		1	1
	ι 1	1 20 0460	10.07		4	1 12	Pocassium pargasice		1	1
		2120-0409	12.59	0.32		1 15	Magnasiagadanagaita		1	1
ł.		2122 06621	13.03	0.32		1 20	Fakarmannita		1	
		3 23-0003 4 21 1201	5.50			20	Eckermannite, syn		l I	
2		4 JI-IZOI 5 11 1266	20.75	1 0 21		1 50	Detipolito		1	
	1 1	5 41-1300	7 03	1 0 31	। २	-J0 65	Edenite sedien sum		1	
		0 23-0004	7.03	1 0.51			Edenite, Sodian, Syn	⊥ T	1	
1	1 1	0144 14501	11 52	1 0.31			Kaenqutite		1	
ç.	1 1	0 44-1450	5 07	1 0.30	4	1 -245	Almonding mongonoon		1	
50	1 1	9 33-0030	21 00	1 0.29	1 10	1 70	Magnagiabarnhlanda farraan		1	
10	1 2	1122 0665	6 60	0.29	1 19	1 - 70	Pichtorito coldion aum			
	2	1 23-000J 2 21 1204	6 60	1 0.29		1 65	Dichtorito calcian, syn		1	
	1 2	2 31-1204		1 0 20		1 65	Pichtorito, calcian, syn			
		1110 1061		0.29		1 _100	IRichackita		1	
	1 2	4 19 ⁻ 1001	10.04 10.00	0.29		1 -100	Pargagito_gup			
	1 4	6110-0220	12.00 11 06	1 0.23	1 3	1 112	IDiopaido sup		 *	1
Į.	1 2	7110-0492	14.90 5.15	1 0.20		1 12	IDiopside, Syn		. . 	1
		9110-0492				I _16	Phlogopito=1M		1 °	
E	1 2	0112-0495	4.02 10.16		1 5	I _06	Tinnwaldito-1M		5 I	
	1 2	9 42-0004			ר 	1 -90			' - 土 -	
1	1				,			1	1	

1

11-jul-2007 11:18

.

Fi	le:	C:\APDW	\TMP\SC	ORELST	.TMP		11-jul-2	007 11	:18
Ph	ili	ps Analy	tical		PC-APD, Diffraction	softw	are		
C	CODETICE CHODE NAME.								
5	CU	KE L	151	SHU	K I				
An Sa Da Re	aly mpl tab	sed DI f e identi ase used ictions	ile ficatic file	: C:\\ on: 711 : C:\\ : MIN	MILLE 2scx APDW\ ERALS	R\DATA IDENTI .RES	N7112SCX.DI		
Re	sul	ts:					· ·		
-									
+-	+	+		+	+	+		-++	-+
	l	Card Id	Match	Rel m	1%	Displ	Names	Qual	I
÷.			score	score				coae	1
1	1	17-0478	13.55	0.361		-91	Kaersutite	τι Γ	
Ti.	2	21-0149	8.19	0.361	6	144	Magnesiohornblende, ferroan		
Ti-	3	23-1406	7.56	0.33	8	-88	Pargasite	I I	*
j.	4	23-0666	9.51	0.33	8	-23	Tremolite, sodian, syn	I	
1	5	31-1285	9.51	0.33	8	-23	Tremolite, sodian, syn	0	
11	6	23-0663	5.66	0.31	6	12	Eckermannite, syn	I	
4.	7	31-1281	5.66	0.31	6	12	Eckermannite, calcian, syn	I	ļļ
	8	23-1405	7.00	0.30	4	-50	Edenite	I	
	9	20-0470	8.45	0.30	3	-23	Crossite	0	
	10	31-1312	8.45	0.30	3	-23	Crossite		Į
	11	25-0850	6.94	0.30	3	144	Kozulite		
	12	44-1402		0.29	3		Tremolite		
1.1	13	41-1366	20.93		4	-55	Pichtorito fluor cun		1 1
1	14	20-0420	11.00		J	-03 _13	Hastingsite magnesian		
Ťс4-	16	112-1369	13.22				Magnesioarfyedsonite		1
	17	145-1371	1 20 98	0.20	23	-83	Magnesiohornblende, ferroan	I T	
1	18	119-1061	1 10.31	0.28	3	-83	Riebeckite		
	19	141-1423	i 7.38	0.27	4	116	Almandine, svn	0	*
	20	123-0665	6.22	0.27	4	62	Richterite, calcian, syn	I	ii
i	21	31-1284	6.22	0.27		62	Richterite, calcian, syn	I I	İÌ
i i	22	20-0656	11.99	0.27	23	-38	Magnesioriebeckite	0	
	23	05-0490	4.77	0.27	2	-108	Quartz, low	S	
	24	42-1437	5.70	0.24	23	-16	Biotite-1M	I	*
	25	10-0492	5.90	0.24	6	-42	Phlogopite-3T	I	1 1
	26	10-0495	5.60	0.22	16	-45	Phlogopite-1M	I	
1.1	27	42-1413	8.26	0.22	19	103	Annite-1M	I	
10	28	10-0493	5.72	0.20	4	83	Phlogopite-2M1	I	
+		+	+	+	+	+	+	+	+-+

