Countr	ry	Canada	la			VENCA	N GOL	D Co	rporatio	n																					
PROJE	CT Ge	noa To	wnshin	Properties-S	wayze Area Or	ntario Grid Co ordinates (UTM) final Diff. GPS +/ - 1m				шог	E ID#			VG-0	S-01				1				-								
FROJE	C1 CC	iloa 10	Wilsinp	Drill Start Date		Northing 5298911.84	Dat	um	NAD 83		From (m	\	0.00		То	(m) 7.00	FI	levation (m)	304 27				-								
HOLE ID	o# \	VG-06-	-01	Drill Finish Date	June 15,2006	Easting 410356.01	ZO		17		From (m		7.00		То			of Oxidation	004.27				-								
Logged I		C. aussa		Depth (m)	Azm.º Incl. O	Elevation 394.27					From (m				TD				ı				Ī								
up-Date		Co	ollar		0.00 -45.0	Drill Company: Bradly Brothers, Timmins,Canada				diam.	HQ 6.3	5 cm	NQ 4.76	cm	BQc	m Comments:															
		Re	eflex	17.0	0.30 -45.2																										
		Re	eflex	68.0	2.30 -43.7																										
	-	Re	eflex	110.0	3.10 -42.9											1	,														
Countr	ry MAJOR LITH	Canada	a	Subsidio	ary Lithology			Alterat	tion	HOL	E ID#	RALIZAT	VG-	06-01	OV MINIE	DALS		STRUCTU	IDE				۸۹۹	AY RESULT	9						
From	To LITHO	Litho	Litho	From To	LITHO Litho		From	To	Alt Inter	. From	To	PY CP	Y SPH	Po	Mag Gal	ena Other Min.	Depth	Structure	Structure	Sample		To	Interval		Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m) Code	Ratio	Modifier	(m) (m)	Code Modifier	COMMENTS	(m)	(m)	Type WM	S (m)	(m)	% %	%	%	% 9	6 or Comments	s (m)	Туре	Angle	#	(m.)	(m.)	(m.)	rta (ppb)	(g(ppiii)	Оц(ррпп)	т Б(ррпп)	Zn(ppm)	%	%	Meters
0.00 7	7.00 NR					Casing																									
7.00 1	8.65 MAT					7-7.3 homblende rick, massive, strongly magnetic																									ļ
						7.3-13.1 Garnetiferous, foliated at 50 $^{\circ}$ to CA, mn Py stringers parallel to CA																									
						occational quartz-carbobate stringers																									
						13.1-13.8 massive green-grey andesite, occational quartz-carbonate stringer																									
						13.8-17.15 garnetiferous																									
						17.15-18.65 mn qtz flooding, ankerite alteration, beige coloured irregular																									
						banding magnetic														5001	17.15	18.65	1.50	3	1.1	0.0148	0.056	0.0835			<u> </u>
18.65 1	9.25 QFP					Light grey, phenos to 2mm														5002	18.65	19.25	0.60	Nil	0.2	0.0002	0.0247	0.114			
19.25 2	0.35 MAT					qtz flooded, siliceous	19.25	20.25	SILI S	19.25	20.35		2		0.	.5				5003	19.25	20.35	1.10	Nil	1.2	0.0177	0.721	2.86	0.35	1.55	6.05
20.35 2	0.95 QFP					light to medium grey qtz flooded														5004	20.35	20.95	0.60	Nil	0.3	0.0003	0.096	0.0234			
20.95 2	2.50 BRX					qtz flloded, brecciated MAT	20.95	22.50	SILI S	20.95	22.50	0.	5 1		0.	.5	20.95	стс	45	5005	20.95	22.50	1.55	Nil	0.7	0.016	0.464	2.16			
22.50 2	4.40 MAT					medium grey-green, mn distict wavy creamy alteration											21.10	VNQZ	40	5006	22.50	23.10	0.60	Nil	0.1	0.0016	0.0064	0.0422			
						core broken 22.5-23.1														5007	23.10	24.40	1.30	Nil	0.4	0.013	0.0413	0.057			
24.40 2	5.30 BRX					quartz flooded MAT	24.40	25.30	SILI S	24.40	25.30	1	1							5008	24.40	25.30	0.90	7	1.6	0.0431	0.538	3.05			i
						24.7-24.8 graphitic														5009	25.30	25.90	0.60	Nil	0.2	0.0149	0.0285	0.0684			
25.30 2	5.90 MAT					medium green-grey garnetiferous														5010	25.90	27.20	1.30	Nil	0.1	0.0011	0.0012	0.007			
25.90 2	8.50 QFP					massive light grey, phenos to 1-2mm, occational qtz-carb stringers														5011	27.20	28.50	1.30	Nil	0.1	0.0009	0.0001	0.0026			
						25.9 broken contact																									
28.50 3	5.55 MAT					Massive grey-green, occational irregular qtz-carb stringers, mn qtz											28.50	СТС	50												
						veinlets											30.00	VNQZ	45												
						28.5-30.0 garnetiferous											30.10	FOL	50												
						33.8 1cm qtz-carb veinlet at 75 ° to CA																									
						35-35.55 gametiferous																									
35.55 3	8.40 FELT					Brownish grey, narrow intervals siliceous & qtz flooded, narrow intervals											1			5012	35.55	37.00	1.45	Nil	0.2	0.0115	0.0001	0.0058			
						brecciated; Py clots associated with quartz flooded intervals											38.00	FOL	35	5013	37.00	38.40	1.40	Nil	0.2	0.0109	0.001	0.0161			<u>. </u>

Count	v	Canada									HOLE ID	#		VG-	06-01																		
	MAJOR LITH	HOLOGY				y Lithology			Iteration			MINER	ALIZATIO	N & AC	CESSOF				S	STRUCTU	IRE				AS	SAY RESU	JLTS						
From	To LITHO	Litho	Litho	From	To (m)	LITHO Litho Code Modifier	COMMENTS	From (m) (Γο Alt m) Type	Inten.	From T) P	PY CPY	SPH	Po I	Mag Ga	alena C	Other Min.	Depth	Structure	Structure	Sample #	From	To	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb	Zn %	Interval Meters
(m)	(m) Code	Ratio	Modifier	(m)	(m)	Code Modifier	COMMENTS	(m) (m) Type	WIN S	(m) (n	1) 7	% %	%	%	%	% or	Comments	(m)	туре	Angle	#	(m.)	(m.)	(m.)						%	76	weters
							38.4 a 6 cm graphitic band																										
38.40 5	5.20 MAT						massive green-grey; occational qtz-carbonate stringers												40.40	FOL	45												<u> </u>
							narrow sections with weak chloritic alteration; weak foliation																									,	<u> </u>
							38.4-38.9 broken core												46.80	VQCB	45												<u> </u>
							53.9-55.2 frequeent qtz-carbonate stringers generally parrallel to foliation																										<u> </u>
							47.2 an 8cm qtz-flooded interval																										
							49.1 calcareous band at 15° to CA												51.60	VNQZ	45											,	
							52.1 a 1cm breccia at 50 ° to CA containing a 3cm bleb of Po/Cpy												52.10	BRX	15												<u> </u>
							qtz-carbonate in-fill																										<u> </u>
							51.6 a 1cm qtz veinlet																									,———·	<u> </u>
55.20 5	9.95 QFP						massive, light to pale grey, phenos to 2mm, weak spotty potassic												54.60	VQCB	60											,———·	<u> </u>
							alteration mn chlorite stringers												54.90	VQCB	45												
							59.2-59.95 weakly foliated at 40 $^{\circ}$, appearance of biotite												55.20	CTC	45												<u> </u>
59.95 6	1.60 MAT						30cm chilled margin												59.70	FOL	40												<u> </u>
							medium green, weakly chloritic, well foliated, occational quartz-carbonate												60.40	FOL	45												<u> </u>
							stringers parallel to foliation												60.80	VQCB	40												
61.60 6	2.90 QFP						massive, phenos to 2mm, trace Py along fractures												61.40	СТС	40												
62.90 7	2.90 MAT						massive, medium to dark green, occational quartz-carbonate stringers												62.90	СТС	45												<u> </u>
							mn Po & Py stringers & fracture filling, mn quartz flooding, weak foliation												71.60	FOL	45												<u> </u>
							70.35-70.5 <1% Po & Py stringers, 5% GARNETS chilled zone												71.80	FOL	45											, 	
72.90 7	3.90 QFP						massive, phenos to 2mm												73.90	СТС	40												
							72.6-72.7 chilled margin																										
							core follows contact from 72.6-72.7, contact irregular																										
73.90 8	0.30 MAT						massive, medium grey-green																										
							76.7-76.8 graphitic 20% Py, very sharp contacts at 55 ° to CA																										
							77.4-80.3 well foliated with colour banding (narrow) caused by narrow mm								Ш				77.40	FOL	50												<u> </u>
							wide biotitic (brown) concentrated bands, frequent quartz-carbonate								Ш				77.80	VQCB	40												<u> </u>
							stringers parallel to foliation												78.30	VNPY	50												<u> </u>
							77.8-77.85 graphitic												78.70	VNCB	55												<u> </u>
80.30 8	1.75 QFP						massive, medium grey, phenos to 2mm									\perp	\perp		78.80	FOL	55											, 	<u> </u>
81.75 8	2.60 MAT						well foliated banded medium to dark green, carbonate stringers parallel												79.90	FOL	55												<u> </u>
							to foliation, occational streatched lapilli												80.50	СТС	65												
]					82.35-82.6 pyritic chill margin, biotitic			Ī									82.00	FOL	55												i

							I							E ID#			VG-0	C 04						I				1					1	$\overline{}$	
COL	untry MA	JOR LIT		nada GY		Subsidi	ary Litho	ology		+	Alter	ation	HOI		VERALI:				Y MINER	ALS	1	STRUCTU	IRF	-			Δ	SSAY RESU	II TS	l .		l .			
From		LITH			Litho			D Litho	†	From		Alt Inte	n From						lag Gale			Structure		Sample	From	To	Interval						Pb	Zn	Interval
(m)			Ra					Modifie	COMMENTS	(m)		Type WM				%			% %					#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	Meters
82.60	83.55	5 QFF							massive, medium grey, phenos to 2mm																										
									occational irregular quartz veinlets to 1cm												85.70	FOL	50											ļ	<u> </u>
83.55	87.80	MAT	-						83.55-83.7 chilled margin, biotitic												87.80	СТС	65											ļ	<u> </u>
									medium to dark grey green, weakly chloritic, massive, occational stretched												89.80	FOL	50											ļ	<u> </u>
									lapilli, occational irregular crbonate stringers fracture filling & stringers												90.10	VNQZ	45											ļ	<u> </u>
									parallel to foliation				_								90.35	VNQZ	40											ļ	<u> </u>
87.80	88.15	QFF							massive, medium grey, fine grained												91.40	FOL	47											ļ	<u> </u>
88.15	110.0	0 MAT	-						medium grey-green. Massive, scattered irregular quartz carbonate												91.80	FOL	55											<u> </u>	<u> </u>
									stringers, mn quartz veinlets to 1cm, trace widely scattered Po as												94.50	FOL	55											<u> </u>	<u> </u>
									disseminations and occationally as stringers								_				95.10	FOL	45											<u> </u>	<u> </u>
									occational bands disseminated with very small gamets. Occational												98.00	VNQZ	40											 	<u> </u>
								-	narrow chloritic sections												103.60	VNCB	45											 	<u> </u>
									90.5-90.7 extensive quartz-carbonate flooding, brecciated				-				_				108.10	FOL	50												
									107.9-110 well foliated, occational quartz-carbonate stringers parallel to				-				_				109.70	FOL	60												
									foliation, frequent narrow garnitiferous bands acsenting foliation												-														
		-						-	trace disseminated Po & Po blebs along edges of quartz-carbonate				-								-													 	
		+		+			-	+	stringers	+			+		\vdash		\dashv	-			+														
		+		+			-	+	108-108.9 frequent carbonate stringers crosscutting foliation & first set of	+			+		\vdash		\dashv	-			+														
									quartz-carbonate stringers which are parallel to foliation	+			+								1														
								1	crosscutting carbonate stringers occur at 25 ° to CA	1			1				_				+													<u>'</u>	

Country		Canad	la				VENC	AN GOLD	Corporat	ion																			
PROJECT	G	enoa To	wnshin	Proper	ties-Swavze	Area Ontario	Grid Co ordinates (UTM) final Diff. GPS +/ - 1m			HOLE ID	#		VG-06-	02			1											\Box	
TROOLOT	<u> </u>	ciiou io	wiionip	Drill Sta			5298610.25	Datum	NAD 83		m (m)	0.0		To (m) 5.00	Ele	evation (m)	430.40												
HOLE ID#		VG-06-	-02	Drill Fini	sh Date June	17,2006 Easting	409919.69	zone	17	NQ Fro	m (m)	5.0	00	To (m) 56.00	Base of	f Oxidation													
Logged By:		C. Aussa	ant	Depth (n		1 1	430.40			BQ Fro	m (m)			TD m. 56.00															
up-Dated			ollar		350.00	 	pany: Bradly Brothers, Timmins, Canada			diam. H	2 6.35 cm	NQ 4.7	76 cm BC	Comments:														\rightarrow	
			eflex	17 56		-42.9 0 -42.3																						\rightarrow	
Country		Canada		36	.0 354.80	J -42.3				HOLE ID	#	VG	3-06-02									1						-	
MA		HOLOGY Litho			Subsidiary Lithol			Altera From To			MINERAL	IZATION &	ACCESSORY			STRUCTU		0 1	-	- 1.		Y RESULT	rs					<u> </u>	Interval
From To (m) (m)							COMMENTS		Alt Inten				H PO Mag				Structure Angle	Sample #		To Ir		u (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)			Meters
0.00 5.00	NR					Casing																							
5.00 26.40	IF					MAGNET	TITE RICH IRON FORMATION																						
5.00 26.40	IF.																												
						massive v	well foliated/banded, foliation acsented by pyritic/pyrrhotite		+ +		00 5		20 70		7.00	FOL	55	5014	5.00	6.50	1.50	10	0.3	0.0066	0.0357	0.098		\rightarrow	
	-	+				stringers;	magnetite/Po matrix with clots and stringers of Py and Po	\vdash	+	9.00 10	.00 30		30 40		8.50	FOL	45	5015	6.50	8.00	1.50	24	0.7	0.0129	0.0168	0.0247	 	\dashv	
						sulphide o	content variable from 10 to 30%, minor 1/2cm quartz/carbonate		++	10.00 10	.50 5		10 85		11.90	FOL	50	5016	8.00	9.50	1.50	38	0.7	0.0046	0.0016	0.0213			
						veinlets, r	narrow sections with 5% sphalerite bands; occational silicified			10.50 10	.75 10		70 20		15.55	VCBL	47	5017	9.50	11.00	1.50	21	0.8	0.0053	0.0644	0.175			
						(cherty) ir	ntervals with Po/Py stringers; foliation generally crenulated			10.75 10	.95 1		5 20	,	15.60	VCBL	40	5018	11.00	12.50	1.50	51	0.7	0.0039	0.0023	0.0231			
							95 siliceous section disseminated with magnetite, occational			10.95 14	.20 30		30 40		15.90	FOL	50	5019	12.50	14.20	1.70	31	0.9	0.0099	0.0184	0,162			
							-				.60 10	10	100 100		16.10	VQCB	30	5021	14.20	15.50	1.70	40		0.0988	0.821	0.102	1.10	2.96	
						Py/Po stri			 												1.00	48	2.8			2.4	1.10	2.96	3.70
		-				14.55 a 3	cm chlorite/carbonate vein at 47° to Ca with adjacent	-	+-+	14.60 17	.90 20	5	5 60	mn	17.00	VCBP	15	5022	15.50	17.00	1.50	48	2.4	0.02	1.37	2.97		\rightarrow	
						sphalerite	bands			17.90 19	.30 20		20 50		17.30	FOL	50	5023	17.00	17.90	0.90 Nil	1	1.5	0.0054	1.04	3.74		\rightarrow	
						minor gal	ena associated with spha;lerite rich bands											5024	17.90	19.00	1.10	41	0.4	0.0159	0.0153	0.0441			
						15.6 chlo	rite/carbonate veinlet 1/2cm wide at 40° to CA			19.30 19	.80 5		5		17.60	VQCB	20	5026	19.00	20.00	1.00	34	0.2	0.0087	0.002	0.0176			
						16.1 quar	tz/carbonate/sphalerite vein at 30° to CA			19.80 21	.00 20		20 60		20.50	FOL	60	5027	20.00	21.50	1.50 Nil		0.3	0.0094	0.0003	0.0216			
							•															45							
	1	1					tz/carbonate vein with sphalerite clots, 1cm wide at 15° to CA	 	+ + -		.30 5		0 00		22.00	FOL	60	5028	21.50	23.00	1.50	45	0.3	0.005	0.0001	0.0325	-	\dashv	
	-	+				17.3 folia	tion, pyrite stringers and sphalerite bands at 50 ° to CA	\vdash	+	21.30 22	.30 20		15 40		23.40	FOL	50	5029	23.00	24.50	1.50	34	0.3	0.004	0.0001	0.0243	 	\dashv	
		+				17.6 quar	tz/carbonate/chlorite vein 1/2 cm wide at 20 ° to CA		+	22.30 23	.25 10		10 40		\perp			5030	24.50	25.70	1.20	34	0.4	0.0038	0.0001	0.0125	<u>_</u>	\longrightarrow	
						NOTE: sp	chalerite tends to occur in the vecinity of or areas intruded by			23.25 23	.50 3		5 20					5031	25.70	26.40	0.70 Nil		0.2	0.0011	0.0001	0.0061			
						quartz ca	rbonate veins or veinlets.			23.50 24	.80 10		20 40					5032	26.40	28.25	1.85	3	2.5	0.0012	7.24	0.127	7.24	0.13	1.8
				19.30	19.80 SIF	19.3-19.8	BANDED IRON FORMATION beige coloured chert bands			24.80 24	.95 1		1 10																
					. 5.00		-			2 30 24			1 10															\neg	
	1	+					mittent strigers Py/Po		+ + -																		-	\dashv	
$\vdash \vdash$		-		21.00	21.30 SIF	21.0-21.3	BANDED IRON FORMATION		+	24.95 25	.70 10	\vdash	15 50		+												-+	\dashv	
	-	1				23.25-23.	5 BIF chert bands with Py/Po stringers, foliated at 50 ° to CA		+-	25.70 26	.40 10		5 20		+												<u></u>		
				24.40	24.47 SIF	24.4-24.4	7 Lean BIF																						
				24.80	24.95 SIF	24.8-24.9	5 lean BIF																						
				25.70	26.40 SIF		BANDE IRON FORMATION beige coloured chert bands																						
				20.70	23.10										1	1												\neg	
						with inte	rmittent Py/Po rich stringer zones																						L

	1		nada										Τ.	IOLE ID #	. T		VC /	06-02		1									\neg	\neg	$\overline{}$	\neg		$\overline{}$	—	
Country M/	AJOR LI				-	Subsidia	ry Litholo	av		,	Alteration	ion				LIZATIO		CCESSORY	/ MINER	ALS		STRUCTU	JRE				A	SSAY RE	SULTS					-+	+	
	LITH			Litho			LITHO		i		То		en. Fro					Po Ma				Structure		Sample	From	To	Interval			<u> </u>				Pb	Zn	Interval
							Code		COMMENTS			Type WM					%		%	or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	Au (pp	pb) Ag(pp	m) Cu(pr	pm) Pb(p	ppm) Zn(r	ppm)			Meters
26.40 37.8	0 ME1	ГА							grey-green to green -grey light to medium, weak (variable) chlorite				26	.40 28.2	25 5				2																	
									26.4-29.4 frequent small garnets, well foliated																						_					
									after 30.0 meters colour index increasing increase in chlorite alteration																				_	_	_	_				
									decrease in foliation pronunciation				-																_	_	_					
									26.4-28.25 intermittent Py stringers pronouncing foliation; widely spaced																				+	+	_	_				
									narrow quartz flooded sections				+																+	+	+	_		+		
									27.2 an 8cm wide breccia contains angular siliceous &/or quartz fragmen												27.20	BRX	55						+	+	+	_		-+		
									and quartz stringers, blebs of galena occur within the breccia as interstitia fillings, contacts at 55 ° to CA				\dagger								28.30	FOL	50						+	+	+	+		-+		
									27.9-28.25 Breccia at 35-40 o to CA with galena veinlets to 1cm and as												28.20	BRX	55													
									interstitial fill,overall 10% galena												28.90	VNQZ	20													
									30- intermittent randomly oriented quartz/carbonate stringers												30.00	FOL	55													
									30-33 moderately siliceous	30.00 3	3.00	SILI N	Л								32.30	FOL	55													
									36.5-37.4 very fine disseminated Py				36	50 37.4	10 1														_	_	_					
37.80 39.2	5 BIF	F							BANDED IRON FORMATION				37	80 38.7	70 3	0.5		10						5033	37.80	39.25	5 1.4	5	7	2.6 0.0	0442 0	0.0932	0.159			
									beige coloured chert bands with Py/Po rich bands, tr CPY, sulphide				38	70 39.2	25 1			1			38.10	FOL	50	5034	39.25								.0187			
	_								content decreasing after 38.7 meters															5035	39.90	40.20	0.3	0	3	2.7	0.03 0	0.0724	0.147	-+		
39.25 39.9									GREYWACKE green-grey massive scattered small garnets BANDED IRON FORMATION				30	.90 40.2	20 1			10											+	+	+	+		$\overline{}$		
40.20 42.9									grey-green massive, weak foliation, disseminated with small garnets				33		-0 1			10			40.20	СТС	45													
									garnet size increasing near Banded Iron Fm contacts																											
42.90 52.6	0 BIF	F							BANDED IRON FORMATION well banded chert & Po/Py concentrated				42	90 46.7	70 1			15 10	?					5036	42.90	44.40	1.5	0	14	3.2 0.0	0452	0.242	0.556	0.46	0.67	3.0
									bands, weak crenulations of banding/foliation, strongly magnetic				46	70 52.6	60	0.5		10 1-	?					5037	44.40	45.90	1.5	0	21	3.3 0.	.126	0.682	0.782			
									(probably very fine disseminated magnetite)				-			-					44.20	BAN	45	5038	45.90	47.40	1.5	0	17	0.4 0.0	0149 0	0.0058 0	.0285			
			-						44.43-44.61 BRX with sphalerite, galena & CPY	\vdash			44	43 44.6	61	1	4		1		44.43		40	5039	47.40				10				.0227			
									at 46.7 meters Po/Py content decreasing				+								47.00	FOL	45	5041	48.90								.0085			
52.60 56.0	0 MET	ГА		\dashv					massive GREYWACKE disseminated with garnets variable in size and				+			-					51.50	FOL	50	5042	50.40			0 Nil					.0046	-+		
									quantity, weak foliation at 55° to CA, minor calcite stringers												55.80	FOL	55	5043	51.90	52.60	0.7	0	21	0.3 0.0	0177 0	.0007 0	.0082			

Country		Canad	la				VENCA	AN GOL	D Corpo	ratio	n																					
PROJECT	G			Proper	ties-Swayz	Area Ontario	Grid Co ordinates (UTM) final Diff. GPS +/ - 1m				HOLE ID#			VG-	06-03																	
PROJECT	- 3	enoa ro	wiisiiip	Drill Sta			ond Co ordinates (OTW) final Diff. GP3 #/ - Tiff	Datur	n NAI	D 83	HQ From (m))	0.0		1	To (m)	6.00	Ele	evation (m)	428.05												
HOLE ID#		VG-06-	-03	Drill Fin	ish Date Jun		ing 409921.58	zone	1	7	NQ From (m))	6.	00	ŀ	To (m)	131.00	Base of	f Oxidation													
Logged By:		C. Aussa	ant	Depth (r	m) Azm. (Incl. O Elevat	ation 428.05				BQ From (m)				TD m.	131.00															
up-Dated			Collar		350.0		Company: Bradly Brothers, Timmins, Canada				diam. HQ 6.3	5 cm	NQ 4.	76 cm	BQ_	_cm	Comments:															
			eflex		7.0 349.8	-44.7																										
Country		Canad	eflex	110	0.0	-44.7					HOLE ID#		V	G-06-03	3																	
MA.		HOLOGY			Subsidiary Lithe				Alteration	1.	MINE		& NOITA	ACCESS	SORY MI				STRUCTU			_	-		SAY RESI	JLTS	1		l			
					To LITHO (m) Code		COMMENTS				From To (m)								Structure Type			(m.)	(m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
0.00 6.00	NR					casing																										
6.00 25.40							r fragmental				8.70 11.55	-1		<1	1 1			6.20	FOL	55												
0.00 25.40	PELI										0.70 11.00	<1		<1	1 1			0.20	FUL	55						 						
	1				 	streato	ched pale grey felsic lapilli fragments in a dark green chloritic			\vdash					+ +			1								1						
	1	1	-			garnitil	iferous matrix			\vdash				-	1			1								1						
	1	4				garnet	ts to 10mm in size 10% garnets																			<u> </u>						
						lapilli s	streatched along foliation																									
						lanilli v	variable in size to 4cm wide across the entire core																									
							dmass disseminated with fine Py or Py clots, occational Po &																									
							ingers or concentrations, occational Py concentartions																									
						sulphic	ide content variable overall generally <1%																									
						11.55-	-11.65 quartz flooded																									
						11.76-	-12.05 sphalerite/galena rich interval, galena generally occurs as				11.76 12.05		3	0 1		3		11.90	FOL	45	5044	11.55	12.70	1.15	15	7 3.3	0.118	2.42	3.79	2.42	3.79	1.15
						clots a	along calcareous stringer fracture filling																									
						12.35-	-12.7 core broken, section containing several quartz veins				12.70 16.50	<1		<1				12.50	VNQZ	30												
						19.3-2	21.7 numerous quartz-carbonate filled irregular oriented fractures				16.50 19.30	1						14.50	FOL	55												
						pink-o	orange alteration along stringer margins				22.00 25.40	1																				
	1					21.9-2	22.0 BRX core broken obscure contacts																									
25.40 27.55	MAFE)				MAFIC	C DYKE											25.40	стс	55												
						massiv	ive, aphanetic, very sharp contacts, very weakly magnetic																									
							contact core broken																									
27.55 47.95	FELT					same a	as from 6-25.4 meters																									
						27.55-	-30.1 galena blebs occuring along widely spaced chloritic fractures				27.55 30.10	1				<1		27.60	FOL	55	5045	27.55	29.00	1.45	Nil	0.5	0.0037	0.272	0.177			
						fractur	res irregularily oriented				30.10 47.95	<1	t	r		tr					5046	29.00	30.10	1.10	7	7 0.4	0.0057	0.31	0.328			
						33.15	sphalerite/galena along irregular fracture																									
						27.55-	- gradual appearance of garnets within the pale grey felsic lapilli																									
						fragme	ents																									
						41.3-4	43.0 widely spaced 1 to 2mm beige chert beds																									

Country	v .		Canada											HOLE II	D#		VG	-06-03																	Т
		R LITHOL			Sub	sidiary	Litholog	ay .			Alte	ration	_	HOLL II		ALIZAT		CCESSO	RY MIN	NERALS	3	STRUCTU	URE				AS	SAY RESU	LTS	1				$\overline{}$	
From T	To L	LITHO	Litho Li	tho Fro	om 7	o L	ITHO	Litho		From	To	Alt	Inten. F	rom	To I	PY CP	Y SPH	H Po	Mag (Galena	Other Min.	Depth Structure	Structure	Sample	From	To	Interval	Au (nph)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m) (r	m)	Code	Ratio Mod	difier (n	n) (i	n) -	Code	Modifier	COMMENTS	(m)	(m)	Type V	MS	(m)	(m)	% %	%	%	%	%	or Comments	(m) Type	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppiii)	Cu(ppiii)	Fb(ppiii)	Zn(ppm)	%	%	Meters
									after 42.2 gradual decrease in intensity of garnets																									<u></u>	
47.95 60	0.15	IF							massive, magnetite rich iron formation with Py/Po stringer concentrations				4	7.95 4	8.50	10	4		80	1		47.95 CTC	65	5047	47.95	48.50	0.55	31	3.7	0.0275	1.52	2.85	0.37	1.33	3 2.75
									total Py/Po content generally about 30 %				4	8.50 4	9.20	5			90					5048	48.50	49.20	0.70	45	0.7	0.0054	0.0425	0.169		<u> </u>	<u> </u>
									contacts very sharp; compositional banding weakly crenulated															5049	49.20	50.70	1.50	65	1.6	0.006	0.098	0.466		<u> </u>	<u> </u>
									47.95-48.5 sphalerite & galena associated with irregular chlorite/calcite				4	9.20 5	5.10	20	tr	10	60	tr		51.00 FOL	60	5051	50.70	52.20	1.50	62	1.1	0.0037	0.0181	0.0781		<u> </u>	
									stringers															5052	52.20	53.70	1.50	68	0.7	0.0043	0.0334	0.0662		<u> </u>	<u> </u>
									50.3 irregular shpalerite rich stringer															5053	53.70	55.10	1.40	79	1.3	0.0106	0.27	0.632	1.92	3.32	2.20
									54.35 galena/sphalerite stringers over 5cm				_											5054	55.10	55.90	0.80	45	12	0.294	4.8	8.02		 	↓
									55.1-55.9 numerous sphalerite enriched bands associated with quartz/				5	5.10 5	5.90	25	5	2	60	<1				5055	55.90	57.40	1.50	93	0.7	0.006	0.0345	0.0922		<u> </u>	
	_			-	-	+			carbonate stringers				5	5.90 6	0.15	25		5	65					5056	57.40	58.90	1.50	75	0.8	0.0032	0.0052	0.0352		 	
						+			55.8 galena blebs				+			+								5057	58.90	60.15	1.25	86	1.1	0.0084	0.0013	0.0189		 	-
60.15 80	0.50	META							Greywacke massive				6	0.15 6	0.50	1								5058	60.15	61.15	1.00	27	2.8	0.0837	0.785	2.23	0.79	2.23	1.00
						-			60.5-61.15 sphalerite enriched bands with galena blebs, sphalerite				6	0.50 6	1.15	3 <	1 4			1														<u> </u>	<u> </u>
						-			concentartions approximately 10cm wide				-																					<u> </u>	-
									61.15 onwards massive, medium grey fine grained, widely scattered																										
									intervals containing very small garnets, minor chlorite/carbonate				-																						
									fracture filling, fractures randomly oriented																										
						1			76.1-78.2 well foliated, tr Py, weak sericite alteration																										
									75.4-75.7 BRX													77.50 501													1
									80.0-80.5 chloritic core broken 80.2-80.5 follow a galena vein encompassing 1/4 of the width of the core													77.50 FOL	50	5059	80.00	80.50	0.50	Nil	9.6	0.0013	12.04	0.0581	4.71	2.10	1.9
80.50 81	1.05	BIF							moderately well compositionally banded, numerous quartz & quartz/					0.50 8	1.95	tr 2				1				5059		81.95	1.45	NII 21	7.0	0.0013	12.94	0.0581	4.71	2.10	1.9
00.00	1.55	DII							carbonate stringers & veinlets, irregularrly oriented, frequent sphalerite					0.50	1.55							81.50 VNSP	30	3001	00.00	01.33	1.40	31	7.2	0.240	1.01	2.01			
									rich stringers generally parallel to banding containing occational galena													81.80 BAN	45											ĺ	
									rich stringers & chalcopyrite rich concentrations also paralleling foiliation/																									Ĺ	
									banding																										
81.95 85	5.45	META							massive, frequent carbonate stringers randomly oriented, minor garnets				8	5.95 8	6.25	<	1 5			<1														<u> </u>	
85.45 86	6.25	QTZ							numerous quartz veins with sphalerite rich concentated bands 1 to 4cm													85.45 CTC	50	5062	85.45	86.25	0.80	3	3.2	0.042	2.32	2.49	2.32	2.49	0.80
									wide along the margins of the quartz veins, occationallly narrow							\perp						85.50 VNQZ	55	5063	86.25	86.70	0.45	Nil	0.4	0.0019	0.23	0.0663		<u> </u>	<u> </u>
									chalcopyrite stringer concentrations and minor galena along fractures													85.50 VNSP	55	5066	86.70	88.10	1.40	10	10	0.243	2.28	4.54	2.28	4.54	1.40
									seections contains 80% quartz							_						85.50 VCPY	55	5065	88.10	89.60	1.50	21	1.6	0.0385	0.0177	0.0792			<u> </u>
86.25 86	6.70	META				_			numerous chlorite filled fractures, core highly broken				\perp			\perp								5067	89.60	91.10	1.50	7	0.1	0.0141	0.0057	0.0563			<u> </u>
86.70 96	6.70	BIF							BANDED IRON FORMATION				8	6.70 8	8.10	1 2	4	1		1				5068	91.10	92.60	1.50	Nil	0.1	0.0111	0.0042	0.0203		Щ_	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$

Cour	otn/		Cana	nda	1									HOLE	ID #		VG	-06-03																		
Cour		OR LITH				5	Subsidiary	Litholog	V			Altera	ation	HOLL		ALIZA	TION & A		DRY MIN	ERALS	,	5	STRUCTU	RE				AS	SAY RESU	JLTS		1	1		$\overline{}$	
From		LITHO			tho		To L		Litho	1	From			n. From			PY SPI		Mag G		Other Min.		Structure		Sample	From	To	Interval			0/ `	Dh/sss \	7-/ `	Pb	Zn	Interval
(m)		Code			difier				Modifier	COMMENTS	(m)	(m)	Type WM				% %				or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	Meters
										86.7-88.1 frequent irregularly oriented sphalerite rich stringer concentration				88.10	96.70	2 1	tr	30							5069	92.60	94.10	1.50	7	0.1	0.0118	0.0015	0.0239			
										occational chalcopyrite bands and scattered galena along fractures															5070	94.10	95.60	1.50	Nil	0.4	0.011	0.0004	0.0066		ļ	<u> </u>
										galena directly associated with the shalerite															5071	95.60	96.70	1.10	10	0.5	0.028	0.0007	0.0141		ļ	<u> </u>
										88.1 distict compositional layering, widely spaced Po rich intervals,												89.40	BAN	55											ļ	<u> </u>
										scattered narrow Py enrich layers, strongly magnetic, Po enriched				1		_						89.40	VNPY	55											<u> </u>	
			1		-					bands upto 20 cm wide, fine disseminated Po throughout				1						+															 	
			+							87.8-87.9 10cm BRX				1				1				92.00	BAN	40												
										89.3 trace CPY within Po enriched section												95.00	BAN	45												
96.70	105.60	META								massive medium grey-green				1		-																				
										96.7-99.6 abscure garnets throughout				1		-																				<u> </u>
										99.6-103.7 weakly chloritic with intervals well foliated, trace Py blebs,				1		-						101.00		50												
105.60	101 GE	DIE								103.7 massive abscure garnets to 5mm size BANDED IRON FORMATION				105.60	24 65	:1 1	4-	20				106.30	BAN	45 55	5072	105.60	107.00	1.40	NII	0.1	0.007	0.0006	0.0028			
105.60	121.05	DIF								strongly magnetic, well banded (compositional layering) at 55° tp CA				105.60	21.05	1 1	u	20				113.00	BAN	42	5072	107.00				0.1	0.007		0.0028			
										trace Cpy												117.50		45	5074	108.50				0.7		0.0031	0.239			
										occational quartz veinlets & flooding with no prefered orientation														•	5076	110.00	111.50	1.50	10	0.4	0.0396	0.0012	0.0256			
										Cpy generally consentrated as thin stringers along bedding planes															5077	111.50	113.00	1.50	17	0.3	0.0058	0.0004	0.0059		<u> </u>	
121.65	131.00	META								massive greywacke, medium grey to green, occational multidirectional												125.00	FOL	45	5078	113.00	114.50	1.50	14	1.5	0.048	0.0013	0.169		ļ	
										quartz-carbonate veinlets (to 1/2 cm) & stringers, very weak chlorite altn				1								129.00	FOL	50	5079	114.50	116.00	1.50	10	0.1	0.0092	0.0008	0.0043		<u> </u>	
			-							trace Py blebs				1 1						_					5081	116.00	117.50	1.50	10	0.8	0.0155	0.0088	0.0219			-
			1		-					121.65-126.0 moderately well foliated				1						+					5082	117.50	119.00	1.50	7	0.2	0.0088	0.0177	0.0825		 	
			-		_					128.0-131.0 very fine biotite giving core a brownish tinge				1 1	-			+		-					5083	119.00	120.50	1.50	21	1.5	0.0427	0.0407	0.23			
										127.9 1/2 cm Po rich band parallel to foliation															5084	120.50	121.65	1.15	7	0.4	0.0292	0.0015	0.0756			<u> </u>

PROJECT HOLE ID #	Gen									oratio											I				1		1	l	l			1
	Gen	oa Townshin I	Dronorti	00-SW	12VZ0 A	\roa Onta	Irio Grid Co ordinates (UTM) final Diff. GPS +/ - 1m				ног	E ID#		,	/G-06	.04				ı												
HOLE ID#		ioa rownsinp					Into Gild Co Ordinates (OTM) final Diff. GPS +/ - Tiff	Date	ım N	NAD 83		From (m)		0.00	1000	To (m)	4.00	Ele	evation (m)	426.72												
	V	G-06-04	Drill Finisl		June 2	-,	Easting 409923.70	zor		17	NQ			4.00		To (m)			Oxidation													
Logged By:	С	C. Aussant	Depth (m))	Azm. ⁰	Incl. O E	levation 426.72				BQ	From (m)				TD m.	173.00															igsquare
up-Dated		Collar					rill Company: Bradly Brothers, Timmins, Canada				diam.	HQ 6.35	cm N	Q 4.76 cı	m E	Qcm	Comments:															_
	-	Reflex	7.0		356.60 356.20																											\vdash
Country		Reflex Canada	173.0	0	356.20	-44.7					HOLE	E ID#		VG-0	6-04																	
MAJO	R LITHO	DLOGY	St	ubsidiary	y Litholog	gy			Alteration			MINE	RALIZATIO	N & ACC	CESSOR				STRUCTU						SAY RESU	JLTS		1				
From To I (m) (m)	Code	Litho Litho Ratio Modifier	(m)	(m)	Code	Litho Modifier	COMMENTS	From (m)	(m) Typ	pe WMS	From (m)	(m)	% CPY	%	% N	ag Galena % %	Other Min. or Comments	(m)	Structure Type	Structure	Sample #	From (m.)	(m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
0.00 4.00	NR					ca	ssing																									
4.00 4.30	FET					pa	ale grey well colour banded																									1
4.30 5.90	FELT					da	ark pink-greg-green with pale grey felsic fragments scattered throughout																									
						la	pilli fragments to 2cm wide stretched along foliation planes																									
						la	pilli in a matrix of green chloritic fine grained material with extensive																									1
						pii	nk gamets to 4mm size																									1
5.90 6.90	FET						ame as 4.0-4.3 meter interval											6.00	BAN	55												
6.90 7.30	FELT					sa	ame as 4.3 -5.9 meter interval																									
7.30 12.50	FET					we	ell banded felsic tuff	7.30	12.50 SII	LI M								9.00	BAN	60												
						sil	iceous, weak sericite alteration	7.30	12.50 SR	CT W								11.00	BAN	60												
						lin	nonite along fracture planes to 26 meters, amount progressively																									
						de	ecreasing																									<u> </u>
			9.50	9.60	FELT	9.	5-9.6 garnitiferous, garnets to 4mm, dark green, chloritic FELT																									
			9.85	10.25		9.	85-10.25 garnetiferous, minot Py stringers to 4mm, dark green, chloritic																									
						11	.9-12.2 mn very small garnets																									ــــا
12.50 16.20	FELT					sa	ame as 4.3- 5.9 meter interval																									
						15	5.1-15.3 irregular quartz vein/flooding																									
						15	5.3-15.45 disseminated Po																									
16.20 21.30	FET					We	ell banded pale to medium grey, weak sericite alteration, trace to mn	16.20	21.30 SR	CT W								16.50	BAN	65												
						di	sseminated Py											20.00	BAN	58												
						na	arrow intervals with 1% fine disseminated Py																									\bigsqcup
21.30 22.50	MAFD					m	assive, dark green																									
22.50 49.4	FET					sa	ame as 16.2-21.3 meters; massiive, well banded, weak sericite alteration	22.50	SR	CT W								22.50	стс	55												$\sqcup \sqcup$
						be	sige to pale to light grey colour banding, minor massive white quartz											24.00	BAN	65												igwdown
						ve	ins & flooding, qtz veins generally parallel to banding, tr very widely											25.00	BAN	50												
						sc	sattered Py											29.00	BAN	50												
						af	ter 35 meters becoming slightly harder (siliceous)											32.00	BAN	50												

Count			Canada		I		l		<u> </u>				lic:	E ID#		17	G-06-0	4												I					
Coun	ry MAJOF					Subsidia	ry Lithol	ogv		+	Alteratio	n	HOL		IFRALIZ		ACCESS		IINERAL	S		STRUCTU	JRF				AS	SAY RESU	JLTS		l .	l .			
From	To L	ITHO	Litho	Litho	From	To	LITHO	Litho	1				. From							Other Min. or Comments				Sample	From	To	Interval	Au (onb)		Cu(nnm)	Dh/nnm)	7n/nnm)	Pb %	Zn	Interval
(m)	(m) (Code	Ratio	Modifier	(m)	(m)	Code	Modifier	COMMENTS	(m)	(m) T	ype WM	S (m)	(m)	%	% %	6 %	%	%	or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppiii)	Cu(ppm)	РБ(рріп)	Zn(ppm)	%	%	Meters
									after 36 meters banding slightly convoluted												35.00	BAN	55												
									45.5-47.5 appearance of pale grey siliceous felsic lapilli stretched												38.00	BAN	55												
									along banding/bedding direction												41.00	BAN	55												
-									48.1-48.35 pale grey-apple green colour, numerous irregular carbonate				-								44.00	BAN	55												
-									stringers				1								47.30	BAN	50												
									48.35-48.55 interval containing stringers of sphalerit/galena parallel to				48.35	48.55			5		2		49.50	BRX	45												
									colour banding/bedding			_																							
									49.15 a 31/2 cm wide Breccia at 45 ° to CA																										
	\perp								48.7-49.4 gradual increase in colour index	1		_	1					-							-			-							
49.40	61.30 I	FELT							massive felsic fragmental	1		_	1					-							-			-							
\vdash	_								mottled grey green, garnetiferous, lapilli fragments streatched along			_																							<u> </u>
\vdash									foliation directiongarnets to 4mm	1			1																						
	+								minor disseminated Py, widely spaced intervals containing disseminated	1		+	1			-		+					-		-			-							-
\vdash									and blebs or stringer concentartions of Po	1		-	1					-					-		-			-							-
	\perp								lapilli are pale grey (frequently containing garnets) within a dark mottled	1		-	1		\vdash			-					-		-			-							
									pink and green chloritic matrix	1		-	1					-					-		-			-							
-	+								sections where the garnets become quite obscure	+		-	1					-			50.00		50		-			-							-
-	+								53.2 a 1cm Py concentrated band parallel to foliation	+		-	1					-			53.00		45		-			-							-
	+				54.45	54.60	QTZ		54.45-54.6 quartz vein, massive white, irregular contacts				1		\vdash			+			57.00		45												
									56.1-56.6 strongly magnetic, section disseminated with Po	1			1								58.30		45												
	-								58.1-59 magnetic, section with rapid change in foliation direction,	1		-	\vdash			-		-			58.50		30												
	+								diss Po & magnetite	+		+	+		\vdash			+			58.90		45		-			-							
61.30	3.85 N	ИAFD							massive, dark green with mauve coloured arillic alteration (weak)				+		\vdash			+			61.30	CTC	35												
									sections weakly magnetic	1		+	1					+																	
	+								61.3 chilled contact at 35 ° to CA	+		+	+		\vdash			+					-		-			-							
									weakly foliated at 65 ° to CA, weak chlorite alteration				1																						
63.85	6.90	QTZ							massive white quartz, occational FELT inclusions upto 6cm wide	1			1											5085	63.85			Nil	0.1	0.0007		0.0059			
									irregular contacts	1			1											5086	65.40	66.90	1.50	3	0.1	0.0003	0.0009	0.0014			
66.90	0.90 I	FELT							felsic fragmental, pale grey felsic lapilli fragments within a dark grey green	1			66.90	70.90	3			10																	
	+								matrix, disseminated with 3% Py as blebs & stringer consentrations	1		+	I					+																	
									lapilli fragments stretched pronouncing foliation	1			1										<u> </u>												
	-+								67.6-70.9 strongly magnetic			+	1		\vdash			+			69.00		45												
70.90	2.65	IF					<u> </u>		massive strongly magnetic contains irregular inclusions of MAFD				70.90	72.65	20		20	5			72.25	CTC	40	5087	70.90	72.65	1.75	Nil	0.9	0.0206	0.152	0.068			

