PROSPECTING REPORT ON THE

Anderson Lake Property

UTM Zone 16 - NAD 83 Projection 370160mE, 5392928mN

NTS 52A/10

PREPARED BY:

Harvey M. Buck, B.Sc. Andrew Tims, P.Geo.

Northern Mineral Exploration Services.

For Amador Gold Corporation.

September 7, 2007

Thunder Bay Mining Division SEP 07 2007 RECEIVED

SUMMARY

This report presents and discusses the results of a prospecting program conducted by Harvey M. Buck, subcontracting to Northern Ontario Mineral Exploration (NOMEX) for Amador Gold Corp., on the Anderson Lake property between May 20th and May31th, 2007. The Anderson Lake Property is located about 34 kilometres East-Northeast of the east of Thunder Bay, Ontario, and about 3 km north of Loon Lake.

The purpose of the program was to fill in sampling of pegmatite zones not done in the previous prospecting program, determine potential sites for stripping, in preparation for channel sampling, which if favourable, would lead to a possible bulk sampling project. A secondary objective was to evaluate the potential for Tantalum mineralization. The amethyst occurrences associated with previous trenching and the mineral specimen potential of the granitic pegmatite in general was also evaluated.

RECOMMENDATIONS

Three areas with better assays were selected for potential stripping, two of which are high priority (Area A & B, see map 1) and one of which is low priority (Area C, see map 1).

Area A requires \sim 700 m² stripping around trench 34. Trench 34 had the single best assay (110394 ppm) and appears to have the most molybdenite in the quartz core of any area at Anderson Lake. Stripping will allow for the location of further quartz core and its evaluation for molybdenite content post stripping. Care should be taken to preserve much of the loose rock around the trench as it is in part ore grade material

Area B to the east and south of trench 26 requires about 500 m² to be stripped. This will allow for the core and blocky albite + quartz \pm mica zones containing molybdenite to be evaluated around the trench and to increase the stripped area around trench's 25, 27-30 so they can be better evaluated (these being already stripped). This area has fairly high molybdenite content in most of these trenches and is a potential target for a bulk sample.

Area C is a lower priority stripping target of 800 m² designed to evaluate the presence of quartz core between trench's 13 and 14, where good molybdenite numbers were obtained (between 10176 to 24309 ppm) in the quartz core zone. The extent of quartz core bearing molybdenite appears somewhat limited in exposed trenches and surrounding outcrop and a test sample of the quartz core taken approximately half way between the two trenches returned poor results (~790 ppm), which is why this area is a lower priority.

TABLE OF CONTENTS

SUMMARY	1
RECOMMENDATIONS	
INTRODUCTION	1
LOCATION, ACCESS AND PHYSIOGRAPHY	1
CLAIMS AND OWNERSHIP	2
PREVIOUS WORK	5
REGIONAL GEOLOGY	5
WORK PROGRAM SUMMARY	6
CONCLUSION AND RECOMMENDATIONS	7
REFERENCES	10
STATEMENT OF QUALIFICATIONS	11
APPENDIX 1 - TRAVERSE AND SAMPLE LOCATION MAP	13
APPENDIX 2 – PEGMATITE ZONES	14
APPENDIX 3 - 2005/2007 ASSAY RESULTS AND DESCRIPTIONS	15
APPENDIX 4 - ICP ANALYSIS CERTIFICATES	16
APPENDIX 5 - SAMPLE PREP AND ANALYTICAL PROCEDURES	17

FIGURES

Figure 1	Anderson Lake Property Location Map
Figure 2	Anderson Lake Property Claim Map

1

Ĩ

TABLES

Table 1	Anderson Lake Property Claims List
	MAPS in APPENDIX 1
Map 1	Prospecting Map (1:5 000)

INTRODUCTION

This report presents and summarizes the results of a prospecting program conducted by Harvey M. Buck, subcontracting to Northern Ontario Mineral Exploration (NOMEX) for Amador Gold Corp. on the Anderson Lake property of the Thunder Bay Mining District.

Prospecting and evaluation of the Mo potential of the granitic pegmatite body was conducted during the period of May 20nd to 31th, 2007. Nine samples were collected where previous prospecting by the Bjorkman (2005), failed to include specific molybdenite bearing pegmatite zones or apparently barren pegmatite areas. Almost all sample locations from the 2005 prospecting program were located and re-classified to the pegmatite zone(s) from which these samples were taken (see appendix 2).

The pegmatite (see table 2) was divided visually into the contained zones, with estimated percentages given to each zone at every old trench observed. As there is generally no molybdenite within intermediate blocky albite + quartz zones, which make up the majority of the volume of the granitic pegmatites at Anderson Lake, little attempt was made to differentiate these zones, if in fact more than one existed. Emphasis was placed on the quartz core zone, where the majority of the molybdenite was located and on the late forming medium to fine grained blocky albite + quartz \pm mica zone (which could also occur as a fine-grained saccharoidal albite + quartz \pm mica \pm garnet zone) that occasionally contained trace molybdenite. The K-feldspar core margin zone and the intermediate blocky albite + quartz zone locally hosted trace Molybdenite as well..

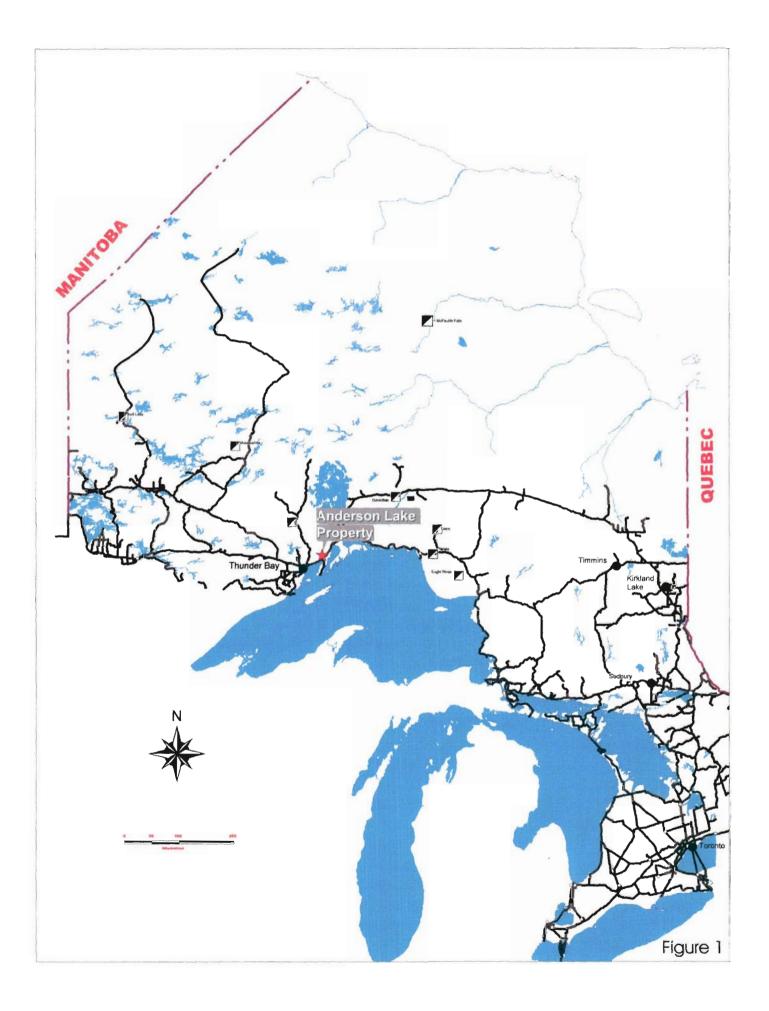
Andrew Tims P.Geo of Thunder Bay, Ontario managed the program, with day to day operations in the field conducted by Harvey M. Buck, B.Sc., F.C.Gm.A., of Richmond Ontario, assisted by Fred Blair of Winnipeg, Manitoba.