______1

and the state of the state

all and a second

11-jul-2007 11:19

Sample ident.: 7112sf

F	File: C:\APDW\TMP\SCORELST.TMP 11-jul-2007 11:20								
== P}	Philips Analytical PC-APD, Diffraction software								
s	СС) R E L	ІЅТ	S Н О	RТ	NAM	E :		
- 7.	nalı	read DI f	ilo	• •••	MITTIE	ילידי ארו \סי	17110CE DT		
Sample identification: 7112sf									
D.	atak esti	base used	l file	: C:\ : MIN	APDW\ Erals	IDENTI .RES	DB		
R	esu.	lts:							
+		F+ Card Id	Match	⊦+ Re] m	+ ۲۶	Displ		++ LOual	┡ ╼ ╺╋ Т
			score	score	10	DTOPT		code	
		++ 02-0992	6.98	++ 0.50	4	58	Spessartine	+	+ +
1	2	33-0658	8.06	0.40	9	-144	Almandine, manganoan	I S	*
	3	23-0663	6.77	0.38	6	-30	Eckermannite, syn	I	
	4	31-1281	6.77	0.38	6	-30	Eckermannite, calcian, syn	I	
10	5	19-1063	10.60	0.37	3	111	Richterite	0	
	6	23-1406	8.07	0.35	6	-91	Pargasite	I	
1	7	23-0666	9.35	0.32	5	-13	Tremolite, sodian, syn	I	
	8	31-1285	9.35	0.32	5	-13	Tremolite, sodian, syn	0	
	9	10-0428	11.64	0.30	3	-91	Richterite, fluor, syn	S	
8	10	41-1366	28.66	0.29	4	-91	Actinolite	I	*
T	11	20-0469	11.14	0.29	3	-91	Hastingsite, magnesian	0	
1	12	41-1430	12.76	0.28	3	-13	Pargasite, syn	I	
1	13	10-0492	6.00	0.24	4	-98	Phlogopite-3T	I	
- 1	14	10-0493	5.92	0.20	3	73	Phlogopite-2M1	I	
-	15	42-0604	10.72	0.20	4	-131	Zinnwaldite-1M	0	
	16	41-1481	9.17	0.18	16	16	Anorthite, sodian, disordered	II	
	17	109-0466	6.46	0.14	. 16	-21	Albite, ordered	S	*
-	+	+	+	+	+	+	+	•+	+-+

1

Sample ident.: 7112sm

11-jul-2007 11:21

File: C:\APDW\TMP\SCORELST.TMP 11

Philips Analytical

PC-APD, Diffraction software

SCORE LIST SHORT NAME:

Analysed DI file :	C:\MILLER\DATA\7112SM.DI
Sample identification:	7112sm
Database used :	C:\APDW\IDENTDB
Restrictions file :	MINERALS.RES

Results:

+ -				+				+4	+	-
		Card Id	Match	Rel m	8 8	Displ	Names	Qual	I 	
	ا 4 ـــ ـــ ـــ		30010		ا 4	 		+	। ∔	Ļ
	1	02-0992	6.33	0.45	5	144	Spessartine	0		
	2	33-0658	8.91	0.45	11	-88	Almandine, manganoan	S	*	l
	3	03-0845	6.19	0.44	6	-141	Almandite [NR]	0	ļ –	l
	4	02-1008	5.15	0.37	3	-144	Ругоре	0	1	۱
	5	23-0663	6.06	0.34	4	-13	Eckermannite, syn	I		I
	6	31-1281	6.06	0.34	4	-13	Eckermannite, calcian, syn	I		I
	7	03-0860	9.72	0.32	5	40	Diopside, syn	0	*	I
	8	23-1406	7.27	0.32	9	-58	Pargasite	l I		I
	9	20-0656	13.94	0.31	4	-50	Magnesioriebeckite	0	*	I
	10	23-0666	8.97	0.31	9	-30	Tremolite, sodian, syn	I	{	۱
	11	31-1285	8.97	0.31	9	-30	Tremolite, sodian, syn	0		I
	12	10-0428	11.70	0.30	4	-70	Richterite, fluor, syn	S	l	
	13	41-1430	13.19	0.29	4	30	Pargasite, syn	I		
	14	19-0607	10.15	0.27	5	-88	Orthoferrosilite, magnesian	0		
	15	31-0635	10.15	0.27	5	-88	Ferrosilite, magnesian	0		
	16	42-1437	4.84	0.20	40	-42	Biotite-1M	I		
1	17	42-0604	10.37	0.20	5	-45	Zinnwaldite-1M	0)	
	18	42-1413	7.07	0.19	6	37	Annite-1M	I	*	
+		+	+	+	+	+	+	-+	+-	-

