REPORT ON FIELD WORK AND DIAMOND DRILLING ARGENTIA RIDGE PROPERTY

SOUTH LORRAIN TOWNSHIP Larder Lake Mining Division Canada

Work Completed July $5^{\mbox{\tiny TH}}, 2006$ through to May 24, 2007

Adroit Resources Inc. Suite 610 - 1111 Melville Street Vancouver, British Columbia Canada V6E 3V6

May 24, 2007

Prepared by: Renee Julie Parry, B.A Joerg Martin Kleinboeck, BSc, PGeo

Executive Summary

The Argentia Ridge Property (the "Property"), is situated in the Larder Lake Mining Division, consists of 14 non-contiguous mining claim blocs comprising 96 mining claim units.

The Argentia Ridge property is located 20 miles southeast of the town of Cobalt, in the South Lorrain Township. Historically, South Lorrain Township has produced 23,338,906 ounces of silver.

Production has mainly come from the first 300 feet of metavolcanic rocks that overly a gently dipping western flank of a Nipissing Gabbro intrusive. Similar geology is repeated on the Argentia Ridge Property where more than 5km of prospective strike length covers the metavolcanic and Nipissing Gabbro contact. Numerous pits and past exploration and production shafts exist on the Property.

The Property is prospective for precious metals, base metals and diamonds.

In 2006, ground work on the property began. Work included prospecting, rock and soil sampling, line-cutting, airborne and ground surveys, trenching, stripping, and ground thruthing. Construction of a small network of bush trails was also completed during this time to allow access to the interior of the Property.

A diamond drilling program commenced on February 16, 2007 and was completed by March 9th, 2007. A total of 1063.17 meters was completed in 9 diamond drill holes. The program was designed to test several geophysical (magnetic) anomalies that were delineated by geophysical surveys completed by JVX Ltd. in the early winter of 2007 as well as test several possible Au targets on the Property as discovered by previous claim holder, J. Gore.

This report summarizes the work preformed on the Argentia Ridge Property, the results of the airborne and ground surveys, as well as results for the drilling program. This report will also make recommendations for future work on the Property.

Table of Contents

Executive Summary	1
Table of Contents	2
1.0 Introduction	4
2.0 Property Details	4
2.1 Location and Access	4
2.2 Topography and Vegetation	5
2.3 Claims	6
3.0 Previous Work	7
4.0 Geology	8
4.1 Regional Geology	8
4.2 Property Geology	8
5.0 Summary of Work Preformed on the Argentia Ridge Property	9
5.1 Ground Work	9
5.2 Rock Sampling	9
5.3 Soil Sampling	10
5.4 Line Cutting	10
5.5 AeroTEM II Electromagnetic and Magnetometer Survey, Aeroquest Ltd	10
5.6 Spectral IP/Resistivity and Magnetic Survey, JVX Ltd.	12
6.0 Argentia Ridge Diamond Drilling Program	13
6.1 Methods	13
6.2 Principle of Method (Accurassay)	15
6.3 Argentia Ridge Drilling Summary	16
7.0 Conclusions	19
8.0 Recommendations	19
References	21
Statement of Qualifications	22

LIST OF TABLES

Table 1: Summary of claims for current work program	6
Table 2: Summary of Diamond Drill holes for Argentia Ridge Program, 2007	15
Table 3: Significant Assays (Diamond Drilling, Winter 2007)	17

LIST OF FIGURES

Figure 1: Argentia Ridge Property, Location and Access	5
Figure 2: Eurocopter and equipment used for Airborne Survey	11
Figure 3: Location of Grids, Argentia Ridge Property	14
Figure 4: Location of Diamond Drill Holes, Argentia Ridge Program, 2007	18
Figure 5: Winter Diamond Drilling Program, Argentia Ridge,	19

APPENDICES

Appendix I: Field Soil Sampling Protocol Appendix II: Surface Sample Data Appendix III: Soil Sample Data Appendix IV: Assay Certificates (Surface) Appendix V: Final Diamond Drill Logs Appendix VI: Diamond Drill Sections Appendix VII: Assay Certificates (Diamond Drilling)

MAPS (located in back pocket)

Map 1: Claims Map 2: Surface Sample Locations Map 3: Surface Geology

1.0 Introduction

The Argentia Ridge Property (the "Property"), situated in the Larder Lake Mining Division, consists of 14 non-contiguous mining claim blocs comprising 96 mining claim units.

The Argentia Ridge property is located 20 miles southeast of the town of Cobalt, in South Lorrain Township. Historically, South Lorrain Township has produced 23,338,906 ounces of silver.

During the months of July and August, 2006 ground work on the property began. Work included prospecting, rock and soil sampling. A total of 64 rock and 42 soil samples were collected and submitted for analysis. The best result from this sampling program yielded 2.3g/t Au.

In September 2006, line-cutting began on the Property, followed by an Airborne survey conducted by Aeroquest in October 2006. An access trail approximately 4 km long was constructed in October in order to facilitate access to the property. Further stripping and channel sampling was also completed.

Ground truthing in areas of the airborne anomalies was preformed. Line cutting over all anomalies. Three grids were cut, West Grid, East Grid, and South Grid.

IP and Mag surveys were completed over all three grids in January and February, 2007 by JVX Ltd.

A drilling program commenced in winter, 2007 and a total of 1063.17 meters of drilling in 9 drill holes. One drill hole was abandoned at 15.2 metres due to overburden and water supply problems due to elevation.

This report summarizes the work preformed on the Argentia Ridge Property, including results from surface and soil samples, results from Airborne and Magnetic surveys as well as the results of the winter drilling program. This report will also make future recommendations for future work on the Property.

2.0 Property Details

2.1 Location and Access

The Argentia Ridge property is located 20 miles southeast of the town of Cobalt. The Property can be accessed from Highway 567, which is located off highway 11B in North Cobalt. A series of existing and newly constructed trails facilitate access to most parts of the property.

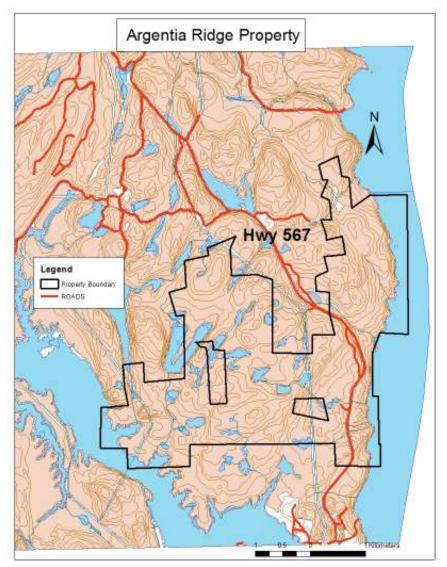


Figure 1: Argentia Ridge Property; location and access

2.2 Topography and Vegetation

The topography of the Argentia Ridge Property is rugged with a maximum relief of 260 meters. In the Archean terrain, the hills are generally more rounded than in areas of the Proterozoic rocks, where the hills are formed by ridges. Many of the ridges on the property are caused by faulting, with a steep gradient on the one side, and a gentle dip slope down on the other side. The main drainage is from the Montreal River and Matabitchuan River of which are thought to follow faults.

Vegetation on higher ground is typically thick new growth forest and consists of a variety of hardwoods such as maple, birch and alder swales. Coniferous trees are found in low lying areas and consist of species such as black spruce, tamarack, and cedar.

Snowfall generally begins in November and extends into late March and early April. Lakes are usually passable with adequate ice thickness from late December through to late March. Between 50 and 100 mm of monthly rainfall is normal from April to October. The mean temperature is -19.8° C in January and 24.5°C in July.

2.3 Claims

The Argentia Ridge Property consists of 14 non-contiguous mining claim blocs comprising 96 mining claim units. This report summarizes the work completed on the Argentia Ridge Property (Table 1). To view location of claims within property, see Map 1 located in the back pocket.

Claim	Units	Township	Recorded	Due	*Status	Required	Applied	Reserve
4213015	12	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$4,800	\$0	\$0
4213016	4213016 10		2006-Jun- 12	2008-Jun- 12	A	\$4,000	\$0	\$0
4213017	9	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$3,600	\$0	\$0
4213018	11	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$4,400	\$0	\$0
4213019	14	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$5,600	\$0	\$0
4213020	2	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$800	\$0	\$0
4213021	3	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$1,200	\$0	\$0
4213022	14	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$5,600	\$0	\$0
4213023	11	SOUTH LORRAIN	2006-Jun- 12	2008-Jun- 12	A	\$4,400	\$0	\$0
4205144	1	SOUTH LORRAIN	2006- Sep-7	2008- Sep-7	A	\$400	\$0	\$0
4210606	2	SOUTH LORRAIN	2006- Dec-21	2008- Dec-21	A	\$800	\$0	\$0
4210607	3	SOUTH LORRAIN	2006- Dec-21	2008- Dec-21	A	\$800	\$0	\$0
4210608				A	\$1,200	\$0	\$0	
4212815	2	SOUTH LORRAIN	2006- Dec-21	2008- Dec-21	A	\$800	\$0	\$0

Table 1: Summary of mining claims for current work program

3.0 Previous Work

Clifton Consol (1925)

Stripping, sinking of 9 pits; shaft to 30 ft, and 980 ft of diamond drilling was completed on the Oxbow Lake Property (presently located within the Argentia Ridge Property).

Ox-Bow Lake Mines Ltd. (1946-1967)

Diamond drilling was carried out on the Oxbow Lake property (presently located in the Argentia Ridge Property) during this time. A total of 14 diamond drill hole, with Co mineralization in 7 of them was completed.

Elite Cobalt Mines (1956)

Diamond drilling comprising of 4 drill hole was completed. Mineralization such as galena, chalcopyrite, pyrite and phyrrotite were intersected.

J. Gore (1991-2006)

Exploration activities in the vicinity of the property consisted of grassroots prospecting; geological mapping, trenching, line-cutting and VLF and magnetometer geophysics with some minor diamond drilling.

In October and November 1991, Mr. John Gore prospected, and staked several claims in the South Lorrain Township. Prior to this prospecting, one single diamond drill hole was drilled in July. The hole was 230ft, which wasn't deep enough to reach the desirable target; therefore the casing and shoe were left in the hole.

In 1992-1993, J. Gore also prospected in the Oxbow Lake region of the South Lorrain Township. Minor stripping and trenching was also carried out, as well as defining a potential drill target (based on the information from an Airborne Magnetic Survey and VLF Electromagnetic Survey by H. Ferderber Geophysics Ltd in September 1992). A Beep Mat was also used on the property to perform a preliminary survey on the Western Group. Further prospecting led to mechanical stripping, using a bulldozer. Several "chunks" of massive sulphides were recovered from the property. Another diamond drill hole was drilled in 1992 and contained minor mineralization.

In 1993, stripping and trenching was preformed, as well as use of the "Beep-Mat", and also conducted some more preliminary surveys.

In the month of August, 1994, time domain spectral induced polarization/resistivity geophysical surveys were conducted by JVX Ltd on the Oxbow Lake Property which is now the location of the Argentia Ridge Property. The purpose of this survey was to

define spatial orientation and strike of disseminated metallic sulphides which may have been related to gold or base metals mineralization.

In 1995, a geological mapping survey and litho-geochemical sampling program, as well as further prospecting, line-cutting and geo-physical surveys was carried out on the Oxbow Lake Property. In December 1995, a magnetic survey was conducted by Meegwich Inc., of Temagami, ON.

During 1996-1999, line-cutting, prospecting and several geophysical surveys were conducted in the area of the Argentia Ridge Property, specifically, the Oxbow Lake area. In 1999, diamond drilling was carried out. One drill hole was drilled to test the down dip projection of a carbonate vein stockwork, I order to determine if there was an increase of cobalt and silver with depth. No significant assays were recorded.

In 2000, additional stripping and prospecting was completed. This more recent exploration was for base metals, and not so much silver and cobalt.

In the year 2002, soil samples were taken near conductor areas from a previous geochemical survey (1996). Also, more base metal prospecting was carried out.

In 2003, more trenching in the South Lorrain Township was carried out. Pyrite was visible, but this work yielded no significant assays.

4.0 Geology

4.1 Regional Geology

The Property is located within the southeastern region of the Lake Timiskaming Structural Zone and is underlain by the Grenville Front Tectonic Zone (GFTZ), a belt of re-worked Archean Superior Province rocks that separates the Grenville Province rocks in the south from the Superior Province rocks to the north.

4.2 Property Geology

The Property is located within the Lake Timiskaming Structural Zone (LTSZ) and straddles the Montreal River and The Montreal River Fault, one of several major fault systems in the region. The mining claims associated with the current work program are primarily underlain by Huronian Supergroup sedimentary rocks that were intruded by 2.2 Ga Nipissing Gabbro, the latter of which are known to host magmatic Cu-Ni-Pt-Pd sulphides and are associated with epithermal vein-type Ag-Co mineralization, the predominant style of historical mineralization in the region (i.e. Cobalt Silver Camp).

The Property is underlain by several Huroninan rock groups, and one in particular known as the Cobalt Group, which includes the Coleman Formation, Firstbrook Formation, and Lorrain Formation. Map 3, located in the back pocket illustrates the property geology.

The rocks of the Coleman Formation are a heterogeneous mixture of greywacke and quartzoze siltstone, arkose, argillite, and conglomerate.

The Firstbrook Formation consists of laminated of varved, very fined grained argillites, with alternating grayish red, or grayish green layers, and quartzite. The argillite is composed of mainly subrounded quartz grains, with minor feldspar, set in a chloritic matrix.

The Lorrain Formation is the most extensive rock type in the area. The main rock types in this formation are flat-lying feldspathic quartzite, pale green quartzite, and pink arkose. These rocks are fined grained with lenses of medium to coarse grained material.

5.0 Summary of Work Preformed on the Argentia Ridge Property

5.1 Ground Work

During the months of July and August, 2006 ground work on the property began. Activities included locating and sampling historical metal showings (Cu, Ag, Zn), prospecting, soil sampling, and geological mapping. A total of 64 rock and 42 soil samples were collected and submitted for analysis to Swastika Labs of Swastika, Ontario. The best result from this surface sampling program yielded 2.3g/t Au (Appendix II). Map 2, located in the back pocket illustrates in detail the location of the surface and soil samples. Map 3 illustrates the bedrock geology.

An access trail approximately 4 km long was constructed in October in order to facilitate access to the interior of the property. Ground truthing in areas of the airborne anomalies was also preformed. Line cutting began over some anomalies and three grids were cut, West Grid, East Grid, and South Grid. IP and Magnetic surveys were completed over all three grids.

5.2 Surface Sampling and Mapping

A total of 64 rock samples were taken from the Argentia Ridge Property in August of 2006. Work was preformed over several claims on the Property. Rock sampling included sampling many old shaft areas, trenches, and several outcrops. Many of the rock samples were taken where disseminated sulphides were visible. The rock samples were taken from the following claims: 4213015, 4213023, 4200071, 4200070, 4200073, 4213019, 4213018, 4213017 and 4213016 (see Map 1 in back pocket for claim locations).

The best rock sample returned 2300 ppb Au (2.3 g/T Au). The results of the rock sampling program are tabulated in Appendix II. Assay Certificates are located in Appendix IV.

5.3 Soil Sampling

A total of 42 soil samples were collected during the month of August, 2006. The soil samples were taken and submitted to Swastika Laboratories for analysis. See Appendix III for the summary of the data, Appendix IV for the assay certificates.

The soils samples were taken over several claims on the Property (4213015 and 4213022) (Figure 4). Samples were taken from mainly the 'A' horizon and the 'B' horizon of the soil. The pH of the soil was recorded because pH is the single most important parameter in selective leach geochemical surveys. A field sampling protocol was followed in order to obtain optimized results. Further stripping and channel sampling was also completed. To view protocol, refer to Appendix I. The results of the soil samples are tabulated in Appendix III.

5.4 Line Cutting

In September 2006, line cutting began on the Property. Approximately 32 km of grid was cut across most of the property at 200 meter spacings between the lines. A company from western Quebec was contracted to complete the work. Once the Airborne survey was completed, and results were received (November 30th, 2006), infill line cutting was completed over the selected anomalies. Three grids were constructed; West Grid, East Grid and South Grid (figure 3).

5.5 AeroTEM II Electromagnetic and Magnetometer Survey, Aeroquest Limited

An Airborne survey was conducted by Aeroquest on October 3rd, 2006. The principal geophysical sensor is Aeroquest's exclusive AeroTEM II time domain helicopter electromagnetic system which was employed in conjunction with a high-sensitivity cesium vapour magnetometer. Ancillary equipment included a real time differential GPS navigation system, radar altimeter, video recorder, and a base station magnetometer. Full-waveform streaming EM data is recorded at 38, 400 samples per second. The streaming data comprise the transmitted waveform, and the X component and Z component of the resultant field at the receivers. A secondary acquisition system (RMS) records the ancillary data.

The total line kilometers presented in the survey (maps and data) totaled 240.9 of which 230.5km fell within the defined project area.

A Eurocopter AS350BA "A-Star" helicopter-registration C-GVDE was used as survey platform (Figure 6). The Aeroquest airborne survey system employs the Geometric G-823A cesium vapour magnetometer sensor, installed in a two meter towed bird airfoil to the main tow line, 17 meters below the helicopter. The survey was flown with a line spacing of 100m. The control lines were flown perpendicular to the survey lines with a spacing of 1km.

Figure 2: Eurocopter with equipment for Airborne Survey, October 2006.

Aeroquest performs specific QA/QC field procedures to ensure the data is as accurate as possible. On return of the pilot and operator to the base, the AeroDAS streaming EM data and the RMS data are carried on removable hard drives and Flashcards, respectively and transferred to the data processing work station. At the end of each day, the base station magnetometer data on Flashcard is retrieved from the base station unit. Data verification and quality control includes a comparison of the acquired GPS data with the flight plan; verification and conversion of the RMS data into an ASCII format XYZ data file; verification of the base station magnetometer data on conversion of the streaming EM data from the removable hard drive. All data is then merged to an ASCII XYZ format file which is then imported to an Oasis database for further QA/QC and for the production of preliminary EM, magnetic contour, and flight path maps.

Survey lines which show excessive deviation from the intended flight path are re-flown. Any line or portion of a line on which data quality did not meet the contract specification was noted and re-flown.

The survey was successful in mapping the magnetic and conductive properties of the geology throughout the survey area.

Magnetic Response

The magnetic data provide a high resolution map of the distribution of the magnetic mineral content of the survey area. This data can be used to interpret the location of geological contacts and other structural features such as faults and zones of magnetic alteration. The sources for anomalous magnetic responses are generally thought to be

predominantly magnetite because of the relative abundance and strength of the response of magnetite over magnetic minerals such as pyrrohtite.

EM Anomalies

The EM anomalies on the maps are classified by conductance and also by thickness of the source. Depending on the thickness of the anomaly, all cases be considered when analyzing the interpreted picks and prioritizing for follow-up. Specific anomalous responses which remain as high priority should be subjected to numerical modeling prior to drill testing to determine the dip, depth and direction of the source.

The survey yielded 15 EM anomalies, two of which were strong enough to give a conductance estimate. One EM anomaly was within 50 meters of a powerline, and not shown on the final maps. Refer to separate report titled "Report on a Helicopter-Borne AeroTEM II Electromagnetic & Magnetometer Survey".

5.6 Spectral IP/Resistivity and Magnetic Survey, JVX Ltd.

IP is the geophysical method of choice when exploring for disseminated sulphide (Au) and massive sulphide (Cu,Zn) targets. Type deposits vary in type, physical properties, size, shape, depth, geoelectric and topographic setting. There is an equivalent range of IP methods, arrays, and settings, and a successful survey depends on a proper match of target and survey.

Spectral IP/Resistivity and magnetic surveys were preformed on the East, South, and West Grids on the Argentia Ridge Property by JVX Ltd. The field work was completed between January 18th, to February 21, 2007. The total IP/Resistivity survey coverage was 23 km's. Total magnetic survey coverage was 25.5 km's.

South Grid

Overburden was moderately conductive over 30% of the grid and very conductive over 40%. The magnetic results showed few marked trends or patterns. Most readings are in the range of \pm 75 nT from the mean. Peak IP amplitudes are barely above background levels, and many weak chargeability highs are probably due to local bedrock highs. The AeroTEM anomaly was near line 300E, station 0+25S, however there was no IP anomaly nearby. Low resistivities were consistent with a thick layer of conductive overburden.

East Grid

Overburden was moderately conductive over 23% of the grid and very conductive over 12%. The magnetics were dominated by a 200 to 1000nT magnetic high that crossed the northern part of the grid. This magnetic high was mapped as volcanics. There were a number of IP anomalies in the northern part of the grid, and many of these were of good quality and some may be considered for follow-up.

West Grid

Overburden was moderately conductive over 24% of the grid. The magnetic results were dominated by a central 250nT magnetic high in an area, mapped as the Gowganda formation sedimentary rocks.

A total of 21 anomalies were picked following this survey. They have been classified as weak (10), moderate (10) and strong (1). Many of the IP anomalies were in the north part of the East Grid. Five of the best IP anomalies have been suggested for follow up. Three are in the Northern part of the East grid, and two are in the West Grid. To see the results, refer to separate report titled "Report on Spectral IP/Resistivity and Magnetic Surveys. South, East and West Grids-Argentia Ridge Project, South Lorrain Township, Ontario., 2007). Refer to Figure 3 to view location of the three grids.

