Mohawk Garnet Inc

Interim Report Geological Mapping Project 2007-2008

Mohawk Garnet property Street Township Sudbury District, Ontario Canada

Hans Matthews, PGeo.

Geologist

January 2008

Executive Summary

Over a 4 month period, commencing in August to December 2007, a field geological mapping program was performed on the Mohawk Garnet property in Street Township, Sudbury District. The purpose of the program was to gain an understanding of the garnet deposits and horizons, their location, and extent and whether additional garnet horizons could be found. In addition, the spatial relationship of the horizons, their rock hosts, estimated resource (quality and quantity) was also investigated and studies toward the desirability for mining were initiated.

Initial geological mapping was confined to the garnet deposits previously mined, or undergoing development, situated along the mine road. Further geological mapping, beyond the known zones, both across the strike to the east and along specific garnet horizons, lead to a discovery that there were multiple garnet zones, not only one as initially thought. The rock units are interlayered along a prominent north to northeast direction (commonly 020 to 040 degree strike) rock package and dip steeply to the east and south east (commonly 60 to 80 south east degrees dip), forming a broad sinuous pattern along strike, and broad fold in the north end of the property, for several kilometres. Evidence for faulting was not observed in the field, however airphoto interpretation and maps published by government, may indicate minor displacements of garnet beds along strike. Outcrop exposure, generally good at >25%, airphoto interpretation, geological mapping of geological structures (primarily rock foliations (strike and dip) and bedding) confirmed that there are several distinct garnet horizons, many of which contain in excess of 20% garnet (commonly 30% to 50%). At least 5 garnet zones are now known, each more than 2km in length, open at depth and having widths of greater than 10 meters. These have been termed, from west (in the vicinity of the mine road) to east (to a series of N-S elongate swamps near the eastern boundary of the claim block), zones M (for Mine road), A, B. C and Other.

The host rocks are typically a dark grey black banded hornblende-biotite gneiss (mafic gneiss or mgn) with small lenses of quartz-feldspar (white boudins and lenses, generally <5cm width and up to several meters length). Barren beds found interbedded between the garnet horizons are commonly feldspar-quartz Gneisses (felsic gneiss or fgn), often iron stained (contain minor magnetite and trace amounts of small garnet and black hornblende rich bands). Barren mgn lacking boudins and structure (massive (gabbroic) with no foliation and barren of garnet) are also found between the garnet rich horizons. Where the garnet horizons have been intruded or cut by narrow (< 2 meters) pegmatite (peg) dykes, the host rock is mica rich (muscovite (yellowish), chlorite (green) and biotite (dark brown-black)) and can contain significant garnet concentrations with often large 2cm to 5cm garnets. However, the pegmatite dykes are generally barren of garnet. In the south end of the property, along the mine road, the gneisses are interbedded mgn and fgn (mgnfgn) with higher feldspar and quartz, whereas north and to the east the hosts are typically hornblende-biotite rich (mgn). Small scale folding (crenulations, chevron and others) was observed in many outcrops with a typical fold steep plunge to the southeast.

Geological mapping, supported by air-photograph interpretation, of garnet rich horizons (Zones M, A (and Garnet Mountain), B and others, can lead to calculate a preliminary resource estimate

of some 2.7 million tons of greater than 20% garnet within the mapped area. Zone A was mapped for its exposed length and was shown to be continuous for more than 2 kilometres and may be an extension of Garnet Mountain. All of the zones are open along strike and at depth. The resource estimate is based on a mining depth of 25 feet (less than 10m), mining width of 50 feet (less than 20m) and an insitu density value of 11 cu feet per ton. Ongoing geological mapping along strike of the other zones, M, B, C, and any others, in 2008 may confirm or increase this estimate. Geological mapping can also occur as infrastructure planning proceeds.

The petrology (associated minerals), garnet composition (pyrope, almandine and others), desirability (friability, purity, etc) and garnet recoveries remain unknown for each of the garnet zones discovered. While the current operation has recovered garnet from portions of known zones, the business case model needs to be determined based on the beneficiation studies now being performed by Geolab, Vancouver Petrographics and possibly Lakefield. Nineteen garnet host rock samples have been collected have been submitted for petrographic description, description of the garnets and other features which may aid in carrying out additional beneficiation and economic studies.

While the 2007 geological program confirmed known garnet horizons, discovered new horizons and generated a series of field maps, additional field work is required to confirm the continuity along strike of garnet horizons, and if warranted at depth, determine the north and south extent of the discovered zones (within the current claim holdings), and to determine practical, least environmental impact, road access to discovered zones. The lab work will confirm how viable the various deposits are to near 100% garnet recovery and the desired milling circuit. More work will move the estimated (based on one dimension and visual) resource above to a reserve (based on detail mapping, trenching and shallow drilling, bulk sample and subsequent beneficiation studies) and help deduce a long-term business plan.

Interim Report Geological Mapping Project 2007-2008

Background

Preliminary work on the Mohawk Garnet property, Street Township, Sudbury District, Ontario, Canada, began in August 2007. The site was visited, at the commencement of field work, to gain a sense of the general features and to discuss the project with Mohawk field staff. Initial meetings focussed on an approach to begin both regional and detailed geological work for much of the property and the 'Garnet Mountain' area, including the development of a practical rock legend, determine the extent for priority detailed investigations, plan a localized mapping layout and location of tie in points (i.e., claim posts), begin securing air photos for the base map construction, secure mapping materials for regional assessment and to initiate the compilation work. A Garmin 76cs and Magellan eXplorist XL GPS units were also obtained to assist in recording outcrop locations. Both metric and imperial measurement units are used in this report.

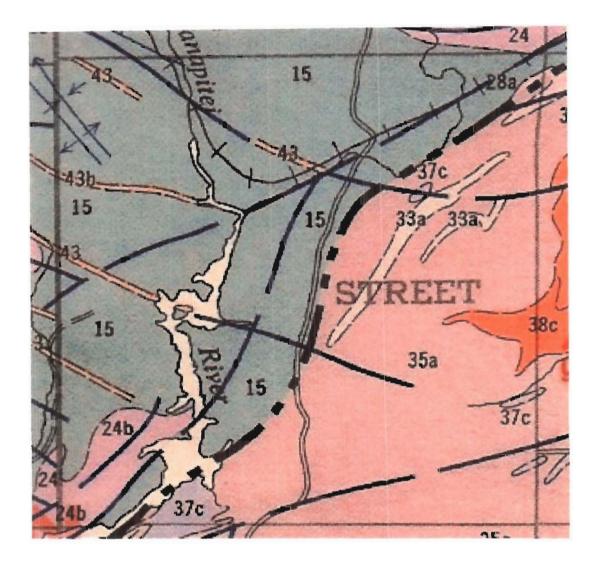
Subsequent work, from September to December 2007, focussed on determining the stratigraphy or layering, whether there were multiple layers of garnet rich beds and the extent of these horizons.

Early Work in 2007

Based on the initial meetings, a very preliminary sketch of some of the geological features was produced from the visit in August, 2007, based outcrops along the mine road. The key challenge was to confirm the rock package, specifically the stratigraphy or layering of the rock types. Based on the earlier visit, the Hanging Wall (overlying on top of the garnet beds) is hornblende rich (dark green to grey black Hornblende Gneiss). This bed also contains 'boudins' (small pinch and swell lenses of quartz/feldspar). The Footwall (rock beneath/under the garnet beds) appears to be FeldsparQuartz Gneiss (with minor hornblende), whereas the garnet bed itself is Biotite/Hornblende/Muscovite gneiss/Schist. Garnets are found in narrow to wide beds (5" to 10' (2 to 3 meters) over 50+' (15 m+) outcrop) and found interbedded with varying concentrations and sizes of garnets (1/4" to 2" (1cm to 5cm) garnets). The extent of these beds along strike was unknown primarily because of topographic features (overburden, low areas and swamp).

The rocks dip generally E to SE and other than the major fold in the NE seem to dip 70-80 degrees SE with minor faulting of beds, as seen by minor drags in beds and air photos. In the NE there is a broad syncline (concave fold) which appears to plunge to the Southeast 60-70 degrees. Here the beds are highly folded and contain minor (< 2' wide) pink pegmatite intrusives (coarse pink feldspar crystals in dykes) cross cutting the garnet beds. The garnet beds are interbedded with feldpathic gneiss and quartz layers (< 2") which show a high degree of small scale folding. In addition some of the beds are 'brecciated' or broken up with quartz-feldspar veining filling cracks in the rock. At the fold crest the garnet unit appears +100' (more than 30 m) in width (at Garnet/Mohawk Mountain).

Not having a spatial appreciation, it is difficult at the time to say whether there were one or multiple garnet rich beds with a Hornblende Gneiss Hanging Wall (HW), and whether the beds are continuous along strike or at depth. Surprisingly, given the general reported complex geology for the area, the strike and dip are relatively constant in those outcrops visited (strike NE and approx dip 70 degrees to the SE) except where it is folded at the northeast (Syncline on sketch).


The subsequent review of air photos, review of files in MNDM and commencement of a more detailed mapping program will provide more information to confirm or refute the above and delineate areas for detailed work. Based on the preliminary work there does not appear to be too many structural complications (major folds, drastic changes in strike, major faults, or significant intrusive, etc), however subsequent work will provide more information on the location, extent and size of the garnet horizons (and whether there are multiple horizons).

Regional Geology Reports in Literature

Earlier work was performed in the vicinity of the property by government geologists and a regional geological map was produced by the Ontario government in 1975 (Map 2361).

Street Township contains the geological boundary between the older Superior Precambrian province (to the NW) and the younger geological Grenville province to the Southeast. The boundary (Grenville Front) roughly follows the Kukagami Lake Road and the Railway east of the Kukagami Lake Road. The Mohawk Garnet property is situated in the Grenville Province just east of Kukagami Lake Road.

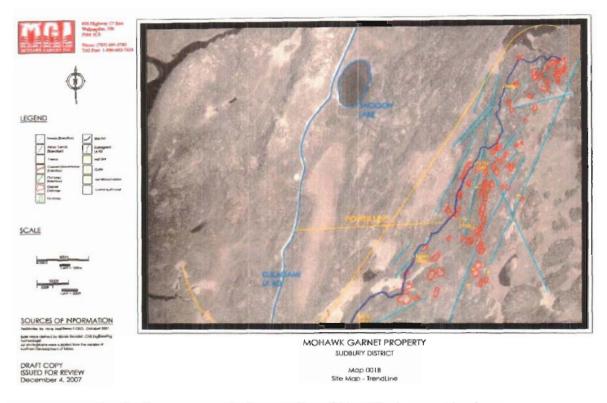
The Mohawk Garnet property is comprised of northeast trending layers or rock units denoted as Units 33a, 35a and minor 37c. The garnet bearing horizon is contained in Unit 33a. 33a is described as "Muscovite and quartzose gneiss derived from orthoquartzite, subarkose and aluminous claystone" or ancient sandstones and shales. The surrounding rock layers, 35a are described as "biotite gneiss containing numerous thin beds of feldspathic gneiss, muscovitic and quartzose gneiss and sills and dykes of gneissic gabbro", most likely an ancient sedimentary bed.

The Unit 33a high aluminous and claystone origin may explain the high proportion of garnets (aluminum silicates) observed in this unit. The rock unit approximately is 5.3 km in length and approximately 30m wide and displays a minor bencl to the northeast. Of interest is a parallel unit similar to this bed lying approximately 100m to the southeast of the northern part of the garnet bearing horizon. It may contain garnet and be the SE fold limb of the main garnet horizon or a separate horizon. It is 2.2km in length and approximately 13m wide. A mapping traverse of 100 to 200m in a south-easterly direction (at 110 degrees direction) from "Garnet Mountain" should intercept this new horizon. If more garnet horizons are present, further work is warranted.