Project: Mattawa gamets 2007 **Owner: support** Site: Mattawa garnet 1

Sample: Sample 1 Type: Default ID:

Label :	Spectrum 1
Collected :	28-Jun-2007 03:48 PM
Livetime (s):	100.00
Real time (s):	155.86
Detector :	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg)´:	0.0
Magnification :	600 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard : Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Mn Mn 1-Jun-1999 12:00 AM Fe 1-Jun-1999 12:00 AM Fe

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	_	Sigma				of ions
Mg K	4.36	0.8526	4.35	0.07	4.08	7.22	MgO	0.54
AIK	12.33	0.8949	11.73	0.09	9.91	22.15	AI2O3	1.31
Si K	19.98	0.8712	19.52	0.11	15.85	41.75	SiO2	2.10
Ca K	5.46	1.0047	4.62	0.07	2.63	6.47	CaO	0.35
Mn K	0.39	0.8208	0.40	0.07	0.17	0.52	MnO	0.02
Fe K	16.70	0.8352	17.02	0.17	6.95	21.89	FeO	0.92
0			42.36	0.17	60.40			8.00
Totals			100.00					

Inca

7/2/2007 11.28.59 AM

Project: Mattawa garnets 2007	Sample: Sample 1	
Owner: support	Type: Default	
Site: Mattawa garnet	IĎ:	
Label.		Spectrum 1

	Opecadin I
Collected :	2-Jul-2007 11:25 AM
Livetime (s):	100.00
Real time (s):	135.81
Detector	Silicon
Window :	SATW
Tilt (deg):	0.0
Elevation (deg):	35.0
Azimuth (deg):	0.0
Magnification :	320 X
Accelerating voltage (kV) :	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard : Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM Mn Mn 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	-	Sigma				of ions
Mg K	3.18	0.8312	5.13	0.10	4.91	8.50	MgO	0.66
AľK	6.68	0.8730	10.27	0.12	8.87	19.41	AI203	1.19
Si K	11.73	0.8683	18.13	0.15	15.04	38.79	SiO2	2.01
Ca K	3.26	1.0132	4.31	0.09	2.51	6.04	CaO	0.34
Ti K	0.32	0.8516	0.50	0.07	0.24	0.83	TiO2	0.03
Mn K	0.32	0.8259	0.52	0.11	0.22	0.67	MnO	0.03
Fe K	12.55	0.8405	20.03	0.25	8.35	25.76	FeO	1.12

0	41.11	0.23	59.86		8.00
Totals	100.00				
				Cation	5.37

Inca

7/9/2007 10 50.54 AM

Project: Mattawa gamets 2007	Sample: Sample 1
Owner: support	Type: Default
Site: Mattawa garnet	ID:

Label :	Spectrum 2
Collected :	2-Jul-2007 01:27 PM
Livetime (s):	100.00
Real time (s):	146.73
Detector :	Silicon
Window :	SATW
Tilt (deg):	0.0
Elevation (deg):	35.0
Azimuth (deg) :	0.0
Magnification :	43 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM Mn Mn 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Mg K	3.80	0.8397	4.40	0.08	4.18	7.29	MgO	0.56
AIK	9.85	0.8855	10.82	0.10	9.26	20.44	AI2O3	1.23
Si K	17.01	0.8723	18.96	0.13	15.59	40.55	SiO2	2.07
Ca K	4.78	1.0098	4.60	0.08	2.65	6.44	CaO	0.35
TiK	0.39	0.8475	0.45	0.06	0.22	0.75	TiO2	0.03
Mn K	0.34	0.8235	0.40	0.09	0.17	0.52	MnO	0.02
Fe K	16.08	0.8381	18.66	0.21	7.7 2	24.01	FeO	1.03

0	41.71	0.20	60.22		8.00
Totals	100.00				
				Cation	5.29

I

I

I

I

Project: Mattawa gamets 2007 Owner: support Site: Mattawa garnet

Sample: Sample 1 Type: Default

ID:					

Collected : 2-Jul-2007 01:31 PM Livetime (s) : 100.00 Real time (s) : 146.93 Detector : Silicon Window : SATW Tilt (deg) : Elevation (deg) : 35.0 Azimuth (deg) : Magnification : Accelerating voltage (kV) : Process time :

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

Label :