6.0 Argentia Ridge Diamond Drilling Program, winter 2007

6.1 Methods

A total of 1063.17 meters was completed in 9 diamond drill holes. The program was mainly designed to test several geophysical (magnetic) anomalies that were identified by IP geophysical surveys completed by JVX Ltd. in the early winter of 2007 (as mentioned in previous section), and also by an IP survey completed by JVX Ltd in 1994.

Cartwright Drilling of Goose Bay Labrador was contracted to perform the diamond drilling. The core diameter was BTW in size (42mm). To view the drill hole locations, refer to Figure 7. Collars were surveyed by hand held GPS after the drill rig was moved off of the collar. Acid tests were used to measure downhole dip angles and azimuth. Table 2 summarizes the diamond drill hole information.

The drill core was transported from the drill site by truck to the Cobalt Field office where it was logged. Prior to transportation, the core boxes were fitted with lids and closed using fiber tape. Once at the Field office, the core was unloaded and put into sequential piles prior to logging. All 9 diamond drill holes were logged excluding AR-02 which was abandoned. The core was then sampled where mineralization was visible. The detailed logs for holes AR-01 through AR-09 can be found in Appendix V.

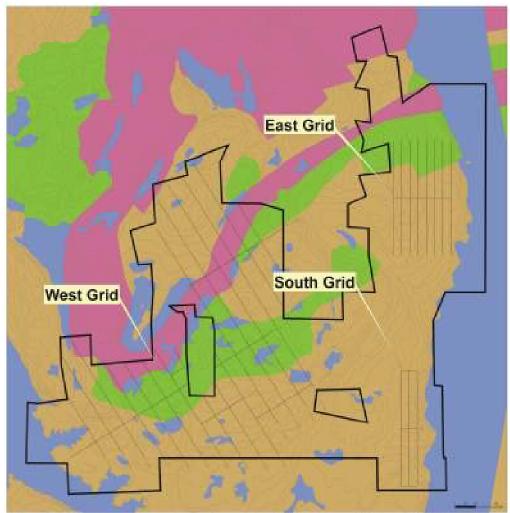


Figure 3: Location of East, West, and South Grid; Argentia Ridge Property

The samples were put into labeled plastic bags along with a corresponding sample tags. The plastic bags were then rolled and taped to prevent any core from falling out of the bags during transportation. The samples were then placed into a rice bag and shipped by transport to the Accurassay Laboratories in Thunder Bay, ON. Once the core had been logged and sampled, metal tags were attached inscribed with the hole number, box number, and corresponding interval.

Core samples were prepared and assayed for precious metals as well as base metals by Accurassay Laboratories of Thunder Bay, Ontario. Platinum, palladium, and gold were done using fire assay (lead collection). Copper and nickel were completed by using an ICP (Inductively Coupled Plasma) finish (Refer to section 6.2 of this report).

Blanks, standards and duplicates were inserted every 10th to 20th sample to ensure quality of the analysis.

The core was then moved to the core storage facility in Cobalt, ON.

DDH	UTM (E)	UTM (N)	DIP	AZ	Length (m)
AR-01*	617462.00	5227424.00	-45	360	149.35
AR-02*	617161.00	5227333.00	-45	360	15.24
AR-03**	617366.00	5224368.00	-45	180	124.97
AR-04	615434.00	5226644.00	-45	165	161.50
AR-05	615479.00	5226518.00	-45	345	97.00
AR-06	615291.00	5226766.00	-45	345	140.21
AR-07	615578.00	5226844.00	-45	165	149.35
AR-08	615595.00	5226802.00	-45	165	124.97
AR-09	615499.00	5226729.00	-50	165	100.58

Table 2: Summary of diamond drill holes from mining claims 4212022, 4213023, and 4212815.

*East Grid

**South Grid

6.2 Principle of Method; Accurassay Laboratories

Sample Preparation

The rock samples are first entered into Accurassay Laboratories' Local Information Management System (LIMS). The samples are dried, if necessary, and then jaw crushed to approximately 8 mesh and a 250 to 500 gram sub-sample is taken. The sub-sample is pulverized to 90% 150 mesh and then matted to ensure homogeneity. Silica sand is used to clean out the pulverizing dishes between each to prevent cross contamination. The homogeneous sample is then sent to the fire assay laboratory or the wet chemistry laboratory depending on the analysis required.

Precious Metal Analysis

For the analysis of precious metals (gold, platinum, palladium and/or rhodium), the sample is mixed with a lead based flux fused for one hour and fifteen minutes. Each sample had a silver solution added to it prior to fusion which allows each sample to produce a precious metal bead after cupellation. The fusing process results are a lead buttons that contains all of the precious metals from the sample as well as the silver that was added. The button is then placed in a cupelling furnace where all of the lead is absorbed by the cupel and a silver bead, which contains any gold, platinum and palladium, is left in the cupel. The cupel is removed from the furnace and allowed to cool. Once the cupel has cooled sufficiently, the silver bead is placed in an appropriately labeled test tube and digested using aqua regia. The samples are bulked up with 1.0 ml of distilled de-ionized water and 1.0 ml of 1% digested lanthanum solution. The samples are allowed to cool and are mixed to ensure proper homogeneity of the solution. Once the samples have settled they are analyzed for gold, platinum and palladium using atomic absorption spectroscopy. The atomic absorption spectroscopy unit is calibrated for each element using the appropriate ISO 9002 certified standards in an air-acetylene flame.

The results for the atomic absorption are checked by the technician and then forwarded to data entry by means of electronic transfer and a certificate is produced. The Laboratory Manager checks the data and validates the certificates and issues the results in the client requested format.

<u>Base Metal Analysis</u>

Samples analyzed for base metals (copper nickel, cobalt, lead, zinc, and silver) are weighed for a geochemical analysis and digested using aqua regia. The samples are bulked to a final volume and mixed. Once the samples have settled, they are then analyzed for copper, nickel and cobalt using atomic absorption spectroscopy. The atomic absorption spectroscopy unit is calibrated for each element using the appropriate ISO 9002 certified standards in an air-acetylene flame. The results for the atomic absorption are checked by the technician and then forwarded to data entry by means of electronic transfer and a certificate is produced. The Laboratory Manager checks the data and validates the certificates and issues the results in the client requested format.

Any sample that contains a concentration of greater than 10,000 ppm of any element is sent back for an ore grade assay for that element. This assay is similar to the geochemical assay but requires a greater sample mass and final volume. All samples are analyzed for trace elements in conjunction with the "base metals". This analysis required the aqua regia digestion performed on the samples for base metals but were analyzed on the inductively coupled plasma instrument (ICP).

<u>Quality Control</u>

Accurassay Laboratories employs an internal quality control system that tracks certified reference materials and in-house quality assurance standards. Accurassay Laboratories uses a combination of reference materials, including reference materials purchased from CANMET, standards created in-house by Accurassay Laboratories and tested by round robin with laboratories across Canada, and ISO certified calibration standards purchased from suppliers. Should any of the standards fall outside the warning limits (+/- 2SD); reassays will be performed on 10% of the samples analyzed in the same batch and the reassayed values are compared with the original values. If the values from the reassays match original assays the data is certified, if they do not match the entire batch is reassayed. Should any of the standards fall outside the control limit (+/- 3SD) all assay values are rejected and all of the samples in that batch will be re-assayed.

6.3 Argentia Ridge Drilling Summary

Nine holes were drilled in the winter of 2007 on the Argentia Ridge Property, totaling 1063.17 meters (AR-01 through to AR-09). These holes were drilled in order to test several IP chargeability anomalies.

The lithology in these holes was mainly composed of intermediate to mafic flows with minor amounts of felsic volcanic rocks and minor interbedded metasediments. Small carbonate veinlets and chlorite were moderately pervasive in these holes. Mineralization encountered in the drilling was dominantly disseminated pyrite within the mafic volcanics. Lesser amounts of chalcopyrite were noted throughout these diamond drill holes. These metavolcanics on the Argentia Ridge Property have not been the host rocks of any producing mine.

AR-01 was designed to test a chargeability anomaly on the East Grid. . The chargeablily anomaly was explained by the presence of <1% disseminated and fracture filled pyrite hosted within argillite. AR-02 was abandoned at 15.24 metres due to lack of water because of to great a difference between drill site and local water source.

Diamond drill hole AR-03 was designed to intersect an airborne EM conductor. During ground geophysical surveys (IP), the conductor was not located. It is possible that the conductor was due to conductive overburden within a topographical low.

Diamond drill holes AR-04 and AR-05 were drilled to test an IP chargeability anomaly thought to correspond with overlying sulphide mineralization in an old trench. The two diamond drill holes were collared opposite to each other as AR-04 failed to intersect the interflow sediment unit exposed in the trench. AR-05 was successful in interesting the sulphide-bearing unit, and was useful in identifying the dip of the volcanic units in the locality. The sulphide mineralogy consisted dominantly of disseminated pyrite (2%), with lesser amounts of pyrrhotite (<1%) and chalcopyrite (<1%).

Diamond drill hole AR-06 tested a strong chargeability anomaly within the Nipissing Diabase. The anomaly was explained the by presence of 1% disseminated primary magnetite.

AR-07 through to AR-09 were drilled in order to test moderate chargeability and resistivity anomalies identified by JVX Ltd in 1994. Both holes intersected silicified mafic volcanics with minor amounts of local disseminated to stringer pyrite and chalcopyrite.

DDH	SAMPLE #	From (m)	To (m)	Cu (%)	Zn (%)	Co (%)	Au (ppb)	Ag (ppm)
AR-04	63988	41.45	41.62	0.9291	0.012	0.0792	8	5
AR-07	63892	72	72.50	0.1046	1.9814	0.0114	17	4
AR-08	10501	5.8	6.3	0.4219	0.0286	0.0055	9	4
AR-09	63649	89.5	90.5	0.4782	0.0159	0.0041	22	2

Table 3: Significant Assay Results for Argentia Ridge (Diamond Drilling, Winter 2007)

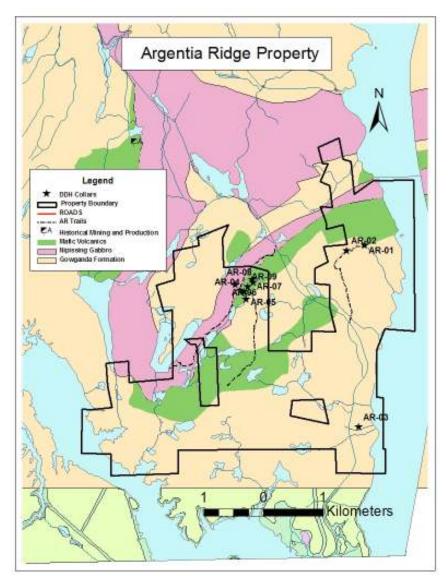


Figure 4: Location of Diamond Drill Holes, Argentia Ridge Property, 2007

Figure 5: Winter 2007 Diamond Drilling Program, South Lorrain Township, Ontario.

7.0 Conclusions

The principal conclusions of the 2006/2007 work program on the Argentia Ridge Property include the following:

- 1.) The airborne geophysical survey yielded 15 anomalies, in which two were strong enough to give off a conductance estimate.
- 2.) A total of 21 IP anomalies were discovered by the IP/Resistivity survey, with only one target being classified as strong.
- 3.) Anomalous base metal values were obtained from the soil sampling program.
- 4.) Anomalous base metal and precious metal values were obtained from the surface sampling program.
- 5.) Disseminated mineralization was intersected in all drill holes (with exception or AR-02).

8.0 Recommendations

Although the drill program has not yielded only anomalous results, further work on the property is needed to fully evaluate the mineral potential.

The following recommendations can be made on the basis of the exploration program completed during the summer/ fall of 2006, and the work completed in early winter 2007.

- 1.) Detailed geological mapping and prospecting should be completed over the grids that were constructed in the fall of 2006.
- 2.) Follow up ground truthing should be completed on the IP anomalies that were identified by JVX Ltd's IP/Resistivity survey that was completed in the winter of 2007.
- 3.) A beep mat should be utilized to aid in the ground truthing, as well as to survey selected areas to locate targets that have base metal (Cu, Zn) and precious metal (Au, Ag) potential.
- 4) Additional geophysics may be required over select target areas (airborne, anomalous surface values) to aid in geological interpretations and generating diamond drill targets. Upon the successful generation of targets, a small diamond drill program (<1000m) should be implemented.

9.0 References

Accurassay Laboratories. 2007. Principle of Method. Thunder Bay Ontario.

Aeroquest Limited. 2006. Report on a Helicopter-Borne AeroTEM II Electromagnetic and Magnetometer Survey.

JVX Ltd. 2007. Report on Spectral IP/Resistivity and Magnetic Surveys. South, East and West Grids-Argentia Ridge Project, South Lorrain Township, Ontario.

McIlwaine, W.H. 1970. Ontario Department of Mines and Northern Affairs:Geological Report 83. Ggeology of South Lorrain Township.

STATEMENT OF QUALIFICATION

I, Renee Julie Parry of 214 Simon Lake Drive, Naughton, Ontario, do hereby certify that:

I am a geological technician / data manager with Adroit Resources Inc, based from Vancouver BC.

I am a graduate of Laurentian University, Sudbury, Ontario with a B.A. Earth Science, 2006.

I have an active prospector's license for the province of Ontario (#1004486).

I hold no interests, directly or indirectly, in the properties or securities of Adroit Resources Inc.

Rain Py

Renee Julie Parry May 24th, 2007 Lively, Ontario

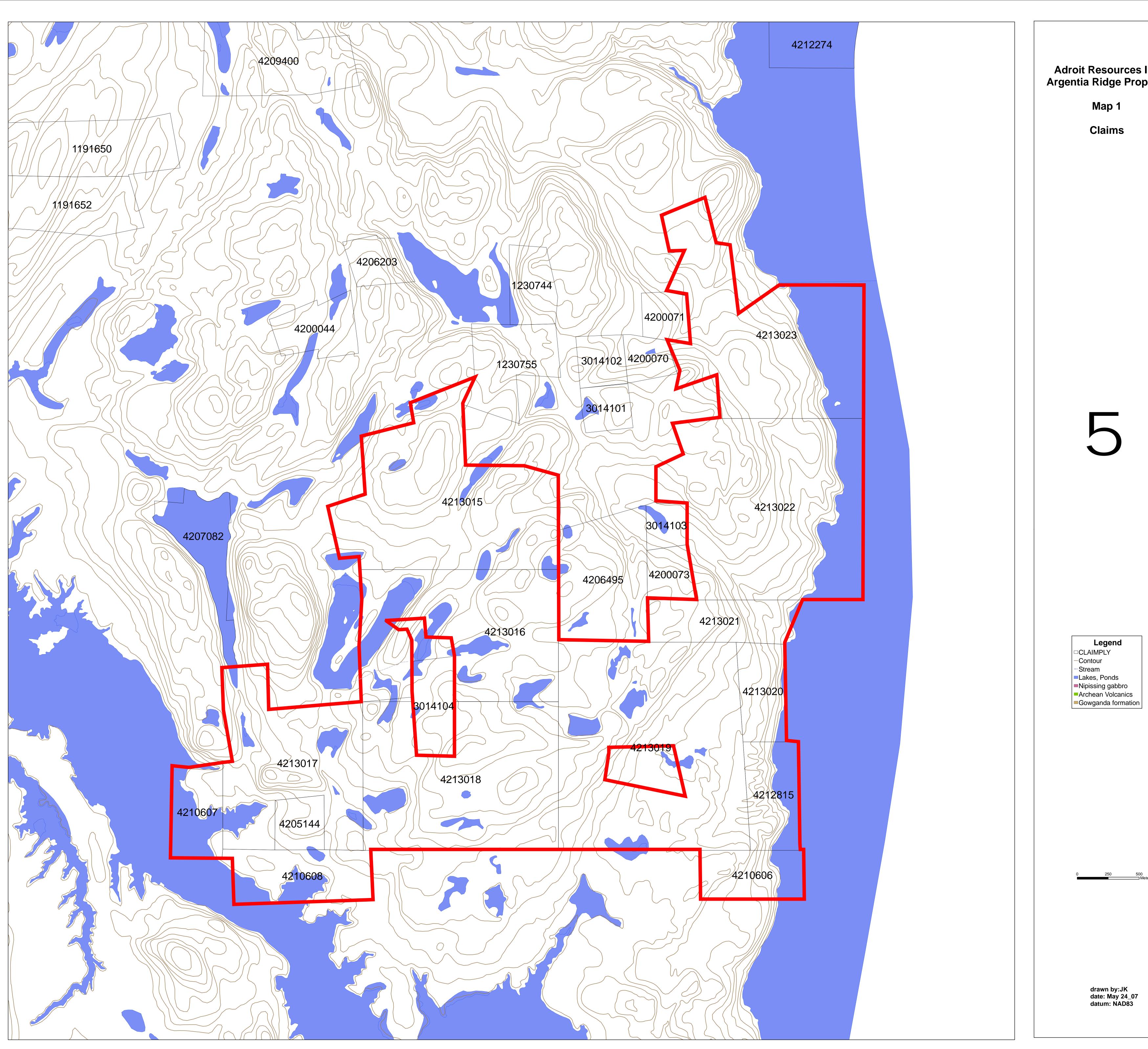
STATEMENT OF QUALIFICATION

I, Joerg Martin Kleinboeck, of 91 Black Lake Road, Lively, Ontario, do hereby certify that:

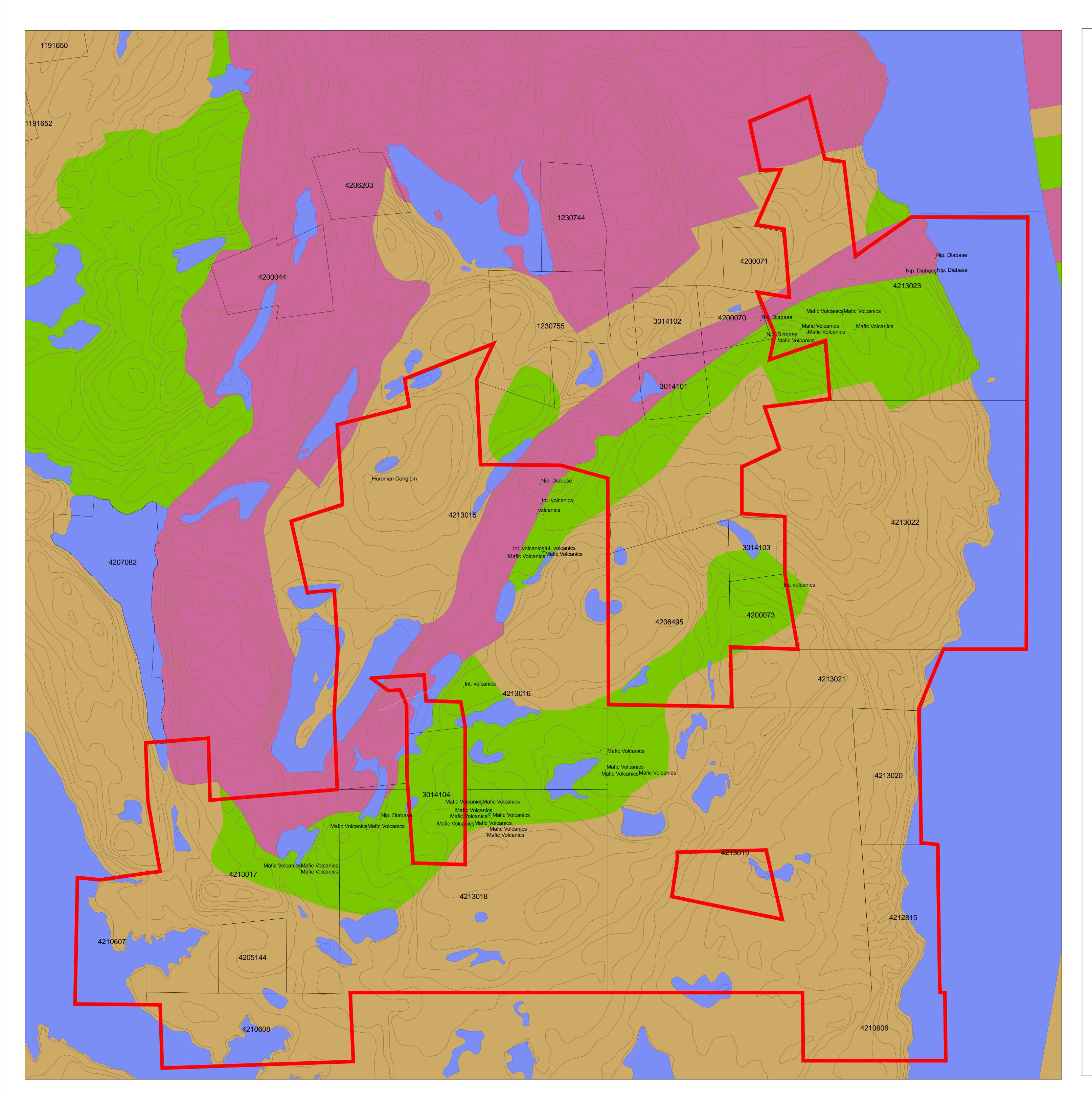
I am a consultant geologist with Adroit Resources Inc. of Sudbury, Ontario.

