2007 DRILL REPORT

on the

DASH LAKE CLAIMS

DASH LAKE AREA, NORTHWEST ONTARIO (NTS 52F04SE)

Commissioned for Grant R. Hall, President of Western Warrior Resources Inc.

2 • 3677 Sated : December 26, 2007

Dated : December 26, 2007 Allen J. Raoul, Exploration Manager Western Warrior Resources Inc.

TABLE of CONTENTS

		page
i)	TABLE OF CONTENTS	1
ii)	LIST OF FIGURES and APPENDIX LIST	2
iii)	SUMMARY	3
1.0	INTRODUCTION 1.1 Location and Access 1.2 Claim Status 1.3 Exploration History	5
2.0	GEOLOGY 2.1 Regional Geology 2.2 Property Geology	7
3.0	ECONOMIC GEOLOGY	12
4.0	GEOPHYSICS 4.1 Introduction 4.2 OGS 1961 Total Magnetic Surveys 4.3 Western Warrior Resources Inc 2007 Airborne Magnetic Survey	13
5.0	PREVIOUS DRILLING 5.1 Old Drilling 5.2 2006 Drilling	16
6.0	LITHOGEOCHEMISTRY	18
7.0	CONCLUSIONS and RECOMMENDATIONS	20
8.0	REFERENCES	22
9.0	BUDGETS	23
10	STATEMENT of QUALIFICATIONS	24

LIST of TABLES

Table 1 Schedule of Claims	5
Table 2 Summary of Exploration History	7

LIST of FIGURES

Figure		page
1	Location and Access Map of the Dash Lake Claim Block	4
2	Claim Map of the Dash Lake Group (from Pipestone Property)	6
3	Regional Geology of the Dash Lake Area	9
4a	Geology Map of the Dash Lake, west (Chute)	10
4b	Geology Map of the Dash Lake Area (Chute)	11
5a	OGS 1961 Total Airborne Magnetics	14
5b	Western Warrior Resources Inc 2007 Total Airborne Magnetics	15
6	Diamond Drill Location Man of the Dash Lake Area	17

APPENDIX A

Diamond Drill Logs DL06-01 DL06-02 DL06-03 DL06-04 DL06-05 On or near the Dash Lake Area

APPENDIX B 2007 Assays from the December 2006 Drill Program From the Dash Lake Area

SUMMARY

The Dash Lake Claim Group comprises 15 claim units within the Kakagi-Rowan greenstone belt (Blackburn et. al. 1991) of the Wabigoon Subprovince. This claim group is underlain by the Katimiagamak Group and the Phinney-Dash Lakes Complex (Edwards and Hodder, 1981; Edwards 1983). This report presents a summary of previous exploration and the 2006 December Drill Program by Western Warrior Resources Inc. on this claim group.

The Dash Lake Claim Group is located approximately 25 km east of the Nestor Falls, Ontario. The project area lies within NTS map sheet 52F/4SE and is centered at 49°06'N and 93°35'W. The area is accessible by travelling 34 km east on the Trilake-Pipestone-Derby-Phinney Creek roads, which begin 5 km north of Nestor Falls on Highway 71.

The Phinney-Dash Lake Complex is a suite of porphyritic trondhjemite stocks, which intrude the Katimiagamuk Group and merge with contemporaneous intermediate to mainly felsic pyroclastic and volcaniclastic rocks that overlie the Katimiagamak Group. This undeformed volcanic complex outcrops in a homoclinal sequence exposing the interior plumbing of an alteration system and associated synvolcanic mineralization.

This group of claims include a new widespread area of silica-sericite-pyrite alteration zones with anomalous gold values up to 1.9 grams and areas of anomalous zinc values up to 2400 ppm. These auriferous zones have not had any previous diamond drilling and very limited mapping. Shear zones characterized by intense sericite development occur within the anomalous gold alteration zone. These may represent either synvolcanic displacement or tectonic features, which focused fluid flow. Four diamond drill holes tested some of these alteration and mineralization zones during this 2006 drill program at Dash Lake.

Regionally, this complex represents the next volcanic centre along the belt from the Rainy River property and has an overall composition of dacitie-rhyodacite similar to Rainy Rivers #17 zone. These claims are centrally located between the Rainy River #17 zone and Nuinsco Cameron Lake deposit.

The claim group has VMS potential that has been partially tested by previous drilling. These zones are external to the anomalous gold zone at Dash Lake but within the volcanic complex. Stratigraphic horizons of newly identified zinc mineralization have been identified within the complex. Bedded massive sulphide float has been identified on the property. This area has not been mapped or prospected but it is proximal to a short '60's vintage Inco drill hole that intersected arsenical massive sulphides. A recent Ontario Geological Survey's Lake Sediment Survey of the area located anomalous zinc and cadmium.

The claims contain two historical occurrences. The Kenneco has known pyrite-pyrrhotite +/- chalcopyritesphalerite mineralization within altered andesites and graphitic schist but no assays located with limited trenching and only 4 drill holes. The Lloydex has semi-massive to massive sulphides of pyrite-pyrrhotite +/- chalcopyrite-sphalerite in gossanous felsic (rhyolite) pyroclastics with assays were 0.22% Cu, 0.23 opt Ag with anomalous Zn-Au. Drill hole DL07-04 collared into this zone and intersected a 7m core length of 2-10% pyrite-pyrrhotite in sericite-silica-carbonate altered felsic tuff but no significant gold values (<100 ppb).

King's Bay Gold Corporation has reported high-grade gold values in quartz veins at its Helena and Dash Lake properties adjacent to Western Warriors claim group. At Hook Bay, historical drilling intersected 31.1 gpt Au over 1.35m in hole H90-10.

It is the authors opinion, based on: a review of all available data on the property, reconnaissance mapping of the area and fourteen years working in the Kenora District, that this property has potential for a large gold bearing system to be located with the Dash Lake – Phinney Complex. This group of claims contains large, unexplored, mineralized areas with associated alteration and anomalous Au-Zn values. Potential also exists to host a volcanogenic Cu-Zn massive sulphide deposit (VMS) based on previous work and the new OGS lake sediment surveys.

1.0 INTRODUCTION

1.1 Location and Access

The Dash Lake Claim Group is located approximately 25 km east of the Nestor Falls, Ontario. The project area lies within NTS map sheet 52F/4SE and is centred at 49°06'N and 93°35'W. The area is accessible by the Trilake-Pipestone-Derby-Phinney Creek roads, which begin 5 km north of Nestor Falls on Highway 71. By vehicle, drive 16.5 km east on the Trilake Road then turn southeast on the Derby Lake Road for 14.4 km to the Phinney Lake Road corner. Turn due south for 3.0 km to a large flat boulder on the east side of the road. Follow the cut trail 150m to the southeast to post #4 of claim 1161625. Permits are needed for this road use and may be obtained from the Ministry of Natural Resources in Kenora or Fort Frances.

1.2 Claim Status

The Dash Lake Claim Group is comprised of fifteen claims (2448 hectares), including claims 1161625 and 1161626, owned 100 % by Michael E, Chute (now deceased) in the Dash Lake (G-2671) and Brooks Lake (G-2670). In September of 2006, these were optioned to Western Warrior Resources Incorporated. The claim group covers the core of the Phinney-Dash Lake Complex, a felsic volcanic centre. The claims are as follows:

Table 1 Schedule of Claims:

Агеа	Claim No Expiry Date Ownership		Required Assessment	Formerly Applied	Banked Credits	Current Credits	
BROOKS LAKE	3007352	2008-May-16	100%	\$6,000	\$6,000	\$0	\$0
BROOKS LAKE	3007355	2008-May-16	100%	\$5,600	\$5,600	\$0	\$0
BROOKS LAKE	3007356	2008-May-16	100%	\$6,000	\$6,000	\$0	\$0
BROOKS LAKE	3007358	2008-May-16	100%	\$6,000	\$6,000	\$0	\$0
BROOKS LAKE	3007359	2008-May-16	100%	\$6,000	\$6,000	\$0	\$0
BROOKS LAKE	3007360	2008-May-16	100%	\$2,000	\$2,000	\$0	\$0
DASH LAKE	1161625	2007-Dec-03	100%	\$3,600	\$44,400	\$0	\$0
DASH LAKE	1161626	2007-Dec-03	100%	\$1,936	\$46,064	\$397	\$0
DASH LAKE	3007350	2009-Mar-17	100%	\$5,798	\$12,202	\$0	\$0
DASH LAKE	3007351	2009-Apr-20	100%	\$600	\$1,800	\$0	\$0
DASH LAKE	3007353	2008-May-16	100%	\$4,800	\$4,800	\$0	\$0
DASH LAKE	3007354	2009-Apr-25	100%	\$600	\$1,800	\$0	\$ 0
DASH LAKE	3007357	2008-May-16	100%	\$4,400	\$4,400	\$0	\$0
DASH LAKE	3007365	2008-Mar-02	100%	\$400	\$0	\$0	\$0
DASH LAKE	3007366	2008-Mar-02	100%	\$400	\$0	\$0	\$0
Totals				\$54,134	\$147,066	\$397	

Please note that claim 3007361 is still registered under Michael E. Chute. Its transfer to Western Warrior Resources has been delay until estates issues with Mr. Chute has been cleared up.

Figure 2: Dash Lake Claim Group (December 26, 2007)

1.3 Exploration History

A summary of previous exploration in the area of the Dash Lake Claim Group is summarised in the following table:

Table 2			DASH LAKE CLAIM GROUP					
YEAR	AREA	COMPANY	WORK DONE	RESULTS				
1966	Pipestone- Schistose Lakes	Inco	Regional airborne EM survey	Numerous untested anomalies.				
1970-72	Phinney Lake	Freeport Canadian Exploration Co.	Airborne EM-Mag, Ground Mag-EM & Max-Min, 5 ddh of EM targets	Geochem anomalies of 0.18% Cu, 0.25% Zn in felsic pyroclastics				
1975	Pipestone Area	Edwards, Ontario Geological Survey	Regional mapping at 1": ¼ mile with map P2430.	Documented hydrothermal alteration of felsic pyroclastic rocks				
1 983	Pipestone- Schistose Lakes	Gold Fields Canadian Mining Ltd	Recon prospecting and geochem for Au and base metals	No significant results				
1983- 1984	SW end of Phinney Lake	Loydex Resources Inc	Prospecting and trenching	8m gossan in silicified rhyolite with py-po + cpy-sph				
1985	Pipestone- Schistose Lakes	Jaina Resources Ltd	Airborne EM-Mag	No significant results				
1994- 1996	Phinney Lake	Pheips-Dodge Corp of Canada	Detailed ground EM-Mag with 3 ddh (421m)	2 areas with anomalous Cu-Zn values in altered felsic pyroclastics and 1 untested Max-Min target				
1995	Dash Lake (main claims)	Michael Chute	Recon prospecting and sampling	Gold values in altered pyritic, high- level, intrusive rocks and massive sulphide float found				
1998- 2000	Dash Lake (main claims)	Michael Chute	Grid established, detailed mapping (1:2400) with sampling and petrography	Assays up to 1.9 gpt Au.				
2003- 2004	Dash Lake (main claims)	Michael Chute	Detailed geochemical alteration study (1:2400) with A. Raoul of Ontario Geological Survey.	Widespread silica-sericite-pyrite alteration found with anomalous Au values (>100 ppb).				

2.0 GEOLOGY

2.1 Regional Geology

The Dash Lake Area lines within the Kakagi-Rowan greenstone belt (Blackburn et. al. 1991) of the Wabigoon Subprovince (figure 3). This claim group is underlain by the Katimiagamak Group and the Phinney-Dash Lakes Complex (Edwards and Hodder, 1981; Edwards 1983).

Katimiagamak Group

Within the Phinney-Dash Lakes area, the Katimiagamak Group is characterized by a mixed assemblage of mainly pillowed and massive flows and subvolcanic gabbro sills. Iron carbonate alteration is common within the group along major fault structures and shear zones.

Near claim 1161626, a sequence of fine to medium grained sills is emplaced in mafic flows and tuffs. Minor units of white and green chert are interbedded with some of the mafic tuffs. Fine-grained pyrite is associated with these cherts and occurs as disseminations, microfracture fillings in locally breciated beds. The sequence of sills and flow is unusually pyritic. The gabbros are generally equigranular to weakly porphyritic. Some phases are quartz bearing. Intrusion breccias and multiple dikes are exposed along the northwest shore of Dash Lake. At the southwest corner of the claim block, massive mafic and pillowed flows are weakly silicified and contain disseminated pyrite.

Phinney-Dash Lake Complex

The Phinney-Dash Lake Complex is a suite of porphyritic trondhjemite stocks, which intrude the Katimiagamuk Group and merge with contemporaneous intermediate to mainly felsic pyroclastic and volcaniclastic rocks that overlie the Katimiagamak Group.

At Dash Lake the complex is characterized by the East Dash Lake Stock, a subvolcanic porphyritic trondjhemite which intrudes contemporaneous and contextural volcanic rocks of the south flank of the complex. The extrusive part of this flank is exposed of a layered assemblage of felsic homolithic lapilli-tuff and breccia, massive and banded tuff, debris flows, rhyolite flow, flow breccia and fragmented pyritic chert and ferroan carbonate.

The claim group is located on the south flank of the complex where generally coarse homolithic felsic pyroclastic rocks are overlain by pyritic chert or ferroan carbonate units. These units are overlain by flow rhyolite and flow breccia, which is in turn overlain by a homolithic to heterolithic felsic pyroclastic unit.

At Dash Lake, the porphyritic trondjhemite is characterized in part by a large area identified as pyritic (Edwards and Lorson, 1976; Edwards and Hodder, 1981; Edwards, 1983). When examined in detail this zone displays clastic textured in highly altered groundmass and may be, in part, extrusive.

2.2 Property Geology

The detailed geological mapping and sampling by Chute (1995, 2000, 2003) indicates that the more fielddescriptive terms such as quartz, quartz-feldspar or feldspar porphyry nomenclature would be useful. He notes that a major feature of this intrusive complex is the textural and compositional variations that occur, suggesting multiple intrusive phases to the complex. The imposed alteration (silica, sericite and pyrite) and foliation serve to obscure intrusive contracts and primary lithologies. Strucutral overprinting also helps to make primary contacts and lithological subdivisions difficult.

Based upon Chute's investigation, these supracrustal rocks define a northerly-trending, subvertical to vertical, east-facing sequence on the east limb of the Nightjar Antiform. An east-northeast trending schistosity is locally developed within the porphyritic suite. This schistosity could represent the orientation of structures within the complex, which may have controlled mineralizing fluids. The Helena-Pipestone Fault passes immediately southeast of the claim block.

Chute stated that "the dacites and rhyolites at Dash Lake are a suite of felsic volcanics that are overprinted by carbonate alteration, quartz+sericite+pyrite and chlorite+pyrite+sericite alteration. Previous work indicated that gold is associated with extensive zones of disseminated pyrite, hydrothermal alteration and structural dislocation in rhyodacites in the Dash Lake area. The alteration is interpreted to be a late stage volcanic feature of the development of the Phinney-Dash Lakes Complex. The spatial relationship between the distribution of the alteration and mineralization and structural features suggests that the structural features controlled the distribution of the alteration as they focused hydrothermal fluid flow. "

Included are Chute's detailed mapping of the property with the alteration zones high-lighted (see figures 4a and 4b).

Figure 4a: Dash Lake Geology Area, West Sheet

(by Michael E. Chute, 2000)

3.0 Economic Geology

At Dash Lake, the porphyritic trondjhemite is characterized in part by a large area identified as pyritic (Edwards and Lorson, 1976; Edwards and Hodder, 1981; Edwards, 1983). This zone, when examined in detail displays clastic textured in highly altered groundmass and may be, in part, extrusive.

Chute (1995, 2000, 2003) located widespread alteration and mineralization on the peninsula near the south boundary of claim 1161626 and in narrow zones (<6m) on some of the islands on Dash Lake. The alteration is pervasive and characterized by the destruction of the original quartz-feldspar-hornblende porphyry and coeval pyroclastic equivalents to a rock that consists of an assemblage of quartz-feldspar-sericite-clinozoisite-pyrite. This alteration produces rocks that appear to be quartz porphryries.

This alteration may locally contain varying degrees of silicification. This silicification can be mildly pervasive to produce a cherty fracture surface to more intense silica flooding and the development of quartz veining. Pyrite mineralization associated with this alteration occurs as disseminated, very fine to medium-grained and is euhedral. Pyrite may occur as irregular clots of fine aggregate or pseudomorphs of silicates. The pyrite content varies from 1 - 15% but averages 2-5% overall.

Anomalous gold values are associated with these silica-sericite-pyrite alteration zones. During studies by Chute and this author, while with the Ontario Geological Survey, background for the unaltered felsic suite averaged 20-24 ppb Au. These alteration zones average over >100 ppb Au and have found values up to 1.9 gpt Au. Newly defined areas of anomalous zinc values up to 2400 ppm zinc are associated with the area of anomalous gold values. Shear zones characterized by intense sericite development occur within the anomalous gold alteration zone. These may represent either synvolcanic displacement or tectonic features that focused fluid flow.

This intrusive complex represents the next volcanic centre along the belt from the Rainy River property and it has an overall composition of dacitie-rhyodacite similar to Rainy Rivers #17 zone. However only limited prospecting or detailed mapping on a small fraction of the alteration zones has been completed by Michael Chute, former Exploration Manager of Western Warrior Resources Inc. This claim group is centrally located between the Rainy River #17 zone and Nuinsco Cameron Lake deposit.

The claim group has a VMS potential that has been partially tested by previous drilling. These zones are external to the anomalous gold zone at Dash Lake but within the volcanic complex. Stratigraphic horizons of newly identified zinc mineralization have been identified within the complex. Bedded massive sulphide float has recently been identified on the property. This area has not been mapped or prospected. It is proximal to a short '60's vintage Inco drill hole that intersected arsenical massive sulphides. The Ontario Geological Survey's Lake Sediment Survey discovered this area that hosts anomalous zinc and cadmium within the lake sediments.

Newly discovered iron carbonated mafic volcanics with quartz veining are associated with shear zones that transect the claim group. The property contains minor iron formation associated with the felsic volcanics. There is no record of previous work on this horizon.

King's Bay Gold Corporation has reported high-grade gold values in quartz veins at its Helena and Dash Lake properties adjacent to Western Warriors claim group. At Hook Bay, historical drilling located 3 gold zones seen over a 100m wide fault zone, a possible continuation of the Lun-Echo & McChip zones, of Fe carbonate-sericite altered mafic volcanics with associated felsite-pyrite dikes (GPS 5439090N, 458921E, NAD84).

Arsenopyrite-quartz vein zone (highest) -	15.9 gpt Au over 0.65m in hole H90-5.
Upper (surface) zone -	3.0 gpt Au over 1.3m in hole H90-5.
Lower (swamp) zone -	31.1 gpt Au over 1.35m in hole H90-10.

The Dash Lake Claim Group contains two historical occurrences. They are:

Kenneco (claim 3012462) - GPS 5447093N, 439858E (NAD84)

Geophysical survey located an EM conductor with coincident magnetic high located a graphitic schist horizon and altered andesites. Sulphide mineralization, pyrrhotite-chalcopyrite-pyrite +/- sphalerite, are located in the fractures and as replacement within the andesites; based upon trenching and 4 drill holes. No assays given but zones (<0.5m) of >5-20% pyrite, pyrrhotite, chalcopyrite +/- sphalerite and quartz stringers zones (<1m) cross-cutting these sulphide or graphitic horizons.

Loydex (claim 3007365) – GPS 5441082N, 456195E (NAD84)

Located semi-massive to massive sulphides of pyrite-pyrrhotite +/- chalcopyrite-sphalerite in gossanous felsic (rhyolite) pyroclastics. Best gossan assays were 0.22% Cu, 0.23 opt Ag with anomalous Zn-Au. Drill hole DL07-04 collared into this zone and intersected 7m core length of 2-10% pyrite-pyrrhotite in sericite-silica-carbonate altered felsic tuff. No significant gold values (<100 ppb).

4.0 GEOPHYSICS

4.1 Introduction

The following is a brief summary of geophysical surveys carried out over the property. For a complete summary, refer to table 2 of the Exploration History.

4.2 Ontario Geological Survey 1961 Total Magnetic Survey

The 1961 total magnetic survey by the Ontario Geological Survey was conducted over the entire Kenora District with flight lines at 400m with 100m readings. A map was produced at a scale of 1": 1 mile was produced for the area (see figure 5a).

4.3 Western Warrior Resources Inc 2007 Total Magnetic Survey

A high resolution, airborne total magnetic survey was completed in the spring of 2007 over the entire Pipestone Property, including the Dash Lake Claim Group. It was contracted to Firefly Aviation of See Calgary. These maps were printed at 1:50,000 as Preliminary TMI as Colored Shaded Relief, WGS84, UTM Zone 15 by Zone 14 Geosolutions of Winnipeg, MB.

A detailed analysis is required but based on preliminary reviews, the intrusive complex is broken up into a series of north trending magnetic high to extreme highs with several breaks, trending 020°, between these magnetic highs. This further supports Chute's interpretation of multiple phases to the intrusive complex (see figure 5b).

5.0 PREVIOUS DRILLING

5.1 Historical Drilling

The following drill programs were done on this claim group:

<u>Freeport Canadian Exploration Company</u> (1972) Completed 5 drill holes of electromagnetic targets.

<u>Phelps Dodge Corporation of Canada Ltd.</u>(1996) Completed 3 diamond drill holes (421m) on the Phinney Lake area in 1996.

5.2 Western Warrior Resources Inc. 2006 Drill Program

Five diamond drill holes (779.50m) were completed on the Dash Lake Claim Group from December 7–21 of 2006 by Summitt Drilling Services of Sudbury, Ontario. They used a light-weight, fly drill that was mobilized using an A-Star helicopter from Forest Helicopter Inc. of Kenora, Ontario.

Three diamond drill holes were completed on the alteration zones of Dash Lake (claim 1161626). They intersected the following:

DL06-01 was drilled 045° at -45° for 157.75m on an alteration zone on the east side of Dash Lake. Drilling intersected a 69m core section of highly altered (sericite-silica-albite) felsic tuff to lapilli tuff with trace-5% pyrite. Best drill assay was 150 ppb Au, however 12m of this zone ran anomalous Au values (>40 ppb).

DL06-02 was drilled 315° at -45° for 151.00m on an alteration zone on the southern peninsula of Dash Lake. Drilling intersected a 12.75m core section of sulphidized altered (silica-chlorite-carbonate) quartz eye felsic tuff with 1-20% pyrite. Best drill assay was 160 ppb Au but it was in an upper zone of silicacarbonate altered quartz felsic tuff. This lower sulphidized zone's best assay ran 90 ppb Au.

DL06-03 was drilled 060° at -45° for 161.00m on an alteration zone 300m east of Dash Lake, at the north end of a small lake. Drilling intersected five thin zones (<0.3m) of >10% pyrite-pyrrhotite within plagioclase phyric andesites within the first 53m of core, but no significant assays <40 ppb Au. The next 90m consist of mafic tuff – mafic fragmentals +/- thin magnetite bands with thin interbedded units of sulphide bearing altered felsic tuff –cherty tuff. Three significant assays of >40 ppb Au were located; 1) 50 ppb Au from a 25% unit of 25% pyrite-pyrrhotite +/- chalcopyrite-sphalerite of altered felsic tuff, 2) 60 ppb Au from chloritic-pyrite altered felsic tuff and 3) 40 ppb Au from altered mafic fragmental tuff.

One diamond drill hole was drilled on the Lloydex showing, on the eastern shore of Phinney Lake (claim 3007365). DL06-04 was vertically drilled for 152.50m and collared into this zone after 5m of overburden. The showing consisted of 7m core length of 2-10% pyrite-pyrrhotite in sericite-silica-carbonate altered felsic tuff with a best assay of 70 ppb Au. Three other zones ran significant gold values (>100 ppb); 1) 140 ppb Au from silica-carbonate altered mafic tuff , 2) 110 ppb Au from carbonate-silica-chlorite altered felsic tuff and 3) 130 ppb Au from silica-carbonate altered quartz eye porphyry.

One diamond drill hole was drilled on the western shore of Dash Lake (claim4213247). DL06-05 was drilled due south at -45° for 157.25m on the "little island" alteration zone of Chute. It intersected a 6.06m zone of 103ppb Au in ankerite-calcite-silica altered fracture zones in pyritic felsic unit. Five other fracture zones with similar alteration were located with Au anomalies of 40- 80 ppb Au in various granitic to felsic intrusive units.

Figure 6: 2006 Drill Location Map of Western Warrior Resources Inc.

6.0 LITHOGEOCHEMISTRY

Lithogeochemistry can be used to constrain lithologies and help evaluate hydrothermal alteration.