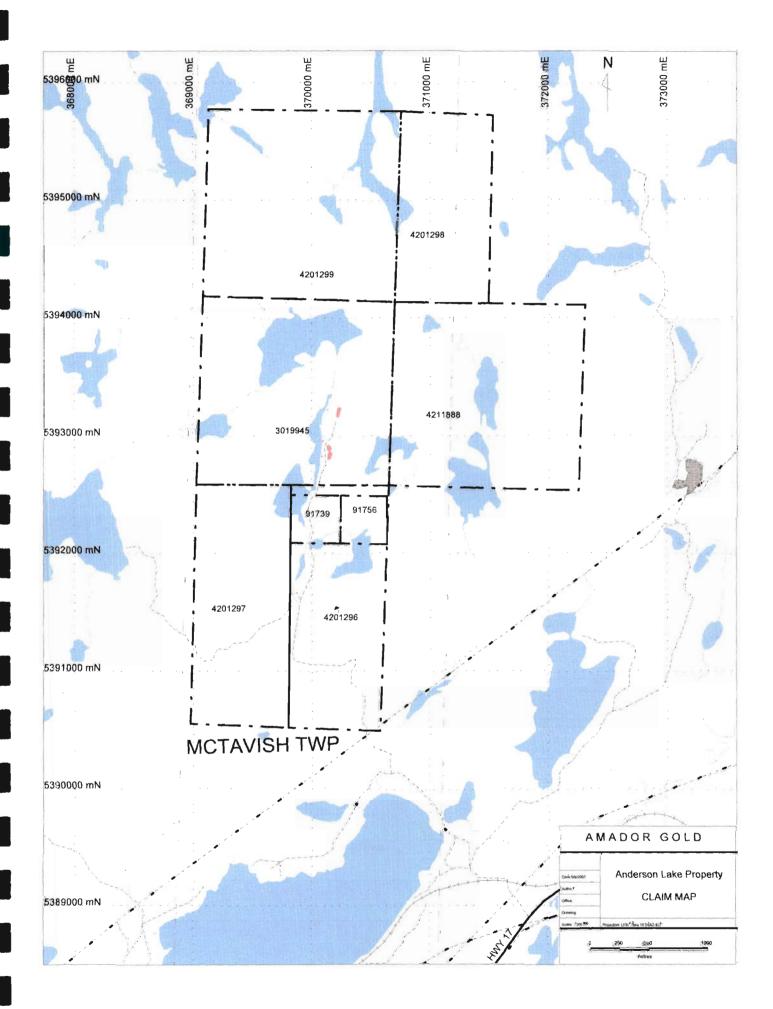
LOCATION, ACCESS AND PHYSIOGRAPHY

The Anderson Lake Property is in the Thunder Bay mining district on NTS sheet 52A/10 (Loon) (Fig. 1). The Anderson Lake property is located in McTavish Township, Concession VIII, Lots 4 and 5, approximately 43.6 km east of Thunder Bay. Access to the property is

North from Highway 11/17, along East Loon Lake Road. At 2.0 km along East Loon Lake road, turn right on to the old mine road. The old mine road accesses the trenched portion of the property about 3.3 km north of the intersection with East Loon Lake. This road can be traversed by 4X4 vehicles with high clearance, or by ATV or walking from the hydro lines located about 340 m N of the start of the road. The road provides easy access to all the old trenching and stripped areas, as they are no more than 50 m from the road, with most on or just beside the old road.

The Anderson Lake Molybdenite bearing granitic pegmatite(s) is in a rugged, hilly valley, with the trenched property located within several hundred of Anderson Lake. The start of the old mine road is at about 318 m altitude, increasing to about 398 m at Anderson Lake, with the trenches on the granitic pegmatite varying between 405 and 422 m (approximately). The area is covered with balsam, birch, black spruce and in the wetter places, alder.


CLAIMS AND OWNERSHIP


The Anderson Lake Property consists of 6 contiguous staked claims, comprising approximately 1 216 hectares (Figure 2). A list of the claims is found in Table 1 below.

Township/Area	Claim Number	Recording Date	Claim Due Date	Units	Work Required
MCTAVISH	3019945	2004-September-9	2007-September-9	16	\$6,400
MCTAVISH	4201296	2006-June-29	2008-June-29	10	\$4,000
MCTAVISH	4201297	2006-June-29	2008-June-29	10	\$4,000
MCTAVISH	4201298	2006-June-29	2008-June-29	8	\$3,200
MCTAVISH	4201299	2006-June-29	2008-June-29	16	\$6,400
MCTAVISH	4211888	2006-November-7	2008-November-7	16	\$6,400

 Table 1

 Anderson Lake Property Claims List

PREVIOUS WORK

The Anderson Lake Molybdenum occurrence (originally called the J. A. Johnson claims) has been investigated on and off since 1918.

Previous work is as follows:

- 1918 About 1000 feet of stripping, test pitting and trenching, including 230 feet on the eastern dike. Shipped 502 pounds of 2.14% ore, with an 85.5% concentrate resulting and 92% recovery.
- 1928 Prospect pit observed by J.E.Hawley, Ontario Department of Mines.
- 1935 Minor amount of trenching by prospectors.
- 1937-38 Molydor Mines as subsidiary of the Cook Lake Gold Mines, Ltd. removed 150 tons of rock from an open cut up to 10 feet deep. 4 trenches averaging 5 feet deep were opened up. A total of 25 tons (40% of mined rock) were shipped, with 0.49% average grade, 85.7% MoS₂ concentrate, and 90% recovery.
- 1958-59 Lindsay Exploration removed shallow overburden at various intervals over a 2200 feet interval by bulldozer. Completed 50 rock trenches and pits over 2600 feet. These range in size from a few square feet to 120 feet long and five feet deep. A 2000 pound bulk sample was hand cobbled from the material blasted from 20 trenches. An 18 diamond drill hole program totaling 2114 feet over a strike length of 2300 feet were completed in the spring of 1959.
- 1959-60 N. V. Billiton Maatschappij drilled an unknown amount of diamond drill holes and "dry" drilling (probably the larger diameter holes) to test mineralization. Results not available
- 1966-68 Briar Court mines conducted geological mapping, stripping, trenching and diamond drilling
- 2005 El Nino Ventures completed a mapping program on the western pegmatite(s) and trenches, along with sampling of high grade areas resulting in 50 grab samples being assayed.