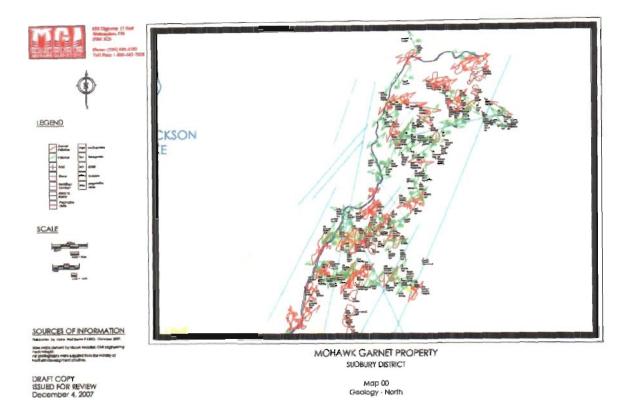
Geological mapping East of Known Garnet Horizons (mine road occurrences)

As a follow-up to the government regional geological map (Map 2361) and ongoing regional geological mapping program, a traverse of mapping continued east and southeast from known garnet deposits GT07 and GT06 (located on the mine road) in September 2007. The intent was to confirm what government geologists mapped in 1975 as a 'Muscovite Gneiss/Claystone (rock unit 33a)'. The traverse, termed 'H' for hanging-wall, commenced along Permit Line 16998 (at GT07) eastward to Claim Post #1 1043382 and then southeast until no outcrop was observed (to a flat swamp/muskeg) for 1800 feet and then north along the muskeg margin for approximately 1200 feet and then west for about 1000 feet back to the road ending at GT06. The field data was recorded by GPS and field notes were taken at each outcrop (see Appendices A to E).

Two significant garnet bearing horizons were discovered during geological mapping. These have been termed 'A' and 'B', each containing up to 50%, 1 to 2 cm garnets, in narrow to wide beds. The beds trend NE and locally change to more east and are nearly vertical in dip. The host rock is biotite-hornblende gneiss (mgn), similar to elsewhere on the property where garnets have been mined. Deposit 'A' is about 200 feet wide and more than 600 feet in length, whereas Deposit 'B', located to the east of 'A' is about 150 feet wide and more than 300 feet in length. Between the deposits and to the east of Deposit B, garnet content diminishes to less than 5 % and also gives way to a very pink banded gneiss (fgnpeg) further east at the muskeg edge.


More work is required to confirm the extent and size of these deposits and whether Deposits A and B are related to what has been mined at GT07 (open cut) on the road. Because of the reported intense large scale folding in the area, these horizons may be related and possibly join or pinch out along strike of the horizon/bed.

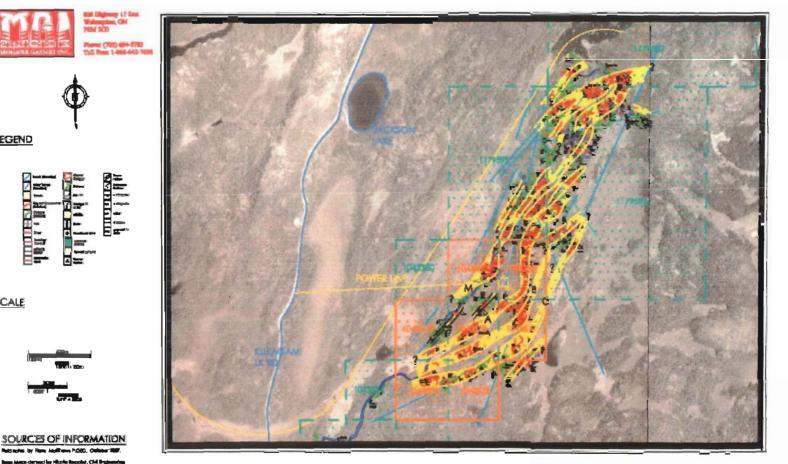
By October 2007, geological mapping on the property has identified at least three distinct rock hosts for rich garnet deposits. The garnet layers/beds or rock types have a general strike of NNE (020 to 040 degrees direction) and dip steeply to the east (85 to 60E)m over a minimum length of 2.5 km. The rock hosts can be termed are felsic gneiss(fgn on the accompanying maps) (a pink to whitish banded feldspar-quartz rich, minor hornblende banded gneiss) typical of the zone being mined in the south, south of the mill, mafic-felsic gneiss(mgnfgn) (a well banded gneiss with rich bands of hornblende (nearly black), alternating with bands/boudins (lenses) of feldspar-quartz) typical of 'Garnet Mountain', and schist (sch)(variable biotite-muscovite rich with minor bands of hornblende and feldspar-quartz boudins/seams/dykes) typical of those deposits near the mill and along the road just north of the mill. In most cases, the garnet 'package' appears to be confined by barren felsic gneiss (fgn) containing iron


staining (magnetite) to the east and possibly barren mafic gneiss (MGN) to the west. The accompanying geological maps describe the location of these rock types, garnet concentrations and horizons and geological structures.

Several distinct garnet horizons have been investigated; however mapping indicates that there may be additional horizons warranting detailed work. Most of the garnet horizons follow prominent outcrop ridges and can be traced both in the field and on airphotographs. One zone, currently mined near the mill, follows the mine road for much of its extent, while another lies parallel to the east several 100s of meters. It has arbitrarily been termed Garnet Zone A (GTA) and has been traced along strike for at least 2.5km and may extend and join with 'Garnet Mountain' to the north. The garnet zone is typically exposed along its entire strike length and over a width of 10 to 40 meters, composed of banded MGNFGN (hornblende-feldspar banded with parallel boudins of feldspar-quartz), typically containing a minimum of 10% to up to 50%, less than 1cm size garnet crystals, in bands of several meters. Interestingly, the host is fairly consistent, however where there are more intrusive rocks (commonly coarse grained pinkish Pegmatite (PEG)) cutting the gneiss bands, schists (mica and chlorite (green flaky) rich) can be found containing up to 40%+ 4cm size garnets.

Regarding continuity of the garnet zones, investigations to date indicate that the zones are quite consistent with little or no significant breaks along strike. Some sections of the garnet horizons show extensive localized folding (highly folded bands), minor pegmatite dykes (up to 2m width) where breaks may have occurred, and cross cut breaks (boulder fields and swamp low areas) in outcrop (indicating the location of possible minor faults), the horizons do not display significant offsets. Air-photographs and recent regional geology maps of the area (see R.M. Easton, 1996 MNDM) suggest that there may be minor approximate NW-SE and approximate E-W trending faults, however field mapping to date, has not found strong evidence of major faulting. It may be interpreted that some garnet horizons may have been displaced by up to 50 meters by SE and E trending faults (strong lineaments (light blue lines) south of Garnet Mountain on final geological map 001B).

Further mapping both across and along strike of identified garnet horizons will confirm the extent and size of prospective 'economic' garnet horizons. Metallurgical work should be conducted on the three garnet hosts identified above, at a minimum, to determine petrology, garnet concentration and recovery. Pending these results, infrastructure (roads and satellite crushing, etc) can be planned to optimize access and development of these deposits.



Mohawk Garnet Geological Mapping November-December 2007

Geological mapping continued in November to determine the location, quantity and quality of garnet. More than 260 rock outcrops were recorded and mapped using a GARMIN gps unit (76CS) over an approximate area mapped 3kmX0.5km (10,000'X1, 900') (Appendix A). Five (5) Garnet Horizons were discovered (containing >20% Garnet concentrations). These are from west to east, Zone M (for mine), Zone A (denoted earlier as GTA), Zones B, C and other. At the time of writing, all are open along strike and at depth, however based on the exposure and continuity of the garnet a preliminary resource, for all zones combined, can be estimated in-situ at 2.7 million tons (50'width, 25'depth) @>20% garnet. Nineteen (19) samples were submitted to Geolab (and Vancouver Petrographics) for follow-up petrographic description to determine the host rock variations, garnet compositions and general characteristics of the garnet associations.

Esum	ate (>20% GT)
HORIZON	Estimated Insitu Tonnage *
A	735,000
В	670,000
M	400,000
Garnet Mountain	268,000
Other	670,000
TOTAL	2,743,000 tons

The resource calculation is based on the good exposure of outcrop and the garnet horizons, generally more than 25% rock exposure, the positive topographical features associated with distinct garnet horizons, lineation features seen on air photos and common structural features such as common rock foliations and dips (common attitudes of beds, see map Geology 00 and Appendix A)

LEGEND

SCALE

1

DRAFT COPY ISSUED FOR REVIEW January 6, 2007

MOHAWK GARNET PROPERTY SUIDBURY DISTRICT

Map (0) Geological Map

Mohawk Garnet Beneficiation Model

To scope out whether the garnet horizons may be considered economic, it is useful to derive a garnet recovery model for the known garnet deposits (Zones M, A, B and C). This would aid in scoping out garnet recovery objectives and help to determine the scope of what Mohawk Garnet would like the testing labs (Geolab and Lakefield) to accomplish.

The following is a possible (hypothetical) scenario which will aid in determining predictable ideal recoveries of garnet from outcrop, coarse crush (mill or pit feed) and end product to achieve 100% recovery of garnet.

For modeling, the sample assumes that the in situ (in place, as mapped, in rock outcrop) grades 50% garnet, contains about 1cm+ size garnets, by visual or field estimate. The outcrop will be blasted, mucked and trucked to the primary crusher and eventually to the existing mill circuit. Because garnet has a significantly higher density, nearly double of the waste or gangue, a variation in garnet content will have a significant result in estimating what one ton (short) of low grade garnet (lets use 20% as the lower cut off) or high grade garnet (anything higher than 50% garnet in this model) will be.

Let's first take a look at the garnet in the field and its host rock. Based on the preliminary geological mapping, a 50% garnet rock sample can be termed as "Garnetiferous Biotite Amphibole (Hornblende) Gneiss (mgn) with the possible approximate composition:

Mineral	Approx/ estimated percentage	density	Formula		
Garnet (Almandine and/or Pyrope?)	50% (comprises 60% of weight and 50% volume of sample)	4.25 (about 7-10 ft3/ton consolidated/in situ)	Fe3 (Mg3)Al2 (SiO4)3		
Biotite (and Muscovite)	20% (comprises 17% weight and 20% volume of sample)	3.10	H2K (Mg, Fe)3 Al (SiO4)3 H2KAl2 (SiO4)3		

Feldspars (Albite and Potassium types)	10%	2.7	Na (K) AlSi2O8, etc		
Amphibole (hornblende?)	10%	3.0	CaMg2 (Al,Fe) SiO2 O12, etc		
Quartz	10%	2.6	SiO4		
Misc trace ilmentite, magnetite, zircon, etc.	trace	insignificant	(Fe,Mg) O.TiO2 (wk magnetic) FeO.Fe2O2 (strongly magnetic)		

Note that any chemical analysis would prove futile to study garnet content because the gangue also contains similar elements or chemistry.

The model sample above (50% garnet) will have the following approximate rock volume/weight (short ton) characteristics from in situ (in outcrop) to primary and secondary/tertiary crushing. Note, while the tonnage may be estimated (visually) in situ in outcrop, the volume of rock yielded would nearly double upon being broken by blasts and further crushing, but the grade should remain the same throughout the crushing (pre-gravity and pre-magnet phase of milling):

In Outcrop (in situ)	Primary Crush (mill feed) or muck	Secondary Crush (with continuous feed from same deposit to maintain same tonnage)	Tertiary Crush		
11 ft3/ton (very dense)	25 ft3/ton (broken and less dense muck)	20 ft3/ton	About 20 ft3/ton or less		
About 1,200 lbs garnet (based on 60% of total consolidated rock	Volume more than doubles that of the unblasted rock but grade remains the	Volume about double the in situ and grade remains the same (60% of	Pre process (gravity) feed should contain about 1200 lbs of garnet in		

weight (not visual volume!) before blasting)	same (60% of the weight).	the weight).	crushed rock if all is recovered from the original 1 ton
Diasting)			outcrop sample.

Based on the above the mill feed will contain about approximately 1200lbs of Almandine garnet. Ideally the mill feed of this garnet content should yield 1200 lbs of processed garnet at the END of the MILL CIRCUIT, if none ends up in the waste, tailings or lost as dust. This would be 100% recovery!