_															- IF ::	1		VC 22	. 04			1								l	1	l	1		$\overline{}$	
Coun		OR LITE	Cana HOLOG				Subsidi	ary Lithe	ology			Alterati	ion	HOL	E ID#			VG-06		/ MINERAI	S		STRUCTU	IRF				Δ9	SAY RESU	II TS						₩
From	To	LITHO) Lith	ho I	Litho	From	To	LITH	O Lit	0	From	To	Alt Inte	en. From	To	PY	CPY S	SPH	Po N	ag Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (onb)		Cu(nnm)	Dh/nnm\	7n(nn~)	Pb %	Zn	Interval
(m)	(m)	Code	Rat	tio M	odifier	(m)	(m)	Code	e Mod	ier COMMENTS	(m)	(m)	Type WN	(m)	(m)	%	%	%	%	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	Meters
						72.05	72.25	MAFI	D	72.05-72.25 MAFD? No sulphides, sharp contacts at 40° to CA												72.20	FOL	40											ļ	<u> </u>
										weakly foliated at 40 ° to CA												75.85	VNQZ	20											ļ	<u> </u>
72.65	78.50	MAFD)							72.65-75.35 massive dark green-grey to black grey mn diss Py				_								76.15	VNQZ	20											ļ	—
										72.65-72.75 minor quaetz flooding												77.00	VNQZ	25											<u> </u>	<u> </u>
									-	75.35-75.55 aphanetic				-				_				77.90	VNQZ	45											<u> </u>	—
										75.55-78.85 MAFD				-								78.50	СТС	60											 	
				-					-	75.85-76.25 follow 2 quartz veins at 20 ° to CA									-																	
									-	77.0-77.9 quartz vein contacts at 25 & 45 ° to CA, massive white with				-																						-
				_			<u> </u>			chloritic fractures and MAFD inclusions						1			_	_		1			5088	77.00	77.90	0.90	3	0.1	0.0005	0.0015	0.0055		<u> </u>	—
78.50	96.90	IF	-							massive Magnetite/sulphide rich IRON FORMATION				78.50	79.35	20			20 3	0?					5089	78.50	80.00	1.50	31	9.2	0.269	3.01	3.81	2.10	2.34	8.7
			-	_				_	-	IF (Sulphide) contact at 78.5 meters irregular but overall at 60 ° to CA				79.35	79.60	20	_	20	_	5					5090	80.00	81.00	1.00	21	22.8	1.93	2.14	4.07		<u> </u>	
			-	-						78.5-79.35 BIF Py stringers pronouncing foliation, foliation highly	-			_				-	-						5091	81.00	82.50	1.50	24	9.3	0.149	6.25	2.54		 	<u> </u>
				\perp					+	convoluted, small scale folding evident				-			\dashv	-	\perp						5092	82.50	84.00	1.50	21	2	0.132	0.166	0.349		<u> </u>	<u> </u>
			-							79.35-79.6 calcareous matrix							-								5093			1.50	24	3.3	0.141	0.46	1.58		<u> </u>	-
				+		79.60	80.00	MAFI	D	79.6-80 MAFD	+			79.60			-	-	+	-					5094	85.50	87.20	1.70	Nil	1.6	0.01				<u>'</u>	
				-					+	at 80.0 a 11/2 cm quartz/carbonate veinlet at 75 o to CA	+			80.00	80.95		4		30	? 1					5095			1.50		0.7	0.0093					<u> </u>
			-	+				-	+	80.0-87.2 calcareous, numerous micro-calcite stringers/fracture filling,	+			80.95	87.20	20	<1	<1	20	? <1					5096			1.50		0.4	0.0078					
			+	+				-	+	scattered multidirectional generally <1/2cm carbonate stringers,	+		_		-		\dashv	\dashv	+						5097	90.20				0.3	0.0069				<u>'</u>	
			+	+					+	occationally to 2cm wide, sphalerite blebs directly associated with the							\dashv	+	+						5098				Nil	0.2	0.000					
			-	+					+	carbonate veinlets , with sphalerite enrichment throughtout								+	+						5099	93.20	94.70	1.50	21	0.7	0.0064				<u>'</u>	
			+						+	interval shows convoluted foliation & small scale folding							+	+							5101	94.70		1.00	Nil	1.1	0.0041					
				+					+	82.3- a 10 cm concentartion of galena				87.20	95.30		1	+	25			86.00		55	5102	95.70	96.90	1.20	17	5.6	0.288	0.546	0.534		' 	
				+					+	87.2 -96.9 foliation regular but weakly crenulated, non calcareous	+			87.20	95.30	20	\dashv	-	25	<i>'</i>		89.00		55 50											 	
						95.30	05.00	QFP	,	91.95-92.15 chert bands				65.5-	00.75	20			25			91.20													 	
						95.30	95.65	QFP		95.3-95.65 QFP massive light grey, feldspar phenos to 3mm 95.65-96.4 well foliated				95.65	96.40	20			∠5	r		92.00 95.65		58 50											 	
									+	95.65-96.4 well foliated 96.4-96.9 frequent chert beds alternating with sulphide enriched layers				96.40	96.90	10	3	3	15	1		95.65		50		t			t						 	
										sphalerite, Cpy & galena concentrations over last 20cm of interval				90.40	90.90	10	3	3	13	<u> </u>		96.10		50											 	
										with associated quartz flooding												55.50	SAI1	30											 	
										very sharp contact																1									 	
96.90	100 OF	MET^								massive greywacke, greenish grey, minor garnets (small) mn mm scale	06.00	101.60	CHIR V	,								96.90	стс	45					İ						 	
50.50	103.33	WILIA								multidirectional quartz/carbonate fracture fill, chlorite along		103.25										99.00	0.0	50											 	
										foliation/fractures planes (weak)		109.95										55.00	1 OL	30											 	

Count	ny		Canada										HOL	F ID#		VC	i-06-04	l .																	
	MAJOI					Subsidia	ary Lithol	ogy			Alteration				ERALIZA			ORY MINE	RALS		5	STRUCTU	RE				AS	SAY RESU	JLTS	L					
			Litho								To Al			То	PY C	PY SP	H Po	Mag Ga	alena Ot	ther Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifier	(m)	(m)	Code	Modifier	COMMENTS	(m)	(m) Typ	e WMS	(m)	(m)	% '	% %	%	%	% or C	Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	ла (ррь)	лу(ррш)	Ou(ppiii)	т Б(рріпі)	Zn(ppin)	%	%	Meters
									98.15 a 21/2 cm QFP at 45 o to CA																										
																																			<u> </u>
									unit becomes progressively more chloritic, gradual increase in colour																										
									index																										
					103.25	103.50	QFP		contacts very sharp but slightly irregular							-				1	103.25	CTC	55											—	<u> </u>
109.95 1	10.35	FP							massive, feldspar phenos to 3mm, mn disseminated Py											1	103.50	CTC	70											—	
110.35 1	11.10	META							medium grey green, occational quartz/carbonate stringers & fracture fill	110.35	111.10 CHI	R M								1	109.95	СТС	65												
111.10 11	18.20	BIF							BANDED IRON FORMATION				111.10	112.00	mn	1 3	tr	?		1	110.50	СТС	55	5103	111.10	112.70	1.60	17	7 17.5	0.486	1.44	3.14	0.89	2.07	7.90
									sharp contacts, distinct compositional/colour banding											1	111.10	СТС	60	5104	112.70	114.30	1.60		7 4.3	0.051	1.57	3.27			
									moderately to strongly magnetic											1	111.40	VNQZ	40	5105			0.70	Nil	2	0.0019	0.86	0.561			
								1					İ								111.40	BAN	40	5105		116.60	4.00		0 21	0.0186	0.696	0.001			
								1	111.1-114.3 frequent mm size sphaletite rich bands, scattered Cpy clots and			1	1						-	1	111.40	BAN	40				1.60	10	2			2.7			
									stringers all parallel to banding, chloritic along fracture planes									++		1				5107	116.60	118.20	1.60	27	0.2	0.0626	0.265	0.636			
									111.4 a 2cm quartz vein parallel to banding															5108	118.20	119.00	0.80	Nil	0.4	0.0046	0.0712	0.462		\vdash	
									111.6-112 three 2 to 5cm wide quartz veinlets at 30° to CA, numerous			-							-	1	111.60	VNQZ	30											—	<u> </u>
									quartz/carbonate microfracturres crosscutting banding & quartz veins							_				1	111.80	VNQZ	30											<u> </u>	<u> </u>
									112-112.15 chloritic with associated sphalerite & galena along calcareous				112.00	112.15	tr	tr				1	112.00	VQCB	75											<u> </u>	<u> </u>
									fractures				112.15	114.30	<1 4	:1 2	tr	?		1	113.00	BAN	80											<u></u>	
									112.25 a 3cm Cpy rich/sphalerite band at 80 ° to CA																										
									114.3-115.0 chloritic, massive, dark green, containing angular fragments				114.30	115.00		<1			<1	1	114.20	BAN	75												
									of pale grey chert																										
													115.00	118.20			_				116.00	BAN	70												
									115.0-118.2 compositional colour banding with widely separated Po				115.00	118.20	<1 4	3	5			'															
									enriched layers & sphalerite blebs; occational Cpy stringers multidirectional											1	117.20	BAN	45											<u> </u>	
-									occational quartz/carbonate stringers & veinlets multidirectional- sphalerite			-							-															\vdash	
								-	associated with the veinlets		_		<u> </u>					\vdash											-						<u> </u>
								1	115.0-115.1 sphalerite enriched band								-		_										-					 	<u> </u>
118.20 13	33.45	META							dark to moderate grey green, massive, sections with scattered chlorite																									<u> </u>	<u> </u>
									blebs (Possibly a mixed section of mafic dyke & metasediments-greywacke)													_													
	T								numerous mulidirectional quartz/carbonate stringers (fracture fill) &														-												
									veinlets																										
	\dashv								122.0-=128.5 sections with distict chlorite blebs (possible mafic dyke)			+					+																	<u> </u>	
133.45 13	35.40	BIF							BANDED IRON FORMATION			+	133.45	135.40	tr	tr 1	tr	?	tr					5109	133.45	134.40	0.95	;	3 0.2	0.0039	0.074	0.132	0.55	0.86	15.55
	+							1	distict rythmic compositional layering, strongly magnetic			+						\vdash		1	133.50	BAN	50	5110	134.40	135.40	1.00	1	7 0.9	0.0121	0.408	0.716			<u> </u>
	_								Cpy/PbS/ZnS associated as blebs with quartz/carbonate stringers			-				_	-			-				5111	135.40	136.60	1.20) :	3 2.8	0.0015	2.35	0.209		—	<u> </u>
									minor sphalerite enriched stringers parallel to bedding (colour banding)											1	135.30	BAN	40	5112	136.60	137.50	0.90	Nil	0.2	0.0066	0.065	0.259		<u> </u>	

Cou	ntry		Canada										HOLE	ID#		VG-	06-04																	
000		OR LITH	IOLOGY			Subsidia	ary Lithol	logy			Alteration		HOLL		ERALIZATIO			RY MINERA	LS		STRUCTL	JRE				AS	SAY RESU	JLTS	1	l				\vdash
From	To	LITHO	Litho	Litho	From	To	LITHO	Litho]	From	To Alt	Inten.	From	To	PY CP	/ SPH	Po	Mag Galen	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifier	r (m)	(m)	Code	Modifier	COMMENTS	(m)	(m) Type	e WMS	(m)	(m)	% %	%	%	% %	or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	ли (ррь)	Ag(ppiii)	Cu(ppiii)	г Б(рріпі)	ZII(ppiii)	%	%	Meters
1.0	400				1								405 :-	400					1						40-									1 !
135.40	136.60	META				1		+	dark grey-green; quartz carbonate stockwork of veinlets througout section			+	135.40	136.60	mn mn	mn	H	2	1	1			5113	137.50	139.25	1.75	3	0.5	0.0107	0.212	0.615			++
									minor Sphalerite/Cpy disseminations														5114	139.25	140.25	1.00	45	5 12	0.168	1.33	3.72			,
									135.9-136.3 large galena clots and Py clots along periphery of														5115	140.25	141.30	1.05	10	0.4	0.008	0.211	0.266			
																							5440	444.00	440.40					0.0070				
			1					1	quartz/carbonate flooding			+						_	-		-	-	5116	141.30	142.40	1.10	Nil	0.7	0.0062	0.0273	0.0908	-		+
136.60	149.00	BIF							BANDED IRON FORMATION				136.60	137.50		<1		?					5117	142.40	143,70	1.30	3	4.5	0.0768	0.626	1.75			
									136.6-137.5 strongly magnetic; numerous multidirectional quartz/carbonate														5118	143.70	145.30	1.60	3	3 1.3	0.0137	0.372	0.932			
									Adia and the street of the														5119	145.30	147.00	4.70	-	,	0.0046	0.470	0.538			
			-			1			stringers/fracture fill			+					 						5119	145.30	147.00	1.70			0.0216	0.173	0.538			-
									sphalerite blebs & occationally stringer clots parallel to banding; sphalerite														5121	147.00	148.00	1.00	21	7.2	0.0564	0.518	1.58			
									, , , , , , , , , , , , , , , , , , , ,																									
\vdash			1	<u> </u>	1	1	<u> </u>	1	blebs associated with carbonate stringers			\perp					$\sqcup \downarrow$		1	1	.	.	5122	148.00	149.00	1.00	10	1.9	0.0147	0.322	0.593			
					1				127 F 120 2F well handed loop RIF. Occational quartz/codstt				137.50	120.25			ا ا	2	1															
\vdash			1		1			1	137.5-139.25 well banded lean BIF. Occational quartz/carbonate stringers			+	137.50	139.25	tr	<1	tf	1	1		1	1	1				1	 	 	 	1			+
					1				containing blebs sphalerite; trace sphalerite along bedding planes										1	138.00	BAN	55												
																																l		
\vdash			1	<u> </u>	1	1	<u> </u>	1	139.25-140.25 well banded alternating chert & sulphide rich horizons			\perp	139.25	140.25	3 <1	5	10	?	1	139.60	BAN	40	1				ļ	ļ	ļ		ļ			1
									acsenting colour banding; occational Cpy stringers-multidirectional																									
\vdash			 		1	+		+	assenting colour banding, occational Cpy stringers-multidirectional	H		+				+	\vdash	-+	 		 	 	1				 	<u> </u>	<u> </u>	 	 			+
					1				spalerite bands parallel to bedding; occational crosscutting quartz/										1															
\vdash				ļ	1	1	ļ	1	carbonate veinlets displacing sulphide rich bands by upto 2cm			+				-	\sqcup		1	1	ļ	ļ						<u> </u>	<u> </u>	ļ		ļļ		
					1				140.25-142.4 well banded lean BIF				140.25	142 40	tr	<1	-1	2 4-	1	140.40	BAN	40												
\vdash			 		1	+		+	140.25-142.4 WEII DAIIUEU IEAII DIF	\vdash		+	140.25	142.40	u	<1	<1	r tr	 	140.40	DAIN	40	1				 	 	 	 	 			+
			<u> </u>	L	L	<u>L</u>	L	<u> </u>	occational Po enriched stringers parallel to banding/bedding			⊥ା				\perp			1	140.70	BAN	45	<u> </u>			L	<u> </u>	L l						
			1		-	 		1	occational crosscutting fractures displacing banding/bedding by 1cm			+				-	1		1	141.50	BAN	30						<u> </u>	<u> </u>					
					1				trace galena along crosscutting carbonate stringers; minor sphalerite										1															
			1					1	trace galeria along crosscutting carbonate stringers, militor sprialente			+ +											1					1	1					+
									stringers parallel to banding																			<u> </u>	<u> </u>					
\vdash									142.4 well colour banded, sudden changes in orientation of banding/bedding			+	142.40	143.70	1 2	4	10	? <1		142.50	BAN	40	-				-				-			
									implying small scale folding, numerous quartz/carbonate veinlets											142.90	BAN	5												
						1		1	imprying small scale folding, numerous quartz/carbonate velifiets			+				1			1	142.30	DAIN							<u> </u>	<u> </u>					†
									crosscutting banding with small scale displacement of beds												<u></u>													
																														1				
\vdash				-	₩	-	-		Po enriched bands parallel to bedding			+				-	+						-					<u> </u>	<u> </u>			 		
									multidirectional Po/Cpy(tr) stringers, trace galena associated with																									
\Box			1	1		1	1	1	manarous in a opytu surrigers, nace galeria associated with							1		_	†									<u> </u>	<u> </u>					1
									occational crosscutting stringers																									
	Ţ									T]					1 T			I														1 7
\vdash			1	-	-	-	-	1	occational sphalerite enriched bands parallel to bedding			+				-			1	143.10	BAN	20	1				1	1	1		1			+
									143.7-149.0 lean BIF, well compositional layering, occational quartz/carbonate				1`43.7	147.00	tr tr	2	tr	? tr		143.60	BAN	0												
\Box			1			1		1	isan san , wan sampasaanan ayanng, sacatanan qualtz/calbonate			+	5.1		<u> </u>				t	5.55	5/114	Ť						<u> </u>	<u> </u>					\vdash
Ш									veinlets & irregular stringers				147.00	149.00	3 mn	2	10	?		143.80	BAN	45												
																				1										1				
\vdash			1	-	1	-	-	1	sphalerite blebs associated with veinlets	-		+				-	\vdash		1	144.00	BAN	50	1				1	 	 	 	1	 		+
									widely scattered multidirectional sphalerite veinlets, occational crosscutting											145.80	BAN	50												
			<u> </u>			1		1	moory southered multiunectional sphalente veniets, occasional crosscutting			+				+			†	145.00	DAN	30	1				1	1	1		1			1
									carbonate stringers displacing banding (1cm displacement)											146.60	BAN	50												
ш				<u> </u>	<u> </u>	1	<u> </u>		orientation of copositional banding less variable very rythmic											147.10	BAN	50	<u> </u>							l				

					1		1		T											1 1						1	ı	1					
C	ountry	IOR LITH	Canada	3		0	iarv Lithol			Alterat	·:	ŀ	HOLE ID		RALIZATIO		06-04	DV MINIEE	201.0	CTDU	TUDE				4.0	SAY RESU	II TO		<u> </u>	Щ	\longmapsto		
F		LITHO		1.345	F			Litho	4						PY CPY					STRU Depth Struc		re Sample	From	T-		SAY RESI	JLIS	1			DI:	7	Internal
From (m)		Code						Modifier	COMMENTS		Alt In			m) '		% %	% %						(m.)	To (m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
									after 147 meters appearance of wide sulphide rich bands	,	71 - 1									147.80 BA													
149.0	0 169.00	META							149.0-149.3 ground core											148.50 BA	N 50								ļ	<u> </u>			
<u> </u>									massive greywacke, weak foliation, sections weakly biotitic giving core a											150.00 FO	_ 50								ļ	<u> </u>			
									brownich tinge, occational multidirectional carbonate stringers amount											154.50 FO	_ 65								ļ	<u> </u>			
 									decreasing downhole											166.00 FO	_ 55								<u> </u>	<u> </u>			
<u> </u>									149.0-150.0 moderately well foliated																				<u> </u>	<u> </u>			
									after 150.0 weak foliation acsented where increase in biotite content																				ļ	<u> </u>			
									minor widely scattered Py blebs; sections weakly chloritic																				<u> </u>	<u> </u>			
									minor scattered garnets-widely spaced sections of garnet concentrations											169.00 CT	55								<u> </u>	<u> </u>			<u> </u>
									158.6 minor sphalerite/galena along siliceous fracture																				<u> </u>	<u> </u>			
									158.6-162.9 medium grey chloritic frequent quartz/feldspar filled fractures													5408	161.40	162.90	1.50) 7	7 0.2	0.005	0.022	0.096			
									162.9-165.65 chloritic, weak foliation, widely scattered galena/sphalerite													5404	162.90	164.10	1.20) :	2 0.5	0.010	0.154	0.569			
									along microfractures													5405	164.10	165.65	1.55	2	7 0.3	0.010	0.029	0.026	igsquare		
!									165.65-167.25 chloritic, minor disseminated Po, occational sphalerite lined													5406	165.65	167.25	1.60) ;	3 0.5	0.020	0.268	1.540		1.540	1.6
									multidirectional stringers													5407	167.25	169.00	1.75	Nil	0.4	0.013	0.145	0.498			
									167.25-169.0 occational sphalerite with trace Cpy filled fractures																				<u> </u>	<u> </u>			
169.0	0 171.60	QFP							massive mottled grey, feldspar phenos to 3mm											171.60 CT	70								<u> </u>	<u> </u>			
171.6	0 173.00	META							same as 149.0-169.0											172.00 FO	. 70										1		í

Cou	untry	Can	nada				VENCA	N GOL	LD Co	rpora	ion																				i	
														.,																		
PRO	JECT	Genoa 7	Township I			•	ntario Grid Co ordinates (UTM) final Diff. GPS +/ - 1m		1			LE ID#	.		G-06-0																	
ног	E ID#	VG-0	06-05	Drill Sta	irt Date ish Date		Northing 5298519.52 Easting 409927.51	Dat		NAD 8		From (r		0.00 4.00		To (m)	4.00 197.00		evation (m) Oxidation	421.52												
Logge		C. Au		Depth (n			Elevation 421.52	201	ne	- 17		From (r		4.00		TD m.	197.00	Dase 0	Oxidation	J.												
	Dated		Collar		.,		Drill Company: Bradly Brothers, Timmins, Canada				diam.	HQ 6.		NQ 4.76 cm	ВС	•	Comments:															
			Reflex	17	.0	358.10 -45.0							•																			
			Reflex	89	.0	-43.6																									<u> </u>	
	-		Reflex	197	7.0	358.80 -43.1											1			ı											ļ—— [']	
Cou	untry MAJO	Can: OR LITHOLOG			Subsidia	ry Lithology			Alteration	on	НО	LE ID# MIN	IERALIZATI	VG-06	-05 ESSORY	MINERAL	S		STRUCTU	IRE				AS	SAY RESU	JLTS						
From	To	LITHO Lith	tho Litho	From	To	LITHO Litho Code Modifier	COMMENTS	From	To	Alt In	ten. From	n To	PY CP	Y SPH	Po Ma	g Galena	Other Min.	Depth	Structure	Structure		From	To	Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb		Interval Meters
			auo ivioditier	(m)	(m)	Code Modifier	COMMENTS	(m)	(m)	ype W	vio (m)	(m)	% %	%	70 %	%	or Comments	(m)	rype	Angle	#	(m.)	(m.)	(m.)						%	%	weters
0.00	4.00	NR					Casing	+						++		+																
4.00	5.70	FET					pale to light grey well foliated weakly sericitic felsic fuff	4.00	5.70	SRCT	И							4.50	FOL	55											ļ!	
5.70	6.90	MAFD					dark green, highly fractured, rusty staining along fracture planes									\perp		5.70	СТС	35											<u> </u>	<u>i</u>
6.90	21.00	FET					same as 4.0-5.7 rythmic colour banding pronouncing foliation	6.90	21.00	SRCT	и																				 	
				10.00	10.55	MAFD												18.00	FOL	55												
				10.20	10.55	MAFD	same as 5.7-6.9 rusty stained along fracture planes											18.00	FOL	55												
21.00	25.10	FELT					massive, mottled pink/dark green with pale grey felsic bands and lapilli	21.00	25.10	CHLR	M																					-
							fragments, lapilli streatched along foliation direction, stretched lapilli &											23.00	FOL	55											<u> </u>	
							narrow felsic tuff beds pronouncing foliation																								<u> </u>	1
							garnets to 3mm; minor calcite fracture fill; minor quartz veining/flooding																								i '	1
		FET						1	29.60		и																					
25.10	29.60	FEI					same as 6.9-21.0 except with a slight increase in pale grey felsic tuff	25.10	29.60	SRCI	VI																					
							content							+				29.00	FOL	55											<u>'</u>	\vdash
29.60	42.90	FELT					same as 21.0-25.1	29.60	42.90	CHLR	И							29.60	CTC	45											ļ'	
							29.6 very sharp contact											30.00	FOL	45											l	1
							minor carbonate fracture fill and stringers, pale grey streatched lapilli											32.00	FOL	47											1	
																																
							stratched along foliation direction pronouncing foliation; mm to cm wide		<u></u>		+	-	\vdash	++	+	+		40.00	FOL	50							<u> </u>					
\vdash							beds of pale grey felsic tuff same compositio as the lapilli- pronouncing	+			-			++	+	+																\vdash
							foliation; minor irregular quartz veinlets							$\bot \bot$		1											ļ				ļ	<u> </u>
42.90	43.50	FET					same as 25.1-29.6 meters	42.90	43.50	SRCT	N					\perp															<u> </u>	
43.50	46.60	FELT					same as 29.6-42.9 meters	43.50	46.60	CHLR	и																				_ 	
														11																	——— I	
46.60	47.75	FET					same as 42.9-43.5 meters				N		\vdash	++	+	+																-
47.75	48.20	FELT					same as 43.5-46.6 meters	47.75	48.20	CHLR	И	-		++		+															 '	\vdash
48.20	52.50	FET					light to medium grey; moderate to strongly sericitic; well colour banded;	48.20	52.50	SRCT	и			$\perp \perp$				50.00	FOL	55											ļ!	ш.
							trace to minor garnets											52.30	FOL	55											 	i
							minor disseminated Py generally within darker bands; pale grey felsic																									
														+		+																
\vdash							bands & lapilli similar to the lapilli found in the FELT unit	+	+		+		\vdash	++	+	+																\vdash
52.50	53.65	QFP					massive; feldspar phenos to 3mm											52.50	CTC	40											!	

Count	try	Canada									HOLE	E ID#		V	3-06-0	5																l	
	MAJOR LIT	HOLOGY			idiary Lithology			Alter	ation			MIN	ERALIZA	ATION &	ACCESS	ORY MI	NERALS	6		STRUCTU	JRE					ASSAY RE	SULTS		1				
From (m)	To LITHO	D Litho	Litho Modifier	From To	LITHO Litho Code Modifier	r COMMENTS	From (m)	To (m)	Alt	Inten.	From (m)	To (m)	PY 0	CPY SF	H Po	Mag %	Galena %	Other Min.	Depth s (m)	Structure Type	Structure	Sample #	From (m.)	To (m.)	Interva (m.)	Au (pp	b) Ag(ppr	n) Cu(ppm	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
(111)	(III) Code	Rauo	iviouillei	(111)) Code Modifier		(111)	(111)	Туре	VIIVIS	(111)	(111)	76	76 /	70	/6	76	or commen				"	(111.)	(111.)	(111.)						/6		Wieters
						52.5 CTC at 40 ° to CA subparallel to foliation									+				53.65	CTC	35											·	
				 		53.65 CTC at 35 ° to Ca subparallel to foliation									-																		-
53.65	55.95 FET					same as 48.2-52.5 meters	53.65	55.95	SRCT	W			-		-				55.50	FOL	45											<u> </u>	<u> </u>
55.95	59.15 FELT	-				same as 47.75-48.2 meters; trace disseminated Py	55.95	59.15	CHLR	М									58.50	FOL	50											ļ	
59.15	63.45 FET					becoming paler grey downhole; colour banding becoming more rythmic	59.15	63.45	SRCT	S									60.00	FOL	50											ļ	
						downhole													62.20	FOL	45											<u> </u>	
63.45	64.10 MAFE					mottled light to medium grey; 1% disseminated Py; occational calcite	63.45	64.10	CHLR	w	63.45	64.10	1						64.10	СТС	75											1	
						flooding; minor quartz/carbonate veinlets, weak chlorite alteration																											
						64.1 CTC at 75 ° to CA crosscutting foliation																										 	
64.10	66.50 FET					pale grey/beige with occational medium grey chloritic bands, centarl	64.10	66 F0	SRCT	w									64.90	FOL	45											 	
34.10	00.30 FET						04.10	00.30	JONOT	**									66.30		30								1			 	
						portion of the unit contains numerous multidirectional quartz/carbonate																				1			1			 	
					+ +	stringers & veinlets; trace Py associated with quartz/carbonate veinlets			+										66.50	СТС	50					1			†				
						weak to moderite sericitic alteration									+																	·	
66.50	67.00 MAFE)				medium to dark green, massive	66.50	67.00	CHLR	М	66.50	67.00	1		+				67.00	CTC	30												+
						1% disseminated Py, chloritic													+													·	
						66.5 CTC at 50 o to CA oblique to foliation																										<u> </u>	<u> </u>
						67 CTC at 30 o to CA parallel to foliation																										<u> </u>	
67.00	67.85 FET					light grey to beige mottled medium grey	67.00	67.85	SRCT	W									67.80	FOL	20											ļ	
						minor quartz/carbonate veinlets													67.85	стс	50											ļ	
						weak to moderate sericitic alteration																											
67.85	69.25 MAFE					medium to dark green; chloritic; minor quartz/carbonate flooding	67.85	69.25	5 CHLR	М																							
						trace to minor disseminated Py													69.40	FOL	30												
						67.85 CTC at 50 o to CA oblique to foliation													71.00		70												
						69.25 CTC irregular crosscutting foliation; FET fragmnets with the MAFD																										 	
																			1										1			 	
						near the contact boundary		l											1							+	+		 			 	
69.25	89.10 FET				+ +	medium grey with narrow pale grey bands pronouncing foliation,	69.25	89.10	SRCT	М									1							1			†				
\vdash						colour index decreasing downhole			-					-					+							+	+		+			<u>'</u>	-
				\vdash		after 71 meters unit becomes pale grey to beige in colour with medium grey													76.80	FOL	70					+			1				\vdash
\vdash						mottling; contains sections with banding much more pronounced & rythmic			-				\vdash	-	-	\vdash			79.90	FOL	60		-			-			-				
				lacksquare		occational quartz veinlets													82.80	FOL	55					\perp			1			<u> </u>	
						80.3- a 6 cm massive white quartz vein, irregular contacts													86.00	FOL	53					1			1			<u> </u>	
						80.0-80.8 frequent dark green chlorite stringers lining fracture planes																				1						ļ	
						84.1-84.35 massive white quartz irregular contacts																										<u> </u>	

Countr	rv	Canada									HOLE	ID#		VG-	06-05																$\overline{}$	
	MAJOR LITH	HOLOGY			ary Lithology			Alter				MINER		ON & AC	CESSOR	Y MINER			STRUCTU	JRE				A:	SSAY RES	ULTS	1					
From (m)	To LITHO (m) Code	Litho Ratio	Litho Modifier	From To (m) (m)	LITHO Little Code Mod	COMMENTS	From (m)	To (m)	Alt Type	Inten. WMS	From (m)	To (m)	PY CP % %	Y SPH	Po N	fag Galei	or Comments	Depth (m)	Structure Type	Structure Angle	Sample #	From (m.)	To (m.)	Interval (m.)	Au (ppb) Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
89.10 9						massive, phenos to 3mm, speckled with white micaceous flakes, trace			SRCT									89.10		40		,										
						disseminated Py; occational quartz veinlets; calcite fracture fill																										ļ
						5cm borders of the dyke cintacts area fine grained				\sqcup																						
						94.8 irregular contact; FELT fragments within the QFP along the contact																										<u> </u>
						margin																										<u>_</u>
94.80 10	05.10 FELT					mottled green pink with pale grey stretched lapilli; minor disseminated PY	1	105.10	CHLR	M	98.70	104.00	<1		1			97.50	FOL	60											\longrightarrow	
						and Py blebs, garnets to 2mm with frequent obscure garnets in the chloritic groundmass												100.00	FOL	60												
						at 98.7 progressive increase in sulphide content with appearance of Po																										
						104-105.1 frequent sulphide rich bands gradual contact with IF; sulphide				1	104.00	105.10	5	1	20						5123	104.0	105.1	0 1.10	0 2	4 0.	0.0053	0.116	0.0539			ļ
						bands pronouncing foliation, interval contains sphalerite enriched bands												104.30	FOL	70	5124	105.1	106.6	0 1.5	0 3	8 0.	0.0068	0.0011	0.0193			ļ
105.10 12	22.70 IF					massive, well foliated; foliation acsented by sulphide bands				1	105.10	111.50	25		30	?					5126	106.6	108.1	0 1.5	0 4	8 0.0	0.0072	0.0001	0.02			
						105.1-111.5 section with several chloritic intervals which are garnitferous															5127	108.1	109.6	0 1.5	0	3 0.2	0.0061	0.0001	0.0298			
						and contain only 5% combimbined sulphides; occational upto 7cm wide				\vdash											5128	109.6	111.1	0 1.5	0 3	1 0.0	0.0059	0.0001	0.0318			<u> </u>
						chert beds															5129	111.1	112.6	0 1.5	0	3 0.2	0.0051	0.0001	0.0385			<u> </u>
-						105.9-106.2 chloritic, garnitiferous 2% Py															5130					8 0.4		0.0001				<u>'</u>
						109.6-109.9 chloritic, garnitiferous 5% Py/Po				H								109.00	FOL	80	5131					8 0.0		0.0003				
						110.15-110.35 chloritic, garnetiferous															5132					0		0.0003				
						111.5-119.5 massive IF 114.5-119.5 sulphide foliation slightly crenulated					111.50	119.50	30		40	?		111.70	FOL	65 40	5133 5134					4 0.4		0.0002				
						119.5-122.7 section with occational chert beds upto 10cm wide, slight				1	119.00	122.70	30		25	?		117.60		65	5135					8 0.3		0.0001				
						decrease in sulphide content															5136	121.6	122.7	0 1.1	0 4	1 0.9	0.0129	0.324	0.602	0.23	0.50	2.55
				120.85 121.10	QFP	massive QFP dyke, phenos to 5x3mm; mn fine disseminated Py												121.10	стс	65	5137	122.7	124.1	5 1.4	5 Nil	0.2	0.0061	0.16	0.415			ļ
122.70 13	33.40 META					122.7-124.15 occational sphalerite enriched stringers generally parallel to				1	122.70	124.15	<1 tr	<1		tr																ļ
						bedding & associated with fracture fill calcite with trace galena & Cpy																										<u> </u>
						122.7-126.2 very well foliated, occational large garnets dark to medium	-	-		$\vdash \vdash$			+	+		+		124.70	FOL	65			1									<u> </u>
						grey green, colour index progressively increasing	+	-		$\vdash \vdash$	-		+	+		+				-			1									
						126.2-131.0 massive greywacke, scattered calcite fracture fill, weak foliation.	n			$\vdash \vdash$			+	+		+		128.90	FOL	75												<u>'</u>
						medium grey green 131.0-133.4 well foliated variable colour banding pronouncing foliation				+								131.40	FOL	70												
						progressive decrease in colour index, sections with weak sericite alteration												131.40	FUL	70												
						along selective compositional layers, narrow biotic beds																										
133.40 13	35.25 BIF					BANDED IRON FORMATION				1	133.40	134.60	tr <1		20																	_

Count	rv	Canada								Τ.	IOLE ID	0 #		VG-0	06-05																	
	MAJOR LITH	HOLOGY			iary Lithology			Altera				MINERA		N & ACC	CESSOR'	/ MINERA			STRUCTU						SSAY RES	ULTS						
From (m)	To LITHO	Litho	Litho	From To	LITHO Litho Code Modifier	COMMENTS	From (m)		Alt Type V	Inten. Fro	om (To P'	Y CPY	SPH %	Po M	ag Galen	a Other Min. or Comments	Depth (m)	Structure	Structure	Sample #	From (m.)	To (m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
()	()	rano	Widaiio	()	Codo Inicamor	O I I I I I I I I I I I I I I I I I I I	()	()	.,,,,,,	1.110 (.	,	,	, ,,,	,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,	or comments	()	.,,,,	, anglo		()	()	(,						,,	,,,	
.						133.4-134.6 frequent quartz flooding, numerous Po enriched bands, minor			1									ļ														—
						Cpy generally associated with mm size carbonate fracture fill																										
125 25 1	37.30 META					medium grey-green; colour index decreasing downhole; occational												135.40	FOL	55												1
133.23	37.30 WLTA																	133.40	TOL	33												
						calcite fracture fill; garnets at start of unit, well foliated at beginning of unit			+-+		-		+	\vdash	-	_	-	-							-		-			-		
						weak to moderate chlorite alteration																										<u> </u>
						contacts distinct at 55 ° to CA																										1
137.30 1	39.60 BIF					BANDED IRON FORMATION				137	'.30 13	18 10 1	tr	tr	5			137.60	FOL	45												
107.00	55.00 Bii									107	.50 15	,0.10		u	J			107.00	TOL	70												
					+ +	137.3-138.1 good regular compositional banding; occational quartz			+		-		-		-		+	-			5138	133.40	134.60	1.20	1	7 0.	0.072	0.0017	0.052			
						veinlets parallel to bedding															5139	134.60	135.25	0.6	5 1	0 0.:	0.0088	0.0132	0.0347			
						138.1 breccia 2cm wide															5141	137.30	138.10	0.80)	7 0.	0.0156	0.0423	0.0544			1
						138.1-139.6 BIF with sections highly fractured, extensive quartz &				138	3.10 13	19 60 1	1	5	3	<1					5142	138.10	139.60	1.50	3	1 14.0	0.856	1.16	2.76	1.29	1.83	10.2
										-		.0.00		Ť	Ŭ	1									Ŭ				2.70	1.20	1.00	
						quaretz carbonate flooding & numerous multidirectional veining			+			-					-				5143			1.70)	7 0.:	0.0069	0.201	0.0188			
						numerous sphalerite stringers with associated Cpy blebs & stringers				_							-				5144	141.30	142.80	1.50	1	4 :	0.0263	0.836	2.31			<u> </u>
						occational clots galena within carbonate veinlets, evidence of															5145	142.80	144.30	1.50	1	4 0.	0.012	0.0406	0.0996			
						small scale floding & movement along fractures															5146	144.30	145.60	1.30	2	1 2.	0.0883	0.328	0.66			i
139.60 1	41.20 QFP																				5147	145.60	146.20	0.60		3 5.	0.0026	8 11	0.576			
139.60	41.20 QFP					light grey highly fractured, chlorite lining fracture planes, phenos widely																			,			8.11	0.576			
						scattered upto 3mm diameter; weak sericite (disseminated white mica)			+			-		1			-				5148	146.20	147.30	1.10	Nil	4.	2 1.72	1.7	3			
141.20 1	48.30 BIF					BANDED IRON FORMATION				141	.30 14	5.60 <	1 <1	3	3	tr		141.30	CTC	48	5149	147.30	148.30	1.00	1	4 12.	0.506	2.64	6.1			<u> </u>
				141.20 14.30	MAFD	dark green massive mafic dyke; contact with QFP ground																										1
						141.3 triangular wedge of sphalerite rich BIF bounded by MAFD uphole												141.35	СТС	55												ĺ
																		141.00	010	- 55												
						and a 15cm BRX downhole			+ +		-		+		-		<u> </u>								-							<u> </u>
						contact with MAFD parallel to bedding				_							-										-					<u> </u>
						BRX contact cuts across bedding at 55 ° to CA																										1
						sphalerite rich zone 10cm wide adjacent to lower contact with BRX,																										i
						contact ground																										
						141.6-146.2 massive BIF compositional layering ruthmic, occational				_							-	142.30	FOL	45							-					
						quartz & quartz/carbonate fractures & veinlets; small scale displacement												142.80	FOL	35												<u> </u>
						evident along some of the fractures; core very competent, changes in												142.90	FOL	45												i
						foliation gradual, folding evident near central portion of the unit along												143.50	FOL	35												1
										1		\dashv					1															Г
					+ + -	with increase in galena clots associated with calcite veinlets			+ +	-				\vdash			1	145.00	FOL	25												
						145.6-146.2 drilling nose of fold, ewxtensive carbonate veinlets			\sqcup	145	.60 14	6.20 tı	tr	<1	tr	5	1	145.50	FOL	10					1		1					
						multidirectional containing large clots of galena												146.00	FOL	15												Ь—
						146.2 fold nose-core cuts fold foliation curviture				1,40	5.20 14	16.50		, T		4r		146.10	FOL	20												1