REGIONAL GEOLOGY

The Anderson Lake Mo Property is located in the Superior Province, specifically within the Quetico Subprovince. The Quetico Subprovince is a northeast-southwest belt of supracrustal rocks comprised predominately of metasediments, and migmatitic and anatectic derivatives. Rare occurrences of molybdenite other than at Anderson Lake have been reported in biotite leucogranites in the Dickison Lake area in the Quetico subprovince.

The Anderson Lake Mo occurrence lies on the western margin of the Hilma Lake granite. This granite body generally consists of pink to white two-mica leucogranite. Areas of granitic pegmatite and pegmatitic granite are known within the Hilma Lake granite and the Anderson Lake granitic pegmatite(s) are probably examples of these.

Local mapping has classed the granitoid rocks to the east and west as biotite quartz monzonite, granodiorite, as biotite-muscovite quartz monzanite, muscovite quartz monzonite and as granitic pegmatite. A large, roughly triangular shaped wedge of migmatitic biotite schist occurs along the east side of Anderson Lake and was formed from metamorphosed sediments. Granitic pegmatite dikes, including some Mo occurrences, are located along the western margin of the metasedimentary wedge, and are probably intruding along a zone of weakness, thereby being emplaced in a near north south orientation, between migmatitic metasediments and granitoid intrusion to the west.

WORK PROGRAM SUMMARY

Harvey M. Buck (prospectors Lic. # 1002662), with assistance from Fred Blair, conducted the prospecting/property evaluation between May 20th and May 31st, 2007. One-half day of work was spent researching the property in the Thunder Bay MNDM office and another half day was spent reading reports and preparing equipment before field work commenced. After the field work, one day was spent compiling data and mapping out areas to be trenched.

- May 20th Located and identified all trenches studied but the 6 northernmost ones
- May 21st Located the remaining trenches in a driving rain, then left property for safety reasons
- May 23rd Return to Thunder Bay for supplies and assistant
- May 24th Procured final supplies, drove to property to familiarize F. Blair with field safety procedures and property
- May 25th Prospected, sampled and evaluated trenches 1 to 10 (following the Bjorkman trench scheme from 2005)
- May 26th Prospected, sampled and evaluated trenches 11 to 19D
- May 27th Rain day, groceries and laundry

May 28^{th} – Prospected, sampled and evaluated trenches 20 to 29

May 29th – Prospected, sampled and evaluated trenches 30 to 41

May 30^{th} – Sample fill in, bleaching outcrops in preparation for future stripping and evaluation

May 31st – Packed and returned to Thunder Bay, put in samples for assay

CONCLUSION AND RECOMMENDATIONS

The best places to observe the western granitic pegmatite or pegmatites (as there may be several parallel dikes being examined), occur in old trenched areas from previous work in 1918, 1935, 1937-38, 1958-59 and 1966-68. Old stripping is generally overgrown, except around trenches, or high points in the topography with containing granitic pegmatites. The best place at Anderson Lake to observe the granitic pegmatite(s) is in the area around trench #25 to #31. Sampling (discussed below), usually concentrated on obvious areas of Mo mineralization, and thus would return better than average assays. This is necessary in granitic pegmatites as samples taken adjacent to one another in different zones may have orders of magnitude more or less contained elements than there neighbour due to the extreme chemical fractionation possible in granitic pegmatite systems. The trick to combating this difficulty is to determine the zones of interest and locate them within the granitic pegmatite and to concentrate effort for whatever purposes (bulk sampling, specimen collection, etc.) on the zones of interest. Refer to Cerny (1991a & b) for a better understanding of technical aspects of all aspects related to granitic pegmatites.

The property was carefully examined. The pegmatite was re-described as to the specific zones observed, with the samples taken by Bjorkman (2005) relocated where possible and duplicated where necessary (see Appendix 3). Extra samples were obtained where the previous grab sampling did not sample all zones with molybdenite or where no sampling had taken place. The pegmatite (see Appendix 2) was divided visually into the contained zones, with estimated percentages given to each zone at every trench. As there is generally no molybdenite within intermediate block albite + quartz zones which make up the majority of the volume of the granitic pegmatites, little attempt was made to differentiate these zones if more than one existed. Emphasis was placed on the quartz core zone, where the majority of the molybdenite was located and on the late forming medium to fine grained blocky albite +

quartz \pm mica grading to saccharoidal albite + quartz \pm mica \pm garnet zone which sometimes contained molybdenite. Molybdenite was also found occasionally in contact with the K-feldspar core margin zone and with the intermediate blocky albite + quartz zone, but probably formed in the quartz core.

The Anderson Lake Mo occurrence granitic pegmatites that were examined by H.M. Buck, appear to have no potential as a primary tantalum resource. A small centimetre-scale ferrocolumbite crystal was discovered and described in Bjorkman (2005) on the north side of trench #30. This was the only large columbite-tantalite group mineral observed in the pegmatites during this program. A few fragments of the crystal (sample 05-KB-01) were microprobed in England by Andy Tindle for Fred Breaks of the Ontario Geological Survey, with the resulting stoichiometry for grain 16 being (Fe_{0.7}Mn_{0.3})(Nb_{1.9}Ta_{0.1})O_{5.9} and grain 17 being (Fe_{0.7}Mn_{0.3})(Nb_{1.9}Ta_{0.1})O_{5.9}. The latter was also enriched in Ti. The author also observed two tiny acicular crystals up to $\frac{1}{2}$ by 2 mm in size that were probably columbite-tantalite crystals. They were in a small outcrop at trench #20 and were found in a fine grained blocky albite + quartz +garnet + mica zone. These will be shipped to Fred Breaks for analysis. Where tantalum is mined (ie. Tanco in Manitoba), it is easy to see columbite-tantalite, microlites or other Ta bearing minerals by visual inspection. The near complete lack and the poor results from the present analysis (all ≤ 1 ppm, see Appendix 3), indicate no primary Ta potential exists in the examined pegmatites.

Industrial mineral potential of quartz for ornamental stone and as minerals specimens was also quickly examined. Appendix 2 lists the trenches where potential ornamental stone was observed. Poor qualityamethyst material was observed at trenches #5, #15, #17 and #18. Trench #15 had the best material with a one metre spacing on the quartz veins containing amethyst, some of which reached 2 cm in width. Vug space appeared limited and plates of amethyst were almost all damaged.

Molybdenite crystals of collector quality were extremely rare. A centimeter and a half sized crystal in quartz core zone was recovered from the ore dump on trench #2, and a half centimetre sized crystal was found at Trench # 36.

Recommendations

Three areas were selected for potential stripping, two of which are high priority (Area A & B, see map 1) and one of which is low priority (Area C, see map 1).

Area A requires \sim 700 m² stripping around trench 34. Trench 34 had the single best assay (110394 ppm) and appears to have the most molybdenite in the quartz core of any area at Anderson Lake. Stripping will allow for the location of further quartz core and its evaluation for molybdenite content post stripping. Care should be taken to preserve much of the loose rock as it is in part ore.

