ALTO VENTURES LTD.

Cote-Archie Lake Project

Report on the 2007 Summer Prospecting Program

Beardmore, Ontario

McComber Township NTS 42E/12

Mike Koziol, P.Geo., P.Eng

September 12, 2007

SUMMARY AND RECOMMENDATIONS

The Cote-Archie Lake Project is located in the Beardmore-Geraldton Gold Belt, approximately 5 km north of the town of Beardmore. The property covers approximately 2,672 hectares and is easily accessed by Provincial Highway 11 and recently built logging roads. In May, 2007, Alto completed a prospecting program on the Angle Lake block and identified and sampled several locations that are mineralized with pyrite and arsenopyrite. Samples from four separate locations containing both disseminated pyrite and arsenopyrite in sheared rocks returned gold assays ranging from 0.5 g/t to 8 g/t. The four gold-bearing sites lie along the same northeast trending lithologic (or structural) unit.

The results of this prospecting program are very encouraging as they provide a number of new targets for trenching and subsequent diamond drilling along the northeast trending corridor.

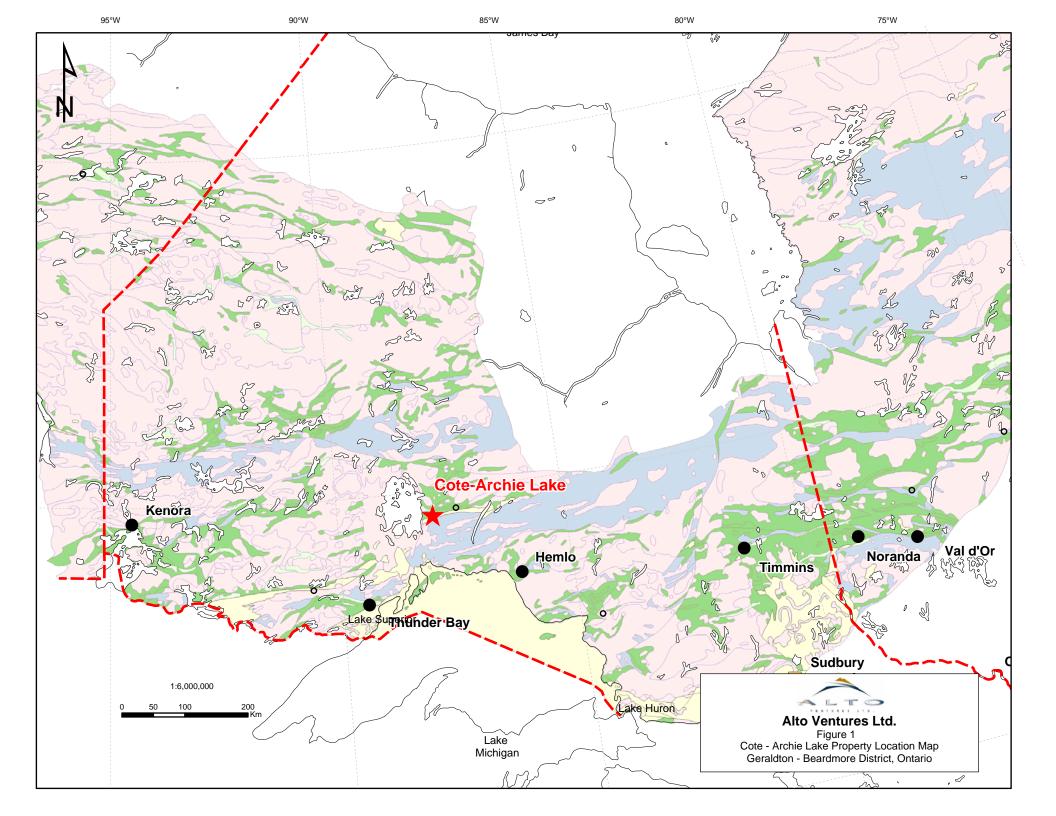
Mechanical stripping, washing, mapping and detailed sampling are recommended along the gold mineralized corridor. If results from the recommended program continue to provide encouragement, the targets should be drilled.

