
REPORT ON 2007 DRILLING PAM Property Whitney Township, Timmins, Ontario

By

TEMEX Resources Corporation

Suite 1660, 141 Adelaide Street West Toronto, Ontario, Canada M5H 3L5

May 27, 2008

Prepared by:

Henry P Hutteri P.Geo.

TABLE OF CONTENTS

1.0	SUM	MARY	2
2.0	INTR	ODUCTION4	ł
3.0	PROF	PERTY DESCRIPTION, LOCATION AND ACCESS	ł
4.0		TOUS EXPLORATION	
	4.1 4.2	Broulan Reef Mines	\$
5.0	GEOI	OGICAL SETTING)
	5.1	Regional Geology)
	5.2	Regional Geology)
6.0	2007	DRILLING PROGRAM	2
7.0	CONC	CLUSIONS AND RECOMMENDATIONS14	4
10.0	REFE	RENCES10	5

FIGURES

Figure 1:	Property Location and Regional Geology	3
Figure 2:	Claim Location Map	5
Figure 3:	Whitney Township Geology Map (after Rhys, 2003)	11
Figure 4:	PAM Property Geology and Drill Hole Location Map	13

TABLES

Table 1: 2007 Drill Program Statistics	1	7
--	---	---

APPENDICES

APPENDIX 1 Lab Assay Certification	cates
------------------------------------	-------

- APPENDIX 2Data Assay ContinentsAPPENDIX 2Vertical Cross-sections of Drill HolesAPPENDIX 3Drill Logs

1.0 SUMMARY

During July and August of 2007, Temex Resources Corporation carried out a 2 hole, 237.5 m diamond drill program on their PAM Property which is currently under option. This drilling program was part of a larger drilling campaign by Temex Resources Corp. on their surrounding PJV optioned ground.

The PAM Property is located within Whitney Township, approximately 3 km north of Porcupine, Ontario and lies within the city limits of Timmins, Ontario. It consists of two unpatented claim units which cover an area of approximately 32 hectares. The property lies approximately 800m west of the head frame of the inactive Broulan Reef mine which has produced a total of 498,932 oz of gold to date. Other former gold producers located to the east of Broulan Reef mine include the Bonetal, Hallnor and Pamour mines.

The PAM property lies within the southern portion of the Abitibi Greenstone Belt of the Superior province of the Canadian Shield which consists of an east-west trending suite of dominantly mafic to felsic metavolcanic, metasedimentary rocks and lesser ultramafic metavolcanic rocks and a variety of granitoid intrusives. The PAM Property lies approximately 1km north of the unconformable contact between the Porcupine Group metasedimentary rocks and the Tisdale metavolcanic rocks, both of which have hosted significant gold-bearing vein systems. The regionally extensive Destor-Porcupine Fault zone lies to the south of this unconformity.

The three main auriferous vein types identified within the Broulan Reef – Pamour Mine structural corridor include steep south dipping veins within mafic volcanic rocks, steeply dipping veins straddling the unconformable volcanic/sediment contact and moderate to shallow north dipping and locally folded hook veins within mafic volcanic rocks (Rhys, 2003). Veining identified to date on the PAM Property consists mainly of south dipping quartz veins and stringers within carbonatized mafic volcanic rocks.

The 2 diamond drill holes completed on the Pam Property during 2007 were designed to test for additional mineralization on structures which are parallel to but lie north of the main Broulan Reef shear. No significant gold values were obtained with the best assay interval yielding 0.23 g/t Au over 0.5 m.

Further drilling is not warranted.

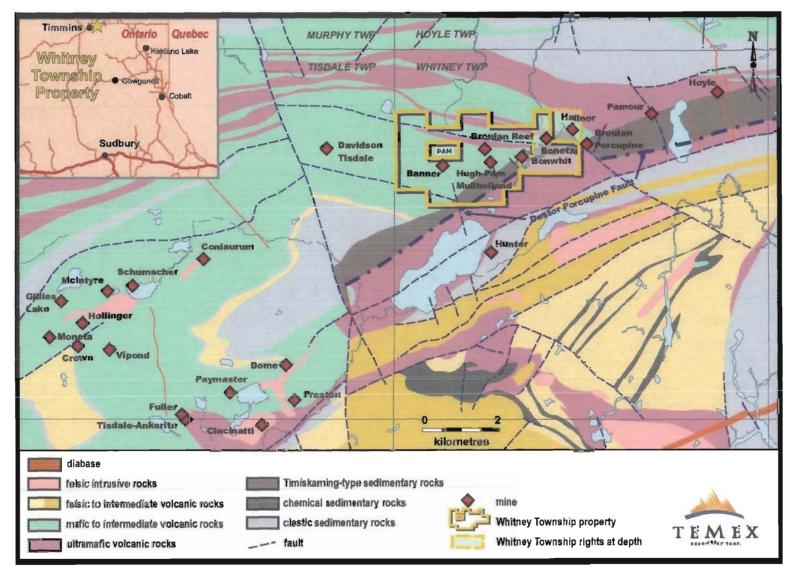


Figure 1. PAM Property Location and Regional Geology Map

2.0 INTRODUCTION

Temex Resources Corporation carried out a 2 hole, 237.5 m diamond drilling program on their PAM property during July and August of 2007. The work program was completed on ground which the company currently has an option to earn a 100% interest from Don McHoldings Ltd., 2060014 Ontario Inc., and Duane Parnham of Timmins, Ontario. The work completed on the two unit PAM property was carried out as part of a larger ongoing drill program being carried out by Temex Resource Corporation on their Whitney Township Property. The drilling operations were performed by Norex Drilling of Timmins, Ontario and supervised by Henry Hutteri P.Geo. and Karen Kettles P.Geo.

These holes were drilled in order to follow up on previous drill intersections of narrow gold-bearing veins hosted within a carbonate zone and to locate other parallel carbonate zones which may be gold-bearing.

3.0 PROPERTY DESCRIPTION, LOCATION AND ACCESS

The Temex Resources Corporation Pam Property covers the N1/2 of the S ½ of Lot 11, Concession 5 of Whitney Township, a few km north of Porcupine, Ontario within the Porcupine Mining Division. The property consists of 2 contiguous unpatented mining claim units covering approximately 32 hectares (Figure 2). The property is currently under option from Don McHoldings Ltd., 2060014 Ontario Inc., and Duane Parnham whereby Temex Resources Corp. can earn a 100% interest.

Access to the claims is gained by traveling north 3.5 km from Highway 101 in Porcupine along Florence Street to the Broulan Reef head frame. From here, a secondary gravel road leads westward a distance of approximately 400 m to a major power transmission line Following this transmission line 600 m to the southwest leads directly onto the southeast corner of the claim group.