Area B to the east and south of trench 26 requires about 500 m² to be stripped. This will allow for the core and blocky albite + quartz \pm mica zones containing molybdenite to be evaluated around the trench and to increase the stripped area around trench's 25, 27-30 so they can be better evaluated (these being already stripped) when channel samples are taken later. This area has fairly high molybdenite content in most of these trenches and is a potential target for a bulk sample.

Area C is a lower priority stripping target of 800 m^2 designed to evaluate the presence of quartz core between trench's 13 and 14, where good molybdenite numbers were obtained (between 10176 to 24309 ppm), but the extent of quartz core bearing molybdenite appears somewhat limited and a test sample between the two trenches returned poor results (~790 ppm).

REFERENCES

- Annis, R.C., Cranstone, D.A. and Vallée, M., 1978, A survey of known mineral deposits in Canada that are not being Mined. Energy Mines and Resources Canada Mineral Bulletin MR 181, p.A-27.
- Bjorkman, K., 2005, Mapping/sampling program, Anderson Lake Molybdenum Property, Preliminary Report for El Nino Ventures Inc. 52A 10 NW.
- Campbell, D.D., 1967, Thunder Bay Molybdenum Property, Preliminary Report, Briar Court Mines Limited.
- Campbell, D.D., 1967, Thunder Bay Molybdenum Property, Progress Report #1, Briar Court Mines Limited.
- Cerny, P., 1991a, Rare-element Granitic Pegmatites. Part I: Anatomy and Internal Evolution of pegmatite deposits, Geoscience Canada, v 18, # 2, p.49-67.
- Cerny, P., 1991b, Rare-element Granitic Pegmatites. Part II: Regional to global environments and Petrogenesis, Geoscience Canada, v 18, # 2, p.68-81.
- Eardley-Wilmot, V.L., 1925, Molybdenum metallurgy and uses and the occurrence, mining and concentration of it's ores. Canada Department of Mines report #592, p. 108.
- Fenwick, K.G., Scott, J.F., Mason, J,K, and McIlwaine, W.H., 1981, 1980 Report of the North Central Regional Mineral Resources coordinator *in* Annual Report of the Regional and Resident Geologists 1980, Ontario Geological Survey Miscellaneous Paper 95, p.54.
- Hawley, J.E., 1929, Lead and zinc deposits, Dorion and McTavish townships, Thunder Bay District, Annual Report, Department of Mines, Ontario, v 38, part 6.
- Hogg, N., 1967, Summary Property Report, Briar Court Mines Limited.
- Ingham, W.N., 1966, Molybdenite Property, McTavish township, Thunder Bay District, Ontario Briar Court Mines Limited.
- Johnson, F.J., 1968, Molybdenum deposits of Ontario, Ontario Department of Mines Mineral Resources Circular #7.
- Kissin, S.A., 1990, Granitoid-related mineral deposits of the western Lake Superior region *in* Institute on Lake Superior geology proceedings v. 36, Part 2, p. 53-66.
- Schnieders, B.R. et al., 2002, Report of Activities, 2001 Resident Geologist Program Thunder Bay South Regional Resident Geologist Report: Thunder Bay South District. Ontario Geological Survey Open File Report 6081, p. 38.
- Vokes, F.M., 1963, Molybdenum deposits of Canada, Geological Survey of Canada Economic Geology report #20, p. 80.
- Williams, H.R., 1991, Quetico Subprovince in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p. 383-403.

STATEMENT OF QUALIFICATIONS

I, Andrew A. B. Tims, of 317 Sillesdale Cr., Thunder Bay Ontario hereby certify that:

- 1.) I am the author of this report.
- 2.) I graduated from Carleton University, in Ottawa, with a Bachelor of Science Degree in Geology (1989).
- 3.) I possess a valid prospector's license and have been practising my profession as a geologist involved in mineral exploration for the past 16 years.
- 4.) I am a practising member of the Association of Professional Geoscientist of Ontario as well as a Fellow of the Geological Association of Canada.
- 5.) I do not hold or expect to receive any interest in the property described in this report.
- 6.) I consent to the use of this report by Amador Gold Corporation.