Cour	-4	Canada		1		I	1	1				HOLE	ID #		VG-06	0.5												1					$\overline{}$
Cour		OR LITHOLOGY			Subsidia	ary Lithology			Altera	tion		HULE	MINERALI				MINERA	.S		STRUCTU	JRE				AS	SAY RESU	JLTS						+
From	To	LITHO Litho	Litho	From	To	LITHO L	0	From	To	Alt	Inten.	From	To PY	CPY	SPH I	Po Mag	Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (ppb)		Cu(nnm)	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code Ratio M	Modifier	(m)	(m)	Code Mo	er COMMENTS	(m)	(m)	Type V	MMS	(m)	(m) %	%	%	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	ла (ррь)	Ag(ppiii)	Ou(ppiii)	т Б(ррпп)	ZII(ppiii)	%	%	Meters
							143.6-143.9 fold nose core cuts foliation curviture												146.40	FOL	30												<u> </u>
							146.2-148.3 occational quartz veins; frequent sphalerite bands generally				1-	46.50	146.80 mn	10	3 (60			146.50	FOL	30												
							parallel to foliation with associated Cpy stringers and clots				1-	46.80	148.30 <1	1	5 .	<1	mn		146.85	FOL	38												—
							widely spased bands of sulphide concentrations parallel to banding												147.10	FOL	33												—
148.30	149.00	META					greywacke massive minor disseminated Py								_				147.40	FOL	40												
149.00	157.30	MAFD					massive, mottled grey green; scattered cjhlorite clots to smm diameter	149.00	157.30	CHLR	М				_				148.00	FOL	50												
							151.0 a 15cm graywacke? Foliation at 55 ° to CA weak biotite giving core												148.30	СТС	50												
							a brownish tinge								_				151.00	FOL	55												
							155.5-155.6 greywacke?																										<u> </u>
							156.0-157.1 numerous calcite stringers with pink haloes along stringer edg	jes																									<u> </u>
							157.3 contact obscure								_																		₩
157.30	162.30	META					massive greywacke; medium grey-green possibly a mixture of greywacke	157.30	162.30	CHLR	W				-	_			158.00	FOL	70												₩
							and above mafic dyke, narrow intervals foliated; trace widely scattered	-			_				+											-					-		
							Py generally associated with calcite stringers	-			_				+											-					-		
							162.05 minor galena with calcite flooding	-			-			\vdash	-															-			₩
							162.3 sharp contact with BIF core broken				-				-																		
162.30	177.60	BIF					BANDED IRON FORMATION				1	62.30	165.25 tr		tr	tr ?						5151	162.30	163.80	1.50	3	0.1	0.004	0.0644	0.213		0.56	8.30
							162.3-165.25 lean BIF well banded															5152	163.80	165.25	1.45	Nil	0.1	0.0112	0.0628	0.164			
							weak sericite alteration along selective compositional layers															5153	165.25	166.25	1.00	24	10.8	0.0806	1.16	3.34			+
							scattered carbonate microfractures															5154	166.25	167.70	1.45	7	0.2	0.0043	0.0784	0.252			
							162.3-162.5 minor sphalerite clots															5155	167.70	169.10	1.40	27	0.4	0.013	0.0049	0.0812	:		
							165.25-166.25 numerous sphalerite bands & stringers, frequent Po rich				1	65.25	166.25 <1	mn	5	10 ?	mn					5156	169.10	170.60	1.50	3	0.9	0.026					
							bands parallel to compositional layering; galena blebs associated with				_				+							5157			1.50	Nil	0.7	0.011					
							calcite stringers & flooding	1														5158	172.10	173.00	0.90	7	0.3	0.0056		0.0052			
							166.25- 174.1 lean BIF well banded, sericite along selective composition	na			1	66.25	174.10 <1		mn ·	<1 ?			169.30		55	5159			1.10	7	0.4			0.0533			
							layers												171.10		60	5160		175.60	1.50	7	4	0.0253			0.24	0.77	5.70
							166.9 sphalerite stringers parallel to bedding				-				+				173.30		60	5161			1.00	24		0.002					<u> </u>
							169.5 sphalerite stringers parallel to bedding												176.00	FOL	70	5162			1.00	17	8.8	0.100		0.724			<u> </u>
							174.1-177.6 lean BIF; increase in Po enriched bands; foliation slightly				1	74.10	177.60 2	tr	3	5 ?	<1					5163			1.00	7	4.4	0.026		1.95			<u> </u>
		+++					convoluted; occational sphalerite stringers; occational quartz/calcite	-			-				+							5164	178.60	179.80	1.20	3	3.1	0.0463	0.0884	0.268			
							veinlets & stringers with associated sphalerite & galena									_																	
							176.2-176.8 moderately chloritic; garnitiferous																			-				-			
							contact between BIF & underlying greywacke gradational/obscure																										<u> </u>

_									1																							1	1			
Co	ountry		Canada											HOLE	ID#		VC	3-06-0	5																ı	
		JOR LITHO					y Litholo				Altera	ation							ORY MIN				STRUCTI					A	SSAY RES	ULTS						
From		LITHO								From	To						Y SP				Other Min.							Interva	Au (ppt) Ag(ppm)	Cu(ppm)	Ph(nnm)	Zn(ppm)	Pb		Interval
(m)	(m)	Code	Ratio	Modifier	(m)	(m)	Code	Modifier	COMMENTS	(m)	(m)	Туре	WMS	(m)	(m)	% 9	%	%	%	% (or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	ла (ррк	, Ag(ppiii)	Ou(ppiii)	т Б(рріп)	ZII(ppiii)	%	%	Meters
																																			ı	
177.60	0 182.10	META		ļ					177.6-179.8 medium grey massive; frequent sphalerite with trace galena					177.60	179.80	2 m	n 2	1		<1		179.90	FOL	55												
																																			ı	
	-				-				stringers occurring along fractures; frequency of sphalerite fracture fill						-		-	-	+ +						<u> </u>							1	1			
									decreasing downhole; occational Po enriched bands; disseminated Py																										ı	
	1								decreasing downhole, occational if o criticited barids, dissernificated if y									-	+ +																	_
									& occational Py stringers; weakly to moderately foliated																										ı	
									, , , , , , , , , , , , , , , , , , , ,											Ť										1					i	
									179.8=182.1 massive greywacke; occational quartz/calcite stringers &																											
																																			ı	
				ļ					veinlets multidirectional																											
400.44										400 40	40400		м																						ı	
182.10	0 188.90	MAFD							massive; obscure upper contact-blends into the greywacke	182.10	184.80	CHLR	IVI			-	-		+ +			1										1				-
									uniu speckled with biotite; the biotite flakes are aligned perpendicular																										ı	
									und speckied with biotile, the biotile hakes are aligned perpendicular																											_
									to thye core giving the appearance of needles																										ı	
																																			1	
									182.1-184.8 weakly foliated; occational quartz/calcite fracture fill & veinlets																											
																																			ı	
	<u> </u>								frequency decreasing downhole; mottled grey-green colour, slight brownish								_		1				<u> </u>		<u> </u>							<u> </u>	<u> </u>			
									b d 4- bi-ida44																										ı	
-	-								hue due to bioitite content			-				-	-		+ +			1										1				
									186.3-186.9 well foliated, frequent carbonate stringers													186.50	FOL	65											ı	
	1								100.0 100.0 Worldmadd, noddon darbenadd dinigero													100.00		- 00						+					$\overline{}$	1
	1								188.9 contact distinct core broken	1												191.00	FOL	55								1	1		ı	
																														1					1	
188.90	0 197.00	META							massive grey-green greywacke; occational calcite stringers (fracture fill)													196.80	FOL	55						\bot		ļ	<u> </u>			
	1																																		ı	
<u> </u>	<u> </u>								minor disseminated Py associated with calcite flood/stringers								_									ļ				+		ļ	ļ			
	1																																		ı	
				<u> </u>					narrow sections garniteferous; weak to moderate foliation														1	1												

Cou	ntrv		Canad	a					VENCA	N GOLD C	orporation	on .																					\neg
PRO		G			Proporti	ios-Swavz	o Aroa Onta	rio Crist C	Co ordinates (UTM) final Diff. GPS +/ - 1m			HOLE	ID.#		V	3-06-06				1													
PRO	IECI		enoa ro	wiisiiip	Drill Star			orthing 52985		Datum	NAD 83		rom (m)		0.00	1	Го (m)	4.00	Ele	evation (m)	427.08												
HOLE	ID#	,	VG-06-	06	Drill Finis	h Date Jur	e 26,2006 E	asting 40987	372.24	zone	17	NQ F	rom (m)		4.00		Го (m)	122.00	Base of	f Oxidation													
Logge			C. Aussa		Depth (m	<i>'</i>		evation 427.0				BQ F	rom (m)					122.00													\longmapsto		
up-D	ated			ollar		355.		ill Company: B	Bradly Brothers, Timmins, Canada			diam.	HQ 6.35	cm N	NQ 4.76 cm	BQ_	_cm Co	omments:													\vdash		
				eflex eflex	17.0 122.		-45.0 40 -43.9																								\vdash		
Cou			Canada									HOLE			VG-06-																		
From			HOLOGY	Litho	From	ubsidiary Lith To LITH	ology O Litho			From To		From				SSORY MIN				STRUCTUI Structure		Sample	From	То		SAY RESI	1				Pb	7n	Interval
						(m) Cod			COMMENTS	(m) (m)						6 %							(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	Meters
0.00	4.00	NR					Ca	sing																									
4.00	7.80	FET					lia	nt to pale grev	ey to yellow beige, well colour banded, frequent pale white										5.20	FOL	55										1		
									ds (similar material as lapilli in following FELT unit)																								
									s progressive increase in colour index with occational																								
			1					cite stringers																									
				1															1														
7.80	13.30	FELT	+	1					een; garnitiferous-chloritic groundmass with pale grey	7.80 13.30	CHLR M			+	+	+	_		7.90	FOL	60						1				+		
			+				str	aetched felsic	c lapilli fragments, occational quartz veinlets, weak			 		-					10.10	FOL	65										\vdash		
							fol	ation garnets	s to 3mm, minor scattered Py as clots & disseminations																						\longmapsto		
13.30	15.80	IND					IN	TERMEDIATE	E DYKE																						\longmapsto		
							me	edium black-gr	grey, alignment of mafic minerals pronouncing a weak																						igspace		
							su	ptal foliation-ir	irregular but at a sharp angle to CA at times subparallel																								
							to	CA, occationa	al quartz veinlets																						1		
15.80	30.90	FELT					ma	assive mottled	d green-pink chloritic/garnitiferous groundmass with	15.80 30.90	CHLR M											5165	15.80	17.00	1.20	1-	4 1.6	0.0744	0.46	1.12	0.41	0.83	2.40
							fre	auent stretche	ned pale grey felsic lapilli fragments													5167	17.00	18.20	1,20	1	7 3.2	0.175	0.368	0.54			
									oken minor sphalerite & Cpy adjacent to the contact																								
												15.80	18.20	1 <1	<1 n		<1																
			1						ent widely spaced Py stringers & sphalerite/galena with mind			15.80	18.20	1 <1	<1 n	n	<1																
			+	1					ures; narrow intervals magnetic						+																+		
			1				18	.2-21.1 minor	r disseminated Py			18.20	21.10	mn	n	nn															+-+		
			1				21	.1-25.8 freque	ent widely spaced fracture fill galena/shpalerite, occational			21.10	25.80	<1 1	1	1	1					5168	21.10	22.60	1.50	10	0.9	0.0118	0.29	0.501	0.94	0.82	4.70
			1				int	ervals with 30	0% Po/Py/Sphalerite stringer concentartions, fractures													5169	22.60	24.10	1.50		5 0.9	0.0029	0.812	0.662	\sqcup		
							mı	ultidirectional														5170	24.10	25.80	1.70	1-	4 15.9	1.03	1.64	1.23			
			\perp				21	.2-21.3 20% P	Po, 10% Py																								
							22	.2-22.4 10% P	Py; 2% Sphalerite																								
									% Cpy 10% Po										25.10	FOL	60												
									r quartz fracture fill with associated minor sphalerite			25.80	30 90	mn		r																	
									· · · · · · · · · · · · · · · · · · ·			20.00	33.30																				
			+	1				nor dissemina							+																		
30.90	35.60	QFP	1				ma	assive light gre	rey speckled with chlorite microfractures & minor																	<u> </u>	1	<u> </u>	I				

0			0									E ID#		VC (06-06					1	<u> </u>					1	1	1	1			$\overline{}$
Cou	ntry MAJC	R LITH	Canada OLOGY			Subsidiary Lithol	ogy		Alter	ation	HOLI		RALIZA		CESSORY I	IINERAL	.S		STRUCTU	IRE				AS	SAY RESU	JLTS						
From	To	LITHO	Litho	Litho	From	To LITHO	Litho		From To	Alt Inten	. From	To	PY C	PY SPH	Po Mag	Galena	Other Min.	Depth	Structure	Structure	Sample	From	То	Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb		Interval
(m)	(m)	Code	Ratio	Modifier	(m)	(m) Code	Modifier	COMMENTS	(m) (m)	Type WM	S (m)	(m)	% '	% %	% %	%	or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	7 tu (ppb)	7.g(pp)	Оц(рр)	. Б(рр)	Zii(ppiii)	%	%	Meters
								disseminated Py																								, ,
																																i
								30.9 contact slightly irregular with overall trend of ~55° to CA; rafts of		+	<u> </u>																					
								QFP in adjacent FELT																								1
-						_		35.6 contact very sharp at 43 ° to CA		+	1			-	 	1										-	-					
35.60	38,.5	META						massive greywacke, generally very chloritic	35.60 36.00	CHLR W	35.60	36.00	5					35.60	СТС	43	5171	35.60	37.00	1.40	27	7 0.7	0.0073	0.0177	0.0395			1
																									_							ł
								35.6-36.0 non magnetic, weak to moderately chloritic Py stringers & clots		+ +	+										5172	37.00	38.50	1.50	24	4 0.3	0.0031	0.0085	0.0273			
								36.0-38.5 magnetic, Po stringers & disseminations throughout; narrow	36.00 38.50	CHLR M	36.00	36.80	5		60			37.00	FOL	43												1
								internals of seconds December 1										37.40	FOL	40												ł
-								intervals of massive Po, obscure garnets		+++				-				37.40	FUL	40						1	1					ſ
								36.45-36.8 massive Po/Py		$\bot\bot$																		<u> </u>	<u> </u>			-
								36.45-36.55 fragments of felsic volcanic (Ryholite) massive, around which																								ł
																1													1			i
								the Po/Py dispays flowage (foliation floes around the inclusion)																								
								36.8-38.25 chloritic massive, strongly magnetic 3% Po/Py			36.80	38.50	5		5																	ł
																																ł
								38.25-38.4 50% Po/Py		+ +	-					1																·
								38.4-38.5 minor Py/Po																								ł
																																1
38.50	44.35	QFP						massive, phenos to 3mm; light to pale grey, numerous chloritic mincro-		+ +	-							44.35	CTC	20												
								fractures, minor disseminated Py, very weak sericite																								<u> </u>
								20.5 and at the share but impossible 0 indicate at																								1
								38.5 contact very sharp but irregular & indistinct		++				-												1	1					í
								44.35 contact at a very sharp angle to CA																								
44.35	44.90	IF						massive Po foliation at 45° tp CA, perpendicular to QFP contact			44.35	44.90	2		80 ?			44.50	FOL	45	5173	44.35	44.90	0.55	3/	1 0.8	0.007	0.0028	0.0423			1
44.00	44.50							massive i o ioliation at 45 th oz., perpendicular to Qi i contact			44.00	44.50			00 :			44.50	TOL		5175	44.00	44.50	0.55		7 0.0	0.007	0.0020	0.0420			i
44.90	45.70	QFP						same as 38.5-44.35										44.90	CTC	#%	5174	45.70	47.00	1.30	3	3.0	0.0053	0.0015	0.0425			
								44.9 contact suptal, chloritic along contact margin, calcite stringer defines													5176	47.00	48.50	1.50	27	7 0.3	0.004	0.0005	0.0314			1
																										-						
\vdash							1	contact edge		+			-+			1					5177	48.50	50.00	1.50	17	7 0.3	0.004	0.0005	0.0355			
								45.7 contact suptal, chloritic along contact margin, again calcite stringer													5178	50.00	51.50	1.50	21	1 0.2	0.0042	0.0003	0.0423			ł
																																1
\vdash								defines contact edge		+ +			-+	-	 	1					5179	51.50	53.00	1.50	31	1 0.3	0.0049	0.0001	0.0728			ſ
45.70	54.15	IF						massive, foliation pronounced by sulphide stringer concentartions,	45.70 46.10	CHLR M	45.70	46.10	1		15 ?						5181	53.00	54.15	1.15	21	1 0.3	0.0044	0.0001	0.0416			.
											40.40	46.60	, T		80 ?																	·
\vdash							<u> </u>	occational narrow cherty sections, chloritic in less sulphide rich narrow		+	46.10	46.60	1		8U ?	 										 	 		1			
								portions; sulphide content decreases in cherty sections		\bot	46.60	48.70	40		40 ?														<u> </u>			└─ ─'
								45.7-46.1 narrow chloritic interval, convoluted foliation, occational																								i '
							<u> </u>	45.7 45.1 Harrow Chloride Interval, convoluted foliation, occational		+ +			-			1													1			
								calcite flood		+	1	├				<u> </u>										1	1	ļ	ļ			——'
								48.7-48.9 cherty section			48.70	48.90	5		5 ?			48.80	FOL	50												i '
										1 1			Ť						. ,,,													,
\vdash								50.05-53.5 total sulphide content variable, convoluted foliation		+	48.90	50.05	40	_	40 ?	1		\vdash								<u> </u>	<u> </u>					!
								spotty chlorite alteration			50.05	53.50	25		35 ?																	, '
ш						1		53.5-54.15 numerous chert beds with frequent Py/Po stringers &			53.50	54.50	10		15 ?	1					l	l										

Count	'nı		Canac	la .	1		- 1							HO	ID#			VG-06	s-ne											1	1					
Count		R LITH	HOLOGY			S	ubsidiary L	ithology				Alterat	tion	HULI		ERALIZ			ESSORY I	IINERAL	S		STRUCTU	JRE				AS	SAY RES	ULTS	1	ı	l .			
From	To	LITHO	Litho	Litt	ho F	From	To LI	THO	Litho		From	To	Alt Inten	. From	To	PY	CPY	SPH	Po Mag	Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh)		Cu/nnm	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Mod	ifier	(m)	(m) C	ode M	odifier	COMMENTS	(m)	(m)	Type WMS	S (m)	(m)	%	%	%	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	ла (ррь)	/ Ag(ppin	Оц(ррпп	, г Б(ррпп)	ZII(ppiii)	%	%	Meters
										sulphide enriched bands																										<u></u>
54.15	88.40	МЕТА								massive, medium grey-green, narrow sections biotitic giving core a																										<u> </u>
										brownish hue, narrow intervals garnitiferous																										<u> </u>
										54.5-55.2 pale to medium grey portions well foliated												55.00	FOL	60												<u> </u>
										after 61.2 progressive decrease in colour index																										<u> </u>
										62.7-62.75; 63.1-63.3 sections containing baeds of pale cream grey																										<u> </u>
										FET-(similar material to the lapilli in the FELT unit)												65.20	FOL	55												<u> </u>
										68.3 garnets to 3mm scattered over a 5cm section																										<u> </u>
68.40 7	70.50	BIF			\downarrow					BANDED IRON FORMATION				68.40	70.50	1	mn		40 ?			68.50	FOL	45	5182	68.40	69.40	1.00	3	4 0.	4 0.042	3 0.0001	0.0597			<u> </u>
					4					massive; well foliated															5183	69.40	70.50	1.10	2	4 0.	9 0.080	8 0.001	0.0234			<u> </u>
70.50 7	74.00	META			\downarrow					massive greywacke, speckled with garnets to 3mm												71.50	FOL	45								1				<u> </u>
74.00 8	31.00	BIF								BANDED IRON FORMATION				74.00	81.00	2	mn	mn	10 ?			74.00	FOL	45												<u> </u>
				_						massive, very well chanded (compositional layering) rythmic, numerous												76.80	FOL	50	5184	74.00	75.40	1.40	3	4 6.	8 0.07	1 0.636	1.57	0.64	1.57	1.40
										mm scale Po stringers paralllel to bedding, selective layers sericitic												79.80	FOL	48	5185	75.40	76.90	1.50	1	4 1.	9 0.021	7 0.0086	0.0283			<u> </u>
				_						widely scattered Cpy stringers															5186	76.90	78.40	1.50	1	3 0.	5 0.0	1 0.0043	0.0102			
				_						minor sphalerite/galena stringers fracture fill and as mm stringers parallel															5187	78.40	79.90	1.50	1	2 0.	7 0.005	6 0.0029	0.011			<u> </u>
				-	-					to banding															5188	79.90	81.00	1.10	1	0 2.	1 0.078	4 0.0158	0.0615			
				-	-					74.0-75.4 frequency of sphalerite/calcopyrite/galena stringers more																										
										numerous than central portion of BIF unit.																										1
81.00 9	91.90	MAFD			_					contact sharp with BIF																										
					_					81.0-82.5 aphanetic dark grey-black																										
								_		after 82.0 unit becomes mottled grey-green with scattered blebs chlorite																										
\vdash					+					87.7-87.9 quartz/calcite vein and flooding containing inclusions of dyke																						1				—
				+	+			+		material, contacts irregular, minor blebs galena								-					-						-			-				
	-			-	+			\perp		87.5-91.9 frequent multidirectional calcite fracture fillings	1							-																		
91.90	97.20	META		-	-					massive greywacke weakly foliated medium grey-green with scattered	1																									
	_			+	+			+		white speckles								+					-						-			-				
	_			+	+			+		95.5-95.9 minor mm size garnets								+					-						-			-				
	_			+	+			+		95.7-97.2 progressive decrease in colour index to light green-grey								+					-						-			-				
	-			-	+			\perp		numerous garnets to 5mm	1							-																		
					_					scattered chlorite lined microfractures																										—
97.20 1	11.50	BIF			\downarrow					Lean BANDED IRON FORMATION				97.20	99.30	tr	tr	tr	tr ?			97.60	FOL	50	5189	97.20	98.20	1.00		7 0.	3 0.002	5 0.0001	0.0013			<u> </u>
										very distinct compositional layering, foliation weakly crenulated															5190	98.20	99.30	1.10	1	0 0.	2 0.002	6 0.0001	0.001			<u></u>

Country		Cana	do									HOLE	ID #		VG	-06-06												\neg		$\overline{}$	T		T
	AJOR LIT	THOLOG			Su	bsidiary	Litholog	v		Altera	ation	HOLE		RALIZAT			Y MINERA	S		STRUCTU	RF				AS	SAY RES	ULTS				+	+	+-
		O Lith		ho F		To L				From To		From								Structure		Sample	From	To	Interval	1		$\neg \neg$	$\overline{}$	$\overline{}$, Pb	Zn	Interval
(m) (m)									COMMENTS	(m) (m)					% %		% %				Angle	#	(m.)	(m.)	(m.)	Au (ppb) Ag(ppi	om) Cu(pp	pm) Pb(ppm	n) Zn(ppm)	%	%	Meters
									generally strongly magnetic, larger chert horizons weakly magnetic													5191	99.30	100.60	1.30	2	24	0.2 0.0	0.000	0.003	16		
									97.2-99.3 very distinct rythmic banding, minor Po, trace Py										99.00	FOL	50	5192	100.60	101.80	1.20	3	34	1.6 0.0	0.00	15 0.22	:1		
									trace Cpy/Sphalerite filled microfractures													5193	101.80	102.80	1.00	1	4	0.2 0.0	0.000	0.017	2	$oxed{oxed}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
									99.3-101.8 compositional banding less distinct, frequent Po stringer			99.30	101.80	tr <	:1	10	?					5194	102.80	103.90	1.10		7	0.1 0.0	0.000	0.004	.3	<u> </u>	<u> </u>
									microfracture filling and narrow enriched bands parallel compositional													5195	103.90	104.90	1.00	2	27	2.8 0.	.059 0.53	32 1.7	0.53	3 1.71	1 1.0
									layering, frequent Cpy stringers ling multidirectional microfractures							1						5196	104.90	106.40	1.50	2	24	0.8 0.	.011 0.024	47 0.043	8	—	$+\!-\!$
			-	+					101.8-103.9 distinct compositional banding, widely scattered Po			101.80	103.90			1	?		102.00	FOL	55	5197	106.40	107.90	1.50		7	0.3 0.	.007 0.00	0.005	7	\vdash	+-
									liining microfractures parallel to compositional layering													5198	107.90	109.60	1.70	1	0	0.2 0.0	0.000	0.011	7	┼	+-
									103.9-104.9 scattered multidirectional calcite stringers with associated			103.90	104.90	tr	1 2	5	?					5199		110.60					.029 0.00			+-	+
									sphalerite and sphalerite lining microfractures													5201	110.60	111.50	0.90	1	4	0.7 0.0	0.000	0.063	6	\vdash	+-
									scattered Cpy lining microfractures frequent Po bands paralleling compositional layering																			+	+	+	+	\vdash	+
									104.9-109.6 well developed, distinct rythmic compositional lavering			104.90	109.60	tr		mn	7		105.10	FOL	55									+	1		
1									minor Po stringers mm size parallelling banding										108.00		60												
									109.6-111.5 numerous quartz veins parallel to banding, frequent chert beds			109.60	111.50	tr	1	5	?		111.30	FOL	60												
									and Po enriched layers generally less that 5mm width																					<u> </u>	lacksquare	$oxed{oxed}$	
									frequent Po/Cpy stringers lining microfractures																						ـــــــ	↓	
111.50 122.0	00 MET	A							massive mottled grey-green brownich tinge, frequent biotitic bands																					4	ــــــ	<u> </u>	
									acsenting foliation							1												_		+	₩	—	₩
				+					111.5-113.0frequent garnets intensity decreasing downhole					+													+	_	_	+	-	 	+
			+	+					113.0-113.9 frequent multidirectional calcite filled stringers					+													+	+	+	+	+-	\vdash	+
				+					113.9-114.3 well foliated							+			114.00	FOL	60							+	+	+	+-	\vdash	+
									114.3-115.4 weakly foliated							+			<u> </u>									+	+	+	+-	\vdash	+
									115.4-122.0 numerous garnets size and intensity decreasing downhole cm scale alternating chloritic/biotitic bands										120.00	FOL	55						+			+	1		1
									120.5-121.0 occational calcite filled fractures containing sphalerite &			120.50	121.00		tr		tr					5202	120.50	122.00	1.50	1	0	0.4 0.0	0.07	72 0.25	i8		1
									galena blebs															00				3.0	3.01	1,20			

Part Part																				on	porati	D Cor	N GOLI	VENCA					Canada		Country	
March Marc			<u> </u>												-07	VG-0			F.ID.#					ULTM) For I DIFF ODD 1/1 4-1	ntorio Odd Oc	Aron Onto		Branartica St	aaa Tawaahir		DDO IEOT	D
Fig. 1		1		\vdash							3.00	on (m) 423	Flevati	7.00			0.00	1)			NAD 83	m	Datur	OTM) final Diff. GPS +/ - Tm					ioa rowiisiii		PROJECT	Pi
											5.00																		G-06-07	:	HOLE ID#	н
														194.00	TD m.			1)	From (m	BQ					O Elevation 423.00	Incl. O	Azm. ⁰	Depth (m)	C. Aussant	:	_ogged By:	Lo
Section Sect			<u> </u>	<u> </u>										Comments:	3Qcm	6 cm	NQ 4.76	5 cm	HQ 6.3	diam.				rs, Timmins,Canada	Drill Company: Brad	0 -45.0	354.00		Collar		up-Dated	u
Sum Free F	+-+-		├ ──	├ ──'			•																									
Second S	 			\vdash																												
Marcel M				\vdash												-06-07	VG		FID#	HOL					'	0 -43.6	350.50	194			Country	
Columb C	Dh. To lote							T- 1	F	0						CCESSO	TION & A		MINI										OLOGY		N	
FRIT generation to brock accenting bilation, otheric, generations 750 8.00 CHR M	Pb Zn Inter % % Met	Zn(ppm)	Pb(ppm)	Cu(ppm)	Ag(ppm)	Au (ppb)					Angle	ype A	(m) T	Other Min. or Comments	% Galena	1 Po %	% SPF	% %	(m)	S (m)	ype WM	(m) T	(m)	COMMENTS	er	Modifier	Code	er (m) (m)	Ratio Modif) Cod		
7.00 8.00 FRLT		i I	1 '	'																					Casing					0 NF	.00 7.00	0.0
gourdness with pale grey light and frequent -cform side felic volcanic beds. beds. 200 17.40 FET																						0.00	7.00									
beds Bod 1740 FET				$\vdash \vdash$								+				+				+	HLK M	6.00 C	7.00					+ + -	1	U FEL	.00 8.00	7.0
Both 1740 FET paid gray to cream gray, vary well foliated (opcoat/onal layering) Trequent on scale paid gray (select volcanic beat) ascenting foliation Triple 28.25 FELT Triple 28.2	+		 '													+				1				pilli and frequent <1cm wide felsic volcanic	groundmass with pa		 					
tenguent cm scale pals gery felix volcanic beats accentring foliation 17.40 28.25 FELT 18. measive, motified grey-green-pink matrix with pale grey felix volcanic 18. measive, motified grey-green-pink matrix with pale grey felix volcanic 18. measive, motified grey-green-pink matrix with pale grey felix volcanic 18. measive, motified grey-green-pink matrix with pale grey felix volcanic 18. measive, motified grey-green-pink matrix with pale grey felix volcanic 18. measive, motified grey-green matrix grey-green grey-grey-grey-grey-grey-grey-grey-grey-			<u> </u>	<u> </u>																					beds							
17.40 28.26 FELT											55	OL	10.00 F	_										well foliated (copositional layering)	pale grey to cream					10 FE	.00 17.4	8.0
17.40 28.26 FELT		1	i '	'							55	OL	11.00 F											elsic volcanic beds acsenting foliation	frequent cm scale p							
bets and lipili fragments stretched along foliation, m Py clots adjacent to calcite fracture filings, mn disseminated Py 2000 FQL 55 well layered, chloritic gametiterous 28.25 33.50 FET massive light to pale grey with medium grey-green mm size chlorite bands asserting foliation at 55° to CA sections adjacent to FELT unit well foliated, central portion of unit motited colourstion & poonly foliated (29.0-32.0) medium to dark grey-green-prink, gametierous, moderately chloritic associational pale grey letisic bands asserting foliation minor quartz flood, occational Py bibbs-concentrations aligned parallel to foliation upper contact gradational compositional change; lower contact thrological change sharp		1																						-								
adjacent to calcife fracture filings, me disseminated Py 20.00 FOL 55 well layered, chloritic gametierous 28.25 33.50 FET massive light to pale grey with medium grey-green mm size chlorite bands asserting foliation at 55° to CA 32.00 FOL 55 bands asserting foliation at 55° to CA 32.00 FOL 55 bands asserting foliation at 55° to CA 32.00 FOL 55 ascrions adjacent to FELT unit well foliated, central portion of unit montled colouration & poorly foliated (29.0-32.0) medium to dark grey-green-pink gametierous, moderately chloritic 33.50 35.00 FELT medium to dark grey-green-pink gametierous, moderately chloritic 33.50 35.00 FOL 00 minor quartz flood, occational Pty bleto-concentaritions aligned parallel to foliation upper contact gradational compositional change lover contact lithological change sharp	 			$\vdash \vdash \vdash$																	HLR M	28.25 C	17.40 2					+ + -		25 FEL	7.40 28.2	17.4
well layered, chloritic gameliferous 28.00 FOL 60 28.40 FOL 55 38.40			<u> </u>	 							55	OL	17.00 F											etched along foliation, mn Py clots	beds and lapilli frag			+ +				
28.25 33.50 FET massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green mm size chlorite 28.40 FOL 55 massive light to pale grey with medium grey-green massive light to pale grey with medium grey-green massive light to pale grey with medium grey-green massive light to pale grey with medium grey-green massive light to pale grey with medium grey-green massive light to pale grey with medium grey light to pale grey with medium grey light to pale grey with medium grey light to pale grey with medium grey light to pale grey with medi			<u> </u>	<u> </u>							55	OL	20.00 F											ings, mn disseminated Py	adjacent to calcite f							
bands accenting foliation at 55° to CA sections adjacent to FELT unit well foliated, central portion of unit mottled colouration & poorly foliated (29.0-32.0) medium to dark grey-green-pink; garnetierous, moderately chloritic 33.50 35.00 FELT medium to dark grey-green-pink; garnetierous, moderately chloritic cocational pale grey felsic bands acsenting foliation minor quartz flood, occational Py blebs-concentaritions aligned parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp			L	<u> </u>							60	OL	26.00 F											erous	well layered, chloriti							
bands acsenting foliation at 55° to CA sections adjacent to FELT unit well foliated, central portion of unit motited colouration & poorly foliated (29.0-32.0) medium to dark grey-green-pink; garnetierous, moderately chloritic 33.50 35.00 FELT medium to dark grey-green-pink; garnetierous, moderately chloritic occational pale grey felsic bands acsenting foliation minor quartz flood, occational Py blebs-concentantions aligned parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp		1									55	OI	28.40 F											n medium grev-green mm size chlorite	massive light to pale					in FF	3 25 33 5	28.2
sections adjacent to FELT unit well foliated, central portion of unit mottled colouration & poorly foliated (29.0-32.0) mottled colouration & poorly foliated (29.0-32.0) medium to dark grey-green-pink; garnetierous, moderately chloritic 33.50 35.00 CHLR M occational pale grey felsic bands assenting foliation minor quartz flood, occational Py blebs-concentartions aligned parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp		i																												,0 12	5.25 55.5	20.2
motitled colouration & poorly foliated (29.0-32.0) medium to dark grey-green-pink; garnetierous, moderately chloritic 33.50 35.00 FELT medium to dark grey-green-pink; garnetierous, moderately chloritic occational pale grey felsic bands acsenting foliation minor quartz flood, occational Py blebs-concentartions aligned parallel to foliation upper contact gradational compositional change; lower contact fithological change sharp	 			$\vdash \vdash \vdash$							55	OL	32.00 F											5° to CA	bands acsenting fol			+ + -				
33.50 35.00 FELT medium to dark grey-green-pink; garnetierous, moderately chloritic 33.50 35.00 CHLR M 34.80 FOL 60 minor quartz flood, occational pale grey felsic bands acsenting foliation 34.80 FOL 60 minor quartz flood, occational Py blebs-concentartions aligned parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp			<u> </u>	 																				it well foliated, central portion of unit	sections adjacent to			+ +				
occational pale grey felsic bands acsenting foliation minor quartz flood, occational Py blebs-concentartions aligned parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp			<u> </u>	<u> </u>																				oliated (29.0-32.0)	mottled colouration							
occational pale grey felsic bands assenting foliation minor quartz flood, occational Py blebs-concentartions aligned parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp		1	i '	'																	HLR M	35.00 C	33.50 3	ink; garnetierous, moderately chloritic	medium to dark gre					00 FEL	3.50 35.0	33.5
minor quartz flood, occational Py blebs-concentartions aligned parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp											60	OL	34.80 F																			
parallel to foliation upper contact gradational compositional change; lower contact lithological change sharp		, †																		1								1 1				
upper contact gradational compositional change; lower contact lithological change sharp		-		$\vdash \vdash$								+				+				+				Py blebs-concentartions aligned				+ + -				
lithological change sharp	+		 '													+				1					parallel to foliation		 					
		├	<u> </u>	<u> </u>								_				\perp				1				npositional change; lower contact	upper contact grada							
35.00 40.40 FET pale creamy grey to light grey, massive , same as 28.25-30.5			L																						lithological change							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, T	1	1 7							50	OL	35.40 F					Ī						, massive , same as 28.25-30.5	pale creamy grey to					10 FE	5.00 40.4	35.0
		, T																														
		-		$\vdash \vdash$												+				+								+ + -				
40.40 41.60 QFP massive light grey, phenos to 5mm 40.40 CTC 50	+			$\vdash \vdash$							50	TC	40.40 C		+	+				+	_		\vdash	5mm	massive light grey,	-		+	 	0 QF	0.40 41.6	40.4
40.4 contact at 50 ° to CA slightly oblique to foliation very sharp			<u> </u>	<u> </u>							60	TC	41.60 C			igspace								htly oblique to foliation very sharp	40.4 contact at 50 °			\bot		-		
gradual increase in pheno size over first 10cm of the dyke margins 42.00 FOL 55			L								55	OL	42.00 F											e over first 10cm of the dyke margins	gradual increase in							
41.60 42.70 FET well foliated, banded light to medium grey (compositional layering)		, T	1								50	TC	42.70											nedium grey (compositional lavering)	well foliated hande					0 FF	1.60 42 7	41 6

Cou	ntry		Canada										н	OLE ID #	#		VG-0	06-07																	
550	MAJ		HOLOGY				ary Litholo				Alteration			1	/INER/		N & ACC	CESSOR	Y MINERAL			STRUCT	JRE	<u> </u>			AS	SAY RESI	JLTS	1	1	1			\vdash
From	To	LITHO	Litho	Litho	From	To	LITHO	Litho		From	То	Alt Inte	en. Fro	m To	Р	Y CPY	SPH	Po M	ag Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh)		Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifier	(m)	(m)	Code	Modifie	r COMMENTS	(m) (m) '	Type WM	1S (m	n) (m	1) 9	%	%	% 9	% %	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppiii)	Cu(ppiii)	rb(ppiii)	ZII(ppiii)	%	%	Meters
42.70	45.00	FELT							dark green chloritic, garnetiferous, sections with scattered pale grey	42.70 45	5.00	CHLR S	5								44.00	FOL	50												
									felsic lapilli, occational pale grey felsic layers to 2cm wide												45.00	СТС	55												
									lapilli streatched along foliation direction																										
									45.0 pyritic stringer along contact																										
45.00	51.60	FET							massive, mottled or colour banded light to pale grey to creamy grey																										
									45.0-49.2 mottled light to pale grey, occational quartz veinlets																										
									49.2 light creamy grey with rythmic crenulated medium grey mm stringers																										<u> </u>
									acsenting foliation, very sharp colour change at 49.2																										<u> </u>
51.60	51.85	MAFD							medium to dark grey-gren, massive, very sharp contacts at 55 ° to CA												51.60	стс	55												<u> </u>
									perpendicular gto foliation in adjacent FET units		_		\perp		\perp				\perp																<u> </u>
51.85	53.20	FET						<u> </u>	massive pale to light creamy grey with rythmic medium grey-green bands				_		_				\perp																<u> </u>
									pronouning fliation (2cm bands of compositional layering)																										<u> </u>
53.20	54.50	MAFD							same dyke as 51.6-51.85; massive medium to dark grey-green, occational		-		+	-	+				+		53.20	СТС	45												<u> </u>
\vdash									quartz veinlets, widely scattered resorbed granodiorite fragments-coarse		-		-																						<u> </u>
									grained				+	-	+	+			+																
	+								53.2 contact at 45 ° to CA perpendicular to bedding		-		+		+	-			+																
54.50	54.82	FET							same as 51.85-53.2		-		+	-	+				+																
54.82		MAFD							same dyke as 53.2-54.5		-		+		+				+		54.86	СТС	65												-
54.86	55.38	MAFD (2	2)						massive magnetic dark black aphanetic dyke intruding above grey-green				+																						
									dyke, contacts very sharp		\dashv		+	+	+				+					1											-
55.38	55.44	MAFD							same dyke as 53.2-54.5				+	+					+		55.38	CTC	50												
	+								54.82 & 55.44 contacts show narrow chloritized halos of adjacent FET				+		+																				
55.44	00.05	FET							units				T						+		50.00	FOL	55												
55.44	6∠.85	rti							light to pale creamy grey with occational pale grey <1cm felsic bands & lappilli fragments; colour banding acsenting foliation at 55° to CA				\top								58.00 61.00		55		İ					t					
									sections very felsic white grey to creamy grey				T								66.00		55												
									colour index variable throughout unit; trace Py												72.00		55												
82.85	91.30	FELT							mottled grey-green pink with numerous pale grey felsic lapilli fragments	82.85 91	1.30	CHLR M	1								78.00		47												
									& cm felsic bands assenting foliation, chloritic garnetiferous		1										79.40		45												
									83.1-83.2 sphalerite/galena along microfracture at 18° to CA												81.40		35												
									82.85-83.0 frequent Py clots & Py enriched discontinuous stringers				82.	85 83.0	00 4		tr		tr		81.60		43												
									83.0-86.8 minor disseminated Py, widely spaced-generally along				83.	00 86.8	80 m	n					82.80	FOL	47												
									microfractures																										