I am a graduate of Laurentian University, Sudbury, Ontario with a B.Sc. Geology, 2000, and have been practising my profession as a geologist since.

I am a member with the Association of Professional Geoscientists of Ontario (APGO).

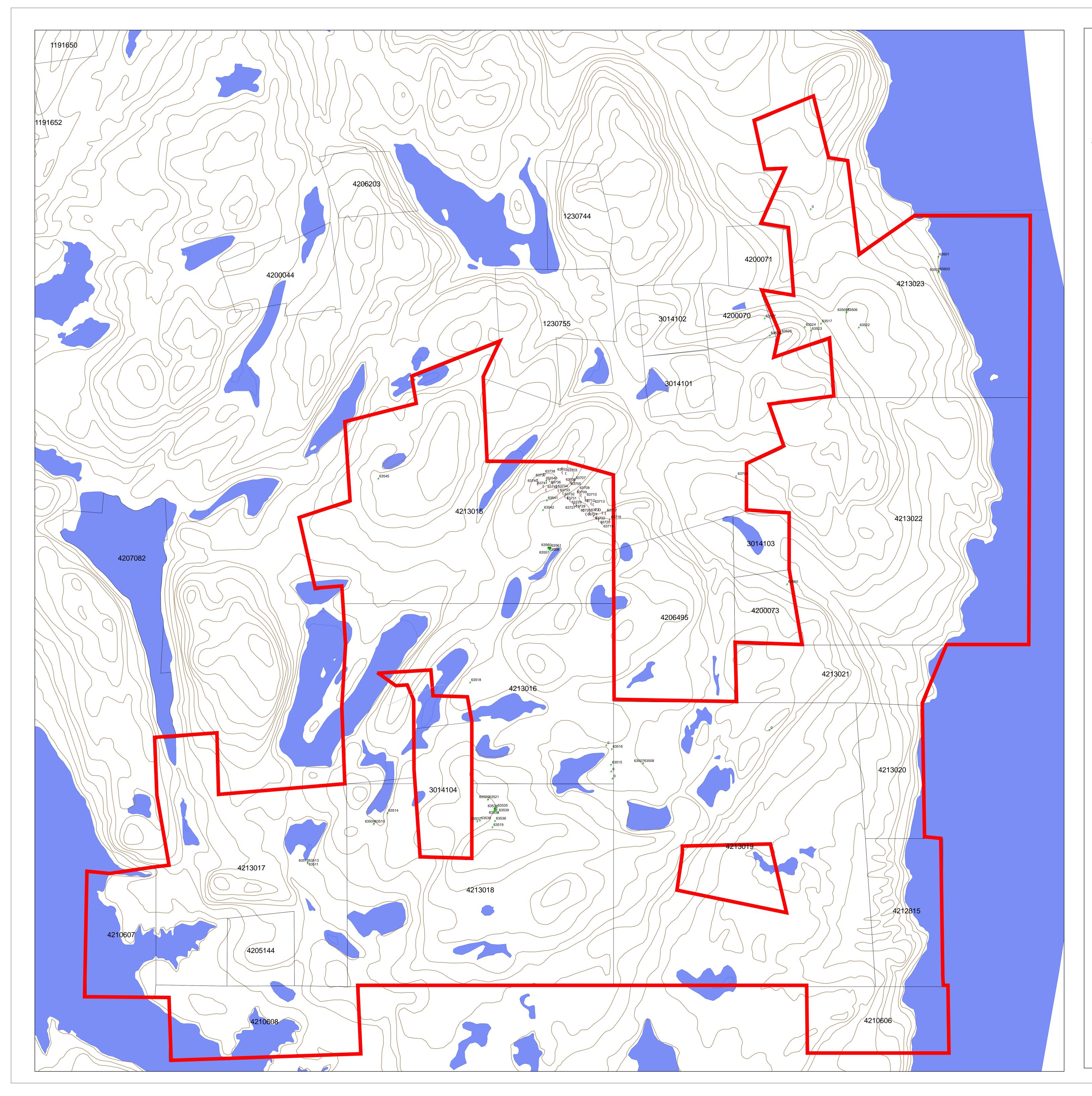

I am a member of the Prospectors & Developers Association of Canada (PDAC).

I have an active prospector's license for the province of Ontario (#1002600).


I hold no interests in the properties or securities of Adroit Resources Ltd.

perg Clib

Joerg Martin Kleinboeck May 24th, 2007 Lively, Ontario



Inc perty	
leters	

Adroit Resources In Argentia Ridge Prope

<section-header><text><text></text></text></section-header>	
Legend - Claims - Contour - Stream - Lakes, Ponds - Nipissing gabbro - Archean Volcanics - Gowganda formation	
0 125 250 500 Meters Meters	
Township, Timiskaming District, 1970, Ontario Dept of Mines	

Adroit Resources I Argentia Ridge Prope

Surface Sample Locat

Adroit Resources Inc rgentia Ridge Property Map 2 rface Sample Locations	
5	
Legend -Claims Soil Samples -Contour -Stream Lakes, Ponds -Nipissing gabbro -Archean Volcanics -Gowganda formation	

APPENDIX 1

OPTIMIZED SAMPLING PROTOCOL

OPTIMIZED PARTIAL EXTRACTION SAMPLING PROTOCOL FOR VARIABLE TERRAIN IN THE ABITIBI CLAY BELT

February, 2005

Field sampling protocol is the most important component of a partial extraction geochemical sampling program in areas of thick cover. Many surficial processes affect the geochemical signal and these must be minimized by careful sampling or the signal to noise ratio will be too high to detect a response due to deeply buried mineralization. If proper and very consistent protocols are not followed in the field the likelihood of success is greatly decreased.

It was determined during the "Deep Penetrating Geochemistry" project that the depth of sample is as critical as the medium sampled to partial extraction geochemistry. A protocol was developed for the Abitibi area that takes into consideration both depth and medium. As part of this protocol, there are only two target media: mineral soil and peat. The mineral soil includes: the Ae horizon, which is the whitish, leached material below the organics; the B horizon, which is the orange zone of metals accumulation; or the C horizon, which is the relatively unaltered material. It does not include the A_1 horizon, which contains significant organic material.

The primary target medium is the mineral soil but this is not always available within the target depth interval of 10 - 25 cm because much of the Abitibi is covered by peat accumulations of greater than 25 cm. To resolve this problem, we have developed a protocol that collects either mineral soil *or* peat at a given site and then treats the data as 2 separate media during later interpretation. Notes <u>*must be taken*</u> to differentiate which of the two media was collected or interpretation of results will be impossible. In addition, a pH sample or a field pH measurement must also be taken, since pH cannot be properly carried out on a sample pulped and dried for Enzyme Leach analysis.

Equipment

- 3" diameter Dutch Auger
- Whirl-pac[®] polyethylene bags or equivalent (minimum 5" x 9" bags for Enzyme Leach sample; smaller bag for pH sample)
- Field pH meter *calibrated daily* with pH 7 and 4 buffer solution
- Note-book, preferably with pre-printed forms to avoid unrecorded data. Alternatively a Palm-pilot or equivalent digital data entry system could be used.

Selection of protocol

At each site the auger is used to extract the top 25 cm of soil. If at least 5 cm of mineral soil is present in the interval from 10 to 20 cm, the "dry protocol" is used. If only peat is available, the "peat protocol" is used.

Dry Protocol

The leaf litter at a site is brushed off and the Dutch Auger is used to extract the mineral soil from 10-20 cm depth, measuring from the base of the leaf-litter. If at least 5 cm of mineral soil exists within the 10-20 cm zone, this is collected as the sample for that station. The ideal target

medium for the mineral soil sample is the Ae horizon or the uppermost B-horizon if the Ae horizon is not present. Generally, one or the other of these would be developed immediately under the organics where the latter is <20 cm thick. The C-horizon would rarely be encountered in such cases during the sampling, but would be sampled if it was.

Notes must be taken recording (1) the medium (mineral soil); (2) the type of soil material (i.e. sand, etc.), (3) site conditions, especially with respect to drainage and soil moisture. Notes are discussed further below.

Peat Protocol

In the Abitibi region if mineral soil does not occur in the first 20 cm, the organic material will almost invariably be peat as opposed to humus and the "peat protocol" must be used. Avoiding hummocks, the sampler should stand on level ground and insert the Dutch auger through the compressed sphagnum under which he/she is standing. The sample should be taken from a consistent depth between 20 and 50 cm. Samples taken near the base of peat can sometimes have entrained clastic material so if the region has relatively thin peat, the sample depth should on the shallower end of the range (20-30 cm). In thicker peat, the sample should be taken at 50 cm. After the sample is taken the auger should be inserted to it's full length to determine if the base of peat exists within one auger's length and the result should be recorded. This will help to later identify any geochemical anomalies related to bog "edge effects" and depth effects. Other notes should particularly record the presence of clastic material in the sample and the proximity to creeks that can shed clastics into the peat during flood events.

pH Determination

pH is the single most important parameter in selective leach geochemical surveys. When sampling peat, the pH probe can be inserted into a sample placed in a cup and the measurement taken in the field. The peat around the probe should be squeezed to exclude air and bubbles and to ensure a liquid contact around the bulb of the probe. The pH readings should be taken after 1 minute of probe immersion. When sampling mineral soil a slurry must be mixed. A constant amount of distilled water (2 - 5 ml) should be added to a constant amount of mineral soil (1-2 g)and mixed into a paste or slurry. The probe is then inserted into the paste and stirred to ensure complete liquid coverage on the bulb and reference junction. The reading should be taken after 1 minute of probe immersion. Because the slurry is a more involved procedure, it is easier to carry it out at the end of the day once the fieldwork is completed. A separate sample must be taken after pH, or a subsample removed from the main sample when measurements are being taken at the end of each day.

At least daily calibration of the pH probe is essential and records should be kept after each calibration. Probes used for slurry measurements have a shorter life than probes used for water measurements. Generally a probe will last a field season but care should be taken to replace the probe if calibration becomes difficult, since this is an indication of probe degradation.

Recording of field data

Notes must be taken when sampling because the two media are treated separately at the data interpretation stage. Notes should include the following:

Dry protocol

- 1. Medium, i.e. mineral soil
- 2. Moisture and drainage conditions, i.e. wet / dry, "near creek", "on slope"
- 3. The type of material sampled, i.e. sand, silt, clay or alluvium, till
- 4. The predominant soil horizon sampled, i.e. Ae (the whitish leached zone), B (the zone of iron oxides, C (relatively unaltered parent material).

Peat protocol

- 1. Medium, i.e. peat; dry peat; humus
- 2. Peat thickness (up to the length of the auger).
- 3. The presence of any clastic material in the peat such as sand, silt, or clay.
- 4. Presence of watercourses.

Date	Property	Sample #	Easting	Northing	Rock Type	Features	Texture	Alteration	% sulphides	Mineralization
July 8/06	Argentia Ridge	None	616997	5228574	Nin Diahaaa	old shaft			4.0	
July 8/06	Argentia Ridge	63501	617751	5228293	Nip. Diabase	trench	mg		tr	ру ро
July 8/06	Argentia Ridge	63502	617751	5228202	Nip. Diabase	adit	mg		tr	ру ро
July 8/06	Argentia Ridge	63503	617754	5228206	Nip. Diabase	adit	mg-cg		tr	ру ро
July 8/06	Argentia Ridge	63504	617221	5227985	Mafic Volcanics	trench	fg		tr	сру ру ро
July 8/06	Argentia Ridge	63505	617208	5227965	Mafic Volcanics	pit	fg		tr	сру ру ро
July 8/06	Argentia Ridge	63506	617208	5227965	Mafic Volcanics	pit	fg		tr	сру ру ро
	Argentia Ridge	63507	616006	5225300	Mafic Volcanics	old shaft	fg		2 to 3	ру ро
•	Argentia Ridge	63508	616006	5225300	Mafic Volcanics	old shaft	fg	Hematite	2 to 3	ру ро
•	Argentia Ridge	63509	614415	5224942	Mafic Volcanics	old shaft	fg		1 to 2	сру ру ро
	Argentia Ridge	63510	614415	5224942	Mafic Volcanics	old shaft	fg		1 to 2	сру ру ро
•	Argentia Ridge	63511	614024	5224711	Mafic Volcanics	old shaft	fg		1 to 2	сру ру ро
•	Argentia Ridge	63512	614024	5224711	Mafic Volcanics	old shaft	cg		tr	ру ро
	Argentia Ridge	63513	614024	5224711	Mafic Volcanics	old shaft	fg		2	сру ру ро
	Argentia Ridge	63514	614495	5225006	Nip. Diabase	trench	mg		n.v	
	Argentia Ridge	None	615826	5225210		trench				
July 12/06	Argentia Ridge	None	615818	5225251		trench				
July 12/06	Argentia Ridge	63515	615817	5225291	Mafic Volcanics	pit	fg	chlorite	tr	ру ро
July 12/06	Argentia Ridge	63516	615821	5225384	Mafic Volcanics	outcrop	fg		n.v	
July 12/06	Argentia Ridge	None	615789	5225406		trench				
July 12/06	Argentia Ridge	None	616753	5225496						
July 13/06	Argentia Ridge	63517	617058	5227899	Mafic Volcanics	outcrop	vfg	chlorite	tr	ру ро
July 14/06	Argentia Ridge	63518	614984	5225778	Int. volcanics	outcrop	fg-mg	epidote	n.v	
July 14/06	Argentia Ridge	63519	615116	5224922	Mafic Volcanics	outcrop	fg-mg		tr	ру ро
July 14/06	Argentia Ridge	63520	615090	5225086	Mafic Volcanics	outcrop	fg-mg		1 to 2	ру ро
July 14/06	Argentia Ridge	63521	615090	5225086	Mafic Volcanics	outcrop	mg	apitite	tr	ру ро
July 19/06	Argentia Ridge	63522	617281	5227876	Mafic Volcanics	outcrop	fg-mg		n.v	
July 19/06	Argentia Ridge	63523	616998	5227857	Mafic Volcanics	outcrop	fg	apitite	tr	ру ро
July 19/06	Argentia Ridge	63524	616962	5227878	Mafic Volcanics	outcrop	fg		n.v	
July 19/06	Argentia Ridge	63525	616820	5227839	Mafic Volcanics	outcrop	fg	chlorite	n.v	
July 19/06	Argentia Ridge	63526	616755	5227828	Nip. Diabase	outcrop	fg-mg		n.v	
July 19/06	Argentia Ridge	63527	616725	5227929	Nip. Diabase	outcrop	cg		n.v	
-	Argentia Ridge	63528	615134	5225035	Mafic Volcanics	outcrop	mg		2	ру ро
•	Argentia Ridge	63529	615136	5225023	Mafic Volcanics	outcrop	fg-mg		1 to 2	ру ро
•	Argentia Ridge	63530	615139	5225024	interflow seds?	outcrop	fg		1 to 2	ру ро
•	Argentia Ridge	63531	615129	5225028	Mafic Volcanics	outcrop	fg-mg		tr	ру ро
-	2					•				

July 21/06	Argentia Ridge	63532	615127	5225021	interflow seds?	outcrop	fg-mg		1	ру ро
July 21/06	Argentia Ridge	63533	615128	5225033	Mafic Volcanics	outcrop	fg		1	ру ро
July 21/06	Argentia Ridge	63534	615130	5225033	Mafic Volcanics	outcrop	fg		tr	ру ро
July 21/06	Argentia Ridge	63535	615141	5225036	Mafic Volcanics	outcrop	fg-mg		1	ру ро
July 21/06	Argentia Ridge	63536	615131	5224959	Mafic Volcanics	outcrop	fg		tr	ру ро
July 21/06	Argentia Ridge	63537	615026	5224957	Mafic Volcanics	outcrop	fg		tr	ру ро
July 21/06	Argentia Ridge	63538	615042	5224962	Mafic Volcanics	pit	fg		1 to 2	ga,po
July 21/06	Argentia Ridge	63539	615148	5225008	Mafic Volcanics	outcrop	fg		tr	ру ро
July 21/06	Argentia Ridge	63540	615434	5226970	Nip. Diabase	outcrop	mg-cg		n.v	
July 21/06	Argentia Ridge	63541	615438	5226854	Int. volcanics	outcrop	fg		n.v	
July 21/06	Argentia Ridge	63542	615415	5226797	volcanics	outcrop	fg		n.v	
July 21/06	Argentia Ridge	63543	615450	5226570	Mafic Volcanics	pit	fg		15%	py po, zns
July 21/06	Argentia Ridge	63544	615460	5226576	interflow seds?	outcrop	Ufg		1 to 2	ру ро
July 21/06	Argentia Ridge	63545	614441	5226982	Huronian Conglom	outcrop	fg-mg		n.v	
July 21/06	Argentia Ridge	63546	617025	5231061	Mafic Volcanics	trench	Ufg		n.v	
July 21/06	Argentia Ridge	63547	617025	5231061	Mafic Volcanics	trench	ру-ро	lorite,hemat	1%	ру ро
July 21/06	Argentia Ridge	63548	617056	5230932	Mafic Volcanics	outcrop	ufg		tr	
July 21/06	Argentia Ridge	63549	616829	2565226	Mafic Volcanics	outcrop	fg	chlorite	tr	ро ру
July 21/06	Argentia Ridge	63550	616857	5226358	Int. volcanics	outcrop	fg-mg		n.v	
July 21/06	Argentia Ridge	63551	616823	52226376	Mafic Volcanics	outcrop	fg		tr	ро ру
July 21/06	Argentia Ridge	63552	615447	5226572	Mafic Volcanics	outcrop	fg-mg		tr	ро ру
July 21/06	Argentia Ridge	63553	615447	5226573	interflow seds?	pit	fg		10%	po py, zns
July 21/06	Argentia Ridge	63554	615453	5226573	Int. volcanics	outcrop	fg		5%	py po,zns
July 21/06	Argentia Ridge	63555	615452	5226575	Int. volcanics	outcrop	fg		10%	py po, zns
July 21/06	Argentia Ridge	63556	615449	5226570	Mafic Volcanics	outcrop	fg		2 to 3	ру ро
July 21/06	Argentia Ridge	63557	615451	5226570	Mafic Volcanics	outcrop	fg		2 to 3	ру ро
July 21/06	Argentia Ridge	63558	615445	5226574	Mafic Volcanics	outcrop	fg		5%	py po, zns
July 21/06	Argentia Ridge	63559	615445	522445	interflow seds?	outcrop	fg		10%	py,po
July 21/06	Argentia Ridge	63560	615452	5226576	Mafic Volcanics	outcrop	fg		tr	ру ро
July 21/06	Argentia Ridge	63561	615458	5226572	Mafic Volcanics	outcrop	fg		tr	ру ро
July 21/06	Argentia Ridge	63562	583267	5268689	Int. volcanics	outcrop	fg		3%	ру ро
July 21/06	Argentia Ridge	63563	581255	5267346	Int. volcanics	outcrop	fg-mg		1%	ру ро
July 21/06	Argentia Ridge	63564	581255	5267346	Mafic Volcanics	outcrop	fg		03-Apr	ру ро

% Mafics	% Felsics	Structure	Notes
			Old shaft capped and covered no rubble present
60			trench blasted sample from rubble
60			Caved in Adit near lake Sample from rubble
60			Caved in Adit near lake Sample from rubble
70			Old hand dug trench
70			Old blasted pit sample from rubble pile
70			Old blasted pit sample from rubble pile
70			Bulldog shaft sample from rubble pile
70			Bulldog shaft sample from rubble pile Qtv. Veinlets
80			oxbow shaft rubble pile Cpy stringers
80			oxbow shaft rubble pile Cpy stringers
60			Qtv.vein shaft rubble pile
10	90		Qtz. Vein bull white to smokey grey
60			Stringer sulphide veinlets banded
50			blasted trench
			Old hand dug trench overgrown no rock or angular rubble
			North east end of trench 6 feet deep
70			old test pit 10 ft.x 10ft. 10 ft. deep Qtv. Veinlets
75			- · · · · · · · · · · · · · · · · · · ·
			Old hand dug trench overgrown no rock or angular rubble
			Old hand dug trench overgrown no rock or angular rubble
70		sheared	Near old trench on map (trench not located)
50			
65			North of old trench
			Qtz vein Cubic minerization (Py Galana?)
65			Qtz. veinlets
60		sheared	banded sheet like
75			
60			slight shearing
65			-
60			non magnetic
60			non magnetic
65			rusty zone
60			sulphide burn
60			banded
65			-

60 60		banded							
60 60									
60									
65									
60	sheared	Galena pit area							
65 65	sheared	Galena pit rubble rusty							
50									
60	banded								
60		locally massive							
60									
90									
90		trench							
60		non-magnetic							
50									
70 60		rusty patches							
50 50	banded	rusty patenes							
50									
50									
65									
60 60		small quartz veinlets							
60 50	banded	rusty							
70	banded	rusty							
60									
50	banded								
50									
50									