4.0 PREVIOUS EXPLORATION

The Pam Property lies approximately 1 km northwest of the past producing Broulan Reef gold Mine which was in production from 1939 to 1965. During this time, a significant amount of underground and surface drilling was carried out in the area, mainly on the

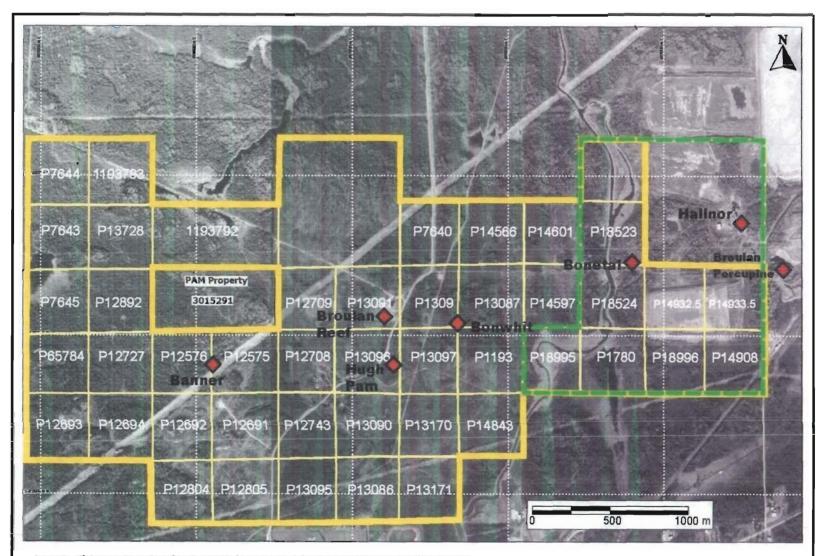


Figure 2. Claim Location Map showing PAM claim group within larger Whitney Township Property.

east-northeast striking Broulan Reef shear/carbonate zone. Approximately seven diamond drill holes and ground geophysical surveying by various companies was carried out previously on the PAM claims which partially cover a parallel carbonate zone located to the north of the main Broulan Reef structure.

4.1 Broulan Reef Mine

1915 to 1917-Porcupine Reef Mining Co: The company carried out diamond drilling and sank the Broulan Reef shaft down to 100 feet and with limited development produced 104 ounces of gold.

1937- McIntyre Porcupine Mines Ltd: The company performed surface diamond drilling and exploration.

1944 to 1951-Porcupine Reef Gold Mines: Magnetic surveying and 16,000 feet of surface drilling were completed. The shaft was subsequently deepened to a depth of 1058 feet with 13,246 feet of lateral development. During this time, a total of 68,354 ounces of gold were produced.

1952 to 1965- Broulan Reef Mines Ltd: The company was formed with the amalgamation of the Broulan Reef, Porcupine Reef, Bonwhit and Bonetal Mines. The shaft was deepened to 2556 feet and a winze was sunk from the 2500 to 2673 foot levels. A total of 430,474 ounces of gold production was achieved. During this time, an exploration drift was driven out to the Banner shaft area to the west on the 650 level with poor results. Exploration failed to find additional ore on the main Broulan Reef structure below the 2500 level and no attempt was made prior to the mine closing in 1965 to locate the extensions of the deep Hallnor veins which were just starting to be developed at that time. All mine buildings were subsequently taken down.

1960 to 1963- Rollex Mines Ltd: The company held a small group of claims located immediately to the north of the current PAM option. Four drill holes totalling 2003 feet were drilled to test the Spherulitic "chicken feed" lava horizon crossing through the Rollex claims approximately 1km northwest of the Broulan Reef Shaft, just south of Murphy Road. Although no assays were recorded in the logs, later work carried out on the ground by Kidd Creek Mines reported that one of the Rollex holes yielded an assay interval of 0.94 oz/ton gold over 2.5 feet.

1983- Kidd Creek Mines Ltd: The company carried out horizontal loop electromagnetic and magnetic surveying on a group of claims covering the current PAM property. Two drill holes, W51-01 and W51-04 were drilled totalling 1946 feet to test electromagnetic and magnetic anomalies; however no assay results were reported.

1983 to 1985- Newmont Mines: The company optioned the Broulan Reef and Hugh Pam properties surrounding but not including the PAM claim group. The company carried out magnetic and Induced Polarization surveys, geological mapping, stripping, basal till geochemistry, litho geochemical surveys, compilation and 4014 feet of surface drilling. No significant assay results were obtained and the property was dropped in 1985.

1986 to 1987- Mill City Gold Inc: The company carried out magnetic, VLF-EM, Induced Polarization surveying and Reverse Circulation overburden drilling on a small property located to the north of the Pam claims covering the two former Rollex Mines claims. Of the 44 RC holes, drilled, approximately 13 drill sites appear to lie on the current Temex Whitney Township property. Several significant basal till gold anomalies were obtained with the highest sample yielding an assay of 11276 ppb gold from hole 8819B. Although drilling was recommended, there is no record of any being carried out by the company.

1986 to 1989- Belmoral Mines: The company initially conducted geological surveying and 11,259 feet of surface diamond drilling on the C zone area with positive results. They subsequently erected a head frame and rehabilitated the Broulan Reef shaft after dewatering the underground workings. A further 7627 feet of underground drilling produced a reduced C Zone resource of 103,411 tons of 0.114 oz/ton. Additional surface drilling mostly around the current Reef pit target produced a near surface resource of 336,000 tons at 0.043 oz/ton gold. Since Belmoral staff indicated that the drilling significantly underestimated the underground stope grades, they suggested that the Reef pit grade would most likely be closer to 0.114 oz/ton gold. A planned bulk sample for this zone was not carried out due to the program being shut down. Total drilling performed by Belmoral Mines from 1986 to 1989 totalled 40,400 feet from surface and 18,277 feet from underground. A further 2434 feet of drifting, 9 feet of raising and 62 feet of shaft sinking was carried out prior to the mine closing in 1989. The deeper targets were not tested due to the cost over runs from dewatering and mine rehabilitation.

1990 to 1994- Royal Oak Mines: The company performed resource calculations on the Reef pit area and the Hugh Pam conglomerate zone and compilation in the area prior to concentrating their efforts on the deep Hallnor vein system.

1995- Kinross Gold Corporation: The company acquired all Whitney Township properties from the bankrupt Royal Oak Mines.

2000 to 2002- Kinross Gold Corporation: The company completed 40 km of line cutting, magnetic and Induced Polarization surveying along the volcanic/sediment contact between the Broulan Reef and Hallnor mine sites. A total of 34 holes and 5285 m of stratigraphic drilling was carried out initially along the contact area and a further 968 m of drilling in 6 holes was carried out over IP anomalies within the volcanics. Surface geological compilations were also performed during this time.

2002 to 2003- PJV: The PJV compiled previous work and then completed a 25 hole drill program totalling 12,971 feet to the south and east of the current Pam property. In addition they completed geochemical sampling of drill core and had a property wide structural study completed by David Rhys.

2005 to 2006-Temex Resources Corp: Temex optioned the Whitney Property from the PJV which included both the Hallnor (below 1000') and Broulan Reef properties. During this time, two phases of diamond drilling were completed consisting of 39 holes totalling 6045.4 m which tested the C Zone, Hugh Pam Conglomerate Zone, Reef Pit Zone and the Reef Offset Zone. None of this drilling occurred on the PAM claims. Compilation work was also performed at this time.

4.2 Pam Property

1964- Hollander Mines: During 1964, Hollander Mines carried out a program of line cutting, magnetic and horizontal loop electromagnetic surveying over the current PAM property. This was followed by four diamond drill holes totalling 2004 feet (HM-1 to 4). Andesites with minor graphitic shears and sporadic bleaching, minor quartz and sulphides was noted in the drilling. Hole HM-1 was reported to have intersected 0.19 oz/ton over 5.5 feet and 0.11 oz/ton over 2 feet.

1983- Kidd Creek Mines Ltd: The company held a large property covering the current 2 unit claim on which they performed line cutting, magnetic and HLEM surveying followed by diamond drilling. Two drill holes, W51-02 and W51-03 were drilled totalling 505.3m. Pillowed and massive mafic volcanic flows were intersected containing local carbonate alteration and minor quartz and sulphides. No assays were reported in the logs.