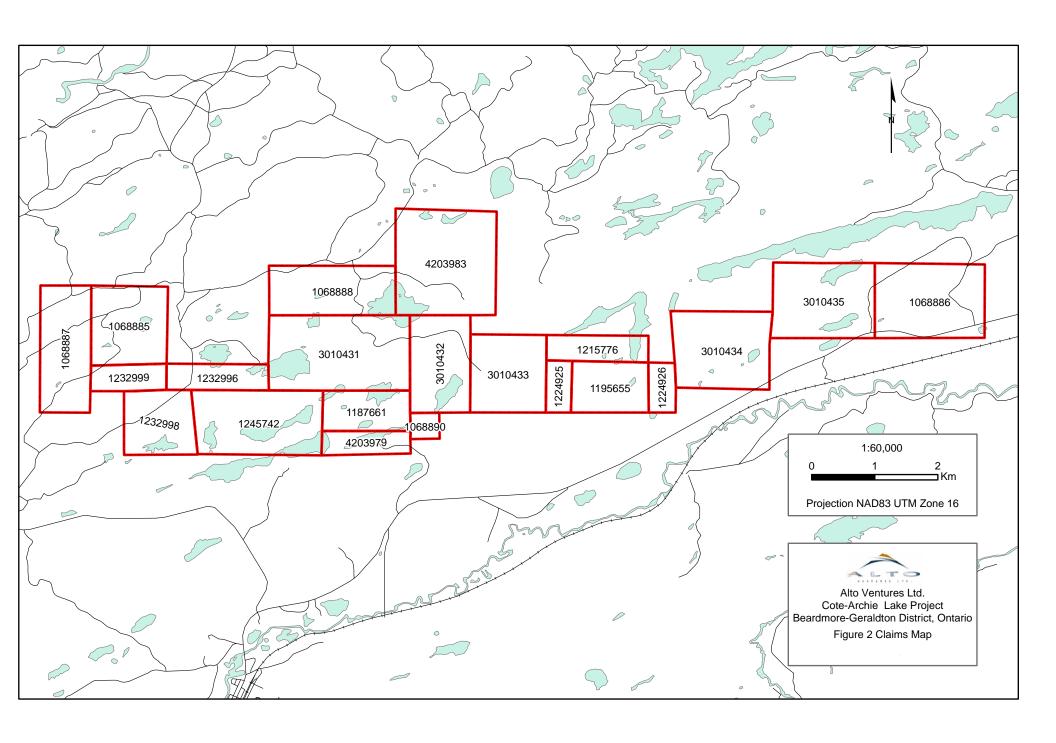
Table of Contents

	Page								
Summary and Recommendations	i								
1.0 Introduction	1								
1.1 Property	1								
1.2 Location, Access, Infrastructure and Topography	4 4								
1.3 Previous Work									
2.0 Geology	5								
3.0 Description of the 2007 Summer Prospecting Program	5								
3.1 Logistics	5								
3.2 Results	6								
4.0 Conclusions and Recommendations	6 9								
5.0 References									
6.0 Certificates of Author	10								
Figures									
Figure 1 Cote-Archie Lake Property Location Map	2								
Figure 2 Cote-Archie Lake Claims Map	3								
Figure 3 2007 Prospecting Program Sample Locations	7								
Figure 4 2007 Prospecting Program Au (g/t) Results	8								
Tables									
Table 1 List of Claims for the Cote-Archie Lake Property	1								
Appendices									
Appendix A Sample Descriptions Appendix B Assay Certificates									

Cote-Archie Lake Project 2007 Summer Prospecting Program

1.0 INTRODUCTION


Alto Ventures Ltd. has completed a prospecting program on the Angle Lake block of the Cote-Archie Lake property. The field work was carried out in May 2007 and this report describes the results of that program.


1.1 Property

The Cote-Archie Lake property includes 21 contiguous claims (167 units) that cover 2,672 ha. The claims making up the property are listed in Table 1 and illustrated in Figure 2.

Table 1. List of Claims for the Cote-Archie Lake Property

Claim	Township	Size	Record	Next Due	Annual \$
	_	(units)	Date	Date	Work
					Required
1068885	Summers	9	04/11/01	08/11/01	3600
1068886	McComber	12	04/09/27	08/09/27	4800
1068887	Summers	10	04/11/01	08/11/01	4000
1068888	Summers	10	04/11/01	08/11/01	4000
1068890	Summers	1	05/05/20	08/05/20	400
1187661	Summers	6	03/02/20	08/02/20	2400
1195655	McComber	6	94/11/21	08/11/21	2400
1215776	McComber	4	97/04/17	08/04/17	1600
1224925	McComber	2	96/09/26	08/09/26	800
1224926	McComber	2	96/10/30	08/10/30	800
1232996	Summers	4	99/04/23	08/04/23	1600
1232998	Summers	8	99/05/28	08/05/28	3200
1232999	Summers	3	99/05/28	08/05/28	1200
1245742	Summers	15	01/02/07	08/02/07	6000
3010431	Summers	15	03/02/20	08/02/20	6000
3010432	Summers	8	03/02/20	08/02/20	3200
3010433	McComber	9	03/02/20	08/02/20	3600
3010434	McComber	12	03/02/20	08/02/20	4800
3010435	McComber	12	03/04/08	08/04/08	4800
4203979	Summers	3	05/05/20	08/05/20	1200
4203983	Sandra	16	05/10/03	07/10/03	6400

The work described in this report was completed on claims TB1195655, 1224925, 1224926, 3010434 and 3010435.

1.2 Location, Access, Infrastructure and Topography

The Cote-Archie Lake property is located in Summers, Sandra and McComber townships, NTS 42E/12. The Angle Lake portion of the property lies approximately 5 km north of the town of Beardmore in the McComber Township. Access to the claims on which work was completed was gained by traveling east for 5km along provincial highway 11 to a new logging road which traverses those claims.

Infrastructure in the Beardmore-Geraldton-Longlac area includes skilled labour, heavy equipment, local accommodations, paved roads and easy access to the electrical grid. A gold mill in the town of Beardmore has been refurbished and is being tested for commercial custom milling by Roxmark Mines Ltd.

The topography on the property is characterized by a series of east to northeast trending bedrock ridges up to 25 m high that are separated by swamps and muskeg filled valleys. Most of the current work area was clear-cut logged during the past two years.

1.3 Previous Work

Previous work at the Angle Lake portion of the property was limited to mainly prospecting, trenching, mechanical stripping and local ground magnetometer and VLF surveying. No records were found of diamond drilling on the claims that were prospected in 2007.

The following is a summary of previous work completed.

1963 – Harold O. Seigel performed a geophysical survey on a 20 claim group. Three holes were drilled to the north and north-east of the present Cote-Angle Lake property.

1988 – Terraquest Ltd. performed airborne magnetic and VLF-EM surveys of McComber, Irwin and Summers Townships.

1991 – Richard MacAdam performed an OPAP project consisting of prospecting, stripping, trenching and sampling.

1995, 1997 – Robert Cote carried out prospecting, trenching and geological programs.

1998 – Angle Lake Explorations Inc. performed a line cutting program followed by geophysical and soil geochemistry surveys over the cut grid.

Mason and White (1986) provided an excellent history of gold exploration and mining in the Beardmore-Geraldton Gold Belt.