Sample	Х	Y	Au	Ag	AI	As	Ва	Be	Bi	Са	Cd	Со	Cr	Cu	Fe	Hg	
			ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	
63701	615528	5227044		0	<0.2	0.4	<5	17	<0.5	<5	0.05	<1	3	18	5	1.01	1
63702	615530	5227021		0	<0.2	0.17	<5	20	<0.5	<5	0.02	<1	1	5	2	0.23	2
63703	615551	5227017		0	<0.2	0.45	5	40	<0.5	<5	0.05	<1	8	16	6	0.96	<1
63704	616558	5226997		2	<0.2	2.45	<5	36	0.5	<5	0.1	<1	10	56	23	2.57	<1
63705	615573	5226975		0	<0.2	0.34	<5	26	<0.5	<5	0.05	<1	3	13	3	0.52	1
63706	615582	5226961		2	<0.2	0.54	<5	18	<0.5	<5	0.04	<1	2	18	4	0.9	1
63707	615601	5226972		0	<0.2	1.49	<5	41	<0.5	<5	0.08	<1	10	46	10	1.75	1
63708	615624	5226913		0	<0.2	1.27	<5	34	<0.5	<5	0.09	<1	9	44	21	1.75	2
63709	615641	5226887		0	<0.2	1.48	<5	48	<0.5	<5	0.1	<1	15	52	17	2.88	<1
63710	615666	5226873		0	<0.2	0.78	<5	32	<0.5	<5	0.1	<1	6	28	8	1.8	1
63711	615680	5226855		2	<0.2	1.5	5	39	<0.5	<5	0.09	<1	7	43	8	3.26	<1
63712	615701	5226838		3	<0.2	1.04	<5	53	<0.5	<5	0.15	<1	8	36	21	1.3	<1
63713	615713	5226832		0	<0.2	0.23	<5	16	<0.5	<5	0.11	<1	2	7	2	0.38	<1
63714	615727	5226803		2	0.8	0.76	<5	26	<0.5	<5	0.09	<1	4	21	33	1.7	<1
63715	615745	5226803		0	<0.2	0.75	<5	27	<0.5	<5	0.1	<1	5	26	5	2.08	1
63716	615767	5226783		0	<0.2	0.8	<5	25	<0.5	<5	0.08	<1	6	33	5	2.8	<1
63717	615785	5226780		0	<0.2	1.17	<5	35	<0.5	<5	0.08	<1	6	28	12	1.67	1
63718	615810	5226740		0	<0.2	2.19	5	46	<0.5	<5	0.13	<1	13	55	15	2.7	<1
63719	615765	5226723		0	<0.2	0.76	<5	26	<0.5	<5	0.04	<1	4	22	7	1.31	1
63720	615746	5226740		0	<0.2	1.4	<5	50	0.5	<5	0.12	<1	14	53	24	2.53	<1
63721	615731	5226755		2	<0.2	1.97	<5	38	<0.5	<5	0.1	<1	12	49	9	2.97	<1
63722	615716	5226765		0	<0.2	0.95	<5	55	<0.5	<5	0.12	<1	9	29	9	2.55	<1
63723	615691	5226782		0	<0.2	1.07	<5	46	<0.5	<5	0.1	<1	8	35	8	2.12	<1
63724	615670	5226776		0	<0.2	0.45	<5	30	<0.5	<5	0.07	<1	2	17	9	1.31	<1
63725	615654	5226799		0	<0.2	0.19	<5	12	<0.5	<5	0.02	<1	1	4	3	0.28	<1
63726	615630	5226816		0	<0.2	1.66	<5	27	<0.5	<5	0.06	<1	7	34	9	1.76	1
63727	615613	5226835		0	<0.2	1.21	5	27	<0.5	<5	0.06	<1	8	33	9	1.66	<1
63728	615599	5226834		3	<0.2	1.82	14	72	0.5	<5	0.25	<1	45	70	37	2.88	<1
63729	615576	5226857		0	<0.2	0.24	<5	26	<0.5	<5	0.09	<1	3	13	4	0.54	<1
63730	615562	5226873		2	<0.2	0.54	<5	21	<0.5	<5	0.05	<1	4	22	4	1.2	<1
63731	615547	5226880		0	<0.2	0.34	<5	28	<0.5	<5	0.06	<1	4	18	4	0.77	<1
63732	615535	5226899		0	<0.2	1.45	<5	40	<0.5	<5	0.04	<1	8	34	13	1.86	<1
63733	615507	5226914		2	<0.2	0.3	<5	17	<0.5	<5	0.02	<1	2	10	3	0.61	<1
63734	615495	5226941		3	<0.2	1.73	5	39	<0.5	<5	0.08	<1	15	53	34	1.99	<1
63735	615473	5226960		0	<0.2	1.13	<5	38	<0.5	<5	0.05	<1	12	30	7	2.08	<1

63736	615454	5226976	2	<0.2	0.86	<5	25	<0.5	<5	0.04	<1	4	21	7	1.3	<1
63737	615438	5226988	0	<0.2	0.81	6	52	<0.5	<5	0.07	<1	5	32	10	1.74	<1
63738	615420	5227011	0	<0.2	0.77	<5	25	<0.5	<5	0.03	<1	4	20	3	1.46	<1
63739	615384	5226977	5	<0.2	0.92	<5	46	<0.5	<5	0.06	<1	5	25	12	1.56	<1
63740	615384	5226955	2	<0.2	0.29	<5	22	<0.5	<5	0.03	<1	1	7	5	0.45	<1
63741	615418	5226941	7	<0.2	1.24	<5	45	<0.5	<5	0.06	<1	13	39	18	1.56	<1
63742	615434	5226919	0	<0.2	0.75	<5	32	<0.5	<5	0.06	<1	6	30	14	1.45	<1

К	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	
%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	
	0.02	<10	0.08	71	<2	0.01	5	152	11	0.01	<5	1	4	<5	0.04	<10	<10
	0.01	<10	0.02	20	<2	0.01	2	56	6	0.01	<5	<1	3	<5	0.02	<10	<10
	0.02	<10	0.08	521	<2	0.01	7	193	23	0.01	<5	1	5	<5	0.04	<10	<10
	0.03	<10	0.34	241	<2	0.01	31	782	19	0.05	<5	2	8	<5	0.09	10	<10
	0.01	<10	0.04	234	<2	<0.01	3	99	11	<0.01	<5	1	3	<5	0.04	<10	<10
	0.01	<10	0.07	36	<2	<0.01	6	189	16	0.01	<5	1	5	<5	0.03	13	<10
	0.03	<10	0.3	133	<2	0.01	29	368	12	0.01	<5	2	8	<5	0.06	20	<10
	0.02	<10	0.35	135	<2	0.01	28	325	69	0.01	<5	1	9	<5	0.05	18	<10
	0.03	<10	0.32	384	<2	0.01	31	470	18	0.02	<5	1	8	<5	0.08	<10	<10
	0.02	<10	0.22	71	<2	0.01	14	174	14	0.01	<5	1	8	<5	0.07	<10	<10
	0.05	<10	0.24	112	<2	0.01	18	357	13	0.03	<5	2	8	<5	0.09	<10	<10
	0.03	<10	0.42	102	<2	0.01	33	130	5	0.02	<5	2	9	<5	0.07	<10	<10
	0.01	<10	0.04	104	<2	<0.01	3	86	12	0.01	<5	<1	5	<5	0.03	<10	<10
	0.03	<10	0.11	42	<2	0.01	9	214	19	0.02	<5	1	14	<5	0.07	39	<10
	0.01	<10	0.13	51	<2	0.01	9	155	7	0.01	<5	1	8	<5	0.07	<10	<10
	0.02	<10	0.11	92	<2	0.01	8	262	23	0.02	<5	1	8	<5	0.12	<10	<10
	0.01	<10	0.22	81	<2	0.01	20	146	11	0.01	<5	1	9	<5	0.07	19	<10
	0.03	<10	0.41	222	<2	0.01	39	358	14	0.03	<5	2	8	<5	0.08	13	<10
	0.01	<10	0.1	42	<2	0.01	10	168	16	0.02	<5	1	6	<5	0.05	11	<10
	0.03	11	0.57	149	<2	0.01	42	285	14	0.02	<5	2	9	<5	0.08	<10	<10
	0.03	<10	0.35	119	<2	0.01	29	345	14	0.03	<5	2	8	<5	0.09	13	<10
	0.03	11	0.17	121	<2	0.01	17	260	20	0.02	<5	1	13	<5	0.13	13	<10
	0.03	<10	0.24	118	<2	0.01	19	207	7	0.02	<5	1	8	<5	0.07	<10	<10
	0.02	<10	0.07	80	<2	0.01	7	269	16	0.02	<5	1	10	<5	0.05	29	<10
	0.01	<10	0.02	26	<2	0.01	2	80	8	0.01	<5	<1	1	<5	0.02	<10	<10
	0.02	<10	0.25	85	<2	0.01	21	296	15	0.03	<5	2	5	<5	0.06	<10	<10
	0.02	<10	0.26	244	<2	0.01	21	239	38	0.01	<5	1	5	<5	0.05	12	<10
	0.06	12	0.59	1160	<2	0.01	45	498	425	0.03	<5	3	12	<5	0.06	10	<10
	0.02	<10	0.08	138	<2	0.01	8	90	13	0.01	<5	<1	4	<5	0.03	<10	<10
	0.02	<10	0.17	72	<2	0.01	10	163	43	0.01	<5	1	3	<5	0.04	<10	<10
	0.03	<10	0.14	88	<2	<0.01	9	91	15	<0.01	<5	1	3	<5	0.03	<10	<10
	0.02	<10	0.25	75	<2	0.01	27	241	12	0.03	<5	1	3	<5	0.03	<10	<10
	0.01	<10	0.04	97	<2	<0.01	3	117	6	0.01	<5	<1	1	<5	0.02	<10	<10
	0.03	<10	0.52	254	<2	0.01	41	462	13	0.02	<5	3	6	<5	0.06	<10	<10
	0.02	<10	0.13	767	<2	0.01	10	585	11	0.03	<5	1	5	<5	0.05	<10	<10

0.02	<10	0.13	114	<2	0.01	10	515	11	0.02	<5	1	4	<5	0.03	<10	<10
0.03	<10	0.28	160	<2	0.01	16	1482	7	0.01	<5	1	4	<5	0.04	<10	<10
0.02	<10	0.11	101	<2	0.01	8	304	6	0.01	<5	1	3	<5	0.04	<10	<10
0.03	<10	0.15	105	<2	0.01	15	371	21	0.02	<5	1	5	<5	0.05	<10	<10
0.01	<10	0.05	39	<2	0.01	4	283	14	0.01	<5	<1	3	<5	0.01	<10	<10
0.03	<10	0.32	295	<2	0.01	29	407	19	0.01	<5	2	4	<5	0.05	<10	<10
0.03	<10	0.26	132	<2	0.01	21	545	15	0.02	<5	1	5	<5	0.03	<10	<10

V	W	Zn	Zr	
ppm	ppm	ppm	ppm	
	30	<10	11	1
	8	<10	6	1
	26	<10	37	1
	46	<10	92	3
	20	<10	23	1
	25	<10	27	1
	32	<10	99	3
	32	<10	115	2
	56	<10	121	2
	43	<10	76	3
	74	<10	81	3
	25	<10	23	2
	14	<10	20	1
	49	<10	19	2
	49	<10	15	2
	72	<10	37	3
	44	<10	21	2
	47	<10	71	4
	39	<10	12	2 3
	49	<10	36	
	51	<10	53	4
	57	<10	41	2
	47	<10	74	2
	40	<10	25	1
	13	<10	10	<1
	33	<10	86	2
	29	<10	149	3
	65	<10	287	2 1
	15	<10	40	
	29	<10	56	1
	20	<10	32	1
	36	<10	50	2
	17	<10	12	<1
	39	<10	51	2
	37	<10	37	1

25	<10	32	1	
31	<10	37	1	
27	<10	32	1	
33	<10	29	1	
11	<10	11	<1	
27	<10	36	3	
24	<10	32	1	

Swastika Laboratories Ltd

Established 1928

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 1 of 2

Date: AUG-30-06

6W-2551-SG1

Company: CARACLE CREEK INTERN. CONS.

Project: AR Soil Attn: J.Kleinboeck

We hereby certify the following Geochemical Analysis of 42 Soil samples submitted AUG-23-06 by .

Sample	Au	Au Check	Multi
Number	PPB	PPB	Element
63701	Nil	_	Results
63702	Nil		to
63703	Nil	-	follow
63704	2	-	
63705	Nil	-	
63706	2		
63707	Nil.	-	
63708	Nil	-	
63709	Nil	-	
63710	Nil	-	
63711	2	3	
63712	3	3	
63713	Nil	-	
63714 1	2	-	
63715	Nil		
63716	Nil	-	
63717	Nil	-	
63718	Nil	+	
63719	Nil	-	
63720	Nil	-	
63721	2	-	
63722	Nil	Nil	
63723	Nil	-	
63724	Nil	-	
63725	Nil	-	
63726	Nil		
63727	Nil	-	
63728	3	-	
63729	Nil	_	
63730	2	-	

Certified by

I Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Established 1928

Swastika Laboratories Ltd

.

Assaying - Consulting - Representation

Page 2 of 2

6W-2287-RA1

Assay Certificate

Date: AUG-03-06

Company: CARACLE CREEK INTERNATIONAL Project: ADT-AR Atm: J.Kleinboeck

We hereby certify the following Assay of 49 Rock samples submitted JUL-31-06 by .

Sample Number	Au g/tonne	Au Check g/tonne	Multi element	
63546	Nil	-		
63547	0,01	-		
63548	Ni I	-		
63549	Nil	-		
63550	0.03	-		
	0.01	Nil		
63551		1411		
63552	Nil	-		
63553	0.01	-		
63554	Nil	-		
63555	0.17			
63556	Nil			
63557	0.03	-		
63558	Ni1	-		5 C
63559	0,13	0.04	12	
63560	Ní l	+		
63561	0.15			
63562	0.08			
63563	Nil			
63564	Nil			
Blank	Nil	-		
STD OxJ47	2.32			

ol Certified by

......

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Established 1928

Swastika Laboratories Ltd

.

Assaying - Consulting - Representation

Page 2 of 2

6W-2287-RA1

Assay Certificate

Date: AUG-03-06

Company: CARACLE CREEK INTERNATIONAL Project: ADT-AR Atm: J.Kleinboeck

We hereby certify the following Assay of 49 Rock samples submitted JUL-31-06 by .

Sample Number	Au g/tonne	Au Check g/tonne	Multi element	
63546	Nil	-		
63547	0,01	-		
63548	Ni I	-		
63549	Nil	-		
63550	0.03	-		
	0.01	Nil		
63551		1411		
63552	Nil	-		
63553	0.01	-		
63554	Nil	-		
63555	0.17			
63556	Nil			
63557	0.03	-		
63558	Ni1	-		5 C
63559	0,13	0.04	12	
63560	Ní l	+		
63561	0.15			
63562	0.08			
63563	Nil			
63564	Nil			
Blank	Nil	-		
STD OxJ47	2.32			

ol Certified by

......

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

.

Swastika Laboratories Ltd

Established 1928

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 2 of 2

6W-2551-SG1

Date: AUG-30-06

Company: CARACLE CREEK INTERN. CONS. Project: AR Soil Ann: J.Kleinboeck

We hereby certify the following Geochemical Analysis of 42 Soil samples submitted AUG-23-06 by .

Sample	Au	Au	Check	Multi	
Number	PPB		PPB	Element	
63731	Nil		*		
63732	Nil		-		
63733	2		-		
63734	3		-		
63735	Nil		-		ana da beterini
63736	2				
	Nil				
63737 63738	Nil				
	5		- 2		
63739	2				
63740					
63741	7		-		
63742	Nil		-		
s					

Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Adroit Resources - Detailed Log Report							
Hole Number: AR-08							
Primary Coordinates Grid: AR-G:	Contractor: Cartwright Drilling	Collar Dip:	-45.00				
North: 5226802.00	Core Storage: Cobalt	Collar Az:	165.00				
East: 615595.00		Length:	124.97				
Elev: 337.00		Start Depth:	0.00				
Collar Survey: N Plugged: N		Final Depth:	124.97				
Multishot Survey: N Hole Size: BTW							
Pulse EM Survey: N Casing: Left in hole							
-	Primary Coordinates Grid: AR-G: North: 5226802.00 East: 615595.00 Elev: 337.00 Collar Survey: N Plugged: N Multishot Survey: N Hole Size: BTW	Primary Coordinates Grid: AR-G: North: 5226802.00 East: 615595.00 Elev: 337.00 Collar Survey: N Plugged: N Multishot Survey: N Hole Size: BTW	Primary Coordinates Grid: AR-G: Contractor: Cartwright Drilling Collar Dip: North: 5226802.00 Collar Storage: Cobalt Collar Az: East: 615595.00 Length: Elev: 337.00 Start Depth: Collar Survey: N Plugged: N Multishot Survey: N Hole Size: BTW				

	Detailed Li	ithology				Assay	v Data					
	From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
Γ	0	3.90	OB, Overburden			•						
			Casing Driven to 3.90m.									

Adroit Resources - Detailed Log Report

Hole Number: AR-08

Units: METRIC

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
3.90	124.97	MV, Mafic Volcanic	10501	5.80	6.30	0.50	0.4219	0.0286	0.0055	9	4
		Dark grey to black , silicified in some areas	10502	13.00	13.60	0.60	0.0149	0.0149	0.0125	7	0.5
		Texture	10503	22.00	23.00	1.00	0.0108	0.0215	0.0052	5	0.5
		3.90 - 124.97 : FG Fine Grained	10504	30.40	31.40	1.00	0.0142	0.0213	0.0035	2.5	0.5
		Mineralization	10505	36.81	37.31	0.50	0.0028	0.0177	0.0031	2.5	0.5
		5.90 - 6.20 : CPY Chalcopyrite, DISS Disseminated, 2%	10506	49.50	50.00	0.50	0.0378	0.0136	0.0267	2.5	0.5 0.5
		throughout unit.	10507	65.66	66.16	0.50	0.0028	0.0281	0.0046	7	0.5
		3.90 - 124.97 : PY Pyrite, DISS Disseminated, 1%	10508	70.00	70.47	0.47	0.0125	0.0801	0.0018	2.5	0.5
		throughout unit. 47.30 - 47.70 : CPY Chalcopyrite, DISS Disseminated, 2%	10509	79.40	80.40	1.00	0.0189	0.6357	0.0034	6	0.5
		in carb flooding	10511	80.40	81.40	1.00	0.0083	0.1957	0.0037	6	
		66.07 - 66.07	10512	81.40	82.40	1.00	0.002	0.0191	0.0033	5	0.5 0.5
		? in Carb vein	10513	82.40	83.40	1.00	0.0022	0.025	0.0044	6	0.5
		76.90 - 77.00 : PY Pyrite, SEMI MASS Semi Massive, 4%	10514	84.70	85.70	1.00	0.0417	0.0242	0.008	8	0.5
		Alteration	10515	94.50	95.00	0.50	0.0753	0.0129	0.0072	6	0.5
		3.90 - 124.97 :CARB Carbonate, VEIN Vein, Medium Medium	10516	104.00	104.50	0.50	0.0228	0.009	0.0027	5	0.5
		up to 6mm.	10517	111.00	111.70	0.70	0.0079	0.0143	0.0054	6	0.5
		26.73 - 26.80 :CARB Carbonate, VEIN Vein, Medium Medium	10518	121.70	122.20	0.50	0.0143	0.0133	0.0036	6	0.5
		3.90 - 124.97 :CHL Chlorite, PERV Pervasive, Medium Medium	10519	123.97	124.97	1.00	0.0875	0.0184	0.0086	6	1
		 13.70 - 13.90 :CARB Carbonate, VEIN Vein, Weak Weak mafic fragments within 36.99 - 37.03 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Medium Medium blue metallic sx visible Structure 3.90 - 124.97 : FOLIATION Foliation, 70 Deg to CA 3.90 - 124.97 2-3 per meter 36.62 - 40.00 41.15 - 43.50 py in breaks. 106.65 - 109.00 113.70 - 119.40 									

Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
10501	5.80	6.30	0.4219	0.0286	0.0055	9	4
10502	13.00	13.60	0.0149	0.0149	0.0125	7	0.5
10503	22.00	23.00	0.0108	0.0215	0.0052	5	0.5
10504	30.40	31.40	0.0142	0.0213	0.0035	2.5	0.5
10505	36.81	37.31	0.0028	0.0177	0.0031	2.5	0.5
10506	49.50	50.00	0.0378	0.0136	0.0267	2.5	0.5

Page 3 of 3

Hole Number: AR-08

Samples

Campies							
Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
10507	65.66	66.16	0.0028	0.0281	0.0046	7	0.5
10508	70.00	70.47	0.0125	0.0801	0.0018	2.5	0.5
10509	79.40	80.40	0.0189	0.6357	0.0034	6	0.5
10511	80.40	81.40	0.0083	0.1957	0.0037	6	0.5
10512	81.40	82.40	0.002	0.0191	0.0033	5	0.5
10513	82.40	83.40	0.0022	0.025	0.0044	6	0.5
10514	84.70	85.70	0.0417	0.0242	0.008	8	0.5
10515	94.50	95.00	0.0753	0.0129	0.0072	6	0.5
10516	104.00	104.50	0.0228	0.009	0.0027	5	0.5
10517	111.00	111.70	0.0079	0.0143	0.0054	6	0.5
10518	121.70	122.20	0.0143	0.0133	0.0036	6	0.5
10519	123.97	124.97	0.0875	0.0184	0.0086	6	1