6.1 Sampling Methodology

Three hundred and ninety-seven core samples were collected for gold analysis. Geochemical assay results are tabulated in Appendix B.

Samples were analysed by SGS Laboratories in Red Lake, Ontario. Core samples were wrapped in sealed plastic bags shipped via Greyhound Bus Lines in sealed, new plastic pails under the supervision of either this author or Michael Chute. Once at SGS, gold was analysed by sample preparation PRP89 where the sample is dry crushed to 75%, split to 250g and pulverized to 85%. Gold assays were by precious metal analysis FAA303 by fire assay, AAS with a nominal weight of 30g.

6.2 Geochemical Analysis

The results of the gold analysis shows only wide-spread anomalous gold values (>40 ppb) that were obtained in these silica-sericite-pyrite alteration zones in the felsic intrusive. These anomalous gold values are well above background values and thus represent a larger system of hydrothermal alteration, however the higher grade gold-bearing shoots have yet to be discovered. The anomalous values are in table 4.

Drill	Assav	Core Interval	Core	Rock Type	Comment
Hole	(ppb Au)	(m)	Length (m)	51	
DL07-01	40	8.00-10.00	2.00	Highly altered felsic tuff	Strong alteration
				plus 1% pyrite	
DL07-01	88	16.00-24.00	8.00	Weakly altered felsic tuff	Weak alteration
				plus tr-5% pyrite	
DL07-01	40	26.00-30.00	4.00	Weakly altered felsic tuff	Highly sulphidic
				plus 5% pyrite	
DL07-01	120	32.00-34.00	2.00	Silica-carbonate altered	>25% silica-
				felsic tuff plus 2-4% py	carbonate altered
DL07-01	60	40.00-44.00	4.00	Silica-carbonate altered	>25% silica-
				felsic tuff plus 2-5% py	carbonate altered
DL07-01	40	48.00-50.00	2.00	Silica-carbonate altered	Variable (5-20%)
				felsic tuff plus 2-5% py	silica-carbonate
DL07-01	50	66.00-68.00	2.00	Silica-carbonate altered	>25% silica-
				felsic tuff plus <2% py	carbonate altered
DI 07 02	160	62 00 64 00	2.00	Altered quartz ava falsia	Savaral small quartz
DL07-02	100	02.00~04.00	2.00	Antered quartz eye lesse	several siliali qualiz-
				carbonate	epidote venis
DI 07-02	40	00 25 02 00	1 75	Silica carbonate altered	Sulphide pode and
DL07-02	40	90.23-92.00	1.75	felsic tuff with 5-30% py	stringers
DI 07 02	52	02 00 00 00	6.00	Altered quartz ave felsio	Variable (1 59/)
DL07-02	33	95.00-99.00	0.00	tuff with 1 5% pyrite	variable (1-576)
DI 07 02	00	104 27 104 75	0.49	Suplidized and altered	Jarge electr of
DL07-02	90	104.27-104.75	0.48	folgio frogmontol	2004 purito
DI 07.02	50	126 00 127 20	1.20	Alternal arranged arrite at 1	-20% pyrite
DL07-02	50	136.00-137.39	1.39	Altered granodiorite dike	weak alteration
				with minor (<10%) silica-	
				carbonate & trace pyrite	

Table 4: Anomalous Gold Values from 2006 Dash Lake Drill Program

DL07-03	50	98.42-99.08	0.66	Weakly altered felsic tuff with >25% sulphide pods and stringers	Pyrite-pyrrhotite and minor sphalerite- chalcopyrite (<1%)
DL07-03	60	101.00-102.37	1.37	Weak chlorite altered felsic tuff and trace pyrite	Chlorite alteration
DL07-03	40	113.00-115.00	2.00	Moderate silica-calcite altered mafic fragmental	>15% silica- carbonate altered
DL07-04	70	6.76-7.21	0.45	Sulphized and altered felsic tuff with >20% pyrite in folding.	>20% pyrite with minor chalcopyrite- sphalerite
DL07-04	50	9.67-11.00	1.33	Moderate silica-carbonate altered felsic flow and 2- 5% pyrite-pyrrhotite	<20% silica- carbonate altered
DL07-04	140	16.50-18.50	2.00	Moderate silica-carbonate altered basaltic tuff and trace pyrite.	<20% silica- carbonate altered
DL07-04	50	19.13-19.40	0.27	Silica-carbonate altered basaltic tuff with 10% pyrite	>20% silica- carbonate altered and sulphide rich
DL07-04	110	19.60-20.31	0.71	Silica-carbonate-chlorite altered felsic tuff with trace pyrite	>20% silica-chlorite- carbonate altered
DL07-04	50	50.74-51.81	1.07	Weak silica-carbonate altered mafic tuff with 1- 5% stringer pyrite	<10% carbonate- silica altered with sulphide stringers
DL07-04	40	65.09-65.76	0.67	Silica-carbonate altered breciated mafic tuff with <1% pyrite	>20% silica- carbonate altered
DL07-04	60	72.07-72.38	0.31	Mafic dike with quartz- carbonate-pyrite vein	>20% pyrite in 3cm vein
DL07-04	40	77.58-78.19	0.61	Altered mafic fragmental tuff with <1% pyrite	>20% silica- carbonate altered
DL07-04	70	105.16-106.75	1.59	Silica-carbonate altered quartz eye porphyry with pyrite stringers	>50% pyrite stringer in quartz-carbonate- chlorite veins
DL07-04	130	113.78-115.00	1.22	Moderate silica-carbonate altered quartz eye porphyry with <1% py.	<20% silica- carbonate altered
DL07-05	40	21.07-21.81	0.74	Altered felsite with >20% hornblende-biotite- chlorite filled fractures	Late veins of >15% ankerite-calcite- quartz and <2% py.
DL07-05	80	23.44-25.00	1.56	Altered felsite with >20% hornblende-biotite- chlorite filled fractures	Late veins of >15% ankerite-calcite- quartz and <2% py.
DL07-05	60	33.00-35.00	2.00	Ankerite-silica-calcite altered felsite with >40% hornblende-chlorite filled fractures and <3% pyrite	Strong alteration
DL07-05	103	51.94-58.00	6.06	Intensely altered felsite with >30% ankerite- silica-calcite and fractures of hornblende-chlorite- biotite and 3-5% pyrite.	Strong alteration and sulphidic

I

DL07-05	50	68.85-70.50	1.65	Altered felsite with >20% ankerite-silica-calcite and >20% hornblende- chlorite-biotite fractures and >5% pyrite.	Strong alteration and sulphidic
DL07-05	40	73.56-75.56	2.00	Intensely altered felsite with >50% ankerite- silica-calcite and fractures of hornblende-chlorite- biotite with 2-3% pyrite.	Strong alteration and sulphidic

7.0 CONCLUSIONS

After reviewing all previous work on the property, reconnaissance mapping of the area and fourteen years working in the Kenora District, the writer has concluded that this property has the potential for a large gold bearing system located within the Dash Lake – Phinney Complex. This group of claims contains large, unexplored, mineralized areas with associated alteration and anomalous Au-Zn values. Potential also exists to host a volcanogenic Cu-Zn massive sulphide deposit (VMS) based on previous work and the new OGS lake sediment survey.

The Phinney-Dash Lake Complex is a suite of porphyritic trondhjemite stocks, which intrude the Katimiagamuk Group and merge with contemporaneous intermediate to mainly felsic pyroclastic and volcaniclastic rocks that overlie the Katimiagamak Group. This undeformed volcanic complex outcrops in a homoclinal sequence exposing the interior plumbing of an alteration system and associated synvolcanic mineralization.

This group of claims include new widespread areas of carbonate-silica-sericite-pyrite and carbonatechlorite-pyrite-sericite alteration with anomalous gold values up to 1.9 grams and areas of anomalous zinc values up to 2400 ppm. These auriferous zones have not had any previous diamond drilling and very limited mapping. Shear zones characterized by intense sericite development occur within the anomalous gold alteration zone. These may represent either synvolcanic displacement or tectonic features, which focused fluid flow. Based upon previous work by M. Chute, the alteration may be associated with VMS hydrothermal system.

Four diamond drill holes tested some of these alteration and mineralization zones during this 2006 drill program at Dash Lake. This drilling did not intersect high-grade gold values (>1 gpt Au), but did encountered wide-spread anomalous gold values (>40 ppb) in these silica-sericite-pyrite alteration zones of the felsic intrusive. These thirty-two anomalous gold values are well above background values and thus represent a larger system of hydrothermal alteration.

Regionally, this complex represents the next volcanic centre along the belt from the Rainy River property and has an overall composition of dacitie-rhyodacite similar to Rainy Rivers #17 zone. These claims are centrally located between the Rainy River #17 zone and the Nuinsco Cameron Lake deposit.

The claim group has VMS potential that has been partially tested by previous drilling. These zones are external to the anomalous gold zone at Dash Lake but within the volcanic complex. Stratigraphic horizons of newly identified zinc mineralization have been identified within the complex. Bedded massive sulphide float has been identified on the property. This area has not been mapped or prospected but it is proximal to a short '60's vintage Inco drill hole that intersected arsenical massive sulphides. A recent Ontario Geological Survey's Lake Sediment Survey of the area located zinc anomalies and cadmium anomalies.

The claims contain two historical occurrences. The Kenneco has known pyrite-pyrrhotite +/- chalcopyrite-sphalerite mineralization within altered andesites and graphitic schist but no assays located with limited trenching and only 4 drill holes. The Lloydex has semi-massive to massive sulphides of pyrite-pyrrhotite +/- chalcopyrite-sphalerite in gossanous felsic (rhyolite) pyroclastics with assays were 0.22% Cu, 0.23 opt

Ag with anomalous Zn-Au. Drill hole DL07-04 collared into this zone and intersected a 7m core length of 2-10% pyrite-pyrrhotite in sericite-silica-carbonate altered felsic tuff but no highly anomalous gold values (> 1 gpt) were found.

King's Bay Gold Corporation has reported high-grade gold values in quartz veins at its Helena and Dash Lake properties adjacent to Western Warrior Resources' claim group. At Hook Bay, historical drilling intersected 31.1 gpt Au over 1.35m in hole H90-10. Little work has been followed up in this area dealing with these high-grade load gold veins, however this deposit type has been responsible for many producing mining camps.

Based upon Michael Chute's mapping efforts, numerous alteration and mineralized zones were located in a small portion of this intrusive complex. Detailed fieldwork is required to:

- Map and channel sampling of these new alteration and mineralized zones discovered by Chute. All previous work were grab samples only, so these anomalous values, such as the 1.9 gpt Au, must be confirmed and wider zones might be located.
- 2. Map the rest of the intrusive complex (>25 km²) for more of these alteration and mineralized Au-Zn zones. This is required to locate possible high-grade gold-bearing shoots.
- 3. Detailed review of the Western Warrior Resources Inc. Airborne Survey must be completed to properly assess the entire intrusive complex for more magnetic and structural targets.
- Detailed ground magnetic and VLF electromagnetic surveys should be completed over the entire claim group to identify additional structures which may have controlled and/or host alteration and mineralization.
- Induced polarization techniques should be employed to evaluate target zones previously identified by geology and geochemistry. Additional induced polarization should be conducted on a reconnaissance basis over other prospective areas.

8.0 REFERENCES CITED

Blackburn, C.E., Johns, G.W., Ayer, J. and Davis, D.W. 1991. Wabigoon Subprovince; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p. 303-382.

Chute, M.E. 1995. Summary Technical Report, Ontario Prospectors Assistance Program, OPAP File Number OP 95-181.

Chute, M.E. 1999. Summary Technical Report, Ontario Prospectors Assistance Program, OPAP File Number OP 98-234.

Chute, M.E. 2000. Summary Technical Report, Ontario Prospectors Assistance Program, OPAP File Number OP 99-338.

Chute, M.E. 2003. Preliminary Lithogeochemistry, Dash Lake Claim Group, Assessment Report, Ontario Ministry Northern Development and Mines, Mining Lands Branch.

Chute, M.E. 2004. Rhyodacite Lithogeochemistry, Dash Lake Claim Group, Assessment Report, Ontario Ministry Northern Development and Mines, Mining Lands Branch.

Edwards, G.R. 1975. Pipestone Lake Area, Northern Half, District of Kenora; Ontario Division of Mines, Preliminary Map P.1000, Geological Series, scale 1:15,840. Geology 1974.

Edwards, G.R. 1980. Geology of the Schistose Lake Area, District of Kenora; Ontario Geological Survey, Report 194, 67p. Accompanied by Map 2421, scale 1:31,680.

Edwards, G.R. 1983. Geology of the Bethune Lake Area, Districts of Kenora and Rainy River; Ontario Geological Survey, Report 201, 59p. Accompanied by Map 2430, scale 1:31,680.

Edwards, G.R. and Lorsong, J. 1976. Pipestone Lake Area, Southern Half, District of Kenora; Ontario Division of Mines, Preliminary Map P.1103, Geological Series, scale 1:15,840. Geology 1975.

Edwards, G.R. and Hodder, R.W. 1981. Evolution of an Archean Felsic Volcanic-Plutonic Complex, Final Research Report for the Ontario Geoscience Research Grant Program, Ontario Geological Survey OFR 5369, 49 p.

Edwards, G.R. and Hodder, R.W. 1991. A semi-quantitative model for fractionation of rhyolite from rhyodacite in a compositionally altered Archean volcanic complex, Superior Province, Canada. Precambrian Research, 50: 49-67.

Edwards, Garth R. and Stauffer, Mel R. 1999. Polyphase deformation and crustal evolution in the Pipestone Lake area of the Archean Wabigoon Subprovince, Superior Province, Canada. Canadian Journal of Earth Sciences, 36: 459-477.

Johnson, Myles R. 1994. Report of 1994 Geological Mapping at the Phinney Dash Property, Ontario, NTS 52 F4, Project 222. Phelps Dodge Corporation of Canada, Limited. Ontario Ministry of Northern Development and Mines, Mining Lands Branch, No. 2.16294.

OMN-GSC. 1962. Kakagi Lake Sheet, Kenora and Rainy River Districts; Ontario Dept. Mines-Geol. Surv. Canada, Aeromagnetic Series Map 1168G, scale 1:63,360.

Smith, Paul A. 1994. Dighem V Survey for Phelps Dodge Corporation of Canada, Ltd., Phinney-Dash Lake Property, Ontario, Report # 1158. Ontario Ministry of Northern Development and Mines, Mining Lands Branch, No. 2.15731.

9.0 **BUDGETS**

In December of 2006, Western Warrior Resources Inc. drilled three helicopter supported drill holes on the two claims and has over \$193,297.73 worth of assessment work to file immediately on the claims as a result of that drilling campaign.

Job	Personnel	Rate	Value
Drill program planning	M. Chute	\$500/days @ 6 days (Dec 1-6, 2007)	\$3000.00
Drill hole spotting	M. Chute	\$500/day @ 2 days (Dec 7-8, 2007)	\$2500.00
	P. Chute	\$200/day @ 2 days (Dec 7-8, 2007)	\$400.00
Drill supervision and core logging	M. Chute	\$500/day @ 13 days (Dec 9-21, 2007)	\$6500.00
Field assistant and core cutter	P. Chute	\$200/day @ 13 days (Dec 9-21, 2007)	\$2600.00
Drilling Cost	Summitt Drilling Services	5 holes for 779.50m	\$84800.00
Helicopters	Forest Helicopters	On call Dec 7-21 with 3hr daily minmum	\$62156.35
Assaying	SGS Labs	397 Gold Assays (Fire Assays)	\$8906.97
Core shack & cutting	Rugged Aviation	4 months – Dec 2006, Jan 2007, Feb 2007, Mar 2007	\$10384.40
Core Logging & drill logs (DL07-02 to 05)	A. Raoul	\$350/day @ 19 days	\$6650.00
		(Mar 1-9, Mar 12-16 and Mar 19-23)	
Core Splitters	P. Frattini	\$200/day @ 13 days (Mar 1-23, 2007)	5,400.00
	P. Chute	\$200/day @ 13 days (Mar 1-23, 2007)	
Totals			\$193,297.72

10. STATEMENT of QUALIFICATIONS

I, Allen J. Raoul, of the city of Kenora, in the province of Ontario, do certify as follows:

1) I am the Exploration Manager with Western Warrior Resources Inc., with a field office at 922 Park Street, Kenora, ON, P9N 1B7.

2) I spent the past 10 months working in the Kenora District of Ontario for Western Warrior Resources Inc. as Project Geologist and then Exploration Manager on the Pipestone Project, including the Dash Lake Claim Group.

3) I spent the previous seven years working in the Kenora District of Ontario for the Ontario Geological Survey as District Geologist and District Support Geologist.

3) I have practised my profession since 1990.

4) I am a graduate of Mount Allison University, Sackville, New Brunswick with a B.Sc. in Geology in 1990.

5) I am a graduate Mineral Technologist from the University College of Cape Breton, Sydney, Nova Scotia in 1987.

6) Permission is granted to Western Warrior Resources Inc. to publish this report dated December 26, 2007 for assessment purposes, raising of funds and other corporate purposes.

Dated at Kenora, Ontario this 26th day of December 2007

fl melle Raph

Allen J. Raoul, B.Sc. Geology Exploration Manager

APPENDIX A

Diamond Drill Logs DL06-01 DL06-02 DL06-03 DL06-04 DL06-05 On or near the Dash Lake Area

WESTERN WARRIOR RESOURCES INC

Diamond Drill Core Log

Hole Number: DL06-01

Property:		Dash Lake Claim Group	Azimuth:	60 °				Logged By: M. Chute					ute						
Zone:		Dash Lake east shore	Dip:	45	0						Dril	led By:		Summitt Drilling		ling			
Claim:	_	1161626	Hole Length:	th: 157.7			157.75m					Assays By:					SGS Mineral Service		Service
Starte	d:	Dec. 9, 2006	Casing:	4.70m							Dov	wnhole Surv	eys:						
Comp	leted:	Dec. 10, 2006	Core Size:	AT	W														
Coord	inates:	GPS 5438090N, 457494E (NAD83)																	
Comm	ents:	Eastern shore alteration zone																	
From	То	Description: Lithology, Structure, Altera	tion, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From (m)	To (m)	Length	Au (ppb)			
0.00	4.70	Casing / Overburden with mixed granite	boulders, which																
		are locally derived rhyodacite fragments													-				
4.70	7.00	Highly Altered Felsic (Rhyodacite) Tuff -	Lapilli Tuff																
		Mottled, light-medium grey-green, bleac	hing along																
		fractures, sparse pyrite that is fine to me	dium grained		ļ														
		disseminated and in fragments with wea	k carbonate																
		and minor chloritic fractures																	
		06101 - mottled, light-medium grey-gree	n, bleaching along	_								6101	4.70	6.00	1.30	<10			
		fractures, sparse pyrite that is fine to me	dium grained																
		disseminated and in fragments with wea	k carbonate																
		and minor chloritic fractures																	
		06102 - mottled, light-medium grey-gree	en, bleaching along									6102	6.00	8.00	2.00	<10			
		fractures, <1% fine to medium grained d	isseminated pyrite					L		L	ļ								
		with less bleaching than 06101 dissemin	ated with weak																
		carbonate																	
		06103 - mottled, light-medium grey-gree	en, minor intense	 								6103	8.00	10.00	2.00	40			
		bleaching with leuco-pegmatite at 8.40m	and hairline																
		parallel tractures along axis and sparse,	disseminated																
_		tine - medium grained pyrite																	

WESTERN WARRIOR RESOURCES INC

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
		6104 - mottled, light-medium grained, grey-green with										6104	10.00	12.00	2.00	<10
		white carbonate vein at 11.52m with fine-medium grained														
		pyrite along margins in host rock. There are 3mm						ļ	ļ							
		carbonate throughout, at 90° TCA, with sparse, fine-														
		medium grained, disseminated pyrite and locally intense														
		bleaching along healed fractures.														
															_	
		6105 - mottled, light to medium, grey-green, weak										6105	12.00	14.00	2.00	<10
		carbonate at 12.31m and 2mm carbonate vein at 58°.														
		Pyrite in vein (50% of carbonate vein) and trace,														
		fine to medium grained, euhedral pyrite														
		6106 - mottled, light to medium, grey-green, with										6106	14.00	16.0Ū	2.00	<10
		several chlorite-pyrite veinlets at 15°-80° (<2mm) of 50%														
		pyrite 14.03-14.63m has 1% fine to medium grained														
		disseminated pyrite with the rest of the section has sparse														
		pyrite and is not carbonated.														
														_		
		6107 - at contact at 16.05m, mottled to less mottled,										6107	16.00	18.00	2.00	150
		mainly light grey, appears weakly silicified with 2% very														
		fine-grained to medium-grained, disseminated pyrite														
		that is locally forms irregular patches with host rock														
		appears brecciated and no carbonated irregular fractures.														
		No abundant quartz phyric fragments														
		6108- less mottled, light-grey, appears bleached with weak	ł									6108	18.00	20.00	2.00	40
		carbonate and silica with local clast of fine-medium														
		grained, disseminated pyrite as euhedral to subhedral														
		patches and isolated grains with some replacing, small														
		blsck fragments.														

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
											0.400	00.00	00.00	0.00	00
		6109 - mottled, light grey to light grey-green, bleached						ļ	 		6109	20.00	22.00	2.00	90
		silicified with 5% disseminated, fine to medium grained							 						
		in irregular patches with flooded zones and no carbonate.	┢	-					 						
		C110 mothed light many mean blackhod to dilighted							 		6110	22.00	24.00	2 00	70
		6110 - mottled, light grey-green, bleached to silicitied	 						 	ļ	6110	22.00	24.00	2.00	/0
		with 5% disseminated, fine-medium grained pyrite in							 						
		irregular patches with flooded zones and no carbonate							 						
				<u> </u>					 		0111	04.00	00.00	0.00	
		6111 - mottled, light grey to grey-green, bleached, weakly									6111	24.00	26.00	2.00	20
		silicitied with 5% disseminated tine-medium grained	-						 						
		pyrite as subnedral patches and irregular zones						<u> </u>	 						
		6112 mottled unit as above to 26.72 with above contact	╉───					-			6112	26.00	28.00	2 00	40
		or 12 - mollied unit as above to 20.73 with sharp contact							 		0112	20.00	20.00	2.00	40
		at 50° with less motified unit below. Light-medium grey with							 						
		5% fine-grained pyrite with minor hairline fracture pyrite							 			<u> </u>			
		and minor hairline quartz vein.	<u> </u>						 						
		C412 lower content of 24m Links medium moves of the					<u> </u>				0110	00.00	20.00	0.00	40
		bills - lower contact at 31m. Light - medium grey as above	-				ļ				0113	28.00	30.00	2.00	40
		with 5% fine grained pyrite and lower contact is an													
		obviously fragmental with no carbonate					<u> </u>		 						
		6114 Mottled medium grey bloophing along frequence							 		6114	20.00	22.00	2 00	20
		10% silies earbanate alteration with 1,2% purite an		<u> </u>							0114	30.00	32.00	2.00	20
		disseminated aubodral to subbodral grains and 5 8%	+	+					 						
		dark quartz over At 31 72m Rem zone with >30% silica		-				-							
		alteration with trace purite				_			 						
		6115 - Mottled fine grained grey bleach zones of >25%									6115	32.00	34 00	2 00	120
r		silica corbonate with foliotion at 45° TCA and 2 4% surite							 			52.00	04.00	2.00	120
		Since-carbonate with foliation at 45 TCA and 2-4% pyrite.							 						
		Last sourn of sample unit is light grey, weakly silica -							 						
		trace 1% purite													
		liace-170 pyrile.	1												