Mechanical processing is currently being used at Mohawk Garnet to separate the garnet from waste. Gravity separation would probably remove most of the garnet as noted above because it is significantly heavier (nearly twice as heavy) than the gangue or waste (feldspars, biotite, muscovite, quartz, (homblende) amphibole). The garnet powder or fine crush (concentrate) will contain both GARNET and other minor heavy minerals (such as ilmentite (weakly magnetic in unknown quantities), magnetite (strongly magnetic in unknown quantities)) of which a magnet may remove these leaving a more pure garnet concentrate. It is unknown whether the heavy minerals are contained within the garnets or in the gangue. It is also unknown as to the quantity of ilmentite/magnetite in the garnet concentrate pre-magnet and post magnet processing.

Several questions to ask the Labs:

1. For every lb of ore that is feed into the mill, (grades estimated visually at the pit and in outcrop pre-blast), however a bulk sample should be submitted to a lab for quantification prior to mining) is Mohawk Garnet getting 100% of the garnet recovered at the end of the Mill circuit (as in the above model)?

2. Is the gravity circuit effective in separating 90+% of the garnet, if not should there be a longer gravity cycle or a secondary gravity separation put in place? What are the head grade/ton, primary crusher grade/ton, secondary crush grade and final crush and grade after use of magnets, compared to the initial head or pit grade?

3. We currently do not know the amount of ilmentite-magnetite in the garnet concentrate (?). We also do not know the mesh or crush size for removal of heavy minerals (?).

4. Finally, is a lower grade deposit (20% garnet) of small garnets (less than 0.5cm size garnets), going to yield 90+% recovery versus a higher grade (say 50+% garnet) of 1-2cm garnets. This may have implication if we choose to blend deposits or overcut into pit walls to maximize mining.

The above scenario should provide guidance to both measure in field characteristics of desirable garnet deposits and to further relate the deposits to the actual milling process to maximize garnet recovery. Other than to define the garnet species (Almandine), no chemical analysis is required, however a range of mechanical tests and petrographic analysis is recommended to confirm the minerals associated with the garnet (as in the above table), percentage garnet and mineral association and possible benefication tests to determine the best way to recover the garnet to achieve as near as possible a 100% recovery.

Summary of Geolab (and Vancouver Petrographics) Work Requested

Nineteen rock samples were collected from outcrop for several of the identified garnet zones, specifically zone M, A and B. These were submitted to Geolab for preparation and then to Vancouver Petrographics. Results are not yet available. Vancouver Petrographics are to provide the following:

- Prepare 19 large thin sections
- Conduct petrographic descriptions
- Provide labeled digital photographs of micro sections
- prepare a report summarizing their findings

Once Vancouver Petrographics has finished with the thin sections samples, Geolab will undertake the following:

- 1) Scan each thin section with the flat bed scanner.
- 2) Analyze the thin section on the SEM for:
 - ID minerals present.
 - Give approximate modal % of the minerals present in this area using a grid analysis with Feature software.
 - If the area chosen is also representative of the opaques present in the sample, describe only those opaques. If the opaques show a different mineralogical composition (make up) in a different area of the thin section, also describe these opaques. Specify which of these is done in the report.
 - Determine what species of garnet (s) are present in the thin section. Look for zoning and evidence of retrograde metamorphism in the garnets.
 - ID and report the minerals that are directly associated with the garnets.
- 3) Provide a report for the work done by Geolab.

The following Table is a summary of rock samples (garnet rich) submitted

Garnet Zone	Sample Number	General Description
GT01- (South Zone on Road- new blast, Zones A, B)	GT01B1	(FGN)Felsic gneiss quartz- feldspar- biotite gneiss 10- 20% <1cm garnet
	GT01B2	(FGN) Felsic gneiss quartz- feldspar- biotite gneiss 10- 20% <1cm garnet
	GT01B3	(FGN) Felsic gneiss quartz- feldspar- biotite gneiss 10- 20% <1cm garnet
	GT01B4	(FGN) Felsic gneiss quartz- feldspar- biotite gneiss 10- 20% <1cm garnet
GT04 (Garnet Mountain- northern zone, Zone M,A)	GT041	(MGNFGN) Mafic-Felsic gneiss 15% <1cm garnet
	GT042	(MGNFGN) Mafic-Felsic biotite gneiss 10% <1cm garnet
	GT043	(MGNFGN) Mafic-Felsic gneiss 20% <1cm garnet
	GT044	(MGNFGN) Mafic-Felsic gneiss <5% <1cm garnet
	GT045	(MGNFGN) Mafic-Felsic gneiss w biotite-muscovite 30% <1cm garnet
GT07 (open cut mid way along mine road, Zone M)	GT071	Massive biotite-quartz- feldspar 40% <1cm garnet
	GT072	Massive biotite-chlorite- quartz-feldspar, 30% <1cm garnet
	GT073	Massive biotite-quartz- feldspar, 20% garnet <1cm
	GT074	Muscovite-quartz-feldspar schist/gneiss, trace <1cm garnet
	GT075	Massive coarse muscovite- quartz-feldspar, 10% <1cm garnet

GT03 (zone on east side of road north side of mill complex, Zone M)	G31	(SCH) Biotite-chlorite schist, 40% 3cm garnet
<u> </u>	G32	(FGN) Biotite-quartz- feldspar gneiss, 30% 2cm garnet
	G33	(FGN) Biotite-quartz- feldspar gneiss, 20% <3cm garnet
	G34	(FGN) Biotite-chlorite- quartz-feldspar gneiss, 15% <3cm garnet
	G35	(FGN) Quartz-feldspar- biotite gneiss with <10% <1cm garnet

Conclusions

The field season limited the amount of field work; however it was successful in providing a better understanding of the garnet deposits, their location and new discoveries. Several geological maps were generated from the large amount of geological data collected. Considering the extent, based on mapping, the that many of the garnet horizons remain open along strike, Mohawk Garnet may wish to conduct detailed follow-up mapping in the Spring of 2008 and also determine the current mining claim status to determine whether more land should be acquired.

A preliminary resource estimate of 2.7 million tons grading >20% garnet has been identified to a mineable depth of some 10m (approx 25 feet) and only in areas with reasonable rock exposure (minimal to no overburden).

Planning should occur to determine the least destructive road access to these deposits. In addition, road design should not impede or block future access to garnet horizons. Beneficiation work will confirm the economic viability of the deposits and a business plan can be developed as a mining plan is developed.

Next Steps

- Finalize Maps
- Confirm priority areas for trench and blasting (and drilling for depths >25')
- Recalculate tonnage and grade
- Environmental studies and permitting
- Confirm garnet grade, recoveries (lab), width and depth of mining

Next Steps

- Infrastructure planning (roads, culverts, silt fencing, access, location)
- Detail follow-up along strike of garnet horizons (confirm continuity, extent (spring 2008))
- Regional mapping to extend known zones (spring 2008)

Mohawk Garnet Property Geology 2008

APPENDIX A

Geological Data and Waypoints

Mohawk Garnet Property GT-04 Garnet Mountain and other OC and GT

Waypoint	az dip	plunge	%	Garnet	size cm	feature	description	pegmatite %	rock
F1	70		90	25		fold	qtzvpeg	⁷⁰ 10	
GT301	130		00	30		foliation	on ridge	9	
B1	75 605	5		30		contact	bedding		
F2	75	80E		30	0.9	fold	foldsyncline	25	mfgn
GT501				50		garnet	nearF3		mfgnfgn
F3	120	70SE		0		syncline			mfgn
W1	30			0		ridge	fold		mfgn
W2				0		barren	withF4	20	fgn
F4	80	50S				fold	anticline		fgnPeg
B2	55 50E	E		30		contact	crenulated .	15	fgnPeg
GT503	**			51	2	anticline	inF4		mgn
F4B	120	60E		0		fold	Pegdyke	100	peg
P1				0		dyke	3mwide		fgnPeg
W3				0		bed	infold		mgnsch
GT302	110 505			25		bed	NofPeg		mgnfgn
GT504	90	80E		50	2	fold	wkfoliation	9	mgn
GT504B	170	90		51		dyke	PegQtzmgn		mgnPeg
GT504C	50 705			50	2	foliation	folded	7	fgnmgn
B3	140 80E	-		51		foliation	gametbed		mgn
GT506				51		bed	nearB3		mgnfgn
GT303	95	50E		30		fold	nearfold506		fgnmgn
B5	115 808	5		51		contact	bedmgnstrong		fgnmgn
GT507	60		90	51		fold	nearB5	10	fgnmgn
GT601	140	90		61	2	foliation	C4toN		fgnmgn
C4	145 80E			51		contact	also304		fgnPeg
GT304				30		bed	(fgn
GT305	40 50E					foliation	crenulated		pegv
GT201	80 705			25		foliation	boudins		fgnmgn
SHEAR	65	90				shear	boudins	15	mgnfgn
SHEAR	65 458			20		foliation			fgn
OCSE	95 805			25	0.9	foliation			mgn
OCSE	105 605			0		contact	partF3		mgn
GT04B	80 705	ĵ.		35		bed	majorridge	15	fgnmgn

GT04B	60 70S	10	bed	boudins	15 fgnmfn
OC10	90 75S	5	foliation	feldporphroblasts	mgn
GT05	90 60S		foliation		
GT05	60 70SE	60	3 syncline	xenocrysts	7 mgnsch
OC11	30 805		foliation	kspar	fgn
OC13	40 70S		foliation	boudins	10 mgn
OC07	50 80S	10	foliation	augensboudins	mgn
OC16	100 70S	4	foliation	contorted	mgn
GT06	50 85N	20	1 foliation	feldporphroblasts	10 mgnfgn
OC04	180 50S	4	foliation		mgnfgn
OC18	120 90	0	foliation	minorqtzv	fgn
OC03	60 80S	7	0.9 foliation	boudins	10 mgn
GT07	30 758	51	foliation	cut	mgnsch
OC02	80 85S	10		wkfoliation	4 mgn
GT03	185 70E	51	3 contact		schmgn
GT03	50 80W	51	foliation		mgnsch
GT03	70 60S	10	contact	pinchSW	mgn
GT08	70 90	50	foliation		fgn
GT08	10 50	50	foliation		fgnmgn
GT08	10 50	10	foliation		mgn
OC01	100 85N	0	foliation	wkfoliation	mgn
OC19	50 50S	0	foliation	xenocrysts K-spar	fgn
OC20	40 70S	0	foliation	kspar	fgn
OC20	40 70S	0	foliation	boudins	mgn
OC21	50 70S	0	foliation	wkfoliation	4 mgn
GT02	60 70S	10	foliation	minorboudins	mgn
GT01	60 70S	20	foliation	rehabed	mgnsch
OC23	60 5 0 S	0	foliation	kspar	20 fgn
OC24	150 70W	0	foliation	wkfoliation	4 gabbromgr
H01	50 75E	7	foliation	20/25	5 pegmgn
H02	25 60E	3	foliation	well foliated	mgn
HO2	30 75E	25	foliation	well foliated	mgn
HF1	60 75NE	0	axis	fold	mgnpeg
H04	40 claimline				claimline
H04	40	0		ridge 50/10	10 mgn
H05	30 70E		contact	crsegranite	100 granitemgn
HGT502	20 70E	50	2	75/15	mgnfgn