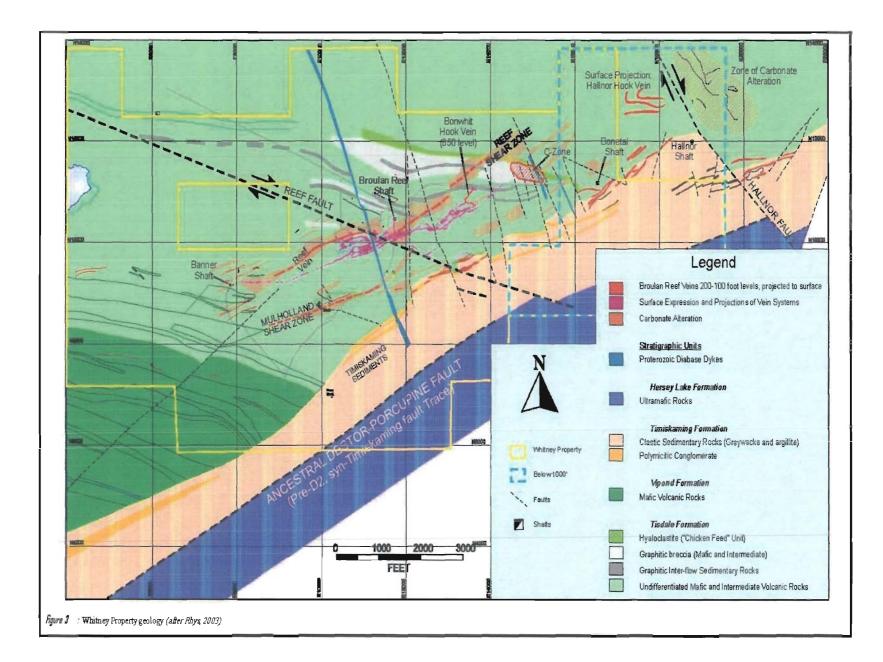
1989- Belmoral Mines Ltd: During 1989, Belmoral Mines Ltd. drilled one hole on ground currently covered by the PAM property totalling 1001 feet. The hole intersected basalts with local carbonate alteration and quartz-carbonate stringers/veins. Although the drill hole undercut hole HM-1, which had two gold-bearing intersections, no significant gold values were obtained.

1998-2003 Mike Caron: During 1998, prospector Mike Caron carried out a program of line cutting, magnetometer and VLF-EM surveying over the two mining units currently comprising the PAM Property. Four VLF electromagnetic anomalies were located. During 2003, geological surveying was carried out on the grid in order to identify the source of the VLF-EM anomalies. Several old trenches and minor quartz veining were located on the property which had little bedrock exposure overall. No conductive horizons were identified.

2006- Steve Anderson: During 2006, prospector Steve Anderson acquired the current PAM Property and completed a ground magnetic survey over the two mining units using GPS flagged grid lines. The property was subsequently optioned to Temex Resources Corporation in 2007.

5.0 GEOLOGICAL SETTING

5.1 Regional Geology

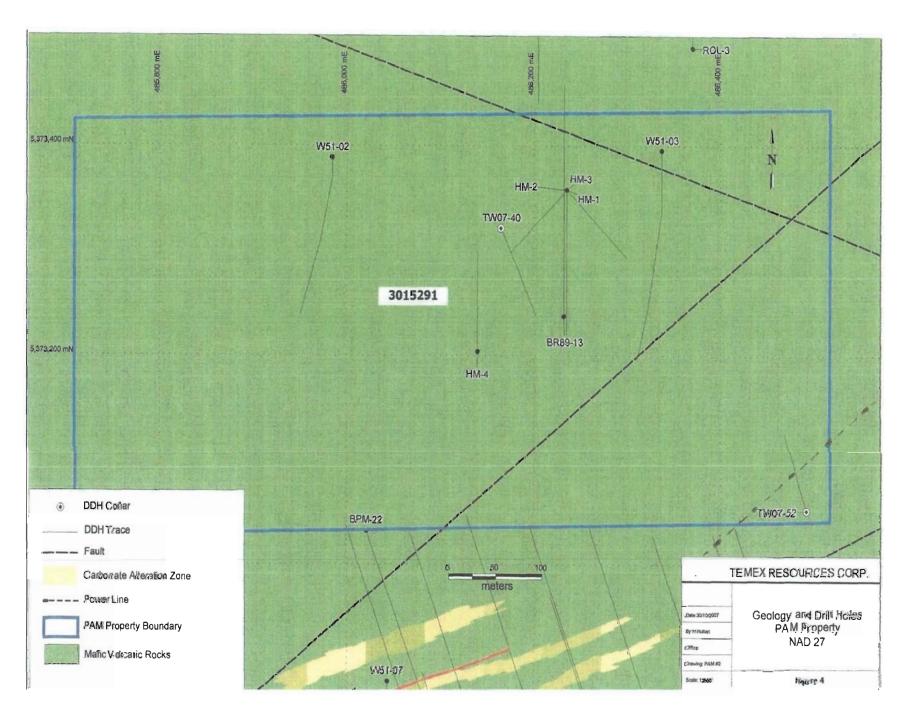

The Pam property lies within the southern portion of the Abitibi Greenstone Belt of the Superior province of the Canadian Shield which consists of an east-west trending suite of dominantly mafic to felsic metavolcanic, metasedimentary rocks and lesser ultramafic metavolcanic rocks and a variety of granitoid intrusives. Within the Porcupine gold camp, the metavolcanic rocks are divided into two groups, the Deloro and Tisdale Groups (Pyke, 1982). The Deloro group consists of an older calc-alkaline sequence of andesite, basalt, dacite, rhyolitic pyroclastic rocks capped by iron formations and is confined to a larger domal feature to the south, referred to as the Shaw Dome. The younger, overlying Tisdale group consists of basal ultramafic volcanics and basaltic komatiites overlain by a thick sequence of tholeiitic basalts and capped by dacitic volcaniclastics (Pyke, 1982). A major east striking belt of clastic metasediments separate the Tisdale group to the north and Deloro Group to the south, and is bounded on the south side by the regionally extensive Destor-Porcupine Fault. This sedimentary sequence consisting of wackes, siltstones and lesser conglomerate has been divided into two groups referred to as the Porcupine and Timiskaming groups (Piroshco and Kettles, 1991). The two groups of sediments are separated by the Timiskaming Unconformity. The Porcupine Group is the older of the two groups and conformably overlies the Tisdale Group of rocks while the younger

Timiskaming group of sediments forms an angular unconformity with both the Tisdale Group volcanics and Porcupine Group sediments within the Timmins area (Piroshco and Kettles, 1991).

The majority of gold deposits within the Timmins area occur proximal to fault structures or within fault-bounded blocks, and the mineralized vein zones commonly occupy brittle fracture zones in these areas. The more productive faults recognized to date within the Timmins area are the Destor-Porcupine, Dome and Hollinger faults. Several significant gold deposits are also spatially related to the Timiskaming unconformity within the Whitney Township area. These include the Broulan Reef, Bonetal, Hallnor and Pamour Mines. Most mineralized vein structures in the area are associated with carbonate-quartzsericite-pyrite-albite alteration envelopes that are superimposed on existing, more extensive carbonate and chlorite alteration zones (Piroshco and Kettles, 1991).

5.2 Property Geology

The PAM property lies northwest of the main east-northeast striking Broulan Reef-Bonwhit-Bonetal-Hallnor structural corridor which lies adjacent to the unconformable contact between the younger Timiskaming metasediments to the south and Tisdale metavolcanic rocks to the north. The PAM claim group is underlain mainly by a north dipping sequence of tholeiitic mafic metavolcanic rocks and minor thin, carbonaceous interflow metasediments of the Central Formation of the Tisdale Group of rocks. Diamond drilling has indicated that a south dipping iron carbonate alteration zone with weak quartz veining/stingers and minor erratic gold values occurs in the northern part of the property and that a calcitic carbonate alteration zone passes through the southeast part of the property. Little outcrop exposure exists and cedar and spruce swamps are extensive in the property area. Numerous late, north to northwest striking cross-faults have also disrupted the stratigraphy with local offsets.