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
		6116 - Light grey, weak silica-carbonate (<5%) with 10%										6116	34.00	36.00	2.00	<10
		dark quartz eyes and trace-1% pyrite. Last 1.25m of														,,
		sample unit is medium grey, bleached with 25% silica-														
		carbonate alteration with foliation at 50° TCA with 1-3% py.														
											,		,			
		6117 - Medium grey, bleached with 25% silica-crabonate						_				6117	36.00	38.00	2.00	<10
		altered with 1-3% pyrite. Last 1.62m of the sample unit														
		is mottled, medium grey, 10% silica-carbonate altered	1	<u> </u>									1.1.1		,	
		with 5% dark quartz eyes and 1-2% fine to medium		1			-									
		pyrite disseminations. At 37.72, 8cm of >40% silica										, , , , , , , , , , , , , , , , , , , ,	,,			
		flooded fracture zone at 45-90° TCA.											(// / / / /			
			+	1		1		<u> </u>							,,	
	· · · · ·	6118 - Mottled, medium grey, 10% silica-carbonate altered	1-			<u> </u>		\uparrow				6118	38.00	40.00	2.00	10
·······		with 5% dark guartz eyes and 1-2% fine to medium pyrite.					·									
		At 38.19m, 9cm of >30% silica-carbonate alteration with				<u> </u>										
		trace pyrite. Last 69cm of sample unit is medium grey,	1-								· · · ·	1				
		25% silica-carbonate altered patches (5-20cm) with 2-4%,	1	1									· · · · · · · · · · · · · · · · · · ·			
		fine to medium, pyrite.	1	-		-		1						,		
			1					-					,	,,		
		6119 - Light grey, 25% silica-carbonate altered patches	1	1			1-	—				6119	40.00	42.00	2.00	40
		(5-20cm) with 2-5%, fine to medium, pyrite.	1-	1				1						7 1		
								1			· '					
		6120 - Light grey, 25% silica-carbonate altered patches	\top			-		<u> </u>			,	6120	42.00	44.00	2.00	80
		(5-20cm) with 2-5%, fine to medium, pyrite. From 42.39-	1				<u> </u>	<u> </u>				1				
		43.70m, light grey, fine grained, patch sections of 10%	-	-			1								,,	
		silica-carbonate altered with trace-2% pyrite. Last 30cm	1			ľ			- :	.,						,
[of sample unit has >30% silica alteration zone with	\top	· · · · ·	<u> </u>	—	1	1								
		trace-1% pyrite. At 43.70m, 1cm black chlorite vein at														, , , , , , ,
		30° TCA.						<u> </u>								
			1	<u> </u>		-	<u> </u>					<u> </u>				·····
	······		1				<u>†</u>	1				···· · · ·			·	,,,,

WESTERN WARRIOR RESOURCES INC

Diamond Drill Core Log

Hole No: DL06-01

6121 - Light grey, weakly bleached (<5% silica-carbonate) 6121 44.00 46.00 2.00 20 with 10% coarse, dark quartz eyes and trace pyrite and 6121 44.00 46.00 2.00 20 44.60m, 1cm of 80% py. 6122 46.00 46.00 2.00 20 6122 - Light grey, weakly bleached (<5% silica-carbonate) 6122 46.00 48.00 2.00 20 with 10% coarse, dark quartz eyes and trace pyrite and 6122 46.00 48.00 2.00 20 with 10% coarse, dark quartz eyes and trace pyrite and 6122 46.00 48.00 2.00 20 with 10% coarse, dark quartz eyes and trace pyrite and 6122 46.00 48.00 2.00 20 bleached with 10-15% silica-carbonate alteration with 54.00 50.00 2.00 40 carbonate alteration with 3-5% grey, quartz eyes 6123 48.00 50.00 2.00 40 carbonate alteration with 3-5% grey, quartz eyes 6123 48.00 50.00 2.00 40 carbonate alteration with 3-5% grey, fine medium 1	From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
6121 Light grey, weakly bleached (<5% silica-carbonate)																	
with 10% coarse, dark quartz eyes and trace pyrite and			6121 - Light grey, weakly bleached (<5% silica-carbonate)			L			ļ				6121	44.00	46.00	2.00	20
1-4cm patches of pyrite. At 44.47m, 2cm of 50% py and 1 1 1 1 44.60m, 1cm of 80% py. 6122 46.00 48.00 2.00 20 6122 - Light grey, weakly bleached (<5% silica-carbonate)			with 10% coarse, dark quartz eyes and trace pyrite and			L											
44.60m, 1cm of 80% py.			1-4cm patches of pyrite. At 44.47m, 2cm of 50% py and				L	L	ļ								
6122 - Light grey, weakly bleached (<5% silica-carbonate)			44.60m, 1cm of 80% py.					L									
6122 - Light grey, weakly bleached (<5% silica-carbonate)																	
with 10% coarse, dark quartz eyes and trace pyrite and	Ĺ		6122 - Light grey, weakly bleached (<5% silica-carbonate)				L						6122	46.00	48.00	2.00	20
1-4cm patches of pyrite. At 46.44cm, 7cm of 15% pyrite			with 10% coarse, dark quartz eyes and trace pyrite and								1						
patch. Last 1.49m of sample unit is medium grained,			1-4cm patches of pyrite. At 46.44cm, 7cm of 15% pyrite														
bleached with 10-15% silica-carbonate alteration with			patch. Last 1.49m of sample unit is medium grained,														
3-5% grey, quartz eyes and fine-grained, trace pyrite Image: Stress of the system			bleached with 10-15% silica-carbonate alteration with														
disseminations. i			3-5% grey, quartz eyes and fine-grained, trace pyrite					Γ									
6123 - Medium-grained, bleached with 10-15% silica- 6123 48.00 50.00 2.00 40 carbonate alteration with 3-5% grey, quartz eyes 6123 48.00 50.00 2.00 40 and trace pyrite. From 48.19-49.56m, fine to medium 6123 48.00 50.00 2.00 40 grained, dark grey, bleached with 20% silica-carbonate 6123 48.00 50.00 2.00 40 alteration patches and several quartz filled (>50%) 6124 6123 48.00 50.00 2.00 20 fractures over 1-5cm at 30° TCA and trace pyrite. 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 6124 50.00 52.00 2.00 20 with <5% silica-carbonate altered with 0.5% silica-carbonate			disseminations.														
6123 - Medium-grained, bleached with 10-15% silica- 6123 48.00 50.00 2.00 40 carbonate alteration with 3-5% grey, quartz eyes 1 <																	
carbonate alteration with 3-5% grey, quartz eyes			6123 - Medium-grained, bleached with 10-15% silica-										6123	48.00	50.00	2.00	40
and trace pyrite. From 48.19-49.56m, fine to medium			carbonate alteration with 3-5% grey, quartz eyes														
grained, dark grey, bleached with 20% silica-carbonate	-		and trace pyrite. From 48.19-49.56m, fine to medium														
alteration patches and several quartz filled (>50%)			grained, dark grey, bleached with 20% silica-carbonate					—									
fractures over 1-5cm at 30° TCA and trace pyrite.			alteration patches and several quartz filled (>50%)					-				 					
Last 44cm of sample consists of light grey, fine matrix Image: consists of light grey, fine matrix Image: consists of light grey, fine matrix with <5% silica-carbonate altered with 0.5-2cm patchy			fractures over 1-5cm at 30° TCA and trace pyrite.														
with <5% silica-carbonate altered with 0.5-2cm patchy			Last 44cm of sample consists of light grey, fine matrix	1	\square	<u> </u>	<u> </u>	<u> </u>	+			<u> </u>					
pyrite in fractures. 0			with <5% silica-carbonate altered with 0.5-2cm patchy	1	1	 		\top								_	
6124 - Light grey, fine matrix with <5% silica-carbonate			pyrite in fractures.	+	1	\vdash	1	1	\uparrow		<u> </u>	<u> </u>					
6124 - Light grey, fine matrix with <5% silica-carbonate					\square	\vdash	1	 	1	†	1-		1				
altered with patchy pyrite in fractures. Last 1.87m of			6124 - Light grey, fine matrix with <5% silica-carbonate	+		<u>† </u>	<u> </u>	1			1		6124	50.00	52.00	2.00	20
sample unit is fine to medium grained, bleached with	<u> </u>		altered with patchy pyrite in fractures. Last 1.87m of	+	<u> </u>	+	<u> </u>	1	1								
10-15% silica-carbonate altered and 5% dark quartz eyes			sample unit is fine to medium grained bleached with	-	<u>†</u>			+		+				<u> </u>			
withy trace pyrite. At 50.50m, 2cm carbonate-silica	<u> </u>		10-15% silica-carbonate altered and 5% dark quartz eves			<u> </u>	 	<u>+</u>		<u>+</u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·				
sealed fracture at 25° TCA.			withy trace pyrite. At 50,50m, 2cm carbonate-silica		1		<u> </u>	+	+	1							
			sealed fracture at 25° TCA	-		<u> </u>		-	+	<u> </u>	-						
					\square	-				-							
				-	-	<u> </u>	\vdash	-	+								

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
		6125 - Fine to medium, bleached with 10-15% silica-										6125	52.00	54.00	2.00	10
		carbonate with 5% dark quartz eyes with trace pyrite.	<u> </u>													
		Last 1.60m of sample is fine to medium grained, bleached														
1		with 10-15% silica-carbonate altered with 3-7% plagioclase				L										
		phenocrysts and trace-1% disseminated pyrite.														
		6126 - Fine to medium grained, bleached with 10-15%										6126	54.00	56.00	2.00	10
		silica-carbonate altered with small zones (<20cm) of 2-4%														
		or 8-10% plagioclase and trace-1% pyrite.			_											
		6127 - Fine to medium grained, bleached with 10-15%										6127	56.00	58.00	2.00	<10
		silica-carbonate altered with 5-7% plagioclase phyric				_										
		and 2-3% dark guartz eyes and trace-1% pyrite. At		·												
		57.10m, 4cm carbonate-silica filled fracture at 60-80° TCA.														
						L										
		6128 - Fine to medium grained, bleached with 20%										6128	58.00	60.00	2.00	30
		silica-carbonate altered with small zones (<10cm) of 1-3%									_					
		or 3-5% plagioclase and trace pyrite.														
		0100 Firstersedium and blacked with 000/	-									6100	60.00	62.00	2.00	20
		6129 - Fine to medium grained, bleached with 20%	-				<u> </u>		<u> </u>			0129	60.00	62.00	2.00	20
	ļ	silica-carbonate altered with <3% plagioclase phenocrysts	_	_	Ļ			<u> </u>								
		and <3% dark quartz eyes and 1% pyrite.	_	\vdash		ļ		<u> </u>								·
							L						00.00	04.00		
		6130 - Fine to medium grained, bleached with 20%	-									6130	62.00	64.00	2.00	10
	_	silica-carbonate altered with <3% plagioclase phenocrysts					ļ									
		and <3% dark quartz eyes and several 1-4cm pyrite														
		zones (4-5% py).														
		6131 - Fine to medium grained, bleached with 20%										6131	64.00	66.00	2.00	20
		silica-carbonate altered with <3% plagioclase phenocrysts														
		and <3% dark quartz eyes. At 64.10, 1cm chlorite vein.														
		From 65.03-65.57m, several unaltered zones (10-15cm).														

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
		6132 - Fine grained, dark grey, highly bleached with >25%			ļ			L	\square			6132	66.00	68.00	2.00	50
		silica-carbonate altered with <2% dark quartz eyes with	1	 			 									
		trace-2% pyrite.														
[4				
		6133 - Fine grained, dark grey, highly bleached with >25%										6133	68.00	70.00	2.00	20
		silica-carbonate altered with <2% dark quartz eyes with														
		trace-2% pyrite. Last 64cm of sample is medium grained														
		grey, bleached with 10-15% silica-carbonate with 3-5%														
		dark guartz eyes with weak folaition at 50° TCA and trace-				[
-		2% pyrite as disseminations.									<u> </u>					
				-			_						1			
		6134 - Medium grained, grey, bleached with 10-15%		†			\square	1	\square			6134	70.00	72.00	2.00	<10
		silica-carbonate with 3-5% dark guartz eves and trace-2%		┢		\square	1									
		pyrite. At 69.90m, 10cm annealed fracture zone with		\vdash			\square				<u> </u>					
		10% silica-alteration														
				<u> </u>			<u> </u>									
		6135 - Medium grained, grey, bleached with 10-15%									<u> </u>	6135	72.00	73.00	1.00	10
		silica-carbonate with 3-5% dark guartz eyes and trace-2%			\square	1										
		pyrite. Lower contact at 35° TCA.							\square							
				†		<u>†</u>						-				
73.00	157.75	Diabase Dyke		-			-					· · ·				
		Medium-grained black magnetic equigranular dike of		-		<u>†</u>										
		abbroic composition. First 50cm is finer grained due to	+			1		+								
	<u> </u>	the contact			<u> </u>											
						+	1									
		At 74,20m, a 14cm zone of epidote alteration				\square	+									
		At 78 23m 5mm propylitic slip at 400	+	<u> </u>		<u> </u>		+								
		At 94,96m, lower contact at 40o chlorite-carb	+-	+		\square		-								
		slip surface to coarser grain phase.	1			<u> </u>	\square	+								
		At 99.50 - 99.58m, intense propylitic zone with sharp	+					+	\square							
		contacts at 430 with 6mm guartz-carb veinlet. Contains	1													
		1 grain of chalcopyrite in zone and non-magnetic.	<u> </u>	1		1		1								

WESTERN WARRIOR RESOURCES INC

Diamond Drill Core Log

Hole No: DL06-01

				_	_	_	_	_							
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
73.00	157.75	Diabase Dyke (continued)		-				· ·							
_		At 100.60 - 101.25m, grades into medium-grained								<u> </u>					
		magnetic phase.													
•		At 109.62 - 109.88m, upper contact at 43° and lower													
		contact at 50° with intense propylitic alteration as	1	-											
		hairline microfractures above upper contact with	-	\vdash											
		propylitic alteration for 15cm.		<u> </u>			1	<u>†</u>							
		At 111.95m, 4mm white carbonate vein with 1cm													
		flooded zone below and adjacent with propylitic alteration					<u> </u>								
		At 117.5-118.0m, locally ground core		<u> </u>			\vdash	+		<u> </u>					
-		At 121.1m, minor 3-4mm guartz-carb vein at 15°						-							
		At 134.07m, medium-grained					<u> </u>								
		,					 		 						
	157.75	End Of Hole						†		<u> </u>					
				-				-							
			1				<u> </u>		-						
							<u> </u>								
				—			<u> </u>								· · · ·
										_					
_															

Diamond Drill Core Log

Hole Number:DL06-02

Prope	rty:	Dash Lake Claim Group Azimut	h:	3	15	0					Log	ged By:		A. Rac	ul	
Zone:		South pennisula Dip:		45	0						Dril	led By:		Summ	itt Dril	ling
Claim	:	1161626 Hole L	ength:	151	.0n	n					Ass	ays By:		SGS M	lineral	Services
Starte	d:	Dec.11, 2006 Casing	1	4.5	0m						Dov	vnhole Su	rveys:			
Comp	leted:	Dec. 12, 2006 Core S	ize:	AT	W											
Coord	inates:	GPS 5437880N, 457154E (NAD83)														
Comn	ients:	Alteration zone on southern pennisula														
From	То	Description: Lithology, Structure, Alteration, Min	eralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From (m)	To (m)	Length	Au (ppb)
0.00	4.50	Casing / Overburden with mixed granite boulder	s with													
		chloritic basalt.														_
4.50	8.75	Feldspar Phyric Intermediate Dyke (Andesite)		1	0	0	0	0		_		6136	4.50	6.00	1.50	<10
		10-12% medium-grained, white plagioclase pher	nocrysts	1	0	0	0	0		_		6137	6.00	8.00	2.00	<10
		(3-4mm) in finer, dark grey, andesitic matrix with		_1	0	0	0	0		_		6138	8.00	8.75	0.75	<10
		occassional 1-2mm fractures at 45° TCA of calc	ite with													
		lower contact at 50° TCA														
				2	Ō	3	0	1				6139	8.75	10.00	1.25	<10
8.75	21.15	Altered Felsic Flow (Rhyolite)		2	0	3	Ő	1				6140	10.00	12.00	2.00	<10
		Fine-grained, rhyolitic flow unit with probable flow	v banding	2	Ō	3	0	1				6141	12.00	14.00	2.00	<10
		of 5-7% quartz and are elongated at 35° TCA (fo	liated)	2	0	3	0	1				6142	14.00	16.00	2.00	<10
		Sporadic bleached to mottled areas due to silica	(>20%)	2	0	3	0	1	_			6143	16.00	18.00	2.00	<10
		flooding and minor calcite (<5%). Pyrite typically	v <1% as	2	0	3	0	1				6144	18.00	20.00	2.00	<10
		fined disseminations but patchy sections (2-10cr	n) of	2	0	3	0	1				6145	20.00	21.15	1.15	<10
		>3% to 5% pyrite.										_				
21.15	45.45	Highly Altered Felsic Fragmental (Dacite)		2	0	3	1	2				6146	21.15	22.00	0.85	<10
		Fine-grained, grey, siliceous matrix (quartz-felds	par) with	2	0	3	1	2				6147	22.00	24.00	2.00	<10
		10 to 40% clasts of quartz, quartz-feldspar intrus	sive,	2	0	3	1	2				6148	24.00	26.00	2.00	<10
		quartz-feldspar flow and >5% coarse quartz phe	nocrysts	2	0	3	1	2				6149	26.00	28.00	2.00	<10
		(lighter grey than the original clast material) with	1-2%	2	0	3	1	2				6150	28.00	30.00	2.00	<10
		pyrite. More bleached sections (10-30%) of silic	a +/- carb	2	0	3	1	2				6151	30.00	32.00	2.00	<10
		alteration over small intervals (5-20cm). Sulphide	es are	2	0	3	1	2				6152	32.00	34.00	2.00	<10

WESTERN WARRIOR RESOURCES INC

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
21.15	45.45	Highly Altered Felsic Fragmental (continued)	2	0	3	1	2	2				6153	34.00	36.00	2.00	<10
		1-2% fine, disseminated pyrite but more patches (<3 cm)	2	0	3	_1	2	2				6154	36.00	38.00	2.00	<10
		of >3% pyrite. Under 1% late stage, calcite +/- epidote	2	0	3	1	2	2				6155	38.00	40.00	2.00	<10
		veins, due to plagioclase alteration, at 80° TCA. Rare	2	0	3	1	2	2				6156	40.00	42.00	2.00	<10
		quartz veins (<1cm) occur at 90° TCA.	2	0	3	1	2	2				6157	42.00	44.00	2.00	<10
		There is a general decrease of bleaching downhole	2	0	3	1	2	2				6158	44.00	45.45	1.45	20
		until the end of this unit is at approximately 10-15%.	_													
									\square							
		At 31.92m, 5cm unit of 20% pyrite (see sample 6151).														
		At 41.55m, 10cm unit of flow banding														
							\square									
45.45	50.25	Felsic Crystal Tuff (Dacite)	0	0	0	2	1	1				6159	45.45	47.00	1.55	20
		Fine to medium grained, dark grey, crystall tuff of	0	0	0	2	1	1				6160	47.00	49.00	2.00	20
		dacitic (to andesitic) composition with recrystallized	0	0	0	2	1	1				6161	49.00	50.25	1.25	20
		crystal boundaries (welded). Late stage calcite veins														
		(<0.5cm) occur at 90° to 70° TCA.						Τ								
50.25	51.75	Altered Rhyolite Dike	1	0	3	2	C)				6162	50.25	51.70	1.45	20
		Fine-grained, off-white, felsic matrix with 10-15% coarse								-12-12-						
		quartz eyes in rhyolitic flow (dike). Sporadic bleaching				_		T								
		of unit indicates silica - carbonate introduction and minor														
		epidote (due to plagioclase alteration) with contacts at					1									
		50° TCA.					—									
							\square	+	<u> </u>				<u> </u>			
51.7	54.45	Felsic Crystal Tuff (Dacite)	0	0	0	2	1	1	<u> </u>			6163	51.70	53.00	1.30	20
		Similar to 45.45 - 50.25 as fine to medium-grained, dark	0	0	0	2	1	1				6164	53.00	54.45	1.45	20
		grey, crystal tuff of dacitic to andesitic composition with						1								
		recrystallization (welding). Late stage 1-3 mm veinlets														
		of calcite at 90° to 70° TCA. Contact at 65° TCA.					\square	1-								
																
				<u> </u>												
				<u> </u>			<u> </u>									
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)	
-------	-------	---	-----------	----------	--------	-------	-----------	---	----------	-----	----------	-------	-------	--------	----------	
54.45	90.25	Altered Quartz Eye Felsic Tuff to Lapilli Tuff									6165	54.45	56.00	1.55	20	
		3-5% coarse quartz eyes (3-7 mm) in fine to medium-									6166	56.00	58.00	2.00	20	
		grained, light grey, felsic matrix of dacite to rhyodacite									6167	58.00	60.00	2.00	30	
		composition. Bleached areas with >20 - 30% silica -									6168	60.00	62.00	2.00	20	
		carbonate alteration in 3 -10cm wide zones. There are									6169	62.00	64.00	2.00	160	
		calcite-epidote-chlorite filled fractures at 45° TCA and									6170	64.00	66.00	2.00	20	
		calcite veinlets (< 1cm) at 90° to 70° TCA.									6171	66.00	68.00	2.00	20	
											6172	68.00	70.00	2.00	10	
		At 56.82m, 1cm calcite-epidote-chlorite vein at 40° TCA.														
		At 57.25m, 1cm calcite-chlorite vein at 45° TCA.														
		At 60.15m, 3cm chlorite-silica vein at 15° TCA.						-								
		At 61.67m, 1cm calcite vein at 90° TCA cuts across		<u> </u>												
		earlier black chlorite veins at 30° TCA from 61.71m to	\vdash										_			
		70.00m in small zones (<10cm).														
		At 63.46m, 15cm section with calcite veins at 75° TCA.														
		At 64.76m, 1cm quartz-epidote vein at 75° TCA.	1													
		70.00 - 70.34m - Plagioclase Phyric Andesite Dike	3	1	2	2	1				6173	70.00	72.00	2.00	<10	
		Fine-grained, grey, intermediate matrix with >20%										_				
		plagioclase phenocrysts. Cross cut by later calcite										_				
		veins (1-3 mm) at 60 - 70° TCA and contact at 70° TCA.														
		70.50 - 70.70m - Plagioclase Phyric Andesite Dike														
		Similar to 70.00 to 70.34m with the same later calcite														
		veins and contact at 70° TCA.														
													_			
		71.09 - 71.15m - Plagioclase Phyric Andesite Dike														
		Similar to 70.00 to 70.34m with contact at 70° TCA.														