Mg MgO 1-Jun-1999 12:00 AM AI AI2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM Mn Mn 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma		-		of ions
MgK	4.47	0.8369	4.33	0.07	4.13	7.18	MgO	0.55
AľK	11.82	0.8841	10.85	0.09	9.31	20.50	A1203	1.24
Si K	20.15	0.8714	18.76	0.12	15.47	40.14	SiO2	2.06
Ca K	5.67	1.0108	4.55	0.07	2.63	6.37	CaO	0.35
Ti K	0.42	0.8487	0.40	0.06	0.19	0.66	TiO2	0.03
MnK	0.52	0.8243	0.52	0.08	0.22	0.67	MnO	0.03
Fe K	19.67	0.8389	19.03	0.19	7.89	24.48	FeO	1.05

7/2/2007 1 34 40 PM

43 X 15.00 5

0.0

0.0

Spectrum 3

0	41.56	0.18	60.16		8.00
Totals	100.00				
				Cation	5.30

Inca

Project: Mattawa garnets 2007 Owner: support Site: Mattawa garnet

Sample: Sample 1 Type: Default ID:

Label :	Spectrum 6
Collected :	2-Jul-2007 01:41 PM
Livetime (s) :	100.00
Real time (s):	143.11
Detector :	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg)	0.0
Magnification :	160 X
Accelerating voltage (kV):	15.00
Process time	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard : Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Mn Mn 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Mg K	4.01	0.8553	4.38	Ō.08	4.09	7.25	MgO	0.54
ALK	11.31	0.8966	11.76	0.10	9.92	22.22	Al2Ō3	1.31
Si K	18.42	0.8718	19.70	0.12	15.96	42.14	SiO2	2.11
Ca K	5.00	1.0038	4.64	0.08	2.63	6.49	CaO	0.35
Mn K	0.33	0.8201	0.38	0.08	0.16	0.49	MnO	0.02
Fe K	14.89	0.8345	16.63	0.19	6.78	21.40	FeO	0.90
0			42.51	0.18	60.46			8.00
Totals			100.00					

Ī

ļ

F

- 10	100	17 /	1.4	0.0			Л
112	120	37	1.4	0.0	C.	~ I\	4

Project: Mattawa gamets 2007	Sample: Sample 1
Owner: support	Type: Default
Site: Mattawa gamet	ID:

Label :	Spectrum 7
Collected :	2-Jul-2007 01:45 PM
Livetime (s):	100.00
Real time (s):	140.65
Detector :	Silicon
Window :	SATW
Tilt (dea) :	0.0
Elevation (deg):	35.0
Azimuth (deg) :	0.0
Magnification :	300 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : Peak possibly omitted : 10.800 keV

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

 Mg
 MgO
 1-Jun-1999
 12:00
 AM

 Al
 Al2O3
 1-Jun-1999
 12:00
 AM

 Si
 SiO2
 1-Jun-1999
 12:00
 AM

 Ca
 Wollastonite
 1-Jun-1999
 12:00
 AM

 Mn
 Mn
 1-Jun-1999
 12:00
 AM

 Fe
 Fe
 1-Jun-1999
 12:00
 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	_	Sigma				of ions
Mg K	2.88	0.8337	3.16	0.07	3.03	5.24	MgO	0.40
AIK	10.78	0.8925	11.04	0.10	9.52	20.85	A1203	1.27
Si K	18.05	0.8761	18.82	0.12	15.60	40.26	SiO2	2.07
Ca K	6.63	1.0118	5.99	0.08	3.48	8.38	CaO	0.46
Mn K	0.53	0.8243	0.58	0.09	0.25	0.75	MnO	0.03
FeK	17.51	0.8390	19.06	0.20	7.95	24.52	FeO	1.06
0			41.35	0.18	60.18			8.00
Totals			100.00					

Inca

7/9/2007 10:52 07 AM

Project: Mattawa garnets 2007	
Owner: support	
Site: Mattawa gamet	

Sample: Sample 1 Type: Default ID:

Label:	Spectrum 9
Collected :	2-Jul-2007 01:50 PM
Livetime (s) :	100.00
Real time (s):	142.82
Detector :	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg)	0.0
Magnification :	320 X
Accelerating voltage (kV):	15.00
Process time	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