6.0 2007 DRILLING PROGRAM

During July and August, 2007, a 2 hole, 237.5 m diamond drill hole program was carried out on the Pam property, currently under option. The program was initiated to follow up on known gold mineralization associated with quartz veining in iron carbonate zones and to locate additional mineralized zones. The drill hole collars were spotted using a GPS instrument and upon completion of the program, were surveyed more accurately by surveyor Larry Labelle of Timmins, Ontario. The diamond drill program was supervised by Henry Hutteri P.Geo., the author of this report, and by Karen Kettles P.Geo. The drill logs and sections for this program are located within the Appendix.

Table 2: 2007 Drill Program Statistics (NAD 27)								
Hole No.	Zone	Easting	Northing	Elevation	Dip	Azimuth	Length (m)	
TW07-40	Pam Property	486,165.110	5,373,321.520	295.36	-45	155	125	
TW07-52	Pam Property	486,490.890	5,373,052.180	292.69	-47	340	112.5	

TW07-40 was drilled approximately 75m west of the Hollander Mines hole HM-1 which had three low grade sample intervals which assayed 0.14 oz/ton over 3', 0.12 oz/ton over 2.5' and 0.11 oz/ton over 2' within a carbonate zone containing minor quartz veins and stringers. TW07-40 intersected massive to pillowed mafic volcanic rocks and a relatively massive carbonate alteration zone with weak quartz-carbonate stringers having core angles that indicated a south dip to the zone. The best assay obtained from this hole was 0.04 g/t over 1.01m.

TW07-52 was collared in the extreme southeast corner of the Pam property to test the stratigraphy for parallel carbonate alteration zones in an area which had no previous drilling, at the closet point to the main Broulan Reef shear, located further to the southeast. The hole intersected two narrow calcite alteration zones containing minor quartz-carbonate stringers within pillowed mafic volcanics. The hole ended prematurely at 112.5m when the drill rods broke. The best assay obtained from this hole was 0.23 g/t over 0.5m.

7.0 SAMPLING METHOD, ANALYSIS AND SECURITY

Selective sampling was carried out where quartz or sulphides occurred intermittently, and where the mineralization was more widespread, the entire alteration zone was sampled throughout. All quartz stringers within the alteration zones were sampled, as they were potentially gold-bearing. Samples that were possibly auriferous were sampled in 1.0 m core lengths or less, and bracket or infill samples that appeared to have little potential had a maximum sample length of 1.5 m.

The drill core was regularly picked up at the drill site at the end of each shift by Temex employees and delivered directly to the company core shack in Porcupine. The core was then logged and samples were marked up by the project geologist. The marked core was then sawn in half with a diamond saw by a core technician. Half of the core for each sample was then placed in sample bags with the accompanying sample tags. The remaining half of the sample tag was then stapled into the core box at the start of the sample interval. The core samples were then placed into rice bags, sealed, and either driven directly or shipped by Manitoulin Transport to Swastika Laboratories for assaying by conventional fire assay techniques. The remaining core boxes were then tagged and cross piled. Any stored samples were kept within locked trailers within a fenced compound that was also locked.

During the logging and sampling process, both standards and blanks were inserted in the sample sequence in every batch of 20 samples as part of a QA/QC program. Two different standards were used representing higher and lower gold grades.

9.0 CONCLUSIONS AND RECOMMENDATIONS

During July and August, 2007, Temex Resources Corp. completed a 2 hole surface diamond drilling program totalling 237.5m in search for additional, relatively shallow gold mineralization on the PAM property. The main target was the iron carbonate zone in the northern part of the property which yielded previous diamond drill intersections of 0.14 oz/ton over 3', 0.12 oz/ton over 2.5' and 0.11 oz/ton over 2' from Hollander Mines hole HM-1. TW07-40 was drilled approximately 75m to the west of these intersections with no significant values obtained. A second hole, TW07-52 was drilled into the southeast corner of the property to explore for other parallel carbonate alteration zones

closer to the main Broulan Reef Shear only intersected weaker calcitic alteration zones with no significant values.

No further exploration drilling on the Pam property is warranted unless further geophysical surveying identifies new targets.

Keny Kutten

Henry P. Hutteri P.Geo. Temex Resources Corporation

12.0 REFERENCES

Bateman, R., Ayer, J.A. and Dube, B. 2003. Discover Abitibi. Gold Subproject 1. Structures and gold mineralization in the Pamour-Hole Pond portion of the eastern Timmins gold camp; in Summary of Field Work and other Activities 2003, Ontario Geological Survey, Open File Report 6120, p.34-1 to 34-6.

Bateman, R., Ayer, J.A., Dube, B. and Hamilton, M.A, 2005 The Timmins-Porcupine Gold Camp, Northern Ontario: The Anatomy of an Archaen Greenstone Belt and its Gold Mineralization: Discover Abitibi Initiative; Ontario Geological Survey, Open File Report 6158, 90p.

Brisbin, D.I., 1992. Geological Setting of Gold Deposits in the Porcupine Gold Camp, Timmins, Ontario; PHD Thesis for Queen's University, 523p.

Gliddon, D.J., Harvey, P., Nakie-Lajoie, P., Perrault, A., Rhys, D., and Saunders, D., 2004:Summary Report on the 2003 Broulan Reef/Hallnor Exploration Programs, Timmins, Ontario; porcupine Joint Venture Company Report, 23 p.

Hees, E.H.P.van, 2000. Gold Deposition In The Western Abitibi Greenstone Belt And Its Relation To Regional Metamorphism, PHD Thesis for the University of Michigan, 314p.

Jarvi, U., 1984. Report on the Evaluation of Ore Potential and Recommendation for Exploration Program, Hallnor Mine, Timmins, Ontario. Internal company report for Noranda Exploration co. Ltd.

Labine, R.J., 1994. Hallnor Mine 1994 Technical Report for Royal Oak Mines Inc.

MNDM assessment files, Porcupine Mining Division, Ontario.

Piroschco, D.W. and Kettles, K. 1991. Structural Study of Tisdale and Whitney townships, Abitibi greenstone belt, District of Cochrane, north-eastern Ontario; Ontario Geological Survey, Open File Report 5768, 115p.

Pyke, D.R. 1982 Geology of the Timmins Area, District of Cochrane; Ontario Geological Survey Report 219, 141p.

Rhys, D., 2003Evaluation of the Structural Setting of vein systems in the BroulanReef-Hallnor area, with exploration implications, Panterra Geoservices Inc., PlacerDome-Porcupine Joint Venture, Internal Company Report.

Appendix 1 Lab Assay Certificates

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

7W-2662-RA1

Date: AUG-13-07

Company: TEMEX RESOURCES CORPORATION

Project: Whitney Attn: K. Rees

We hereby certify the following Assay of 32 Core samples submitted AUG-03-07 by .