Units: METRIC

Adroit Resources - Detailed Log Report					
		Units: ME	TRIC		
Primary Coordinates Grid: AR-G:	Contractor: Cartwright Drilling	Collar Dip:	-45.00		
North: 5226844.00	Core Storage: Cobalt	Collar Az:	165.00		
East: 615578.00		Length:	149.35		
Elev: 314.00		Start Depth:	0.00		
Collar Survey: N Plugged: N		Final Depth:	149.35		
Multishot Survey: N Hole Size: BTW					
Pulse EM Survey: N Casing: Left in hole					
	Primary Coordinates Grid: AR-G: North: 5226844.00 East: 615578.00 Elev: 314.00 Collar Survey: N Plugged: N Multishot Survey: N Hole Size: BTW	Primary Coordinates Grid: AR-G: North: 5226844.00 East: 615578.00 Elev: 314.00 Collar Survey: N Plugged: N Multishot Survey: N Hole Size: BTW	Primary Coordinates Grid: AR-G: Contractor: Cartwright Drilling Collar Dip: North: 5226844.00 Collar Dip: Core Storage: Cobalt Collar Az: East: 615578.00 Length: Length: Elev: 314.00 Start Depth: Final Depth: Multishot Survey: N Plugged: N Final Depth:		

[Detailed Lithology			Assay Data								
	From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
	0	6.40	OB, Overburden			•						

Adroit Resources - Detailed Log Report

Page 2 of 4

Hole Number: AR-07

Units: METRIC

etailed L	.ithology	,	Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag pp	
6.40	149.35	MV, Mafic Volcanic	63991	24.38	24.88	0.50	0.0083	0.0188	0.0079	7		
		Mafic volcanics, silicified in areas	63992	24.88	25.38	0.50	0.0181	0.0429	0.0058	44		
		Texture	63993	25.38	25.88	0.50	0.0024	0.0315	0.0078	6		
		6.40 - 149.35 : FG Fine Grained	63994	25.88	26.38	0.50	0.0175	0.0477	0.0063	7		
		Mineralization	63995	26.38	26.88	0.50	0.0193	0.2249	0.0055	9		
		6.40 - 149.35 : PY Pyrite, BLEB Blebby, 10%	63996	36.58	37.08	0.50	0.0095	0.0528	0.0064	5		
		throughout unit	63997	40.00	40.50	0.50	0.0153	0.1099	0.0048	7		
		62.00 - 62.00 : CPY Chalcopyrite, DISS Disseminated, 1%	63998	40.50	41.00	0.50	0.0252	0.3026	0.0097	6		
		68.60 - 68.70 : PY Pyrite, SEMI MASS Semi Massive, 5%	63999	41.00	41.50	0.50	0.0243	0.1396	0.0151	5		
		72.00 - 72.50 : PY Pyrite, SEMI MASS Semi Massive, 5%	63863	41.50	42.00	0.50	0.0084	0.1855	0.0134	2.5		
		66.00 - 66.50 blue metallic sx here.	63864	42.00	42.50	0.50	0.0119	0.7929	0.0141	2.5		
		8.30 - 10.60 : PO Phyrrotite, DISS Disseminated, 1%	63865	44.40	44.90	0.50	0.0066	0.1781	0.0139	2.5		
		24.52 - 24.62 : PY Pyrite, FF Fracture Filling, 1%	63866	53.00	54.00	1.00	0.0018	0.2404	0.0087	8		
		associated with hematite alteration	63867	54.00	55.00	1.00	0.0033	0.046	0.0095	2.5		
		Alteration	63868	55.00	56.00	1.00	0.0017	0.1262	0.0095	2.5		
		35.00 - 35.00 :KSPAR K-Feldspar, VEIN Vein, Weak Weak	63869	56.00	57.00	1.00	0.0039	0.4061	0.0052			
		135.50 - 135.50 :QTZ FLOOD Quartz Flooding, VEIN Vein, Medium Medium	63871	57.00	58.00	1.00	0.0021	0.1557	0.0049			
	3 cm wide, no sx associated. 6.40 - 149.35 :CARB Carbonate, VEIN Vein, Medium Medium	-	63872	58.00	59.00	1.00	0.0051	0.3344	0.0076	6		
		63873	59.00	60.00	1.00	0.0051	0.1094	0.0139	2.5			
		throughout unit, up to 1cm wide.	63874	60.00	61.00	1.00	0.0042	0.0367	0.0094	2.5		
		35.00 - 35.00 :EPI Epidote, PATCHY Patchy, Medium Medium	63875	61.00	61.80	0.80	0.0164	0.0499	0.0066	2.5		
		throughout unit	63876	61.80	62.30	0.50	0.1813	0.031	0.0294	7		
		Structure	63877	62.30	63.30	1.00	0.0045	0.0184	0.0269	2.5		
		6.40 - 149.35	63878	63.30	64.30	1.00	0.0103	0.0321	0.0158			
		2-3 per meter 23.57 - 23.57 : FOLIATION Foliation, 80 Deg to CA	63879	64.30	65.30	1.00	0.025	0.0624	0.0149			
		pervasive	63881	65.30	66.00	0.70	0.0232	0.4086	0.0081	6		
		101.00 - 101.00	63882	66.00	66.50	0.50	0.0365	0.2131	0.0052	12		
			63883	66.50	67.00	0.50	0.1799	0.0512	0.0061	.2		
			63884	67.00	67.50	0.50	0.0409	0.0012	0.0052	6		
			63885	67.50	68.00	0.50	0.0256	0.0214	0.0058			
			63886	68.00	68.50	0.50	0.0247	0.0225	0.0055			
			63887	68.50	69.00	0.50	0.0296	0.0234	0.0101	8		
			63888	69.00	70.00	1.00	0.0282	0.0383	0.0112	7		
			63889	70.00	70.00	1.00	0.0202	0.7476	0.0112			
			63891	71.00	71.00	1.00	0.022	0.299	0.0087	25		
			63893	71.00	72.50	0.50	0.0302	0.4548	0.0127	10		
			63892	72.00	72.50	0.50	0.1046	1.9814	0.0127	10		
			63894	72.50	72.50	0.50	0.0326	0.0391	0.0114			
			63895	85.34	86.34	1.00	0.0320	0.0348	0.0108			
								0.0348	0.0098	12		
			63896	106.51	107.51	1.00	0.001	0.0228	0.0114	8		

Hole Number: AR-07

Units: METRIC

Detailed	Lithology		Assay Data								
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
			63897	111.00	112.00	1.00	0.0094	0.0228	0.0048	2.5	0.5
			63898	112.00	113.00	1.00	0.01	0.0295	0.0053	7	0.5
			63899	117.00	118.00	1.00	0.0021	0.0173	0.004	6	0.5

Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
63991	24.38	24.88	0.0083	0.0188	0.0079	7	0.5
63992	24.88	25.38	0.0181	0.0429	0.0058	44	0.5
63993	25.38	25.88	0.0024	0.0315	0.0078	6	0.5
63994	25.88	26.38	0.0175	0.0477	0.0063	7	0.5
63995	26.38	26.88	0.0193	0.2249	0.0055	9	0.5
63996	36.58	37.08	0.0095	0.0528	0.0064	5	0.5
63997	40.00	40.50	0.0153	0.1099	0.0048	7	0.5
63998	40.50	41.00	0.0252	0.3026	0.0097	6	1
63999	41.00	41.50	0.0243	0.1396	0.0151	5	2
63863	41.50	42.00	0.0084	0.1855	0.0134	2.5	1
63864	42.00	42.50	0.0119	0.7929	0.0141	2.5	0.5
63865	44.40	44.90	0.0066	0.1781	0.0139	2.5	0.5
63866	53.00	54.00	0.0018	0.2404	0.0087	8	0.5
63867	54.00	55.00	0.0033	0.046	0.0095	2.5	0.5
63868	55.00	56.00	0.0017	0.1262	0.0095	2.5	0.5
63869	56.00	57.00	0.0039	0.4061	0.0052	2.5	1
63871	57.00	58.00	0.0021	0.1557	0.0049	2.5	0.5
63872	58.00	59.00	0.0051	0.3344	0.0076	6	2
63873	59.00	60.00	0.0051	0.1094	0.0139	2.5	0.5
63874	60.00	61.00	0.0042	0.0367	0.0094	2.5	0.5
63875	61.00	61.80	0.0164	0.0499	0.0066	2.5	0.5
63876	61.80	62.30	0.1813	0.031	0.0294	7	3
63877	62.30	63.30	0.0045	0.0184	0.0269	2.5	0.5
63878	63.30	64.30	0.0103	0.0321	0.0158	6	13
63879	64.30	65.30	0.025	0.0624	0.0149	2.5	1
63881	65.30	66.00	0.0232	0.4086	0.0081	6	2
63882	66.00	66.50	0.0365	0.2131	0.0052	12	2
63883	66.50	67.00	0.1799	0.0512	0.0061	6	3
63884	67.00	67.50	0.0409	0.0183	0.0052	6	0.5
63885	67.50	68.00	0.0256	0.0214	0.0058	5	0.5
63886	68.00	68.50	0.0247	0.0225	0.0055	2.5	0.5
63887	68.50	69.00	0.0296	0.0234	0.0101	8	0.5
63888	69.00	70.00	0.0282	0.0383	0.0112	7	0.5

Hole Number: AR-07

Samples

Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
63889	70.00	71.00	0.0174	0.7476	0.0121	11	0.5
63891	71.00	72.00	0.022	0.299	0.0087	25	0.5
63892	72.00	72.50	0.1046	1.9814	0.0114	17	4
63894	72.50	73.00	0.0326	0.0391	0.0108	8	2
63895	85.34	86.34	0.0478	0.0348	0.0098	12	3
63896	106.51	107.51	0.001	0.0228	0.0114	8	0.5
63897	111.00	112.00	0.0094	0.0228	0.0048	2.5	0.5
63898	112.00	113.00	0.01	0.0295	0.0053	7	0.5
63899	117.00	118.00	0.0021	0.0173	0.004	6	0.5
Sample Type DUP							
63893	72.00	72.50	0.0302	0.4548	0.0127	10	3

Page 4 of 4

Units: METRIC

May 25, 2007	Adroit Resources - Detailed Log Report							
Hole Number: AR-06			Units: ME	TRIC				
Project Name: Argentia Ridge	Primary Coordinates Grid: AR-G:	Contractor: Cartwright Drilling	Collar Dip:	-45.00				
Project Number: AR	North: 5226766.00	Core Storage: Cobalt	Collar Az:	345.00				
Location: Argentia Ridge	East: 615291.00		Length:	140.21				
	Elev: 353.00		Start Depth:	0.00				
Date Started: Mar 01, 2007	Collar Survey: N Plugged: N		Final Depth:	140.21				
Date Completed: Mar 03, 2007	Multishot Survey: N Hole Size: BTW							
	Pulse EM Survey: N Casing: Left in hole							
Comments:								

Detai	led Lithology				Assay	v Data					
From	n To	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
	0 8.70	OB, Overburden			•						
		Casing driven to 8.7m.									

Adroit Resources - Detailed Log Report

Hole Number:	AR-06									Units	: METRIC
Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
8.70	140.21	NDIA, Nipissing Diabase	63989	26.00	26.50	0.50	0.0076	0.0039	0.0045	6	0.
		Grey and Green massive to various textured NDIA.	63990	89.40	89.70	0.30	0.009	0.0067	0.0047	2.5	0.5
		Texture			1		ŀ				
		8.70 - 140.21 : MASS Massive To various textured.									
		Mineralization 8.70 - 140.21 : PY Pyrite, FF Fracture Filling, 1% local ff.									
		65.50 - 65.50 : CPY Chalcopyrite, DISS Disseminated, 0.5% Found in Felsic alteration									
		65.50 - 78.70 : PY Pyrite, DISS Disseminated, 0.5% 8.70 - 140.21 : MT Magnetite, PERV Pervasive, 1% throughout unit									
		89.50-89.55 : PY Pyrite, FF Fracture Filling, 5%26.00-26.10 : PY Pyrite, DISS Disseminated, 10%									
		with angulr shards of chl. Alteration									
		59.13 - 59.18 :KSPAR K-Feldspar, VEIN Vein, Weak Weak									
		82.16 - 82.37 :CARB Carbonate, VEIN Vein, Medium Medium									
		8.70 - 140.21 :EPI Epidote, PATCHY Patchy, Medium Medium									
		Local patches									
		8.70 - 140.21 :CARB Carbonate, VEIN Vein, Medium Medium									
		Veinlets up to 1.5cm wide.									
		26.00 - 26.10 :CARB Carbonate, VEIN Vein, Medium Medium									
		Pink veinlet									
		Structure									
		59.00 - 61.00 62.00 - 69.00									
		2-3 per meter									
		62.00 - 69.00 : FAULT Fault, 50 Deg to CA									
		92.70 - 92.87 : BROKEN Broken Core, 30 Deg to CA									
		106.00 - 109.00									
		Mainly broken along core axis. 114.30 - 118.02									
		133.70 - 133.70									

Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
63989	26.00	26.50	0.0076	0.0039	0.0045	6	0.5
63990	89.40	89.70	0.009	0.0067	0.0047	2.5	0.5

May 25, 2007	Page 1 of 2					
Hole Number: A	AR-05			Units: ME	ETRIC	
Project Name:	Argentia Ridge	Primary Coordinates Grid: AR-G:	Contractor: Cartwright Drilling	Collar Dip:	-45.00	
Project Number:	AR	North: 5226518.00	Core Storage: Cobalt	Collar Az:	345.00	
Location:	Argentia Ridge	East: 615479.00		Length:	100.58	
	5 5	Elev: 329.00		Start Depth:	0.00	
Date Started:	Feb 27, 2007	Collar Survey: N Plugged: N		Final Depth:	100.58	
Date Completed	: Feb 28, 2007	Multishot Survey: N Hole Size: BTW				
		Pulse EM Survey: N Casing: Left in hole				
Comments:						

Sample Averages

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
0	12.53	OB, Overburden			-						
12.53		CGL, Conglomerate Dark grey. interflow sediments Texture 12.53 - 34.40 : MG Medium Grained to coarse grained; fragments are few mm to 5 cm wide. Alteration 12.53 - 34.40 :QTZ FLOOD Quartz Flooding, VEIN Vein, Medium Medium up to 4cm wide Structure 12.53 - 34.40 5cm wide 22.30 - 23.00 0-40 degrees TCA									

Adroit Resources - Detailed Log Report

HOLE MULTIDEL. AR-	le Number: AR-05 Units: METRIC									
Detailed Litho	logy	Assay Data								
From To	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
34.40 10	 MV, Mafic Volcanic Texture 34.40 - 100.58 : FG Fine Grained Mineralization 34.40 - 100.58 : PY Pyrite, DISS Disseminated, 2% throughout unit. Some blebs associated with quartz. 34.40 - 100.58 : CPY Chalcopyrite, DISS Disseminated, 1% 34.40 - 100.58 : PO Phyrrotite, DISS Disseminated, 0.01% trace Alteration 34.40 - 100.58 :EPI Epidote, PATCHY Patchy, Medium Medium 34.40 - 100.58 :OTZ CARB Quartz Carbonate Veins, VEIN Vein, Medium Iarge veinlet @85.60m. 34.40 - 100.58 :QTZ FLOOD Quartz Flooding, VEIN Vein, Medium Medium up to 2cm wide. 34.40 - 100.58 :CHL Chlorite, PERV Pervasive, Weak Weak Structure 34.40 - 100.58 									

May 25, 2007	led Log Report		Page 1 of 3	
Hole Number: AR-04			Units: ME	TRIC
Project Name: Argentia Ridge	Primary Coordinates Grid: AR-G:	Contractor: Cartwright Drilling	Collar Dip:	-45.00
Project Number: AR	North: 5226644.00	Core Storage: Cobalt	Collar Az:	165.00
Location: Argentia Ridge	East: 615434.00		Length:	166.55
	Elev: 335.00		Start Depth:	0.00
Date Started: Feb 25, 2007	Collar Survey: N Plugged: N		Final Depth:	166.55
Date Completed: Feb 26, 2007	Multishot Survey: N Hole Size: BTW			
	Pulse EM Survey: N Casing: Left in hole			
Comments:				

Detailed	Lithology			Assay	/ Data						
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
0	2.97	OB, Overburden									

Adroit Resources - Detailed Log Report

Hole Number:	AR-04									Unit	s: METRIC	C
Detailed Li	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm	n
2.97	166.55	MV, Mafic Volcanic	63988	41.45	41.62	0.17	0.9291	0.012	0.0792	8		5
		Felsic components, 2%. 125.40-126.11m; 135.84-135.81m.	L									
		Texture										
		2.97 - 166.55 : FG Fine Grained										
		Mineralization										
		2.97 - 166.55 : PY Pyrite, DISS Disseminated, 2%										
		throughout unit; some blebs 1-2mm.										
		27.78-36.00m, 5-6%, associated with quartz.										
		2.97 - 166.55 : PO Phyrrotite, BLEB Blebby, 1% @10m, and 26.53m.										
		25.18 - 25.44 : CPY Chalcopyrite, DISS Disseminated, 0.5%										
		Alteration										
		2.97 - 166.55 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Medium Medium										
		2-3mm thick.										
		76.38 - 76.38 :CHL Chlorite, PERV Pervasive, Medium Medium										
		Gouge found @153.10m.										
		2.97 - 166.55 :HEM Hematite, PATCHY Patchy, Weak Weak										
		found in breaks										
		2.97 - 166.55 :KSPAR K-Feldspar, DISS Disseminated, Weak Weak										
		found in few patches										
		2.97 - 166.55 :QTZ FLOOD Quartz Flooding, VEIN Vein, Weak Weak										
		@10.95m, and 41.40m.										
		Structure										
		2.97 - 5.68										
		also broken @116m.										
		2.97 - 166.55 : FOLIATION Foliation, 65 Deg to CA										
		2.97 - 166.55 2-3 per meter										
		38.48 - 38.82										
		63.35 - 63.70										
		oxidized										
		67.20 - 67.36 : FAULT Fault, 70 Deg to CA										
		oxidized										
	73.30 - 73.50 oxidized											
		158.68 - 158.78										

Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
63988	41.45	41.62	0.9291	0.012	0.0792	8	5

May 25, 2007	Adroit Resources - Detailed Log Report						
Hole Number: Af	R-03			Units: ME	TRIC		
Project Name:	Argentia Ridge	Primary Coordinates Grid: AR-S:	Contractor: Cartwright Drilling	Collar Dip:	-45.00		
Project Number:	AR	North: 5224368.00	Core Storage: Cobalt	Collar Az:	180.00		
Location:	Argentia Ridge	East: 617366.00		Length:	124.97		
	5 5	Elev: 231.00		Start Depth:	0.00		
Date Started:	Feb 21, 2007	Collar Survey: N Plugged: N		Final Depth:	124.97		
Date Completed:	Feb 22, 2007	Multishot Survey: N Hole Size: BTW					
		Pulse EM Survey: N Casing: Left in hole					
Comments:							

Sample Averages

Detailed Li	ithology				Assay	y Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
0	12.90	OB, Overburden			-	•					
12.90	25.50	CGL, Conglomerate Granitic Boulders found within unit. Texture 12.90 - 25.50 : VFG Very Fine Grained Alteration 12.90 - 25.50 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Medium <1mm. Structure 12.90 - 25.50									
25.50		Broken core at 19m. Oxidized on break ARG, ArgiIlite Pink in colour. Arkosic Sandstone Texture 25.50 - 37.00 : VFG Very Fine Grained Alteration 25.50 - 37.00 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Weak <1mm.									