2.0 GEOLOGY

The property lies in the Beardmore-Geraldton greenstone belt, within the southern Wabigoon lithotectonic domain of the Superior Province. The belt is significant due to its historical production of more than 4.1 million ounces of gold from shear hosted high grade quartz vein systems and deposits associated with banded iron formation units.

The greenstone belt is subdivided into smaller east to northeast trending sub-belts of alternating metavolcanic and metasedimentary rocks. Devaney and Williams (1989) recognized three sub-belts of metavolcanic rocks separated by sub-belts of sedimentary rocks. The metasedimentary rocks include bedded conglomerate, greywacke, siltstone, argillite, and magnetite-chert iron formation.

The majority of the Cote-Archie Lake property claims in the McComber Township (Angle Lake block) and areas of the 2007 prospecting are underlain by metasedimentary rocks which strike at roughly 050° to 060°. A detailed description of the geology and various rock units in the McComber Township is provided by Carter (1987).

3.0 DESCRIPTION OF THE 2007 PROSPECTING PROGRAM

Alto's 2007 program at Angle Lake started on May 5 and continued to May 20. The program was carried out as follow-up to recommendations from previous work by Alto on the Cote-Archie Lake property (Koziol, 2005, Koziol et al., 2006). The field work was completed by prospectors Robert and Richard Cote under the supervision of Mike Koziol, P.Geo.

The purpose of the work was to discover new gold occurrences and to relocate some of the historical gold showings identified by prospector Robert Cote and to use the results to help determine if a major exploration program in warranted in the Angle Lake area.