Sample	Au	Au Check	
Number	g/tonne	g/tonne	
29851	0.02	Nil	
29852	Nil	-	
29853	Nil	-	
29854	Nil	-	
29855	Nil	-	
29856	Nil		
29857	Nil	0.01	
29858	Nil	-	
29859	Nil	-	
29860	1.31	-	
29861	Nil		
29862	0.01	-	
29863	Nil	-	
29864	Nil	-	
29865	0.01	-	•
29866	Nil		
29867	0.01	Nil	
29868	Nil	-	
29869	Nil	-	
29870	Nil	-	
29871	Nil		
29872	Nil	-	
29873	0.01	0.01	
29874	Nil	-	
29875	Nil	-	
29876	0.04		
29877	Nil	-	
29878	Nil	-	
29879	Nil	-	
29880	4.81	-	

Her Certified by_

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Established 1928

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

7W-2662-RA1 Date: AUG-13-07

Company: TEMEX RESOURCES CORPORATION

Project: Attn:

Whitney K. Rees

We hereby certify the following Assay of 32 Core samples submitted AUG-03-07 by .

Sample Number	Au g/tonne	Au Check g/tonne	
29881	Nil		
29882	Nil	-	
Blank	Nil	-	
STD OxK48	3.56	-	

Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario POK 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

7W-2607-RA1

Company: TEMEX RESOURCES CORPORATION

Date: AUG-10-07

Project: Attn: K. Rees

We hereby certify the following Assay of 75 Core samples submitted JUL-31-07 by .

Sample	Au	Au Check	
Number	g/tonne	g/tonne	
29883	Nil		
29884	0.01	-	
29885	0.01	-	
29886	Nil	-	
29887	Nil	-	
29888	Nil	Nil	
29889	Nil	-	
29890	Nil	-	
29891	Nil	-	
29892	Nil		
29893	0.03	-	
29894	Nil	-	
29895	Nil	-	
29896	. Nil	-	
29897	Nil		
29898	0.01	Nil	
29899	Nil	-	
29900	1.32	-	
29901	Nil	-	
29902	Nil		
29903	Nil	-	
29904	Nil	-	
29905	Nil	-	
29906	Nil	-	
29907	Nil	_	
29908	Nil	-	
29909	Nil	-	
29910	Nil	-	
29911	0.02	0.01	
29912	Nil	-	

Certified by Denie chothe

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Established 1928

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

7W-2607-RA1

Company: TEMEX RESOURCES CORPORATION

Date: AUG-10-07

Project: Attn: K. Rees

We hereby certify the following Assay of 75 Core samples submitted JUL-31-07 by .

Sample	Au	Au Check	
Number	g/tonne	g/tonne	
29913	Nil	-	
29914	Nil	-	
29915	Nil	-	
29916	Nil	-	
29 9 17	Nil	-	
29918	0.02		
29 9 19	0.01	-	
29920	Nil	-	
29921	5.14	-	
29922	0.01	Nil	
29923	0.02	-	
29924	0.01	-	
29925	0.01	-	
29926	Nil	-	
29927	Nil	-	
29928	Nil		
29929	Nil	-	
29930	Nil	-	
29931	1.24	-	
29932	Nil	-	
29933	Nil	-	
29934	Nil	-	
29935	Nil	-	
29936	Nil	-	
29937	Nil	0.01	
29938	0.05	-	
29939	0.01	-	
29940	Nil	-	
29941	Nil	-	
29942	Nil	-	

Certified by Deans Chorts

1 Cameron Ave., P.O. Box 10, Swastika, Ontario POK 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Swastika Laboratories Ltd