Adroit Resources - Detailed Log Report

Page 2 of 4

Hole Number	r: AR-03									Unit	s: METRIC
Detailed I	Lithology				Assay	y Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
37.00	59.85 CGL, Co Bigger fi Texture 37.00 with CG Minera 37.00 @45.721 Alterat 37.00 1mm or 37.00 Structu 37.00 Structu 37.00 1-2 per 37.00	 bonglomerate ragments, up to 10cm wide 48.50 : FG Fine Grained fragments. lization 48.50 : PY Pyrite, DISS Disseminated, 0.5% 48.50 : PO Phyrrotite, DISS Disseminated, 0.2% m. a. 48.50 : QTZ CARB Quartz Carbonate Veins, VEIN Vein, Weak less in width. 48.50 : CHL Chlorite, PATCHY Patchy, Weak Weak irre 59.85 : FRACTURE Fractures, 40 Deg to CA 				Longui					7.9 pp
59.85	Texture 59.85 Alterat 59.85 1 mm of Structu 59.85 1 per me	Sandstone. Pink in colour - 63.00 : FG Fine Grained ion - 63.00 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Weak Weak r less wide. ire - 63.00 : FRACTURE Fractures, 60 Deg to CA									

Adroit Resources - Detailed Log Report

Page 3 of 4

Hole Number:	AR-03									Unit	s: METRIC
Detailed Lit	thology				Assay	y Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
63.00	81.28	CGL, Conglomerate 67.00-70.00m; sandstone alteration, still conglomerate. Texture 63.00 - 66.15 : FG Fine Grained Mineralization 63.00 - 66.15 : PY Pyrite, DISS Disseminated, 1% throughout unit. Alteration 63.00 - 66.15 : QTZ CARB Quartz Carbonate Veins, VEIN Vein, Weak 1 mm wide. Structure 63.00 - 66.15 : BROKEN Broken Core, 70 Deg to CA @65.68m			·				<u> </u>		
81.28	124.00	ARG, Argillite EOH. Arkosic sandstone. Alternating from pink to greyish pink in colour. No fragments found within. Small amounts of oxidization found on breaks. No visible sulphides. Small blebs of carbonate found in unit. Texture 81.28 124.00 : FG Fine Grained Alteration 81.28 124.00 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Medium 81.28 124.00 :QTZ FLOOD Quartz Flooding, VEIN Vein, Weak Weak 5 mm wide@44m. 81.28 124.00 :HEM Hematite, PATCHY Patchy, Weak Weak only found in small veilets and on breaks Structure 81.28 124.00 few mm to few cm thick 81.28 124.00 few mm to few cm thick 81.28 124.00 ge = 124.00 few mm to few cm thick 81.28 124.00 few mm to few cm thick 81.28 124.00 few mm to few cm thick 81.28 124.00 few meters 81.28 124.00 few meters 81.28 124.00 few meters <									

May	25,	2007
-----	-----	------

Hole Number: AR-03 Units: METRIC Detailed Lithology Assay Data То Sample Number То Cu % From Lithology From Length Zn % Co % Au ppb Ag ppm 124.97 CGL, Conglomerate 124.00 Texture 124.00 - 124.97 : FG Fine Grained to medium grained Alteration 124.00 - 124.97 :HEM Hematite, DISS Disseminated, Medium Medium Structure 124.00 - 124.97

	Adroit Resources - Detailed I			
Hole Number: AR-02			Units: ME	TRIC
Project Name: Argentia Ridge	Primary Coordinates Grid: AR-E:	Contractor: Cartwright Drilling	Collar Dip:	-45.00
Project Number: AR	North: 5227333.00	Core Storage: Cobalt	Collar Az:	360.00
Location: Argentia Ridge	East: 617161.00		Length:	15.24
6 6	Elev: 279.00		Start Depth:	0.00
Date Started: Feb 21, 2007	Collar Survey: N Plugged: N		Final Depth:	15.24
Date Completed: Feb 21, 2007	Multishot Survey: N Hole Size: BTW			
	Pulse EM Survey: N Casing: Left in hole			
Comments:				

Detailed Lithology					Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
0	15.24	ARG, Argillite			-						

May 25, 2007		Adroit Resources - Detailed	Adroit Resources - Detailed Log Report					
Hole Number: A	R-01			Units: ME	TRIC			
Project Name:	Argentia Ridge	Primary Coordinates Grid: AR-E:	Contractor: Cartwright Drilling	Collar Dip:	-45.00			
Project Number:	AR	North: 5227424.00	Core Storage: Cobalt	Collar Az:	360.00			
Location:	Argentia Ridge	East: 617462.00		Length:	149.35			
	5 5	Elev: 252.00		Start Depth:	0.00			
Date Started:	Feb 16, 2007	Collar Survey: N Plugged: N		Final Depth:	149.35			
Date Completed:	Feb 17, 2007	Multishot Survey: N Hole Size: BTW						
ł		Pulse EM Survey: N Casing: Left in hole						
Comments:								

Sample Averages

Detailed l	Lithology				Assay	/ Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
0	4.10) OB, Overburden				• • • •	I				
		Casing diven to 4.10									
4.10	17.17	ARG, Argillite	63984	15.00	16.00	1.00	0.0124	0.0162	0.0072	9	C
		Dark green to dark grey	L			I	I				
		Texture									
		4.10 - 17.17 : VFG Very Fine Grained									
		Mineralization									
		4.10 - 17.17 : PY Pyrite, BLEB Blebby, 0.5%									
		@15.16m, 16.60m.									
		4.10 - 17.17 : PY Pyrite, PERV Pervasive, 2%									
		@ 15.24-15.84; following quartz vein									
		Alteration									
		4.10 - 17.17 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Medium Medium									
		up to 1cm wide									
		4.10 - 17.17 :HEM Hematite, PERV Pervasive, Medium Medium									
		Found in breaks									
		4.10 - 17.17 :CHL Chlorite, PERV Pervasive, Medium Medium									
		Found in fractures									
		4.10 - 17.17 : QTZ FLOOD Quartz Flooding, VEIN Vein, Medium Medium									
		large vein @15.35-15.63m.									
		Structure									
		4.10 - 17.17 : FRACTURE Fractures, 60 Deg to CA									
		2-5 per meter									

Adroit Resources - Detailed Log Report

Page 2 of 4

Hole Number	: AR-01									Unit	s: METRIC
Detailed L	ithology		Assay Data								
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
17.17	29.35	ARG, Argillite		•	•			•			
		Heavily fractured zone;									
		Texture									
		17.17 - 29.35 : VFG Very Fine Grained									
		Alteration									
		17.17 - 29.35 :HEM Hematite, PERV Pervasive, Strong Strong									
		Found on breaks, and in veins throughout unit.									
		17.17 - 29.35 :QTZ FLOOD Quartz Flooding, VEIN Vein, Medium Medium									
		veining up to 3cm wide.									
		17.17 - 29.35 :QTZ CARB Quartz Carbonate Veins, VEIN Vein, Medium Medium									
		in veins, up to 1cm wide.									
		17.17 - 29.35 :CHL Chlorite, PATCHY Patchy, Medium Medium									
		Found throughout unit. Gouge at 19m and 21.80m.									
		Structure									
		17.17 - 29.35									
		faulting, core broken throughout unit									
		17.17 - 29.35									
		17.17 - 29.35									
		1-3mm thick, found in fractured zone.									

Adroit Resources - Detailed Log Report

Hole Number: AR-01									Units	: METRIC
Detailed Litholog	у			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
29.35 149.3	5 ARG, Argillite	63985	81.00	82.00	1.00	0.0024	0.0104	0.0063	8	0.5
	Dark black, mafic alt, at 57m. After faulting at 131m, core is darker grey to black	63986	82.00	83.00	1.00	0.005	0.0114	0.0117	10	0.5
	in colour. Oxidization found in breaks from 140-to eoh.	63987	83.00	84.00	1.00	0.0121	0.0288	0.0045	8	0.5
	Texture		IIIIII	ļ			I			1
	29.35 - 41.53 : VFG Very Fine Grained									
	 29.35 - 41.53 : VFG Very Fine Grained Mineralization 29.35 - 41.53 : PY Pyrite, PERV Pervasive, 1% 55.78-56.18m. Also DISS throughout unit<1% (113-119.00) 29.35 - 41.53 : PY Pyrite, BLEB Blebby, 0.5% @50m. ; 113.00m. 29.35 - 41.53 : PO Phyrrotite, FF Fracture Filling, 4% 75.42-75.80m; @78m-85.40m. Perv at 113.00m (3-4%). Alteration 29.35 - 41.53 : CARB Quartz Carbonate Veins, PERV Pervasive, Medium Medium up to 1 cm thick; oxidized in some areas 29.35 - 41.53 :HEM Hematite, PATCHY Patchy, Weak Weak only found on few of the fractures 29.35 - 41.53 :CHL Chlorite, PERV Pervasive, Strong Strong throughtout unit; usually in breaks and fractures. 118.87, chl in belbs, II to core axis. 140, gouge associated with fault. FOund in breaks for remainder of hole. Structure 29.35 - 41.53 1.30m thick. generally II to core axis, and some dipping at 30 to 40 degrees. @117.00m, alteration of bedding is twisted. 29.35 - 41.53 1.53m: 56.40-56.60m, 30 degrees. 61.51-68.20m;95.30-96.50m, gougy, rubbly broken core 29.35 - 41.53 generally II to C.A. Heavily broken, with some gouge associated in break. 115-131m. Rubbly. 128.50, heavily gouged, that is slightly brecciated, with small fragments, found within fault. 140.00-149.35, heavily fractured; most fractures along core axis 									

Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
63984	15.00	16.00	0.0124	0.0162	0.0072	9	0.5
63985	81.00	82.00	0.0024	0.0104	0.0063	8	0.5
63986	82.00	83.00	0.005	0.0114	0.0117	10	0.5

May	25,	2007
-----	-----	------

Hole Number: AR-01

Units: METRIC

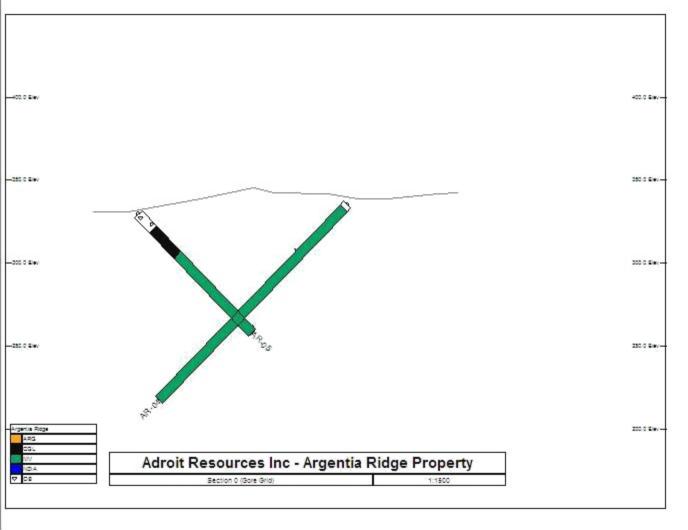
Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
63987	83.00	84.00	0.0121	0.0288	0.0045	8	0.5

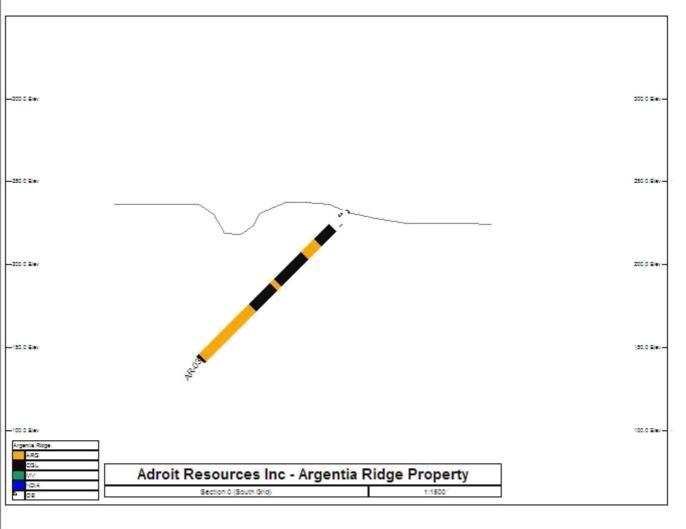
May	25,	2007
-----	-----	------

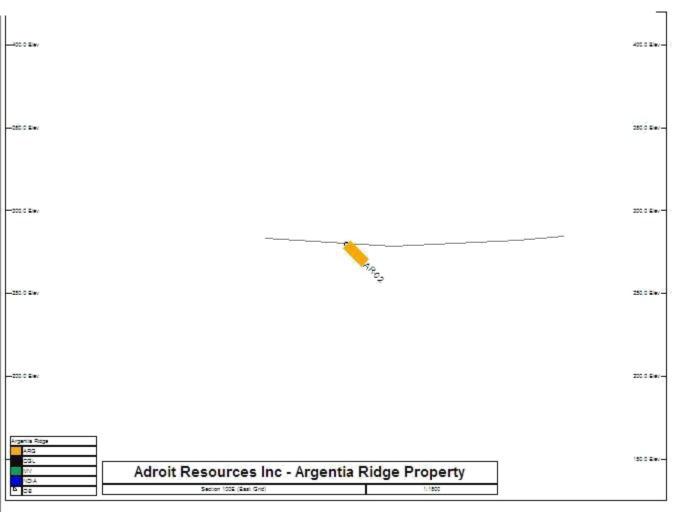
Page 1 of 2

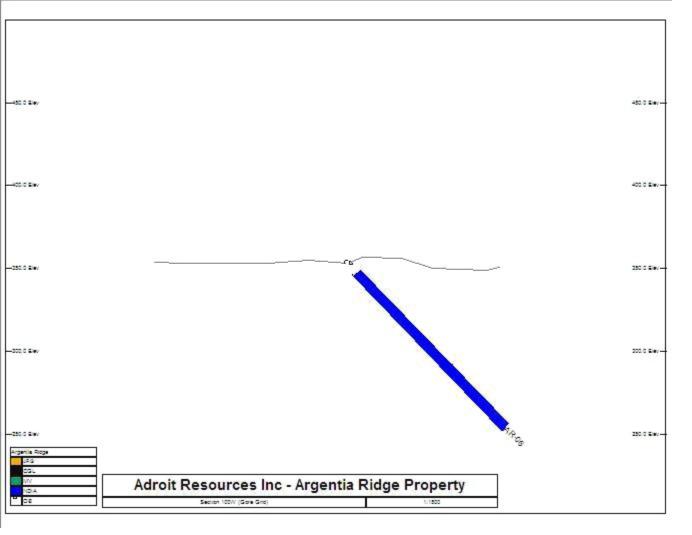
Hole Number: AF	R-09			Units: ME	FRIC
Project Name:	Argentia Ridge	Primary Coordinates Grid: AR-G:	Contractor: Cartwright Drilling	Collar Dip:	-45.00
Project Number:	AR	North: 5226729.00	Core Storage: Cobalt	Collar Az:	165.00
Location:	Argentia Ridge	East: 615499.00		Length:	100.58
		Elev: 339.00		Start Depth:	0.00
Date Started:	Mar 07, 2007	Collar Survey: N Plugged: N		Final Depth:	100.58
Date Completed:	Mar 08, 2007	Multishot Survey: N Hole Size: BTW			
		Pulse EM Survey: N Casing: Left in hole			

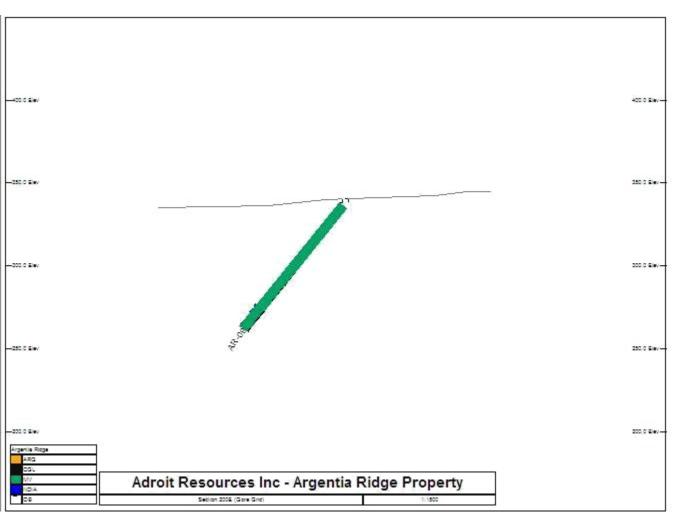
Sample Averages

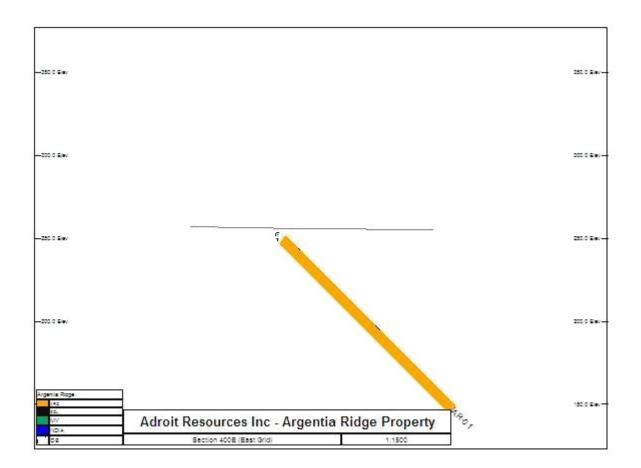

Detailed	Lithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Cu %	Zn %	Co %	Au ppb	Ag ppm
0	3.90	OB, Overburden				•	·			•	
		Casing Driven to 3.90m.									
3.90	100.58	MV, Mafic Volcanic	63636	55.00	56.00	1.00	0.0468	0.0193	0.0109	6	0
		Dark green to black, silicified in areas	63637	59.00	60.00	1.00	0.0024	0.0278	0.0047	5	0
		Texture	63638	63.00	64.00	1.00	0.0112	0.0125	0.0064	2.5	0
		3.90 - 100.58 : FG Fine Grained	63639	67.00	68.00	1.00	0.0032	0.0968	0.0041	10	0
			63641	70.00	71.00	1.00	0.0385	0.028	0.005	7	0
		3.90 - 100.58 : PY Pyrite, FF Fracture Filling, 1%	63642	75.00	76.00	1.00	0.0099	0.0181	0.004	8	0
		throughouth unit	63643	84.50	85.50	1.00	0.4528	0.019	0.0467	11	1
		3.90 - 6.63 : CPY Chalcopyrite, DISS Disseminated, 1%	63644	85.50	86.00	0.50	0.2343	0.0172	0.0079	13	
		85.00 - 86.20 : PY Pyrite, SEMI MASS Semi Massive, 8%	63645	86.00	86.50	0.50	0.0253	0.0157	0.0047	6	0
	cpy also visible here<1%. 88.50 - 89.30 : PY Pyrite, PERV Pervasive, 2%	63646	86.50	87.50	1.00	0.0536	0.0165	0.0031	2.5	C	
		felsc alteration with sulphides, mainly pyrite, CPY <1%	63647	87.50	88.50	1.00	0.265	0.0165	0.0605	11	
		99.51 - 99.56 : CPY Chalcopyrite, SEMI MASS Semi Massive, 15%	63648	88.50	89.50	1.00	0.1438	0.0121	0.0173	10	
			63649	89.50	90.50	1.00	0.4782	0.0159	0.0041	22	
		Alteration	63686	90.50	91.50	1.00	0.0173	0.0166	0.0051	2.5	0
		16.40 - 16.40 :QTZ FLOOD Quartz Flooding, VEIN Vein, Medium Medium	63687	91.50	92.50	1.00	0.0072	0.0123	0.003	2.5	0
		15.00 - 16.50 :CARB Carbonate, VEIN Vein, Medium Medium	63688	92.50	93.50	1.00	0.0089	0.0098	0.0037	2.5	0
		5 mm wide	63689	97.74	98.24	0.50	0.0098	0.0052	0.0019	6	0
		63.00 - 63.00 :CARB Carbonate, VEIN Vein, Medium Medium	63690	98.24	98.74	0.50	0.0033	0.004	0.0021	2.5	0
		5 mm wide.	63691	98.74	99.24	0.50	0.0105	0.0039	0.001	2.5	
		Structure	63693	99.24	99.74	0.50	0.0206	0.0085	0.0015	2.5	C
		3.90 - 100.58 : FOLIATION Foliation, 70 Deg to CA	63692	99.24	99.74	0.50	0.4198	0.029	0.0049	2.5	
		3.90 - 100.58 3 per meter	63694	99.74	100.58	0.84	0.1166	0.0091	0.006	2.5	C
		10.50 - 10.50									
		oxidized on breaks									
		20.00 - 23.00									
		34.00 - 37.00 : BROKEN Broken Core, 70 Deg to CA									
		42.00 - 43.50									
		rubbly, gouge @ 42.00M									


Page 2 of 2


Units: METRIC


Hole Number: AR-09


Sample Number	From	То	Cu %	Zn %	Co %	Au ppb	Ag ppm
Sample Type ASSAY							
63636	55.00	56.00	0.0468	0.0193	0.0109	6	0.5
63637	59.00	60.00	0.0024	0.0278	0.0047	5	0.5
63638	63.00	64.00	0.0112	0.0125	0.0064	2.5	0.5
63639	67.00	68.00	0.0032	0.0968	0.0041	10	0.5
63641	70.00	71.00	0.0385	0.028	0.005	7	0.5
63642	75.00	76.00	0.0099	0.0181	0.004	8	0.5
63643	84.50	85.50	0.4528	0.019	0.0467	11	15
63644	85.50	86.00	0.2343	0.0172	0.0079	13	7
63645	86.00	86.50	0.0253	0.0157	0.0047	6	0.5
63646	86.50	87.50	0.0536	0.0165	0.0031	2.5	0.5
63647	87.50	88.50	0.265	0.0165	0.0605	11	33
63648	88.50	89.50	0.1438	0.0121	0.0173	10	7
63649	89.50	90.50	0.4782	0.0159	0.0041	22	2
63686	90.50	91.50	0.0173	0.0166	0.0051	2.5	0.5
63687	91.50	92.50	0.0072	0.0123	0.003	2.5	0.5
63688	92.50	93.50	0.0089	0.0098	0.0037	2.5	0.5
63689	97.74	98.24	0.0098	0.0052	0.0019	6	0.5
63690	98.24	98.74	0.0033	0.004	0.0021	2.5	0.5
63691	98.74	99.24	0.0105	0.0039	0.001	2.5	1
63692	99.24	99.74	0.4198	0.029	0.0049	2.5	3
63694	99.74	100.58	0.1166	0.0091	0.006	2.5	0.5
Sample Type DUP							
63693	99.24	99.74	0.0206	0.0085	0.0015	2.5	0.5