HGT60	20 70E	claimline	i	60	2	beds	banded	50/25		mgn
H06	50 85W			20	1		foliated			fgn
H07	90 vertical					contact		100/100		
H07	30 vertical			15	2	foliation				fgn
H07	30	80N		0		fold				mgn
HGT503			:	50	2	folded	boudins	1043382-1	1179586-3	3 mgn
GT401	40 85W			40	1	foliation		100/50		fgn
H08				10		wkfoliation		75/50		
HGT402	25 vertical	C)-40		2	foliation	banded	150/100		fgn
H09	80			10		ridge	ridge	50/25		pegfgn
H10	60 80W			5	2	foliation	boudins	150/100		mgn
H11	40					dyke	ridge	100/50	50) peg
H11	40			1	1	foliation	banded			mgn
H12	40 85E	t	race			contact	ironstain	100/75		mgnfgnpeg
H13	50	t	race	fine		folded	fgnpink		swamped	ge
H14	60 85E	t	race	fine		foliation		100/50		
H15				7	1			50/25		fgn
H17	20 80E			2	1	foliation				fgn
HGT202	50 85E			15		foliation		150/50		
H403	55 80E			30	1	foliation	boudins	100/50		mgn
H19	55 vertical			7				small		mgnfgn
H20	20	70N t	Ir-5		0.9	fold		50/25	barren	fgn
HC2	150 85S						contact			fgnmgn
H24	30 85E			8		foliation		200/100		0 mgn
HN01	170 80E	85\$		0		wkfoliation		50/10		5 mgn
HN02	30			3		foliation	boudins	50/50		mgn
HN03	20			3		wkfoliation	ridge			mgnfgn
HN04	40 50E			3	0.9	foliation	finemgn	100/25	ironst	mgn
HN05	140 60W			0			folded		qtzv	mgn
HN05	160	50W				fold				mgn
HN06	105			9	-	fold	folded	60/25	1	0 mgn
HN07	60			0		wkfoliation	outcrop	onswamp		gabbromgr
HN08				0		msv		msv		gabbro
HN09	110			2	0.9) folded	fold		ironst	mgn
HN10	90 85S			12		foliation	banded		ironst	fgn
HN11	80 60S			9		fold	folded	75/50	ironst	mgnfgn
HN12	40	40S		4	2	2	banded	200/30		mgnfgn

HN13					7	0.9		porphrobl			mgn
HN14	55		90		4		foliation	porphrobl			mgn
HNGT01	90	vertical			25	1	foliation	banded			mgngranite
HN15					4			msv	100/50	ironst	mgngabbrc
HN16	70		70	N	4		fold	folded			fgnmgn
HN16	30	45E			3		foliation	banded			fgngabbro
HN17					0			msv	30/30		gabbro
HN18	150	85W			0		foliation				fgnmgn
HN19	50	80E			5	1	foliation	banded			fgn
HNGT02	30	70E			15	1	foliation	banded			fgn
HNGT03	65	70E			20	2	wkfoliation	boudins	150/100		mgn
HS01	30	80E			4		foliation	boudins			mgn
HSGT401	40	80E			40	1	foliation	porphrobl	40/50		mgnfgn
HSGT501	70	50E		i	60	4	fold		4mbed	biotite	mgnpeg
HSGT501	10						dyke				peg
HSGT501	105	vertical			20		foliation		glacial015		mgnfgn
HS02	20	40E					foliation		Oct-50		fgnmgn
HS02	60						picketLN		swamp	Ntippond	i .
HS03	50	80E			4		foliation	boudins			mgn
HS04	30	70E			15	1	foliation				mgnfgn
HSGT302	40				30		ridge	boudins	ridge		mgnfgri
HS06	30	70E			0			boudins			mgn
HS07	40	85E			0		foliation		75/20		mgn
HSGT502		40S		;	50	2	bedding	boudins	2m		mgnpeg
HSGT303	35	75E			30	1		porphrobl			mgnpeg
HS08	170	vertical			0		foliation			ironst	fgn
HS09	40				0			ridge	100/50		granitepeg
HS10	50	70E			0					ironst	fgnpeg
Hsswamp					0						granite
HSGT151	40	80W			20	1	contact	boudins			mgnpeg
HSGT151		80E		:	25	1	foliation			ironst	mgn
HSGT152		80E			15	0.9	foliation	boudins	25/10		mgn
HS11		70E			0		foliation				mgnfgn
HSGT503	30	70E		:	50	2	foliation		picketIn	ironst	fgn
HSGT503	40		803	SE	5	1	fold	fold			fgnmgn
HS12					10	1	wkfoliation	dyke			10 mgnpeg
SGT501	80			:	50	3	wkfoliation	boudins	100/25		10 mgn

SGT501	90 70S	5	1 contact contact	fgnmgn
S01	00 7FF	3	0.5 boudins	small mgn
S02	60 75E	trace	foliation 1 wkfoliation	30/30 5 mgn
S201	75 80	20	I WKIONADON	mgn
S03	40	0	uddefiction import	75/20 for
S04	50	0	wkfoliation ironst	75/30 fgn
SGT401	30 60E	40	1 bedding	ridge mgn
S05	40 75E	3	0.5 foliation	ridge fgn 50/100 magnatite fanman
S06	50 80E	•	foliation ironst	50/100 magnetite fgnmgn
S07	165	0	0 wkfoliation porphrobl	150/30 gabbro
S07	155	0	0 dyke	peg
S08	60 80E		foliation ironst	250/25 elongate fgn
S09	30 70E	trace	wkfoliation	50/25 0 mgn
S09	15	2	permitLine	100(100 caling manned
S10	20 50E	3	banding boudins	100/100 onLine mgnpeg
S11	30 80E	0	wkfoliation	100/30 mgn
S12	20 vertical	0	d baseling - manufacture	70/10 mgn
SGT151	30 60E	15	1 banding porphrobl	mgn
S13	405	0	wkfoliation	20/20 mgn
SGT01	165	9	2 wkfoliation boudins	200/25 mgnfgn
SGT01	70 45NE	9	2 folded pegbands	
S14	45 75E	5	1 foliation ironst	100/20 lake fgn
S14		0	which inter incast	permitLn 100/50 mgn
S15		0	wkfoliation ironst	
S16	55 vertical	trace	1 boudins	-
SGT202	30	15		mgn
SGT102	45	10	1 wkfoliation	mgn
SGT103	40 80E	15	1	trench 30 fgnmgn 100/70 fgnmgn
SGT203	20.005	20	0.5 2 feliation haveline	÷ -
SGT502	30 60E	50	3 foliation boudins	15 fgnmgn
SGT204	70	20	foliation	claimLn fgnmgn
S17	40	<u>^</u>	d	claimLn fgn
S18		9	1 wkfoliation	fgnmgn
S19	10.005	9	1	mgn
SGT402	40 60E	40	2 foliation	100/50 trench fgnmgn
S21	15 005	0	wkfoliation	ironst swamp fgn
S22	45 60E	0	foliation	150/30 mgn

-

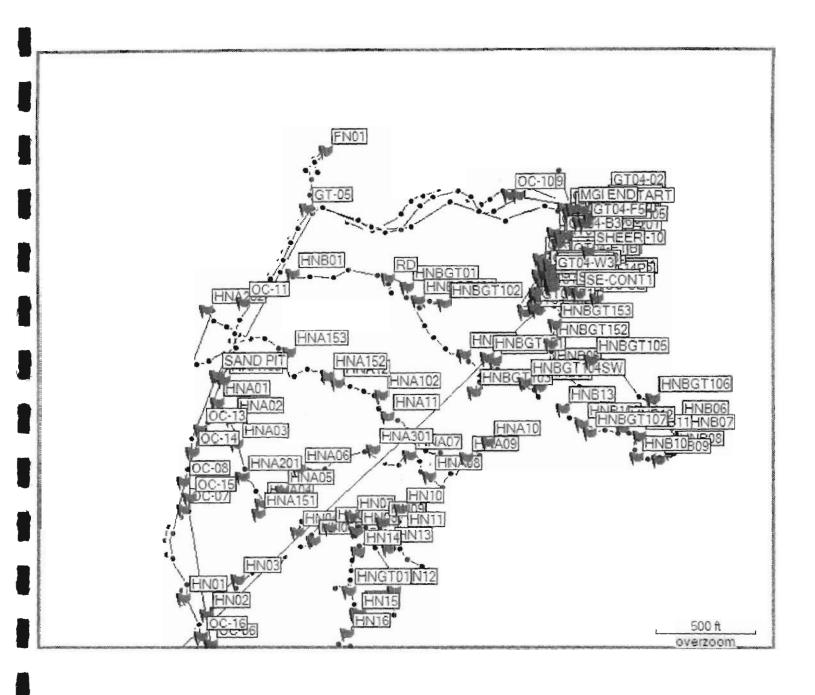
323	25 70E	0	wkfoliation ironst	fgnmgn
3GT301	30 60E	30	1 wkfoliation boudins ironst	mgnfgn
324	30 70E	0	wkfoliation boudins 150/75	5 mgnfgn
325	30	0	wkfoliation qtzvpeg 200/50	mgn
326	40	10	1 foliation	mgnfgn
327	60	0	foliation boudins	2 mgn

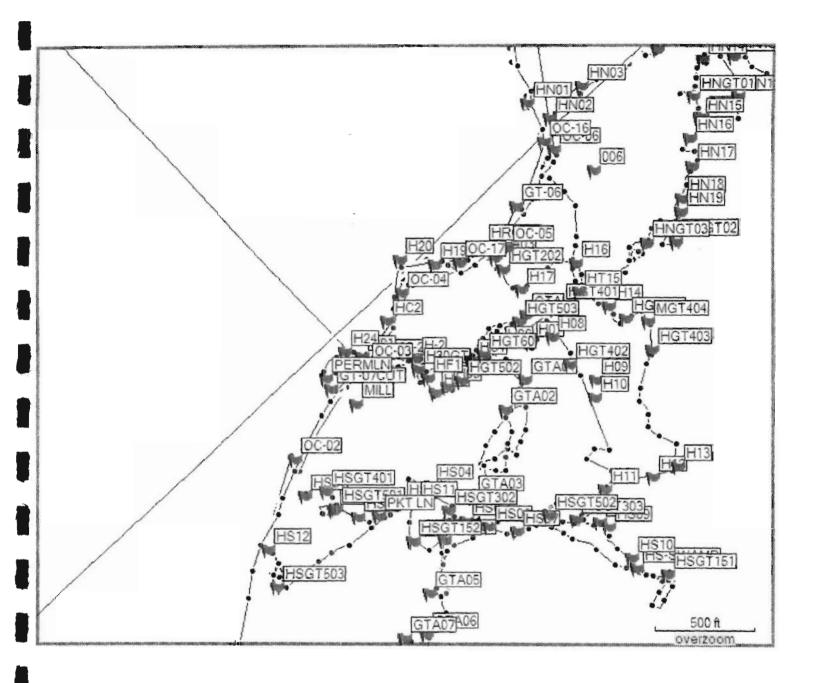
Mohawk Garnet property Geology November 2007