Assaying - Consulting - Representation

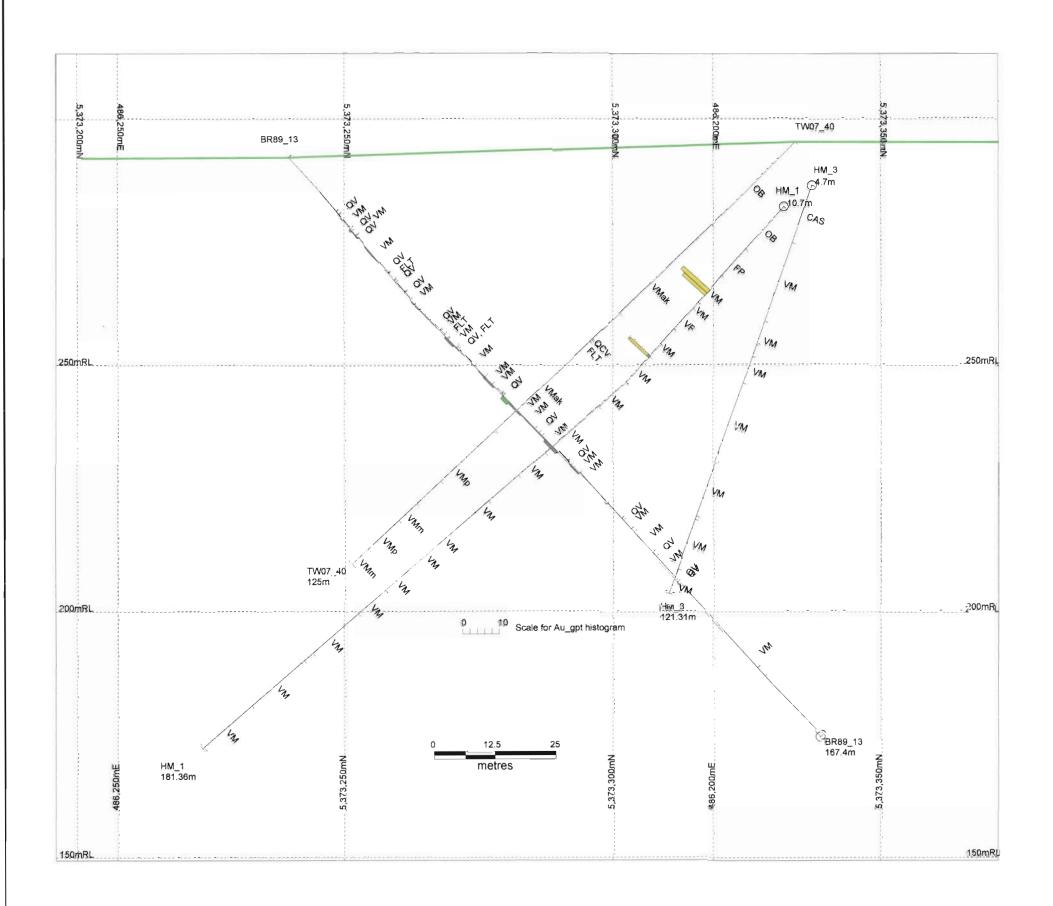
Page 1 of 3

Assay Certificate

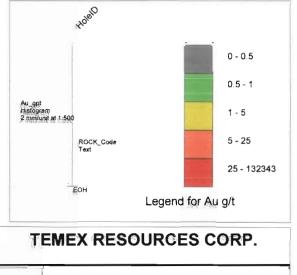
Date: SEP-12-07

7W-2927-RA1

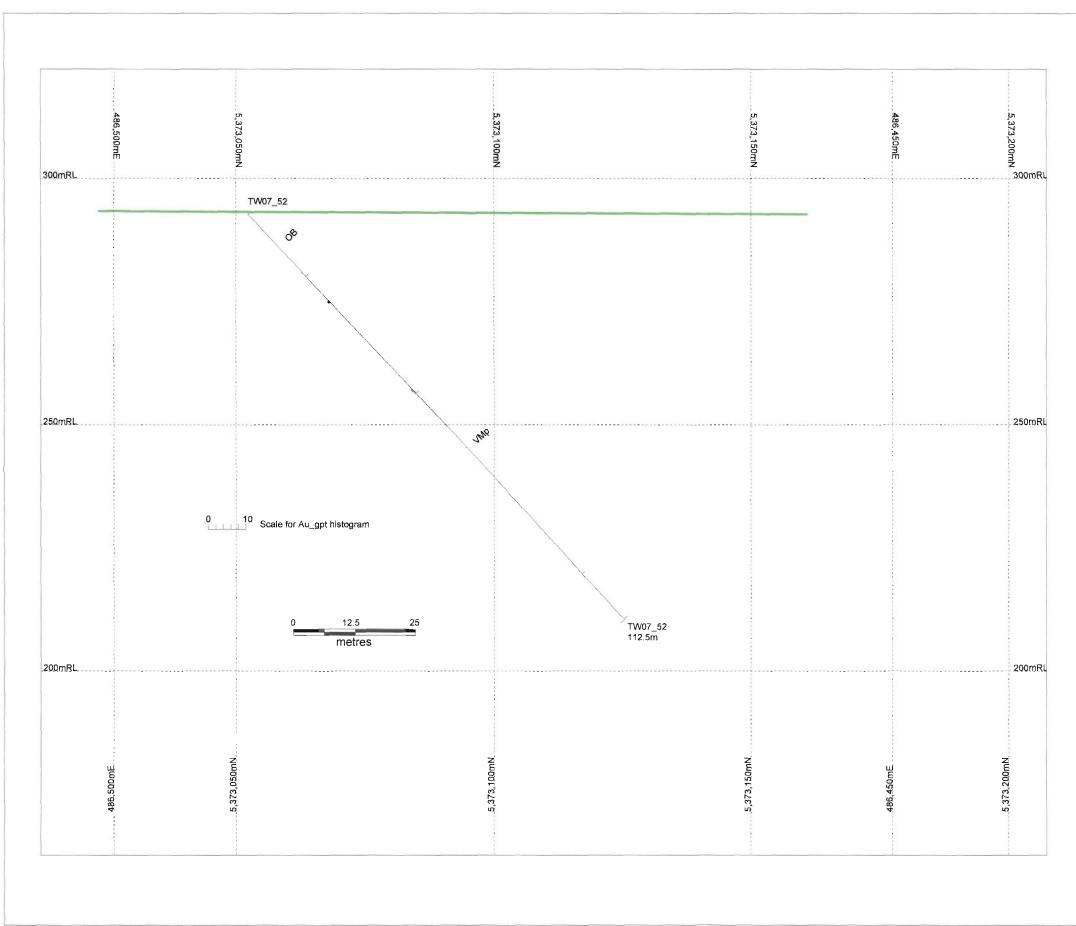
Company: TEMEX RESOURCES CORPORATION Project: Attn: K. Rees

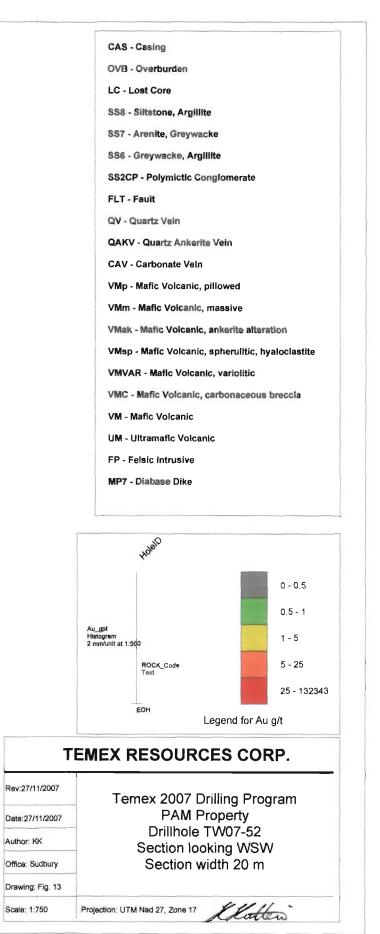

We hereby certify the following Assay of 72 Core samples submitted SEP-05-07 by .

Sample	Au	Au Check	
Number	g/tonne	g/tonne	
56025	0.23	_	
56026	1.33	-	
56027	Nil	-	
56028	Nil	-	
56029	Nil	-	
56030	Nil		
56031	Nil	-	
56032	0.23	-	
56033	0.06	-	
56034	Nil	-	
56035	Nil	-	
56036	Nil	-	
56037	Nil	. –	
56038	Nil	Nil	
5603 9	Nil	-	
56040	Nil		
56041	Nil	-	
56042	Nil	-	
56043	Nil	-	
56044	0.01		
56045	5.07		
56046	0.01	-	
56047	0.01	-	
56048	Nil	-	
56049	Nil	-	
56050	Nil		
56051	Nil	-	
56052	Nil	-	
56053	0.15	-	
56054	0.02	-	


Certified by Devichanty

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300 Appendix 2


Vertical Cross-sections of Drill Holes



REV 27/11/2007	
Date:27/11/2007	Temex 2007 Drilling Program PAM PROPERTY
Author: KK	Drillhole TW07-40
Office. Sudbury	Section looking WSW Section width 80 m
Drawing: Fig. 1	
Scale: 1:750	Projection: URM Nad 27. Zone 17

Author: KK

Appendix 3 Diamond Drill Logs

May 29, 2008 DETAILED LOG							
Hole Number: TW07-40							
Project Name:	Whitney	Primary Coordinates Grid: LOCAL;	Destination Coordinates Grid: LOCAL:	Collar Dip:	-45.00		
Project Number:	TME06-WT	North: 5373321.52	North: 5373321.52	Collar Az:	155.00		
Location:	Surface	East: 486165.11 Elev: 295.36	East: 486165.11 Elev: 295.36	Length: Start Depth:	125.00 0.00		
Date Started:	Jul 09, 2007	Collar Survey: Y Plugged: N	Contractor: Norex Drilling	Final Depth:	125.00		
Date Completed:	Jul 11, 2007	Multishot Survey: N Hole Size: NQ	Core Storage: Exploration Office				
		Pulse EM Survey: N Casing: Pulled					

Sample Averages

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments				
0.00	155.00	-45.00	ES	ок		35.00	155.10	-43.50	ES	ок					
86.00	156.70	-42.80	ES	ОК		125.00	156.70	- 4 2. 8 0	ES	ок					
Detailed	Detailed Lithology Assay Data														
From	То				Lithology		Sample	Number			From	То	Length	Au gpt	Au R gpt
0	24.00	CAS, Cas	ing												
		Casing, o	verburden												