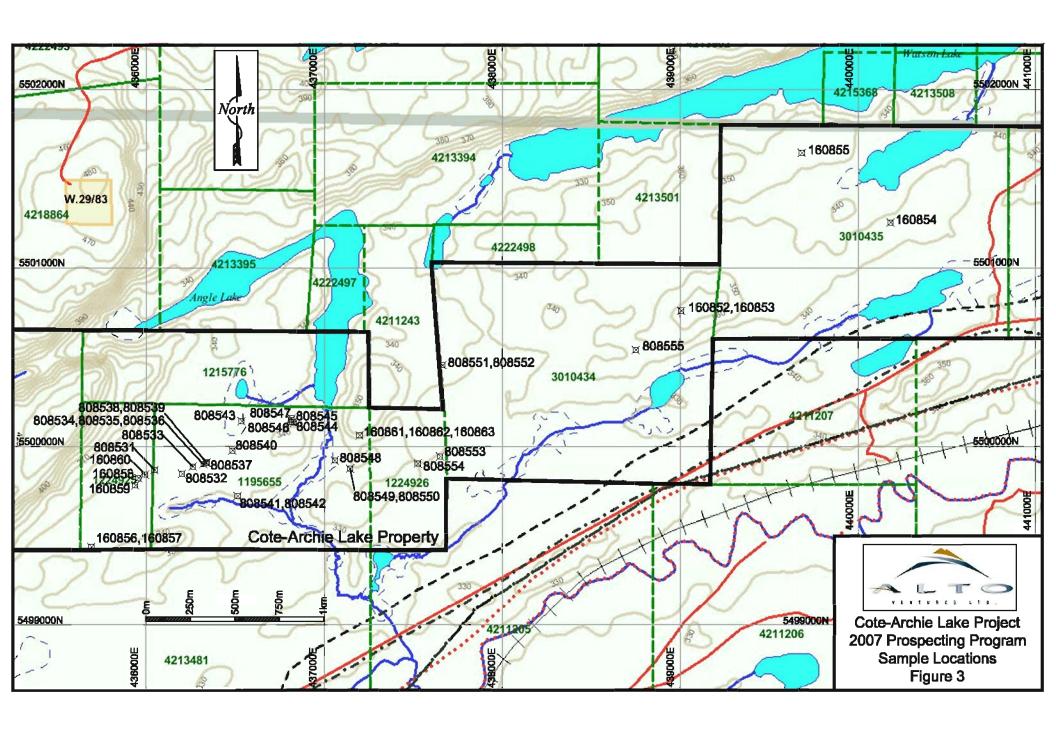
3.1 Logistics

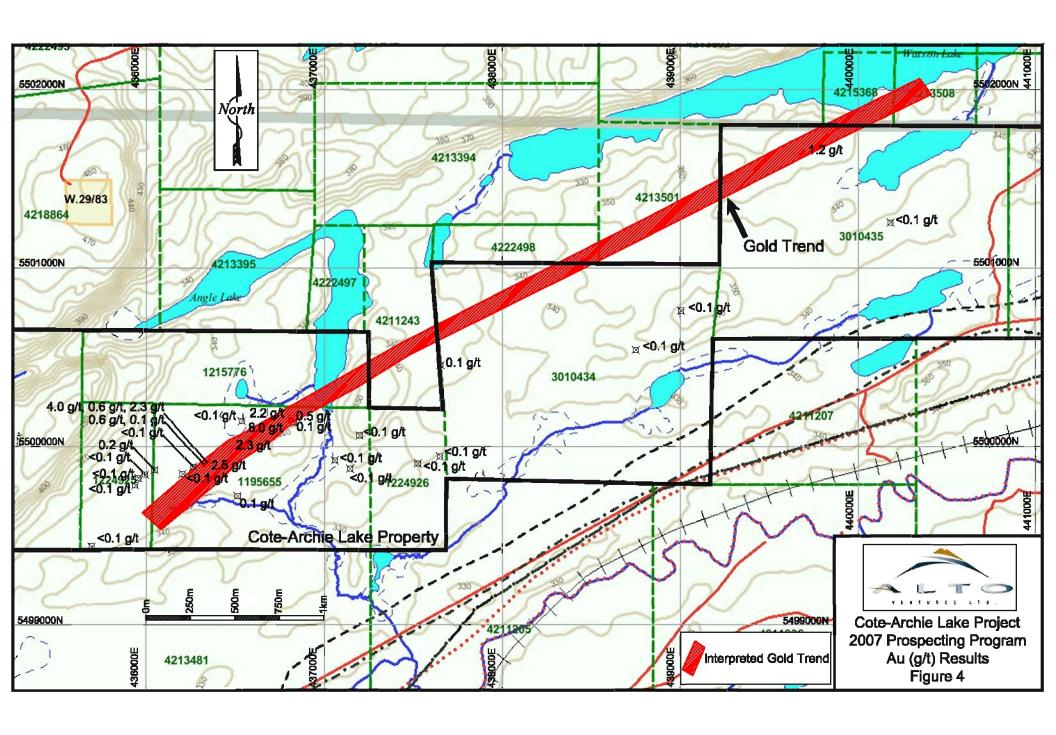
The prospectors traversed the ground sampling rocks that were sheared, gossaned, sulphide-bearing, quartz-veined or suspected of containing gold. Locations of the samples were recorded using GPS instruments and the samples were bagged, numbered and delivered to temporary storage in Beardmore. Rock samples were then described briefly by Koziol (see Appendix A) and their locations were confirmed in the field prior to delivery by Alto staff to Accurassay Laboratories in Thunder Bay for analyses. The gold assaying method uses a standard Fire Assay with AA finish technique on a 30 gram sub-sample taken from a 500 gram split from the submitted sample. The laboratory ran internal check assays

every 10 samples to ensure lab quality control. In total, 39 samples were collected and assayed for gold. Trace element geochemistry using ICP methods was also determined for each of the 39 samples (see Appendix B for Assay Certificates).

3.2 Results

Gold assay results range from below detection levels of below 5 ppb up to 8040 ppb (8.0 g/t). Some of the higher gold values (from 0.5 g/t to 8 g/t) occur along a northeast trending unit of strongly foliated to sheared, chloritized fine-grained clastic sedimentary rocks containing discontinuous quartz veins and veinlets and clusters of massive arsenopyrite (see Figure 3 and 4). Disseminated arsenopyrite also occurs within these units, in places forming up to 5%. These units may also contain fine bands of magnetite as well as crystals of magnetite disseminated along foliation surfaces which locally appear as zones of shearing. The best gold results were obtained at four separate locations and appear to be associated with arsenopyrite, particularly where concentrations of the disseminated crystals are greater.


It is interesting to note that the trend defined by the higher gold assay results at Angle Lake is parallel to the Cote-Archie Shear Zone (CASZ) identified by Alto in 2005 (Koziol et al, 2006). The CASZ is located approximately 5k to the west.


4.0 CONCLUSIONS AND RECOMMENDATIONS

In May, 2007, prospectors Robert and Richard Cote identified and sampled several locations at Angle Lake that are mineralized with pyrite and arsenopyrite. Samples from four separate locations containing both disseminated pyrite and arsenopyrite in sheared rocks returned gold assays ranging from 0.5 g/t to 8 g/t. The four gold-bearing sites lie along the same northeast trending lithologic (or structural) corridor.

The results of this prospecting program are very encouraging as they provide a number of new targets for trenching and subsequent diamond drilling along the northeast trending structure.

Mechanical stripping, washing, mapping and detailed sampling is recommended for the four areas of gold mineralization as well as the overburden covered areas between the surface showings. If results continue to be encouraging, first-pass diamond drilling is recommended.

5.0 REFERENCES

Carter, M. W., 1987, Geology of McComber and Vincent Townships, District of Thunder Bay, Ontario Geological Survey Open File Report 5648, includes maps P2853 and P2854.

Cote, Robert L., Report on Prospecting, Stripping & Trenching and Geological Mapping on the Cote-Archie Lake-Angle Lake Property, Summers Twp, Ontario, McComber Twp, Ontario NTS Map Sheet 42E12, 2003, Assessment file # 2.27025

Devaney, J.R. and Williams, H.R. 1989. Evolution of an Archean sub province boundary; a sedimentological and structural study of part of the Wabigoon-Quetico boundary in northern Ontario; Canadian Journal of Earth Sciences, v.26, p.1013-1026.

Koziol, M., 2005, Alto Ventures Ltd., Cote-Archie Lake Project 2004 Fall Trenching Program, January 17, 2005, assessment report

Koziol, M. and Knowles, R., 2006, Alto Ventures Ltd., Cote-Archie Lake Project – Report on the 2005 Prospecting, Trenching and Mapping Program, Beardmore, Ontario, January 27, 2006, assessment report

Mason, J. and White, G. 1986. Gold occurrences, prospects, and deposits of the Beardmore-Geraldton area, districts of Thunder Bay and Cochrane; Ontario Geological Survey, Open File Report 5630, v. 1 and v. 2, 670p.