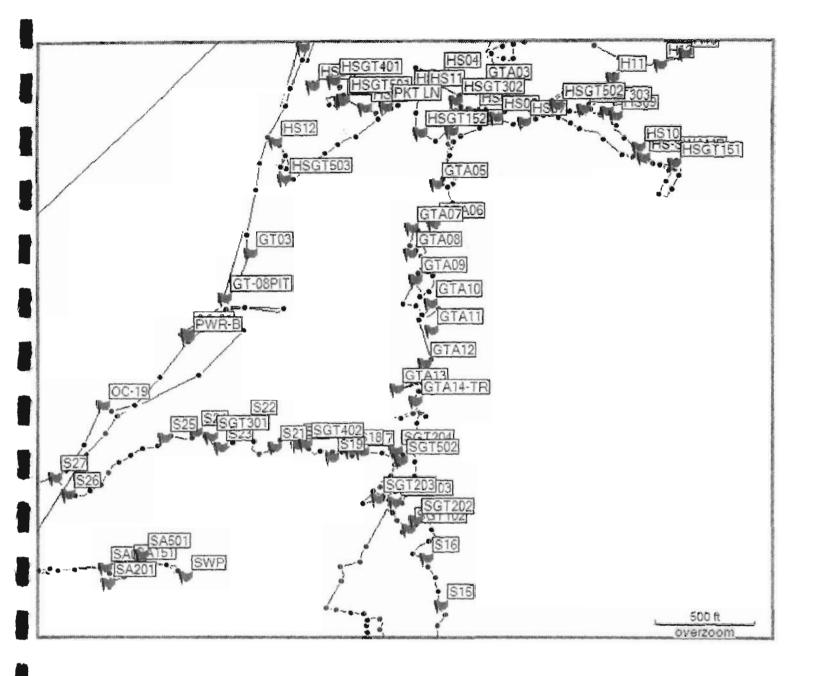
Waypoint az	đip	plunge	% Garnet si cr		feature	description		pegmatil %	e rock
GTA	30		40	1	Zone A	cp1043382			mgnfgn
GTA01			15			00101010	15/10		fgnmgn
GTA02			30	1					fgnmgn
GTA03	55 60E		25		foliation				fgnmgn
GTA04			25	1		boudins			mgnfgn
GTA05			45	1					mgnfgn
GTA06			40	1	folded	ridge	100/100		mgn
GTA07			40	1		ridge	gtincrease	W	0
GTA08			30	1		0	100/150		mgnfgn
GTA09			35	1					mgnfgn
GTA10			25	1					mgnfgn
GTA11			20	1					mgnfgn
GTA12			20	1					mgnfgn
GTA13			15	1					mgnfgn
GTA14			51		strippedO	C	trenchstrip		mgnfgn
GTA15			35	1			claimLn		mgnfgn
PerLnGt10	30 70E		10		foliation		75/25		mgnfgn
GT01B	60 50S		30		interbedde	ed	stripped		fgn mg n
HNB01	30 45E		0		foliation		25/30		fgnpeg
HNB301	80		30	1	foliation		boudins		10 mgnfgn
HNB101	80		15	1	foliation		potassic		fgnmgn
HNB102	70 70E		15		wkfoliation	1	cliff	boudins	mgn
HNB02	110 40N		5	1	fault?	kspar	oldroad		fgn
HNB103			15	1		msvwkfol	50/30	kspar	fgn
HNB151	50 60S		25		foliation	ridge	300/50	ironst	fgn
HNB03			5		wkfoliation	l		ironst	fgnmgn
HNB104	60 70S		9	1			boudins		20 mgnfgn
HNB04	135 80W		4	0.5	foliation		ironst		mgn
HNB05	110 70W		5		bands	wkfoliation			mgn
HNB152			15	1		folded	20/20		mgnfgn
HNB105			9				50/20		mgnfgn
HNB106	120		9	1	wkfoliation		20/10		mgnfgn

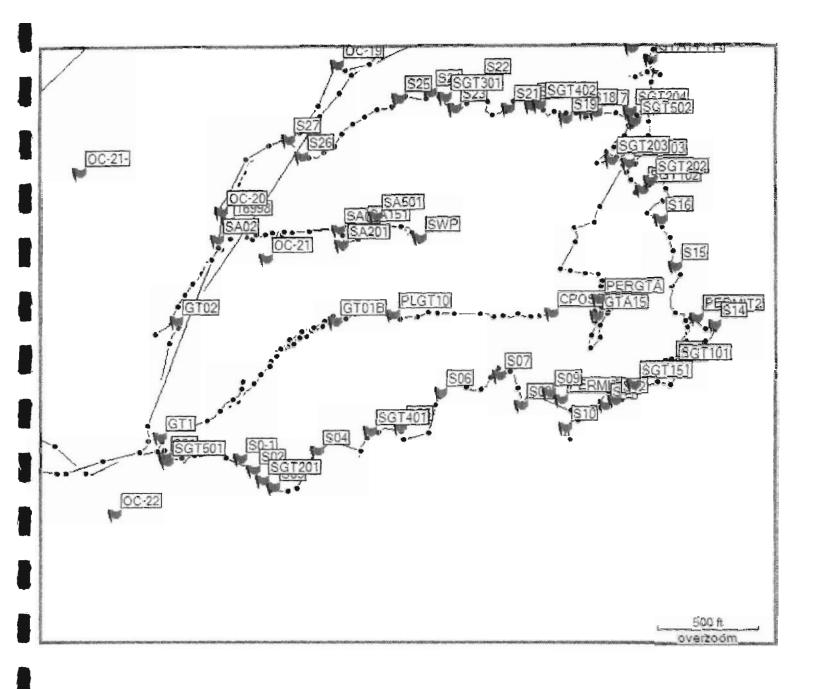
HNB06	130		0.1		wkfoliation	fine	finegrain	ironst	fgn
HNB07			0		massive	finemed	smOC		gabbro
HNB08			0.1		folded	medgrain	50/50		fgn
HNB09	90		0.1	1	foliation		100/10		mgn
HNB10			0		wkfoliation				mgn
HNB11	145	90			foliation	finegrain	50/10		fgn
HNB12	60		0.1		bands	crse	20/10		fgn
HNB107			15	1				2	0 mgnfgn
HNB108			9	0.5		folded	ironst		fgn
HNB13	90	85E	5	1	foliation	folded	50/30		
HNB153			16	1		folded		1	5 mgnfgn
FN01	160	90	0.1	1	foliation	folded	100/25	ironst	fgn
FN01	155 80E				foliation	banded			mgnfgn
HNA01			4		wkfoliation		20/10		mgnfgn
HNA02	60 75E		4	1	foliation	boudins	50/50		mgnfgn
HNA03	45		4		foliation	boudins			mgnsch
HNA201	25 85E		20	1	foliation		100/20		mgnfgn
HNA04	40		4	1	foliation	boudins	100/30		mgnfgn
HNA151			15	1			50/50		mgnfgn
HNA05	30 50E		4	1	foliation				mgn
HNA06	30 60E		4	1	foliation	banded			mgn
HNA301	130		35	2	foliation	boudins	75/20		fgnmgn
HNA07	110		9	1	foliation	folded		ironst	fgnmgn
HNA08	30 50E		4	1	foliation				fgn
HNA09	100 70E		0		foliation				mgn
HNA10	60 70E		0.1		wkfoliation				mgnfgn
HNA11	40		0.1			fault?			mgn
HNA102	100 80S		10	1		banded			mgnfgn
HNA12			0		wkfoliation	fngrain			mgn
HNA152			15	1	wkfoliation				mgn
HNA153	60 70E		15	1	foliation	boudins	150/100		mgnfgn
HNA202	20		25	1	dyke		sandpit	dykes	mgnfgn
HNA103	40 80E		9	1	foliation		20/10		fgn
SA01	55 50E		0		foliation	fngrain	200/50		mgn
SA201	45		20	1	foliation	boudins	75/20		mgn
SA151	45		20	1	foliation	banded			mgnfgn
SA501	55 70E		51	1.5	foliation	banded	100/30	qtz	mgnfgn

the same time the and this and the t

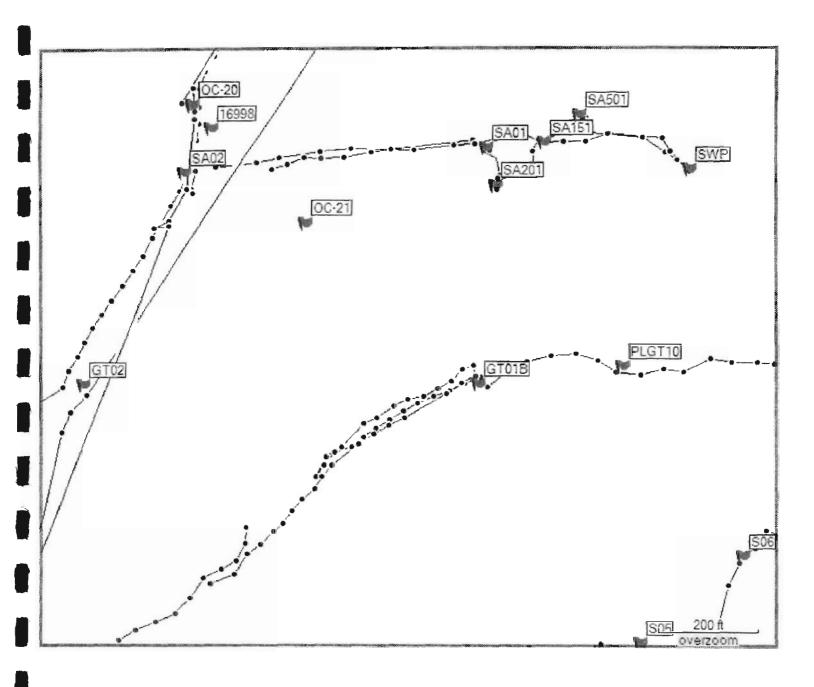

.

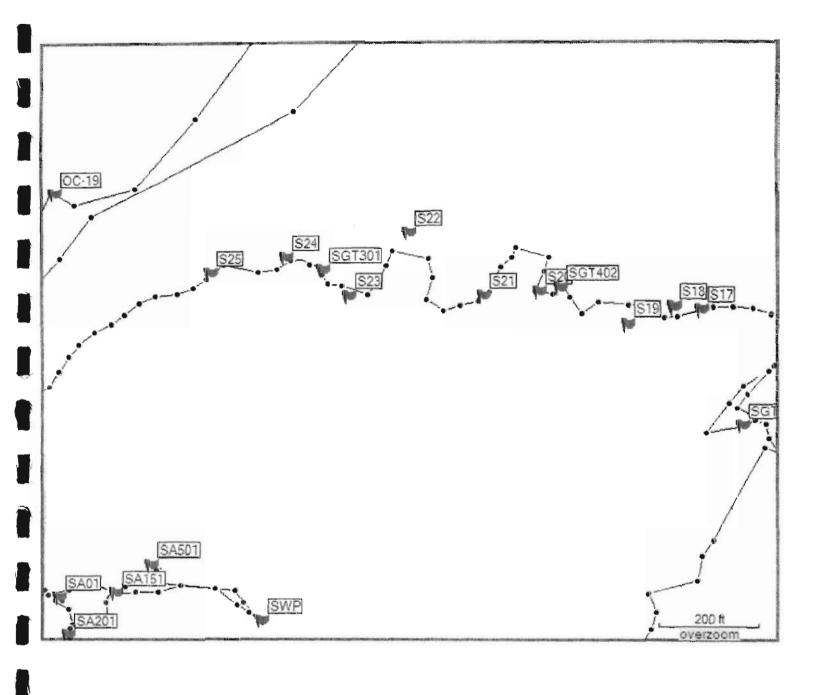

SWP 55 SA02 65.60F <u>& Swamp elongate</u> A 1 foliation bourdins 100/50 man Mohawk Garnet Property Geology 2008