Second Continue of Continue	Cou	ntry		Canada											Н	OLE ID) #		VG-	-06-07															Т		
*** *** *** *** *** *** *** *** *** **		MAJ	OR LITH				Subsid	diary Litho	ology				Alterat	ion				RALIZATI				.S		STRUCTU	JRE				AS	SSAY RES	ULTS		l	l			
*** **********************************	From	To	LITHO	Litho	Litho	Fron	n To	LITH	O Lit	tho						m	То	PY CP	Y SPH		Mag Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh	Δα(npm)	Cu(nnm)	Ph(nnm)	Zn(nnm)	Pb	Zn	Interval
No. No.	(m)	(m)	Code	Ratio	Modifi	ier (m)	(m)	Code	Mod	difier	COMMENTS	(m)	(m)	Type W	MS (n	n) (m)	% %	%	%	% %	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppiii)	Cu(ppiii)	rb(ppiii)	ZII(ppiii)	%	%	Meters
No. No.										86	6.8-91.7 variable disseminated PY & along microfractures				86.	80 9·	1.30	1																			
20 20 20 20 20 20 20 20																																					
March Marc	04.00	04.70	MAED									04.00	24.70	CLII D																							1
1	91.30	94.70	MAFD	<u> </u>								91.30	94.70	CHLR	5																						+
No. No.										da	ark green chloritic massive																								-		
1										9	1.3-92.3 contains intervals of silicified FELT possibly rafts				-																						
No. No.										9	1.3 contact at 75 ° to CA cross cutting FELT foliation				_				_				91.30	CTC	75										<u> </u>		
1										9	1.4 contact sharp at 50 ° to CA crosscutting foliational of silicified unit												91.40	СТС	50										<u> </u>	<u> </u>	
										9	1.4-91.6 silicified FELT foliated at 20 ° to CA	91.40	91.60	SILI	s								91.50	FOL	20										<u> </u>	ļ	<u> </u>
										9	1.6 contact sharp at 55 ° crosscutting foliation				\perp								91.60	стс	55										<u> </u>	<u> </u>	<u> </u>
No. No.										9	1.6-92.0 MAFD				oxed																				<u> </u>	<u> </u>	$oxed{oxed}$
										92	2.0-92.3 silicified FELT contacts sharp	92.00	92.30	SILI	s																						
2.3 gard's weeker daing contact 1.										92	2.0 contact at 50 ° to CA oblique to foliation												92.00	стс	50												<u> </u>
1										92	2.1 foliated at 30 ° to CA												92.10	FOL	30												
1										92	2.3 quartz veinlet along contact																										
1																																					
Active life frequency occational chlores Nation and plants white quartar van, occational chlores Nation and plants white quartar van, occational chlores Activation and plants white quartar van, occational chlores Activation and plants white quartar van, occational chlores Nation and plants white quartar van, occational van, white all plants white plants whit																																					
94.70 98.25 OTZ											-																										
98.25 OTZ massive white quater van, occational chlorite limit fractures & chloritic includes white quater van, occational chlorite limit fractures & chloritic includes white quater van, occational chlorite limit fractures & chloritic includes white quater van, occational chlorite limit fractures & chloritic includes & ch																							04.60	FOL	60												
96.26 CTC 53	04.70	00.05	0.77								, , ,				\top								94.60	FUL	60												
94.7 contact irregular 95.09 6.65 celebratic inclusions & fractures with class galeria 96.09 6.65 celebratic inclusions & fractures with class galeria 98.25 (10.58) MAPD 98.25 (10.58	94.70	98.25	QIZ					+																											-		+
98.25 101.65 MAFD 96.00 96.65 chloritic inclusions & fractures with clots galena 96.00 96.65 96.00 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.05 96.00 96.															+	+							98.25	CTC	53												+
98.25 101.65 MAFD Same as 91.3-94.7 98.25 CHLR SILJ							-		+						+		-														7 0.1					<u> </u>	+
massive malic dyke (Malic flow?) dark green chloritic, occasional calcote lined fractures occasionally bleached along froature boundaries 9.82.59.9.0 weakly foliated weakly biotitic 101.65 contact sharp but irregular mottled grey-green, chloritic gametiferous groundmass 101.65 111.56 FELT mottled grey-green, chloritic gametiferous groundmass 101.65 103.00 CHLR M 101.65 103.00 3 < -1 frequent light grey felsic lapilit fragments & bands acsenting foliation dections disseminated with Py, occasional Py stringer concentrations 102.0-102.4 numerous irregular calcitle stringers at a sharp angle to CA 102.0-102.4 numerous irregular calcitle stringers at a sharp angle to CA 103.00 CHLR M 101.65 103.00 Tells 103.00										96	6.0-96.65 chloritic inclusions & fractures with clots galena				96.	00 96	6.65				2					5204	96.00	96.65	0.65	5 Nil	0.2	0.0006	0.0008	0.0015		-	+
dark green chortic, occational calcote lined fractures occationally bleached along freature boundaries 98.25-99.0 weakly foliated weakly biotitic 101.65 contact sharp but irregular mottled grey-green.chloritic gametiferous groundmass 101.65 111.56 FELT mottled grey-green.chloritic gametiferous groundmass 101.65 103.00 CHLR M 101.65 103.00 3 <1	98.25	101.65	MAFD	-	1					Sã	ame as 91.3-94.7	98.25	CHLR	SILI	+		-									5205	96.65	98.25	1.60	0 Nil	0.1	0.0005	0.0001	0.0006	 		-
bleached along freature boundaries 98.25-99.0 weakly foliated weakly biotitic 101.65 contact sharp but irregular mottled grey-green, chloritic gametiferous groundmass 101.65 111.56 FELT mottled grey-green, chloritic gametiferous groundmass 101.65 103.00 CHLR M 101.65 103.00 3 < 1 frequent light grey felsic lapili fragments & bands acsenting foliation dections disseminated with Py, occational Py stringer concentartions 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 103.00 CHLR M 104.65 103.00 3 < 1 104.05 103.00 SHLR M 104.65					-	+	-	+-	-	m	nassive mafic dyke (Mafic flow?)				+	+	+	_	-	\vdash						-								-	 '	<u> </u>	₩
98.25-99.0 weakly foliated weakly biotitic 101.65 contact sharp but irregular 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferous groundmass 101.65 In mottled grey-green, chloritic garnetiferou					_	_	-		_	da	ark green chloritic, occational calcote lined fractures occationally				+	_	_		-																<u> </u>	<u> </u>	\vdash
101.65 contact sharp but irregular 101.65 FELT mottled grey-green,chloritic gametiferous groundmass 101.65 103.00 CHLR M 101.65 103.00 3 < 1 frequent light grey felsic lapilli fragments & bands assenting foliation dections disseminated with Py, occational Py stringer concentartions 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 103.00 CHLR M 101.65 103.00 3 < 1 103.00 THLR M 101.65 103.00 THLR						1	1		1	bl	leached along frcature boundaries				\perp																				<u> </u>	<u> </u>	₩
101.65 111.56 FELT mottled grey-green, chloritic gametiferous groundmass 101.65 103.00 CHLR M 101.65 103.00 3 < 1 frequent light grey felsic lapilit fragments & bands acsenting foliation dections disseminated with Py, occational Py stringer concentartions 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M 101.65 103.00 3 < 1 103.00 CHLR M										98	8.25-99.0 weakly foliated weakly biotitic				\perp																				<u> </u>	<u> </u>	↓
frequent light grey felsic lapilil fragments & bands acsenting foliation dections disseminated with Py, occational Py stringer concentartions 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 102.20 FOL 15										10	01.65 contact sharp but irregular																								<u> </u>	<u> </u>	$oxed{oxed}$
dections disseminated with Py, occational Py stringer concentantions 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 102.0 FOL 15	101.65	111.56	FELT							m	nottled grey-green,chloritic garnetiferous groundmass	101.65 1	03.00	CHLR	M 101	.65 10	3.00	3		<1																	
dections disseminated with Py, occational Py stringer concentantions 102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA 102.0 FOL 15										fre	requent light grey felsic lapilli fragments & bands acsenting foliation																										
102.0-102.4 numerous irregular calcite stringers at a sharp angle to CA															T																						
																							102.20	FOL	15												
											02.0 quartz veinlet perpendiclar to CA after which foliation rapidly				102	00 11	1 56	_{<1}					103.50		50												

Country		Car	nada										HOI	E ID #			/G-06-	07																	
	MAJOR	R LITHOLOG				Subsidia	ry Litholo	qv		Al	teration		HOL		IERALI			SSORY M	INERALS	S		STRUCTU	JRE				A	SSAY RES	JLTS	1	L				
From To	L	ITHO L	Litho	Litho	From	To	LITHO	Litho		From T	o Al	lt Inten	. From	To	PY	CPY S	PH P	o Mag	Galena	Other Min.	Depth	Structure	Structure	Sample	From	To				0	DF (7-6	Pb	Zn	Interval
(m) (m)) (Code F	Ratio M	Modifier	(m)	(m)	Code	Modifier	COMMENTS	(m) (r	n) Typ	oe WMS	S (m)	(m)	%	%	% %	%	%	or Comments	(m)	Type	Angle	#	(m.)	To (m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	%	Meters
									changes to 15 ° to CA indicating faulting along the quartz vein												106.00	FOL	50												
									107.2-107.5 magnetic 3% Py as 2 to 5mm crystals												109.00	FOL	47												
									108.55-108.62 narrow magnetic band 3% Py																								<u> </u>	<u> </u>	<u> </u>
									109.45-109.6 magnetic interval with 5% combined Py/Po																								<u> </u>	<u> </u>	<u> </u>
									111.56 contact very sharp at 35 ° to CA slightly irregular																								<u> </u>	 	
111.56 132.	10	IF							massive sulphide rich IRON FORMATION		_	-	111.56	117.20	40		3	0 ?			111.90	FOL	55	5206	111.56	113.00	1.4	1 4	1 0.6	0.0048	0.0001	0.0145	 '	<u> </u>	
									mottle appearance Py & Po stringer concentartions in a black groundmass												116.00	FOL	55	5207	113.00	114.50	1.5	3	4 0.5	0.0057	0.0001	0.0197	<u> </u>	<u> </u>	-
	-								convoluted foliation stringers Py clots giving core a brecciated															5208	114.50	116.00	1.5	4	8 0.8	0.0059	0.0001	0.032	<u> </u>		-
	_								appearance, occational narrow chloritic bands or irregular inclusions															5209	116.00	117.20	1.2	5	1 0.9	0.0062	0.0014	0.0414	ļ	<u> </u>	<u> </u>
	-								113.7 12 cm quartz flooded interval		\perp													5210	117.20	118.20	1.0	4	8 1.1	0.0083	0.141	0.762	0.33	0.90	7.6
									117.2-118.15 frequent mulidirectional calcite fracture fill stringers with				117.20	118.15	40		2 3	0 ?						5211	118.20	119.20	1.0	4	8	0.007	0.141	0.46	<u> </u>	<u> </u>	
	\perp								associated sphalerite, occational sphalerite stringer fracture fill		\perp		_											5212	119.20	120.50	1.3	6	2 .	0.006	0.52	1.56		<u> </u>	
									118.15-119.15 alternating sections 80% Py/Po with sections 10% Py/Po				118.50	119.15	30		<1 2	0 ?						5213	120.50	121.70	1.2	1	0 1.2	0.0032	0.217	0.616	ļ	<u> </u>	
	_								occational sphalerite stringers lining microfractures												119.15	стс	45	5214	121.70	123.30	1.6	5	8 2.8	0.0073	0.592	0.901	ļ	<u> </u>	<u> </u>
	_				119.15	119.50	MAFD		dark black green chloritic core broken, non magnetic	119.15 119	.50 CH	LR S	119.15	119.50	1		1							5215	123.30	124.80	1.5	5	5 1.4	0.0066	0.225	0.92	<u> </u>	<u> </u>	
									PY/sphalerite rich irregular concentration of blebs at 119.2															5216	124.80	126.30	1.5	11	3 1.2	0.0085	0.0052	0.086	<u> </u>	<u> </u>	
	-								119.15 contact sharp at 45 ° to CA			-												5217	126.30	127.30	1.0	3	1 0.9	0.0046	0.0002	0.0473	<u> </u>	<u> </u>	<u> </u>
									119.5-120.5 Sulphide rich IRON FORMATION, frequent calcite fracture fill				119.50	120.50	30		5 <	1 ?						5218	127.30	128.80	1.5	5	в .	0.0067	0.0001	0.0331	<u> </u>	<u> </u>	
	-								frequent sphalerite rich microfractures and occational 5cm wide			-												5219	128.80	130.30	1.5	3	в -	0.0075	0.0001	0.0355	<u> </u>	<u> </u>	
	+								sphalerite flooded irregular intervals, foliation convoluted															5221	130.30	131.30	1.0	5	5 0.8	0.0065	0.0001	0.0192	-	<u> </u>	<u> </u>
	+				120.50	120.85	MAFD		dark green chloritic nonmagnetic, sharp contacts, numerous	120.50 120	.85 CH	LR S	120.50	120.85			<1							5222	131.30	132.10	0.8	3	4 .	0.0027	0.0001	0.0239	-	<u> </u>	
	-								microfractures chlorite filled																								<u> </u>	<u> </u>	
	-								120.5 irregular contact with overall direction of 48° to CA		\perp												-						1				<u> </u>	<u> </u>	-
	-								120.5 sphalerite stringers invading dyke along microfraactures over		\perp												-						1				<u> </u>	<u> </u>	-
	-								5cm along contact		\perp												-						1				<u> </u>	<u> </u>	-
	-								120.85-12.05 sulphide rich IRON FORMATION numerous microfractures		\perp		120.85	121.05	10		3 2	0 ?										1	1				<u> </u>	<u> </u>	
	\perp								lined with sphalerite/chalcopyrite/chlorite		-		_				_												1				<u> </u>	<u> </u>	<u> </u>
	-				120.05	121.70	MAFD		dark green chloritic, non magnetic, core broken, numerous chlorite	120.05 121	.70 CH	LR S																	-				<u> </u>	<u> </u>	
	+								filled microfractures		\perp												-					1	1		-		<u> </u>	<u> </u>	-
	-								121.7 contact sharp at 35 o to CA									-											1					<u> </u>	-
	\perp								121.7-123.3 non magnetic sulphide rich IRON Formation		_	_	121.70	123.30	75		3											<u> </u>	1				<u> </u>	<u> </u>	<u> </u>
	-								chloritic groundmass, frequent microfractures multidirectional calcite		\perp				-		_											ļ	1				<u> </u>	<u> </u>	
									filled , sections with numerous sphalerite filled microfractures																									<u> </u>	

Count	ny		Canad	da								\Box			н	OLE ID	#		VG-	06-07															Τ	Т	T
Octini		OR LITH	HOLOGY				Subsid	iarv Lith	ology	_			Alteration	ion				RALIZATIO			RY MINERAL	S		STRUCTU	JRE				-	SSAY RES	ULTS		1	1	+	+-	+
From					Litho					tho					en. Fro											Sample	From	То							Pb	Zn	Interval
(m)	(m)	Code	Rat	io Mo	odifier	(m)	(m)	Cod	e Mo	difier	COMMENTS	(m)	(m)	Type W	/IS (m) (n	n) ′	% %	%	%	Mag Galena % %	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppt) Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	%	Meters
						, ,					123.3-132.1 sulphide rich IRON FORMATION					30 126		30	2	40	? tr								, ,								
										n	nagnetic, convoluted sulphide banding, small scale folding, frequent						_	_																	<u> </u>	<u> </u>	
										n	multidirectional fractures, occational narrow sphalerite enriched bands	$\vdash \vdash$	_				4	+																	₩	—	
				-						а	associated with microfractures sphalerite lined with trace galena	\vdash	\dashv				+	+																	\vdash	—	
									-		occational chloritic narrow intervals	+	\dashv				+	+																	+	+	+
											124.6-124.75 chloritic, non magnetic	+-+	\dashv				+	+																	+	+	
				+							126.7-127.3 frequent chert bands, decrease in sulphide content		\dashv			70 127		5		10	?		127.00	FOL	65										+-	+	+
				+				-	+		127.3-131.3 massive iron formation, occational narrow chert beds	+-+	\dashv			30 131		20		40	?														 	+	+
								1			131.3-132.1 progressive decrease in sulphide content, frequent irregular	++	\dashv		131	30 132	.10 1	10		5	7														 	+-	+
	1			-				+	-	T	Chert clasts	+	\dashv			+	+	+													+				+-	+-	+
				+				1			131.85-132.1 extensive quartz flooding 132.1 very sharp contact perpendicular to CA, contact marked by	\vdash	\dashv				十	+																	t	T	1
	1			\dashv							quartz flood/vein		\dashv				\top	+													1				<u> </u>	<u> </u>	†
132.10 13	38.00	META									massive greywacke, weakly chloritic, sections weakly biotitic	132.10 13	32.90	CHLR N	И																1						
											132.1-132.9 medium grey-green scatterered garnets						1																				
										1	132.9-133.6 silicified, pale to light grey cherty section	132.90 13	33.60	SILI I	И		\perp																		<u> </u>	$oxed{oxed}$	
										1	133.6-138.0 massive, weakly to moderately chloritic, scattered	133.60 13	38.00	CHLR I	И		\perp	_					134.00	FOL	55										<u> </u>	<u> </u>	
										n	nultidirectional calcite filled microfractures	1	_				\bot	_																	<u> </u>	<u> </u>	
138.00 13	39.75	MAFD)							n	massive medium grey green, aphanetic, chloritic	138.00 13	39.75	CHLR N	И		\downarrow	_																	<u> </u>	<u> </u>	
								-		1	138.0 contact sharp but irregular lined by a calcite stringer	\vdash	_				+	+																	↓	—	_
										1	139.75 contact at 50 ° to CA lined with a calcite stringer	+	_				4	+					139.75	СТС	50							-			 	—	-
										1	139.25 a 1x3cm granodiorite inclusion with resorbed edges	+-+	\dashv				+																		 		-
139.75 15	55.60	META		+				+	-	n	massive greywacke, mottled medium to dark green wit the colour index	$\vdash \vdash$	\dashv	-			+	+														-			┼	+	+
	_			+	-			-	+		gradually decreasing	++	\dashv		+	+	+	+									-				+		1		\vdash	+-	+
				+				+		1	139.75-143.5 chloritic, medium to dark green, occational chlorite	139.75 14	43.50	CHLR S	3		+	+																	+-	+-	+
				-				1	-	Ī	clots	++	\dashv		-	+	+	+													+	+	1		+-	+	+
								1			143.5-148.8 massive, medium grey-green, sectiona brownish tinge,	+	\dashv				+	+					147.00	FOL	65						1				+-	+-	+
				+					+		weakly chloritc, weakly biotitic in scetions giving core a brownich hue	+	\dashv			+	+	+													+				+	 	+
								+			gradual decrease in colour index 148.8-149.9 narrow chert beds, weakly siliceous, trace to minor	148.80 14	49.90	SILI	V 148	80 149	90	tr					148.80	FOL	60										†	<u> </u>	1
											disseminated Py, light grey to medium green-grey	7.0.00 15	.5.50	J V	. 140	20,143								. 01	50						1						
											149.9-151.3 weakly siliceous, occational quartz flooded sections, minor				149	90 151	.30	1 <1		2			150.40	FOL	60	5223	149.9	0 151.	.30 1.4	10 Nil	0.	3 0.016	2 0.000	1 0.0147	7		
											garnets, disseminated Py/Po, minor stringers & concentrations Po						T																				

March Property P	Country	, [Car	ınada	- 1			1						шо	E ID#			VG-06	S-07				1		1						1					T
The column The							Subsidia	ry Lithol	oav		Δ	Alteratio	n	HOI		VERAL				Y MINERAL	S	1	STRUCTU	JRE				A:	SSAY RESI	JLTS	1	l .			├──	+
Section Sect	rom T	Го І	LITHO I	Litho	Litho	From	To	LITHO	Litho	1	From	То	Alt Inte	n. From	То	PY	CPY	SPH	Po M	ag Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nrt)	Λα(nn)	Cu(nn=-)	Dh/nnr-\	Zn(nn=-)	Pb	Zn	Interva
	(m) (n	m)	Code F	Ratio M	/lodifier	(m)	(m)	Code	Modifier	COMMENTS	(m) ((m) 1	Type WM	S (m)	(m)	%	%	%	% 9	% %	or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	ru(ppm)	ZII(ppm)	%	%	Meters
Section Sect										with associated Cpy microfractures																										
150 170 19F										151.2-151.3 chloritic, distinct colour index change at 151.3 meters																										
No. No.										151.3-155.6 light grey, massive, moderately well foliated, scattered pale												153.00	FOL	65												
Second Continue of the Conti										pink very small garnets																										
No. No.	55.60 157	7.00	BIF							BANDED IRON FORMATION				155.60	157.00) tr	mn		10	?		155.60	стс	65	5224	155.60	157.00	1.40) 1	0.4	0.0243	0.0001	0.0197			
Second Control Seco										magnetic massive, distinct compositional layering, frequent minor to cm												155.70	FOL	65											<u> </u>	<u> </u>
1										scale Po enriched bands generally parallel to colour banding (chert banding)												157.00	стс	65											<u> </u>	<u> </u>
Story 15 15 15 15 15 15 15 1										minor scattered CPY stringers along microfractures																									<u> </u>	<u> </u>
15.70 15.7	_								<u> </u>	contacts very sharp				-		1																			<u> </u>	_
		_								157.0 contact marked by band of garnets & end of maagnetism				-	_	_	\vdash	_																	—	
150 of 166 of 167 MATO Statist approach consequence 157 of 151 audition with a fluiribinary agences 157 of 151 audition with a fluiribin	57.00 161	1.30	META							massive, weakly chloritic, garnetiferous, garnet content variable				-		1	\vdash							-											<u> </u>	_
Contents blacking contacts Contents blacking contents Contents blacking contents Contents		-								narrow intervals dark green speckeled with very small garnets		_	-	-		-	\vdash	_																		_
19.10 16/10 BIF						159.90	160.60	MAFD		black aphanetic, non magnetic				+		+	\vdash	-						-										1		-
EAN BANCED IRON FORMATON 161.30 169.70 172.20 CHLR M 161.30 169.70 172.20 CHLR M 172.21 CHLR M 172.2										contacts obscure contact				+		+	\vdash							-										1		+
Magnetic, rythmic compositional & colour layering, light to medium grey 10 10 15 0.0086 0.0022 0.0083 165.00 150 15 0.0086 0.0022 0.0083 165.00 150 15 0.0086 0.0009 0.0098 167.00 150 1										157.5-159.0 section with abundand garnets		-		+		1	\vdash																		 	+
194.00 FOL 60 5228 164.30 165.00 15.00 7 0.2 0.0154 0.0001 0.00059	61.30 169	9.70	BIF									-		161.30	169.70) tr	mn		10	?										0.2						+
Po enriched bands parallel to compositional layering, occasional 100m												_		-	-	1	\vdash	_												, ,,,					 	+
wide Po enriched hands occational, Cpy micrifractures generally associated with Po enriched areas cocational crosscutting calcite stringers very sharp contacts 166.0-166.2 nor magnetic greywacke section 169.70 177.00 META massive greywacke, medium grey-green gametiflerous, weakly to 169.70 172.20 CHLR W moderately chlorific 172.2-173.4 moderately chlorific, foliation acsented by white speckles 172.2-173.4 moderately chlorific, foliation acsented by white speckles 173.4-176.45 alternating chlorific and gametiferous sections 176.6-177.0 decrease in colour index. siliceous, gametiferous sections		-			+							-		+			\forall	+																		+
associated with Po enriched areas cocational crosscutting calcite stringers very sharp contacts service broken at contact field 7 core broken at contact massive greywacks, medium grey-green gametiflerous, weakly to field 77,00 META moderately chloritic field 72,2473.4 moderately chloritic, foliation acsented by white speckles field 73,4476.45 alternating chloritic and gametiflerous intervals, gamets to 3mr field 73,4476.45 alternating chloritic and gametiflerous intervals, gamets to 3mr field 75,00 met No. 170,00 m																													Nil	0.0						+
occational crosscutting calcite stringers very sharp contacts 166.0-166.2 non magnetic greywacks section 169.7 core broken at contact massive greywacks, medium grey-green gametifierous, weakly to 169.70 177.00 META massive greywacks, medium grey-green gametifierous, weakly to 169.70 172.20 CHLR W moderately chloritic 172.2-173.4 moderately chloritic, foliation acsented by white speckles 172.00 173.40 CHLR M weakly silicified 173.4-176.45 alternating chloritic and gametiferous intervals, gamets to 3mr 176.45-177.0 decrease in colour index, siliceous, gametiferous sections																						169.60	FOL	60				1.0	1.	0.2					 	+
Very sharp contacts										associated with Po enriched areas						1	+ +								5231	168.80	169.70	0.90) :	3 0.8	0.0203	0.0001	0.0098		\vdash	+-
168.0-166.2 non magnetic greywacke section										occational crosscutting calcite stringers																										+
169.70 t77.00 META		-			+					very sharp contacts		-		+		\vdash	\vdash																			+-
69.70 177.00 META massive greywacke, medium grey-green garnetifierous, weakly to 169.70 172.20 CHLR W moderately chloritic. 172.2-173.4 moderately chloritic, foliation acsented by white speckles 172.20 173.40 CHLR M weakly silicified 173.4-176.45 alternating chloritic and garnetiferous intervals, garnets to 3mr 176.45-177.0 decrease in colour index, siliceous, garnetiferous sections												-	+	+	-	\vdash	\vdash	-																	 	+
moderately chloritic 172.2-173.4 moderately chloritic, foliation acsented by white speckles 172.20 173.40 CHLR M weakly silicified 173.4-176.45 alternating chloritic and garnetiferous intervals, garnets to 3mr 176.45-177.0 decrease in colour index, siliceous, garnetiferous sections		-										-	-	-	1	\vdash	\vdash	_						-										-	 	+
172.2-173.4 moderately chloritic, foliation acsented by white speckles 172.20 173.40 CHLR M weakly silicified 173.4-176.45 alternating chloritic and garnetiferous intervals, garnets to 3mr 176.45-177.0 decrease in colour index, siliceous, garnetiferous sections	69.70 177	7.00	META								169.70 17	72.20 C	CHLR W	+		1	+																			+-
weakly silicified 173.4-176.45 alternating chloritic and garnetiferous intervals, garnets to 3mr 176.45-177.0 decrease in colour index, siliceous, garnetiferous sections											470.00	70.40		1		1	\vdash																	l		+
173.4-176.45 alternating chloritic and garnetiferous intervals, garnets to 3mr 176.45-177.0 decrease in colour index, siliceous, garnetiferous sections					+						172.20 17	73.40 C	HLR M	1			\forall																			+
176.45-177.0 decrease in colour index, siliceous, garnetiferous sections														f			\dagger																			
														T		1	H																			1
	77 00 199	8.05	BIF							176.45-177.0 decrease in colour index, siliceous, garnetiferous sections LEAN BANDED IRON FORMATION				177.0	188 05	i tr	mn	mn	5	2		177.30	FOL	75	5232	177	177.5	0.5	1.	1 10	0.0161	0.0271	0.107			1
77.00 188.05 BIF LEAN BANDED IRON FORMATION 177.00 188.05 It min min 5 / 177.30 FOL 75 52.32 177 177.5 0.5 14 1.9 0.0161 0.0271 0.107	77.00 188	5.00	DIF									\neg		177.00	100.00	u	11111	14111	3										1							1

Cc	ountry		Canada											Н	OLE ID	#		VG-	06-07			1									T	T	T			
		JOR LITH				Subsid	liary Litl	thology				Alteration	on				ALIZATIO			Y MINERA	LS		STRUCTU	RE				A:	SSAY RES	JLTS				\vdash		\vdash
From		LITHO		Litho	Fron			HO I	itho					en. Fro							a Other Min.		Structure		Sample	From	To	Interval			0 ()	DI ()	7.	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifie) (m)				COMMENTS		(m)	Type WN	√IS (m) (n			%		% %	or Comments		Туре		#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	Meters
										mulidirectional, magnetic, occational bands Po enrichment												181.00	FOL	75	5234	179	180.5	1.5	2	1 0.2	2 0.0139	9 0.0009	0.0222	2		
									ı	minor sphalerite lining fractures at 177.5												181.50	FOL	40	5235	180.5	182	1.5	1	4 0.9	9 0.0523	3 0.0018	0.0798	3		
										occational quartzbveinlets & flooding, occational calcite lined												182.70	FOL	55	5236	182	183.5	1.5	1	4 1.1	1 0.0415	5 0.0764	0.519	<u>, </u>	0.519	1.5
									ı	multidirectional fractures												184.20	FOL	60	5237	183.5	185	1.5		7 0.2	2 0.009	9 0.0001	0.0059)		
									ı	narrow intervals of non magnetic greywacke at:												185.50	FOL	65	5238	185	186.6	1.6		7 0.	1 0.0079	9 0.0001	0.0088	ś		
					_		-			177.5-177.6 greywacke;				_											5239	186.6	187.2	0.6	1	0.0	9 0.0844	4 0.0017	7 0.106			
										179.5-179.8 black, aphanetic MAFD?				-											5241	187.2	188.05	0.85	3	4 1.6	6 0.051	1 0.0071	0.264			
					-					180.2-180.35 greywacke				-											5242	188.05	189	0.95	1	0.0	8 0.0101	1 0.258	1.12		1.12	0.95
									- 1	187.75-187.95 greywacke garnetiferous				-		_																	├──			
					186.6	60 187.2	0 BR	RX	5	siliceour breccia numerous multidirctional stringers sulphides (Po, Cpy)				-																1		 		<u> </u>		
									f	fragments angular to 5cm						_															+	+	₩	-		
188.05	5 194.00	META			-	_		_		massive greywacke			_	188.	05 189	.00 1	tr	mn	mn	mn		-							-		 	₩				ļļ
										188.05-189 massive greywacke, sections weakly magnetic, garnetiferous				-		_															 	—	├ ──			
					-				á	amount decreasing downhole				-																-		 	-			
-				-	-		+			188.65-189 scatterered sphalerite stringers in the greywache surrounding				-				-	\vdash			-								1	+-	+				
					_		\bot		ā	a 5cm wide breccia at 188.8				\perp		_					1	1							1		 	┼	\vdash	igspace		igsquare
					1		1		ŀ	brecia calcite matrix with clots sphalerite & galena				\perp		_														1	<u> </u>	<u> </u>	↓	<u> </u>		<u> </u>
										189.0-194.0 massive greywacke weakly biotitic & chloritic	189.00 1	94.00	CHLR V	v								192.00	FOL	60							ــــــ	<u> </u>				
				-	_		-		ď	core medium grey-green with brownish tinge due to biotite content				_		_														-	—	 	—	igspace		
_					_		\bot		c	occational multidirectional calcite filled fractures with trace Py along		_		_		_						_								1	 	 	—	igspace		igsquare
							1		5	some of the calcite stringers, weak foliation acsented by biotitic intervals																					<u> </u>	<u></u>	<u> </u>			

Count	trv		Canad	la					VENCA	N GOLD	Corpo	ratio	n																					
					D	0		0-11									VG-06	. 00					1											
PROJE	СТ	Ge	noa To	wnship	Drill Sta		July 5,:		Grid Co ordinates (UTM) final Diff. GPS +/ - 1m 5298487.11	Datum	N/A	D 83		ID#		0.00		To (m)	4.00	FI	levation (m)	424.20												
HOLE I	ID#	V	/G-06-	-08	Drill Fini		July 5,			zone		17		From (m)		4.00		To (m)	227.00		of Oxidation	1424.30												
Logged			C. Aussa		Depth (r			Incl. O Elevation						From (m)				TD m.	227.00															
up-Dat	ted		С	ollar			355.00	-45.0 Drill Com	pany: Bradly Brothers, Timmins, Canada				diam.	HQ 6.35	cm	NQ 4.76	cm	BQcm	Comments:															
			R	eflex	1	7	352.70	-45.3																										
				eflex		01		-47.3																										
Count	tn.		Canada	eflex	22	27	354.60	-43.0					HOLE	ID#		VG	-06-08																	
	MAJC		OLOGY			Subsidiary					ration			MINE		FION & AC	CCESSOF	RY MINERAL			STRUCTU			1			SAY RESU	JLTS						
From (m)	To (m)	LITHO Code	Litho Ratio	Litho Modifie	From r (m)	To I	Code I	Litho Modifier	COMMENTS	From To	Alt Type	Inten.	From (m)	To (m)	PY C	PY SPH % %			Other Min. or Comments	Depth (m)	Structure Type	Structure Angle	Sample #	From (m.)	To (m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
0.00	4.00	NR						Casing																										
				1				,												1	1													
4.00	6.00	MFLO		1				Mafic volo	canic (dyke?)	1		\vdash								1			-					-						
\vdash				1				dark grey	green, highly fractured			\vdash					1			1								<u> </u>	-					
								5.75-5.95	moderately magnetic																									
								6.0 very s	sharp contact																									
6.00	9.30	FET							ht grey moderately well foliated, weakly sericitic	6.00 9.3	SRC1	гw								8.00	FOL	50												
0.00	3.30	ILI								0.00 9.3	JONO									8.00	TOL	30												
\vdash								after 8.0 r	meters gradual increase in colour index																									
9.30 1	13.95	FELT						mottled m	nedium grey-green; garnitiferous, garnets giving core the	9.30 13.9	5 CHLF	R W								10.00	FOL	50												
								mottled a	ppearance; bands weakly chloritic																									
								limonite s	staining along fractures to a depth of 15.6 meters																									
13.95	14.80	DIOR						Diorite dy	ke; medium grey-green; small phenos feldspar & hornblende											14.80	стс	55												
10.00	14.00	DIOIC																		14.00	010	- 55												
					1			very shar	p contacts, grain size gradually decreasing downhole		+				+					1												+		
-								13.95 cor	ntact perpendicular to CA; core rolled	<u> </u>																								
								14.8 cont	act at 55 degrees to CA; subparallel to foliation																									
14.80 2	21.50	FELT						massive;	mottled grey-green, garnetiferous	14.80 17.9	0 CHLF	R W																						
								colour ind	lex variable; garnet content variable											16.80	FOL	55												
																				10.00														
									magnetic over section near to contact (magnetite & very fine Po)																								
\vdash								14.8-17.9	colour index and garnet content decreasing, core becoming	17.90 21.3	0 CHLF	R M																						
				1				a light gre	ey colour											1	1													
								17.9-21.3	moderately chloritic, garnetiferous-quantity & size variable																									
	Ţ							narrow se	ections quartz flooded with associated trace Py																									
\vdash				+					quartz flooded, chloritic						-					1														
\vdash				-		-		20.4-20.5	quartrz vein irregular contacts approximating 80° to CA	-	-	\vdash		-+	- $+$	-	+			\vdash	-	-							-					
				-				21.3-21.5	gradual lithological change; minor garnets-quantity rapidly	21.30 21.5	0 CHLF	R W			_		\bot																	
								decreasin	g; chloritization rapidly decreasing																									
21.50 5	50.90	FET						massive	well foliated weakly to moderately sericitic-sericitization	21.50 50.3	0 SRCT	r w								23.00	FOL	60												

Country	,	Canada										HOLE	E ID#		v	'G-06-	ns.						<u> </u>											$\overline{}$	\neg
	MAJOR LITH	IOLOGY				y Lithology			Altera				MIN		ATION 8	ACCE	SSORY I				STRUC						A	SSAY RE	SULTS	l l	- 4			+	\dashv
From 7	Γο LITHO	Litho	Litho	From	To	LITHO Litho	00141	From	To	Alt	Inten.	From	To	PY	CPY S	PH P	o Mag	Galena	Other Min.	Dep	oth Structu	re Struc	cture Sar	ple	From	To	Interval	Au (pp	b) Aa(ni	m) Cu(pp	n) Pb(pnr	n) Zn(ppn	n) Pb	Zn	n Inte
(m) (i	m) Code	Ratio	Modifier	(m)	(m)	Code Modifier	COMMENTS	(m)	(m)	Туре	WMS	(m)	(m)	%	% '	% 9	6 %	%	or Comments	s (m)) Туре	Ang	gle i	1	(m.)	(m.)	(m.)	(F)	-, -, -, -, -, -, -, -, -, -, -, -, -, -		· / · - (FF	·/ =(FF	%	%	6 Met
							increasing along selective mm compositional layers																												
							light to pale grey-narrow intervals medium grey-green chloritic																											4	
							chloritic & gametiferous at start of interval																												
							21.5-24.9 well foliated light to pale grey																												
							24.9-26.7 variable colour index sections chloritic & garnetiferous													29.0	00 FOL	. 57	7												
							colour index along with chloritization & garnet content decreasing to 26m													32.0	00 FOL	. 55	5											\perp	
							then sharp increase in all three followed by a gradual decrease to 26.7m													35.0	00 FOL	. 55	5											4	
							26.7-50.9 massive well foliated; distict compositional/colour banding													37.0	00 FOL	. 50	0											\perp	
							light to pale grey, weak sericite-increasing along selctive mm													41.0	00 FOL	. 50	0											4	
				<u> </u>			compositional layers													45.0	00 FOL	. 46	6											4	
							36.5-38.0 appearance of pink hue to core													47.0	00 FOL	. 50	0				<u> </u>					1	1	\bot	\perp
							47.0-48.0 foliation weakly crenulated													50.0	00 FOL	. 50	0				<u> </u>					1	1	\bot	\perp
							50.5-50.9 appearance of garnets-minor																											\bot	_
50.90 58	3.70 FELT						massive, chloritic, garnetiferous	50.90	58.70	CHLR	S																							\bot	_
							mottled pink-grey-green to pale grey; frequent felsic lapilli fragments													53.0	00 FOL	. 60	0											\bot	
							stretched along foliation; cm scale pale grey felsic bands within chloritic													1											-			4	_
							garnetiferous matrix													-													_	+	_
							occational multidirectional chlorite &/or calcite lined fractures																										-	4	_
							variable magnetisum due to disseminated or mm stringers magnetite																										-	+	
							50.9 brecciated along contact, calcareous; breccia gouge irregular in																									-	-	+	$-\!$
							width 3 to 7cm-subparallel to foliation																										-	+	+
							after 57.3 rapid decrease in garnet content & chloritization, gradual													57.0	00 FOL	. 55	5											+	
							decrease in colour index									_		-		+	-	-		_							-			+	
58.70 67	7.70 FET						massive, rythmically banded, very well foliated													59.0	00 FOL	. 60	0								1	+	-	+	+
							light to pale grey, occational pale grey felsic lapilli as oin above unit										-			62.0	00 FOL	. 55	5	_			<u> </u>				1		1	+	\perp
							weakly sericitic													65.0	00 FOL	. 50	0								1	+	-	+	+
				}			64.45-64.55 chloritic interval													67.0	00 FOL	45	5						_		+	+	-	+	+
				}			65.9 one cm quartz vein at 40° to CA parallel to foliation													+	+								_		+	+	-	+	+
				}			67.7-67.7 foliation slightly crenulated													+	+								_		+	+	-	+	+
							67.7 very sharp contact with MAFD at 30 o to CA crosscutting													1	-		_				-		_		-	-	+	+	+
							FET foliation (perpendicular to foliation)													67.7	70 CTC	30	0	-			1				1	1	+	+	+
67.70 70	0.00 MAFD			}			dark green mafid dyke, massive, containing several granodiorite													+	+								_		+	+	-	+	+
							xenoliths with resorbed edges, occational calcite fracture fill stringers																											Ш	

0			Canada								HOLE ID			VG-0	6 00						<u> </u>					1	1	1				
Cour	MAJC	R LITH	OLOGY			Subsidiary Litholo	av		Alter	ation			RALIZATIO		ESSORY MII	NERALS	S		STRUCTU	RE				AS	SAY RESU	JLTS	l	l				\vdash
From	To	LITHO	Litho	Litho	From	To LITHO	Litho		From To	Alt Inten	From	То	PY CPY	SPH	Po Mag	Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh)	Ag(ppm)	Cu(nnm)	Ph(nnm)	Zn(ppm)	Pb		Interval
(m)	(m)	Code	Ratio	Modifier	(m)	(m) Code	Modifier	COMMENTS	(m) (m)	Type WMS	(m) (m)	% %	%	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	ла (ррь)	Ag(ppiii)	Ou(ppiii)	т Б(ррпп)	ZII(ppiii)	%	%	Meters
								multidirectional, occational quartz stringers at a sharp angle to CA-70 o																								
								70.0 contact at 20 o to CA crosscutting FELT foliation (perpendicular																								
								to foliation)																								
								,																								
70.00	77.20	FELT						massive, mottled grey-green-pink with pale grey felsic lapilli and cm wide	70.00 77.20	CHLR S					1 1			70.00	CTC	20												
-								felsic compositional layers, garnitiferous, chloritic, trace Py										71.00		45												
								76.8-77.2 very chloritic calcareous contact zone-crenulated weak foliation					_		- -			74.00	FOL	50												$\vdash \vdash \vdash$
								at 77.2 very sharp compositional contact										74.00	FOL	55												$\vdash \vdash \vdash$
77.20	88.70	FET						well banded light bgrey with frequent pale grey felsic bands, well foliated	77.20 88.70	SRCT W																						<u> </u>
								weakly sericitic, massive										77.40	FOL	60												
								80.4-80.5 chloritic, calcareous										76.70	FOL	55												
								80.5-82.1 well colour banded alternating light grey & creamy bands										80.00	FOL	50												1
							-	occational crosscutting microfractures with mm displacemnet of										81.00	FOL	50											-	
								foliation										85.00	стс	60												
					95.00	85.40 MAFD		massive black aphanetic dyke magnetic, contacts subparallel to foliation										85.40		45												
					00.00	00.40 WIAT D		86.6-88.7 appearance of widely scattered garnets upto 4mm in size,										00.40	010	-10												
								gradual increase in colour index																								
								88.5-88.7 chloritic					-	1 1																		
88.70	90.20	QFP						quartz feldspar porphyry, massive, phenos to 3mm						1 1				88.70	CTC	55												\vdash
-								902 contact at 35 o to CA ablique to FET foliation						1																		$\vdash \vdash \vdash$
90.20	97.20	FET						massive, colour banded light & pale grey, well foliated, occational										90.20	CTC	35												
								chlorite lined fractures										90.30	FOL	55												—
								90.2-90.3 minor garnets										91.80	FOL	50												L
								91.95 a 5cm quartz vein parallle to foliation										91.95	VNQZ	50												
					96.70	96.80 MAFD		96.7-96.8 darj grey green MAFD, sharp contacts perpendicular to CA										96.70	СТС	45												<u> </u>
								97.0 a 4mm quartz veinlet crosscutting foliation				T																			-	1
								96.8-97.2 numerous multidirectional quartz filled microfractures																								Ī
97 20	98.50	FFIT						massive, weakly to moderately chloritic, garnetifierous, mottled	97.20 98.50	CHLR M																						Ī
37.20	55.50							grey-green with pink hue, moderately foliated	57.20 55.50	JILIN W																						
														1 1				20		0-												
								98.5 a 2cm quartz/feldspar veinlet parallel to foliation				-		1 1				98.30		60												
98.50	106.20	FET						massive, weakly sericitic well colour banded	98.50 106.20	SRCT W	++	+	-	+						60				-	 				-			
			-	-				98.1 sharp distinct contact		++	\vdash		-	+				104.00		65					-	-			-			<u> </u>
\vdash	-							98.5-102.5 mottled light to pale grey, weakly sericitic, minor crosscutting				-		+ +				104.10	VNQZ	60					-				-			
								quartz stringers																								