 Mg
 MgO
 1-Jun-1999
 12:00 AM

 AI
 Al2O3
 1-Jun-1999
 12:00 AM

 Si
 SiO2
 1-Jun-1999
 12:00 AM

 Ca
 Wollastonite
 1-Jun-1999
 12:00 AM

 Mn
 Mn
 1-Jun-1999
 12:00 AM

 Fe
 Fe
 1-Jun-1999
 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	_	Sigma		-		of ions
Mg K	3.18	0.8381	3.46	0.07	3.29	5.73	MgO	0.44
AK	11.13	0.8928	11.36	0.10	9.74	21.46	Al2O3	1.29
Si K	18.22	0.8737	18.99	0.12	15.66	40.63	SiO2	2.08
CaK	5.86	1.0099	5.28	0.08	3.05	7.39	CaO	0.41
Mn K	0.52	0.8238	0.57	0.08	0.24	0.74	MnO	0.03
Fe K	17.20	0.8383	18.69	0.20	7,75	24.05	FeO	1.03
0			41.64	0.18	60.26			8.00
Totals			100.00					

Inca

7/2/2007 1 58 21 PM

Project: Mattawa gamets 2007	Sample: Sample 1
Owner: support	Type: Default
Site: Mattawa garnet	ID:

Label	Spectrum 10
Collected :	2-Jul-2007 01:55 PM
Livetime (s):	100.00
Real time (s):	139.77
Detector :	Silicon
Window :	SATW
Tilt (dea):	0.0
Elevation (deg) :	35.0
Azimuth (deg):	0.0
Magnification :	160 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

 Mg
 MgO
 1-Jun-1999
 12:00
 AM

 AI
 Al2O3
 1-Jun-1999
 12:00
 AM

 Si
 SiO2
 1-Jun-1999
 12:00
 AM

 Ca
 Wollastonite
 1-Jun-1999
 12:00
 AM

 Mn
 Mn
 1-Jun-1999
 12:00
 AM

 Fe
 Fe
 1-Jun-1999
 12:00
 AM

Element	App	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	-	Sigma				of ions
Mg K	2.32	0.8468	2.78	0.07	2.62	4.60	MgO	0.34
AľK	10.22	0.9056	11.44	0.10	9.72	21.62	AI203	1.28
Si K	17.66	0.8807	20.33	0.13	16.60	43.50	SiO2	2.19
Ça K	5.29	1.0060	5.33	0.09	3.05	7.46	CaO	0.40
MnK	0.32	0.8211	0.40	0.09	0.17	0.51	MnO	0.02
Fe K	14.29	0.8357	17.34	0.20	7.12	22.30	FeO	0.94
0			42.38	0.19	60.73			8.00
Totals			100.00					

.

IIICO

Project: Mattawa gamets 2007 Owner: support Site: Mattawa gamet

Label :

Sample: Sample 1 Type: Default ID: 2

Collected :	2-Jul-2007 01:59 PM
Livetime (s) :	100.00
Real time (s):	152.14
Detector :	Silicon
Window :	SATW
Tilt (deg):	0.0
Elevation (deg):	35.0
Azimuth (deg):	0.0
Magnification :	40 X
Accelerating voltage (kV) :	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Mn Mn 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	-	Sigma		-		of ions
MgK	3.67	0.8449	3.41	Õ.06	3.23	5.65	MgO	0.43
AIK	13.32	0.8983	11.65	0.09	9,93	22.01	AI203	1.32
Si K	21.56	0.87 4 6	19.3 6	0.11	15.86	41,43	SiO2	2.10
Ca K	6. 90	1.0075	5.38	0.07	3.09	7.53	CaO	0.41
Mn K	0.45	0.8220	0.43	0.08	0.18	0.55	MnO	0.02
Fe K	18.90	0.8366	17.74	0.18	7.31	22,83	FeO	0.97
0			42.02	0.17	60.41			8.00
Totals			100.00					

7/2/2007 2:02 54 PM

Spectrum 11

Project: Mattawa gamets 2007 Owner: support Site: Mattawa clinopyroxene

Sample: Sample 1 Type: Default ID:

Label:	Spectrum 1
Collected :	2-Jul-2007 10:57 AM
Livetime (s) :	100.00
Real time (s):	156.17
Detector :	Silicon
Window :	SATW
Tilt (deg):	0.0
Elevation (deg):	35.0
Azimuth (deg) :	0.0
Magnification :	320 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard : Na Albite 1-Jun-1999 12:00 AM Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM

Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM

Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Na K	1.31	1. 041 8	0.91	0.05	0.87	1.22	Na2O	0.12
Mg K	10.80	0.9038	8.66	0.08	7.83	14.36	MgO	1.04
AľK	1.50	0.8920	1.22	0.05	0.99	2.30	A1203	0.13
Si K	33.91	0.9442	26.02	0.11	20.37	55.67	SiO2	2.71
Ca K	18.55	0.9887	13.60	0.10	7.46	19.02	CaO	0.99
Fe K	6.49	0.8157	5.77	0.13	2.27	7.42	FeO	0.30
0			43.83	0.14	60.21			8.00
Totals			100.00					

7/9/2007 10:44.35 AM

INCO

7/9/2007 10 46 14 AM

	Project: Mattawa garnets 2007
	Owner: support
!	Site: Mattawa clinopyroxene

Sample: Sample 1 Type: Default ID:

Label :	Spectrum 2
Collected :	2-Jul-2007 11:01 AM
Livetime (s) :	100.00
Real time (s):	155.06
Detector :	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg) :	0.0
Magnification :	320 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

 Na
 Albite
 1-Jun-1999
 12:00 AM

 Mg
 MgO
 1-Jun-1999
 12:00 AM

 Al
 Al2O3
 1-Jun-1999
 12:00 AM

 Si
 SiO2
 1-Jun-1999
 12:00 AM

 Ca
 Wollastonite
 1-Jun-1999
 12:00 AM

 Fe
 Fe
 1-Jun-1999
 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Na K	1.36	1.0368	0.97	Ō.06	0.93	1.31	Na2O	0.12
Mg K	10.34	0.8999	8.49	0.08	7,69	14.08	MgO	1.02
AľK	1.62	0.8910	1.35	0.05	1.10	2.54	A1203	0.15
Si K	33.06	0.9426	25.92	0.11	20.33	55.46	SiO2	2.70
Ca K	17.67	0.9894	13.20	0.10	7.25	18.47	CaO	0.96
Fe K	6.98	0.8166	6.32	0.13	2.49	8.13	FeO	0.33
0			43.74	0.15	60.20			8.00
Totals			100.00					

Inca

Project: Mattawa gamets 2007 Owner: support Site: Mattawa amph

Sample: Sample 1 Type: Default ID:

 Label :
 Spectrum 1

 Collected :
 2-Jul-2007 10:30 AM

 Livetime (s) :
 100.00

 Real time (s) :
 156.46

 Detector :
 Silicon

 Window :
 SATW

Tilt (deg) : Elevation (deg) : Azimuth (deg) :

Magnification : Accelerating voltage (kV) : Process time :

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : Peak possibly omitted : 2.269 keV

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

- Na Albite 1-Jun-1999 12:00 AM Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Cl KCl 1-Jun-1999 12:00 AM K MAD-10 Feldspar 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM
- Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Na K	3.37	1.0238	2.45	0.07	2.37	3.31	Na2O	0.32
Mg K	8.76	0.8766	7.46	0.08	6.80	12.36	MgO	0.91
Al K	8.28	0.8833	6.99	0.08	5.75	13.21	AI2O3	0.77
Si K	25.37	0.8951	21.15	0.11	16.71	45.24	SiO2	2.25
CIK	0.21	0.7810	0.20	0.04	0.13	0.00		0.02

7/11/2007 9:22:46 AM

35.0 0.0 160 X

15.00

5

0.0
KΚ	1.34	1.0509	0.95	0.05	0.54	1.14	K20	0.07
Ca K	9.10	0.9939	6.83	0.08	3.78	9.56	CaO	0.51
Ti K	1.85	0.8243	1.67	0.06	0.77	2.79	TiO2	0.10
FeK	10.46	0.8241	9.47	0.15	3.76	12.18	FeO	0.51
0			42.82	0.16	59.39			7.98
Totals			100.00					
						С	ation	5 44

I

I

ľ

Project: Mattawa garnets 2007 Owner: support Site: Mattawa amph Sample: Sample 1 Type: Default ID:

Label	Spectrum 2
Collected :	2-Jul-2007 10:34 AM
Livetime (s):	100.00
Real time (s):	156.62
Detector :	Silicon
Window :	SATW
Tilt (deg):	0.0
Elevation (deg):	35.0
Azimuth (deg)	0.0
Magnification :	160 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard : Na Albite 1-Jun-1999 12:00 AM Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Cl KCl 1-Jun-1999 12:00 AM K MAD-10 Feldspar 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Na K	3.34	1.0231	2.42	Ō.07	2.34	3.26	Na2O	0.31
Mg K	8.79	0.8765	7.44	0.08	6.80	12.33	MgO	0.91
AIK	8.36	0.8834	7.02	0.08	5.78	13.26	A1203	0.78
Si K	25.35	0.8951	21.00	0.11	16.61	44.93	SiO2	2.23
CIK	0.29	0.7816	0.27	0.04	0.17	0.00		0.02

КК	1.44	1.0514	1.02	0.05	0.58	1.23	K2O	0.08
Ca K	9.33	0.9939	6,96	0.08	3.86	9.74	CaO	0.52
TiK	1.82	0.8242	1.64	0.06	0.76	2.73	TiO2	0.10
FeK	10.57	0.8242	9,51	0.15	3.78	12.23	FeO	0.51
0			42.72	0.16	59.32			7.98
Totals			100.00					
						C	ation	5.45