Hutter

May 29, 2008

DETAILED LOG

Page 2 of 6

Units: METRIC

Hole Number: TW07-40

etaned L	ithology		Assay Data					
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au R gpt
24.00	85.00	VMak, Mafic Volcanic - Ankerite Altered	29851	24.00	25.10	1.10	0.0200	
		Medium grey-buff, mainly fine grained, mod to strongly iron carbonate altered mafic volcanic flows with a few amygdules and a fair length of pillow breccia from 34.0-38.0m. Remainder of unit is fairly massive and well	29852	25.10	25.70	0.60	0.0050	
			29853	25.70	28.30	2.60	0.0050	
		veinlets at 30 deg TCA with very minor associated py. Weak local pervasive sericite alteration and trace mg	29854	28.30	29.00	0.70	0.0050	
		cubes of pyrite. Local narrow rusty oxidized carbonate seams. Alteration intensity weakening gradually below approximately 74m with weak to moderate iron carbonate alteration, no sericite, guartz stringers or sulfides and	29855	29.00	30.20	1.20	0.0050	
		frequent recognizable amygdules. Alteration weaker in bottom few metres with a grey-green colour and a mixed	29856	30.20	31.40	1.20	0.0050	
		iron carbonate and calcite alteration. Gradational lower contact.	29857	31.40	32.00	0.60	0.0050	0.010
		Veining	29858	32.00	33.50	1.50	0.0050	
		58.40 - 58.90 : 20%, Quartz Anke, stringers irregular stringers	29859	33.50	35.00	1.50	0.0050	
		60.85 - 61.35 : 7%, Quartz Anke, veinlets	29861					
		5cm qtz-carb-tour veinlet at 30 deg TCA at 60.9-61m		35.00	35.50	0.50	0.0050	
		66.10 - 68.00 : 10%, Quartz Anke, veinlets	29862	35.50	36.50	1.00	0.0100	
		5 and 10cm qtz-carb veinlets at 30 deg TCA, <1% cg py, wk ser altn in wallrock	29863	36.50	37.55	1.05	0.0050	
		MINOR INTERVALS: Minor Interval:	29864	37.55	38.65	1.10	0.0050	
		57.7 - 58 Quartz Ankerite Vein	29865	41.00	42.00	1.00	0.0100	
		White guartz with minor patches and fracture-fillings of black tourmaline and minor iron carbonate. A few	29866	42.00	42.95	0.95	0.0050	
		mg py cubes in wallrock only. Upper contact at 30 deg and lower contact irregular. Lower wallrock contact is	29867	42.9 5	44.00	1.05	0.0100	
		oxidized rusty brown. Minor Interval:	29868	44.00	45.47	1.47	0.0050	
		58 - 58.4 Fault	29869	45.47	46.75	1.28	0.0050	
		Rubbly core with minor qs and oxidation.	29871	46.75	47.75	1.00	0.0050	
			29872	47.75	48.85	1.10	0.0050	
			29873	48.85	50.00	1.15	0.0100	0.010
			29874	51.15	52.00	0.85	0.0050	0.010
			29875					
				52.75	53.43	0.68	0.0050	
			29876	54.14	55.15	1.01	0.0400	
			29877	56.41	5 7.18	0.77	0.0050	
			29878	57.18	58.02	0.84	0.0050	
			29879	58.02	58.43	0.41	0.0050	
			29881	58.43	59.00	0.57	0.0050	
			29882	59.00	60.18	1.18	0.0050	
			29883	60.18	60.85	0.67	0.0050	
			29884	60.85	61.35	0.50	0.0100	
			29885	61.35	62.25	0.90	0.0100	
			29886	62.25	63.45	1.20	0.0050	
			29887	63.45	64.40	0.95	0.0050	

May 29, 2008

DETAILED LOG

Page 3 of 6

Hole Number: TW)7-40					U	nits: METRIC
Detailed Litho	ogy	Assay Data					
From T	Lithology	Sample Number	From	То	Length	Au gpt	Au R gpt
		29888	64.40	65.30	0.90	0.0050	
		29889	65.30	66.10	0.80	0.0050	
		29891	66.10	66.60	0.50	0.0050	
		29892	66.60	67.55	0.95	0.0050	
		29893	67.55	68.00	0.45	0.0300	
		29894	68.00	69.00	1.00	0.0050	
		29895	71.00	72.00	1.00	0.0050	
		29896	72.35	73.25	0.90	0.0050	
		29897	76.00	77.00	1.00	0.0050	
		29898	79.10	80.00	0.90	0.0100	
		29899	80.40	81.35	0.95	0.0050	
		29901	81.35	82.35	1.00	0.0050	
		29902	82.35	83.35	1.00	0.0050	
		29903	83.35	84.30	0.95	0.0050	
85.00 1	6.80 VMp, Pillowed Mafic Volcanic	29904	86.88	87.88	1.00	0.0050	
	Medium to dark green, very fine to fine grained, amygdaloidal pillowed flows, relatively undeformed and we altered with weak calcite and trace iron carb alto. trace guartz stringers. Becoming gradually more very fine		87.88	88.68	0.80	0.0050	
	grained and less altered towards end of unit. 2-3% calcite patches and stringers.	29906	89.50	90.00	0.50	0.0050	
		29907	91.10	91.60	0.50	0.0050	
		29908	94.00	95.00	1.00	0.0050	
		29909	96.14	97.14	1.00	0.0050	
		29910	98.00	99.00	1.00	0.0050	
		29911	101.00	102.00	1.00	0.0200	0.010
		29912	103.00	104.00	1.00	0.0050	
		29913	105.80	107.00	1.20	0.0050	
106.80 1	2.30 VMm, Massive Mafic Volcanic	29915	109.30	110.00	0.70	0.0050	
	Medium to darker green, medium to fine grained, very massive homogenous mafic volcanic flow. Tr qtz fracture-fillings.	29916	111.75	112.30	0.55	0.0050	
112.30 1	0.60 VMp, Piłłowed Mafic Volcanic	29917	115.00	116.00	1.00	0.0050	
	Dark green, very fine grained, unaltered mafic volcanic with numerous amygdules and qtz-carb-chl filled selvages.	29918	117.00	118.00	1.00	0.0200	
	3CTY04JC3-	29919	119.50	120.00	0.50	0.0100	
120.60 1	5.00 VMm, Massive Mafic Volcanic	29920	123.48	124.41	0.93	0.0050	
	Dark green, fine grained, massive mafic volcanic flow with <1% qtz-carb fracture-fillings. 125.0m EOH.						

Units: METRIC

DETAILED LOG

Hole Number: TW07-40

Samples

May 29, 2008

Sample Number	From	То	Au gpt	Au R gpt
Sample Type ASSAY				
29851	24.00	25.10	0.0200	
29852	25.10	25.70	0.0050	
29853	25.70	28.30	0.0050	
29854	28.30	29.00	0.0050	
29855	29.00	30.20	0.0050	
29856	30.20	31.40	0.0050	
29857	31.40	32.00	0.0050	0.0100
29858	32.00	33.50	0.0050	
29859	33.50	35.00	0.0050	
29861	35.00	35.50	0.0050	
29862	35.50	36.50	0.0100	
29863	36.50	37.55	0.0050	
29864	37.55	38.65	0.0050	
29865	41.00	42.00	0.0100	
29866	42.00	42.95	0.0050	
29867	42.95	44.00	0.0100	
29868	44.00	45.47	0.0050	
29869	45.47	46.75	0.0050	
29871	46.75	47.75	0.0050	
29872	47.75	48.85	0.0050	
29873	48.85	50.00	0.0100	0.0100
29874	51.15	52.00	0.0050	
29875	52.75	53.43	0.0050	
29876	54.14	55.15	0.0400	
29877	56.41	57.18	0.0050	
29878	57.18	58.02	0.0050	
29879	58.02	58.43	0.0050	
29881	58.43	59.00	0.0050	
29882	59.00	60.18	0.0050	
29883	60.18	60.85	0.0050	
29884	60.85	61.35	0.0100	
29885	61.35	62.25	0.0100	
29886	62.25	63.45	0.0050	
29887	63.45	64.40	0.0050	
29888	64.40	65.30	0.0050	
29889	65.30	66.10	0.0050	
29891	66.10	66.60	0.0050	

Units: METRIC

Page 4 of 6

DETAILED LOG

Hole Number: TW07-40

Samples

May 29, 2008

Sample Number	From	То	Au gpt	Au R gpt
Sample Type ASSAY				
29892	66.60	67.55	0.0050	
29893	67.55	68.00	0.0300	
29894	68.00	69.00	0.0050	
29895	71.00	72.00	0.0050	
29896	72.35	73.25	0.0050	
29897	76.00	77.00	0.0050	
29898	79.10	80.00	0.0100	
29899	80.40	81.35	0.0050	
29901	81.35	82.35	0.0050	
29902	82.35	83.35	0.0050	
29903	83.35	84.30	0.0050	
29904	86.88	87.88	0.0050	
29905	87.88	88.68	0.0050	
29906	89.50	90.00	0.0050	
29907	91.10	91.60	0.0050	
29908	94.00	95.00	0.0050	
29909	96.14	97.14	0.0050	
29910	98.00	99.00	0.0050	
29911	101.00	102.00	0.0200	0.0100
29912	103.00	104.00	0.0050	
29913	105.80	107.00	0.0050	
29915	109.30	110.00	0.0050	
29916	111.75	112.30	0.0050	
29917	115.00	116.00	0.0050	
29918	117.00	118.00	0.0200	
29919	119.50	120.00	0.0100	
29920	123.48	124.41	0.0050	