Co	ountry	Canada									Н	OLE ID #	#		/G-06	6-08															i	\Box
- 00	MAJ	OR LITHOLOGY		Subsidia					Alterat			N	MINERALI	ZATION 8	& ACC	ESSORY			STRUCTL					AS	SAY RESU	LTS	ı	l l				\pm
From (m)	To	LITHO Litho Litho Code Ratio Modifier	From	To	LITH	O Litho	COMMENTS	From (m)		Alt Ir		m To	o PY	CPY S	SPH %	Po Mag	g Gale	ena Other Min.	Depth Structure (m) Type	Structure	Sample #	From (m.)	To (m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
(111)	(111)	Code Ratio Modifier	(111)	(111)	C00	ie iviouiiler	COMMENTS	(111)	(111)	ype W	IVIO (III	, (m	1) 76	70	/0	70 %	7/	o or comments	(in) Type	Arigie	#	(111.)	(111.)	(111.)						76	-76	weters
							at 101m gradual decrease in colour index																								<u> </u>	<u> </u>
							102.5-105.0 pale grey to white with creamy mm colour bands																								ļ	
							foliation (colour banding) varying from 55 to 65 degrees to CA																								 	<u> </u>
							104.1-a 2cm quartz veinlet crosscutting foliation																								·	
							105.0-106.2 gradual increase in colour index, rythmic banding												106.00 FOL	57												
106.20	108.00	MAFD					mottled dark green to pink-grey-green	106.20	108.00	CHLR	s								106.20 CTC	78											ļ	<u> </u>
							very chloritic (probably an intermediate dyke)				\perp								108.00 CTC	60											ļ	
							calcareous dyke maargins						-																		 	-
108.00	117.10	FET					massive well foliated, weakly sericitic																								 	
							108.0-112.9 light grey with pale grey mm felsic bands- colour index				_								110.00 FOL	70											ļ	
							decreasing downhole, frequent pale grey felsic bands increasing																								<u> </u>	<u> </u>
							downhole																								·	
							112.9-116.6 pale grey to white, frequent crosscutting quartz stringers-												113.00 FOL	65											ļ	
							bleached along margins, frequent mm creamy coloured bands acsenting				_								114.00 FOL	65											ļ	
							foliation																								<u> </u>	
							116.6-117.1 sudden increase in colour index; chloritic bands with assocuate	116.60	117.10	CHLR	м																				<u> </u>	
							mn disseminated Py/Po & very small garnets																								<u> </u>	
117.10	145.50	FELT					massive, chloritic, garnetiferous matrix with variable amounts of pale												117.00 FOL	65											ļ	
							grey felsic lapilli fragments or cm wide bands, lapilli stretched along				\perp																				<u> </u>	
							foliation; <1% disseminated Po/Py as clots or mm size stringers-																								├	
							occational increase in sulphides concentrated in cm wide bands												121.00 FOL	70											ļ	
							paralleling foliation																								ļ	
					<u> </u>		117.1-117.65% Po/Sphalerite as mm size stringers paralleling foliation				117.	.10 117.	.60 mn		2	3					5243	117.10	117.60	0.50	7	0.4	0.0046	0.0252	0.254		ļ	1
							sphalerite stringers more abundant at start of interval																								<u> </u>	
							123.9 a 7cm quartz vein with blebs Po/Py contact at 55° to CA				117.	.60 123.	.90 <1			1	-														<u> </u>	
							123.9-127.0 widely spaced cm wide concentrations of Po/Py generally				123.	.90 127.	.00 1			1															<u> </u>	—
							associated with quartz veining				127.	.00 132.	.20 mn			mn															<u> </u>	-
							132.2-138.5 widely spaced stringer concentrations of Po/Py or just Py				132.	.20 138.	.50 2		4	1	+														<u> </u>	
							143.8-145.5 occational Py/Po stringer concentrations gradual increase				138.	.50 143.	.80 tr		4		-														<u> </u>	1
			<u> </u>				in chloritization, decrease in garnet size, increase in quantity of				143.	.80 145.	.50 1		4	mn	+														 	
					1		disseminated Py				+	-	-		4	_	+															1
145.50	155.30	IF					massive IRON FORMATION-sulphide rich, generally about 70-80% Po/Py				145.	.50 150.	.55 35		4	45 ?	-				5244	145.50	147.00	1.50	62	0.6	0.0055	0.0001	0.035		<u> </u>	1
							convoluted stringer sulphide foliation, occational narrow chloritic												146.00 FOL	60	5245	147.00	148.50	1.50	89	0.5	0.0066	0.0001	0.0194			

Count	n/		Canada		1							но	LE ID#			'G-06-0	R																	
Count		R LITH	OLOGY	1		Subsidia	ary Litholog	ЗУ		Alt	eration	по		ERALIZ	ZATION &			ERALS			STRUCTU	RE				AS	SAY RESU	JLTS	1		l	\vdash	$\overline{}$	$\overline{}$
From	To L	LITHO	Litho	Litho	From	n To	LITHO	Litho		From T	o Alt In	ten. From	То	PY	CPY S	PH Po	Mag G	alena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh)	Ag(npm	Cu(ppm)	Ph(nnm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifie	er (m)	(m)	Code	Modifier	COMMENTS	(m) (n	n) Type W	VIS (m)	(m)	%	% 9	% %	%	% 0	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	(FF-)	9(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	((FF)	(FF)	%	%	Meters
									bands, occational narrow cherty intervals within which there is a sudden														5246	148.50	150.00	1.50	48	0.	2 0.004	0.0002	0.0252			
									decrease in sulphide content						\perp								5247	150.00	151.50	1.50	62	0.	1 0.004	0.0001	0.0215			
									150.55-151.1 light to medium grey cherty (BIF), frequent stringer sulphides			150.5	5 151.10	<1		10	?			150.70	FOL	80	5248	151.50	153.00	1.50	117	0.	4 0.005	0.0001	0.019			
									foliated at 80 ° to CA			151.1	0 153.55	20		45	?						5249	153.00	154.55	1.55	69	0.	4 0.0049	0.0002	0.0204			
									153.55-153.7 cherty (BIF) foliated at 80 ° to CA			153.5	5 153.70	1		10	?			153.60	FOL	80	5251	154.55	154.95	0.40	27	0.	3 0.0018	0.593	3.1	0.59	3.10	0.40
									153.7-154.55 alternating Pyritic or pyrrhotitic rich intervals			153.7	0 154.55	20		40	?						5252	154.95	155.30	0.35	27	1.	2 0.0032	0.0307	0.0802			
									154.55-155.3 cherty (BIF) with frequent Po/Py stringer concentrations			154.5	5 154.95	5		5 4	?						5253	157.50	158.00	0.50	7	1.	3 0.017	0.174	0.44			
									154.55-154.95 frequent sphalerite bands parallel to foliation and																									
									frequently sphalerite rich multidirectional fracture fill associated with						\perp																			
									calcite																									
									154.95-155.3 frequent cherty bands, occational quartz fracture fill stringers			154.9	5 155.30	5		15	?															\sqcup		
									155.3 very sharp contact defined by chloritization & sudden decrease in																									
									magnetisum																									
155.30 1	61.60	META							155.3-155.9 chloritic medium grey-green with scattered garnets & chlorite	155.30 155	.90 CHLR	S																						
									fracture fill or lining foliation planes, gradual decrease in colour index along						\rightarrow																			
									with decrease in chlorite content						\rightarrow																			
									157.5-158 multidirection sphalerite fracture fill; Py stringers paralleling			157.5	0 158.00	3	<	<1	1															\longmapsto		
									foliation						_		1															\longmapsto		
									158.0-161.6 massive, dark to medium grey-green-chloritic, frequent	158.00 161	.60 CHLR	М			_	_	1															$\vdash \vdash$		
									multidirectional fractures, calcite or chlorite filled				-		+		1															$\vdash \vdash$		
									chloritization moderate to strong-intensity variable				-		+		1															$\vdash \vdash$		
161.60 1	62.90	MAFD							highly chloritic, core broken	161.60 162	.90 CHLR	S	-		+	_	1			161.60	CTC	20										\vdash		-
									161.6 sharp contact						+		+															\longmapsto		-
	_				-				162.9 contact defined by sharp increase to massive sulphides at 50° to						+		+	-														\longmapsto		
	-				-		\vdash		CA			-	-		+		++	_														\longmapsto		
162.90 1	63.90	IF			-				162.9-163.3 approximately 60% Py/Po with magnetite rich chloritic			162.9	0 163.30	40	+	20	?															$\vdash \vdash$		
				1					groundmass			-			+		++															\longmapsto		-
	-				-		\vdash		163.3-164.2 BIF cherty, disseminated magnetite, Py stringer concentrations			163.3	0 163.60	10	+	mn	?	_					5254	162.90	163.60	0.70	82	2.	3 0.0188	0.232	0.309	0.44	1.71	1.3
	-				-		\vdash		163.6-163.8 quartz flooded			163.6	0 164.20	1	<1 :	5	?	_					5255	163.60	164.20	0.60	Nil	7.	6 0.176	0.679	3.34	\longmapsto		
	_				-				163.6-164.2 frequent sphalerite stringers multidirectional			-	-				++	+														\longmapsto		
163.90 1	81.00	META			-				163.9-164.2 garnetiferous, extremely chloritic	163.90 164	.20 CHLR	S	-				++	+														\longmapsto		
\vdash	_				-				164.2-165.2 light to medium grey to grey-green; scattered garnetiferous	164.20 165	.20 SILI	М	-				++	+														\longmapsto		
				1					bands; siliceous																							igsquare		

												HOLE			VC															1			$\overline{}$
Countr		Canada OR LITHOLOGY		5	Subsidia	ry Lithology			Alte	ration			MINE	RALIZAT	TION & A	-06-08	ORY M	INERAL	S	STRUCTI	URE				AS	SSAY RESU	JLTS						
From	To	LITHO Litho L	itho	From	To	LITHO Litho		From	То	Alt	Inten.	From	To	PY CI	PY SPI	H Po	Mag	Galena	Other Min.	Depth Structure (m) Type	eStructure	Sample	From	To	Interval	Au (ppb)		Cu(ppm)	Ph(nnm)	Zn(ppm)	Pb	Zn	Interval
(m) ((m)	Code Ratio Mo	difier	(m)	(m)	Code Modifi	er COMMENTS	(m)	(m)	Туре	WMS	(m)	(m)	% 9	% %	%	%	%	or Comments	(m) Type	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppiii)	Cu(ppiii)	r b(ppiii)	ZII(ppiii)	%	%	Meters
							165.2-171.2 massive variable chlorite content, narrow intervals very	165.20	171.2	0 CHLR	М																						<u> </u>
							chloritic medium to dark green, generally moderately chloritic																										<u> </u>
							with frequent multidirectional carbonate filled fractures																										<u> </u>
	_						168.3-169.5 widely scattered multidirectional calcite/sphalerite filled	-				168.30	169.50		tr mn	1						5256	168.30	169.50	1.20	79	0.1	0.0076	0.0017	0.009			<u> </u>
							microfractures	-																									_
							168.9 Cpy clots along a calcite filled fracture	-																								 	<u> </u>
	-						171.2- 179 massive, medium grey-green occational calcite fracture fill									-				177.50 FOL	75												<u> </u>
							scattered chlorite clots (small)	-																									_
	\dashv		\dashv				176.9-177.4 dark grey-green, chloritic interval, very sharp distict	176.90	177.4	0 CHLR	S																						
\vdash			\dashv				lithological contacts	-					-+	-		-					-			-									
	\dashv		\dashv				179.0-181.0 core brownish tinge due to appearance of weakly biotitic						+																				
	\dashv		_				bands																										
181.00 18	33.25	BIF	\dashv				pale to light grey, cherty bands, moderately well foliated trace Po & Py	1				181.00	183.25	tr t	tr tr	mn				182.00 FOL	60	5257				0 3	0.1	0.0049					
	\dashv		\dashv				as stringers or clots along bedding planes, size of sulphide rich bands						+									5258	182.50	183.25	0.75	5 2	0.5	0.0064	0.127	0.501		0.50	0.75
	\dashv		\dashv				increasing downhole, section magnetic only where Po stringers occur	1					\dashv			+								-									-
							at 182.6m trace Cpy as small clots associated with Po enriched nabds	1																									
							183.2-183.25 sphalerite blebs associated with calcite filled fractures and a	S								-																	
							disseminations within the surrounding chloritic greywacke									-																	
183.25 18	35.96	META					massive, moderately well foliated, light to medium grey, trace									-																	
							disseminated Py, occational multidirectional quartz filled fractures	-												185.80 FOL	65												
185.96 18	37.76	BIF					cherty, very well foliated	-				185.96	187.76	2	1 <1	10				185.96 CTC	65	5259	185.96	187.76	1.80	Nil	0.9	0.0468	0.0335	0.149			
	-						frequent quartz veinlets parallel to foliation; frequent Po & Po/Py									+																<u> </u>	
	\dashv		\dashv				sulphide stringers parallel to foliation, scattered Cpy stringers & blebs	1					\dashv	+		+								-									
	1		-				(small) & occational sphalerite stringers & blebs (small)																										
	+						Cpy occurs associated with Po concentrated bands & along																									i	
	+		1				multidirectional microfractures; sphalerite occurs along						+																				
	+		1				multidirectional microfractures; sphalerite occurs along						+																				
	_		+				narrow bands chloritic with very small garnets, unit moderately magnetic																										
407.70			+				very sharp contacts defined by magnetism & sulphide concentrations	1					\dashv			+				100.00	05												
187.76 19	00.16	META					massive medium to darl grey, chloritic, colour index & chloritization													189.00 FOL	65											 	
	_		+				increasing downhole; occational calcite filled multidirectional																										
	+		1				microfractures intensity increassing downhole, chlorite clots define	1					+			+																	
							a weak foliation at 65 ° to CA	1									1					1	l		<u> </u>	1							1

Count	n.		Canada									HOLE	ID#		VG	S-06-08			1	1													
Count		R LITH	OLOGY			Subsidiary Lit	hology			Alterati			MINE		TION & A	ACCESSO	RY MINER			STRUCT	URE				AS	SAY RESU	JLTS		l				
From	То	LITHO	Litho	Litho	From	To LITI	HO Litho		From	То	Alt Inten.	From	To	PY C	PY SPI	H Po	Mag Gale	na Other Min	. Depth	Structure	Structure	Sample	From	То	Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifie	r (m)	(m) Co	de Modifi	er COMMENTS	(m)	(m)	Type WMS	(m)	(m)	%	% %	- %	% %	or Commen	its (m)	Type	Angle	#	(m.)	(m.)	(m.)	- 41 -7	3(11 /		- 41 7	41 /	%	%	Meters
191.00 19	98.20	BIF						191.0-192.85 frequent multidirectional calcite filled fractures & irregular				191.00	192.85	<1 <	<1 1	10	? tr		-			5261	191.00	192.00	1.00	21	1.2	0.0107	0.113	0.428			
								quartz flood; intervals with numerous sphalerite & Cpy multidirectional														5262	192.00	192.85	0.85	14	2.5	0.0359	0.127	0.48			
								fracture fill; trace galena associated with sphalerite fill														5263	192.85	194.00	1.15	Nil	0.2	0.0065	0.0004	0.0094			
								192.85-198.3 well foliated strongly magnetic (disseminated magnetite)				192.85	198.20	mn n	nn tr	5	?					5264	194.00	195.50	1.50	38	0.3	0.0138	0.0001	0.0106			
								widely spaced Po stringer concentrations paralleling foliation														5265	195.50	197.00	1.50	14	0.3	0.0205	0.0172	0.069			
								occational Cpy disseminations associated with Po enriched bands														5267	197.00	198.20	1.20	7	0.4	0.051	0.0001	0.013			
								as stringer infill																									
								trace sphalerite clot infill along microfractures; occational narrow																									
								chlorite/garnetiferous(small) bands																									
198.20 20	02.66	META						massive medium to dark grey-green greywacke, variable chloritization	198.20	202.66	CHLR M																						
								scattere gametiferous horizons, occational calcite filled microfractures																									
								last 20cm of section weak silicification; weak foliation acsented by																									
								alignment of chlorite blebs																									
202.66 2	18.00	BIF						miderately to strongly magnetic (disseminated magnetite)											203.00	FOL	65												
								variable sulphide content as Po enriched bands paralleling foliation											206.00	FOL	65												
								frequently with minor Cpy associated microblebs or stringers ling																									
								multidirectional microfractures; occational quartz fllod																									
								203.4 a 4cm sphalerite enriched band with associated galena along calcite																									
								filled fractures (microfracture fill)																									
								occational chloritic bands																									
								202.66-205.6 occational widely spaced Po concentrated bands of stringers				202.66	205.60	tr n	nn mn	n 1	? tr					5269	202.66	204.10	1.44	Nil	1	0.0438	0.148	0.315			
								lining fracture planes; minor sphalerite, Cpy fracturte fill; minor quartz flood		Ī						\prod						5270	204.10	205.60	1.50	Nil	0.1	0.0062	0.0001	0.0036			
								scattere calcite filled microfractures														5271	205.60		1.20	Nil	1.1	0.0635	0.0012	0.158			
								205.6-206.8 frequent rythmic Po concentartions parallel to foliation with				205.60	206.80	tr	1	20	?					5272	206.80	208.50	1.70	Nil	0.1	0.0061	0.0001	0.0034			
								associated Cpy stringer fracture fill														5273	208.50	209.40	0.90	21	2.3	0.0737	0.039	0.301			
								206.8-208.5 magnetic, well banded, minor quartz fllod; foliation weakly				206.80	208.50			mn	?					5274	209.40	210.90	1.50	Nil	0.1	0.0057	0.0001	0.0046			
								crenulated, minor Po generally associated with quartz veinlets; weak														5276	210.90	211.90	1.00	10	0.2	0.0045					
								sericite along selective compositional layers														5277				48	3.6	0.0818					
								208.5-209.4 frequent Po stringers parallel to foliation; scattered Cpy				208.50	209.40	n	nn	5	?					5278	212.25	213.70	1.45	10	0.1	0.0056	0.0001	0.0041			
								stringers & microblebs														5279			1.30	10	0.3	0.0086	0.0001	0.0108			
								209.4-211.9 well banded; magnetic (disseminated magnetite), sericitic				209.40	211.90				?					5281	215.00	216.50	1.50	Nil	0.1	0.0083	0.0001	0.0117			
								along selective compositional layers														5282		217.50			0.1		0.0001	0.0164			
								211.9-212.25 Po enriched bands parallel to foliation; Cpy stringer infill				211.90	212.25		1	<1	7					5283					0.9		0.0009				

_					,		_																								1						
Co	ountry		Canada	1											HOLE				G-06-																		
		OR LITH					diary Litho					Altera						& NOITA						STRUCTU						SAY RES	ULTS						
From	То	LITHO	Litho	Litho	From	To	LITH	O Li	itho		From	To	Alt	Inten.	From	To	PY	CPY SF	PH Po	Mag	Galena			Structure				To	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb		Interval
(m)	(m)	Code	Ratio	Modifie	r (m)	(m	Code	e Mo	difier	COMMENTS	(m)	(m)	Type	WMS	(m)	(m)	%	% 9	6 %	%	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	(FF-7)	9(FF)	(FF)	(FF)	(FF)	%	%	Meters
										along mutldirectional fractures																						<u> </u>				<u> </u>	<u> </u>
										212.25-218 same as interval 209.1-211.9 but with widely spaced Po enriche					212.25	217.50		tr	<	?			213.00	FOL	65							<u> </u>					<u> </u>
										narrow sections with associated Cpy fracture infill stringers, occational																						<u> </u>				<u> </u>	<u> </u>
										narrow chloritic bands																										<u> </u>	ļ
						_				214.3-214.4 chloritic, scattered small garnets 20% Po																						—				<u> </u>	<u> </u>
						_				214.7 Po/Cpy stringer													215.00	FOL	65							—				<u> </u>	<u> </u>
								_		216.3-216.4 Po 10% with Cpy fracture fill																						↓				<u> </u>	<u> </u>
										217.5-218.0 siliceous, frequent irregular Po stringers & Cpy stringer					217.50	218.00		1	5	?												↓				<u> </u>	
								_	1	fracture fill																						↓				<u> </u>	<u> </u>
218.00	0 227.00	META						_	ı	massive greywacke, medium to dark grey-green					218.00	223.00	1															↓				<u> </u>	-
										218.0-219.9 medium grey-green scattered garnets-quantity decreasing																						<u> </u>				<u> </u>	
								_		downhole, weakly chloritic-intensity & colour index increasing downhole																						↓				<u> </u>	<u> </u>
										219.9-224.3 moderately chloritic; frequent calcite filled multidirectional													222.00	FOL	65							<u> </u>				<u> </u>	<u> </u>
								_	ı	microfractures, weak biotite giving core a brownish tinge, frequent									_													↓				<u> </u>	<u> </u>
						1		_		pyritic stringer concentrations									_													↓				<u> </u>	<u> </u>
						1				223.0-223.2 50% Pyrite in a dark green chloritic matrix					223.00	223.20	50															↓				<u> </u>	<u> </u>
								_		224.2-227.0 mottled medium to dark green, moderately chloritic, frequent					223.20	224.20	1		_													↓				<u> </u>	-
										calcite lined multidirectional fractures-frequently subparrallel to CA																											

Cou	ntry		Can	nada						VENC	AN GO	LD C	orporat	ion																								
PROJ	IFCT	G	Senoa	Township	n Prop	erties-	Swavze	Area On	tario	Grid Co ordinates (UTM) final Diff. GPS +/ - 1m					HOLE ID	#		\	/G-06-	09																		
11100						Start Da		y 8,2006		g 5298513.94	Da	atum	NAD 8		Q From			0.00		To (n	7.00	0	Elev	ation (m) 4	419.33													
HOLE	ID#		VG-0	06-09	Drill F	Finish D	ate July	10,2006	Easting	409832.31	Z	one	17	N	IQ Fror	n (m)		7.00		To (n	191.0	00 B	lase of (Oxidation														
Logge	d By:		C. Au	ussant	Depth	n (m)		Incl. O		on 419.33				В	Q Fron	. ,				TD m	. 191.0	00																1
up-Da	ated			Collar			355.0		Drill Com	npany: Bradly Brothers, Timmins, Canada				dia	m. HC	6.35 cn	n N	Q 4.76 cr	n B	Qcm	Comme	ents:																
				Reflex Reflex		20 131	358.2	0 -44.7 0 -38.8																														\vdash
				Reflex		191		0 -38.0						-																								
Cour				nada										ŀ	HOLE ID			VG-0																				
From			HOLOG	GY itho Litho	Fron		idiary Litho				From		ration Alt In	nten. Fr				N & ACC				Min. D		Structure		Sample	From	То	AS Interval	SAY RESU			DI ()	7	Cu	Pb	Zn	Interval
(m)	(m)	Code	Ra	atio Modifi	ier (m)	(m) Code	Modifier		COMMENTS	(m)	(m)	Type W	MS (r	n) (n	1) %	%	%	% 9	6 %	or Comm	ments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	%	Meters
0.00	7.00	NR							Casing																													
7.00	22.60	FELT	г						mottled o	grey-green-pink with pale grey felsic lapilli fragments & bands	7.00	19.00	CHLR	М								1	14.00	FOL	47													
									garnetife	erous/chloritic matrix; stretched lapilli & felsic bands acsent																												
									moderate	e foliation																												
									7-12.5 m	nagnetic very fine disseminated magnetite & Po				7.	00 12.	50			10	?																		
									8.1-8.5 q	quartz flooded																												
									after 19.0	0 decrease in colour index; decrease in chloritization, garnet	19.00	22.60	CHLR	w								2	20.50	FOL	45													
									content v	variable																												
22.60	24.70	FET							pale to m	nedium grey, rythmic mm colour banding; foliation acsented by												2	23.50	FOL	50													
										liniong foiliation planes																												
24.70	37.40	FELT	г						mottled p	pale to light grey/dark green-pink; garnetiferous; frequent felsic	24.70	29.00	CHLR	w																								
									pale grey	y bands alternating with chloritic/garnetiferous bands; trace																												
									Py along	g quartz filled fractures																												
									after 24.	7m colour index gradually increasing																												
									29.0-33.4	4 frequent sericitic bands; sericite flakes upto mm size;	29.00	33.40	SRCT	М								2	29.00	FOL	50													
										ation along selective compositional layers																									_			
									35.0-37.4	4 rapid decrease in colour index and garnet content; garnets												3	35.00	FOL	55													
									widely so	cattered but increase in size upto 4mm																												
37.40	42.90	FET							light to p	pale grey, colour banding acsenting foliation; weak to moderate	37.40	42.90	SRCT	w								4	11.00	FOL	55													
									sericite													4	12.70	FOL	50													igsquare
42.90	44.75	QFP							massive,	, light grey; phenos to 3mm																												Ш
									42.9 con	ntact at 35 o to CA, oblique toi foliation			$\perp \perp$									4	12.90	стс	35													
									44.75 co	ontact oblique to foliation												4	14.75	СТС	30													
44.75	45.30	FET						1	same as	s interval 37.4 to 42.9			$\downarrow \downarrow$																									igsquare
45.30	46.30	FELT	г					1	mottled l	light to medium grey/pink with pale grey felsic fragments & bands	45.30	46.30	CHLR	w							1																	igsquare
									garnetife	erous/chloritic matrix																												

Country		anada										нс	DLE ID#		VC	-06-09	1																
MAJC	R LITHOL	OGY		5	Subsidia	ry Litholo	gy			Altera			MI	NERALIZ	ATION & A	CCESS	ORY MIN			STRUCTU					SSAY RESU	JLTS			l				
From To (m) (m)	LITHO	Litho	Litho	From (m)	To (m)	LITHO	Litho	COMMENTS	From	To (m)	Alt Inte	en. From	n To	PY	CPY SPI	H Po	Mag (Galena Other Min. % or Comments	Depth	Structure	Structure	Sample From # (m.)		Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Cu %	Pb %	Zn %	Interval Meters
(m) (m)	Code	Ratio N	vioditier	(m)	(m)	Code	wodiner	COMMENTS	(m)	(m)	Type www	15 (m)	(m)	%	% %	%	%	% or Comments	(m)	Туре	Angle	# (m.)	(m.)	(m.)						76	%	- %	weters
								45.3 gradual increase in colour index & amount of garnets																								ļ	<u> </u>
								46.3 very sharp compositional contact																								1	
46.30 52.30	FET							light to medium grey; sections with beige colour bands; rythmic colour						1 1		+	1										-						
								banding (foliation)				-				_			50.00	FOL	50												<u> </u>
								50.2-50.3 quartz vein; garnetiferous & chloritic along vein margins; vein											50.30	VNQZ	50											<u> </u>	
								parallel to foliation																								1	
														1 1									1										
52.30 53.80	FELT			-				52.3-52.5 very chloritic contact interval	52.30	52.50	CHLR S	3				-			-														-
								2cm quartz vein at 52.4 at 70 o to CA with quartz flooding of																								·	
								surrounding FELT																								! !	
									l			1		1 1		1	1 1		1														
								52.5 contact at 45 o to CA				+				+			1			 											1
								52.5-53.8 mottled light to medium grey-green/pink; chloritic, garnetiferous	52.50	53.80	CHLR N	1							53.20	FOL	55											·	<u> </u>
								numerous pale grey felsic bands or lapilli-stretched along foliation																								1	
								garnets to 2mm						1 1																			†
53.80 74.70	FET							massive; rythmic colour banding (foliation); medium to light grey with pale	53.80	74.70	SRCT V	/							56.00	FOL	55	<u> </u>		-			-						}
								grey narrow intervals, colour index gradually decreasing downhole											59.00	FOL	52											<u></u>	
								weakly sericitic; minor to trace disseminated Py											64.50	FOL	50											1	
								,								1																	
								70.0-74.7 core has a yellowish tige											74.10	FOL	50				1								
74.70 75.15	MAFD							black, aphanetic, weakly magnetic																								<u> </u>	
								74.7 core broken at contact																								1	
								75.15 contact at 70 ° to CA crosscutting foliation				-		+ +		-			75.15	CTC	70	-											}
								after 70.0 meters rythmic banding becoming less distinct-core more																								·	<u> </u>
								mottled											68.85	VNQZ	55											1	
								one cm quartz veins at 68.85, 68.95, and 70.1 at 55° to CA perpendicular											68.95		55												
														1 1								<u> </u>											
				-				to 55 ° foliation				-				-			70.10	VNQZ	55	<u> </u>											
75.15 76.25	FET							beige grey to light grey rythmically banded weakly sericitic	75.15	76.25	SRCT V	/							70.00	FOL	55											· · · · · · · · ·	
								70.0-76.25 foliation crenulated with a rapid change in foliation direction											75.60	FOL	48											1	
\vdash		\dashv		\dashv				as QFP contact approached- foliation flowing to parallel to contact	-	-	\vdash	+	-	+	-	+	╁		76.00	FOL	40	+ +		1	 		1						
76.25 76.35	QFP							massive light grey, distinct contacts											76.20	FOL	20	ļļ										·	<u> </u>
76.35 76.70	BRX							BRECCIA, silicified mixture of QFP & volvanic material, extremely											76.25	СТС	40											į į	
																					0.5												
								fractured-mulidirectional; very sharp distinct contacts; no suilphides		 	\vdash	+		+		+	1		76.35		35			 									
76.70 77.20	QFP							massive green-grey with disticnt feldspar phenos (pink)		1				1 1		1			76.70	CTC	35			1									—
								77.0-77.2 fractured											77.20	CTC	20												
77 20 70 00	DDV	FELT						brongisted folgis frogmostal, outcomely frogtured, ciliating FELT																									
77.20 79.00	RKX	rtll						brecciated felsic fragmental, extremely fractured, silicified FELT	<u> </u>	<u> </u>	<u> </u>			1			1		1	1	1	<u> </u>	1	1	1	1	1	1			1		

Country		Canada										НС	LE ID#		V	G-06-0	09																	
MA	JOR LITH	OLOGY				ary Litholo				Altera			MI		ZATION &	ACCES	SSORY N	INERALS		STRUCTU						SAY RESI	JLTS	1						
From To						LITHO			From		Alt Int	en. Fror	n To	PY				Galena Other Min.		Structure	Structure	Sample	From	То	Interval	Au (ppb)	Ag(ppm)) Cu(ppm)	Pb(ppm)	Zn(ppm)	Cu	Pb	Zn	Interval
(m) (m)	Code	Ratio	Modifier	(m)	(m)	Code	Modifier	COMMENTS	(m)	(m)	Type WN	(M)	(m)	%	% 9	6 %	%	% or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	(FF-)	3(FF)	,(FF)	()	(%	%	%	Meters
								multidirectional quartz-feldspar stringers & veinlets (fracture in fill)																									l	L
								veinlets pink/white colour; no sulphides sections chloritic; fragment																										1
								phosts																										Ī
																																		
								79.0 sharp contact at 40 ° to CA																										
79.00 102.95	5 FELT							mottled grey-green/pink matrix-chloritic & garnetiferous with frequent pale	79.00	80.40	SILI V	/							79.00	CTC	40													
								grey felsic lapilli & fragments; widely spaced Py clots in concentarted bands											-															
								parallel to foliation-frequency increasing downhole																									ļ	₩
								occational sphalerite +/- galena filled microfractures-mulidirectional																									ļ	<u> </u>
								intenssity of chloritization increasing downhole																									ļ	<u> </u>
								numerous microfractures with pale brown bleached haloes																· <u> </u>									i 7	i
								79.0-82.0 multidirectional fractures numerrous-intensity decreasing	79.00	97 65	CHLR N	1 79.0	0 97.65	1		r		tr															 	ĺ
								downhole; fractures quartz/feldpar lined (pink) similar to above but		51.00	3	. 73.0	2 37.00		1				1															ĺ
												1							1															
								also occationally chloritic											1															
								79.0-80.4 weakly siliceous insections					-	1		_	+		-															
								84.0-102.95 magnetic					-	1			-		-															
								81.0-81.2 sphalerite/galena microfracture fill									_					5284	81.00	81.50	0.50	Nil	0.:	2 0.0033	0.0325	0.109			<u> </u>	
								82.95-83.6 sphalerite with trace galena lining multidirectional fractures														5285	81.50	82.90	1.40	1-	1 0.:	2 0.0014	0.0059	0.0457			ļ	
								84.55 minor galen an fracture plane														5286	82.90	83.60	0.70	14	1 0.:	3 0.0039	0.187	1.12			1.12	0.70
								85.5 1/2 cm sphalerite enriched band at 50° to CA											85.50	VNSP	50	5287	83.60	84.60	1.00	2	1 0.:	3 0.0013	0.0244	0.0672			 	1
								86.65 sphalerite/Py convoluted stringers														5288	84.60	85.60	1.00	5	1 0.:	2 0.0041	0.0102	0.298				1
								89.8 trace galena along quartz filled fracture														5289	85.60	86.80			3 0							
																						3203	00.00	00.00	1.20	<u> </u>	, o.	0.0010	0.0076	0.0100				
								97.65-102.95 chloritic bright green with numerous pale grey felsic fragments																										
		 						disseminated concentartions Po/Py-sulphide content fairly variable-				+					-		1	1							1							
	-	-		1				massive over narrow ypto 8cm intervals				-					-		1	1							1		<u> </u>				·	
\vdash	-	-		1				chloritic/garnetiferous groundmass, occational galena/sphalerite				-	-				-		1	1							1	-						
								lined microfractures randomly orientated											1			5290	96.65	97.65	1.00	Nil	0.:	2 0.0013	0.0568	0.0876			ļ	
								97.65-97.85 galena/sphalerite filled microfractures; 1cm bands of Cpy	97.65	102.95	CHLR	97.6	5 102.9	5 5	mn <	1 20)	tr				5291	97.65	98.20	0.55	Nil	9.9	9 0.76	0.462	0.294	0.76	0.46	0.29	0.55
				L				98.0 a 5cm quartz flood with massive Po/Py along 2cm wide margins		L									L			5292	98.20	99.30	1.10) 24	4 0.	7 0.0104	0.0055	0.0161				<u>L</u>
								of the quartz														5293	99.30	100.40	1.10	55	5 3.0	6 0.0383	1.42	3,29		1.42	3.29	1.10
								99.3-100.7 frequent sphalerite with minor galena multidirectional fracture														5294	100.40			1		6 0.0079		0.11				
								29.3-100.7 rrequent Sprialente with minor galeria mutuunectional fracture														1												
								III				+							1	1		5295	101.70	102.95			1 0.	0.0012						
								102.95 sharp increase in sulphide content				-										5296	102.95	104.00		5	7 0.4	4 0.0064	0.0001	0.0327				
								102.8-102.95 minor sphalerite along microfractures														5297	104.00	105.50	1.50	4	1 0.	7 0.0071	0.0001	0.0608				

Country		Canada										HOL	E ID#		VG	-06-09									1								
MAJC	OR LITHO	OLOGY				iary Litho				Altera			IIM		TION & A	CCESSO	ORY MI			STRUCTU					ASSAY RES	ULTS			l				
From To							Litho		From		Alt Inte										Structure) Ag(ppm) Cu(ppm)	Pb(ppm)	Zn(ppm)	Cu	Pb	Zn	Interval
(m) (m)	Code	Ratio	Modifier	r (m)	(m)	Code	Modifie	COMMENTS	(m)	(m)	Type WM	S (m)	(m)	%	% %	%	%	% or Comments	(m)	Type	Angle	# (m.) (m.)	(m.)		, 0		,		%	%	%	Meters
102.95 121.90	IF							massive sulphides, weakly foliated at 45° to CA acsented bt Py stringers				102.95	111.50	10		80			102.95	CTC	50	5298 10	5.50 107	00 1.	50 6	9 0	.1 0.003	0.0001	0.042				
								102.95-111.5 mainly massive Po with scattered Py stringers														5299 10	7.00 108	50 1.	50 5	5 0	.1 0.004	0.0004	0.0456				
								105.7 a 5cm band of FELT pale grey with garnetiferous 1cm halo											109.00	FOL	55	5301 10	3.50 110	00 1.	50 3	4 0	.1 0.004	0.0002	0.0335				
								111.5-116.15 increase in Py content as micro stringers acsenting foliation				111.50	116.15	20		50			112.00	FOL	55	5302 110	0.00 111	50 1.5	50 Nil	0	.2 0.004	0.0002	0.0469				
								slight decrease in total sulphide content, light grey original														5303 11	1.50 113	00 1.	50 7	5 0	.4 0.004	0.0001	0.0406				
								lithology evident; narrow chloritic &/or silicified (cherty) intervals														5304 113	3.00 114	50 1.	50 4	1 0	.2 0.004	0.0009	0.037				
								foliation weakly crenulated														5305 114	1.50 116	15 1.0	65 3	4 0	.7 0.004	0.0001	0.056				
								116.15-116.8 pale to medium grey siliceous inerval, very fine disseminated				116.15	116.80	3		5	?					5306 110	5.15 116	80 0.0	65 1	4 0	.2 0.001	0.0001	0.0315				
								magnetite															5.80 118	00 1.:	20 2	1 0	.2 0.004						
								113.47-113.7 chloritic 5% Py, 5% Po															3.00 119	15 1.	15 3	4 0			0.0306				
								116.8-119.15 masive sulphides, foliation acsented by mm to micro Py				116.80	119.15	20		60	?					5309 119	9.15 120	30 1.	15 Nil	0	.2 0.002						
								stringers, narrow sections chloritic														5310 12	0.30 121			7 0	.3 0.003		0.0324				
								119.15-121.4 gradual decrease in total sulphide content, siliceous in narrow				119.15	121.40	10		45						5311 12	1.40 121	90 0.	50	3 0	.1 0.0023	0.0026	0.0245				
								sections, sulphide content somewhat variable																									
								121.4-121.9 well banded, siliceous bands alternating with sulphide rich band	6			121.40	121.90	3		30			121.60	FOL	55												
121.90 141.10	META							404.0.400.05 ablasitia dadi assas assastifacera											125.00	FOL	65												
121.90 141.10	META							121.9-122.25 chloritic dark green garnetiferous 122.25-138.4 massive medium grey-green well foliated, scattered garnets											125.00	FOL	65												
								occationally to 2cm; occational quartz, quartz/calcite or calcite veins																									
								occational Py concentarted bands parallel to foliation to 124 meters																									
								122.9-123.1 chloritic 10% Py stringers & disseminations																									
								126.7 a 2cm calcite vein at 85° to CA																									
								129.55-129.8 coarse grained calcite vein																									
								129.55 contact 70 ° to CA, lower contact irregular												1													
				1				130.55-130.7 quartz/calcite vein irregular contacts											1	1													
				1				131.87-132 quartz/calcite vein											1	1													
								131.87 contact perpendicular to CA																									
								132 contact at 70 ° to CA with a one cm dispalcement on contact																									
								132.6 a 6cm qtz/calcite vein																									
								132.8 a 2cm quartz/calcite vein																									
								133.1 a 2 1/2cm quartz vein																									
								133.3 quartz vein & flood over 6cm																									
								134.5 a 1cm calcite veinlet at 55 ° to CA																									
								138.1-141.1 biopitic-content increasing downhole; grey-green core with																									

Country		Canada										но	E ID#		VG	-06-09																		
MA	AJOR LITH	HOLOGY			Subsidia	ry Litholo	gy			Altera			MIN	ERALIZA	ION & A	CCESSO	DRY MIN			STRUCTI						SAY RESU	JLTS	1	l				$\overline{}$	
From To (m) (m)	LITHO	Litho	Litho	From	To	LITHO	Litho	COMMENTS	From	To	Alt Inte	n. From	To	PY C	PY SPH	Po	Mag C	Galena Other Min.	Depth	Structure	Structure	Sample		To	Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Cu	Pb	Zn	Interval Meters
(m) (m)	Code	Ratio	Modifier	(m)	(m)	Code	Modifier	COMMENTS	(m)	(m)	Type WWW	S (m)	(m)	%	6 %	%	%	% or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)						%	%	%	Meters
								brownish tinge, massive																										
								140.0-141.1 calcareous, chloritic																										
																																	-	
141.10 154.5	0 QFP							massive, light to medium grey, phenos to 2mm											140.00	FOL	55											 		
								141.1 contact at 20 o to CA cutting across foliation											141.10	CTC	20											\sqcup		
								142.7 a 7cm quartz vein at 50 o to CA											142.70	VNQZ	50											1		i
				144 35	144 58	MAFD		144.35-144.58 massive, crackled appearance calcareous, contacts very											144.35	СТС	55													
				144.00	144.00	WIAT D																												
								sharp & distinct											144.58	CTC	55											 		
								147.4-150.5 frequent chlorite lined fractures				-																				\longrightarrow		
								154.5 very sharp contact at a shallow 10 ° angle to CA											154.50	СТС	10													
154.50 157.1	0 META							154.5-154.8 contact zone, chloritic with calcite/sphalerite/galena				154.5	154.80	1 .	1 5	1			154.80	СТС	55	5312	154.50	154.80	0.30	10	2.9	0.0502	1.66	4.3		1.66	4.30	0.3
								concentarted over 1cm adjacent to QFP; adjacent 10cm chloritic														5313	154.80	156.05		3	0.8	0.0067						
								with disseminated Cpy/Po & garnets														5314	156.05	157.10	1.05	58	3 0.8	0.0728	0.0017	0.0168		 		
								154.8 chloritc contact in contact with massive greywacke at 55° to CA																								\longrightarrow		
								154.8-156.05 light grey massive greywacke																								1		
								155.7-155.85 60% Po chloritic																										
								156.05-157.1 highly altered, chloritic with massive Po layers, sections				156.0	157.10			20																 		
								with felsic fragments in a chloritic groundmass, occational quartz veins				-																				\longrightarrow		
								numerous microfractures, occational Cpy stringers, convoluted-distorted																										
								foliation																										
												1																						
157.10 159.0	0 QFP							massive, highly fractured, chlorite along fracture planes																								 		
								157.1-157.4 core follows META/QFP contact; conatct at 10 ° to CA				-							157.10	CTC	10											\longrightarrow		
159.00 159.6	0 META							medium grey-green siliceous, chloritic, fractured, minor disseminated	159.00	159.60	SILI M																							
								Po, strongly magnetic	159.00	159.90	CHLR M																					1	ļ	
																						5315	159.00	159.60	0.60		0.6	0.0094		0.0884				
								159.0 core broken														5315	159.00	159.60	0.60	Nii	0.6	0.0094	0.0277	0.0884		\vdash		
								159.6 contact at 50 ° to CA				+							159.60	CTC	50											\vdash		
159.60 163.0	0 QFP							massive, medium grey, phenos to 3mm																								igsquare		
				160.80	161.00	META		160.8-161.0 same as interval 159.0-159.6, strongly magnetic. Py clots																								1	ļ	
	+							159.6 contact indistinct-gradual decrease in QFP grain size till META &				1				1 1			1		<u> </u>											\vdash		
+	+							QFP blend together				+				1	+				1											\vdash		
								163.0 contact very distinct well foliated & chloritic at contact at 30 ° to CA				_							163.00	CTC	30											\longmapsto		
163.00 167.5	0 META							massive, medium grey-green weakly to moderately chloritic-colour index														<u>L</u>					<u></u>					<u> </u>		
								decreasing downhole																										
	+											T			-	\dagger			1													\vdash		
				166.35	166.50	QFP		166.35-166.5 QFP-irregular feathery contacts, phenos to 2mm	<u> </u>	<u> </u>			<u> </u>						<u> </u>		1				<u> </u>		1	<u> </u>	<u> </u>			$\sqcup \sqcup$		