6.0 CERTIFICATE OF AUTHOR

- I, Marian (Mike) Koziol, P. Geo., P. Eng., resident at 26 Cognac Court, Sudbury, Ontario, P3E 6L4 do hereby certify that:
- 1. I am currently employed as President by Alto Ventures Ltd.
- 2. I graduated from McGill University, Montreal, Quebec with a B.Sc. degree in Geological Sciences in 1978.
- 3. I am a licensed member of the Professional Engineers of Ontario (No. 100026045) and a licensed member of the Association of Professional Geoscientists of Ontario (No. 1009). I am also a member of the Association of Professional Engineers and Geoscientists of Saskatchewan (No. 05638).
- 4. I have worked continuously as an exploration geologist since my graduation, exploring for gold and base metals deposits in the Canadian Shield including the Churchill Province of Saskatchewan and Manitoba and the Superior Province of Manitoba, Ontario and Quebec.
- 5. I have read the definition of "Qualified Person" as set out in National Instrument 43-101 and certify that I fulfill the requirements to be a Qualified Person for the purposes of NI43-101 by reason of my education, relevant past work experience and affiliation with professional association as defined in NI43-101.
- 6. I have personally worked on the Cote-Archie Lake property and supervised the program described in this report.
- 8. As of the date of this certification, I am not aware of any material fact or change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 9. I do not hold a direct interest in the Cote-Archie Lake property but I do own shares of Alto Ventures Ltd and am an Officer and Director of the Company and for the purposes of this report I am not an independent Qualified Person as defined by Section 1.5 of NI43-101.

Original Signed in Sudbyry, Ontario on this 12th day of September, 2007

Marian (Mike) Koziol, P. Geo., P. Eng

APPENDIX A SAMPLE DESCRIPTIONS

Cote-Archie May 2007 Prospecting Program Sample Descriptions

Field	Sample	Sample	Description	Au
Number	Location NAD83	Tag Number		(ppm)
1	436057, 5499873	808531	Dark green, very fine grained sediment containing 3% to 5% cubic pyrite. Pyrite crystals are disseminated preferentially along certain beds which are up to 1cm wide and contain 20% pyrite; pyrite cubes are up to 2mm. These beds are in contact with bands of quartz-pyrite-carbonate-chlorite; bands are up to 2cm wide. Beds strike at 060°	0.2
2	436214, 5499851	808532	Gossaned, rusty sulphide-magnetite iron formation (or detrital magnetite bed?) containing up to 50% fine pyrite	0.049
3	436274, 5499891	808533	From old #5 trench (?), strongly gossaned sulphide-magnetite iron formation	0.076
4	436335, 5499905	808534	Massive arsenopyrite	0.636
5	436335, 5499905	808535	Magnetite beds within fine to medium grained greywacke. Beds contain 3% to 5% pyrite as subhedral crystals and clusters disseminated along the beds but aligned parallel to foliation. Crystals are up to 2mm in size	0.147
6	436335, 5499905	808536	Fine grained, grey coloured greywacke containing 3% pyrite similar to sample 808535	0.12
7	436353, 5499914	808537	Sulphide iron formation (?) with crystals of arsenopyrite up to 1cm long and locally clusters of massive arsenopyrite	2.545
8	436351, 5499913	808538	Quartz vein containing clusters of massive arsenopyrite	4.008
9	436351, 5499913	808539	Weakly hematized magnetite iron formation containing 3% to 5% cubic pyrite	0.623
10	436497, 5499981	808540	Sheared (?) greywacke contains 20% crystalline pyrite, sample is gossaned and strongly weathered	2.335
11	436524, 5499726	808541	Gossaned quartz vein, 1% to 2% pyrite	0.133
12	436524, 5499726	808542	Quartz vein, clear, weakly hematite stained	0.028
13	436548, 5500145	808543	White quartz stringers in sericitized-carbonate altered rock, probably belonging to the suite of flat veins, minor pyrite	0.01
14	436842, 5500137	808544	Bedded greywacke with 3% to 5% cubic pyrite disseminated and locally pyrite appears to be	0.12

			concentrating into bands	
15	436826, 5500152	808545	Greywacke with bands 1 to 2 mm wide of disseminated magnetite and 3% to 5% cubic	0.479
			pyrite, greywacke is somewhat sugary textured	
16	436833,	808546	Greywacke injected with folded quartz clot that	8.04
	5500141		is rimmed by massive arsenopyrite-minor	
			pyrite; quartz is only a minor component of	
17	426927	000547	this sample	2 204
17	436827, 5500161	808547	Greywacke containing beds rich in pyrite, up to	2.204
	3300101		25% crystals that are almost 2mm. These beds alternate with beds containing finer grained	
			pyrite (3% to 5%) and disseminated crystals of	
			arsenopyrite (3% to 5%)	
18	437072,	808548	Silicified greywacke with minor pyrite; rock	0.01
10	5499926	000010	has appearance of silica flooding	0.01
19	437158,	808549	White quartz vein within greywacke, traces of	0.007
	5499879		pyrite	
20	437158,	808550	Fine grained greywacke containing 3%	0.012
	5499879		disseminated crystals of arsenopyrite. The	
			crystals are stubby shape and <0.5mm	
21	437554,	808551	Strongly magnetic greywacke containing 10%	0.1
	5500459		magnetite crystals and locally up to 5%	
			euhedral crystals of pyrite	
22	437554,	808552	Magnetic greywacke similar to 808551	0.117
	5500459			
23	437662,	808553	Quartz vein barren of sulphides	< 0.005
2.4	5499948	000554		0.005
24	437538,	808554	Greywacke injected with quartz-epidote veins	< 0.005
25	5499909 438762,	808555	from 0.5 to 2cm wide Coarse grained massive quartz vein	< 0.005
23	5500545	000333	Coarse gramed massive quartz vem	<0.003
26	439017,	160852	Quartz vein, coarse quartz in fine grained	< 0.005
20	5500765	100032	greywacke	<0.003
27	439017,	160853	Fine grained greywacke	< 0.005
_,	5500765	100022	The gramea grey washe	10.002
28	440191,	160854	Quartz-carbonate-sericite vein	< 0.005
	5501260		(
29	439693,	160855	Gossaned fine grained greywacke with clusters	1.222
	5501651		of coarse crystalline pyrite (<3%)	
30	435705,	160856	Gossaned quartz-carbonate vein	0.009
	5499375			
31	435705,	160857	Gossaned greywacke containing 1% to 3% fine	< 0.005
	5499375		crystalline pyrite (<1mm); sample also contains	
			20% quartz-carbonate stringers up to 3mm	
			wide	
32		160858	Jasperoid iron formation, very heavy, reddish,	0.005