Recovery

То	Length	Recovered Length	Length > 10cm	Recovery %	RQD%
26.50	2.50	2.50		100.0	0
27.90	1.40	1.18		84.3	0
31.88	3.98	3.80		95.5	0
35.89	4.01	3.92		97.8	0
39.80	3.91	3.85		98.5	0
44.00	4.20	4.10		97.6	0
48.21	4.21	4.17		99.0	0
	26.50 27.90 31.88 35.89 39.80 44.00	26.50 2.50 27.90 1.40 31.88 3.98 35.89 4.01 39.80 3.91 44.00 4.20	26.50 2.50 2.50 27.90 1.40 1.18 31.88 3.98 3.80 35.89 4.01 3.92 39.80 3.91 3.85 44.00 4.20 4.10	26.50 2.50 2.50 27.90 1.40 1.18 31.88 3.98 3.80 35.89 4.01 3.92 39.80 3.91 3.85 44.00 4.20 4.10	26.50 2.50 2.50 100.0 27.90 1.40 1.18 84.3 31.88 3.98 3.80 95.5 35.89 4.01 3.92 97.8 39.80 3.91 3.85 98.5 44.00 4.20 4.10 97.6

Units: METRIC

Page 5 of 6

May 29, 2008

DETAILED LOG

Hole Number: TW07-40

Recovery

From	То	Length	Recovered Length	Length > 10cm	Recovery %	RQD%
48.21	52.35	4.14	3.98		96.1	0
52.35	60.18	7.83	7.83		100.0	0
60.18	63.73	3.55	3.24		91.3	0
63.73	67.93	4.20	4.14		98.6	0
67.93	72.11	4.18	4.06		97.1	0
72.11	76.29	4.18	4.07		97.4	0
76.29	80.40	4.11	3.99		97.1	0
80.40	84.66	4.26	4.12		96.7	0
84.66	125.00	40.34	40.30		99.9	0

Page 6 of 6

Units: METRIC

May 29, 2008			DET	AILED LOG			Page 1 of 3
Hole Number: TV	N07-52					Units: ME	TRIC
Project Name:	Whitney	Primary Coordinates Gri	d: LOCAL:		Destination Coordinates Grid: LOC	AL: Collar Dip:	-47.00
Project Number:	TME06-WT	North: 5373052.18			North: 5373052.18	Collar Az:	340.00
Location:	Surface	East: 486490.89			East: 486490.89	Length:	112.50
		Elev: 292.69			Elev: 292.69	Start Depth:	0.00
Date Started:	Aug 21, 2007	Collar Survey: Y	Plugged:	N	Contractor: Norex Drilling	Final Depth:	112.50
Date Completed:	Aug 23, 2007	Multishot Survey: N	Hole Size:	NQ	Core Storage: Exploration Office		
		Pulse EM Survey: N	Casing:	Pulled			

Sample Averages

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments					
0.00	340.00	-47.00	ES	ОК		32.00	343.10	-46.40	ES	ок						
89.00	343.10	-47.40	ES	ОК									_			
Detailed	Lithology	r							Assay Da	ata						
From	То				Lithology		Sample	Number			From	То	Length	Au gpt	Au R gpt	
0	17.20	CAS, Cas	sing													

Aftertario

May 29, 2008

DETAILED LOG

Page 2 of 3

Hole Number: TW07-5	2					U	nits: METRIC
Detailed Lithology	,	Assay Data					
From To	Lithology	Sample Number	From	То	Length	Au gpt	Au R gpt
From To		,	From 24.00 37.10 46.00 47.00 47.50 48.30 48.90 49.30 50.00 50.60 51.60 52.60 53.60 54.30 55.30 56.30 57.30 58.30	To 24.50 37.60 47.00 47.50 48.30 49.30 50.00 50.60 51.60 52.60 53.60 54.30 55.30 56.30 57.30 58.30 58.30	0.50 0.50 1.00 0.50 0.80 0.60 0.40 0.70 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Au gpt 0.2300 0.0050 0.0050 0.0050 0.0050 0.0050 0.2300 0.0600 0.0050	Au R gpt
	MINOR INTERVALS: Minor Interval: 50.95 - 51 Fault <scm clay="" fine="" mixed="" of="" rubble.<="" th="" with=""><th>56044 56046 56047 56048 56049</th><th>58.30 74.70 79.00 107.00 108.00</th><th>59.30 75.50 80.00 108.00 109.00</th><th>0.80 1.00 1.00</th><th>0.0100 0.0100 0.0100 0.0050 0.0050</th><th></th></scm>	56044 56046 56047 56048 56049	58.30 74.70 79.00 107.00 108.00	59.30 75.50 80.00 108.00 109.00	0.80 1.00 1.00	0.0100 0.0100 0.0100 0.0050 0.0050	
		56050 56051	109.00 110.00	110.00 111.00		0.0050 0.0050	

Samples

Sample Number	From	То	Au gpt	Au R gpt
Sample Type ASSAY				
56025	24.00	24.50	0.2300	
56027	37.10	37.60	0.0050	
56028	46.00	47.00	0.0050	
56029	47.00	47.50	0.0050	
56030	47.50	48.30	0.0050	
56031	48.30	48.90	0.0050	
56032	48.90	49.30	0.2300	

DETAILED LOG

Hole Number: TW07-52

Samples

May 29, 2008

Sample Number	From	То	Au gpt	Au R gpt
Sample Type ASSAY				
56033	49.30	50.00	0.0600	
56034	50.00	50.60	0.0050	
56036	50.60	51.60	0.0050	
56037	51.60	52.60	0.0050	
56038	52.60	53.60	0.0050	
56039	53.60	54.30	0.0050	
56040	54.30	55.30	0.0050	
56041	55.30	56.30	0.0050	
56042	56.30	57.30	0.0050	
56043	57.30	58.30	0.0050	
56044	58.30	59.30	0.0100	
56046	74.70	75.50	0.0100	
56047	79.00	80.00	0.0100	
56048	107.00	108.00	0.0050	
56049	108.00	109.00	0.0050	
56050	109.00	110.00	0.0050	
56051	110.00	111.00	0.0050	

Recovery

From	То	Length	Recovered Length	Length > 10cm	Recovery %	RQD%
17.20	24.80	7.60	7.60	7.05	100.0	92.76
24.80	26.00	1.20	1.10	0.30	91.7	25.00
26.00	47.00	21.00	21.00	17.75	100.0	84.52
47.00	58.00	11.00	10.90	6.50	99.1	59.09
58.00	77.00	19.00	19.00	17.50	100.0	92.11
77.00	81.00	4.00	4.00	3.60	100.0	90.00
81.00	84.50	3.50	3.50	2.00	100.0	57.14
84.50	99.50	15.00	15.00	14.40	100.0	96.00
99.50	107.00	7.50	7.50	5.40	100.0	72.00
107.00	112.50	5.50	5.50	4.70	100.0	85.45

Page 3 of 3

Units: METRIC