Country	Ca	anada										шо	E ID#		VG	-06-09	1		1														
MAJOR	RLITHOLO	OGY				ary Litholo				Altera			MII	NERALIZA	TION & A	CCESS	ORY MI			STRUCT					SSAY RES	ULTS	1		1				
From To Li	ITHO L	Litho	Litho	From	To	LITHO	Litho	COMMENTS	From	To	Alt Inte	n. From	To	PY (PY SPI	H Po	Mag	Galena Other Min. % or Comments	Depth	Structure	Structure	Sample From			Au (ppb) Ag(ppm) Cu(ppm)	Pb(ppm)	Zn(ppm)	Cu	Pb º/	Zn	Interva Meters
(m) (m) C	Code F	Ratio IV	loaitier	(m)	(m)	Code	Modifiei	COMMENTS	(m)	(m)	Type WWW	S (m)	(m)	%	% %	%	%	% or Comments	(m)	Туре	Angle	# (m.)	(m.)	(m.)						%	%	%	Meters
								medium grey-green in colour																									
								166.5-167.5 core becoming mottled in appearance with introduction of																									
								poorly developed garnets																									
167.50 168.40	BIF							lean banded iron formation, siliceous, occational Po stringer				167.50	168.40		1	10	?		168.00	FOL	55	5316 167.5	168.4	10 0.9	0 1	7 0	.8 0.063	0.0056	0.0426				
								concentrations defining foliation at 55° to CA, frequent multidirectional																									
								microfractures frequently lined with Cpy, strongly magnetic				-																					
168.40 172.55 M	ИЕТА							mottled grey-green with pink hue, extremely garnetiferous, garnets poorly																			+						
								developed, massive					-																				
172.55 185.85	BIF							lean banded iron formation, well foliated, siliceous, numerous				172.5	175.50	,	<1 tr	1	?					5317 172.5	5 174.0	00 1.4	5	7 0	.1 0.006	0.0001	0.0014				
								microfractures with minor Cpy fracture fill & trace Sphalerite fill,														5318 174.0	175.	50 1.5	0 1	0 0	.3 0.025	0.0001	0.0037				
								occational Po fracture fill, strongly magnetic														5319 175.5	176.9	90 1.4	0 1	4 0	.9 0.076	0.001	0.224				-
								174.5 Cpy fracture fill														5321 176.9	178.4	10 1.5	0	3 0	.1 0.008	0.0001	0.0038				
								174.8-174.95 Cpy fracture fill														5322 178.4	179.9	90 1.5	0 Nil	0	.7 0.032	0.0101	0.175				
								175.5-176.9 increase in total sulphide content, frequent microfractures				175.50	176.90		<1	20	?					5323 179.9	181.4	10 1.5	0	7 0	.1 0.007	0.0001	0.0028				
								occationally lined with Cpy														5324 181.4	182.9	90 1.5	0	2 0	.1 0.009	0.0001	0.0025				
								176.9-184.5 well banded, widely spaced Po stringers parallel to foliation				176.90	184.50	mn		<1	?		176.00	FOL	55	5326 182.9	184.	50 1.6	0	7 0	.1 0.012	0.0001	0.0138				-
								and Po microfracture in fill, siliceous											182.00	FOL	60	5327 184.5	185.8	35 1.3	5	7 0	.9 0.050	0.0041	0.135				
								184.5-185.85 increase in total sulphide content, mainly Po as bands parallel				184.50	185.85		mn	5	?					5328 185.8	186.	70 0.8	5	2 0	.1 0.018	0.0003	0.0223				
								to foliation & as microfracture infill; occational Cpy microfracture																									ļ
								infill-multidirectional																									
185.85 191.00 M	ИЕТА							massive, moderately well foliated at start of interval											188.00	FOL	60												ļ
								narrow biotitic bands to 188.4 meters																									l
								chloritization increasing downhole																									
								185.85-188.4 core mottled grey-green with brownish tinge due to biotite																									ļ
								occational scattered garnets																		1							1
								contains narrow siliceous weakly to moderately magnetic intervals																									1
								containing Po stringers & disseminations																									
								186.3-186.7 weakly siliceous, weak chlorite, 5% Po as disseminations &				186.30	186.70			5	?																
								stringers																									
								187.3-187.55 dark green, chloritic disseminated with 10% Po with Py/Po	187.30	187.55	CHLR M	187.30	187.55	1		10										1							
								microfracture fill, strongly magnetic																		1							
								188.4-191.0 medium grey-green massive; degree of chloritization increasing																		1							
								downhole; fractures quartz/feldpar lined (pink) similar to above but																									ı

Count	rv		Canac	la				VENCA	N GOLD C	orporatio	n																			
PROJE					Proper	tios-Swayzo	Area Ontario	Grid Co ordinates (UTM) final Diff. GPS +/ - 1m		•	HOLE ID		VG-06-1	10			1													
FROSE	C1		noa ro	wiisiiip	Drill Sta			5298546.69	Datum	NAD 83	HQ From		0.00	To (m)	4.00	Fle	evation (m) 4	125 41												
HOLE II	D#	\	VG-06-	-10	Drill Fin			409830.22	zone	17	NQ Fror		4.00	To (m)	152.00		f Oxidation	17.9												
Logged	Ву:		C. Aussa	ant	Depth (r	m) Azm. °	Incl. O Elevation				BQ Fror	n (m)		TD m.	152.00		•													
up-Date	ed		С	Collar		355.00	-45.0 Drill Com	pany: Bradly Brothers, Timmins, Canada			diam. HC	6.35 cm	NQ 4.76 cm BC	cm	Comments:															
			R	teflex	2	0 0.40	-43.7																							
				teflex	15	52	-40.6					_			ı	1														
Count		R LITH	Canad HOLOGY	а		Subsidiary Litholo	ogy		Altera	ation	HOLE ID		VG-06-10 ZATION & ACCESSORY	MINERAL	S		STRUCTUR	?F				AS	SAY RESI	JLTS						
	To	LITHO	Litho		From	To LITHO	Litho	COMMENTS	From To	Alt Inten.	From To	PY	CPY SPH Po Mag	g Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval			Cu(ppm)	Pb(ppm)	Zn(ppm)			Interval Meters
(m)	(m)	Code	Ratio	Modifie	r (m)	(m) Code	Modifier	COMMENTS	(m) (m)	Type WMS	(m) (n	1) %	% % % %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)						%	%	Meters
0.00	4.00	NR	-		1		Casing					_		_																
4.00 2	0.80	FET					4.0-13.8 \	vell banded (colour) pale grey to medium grey, weakly sericitic								5.00	FOL	50												
							rythmic co	olour banding (foliation)								11.00	FOL	60		Ī								_		
	\neg																1													
\vdash	\dashv			+	1			along fractures to 17.9 meters						+										+				+		
\vdash	\dashv			+			15.0 a 3c	m BRX crosscutting foliation at 30 ° to CA				-		+		15.00	BRX	30		-				1						
							13.8-20.8	core aquiring a yellowich tinge to the colouration								19.00	FOL	60												
20.80 2	7.60	BRX					20.8-21.4	very siliceous extensive multidirectional fracturing								20.80	BRX	35	5329	20.80	21.40	0.60	Nil	0.1	0.002	0.0001	0.0038			
							medium t	o dark grey-green, chloritic along fracture											5330	21.40	22.90	1.50	Nil	0.1	0.0016	0.0001	0.0019			
							21.3-21.4	quartz vein at 70° to CA											5331	22.90	23.70	0.80	Nil	0.1	0.0004	0.0001	0.0017			
							21.4-23.7	very siliceous, extremely fractured FET, weakly sericitic											5332	23.70	24.80	1.10		3 0.1	0.0005	0.0001	0.0003			
							fractures	multidirectional, core light to medium yellow-grey-green in											5333	24.80	26.20	1.40		3 0.1	0.0008	0.0001	0.0022			
							colour												5334	26.20	27.60	1.40	240	3 0.1	0.0005	0.0001	0.0018			
							23.7 a pa	le grey 5cm wide fault gouge, siliceous at 25° to CA								23.70	BRX	25												
							23.7-24.8	extremely siliceous, pale to medium grey to brownish grey								24.80	BRX	35												
							mottled, r	umerous angular fragments																						
							24.8-25.5	5 mottled pale to medium grey-green, siliceous, extremely																						•
							fractured																							
							25.55 a 1	0cm wide pale grey fault gouge at 30 ° to CA								25.55	BRX	30												
								6 siliceous, mottled grey-green extremely fractured																						
								long numerous fracture planes																						
								m pale grey fault gouge defining contact of the breccia zone								27.60	BRX	20												
								CA, cross cutting FET foliation of 50° to CA								27.60	FOL	50												
							breccia zo	one underwent at least two episods of reactivation, possiblt three																						
							evident by	numerous intervals of internal fault gouges																						
							Fault con	acts crosscut FET foliation- the angle indicating a 330 to 340°																						
							fault trend	1																						
27.60 3	8.00	FET					light grey	with yellow tinge, rythmic banding, weak sericite								29.00	FOL	60												

Cou	ntn.		Canada		1			T			но	LE ID#		VG	G-06-10																	
Cot		OR LITH	OLOGY			Subsidiary Lithol	ogy		Al	teration	пО		ERALIZ/		CCESSORY	MINERA	S	,	STRUCTU	RE				AS	SAY RESU	ILTS		1				
From	To	LITHO	Litho	Litho	From	To LITHO	Litho		From T	o Alt Ir	ten. From	n To	PY (CPY SPI	H Po Ma	g Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh)	Ag(ppm)	Cu(ppm)	Ph(nnm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifier	r (m)	(m) Code	Modifier	COMMENTS	(m) (r	n) Type W	MS (m)	(m)	%	% %	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	/ to (ppb)	7.9(PP)	оц(рр)	. Б(рр)	Zii(ppiii)	%	%	Meters
								minro disseminated Py										35.00	FOL	55												
								27.0-29.0 frequent quartz fulled fractures										38.00	СТС	45												
								32.1 pyritic band parallel to foliation																								
								32.35 one cm wide BRX																								
								32.66 two cm wide BRX at 35 ° to CA																								
								32.35-32.65 medium grey chloritic, numerous quartz filled fractures (pink)																								
38.00	62.60	FELT						chloritic, garnetiferous, mottled grey-green-pink with frequent pale grey	38.00 62	60 CHLR	м										5335	38.00	38.50	0.50	7	0.9	0.0234	0.624	1.3	0.62	1.30	0.50
								felsic lapilli n& fragments; scattered multidirectional fractures, frequently																								
								lined with chlorite, when quartz filled the stringers display a beige alteration								1																
							ļ	halo in the surrounding FELT							1																	
								after 41 meters weak to moderately magnetic-strength variable				-						41.00	FOL	50												
								very fine disseminated Po; occational Po/Py irregular concentartions				-			+ +																	
								weak to moderate foliation acsented by stretched lapilli				-			1	+										-						
								38.0-38.2 weakly brecciated				-			1																	
								38.2-38.5 galena & sphalerite along microfractures subparallel to CA																								
								and perpendicular to CA																								
					44.13	44.54 MAFD		black aphanetic, moderately magnetic, massive dyke			_							44.13	СТС	75												
								44.54-44.74 slightly magnetic, garnets to 4mm 50% Po/Py			-							44.54	СТС	55												
					44.74	44.90 MAFD		same as 44.13-44.54										44.90	CTC	38												
								44.74 contact irregular										48.00	FOL	50												
								58.0-59.5 frequent Po/Py irregular masses with 20% combined sulphides			58.00	59.50	10		10						5336	58.00	59.50	1.50	Nil	0.7	0.0061	0.0119	0.0129			
							ļ	59.5-60.2 quartz/sphalerite/galena filled fractures-fractures subparallel			59.50	60.20	5	5	10	1					5337	59.50	60.20	0.70	65	1.7	0.0089	0.87	3.06	0.87	3.06	0.70
								to CA & perpendicular to CA, sphalerite rich stringers upto 2cm wide			_				1	-					5338	60.20	61.20	1.00	24	0.3	0.0056	0.0125	0.0519			
								60.2-60.7 siliceous, minor sphalerite filled fractures, ereduction in total			60.20	60.70	2	mn	2						5339	61.20	62.60	1.40	2	1.5	0.0014	0.0815	0.163			
								sulphides				-			1						5341	62.60	63.60	1.00	21	3.1	0.0053	0.235	0.255			
								60.7-61.2 sudden increase in sulphide content to 30% combined sulphides			60.70	61.20	10		20	+		60.70	FOL	55	5342	63.60	65.00	1.40	21	0.3	0.0034	0.0002	0.0334			
								61.2-62.6 very chloritic, gradual decrease in toyal sulphides			61.20	61.70	10		5						5343	65.00	66.50	1.50	14	0.4	0.0033	0.0003	0.0455			
								after 58 meters core generally strongly magnetic			61.70	62.60	3		3 7						5344	66.50	68.00	1.50	34	0.3	0.0052	0.0006	0.0409			
62.60	82.90	IF						massive sulphides 90% combined sulphides mainly PO, Py stringer													5345	68.00	69.50	1.50	34	0.2	0.0043	0.0052	0.0258			
								concentrations acsenting foliation,			_										5346	69.50	70.60	1.10	48	0.2	0.0048	0.0001	0.04			
								scattered calcite filled fractures to 68.5 meters			_										5347	70.60	72.10	1.50	55	0.3	0.0051	0.0001	0.0373			
								62.6-69.5 mainly Po with Py stringer concentartions			62.60	69.50	10		80 ?			65.00	FOL	55	5348	72.10	73.60	1.50	Nil	0.1	0.0048	0.0001	0.0408			
								69.5-74.8 increase in Py content, foliation weakly convoluted, slight			69.50	74.80	20		60 ?			69.20	FOL	55	5349	73.60	74.80	1.20	89	0.2	0.0042	0.0001	0.0414			

Coun	try		Canada								ПО	E ID#		VG	-06-10																	
Couri		R LITHO				Subsidiary Lith	ology		Alter	ation	HOL		ERALIZA		CCESSORY	MINERAL	.S		STRUCTU	JRE				AS	SAY RESU	JLTS	1	l	l			
From	To I	LITHO	Litho	Litho	From	To LITH	O Litho		From To	Alt Inter	n. From	To	PY C	CPY SPH	I Po Ma	g Galena	Other Min.	Depth	Structure	Structure	Sample	From	То	Interval	Au (nnh)	Ag(ppm)	Cu(ppm)	Ph(nnm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Modifie	(m)	(m) Cod	e Modifie	r COMMENTS	(m) (m)	Type WM	S (m)	(m)	%	% %	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	//d (ppb)	, 19(pp)	ou(pp)	. Б(рр)	Z.1(pp.11)	%	%	Meters
								decrease in total sulphides										72.00	FOL	60	5351	74.80	75.60	0.80	14	0.2	2 0.0016	0.0001	0.046			
								74.8-75.6 well banded BIF, light to dark grey colour banding with bands			74.80	75.60	3		20 1						5352	75.60	77.10	1.50	41	0.0	3 0.0044	0.0001	0.058			
								of massive magnetite													5353	77.10	78.60	1.50	34	0.0	3 0.0041	0.0001	0.0365			
								75.6-77.3 convoluted foliation, sulphide content slightly variable			75.60	77.30	20		60 1						5354	78.60	80.10	1.50	41	0.0	3 0.0043	0.0001	0.0359			<u> </u>
								77.3-82.4 slight decrease in total sulphide content, occational narrow			77.30	82.40	10		50 3			79.00	FOL	60	5355	80.10	81.40	1.30	27	0.	0.0039	0.0001	0.026			
								chert bands & chloritic bands, foliation slightly convoluted													5356	81.40	82.40	1.00	21	0.	0.006	0.0001	0.0203			
								81.4-81.6 quartz flooded													5357	82.40	82.90	0.50	Nil	0.	1 0.0054	0.0001	0.0151			1
								82.4-82.9 sections silicified, occational Cpy inriched sulphide bands			82.40	82.90	5	3	50 1			82.90	стс	55	5358	82.90	83.80	0.90	10	0.2	2 0.0076	0.0001	0.0381			1
$\vdash \vdash$								82.9 very sharp distinct contact										83.10	FOL	55							1					-
82.90 1	08.75	META						possibly intermediate volcanic tuff ??	82.90 86.60	CHLR W	82.90	83.75	3		5			86.00	FOL	50												-
\vdash								massive, light grey to medium grey-green, well foliated, occational																			-					-
$\vdash \vdash$								garnetiferous layers, occational quartz veinlets parallel to foliation			-																1					
								occational crosscutting fractures lined with Po/Py, weakly chloritic																			1					
								chloritization increasing downhole																			1					
-								86.6-95.9 massive, medium grey-green, moderately chloritic, weak	86.60 95.90	CHLR M																						
								foliation																			-					
								after 84 meters minor Py stringers parallel to foliation-frequency																			-					
								decreasing downhole to 87 meters							+ +																	
								frequent calcite filled multidirectional fractures, occational quartz																								
								veinlets, sections with extensive quartz/calcite flooding																								
								90.3-91.2 extensive quartz/calcite flood (60%)																								
	-							95.9-100.0 weak foliation-intensity increasing downhole, biotitic bands	95.90 100.0	0 CHLR W	1				++			97.80	FOL	55							-					
								frequency increasing downhole, colour index decreasing downhole																			1					
								100.0-103.3 very well foliated, colour index decreasing to light grey,										101.00	FOL	65							1					
								chloritization minor, frequent biotitic bands-decreasing downhole																			1					
\vdash								minor Py (gneissic texture in sections)			1																1					
								103.3-104.6 massive medium grey-green, chloritic	103.30 104.6	0 CHLR M	1																1					
\vdash					104.60	104.90 MAF	D	dark green, crackled texture very calcareous							++			104.60	CTC	53							-					
\vdash								104.9-108.75 massive, weak foliation; foliation improving downhole	104.90 108.7	5 CHLR M	1				++			104.90		50							+					
\vdash								chloritization & colour index decreasing downhole			1				++			107.50	FOL	55							+					
\vdash								108.75 very sharp contact		+	1		_	-	++	-											+					ſ
108.75 1	10.75	FET						felsic volcanic massive weakly sericitic, medium grey colour			1			-	++	-											+					ſ
110.75 1	13.00	META						possibly an intermediate volcanic tuff										110.75	CTC	50												1

Part	Country	,		Canada									HOLE ID	4		VG-0	6-10																	
9. 1		MAJOF		DLOGY										MINER		N & ACC	CESSORY M									AS	SAY RES	ULTS		l .	I .			
No. No.	From	To L	ITHO	Litho	Litho	From	To	LITHO	Litho	COMMENTO	From To	Alt Inten.	From T) F	Y CPY	SPH	Po Mag	Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (ppb)) Ag(ppr	n) Cu(ppm) Pb(ppm)	Zn(ppm)			
No. No.	(m) (m) (Code	Ratio	Modifie	r (m)	(m)	Code	Modifier	COMMENTS	(m) (m)	Type Wilvis	(m) (n	1) :	% %	%	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)						%	%	weters
130 130										light grey moderately well foliated, minor garnitiferous bands																							<u> </u>	<u> </u>
10 10 10 10 10 10 10 10										112.3-112.9 extensive beige bleaching of core, well foliated										112.50	FOL	55												
No. No.										112.1 chloritic, gametiferous										113.00	СТС	50	5359	113.00	114.40	1.40	5	8	0.02	9 0.0001	0.0134		ļ	
	113.00 12	3.90	BIF							well banded BIF; Po enriched bands parallel to foliation upto 4cm wide			113.00 123	.90 1	tr mn		5 ?			119.00	FOL	55	5361	114.40	115.80	1.40) 1	0	0.019	6 0.0001	0.0044	l.	ļ	
Company Comp										Po/Cpy lining multidirectional microfractures, selective compositional										119.20	FOL	45	5362	115.80	117.20	1.40) 2	7	1.9 0.05°	4 0.0157	0.151		ļ Ļ	
No. No.										layers sericitic, sulphide content quite variable; foliation 45° to 55 ° to CA													5363	117.20	118.60	1.40	1	0	0.016	2 0.0001	0.0112		ļ 	Ь—
32 N 1978 N 1979 N 1970										narrow bright green chloritic bands generally associated with Po													5364	118.60	120.10	1.50)	2	0.006	7 0.0001	0.0096	i	 	<u> </u>
Column C										enriched bands													5365	120.10	121.60	1.50	3	9	0.01	6 0.0001	0.0189	,	 	<u> </u>
1.256 14.50 19	123.90 12	7.80 N	ИЕТА							possibly intermediate volcanic tuff ??										123.90	СТС	50	5367	121.60	123.00	1.40	Nil		0.005	7 0.0001	0.002	!	ļ 	<u> </u>
14.50 16.5										massive, light to medium grey-green-pink hue due to garnets										123.90	FOL	50	5368	123.00	123.80	0.80		2	0.012	2 0.0001	0.02		ļ 	Ь—
Compositional layers very sentific Compositional layers very sentification layers very sentific Compositional layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification layers very sentification l										127.1 Cpy bleb				_															1				 	
131 151	127.80 14	4.50	BIF							well banded 3% Po as widely disperced stringers parallel to foliation			127.80 131	.15	_		3 ?						5369	127.80	129.50	1.70	Nil	-	0.01	8 0.0001	0.0038	i .		_
13 13 13 13 13 13 13 13										compositional layers very sericitic													5370	129.50	131.15	1.65	Nil		0.007	6 0.0001	0.0027			
133.55 133.55 0.00 34 0.7 0.6513 0.000 0.21 133.55 133.55 133.55 0.00 34 0.7 0.6513 0.000 0.21 133.55 133.55 133.55 0.00 34 0.7 0.6513 0.000 0.21 133.55 133.55 133.55 0.00 34 0.7 0.6513 0.000 0.21 133.55 133.							-			131.15-131.85 occational Cpy lined microfractures			131.15 131	.85	mn		20 ?						5371	131.15	131.85	0.70	1	0	0.08	6 0.0008	0.177		, <u> </u>	1
193.9 195.7 permet very (60%) sensitived intereded within the Bill population of the bedding sensitive of the sensitive of th		_					-			131.85-132.5 frequent cm scale quartz veinlets			131.85 133	.55			1 ?						5372	131.85	133.55	1.70	Nil		0.006	8 0.0001	0.0075			
Market M										133.55-133.95 occational Cpy lined microfractures			133.55 133	.95	mn		10 ?						5373	133.55	133.95	0.40	3	4	0.05	3 0.0007	0.21			—
135.7 Lys instruction file stringer near contact 135.70 Lys in the Polarizatives and bands parallel 145.0 Lys in the Polarizatives and bands parallel 15.0 Lys in the Polarizatives and							-			135.3-135.7 garnet rich (65%) serictized interbed within the BIF-possible			133.95 135	.30	-		3 ?						5374	133.95	135.30	1.35	Nil		0.01	4 0.0003	0.0114			1
137.5-138.1 ghalainta bibles & sphalaintalgainen fracture Ill stringers 137.5-138.1 ghalainta bibles & sphalaintalgainen fracture Ill stringers 138.10 ls 39 ls 39 ls 39 ls 39 ls 39 ls 30 ls 39 ls		_					-			metased, intrusive? Contacts appears parallel to bedding				+									5376	135.70	136.60	0.90	Nil		0.010	0.0001	0.0131			
135 135							-			135.7 Cpy fracture fill stringer near contact			135.70 137	.50	tr		mn ?						5377	136.60	137.50	0.90	Nil	-	0.005	0.0001	0.0277			-
135.7-143.3 numerous om scale seriotic bands 141.6 trace Cpy along microfractures 142.5 trace Cpy along microfractures 143.3 144.5 frequent Cpy & sphalerite filled microfractures very suptal 143.3 144.5 frequent Cpy & sphalerite filled microfractures very suptal 143.0 144.50 mn 1 1 10 7 tr 143.00 FOL 45 5383 142.60 143.30 0.70 Nil 0.1 0.0042 0.0091 0.0031 144.50 147.60 META 144.50 147.60 META 144.50 147.60 META 145.60 152.00 OFP 146.50 152.00 OFP 147.60 152.00 OFP 147.60 152.00 OFP 148.60 153.00 Trace is specially self-indication asserted in deformation of the phenos giving core a specialed appearance; phenos to 3mm; numerous chlorite 147.60 152.00 OFP 148.60 153.00 Trace is special medium grey groundmass with white phenos giving in indiffractures, occational quartz verietes							-	-		137.5-138.1 sphalerite blebs & sphalerite/galena fracture fill stringers			137.50 138	.10	tr	mn	10 ?	mn					5378	137.50	138.10	0.60	1	0	0.058	0.124	0.66	i	0.66	0.60
141.6 trace Cpy along microfractures							-	-		minor CPY fracture fill stringers; frcatures mulidirectional			138.10 143	.30	-		3 ?						5379	138.10	139.60	1.50	Nil	-	0.01	6 0.0001	0.0066	i		
143.3-144.5 frequent Cpy & sphalerite filled microfractures; very suptal 143.30 144.50 mm 1 10 7 tr 143.00 FOL 45 5383 142.60 143.30 0.70 Nil 0.1 0.042 0.001 0.0031 59halerite occurring with the Po along microfractures 144.50 147.60 META 144.50 META 144.50 META 144.50 META 144.50 META 144.50 META 144.50 META 145.60 META 144.50 META										135.7-143.3 numerous cm scale sericitic bands					-								5381	139.60	141.10	1.50	Nil	+ -	0.007	8 0.0001	0.0038	1		
sphalerite occurring with the Po along microfractures						1																												
144.50 147.60 META	$\vdash \vdash$	+				1	1						143.30 144	.50	mn	1	10 ?	tr								0.70	Nil							
by biotitic bands 144.5-145.4 occational Po/minoe Cpy lined fractures and bands parallel 15 to foliation 16 core a speckled appearance; phenos to 3mm; numerous chlorite 17 ined fractures, occational quartz veinlets		+				1	+							+		\vdash										1.20	1						0.58	1.20
144.5-145.4 occational Po/minoe Cpy lined fractures and bands parallel to foliation 147.60 152.00 QFP massive spotted medium grey groundmass with white phenos giving core a speckled appearance; phenos to 3mm; numerous chlorite lined fractures, occational quartz veinlets	144.50 14	7.60 N	META				1						144.50 145	.40	tr		2			146.30	FOL	60	5385	144.50	145.40	0.90		7	0.02	3 0.0009	0.0275			
to foliation 147.60 152.00 QFP massive spotted medium grey groundmass with white phenos giving core a speckled appearance; phenos to 3mm; numerous chlorite lined fractures, occational quartz veinlets						1	1							+		+													+	1				
147.60 152.00 QFP massive spotted medium grey groundmass with white phenos giving core a speckled appearance; phenos to 3mm; numerous chlorite lined fractures, occational quartz veinlets							1																						1					
core a speckled appearance; phenos to 3mm; numerous chlorite	447.00	0.00	OFF				+							+		\vdash																		
lined fractures, occational quartz veinlets	147.60 15	2.00	QFP			1	1							\dagger																				
						1	1									\dagger																		
		\dashv				1	1			lined fractures, occational quartz veinlets 147.6 contact irregular																								

Cour	itry		Canada					VENC	AN G	OLD (Corpo	ratio	n																					
					_											VC	-06-11				1													
PROJ	ECT	Ge	noa Townsh	Drill Start		yze Ar July 12,2		Grid Co ordinates (UTM) final Diff. GPS +/ - 1m orthing 5298473.97	Dr	atum	NAD	02	HOLE ID			0.00	-06-11	To (m)	4.00	Flo	evation (m	410 E0										<i>i</i>	\rightarrow	
HOLE	ID#	V	/G-06-11	Drill Finish		July 17,		asting 409831.01		one	17		NQ Froi			4.00		To (m)			f Oxidation											i	$\neg \neg$	1
Logged			C. Aussant	Depth (m)				evation 419.58					BQ From					TD m.	242.00													i		
up-Da	ted		Collar		35	56.00	-45.0 Dr	ill Company: Bradly Brothers, Timmins, Canada				c	liam. HO	Q 6.35 cm	n N	Q 4.76 cm	BQ_	cm	Comments:															
			Reflex	20			-45.0																									.		
			Reflex	125			-42.8																									ı——		
Cour	4		Reflex Canada	242	35	57.10	-41.1						HOLE ID			VG-06-1																		$\overline{}$
	MAJC		OLOGY		ıbsidiary L					Altera				MINERA		N & ACCES	SORY MI				STRUCTU						SAY RESU	LTS						
			Litho Lith Ratio Modi					COMMENTS	From (m)		Alt Type N	Inten.	From T (m) (r	o PY n) %	CPY %	SPH Po	Mag %	Galena %	Other Min. or Comments	Depth (m)		Structure Angle	Sample #	From (m.)	To (m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
0.00	4.00	NR					Ca	sing																								1		
	28.30	FELT						0-9.2 medium grey-green mottled pink; numerous small indistinct	4.00	9.20	CHLR	М								7.00	FOL	55										i		1
							ga	rnets, moderately chloritic; trace Py, occational lapilli ghosts, siliceou	ıs 4.00	28.30	SILI	s																						
							ma	assive, weak foliation in sections																										
							9.2	2-18.6 light to medium grey, massive, siliceous, weak to moderate	9.20	18.60	SRCT	W																				<u> </u>		
							se	ricitization, scattered garnets, occational lapilli ghosts, numerous																								 		
							mi	crofractures, sericitization increasiny downhole, size of flakes																										
							inc	creasing downhole																										
							18	.6-23.0 pale to light grey, serictized generally along irregular fracture	s 18.60	23.00	SRCT	М																						
							mi	nor very small garnets																										\vdash
							ox	idized along fractures to 23.0 meters																										\vdash
							23	.0-28.3 light to medium grey-green, pink mottling due to scattered sm	na 23.00	28.30	SRCT	М																				.		
							ga	rnets, numerous serictic irregular stringers	23.00	28.30	CHLR	w																						
28.30	32.30	FET					pa	le to light grey, sericitized, siliceous, sericitized along selective	28.30	32.30	SILI	s								30.00	FOL	50												
							со	mpositional layers acsenting foliation	28.30	32.30	SRCT	М																				<u> </u>		<u> </u>
32.30	33.50	DIOR					dio	orite dyke, massive, medium green, core broken																										
33.50	62.50	FET					33	.5-47.4 pale to light grey, massive, silicified, sericitized along selective	∉ 33.50	<u> </u>	SILI	s								36.00	FOL	60												
							со	mpositional layers acsenting foliation; foliation becoming more	33.50		SRCT	М								38.00	FOL	55												
							dis	stinct and rythmic; minor chlorite lining foliation planes				_			-					44.00	FOL	60												
							40	.4-40.8 mottled beige brown to green, weakly chloritic-biotitic interval	ı			_			-																			
							47	.4-53.7 light to medium grey-green, well foliated-foliation improving	-						-					50.00	FOL	50												\vdash
							do	wnhole, trace garnets	-						-					56.00	FOL	50												\vdash
							57	.7-62.5 moderately siliceous, sericitic, light to medium grey, massive	57.70	62.50	SRCT	М					+			62.50	стс	50												
							se	ctions well foliated, narrow intervals garnitiferous	57.70	62.50	SILI	М					+					-												
62.50	69.80	FELT				_	ma	assive, chloritic, garnitiferous, mottled dark green/pink with frequent	62.50	69.80	CHLR	s	62.50 63	.50 2	-	2	?																	
							ра	le to light grey felsic stretched lapilli & fragments, stretched lapilli																										

Page 1 of 6

Country			Canada												HOLI	ID#			VG-06																	
			OLOGY				ubsidiary					Altera							& ACC						STRUCT						ASSAY RESU	LTS	1	1		I
From To	o L	.iTHO Code	Litho Ratio	Lith	no Fi	rom m)	To L	THO Code I	Litho Modifier	r COMMENTS	From (m)					To (m)			SPH %				Other Min. r Comments					ple Fr (r			Interval (ppb) Au (ppb)	Ag(ppm)	Cu(ppm) Pb(ppm)	Zn(ppm)		Interval Meters
() (,					,	()				()	()	.,,,,,		()	()	,,,	,	,,,					(,	.,,,,,				,	(,	(,				7	1
										acsenting foliation																										
										62.5-63.5 disseminated with Py amount decreasing downhole																										
										62.5-64.0 moderately magnetic, disseminated magnetite																										
										62.9-65.3 numerous quartz flooded intervals																										
										66.4-66.6 moderately magnetic														66.50	FOL	50										
69.80 76.	70																							00.50	TOL	30										+
69.80 76.	.70	FEI								light to medium grey, rythmic colour banding, occational cm scale																										+
					-					siliceous beds											-						1									+
					-					74.9-76.7 light to pale grey sericitic, intensity increasing downhole	74.90	76.70	SRCT	S																						
76.70 77.	40 F	FELT								mottled darkgreen/pink with pale to light grey felsic lapilli-stretched along	76.70	77.40	CHLR	s																						
										foliation direction-acsenting foliation; chloritic, garnetifierous																										\perp
77.40 89.	40 (QFP								massive light grey/grey-green; phenos to 3mm; calcite &/or chlorite																										\perp
										lined microfractures																										<u> </u>
										77.4 contact irregular generally crosscutting foliation																										
										follow contact from 89.2-89.4 contact at 15 ° to CA crosscutting														89.30	СТС	15										
										foliation which is at 50 ° to CA														89.30		50										1
89.40 90.	70 5										00.40	00.70	CLII D	10/										00.00	. 02											
89.40 90.	.70 F	FELI								mottled medium green/pink with frequent pale to light grey felsic lapilli												-														+
	-				+					& fragments; colour index decreasing downhole; gradational contact	90.10	90.70	SRCT	M					-			-														+
	-				-					gradual increase in sericitization, decrease in chloritization																										+
90.70 98.	.60	FET								light to medium grey, rythmic colour banding-decreasing downhole	90.70	93.00	SRCT	S								-		95.00	FOL	55										
										95.6-98.6 rythmic banding-very intense where acsented by beige siliceo	93.00	95.60	SRCT	М																						
										cm bands																										$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
98.60 99.	90 F	FELT								chloritic, garnetiferous, dark green with pink speckles; numerous pale	98.60	99.90	CHLR	S										98.60	СТС	55										<u> </u>
										to light grey felsic lapilli & fragments; sharp contacts																										
99.90 101	.10	FET								light to medium grey with pale grey/beige siliceous cm bands, tarce																										
		-			İ					garnets, minor chlorite bands parallel to foliation																										
					1																			100.50	FOL	55										†
				1	\top					rythmic colour banding acsenting foliation		l												100.50	FUL	55										+
101.10 102	.05 F	FELT		+	+					dark green with pink speckles, very chloritic, garnetiferous, occational	101.10	102.05	CHLR	S							-															+-
	+			-	+	\dashv				pale to light grey felsic lapilli; minor quartz flooding; numerous calcite									_	+	+	+							-							+-
	-				+	-		_		lined microfractures; minor Py along fracture planes									-			-					-									+
102.05 107	.93	FET			\perp					102.05-103.5 light to medium grey, extremely sericitic-intensity decreasi	102.05	103.50	SRCT	S					_			_		103.00	FOL	50										┿
				_	\perp					downhole, rythmic colour banding											_					ļ										\perp
										103.5-107.93 pale to light grey, minor sericite-decreasing downhole	103.50	104.50	SRCT	W																						\perp
					\perp					siliicification increasing downhole, minor irregular chlorite lined fractures	104.50	107.93	SILI	М																						<u></u>

Country			Canad	ia											HOLE	ID#			VG-06-	-11																			
MA		LITH	OLOGY					ry Litholo				Altera				MINE		ATION	& ACCE	SSORY					STRUCTU							RESULTS							
From To (m) (m)	LIT	OHTI	Litho Ratio	Lit	tho f	From (m)	To (m)	LITHO	Litho	er COMMENTS	From (m)					To (m)			SPH F				ther Min. Comments	Depth (m)	Structure	Structure Angle	Sample #	From (m.)	To (m.)	Interval (m.)	Au	(ppb) Ag	(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
(111) (111)	C	Jude	Ralio	IVIOC	ullei	(111)	(111)	Code	WOULIE	COMMENTS	(111)	(111)	туре	VVIIVI	(111)	(111)	76	76	76 7	70 70	70	orc	Comments	(m)	туре	Arigie	#	(111.)	(111.)	(111.)							76	76	Weters
107.93 109.10	0 0	QFP								massive light grey, phenos to 3mm														107.93	стс	50													
										very sharp contacts perpendicular to foliation														107.93	FOL	55													
109.10 112.60	60 F	FET								light creamy grey to pale grey; selective compositional layers sericitic	109.10	112.60	SILI	М																									
										rythmic banding, siliceous	109.10	112.60	SRCT	w										111.00	FOL	63													
112.60 112.9	95 M	IAFD		_						spotted medium brown green matrix with numerous dark green chloritic																													
					_					blebs, calcite ling fractures																													
				-	_					contacts parallel to foliation																													
112.95 116.70	'0 F	FET		-	_					siliceous, well foliated at start of interval- less well defined downhole														112.95	стс	70													
	-			-	_					weak sericite-generally along selective compositional layers; occational			-								-	-		113.00	FOL	60					-								
	-			-	_					dark green chlorite lined foliation planes and along microfractures			-								-	-									-								
116.70 117.20	20 M	1AFD		-	_					blach, aphanetic, moderately magnetic sharp contacts oblique to			-	\vdash				-	-	_	-	+		116.70	СТС	60					+		_						
	-			-	_	_	_			foliation				igdash				_	_	_	-	\perp					<u> </u>				_								
117.20 128.00	00 F	FET		_	_					moderately siliceous, rythmically banded; light to medium grey with mm																													
	-			\perp	_	_				pale creamy grey bands			-							_	-	-									-								
				-	_					121.5-123.4 minor chlorite as ling along foliation planes & occationally	121.50	123.40	CHLR	w																									
					_					fractures																					-								
				-	_					123.4-128.0 narrow secttions very siliceous									_					127.50	FOL	55													
128.00 129.70	70 M	IAFD		-	_					massive dark green vry fine grained, trace feldspar phenos									-																				
					-	_				(in previous drill holes this dyke contained granodiorite resorbed									+			+									-								
				-	_					xenoliths)																													
	-				-					contacts perpendicular to foliation																													
129.70 131.60	60 F	FET			+	\dashv				light to medium grey- colour index gradually increasing downhole								-	+					129.70	CTC	30					-								
	-			-	-					131.2-131.6 occational garnets- gradual compositional contact to under	l							_																					
	+			+	-					FELT; weak sericite along selective compositional layers; occational			-	\vdash				-	+		+	-									+								
	-			-	-	\dashv				multidirectional calcite filled microfractures								-	-			+									-								
131.60 143.90	00 FE	ELT			-					dark green/pink; chloritic garnetiferous matrix with frequent pale to light	131.60	143.90	CHLR	S	131.60	135.90	3	-																					
	+			-	-					grey stretched lapilli & fragments, numerous quartz/feldspar filled fractu	ſ																5386				0 Nil		0.1	0.002	0.005	0.034			
				+	-					frequent chloritic microfractures & multidirectional fractures-intensity								\dashv				+					5387				0 Nil		0.2	0.002	0.023	0.295			
					-	_				increasing downhole									+			+					5388				0 Nil		0.2	0.001		0.013			
	\dagger				\dashv	1				135.75-calcite/sphalerite veinlet upto 3mm wide at 40° to CA																	5389				O Nil		0.1	0.002	0.001	0.008			
					-					135.75-135.85 extremely chloritic with sphalerite blebs (small) along								$-\dagger$									5390				O Nil		0.2	0.004		0.006			
	\dagger			1						chloritic fracture planes																	5391 5392				0 Nil		-	0.008		0.067			
			<u> </u>						<u> </u>	135.9-141 numerous chlorite lined fractures, minor widely scattered			1							L_		I			L	l	5392	141.0	142.00	1.0	00 Nil		0.1	0.001	0.011	0.048			l

Country			Canada												HOLE	ID#			VG-06-	-11																	l		
MA		LITHO	LOGY					Litholo				Altera				MIN		ZATION	& ACCE	SSORY					STRUCTU							Y RESULTS	3						
			Litho Ratio								From (m)		Alt Type N	Inten.	From (m)	To (m)	PY %		SPH F	o Ma	g Gale	na Other or Com	Min. [Depth (m)	Structure	Structure	Sample #	From (m.)	To (m.)		AL AL	u (ppb) A	.g(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
(111)		Jud	ratio	iviounite	J. (III)	(1)	,	Joue	woulde	COMINICATION	(111)	(111)	iype ((111)	(111)	/6	70	70	70	/0	or com	IOI 113	(111)	1 ypc	Ailyle	#	(111.)	(111.)	(111.)	+		\dashv				/0	/6	meter 3
	_									disseminated Py																		ļ									<u> </u>	Ь—	ļ
										139.2-141 core extremely broken, numerous fractures-chlorite lined																												<u> </u>	<u> </u>
										139.4 galena blebs																													
										141.0-143.9 massive amount of chlorite lined fracture decreasing rapidly																													
143.90 145.30	0 M/	ΛED.								massive very fina grained medium green; occational chlorite dark green													1	43.90	стс	45													
1 10.00																							Ť	10.00	0.0														
										clots, 2 to 4cm quartz veinlets marking both contacts																							$\overline{}$						
145.30 152.70	'0 FE	ELT				-				massive chloritic garnetifierous groundmass with frequent pale to light	145.30	152.70	CHLR	S						_											-						├ ──┤		-
\vdash										grey streatched felsic lapilli & fragments; minor to 1% Py; narrow			-	_																								<u> </u>	<u> </u>
\vdash										sections with upto 5% Po																											<u> </u>	<u> </u>	<u> </u>
										150.3 spahlerite with trace galena along a microfracture																	539	149.0	0 150.4	0 1.4	40	7	0.1	0.001	0.002	0.015			<u> </u>
										150.4-151.3 sudden increase insulphide content, chloritic groundmass					150.40	151.30	15		4	15 ?							539	150.4	0 151.3	0.9	90 Nil		0.3	0.007	0.005	0.011		<u> </u>	
										approximately 60% combined sulphides																	539	5 151.3	0 152.7	0 1.4	40 Nil		0.3	0.001	0.000	0.013			
										151.3-152.7 bright green extremely chloritic					151.30	152.70	10			?							539	5 152.7	0 154.2	0 1.5	50	72	0.3	0.005	0.000	0.027			
		\Box								152.7 garnetiferous band along the massive sulphide contact				\Box													539	7 154.2	0 155.7	0 1.	50	86	0.4	0.005	0.000	0.032			
152.70 169.90	10 1	IF								massive sulphides; 90% combined Py/Po/magnetite; pyrite stringers				Ţ,	152.70	163,20	20			10 30	?		1	52.70	стс	60	539				50 Nil		0.2	0.004					
										defining foliation-foliation crenulated; sections slightly more pyritic																	539				50	65	0.4	0.008					
										unit contains narrow cherty intervals-along with a decrease in combined														55.00	FOL	60	540					62	0.7	0.007			,		
																							Ť	33.00	TOL	00						02	-						
	-									sulphides				_													540				50 Nil		0.2					<u> </u>	
										163.2- 163.6 silicified cherty section				-	163.20	163.60	5		3	30 ?		-					540	3 161.7	0 163.2	0 1.	50	24	0.1	0.005	0.000	0.044		 	
						-	-			169.6-169.9 siliceous					163.20	167.00	20		4	10 30	?						540	163.2	0 164.7	0 1.	50	27	0.1	0.005	0.000	0.057	<u> </u>	—	
										168.5 sphalerite band					167.00	168.60	10		3	80 50	?						541	164.7	0 165.7	0 1.0	00	55	0.2	0.005	0.000	0.028	<u> </u>	<u> </u>	<u> </u>
igsquare															168.60	169.60	20		<1 3	80 40	?						541	1 165.7	0 167.0	0 1.	30	65	0.2	0.005	0.000	0.023	!		<u> </u>
															169.60	169.90	mn		2	20 ?							541:	2 167.0	0 168.6	0 1.0	60	48	0.1	0.003	0.000	0.028			
169.90 192.30	10 IN	NTT								169.9-176 massive occational small poorly developed garnets	169.90	176.00	SILI	М									1	74.00	FOL	65	541	3 168.6	0 169.9	0 1.3	30	48	0.3	0.006	0.000	0.039		L	
										light to medium grey green, occational calcite filled fractures																													
										moderately siliceous-silicification decreasing downhole, intervals				T									T																
	1	\neg				1	1			weakly chloritic; sections weakly foliated, minor Po concentrations				T									1	$\neg \dagger$						1	1								
	+	\dashv				\top	\dashv														1		\dashv	$\neg \dagger$							\top								
	+	\dashv			+	+	\dashv			parallel to foliation				\dashv				$\mid \rightarrow \mid$			+	+	\dashv	\dashv							+		 				$\vdash \vdash \vdash$		
\vdash	+	\dashv			+	+	-			172.9-173.3 disseminated with fine Po				\dashv	172.90	173.30		\vdash		5	+	+	+	\dashv				1		1	+		\longrightarrow			-	\vdash	 	
	+	\dashv			172.0	55 172	2.85	FET		172.65-172.85 light grey felsic tudd, massive				\dashv				\vdash			+		+	\dashv						1	+		\longrightarrow			-	\vdash	 	
 	+	\dashv				+	-			176.0-192.3 massive weakly to moderately chloritic; medium grey-green	176.00	192.30	CHLR	W				\vdash			-		\dashv	-						1	-		\longrightarrow			-	 	 	<u> </u>
192.30 205.80	0 ME	ETA				-				192.3-201.1 well foliated cm scale biotitic layers giving core a brownish				\dashv				\vdash			-		1	93.00	FOL	65	-			1	-						\vdash		
										tinge core medium grey-green																												<u> </u>	<u></u>