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
54.45	90.25	Altered Quartz Eye Felsic Tuff to Lapilli Tuff (continued)													
		71.52 - 71.88m : Plagioclase Phyric Andesite Dike													
		Same as 70.00 - 70.34m with contact at 80° TCA.													
		72.40 - 75.74m : Altered Quartz Eye Felsic Tuff	3	1	2	1	1				6174	72.00	74.00	2.00	<10
		Part of the same unit above with moderate calcite - silica	3	1	2	1	1				6175	74.00	76.00	2.00	<10
		alteration and trace pyrite.	3	2	2	1	1				6176	76.00	78.00	2.00	<10
		At 75.74m, 5cm vein of >80% calcite with epidote at													
		60° TCA.													
		79.30 - 80.74m: 1.44m shear zone in the altered	1	1	1	0	1				6177	78.00	80.00	2.00	20
		quartz eye felsic tuff at 35° TCA with less carbonate -		_											
		silica but there is grain size reduction.													
										_					
		81.06 - 81.44m: Highly Altered Quartz Eye Felsic Tuff	2	1	2	1	2	2			6178	80.00	82.00	2.00	30
		Zone containing moderate to strong carbonate to		L											
	ļ	silica alteration (>30%) with 5% pyrite stringers at													
		80° TCA.													
		81.75 - 87.50m: Chlorite Zone	2	3	1	1	1				6179	82.00	84.00	2.00	20
		Long, narrow, black chlorite developed on weak to	2	3	1	1	1				6180	84.00	86.00	2.00	20
		moderate calcite and minor silica bearing fracture planes.	2	3	1	1	1	1			6181	86.00	88.00	2.00	20
												<u>-</u>			
		87.60 - 90.25m: Altered Quartz Eye Felsic Tuff	2	0	2	0	1	l			6182	88.00	89.00	1.00	30
		Part of the same unit above with weak to moderate calcite -	2	0	2	0	2	2			6183	89.00	90.25	1.25	20
		silica alteration but no chlorite with trace-1% pyrite.		L		 	_					<u> </u>			
							<u> </u>	1							
	ļ		1		 	\vdash		<u> </u>						L	
					1										

Page : ____4___ of ____8____

					_										
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
90.25	92.00	Sulphide Zone in Highly Altered Quartz Eye Felsic Tuff	2	0	3	0	4				6184	90.25	92.00	1.75	40
		From 5 to 30% course pyrite pods and stringers on a													
		intensely bleached, tan, felsic tuff with 3% coarse, quartz													
		eyes and 20-30% silica and >10% calcite introduction						T							
		in patchy sections.													
92.00	92.70	Tan Felsite Dike	1	0	2	0	3	3			6185	92.00	92.70	0.70	<10
		Fine-grained, tan, siliceous, felsite dike with apilitic texture						T							
		at 50° TCA with almost no alteration or weak silica -													
<u>,</u>		carbonate (<5%).	-					+							
				<u> </u>			1	+							<u> </u>
		92.40 - 92.65: Sulphide Zone in Highly Altered Felsic Tuff			<u> </u>										<u> </u>
		Part of the same unit as 90.25 - 92.00m but has been cut	1		-	<u> </u>	1-	+ +							
		apart by the felsite dike.	-	-	_										
							†	+							
92.70	93.00	Felsic Fragmental with Pyrite	1	0	2	0	3	3			6186	92.70	93.00	0.30	30
		Highly fractured unit of grey, felsic clasts in light grey,	-	1						<u> </u>					
	_	siliceous matrix with 3-4% fine, disseminated pyrite		\vdash											
		and moderate silicification with minor calcite		<u> </u>											
					 		1			<u> </u>					
93.00	94.88	Altered Quartz Eye Felsic Tuff	0	0	2	0	1				6187	93.00	94.88	1.88	40
		Similar to 54.45 - 90.25m with 2-5% coarse, grey quartz	-				\square								
		eyes in light grey, siliceous, mottled matrix with weak -		<u> </u>	<u> </u>		╞──		-	<u> </u>					
		moderate silicification, trace pyrite but no carbonate.		<u> </u>			1								
							<u> </u>			<u> </u>					
94.88	102.16	Sulphidized Altered Quartz Eye Felsic Tuff	2	1	2	0	3				6188	94.88	97.00	2.12	50
		Similar to 93.00 - 94.88m with disseminated to patchy	1	2	2	0	2	2			6189	97.00	99.00	2.00	70
		pyrites, varying from 1-5% but averages 2%. Chlorite	1	1	2	0	2	2			6190	99.00	101.00	2.00	20
		patches <5cm and >10% chlorite-bearing fractures and	1	1	2	0	2	2			6191	101.00	103.00	2.00	10
		masses. Bleached appearance due to weak to moderate		-		<u> </u>	1								
		silica-carbonate introduction and grain size reduction.					1	-				r			

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
100.10	404.07	Alternal Falsta Truff I and III Truff	-			0						6400	102.00	104 07	4.07	- 10
102.16	104.27	Altered Feisic Tuff - Lapini Tuff			4	0			_			0192	103.00	104.27	1.27	<10
		Fine-grained, grey, siliceous matrix with motiled					┢	┼─┤								
		appearance due to moderate silicification and carbonate	+													
		alteration with trace-1% pyrite and as rare disseminations.		┣─				┼╌┼					<u> </u>			
		Contact at 75° TCA.	_					+	-+-							<u> </u>
104 27	104 75	Sulphidized Altered Felsic Fragmental	13	1 3	2	0		+				6193	104 27	104 75	0.48	90
104.27	104.70	Large clasts (>5cm) of highly sulphidized (>20% pyrite)	┥┙	۲Ŭ	~	•							104.21	104.70	0.40	
		and chlorite stringers in moderately silica - carbonate	+					+								
		alteration with contacts at 75°TCA		┢─			-	+					<u> </u>			
								╉╌╋				-				
104.75	109.46	Altered Felsic Tuff	2	2	3	0	1	┟──╽				6194	104.75	106.00	1.25	<10
		Fine grained, light grey, siliceous, mottled matrix with	2	2	3	0	1					6195	106.00	108.00	2.00	<10
		moderate silica-carbonate alteration and 1-2% course	2	2	3	0	1					6196	108.00	109.46	1.46	<10
		dark grey, guartz eyes with trace-1% pyrite.	1	<u> </u>				++					<u> </u>			<10
				-												
109.46	111.07	Altered Felsic Flow (Rhyolite Dike)	3	2	1	0	2	2				6197	109.46	111.07	1.61	<10
		Fine-grained, felsic flow with moderate calcite and minor					—									
		silica alteration with 1-2% fine, disseminated pyrite														
		through-out and early black, chlorite filled fractures at					<u> </u>			_						
		70° TCA.														
							Ļ	\downarrow								
111.07	115.34	Altered Felsic Tuff	1	2	2	0	1		-+			6198	111.07	111.00	1.93	<10
		Medium-grained, felsic tuff of dacite to rhyodacite	1	2	2	0	2	2				6199	111.00	115.34	2.34	<10
		composition with early black chlorite filled fractures	_	 												
		at 90° to 70° TCA. This has been overprinted by weak to		L			1									
		moderate silica and minor calcite (along fractures).														
		Pyrite is trace-1% as disseminations or along as														
		fracture fillings.	_		L											
			_				ļ									
			-				L									
							1									

					_		_								
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
115.34	116.51	Felsic Tuff	1	0	1	0	2	2			6200	115.34	116.57	1.23	<10
		Fine-grained, felsic tuff (rhyolite) with 2% quartz eyes and													
		and 1-3% pyrite fine, disseminated pyrite with weak to					<u> </u>					_			
		moderate silica-carbonate alteration (<10%).	_				ļ								
116 51	131 58	Altered Felsic Tuff to Lapilli Tuff	2		1	0		5			6201	116 57	118.00	1 / 3	<10
	131.00	Fine grained grey felsic to siliceous matrix with	$+\frac{2}{2}$								6202	110.07	120.00	2.00	<10
		Prine-grained, grey relisic to sinceous matrix with	- 2				4	<u>-</u>			0202	110.00	120.00	2.00	<10
		occassional black chlorite filled fractures at 60-70° TCA.	$\frac{12}{2}$	1	1	0	$\frac{2}{2}$	4			6203	120.00	122.00	2.00	<10
		Mottled to bleached appearance due to moderate calcite	2	1	1	0	2	2			6204	122.00	124.00	2.00	<10
		and minor silica overprinting. Trace-1% pyrite occurs	2	1	1	0	2	2			6205	124.00	126.00	2.00	<10
		as disseminations and 2-5cm sections of >5% pyrite -	2	1	1	0	2	2			6206	126.00	128.00	2.00	<10
		chlorite (as possible fragments?).	2	1	1	0	2	2			6207	128.00	130.00	2.00	<10
			2	1	1	0	2	2			6208	130.00	131.58	1.58	20
		117.51 - 117.68 : Fragments of >30% calcite in altered	_												
		felsic tuffs with 3% pyrite.	_							L					
		118.31m, 3cm pod of >30% pyrite in altered felsic tuff.	_												
		119.75m, 9cm fragment of >20% pyrite in altered felsic													
		tuff		-											
121 58	124.16		-	\vdash_{α}		<u> </u>					0000	404 50	100.00	4.40	.10
131.50	134.10	Feisic Tull			1			!			6209	131.58	133.00	1.42	<10
		Similar to 115.34-116.51 as fine-grained, light grey,	1		1	0	1	1			6210	133.00	134.16	1.16	<10
		reisic (rhyolite to rhyodacite) turr with 1-2% dark quartz	_									ļ			
		eyes and trace-1% pyrite. Very weak to no calcite -	_												
			_				_								
134.16	137.39	Altered Granodiorite Dike	$\frac{1}{1}$	0	1	0		1			6211	134 16	136.00	1 84	<10
		Medium grained, grey, intrusive felsic unit with a mottled	$\frac{1}{1}$		1	0		1			6212	136.00	137 30	1.04	50
		appearance. Late fractures contain calcite and minor		<u> </u>	<u> </u>	-	<u> </u>	· - -			0212	100.00	107.00	1.00	
		silica and trace pyrite.							-						
								+	1						
				-			1-		~						
				-						<u> </u>					

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides	-		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
137.39	141.60	Altered Felsic Tuff	2	1	2	0	2	2				6213	137.39	139.00	1.61	10
		Fine grained, grey, siliceous tuff with mottled to bleached	2	1	2	0	2	2				6214	139.00	140.00	1.00	10
		appearance with moderate silica-carbonate alteration.	2	1	2	0	2	2				6214	140.00	141.60	1.60	10
		There is 2-3%, very fine, disseminated, pyrite and														
		occasional chlorite-filled fractures at 70° TCA.							Γ							
								1-	<u>+</u>							
141.60	151.00	Altered Feldspar Phyric Feldsic Tuff	1	0	2	0	2	2				6216	141.00	143.00	2.00	<10
		Fine grained, light grey, silcieous matrix of dacite. There	1	1	3	0	1					6217	143.00	145.00	2.00	<10
		is weak - moderate silica - calcite alteration; variable in	1	0	2	0	1					6218	145.00	147.00	2.00	<10
		<20cm patches of >30% silica - calcite but averages	2	0	2	0	1	1-	\vdash			6219	147.00	149.00	2.00	<10
		about 10-15%. Plagioclase phenocrysts vary from 2-20%	2	2	2	0	2	2	<u> </u>			6220	149.00	151.00	2.00	10
		but averages from 10%; partially altered to medium grained						\top								
		epidote crystals. Trace-2% pyrite as fine disseminations.			_		<u> </u>	\square	\square					_		
								\top	\square							
	151.00	End of Hole						\square								
							<u> </u>	\top	\square							_
							<u> </u>	\square								
							<u> </u>	1	\square							
								\square	\square							
				<u> </u>					\square					·		
								\square								
								\top	\square							
									\square							
															-	
								1	1							
									1							
														_		
																_

Diamond Drill Core Log

Prope	rty:	Dash Lake Claim Group	Azimuth:	60	0						Log	ged By:		A. Rao	ul	
Zone:		Eastern alteration zone	Dip:	45	0						Dril	led By:		Summi	itt Drill	ing
Claim:		1161626	Hole Length:	161	l.Or	n	_				Ass	ays By:		SGS N	lineral	Service
Starte	d:	Dec.13, 2006	Casing:	14.	48r	n					Dov	vnhole S	Surveys	5:		
Comp	leted:	Dec. 14, 2006	Core Size:	AT	W											
Coord	inates:	GPS 5438445N, 457980E (NAD83)														
Comm	ents:	300m east of Dash Lake														
From	То	Description: Lithology, Structure, Altera	ation, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From (m)	To (m)	Length	Au (ppb)
0.00	14.48	Casing / Overburden with weakly foliated	d boulder (0.74m)													
		of granite and fragments of basalt and a	Itered felsic tuffs.													
14.48	67.26	Plagioclase Phyric Andesite to Basalt Di	ke	1	1	1	0	1				6221	14.48	16.00	1.52	<10
		Fine grained, grey, intermediated to mat	ic matrix with	1	1	1	0	1				6222	16.00	18.00	2.00	<10
		10-15% white, medium grained crystals	of plagioclase	1	1	1	0	1				6223	18.00	20.00	2.00	<10
		and the rock is non-magnetic. There are	e numerous		1	1	0	1				6224	20.00	22.00	2.00	<10
		fractures (5-10cm) of chlorite-carbonate	-silica at 70° TCA	1	1	1	0	1				6225	22.00	24.00	2.00	<10
		and trace pyrite. These fractures types	occur at:	1	1	1	0	1				6226	24.00	26.00	2.00	<10
		At 18.95m, 13cm fracture filled vein		1	1	1	0	1				6227	26.00	28.00	2.00	<10
		At 22.26m, 4cm fracture filled vein		1	1	1	0	1				6228	28.00	30.00	2.00	<10
		At 25.31m, 8cm fracture filled vein		1	1	1	0	1				6229	30.00	32.00	2.00	<10
		At 26.16m, 16cm fracture filled vein		1	1	1	0	1				6230	32.00	34.00	2.00	<10
		At 34.21m, 16cm fracture filled vein		1	1	1	0	1				6231	34.00	36.00	2.00	<10
		There are occassional latest stage calci	te filled fractures	2	1	1	0	1				6232	36.00	38.00	2.00	<10
		(1-2mm) at 60-90° TCA.														
		38.02 - 38.11: Sulphide Zone		2	2	3	0	4				6233	38.00	38.15	0.15	<10
		10-12% Po in chlorite-silica bearing she	ar within the													
		altered dike at 75° TCA.														
							_									
14.48	67.26	Plagioclase Phyric Andesite to Basalt Di	ke (continued)	2	1	2	0	1				6234	38.15	40.00	1.85	<10
		The amount of calcite alteration zones w	vithin these late	2	1	2	0	1				6235	40.00	42.00	2.00	<10
		stage fractures is decreasing downhole;	from <2% to 5%.	2	1	2	0	1	l			6236	42.00	44.35	2.35	<10

Diamond Drill Core Log

Hole Number:DL06-03

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
44.40	07.00		$\left \right $						<u> </u>						
14.48	67.26	Plagioclase Phyric Andesite to Basalt Dike (continued)	$\left \right $		_										
		There is a slight increase in pyrite content with depth		_											
		downnole; from trace pyrite to trace-1% pyrite in the late													
		stage fractures.						_							
		14.25 14.65: Erecture Zono			2		1		+		6007	44.25	44.05	0 50	<10
			2		2	0		_+	+		0231	44.35	44.85	0.50	<10
		Chlorite-carbonate-epidote fracture zone at 20° TCA.		_										_	
14 49	67.26	Plagicalase Phyric Andepite to Pasalt Dike (continued)			1	0	1		+		6229	11 05	46.25	1 50	<10
14.40	07.20	Similar to above description	+ +		- 1	0	- 1				0230	44.00	40.35	1.50	<10
		46.35 - 46.63 [.] Sulphide Zone	2	2	2	0	3				6239	46.35	46.63	0.28	<10
		1-5% pyrite-pyrrhotite in silica - carbonate in altered dike at	-	~	~		Ū	-+-			0200	10.00	10.00	0.20	
		75° TCA	1-1												
				-	_			_							
14.48	67.26	Plagioclase Phyric Andesite to Basalt Dike (continued)	1	0	1	Ō	1				6240	46.63	47.70	1.07	<10
		Similar to above description.													
		47.70 - 47.95 : Sulphide Zone	2	2	2	0	3				6241	47.70	47.95	0.25	<10
		3-5% pyrite-pyrrhotite with trace chalcopyrite in silica -													
		carbonate altered dike at 75° TCA.													
14.48	67.26	Plagioclase Phyric Andesite to Basalt Dike (continued)	1	1	2	0	2				6242	47.95	50.00	2.05	<10
		Similar to above description.								_					
		At 48.15m, 7cm of 3% pyrite in silica-chlorite at 70° TCA.													
		At 49.35m, 11cm of 3-5% pyrite-pyrrhotite in silica -													
		carbonate altered dike at 80° TCA.													
		50.00 - 50.30: Sulphide Zone	1	2	2	0	3				6243	50.00	50.30	0.30	<10
		2-4% pyrrhotite - pyrite in chlorite - silica - carbonate													
			$\left \right $												
							I		1						

Page_2___of__10___

Hole No: DL06-03

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
									_							
14.48	67.26	Plagioclase Phyric Andesite to Basalt Dike (continued)	1	0	1	0	2					6244	50.30	52.00	1.70	<10
		Similar to above description. There is a slight increase	1	0	1	0	2					6245	52.00	54.00	2.00	<10
		in sporadic pyrrhotite or pyrite blebs (<3cm) with no	1	0	1	0	2					6246	54.00	56.00	2.00	<10
		associated alteration. Blebs found at 52.65m, 54.35m,	1	0	1	0	2					6247	56.00	57.07	1.07	<10
		54.78m and 55.31m.									_					
		57.07 - 57.65: Sulphide Zone	1	2	2	0	3					6248	57.07	57.65	0.58	20
		2-5% pyrite - pyrrhotite blebs with chlorite - silica														
		alteration as fractures at 70-80° TCA.														
14.48	67.26	Plagioclase Phyric Andesite to Basalt Dike (continued)	1	0	1	0	2					6249	57.65	59.00	1.35	<10
		Similar to above description with slight increase to >1%	1	0	1	0	2					6250	59.00	61.00	2.00	<10
		pyrite - pyrrhotite as disseminations.	1	0	1	Ō	2			-		6251	61.00	63.00	2.00	10
			1	0	1	0	2	_				6252	63.00	65.00	2.00	<10
		At 63.57, 13cm white granite dike at 70° TCA.	1	0	1	0	2					6253	65.00	67.26	2.26	<10
						-										
67.26	69.32	Altered Felsic Fragmental (Tuff)	1	0	2	Ō	2					6254	67.26	69.20	2.06	10
		Fine to medium grained, grey, felsic matrix with silica -									_				_	
		carbonate alteration with earlier sericite-epidote														
		alteration at 90-80° TCA. Pyrite content varies from							-						_	
		3% to 1%-trace at the end of the section. The matrix								- 1						
		consists of felsic tuff fragments (2-10cm) with increasing		_				+		-						
		tuff content downhole.									_					
									-+-	1	_					
69.32	70.70	Sulphide Bearing Cherty Felsic Tuff	1	0	2	1	4		-+-			6255	69.32	70 70	1 38	20
		Fine grained, pale grey, felsic tuff with a sulphide bearing	-	-			-		-+-							
		chert with minor graphite; averages 7-9% pyrite -	1-													
		pyrrhotite over entire zone.	_	-						-					_	
		At 69.48m, 10cm of >60% pyrite-pyrrhotite and trace			-		-									
		chalcopyrite-sphalerite in bedded chert and minor														
		graphite.														

•

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov	ROD	Sample #	From	То	Length	Au (ppb)
69.32	70.70	Sulphide Bearing Cherty Felsic Tuff							_						
		Similar to above description.													
		At 70.16m, 15cm of >50% pyrite-pyrrhotite and trace													
		chalcopyrite in bedded chert with minor graphite.													
		At 70.56m, 14cm of >25% pyrite and minor pyrrhotite,							T						
		chalcopyriteand sphalerite in graphitic chert.													
70.4	84.81	Altered Mafic Fragmental Tuff	2	0	0	0	1				6256	70.70	71.20	0.50	10
		5-20% course fragments (>2cm) of altered, pale greenish-	3	0	0	0	1				6257	71.20	72.90	1.70	<10
		yellow, felsic tuff hosted in a dark, mafic to intermediate	1	0	1	0	1				6258	72.90	75.00	2.10	10
		matrix that is hornblende dominant. The entire unit shows	1	0	1	0	1				6259	75.00	77.00	2.00	30
		>5% calcite alteration but this can be >20% mottling or	1	0	1	0	1				6260	77.00	79.00	2.00	10
		bleaching due to this carbonatization event (see 71.20-	1	0	1	0	1				6261	79.00	80.50	1.50	<10
		72.90m). Downhole, the variety of fragments increase	1	0	1	0	1				6262	80.50	82.00	1.50	<10
		up to 40% of altered felsic tuffs, plagioclase phyric													
		andesite or rare granite clasts													
		82.00 - 84.81: Carbonatised Mafic Fragmental	3	0	2	0	1				6263	82.00	83,50	1.50	<10
		Similar to 71.20-72.90 with >20-40% calcite alteration	3	0	2	0	1				6264	83.50	84.81	1.31	<10
		as bleaching or mottling of the mafic matrix with large							+						
		clasts (<20cm) of greenish, altered felsic tuff with the													
		contact at 800 TCA.							+	+	+				
								-+	-						
84.81	98.42	Mafic Fragmental Tuff	1	0	1	0	1		+	-	6265	84.81	87.00	2 19	<10
		<10% fragments of altered, greenish felsic tuff with rare	1	0	1	0	1		+	+	6266	87 00	88 95	1.95	<10
		blebs of pyrrhotite (<0.5%) or plagioclase phyric andesite	<u> </u>		-					+				1.00	
		in fine-grained, black matrix of basalt that is nonmagnetic.	+						+-	+					
		Similar to previous unit but much less carbonate	1						+						
— —		alteration (<5%) and small fragments (1-3cm)							-		+				
			1												
										-					

Hole No: DL06-03

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
								_							
		88.95 - 97.04m: Mafic Fragmental Tuff	2	0	2	0	0	_			6267	88.95	91.00	2.05	<10
		Similar to above unit unit 10-60% fragments of green,	2	0	2	0	0	_			6268	91.00	93.00	2.00	<10
		altered felsic tuff or rhyolite, plagioclase phyric andesite	2	0	2	0	0	_			6269	93.00	95.00	2.00	<10
		and rare granite clasts. Contains weak silica-carbonate	2	0	2	0	0				6270	95.00	97.04	2.04	<10
		alteration (<5%) and 1-2% late calcite filled fractures													
		at 70° TCA. The core is splattered with golden, metallic													
		sheen (>5% brass) from the drilling equipment.						_							
-		97.04 - 98.42m: Carbonatized Mafic Fragmental Tuff	3	0	2	0	1				6271	97.04	98.42		<10
		Similar to above with 15-20% carbonate and >10% silica													
		silica alteration. Relic clasts (<10%) of altered felsic tuff to													
		rhyolite or plagioclase phyric andesite.													
			Ĩ			_									
98.42	99.08	Sulphidized Altered Felsic Tuff	3	2	2	Ō	4				6272	98.42	99.08		50
		>25% pyrite-pyrrhotite and trace chalcopyrite-sphalerite													
		stringers and podiform grains in chlorite altered felsic													
		(dacite) tuff overprinted by calcite-silica alteration (10%).													
99.08	105.87	Altered Felsic Tuff to Felsic Lapilli Tuff	2	2	2	0	2				6273	99.08	101.00	1.92	<10
		Fine to medium grained matrix of felsic with weak chlorite	2	2	2	0	2				6274	101.00	102.37	1.37	60
		alteration (<5%) and <2% clasts of plagioclase phyric													
		felsic tuff (unaltered) with trace-1%, sporadic pyrite.													
		102.37 - 102.92: Basaltic dike with weak chlorite-carbonate	2	2	1	0	0				6275	102.37	102.92	0.65	<10
		alteration with contact at 60° TCA.													
													-		
99.08	105.87	Altered Felsic Tuff to Felsic Lapilli Tuff	2	2	2	0	2		_		6276	102.92	104.00	1.08	<10
		Same as above with contact at 70° TCA.	2	2	2	0	2				6277	104.00	105.87	1.87	<10
								-†							
105.87	107.20	Mafic Tuff	0	1	0	0	0				6278	105.87	107.20	1.33	<10
		Fine grained, green, weak chlorite altered, mafic tuff with													
		foliation at 65° TCA. At 106.26m, 1cm quartz vein.													