Project: Mattawa garnets 2007 Owner: support Site: Mattawa biotite

Label :	Spectrum 1
Collected :	2-Jul-2007 10:48 AM
Livetime (s):	100.00
Real time (s) :	146.88
Detector :	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg) :	0.0
Magnification :	320 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard : Na Albite 1-Jun-1999 12:00 AM Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Cl KCl 1-Jun-1999 12:00 AM K MAD-10 Feldspar 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Na K	0.33	0.9961	0.27	0.05	0.27	0.37	Na2O	0.04
MgK	8.63	0.8825	8.16	0.09	7.65	13.53	MgO	1.04
AIK	8.55	0.8827	8.08	0.08	6.83	15.27	AI203	0.93
Si K	19.75	0.8894	18.52	0.11	15.04	39.63	SiO2	2.04
CIK	0.23	0.7924	0.24	0.04	0.15	0.00		0.02
ĸĸ	10.03	1.0558	7.93	0.09	4.62	9.55	K2O	0.63

TiK	3.76	0.8355	3,75	0.09	1.79	6.26	TiO2	0.24
FeK	11.74	0.8312	11.78	0.17	4.81	15.16	FeO	0.65
0			41.26	0.17	58.82			7.98
Totals			100.00					
						C	ation	5.56

Inca

Project: Mattawa garnets 2007 Owner: support Site: Mattawa amph

Sample: Sample 1 Type: Default ID:

· · · · · · · · · · · · · · · · · · ·	
Label :	Spectrum 3
Collected :	2-Jul-2007 10:40 AM
Livetime (s):	100.00
Real time (s):	148.48
Detector :	Silicon
Window :	SATW

Tilt (deg) : Elevation (deg) : Azimuth (deg) :

Magnification : Accelerating voltage (kV): Process time :

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

- Na Albite 1-Jun-1999 12:00 AM Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM CI KCI 1-Jun-1999 12:00 AM K MAD-10 Feldspar 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM
- Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	-	Sigma		-		of ions
Na K	2.72	1.0096	2.13	0.07	2.07	2.87	Na2O	0.28
MgK	7.51	0.8715	6.81	0.08	6.28	11.29	MgO	0.84
AľK	8.23	0.8862	7.34	0.08	6.10	13.87	AI2O3	0.82
Si K	22.58	0.8957	19.92	0.11	15.90	42.62	SiO2	2.13
CIK	0.27	0.7869	0.27	0.04	0.17	0.00		0.02

0.0 35.0 0.0

300 X 15.00 5

КΚ	1.37	1.0578	1.03	0.05	0.59	1.24	K20	0.08
Ca K	9.17	0.9997	7.24	0.08	4.05	10.14	CaO	0.54
TiK	3.35	0.8266	3.20	0.08	1.50	5.34	TiO2	0.20
Fe K	10.04	0.8256	9.61	0.15	3.86	12.36	FeO	0.52
0			42.44	0.17	59.47			7.98
Totals			100.00					
						C	Cation	5.41

INCO

Project: Mattawa gamets 2007 Owner: support Site: Mattawa amph

Sample: Sample 1 Type: Default ID:

Label:	Spectrum 4
Collected :	2-Jul-2007 10:43 AM
Livetime (s) :	100.00
Real time (s) :	148.55
Detector :	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg) :	0.0
Magnification :	300 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

- Na Albite 1-Jun-1999 12:00 AM
- Mg MgO 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM
- Si SiO2 1-Jun-1999 12:00 AM
- CI KCI 1-Jun-1999 12:00 AM
- K MAD-10 Feldspar 1-Jun-1999 12:00 AM
- Ca Wollastonite 1-Jun-1999 12:00 AM
- Ti Ti 1-Jun-1999 12:00 AM
- Fe Fe 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Na K	2.74	1.0073	2.15	0.07	2.10	2.90	Na2O	0.28
MgK	7.34	0.8699	6.67	0.08	6,16	11.07	MgO	0.83
AIK	8.20	0.8864	7.32	0.08	6.09	13.82	AI2Ō3	0.82
Si K	22.37	0.8963	19.74	0.11	15.78	42.24	SiO2	2.12
CIK	0.24	0.7880	0.24	0.04	0.15	0.00		0.02

кк	1.47	1.0592	1.10	0.05	0.63	1.32	K2O	0.08
Ca K	9.09	1.0009	7.18	0.08	4.02	10.05	CaO	0.54
Ti K	3.80	0.8272	3.63	0.08	1.70	6.05	TiO2	0.23
FeK	9.99	0.8259	9.57	0.15	3.85	12.31	FeO	0.52
0			42.40	0.17	59.51			7.98
Totals			100.00					
						C	Cation	5.41

INCO

Project: Mattawa gamets 2007	Sample: Sample 1
Owner: support	Type: Default
Site: Mattawa biotite	: ID:

Label :	Spectrum 2
Collected :	2-Jul-2007 10:51 AM
Livetime (s) :	100.00
Real time (s):	147.17
Detector	Silicon
Window :	SATW
Tilt (deg):	0.0
Elevation (deg):	35.0
Azimuth (deg):	0.0
Magnification :	320 X
Accelerating voltage (kV):	15.00
Process time	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : No peaks omitted

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard :

 Na
 Albite
 1-Jun-1999
 12:00 AM

 Mg
 MgO
 1-Jun-1999
 12:00 AM

 Al
 Al2O3
 1-Jun-1999
 12:00 AM

 Si
 SiO2
 1-Jun-1999
 12:00 AM

 Cl
 KCl
 1-Jun-1999
 12:00 AM

 K
 MAD-10
 Feldspar
 1-Jun-1999
 12:00 AM

 Ti
 Ti
 1-Jun-1999
 12:00 AM
 Fe
 Fe
 1-Jun-1999
 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	_	Sigma				of ions
Na K	0.30	0.9926	0.25	0.05	0.24	0.33	Na2O	0.03
Mg K	8.74	0.8804	8.20	0.08	7.70	13.60	MgO	1.04
AľK	8.46	0.8810	7.93	0.08	6.71	14.98	AI203	0.91
Si K	19.94	0.8894	18.52	0.11	15.06	39.62	SiO2	2.04
CIK	0.26	0.7926	0.27	0.04	0.18	0.00		0.02
ĸĸ	9,90	1.0561	7.74	0.08	4.52	9,33	K2O	0.61

TiK	3.82	0.8363	3.77	0.09	1.80	6.30	TiO2	0.24
FeK	12.18	0.8317	12.10	0.17	4.95	15.57	FeO	0.67
0			41.21	0.17	58.83			7.98
Totals			100.00					
						C	ation	5.56

Project: Mattawa garnets 2007	Sample: Sample 1
Owner: support	Type: Default
Site: Mattawa plagioclase	ID:

Label :	Spectrum 1
Collected :	2-Jul-2007 11:07 AM
Livetime (s)	100.00
Real time (s):	153.85
Detector	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg):	0.0
Magnification :	43 X
Accelerating voltage (kV):	15.00
Process time :	5

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : Peak possibly omitted : 2.250 keV

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 3

Standard : Na Albite 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM K MAD-10 Feldspar 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.		Sigma				of ions
Na K	11.62	1.1876	7.52	Ō.08	6.64	10.13	Na2O	0.86
AIK	13.53	0.9818	10.59	0.08	7.96	20.00	Al2O3	1.03
Si K	38.11	0.9243	31.67	0.12	22.89	67.76	SiO2	2.97
кк	0.67	1.0051	0.51	0.04	0.26	0.61	K2O	0.03
Ca K	1.33	0.9593	1.07	0.05	0.54	1.49	CaO	0.07
0			48,65	0.13	61.71			8.00
Totals			100.00					
							Cation	4.96

INCO

7/2/2007 2 30.55 PM

5

Project:	Mattawa	gamets	2007
----------	---------	--------	------

Owner: support

Process time :

Site: Mattawa plagioclase

Sample: Sample 1 Type: Default

ID:

Label : Collected :	Spectrum 3 2-Jul-2007 02:28 PM
Livetime (s):	100.00
Real time (s):	105.82
Detector :	Silicon
Window :	SATW
Tilt (deg) :	0.0
Elevation (deg):	35.0
Azimuth (deg)	0.0
Magnification :	80 X
Accelerating voltage (kV)	15.00

Sample is unpolished X-ray corrections may be approximate. Sample is coated with Carbon - thickness (nm): 15.0, density (g/cm3): 2.25 The element used for optimization was Copper Detector efficiency : Calculation

Spectrum processing : Peak possibly omitted : 6.389 keV

Processing option : Oxygen by stoichiometry (Normalised) Number of ions calculation based on 8.00 anions per formula Number of iterations = 2

Standard : Na Albite 1-Jun-1999 12:00 AM Al Al2O3 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM Ca Wollastonite 1-Jun-1999 12:00 AM

Element	Арр	Intensity	Weight%	Weight%	Atomic%	Compd%	Formula	Number
	Conc.	Corrn.	-	Sigma				of ions
Na K	0.62	1.1721	5.97	0.27	5.30	8.05	Na2O	0.68
AIK	0.92	0.9894	10.51	0.30	7.94	19.87	AI2O3	1.02
Si K	2.63	0.9306	31.80	0.44	23.08	68.02	SiO2	2.97
Ca K	0.25	0.9620	2.90	0.25	1.48	4.06	CaO	0.19
0			48.81	0.49	62.20			8.00
Totals			100.00					
							Cation	4.86