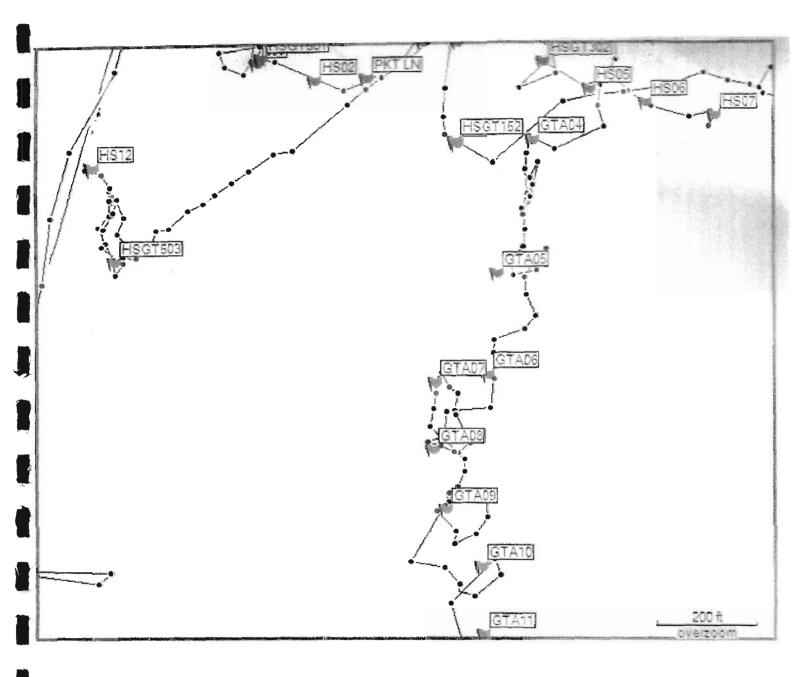

APPENDIX B

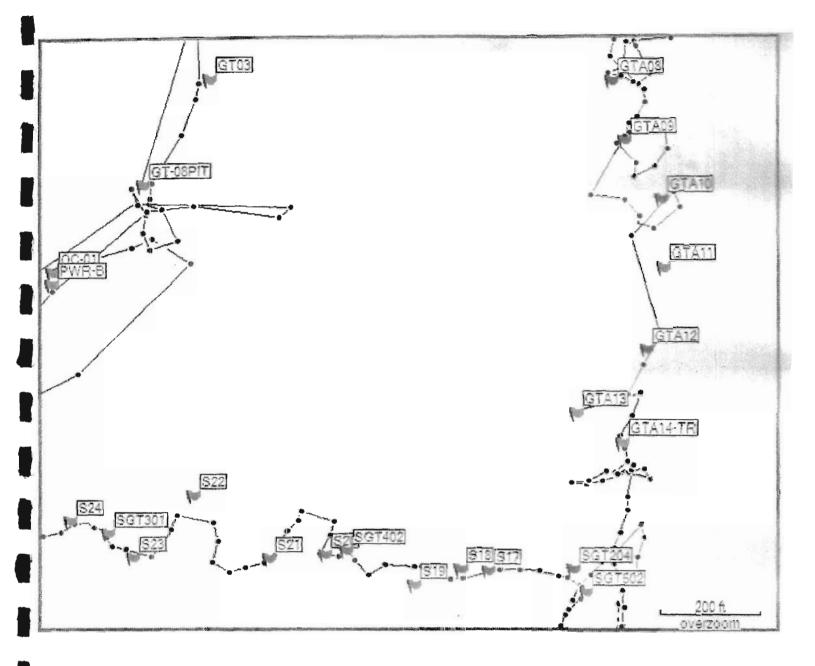

Map Showing Garmin GPS Waypoints

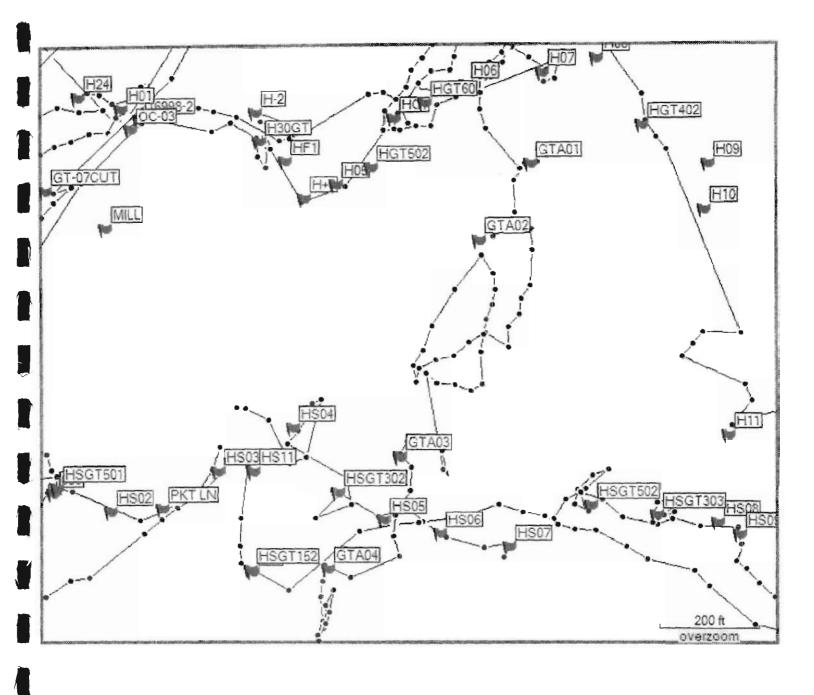
Scale 1 inch to 500 feet

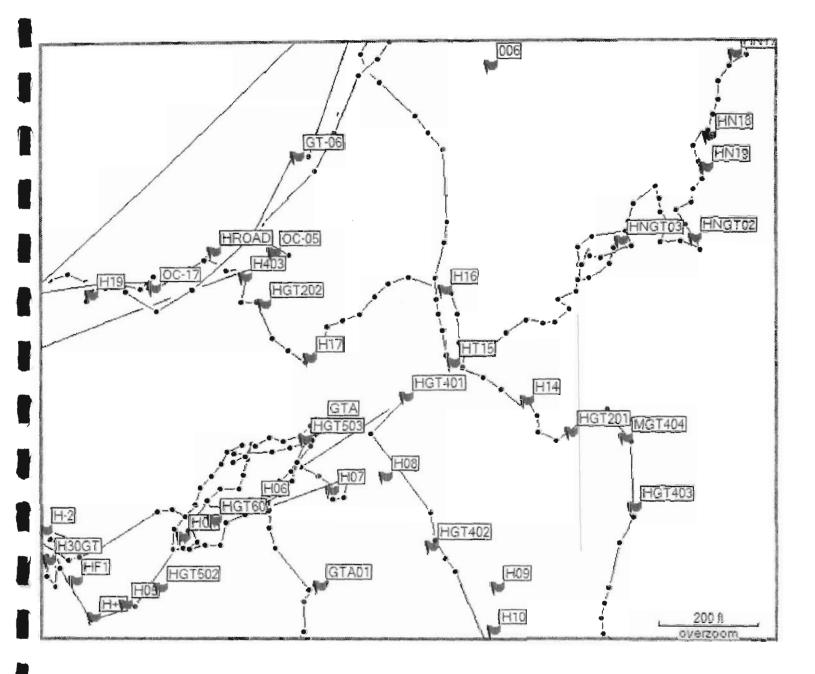


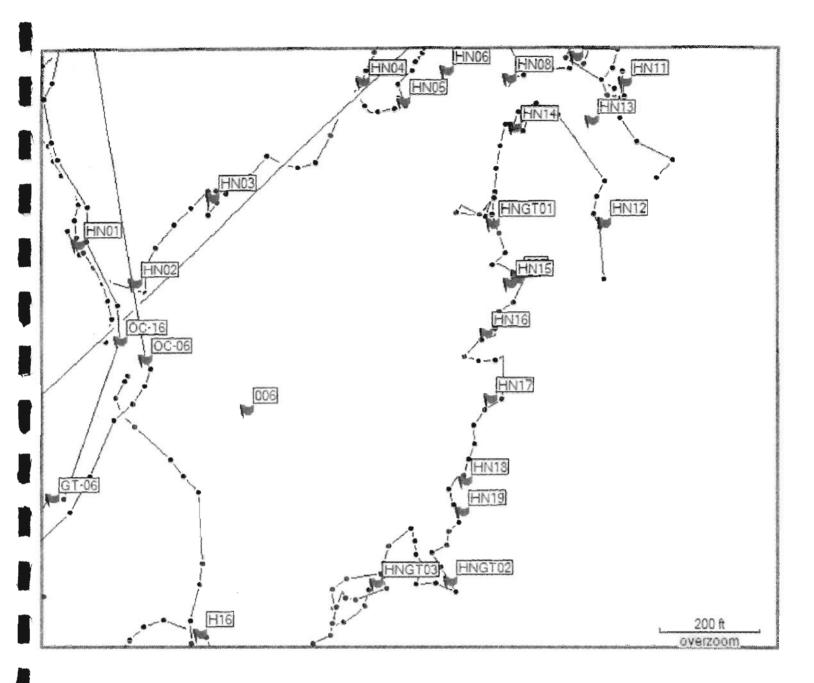

Mohawk Garnet Property Geology 2008

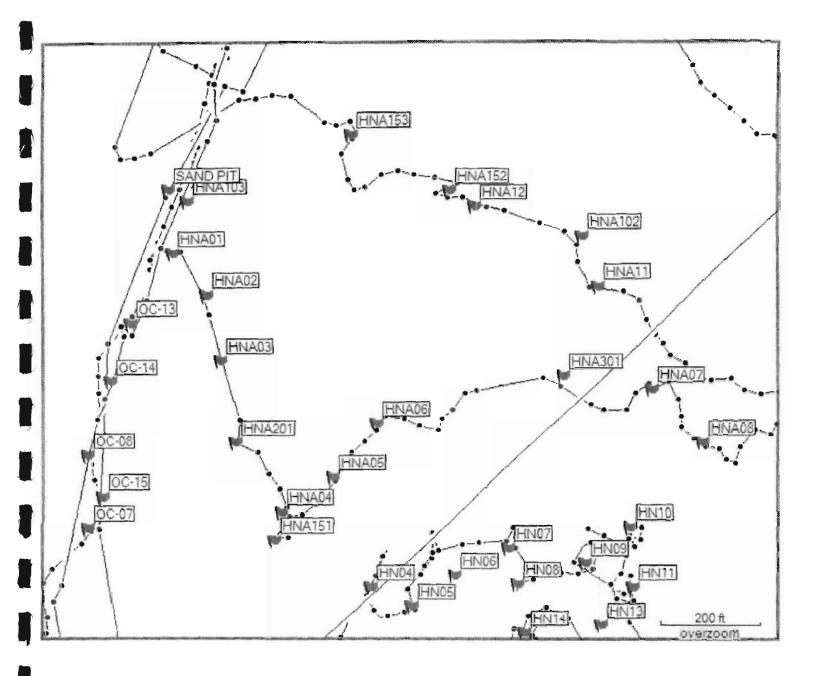

APPENDIX C