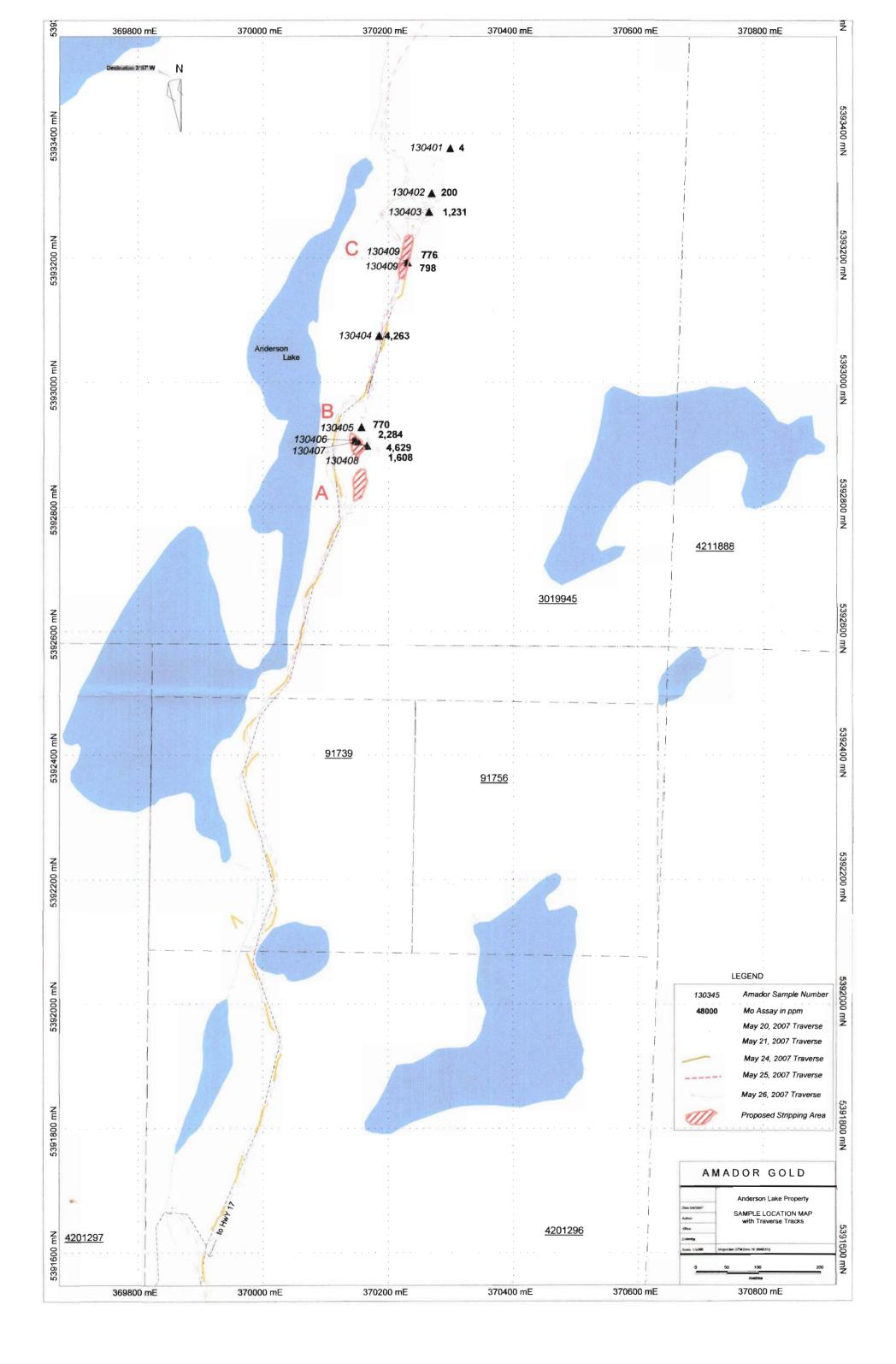
Thunder Bay, Ontario September 6, 2007

Kna

Andrew Tims Geologist Northern Mineral Exploration Services

STATEMENT OF QUALIFICATIONS

I, Harvey M. Buck, of 5883 McCordick Road, RR#3, Richmond, Ontario K0A 2Z0 (ph.613 838-9326) hereby certify that:


- 1.) I am a coauthor of this report.
- 2.) I graduated from Carleton University, in Ottawa, with a Honours Bachelor of Science Degree in Geology (1989).
- 3.) I am a Fellow of the Canadian Gemmological Association (F.C.Gm.A., 1989).
- 4.) I attended the University of Manitoba and completed graduate level courses in mineralogy and geochemistry (1994-1999) that were related to the study of granitic pegmatites, and a unfinished thesis on the mineralogy and geochemistry of the Shatford Lake Pegmatite Group was mostly finished.
- 5.) I have worked as a geologist or been a student studying geology for 14 of the past 18 years since I graduated from Carleton.
- 6.) I have worked as a cataloguer of mineral specimens for the Canadian Museum of Nature for 2 and ½ years, and occasionally as an assistant mineral dealer for well known Canadian and American mineral dealers.
- 7.) I possess a valid prospectors license (1002662) and have spent five summers working for exploration firms such as BHP, Tri-Gold Resources, Granderu Resources, Eastmain Resources etc.
- 8.) I am independent of Amador Gold Corporation.
- 9.) I am not aware of any material fact or material change with respect to the subject matter of this report, the omission to disclose which makes this report misleading.

Thunder Bay, Ontario September 6, 2007

11 Bule Harvey M. Buck

Prospector Northern Mineral Exploration Services

APPENDIX 1 – Traverse and Sample Location Map

APPENDIX 2 – Pegmatite Zones

	Estimated %	Qtz Core	K-Fspr Core Margin	Saccharoidal Albite* + Qtz	Blocky Albite + Qtz
French 1		X			± garnet ± mica
					± K-feldspar
	Pegmatite %	10-15%			85-90%
	Molybdenite %	<<1%			
French 2	molybuchile //	± molybdenite			± mica (biotite?)
		Inorybuchic			± muscovite
	Pegmatite %	~10%			~90%
	-				5676
	Molybdenite %	<1%			mico + aorost
French 3	-	X			mica ± garnet 95%
	Pegmatite %	~5%			95%
	Molybdenite %	<0.1%			
French 4		X			mica (biotite?)
	Pegmatite %	20%			80%
	Molybdenite %				
Trench 5		X			± mica ± garnet
	Pegmatite %	5-10%			90-95%
	Molybdenite %				
Trench 6		Х		± muscovite ± molybdenite	± mica
	Pegmatite %	~10%		~2%	~88%
	Molybdenite %			~1%	
Trench 8	inelybucine //	± molybdenite	± quartz	± garnet ± mica	mica
inenen o	Pegmatite %	~5%	<1%	~1%?	~94%
	Molybdenite %	<<1%	5176	1701	0470
Franch O	WOIYDUEIIILE 70	X	X (abutts quartz core)		muscovite
Trench 9					89%
	Pegmatite %	10%	<1%		09%
	Molybdenite %	<<1%	<<1%		
Trench 10		X		mica	mica
	Pegmatite %	~2-3%		1%?	96-97%
	Molybdenite %			<<1%	
Trench 11		X		mica	mica
					mica (outer is plumose
	Pegmatite %	3-4%		1-2% ??	94-96%
	Molybdenite %	<<1%		<<1%	
Trench 12		Х		mica	mica
					mica (outer is plumose
	Pegmatite %	~10%		5-10%	75-80%
	Molybdenite %	<<1%			<<1%
Trench 13	morybacinto /o	± molybdenite		± mica	± mica
nench 13	Pegmatite %	~5%		grades to coarser zone	95%
				grades to coarser zone	95%
Treach 44	Molybdenite %	~1%	~		
Trench 14		± molybdenite	X		muscovite
	Pegmatite %	~5%	1-2%?		93-94%
	Molybdenite %	<1%			<u> </u>
Trench 15		X		mica ± garnet	mica
	Pegmatite %	1-2%		~1%	97-98%
	Molybdenite %	<<1%		<<1%	
Trench 16		X	X	X	mica
	Pegmatite %	2-3%	~2%	2-5%	90-94%
	Molybdenite %	<<1%			
Trench 17		X		mica	mica
	Pegmatite %	2-3%		grades to coarser zone	97-98%
	Molybdenite %	2070		g	0.0070
Trench 18	morybuenite /0	X	x		mica