1046-Gorham Street Thunder Bay, ON Canada P78 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com Analy@accurassay.com

Certificate of Analysis

Monday, June 04, 2007

Adroit Resources Suite 610-1111 Melville St. Vancouver, BC, CAN V6E3V6 Ph#: (604) 688-3304 Fax#: (705) 679-2103 Email jk@cciconline.com

Date Received : 02-Apr-07 Date Completed : 17-Apr-07 Job # 200740816 Reference : Sample #: 99

Accurassay #		Client Id	Au	Pt	Pd	Rh	Ag	Co	Cu	Fe	Ni	Pb	Zn
			ppb	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm
67563		63870	<5										
67564		63871	<5										
67565		63872	6										
67566		63873	9										
67567		63874	~										
67568		63875	<5										
67569		63876	7										
67570		63877	<5										
67571		63878	6										
67572	Check	63878	<5										
67573		63879	\$										
67574		63880	683						10027				30649
67575		63881	δ										
67576		63882	12										
67577		63883	6										
67578		63884	6										
67579		63885	5										
67580		63886	-5										
67581		63887	8										
67582		63888	7										
67583	Check	63888	6										
67584		63889	11										7476
67585		63890	0										
67586		63891	25										
67587		63892	17										19814
67588		63893	10										
67589		63894	8										
67590		63895	12										
PROCEDURE CO	DES: AL				in the second	and this sec	and solid	in anti-ta	the Horse	Instad	1	Page 3	of 4

PROCEDURE CODES: AL4Au, AL4ICPAR

Certified By:

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory AGE31-0622-06-04/2007 08:48 PM

Derek Demianluk H.Bsc., Laboratory Manager

191

1046 Gorham Street Thunder Bay, ON Canada P78 5X5 Tigl: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com aisay@accurassay.com

Certificate of Analysis

Monday, June 04, 2007

Adroit Resources Suite 610-1111 Melville St. Vancouver, BC, CAN V6E3V6 Ph#: (604) 688-3304 Fax#: (705) 679-2103 Email jk@eciconline.com Date Received : 02-Apr-07 Date Completed : 17-Apr-07 Job # 200740816 Reference : Sample #: 99

			Au	Pt	Pd	Rh	Ag	Co	Çu	Fe	Ni	Pb	Zn
Accurassay #		Client Id	ppb	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppr
67535		63642	8										
67536		63643	11										
67537		63644	13										
67538		63645	6										
67539	Check.	63645	11										
67540		63646	<5										
67541		63647	11										
67542		63648	10										
67543		63649	22										
67544		63650	798						14576				302
67545		63686	4										
67546		63687	4										
67547		63688	<5										
67548		63689	.6										
67549		63690	<5										
67550	Check	63690	69										
67551		63691	<5										
67552		63692	<5										
67553		63693	<5										
67554		63694	<5										
67555		63863	<5										
67556		63864	<5										79
67557		63865	4										
67558		63866	8										
67559		63867	<5										
67560		63868	<3										
67561	Check	63868	7										
67562		63869	4										

Certified By:

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

1046 Gorham Street Thunder Bay, ON Canada P78 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accuratesay.com assay@accurassay.com

Certificate of Analysis

Monday, June 04, 2007

Adroit Resources Suite 610-1111 Melville St. Vancouver, BC, CAN V6E3V6 Ph#: (604) 688-3384 Fax#: (705) 679-2103 Email jk@cciconline.com

Date Received : 02-Apr-07 Date Completed : 17-Apr-07 Job # 200740816 Reference : Sample #: 99

Accurassay #		Client Id	Au	Pt	Pd	Rh	Ag	Co	Cu	Fe	Ni	РЪ	Zn
Accurassay #		Glientia	ppb	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm
67507		10501	9										
67508		10502	7										
67509		10503	5										
67510		10504	<5										
67511		10505	<5										
67512		10506	\$										
67513		10507	7										
67514		10508	<5										
67515		10509	6										6357
67516		10510	<5										
67517	Check	10510	<5										
67518		10511	6										
67519		10512	5										
67520		10513	6										
67521		10514	8										
67522		10515	6										
67523		10516	5										
67524		10517	6										
67525		10518	6										
67526		10519	6										
67527		10520	808						14957				28760
67528		63636	6										
67529	Check	63636	6										
67530		63637	5										
67531		63638	<5										
67532		63639	10										
67533		63640	7										
67534		63641	7										
PROCEDURE CO	DES: AL	4Au ALAICPAR	The	rosuite	included	on this n	icort relat	e only to	the Herein	Instad	1	Page I o	014

PROCEDURE CODES: AL4Au, AL4ICPAR

Certified By:

Darah Damianluk H.Rec., Laboratory Manager

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

NUTTINGS DOWNSOUT 17, 18 PM

1046 Gorham Street Thunder Bay: ON Canada: P78 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassily.com assay@accurainay.com

Certificate of Analysis

Monday, June 04, 2007

Adroit Resources Suite 610-1111 Melville St. Vancouver, BC, CAN V6E3V6 Ph#: (604) 688-3304 Fax#: (705) 679-2103 Email jk@eciconline.com Date Received : 02-Apr-07 Date Completed : 17-Apr-07 Job # 200740816 Reference : Sample #: 99

Accurassay #		Client Id	Au	Pt	Pd	Rh	Ag	Ço	Cu	Fe	Ni	Pb	Zn
Accurassay #		Clientia	ppb	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm
67591		63896	8										
67592		63897	<5										
67593		63898	7										
67594	Check	63898	б										
67595		63899	6										
67596		63900	912						14644				28136
67597		63984	9										
67598		63985	8										
67599		63986	10										
67600		63987	8										
67601		63988	8						9291				
67602		63989	6										
67603		63990	4										
67604		63991	7										
67605	Check	63991	9										
67606		63992	44										
67607		63993	6										
67608		63994	7										
67609		63995	9										
67610		63996	5										
67611		63997	7										
67612		63998	-6										
67613		63999	5										
67614		64000	771						14736				29573

PROCEDURE CODES: AL4Au, AL4ICPAR Certified By: Dereh Demianium H.Bao., Laboratory Manager

Page 4 of 4

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written
approval of the laboratory
approvantery

PAGE 02/03

Swastika Laboratories Ltd

Established (928

Assaying - Consulting - Representation

Page 1 of 2

Date: AUG-03-06

Assay Certificate

6W-2287-RA1

Company: CARACLE CREEK INTERNATIONAL

Project. ADT-AR Alsn J.Kleinhocck

We hereby certify the following Assay of 49 Rock samples submitted JUL-31-06 by

Number g/tours g/tours g/tours g/tours 635:6 N:1 Results 53837 N:1 N1 tc 635:6 N:1 N1 tc 635:3 N:1 Pollow 635:2 N:1 - 63:25 N:1 - 63:25 N:1 - 63:25 N:1 - 63:26 1.02 - 63:27 N:1 - 63:28 0.02 - 63:23 0.02 - 63:23 0.02 - 63:23 0.02 - 63:34 0.02 - 63:35 N:1 - 63:35	Sample	A u	Au Check	Multi	
\$3817 N11 N12 tc 53519 N11 Pollow 53520 N11 - 53521 0.02 - 53523 0.03 - 53524 N11 - 53525 N11 - 53521 0.02 - 53523 0.03 - 53524 N11 - 53525 N11 - 53526 N11 - 53527 0.03 - 63526 2.08 0.03 63527 0.03 - 63528 0.01 - 63531 N11 - 63532 2.23 2.68 60003 0.02 - 63534 0.01 - 63535 N11 - 63536 N11 - 63536 N11 - 63540 0.01 - 63541 N11 - 63543 N11 -	Sumber	g/torme	g/tonne	element	
\$3817 N11 N12 tc 53519 N11 Pollow 53520 N11 - 53521 0.02 - 53523 0.03 - 53524 N11 - 53525 N11 - 53521 0.02 - 53523 0.03 - 53524 N11 - 53525 N11 - 53526 N11 - 53527 0.03 - 63526 2.08 0.03 63527 0.03 - 63528 0.01 - 63531 N11 - 63532 2.23 2.68 60003 0.02 - 63534 0.01 - 63535 N11 - 63536 N11 - 63536 N11 - 63540 0.01 - 63541 N11 - 63543 N11 -	63516	NEL		Results	· · · · · · · · · · · · · · · · · · ·
63529 Ni1 - 63520 Ni1 - 63521 0.02 - 63522 Ni1 - 63523 0.03 - 63524 Ni1 - 63525 Ni1 - 63526 Ni1 - 63527 Bi - 63528 0.02 - 63529 0.03 - 63531 Ni1 - 63532 2.02 2.69 60000 0.02 - 63533 Ni1 - 63534 0.01 - 63535 Ni1 - 63536 0.01 - 63537 Ni1 - 63538 Ni1 - 63539 Ni1 - 63541 Ni1 - 63542 Ni1	63817		Nal	\$¢	
63520 Nià - 63521 0.02 - 63523 0.03 - 63524 Ni1 - 63525 Ni1 - 63526 Ni1 - 63527 Bi - 63528 Ni1 - 63526 Ni1 - 63527 Bi - 63528 2.08 0.02 63529 0.03 - 63531 Ni1 - 63532 2.30 2.59 63533 0.02 - 63534 0.32 - 63535 1.30 - 63536 Ni1 - 63537 Ni1 - 63538 Ni1 - 63539 Ni1 - 63541 Ni1 - 63542 Ni1 - 63543 Ni1 - 63544 Ni1 - 63543 Ni1 - 63544 Ni1 <td>53518</td> <td>Nil</td> <td>-</td> <td>9011ow</td> <td></td>	53518	Nil	-	9011ow	
63521 0.02 . 63522 N31 . 63523 0.03 . 63623 0.03 . 63325 N11 . 63526 N11 . 63525 N1 . 63526 1.03 . 63527 Rin . 63528 0.02 . 63529 0.01 . 63531 N11 . 63532 2.30 . 63533 2.32 . 63534 0.02 . 63535 1.32 . 63534 0.02 . 63535 N1 . 63536 N1 . 63537 N1 . 63538 N1 . 63539 N1 . 63540 C.02 . 63541 N1 . 63542 N1 . 63543 N1 . 63544 N1 <	60319	Mil	-		
63532 N:1 - 63503 0.03 - 63325 Ni1 - 63325 Ni1 - 63526 C.05 - 63527 Bi. - 63528 C.02 - 63529 O.02 - 63531 Ni1 - 63532 2.30 C.68 63531 Ni1 - 63532 2.30 C.68 63533 Ni1 - 63534 U.02 - 63535 Ni1 - 63536 Ni1 - 63538 Ni1 - 63539 Ni1 - 63538 Ni1 - 63539 Ni1 - 63540 C.02 - 63541 Ni1 - 63542 Ni1 - 63543 Ni1 0 63544 Ni1 -	63520	Nil	-		
63522 N:1 - 63523 0.03 - 63234 N:1 - 63325 N:1 - 63526 N:1 - 63527 D:1 - 63528 2.02 - 63529 0.02 - 63531 N:1 - 63532 2.30 0.03 - 63532 2.30 0.03 - 63531 N:1 - 63532 2.30 2.68 63533 N:1 - 63534 0.02 - 63535 N:1 - 63536 N:1 - 63539 N:1 - 63540 0.01 - 63541 N:1 - 63542 N:1 - 63543 N:1 0 63544 N:1 -	63521	0.02		*************	n an market a market a market a start start strategy and market and strategy and s
63334 Mil - 63325 Nil - 63325 Nil - 63526 1.03 - 63527 Kii - 63528 2.08 0.03 63530 0.01 - 63531 Nil - 63532 2.30 2.68 63531 Nil - 63532 2.30 2.68 63533 Mail - 63534 0.02 - 63535 Mail - 63536 0.01 - 63538 Nil - 63540 0.01 - 63541 Nil - 63542 Nil - 63543 Nil 0 63544 Nil 0		Nal	~		
G3325 Nil AX626 C.03 - 63623 Bin - 63528 C.08 C.03 63529 G.01 - 63530 O.03 - 63531 Nil - 63532 C.30 C.03 63533 Nil - 63534 C.02 - 63535 Nail - 63536 O.01 - 63538 Nil - 63539 Nil - 63540 C.01 - 63541 Nil - 63542 Nil - 63543 Nil 0 63544 Nil 0	53523	0.03	-		
63526 0.03 - 63527 0.01 - 63528 0.02 - 63529 0.01 - 63531 Nil - 63532 2.30 2.68 63534 0.02 - 63535 Nil - 63536 0.01 - 63537 Nil - 63538 0.02 - 63539 Nil - 63536 0.01 - 63538 Nil - 63539 Nil - 63540 6.01 - 63541 Nil - 63542 Nil - 63543 Nil 0.02 63544 Nil -	63334	M11	-		
63611 Ni. 63529 3.08 0.03 63530 0.03 $-$ 63531 Nil $-$ 63532 2.30 2.68 63534 0.02 $-$ 63535 Na1 $-$ 63536 0.01 $-$ 63537 Na1 $-$ 63538 0.01 $-$ 63539 Na1 $-$ 63539 Nil $-$ 63539 Nil $-$ 63540 0.01 $-$ 63541 Nil $-$ 63542 Nil $-$ 63544 Nil $-$ 63544 Nil $-$	53325	Nil	,		
63529 0.02 63529 0.03 63531 Ni1 63532 2.30 63533 0.02 63534 0.02 63535 Ni1 63536 Ni1 63537 Ni1 63538 0.02 63539 Ni1 63536 Ni1 63538 0.01 63539 Ni1 63541 Ni1 63542 Ni1 63543 Ni1 63544 Ni1 63543 Ni1 63544 Ni1 63543 Ni1	63526				***************************************
63529 0.01 63530 0.03 63531 Níl 63532 2.30 63534 0.02 63535 Nil 63536 Nil 63537 Nil 63538 0.02 63539 Nil 63536 0.01 63537 Nil 63538 Nil 63539 Nil 63541 Nil 63542 Nil 63543 Nil 63544 Nil 63543 Nil 63544 Nil	6352*	l⊄í	*		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63529	2.08	6. Ç 3		
43531 Nil - 63532 2.30 2.63 60500 0.00 - $c3534$ 0.00 - $c3533$ No1 - $c3536$ 0.01 - $c3536$ 0.01 - $c3536$ Nil - $c3543$ Nil - $c3541$ Nil - $c3543$ Nil - $c3543$ Nil 0 $c3544$ Nil -	63529	0.01			
63532 2.30 2.68 60000 0.00 - 63534 0.02 - 63535 Na1 - 63536 0.01 - 63537 N11 - 63538 N11 - 63539 N11 - 63540 0.01 - 63541 N11 - 63543 N11 - 63544 N11 - 63544 N11 -	4353C	0.03	-		
60000 0.02 - 63504 0.02 - 63535 N1 - 63536 0.01 - 53537 N1 - 63538 N1 - 63539 N1 - 63540 0.01 - 63541 N1 - 63542 N1 - 63543 N1 002 63544 N1 -	63531	Nil			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
63534 0.02 83535 No1 83536 0.01 83537 N11 83538 N11 83539 N11 83540 0.01 83541 N11 83543 N11 83543 N11 93544 N11	63532	2.30	2.58		
\$2533 No.1 - \$3536 0.01 - \$3537 N11 - \$3536 N11 - \$3539 N11 - \$3540 0.01 - \$3541 N11 - \$3543 N11 - \$3543 N11 0 \$3544 N11 -	63933	0,02	-		
#3336 0.01 - \$3537 N11 - 63536 N11 - 63539 N11 - 63540 0.01 - 63541 N11 - 63542 N11 - 63543 N11 0 63544 N11 -					
£3536 0.01 - \$3537 N11 - \$3536 N11 - \$3539 N11 - \$3540 0.01 - \$3541 N11 - \$3542 N11 - \$3543 N11 002 \$3544 N11 -		N 2 1			
63536 Nil 63539 Nil 63540 0.01 63541 Nil 63542 Nil 63543 Nil 63544 Nil		0.01			*****
63539 Nil 63540 0.01 63541 Nil 63542 Nil 63543 Nil 63544 Nil	53537	Nil	-		
63540 0.01 63541 N11 63542 N11 63543 N11 63544 N11	63536	Nil	**		
63541 N11 - 63542 N11 - 63543 N11 0 02 63544 N11 -		Nil	-		
63542 Nil - 53543 Nil 0.02 63544 Nil -	63540	0.01			
63543 Nil 0.02 63544 Nil -	63541	Nil			
63544 Mil -	63542	Nil	-		
	63543		0 02		
63545 Mil -	63544		~		
	63545	Níl	-		

Certified by Denis Charter

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K (T0) Tolephone (705) 642-3244 Fax (705) 642-3300

CARACLE CREEK INTERN. CONS.

Attention: J.Kleinbocck

Project: AR Soil

Sample type:

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Report No 6W2551SJ Sep-12-06 Date

Tel: (604) 327-3436 Fax: (604) 327-3423

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Ag AI As Ba Be Bi Са Cd Co Cr Cu Fe Hg κ La Mg Mn Мо Na Ni Ρ Pb S Sb Sc Sr Τh Ti ΤI U v w Zn Zr Number % % % % % % ppm % maga maga maga maga ppm % ppm ppm ppm ppm ppm ppm 63701 < 0.2 0.40 <5 17 < 0.5 < 5 0.05 <1 3 18 5 1.01 1 0.02 <10 0.08 71 <2 0.01 5 152 11 0.01 <5 1 4 < 5 0.04 < 10 <10 30 <10 11 1 63702 <0.2 0.17 <5 20 < 0.5 <5 0.02 <1 5 2 0.23 2 0.01 <10 0.02 20 <2 0.01 2 56 6 0.01 <5 <1 3 <5 0.02 <10 <10 8 <10 6 1 63703 <0.2 0.45 40 <0.5 <5 0.05 6 0.96 <1 0.02 <10 0.08 521 <2 0.01 7 193 23 0.01 <5 < 5 0.04 <10 <10 37 5 16 5 <10 26 <1 8 1 1 63704 <0.2 2.45 <5 36 0.5 <5 0.10 <1 10 56 23 2.57 <1 0.03 <10 0.34 241 <2 0.01 31 782 19 0.05 <5 2 8 <5 0.09 10 <10 46 <10 92 3 <0.2 0.34 63705 <5 26 < 0.5 <5 0.05 < 1 3 13 3 0.52 1 0.01 <10 0.04 234 <2 < 0.01 3 99 11 < 0.01 <5 1 3 <5 0.04 <10 <10 20 <10 23 1 63706 < 0.2 0.54 <5 18 < 0.5 <5 0.04 <1 2 18 4 0.90 1 0.01 <10 0.07 36 <2 < 0.01 6 189 16 0.01 <5 1 5 <5 0.03 13 <10 25 < 10 27 1 63707 <0.2 1.49 <5 41 < 0.5 <5 0.08 10 46 10 1.75 1 0.03 <10 0.30 133 <2 0.01 29 368 12 0.01 <5 2 <5 0.06 20 <10 32 <10 99 3 <1 8 63708 <0.2 1.27 <5 34 <0.5 < 5 0.09 < 1 9 44 21 1.75 2 0.02 <10 0.35 135 <2 0.01 28 325 69 0.01 <5 1 ٩ <5 0.05 18 <10 32 <10 115 2 63709 <0.2 1.48 <5 48 < 0.5 <5 0.10 15 52 0.03 <10 0.32 384 <2 31 470 18 <5 <5 0.08 <10 56 <1 17 2.88 <1 0.01 0.02 1 8 <10 <10 121 2 63710 <0.2 0.78 <5 32 < 0.5 < 5 0.10 28 1 0.02 71 <5 <5 0.07 < 1 8 1.80 <10 0.22 <2 0.01 14 174 14 0.01 < 10 <10 43 <10 76 3 6 1 8 <0.2 1.50 39 < 0.5 <1 0.05 63711 5 < 5 0.09 <1 7 43 8 3.26 <10 0.24 112 <2 0.01 18 357 13 0.03 <5 2 8 <5 0.09 <10 <10 74 <10 81 3 <0.2 1.04 63712 <5 53 < 0.5 <5 0.15 < 1 8 36 21 1.30 <1 0.03 <10 0.42 102 <2 0.01 33 130 5 0.02 <5 2 9 <5 0.07 <10 < 10 25 <10 23 2 63713 < 0.2 0.23 <5 16 < 0.5 <5 0.11 <1 2 7 2 0.38 <1 0.01 <10 0.04 104 <2 < 0.01 3 86 12 0.01 <5 <1 5 <5 0.03 <10 <10 14 <10 20 1 63714 0.8 0.76 <5 26 < 0.5 <5 0.09 21 33 1.70 <1 0.03 <10 0.11 42 <2 0.01 9 214 19 0.02 <5 <5 0.07 39 <10 19 2 <10 49 < 1 4 1 14 63715 <0.2 0.75 <5 27 < 0.5 <5 0.10 <1 5 26 5 2.08 1 0.01 <10 0.13 51 <2 0.01 9 155 7 0.01 <5 1 <5 0.07 < 10 <10 49 < 10 15 2 8 <0.2 0.80 63716 < 5 25 < 0.5 <5 0.08 <1 6 33 5 2.80 <1 0.02 <10 0.11 92 <2 0.01 8 262 23 0.02 <5 1 8 <5 0.12 <10 <10 72 <10 37 3 63717 <0.2 1.17 <5 35 < 0.5 <5 0.08 < 1 6 28 12 1.67 1 0.01 <10 0.22 81 <2 0.01 20 146 11 0.01 <5 1 9 < 5 0.07 19 <10 44 <10 21 2 63718 <0.2 2.19 5 46 <0.5 <5 0.13 13 55 15 2.70 <1 0.03 <10 0.41 222 <2 0.01 39 358 0.03 <5 8 <5 0.08 13 47 <10 71 <1 14 2 <10 4 63719 <0.2 0.76 <5 26 < 0.5 <5 0.04 <1 4 22 7 1.31 1 0.01 <10 0.10 42 <2 0.01 10 168 16 0.02 <5 1 6 <5 0.05 11 <10 39 <10 12 2 63720 < 0.2 1.40 <5 50 0.5 < 5 0.12 <1 14 53 24 2.53 <1 0.03 11 0.57 149 <2 0.01 42 285 14 0.02 <5 2 9 < 5 0.08 <10 <10 49 <10 36 3 63721 <0.2 1.97 <5 38 < 0.5 0.10 9 2.97 0.03 <10 0.35 <2 29 13 <5 <1 12 49 <1 119 0.01 345 14 0.03 <5 2 <5 0.09 <10 51 <10 53 4 63722 <0.2 0.95 <5 55 < 0.5 0.12 29 9 2.55 0.03 11 0.17 <2 0.01 17 260 20 0.02 <5 <5 0.13 13 <10 57 <5 <1 9 <1 121 1 13 <10 41 2 63723 <0.2 1.07 <5 46 < 0.5 <5 0.10 35 8 2.12 <1 0.03 <10 0.24 118 <2 0.01 19 207 7 0.02 <5 <5 0.07 < 10 <10 47 <10 74 2 <1 8 1 8 63724 <0.2 0.45 <5 30 < 0.5 <5 0.07 17 9 1.31 <1 0.02 <10 0.07 80 <2 0.01 7 269 16 0.02 <5 <5 0.05 29 <10 <10 25 <1 2 10 40 1 1 63725 < 0.2 0.19 <5 12 < 0.5 <5 0.02 <1 1 4 3 0.28 <1 0.01 <10 0.02 26 <2 0.01 2 80 8 0.01 <5 <1 1 < 5 0.02 <10 <10 13 <10 10 <1 63726 <0.2 1.66 <5 27 < 0.5 <5 0.06 9 1.76 1 0.02 <10 0.25 85 <2 0.01 296 15 0.03 <5 2 5 < 5 0.06 <10 <10 33 86 2 < 1 7 34 21 <10 63727 <0.2 1.21 5 27 < 0.5 <5 0.06 <1 8 33 9 1.66 <1 0.02 <10 0.26 244 <2 0.01 21 239 38 0.01 <5 1 5 <5 0.05 12 <10 29 <10 149 3 63728 <0.2 1.82 14 72 0.5 <5 0.25 45 70 37 2.88 <1 0.06 12 0.59 1160 <2 0.01 45 498 425 0.03 <5 3 12 <5 0.06 10 <10 <10 287 2 <1 65 <0.2 0.24 63729 <5 26 < 0.5 <5 0.09 <1 3 13 4 0.54 <1 0.02 <10 0.08 138 <2 0.01 8 90 13 0.01 <5 < 1 4 < 5 0.03 <10 <10 15 <10 40 1 < 0.2 0.54 43 63730 <5 21 < 0.5 <5 0.05 < 1 4 22 4 1.20 <1 0.02 <10 0.17 72 <2 0.01 10 163 0.01 <5 1 3 < 5 0.04 <10 <10 29 <10 56 1