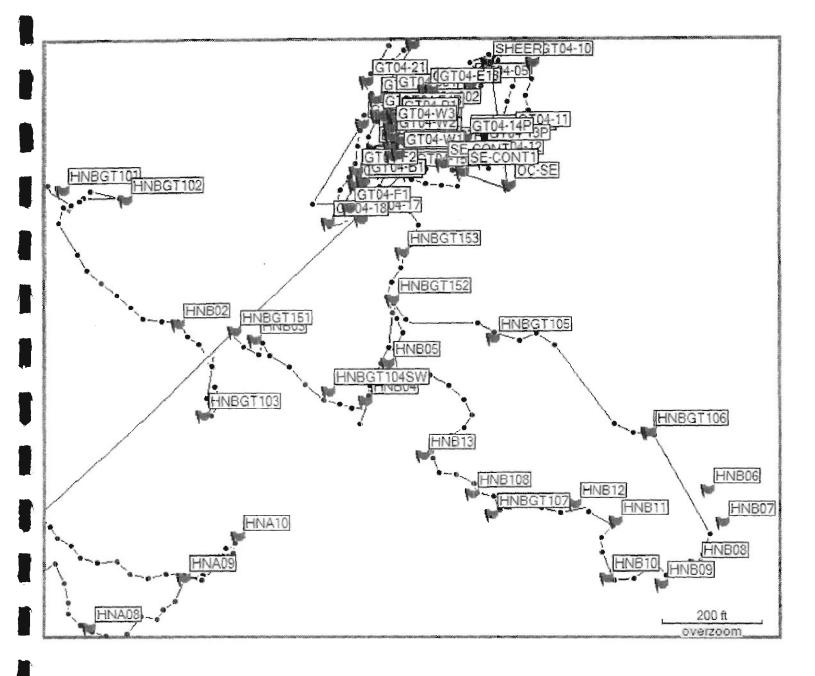

Map Showing Garmin GPS Waypoints

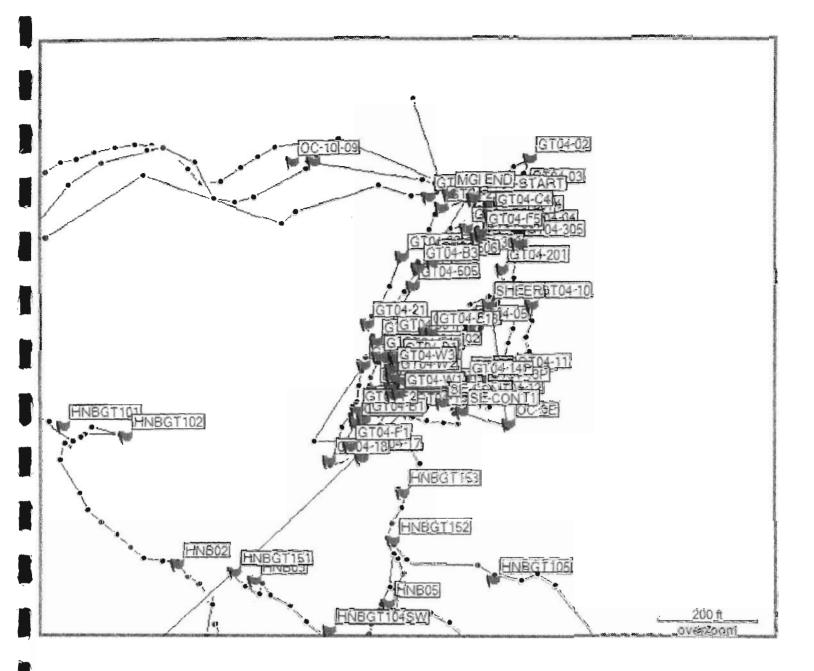

Scale 1 inch to 200 feet

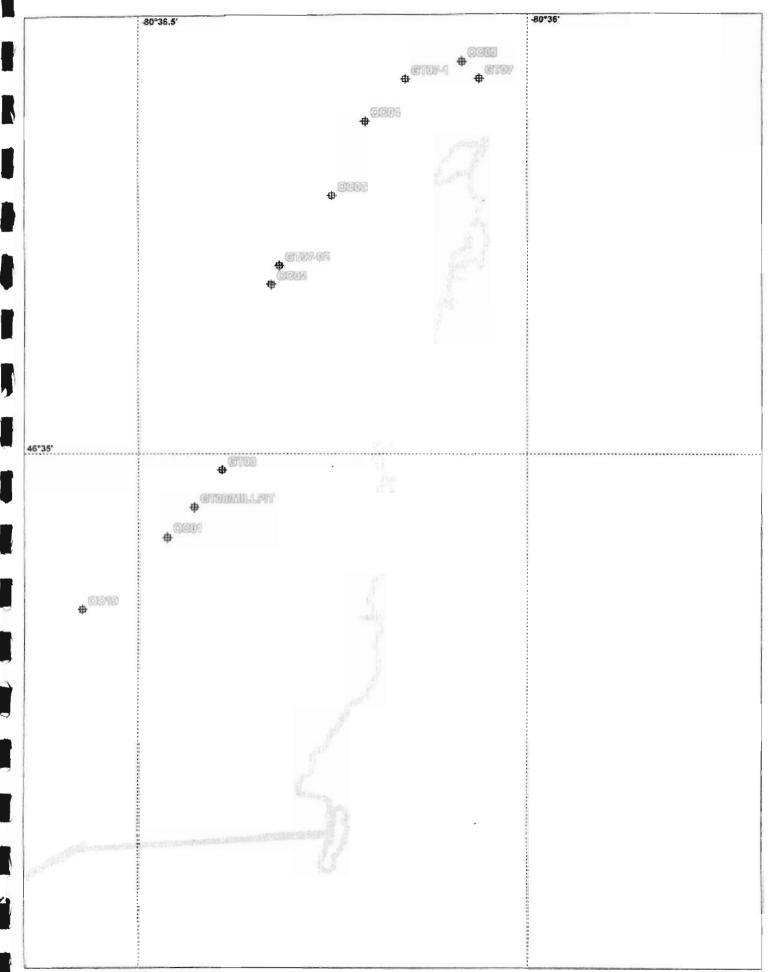


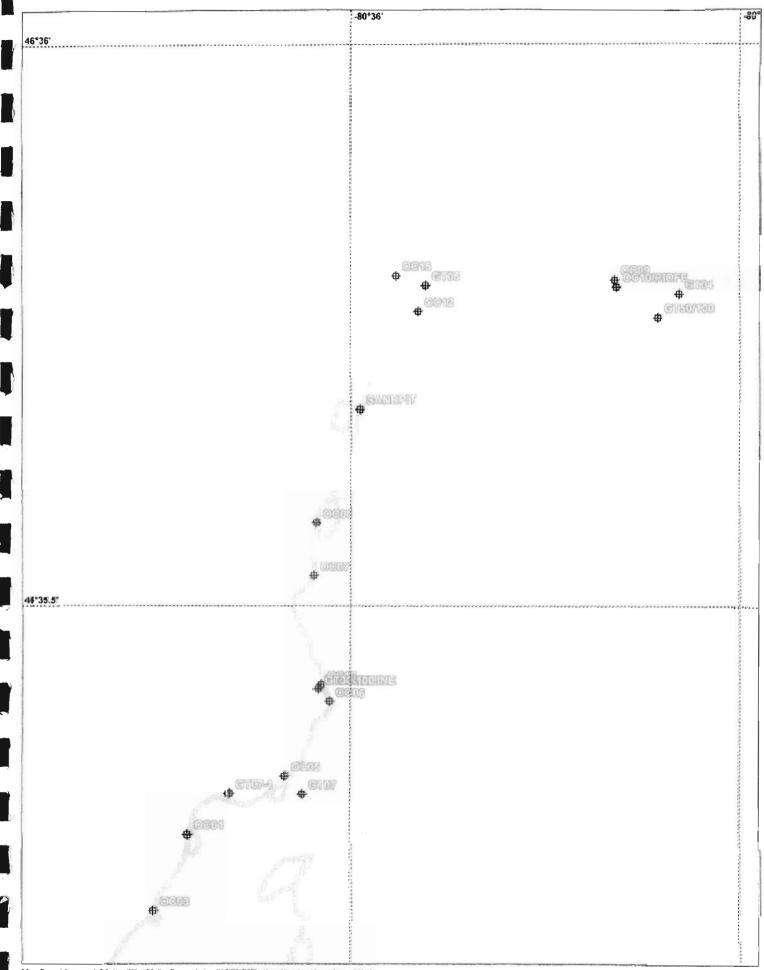








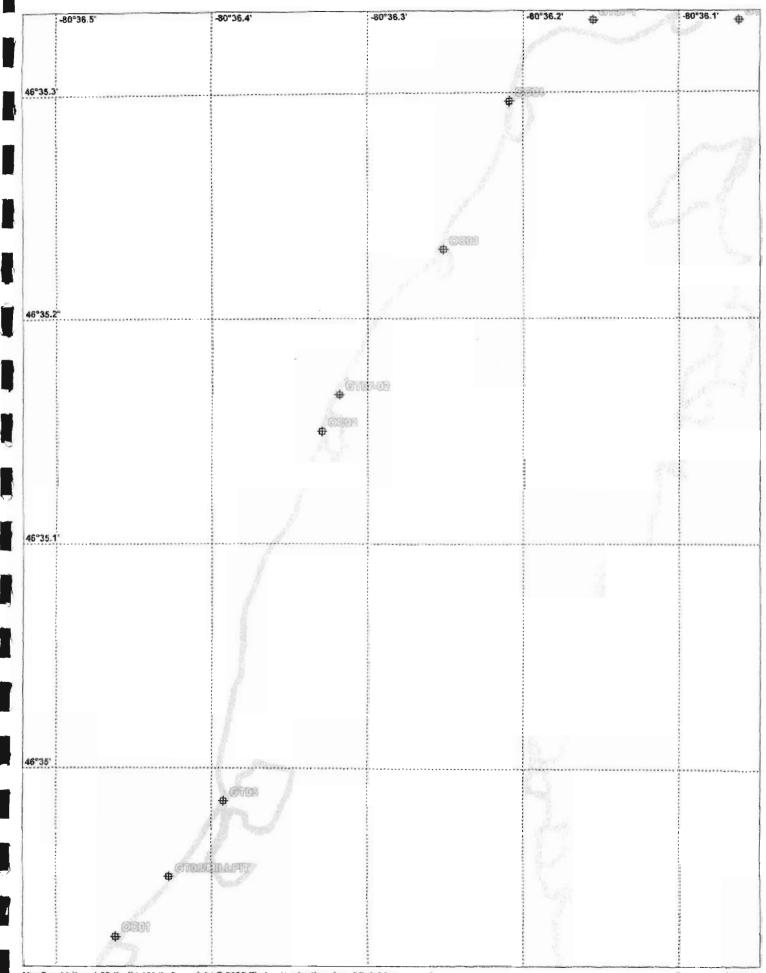

Mohawk Garnet Property Geology 2008


APPENDIX D

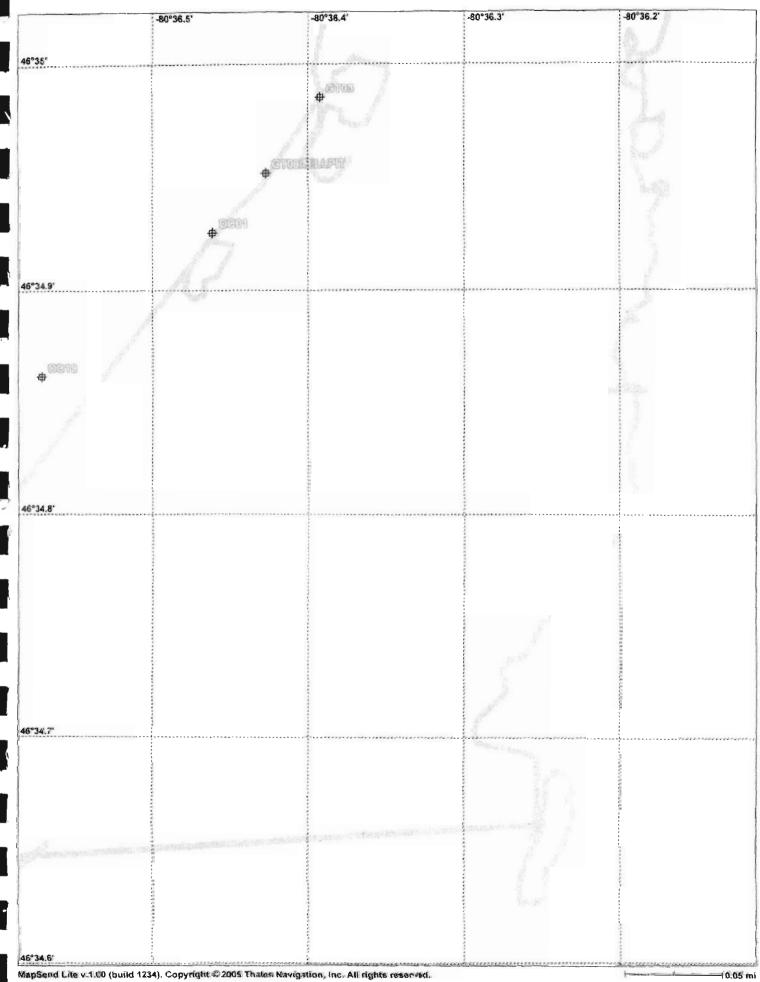
Map Showing Magellan GPS Track Mapping Route