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
												0.070	107.00	100 70	4.50	
107.20	108.76	Breccia Zone	4	1	3	0		 	\vdash			6279	107.20	108.76	1.56	<10
	ļ	30 to 50% coarse fragments (>3cm) of highly carbonate					<u> </u>	<u> </u>	$\left \right $							
		altered basalt (>50%) and minor fragments (<5%) of					<u> </u>		┟┈┧			<u> </u>				
		plagioclase phyric andesite and rare granite clasts. Matrix						<u> </u>								
		contains 10-30% carbonate and 5-10% silica alteration.									<u> </u>					
L							L	_						100.17		
108.76	109.47	Mafic Tuff	1	0	0	0		1	-			6280	108.76	109.47	0.73	<10
	ļ	Similar to 105.87-107.20m. At 109.20m, a 14cm mafic	ļ				<u> </u>	<u> </u>				L				
		breccia with 10-20% calcite and contact at 80° TCA.														
109.47	117.14	Altered Mafic Fragmental Tuff	3	1	3	0	1					6281	109.47	111.00	1.53	<10
		Fine grained, mafic matrix with large clasts (5-30cm) of	2	1	2	0	1					6282	111.00	113.00	2.00	<10
		carbonate-chlorite altered mafic tuff (plus minor flows)	2	1	2	0	1					6283	113.00	115.00	2.00	40
		with trace-2% pyrite. There is >10% carbonate and	2	1	2	0	1					6284	115.00	117.14	2.14	<10
		>5% silica alteration. Late fractures show pyrite or														
		pyrrhotite and rare blebs of both. There is rare (<1%)														
		guartz veins (<1cm) at 90° TCA.						Γ								
		At 109.51m, 15cm of carbonate breccia with >50% calcite				-	-		-							
	1	At 109.75m, 5cm of carbonate breccia with >75% calcite					1	1								
								-								
117.14	121.79	Mafic Tuff	1	<u> </u>				\square								
		Fine grained, green, very weakly chloritic, mafic tuff with			-		\square	\square	-							
		foliation at 75° TCA. Minor plagioclase phenocrysts (0-5%)									-					
	<u> </u>	of 3mm to 2cm. There is late stage calcite filled fractures	-				\vdash									
		at 70-90° TCA	+					+			<u>├</u> ──					
			+				+	+-			┢──		·			
	+	120 28 - 120 43m · Plagioclase Phyric Andesite Dike	+				-	+	-	-						
		Andesitic dike with very weak silica alteration (<5%)	+		-	-	-									
		r nacenie and with very weak billed alteration (1070).	+				-	+-	-		<u> </u>					
		121.13 - 121.6m: Silicified Zones in Mafic Tuff	1	0	3	3	2				-	6285	121.13	121.36	0.23	<10
		Three zones with >25% silica introduction with 1% pvrite-	+			-	1	+	1		t					
		chalcopyrite at 75° TCA.	1-	1							t					

				_	_	_			_							
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
121.79	125.05	Altered Mafic Fragmental Tuff	2	1	2	1	1					6286	121.79	123.79	2.00	<10
		Similar to 109.47-117.14m with >10% clasts of carbonate	2	1	2	1	1				_	6287	123.79	125.05	1.26	<10
		mafic tuff, altered felsic tuff, plagioclase phyric andesite.									_					
		Weak calcite alteration patches (<10%) and calcite along														
		the late stage fractures at 70° TCA. Trace-1% pyrite-														
		pyrrhotite as blebs and in the clasts. There are clasts					<u> </u>									
		(<5%) of plagioclase phyric andesite or altered felsic					-									
		tuffs to rhyolite.														
			1													
125.05	130.78	Mafic Tuff														
		Similar to 117.14-121.79m and can have 0-5% plagioclase														
		phenocrysts in small sections (<20cm) with there is no														
		definable boundary.														
														_		
		127.25 - 127.53m : Fracture Zone	3	2	0	3	1					NST				
		20% calcite with minor epidote -chlorite along 1mm														
		fractures at 45-70° TCA and parallel to core axis.														
		127.91 - 128.26m : Silica-Carb Fracture Zone	2	0	3	0	1					6288	127.91	128.26	0.35	<10
		>20% silica and >10% calcite-ankerite in mafic tuff in	_													
		breccia stockwork fractures at 45-90° TCA.														
1	-															
<.01	<.01	<.01 <.01	1	1	1	0	1					6289	130.79	131.89	1.10	<10
		Similar to above mafic tuff with 10-30% large clasts (5 to	1	1	1	0	1					6290	131.89	133.86	1.97	<10
		30cm) of plagioclase phyric andesite or altered felsic tuff to	1	1	1	0	1					6291	1 3 3.86	135.86	2.00	<10
		rhyolite. Trace-1% pyrrhotite-pyrite in tuffaceous matrix.														
		At 130.78m, 16cm clast of silica-carbonate altered														
L .		plagioclast phyric andesite.								L			_			
			_							L		ļ				
ļ		135.85 - 136.35m: Altered Granite Dike	1	0	2	0		기			ļ	6292	135.85	136.35	0.50	<10
		Medium grained, grey, mottled granite dike with >10%	1	-			4		L							
		silica and minor (<5%) carbonate altered.										1				ļ

From	To	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
130.78	147.61	Mafic Fragmental Tuff	1	0	1	0	1					6293	136.35	137.02	0.67	<10
	-	See above for description with 10% fragments of														
		plagioclase phyric andesite in mafic tuff with weak silica-														
		carbonate alteration (<5%) and trace-1% pyrrhotite.														
						_										
		137.02 - 137.60m : Sulphide Zone	1	1	2	0	3					6294	137.02	137.60	0.58	<10
		Similar to above with 1-2% disseminated pyrrhotite-pyrite														
		and along fractures with a large, 15cm clast of massive														
		pyrrhotite-pyrite and minor (<1%) chalcopyrite.														
		137.60 - 138.95m : Mafic Fragmental Tuff	1	1	1	Õ	1					6295	137.60	138.95	1.25	<10
		Similar to above with 10-30% fragments (2-10cm) of														
		plagioclase phyric andesite, altered felsic felsic tuff to														
		rhyolite with weak (<10%) carbonate-silica alteration														
		in a fine, chloritic matrix with trace-1% pyrrhotite-pyrite								-						
		as disseminations and in fractures at 70-90° TCA.								_						
		Foliation at 60° TCA.														
			+													
 		138.95 - 139.38m ; Sulphidized Carb-Magnetite Zone	4	1	2	3	3					6296	138.95	139.38	0.43	<10
		10% magnetite banding (0.5-2cm) ine fine chloritic, mafic														
		tuff with three small zones (2-6cm) of calcite-chlorite-														
	[silica veins. In the magnetite bands, there is 4% pyrite-	<u> </u>			-		_								-
		pyrrhotite and remobilized calcite veins														
	· · · · ·		<u> </u>													
		139.38 - 147.61m ; Mafic Fragmental Tuff	2	1	2	0	1		-+-	-		6297	139 38	141 00	1 62	<10
		Same as 137.60 - 138.95m with trace-1% pyrrhotite-	2	1	2	0	1					6298	141 00	143 09	2 09	<10
		pyrite with 1-3% thin magnetite bands (0.3-2cm) as blebs	$\frac{-}{2}$	1	2	0	1			- 1		6299	143.09	145.00	1.91	<10
		or fragments. The host basalt is moderate to strongly	2	1	2	0	1			-		6300	145.00	146.50	1.50	<10
		chlorite altered (>10%) with >10% fragments of the same	2	1	2	0	1		-+-			6301	146.50	147.61	1.11	<10
		material and late calcite fractures (<1mm) at 70-90° TCA	+	-												
		Trace-1% pyrrhotite-pyrite occurs as disseminations and														
		in fractures.							-							

Diamond Drill Core Log

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
147.61	148.32	Quartz-Carbonate-Magnetite Breccia	3	1	4	4	2				6302	147.61	148.32	0.71	<10
		>80% massive calcite-quartz veins at 60° TCA with >10%													
		magnetite-chlorite basalt between breccia with 2-3%													
		pyrite-pyrrhotite.													
148.32	161.00	Altered Mafic Fragmental Tuff	2	1	1	0	1				6303	148.32	150.00	1.68	<10
		Similar to 138.78-147.61m with >10% fragments (2-10cm)	2	1	1	0	1				6304	150.00	152.00	2.00	<10
		of plagioclase phyric andesite and altered felsic tuffs to													
		andesite. Alteration of >10% carbonate and >5% silica													
		with trace-1% pyrite-pyrrhotite.													
		148.44 - 148.74m: Felsic Tuff Fragments	_												
		Typical plagioclase phyric felsic tuff with silica-calcite													
		altered (>20%) and trace-1% pyrite.	-	ļ		L			-	<u> </u>					
			-			ļ									
		149.15 - 149.40m: Basalt Breccia				[\downarrow	ļ					
		25cm zone of >70% basalt fragments with chlorite-	_			ļ			- <u> </u>						
		carbonate-quartz filled matrix and trace pyrite	_			1_				ļ					
			<u> </u>			<u> </u>				ļ			1		
		150.00 - 150.29m: Sulphide Zone	1	1	1	0	3				6305	152.00	152.29	0.29	<10
	ļ	>10% pyrite and minor pyrrhotite as disseminations,								ļ					
		stringers and blebs in chlorite altered basaltic tuff.	+							ļ					
			+			<u> </u>						110.00	150.00		<10
		150.29 - 150.64m: Altered Matic Fragmental Tuff	$\frac{12}{12}$	1	1	0	1				6306	148.32	150.32	2.00	<10
		Similar to 148.32 - 161.00 description.2	+			<u> </u>									
		450 C4 450 05m Oorbonata Oillea Dreasia	+ -			L_	4				0007	450.04	454.00	4 30	
		152.64 - 156.35m; Carbonate-Silica Breccia	3	1	3		1			<u> </u>	6307	152.64	154.00	1.36	<10
		10-70% fractures with calcite-silica flooding of the matic	3		3						8060	154.00	155.50	1.50	<10
		pragmental turn with <5% tragments recognized. Variable	3		3						0309	155.50	150.35	0.85	<10
		epidote and minor sencite jound in the larger clasts.													
		2 cm of pegmatite dike found and fracturing at 50-60° FCA.				<u> </u>		_+-							
							1			1				1	

Page: ___9___ of ___10____

Diamond Drill Core Log

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
148.32	161.00	Altered Mafic Fragmental Tuff	L						 _						
		Same as above description.													
			_						 _						
		156.35 - 161.00m: Matic Fragmental Tuff			-	_			 _		0010	150.05	150.00	1.05	
		>5% fragments of plagioclase phyric andesite or carbonate-	1	0	1	0	0		_		6310	156.35	158.00	1.65	<10
		silica breccia fragments in plagioclase (<5%) phyric							 _						
		basalt				ļ			 _						
L	10100			L					 -						
	161.00	End Of Hole		L					 _						
						ļ			 _						
			-			<u> </u>			 _						
				<u> </u>	<u> </u>				-+						
				┣				\vdash	 						
			<u> </u>					\vdash	 _						
			-	┣		┣──		-	 -+						
				–	<u> </u>			$\left \right $	 -+						
				┣				\vdash	 \rightarrow						
				_				\vdash	 						
									 +						
									 \rightarrow						
		· · · · · · · · · · · · · · · · · · ·		<u> </u>				+	 -						
			┢					+ +	 +						
			┢──					-+	 +						
			+	├				-+	+						<u> </u>
								\vdash							
								$\left \cdot \right $	 -+			<u> </u>			<u> </u>
								\vdash	 \dashv						———
									 _						
				-					 						
				-					 -						

Page: _10____ of __10____

Proper	ty:	Dash Lake Claim Group	Azimuth:	000)°					Log	ged By:		A. Raou	JI.	
Zone:		Lloydex Showing	Dip:	90)					Dril	led By:		Summit	t Drilli	ng
Claim:		3007365	Hole Length:	152	2.25	īm				Ass	ays By:		SGS Mi	ineral	Services
Started	:	Dec. 15, 2006	Casing:	5.0	8m					Dov	vnhole Su	urveys:			
Comple	eted:	Dec. 17, 2006	Core Size:	AT	W										
Coordi	nates:	GPS 5441082N, 456195E (NAD83)													
Comme	ents:	Drilled vertical hole into zone						_							
From	То	Description: Lithology, Structure, Al	teration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides	% Recov.	RQD	Sample #	From (m)	To (m)	Length	Au (ppb)
0.00	5.08	Casing / Overburden with granite and	l basalt fragments	-											
5.08	9.67	Altered Felsic Tuff													
		Very fine grained, light grey, felsic tuf	f with 1-3% pyrite -												
		pyrrhotite as disseminations and in fra	actures. There is						+						
		>10% pervasive calcite alteration in th	he late stage					1	 						
		fractures at 60-90° TCA.													
		5.08 - 6.76m : Highly Sulphidized Zor	ne	2	1	2	2	3			6311	5.08	6.76	1.68	20
		3-7% fine pyrite in fractures and as d	isseminations with												
		weak to moderate sericite-silica-carb	onate alteration												
		(>20%) with late stage calcite filled fra	actures (2-5%).												
		At 5.12m, 9cm of >40% quartz-calcite	e breccia vein with												
		20% pyrite and trace sphalerite.		-					_						
		6.76 - 7.21m: Sulphidized Fold Nose		3	2	1	0	4	_		6312	6.76	7.21	0.45	70
		Highly oxidized, "M"-fold nose with >2	20% pyrite and minor												
		chalcopyrite-sphalerite with chlorite-c	arbonate-silica												
-		7.21 - 9.67m: High Sulphized Zone		3	1	2	1	3			6313	7.21	8.50	1.29	20
		Similar to 5.08 - 6.76m with 3-10% py	rite-pyrrhotite and	3	1	2	1	3	 -		6314	8.50	9.67	1.17	20
_		trace sphalerite with 10-30% carbona	te-silica altered felsic	1											
		tuff with late stage calcite veins (<10c	cm) with 1-10% py.							1					

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
	10.17										00/5		44.00	4.00	
9.67	12.17		3	1	2		3				6315	9.67	11.00	1.33	50
		Fine-grained, grey-prown, reisic flow (dacite to rnyodacite)	3	1	2		3	_		<u> </u>	6316	11.00	12.17	1.27	10
		with flow banding at 650 TCA. Weak to moderate (10-20%)			_					<u> </u>					
		calcite-silica altered with 2-5% pyrite-pyrrhotite in													
		fractures and as disseminations.						_							
12 17	12 70	Altered Andesite Dike	2	1	3		2				6317	12 17	12 70	0.53	<10
12.17	12.70	Fine-grained grey intermediate dike with 2-3% plagioclase	<u> </u>	-'							0317	12.17	12.70	0.55	
		phenocrysts with >10 to 30% silica-carbonate-chlorite						+	+						
		altered with 1-2% pyrite. Chloritic basalt fragments							+	-					
		contain >10% pyrite-pyrrhotite Late stage calcite veins							+						
		(<1cm) at 45-90° TCA				•	-		+						
								+	+						
12.70	18.50	Altered Basaltic Tuff	2	2	2	1	-1	+	1		6318	12,70	14.50	1.80	10
		Mottled to bleached, light grey, mafic tuff with >10-20%	2	2	2	1	1	-	-		6319	14.50	16.50	2.00	<10
		silica and minor calcite (<10%) alteration with chlorite	2	2	2	1	1		+		6320	16.50	18.50	2.00	140
		at 45° TCA or calcite fractures at 60-90° TCA. Trace-1%												_	
		pyrite as disseminations or fracture fillings.													
										<u> </u>					
18.50	19.13	Basaltic Tuff	1	0	0	0	0				6321	18.50	19.13	0.63	10
		Fine-grained, mafic tuff with weak (<5%) calcite alteration													
		with foliation at 65° TCA.													
19.13	19.40	Sulphidized Basaltic Tuff	3	2	1	0	4				6322	19.13	19.40	0.27	50
		Mottled, mafic tuff with moderate (>20%) carbonate-silica													
		alteration and 10% pyrite.													
19.40	19.60	Basaltic Tuff	1	0	0	0	0		_		6323	19.40	19.60	0.20	10
		Fine-grained, mafic tuff with weak (<5%) calcite alteration													
		with foliation at 65° TCA.													

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
													10.00			110
19.60	20.31	Altered Felsic Flow	2	2	3	0	1		_			6324	19.60	20.31	0.71	110
		Medium-grained, light grey-green, felsic flow (dacite to														
		rhyodacite) with moderate (>20%) carbonate-silica-chlorite														
		with trace pyrite.														
		At 20.27m, 4cm quartz-carbonate vein at 80° TCA.														
		Upper contact at 30° TCA and lower contact at 75° TCA.														
20.31	31.77	Altered Mafic Tuff	2	1	2	0	1					6325	20.31	22.00	0.69	10
		Similar to 12.70 to 18.50. Mottled to bleached, grey-tan	2	1	2	0	1					6326	22.00	24.00	2.00	20
		mafic tuff with >15-30% silica-calcite altered and trace-1%	2	1	2	0	1					6327	24.00	26.00	2.00	<10
		disseminated pyrite. Early chlorite filled fractures (<3%) at	2	1	2	0	1					6328	26.00	28.00	2.00	10
		45-90° TCA and late calcite fractures (<2%) at 60-90° TCA.	2	1	2	0	1					6329	28.00	30.00	2.00	<10
			2	1	2	0	1					6330	30.00	31.77	1.77	<10
		At 21.30m, 14cm wide Altered Felsite Dike that is fine-														
	_	grained, white, aplitic, feldspar-rich matrix with chlorite-														
		guartz phenocrysts at 45° TCA.									-					
		At 23.00m, 3cm calcite vein at 20° TCA along fracture.														
		At 23.14m, 4cm pyrite filled fracture.														
		At 28 12m 4cm quartz-calcite vin at 70° TCA							<u> </u>							
	_															
31.77	36.63	Mafic Tuff	1	1	1	0	1					6331	31.77	33.00	1.23	20
		Fine-grained, mafic tuff with weak (5-10%) carbonate-silica	1	1	1	0	1					6332	33.00	35.00	2.00	20
		alteration and trace-2% pyrite as fine disseminations.	2	1	1	0	2					6333	35.00	36.63	1.63	20
		At 31.77m, 16cm guartz-carbonate-chlorite with 1% pyrite	<u> </u>			-	<u> </u>									
		at 45-70° TCA.														
		At 32.65m, 9cm quartz-carbonate-chlorite with 10% pvrite														
		at 70° TCA	\square													
		At 34 71m 2cm pyrite-chlorite fracture at 45° TCA									<u> </u>					
		At 36,47m, 16cm guartz-carbonate vein with 30% pyrite					-									
		at 60° TCA	\vdash		-			-	-				— —			
			+				-				-		—			

act Altered Mafic Tuff 2 1 6 6 6 6 7 7 7 36.13 50.74 Altered Mafic Tuff 2 1 3 0 1 6334 36.63 38.00 4.00 2.00 2.00 alteration and trace-1% pyrite of tan, mafic tuff. 2 1 3 0 1 6335 48.00 42.00 2.00 10 chlorite filled fractures with later calcite filled fractures. 2 1 3 0 1 6338 44.00 46.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6334 46.00 48.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6344 48.00 60.00 2.00 10 At 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 1 6344 50.0 50.74	From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides	% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
36.13 50.74 Altered Mafic Tuff 2 1 3 0 1 6334 36.63 38.00 1.00 20 Similar to 20.31 to 31.77m with 15-20% silica-calcite 2 1 3 0 1 6335 38.00 40.00 2.00 20 alteration and trace-1% pyrite of tan, mafic tuff. 2 1 3 0 1 6336 40.00 42.00 2.00 10 chlorite filled fractures with later calcite filled fractures. 2 1 3 0 1 6337 42.00 44.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6338 44.00 46.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6340 48.00 60.00 2.00 10 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 Fine-grained, dark grey to black, mafic tuff with >10% 1 <td></td>															
Similar to 20.31 to 31.77m with 15-20% silica-calcite 2 1 3 0 1 6336 38.00 40.00 2.00 20 10 alteration and trace-1% pyrite of tan, mafic tuff. 2 1 3 0 1 6336 40.00 2.00 10 chlorite filled fractures with later calcite filled fractures. 2 1 3 0 1 6336 44.00 42.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6339 46.00 48.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6344 650.00 2.00 10 atteration and trace-1% pyrite origonate 2 1 3 0 1 6341 50.00 50.07 50.74 51.81 Sulphidized Mafic Tuff 2 2 1 3 0 1 6342 50.74 51.81 1.07 50 Silica-carbonate and minor biotite alteration and 1-5% 2 2 1 3 0 1<	36.13	50.74	Altered Mafic Tuff	2	1	3	0	1			6334	36.63	38.00	1.37	20
alteration and trace-1% pyrite of tan, mafic tuff. Early 2 1 3 0 1 6336 40.00 42.00 2.00 10 chlorite filled fractures with later calcite filled fractures. 2 1 3 0 1 6337 42.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6338 44.00 48.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6339 46.00 48.00 2.00 10 60.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 1 6341 50.00 50.74 51.81 1.07 50 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 1 6341 50.00 50.74 51.81 1.07 50 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 1 6341 53.48 1.07 <td></td> <td></td> <td>Similar to 20.31 to 31.77m with 15-20% silica-calcite</td> <td>2</td> <td>1</td> <td>3</td> <td>0</td> <td>1</td> <td></td> <td></td> <td>6335</td> <td>38.00</td> <td>40.00</td> <td>2.00</td> <td>20</td>			Similar to 20.31 to 31.77m with 15-20% silica-calcite	2	1	3	0	1			6335	38.00	40.00	2.00	20
chlorite filled fractures with later calcite filled fractures. 2 1 3 0 1 6337 42.00 42.00 2.00 10 2 1 3 0 1 6338 44.00 2.00 10 41 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6338 44.00 46.00 48.00 2.00 10 41 - - 2 1 3 0 1 6340 48.00 50.00 2.00 10 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 1 6342 50.74 51.81 1.07 50 50.74 51.81 Sulphidized Mafic Tuff 10 1 1 1 1 10		1	alteration and trace-1% pyrite of tan, mafic tuff. Early	2	1	3	0	1			6336	40.00	42.00	2.00	10
2 1 3 0 1 6338 44.00 46.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6338 46.00 48.00 2.00 10 At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 63340 48.00 2.00 10 2 1 3 0 1 6341 50.00 50.74 0.74 20 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 Fine-grained, dark grey to black, mafic tuff with >10% 1			chlorite filled fractures with later calcite filled fractures.	2	1	3	0	1			6337	42.00	44.00	2.00	10
At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA. 2 1 3 0 1 6339 46.00 48.00 2.00 10 2 1 3 0 1 63340 48.00 50.00 2.00 10 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 1 6341 50.00 50.74 0.74 20 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 Fine-grained, dark grey to black, mafic tuff with >10% 1				2	1	3	0	1			6338	44.00	46.00	2.00	10
1 1 3 0 1 6340 48.00 50.00 2.00 10 2 1 3 0 1 6341 50.00 50.74 0.74 20 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 stringer pyrite mineralization 4			At 41.02m, 3-15cm wide carbonate-silica vein at 15° TCA.	2	1	3	0	1			6339	46.00	48.00	2.00	10
2 1 3 0 1 6341 50.00 50.74 0.74 20 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 1 6342 50.74 0.74 20 50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 0 6342 50.74 51.81 1.07 50 Silica-carbonate and minor biotite alteration and 1-5% 1 <td></td> <td></td> <td></td> <td>2</td> <td>1</td> <td>3</td> <td>0</td> <td>1</td> <td></td> <td></td> <td>6340</td> <td>48.00</td> <td>50.00</td> <td>2.00</td> <td>10</td>				2	1	3	0	1			6340	48.00	50.00	2.00	10
50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 Fine-grained, dark grey to black, mafic tuff with >10% 1				2	1	3	0	1			6341	50.00	50.74	0.74	20
50.74 51.81 Sulphidized Mafic Tuff 2 2 2 1 3 6342 50.74 51.81 1.07 50 Silica-carbonate and minor biotite alteration and 1-5% Image: Silica-carbonate alteration and 1-5% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Fine-grained, dark grey to black, mafic tuff with >10% Image: carbonate and minor biotite alteration and 1-5% Image: carbonate alteration alteration and 1-5% Image: carbonate alter	50.74	51.81	Sulphidized Mafic Tuff	2	2	2	1	3			6342	50.74	51.81	1.07	50
silica-carbonate and minor biotite alteration and 1-5% Image: constraint of the second se			Fine-grained, dark grey to black, mafic tuff with >10%												
stringer pyrite mineralization. Image: pyrite mineralization. <td></td> <td></td> <td>silica-carbonate and minor biotite alteration and 1-5%</td> <td></td>			silica-carbonate and minor biotite alteration and 1-5%												
At 51.31m, 11cm of >30% pyrite in chlorite-carbonate Image: constraint of the second seco			stringer pyrite mineralization.		_										
alteration in vein. alteration in vein.<			At 51.31m, 11cm of >30% pyrite in chlorite-carbonate							-					
51.81 54.43 Altered Mafic Tuff 2 1 2 0 1 6343 51.81 53.48 1.67 20 Similar to 36.63-50.74m with early chlorite bearing i<			alteration in vein.							-					
51.81 54.43 Altered Mafic Tuff 2 1 2 0 1 6343 51.81 53.48 1.67 20 Similar to 36.63-50.74m with early chlorite bearing fractures in silica altered (>20%) tan, mafic tuff.										_					
Similar to 36.63-50.74m with early chlorite bearing Image: constant of the second	51.81	54.43	Altered Mafic Tuff	2	1	2	0	1			6343	51.81	53.48	1.67	20
Image: statute in silical altered (>20%) tan, mafic tuff. Image: statute in silical altered (>20%) tan, mafic tuff. Image: statute in silical altered in statute in statut			Similar to 36.63-50.74m with early chlorite bearing												
At 53.48m, 2cm quartz-carbonate vein at 70° TCA. 2 1 2 0 2 6344 53.48 54.18 0.70 20 At 54.18m, 8cm clast of 5% pyrite mafic tuff. At 54.31m, 16cm clast of 5% pyrite mafic tuff. Image: Control of State Stat			fractures in silica altered (>20%) tan, mafic tuff.												
At 54.18m, 8cm clast of 5% pyrite mafic tuff. At 54.31m, 16cm clast of 5% pyrite mafic tuff. Image: Constant of 5% pyrite mafic tuff. Image: Constant of 5% pyrite mafic tuff. At 54.73m, 45cm zone of >30% of silica altered mafic Image: Constant of 5% pyrite mafic tuff. Image: Consta			At 53,48m, 2cm guartz-carbonate vein at 70° TCA.	2	1	2	0	2			6344	53.48	54.18	0.70	20
At 54.31m, 16cm clast of 5% pyrite mafic tuff. Image: Constant of the second secon			At 54,18m, 8cm clast of 5% pyrite mafic tuff.												
At 54.73m, 45cm zone of >30% of silica altered mafic Image: constant of the selection of the sel			At 54.31m, 16cm clast of 5% pyrite mafic tuff.				-	\vdash		<u> </u>					
tuff with trace pyrite. Image: Constant of the pyrite			At 54.73m, 45cm zone of >30% of silica altered mafic												
54.43 61.97 Chlorite Altered Andesite Dike 2 2 2 1 1 6345 54.43 56.00 1.57 10 54.43 61.97 Chlorite Altered Andesite Dike 2 2 2 1 1 6345 54.43 56.00 1.57 10 Fine to medium grained, grey to grey-brown, andesitic dike 2 2 2 1 1 6346 56.00 58.00 2.00 20 with 10-20% chlorite laths (altered hornblende) with 2 2 2 1 1 6347 58.00 60.00 2.00 10 contact at 60° TCA. Weak silica-carbonate altered (<10%)			tuff with trace pyrite.		-				 						
54.43 61.97 Chlorite Altered Andesite Dike 2 2 2 1 1 6345 54.43 56.00 1.57 10 Fine to medium grained, grey to grey-brown, andesitic dike 2 2 2 1 1 6345 54.43 56.00 1.57 10 with 10-20% chlorite laths (altered hornblende) with 2 2 2 1 1 6346 56.00 2.00 20 contact at 60° TCA. Weak silica-carbonate altered (<10%)															
Fine to medium grained, grey to grey-brown, andesitic dike 2 2 1 6346 56.00 58.00 2.00 20 with 10-20% chlorite laths (altered hornblende) with 2 2 1 1 6346 56.00 58.00 2.00 20 contact at 60° TCA. Weak silica-carbonate altered (<10%)	54.43	61.97	Chlorite Altered Andesite Dike	2	2	2	1	1		†	6345	54,43	56.00	1.57	10
with 10-20% chlorite laths (altered hornblende) with 2 2 2 1 6347 58.00 60.00 2.00 10 contact at 60° TCA. Weak silica-carbonate altered (<10%)			Fine to medium grained, grey to grey-brown, andesitic dike	2	2	2	1	1			6346	56.00	58.00	2.00	20
contact at 60° TCA. Weak silica-carbonate altered (<10%)			with 10-20% chlorite laths (altered hornblende) with	2	2	2	1	1		1-	6347	58.00	60.00	2.00	10
with the lowest 10 m hoving over 200% of this alteration			contact at 60° TCA. Weak silica-carbonate altered (<10%)	3	2	3	1	1		t	6348	60.00	61.97	1 97	10
			with the lowest 10cm having over 20% of this alteration	Ť	-				 				01.07	1.07	