	Estimated %	Qtz Core	K-Fspr Core Margin	Saccharoidal Albite* + Qtz	Blocky Albite + Qtz
	Pegmatite %	~4%	~1%		95%
	Molybdenite %	<<1%			
Trench 19	incipedente it	X	X		X
	Pegmatite %	~4-5% to ~15%	0 to 2-3%		83-96%
	Molybdenite %	<1%	0 10 2 0 /0		
Trench 19D		X	X		± mica
Hench 19D	Pegmatite %	10-20%	2-3%		77-88%
	-	<<1%	2-370		11-00 /0
Trench 00	Molybdenite %	×<1%		mine I comet I CT2	
Trench 20				mica ± garnet ± CT?	mica (some plumose
	Pegmatite %	~5%		<1%	~95%
	Molybdenite %	<<1%			
Trench 21		X	X		muscovite
					blady biotite
	Pegmatite %	~5%	~1%?		~96%
	Molybdenite %	<<1%			
Trench 22		Х	X		± mica
	Pegmatite %	3-4%	~1%?		95-96%
	Molybdenite %	<<1%	· · · · · · · · · · · · · · · · · · ·		
Trench 23		Х	X	Garnet	mica
	Pegmatite %	2-3%	<1%	~1%	96-97%
	Molybdenite %	<<1%		<<1%	
Trench 25	molybucinto /c	X		×	mica
	Pegmatite %	2-4%		<20%	76-78%
	Molybdenite %	<<1%-~1%		-20 %	10-1070
Trench 26	WOIYDdernite 70	X			malubdanita (2.2% na
Trench 20		~			molybdenite (2-3% pe
		0.004			X
	Pegmatite %	2-3%			97-98%
	Molybdenite %	<u><1%</u>			<1% beside Quartz co
Trench 27		Х		mica	mica
	Pegmatite %	2-3%		20-50% (some granite?)	47-78%
	Molybdenite %	<< <u>1%</u>		<<1%	
Trench 28	i 7	Х	X	mica ± garnet	mica
	Pegmatite %	2-3%	<<1%	20-30%	67-78%
	Molybdenite %	<<1%		<<1%	
Trench 29	-	Х			± molybdenite (~1% of p
					mica
	Pegmatite %	~5%			<95%
	Molybdenite %	0.5-1%			<<1%
Trench 30	inerjøderne 70	<u> </u>		mica	± mica ± trace CT?
	Pegmatite %	~5%	1	~5%	90%
	Molybdenite %	~5% <1%	1		
	worybuenite %	<u>X</u>	X	mine	<<1% (near quartz cor
I ronoh 01				mica ~2%	± mica (some muscovi
Trench 31	Dogmotite 0/	. 20/	10/		~94%
French 31	Pegmatite %	~3%	~1%	~2%	
	Pegmatite % Molybdenite %		~1%		· · · · · ·
Trench 31	Molybdenite %	X	~1%	mica	mica
	Molybdenite % Pegmatite %	X ~2-3%	~1%		mica 92-96%
Trench 32	Molybdenite %	X ~2-3% <<1%		mica ~2-5%	92-96%
	Molybdenite % Pegmatite % Molybdenite %	X ~2-3% <<1% ± mica	x	mica ~2-5% mica	92-96% ± mica
Trench 32	Molybdenite % Pegmatite %	X ~2-3% <<1%		mica ~2-5%	92-96%
Trench 32	Molybdenite % Pegmatite % Molybdenite %	X ~2-3% <<1% ± mica	x	mica ~2-5% mica	92-96% ± mica
Trench 32	Molybdenite % Pegmatite % Molybdenite % Pegmatite %	X ~2-3% <<1% ± mica ~5%	x	mica ~2-5% mica	92-96% ± mica
Trench 32 Trench 33	Molybdenite % Pegmatite % Molybdenite % Pegmatite % Molybdenite %	X ~2-3% <<1% ± mica ~5% <<1% X	X 1-2% X	mica ~2-5% mica 2-3% garnet + mica	92-96% ± mica 90-92% mica
Trench 32 Trench 33	Molybdenite % Pegmatite % Molybdenite % Pegmatite %	X ~2-3% <<1% ± mica ~5% <<1%	X 1-2%	mica ~2-5% mica 2-3%	92-96% ± mica 90-92%

	Estimated %	Qtz Core	K-Fspr Core Margin	Saccharoidal Albite* + Qtz	Blocky Albite + Qtz
	Pegmatite %	3-4%		3%	93-94%
	Molybdenite %	<1%			
Trench 36		X		mica	± mica
	Pegmatite %	2-3%		~5%	92-93%
	Molybdenite %	<<1%			
Trench 37		<u> </u>	X		± mica
	Pegmatite %	5%	2-4%		91-93%
	Molybdenite %	<<1%			
Trench 38		X	X	X	mica
	Pegmatite %	~6%	~10%	2-3%?	81-82%
	Molybdenite %				
Trench 39		X	X		c mica
	Pegmatite %	~10%	~2%		88%
	Molybdenite %	<<1%			
Trench 40		mica	X	X	± mica
	Pegmatite %	~10%	~1-2%	~10%? (granite??)	78-79%
	Molybdenite %				
French 41		X	X	X	± mica
	Pegmatite %	~3%	~1%	~20% (granite??)	~76%
	Molybdenite %				

X indicates presence of mineral assemblage from the header * Note that some occurrences are less suggary and are medium to fine grained but still formed close to the quartz cor

Appendix		Ornamer	ntal Mater	ial								
Trench	Drusy quar	tz crystals	Amethyst o	crystals	Comments							
	Poor	Okay	Poor	Okay								
#2	X											
#4			X		Veins to 2 cm wide							
#5				X	Limited quantity, most smokey quartz, second							
					best locality at Anderson Lake noted							
#8	X				Very rare							
#9			X		Very minor							
#10	X				Very poor							
#13	X		X		Very poor and rare							
#14	X				Very poor and rare							
#15		X		X	1 m vein spacing, best is smokey, to 2 cm wide veins,							
					best locality at Anderson Lake noted							
#16	X				Very poor							
#17	X		X	X	Some of the better quartz							
#18	X			X	Rare amethyst, most smokey quartz,							
					hematite in amethyst tips, best after Trench 5 and 15							
#19	X		X		Rare							
#23	X				On fracture surfaces, rare							
#25	X				Rare							
#34	X				1 mm tips associated with quartz core							
#41	X				Rare							

APPENDIX 3 - 2005/2007 Assay Results and Descriptions

1046 Gorham Street Thunder Bay, ON Canada P78 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Friday, September 7, 2007

Amador Gold Corp. 16493 26 Ave. Surrey, BC, CAN V3S9W9 Ph#: (604) 536-5357 Fax#: (604) 536-5358 Date Received: May 31, 2007 Date Completed: Jun 18, 2007

> Job #: 200741646 Reference: Sample #: 9 Rock

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
122203	130401	<5	<0.001	< 0.005
122204	130402	<5	<0.001	<0.005
122205	130403	<5	<0.001	<0.005
122206	130404	5	<0.001	0.005
122207	130405	<5	<0.001	<0.005
122208	130406	7	<0.001	0.007
122209	130407	10	<0.001	0.010
122210	130408	11	<0.001	0.011
122211	130409	<5	<0.001	<0.005
122212 Dup	130409	17	<0.001	0.017

PROCEDURE CODES: AL4AU3

By: r

Certified

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Derek Demianiuk H.Bsc., Laboratory Manager