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signed: _

Assayers Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

CARACLE CREEK INTERN. CONS.

Attention: J.Kleinboeck

Project: AR Soil

Sample type:

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No 6W2551SJ : :

Date

Sep-12-06

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm	
63731	< 0.2	0.34	<5	28	< 0.5	<5	0.06	<1	4	18	4	0.77	<1	0.03	< 10	0.14	88	<2	< 0.01	9	91	. 15	< 0.01	<5	1	3	<5	0.03	<10	<10	20	<10	32	1
63732	< 0,2	1,45	<5	40	< 0.5	<5	0.04	<1	8	34	13	1.86	<1	0.02	<10	0.25	75	<2	0.01	27	241	. 12	0.03	<5	1	3	<5	0.03	<10	<10	36	<10	50	2
63733	< 0.2	0.30	<5	17	< 0.5	<5	0.02	<1	2	10	3	0.61	<1	0.01	<10	0.04	97	<2	<0.01	3	117	6	0.01	<5	<1	1	<5	0.02	< 10	<10	17	<10	12	<1
63734	< 0.2	1,73	5	39	<0.5	< 5	0.08	<1	15	53	34	1.99	<1	0.03	<10	0.52	254	<2	0.01	41	462	13	0.02	<5	3	6	< 5	0.06	<10	<10	39	<10	51	2
63735	<0.2	1.13	<5	38	< 0.5	<5	0.05	<1	12	30	7	2.08	<1	0.02	<10	0.13	767	<2	0.01	10	585	11	0.03	<5	1	5	<5	0.05	<10	<10	37	<10	37	1
63736	< 0.2	0.86	<5	25	< 0.5	<5	0.04	<1	4	21	7	1.30	<1	0.02	<10	0.13	114	<2	0.01	10	515	i 11	0.02	<5	1	4	< 5	0.03	<10	<10	25	<10	32	1
63737	< 0.2	0,81	e	52	<0.5	<5	0.07	<1	5	32	10	1.74	<1	0.03	< 10	0.28	160	<2	0.01	16	1482	? 7	0.01	< 5	1	4	<5	0.04	<10	<10	31	<10	37	1
63738	< 0.2	0.77	<5	25	<0.5	< 5	0.03	<1	4	20	3	1.46	<1	0.02	< 10	0,11	101	<2	0.01	8	304	6	0.01	<5	1	3	<5	0.04	< 10	<10	27	<10	32	1
63739	< 0.2	0.92	<5	46	< 0.5	<5	0.06	<1	5	25	12	1.56	<1	0.03	<10	0.15	105	<2	0.01	15	371	21	0.02	< 5	1	5	<5	0.05	< 10	<10	33	<10	29	1
63740	< 0.2	0.29	<5	22	< 0.5	<5	0.03	<1	1	7	5	0.45	<1	0.01	<10	0.05	39	<2	0.01	4	283	14	0.01	<5	<1	3	<5	0.01	<10	<10	11	<10	11	<1
63741	<0.2	1.24	<5	45	<0.5	< 5	0.06	< 1	13	39	18	1.56	<1	0.03	<10	0.32	295	<2	0.01	29	407	19	0.01	<5	2	4	<5	0.05	<10	<10	27	<10	36	3
63742	<0.2	0.75	<5	32	< 0.5	<5	0.06	<1	6	30	14	1.45	<1	0.03	<10	0.26	132	<2	0.01	21	545	5 15	0.02	<5	1	5	<5	0.03	<10	<10	24	<10	32	1

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signed:

Assayers Canada

CARACLE CREEK INTERNATIONAL

Attention: J.Kleinboeck

Project: ADT-AR

Sample type:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Report No 6W2287RJ : Aug-14-06 :

Date

Tel: (604) 327-3436 Fax: (604) 327-3423

Multi-Element ICP-AES Analysis Aqua Regia Digestion

Sample Number	Ag Al ppm %	As ppr			e E mpp		Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	La ppm	Mg %		Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm p		Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm p	
63516	<0.2 1.71	. </td <td>5 2</td> <td>6 <0</td> <td>1.5</td> <td><5</td> <td>0.30</td> <td><1</td> <td>12</td> <td>224</td> <td>14</td> <td>5.90</td> <td><1</td> <td>0.07</td> <td>11</td> <td>0.72</td> <td>535</td> <td><2</td> <td>0.03</td> <td>14</td> <td>382</td> <td>5</td> <td>0.11</td> <td><5</td> <td>3</td> <td>18</td> <td><5</td> <td>0.05</td> <td>31</td> <td><10</td> <td>3</td> <td>< 10</td> <td>32</td> <td>7</td>	5 2	6 <0	1.5	<5	0.30	<1	12	224	14	5.90	<1	0.07	11	0.72	535	<2	0.03	14	382	5	0.11	<5	3	18	<5	0.05	31	<10	3	< 10	32	7
63517	<0.2 3.01			3 <0			0.41	<1	50	173	62			0.03			1816		0.05	88	408	50	0.03	<5	8	17	<5	0.25		<10	229	<10	176	10
63518	<0.2 1.08			0 <0			1.85	<1		104		2.52					512		0.02		576	64	0.01	-	3	61	<5	0.25		<10	49	<10	76	11
63519	<0.2 3.48			2 <0			1.02	<1	31	48		7.45					1230		0.03	46		20	0.05		5	53	<5	0.43		<10		<10	256	5
63520	1.7 1.14			0 <0			0.38	<1		292	44	4.04		0.01			371		0.03	7		185	0.24		2	16	<5	0.02	28			< 10	96	6
00020																							•••		-									
63521	<0.2 1.93	3	8 2	6 0	0.7	<5	0.07	<1	8	164	23	6.03	<1	0.10	17	0.84	472	< 2	0.02	3	200	21	0.41	<5	5	12	<5	0.04	31	< 10	5	<10	109	7
63522	<0.2 2.95	5 <	5 1	3 <0	0.5	<5	0.52	<1	36	229	172	9.20	<1	0.03	<10	1.90	3205	<2	0.05	89	468	61	0.02	<5	11	17	<5	0.35	32	<10	260	<10	230	6
63523	<0.2 1.91	6	5 <1	0 <0).5	<5	0.49	<1	59	95	6	4.78	<1	0.01	<10	1.61	1022	<2	0.03	63	201	6	0.08	<5	2	17	<5	0.33	27	<10	86	< 10	119	6
63524	<0.2 2.15	5 1	2 <1	0 <0	0.5	<5	0.71	<1	26	158	25	6.15	<1	0.03	<10	1.54	1331	<2	0.05	70	381	89	0.02	<5	7	22	<5	0.27	29	<10	124	<10	318	7
63525	<0.2 3.25	5 <	5 1	0 <0).5	<5	0.59	<1	35	211	2	8.20	<1	0.03	<10	2.42	2071	5	0.03	144	322	21	< 0.01	<5	5	54	<5	0.19	31	<10	138	<10	305	7
63526	<0.2 1.94	<u>ا</u>	5 <1	0 <0	0.5	<5	0.79	<1	24	80	17	4.39	<1	0.03	<10	1,68	713	<2	0.03	86	342	6	0.02	<5	3	40	<5	0.25	27	<10	81	<10	81	4
63527	<0.2 1.92	2 <	5 <1	0 <0	0.5	<5	0.73	<1	24	57	8	4.42	<1	0.02	<10	1.31	559	<2	0.03	20	305	7	0.01	<5	3	25	<5	0.20	21	<10	73	<10	42	8
63528	<0.2 1.88	3 <	5 2	8 0	0.5	<5	1.03	<1	22	45	52	9.58	<1	0.08	<10	0.88	936	< 2	0.08	2	1994	115	0.38	<5	11	41	<5	0.13	27	<10	14	<10	153	8
63529	<0.2 2.81	L </td <td>5 1</td> <td>.5 <0</td> <td>0.5</td> <td><5</td> <td>0.69</td> <td><1</td> <td>26</td> <td>87</td> <td>76</td> <td>9.23</td> <td><1</td> <td>0.04</td> <td><10</td> <td>1.35</td> <td>1345</td> <td><2</td> <td>0.04</td> <td>5</td> <td>1294</td> <td>80</td> <td>0.17</td> <td>< 5</td> <td>6</td> <td>34</td> <td><5</td> <td>0,26</td> <td>34</td> <td><10</td> <td>14</td> <td><10</td> <td>224</td> <td>6</td>	5 1	.5 <0	0.5	<5	0.69	<1	26	87	76	9.23	<1	0.04	<10	1.35	1345	<2	0.04	5	1294	80	0.17	< 5	6	34	<5	0,26	34	<10	14	<10	224	6
63530	<0.2 2.42	2 5	4 3	84 <0	0.5	<5	1.69	<1	48	44	16	9.48	<1	0.10	<10	1.23	1342	4	0.05	12	1698	49	1.01	<5	7	35	< 5	0.14	30	<10	13	< 10	157	6
63531	<0.2 1.90) <	5 1	0 <0	0.5	<5	0.39	<1	13	121	60	6.28	<1	0.03	<10	0.92	882	<2	0.04	2	643	31	0.06	<5	9	16	<5	0.22	28	<10	6	<10	134	6
63532	3.1 1.94	1 24	4 4	2 <0	0.5	<5	0.48	<1	33	139	118	9.19	<1	0.11	<10	0.85	1009	<2	0.04	1	720	150	0,55	<5	13	36	<5	0.16	27	<10	6	< 10	118	8
63533	<0.2 1.82	2 <	5 1	4 0	0.5	<5	0.54	<1	20	104	19	9.12	<1	0.08	<10	0.87	1103	<2	0.05	2	1295	25	0.35	<5	8	26	<5	0.20	36	<10	12	<10	116	7
63534	2.5 2.38	3 <	5 2	29 <0	0.5	<5	0.73	<1	16	82	169	9.52	<1	0.15	<10	1.27	1835	<2	0.04	1	2213	94	0.51	<5	6	34	<5	0.12	31	<10	7	<10	153	6
63535	<0.2 2.04	t :	8 2	21 <0	0.5	<5	1.00	<1	13	77	16	7.30	<1	0.07	<10	0.81	881	<2	0.05	1	2632	37	0.03	<5	9	40	<5	0.06	25	<10	6	<10	152	6
63536	<0.2 4.88	3 <	5 1	0 <0	0.5	<5	0.97	<1	42	33	100	9.71	<1	0.02	<10	3.94	1732	<2	0.03	43	162	107	0.03	<5	18	25	<5	0.31	27	<10	456	<10	363	-5
63537	3.8 4.83	3 5	0 1	10 <0	0.5	<5	0.17	<1	25	18	788	9.81	<1	0.03	<10	3.22	861	<2	0.03		627	8760	0.19	<5	21	16	<5	0.05	26			<10		6
63538	7.8 5.43	3 6	9 <1	10 <0	0.5	<5	1.89	1	82	37	242	11.35	<1	0.01	<10	3.89	1420	<2	0.01			>10000	0.82		37	26	<5	0.17		<10				7
63539	0.2 4.02	2	6 <1	10 <0	0.5	<5	0.65	<1	47	36	72	8.56	<1	0.02	<10	3.14	1262	<2	0.02	45	171	318	0.08		7	32	<5	0.41		<10				5
63540	<0.2 1.30) <	5 3	32 <0	0.5	<5	0.76	<1	23	34	29	3.04	<1	0.22	<10	0.76	316	<2	0.06	22	386	93	0.07	<5	3	17	<5	0.20	<10	<10	112	<10	42	8
63541	<0.2 1.08			.0 <0			1.04	<1		126		2.54					575		0,04			17				55	<5		<10			<10	38	6
63542	<0.2 1.64			.0 <0		<5	1.00	<1				4.27					1921		0.05			23				11	<5	0.50				< 10		8
63543	<0.2 2.97					<5	0.06	<1		248		12.30					479		0.03		351	99			26	15	<5	0.03					55	13
63544	<0.2 2.71			10 <0		<5	0.08	<1								1.66			0.04		340	30			30	9	<5	0.05				<10	61	12
63545	<0.2 2.29) <	5 <1	10 <0	0.5	<5	0.10	<1	10	154	24	5.28	<1	0.02	<10	2.25	271	<2	0.04	56	478	5	0.02	<5	7	10	<5	0.01	17	<10	81	<10	17	11

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signed:

Assayers Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

CARACLE CREEK INTERNATIONAL

Attention: J.Kleinboeck

Project: ADT-AR

Sample type:

Report No 6W2287RJ :

Date : Aug-14-06

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number		AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	К %	La ppm	Mg %		Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Th ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm p	Zr ppm
63546	0.3 1	1.22	<5	20	< 0.5	< 5	11.84	<1	27	55	36	3.92	<1	0.08	<10	1.18	764	<2	0.01	23	323	36	0.34	<5	5	184	<5	0.20	<10	<10	128	<10	75	3
63547	<0.2 1	L.49	<5	<10	<0.5	<5	1.72	<1	53	111	122	7.30	<1	0.05	<10	1.35	641	< 2	0.05	45	562	13	0.66	<5	8	50	<5	0.34	17	<10	238	<10	84	7
63548	0.2 1	1.35	<5	16	<0.5	<5	1,22	<1	20	81	94	1.73	<1	0.04	<10	0.70	284	<2	0.11	58	230	3	0.08	< 5	4	25	<5	0.16	<10	<10	47	<10	33	3
63549	<0.2 3	3.10	<5	<10	< 0.5	<5	0.58	<1	20	21	28	5.68	<1	0.01	<10	2,33	639	<2	0.02	11	636	2	0.11	<5	11	11	<5	0.01	<10	<10	91	<10	85	6
63550	<0.2 1	1.86	<5	17	<0.5	<5	0,49	<1	7	65	2	2.33	<1	0.05	10	2.15	413	< 2	0.03	18	362	<2	<0.01	<5	1	7	< 5	< 0.01	<10	<10	15	<10	56	9
63551	<0.2 3	3.39	<5	13	<0.5	<5	1.30	<1	34	22	67	5.62	<1	0.04	<10	2.71	640	<2	0.02	16	666	<2	0.03	< 5	3	29	<5	0.35	10	<10	82	<10	93	6
63552	< 0.2 1	L.48	<5	15	< 0.5	<5	1.04	<1	11	59	44	2.59	<1	0.07	<10	1.03	455	< 2	0.03	14	369	10	0.06	<5	2	10	<5	0.07	<10	<10	24	<10	66	8
63553	<0.2 2	2.94	251	<10	0.8	7	0.06	<1	140	265	168	10.81	<1	0.04	<10	1.84	505	18	0.03	252	304	113	>5.00	<5	34	14	<5	0,03	10	<10	227	<10	61	14
63554	<0.2 3	3.53	61	<10	0.6	<5	0.07	<1	88	342	24	10.36	<1	0.03	<10	2.21	621	<2	0.04	175	342	53	3.72	<5	38	12	< 5	0.04	16	<10	261	<10	69	14
63555	<0.2 3	3.41	74	<10	0.5	<5	0.06	<1	- 113	303	116	11.42	<1	0.01	<10	2.15	625	< 2	0.03	222	328	44	> 5.00	< 5	36	14	< 5	0.04	18	<10	253	<10	70	17
63556	<0.2 3	8.18	127	<10	2.4	<5	0.52	<1	73	336	39	8.70	<1	0.01	<10	2.15	684	<2	0.04	222	254	40	2.06	<5	32	16	< 5	0.05	10	<10	261	<10	70	17
63557	<0.2 3	3.17	259	<10	<0.5	<5	0.27	<1	58	300	303	8.55	<1	0.05	<10	2.13	640	< 2	0.03	207	256	64	1.93	<5	28	14	< 5	0.03	<10	<10	228	<10	81	15
63558	0.4 2	2.15	407	17	0.5	10	0.06	<1	154	264	105	9.43	<1	0.10	<10	1.30	351	< 2	0.04	178	341	108	>5.00	<5	17	13	< 5	0.02	11	<10	168	<10	41	20
63559	<0.2 2	2.62	768	<10	<0.5	<5	0.03	<1	136	324	71	10.71	<1	0.02	<10	1.65	472	19	0.04	202	324	41	>5.00	< 5	31	13	< 5	0.02	14	<10	234	<10	53	16
63560	<0.2 3	3.24	221	<10	<0.5	<5	0.09	<1	29	390	181	8.32	<1	0.03	<10	2.10	553	<2	0.04	168	379	33	1.13	< 5	34	11	< 5	0.04	12	<10	267	<10	67	12
63561	<0.2 2	2.91	149	10	< 0.5	<5	0.07	<1	32	401	29	7.47	<1	0.04	<10	1.86	519	<2	0.04	153	314	22	0.72	<5	30	11	<5	0.04	11	<10	259	<10	60	13
63562	<0.2 2	2.01	46	14	0.5	<5	0.08	<1	123	284	10	7.05	<1	0.07	<10	1.32	349	< 2	0.05	209	407	43	2.84	<5	20	11	<5	0.02	<10	<10	185	<10	43	13
63563	<0.2 1	1.60	60	23	0.6	<5	0.08	<1	89	190	62	5.50	<1	0.11	<10	0.96	278	3	0.03	111	385	40	1.85	<5	8	8	<5	0.02	<10	<10	79	<10	34	22
63564	<0.2 3	3.01	218	<10	2.0	<5	0.09	<1	131	390	126	10.31	<1	0.01	<10	1.90	596	<2	0.05	304	324	35	4.31	< 5	33	15	<5	0.04	15	<10	264	<10	65	19

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 2 hours and diluted to 25ml.