	435969, 5499826		brecciated rock with quartz along breccia cracks, gossaned, jasperoid pieces contain 1% to 3% fine crystalline pyrite	
33	435952, 5499785	160859	Quartz-carbonate vein in greywacke	<0.005
34	436005, 5499846	160860	Gossaned fine grained greywacke, sheared, hematite-carbonate altered	<0.005
35	437211, 5500066	160861	Sericitized greywacke injected with quartz- carbonate veins, gossaned	0.027
36	437211, 5500066	160862	Greywacke with minor fine grained pyrite, traces chalcopyrite	0.007
37	437211, 5500066	160863	Sericitized, silicified rock injected with tourmaline bearing quartz. Contains 1% sulphides in form of very fine pyrite with lesser arsenopyrite and chalcopyrite. Yellowish yellow carbonate also occurs within the quartz	0.016
38	435705, 5499375	160864	White quartz vein	0.017
39	436351, 5499913	160865	Massive arsenopyrite, approximately 5cm by 6cm, from Hematite Hill	2.270

APPENDIX B ASSAY CERTIFICATES

1046 Gorham Street Thunder Bay, ON Canada P78 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Thursday, June 28, 2007

Alto Ventures Ltd. Unit #8, 1351D Kelly Lake Rd.

Sudbury, ON, CAN

P3E5P5

Ph#: (705) 522-6372 Fax#: (705) 522-8856

Email koziol@altoventures.com

Date Received : 12-Jun-07 Date Completed : 28-Jun-07

Job # 200741870 Reference :

Sample #: 14

Rock

		Au	Pt	Pd	Rh
Accurassay #	Client Id	ppb	ppb	ppb	ppb
135754	160852	<5	<15	<10	
135755	160853	<5	29	10	
135756	160854	<5	<15	<10	
135757	160855	1222	<15	<10	
135758	160856	9	16	<10	
135759	160857	<5	<15	<10	
135760	160858	5	<15	<10	
135761	160859	<5	<15	11	
135762	160860	<5	<15	12	
135763	160861	27	<15	18	
135764 Che	eck 160861	33	38	<10	
135765	160862	7	21	23	
135766	160863	16	<15	11	
135767	160864	17	28	17	
135768	160865	2270	152	<10	

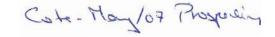
PROCEDURE CODES: AL4APP, AL4ICPAR

Page 1 of 1

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1.630 Fax (807) 622-7571. www.accurassay.com assay@accurassay.com

Alto Ventures Ltd.
Date Created: 07-06-27 08:28 AM


Job Number: 200741870 Date Recieved: 6/12/2007 Number of Samples: 14 Type of Sample: Rock

Type of Sample: Rock Date Completed: Project ID:

- * The results included on this report relate only to the items tested
- * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
- *The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Clien	t Tag	Ag	IA	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Se	Si	Sn	Sr	Ti	TI	V	W	Υ	Zn
		ppm	%	ppm	ppm	ppm	ppm	ppm	%	mqq	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
135754	160852	<1	1.36	3	29	21	<1	6	3.80	<4	11	223	92	2.88	0.07	16	1.16	456	<1	0.02	42	264	76	<5	<5	0.05	<10	65	729	<1	26	<10	3	23
135755	160853	<1	3.04	6	27	24	1	11	0.67	<4	35	401	42	5.92	0.09	38	2.64	742	2	0.03	185	776	143	<5	<5	0.06	<10	70	2844	2	65	<10	9	55
135756	160854	<1	0.33	9	21	43	<1	6	4.19	<4	4	133	12	0.64	0.15	<1	0.13	502	<1	0.01	6	<100	18	6	<5	0.04	<10	235	<100	2	5	<10	3	3
135757	160855	<1	5.79	51	28	26	2	26	0.27	7	26	120	134	>10.00	0.09	62	2.78	1316	22	0.01	36	1109	539	9	<5	0.03	<10	13	682	6	81	<10	6	107
135758	160856	<1	0.24	254	24	45	<1	5	0.50	<4	12	185	26	3.43	0.12	<1	0.06	620	3	0.05	24	199	86	<5	<5	0.11	<10	18	<100	3	5	<10	4	49
135759	160857	<1	0.16	245	28	24	<1	1	0.57	<4	8	141	8	2.64	0.06	<1	0.11	370	1	0.04	19	309	63	<5	<5	0.05	<10	37	<100	3	4	<10	3	30
135760	160858	<1	0.21	35	29	42	3	27	0.33	13	13	46	49	>10.00	0.16	<1	0.63	1154	39	0.01	6	1017	881	7	<5	0.07	<10	37	<100	7	8	<10	5	54
135761	160859	<1	0.26	25	37	32	<1	3	1.43	<4	4	245	3	2.14	0.11	1	0.35	657	<1	0.03	8	568	45	<5	<5	0.03	<10	103	<100	2	5	<10	4	4
135762	160860	<1	1.54	4	36	75	3	34	0.51	12	10	39	6	>10.00	0.21	10	0.65	1020	36	0.02	14	1055	799	9	<5	0.09	<10	98	273	13	34	<10	6	26
135763	160861	<1	0.22	589	28	43	<1	7	0.29	<4	8	213	7	1.91	0.16	<1	0.05	385	1	0.03	21	386	42	<5	<5	0.05	<10	29	<100	2	4	<10	4	11
135764	160861	<1	0.22	649	30	44	<1	4	0.29	<4	8	215	7	1.92	0.17	<1	0.05	391	1	0.03	22	375	44	<5	<5	0.05	<10	29	<100	2	4	<10	4	13
135765	160862	<1	0.56	87	27	57	<1	2	1.54	<4	19	101	33	4.96	0.25	4	0.90	645	4	0.04	54	480	106	<5	<5	0.06	<10	165	<100	2	9	<10	7	36
135766	160863	<1	0.22	45	34	26	<1	<1	5.59	<4	7	131	21	1.65	0.19	<1	0.34	516	<1	0.02	14	281	41	6	<5	0.03	<10	350	<100	3	2	<10	5	23
135767	160864	<1	0.58	75	30	24	<1	<1	0.29	<4	6	230	79	1.87	0.10	7	0.30	144	2	0.02	11	295	51	<5	<5	0.03	<10	15	<100	<1	7	<10	4	27
135768	160865	<1	0.13	>8.000	28	16	3	133	0.77	14	12	51	43	>10.00	0.09	<1	0.10	251	51	0.02	20	3392	916	206	<5	0.03	<10	163	<100	19	8	<10	9	13