				-	_	_	_									
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
													_			
54.43	61.97	Chlorite Altered Andesite Dike														
		See above description.														
		There are occassional (<1%) large crystals (0.5-0.7cm)														
		of pyrite in matrix with no fracturing.														
		At 59.08m, 10cm fracture zone with 3cm quartz-carbonate														
		vein and 1cm quartz vein hosted in >30% silica altered.					<u> </u>									
61.97	62.92	Sulphidized Mafic Fragmental Tuff	2	2	3	1	3					6349	61.97	62.92	0.95	30
		Fine to medium grained, grey to grey-brown, >20% silica-					<u> </u>			_						
		carbonate-biotite altered, mafic tuff with 2-5% pyrite														
		stringers, fractures and blebs. Late stage quartz-carbonate														
		or carbonate veins (<2cm) at 45-90° TCA					<u> </u>									
62.92	67.52	Altered Mafic Fragmental Tuff	2	1	3	1	1					6350	62.92	65.09	2.17	20
		Highly bleached to mottled, mafic tuff with >5% clasts of				····	<u> </u>						02:02	00.00		
		brecciated mafic tuff with >20% silica-carbonate and	<u> </u>													
		trace-1% pyrite														
							-									
		65.09-65.76m; Sulphidized Mafic Fragmental Tuff	2	2	2	2	3					6351	65.09	65.76	0.67	40
		Similar to above with several 1-4cm stringers of pyrite-					Ť									
		chlorite-quartz-carbonate in >10% silica-carbonate-biotite														
		altered matic fragmental														
		Altered Mafic Fragmental Tuff	2	1	3	1	1		· · ·			6352	65 76	66 78	1 02	20
		See above description		<u> </u>	- U	•	⊢ ·					0002	00.10	00.10	1.02	20
-																
		At 67 09m. 4cm fracture zones with chlorite-bioite-silica-	1 2	1	3	Ó	2					6353	66 78	67 52	0.74	20
		carbonate alteration with 5% pyrite in the same altered	-	-	۲,		<u> </u>				<u> </u>	0000	00.70	07.02	0.14	20
		bost unit with contact at 60° TCA	\vdash													
							-				<u> </u>					
			-													
			+									-				
			1	1				1	1			1				1

			_	_			_	_	_							
From	То	Description : Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
67.52	77.58	Tan Andesite	1	0	1	0	1					6354	67.52	68.83	1.31	10
		Fine-grained, tan, intermediate unit with 3-5% plagioclase														
		phenocrysts (2-3cm) with weak carbonate-silica altered														
		(<5%). Early chlorite-pyrite filled fractures at 70° TCA.														
		68 83 - 69 25m: Fracture Zone	- 2	2	3	1	2	-				6355	68.83	69 25	0.42	20
		42cm zone of >20% quartz-carbonate-chlorite-biotite	+		Ť	<u> </u>	-					0000	00.00	00.20	0.12	
		alteration with 2,2% purite along 20° TCA fractures	+	-			\vdash									
		alteration with 2-3% pyrite along 50 TCA fractures.	+	[
		Tan Andesite	1	0	1	0	1					6356	69 25	71.00	1.75	20
		Same description as above	$\frac{1}{1}$		1	0	1					6357	71.00	72.07	1.07	10
			+ -		· ·		<u> </u>									
		At 72.07, 31cm Mafic Dike with silica-carbonate altered	2	0	2	1	2					6358	72.07	72.38	0.31	60
		basalt to andesite with 3cm quartz-carbonate vein and											_			
		20% pyrite.											_			
		Tan Andesite	2	0	2	0	1					6359	72.38	73.85	1.47	20
		Same description as above.														
		At 73.47m, 12 cm fracture zone with quartz-carbonate-														
		chlorite filled and strong (>30%) silica-carbonate alteration														
		with 1% pyrite	_	_				-								_
		73 85 - 74.25m: Fracture Zone	2	1	3	0	1					6360	73.85	74.25	0.40	10
		Andesite with >20% silica-carbonate alteration with early														
		chlorite filled fractures and later quartz-carbonate veins	-	-												
		at 70° TCA with trace-1% pyrite.						1			-					
		Tan Andesite	1	0	1	0	1					6361	74.25	75.35	1.10	10
		Same description as above with 1% coarse pyrite and														
		weak silica-carbonate alteration (<10%).														

Diamond Drill Core Log

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
		75 35 - 75 68m: Chloritic Andesite Dike	2	1	2	1	1		-		6362	75 35	75 68	0.33	10
		Similar to 54 43-61 95m with chloritic phenocrysts in a			~	'	•				0002	70.00	10.00	0.00	10
		intermediate dike at 45° TCA with several <1cm wide													
		quartz voine at 95° TCA	-												
75.68	77 58	Altered Mafic Fragmental Tuffr	2	1	2	1	1				6363	75.68	77.58	1.90	20
10.00	11.00	Fine-grained light-grev matrix with >20% silica-calcite	2	2	-3	2	2				6364	77.58	78.19	0.61	40
		alteration of the fragmental tuff and early chlorite filled													
		fractures at 70-90° TCA and late quartz veins (<3cm) at													
		45-90° TCA Trace-1% pyrite in matrix.	-												
77.58	98.00	Altered Quartz Eye Felsic Porphyry (to Felsic Tuff)	2	0	2	1	1				6365	78.19	79.55	1.36	<10
		Fine to medium-grained, off-white to pale green, felsic													
		matrix with >10% carbonate-epidote and minor chlorite													
		alteration with 5% quartz phenocrysts from 3-6mm. Late													
		quartz-carbonate veins (<2%) with trace-1% pyrite occur.													
		79.55 - 80.08m: Relic fragment of the Altered Mafic	3	1	3	2	3				6366	79.55	80.08	0.53	<10
		Fragmental Tuff, similar to 75.68-77.88, with strong silica-	_							L					
		carbonate alteration (>30%) with 2-4cm pyrite bands of							_		ļ				
		4% pyrite and late calcite veins at 70-80° TCA.													
		Altered Quartz Eye Felsic Porphyry (to Felsic Tuff)	2	0	2	1			_	<u> </u>	6367	80.08	82.00	1.92	<10
		Same description as above with small sections (5-10cm)	$\frac{2}{2}$	0	2	1		\vdash	_	_	6368	82.00	84.00	2.00	<10
		of partially absorbed altered matic fragmental tuffs	$\frac{2}{2}$	0	2	1	1	- + -		 	6369	84.00	86.00	2.00	<10
		(20 to 50%).	3	1	3	1	2			 	6370	86.00	88.00	2.00	<10
		At 96 40m 17cm fronture zone with 14cm of guest	$\frac{2}{2}$		2	1		┨┈╌┠╼			6272		90.00	2.00	<10
		AL 00.42IN, 17CM Tracture Zone With 14CM of quartz-			2						6272	90.00	92.00	2.00	
		carbonate-chlorite with 1% pyrite at 30° TCA	$+\frac{2}{2}$		2	1	1	\vdash	_		6373	92.00	94.00	2.00	
			+ -		$\frac{2}{2}$	1					6275	94.00	90.00	2.00	30
			+-	+	<u> </u>		├-'	++	-	-	0373	30.00	30.00	2.00	

Diamond Drill Core Log

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
77.58	98.00	Altered Quartz Eye Felsic Porphyry (to Felsic Tuff)							_						
		Similar to above unit description.				_									
		90.84 - 91.31m, this Altered Quartz Eye Felsic Porphyry													
		has green tint due to an increase in carbonate to >15%							_						
		and quartz-carbonate veins at 60o TCA. There are minor													
		(<5%) chlorite phenocryst, due to hornblende alteration.							_						
		This may be an altered dike but the upper contact is very													
		gradational and the lower contact is a quartz-calcite							_						
		filled fracture at 30° TCA.													
98.00	106.75	Highly Altered Quartz Eye Felsic Porphyry	2	1	3	1	2				6376	98.00	100.00	2.00	<10
		Similar to 77.58-98.00 however an increase in brecciation	2	1	3	1	2				6377	100.00	102.00	2.00	<10
		with silica-carbonate alteration (>20%) with chlorite along	2	1	3	1	2				6378	102.00	104.00	2.00	10
		fractures with trace-1% pyrite. Late carbonate-chlorite	2	1	3	1	2				6379	104.00	105.16	1.56	<10
		fractures occur at 70° TCA.													
		105.16 - 105.39m : Quartz-carbonate-chlorite veins with	3	2	3	2	2				6380	105.16	105.39	0.23	70
		9cm zone of >50% pyrite.													
		Highly Altered Quartz Eve Felsic Porphyry	2	1	3	1	2			1	6381	105.39	106.75	1.36	10
		Similar to above unit description with contact at 40° TCA													
								┞╍╍┞╍							
106 75	110.97	Altered Quartz Eve Felsic Porphyry	2	1	3	1	2				6382	106 75	107 00	0.25	<10
100.70	110.07	Similar to 78 19 - 79 55m	2	1	3	1	$\frac{2}{2}$				6383	107.00	109.00	2.00	<10
			2	1	3	1	$\frac{2}{2}$				6384	109.00	110.97	1 97	10
					-		-			1		100.00	110.07	1.07	
110.97	113 78	Highly Altered Quartz Eve Felsic Porphyry	3	2	3	1	2				6385	110.97	111 74	0.77	20
		Similar to 98.00-105.85 but is a slightly darker green due to	Ť			'	-							0.11	
		more carbonate-silica-chlorite (>30%).						\vdash							
			 							<u> </u>					

Diamond Drill Core Log

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
110.97	1 13.78	Highly Altered Quartz Eye Felsic Porphyry (continued)													
		111.74 - 113.46m: Altered Quartz Eye Felsic Porphyry	2	1	3	1	2	 			6386	111.74	113.46	1.72	30
		Similar to 78.19 - 79.55m.													
		Highly Altered Quartz Eye Felsic Porphyry	3	3	2	1	1				6387	113.46	113.78	0.32	10
		Similar to 98.00-105.85 but is a slightly darker green due to													
		more carbonate-silica-chlorite (>30%).						-							
113.78	138.79	Altered Quartz Eye Felsic Porphyry (to Felsic Tuff)	2	1	2	0	1				6388	113.78	115.00	1.22	130
		Similar to 78.19 - 79.15m with 3-5% quartz eyes in felsic	2	1	2	0	1				6389	115.00	117.00	2.00	30
		porphyry with trace-1% pyrite with weak-moderate	2	1	2	0	1				6390	117.00	119.00	2.00	<10
		(<10% to 20%) silica-carbonate alteration as well as early	2	1	2	0	1				6391	119.00	121.00	2.00	10
		quartz-carbonate-chlorite fractures at 45-70° TCA.	2	3	2	0	2				6392	121.00	122.32	1.32	10
			2	1	2	0	1				6393	122.32	124.00	1.68	<10
		At 122.08m, 20cm of sporadic quartz-carbonate veins	2	3	2	0	2				6394	124.00	126.00	2.00	10
		(<2cm) and >5% chlorite-carbonate filled fractures at	2	2	2	0	1				6395	126.00	128.00	2.00	<10
		45° TCA.	2	3	2	0	2				6396	128.00	130.18	2.18	<10
		At 125.92m, 14cm zone of chlorite-carbonate alteration							_						
 		with 2-3% pyrite at 80° TCA.	ļ												
					_		_					100.10	100.10		
		At 130.18m, 28cm zone of silica-chlorite-carbonate	2	2	3	0	2				6397	130.18	130.46	0.28	20
		alteration with 2-3% pyrite at 75° TCA.	<u> </u>												
												100.10	100.00	4.54	
		Altered Quartz Eye Felsic Porphyry	2		2	0	1				6398	130.46	132.00	1.54	<10
		Similar to above description with medium-grained, quartz	2		2	0	1				6399	132.00	134.00	2.00	10
		eye unit with >10% silica-carbonate with minor chlorite-	$\frac{2}{2}$	1	2	0	1				6400	134.00	136.00	2.00	<10
		sericite.	2		2	0	1				6401	136.00	138.00	2.00	10
			2	1	2	0	1	\square			6402	138.00	138.79	0.79	<10
			1	1											

			_		_									
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides	% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
138.79	152.25	Highly Altered Quartz Eye Porphyry	2	2	3	0	1			6403	138.79	140.06	1.27	20
		Similar to 78.19 - 79.15m with 3-5% quartz eyes in felsic												
		porphyry with trace-1% pyrite and moderate (>20%)												
		silica-carbonate-chlorite alteration with 50% grain size												
		reduction.												
		140.06 - 147.31m: Altered Quartz Eye Porphyry	2	2	2	0	1			6404	140.06	142.00	1.94	<10
		Similar to above unit with slight decrease in the silica-	2	2	2	0	1			6405	142.00	144.00	2.00	<10
		carbonate alteration (<10%) with a slight increase in the	2	2	2	0	1			6406	144.00	146.00	2.00	<10
		chlorite alteration (>5%) and trace-1% pyrite.	2	2	2	0	1			6407	146.00	147.31	1.31	<10
		At 146.74m, 8cm quartz-carbonate vein at 45° TCA.	1											
		Highly Altered Quartz Eye Porphyry	3	2	1	0	1			6407	147.31	149.00	1.69	<10
		Similar to above description with a weak shearing event at	2	1	3	0	1			6408	149.00	151.00	2.00	<10
		30° TCA with variable increases in carbonate, silica or									_			
		silica-carbonate. This shear is poorly brecciated (<10%)	3	3	1	0	1			6409	151.00	152.25	1.25	<10
		with 10% autoclasts in the last 1.25m of this section.							T					
	<u> </u>													
	152.25	End of Hole												
						-								
				-										

Propert	t y:	Dash Lake Claim Group	Azimuth:	h: 180° Logged By: A. Ra			A. Raoi	l.							
Zone:		Little Island Zone	Dip:	45	0					Dril	led By:		Summi	t Drilli	ng
Claim:		4213247	Hole Length:	157	7.25	im				Ass	ays By:		SGS M	ineral	Services
Started	:	Dec.18, 2006	Casing:	4.7	9m				_	Dov	vnhole Su	rveys:			
Comple	eted:	Dec.19, 2006	Core Size:	AT	W										
Coordi	nates:	GPS 5438077N, 455848E (NAD83)													
Comme	ents:	Drilled "little island" alteration zone							 						
From	То	Description: Lithology, Structure, Altera	ation, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides	% Recov.	RQD	Sample #	From (m)	To (m)	Length	Au (ppb)
0.00	4.79	Casing / Overburden with granodiorite a	nd fine, grey	_					 						
		mafic flow													
4 70	10.20	Altered Ten Folgite			<u>ر</u>	2	-1	1	 		6411	4 70	6 00	1 21	20
4.79	10.30	Allered Tall Feisile	rain size <1mm	- 2	4	 	1	1	 		6412	4.79	7.50	1.21	
		and equigrapular texture and 1 10% her	nhlende nhvric	- 4		1		1	 		6/12	7.50	9.00	1.50	20
		averaging 2-3% crystals that are 1-2mm	n Numerous	+ 1	0	-1	-0	1	 		6414	9.00	10.30	1.30	<10
		(>10%) fracture zones 3-10cm wide wi	th >20% ankerite-	+ '	-	- 1	<u> </u>		 -		0414	0.00	10.00		
		silica-chlorite-hornblende along fracture	s at 70-80° TCA	+						-				 	
		These have been overprinted by later si	lica-carbonate											 	
		veins at 60° TCA these later fractures a	re parallel or 45°						 -						
		to the core axis. There is trace pyrite di	sseminations.						 						
		At 5.68m, 16cm zone of >50% chlorite-h	ornblende-biotite												
		alteration within silica-carbonate zone w	ith 1% pyrite at						_	L					
		60° TCA.		-					 		· · · · · ·				
10.30	13 61	Grev Felsite		+1	0	1	0	1	 _		6415	10 30	12 00	1 70	30
,		Similar to above unit with more grey, les	s altered felsite.	1	0	2	0	1	 -		6416	12 00	13 61	1 61	<10
		Grey with tan patches of felsite with 3-5°	% hornblende	+			_								
		crystals, at 2-4mm, with more pyrite (3-5	5%) and <5%						_						
		carbonate and minor silica (<2%) alterat	ion.		-										

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
		At 12.29m, 1cm vein of >90% quartz with minor carbonate-								ļ					
		chlorite and 2% pyrite at 65° TCA.							_						
			<u> </u>												
13.61	18.55	Altered Tan Felsite	2	0	1	0	1		_		6417	13.61	15.00	1.39	<10
		Similar to 4.79-10.30m with many small (1-4cm) quartz-	2	0	1	0	1				6418	15.00	17.00	2.00	<10
		carbonate vein at 70-80° TCA and trace-1% pyrite.	2	0	1	0	1				6419	17.00	18.55	1.55	<10
18.55	19.72	Quartz Eye Felsic Porphyry	1	0	1	0	1				6420	18.55	19.72	1.17	<10
		Similar to unit located in hole 4. Consists of weak silica-													
		carbonate (<10%) with minor sericite and 1% quartz eyes.													
		There is grain size reduction and sericite production due							-						
		to shearing at 70o TCA.													
							_								
19.72	31.35	Highly Altered Tan Felsite	3	0	2	1	1				6421	19.72	21.07	1.35	10
		Similar to 13.61-18.55 but increased amounts, 10-20%,													
		of ankerite-calcite-quartz veins and shears. There is weak							_						
		(<5%), dispersed ankerite alteration in the matrix due to													
		the tan to rusty coloration.													
		· · · · · · · · · · · · · · · · · · ·													
		21.07 - 21.81m: Fracture Zone	3	3	2	1	2				6422	21.07	21.81	0.84	40
		Zone of 20-30% hornblende-chlorite-biotite filled fractures	T												
		with >15% ankerite-calcite-quartz veining and	1												
		disseminated ankerite and 1-2% pyrite.													
		Highly Altered Tan Felsite	2	1	2	0	1				6423	21.81	23.11	1.30	10
		Similar to above description.													· · · · · · · · · · · · · · · · · · ·
							1								
		23.11 - 23.44m: Fracture Zone	3	2	2	0	2		_		6424	23.11	23.44	0.33	20
		Zone of 10-15% hornblende-chlorite-biotite filled fractures			[†	1	┌ ─│─	_	<u> </u>					
		with >25% ankerite and minor calcite-quartz veining	T		[
		with 2-3% pyrite.					1			1					

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides	-		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
19.72	31.35	Highly Altered Tan Felsite (continued)	2	1	2	_0	1					6425	23.44	25.00	1.56	80
		Similar to above description.	2	_1	2	0	1					6426	25.00	27.00	2.00	<10
			2	1	2	0	1					6427	27.00	28.53	1.53	<10
		28.53 - 30.27m: Altered Tan Felsite	2	0	1	0	1					6428	28.53	30.27	1.74	<10
		Similar to 13.61-18.55m with <5% fractures with ankerite-														
		calcite-silica alteration (10%) in fine, tan felsite with							T							
		trace-1% pyrite.														
		Highly Altered Tan Felsite	2	1	2	0	1		T			6429	30.27	30.85	0.58	<10
		Similar to above description with 20% fractures (3-5cm) of		—					Т							
		ankerite-silica-calcite-hornblende-pyrite at 45-50° TCA.														
							-	T	1	Γ						
		30.85 - 31.35m: Altered Tan Felsite	2	1	1	0	1		1	F		6430	30.85	31.35	0.50	<10
		Similar to 13.61-18.55m with <5% fractures with ankerite-			_		Γ		Т							
		calcite-silica alteration (10%) with minor hornblende-							Τ							
		chlorite-biotite with trace pyrite.							Τ_							
31.35	36.97	Intensely Altered Tan Felsite	3	3	3	2	2	?				6431	31.35	33.00	1.65	10
		Similar to above description with 20-40% fractures of	3	3	3	2	2	2				6432	33.00	35.00	2.00	60
		hornblende-chlorite and matrix of ankerite-silica-calcite	2	2	3	2	1					6433	35.00	36.97	1.97	30
		with 2-3% pyrite														
36.97	48.55	Altered Tan Felsite	2	1	1	0	1					6434	36.97	38.58	1.61	<10
		Weakly altered (<5%) fractures with hornblende-chlorite-	2	2	2	1	2	2				6435	38.58	39.77	1.19	30
		ankerite-calcite-silica at 60° TCA with and sporadic	1	1	2	0	1					6436	39.77	41.00	1.23	<10
		ankerite or chlorite or pyrite filled fractures. Trace-1%	1	1	1	0	1		1			6437	41.00	42.47	1.97	<20
		pyrite in matrix and 1-3cm patches of >20% pyrite.		-			1		T		Ĩ					
		At 38.58m, 4cm patch of >20% pyrite-chlorite.					1		1							
		At 39.68m, 9cm patch of >50% chlorite-hornblende-py.				-		1								
		At 41.88m, 2cm patch of >50% pyrite.					-	-	1			<u> </u>				

Page: ____3____ of ___10____

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
26.07	10 55	Altorod Ton Folgito	-													
30.97	40.00	Similar to above description					<u> </u>									
		At 12.27m, 22cm section of >10% purite and trace		2		-	2					6429	42.07	42.07	0.50	<10
		At 42.3711, 23011 Section of >10% pyrile and trace			_2							0430	42.97	43.97	0.50	<10
		charcopyrite in chiome-normalende with minor carbonate-	_													
		ankente-quartz (5%) with the other 27cm section with	+ -					-+								
		42 60 - 47 00m: Altered Tan (to Grev) Felsite	2	2	2	0	1					6439	43.47	45 50	2.03	<10
		Similar to 36.97-48.55m with 5-10% altered fractures	$\frac{1}{2}$	2	2	0	1					6440	45 50	47.00	1.50	20
		containing ankerite-silica-hornblende-chlorite and trace	+-		_							<u> </u>	10.00		1.00	
		pyrite at 60° TCA				-			-							
			+							-						
		47.00 - 47.89m; Highly Altered Tan Felsite	3	1	2	ō	1					6441	47.00	47.89	0.89	<10
		10-15% fine, disseminated and pervasive, ankerite											-			
<u> </u>		alteration in the matrix with weak epidote at the silica to				-	-									
		quartz bearing zones. This appears more tuffaceous					-									
		but this may be due to a weak tectonic overprint at														
		65° TCA.														
			-													
		Altered Tan Felsite	2	1	1	0	1			-		6442	47.89	48.55	0.66	<10
		Similar to above description with 5% fractures with														
		ankerite-chlorite-silica with trace pyrite.													-	
48.55	51.94	Highly Altered Tan Felsite	3	1	2	0	1					6443	48.55	50.00	1.45	10
		>10-30% fractures of ankerite, quartz or ankerite-quartz	3	1	2	0	1					6444	50.00	51.96	1.96	<10
		in tan to grey felsite with <1cm patches of pyrite as 1-2%														
		with the ankerite filled fractures at 45° TCA.														
51.94	54.29	Intensely Altered Tan Felsite	3	3	3	2	3					6445	51.94	53.12	1.18	210
		Similar to 31.35-36.97m with 30-50% fractures with	3	3	3	2	3					6446	53.12	54.29	1.17	90
		ankerite-silica-calcite and hornblende-chlorite-biotite with														

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
				_											
51.94	54.29	Intensely Altered Tan Felsite (continued)				ļ	⊢	┥─┥							
		<4cm patches of >20% pyrite with pyrite content of 3-5%.						╉╼┠╴	_						
54.00	00.05		<u> </u>	-	┝┈┙	-					0447	54.00		4 74	
54.29	68.85	Highly Altered 1 an Feisite	2	2			4	4			6447	54.29	56.00	1.71	120
		>10-20% fractures zones of 2-10cm containing ankerite-	$\frac{2}{2}$	2	2	10	2	4	_		6448	56.00	58.00	2.00	40
		calcite-silica-hornblende-chlorite with 1-2% pyrite with	2	2	2	0	2				6449	58.00	60.15	2.15	<10
		5% pervasive ankerite alteration at 60° TCA with 1-3% relic			L.,										
		plagioclase phenocrysts.		<u> </u>		Ļ		\downarrow	_						
		CO 15 CO 09mi Altered Ten Falsita	<u> </u>								6450	60 45	64.57	4 40	- 40
		50.15 - 52.9011. Allered Tan Feisile	+ 4		2						6450	61 57	62.09	1.42	
		Similar to above with < 10% ankente-sinca and minor	<u> </u>		<u> </u>						0451	01.57	02.90	1.41	
		"holle" or perphysiologic	+				-	+							
			-				-	┽╼┼╸							
		Highly Altered Tan Felsite	1 3	1	2			,			6452	62.98	65.00	2.02	<10
		Similar to above description with >10% fractures of	13	1	$\frac{2}{2}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		5			6453	65.00	67.00	2.02	<10
		ankerite-silica-calcite-bornblende-chlorite and 3-10%	1 3		2			<u>-</u>	_		6454	67.00	68.85	1.85	<10
		pyrite at 60° TCA and >10% penyasive ankerite alteration	+	<u> '</u>	-	<u> </u>	+-					01.00	00.00	1.00	<u> </u>
		with trace-1% pyrite	+	-				┥╌┼╴							
			+		r			+		+					
68 85	73 56	Sulphidized Highly Altered Tan Felsite	2	2	2	1					6455	68 85	70 50	1 65	50
00.00		>10-20% fractures of ankerite-silica-calcite-chlorite-	$\frac{1}{3}$	1 2	$\frac{-}{2}$	$\frac{1}{1}$		1		1	6456	70.50	72 50	2 00	20
·		hornblende with >5% pyrite filled fractures of 1-4cm	3	$\frac{-}{2}$	$\frac{-}{2}$	$\frac{1}{1}$		i	-	<u>+</u>	6457	72 50	73.56	1.06	<10
		Interanl, pervasive chlorite-biotite-calcite-silica alteration.	Ť	-	-	Г .		<u>+</u> ++	-	-		12.00	10.00	1.00	
			+			<u> </u>			<u> </u>	†				L.=	
73.56	78.36	Intensely Altered Tan Felsite	3	3	3	1	2	2		<u>† </u>	6458	73.56	75.56	2.00	40
		>50% chlorite-hornblende-biotite and ankerite-calcite-	3	3	3	1	2	2	-	<u>† </u>	6459	75.56	77.56	2.00	30
		silica matrix filled fractures in the tan felsite with >10%	3	3	3	1	2	2		1	6460	77.56	78.36	0.80	30
		pervasive ankerite with pyritic pods to lenses (1-2mm)													· · · · · ·
		of 2-3%.													