Country		-	Canada												HOL	E ID#			VG-06	-11																		
	IAJOR	LITHOL				Subs	sidiary	Litholog	ду			Altera	ation				VERAL		I & ACCE		MINER	ALS		S	STRUCTU	JRE				AS	SAY RES	ULTS	1					
From To											From	To	Alt	Inten.	From	To	PY	CPY	SPH F	Po Ma	g Gale	na Othe	r Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh	\ Aa/nnm	Cutoon) Dh/nnn	n) Zn(ppm	Pb	Zn	Interval
(m) (m)) C	ode	Ratio	Modifie	r (m)) (n	n)	Code	Modifie	r COMMENTS	(m)	(m)	Туре	WM S	(m)	(m)	%	%	%	% %	%	or Con	nments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	ли (рри) Ag(ppiii	Cu(ppi	і) Го(рріі	i) Zii(ppiii	%	%	Meters
										199.95-200.15 magnetic possible MAFD, aphanetic													21	00.00	FOL	60												
										201.1-203 scattered garnetiferous layers																												
										after 201.5 colour index decreasing downhole, silicification increasing	İ																											
										203-205.8 moderately to strongly siliceous, sections bleached beige with																												
										intensity of foliation decreasing downhole																												
205.80 213.3	37 F	BIF								well banded, strongly magnetic, sulphide content variable, sections with					205.80	209.80	tr	3		30 ?			21	06.00	FOL	65	5414	205.80	207.30	1.50		2 0.	5 0.0	77 0.0	00 0.01			
200.00 210.0	<u> </u>	511								frequent Cpy along microfractures associated with areas containing					200.00	203.00		Ĭ	Ť	50 :				12.00	FOL	70	5415	207.30			Nil	0.				3		
										elevated Po														12.00	TOL	70	5416	208.80	209.80	1.00	, INII	2 1.				4 0.276	0.914	1 1.00
										205.8-209.8 numerous Po enriched bands and frequent Po/Cpy																	5417	209.80		1.00) 3						0.512	1.00
										microfarcture fill; minor chloritic areas, frequent quartz flood; siliceous													1				5418	210.80								1		
						1	1			209.8-213.37 rduction in Po/Cpy; widely spaced Po enriched bands					209 80	213.37	tr	mn		10 ?							5419	212.30										
										generally with Cpy microfracture fill; enriched bands generally parallel					200.00	210.07	-			!			T				5421	213.37								1		
										to foliation													1				5422	214.00										
213.37 214.0	00 MI	FTA								massive grey-green scattered garnets																	5423	215.00			Nil	0.						
214.00 217.4		BIF								massive, strongly magnetic, siliceous, weak banding	İ				214.00	217.25			,	mn	2						5424	216.50	217.48		Nil	0.						
211100 21111		J								scattered calcite lined fractures					211.00	217.20											O IL	210.00	2	0.00		0.	. 0.0	0.0	0.21			
										217.25-217.48 occational Po & Sphalerite/galena stringers-multidirection					217.25	217.48			5	5 ?	2																	
217.48 218.2	20 MI	ETA								medium green, highly fractured garnetiferous greywacke																												
										chlorite lining fracture planes																												
										214.6-218.2 core broken																												
218.20 219.5	50 DI	IOR								massive diorite, silicified, obscure feldspar phenos, frequent chlorite line																												
										fractures-contacys obscure																												
219.50 221.7	77 MI	ETA								mottled medium grey-green, garnetiferous, massive																												
221.77 235.4		BIF								well banded lean iron formation; generaally widely spaced mm scale					221.77	227.30		mn		5 ?			2:	22.50	FOL	65	5426	221.77	223.30	1.53	3	2 0.	1 0.0	0.0	0.00	5		
										Po stringers parallel to foliation; occational wider Po enriched bands					227.30	228.50		3		30 ?				27.00	FOL	57	5427	223.30			Nil	0.						
										upto 6cm wide-with assiciated Cpy & sphalerite lined microfractures;					228.50	230.30				tr ?			2:	30.00	FOL	55	5428	224.30	225.80	1.50) 2	7 0.	3 0.0	11 0.0	0.10	8		
										Cpy & sphalerite as tiny blebs or stringers along microfractures; siliceou	11				230.30	230.70		1		10 ?							5429	225.80	227.30	1.50) 1	7 0.	2 0.0	11 0.0	00 0.01	2		
									-						230.70	234.40		tr		<1 ?							5430	227.30	228.50	1.20) 3	8 0.	5 0.0	61 0.0	0.40	7		
															234.40	235.40		2	mn ·	15 ?							5431	228.50	230.00	1.50	Nil	0.	1 0.0	0.0	00 0.01	2		
235.40 242.0	00 MI	ETA								235.1-238.5 medium grey-green with brown tinge-biotitic, occational																	5432	230.00	231.50	1.50)	7 0.	2 0.0	14 0.0	0.05	5		
										calcite filled fractures																	5433	231.50	233.00	1.50) 1	4 0.	1 0.0	10 0.0	0.00	5		
										235.7-235.8 30% disseminated Py with minor Cpy																	5434	233.00	234.40	1.40	Nil	0.	1 0.0	10 0.0	0.01	3		
										238.5-240.55 massive, moderately chloritic, moderately siliceous																	5435	234.40	235.40	1.00) 1	7 0.	5 0.0	57 0.0	0.14	4		

Cou	untry	Cana	da										НС	DLE ID#	:	٧	'G-06-	-11																	
	MAJOR	LITHOLOGY	Y		S	Subsidia	ry Litholo	ЗУ			Altera	ition		M	IINERALIZ	ATION &	ACCE	SSORY N	INERAL	S		STRUCTU	IRE				AS	SAY RESU	ILTS						
From	To LI	THO Lith	o L	_itho	From	To	LITHO	Litho		From	To	Alt In	ten. From	n To	PY	CPY SI	PH P	o Mag	Galena	Other Min.	Depth	Structure	Structure	Sample	From	To	Interval	Au (nnh)	Aa(nnm)	Cu(nnm)	Dh/nnm)	7n/nnm)	Pb	Zn	Interval
(m)	(m) C	ode Rati	io Mo	odifier	(m)	(m)	Code	Modifier	COMMENTS	(m)	(m)	Type Wi	VIS (m)	(m)	/ %	% 9	% 9	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppiii)	Cu(ppiii)	Pb(ppm)	ZII(ppiii)	%	%	Meters
									medium green															5436	235.40	236.40	1.00	Nil	0.1	7 0.049	0.001	0.085	5		,
									240.55-241.6 biotitic pale to medium brown grey, intevals disseminated																										,
									•																										
									with very fine Py																										,
									241.6-242 massive medium grey-green																										,

Country	Ca	anada						VENC	AN GO	OLD C	Corporat	on																					
DD0 1507	C	- T	abia D		C	A	Ontorio	0.110			•		E ID#		,	/G-06- [^]	12				1												
PROJECT	Geno	a rown		Drill Start Dat				Grid Co ordinates (UTM) final Diff. GPS +/ - 1m 2 5298585.66	Dat	turn	NAD 83	_	From (m		0.00	/G-06-	To (n	n) 4.00	FI	evation (m)	126 44	1										\longrightarrow	i
HOLE ID#	VG	-06-12		Drill Finish Da		18,2006		409962.96		ne	17		From (m		4.00		To (n			f Oxidation	1 420.41	1											
Logged By:		Aussant		Depth (m)	Azm. O		° Elevation						From (m				TD m				1												
up-Dated		Collai			355.00	-45.	0 Drill Com	ppany: Bradly Brothers, Timmins,Canada				diam.	HQ 6.3	5 cm N	Q 4.76 cr	m BC	Qcm	Comments:															
		Reflex	(17		-43.	4																										
1		Reflex	(110		-42.	9											1	,		ı												\vdash
Country MAJOR L		OGY	_	Subsic	liary Lithol	oav				Alterat	tion	HOLE		ERALIZATIO	VG-0		MINER	ALS	1	STRUCTL	IRF				AS	SAY RESU	II TS						\vdash
From To LIT	ТНО	Litho		From To	LITHO	Lith			From	To	Alt Inten.	From	To	PY CPY	SPH	Po Ma	g Gale	na Other Min.	Depth	Structure	Structure		From	To	Interval	Au (ppb)		Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn	
(m) (m) Co	ode	Ratio M	lodifier	(m) (m)	Code	Modif	fier	COMMENTS	(m)	(m)	Type WMS	(m)	(m)	% %	%	% %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	. (11.7	341 /		- 41 /	41 /	%	%	Meters
0.00 4.00 N	NR						Casing										_																
4.00 12.05 FE	ET						light to pa	ale grey to pale green, rythmic colour banding, extremely siliced	3										5.00	FOL	60												1
							iron stain	ned along fracture planes to 11.0 meters											11.40	FOL	55												1
12.05 34.90 FE	LT		T			\mathbb{L}^{-}	massive,	chloritic/garnitiferous matrix with pale grey felsic lapilli &																									
								s; moderately to strongly magnetic-disseminated with variable																									
								nd disseminated Po & magnetite; occational Py stringers;																									
								al chlorite lined microfractures-becoming more frequent																									
							after 17.0															5437	21.90	22.90	1.00		7 0.1	0.002	0.000	0.005			
								1 & 24.3-24.4 sections containing sphalerite stringers with fine				22.90	23.10		10							5438	22.90	24.40	1.50	10	0.5		0.144	0.003		0.513	1.50
												24.30	24.40		10							5439	24.40	25.60	1.20			0.004	0.035	0.046		0.515	1.30
								e disseminations in the surrounding country rock				24.30	24.40		10				25.60	VNQZ	55	5439	24.40	25.60	1.20	Nil	0.1	0.002	0.035	0.046			
								·				31.10	24.20		4		1				55	5441	20.00	24.00	4.00	NI:	0.4	0.001	0.000	0.000			
	_					1		3 galena/calcite lining fractures; & several calcite filled fractures				31.10	31.30		1		+ '		28.30	FUL	55		30.00	31.00	1.00	INII	0.1		0.000	0.009			
			-				with spha	alerite clots									-					5442	31.00	32.40	1.40	Nil	0.2	0.001	0.049	0.166			
							32.4-33.1	1 section with Py/Po concentartions in a chloritic matric				32.40	33.10	10		20						5443	32.40	33.70	1.30	3	1 1.9	0.035	1.420	0.664	1.420	0.664	1.30
							33.1-33.3	3 spahlerite/galena enriched section-amount of galena				33.10	33.30	20	10		20					5444	33.70	34.90	1.20	27	7 0.1	0.007	0.001	0.033			
							increasin	g downhole withsphalerite disappearing														5445	34.90	36.50	1.60	45	5 0.4	0.005	0.002	0.094			
							33.3-33.7	7 chloritic/garnetifeous chloritic interval				33.30	33.70	3		mn						5446	36.50	38.00	1.50	Nil	0.2	0.005	0.000	0.039			
							33.7-34.7	7 sulphide enriched section				33.70	34.70	15		60						5447	38.00	39.50	1.50	Nil	0.2	0.004	0.000	0.034]
							34.7-34.9	9 chloritic-garnetiferous interval				34.70	34.90	1		mn						5448	39.50	41.00	1.50	45	5 0.1	0.005	0.000	0.058			
34.90 51.54	F						massive	sulphides; mainly Po/Py & magnetite				34.90	49.80	15	mn	40 40	?		49.00	FOL	50	5449	41.00	42.50	1.50	Nil	0.4	0.006	0.000	0.033			
								ections just massive magnetite & several narrow cherty interval				43.30	43.40	15	30	30 ?						5451	42.50	44.00	1.50		1.2		0.107	0.453			
								ociated reduction in total sulphides; Py stringers acsenting a				49.80	51.54	15		30 ?						5452	44.00	45.50	1.50	3.	1 0.2	0.004	0.001	0.040			
								ed foliation between 50 to 55° to CA														5453	45.50	47.00	1.50	Nil	0.2		0.000	0.030			1
51.54 51.97 B	BIF						quartz flo	ooded very siliceous; chlorite and sulphide mm stringers				51.54	51.97	5		5			51.54	СТС	50	5454	47.00	48.50	1.50	Nil	0.3	0.004	0.000	0.036			
								g foliation														5455	48.50	50.00	1.50	Nil	0.2	0.005	0.000	0.036			
51.97 52.29 QI	FP							phenos to 3mm; contacts parallel to folaition											51.97	СТС	50	5456	50.00	51.54	1.54	Nil	0.2	0.005	0.000	0.064			
	SIF							51.54-51.97				52.29	52.62	5		5						5457	51.54	51.97	0.43		0.1		0.000	0.052			
32.29 32.43 B	an'				-1	1	same as	31.04-31.37				32.29	32.02	J		J				Ц	1	3437	31.34	31.97	0.43	lian.	0.1	0.001	0.000	0.052			

Coun	try		Canad	la										HOLE IE	D #		V	G-06-1	2																	
			HOLOGY					ithology			Altera						ATION &						STRUCTU						SSAY RES	SULTS						
From (m)			Litho Ratio								To (m)	Alt Type V									Other Min. or Comments	Depth (m)		Structure Angle	Sample #	From (m.)	To (m.)	Interva (m.)) Ag(ppm) Cu(ppm	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
(111)	(111)	Code	Rallo	iviodili	iei (ii	(11)) (ode ivio	COMMENTS	(111)	(111)	Type v	VIVI S	(111)	(111)	76	76 76	0 70	76	76	or Comments	(m)	туре	Arrgie	#	(111.)	(111.)	(111.)	-		-	+		76	76	Weters
52.45	55.00	META			4				52.45-52.62 chloritic with numerous Py/Po stringers acsenting foliation																5458	51.97	53.43	3 1.4	16 Nil	0	1 0.00	3 0.004	4 0.039			1
									52.62-55.00 light grey generally weak to moderate silicification; narrow				5	2.62 5	5.00	1	m	n 1							5459	53.43	55.00	1.5	7 Nil	0	1 0.00	2 0.000	0.008			
									intervals extremely siliceous; minor garnets; occational Po/Py cm																											
									stringer concentrations parallel to foliation- decreasing downhole																											
									53.2 sphalerite along fracture plans at 50 o to CA parallel to weak													53.20	VNSP	50												
									foliation																											
55.00	61.70	MAFD)						dark green, numerous small biotite flakes aligned perpendicular to the	С																										
									giving the core the appearance of numerous needles																											
									frequent quartz feldspar flooding (resorbed); minor pyrite	1																					1					igsquare
									occational quartz or quartz/calcite veinlets & fracture fill																											
					59.	.30 61.	70 BI	BRX	section very chloritic, brecciated, core broken	59.30	61.70	CHLR	s						\perp						5461	59.30	60.30	1.0	00 Nil	0	1 0.00	2 0.088	0.021			
61.70	70.40	MFLO	,						massive, medium to dark grey green, weak to moderately chloritic	61.70	67.20	CHLR	w												5462	60.30	61.70	1.4	10	2 0	1 0.00	1 0.00	0.018			
									aphanetic (andesite ?)	67.20	70.40	CHLR	М			_									5463	61.70	63.00	1.3	30	96 0.	8 0.01	4 0.313	0.488			$\sqcup \sqcup$
\square									62.66-62.75 minor quartz flood with numerous stringers sphalerite with				_			_												<u> </u>			1	1	1			$\sqcup \sqcup$
									minor Cpy/galena; stringers multidirectional along microfractures																											
70.40	72.40	META			1				72.1-72.4 extensive quartz/carbonate flood with associated sphalerite/	70.40	72.10	SILI	w																							
					1				galena microveinlets-multidirectinonal	70.40	72.10	CHLR	W																							
					_		_			72.10	72.40	CHLR	s												5464	70.40	72.10	1.7	70	3 0	2 0.00	1 0.024	4 0.013			4
72.40	73.60	BIF							siliceous; numerous multidirectional irregular sphalerite stringers,				7	2.40 7	3.60	2	mn 10	0 10		2		73.00	FOL	55	5465	72.10	73.60	1.5	50	24 7.	5 0.14	9 0.792	2 1.220	0.800	1.476	13.6
					-		_		frequently with associated galena; numerous multidirectional irregular				_			_									5467	73.60	74.80	1.2	20	3 0	2 0.01	0.112	0.056			
\vdash					-		_		Po stringers; occational Py blebs & irregular stringers; numerous calcite	е			_			_									5468	74.80	76.30	1.5	50	27 30	2 0.64	0 1.890	2.000			
	\dashv		-		+		-		stringers & veinlets to 1cm with spahalerite +/1 galena blebs		-		+		_	_								-	5469	76.30	77.80	1.5	50	10 15	8 0.43	6 1.520	2.880			$\vdash \vdash \vdash$
					\bot		-		73.6 a 6cm BRX with galena in-fill	-			_												5470	77.80	79.30	1.5	Nil	0.	8 0.01	0.360	1.130			$\vdash \vdash \vdash$
73.60	74.80	META			+				medium grey-green; scattered garnets, massive, moderately siliceous	73.60	74.80	SILI	М			_			-						5471	79.30	80.50	1.2	20	21 4	8 0.02	0.70	2.140			\vdash
					\bot				weak chlorite				_						-						5472	80.50	81.60	1.1	0 Nil	2	5 0.03	0.504	1.040			$\vdash \vdash \vdash$
74.80	35.70	BIF			+				well foliated, extensively fractured, numerous multidirectional				7	4.80 7	7.80	<1	4 8	1	?	2					5473	81.60	82.50	0.9	00 Nil	0	7 0.00	4 0.22	4 0.772			$\vdash \vdash \vdash$
	_				\bot				sphalerite, sphalerite/galena/Cpy and CPY stringers; numerous quartz				7	7.80 8	5.70	<1	mn 5	5 2	?	1					5474	82.50	83.50	1.0	00	24 4	7 0.02	1 1.140	1.870			$\vdash \vdash \vdash$
					\bot				veinlets; frequent quartz/calcite multidirectional veinlets;				_						-						5476	83.50	84.60	1.1	0 Nil	0.	8 0.00	0.236	0.808			$\vdash \vdash \vdash$
	_		-	-	\bot		-		frequent mm sphalerite stringers parallel to foliation; occational Po	-			\perp	_	_	_									5477	84.60	85.70	1.1	10	14	4 0.04	2 0.828	1.820			$\vdash \vdash \vdash$
	\dashv		-		+		-		enriched bands parallel to foliation; variably magnetic-less magnetic in		-		+		_	_								-	5478	85.70	86.70	1.0	00	69 0	2 0.00	6 0.066	0.125			$\vdash \vdash \vdash$
					\bot				areas sphalerite enriched; sulphide content quite variable as fracture fil	II			_						-									1				1	1			$\vdash \vdash \vdash$
	\dashv		-		+		-		magnetite very finely disseminated; occational bright green chlorite		-		+		_	_								-				1			1		1			$\vdash \vdash \vdash$
									filled fractures generally occuring adjaacent to larger sphalerite																											

Country	v		Cana	ada											но	E ID#		,	VG-06-	·12																	
		R LITH	HOLOG				Subsidia	ary Lith	ology			Α	Iteratio	n					& ACCE		MINERA	ALS		STRUCT	URE				AS	SAY RESU	ILTS						
From T	To	LITHO) Lith	no I	Litho	From	To	LITH	IO Lith	0	From	m 1	To	Alt Inte	n. From	To	PY	CPY :	SPH F	o Mag	Galer	na Other Min.	Depth	Structur	e Structure	Sample	From	To	Interval	A (A =/====)	0()	Db ()	7-()	Pb	Zn	Interval
(m) (r											(m)) (1	m) 1	Type WM	IS (m)	(m)	%	%	% 9	% %	%	or Comments	(m)	Type	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	Meters
										concentrations																								,			1
																																		+			
85.90 90	0.90	META								massive, light grey-green garneriferous-content variable; moderate	lv 85.9	90 89	9.80 C	CHLR N	ı I								87.00	FOL	65									,			1
										,g,,,,	,													1.7-										1 '			
										chloritic	89.8	80 90	0.90 C	CHLR S																				,			1
								1								1	1																	+			\vdash
										89.8-90.9 mottled grey-green, chloritic-alignment of chlorite clots																								,			1
				_ h						one determinated groy groom, america diagriment or emonte diete		_																						+			$\vdash \vdash \vdash$
										acsenting a weak foliation-foliation flattening downhole													89.80	FOL	55									,			1
								1								1	1																	+			\vdash
										90.8-90.9 core broken																								,			1
				_ h						0.0 00.0 00.0 010.001		_																						+			$\vdash \vdash \vdash$
										90.9 contact slightly irregular but general direction of 45° to CA																								,			1
				_ h						one contact original inregular but general arrection or to the ext		_																									$\vdash \vdash \vdash$
90.90 94	4.80	BRX								extremely siliceous; quartz-carbonate stockwork; stockwork of					90.90	94.80	mn	mn	10 m	nn 2	2		90.90	СТС	45	5479	90.90	92.40	1.50	Nil	0.4	0.006	0.310	1.500	0.331	1.542	3.900
50.50 54		JIV	1					1	-	omonor, omocodo, quanz carbonate stockwork, stockwork or		_		-+	30.30	37.00	11111		.0 11		+ -	1	30.30	0.0	70	5473	30.30	32.40	1.50		0.4	0.000	0.310	1.500	0.001	1.042	5.500
							l	1		spahlerite+/1 galena microstringers, numerous chlorite filled fractur	es					1		1 1		- 1	1	1	1		1	5481	92.40	93.90	1.50	7	1.1	0.007	0.536	1,290			1 '
			1					1	1			-		-+	1	1	1	\vdash			1	1	1	1	1	J-101	02.40	55.50	1.50	<u> </u>	 '	0.007	0.000	1.230			
							l	1		weakly magnetic-intensity variable						1		1 1		- 1	1	1	1		1	5482	93.90	94.80	0.90	Nil		0.026	1.550	2 030			1 '
\vdash			+	-+				1		modia, magnetic intensity variable		+		-+	+	1	+	\vdash			+	+	1	 	+	J402	33.30	34.00	0.30	· ***	+	0.020	1.000	2.030			
							l	1		94.3-94.8 contact iregular-core going in and out of the BRX						1		1 1		- 1	1	1	1		1	I		1	1	1	1	1		1			1 '
			1					1	-	5 1.5 5 1.5 55. Idot negatar core going in and out of the DICK		_		-+	-	1	1	\vdash			1	1	1	1	1	†		l	l	†	l -	l -	t -	+			
94.80 102	12 an	MET^	, I					1		massive medium grey-green; moderately chloritic; occational quart	7/					1					1		1					l	l	1	1	1		1			1 '
34.00 102	2.50	IVILITA	+		-			1		massive mediam grey green, moderately emonite, occational quant	-	-		_		1	+		-		+		+		+					1	1	1		+			$\vdash \vdash \vdash$
										feldspar filled veinlets & stringers; chloritization variable; occationa																								,			1
	t		+		-			1		icidspar filled verificis & stringers, critoritization variable, occationa		-				1	+		-		+		+		+					1	1	1		+			$\vdash \vdash \vdash$
										garnets-more prevelent in nless chloritic intervals																								'			1
			-	_					_	gamets-more preveient in mess chloritic intervals		-					-					_												+			\vdash
										96.9-97.4 chloritic; numerous chlorite & quartrz/feldspar lined fracti	Ires				96.90	97.10					1					5483	96.90	97.40	0.50	Nil	0.2	0.006	0.043	0.067			1
	t		+		-			1		50.5 57.4 Gilloride, Humerous Gillorite & quartizrieluspai linea maeti	1103	-			30.30	37.10	+		-		+ -		+		+	0400	30.30	37.40	0.00	11111	0.2	0.000	0.040	0.007			$\vdash \vdash \vdash$
										occational galena blebs along fractures																								'			1
			-	_					_	occational galeria blebs along fractures		-					-			_		_												+			\vdash
										100.0-101.6 chloritization decreasing, silicification increasing																								'			1
-			+					+		100.0-101.6 Chloritization decreasing, sinclication increasing		+-	-			+	+			_	+	+	+	-										+			
										101 6 objectivation increasing																								'			1
								1	_	101.6 chloritization increasing		-				1	+	-		-														+			+
102.90 110	0.00	BIF								well foliated, selective compositional layers weakly sericitic					102.9	104.8	-		tr <	:1 ?						5484	102.90	103.90	1.00		0.2	0.006	0.026	0.086			1
102.90 110	0.00	DIF	+					+		well foliated, selective compositional layers weakly sentitic		+-	-		102.9	104.6	3		u <	i f	+	+	+	-		3404	102.90	103.90	1.00	<u> </u>	0.2	0.000	0.020	0.000			
										- 1-6-4					404.0	106.5) mn	<1	1 1	0 ?	4					5485	103.90	104.85	0.95		0.4	0.000	0.040	0.404			1
-			+					+		sulphide content quite variable restricted to narrow concentrations	parali	+-	-		104.8	0.106.5	J mn	<1	1 1	0 ?	tr	+	+	-		5485	103.90	104.85	0.95	/	0.4	0.005	0.040	0.104			
										to foliation, magnetite content variable narrow intervals with increa-					106.5	108.7	-			1 2						5486	104.85	106.50	1.65	- 1/	2.5	0.036	0.193	0.610		0.610	1.65
\vdash			+	-+			-	+		to foliation, magnetite content variable-narrow intervals with increa-	se .	-			100.5	108.7)	\vdash		1 ?	+	+	+	1	+	5486	104.85	106.50	1.65	14	2.5	0.036	0.193	0.610		0.010	1.65
							l	1		in Do with appointed appellarity minural late and disc.	1				108.7	109.4) mn	<1	2 1	5 ?	1	1	1		1	5487	106.50	107.50	1.00	I _{NEI}	0.5	0.005	0.169	0.471			1 '
\vdash			+	-+				1	-	in Po with associated sphalerite microveinlets and disseminations					108.7	109.4) mr)	<1	∠ 1	5 ?	1-	1	+	1	+	5487	100.50	107.50	1.00	INII	0.5	0.005	0.169	0.471			
	J		1				l	1		adjacent to calcite veinlets; occational Cpy blebs & microstringers					100.4	110.0				1 2	1		1		1	5488	107.50	108.75	1.25		0.2	0.004	0.024	4 0.081			i '
\vdash			+	-+				1	-	adjacent to calcite verniets, occational Cpy blebs & microstringers					109.4	110.0	,	+			1-	1	+	1	+	5488	107.50	100.75	1.25	4	0.2	0.002	0.024	0.081			
								1		also associated with Po enrichedment; spahlerite microstringers						1					1		1			5489	108.75	109.40	0.65	27	3.3	0.071	0.485	1 490		1.490	0.65
\vdash			+	-+			-	1	-	also associated with Fo enhonedment, spaniente microstringers		-			+	1	+	+		-	+	1	1	1	+	5469	100.75	109.40	0.00	21	3.3	0.07	0.480	1.490		1.490	0.05
							l	1		are multdirectional but also frequently parallel to foliation	1					1				- 1	1	1	1		1	5490	109.40	110.00	0.60		0.2	0.006	0.007	7 0.032			1 '
\vdash			+	-+				1	-	are multurectional but also frequently parallel to foliation					+	1	+	+		-	1-	1	+	1	+	5490	109.40	110.00	0.60	' 	0.2	0.000	0.007	0.032			
	J		1				l	1		Po enriched bands parallel foliation						1	1				1		1		1			l	l		1	1		1			i '
\vdash	t		+-	_			-	+		i o crinorica paralle i foliation		+			-	+	+	+			+	+	1-	+	1	1		 	 	 	 	 	1	+			
								1								1					1		1					l	l	1	1	1		1			1 '
\vdash			+	-+			-	1	-			-			+	1	+	+		-	+	1	1	1	+	1		 	 	 	 	 	1	+			
								1		NOTE: hole Td'ed at 110 in BIF as it was believed that the minerali	zation					1					1		1					l	l	1	1	1		'			1 '
\vdash			+				-	1	-	TOTAL HOLE TO EC ALT TO ITI DIT AS IL WAS DELIEVED THAT THE MINERAL	ZatiOii	-			+	1	+	+		-	+	1	1	1	+	1		 	 	 	 	 	1	+			
	J		1				l	1		within the BIF appeared to be silimlar to that which had been previ-	ouch					1	1				1		1		1			l	l		1	1		1			i '
\vdash			+	-+			l	+		within the on appeared to be similar to that which had been previous	Justy	+	-		-	+	1	++			+	+	+	1	1	1		 	 	1	1	1	1	+			
	J		1				l	1		encountered in the area. By terminating the drill hole it was possible	,					1	1				1		1		1			l	l		1	1		1			i '
\vdash			+	-+			-	1	-	choodinered in the area. by terminating the unit hole it was possible	_	-			+	1	+	+		-	+	1	1	1	+	1		 	 	 	 	 	1	+			
	J		1				l	1		to make the drill to the part drill site and then not !	ioht					1	1				1		1		1			l	l		1	1		1			i '
\vdash	+		+	_			-	+		to move the drill to the next drill site and then not lose most of the r	iigi1t	_			-	+	+	\vdash			+	+	1	1	+			 	 	 	 	 	-	+			+
							l	1		shift as night moves are not allowed by Bradly.	1					1				- 1	1	1	1		1	I		1	1	1	1	1		1			1 '
				I			ı	1		Shint as hight moves are not allowed by Bradiy.						1	1	<u> </u>					1	1	1	<u> </u>	1	l	l	ı	ı	ı	1				

Country	Ca	anada							VENC	AN G	OLD C	orporat	ion																				
Í			nobin 5	Dro	tion C		Aras 0:-	toric								1/	G-06-1	2				ı	1										
PROJECT	Geno	a rowr			rties-S		Area On		Grid Co ordinates (UTM) final Diff. GPS +/ - 1m 5298592.33	Dat		NAD 83	HOLE	From (m)		0.00	G-06-1	To (m)	4.00		evation (m)	400.70	•									\longrightarrow	
HOLE ID#	VG	-06-13			ish Date			Easting 4			ne	17		From (m)		4.00		To (m)			Oxidation	423.73										\longrightarrow	
Logged By:		Aussant	,	Depth (r				Elevation 4		20	ile			From (m)		4.00		TD m.	119.00	Dase of	Oxidation	l										$\overline{}$	
up-Dated		Colla	ar	(-	,	355.00			any: Bradly Brothers, Timmins, Canada				diam.	HQ 6.35		Q 4.76 cm	BQ	cm					1										
		Refle		1	7	353.10																	1										
		Refle	ex	1	19	359.10	-42.0																										
Country		Canada				1.91					***		HOLE			VG-06		ALVED A			OTDUOTU					041/ 050	1 70						
From To LIT			Litho			ry Litholo LITHO				From	Alterati To	Alt Inten.	From		RALIZATIO PY CPY				Other Min.		STRUCTU Structure		Sample From	То	Interval	SAY RESU	1	C:/	Pb(ppm)	7 ()	Pb	Zn	Interval
(m) (m) Co	ode	Ratio M	Modifier	(m)		Code			COMMENTS	(m)	(m)	Type WMS					% %			(m)	Туре		# (m.)	(m.)	(m.)	Au (ppb)	Ag(ppiii)	Cu(ppiii)	го(ррпп)	ZII(ppiii)	%	%	Meters
0.00 4.00 N	IR							Casing																									
4.00 26.70 FE	ET							rythmically	banded pale to light gret to pale green; narrow intervals											4.80	FOL	60											
								chloritic with	th numerous garnets (FELT); occational fractures lined with																								
								quartz; min	or chl;oritic mm bands acsenting foliation; occationalpale gre																								
								felsic band	ds acsenting foliation (same material as lapilli in FELT unit)																								
								weak serici	ite alteration along selective comositional layers																								
								limonite alo	ong fractures planes to 11.9 meters											14.00	FOL	55											
				15.65	16.15	FELT		medium to	dark grey-green with numerous garnets to 4mm																								
								unit becomi	ing more chloritic downhole; occatioanl pale grey felsic																								
								lapilli & frag	gments																								
								19.3-19.65	light to medium grey green with numerous garnets																								
								22.2-32 iror	n staining along fracture planes											23.00	FOL	50											
				26.00	26.50	DIOR		medium gre	ey green, very small crystals														5491 25.70	27.20	1.50	2	2 0.1	0.002	0.001	0.024			
26.70 31.34 Q	TZ							massive wh	hite; highly fractured, limonitic along fracture planes; frequent														5492 27.20	28.70	1.50	96	0.1	0.001	0.000	0.045			ı
								chloritic inc	clusions and occationally chlorite along fractures;														5493 28.70	30.20	1.50	21	0.1	0.000	0.000	0.003			į.
								no sulphide	es noted														5494 30.20	31.35	1.15	Nil	0.1	0.001	0.000	0.013			
								30.9-31.0 a	altered chloritic diorite																								
31.34 31.60 DIG	OR							massive; sa	ame as 26.0-26.5																								
31.60 32.50 DIG	OR							light grey-g	green silicified Diorite; trace Py																								
	_							32.5 contac	ct at 25 ° to CA core broken & ground																								
32.50 58.30 FE	LT							mottled gre	een/pink chloritic & garnetiferous matrix with pale grey felsic											35.00	FOL	55											
	_							lapilli & fraç	gments; trace scattered Py crystals-frequenct decreasing																								
								downhole; r	moderately to weakly-generally weakly magnetic																								
	_							magnetic in	ntensity extremely variable-numerous sections nonmagnetic																								
	_			47.10	47.55	MAFD		medium gre	een massive chloritic											47.55	стс	50											
								3cm quartz	vein at 47.1 contact																								
								47.55 conta	act at 50 ° to CA perpendicular to weak FELT foliation																								

Page 1 of 3

Cou	intry		Canada				1						но	LE ID#	1	١	/G-06-1	3																	
	MAJC	R LITHC	DLOGY				iary Lithol				Altera			M	INERAL	IZATION 8	& ACCES	SORY N				STRUCT						SAY RESI	JLTS	1	ı				
From			Litho	Litho				Litho	COMMENTS	From			en. Fron							Other Min.			Structure	Sample	From	To	Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn	Interval
(m)	(m)	Code	Ratio	Modifier	(m)	(m)	Code	Modifier	COMMENTS	(m)	(m)	Type WM	/IS (m)	(m)	%	%	% %	%	%	or Comment	(m)	Туре	Angle	#	(m.)	(m.)	(m.)						%	%	Meters
									57.4-57.85 very chloritic 20% pyrite				57.4	0 57.8	5 20									5495	57.40	58.30	0.9	2	1 0.3	0.001	0.018	0.060			
									57.85-58.25 moderately to strongly chloritic															5496	58.30	58.90	0.60	2	7 0.0	0.004	0.000	0.024			
					58.25	58.30	QFP																	5497	59.50	61.00	1.50	24	4 0.5	0.009	0.000	0.027			
58.30	58.90	IF							semi massive sulphides, chloritic matrix strongly magnetic				58.3	0 58.9	0 30		15							5498	61.00	62.00	1.00	Nil	0.4	0.006	0.000	0.047			
58.90	59.50	QFP							massive phenos to 4mm, minor chlorite along fracture planes															5499	62.00	63.87	1.8	7 2	4 0.3	0.008	0.000	0.014			
59.50	65.00	IF							alternating massive sulphides and siliceous BIF intervals															5501	63.87	65.00	1.13	3 Nil	0.	0.003	0.000	0.015			
									59.5-61.0 mainly massive sulphides (IF)				59.5	0 61.0	0 30		30	?																	
									61.0-61.4 BIF				61.0	0 61.6	0 5		10	?																	
									61.4-61.8 IF				61.6	0 61.8	0 10		20	?																	
									61.8-62.0 chloritic BIF				61.8	0 62.0	0 2		10	?																	
									62.0-62.8 alternating massive Po and Po rich BIF				62.0	0 62.8	0 5		60	?																	
									62.8-63.64 BIF				62.8		4		1	?																	
									63.64-63.87 massive Po with Py blebs				63.6	4 63.8	7 5		60	?																	
									63.87-65.0 siliceous BIF				63.8	7 65.0	0		3	?																	
65.00	69.80	META							65.0-67.33 siliceous at start of interval-intensity decreasing downhole																										
									medium to light grey green, massive, sections with scattered garnets																										
					67.33	67.80	BIF		67.33-67.8 silicified colour banded (BIF) sulphides of CM wide Po/Py				67.3	3 67.8	0 <1	<1	10 15							5502	67.33	67.80	0.4	7 5·	1 2.	0.119	0.003	0.720		0.720	0.47
									bands; intervals with disseminated sphalerite, occational Cpy blebs																										
									67.8-68.43 weakly siliceous occational garnets at start of interval																										<u> </u>
									chloritic at start of interval with intensity decreasing downhole along with																										
									decrease in colour index																										<u> </u>
									68.43-69.8 massive, weakly foliated, chloritic at start of interval decreasi												68.50	FOL	70												
									downhole along with colour index					1	1			-											1						<u> </u>
69.80	78.37	BIF						1	well banded, widely spaced chloritic/Po bands parallel to foliation				69.8	0 71.7	0	<1	10	?						5503	69.80	70.80	1.00	2	2 0.0	0.016	0.000	0.033			<u> </u>
								1	occational Cpy clots generally occuring with Po concentrations															5504	70.80	71.70	0.9	1.	4 0.2	0.019	0.000	0.007			<u> </u>
								1	occational multidirectional irregular Po stringers lining fractures																										<u> </u>
						<u> </u>		1	occational mm scale Po stringers parallel to foliation									-																	
								1	selective compositional layers sericitic				-																1						<u> </u>
						<u> </u>		1	sulphide content quite variable									-			71.00	FOL	67						<u> </u>						
					71.70	73.20	META	1	71.7-73.2 massive medium grey-green, scattered garnets												74.00	FOL	50												<u> </u>
									73.2-78.37 BIF as above				73.2	0 78.3	7	mn	10	?						5505	73.20	74.00	0.80	5:	5 1.	0.053	0.001	0.091			<u> </u>
						-		1	78.37 contact parallel to foliation				1	1							78.20	FOL	50	5506	74.00	75.50	1.50	1	7 0.4	0.031	0.000	0.012			<u></u> '
78.37	89.40	MAFT							mafic volcanic, massive medium grey green moderately chloritic												78.37	СТС	50	5507	75.50	77.00	1.50) :	2 0.2	0.010	0.000	0.030			

Count	trv		Canac	la											-	HOLE ID	#		v	G-06-1	13													\Box	\top					
Coun		OR LITI	HOLOGY			5	Subsidia	ary Lith	nology				Altera	tion			MINEF		& NOITA	ACCES	SSORY				STRUC	TURE					A	SSAY RE	SULTS		—					
	To				tho I	From	To	LITH	10 I	itho	COMMENTS	From		Alt In									na Other Min			ure Struc			From	To	Interval) Ag(pp	m) Cu(pp	m) Pr	o(ppm)	Zn(ppm)	Pb	Zn	Interval
(m)	(m)	Code	Ratio	Mod	difier	(m)	(m)	Cod	ie M	odifier	COMMENTS	(m)	(m)	Type W	MIS (r	n) (i	n)	%	% 9	% %	%	%	or Commer	nts (m)	Тур	e An	gle #		(m.)	(m.)	(m.)		, ,		\dotplus			%	%	Meters
											occational calcite lined fractures, weakly siliceous-intensity decreasing																	5508	77.00	78.37	1.3	Nil		0.2 0.0	019	0.001	0.051			<u> </u>
											downhole; moderately chloritic; scattered chlorite blebs (small)																								\perp					<u> </u>
											chloritization increasing downhole																													<u> </u>
89.40	91.30	BIF									strongly magnetic, minor Po & Py stringers parallel to foliation				89	.40 91	.30	mn	<1 <	:1 20	0 ?	<u> </u>		90.70	FOL	. 6	5 .	5509	89.40	90.40	1.0	Nil		0.3 0.0	030	0.000	0.069			<u> </u>
											occationally multidirectional; minor sphalerite & Cpy irregular stringers;																	5510	90.40	91.30	0.9	Nil		0.6 0.0	068	0.000	0.132			
											very siliceous																	5511	91.30	92.40	1.1)	7	0.1 0.0	009	0.003	0.021			<u> </u>
91.30	92.40	META	Ą								massive, medium grey green scattered garnets; minor Py weakly siliceo																	5512	92.40	93.50	1.1)	3	1.5 0.0	021	0.193	0.664		0.664	4 1.1
92.40	93.50	BIF									very siliceous; selctive compositional layers sericitic; chlorititization				92	.40 93	.50		mn ·	1 2	? ?																			
											ncreasing downhole; occational Po and sphalerite stringers along																													
											fractures; narrow intervals with disseminated sphalerite; strongly magne																								ᆚ					
93.50	95.20	QFP									medium grey phenos to 3mm; numerous chloritic lined fractures																								ᆚ					
95.20	97.40	BRX									95.2-96.2 brecciated QFP; QFP fragments with a dark green chlorite ma																								\perp					
											filling the breccia spaaces trace Py																								_					
											96.2-97.4 brecciated META; very chloritic; minor disseminated Py																	5513	95.20	96.20	1.0	Nil		0.1 0.0	000	0.013	0.016			
											trace galena along frcature planes																	5514	96.20	97.40	1.2)	7	1.2 0.0	007	0.345	0.770	0.553	1.998	3 3.
97.40 1	12.00	BIF									97.4-99.4 highly fractured; numerous quartz & quartz/calcite stringer				97	.40 99	.40	<1	mn s	5 <1	1 ?	mn						5515	97.40	98.40	1.0)	10	3.1 0.0	054	1.120	4.230			└
									_		fracture fill; frequent spahlerite stringers multidirectional																	5516	98.40	99.40	1.0	Nil		0.8 0.0	017	0.236	1.240			<u> </u>
											minor galena associated with the spahalerite; trace Cpy stringers																	5517	99.40	101.00	1.6)	38	0.5 0.0	002	0.101	0.124			
											minor Py stringers (all the stringers are multidirectional)																	5518	101.00	102.50	1.5)	10	0.3 0.0	010	0.001	0.007			
											frequency of fractures decreasing downhole																	5519	102.50	104.00	1.5)	24	0.7 0.0	022	0.002	0.073			
											selective compositional layers sericitic, chloritic																	5521	104.00	105.50	1.5	Nil		0.4 0.0	030	0.021	0.111			
											99.4-108.8 BIF massive; occational Po concentrated bands & stringers				99	.40 10	3.80	mn	tr m	nn <1	1 ?	tr						5522	105.50	107.00	1.5	Nil		0.1 0.0	006	0.016	0.077			
											minor sphalerite stringers; minor irregular Cpy stringers																	5523	107.00	108.80	1.8	Nil		0.1 0.0	004	0.000	0.004			
											108.8-110.6 quartz food-amount increasing downhole; amount of sulphic				108	3.80 110	0.00			<1	1 ?							5524	108.80	110.00	1.2	Nil		0.1 0.0	007	0.000	0.015			
											stringers increasing downhole				110	0.00 110	0.60		mn	3	3 ?							5526	110.00	110.60	0.6	Nil		0.2 0.0	018	0.001	0.052			<u> </u>
											110.6-112.0 extreme quartz flood, increase in total sulphides as irregula				110	0.60 11	2.00	10	mn m	nn 20	0 ?							5527	110.60	112.00	1.4	Nil		0.9 0.0	046	0.001	0.074			1
											blebs; minor sphalerite & Cpy stringers				\perp	\perp	\perp					\perp												4	\perp					<u> </u>
12.00 1	19.00	MAFT	г								massive mafic volcanic, medium grey-green; moderately chloritic																							\perp	\perp					<u> </u>
											112.0-116.0 frequent quartz/calcite & calcite filled fractures-frequency											lacksquare												\perp	\bot					<u> </u>
											decreasing downhole				\perp	\perp																		4	\perp					<u> </u>
											116.0-119.0 chloritization increasing downhole along with colour index																													