AL903-0455-09/07/2007 10:42 AM

Sample #	Easting	Northing	Rock type	Location	% Moly	Mo	S	Fe	Mn	Nb	Та	Ti	W	Rb	Li	Ag	Al	As	В	Ba
						ppm	%	%_	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
130401			Qz core + mica	trench 4 dump	0	4	<0.10	0.67	<100	<1	<1	<100	<10	33	1	<1	0.95	4	N/A	8
130402			Mg-Fg Bl Ab + Qz + musc	trench 6 at the side	~1	200	<0.10	0.8	244	7	<1	<100	<10	124	21	<1	3.91	4	N/A	73
130403	370265	5393274	Qz core & Bl Ab + Qz + mica	trench 11 loose	1 to 2	1231	0.11	0.67	193	17	<1	<100	<10	116	8	<1	4.49	3	N/A	84
130404		5393075		trench 16 SE side dump	loc ~1	4263	0.3	0.46	<100	29	<1	<100	<10	192	<1	4	2.8	6	N/A	77
130405	370157	5392928	Mg-Fg Bl Ab + Qz + mica	trench 23 E side dump	loc ~1	770	<0.10	0.43	157	15	<1	<100	<10	76	5	2	3.15	3	N/A	26
130406	370147	5392907	BI Ab + Qz + mica	trench 26 W side dump	1 to 2	2284	0.17	0.4	314	19	<1	<100	<10	186	10	<1	4.56	3	N/A	24
130407	370152	5392905	Qz core	trench 26 dump	1 to 2	4629	0.32	0.31	<100	11	1	<100	<10	247	4	<1	3.46	9	N/A	31
130408	370166	5392898	Qz core	trench 27 S side dump	2	1608	0.18	0.57	123	21	<1	<100	<10	66	9	<1	2.46	3	N/A	17
130409	370231	5393193	Qz core	between Tr 13 & Tr 14	1	798	<0.10	0.37	<100	5	<1	<100	<10	122	5	1	2.14	4	N/A	45
130409	370231	5393193	Qz core	between Tr 13 & Tr 14	1	776	<0.10	0.37	<100	4	<1	<100	<10	125	6	<1	2.25	3	N/A	45
F-53-05				Anderson pegmatite		>10000	0.97	0.36	16	25.2	8.26	70	1.3	223	5	8.24	2.51	5.4	N/A	40
			Reinterpreted rock type from previous	s work	F	Rock type	(origional	descri	ption)											
48251	370257	5393013	white peg vein in sed*	east strip	loc 0.5	285	white pe	g vein	in sed											
48252	370280	5393044	Q- peg*	old pit	1 to 2	2831	Q- peg													
48253	370330	5393417	Qz core & Mg Bl Ab + Qz	trench 1 dump	2 to 3	15037	white pe	g												
48254	370330	5393417	Qz core	trench 1	minor	9088	Q vein	-												
48255	370326	5393412	Qz core & Bl Ab + Qz + garnet	trench 2 on dump	2 to 3	4709	pink peg													
48256	370314	5393404	pink biot peg*	trench 2 on good dump	0.5 to 1	1678	pink biot	peg												
48257	370323	5393412	BI Ab + Qz + mica	insitu	1	4855	Q in light	t biot p	eg											
48258	370317	5393409	Qz core with contact molybdenite	trench 2 on good dump	1 to 2	19697	Q and Q	•	-											
48259	370319	5393403	Qz core & Bl Ab + Qz + mica	trench 3	1 to 2	1676	Qv in wh	ite peg	1											
48260	370268	5393304	Qz core	trench 6 on good dump	0.5	4044	QV													
48261	370266	5393301	Qz core & BI Ab + Qz + mica	trench 6 on good dump	2	9425	red peg													
48262	370272	5393354	Drusy Qz + galena in metasediment	trench 5	1 to 2	194	narrow d	ruse q	in peg											
48263	370272	5393354	Drusy Qz in Mg-Fg Bl Ab + Qz + Gn	trench 5 dump	2 to 3	63	narrow d		• •											
48264			Qz core & Bl Ab + Qz + musc	trench 8 dump	minor	1147	reddish p	-												
48265	370281	5393298	Qz core (& K-spar core margin?)	trench 9	minor	139	Q peg	Ũ												
48266	370272	5393289	Mg-Fg Bl Ab + Qz + mica	trench 10 loose	minor	1649	orange p	ink pe	a											
48267			Mg-Fg BI Ab + Qz + mica	trench 10 loose	1	815	orange p	-	-											
48268	370260	5393271	Fg Bl Ab + Qz + mica	trench 12 loose	minor	452	orange p	•	-											
48269		5393221		trench 13 loose	1	10176	Q		-											
48270	370227	5393221	Q in pink peg*	trench 13	4 to 5	13281	Q in pink	peg												
48271			Qz core & BI Ab + Qz + mica	trench 14	4		Qv in pir		peg											
48272			Qz core & Bl Ab + Qz + mica	trench 14	4 to 5		QV in pa													
48273			pink white peg*	trench 15	minor	729	pink whit	-												
48274			Qz core & BI Ab + Qz + mica	trench 17	2 to 3	18222	Q and or		eq											
48275		5393022		trench 18 loose	2	10377	Q pieces													
48276		5393024		trench 18	0.5	6243	pink peg													
48277			orange pink peg*	trench 18	0.5	2761	orange p		a											
48278			red orange peg*	trench 25	3		red orang													

Sample #	Easting	Northing	Rock type	Location	% Moly	Mo	S	Fe	Mn	Nb	Та	Ti	W	Rb	Li	Ag	AI	As	8	Ba
48279	•	-	Qz core & Bl Ab + Qz	trench 25 loose	4	36179	red oran	nge peg							0	•				
48280	370160	5392906	(Qz core?? &) BI Ab + Qz	trench 25 loose	3	5681	red oran	nge peg												
48281	370177	5392898	pink orange peg*	trench 25 loose	2	14529	pink ora	nge peg	3											
48282	370169	5392889	lite pink peg*	trench 25 good dump	2 to 3	4363	lite pink	peg												
48283	370164	5392888	Qz core & BI Ab + Qz	trench29	2	4118	red oran	nge peg												
48284	370166	5392877	mm qv in peg*	trench 30 insitu	1	4186	mm qv i	in peg			ļ									
48285	370166	5392879	red peg*	trench 30 insitu	minor diss	526	red peg													
48286	370182	5392878	Qz core & Fg Bl Ab + Qz + garnet	trench 28 loose	1	3576	leoco pe	eg												
48287	370159	5392926	Qz core & Bl Ab + Qz + mica	trench 23	minor	5622	Q in pin	k orang	e peg											
48288	370172	5392992	Qz core & Bl Ab + Qz ± mica	trench 19	1	5089	Q in red	orange	e peg	1										
48289			Q in peg*	trench 20-loose	1	6757	Q in peg	3												
48290	370165	5392951	Q in pink orange peg*	trench 21-loose	1	4358	Q in pin	k orang	e peg											
48291	370158	5392878	Qz core & Bl Ab + Qz	trench 31-loose	3 to 4	11204	Q in ora	inge peg	g											
48292	370159	5392872	Qz core & Bl Ab + Qz	trench 32	2	21197	Q in pal	e orang	e peg											
48293	370160	5392853	Qz core & Bl Ab + Qz + mica	trench 32-loose	minor	3052	peg and	mica			-									
48294	370155	5392856	Qz core	tr 34-loose from tr	2	4554	Q in larç	ge piece	9											
48295	370154	5392857	Qz core & Bl Ab + Qz + mica	tr 34 yellow stain-v nice	5to 8	110394	Q in ora	nge peg	g											
48296	370158	5392842	Qz core & K-spar core margin	tr 34 on fracture	2	27541	red orar	nge peg												
48297	370154	5392815	Qz core	tr 35	2 to 5	10008	Q and n	ear frac	x											
48298	370158	5392811	Qz core & Bl Ab + Qz + mica	tr 35 from good dump	minor	20025	Q and p	eg												
48299			Qz core & Bl Ab + Qz + mica	tr 36	minor	1884	peg on f	fract												
48300	370144	5392802	Qz core & Bl Ab + Qz ± mica	tr 37	1	4295	Q in ora	nge pe	9											

Appendix B * indicates 2005 samples that were not relocated in the current study

APPENDIX 4 - ICP Analysis Certificates

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

of the laboratory.