Scale 1:3,000

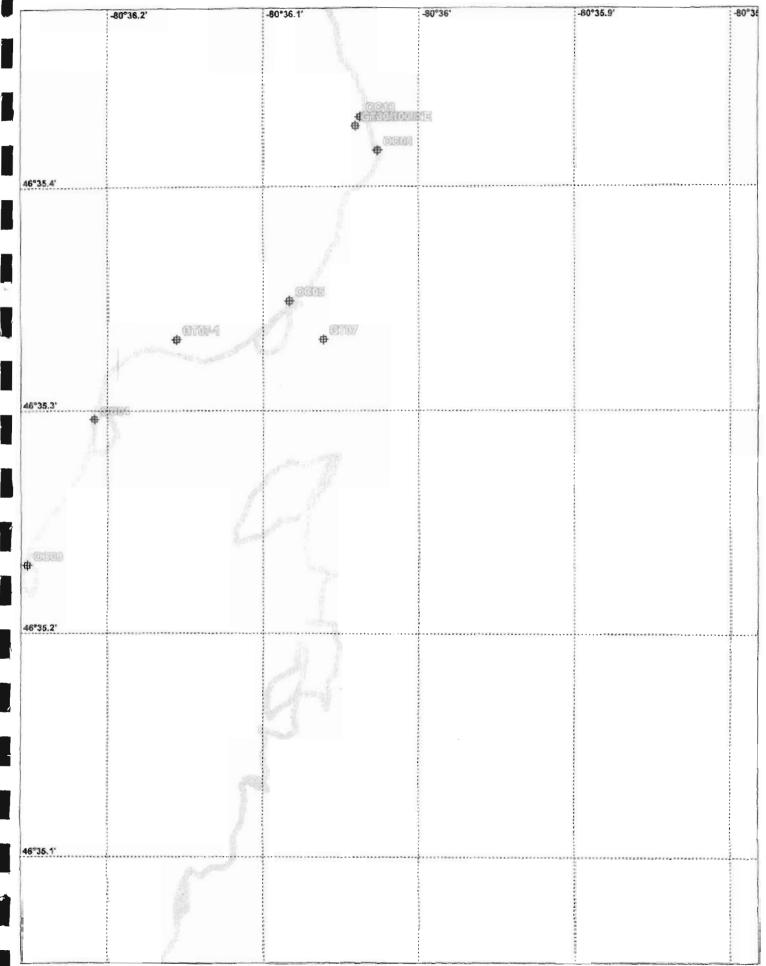
Ĵ

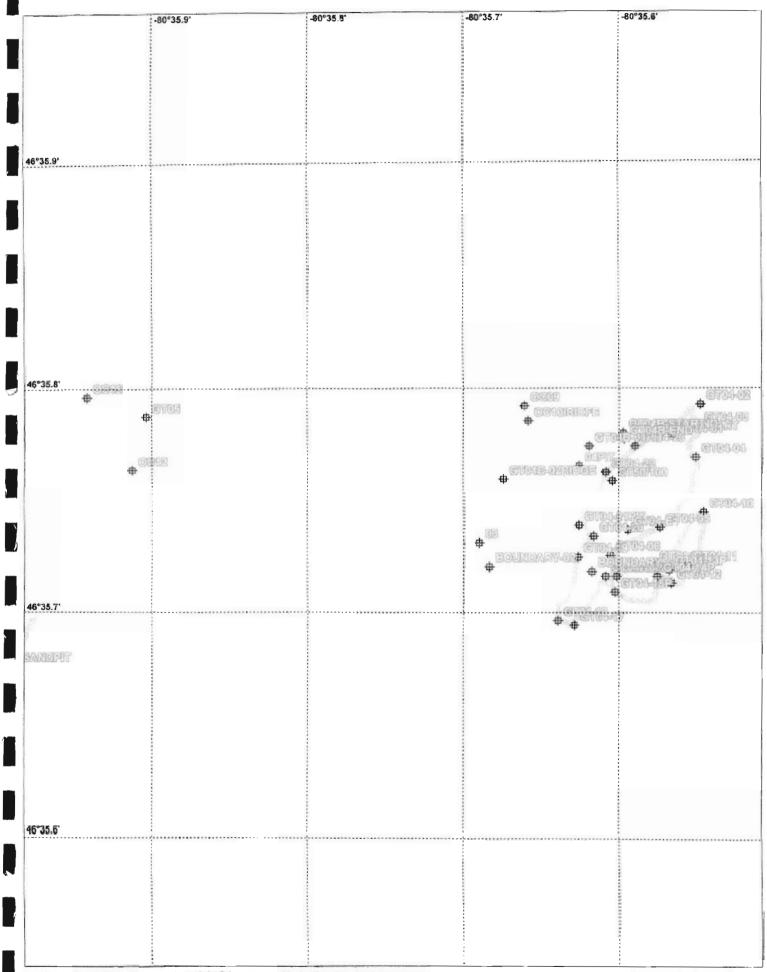

Mohawk Garnet Property Geology 2008

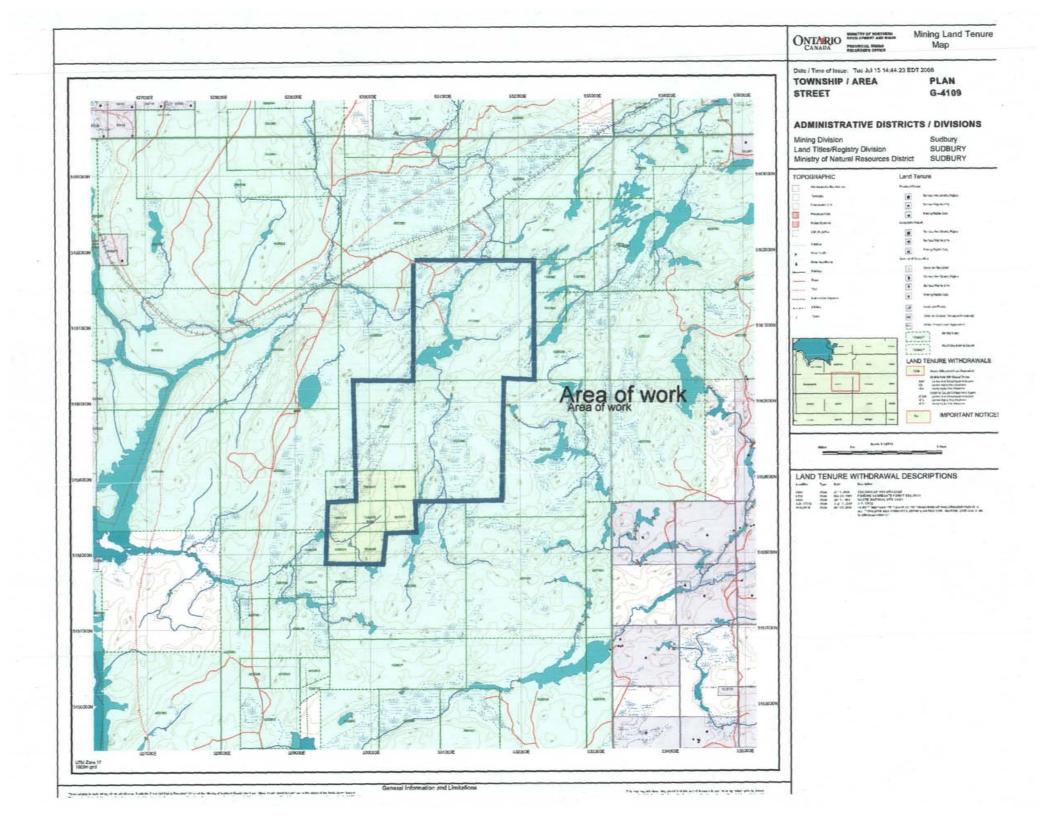
APPENDIX E


Map Showing Magellan GPS Track Mapping Route

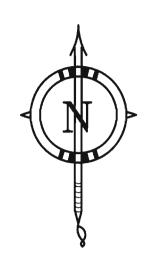
Scale 1:1,500

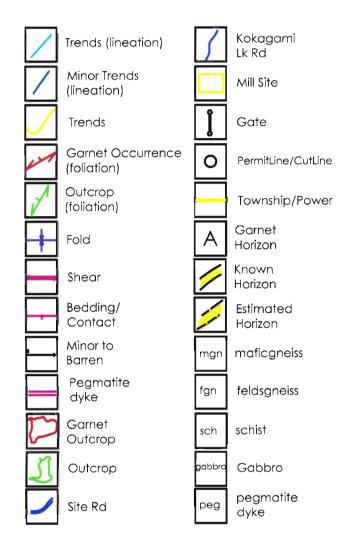

Í



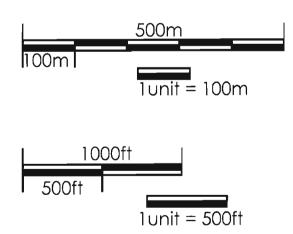

MapSend Lite v.1.00 (build 1234). Copyright @ 2005 Thales Navigation, Inc. All rights reserved.

10.05 mi



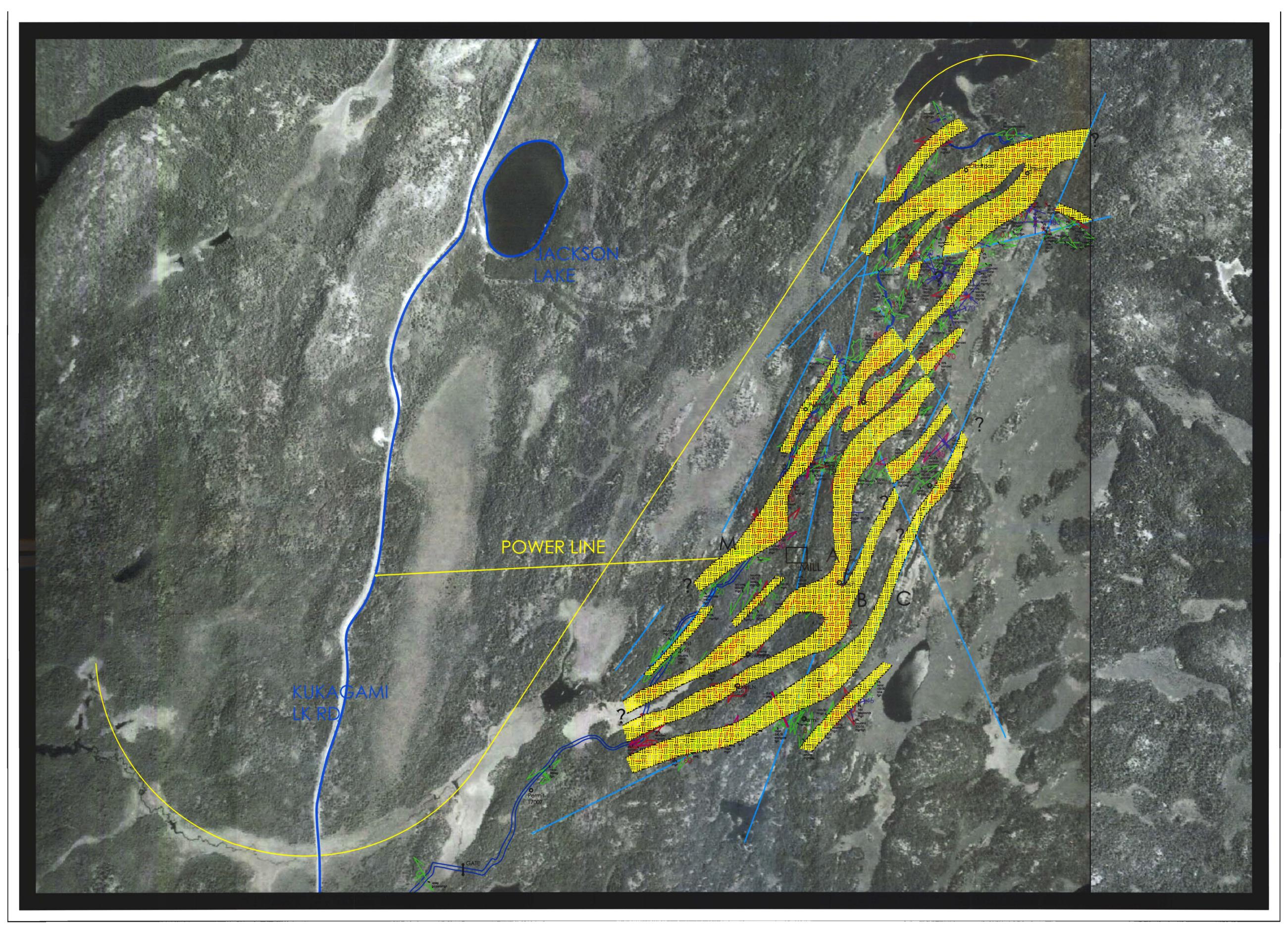


808 Highway 17 East Wahnapitae, ON P0M 3C0


Phone: (705) 694-5783 Toll Free: 1-866-642-7638

LEGEND

SCALE


SOURCES OF INFORMATION

Fieldnotes by Hans Matthews P.GEO. October 2007.

Base Maps derived by Nicole Recollet, Civil Engineering

Technologist. Air photographs were supplied from the Ministry of Northern Development of Mines.

DRAFT COPY ISSUED FOR REVIEW December 13, 2007

MOHAWK GARNET PROPERTY SUDBURY DISTRICT

Map 001 Geological Map