Derek Demianiuk, H.Bsc.

1046 Gorham Street Thunder Bay, ON Canada P78 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 Www.accurassay.com assay@accurassay.com

Certificate of Analysis

Monday, May 28, 2007

Alto Ventures Ltd.

Unit #8, 1351D Kelly Lake Rd.

Sudbury, ON, CAN

P3E5P5

Ph#: (705) 522-6372 Fax#: (705) 522-8856

Email koziol@altoventures.com

Date Received : 09-May-07 Date Completed : 28-May-07

Job # 200741306

Reference:

Sample #: 25

Rock

		Au	Au	Au
Accurassay #	Client Id	ppt		g/t (ppm)
99217	808531	200	0.006	0.200
99218	808532	49	0.001	0.049
99219	808533	76	0.002	0.076
99220	808534	636	0.019	0.636
99221	808535	147	0.004	0.147
99222	808536	120	0.003	0.120
99223	808537	2545	0.074	2.545
99224	808538	4008	0.117	4.008
99225	808539	623	0.018	0.623
99226	808540	2335	0.068	2.335
99227	Check 808540	2227	0.065	2.227
99228	808541	133	0.004	0.133
99229	808542	280	0.008	0.280
99230	808543	10	< 0.001	0.010
99231	808544	120	0.003	0.120
99232	808545	479	0.014	0.479
99233	808546	8040	0.235	8.040
99234	808547	2204	0.064	2.204
99235	808548	10	< 0.001	0.010
99236	808549	7	<0.001	0.007
99237	808550	12	< 0.001	0.012
99238	Check 808550	15	< 0.001	0.015
99239	808551	100	0.003	0.100

PROCEDURE CODES: AL4Au, AL4ICPMA

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0519-05/28/2007 01:39 PM

Page 1 of 2

1046 Gorham Street Thunder Bay, ON Canada P7B SX5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Monday, May 28, 2007

Alto Ventures Ltd. Unit #8, 1351D Kelly Lake Rd.

Sudbury, ON, CAN

P3E5P5

Ph#: (705) 522-6372 Fax#: (705) 522-8856

Email koziol@altoventures.com

Date Received : 09-May-07 Date Completed : 28-May-07

Job # 200741306

Reference:

Sample #: 25

Rock

Accurassay #	Client Id	Au ppb	Au oz/t	Au g/t (ppm)	
99240	808552	117	0.003	0.117	
99241	808553	<5	<0.001	< 0.005	
99242	808554	<5	< 0.001	< 0.005	
99243	808555	<5	< 0.001	< 0.005	

1046 Gorham Street Thunder Bay, CN Canada P7B 5X5

Tel: (807) 626-1630 Fax (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 07-06-12 01:54 PM

Job Number: 200741306 Date Recieved: 5/9/2007 Number of Samples: 25 Type of Sample: Rock Date Completed: 5/28/2007

Project ID:

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

*The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Clie	nt Tag	Ag	IA	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Se	Si	Sn	Sr	Ti	TI	V	W	Υ	Zn
		ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
99217	808531	<1	6.39	201	N/A	809	2	6	8.19	8	18	115	94	>10.00	0.08	29	1.25	1050	26	N/A	27	769	558	13	<5	N/A	<10	962	613	3	69	<10	14	31
99218	808532		5.47	319	N/A	35	2	26	0.93	11	196	116	5	>10.00	0.06	18	1.35	474	33	N/A	156	939	811	15	<5	N/A	<10	40	702	2	63	<10	10	21
99219	808533		2.07	234	N/A	674	3	15	0.67	15	8	107	30	>10.00	0.06	3	0.04	333	57	N/A	4	740	1040	17	<5	N/A	<10	17	270	11	16	<10	4	4
99220	808534		3.46	>8,000	N/A	143	4	85	1.17	16	19	76	63	>10.00	0.72	6	0.43	469	52	N/A	16	1665	1078	122	<5	N/A	<10	102	330	7	43	<10	9	22
99221	808535		3.35	379	N/A	760	3	23	0.88	15	11	83	33	>10.00	0.44	7	0.46	644	46	N/A	14	785	1080	13	<5	N/A	<10	56	452	9	33	<10	8	40
99222	808536	<1	3.14	248	N/A	457	3	19	0.73	13	9	57	111	>10.00	0.13	11	0.58	474	39	N/A	15	699	901	9	<5	N/A	<10	121	286	6	22	<10	6	22
99223	808537	<1	2.98	>8,000	N/A	39	3	84	0.94	13	21	143	33	>10.00	0.71	5	0.21	483	45	N/A	35	1565	899	175	<5	N/A	<10	96	292	<1	27	<10	8	14
99224	808538	<1	1.67	>8,000	N/A	35	1	72	0.52	6	47	177	37	>10.00	0.13	2	0.02	114	26	N/A	112	<100	430	179	<5	N/A	<10	27	156	7	7	<10	3	1
99225	808539	<1	4.04	1405	N/A	878	3	25	1.23	14	11	87	15	>10.00	0.61	28	0.76	868	41	N/A	16	2640	996	11	<5	N/A	<10	135	377	4	32	<10	14	25
99226	808540	<1	4.66	>8,000	N/A	332	3	13	0.67	11	15	123	267	>10.00	0.99	24	0.62	623	32	N/A	22	835	714	18	<5	N/A	<10	35	424	9	70	<10	8	129
99227	808540	<1	3.63	>8,000	N/A	133	3	29	0.43	11	18	119	295	>10.00	0.73	26	0.69	708	34	N/A	31	929	818	21	<5	N/A	<10	28	296	<1	63	<10	7	37
99228	808541	<1	2.59	2010	N/A	351	<1	2	0.87	<4	5	404	27	1.86	0.41	3	0.12	485	5	N/A	16	<100	78	9	<5	N/A	<10	93	138	3	19	<10	4	6
99229	808542	<1	>10.00	>8,000	N/A	1596	2	14	0.62	<4	35	362	74	6.12	4.37	18	0.49	661	17	N/A	39	304	220	22	<5	N/A	<10	112	998	<1	136	<10	22	16
99230	808543	<1	4.10	382	N/A	781	<1	<1	1.04	<4	4	466	20	1.53	0.80	7	0.26	307	8	N/A	9	<100	74	13	<5	N/A	<10	129	295	<1	32	<10	5	16
99231	808544	<1	6.90	264	N/A	1045	2	<1	1.58	8	19	129	36	>10.00	0.94	41	1.15	925	25	N/A	35	741	604	20	<5	N/A	<10	145	669	5	92	<10	10	59
99232	808545	<1	6.33	180	N/A	680	3	15	1.19	11	21	114	40	>10.00	0.06	39	1.40	1238	31	N/A	32	709	742	12	<5	N/A	<10	113	1277	4	104	<10	10	43
99233	808546	<1	6.11	>8,000	N/A	166	2	32	1.02	9	17	120	210	>10.00	1.37	45	0.91	598	27	N/A	33	774	591	57	<5	N/A	<10	64	378	4	69	<10	10	38
99234	808547	<1	7.37	>8,000	N/A	567	2	14	0.98	6	25	217	104	>10.00	0.91	80	1.54	741	19	N/A	42	598	446	27	<5	N/A	<10	99	324	4	113	<10	8	66
99235	808548	<1	6.63	930	N/A	935	2	5	1.84	<4	13	199	20	2.45	1.80	12	0.50	890	8	N/A	28	334	120	10	<5	N/A	<10	156	373	<1	66	<10	7	55
99236	808549	<1	7.98	5091	N/A	977	2	<1	2.55	<4	20	200	43	3.44	2.11	22	1.17	542	9	N/A	46	<100	149	10	<5	N/A	<10	455	637	<1	85	<10	9	39
99237	808550	<1	6.24	4580	N/A	909	1	9	1.90	<4	14	237	32	2.33	1.54	15	0.73	354	8	N/A	31	<100	101	10	<5	N/A	<10	330	496	<1	61	<10	7	29
99238	808550	<1	6.27	5254	N/A	852	2	5	2.00	<4	14	239	35	2.53	1.53	14	0.79	383	8	N/A	36	<100	108	7	<5	N/A	<10	357	480	<1	62	<10	7	27

Certified By: Derek Demianiuk, H.Bsc.

1046 Gorham Street Thunder Bay, ON Canada P78 5X5 Tel: (807) 626-1630 Fax (807) 622-7571 www.accurassay.com assay@accurassay.com

Alto Ventures Ltd.

Date Created: 07-06-12 01:54 PM

Job Number: 200741306 Date Recieved: 5/9/2007 Number of Samples: 25 Type of Sample: Rock Date Completed: 5/28/2007 Project ID: * The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

*The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Client Tag Ag Αŀ As В Ba Ca Cd Co Cr Cu Fe Mn Мо Na Ni Sb Se Si Sn Sr Ti ΤI Zn ppm % ppm ppm ppm ppm ppm ppm ppm 99239 808551 <1 5.31 161 N/A 589 20 884 <10 400 62 <10 9 25 2 9 1.15 10 14 102 38 >10.00 0.06 37 1.28 446 28 N/A 698 <5 N/A 44 99240 808552 <1 5.61 164 N/A 620 2 20 1.70 12 14 91 29 38 1.39 628 34 N/A 22 868 803 10 <5 <10 66 10 26 >10.00 0.06 99241 808553 76 <1 5.06 130 N/A 711 8 <1 4.47 <4 4 330 14 2.17 0.71 0.42 1987 7 N/A 5 103 90 8 <5 <10 84 428 38 <10 4 99242 808554 <1 5.83 125 N/A <1 120 10 488 2074 <1 73 <10 9 35 752 2 18 28 558 6 N/A 66 292 <5 <10 5.12 <4 312 2.60 0.88 22 1.36 99243 808555 <1 2.76 66 N/A 1714 <1 <1 1.95 <4 5 382 70 1.19 10 0.42 199 3 N/A 18 148 61 <5 <10 237 474 3 11 1.11

Certified By Derek Demianiuk, H.Bsc.