Con	intry		Cana	nda .						VENC	AN G	OLD (`ornor:	ation	`																			\Box	
Col	intry		Cana	aua	1					VENO	1	OLD	Joipon	Lioi	<u> </u>																			\rightarrow	
PRO	JECT	G	Senoa T	ownship			ayze Aı	rea Onta	ario (Grid Co ordinates (UTM) final Diff. GPS +/ - 1m					HOLE ID#		VC	3-06-14		1															
					Drill Start I		July 20,		-	5298534.44		atum	NAD 8		HQ From		0.00		To (n			evation (m)													\vdash
	E ID#		VG-06		Drill Finish	-	July 21, Azm. O		Easting 4	409653.59	Z	one	17		NQ From		4.00		To (n		Base of	Oxidation	1												\vdash
	ed By: ated		C. Aus	Collar	Depth (m)					any: Bradly Brothers, Timmins,Canada					BQ From am. HQ 6	(m) 3.35 cm	NQ 4.76 cm	- PO	TD m	Comments:															\vdash
ир-г	aleu			Reflex	20			-43.7	riii Corripa	any. Drauly Brotters, Timmins,Canada				uic	ani. Inde	J.33 GIII	NQ 4.70 UII	DQ_		i Comments.															
				Reflex	98		353.30																												
Cor	intry		Cana	nda											HOLE ID#		VG-06-																		
From			THOLOGY	Y Litho			Lithology ITHO				From	Altera	tion Alt In	ten F			IZATION & ACCES					STRUCTU	JRE Structure	Sample	From	To	AS Interval	SAY RESU	1	1			Pb	Zn	Interval
(m)				io Modifier			Code N			COMMENTS					(m) (m)					or Comments			Angle	#	(m.)	(m.)		Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	%	%	Meters
0.00	4.00	NR	2					С	asing																									.	1
4.00	25.20	FET	-							links many male and the many makes and the state of the s																									
4.00	25.20	FEI	'			-				o light grey, weakly sericitic, moderately rythmic foliation		 		+		+	+ + +		-															\rightarrow	\vdash
			-		6.50 8	.00 (QFP	р	ale grey n	nassive, qtz phenos>>>> feldspar phenos, phenos to 3mm	1	1		+		-	+ + +	+		-	6.50	CTC	60								1				\vdash
								6	5 contact	t parallel to foliation						\perp																			igsquare
					11.30 1	1.40	QFP	s	ame as 6.	.5-8.0 contacts irregular						1					8.70	FOL	60											, ,	
25.00	27.55	MAG																				FOL	50												
										ark green mafid dyke (dioritic) core broken, contacts broken		 		+		+	+ + +		-		14.00													\rightarrow	\vdash
27.55	32.00	FET	Т					S	ame as 4.	.0 to 25.2				-			+ + +				19.00	FOL	55												\vdash
32.00	32.50	MAF	D					S	ame as 25	5.2 to 27.55											23.60	FOL	55												
								3	2.5 contac	ct perpendicular to foliation											32.50	СТС	80											.	1
20.50	04.00	FET																			32.50		55												
32.50	34.60	FEI	'					р	ale to ligh	at grey, rythmically banded, weak sericite; colour index increase												FOL												\rightarrow	
			_			_		fr	om 32.6 c	downhole	-			-		-	+ + +				35.00	FOL	50												\vdash
34.60	42.60	FEL	.T					a	34.6 min	nor garnets with amount increasing downhole-gradual contact	:																								
								w	ith overvir	ng FET, becoming gradually more chloritic downhole																								.	1
			+					3	1.6-40.2 li	ight to medium grey to grey green; colour index increasing;				+																					
								9	arnet cont	tent increasing; numerous felsic pale grey lapilli & fragments								_																	\vdash
								s	reatched	along foliation direction; generally weakly chloritic, narrow																									
1								s	ections str	rongly chloritic with associated Py crystals																								.	1
					27.00		ИAFD														07.15	070													
			+		37.00 37	7.15 M	//AFD			dark green, contact oblique to foliation at 65° to CA	\vdash	1		+		1	+ + +	+			37.15	CTC	65									+		\longrightarrow	\vdash
<u> </u>		<u> </u>	-					4	0.2-42.6 n	mottled dark green-pink matrix, very garnetiferous, frequent	40.20	42.60	CHLR I	М		-	+	-			37.20	FOL	65								1	-			\vdash
								р	ale grey s	streatched feksic lapilli pronouncing foliation, 3% Py & occation																									igsquare
1								P	o stringer	rs																								, ,	
40.55	E0.0:											İ		1.	0.00 45.5	1									40									\Box	
42.60	53.24	IF	-		\vdash	-				ulphides-primarily PO/Magnetite with Py clots & disseminated	1				2.60 46.20		5							5528	42.60	44.00			0.3						\vdash
			_		\vdash			С	oncentrati	ions over narrow bands	<u> </u>	-		4	6.20 49.10	20	4	30+						5529	44.00	45.00	1.00	86	0.3	0.004	4 0.00	0.038			\vdash
								g	ound core	re at 42.6; 43.88; 45.85; 48.75 and 53.2				4	9.10 49.90) 1	1	30+						5530	45.00	46.20	1.20	65	0.2	0.00	5 0.00	1 0.033			ldot
								5	3.224-54.	6 recovery 0.3 meters				4	9.90 52.20) 2	3	0 40+						5531	46.20	47.50	1.30	151	0.8	0.00	7 0.00	0.025		, ,	
										numerous pieces of ground core					2.20 53.24		3							5532	47.50	49.10	1.60		0.3	0.00					
F0.01	54.00															+ 3	3												0.2						
53.24	54.60	IF						re	covery 0.	.3 meters	<u> </u>	1		5	3.24 54.60	mn	3) ?		1			<u> </u>	5533	49.10	49.90	0.80	14	0.1	0.003	0.00	0.018	l l		

Cour	ntry		Canad	2										HOLE ID	1#		VG	-06-14																		T
Cour		OR LITH	HOLOGY	u		Subsidia	ary Lithol	ogy			Altera	ation		HOLL IL		RALIZA	TION & A			ERALS			STRUCTL	JRE				AS	SSAY RES	SULTS		1	1			+
From	To	LITHO						Litho	1	From					To F	PY C	PY SPH	Po	Mag G	alena	Other Min.	Depth	Structure	Structure	Sample	From		Interval	Au (ppl) Aa(n	Culpr	Pb(ppm)	7n/nn=-\	Pb	Zn	Interval
(m)	(m)	Code		Modifie				Modifie	COMMENTS	(m)	(m)	Type V			(m)			%			or Comments		Type		#	(m.)	(m.)		Au (ppi	a) Ag(ppm	Cu(ppm	Po(ppm)	∠n(ppm)	%	%	Meters
									contains a 0.2 meter piece of solid core which is comprised of																5534	49.90	50.90	0 1.00)	51 0	3 0.00	6 0.000	0.020			
									well banded massive sulphide with the last 4cm very siliceous well band	i															5535	50.90	52.20	0 1.30)	48 0	3 0.00	4 0.000	0.035			<u> </u>
									BIF foliated at 55 ° to CA; below the solide piece of core recovered																5536	52.20	53.24	4 1.04	1 2	67 0	5 0.00	8 0.000	0.112	!		<u> </u>
									fragments of extremely chloritic aphanetic MAFT?																5537	53.24	54.60	0 1.36	3	50 0	6 0.00	3 0.002	0.023			
54.60	56.60	MAFT							extremely siliceous quartz flooded interval with numerous stringers				5	4.60 56	6.60		3 6			20					5538	54.60	55.60	0 1.00)	3 7	6 0.37	7 7.100	0.509	8.925	0.287	7 3
									spahalerite & galena generally subparallel defining a foliation at 55 o to																5539	55.60	56.60	1.00	Nil	13	2 0.14	19.600	0.334			+
									contains also lesser multidirectional fracture fill Cpy stringers widely																5541	56.60	57.70	0 1.10	Nil	0	5 0.01	0.880	0.427			-
									dispersed											-																-
									54.6-54.9 sections contains a greater amont of sphalerite stringers than																											+
									galena; after 54.9 galena>>> than sphalerite after 56.0 meters amount of silicification & flooding gradually decreasing																											1
56.60	98.00	MAFT							at 56.7 a 1cm wide quartz/carbonate/galnea veinlet at 23 o to CA																											
									marking end of silicification, quartz flooding and veining																											
									at 57.4 meters minor galena/Cpy fracture fill																											
									56.6-57.7 medium grey green, moderately chloritic, scattered garnets	56.60	57.70	CHLR	М																							
									57.7-86.0 massive moderately chloritic, numerous calcite filled fractures	5																		1								
									multidirectional frequency decreasing downhole													79.00	FOL	55												+-
-									57.7-58.2 narrow biotitic bands													86.00	FOL	55				1		+						+-
+									86.0-93.2 massive, moderate foliation, weak biotite enriched bands acsenting foliation, moderately chloritic, minor garnets					1																						+
									93.2-94.0 garnets																											
									94.0-95.65 dark green massive (flow?) aphanetic																											
									95.65 sharp contact													95.65	СТС	50												
					1				95.65-98.0 mottled light grey/dark green massive MAFT becoming more													97.80	FOL	55				1			1					
									colour uniform downhole																			1		-						
									ground core at 65.7; 93.4-94.2; 97.2-97.5																											

Country		Canada					VENC	AN GOLD) Co	rporatio	n																			
PROJECT	Go	noa Town	schin Dr	onerties-Swava	o Aros C	Intario	Grid Co ordinates (UTM) final Diff. GPS +/ - 1m				HOLE	: ID#		,	VG-06	S-15											<u> </u>			
TROSECT		noa rowi			ıly 21,2006		ing 5298484.86	Datum		NAD 83		From (m)		0.00	100		o (m)	7.00	Ele	vation (m)	415.44						1	1		
HOLE ID#	٧	/G-06-15	-		ıly 22,2006		ng 409343.05	zone		17		From (m)		7.00			o (m)	98.00		Oxidation							1	1		
Logged By:	(C. Aussant	De	epth (m) Azn	n. O Incl.	O Elevation	ion 415.44				BQ	From (m)				Т	D m.	98.00												
up-Dated		Colla	r	355	5.00 -45.0	Drill Co	ompany: Bradly Brothers, Timmins, Canada				diam.	HQ 6.35 cm	NG	2 4.76 c	:m	BQ	_cm	Comments:												
		Refle	х	20.0 356	6.80 -44.0	0																					ļ			
		Refle	х	98.0	.80 -40.0	0						<u> </u>					-	ī	1		1						<u> </u>	—		
Country	OR LITH	Canada		Subsidiary Lit	nology			Δlte	eration	1	HOLE	ID# MINERALI	ZATION	VG-0		RY MIN	VERΔΙ	S		STRUCTU	RF				ΔS	SAY RESU	IITS	<u></u>		
From To	LITHO	Litho		rom To LITI	HO Litho			From To) A	Alt Inten.	From	To PY	CPY	SPH	Po	Mag G	alena	Other Min.	Depth	Structure	Structure	Sample		То	Interval	Au (ppb)	T .	Cu(ppm)	Ph(nnm)	Zn(ppm)
(m) (m)	Code	Ratio N	/lodifier	(m) (m) Co	de Modifi	ier	COMMENTS	(m) (m)) Ту	ype WMS	(m)	(m) %	%	%	%	%	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	7 tu (pps)	7.9(рр)	Оц(рр)	. o(pp)	Z.:(pp)
0.00 7.00	NR					Casing	9																				<u> </u>			
7.00 10.10	FELT					chloritic	ic garnetiferous, well foliated, colour index increasing downhole												9.00	FOL	55									
						modera	rately well foliated at 55 ° to CA; intervals with rythmic colour																							
						banding	ng; colour medium to dark green mottled pink with garnets																							
10.10 21.20	FET					massive	ve, light to medium grey to 12 meters colour index graduaally												13.50	FOL	55									
						decreas	asing; after 12.0 meters colour pale grey green to light grey gree	n											19.00	FOL	55									
						modera	rately siliceous, narrow sections with occational multidirectional																							
						quartz v	veinlets; moderately well foliated																					<u> </u>		
						iron sta	aining along fractures to 16 meters																				<u> </u>			
21.20 21.70	FELT					c hloriti	tic, garnetiferous layers																				<u> </u>			
						20.6-22	2.0 core broken																							
21.70 24.60	FET					massive	ve moderately well foliated; chlorite content & colour index																				<u> </u>			
						decreas	asing downhole to 23.0meters																				<u> </u>	<u> </u>		
						after 23	3.0 meters light to pale grey weakly to moderately siliceous																					<u> </u>		
24.60 26.05	FELT					mottled	d dark green garnitiferous matric with frequent pale grey felsic												25.00	FOL	55						<u> </u>	<u> </u>		
						lapilli &	& fragments acsenting foliation		_																		<u> </u>	 		
						very su	udden lithological change between the FET and FELT		1																1		<u> </u>	 		
						first 40	cm of unit strongly magnetic-disseminated with very fine magne	e	1																		<u> </u>	 		
26.05 26.40	FET					pale gre	rey with chlorite bands; rythmic colour banding		-																		<u> </u>	 		
						26.4 sh	harp contact		1																		<u> </u>	 		
26.40 30.35	MFLO					massive	ve chloritic, weak foliation																				<u> </u>	 		
						26.4-27	7.4 dark green strongly chloritic, scattered garnets																					\perp		

Cou	ntry		Canada										HOLE			VG-06-15															
F			IOLOGY	1.70		Subsidiary				F	Alterat		F			N & ACCESS					STRUCTL		0	F	T		SAY RESU		1		
From (m)							ITHO Li		COMMENTS	From (m)				To PY					Other Min. or Comments			Structure Angle	Sample #	(m.)	To (m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)
()	()	Codo	rano	Wicamor	()	()	Joue IIII			()	()	. , , , , , , , ,	()	() /0	,,,	70 70	,,	70	or comments	()	.,,,,	, angle	,,	()	()	()					
									27.4-28.6 medium grey massive, minor garnets																						
								2	28.6-30.35 massive, moderately chloritic occational quartz veinlets						-																
								l:	last 30cm of interval chlorite content decreasing-core gradually																						
								t	becoming light to medium grey											30.00	FOL	55									
30.35	44.20	FET						r	massive light to pale grey, rythmic colour banding, weak sericite, variab											40.00	FOL	55									
								s	siliceous											44.00	FOL	50									
44.20	51.04	FELT						4	44.2-44.8 light to medium grey green, moderately siliceous, minor garn																						
									amount & colour index increasing downhole, silicification decreasing																						
									downhole (transition zone)																						
									44.8-46.7 dark green chloritic garnetiferous with frequent felsic pale																						
									grey lapilli & mm felsic layers acsenting foliation																						
								Ī	46.7-46.8 quartz flooded																						
									46.7-51.04 light grey to dark green; chlorite content quite variable																						
									frequency of chloritic intervals decreasing downhole; appearance of																						
									disseminated Py; intervals moderately siliceous														== 10								
									51.04 very sharp contact at 45° to CA parallel to foliation											50.00	FOL	50	5542	50.00				0.1			
51.04	57.74	IF							mainly Po & magnetite with pyrite rich stringer concentartions acsenting				51.04			40				51.04	CTC	45	5543				45	0.1			0.011
									foliation; frequent irregular bright green chlorite matrix fill; occational				53.50			30	45+			54.50	FOL	45	5544	52.50			38	0.1		0.003	0.015
								F	Po fracture fill stringers-mutidirectional				55.80	57.74 30	+	10	50+			57.74	CTC	45	5545	53.50	54.50	1.00	48	0.1	0.004	0.001	0.017
57.74	58.80	MFLO						a	andesite-massive light to medium greg green; 1% disseminated Py														5546	54.50	55.80	1.30	34	0.3	0.005	0.000	0.029
58.80	59.80	QFP						r	massive, pale to light grey phenos to 5mm														5547	55.80	56.80	1.00	51	0.1	0.005	0.001	0.017
								5	58.8 contact irregular														5548	56.80	57.74	0.94	45	0.2	0.004	0.003	0.021
								5	59.8 contact broken																						
								5	59.75-59.8 chloritic fragments with QFP inclusions																						
59.80	60.02	IF						r	massive, mainly Py & magnetite; irregular & convoluted foliation				59.80	60.02 30		10	50						5549	59.80	60.53	0.73	21	1.1	0.004	0.078	0.123
60.02	60.12	MFLO						s	same as 57.74-58.8																						
60.12	60.53	BIF						r	mixed siliceous BIF & semi-massive sulphides				60.12	60.53 5		25	15			60.20	FOL	50									
									contacts very sharp however core broken at contacts																						

Co	untry		Canada										но	LE ID#		VG-06-15															$\overline{}$
Col		OR LITE	HOLOGY	l .		Subsidia	ry Litholo	nav			Alterat	ion	HU		FRALIZ	& ACCESS		IINFRAI	LS		STRUCTU	IRF					SSAY RES	ULTS	1	l	
From			Litho	Litho				Litho		From	To		n. From								Structure		Sample	From	To	Interva		1	٥, ,	D. ()	T- / \
(m)		Code		Modifier				Modifier	COMMENTS	(m)		Type WM				% %			or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)
60.53	62.97	MFLO)						andesite massive medium grey-green occational small garnets																						
62.97	66.40	BIF							mixed siliceous BIF & semi-massive to massive sulphides				62.97	64.50	5	15	30+						5551	62.97	64.5	0 1.	53 Nil	0.2	0.007	0.000	0.014
									foliation acsented by chert beds, Py stringers irregular				64.50	65.40	5	10	20+						5552	64.50	65.4	0 0.	90 Nil	0.1	0.006	0.000	0.010
			1	1					small scale displacement evident of chert beds, foliation varyiong				65.40	65.90	15	30	30+						5553	65.40	66.5	0 1.	10 1	7 0.2	0.007	0.000	0.013
									between 40 ° to 50 ° to CA				65.90	66.40	3	10	?														<u> </u>
66.40	98.00	MFLO)						massive medium grey green to brownich grey-green sections with																						<u> </u>
									variable amounts of biotite giving core brownish tinge																						<u> </u>
									weak to moderate chloritization; occational quartz/calcite veinlets &											77.00	FOL	50									<u> </u>
									minor flooding; weak foliation; occational cross cutting calcite fracture											86.00	FOL	50									
									fill stringers (perpendicular to foliation); trace Po											92.00	FOL	55									
									66.4-66.9 minor garnets																						<u> </u>
									after 95.0 minor garnets																						<u> </u>
					67.80	68.00	MAFD		dark green massive aphanetic											67.70	CTC	30									

Country	,		Canada						VENC.	AN GO)LD C	orpora	ion																				$\overline{}$	
				- D			o. :					p-0u					/G-06- [^]	16			1													
PROJEC	T	Gei	noa Townsh		erties-Sv Start Date				Grid Co ordinates (UTM) final Diff. GPS +/ - 1m 5298086.87	Datu	1	NAD 83		E ID #	<u> </u>	0.00	/G-06-	To (n	n) 7.00		evation (m	105.05												
HOLE ID	#	v	/G-06-16		inish Date	July 23			5298086.87 407861.83	zor		NAD 83		From (r		7.00		To (n			evation (m f Oxidation												\rightarrow	
Logged E			C. Aussant	Depth			_	levation		201	10	.,		From (r	-	7.00		TD m	1	Dasc of	Oxidation	.,												
up-Date			Collar			330.00	-45.0 D	rill Comp	any: Bradly Brothers, Timmins, Canada				diam.	HQ 6.3	35 cm	NQ 4.76 cr	n BO)cm	Comments:	•														
			Reflex	2	20.0	336.50	-42.9																											
			Reflex	1	10.0	331.30	-37.7												1		1													
Country		R LITH	Canada OLOGY		Subsidia	ry Litholog	av				Alterati	ion	HOL	E ID#	IERALIZ	VG-0 ZATION & ACC		MINER	ALS		STRUCTI	URE				AS	SAY RESU	JLTS					\longrightarrow	
	Го		Litho Lith		То	LITHO	Litho		COMMENTS		To	Alt Inte		To	PY		Po Ma	g Gale		Depth	Structure	Structure	Sample #	From (m.)		Interval (m.)	T	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Pb %	Zn %	Interval Meters
			Ratio Modi	ier (m)	(m)	Code	Modifier		COMMENTS	(m)	(m)	Type Wilvi	S (M)	(m)	%	% %	% %	%	or Comments	(m)	туре	Angle	#	(m.)	(m.)	(m.)						%	%	weters
0.00 7	.00	NR					С	asing					-					-																
7.00 10	0.40	FELT					liç	ht grey to	o medium grey green, well foliated (colour banded) weakly									_		9.00	FOL	45												—
							ch	loritic, m	inor garnets; mm to cm scale pale grey felsic layers														5554	26.20	27.80	1.60	Nil	0.3	0.012	0.018	0.069			
10.40 15	5.55	DIOR				Ī	m	assive m	nottled dark green with pink tinge, poorly developed crystals														5555	27.80	29.40	1.60	10	0.4	0.009	0.000	0.020		Ţ]
																							5556		30.90	1.50		0.3						
	\dashv				1				ct broken				1					+						29.40				0.0	0.003				\rightarrow	
	\dashv				+	1	15	5.55 cont	act at 35 ° to CA subparallel to foliation			-	1					-					5557	30.90	32.40	1.50	10	0.3	0.003	0.000	0.012		\longrightarrow	
15.55 26	6.20	FELT					w	ell colour	banded pale grey & medium grey-green (chloritic)											15.55	CTC	35	5558	32.40	33.90	1.50	7	0.3	0.003	0.000	0.009			
							se	ections w	ith rythmic colour banding, numerous stretched felsic pale gre											15.60	FOL	45	5559	33.90	34.80	0.90	Nil	0.4	0.005	0.011	0.067			
							la	pilli, wide	ely spaced garnetiferous layers-generally more chloritic											20.00	FOL	50	5561	34.80	35.80	1.00	Nil	3.2	0.070	0.967	6.150	0.537	5.701	12.20
26.20 39	. 50	IF							ulphides, extensively quartz flooded				26.20	30.90	20		40 ?			23.00	FOL	50	5562	35.80	36.20	0.40	NEI	0.8	0.02	0.073	0.118	0.840	4.354	1.85
26.20 38	5.50	ır																										-				0.640	4.554	1.00
\vdash	_						SI	Ilphide co	ontent quite variable; Py concentarted stringers acsenting				30.90	34.80	40	tr	20 ?			29.00	FOL	50	5563	36.20	36.65	0.45	Nil	3.3	0.095	1.240	4.130		\longrightarrow	
							fo	liation; fro	equent intervals sphalerite enriched-generally associated with				34.80	35.80	30	<1 15	5						5564	36.65	38.00	1.35	Nil	0.2	0.009	0.008	0.038			
							ar	nincreas	e in quartz flood; sphalerite occuring as disseminated				35.80	36.20	25		25 ?						5565	38.00	39.50	1.50	14	0.4	0.007	0.003	0.018			
							co	ncentart	ions and as stringers				36.20	36.65	30	15	10 ?						5567	39.50	40.10	0.60	Nil	1.2	0.014	0.481	3.380	0.664	8.189	7.5
39.50 53		DIE/IE							quartz flooded intervals, chloritic sections, narrow bleached				36.65		30		20						5568	40.10	41.00	0.90		2.4	0.035		6 360			
39.30 53	.00	DIF/IF			\dagger							_			30											0.90	1411						\rightarrow	
\vdash	\dashv			-	+	1	ZC	nes & su	ulphide enriched bands; silicified; narrow brecciaed intervals			-	39.50	40.10	1	5	<1 ?	+					5569	41.00	42.00	1.00	7	4.1	0.119	0.714	7.950		\longrightarrow	
					+	-	fo	liation ex	tremely variable; sulphide content very variable; frequent			-	40.10	42.90	5	2 10	20 ?	1		42.20	FOL	45	5570	42.00	42.90	0.90	Nil	10.5	0.45	1.080	16.920			\vdash
							sp	ahlerite	enriched bands, occational Cpy blebs and minor galena				42.90	43.50	5		30 ?						5571	42.90	43.50	0.60	Nil	1.5	0.044	0.013	0.181			
							ge	enerally a	along fractures and associated with sphalerite enrichment				43.50	44.27		1	1 ?						5572	43.50	44.27	0.77	10	0.2	0.003	0.054	0.564			
									nulidirectional sphalerite, Po & Py stringers				44.27	45.30	2	3 10	50 ?	2					5573	44.27	45.30	1.02	1/	14.5	0.754	1,460				
	$\neg \dagger$								• •						3	3 10	30 ?	1								1.03	14	14.5					\rightarrow	
++	\dashv			46.50	46.75	BRX	46	5.5-46.75	BRX, very siliceous				45.30	45.94		5	?	-					5574	45.30	45.94	0.64	7	4	0.020	0.067	10.040		\longrightarrow	$\overline{}$
	_				1		50	0.0-50.84	extensive quartz fracture fill mm scale multidirectional				45.94	47.00	1	10	2 ?	1					5576	45.94	47.00	1.06	2	7.7	0.185	0.912	11.540		\longrightarrow	\vdash
							cr	ackle vei	inlets				47.00	49.30	5		20 ?			48.80	FOL	40	5577	47.00	48.00	1.00	2	1.3	0.015	0.057	0.413			
													49.30	50.00	30		20 ?						5578	48.00	49.30	1.30	Nil	0.7	0.010	0.002	0.036			i I
													50.00	50.84	1		F 2						5579	49.30	50.00	0.70		0.2	0.009					
	$\neg \dagger$														-		3 (0.2					\rightarrow	
	\dashv												50.84	51.65	3	4	40 ?	2		51.00	FOL	30	5581	50.00	50.84	0.84	21	0.3	0.002	0.006	0.038		\longrightarrow	
													51.65	53.00	5		10 ?						5582	50.84	51.65	0.81	Nil	3.3	0.018	0.302	1.230		1.230	0.81

Countr	rv		Cana	da											HOLE	ID#		,	VG-06-	16																		
		R LITH	IOLOGY			S	Subsidia	ry Lithol	ogy			Altera	ation				RALIZ		& ACCES		MINERA	ALS		STRUCT	URE				А	SSAY F	RESULTS							
		LITHO							Litho		From											Other Min.			Structure	Sample		To	Interval	Δ (1	(ppb) Ag	(ppm)	Cu(ppm)	Pb(ppm)	Zn(nnm)	Pb	Zn	Interval
(m)	(m)	Code	Rati	o Mod	difier	(m)	(m)	Code	Modifie	COMMENTS	(m)	(m)	Туре	WMS (m)	(m)	%	%	% %	6 %	%	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	/\u ()	(ppb) Ag	(ррііі)	Оц(ррпп)	т Б(ррпп)	ZII(ppiii)	%	%	Meters
														50	3.00	53.55	5	mn	1 2	0 ?	mn					5583	51.65	53.0	0 1.3	35 Nil		0.2	0.004	0.001	0.024		<u> </u>	<u> </u>
53.55 5	8.50	BIF								massive, quartz flooded sections, sections brecciated, crackle				50	3.55	54.60	tr		1 5	5 ?						5584	53.00	53.5	5 0.5	55	21	3.1	0.009	0.182	0.703		0.703	3 0.5
										breccia throughout, Po stringers widely spaced, magnetite dissemination	or			54	1.60	55.60			tı	r tr						5585	53.55	54.8	0 1.2	25	2	0.4	0.004	0.093	0.301		<u> </u>	
										and concentrated along mm bands				55	5.60	58.80			2	2 ?						5586	54.80	55.6	0.8	30	7	0.1	0.002	0.005	0.018		<u> </u>	↓
										53.55-54.8 quartz flooded, numerous Po stringers, mn sphalerite																5587	55.60	57.2	0 1.6	60	14	0.2	0.010	0.001	0.010		<u> </u>	↓
										moderately magnetic																5588	57.20	58.8	0 1.6	0 Nil		0.1	0.007	0.002	0.021		<u> </u>	↓
										54.8-55.6 brecciated non magnetic																											<u> </u>	—
										54.8-58.8 quartz flooded, crackle brecciated, numerous multidirectional																											<u> </u>	
				_						microfractures, varaibly magnetic-weak to moderate					_					_	-																├	₩
58.80 6	67.20	META		_						massiev weakly foliated greywacke, medium grey, minor calcite flood					_					_	-		59.50	FOL	50												├	₩
				_						& quartz calcite veinlets					_					_	-																├	₩
				\perp						65.0-66.0 weak silicification					_						-																<u> </u>	
67.20 7	3.00	BIF								massive, moderately foliated, quartz flooded; occational Po stringers				67	7.20	73.00		tr	tr 3	3 10	tr					5589	67.20	68.0	0.8	30	14	1.5	0.022	0.139	0.532		0.532	2 0.8
										generally parallel to foliation & multidirectional; minor Cpy blebs																5590	68.00	69.5	0 1.5	0 Nil		0.2	0.015	0.001	0.006		<u> </u>	+
-	_			+	_	-				along fracture fill; trace spahalerite & galena					_					-	-					5591	69.50	71.0	0 1.5	0 Nil		0.1	0.005	0.000	0.002		 	-
										67.2-68.4 strong crackle breccia											-		73.00	FOL	55	5592	71.00	72.0	0 1.0	00 Nil		0.1	0.003	0.001	0.018			-
										73.0 contact parallel to foliation													73.00	CTC	45	5593	72.00	73.0	0 1.0	00 Nil		0.3	0.009	0.007	0.072		<u> </u>	₩
73.00 10	01.65	MFLO		+						massive aphanetic andesite; light to medium grey		-			+						-								-								├ ──	₩
					-					after 78.0 meters green grey colour with colour index increasing																											├──	+
				-						carbonate fracture fill stringers		\vdash			+						1								1								\vdash	+
				+	-					99.8-101.65 gradually becoming more felsic					\dashv				-		+								1								\vdash	+
01.65 10	08.50	RHYO								Massive RYYOLITE medium to light grey, numerous quartz eyes to 8mi	r	1			\dashv						1		108.50	CTC	55				1									+
										size; trace disseminated Py		1			\dashv						1								1									+
08.50 11	10.00	MFLO								andesite, massive light to medium grey, minor disseminated Py;					+																							\vdash
					L				1	occational quartz veinlets along fractures	<u> </u>	<u> </u>							_				<u> </u>	<u> </u>	1	I	I		1						I		Щ	<u> </u>

Cour	ntm.		Canada				VENC	CAN GOLD) Corporat	ion																						
				1				TAIN GOLL	Corporat																							
PROJ	ECT	Ger	noa Township				tario Grid Co ordinates (UTM) final Diff. GPS +/ - 1m				E ID#			VG-0	06-17																	
		v	/G-06-17	Drill Start		July 24,2006 July 25,2006	Northing 5298106.55 Easting 407904.42	Datum	NAD 83	HQ NQ	From (n		0.00		To (m)	4.00		evation (m)	1													
HOLE Logge			C. Aussant	Drill Finish Depth (m)		July 25,2006 Azm. O Incl. O	Elevation 404.74	zone	17	BQ	From (n		4.00		To (m) TD m.	95.00 95.00	Base of	f Oxidation	n]													
up-Da			Collar	Depair (III)	_		Drill Company: Bradly Brothers, Timmins, Canada			diam.	HQ 6.3		NQ 4.76 c	m	BQ cm	Comments:	I.															
			Reflex	20.0		327.10 -42.6																										
			Reflex	95.0)	340.50 -42.1																										
Cour		OR LITHO	Canada			/ Lithology			eration	HOL	E ID#		VG-0		ORY MINERAL			STRUCTU	105					SSAY RESU	1.70							
	To	LITHO	Litho Litho	From	To	LITHO Litho		From To	Alt Inter	From	To	PY CF	Y SPH	Po	Mag Galena	Other Min.	Depth	Structure	Structure	Sample	From		Interval	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Cu	Pb		Interval
(m)	(m)	Code	Ratio Modifier	r (m)	(m)	Code Modifier	COMMENTS	(m) (m) Type WM	S (m)	(m)	% %	%	%	% %	or Comments	(m)	Туре	Angle	#	(m.)	(m.)	(m.)	ли (ррь)	Ag(ppiii)	Си(рріп)	г Б(рріп)	ZII(ppiii)	%	%	%	Meters
0.00	4.00	NR					Casing																									
4.00	15.50	FELT					well colour banded alternating dark to medium green-chloritic &										5.00	FOL	45													ı
							garnetiferous bands with pale ngrey felsic layers & stratched lapilli										11.00	FOL	45													
							15.5 very sharp contact parallel to foliation										15.00	FOL	50													
										1	1		1				15.00	FUL	30													
15.50	39.50	IF		+			massive sulphides, sulphide content variable; mainly Po & magnetite	+ +	+ +	15.50	16.00	5		30	?					5594	15.50	16.90	1.40	Nil	0.2	0.004	0.000	0.014				
				\vdash			with varying amounts of Py			16.00	16.90	2	1	60	?		1			5595	16.90	18.00	1.10	Nil	0.5	0.003	0.000	0.020				
							15.5-18.7 alternating dark green chloritic with minor garnets (altered Fl	EI		16.90	18.00	1		40	?					5596	18.00	18.70	0.70	Nil	0.2	0.001	0.000	0.023				ı
							with sections massive sulphide			18.00	18.70	3		10	?					5597	18.70	20.00	1.30	14	0.3	0.004	0.000	0.014				
							17.7-39.5 massive sulphides mottled with quartz carbonate flood			18.70	21.40	10		60	?					5598	20.00	21.40	1.40	24	0.5	0.004	0.000	0.014				
							well foliated-acsented by Py stringers, sulphide content variable			21.40	24.10	5		60	2					5599	21.40	22.70	1.30	17	0.4	0.005	0.000	0.014				
							wan tanada accomed by t y cumpote, culpinac contant variable			24.10	27.20	10		50	2		27.00	FOL	40	5601		24.10	1.40		1.1	0.004		0.174				
												10					27.00	FUL	40													
								+ +		27.20	29.05	3		50	?					5602	24.10	25.60	1.50	27	0.7	0.004	0.000	0.019				
								+		29.05	30.55	15		40	?					5603	25.60	27.10	1.50	41	0.5	0.004	0.001	0.033				
							30.55-30.9 siliceous pale grey colour			30.55	30.90	10								5604	27.10	28.00	0.90	Nil	0.5	0.005	0.000	0.026				
										30.90	31.65	25		10	?					5605	28.00	29.05	1.05	14	0.1	0.004	0.000	0.018				
							31.65-32.15 brecciated			31.65	32.15	1		5	?					5606	29.05	30.55	1.50	14	0.1	0.004	0.000	0.012				
							32.15-35.2 Py content variable			32.15	35.20	10		30	2					5607	30.55	31.65	1.10		0.2	0.002	0.000	0.010				
							and the second s	1		35.20	39.50	20		30						5608		32.15	0.50		0.2			0.010				
					$-\dagger$			+ +		00.20		20	+ 1		1										0.2							\dashv
39.50	56.20	BIF		\vdash	-+		extensively quartz & quartz/carbonate flood; mainly stringers of Po &			39.50	41.00	2	+	10	10		41.00	FOL	45	5609	32.15	33.70	1.55	Nil	0.5	0.005	0.000	0.019				
							magnetite acsenting foliation; occational sections massive Po; several			41.00	41.20			50	?					5610	33.70	35.20	1.50	Nil	0.7	0.005	0.000	0.023				
							narrow intervals sphalerite enriched			41.20	41.70	4		5	10					5611	35.20	36.70	1.50	10	0.5	0.005	0.000	0.014				
							gradual decrease in total sulphide content			41.70	41.82			60						5612	36.70	38.20	1.50	Nil	0.3	0.005	0.000	0.015				
										41.82	42.00	1	5		15					5613	38.20	39.50	1.30	10	0.2	0.006	0.000	0.013				
										42.00	42.40			60						5614	39.50	41.00	1.50	2	0.2	0.004	0.000	0.015				
							42.4-43.2 very calcareous matrix; sphalerite as wispy bands acsenting			42.40	43.20	4	20							5615		41.82	0.82		0.2	0.009		0.041		0.487	4.448	1 38
					1					43.20	43.20		20		10		40.0-	0.70	0.5		41.00	42.00			0.8							
					-		foliation	+ +			44.26	2	+		10		43.20	СТС	35	5616	41.02	42.00		Nil	1.7	0.217	0.146	0.608	0.217	0.146	0.608	0.18
Ш										44.26	44.48	4		10			43.20	FOL	35	5617	42.00	42.40	0.40	Nil	3.5	0.047	0.011	0.038				

					1		1		1					1		1				<u> </u>		1	1						1	1	1	1	1	т	г		
Cou	untry		Canad				<u> </u>		_					HOL	E ID#			3-06-1																'	\longrightarrow		
-		OR LITH		Litho	+		iary Lith			-		Alterati		-						MINERALS			STRUCTUR		0 1	-	_		SAY RESU	JLIS	ı	1	1				لبسب
(m)	(m)	Codo	Litno	Modifie	From	(m)	Code	O Litr	10 ifior	COMMENTS	From (m)	(m)	Alt Inten. Type WMS	From (m)	(m)	PY C	O/ O/	H P0	Mag	Galena %	Other Min. or Comments	Deptn	Type	Angle	Sample #	From (m.)	To (m.)	Interval (m.)	Au (ppb)	Ag(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	Cu %	Pb %	Zn %	Interval
(111)	(111)	Oouc	reado	IVIOGIII	, (III)	(111)	Oou	c iviou	ilici	OGIVIIZINTO	(111)	(111)	Type William	(111)	(111)	70	70 /	70	70	70	or comments	(111)	Турс	Allgic		(111.)	(111.)	(111.)			+			_~	_~	70	Wictor 3
									44.48-5	-51.6 very siliceous				44.48	51.60	4		1	20			46.50	FOL	40	5618	42.40	43.20	0.80	Nil	2.	4 0.05	0.802	7.620	<u> </u>	0.802	7.620	0.80
									51.6-52	52.6 pale grey massive siliceous occational magnetite rich bands				51.60	52.60	mn			10			47.50	FOL	40	5619	43.20	44.30	1.10	Nil	0.	4 0.00	0.003	0.023	3	1		
										53.75 extensive sphalerite stringers as fracture fill & concentrated				52.60	53.75	2	я	5	15	mn					5621		45.80	1.50	NE	0.	1 0.00	0.000	0.005				
									52.0-55	55.75 extensive sprialente stringers as fracture fill & concentrated				52.60	55.75	3		3	15	11111					5621	44.50	45.60	1.50	INII	0.	0.00	0.000	0.000	+			
						-			as fine o	e disseminations as whispy bands paralleling foliation-becoming				53.75	54.20	15		-	80						5622	45.80	47.30	1.50	Nil	0.	1 0.00	0.000	0.006	ś	\longrightarrow		
									more sp	sphalerite rich downhole				54.20	54.70		30)		2		54.50	FOL	35	5623	47.30	48.80	1.50	Nil	0.	1 0.00	0.002	0.003	3			
									54.2-54	54.7 sphalerite concentarted in a calcareous matric foliation exhibit				54.70	56.20	4	10)	15			55.00	FOL	40	5624	48.80	50.30	1.50	Nil	0.	3 0.00	0.000	0.002	2	1		1
									small so	scale folding; non magnetic												56.20	стс	80	5626	50.30	51.60	1.30	Nil	0.	7 0.00	0.001	0.019	9	ĺ		
										56.2 well colour banded; quartz flood; frequent calcite stringers													0.0		5627		52.60			0.					0.463	2.935	4.60
			1		+	+				.,							+																		0.463	2.935	4.60
					+	+			parallel	el to foliation; weak chlorite; frequent mm scale sphalerite stringers	-						+	+							5628	52.60	53.75	1.15	Nil	1.	9 0.02	0.577	2.160	 -	\longrightarrow		
					-	-	-		& disser	seminated concentartions (wispy appearance								-							5629	53.75	54.20	0.45	Nil	3.	9 0.02	0.254	0.509	<u>i</u> !	\longmapsto		\vdash
									56.2 ver	very sharp contact															5630	54.20	54.70	0.50	Nil	6.	8 0.05	1.500	11.820	<u>, </u>	\longrightarrow		ļ
56.20	95.00	MFLO							massive	ive black to dark green mafic volcanic flow															5631	54.70	56.20	1.50	10	1.	1 0.00	0.400	2.960				
									aphanet	netic at start of interval with grain size progressively increasing																									<u>i </u>		
		•							downho	hole																	•										
									minor ca	calcite & chlorite along fractures to 65.0 meters																											
										55.0 meters massive non descriptive dark green fine grained																											
										55.0 weakly magnetic																											
										95.0 moderately magnetic; minor epidote clots																									i		