Diamond Drill Core Log

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
78.36	79.67	Altered Tan Felsite	2	2	1	1	1				6461	78.36	79.67	1.31	10
		<10% chlorite-hornblende-biotite filled fractures with													
		ankerite-silica-calcite matrix with weak (<5%) pervasive													
		ankerite and trace-1% pyrite.													
								·							_
79.67	80.32	Highly Altered Tan Felsite	3	2	2	1	1	_			6462	79.67	80.32	0.65	<10
		25-30% chlorite-hornblende-biotite filled fractures with				L									
		ankerite-calcite-silica matrix in tan felsite with 10%													
		pervasive ankerite.								L					
					L	L									
80.32	86.61	Altered Mafic to Intermediate Tuff	3	1	1	0	1			ļ	6463	80.32	82.00	1.68	<10
		From 20% to 5% pervasive ankerite alteration, decreasing	3	1	1	0	1				6464	82.00	84.00	2.00	<10
		downhole, in this tan to tan-green to dark green, mafic	3	1	_1	0	1				6465	84.00	86.00	2.00	<10
		unit. There are late calcite-chlorite fractures at 70° TCA	2	1	1	0	1				6466	86.00	86.61	0.61	<10
		with trace-2% pyrite.													
		At 80.32m, 10cm fracture and rubble due to faulting.													
		At 82.50m, 20cm fracture and rubble due to faulting.													
			_									1			
86.61	102.50	Mafic to Intermediate Tuff	1	1	0	0	1				6467	86.61	88.00	1.90	<10
		Fine-grained, dark green, mafic tuff with weak (<2%)													
		patches of ankerite alteration and foliated at 65-70° TCA.													
		Late quartz-carbonate-chlorite fractures (1-2%) at 70° TCA.													
		At 89.10m, 25cm zone of guartz-carbonate at 60° TCA.													
		At 93.35m, 4cm quartz vein with 1% pyrite at 60o TCA.													
		At 94.10m, 2cm quartz-carbonate vein at 25° TCA.							_						
		At 95.81m 13cm quartz-carbonate-chlorite vein at 60° TCA							<u> </u>	+					
										<u>+</u>					
		95.70 - 96.35m: Silica Zone	+						+	<u> </u>	6468	95.70	96.35	0.65	<10
	· · · · · · · · · · · · · · · · · · ·	15-20% white guartz at 200 TCA or guartz-carbonate vein							-	<u> </u>				3.00	
		at 60o TCA with weak chlorite alteration (<5%) in the								†					
		host mafic tuff with 1% pyrite.													† — — — —
										1					

Page:__6___ of ___10____

Diamond Drill Core Log

Hole No: DL06-05

From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
	100 50								1		0.400	00.05	00.00	1.05	- 10
86.61	102.50	Matic to Intermediate Tuff (Continued)	1	0	0	1	0			<u> </u>	6469	96.35	98.00	1.65	<10
		Similar to above description.									 				
		At 98.35m, 1cm quartz-carbonate vein at 20° 1CA.	-		 					 			-		
 		At 99.53m, 2cm quartz-carbonate vein at 30° TCA.													
102 50	112 76	Ankerite Altered Mafic Tuff	+-		-1	1	1				6470	102 50	103 50	1.00	<10
102.00	112.70	Weak brown-tint due to <5% ankerite of the green mafic		<u> </u>	<u></u>	<u>'</u>	'I		+		0470	102.00	100.00	1.00	
		tuff with trace pyrite. This unit contains <3% guartz-	+												
		carbonate veins (<2cm) at 70° TCA.													
		103.50 - 104.25m: Silica Carbonate Zone	3	2	3	2	_1				6471	103.50	104.25	0.75	<10
		<4% quartz veins at 30° TCA with a 21cm zone of													
		quartz-carbonate-chlorite at 70° TCA with trace pyrite;]				
		approximately 33% of vein material.													
		Ankerite Altered Mafic Tuff	3		1	1	1		+		6472	104 25	105 17	0.92	<10
		Similar to above for description.	Ť	· · ·	<u> </u>							101120	100.11	0.02	
											0.170		100.07		
		107.77 - 108.27m: Silica Carbonate Zone	-1-2	1	2	2	1				6473	107.77	108.27	0.50	<10
		<5% quartz-carbonate veins at 60° TCA with trace pyrite.					-								
		Ankerite Altered Mafic Tuff	2	0	1	0	1				6474	109.20	110.76	1.56	<10
		Similar to above for description with 10-15% ankerite													
		altered, tan, mafic to intermediate tuff with <0.5% pyrite.													
		110 76 - 111 26: Silica Zone	3	1	2	3	1		+		6475	110 76	111 26	0.50	<10
		Zone with ≤ 1 cm quartz veins at 20-45° TCA and ≤ 3 cm	+	-								110.70	11.20	0.00	
		guartz-carbonate-chlorite veins at 70° TCA in the ankerite	+						-						
		altered mafic tuff; approximately 20% vein material.													
		Similar to above for description		0	1	0	4				6476	111.26	111 60	0.24	<10
			13	U U	1	0		1	1		104/0	111.20		0.34	
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
--------	--------	---	-----------	------	--------	-------	------------	--------------	----------	----------	---------------------------------------	--------	--------	--------	---------------------------------------
111.60	112.76	Ankerite-Silica Altered Mafic Tuff	3	1	3	2	2				6477	111.60	112.76	1.16	<10
		Fine-grained, tan, highly altered mafic tuff with >10%													
		ankerite and >15% silica alteration producing grain-size													
		reduction (50%). Contains 5% fractures (1mm-2cm)													
		filled with quartz-carbonate-chlorite and 1% pyrite.													
															[
112.76	114.66	Intense Ankerite-Silica Altered Mafic Tuff	3	2	3	2	3			1	6478	112.76	114.66	1.90	20
		Similar to 111.60-112.76m with >20% ankerite, >20%													
		silica, 10% patchs of chlorite-biotite and <4cm patches of					1								
		>10-50% pyrite. Appears to be a fault breccia of the tan													
		altered mafic tuff at 60° TCA with breccia veins at 70-90°													
		TCA.													†
							<u> </u>	 	-	1					1
114.66	115.35	Altered Mafic Tuff	1	0	2	0	1				6479	114.66	115.35	0.69	10
		Similar to 102.50-105.17m with 10-5% ankerite alteration,									·····				
		decreasing downhole, with <3% guartz-carbonate veins													
		(<1cm) at 70° TCA and trace pyrite.							1	1					
							<u>├</u> ─	++			1				
115.35	126.35	Mafic to Intermediate Tuff	1	0	1	0	0	<u>├</u> ─┼─	+	+	6480	125.00	126.25	1.25	<10
		Similar to 86.61-102.50m with fine-grained, dark green.							+	1					T
		tuffaceous unit, mafic to intermediate, with 1-2% guartz-							-						
		carbonate veins at 70° TCA. Downhole, the unit increases									· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
		in hornblende phenocrysts content, 2 to 5%, at 2-3 mm.	+				+	╏──┼──		1					r
		Little to alteration visible	+				<u> </u>		+	<u> </u>					
							<u> </u>	<u>├</u>	+	+					
126.35	143.12	Altered Mafic Tuff	2	1	2	0	1	┟──┼──	+		6481	126.25	128.00	1.75	<10
		Similar to 102.50-105.17m with >10% ankerite-calcite	2	1	2	Ō	1	<u>}_</u>	+		6482	128.00	130.00	2.00	<10
		and >5% silica alteration in pathces of the mafic tuff.	2	1	2	0	1			1	6483	130.00	132.00	2.00	<10
		Late stage guartz-carbonate-chlorite fractures, 1-4cm,	2	1	2	0	1	1			6484	132.00	134.00	2.00	<10
		at 70o TCA. There are relic patches, <10cm, of unaltered	2	1	2	0	1				6485	134.00	136.00	2.00	<10
		mafic tuff and trace pyrite.	2	1	2	0	1				6486	136.00	138.00	2.00	<10

Diamond Drill Core Log

From	То	Description : Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides		% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
			L											-	
126.35	<u>143.12</u>	Altered Mafic Tuff (Continued)	2	1	2	0	1				6487	138.00	140.00	2.00	10
		Similar to above description.	2	1	2	0	1				6488	140.00	142.00	2.00	10
		At 134.56m, 12cm chlorite-quartz-carbonate vein with	2	1	2	0	1		_		6489	142.00	143.12	1.12	<10
		3% pyrite filled fractures.													
		At 135.03m, 4cm chlorite-quartz-carbonate vein with										<u> </u>			
		3% pyrite filled fractures at 45° TCA.													
		At 137.50m, 5cm quartz-carbonate-chlorite-epidote fracture													
		with trace pyrite at 45° TCA.													
		At 139.25m, 7cm guartz-carbonate-chlorite-ankerite fracture								-					-
		with trace pyrite at 45° TCA.					-								
		At 139.25m, 21cm zone of guartz-chlorite-ankerite bearing													
		fracture (partially assimilated) with late guartz-carbonate													
		fractures at 70° TCA.													
142 12	144 55	Contact Zono	0	0	2	0	0				6400	142.10	111 55	1 12	<10
145.12	144.55	\wedge 1.43m zone of <10% onkerite cilica alteration of the	<u> </u>		2		0	ŀ - ├-	+	+	0490	145.12	144.55	1.43	<10
		matrix tuff: decreasing downhole													
144.55	148.08	Mafic to Intermediate Tuff	1	0	1	0	0				6491	144.55	146.55	2.00	<10
		Similar to 115.35-126.25m as fine-grained, grey, mafic	1	0	1	0	0				6492	146.55	148.08	1.53	<10
		tuff with 2-4% hornblende phyric (1-3mm); these are													
		partially altered to chlorite. There is <2% late quartz-													
		carbonate veins at 70° TCA.													
										1					
148.08	149.11	Felsic Tuff to Lapilli Tuff	1	0	1	0	0				6493	148.08	149.11	1.03	<10
		Fine to medium-grained, light grey to off-white, tuff of													
		rhyodacite composition with 2-5mm grains. Theren is no													
		alteration except late stage quartz-carbonate veins at													
		70o TCA.													

Diamond Drill Core Log

						_		_	_				the second day in the second day is not the s	A second days of the second days		
From	То	Description: Lithology, Structure, Alteration, Mineralization	Carbonate	Clay	Quartz	Veins	Sulphides			% Recov.	RQD	Sample #	From	То	Length	Au (ppb)
								T								
149.11	157.25	Altered Felsic Tuff to Felsic Lapilli Tuff	2	1	2	2	1	+				6494	149.11	151.00	1.89	<10
		Medium-grained, green to grey-green, felsic tuff with 3-8mm	2	1	2	2	1					6495	151.00	153.00	2.00	<10
		grains with 10-20% pervasive calcite-silica alteration.	2	1	2	2	1					6496	153.00	155.00	2.00	<10
		Fracturing shows brown patches indicating earlier ankerite	2	1	2	2	1					6497	155.00	157.25	2.25	<10
		alteration. This was overprinted by late stage quartz-														
		carbonate-chlorite and minor epidote veins (0.5-4.0cm)														
		occur at 70o TCA. The last stage of fracturing show														
		chlorite filled fractures (<3%) at 20° TCA.														
		At 149.90m, 6cm quartz-carbonate vein at 70° TCA.					Γ									
								1								
	157.25	End of Hole														
1																
														in the life		
													_			

APPENDIX B 2007 Assays from the December 2006 Drill Program From the Dash Lake Area

INVOICE

Au assays DL 06-01 AR Invoice Number Date Page

:10190583 : 30-JAN-07 :1 /1

922 PARK STREET KENORA ON P9N 1B7 Canada	Customer Number Currency Payment Term Due Date	366727 CAD Net Due in 30 Days 01-MAR-07
	SGS Order No.	146087

Attn: Accounts Payable Customer Reference Order source reference number: RL00005061 WO#:RL27516: WESTERN WARRIORS

Item	Description	Quantity	UoM	Unit Price	Net Amount	Amount
37351	Sample Preparation PRP89 Dry, crush to 75%, split to 250g and pulverize to 85% / 35 sample(s)	1	Ea	270.20	270.20	286.41
37350	Precious Metals Analysis FAA303 Gold by fire assay, AAS, nominal weight 30g / 35 sample(s)	1	Ea	530.60	530.60	562.44
					GST	48.05
				Net Amo Sum of	unt CAD Tax CAD	800.80 48.05
				Total Amou	nt CAD	848.85

Contact Name: Direct line: E-mail:

TURNBULL, KERRI-ANN 807-727-2939 Kerri-Ann.Turnbull@sgs.com

Please Remit To:

SGS Canada Inc FOR WIRE TRANSFER PAYMENTS: CITIBANK CANADA - TORONTO, ONTARIO BANK # 260 TRANSIT # 00082 SWIFT CODE: CITICATT 2014113008 CAD 2014113016 USD

PLEASE INCLUDE INVOICE NUMBER WITH PAYMENT DETAIL

FOR CHEQUE PAYMENTS: PO BOX 4580 DEPT 5, STATION A

Toronto M5W 4W2 Canada

> SGS Canada Inc. | Mineral Services 16A Young Street PO Box 1349 Red Lake ON POV 2M0 t (807) 727-2939 f (807) 727-3183

> > SGS Tax ID GST/HST/TPS#R105082572 QST/TVQ#R1010505000

Member of SGS Group

All orders are accepted and all reports and certificates are issued subject to the SGS General Conditions of Sorvice for Nonh America (copy available upon request or may be viewed at http://www.sgs.com) or as otherwise agreed upon. Any parson, including the customer, using or relying on this certificate or report, agrees that the liability of the contracting SGS atfiliate shall in no case exceed a total aggregate sum of the lesser of US \$20,000 or ten times the fee paid or payable for the service giving rise to the claim, but in no event in excess of the extent of the proven negligence of the contracting SGS atfiliate. The results shown on this test or inspection report refer only to the sample(s) tested or inspected unless otherwise stated

Certificate of Analysis

Work Order: RL27516

Date: Jan 30, 2007

To: Western Warrior Resources Inc. Attn: Western Warrior Resources Inc. Michael Chute 922 Park Street Kenora, Ontario ONTARIO P9N 1B7

P.O. No. Project No. No. Of Samples Date Submitted **Report Comprises**

WESTERN WARRIORS

35 Jan 23, 2007 Pages 1 to 2 (Inclusive of Cover Sheet)

Certified By : Susan Isaac

Report Footer:

L.N.R. = Listed not received = Not applicable n.a.

I.S. = Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Subject to SGS General Terms and Conditions

--

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

	· · · ·			
Element	Au	Au (AR)	Au	Au (R)
Method	FAA303	FAA303	FAA303	FAA303
Det.Lim.	0.01	0.01	0.001	0.001
	G/I	G/1}	OZ/T	OZ/T
6101	<0.01	<0.01	<0.001	<0.001
	<0.01	norma and transmission	<0.001	
	0.04		0.001	
6104	<0.01		<0.001	
6105	<0.01		<0.001	
6106	<0.01		<0.001	
6107	0.15		0.004	
6108	0.04	;	0.001	
6109	0.09		0.003	
6110	0.07		0.002	an an
6111	0.02		<0.001	
6112	0.04		0.001	Allen and and the state of the
6113	0.04		0.001	
6114	0.02		<0.001	
6115	0.12		0.003	
6116	<0.01		<0.001	
6117	<0.01		<0.001	
6118	0.01		<0.001	
6119	0.04		0.001	
6120	0.08		0.002	-100 0000000000000000000000000000000000
6121	0.02	••	<0.001	er wetandet i terraamigt stipti
6122	0.02		<0.001	
6123	0.04	-Afrikanskonum - Jusei Artungijan 	0.001	IC BUTCH COLOR TO STOLEN AND A S
	0.02	and the second s	<0.001	antina a sub na managana a a mani
6125	0.01	0.01	<0.001	<0.001
6126	0.01	. contraction and the station	<0.001	a the figure of the second
6127	<0.01		<0.001	nin falle dawrina ag en i
6128	0.03	ран (ул. 1974) (ул. 1974) Самар — С.	<0.001	
6129	0.02		<0.001	1999 - Barris Barris (1999) 1999 - Barris Barris (1999) 1999 - Barris (1999)
61330	0.01		<0.001	r Shaki kikin dan yapanya ngapiti sa mi
6131	0.02		<0.001	A & ZOWNER PAR AND A STORE
	0.05	n na navna se sa se	0.001	Andrewson countrality and second
релениялирорских служик народности или лини с типе на сула одно с типе на села одна сталители с сулатили с с	0.02	enter materia, ente exercipi activ ent	<0.001	
6134	<0.01		<0.001	
	0.01		<0.001	9.24 MOR. 40(1444, p. 914 - 10(972), NOR

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 2 of 2

INVOICE

Au Assays DL06-02 Invoice Number : 10194618 Date :23-FEB-07 Page :1 /1

AR

	WESTERN WARRIOR RESOURCES 922 PARK STREET KENORA ON P9N 1B7 Canada	Customer Numi Currency Payment Term Due Date	ber	366727 CAD Net Due i 25-MAR-1	in 30 Days 07	
		SGS Order No.		149526		
Custome Order so WO#:RL	r Reference Attn: Accounts Payable urce reference number: RL00005358 27718: WESTERN WARRIORS					
Item	Description	Quantity	UoM	Unit Price	Net Amount	Amount
37351	Sample Preparation PRP89 Dry, crush to 75%, split to 250g and pulverize to 85% / 52	1 sample(s)	Ea	390.00	390.00	413.40
37350	Precious Metals Analysis FAA303 Gold by fire assay, AAS, nominal weight 30g / 52 sample	(s)	Ea	702.00	702.00	744.12
					GST	65.52
				Net An Sum o	nount CAD of Tax CAD	1,092.00 65.52
				Total Amo	unt CAD	1,157.52

TURNBULL, KERRI-ANN Contact Name: Direct line: 807-727-2939 E-mail: Kerri-Ann.Turnbull@sgs.com

Please Remit To:

SGS Canada Inc FOR WIRE TRANSFER PAYMENTS: CITIBANK CANADA - TORONTO, ONTARIO BANK # 260 TRANSIT # 00082 SWIFT CODE: CITICATT 2014113008 CAD 2014113016 USD

PLEASE INCLUDE INVOICE NUMBER WITH PAYMENT DETAIL

FOR CHEQUE PAYMENTS: PO BOX 4580 DEPT 5, STATION A

Toronto M5W 4W2 Canada

SGS Canada Inc. Mineral Services 16A Young Street PO Box 1349 Red Lake ON POV 2M0 t (807) 727-2939 f (807) 727-3183

SGS Tax ID GST/HST/TPS#R105082572 QST/TVQ#R1010505000

Member of SGS Group

All oncors are accepted and all reports and certificates are issued subject to the SGS General Conditions of Santon for North America (copy available upon request or may be viewed at http://www.sgs.com) or as otherwise agreed upon. Any person, inclusing the customer, using or relying on this certificate or report, agrees that the lability of the contracting SGS atflates that in a long. Santon the sear or US 520,000 or tan times the lee pad or payable to the searce giving rise to the claim, but in no event in access of the searce of the contracting SGS atflate. The results shown on this test or inspection only of the same software so

Certificate of Analysis

Work Order: RL27718

Date: Feb 21, 2007

To: Western Warrior Resources Inc. 922 Park Street Kenora, Ontario ONTARIO P9N 1B7

> P.O. No. Project No. No. Of Samples Date Submitted Report Comprises

WESTERN WARRIORS

52 Feb 09, 2007 Pages 1 to 3 (Inclusive of Cover Sheet)

Certified By : Susan Isaac

Report Footer:

L.N.R. = Listed not received n.a. = Not applicable I.S. = Insufficient Sample -- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Subject to SGS General Terms and Conditions

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

				· · ·		
Element		5 2596 C -	Au	Au (AR)	Au	Au (R)
Niethod		FA	4303	FAA303	FAA303	FAA303
Det.Lim.			0.01	0.01	0.001	0.001
Units	-		G/T	G/T	02/1	02/1:
6136		<	0.01	<0.01	<0.001	<0.001
6137		<	0.01		<0.001	
6138	- ·	<	0.01		<0.001	
6139		<	0.01		<0.001	
6140		<	0.01		<0.001	
6141		<	0.01		<0.001	
6142		<	0.01		<0.001	
6143		<	0.01		<0.001	
6144		<	0.01		<0.001	
6145		<	0.01		<0.001	
6146		<	0.01		<0.001	
6147	-	<	0.01		<0.001	
6148		. <	0.01		< 0.001	
6149	· · · · ·	<	0.01		<0.001	
6150		<	0.01		<0.001	
6151	- *	<	0.01		<0.001	
6152		<	0.01		<0.001	
6153		<	0.01		<0.001	
6154		<	0.01		<0.001	
6155		<	0.01		< 0.001	
6156		<	0.01	·	<0.001	
6157		<	0.01		<0.001	~
6158		allan i	0.02		< 0.001	
6159		,	0.02	~ 	<0.001	
6160			0.02	0.01	<0.001	< 0.001
6161			0.02		< 0.001	
6162			0.02		<0.001	
6163			0.02		<0.001	
6164			0.Ő2	• ••	< 0.001	'
6165			0.02		< 0.001	
6166			0.02		<0.001	
6167			0.03		< 0.001	
6168			0.02		< 0.001	
6169			0.16		0.005	· -
6170			0.02		<0.001	
6171			0.02		<0.001	
6172			0.01		<0.001	~-
6177			0.02		<0.001	-
6178			0.03		< 0.001	:
6179			0.02		< 0.001	یه بیش مید مین
6180			0.02		< 0.001	
6181			0.02	···	< 0.001	
6182			0.03		< 0.001	
6183			0.02		<0.001	
6184			0.04		0.001	
6:85		<	0.01		<0.001	
6186			0.03		<0.001	
6187			0.04		0.001	
			5.64		0.001	

-

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 2 of 3

			· · · ·	5 5 6	
Element		Au	Au (AR)	Au	Au (R)
Wiethod		FAA303	FAA303	FAA303	FAA303
Det Lim.		0.01	0.01	0.001	0.001
Units		G/T	G/T	OZ/T	OZ/T
6188	en in telle en	0.05	0.04	0.002	0.001
6189		0.07		0.002	at denoter a succept
6190	an Anna a se fite a	0.02		< 0.001	····
6191		0.01		<0.001	

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 3 of 3

INVOICE

Av Assays Invoice Number Date Page DL06-03 & 04 : 10201248 : 29-MAR-07 : 1 /1

				Total Amou	unt CAD	4,563.30
				Net Am Sum o	nount CAD f Tax CAD	4,305.00 258.30
					GST	258.30
	FAA303 Gold by fire assay, AAS, nominal weight 30g / 205 sample(s)				
37350	Precious Metals Analysis	1	Ea	2,767.50	2,767.50	2,933.55
37351	Sample Preparation PRP89 Dry, crush to 75%, split to 250g and pulverize to 85% / 205 s	1 sample(s)	Ea	1,537.50	1,537.50	1,629.75
nem	Description	Quantity	UoM	Unit Price	Net Amount	Amount
Custome Order so WO#:RL	er Reference Attn: Accounts Payable urce reference number: RL00005764 28009: WESTERN WARRIORS					
	Canada	SGS Order No.		155269		
	WESTERN WARRIOR RESOURCES 922 PARK STREET KENORA ON P9N 1B7 Capada	Customer Numl Currency Payment Term	ber	366727 CAD Net Due i	n 30 Days	

Contact Name: Direct line: E-mail:

Please Remit To:

SGS Canada Inc FOR WIRE TRANSFER PAYMENTS: CITIBANK CANADA - TORONTO, ONTARIO BANK # 260 TRANSIT # 00082 SWIFT CODE: CITICATT 2014113008 CAD 2014113016 USD

TURNBULL, KERRI-ANN

Kerri-Ann.Turnbull@sgs.com

807-727-2939

PLEASE INCLUDE INVOICE NUMBER WITH PAYMENT DETAIL

FOR CHEQUE PAYMENTS: PO BOX 4580 DEPT 5, STATION A

Toronto M5W 4W2 Canada

SGS Canada Inc. Mineral Services 16A Young Street PO Box 1349 Red Lake ON POV 2M0 t (807) 727-2939 f (807) 727-3183

SGS Tax ID GST/HST/TPS#R105082572 QST/TVQ#R1010505000

Member of SGS Group

All orders are accepted and all reports and certificates are issued subject to the SGS General Conditions of Service for North America (copy available upon request or may be viewed at http://www.sgs.com) or as otherwise agreed upon. Any person, including the customer, using or relying on this certificates or report, agrees that the liability of the contracting SGS affiliate shall in no case exceed a total aggregate sum of the lesser of US \$20,000 or len times the lee paid or payable for the service giving rise to the cleim, but in no event in excees of the extent of the proven negligence of the contracting SGS affiliate. The results shown on this test or inspection report refer only to the sample(s) tested or inspected unless otherwise stated.