* The results included on this report relate only to the items tested

*The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

Amador Gold Corp. Date Created: 07-07-06 08:54 AM Job Number: 200741646 Date Recieved: 5/31/2007 Number of Samples: 9 Type of Sample: Rock Date Completed: 6/18/2007 Project ID:

Ni Ρ Pb Sb Se Si Sn Sr Ti TI w Υ Accur. # Client Tag Cd Cr Cu Fe Li Mg Mn Mo Na v Zn Ag A As в Ba Be Bi Ca Co κ % % % % % % % ppm ppr ppm ppm ppm ppm ppm ppm ppm ppm 122203 0.95 600 29 0.67 0.44 0.04 <100 4 N/A 23 <100 23 <5 <5 N/A <10 <3 <100 <1 2 <10 <1 130401 <1 4 N/A 2 0.09 <4 <1 1 1 8 18 32 22 21 200 N/A 145 <5 13 17 122204 130402 <1 3.91 4 N/A 73 5 <1 0.24 <4 <1 192 15 0.80 1.31 0.10 244 <5 N/A <10 <100 <1 4 <10 193 1231 N/A 18 113 39 <5 25 6 37 205 19 0.67 1.65 8 0.11 <5 N/A <10 <100 <10 9 122205 130403 <1 4.49 3 N/A 84 6 0.26 <4 <1 <1 4 122206 130404 2.80 6 N/A 77 3 0.07 <4 <1 406 15 0.46 2.57 <1 0.03 <100 4263 N/A 20 <100 24 <5 <5 N/A <10 10 <100 <1 <2 <10 3 <1 - 4 1 N/A 19 <5 122207 130405 2 3.15 3 N/A 26 5 25 0.19 <4 <1 251 18 0.43 0.74 5 0.04 157 770 100 40 <5 N/A <10 8 <100 <1 <2 <10 12 1 17 157 28 122208 153 1.93 10 0.06 314 2284 N/A <5 <5 N/A <10 10 <100 <2 <10 7 <1 130406 <1 4.56 3 N/A 24 6 <1 0.24 <4 <1 14 0.40 <1 300 3.13 <100 4629 N/A 18 <100 26 <5 N/A 11 <100 <2 3 122209 130407 <1 3.46 9 N/A 31 3 17 0.10 <4 <1 14 0.31 4 0.04 <5 <10 <1 <10 <1 122210 130408 3 N/A 17 3 <1 300 16 0.57 0.92 9 0.07 123 1608 N/A 18 <100 34 <5 <5 N/A <10 7 <100 <1 <2 <10 6 1 2.46 <1 0.14 <4 <1 353 1.79 <100 798 N/A 19 <100 <5 9 <2 122211 130409 2.14 N/A 45 2 57 0.08 <4 <1 15 0.37 5 0.04 44 <5 N/A <10 <100 <1 <10 3 <1 4 1 <100 N/A 20 <100 45 <5 <2 3 122212 3 2 59 357 15 0.37 1.86 6 0.04 776 <5 N/A <10 9 <100 <1 <10 <1 130409 <1 2.25 N/A 45 0.09 <4 <1 Ζr S υ Rb Sc Те Th Hg Ce Ga Ge Hf In La Nb Та % ppm <10 122203 130401 <1 2 <1 6 2 2 <1 33 <1 <1 1 <1 43 <1 <0.10 76 <10 122204 130402 35 13 <1 18 7 124 2 <1 <1 13 <1 <0.10 8 1 80 <10 122205 7 2 <1 <1 0.11 130403 11 13 2 8 2 17 116 <1 8 <10 122206 39 2 130404 <1 6 9 7 4 <1 29 192 <1 <1 <1 <1 0.30 122207 130405 7 2 3 15 76 <1 <1 6 46 <1 < 0.10 10 6 9 1 1 53 <10 2 3 2 122208 130406 6 13 4 7 19 186 2 <1 <1 1 0.17 3 <1 <1 <1 50 2 0.32 <10 122209 130407 11 7 1 11 247 1 <1 7 57 3 3 <1 11 122210 130408 3 7 4 8 21 66 1 <1 4 <1 0.18 42 122211 130409 2 7 3 <1 5 122 <1 <1 <1 <1 1 <0.10 <10 <1 6 125 47 <0.10 <10 122212 130409 <1 <1 7 1 4 <1 <1 <1 <1 <1 4 -5

APPENDIX 5 - Sample Prep and Analytical Procedures

Principle of the Method

The rock samples are first entered into Accurassay Laboratories Local Information System (LIMS). The samples are dried, if necessary and then jaw crushed to -8mesh, riffle split, a 250 to 400 gram cut is taken and pulverized to 90%-150 mesh, and then matted to ensure homogeneity. Silica sand is used to clean out the pulverizing dishes between each sample to prevent cross contamination. For soils the sample is dried and screened through -80 mesh. The -80 portion is fired in the assay lab. For humus, it is dried and the entire sample is blended until larger parts are broken down and then sent to fire assay. The homogeneous sample is then fired in the fire assay lab. The sample is mixed with a lead based flux and fused for an appropriate length of time. The fusing process results is a lead button, which is then placed in a cupelling furnace where all of the lead is absorbed by the cupel and a silver bead, which contains any gold, platinum and palladium, is left in the cupel. The cupel is removed from the furnace and allowed to cool. Once the cupel has cooled sufficiently, the silver bead is placed in an appropriately labeled small test tube and digested using a 1:3 ration of nitric acid to hydrochloric acid. The samples are bulked up with 1.0 mls of distilled deionized water and 1.0 mls of 1% digested lanthanum solution. The total volume is 3.0 mls. The samples cool and are vortexed. The contents are allowed to settle. Once the samples have settled they are analyzed for gold, platinum and palladium using atomic absorption spectroscopy. The atomic absorption spectroscopy unit is calibrated for each element using the appropriate ISO 9002 certified standards in an air-acetylene flame. The results for the atomic absorption are checked by the technician and then forwarded to data entry by means of electronic transfer and a certificate is produced. The Laboratory Manager checks the data and validates it if it is error free. The results are then forwarded to the client by fax, email, floppy or zip disk, or by hardcopy in the mail. NOTE: This method may be altered according to the client's demands. All changes in the method will be discussed with the client and approved by the laboratory manager.

Base metal samples are prepped in the same way as precious metals but are digested using a multi acid digest (HNO₃, HF, HCI). The samples are bulked up with 2.0 mls of hydrochloric acid and brought to a final volume of 10.0 mls with distilled deionized water. The samples are vortexed and allowed to settle. Once the samples have settled they are analyzed for copper, nickel and cobalt using atomic absorption spectroscopy.

Quality Control

Accurassay Laboratories employs an internal quality control system that tracks certified reference materials and in-house quality assurance standards. Accurassay Laboratories uses a combination of reference materials, including reference materials purchased from CANMET, standards created in-house by the laboratory, and certified calibration standards. Should any of the standards not fall within an acceptable range, reassays will be performed with a new certified reference material. The number of reassays depends on how far the certified reference material falls outside it's acceptable range.

Additionally, Accurassay Laboratories verifies the accuracy of any measuring or dispensing device (i.e scales, dispensers, pipettes, etc.) on a daily basis and are corrected as required.