Certificate of Analysis

Work Order: RL28009

Date: Mar 21, 2007

To: Western Warrior Resources Inc. 922 Park Street

Kenora, Ontario ONTARIO P9N 1B7

P.O. No.	
Project No.	
No. Of Samples	
Date Submitted	
Report Comprises	

WESTERN WARRIORS

205 Mar 12, 2007 Pages 1 to 6 (Inclusive of Cover Sheet)

Certified By Susan Isaac

Report Footer:

L.N.R. = Listed not received n.a. = Not applicable I.S. = Insufficient Sample -- = No result

*INF = Composition of this sample makes detection impossible by this method *M* after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Subject to SGS General Terms and Conditions

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

	۰				
Element	Au	Au	Au (AR)	Au	Au (R)
Methoa	FAA303	FAA303	FAA303	FAA303	FAA303
Der.Lim.	10	0.01	0.01 C/T	0.001	0.001
Units	-10	-0.01	-0.01	021	-0.001
	<10	<0.01	<u><0.01</u>	<0.001	<0.001
U01/4	1 <10	<0.01		<0.001	
06175	<10	<0.01	ل ه . بلد مصحح محمد ،	<0.001	•••.
06176	<10	<0.01		<0.001	
06192	<10	< 0.01		<0.001	
06193	900	0.90		0.026	(مم 2- محمد محمد محمد محمد ا
06194	<10	<0.01		<0.001	
06195	<10	<0.01		<0.001	
06196	<10	<0.01		<0.001	
06197	<10	<0.01	(بەھ مۇسىر مەسىرە مەسىر م	<0.001	
06198	<10	<0.01	•••[<0.001	
06199	<10	<0.01		<0.001	100 - 100 - 174 - 1 - 10 - 100 - 100 - 100
06200	<10	.<0.01	•••	<0.001	
06201	<10	<0.01		<0.001	
06202	<10	<0.01		<0.001	
C6203	<10	<0.01		<0.001	
06204	<10	<0.01		<0.001	,
06205	<10	<0.01		<0.001	
06206	<10	<0.01	;	< 0.001	'
06207	<10	<0.01	!	< 0.001	
06208	20	0.02		<0.001	:
06209	<10	< 0.01		<0.001	
06210	<10	<0.01		<0.001	
06211	<10	<0.01	 نمو	<0.001	
06212	50	0.05	0.03	0.002	<0.001
06213	10	0.01		<0.001	La de Martin Autor Millara La deservición de La d La deservición de La d
. 06214	10	0.01	•••	<0.001	
06215	10	0.01		<0.001	•••
06216	<10	< 0.01		< 0.001	·····
06217	<10	< 0.01	;	< 0.001	
05218	<10	<0.01		<0.001	
06219	<10	<0.01	10.40, 11 11 11 11 11 11 11 11 11 11 11 11 11	<0.001	anter a dia tra-
03220	10	0.01		<0.001	• • • • • • • • • • • • • • • • •
7 06221	<10	< 0.01	······································	<0.001	
06222	<10	<0.01		< 0.001	- 9980-0000-000 ****************************
N-06223	<10	< 0.01	• • • • • • • • •	< 0.001	n an 1 ann - Anna
C6224	<10	< 0.01	· · · · ·	< 0.001	
06225	<10	<0.01		<0.001	
06226	<10	<0.01	;	< 0.001	
06220	<10	<0.01		<0.001	Filiple = , of ter =
06228	<10	<0.01		<0.001	
0.0220	<10	<0.01		<0.001	
06225	<10	<0.01		<0.001	a., 6.00
06230	<10	<0.01		<0.001	
06231	<10	<0.01		<0.001	
06232	<10	<0.01	· · · · · ·	<0.001	
06234	<10	<0.01		<0.001	
00234	<10	<0.01		<0.001	
00233	>10	~0.01	,	-0.001	

Page 2 of 6

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

1 - 5,44 - 5,44 - 5,47 Ξ. Au Au (AR) Element Au Au Au (R) FAA303 FAA303 FAA303 Niethod FAA303 FAA303 10 0.01 0.01 Det.Lim. 0.001 0.001 PPB G/T GЛ OZ/T OZ/T Units 06236 <10 < 0.01 <0.01 <0.001 <0.001 06237 <10 < 0.01 < 0.001 06238 <10 <0.01 < 0.001 06239 <10 < 0.01 < 0.001 <10 06240 < 0.01 < 0.001 ---06241 <10 < 0.01 < 0.001 --06242 <10 < 0.01 < 0.001 06243 <0.01 < 0.001 <10 --<10 <0.01 < 0.001 06244 --06245 <10 < 0.01 < 0.001 -------06246 <10 < 0.01 <0.001 06247 <10 < 0.01 < 0.001 20 0.02 < 0.001 06248 ---06249 <10 < 0.01 < 0.001 ____ ---06250 <10 < 0.01 < 0.001 -----06251 10 0.01 < 0.001 --06252 <10 < 0.01 < 0.001 ------06253 <10 < 0.01 < 0.001 -------06254 10 0.01 < 0.001 ---06255 20 0.02 < 0.001 06256 10 0.01 < 0.001 -< 0.01 06257 <10 < 0.001 ----10 0.01 < 0.001 06258 06259 30 0.03 < 0.001 10 0.01 < 0.01 < 0.001 < 0.001 06260 06261 <10 < 0.01 < 0.001 < 0.01 < 0.001 06262 <10 ---<10 < 0.01 < 0.001 06263 < 0.01 <10 <0.001 06264 06265 <10 < 0.01 < 0.001 -< 0.01 < 0.001 06266 <10 ī. <10 < 0.01 < 0.001 06267 <10 < 0.01 < 0.001 06268 --06269 <10 < 0.01 < 0.001 <10 < 0.01 < 0.001 06270 ----<10 < 0.01 < 0.001 06271 --50 0.05 0.002 06272 ---_ <10 < 0.01 < 0.001 06273 60 0.06 0.002 06274 06275 <10 < 0.01 < 0.001 06276 <10 < 0.01 < 0.001 ---06277 <10 < 0.01 < 0.001 < 0.01 < 0.001 J6278 <10 06279 <10 < 0.01 < 0.001 < 0.01 < 0.001 06280 <10 < 0.001 <10 < 0.01 06281 < 0.01 < 0.001 06282 <10

40

06283

0.04

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

0.001

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 3 of 6

4.4 5.00 Au Au Au (AR) Au Au (R) Element FAA303 FAA303 FAA303 FAA303 FAA303 Method 0.01 0.001 10 0.01 0.001 Det.Lim. PPB G/T G/T OZ/T OZ/T Units <10 < 0.01 <0.01 < 0.001 < 0.001 06284 < 0.01 < 0.001 J6285 <10 06286 < 0.01 <10 < 0.001 06287 <10 < 0.01 < 0.001 06288 <10 < 0.01 < 0.001 06289 <10 < 0.01 < 0.001 06290 <10 < 0.01 < 0.001 < 0.001 06291 <10 < 0.01 <10 <0.01 < 0.001 08292 -------06293 <10 < 0.01 < 0.001 06294 <10 < 0.01 < 0.001 ---<10 < 0.01 < 0.001 06295 ----<10 < 0.01 < 0.001 ____ 06296 06297 <10 < 0.01 < 0.001 06298 <10 < 0.01 < 0.001 <0.001 06299 <10 < 0.01 . . . < 0.001 06300 <10 < 0.01 ---<10 < 0.01 < 0.001 063**0**1 < 0.001 <10 < 0.01 06302 ___ <0.01 < 0.001 06303 <10 < 0.001 < 0.01 06304 <10 <10 < 0.01 < 0.001 08305 <10 < 0.01 < 0.001 06306 < 0.001 <10 < 0.01 06307 < 0.01 < 0.001 06308 <10 <10 < 0.01 < 0.001 06309 < 0.01 < 0.001 J6310 <10 20 0.02 <0.001 06311 70 0.07 0.002 06312 20 0.02 <0.001 06313 20 0.02 < 0.001 06314 50 0.05 0.001 06315 10 0.01 < 0.001 06316 <10 < 0.01 < 0.001 06317 ---06318 10 0.01 < 0.001 06319 <10 < 0.01 < 0.001 --, 140 0.14 0.004 06320 < 0.001 10 0.01 06321 ---) 0.001 0.05 06322 50 10 0.01 < 0.001 06323 0.003 110 0.11 06324 0.01 < 0.001 10 06325 < 0.001 20 0.02 06326 < 0.01 < 0.001 06327 <10 10 0.01 _ < 0.001 06328 < 0.001 06329 <10 <0.01 ---<10 < 0.01 < 0.001 06330 ___ -~ 20 0.02 < 0.001 -û6331

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 4 of 6

	,	ч и ⁴	· · · ·		
Element ,	Au	Au	Au (AR)	Au	Au (R)
riethod	FAA303	FAA303	FAA303	FAA303	FAA303
Det.Lim.	10	0.01	0.01	0.001	0.001
Units	PPB	G/1	G/ Ŋ	OZ/T	OZ/T
06332	20	0.02	0.02	<0.001	<0.001
06333	20	0.02		<0.001	
06334	20	0.02		<0.001	
06335	20	0.02		<0.001	}
06336	10	0.01		<0.001	
06337	10	0.01		<0.001	
06338	10	0.01		<0.001	
06339	10	0.01		<0.001	
06340	10	0.01		< 0.001	•••
06341	20	0.02	. پنجست میں میں در •••	< 0.001	
06342	50	0.05		0.001	,
06343	20	0.02		<0.001	
06344	20	0.02		<0.001	garann rannan ar garann
	10	0.01		<0.001	
06346	20	0.02		<0.001	;
063:7	10	0.01		<0.001	
00047	10	0.01		<0.001	
	30	0.01	· · · ·	<0.001	
00349 02360	20	0.03		<0.001	u www.d
	20	0.02		0.001	
	40	0.04		0.001	
	20	0.02	1 4004000000000000000000000000000000000	<0.001	· · · · · · · · · · · · · · · · · · ·
	20	0.02	an a	10.001	
	10	0.01.		<0.001	
06355	20.	0.02		<0.001	
06356	20	0.02	<0.01	<0.001	<0.001
06357	10	0.01	:	<0.001	
06358	60	0.06	;	0.002	
06359	20	0.02	;	<0.001	
06360	10	0.01		<0.001	•••`
06361	10 ₁	0.01		<0.001	
06362	10	0.01		<0.001	•••;
06363	20	0.02		<0.001	
06364	40	0.04	••.	0.001	
06365	<10	<0.01	!	<0.001	
06366	<10	<0.01		< 0.001	
06367	<10	<0.01		<0.001	ر احد
06368	<10	<0.01		<0.001	
05369	<10	<0.01	-	<0.001	!
06370	<10	<0.01		<0.001	
06371	<10	<0.01		<0.001	
06372	<10	<0.01	'`	<0.001	
06373	<10	<0.01	:	<0.001	
06374	<10	<0.01		< 0.001	••
06375	30	0.03		<0.001	
06376	<10	< 0.01		<0.001	
06377	<10	< 0.01		<0.001	
06378	10	0.01	آب	< 0.001	
06379	<10	<0.01	···!	<0.001	
		a			

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 5 of 6

		್ರ್ ಕ್ರಿ ಕ್ರಿ ಕ್ರಿ ಮತ್ತು ಕ್ರಿ ಮತ್ತು				
Element	Au	Au	Au (AR);	Au	Au (R)	
method	FAA303	FAA303	FAA303	FAA303	FAA303	
Det.Lim.	. 10	0.01	0.01	0.001	0.001	
Units	PPB	G/T	G/T	OZAT	OZ/T	
06380	70	0.07	0.19	0.002	0.005	
06381	10	0.01		<0.001		
06382	<10	<0.01		<0.001		
06383	<10	<0.01		<0.001		
06384	10	0.01		<0.001	-	
06385	20	0.02		<0.001	-	
06386	30	0.03		< 0.001		
06387	10	0.01		<0.001	!	
06388	130	0.13		0.004		
06389	30	0.03	{	<0.001		
06390	<10	<0.01		<0.001		
06391	10	0.01		<0.001		
06392	10	0.01	i	<0.001		
	and the second sec			an ann an a' a' sharba	a provident a successi	

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 6 of 6

INVOICE

Invoice Number Date Page

Au Assays DL06-04 & 05 : 10201249 :29-MAR-07 :1 /1

AI

VESTERN WARHIOR RESOURCES	Customer Number	366727
122 PARK STREET	Currency	CAD
(ENORA ON P9N 1B7	Payment Term	Net Due in 30 Days
Ganada	SGS Order No.	155270

Attn: Accounts Payable Customer Reference Order source reference number: RL00005765 WO#:RL28021: WESTERN WARRIORS

ltem	Description	Quantity	UoM	Unit Price	Net Amount	Amount
37351	Sample Preparation PRP89 Dry, crush to 75%, split to 250g and pulverize to 85% / 105 sample(s	1	Ea	787.50	787.50	834.75
37 350	Precious Metals Analysis FAA303 Gold by fire assay, AAS, nominal weight 30g / 105 sample(s)	1	Ea	1,417.50	1,417.50	1,502.55
					GST	132.30
				Net Am Sum o	ount CAD f Tax CAD	2,205.00 132.30
				Total Amou	int CAD	2,337.30

Contact Name: Direct line:	TURNBULL, KERRI-ANN	
E-mail:	Kerri-Ann.Turnbull@sgs.com	

Please Remit To:

SGS Canada Inc FOR WIRE TRANSFER PAYMENTS: CITIBANK CANADA - TORONTO, ONTARIO BANK # 260 TRANSIT # 00082 SWIFT CODE: CITICATT 2014113008 CAD 2014113016 USD

PLEASE INCLUDE INVOICE NUMBER WITH PAYMENT DETAIL

FOR CHEQUE PAYMENTS: PO BOX 4580 DEPT 5, STATION A

Toronto M5W 4W2 Canada

SGS Canada Inc. Mineral Services 16A Young Street PO Box 1349 Red Lake ON PDV 2M0 t (807) 727-2939 f (807) 727-3183

SGS Tax ID GST/HST/TPS#R105082572 QST/TVQ#R1010505000

Member of SGS Group

All orders are accepted and all reports and certificates are issued subject to the SGS General Conditions of Service for North America (copy available upon request or may be viewed at http://www.sgs.com) or as otherwise agreed upon. Any person, including the customer, using or relying on this certificates or report, agrees that the liability of the contracting SGS affiliate shall in no case exceed a total aggregate sum of the leaser of US \$20,000 or ten times the fee paid or payable for the service giving rise to the claim, but in no event in excess of the extent of the proven negligence of the contracting SGS affiliate. The results shown on this test or inspection report refer only to the semple(s) tested or inspected unless otherwise stated.

Certificate of Analysis

Work Order: RL28021

To: Western Warrior Resources Inc.

Date: Mar 23, 2007

Attn: Western Warrior Resources Inc. Michael Chute 922 Park Street Kenora, Ontario ONTARIO P9N 1B7

P.O. No. Project No. No. Of Samples Date Submitted Report Comprises WESTERN WARRIORS

105 Mar 16, 2007 Pages 1 to 4 (Inclusive of Cover Sheet)

Certified By

Susan Isaac

Report Footer:

L.N.R. = Listed not received n.a. = Not applicable I.S. = Insufficient Sample -- = No result

*INF = Composition of this sample makes detection impossible by this method *M* after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Subject to SGS General Terms and Conditions

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

Element Method Det.Lim.	Au FAA303 10	Ац FAA303 0.01	Au (AR) FAA303 0.01	Au FAA303 0.001	Au (R) FAA303 0.001	
Units	PPB;	G/T	G/T	OZ/T	OZ/T	
06393	<10	<0.01	0.01	<0.001	<0.001	
06394	10	0.01		<0.001		
06395	<10	<0.01		<0.001		
06396	<10	<0.01		<0.001		
06397	20	0.02		<0.001	'	
06398	<10	<0.01		<0.001		
06399	10	0.01		<0.001		
06400	<10	<0.01		< 0.001		
06401	10	0.01		<0.001		
06402	<10	<0.01		<0.001	and and the second s	
06403	20	0.02		< 0.001		
06404	<10	<0.01		<0.001		
06405	<10	<0.01	است. مراجب المحمد محمد منظمة	<0.001		
06406	<10	<0.01	•••••	<0.001		
06407	<10	<0.01		<0.001	januaran adalah dari dari Ma	
06408	<10	<0.01		< 0.001		
06409	<10	< 0.01		< 0.001	··· ···	
06410	<10	<0.01	1.000 F	<0.001		
06411	30	0.03	•••	<0.001	1	
06412	20	0.02		< 0.001	:	
06413	<10	<0.01	,	<0.001	··· ··· ···	
96414	<10	<0.01		<0.001		
06415	30	0.03		<0.001	a and an	
06416	<10	<0.01		<0.001	:	
06417	<10	<0.01	<0.01	<0.001	<0.001	
06418	<10	<0.01		<0.001	•	
06419	<10	<0.01	·····	<0.001		
06420	<10	<0.01		<0.001	-	
06420	10	0.01		<0.001		
	40	0.04		0.001		
06423	10	0.01		<0.001		
	20	0.02		<0.001		
06424	20	0.02		0.007		
	<10	20.01		<0.002		
	~10	<0.01	-1000-0-1-10 - 100-00-0-1 - 11	<0.001		
UB427	<10	<0.01		<0.001	••• ••••••••••••••••••••••••••••••••••	
00428	<10	<0.01		<0.001		
06429	<10	<0.01		<0.001		
05430	<10	<0.01		<0.001		
06431	10	0.01	,	<0.001		
06432	60	0.06		0.002		
06433	30	0.03		<0.001	•••	
06434	<10	<0.01		<0.001		
06435	30	0.03		<0.001		
06436	<10	<0.01		<0.001		
06437	20	0.02		<0.001		
06438	<10	<0.01	,	<0.001		
06439	<10	<0.01		<0.001		
06440	20	0.02		<0.001		

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 2 of 4

ľ

	2. J		а 4		
Element	Au	Au	Au (AR)	Au,	Au (R)
Method	FAA303	FAA303	FAA303	FAA303	FAA303
Der Lim.	10	0.01	0.01	0.001	0.001
	PPD	G/1	GII	021	021
06441	<10	<0.01	0.01	<0.001	<0.001
	10	-0.01		<0.001	en.
09443	-10	0.01		<0.001	
	210	<u.u1< td=""><td></td><td>0.001</td><td>••• </td></u.u1<>		0.001	•••
	210	0.21	n maranan ada	0.000	
	120	0.09	· · · · · · · · · · · · · · · · · · ·	0.003	
	120	0.12		0.003	
06440	40	0.04		0.001	
00449	<10	<0.01			na antonia i se se s
06450	10	0.01		<0.001	
06451	<10	<0.01		<0.001	
06452	<10	<0.01		<0.001	ا د. پېښتان ماند ده
06453	<10	<0.01		<0.001	5
06454	<10.	<0.01		<0.001	
06455	50	0.05		0.002	
06456	20	0.02	•••.	<0.001	· · · · · · · ·
06457	<10	<0.01	'	<0.001	
05458	40	0.04		0.001	
06459	30	0.03		< 0.001	
06460	30	0.03	'.	<0.001	
06461	10	0.01	المحمد الم	<0.001	
06462	<10	<0.01	مدد در الفق الله المانية ال	<0.001	
06463	<10	<0.01		<0.001	
03464	<10	<0.01		<0.001	
06465	<10	<0.01		<0.001	
06466	<10	<0.01	·	<0.001	(
06467	<10	<0.01		<0.001	
ÚĈ4 0 8	<10	<0.01		<0.001	
<u>06469</u>	<10	< 0.01		<0.001	 . N
06470	<10	< 0.01	~	<0.001	
06471	<10	<0.01		< 0.001	
06472	<10	< 0.01	,	<0.001	
05473	<10	< 0.01		<0.001	
36474	<10	< 0.01	-	<0.001	-
06475	<10	< 0.01	•••;	<0.001	1844, g. 118 v. 118
Ĵ6476	<10	< 0.01	•	<0.001	
06477	<10	<0.01	••••	<0.001	••• •••
36478	20	0.02	•••	<0.001	
06479	10	0.01		<0.001	
06480	<10	<0.01		<0.001	•••
06481	<10	< 0.01		< 0.001	
J6482	<10	<0.01	می بیدی برمر سیس	<0.001	
06483	<10	< 0.01	~~	<0.001	
06484	<10	< 0.01		< 0.001	
06485	<10	< 0.01	,	<0.001	
<i>0</i> 6486	<10	<0.01		< 0.001	
06467	10	0.01		<0.001	
06488	10	0.01		<0.001	ي، مور بيند، يـــــــــــــــــــــــــــــــــ

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.ca

Page 3 of 4

	. 1				
Eiement	Au	Au	Au (AR)	Au	Au (R)
Method Det.Lim. Units	PAA303 10 PPB	0.01 G/T	0.01 G/T	0.001 OZ/T	0.001 OZ/T
06489	<10	<0.01	<0.01	<0.001	<0.001
06490	<10	<0.01	•••	<0.001	
06491	<10	<0.01	and in a substantial second se	<0.001	an nanar an anna na anna na anna an anna an anna an an
06492	<10	<0.01		<0.001	•••
06493	<10	<0.01		<0.001	
06494	<10	< 0.01		< 0.001	
06495	<10	<0.01		< 0.001	•••
06496	<10	< 0.01		< 0.001	••••••••••••••••••••••••••••••••••••••
06497	<10	<0.01		<0.001	

The data reported on this certificate of analysis represents the sample submitted to SGS Minerals Services. Reproduction of this analytical report, in full or in part, is prohibited without prior written approval.

SGS Canada Inc. Minerals Services 16A Young St. PO Box 1349 Red Lake ON POV 2M0 t(807) 727-2939 f(807) 727-3183 www.sgs.c

Page 4 of 4