REPORT on DIAMOND DRILLING

For

GOLDEN CHALICE RESOURCES INC

On the

TIMMINS WEST PROJECT PORCUPINE MINING DIVISION, NORTHEASTERN ONTARIO

2·38179

June 5, 2008

Charles Hartley, P. Geo.

Golden Chalice Resources

SUMMARY

The Timmins West Property, held under option by Golden Chalice Resources, is located 80 km southwest of Timmins, Ontario. The property comprises 61 unpatented mining claims (approximately 11,552 hectares) in Penhorwood, Kenogaming, and Keith Townships.

A 2005 airborne magnetic survey outlined several clusters of weak to strong electromagnetic conductors on the property. Moderately intense electromagnetic conductors are located at 418750E 5330250N on claim 4207054 and 418750E 5331900N on claim 4207048. In order to test these electromagnetic conductors, a diamond drilling program consisting of three holes was initiated in the spring of 2008. During the period April 15 to April 30, 2008 three holes were drilled for a total of 735 metres. This drilling has successfully explained the electromagnetic anomalies as weak conductive zones within sheared mafic volcanic or graphite with local minor pyrite and\or pyrrhotite.

To examine a possible explanation for these conductors, a diamond drilling program consisting of three holes (TW 08-01 to 03) was initiated in the spring of 2008. During the period April 15 to April 30, 2008 three holes were drilled for a total of 735 metres.

The second objective of the 2008 diamond drill program was to examine the Radio Hill Iron Formation. This exploration drilling consisted of two drill holes. One drill hole Rh-08-01 tested the iron formation and the second hole RH-08-02 was designed to examine the northern contact of the iron formation with the mafic volcanic. During the period May 01, 2008 to May 17, 2008 the two drill holes were completed to a depth of 300 metres each for a total of 600 metres.

The diamond drilling has successfully explained the electromagnetic conductors located on claims 4207054 and 4207048.

The diamond drilling on the Radio Hill Iron Formation has confirmed the continuity of a banded chert - magnetite iron formation as seen in hole RH-08-01. Drill hole no. RH-08-02 has confirmed a sequence of mafic to possibly ultramafic volcanic rocks to the north of the iron formation. These volcanic rocks may host economic mineralization in other locations on the Timmins West Property.

It is recommended further exploration work be completed on the Timmins West Property. This may include additional air borne geophysical survey. Also additional ground survey work will be required, including prospecting, ground geophysical surveys, geological mapping, possibly geochemical soil surveys and more extensive follow-up diamond drilling to test favourable areas.

TABLE OF CONTENTS

Summary	
Introduction	1
Location and Access	1
Previous work	2
Property Geology	3
Discussion and scope of work	4
Table 1: Timmins West Project log	5
Conclusions and Recommendations	6
Certificate of Qualifications	7
Bibliography	8

APPENDICES

APPENDIX A	Certificate of Expenditures
APPENDIX B	Diamond Drill Hole Logs

SCHEDULE A Claims list

FIGURES

- Figure 1 Claims Location Map
- Figure 2 Diamond Drill Hole Location Map
- Figure 3 Diamond Drill Hole sections and plans

INTRODUCTION

The Timmins West Property comprises 61 contiguous unpatented mining claims (639 claim units) covering approximately 11,552 hectares in Penhorwood, Keith and Kenogaming Townships. The property is held 100% by Golden Chalice Resources.

Exploration work in 2005 consisted of an airborne magnetic and time domain electromagnetic survey (VTEM) conducted by Geotech Limited, over much of the property. The time domain electromagnetic survey identified numerous clusters of weak to strong conductors. Two moderate electromagnetic conductors are located at 418750E 5330250N on claim 4207054 and 418750E 5331900N on claim 4207048.

To examine for a possible explanation for these conductors, a diamond drilling program consisting of three holes (TW 08-01 to 03) was initiated in the spring of 2008. During the period April 15 to 30, 2008 three holes were drilled for a total of 735 metres.

The second objective of the 2008 diamond drill program was to examine the Radio Hill Iron Formation. This exploration drilling consisted of two drill holes. One drill hole Rh-08-01 tested the iron formation and the second hole RH-08-02 was designed to examine the northern contact of the iron formation and with the mafic volcanic. During the period May 01, 2008 to May 16, 2008 the two drill holes were completed to a depth of 300 metres each for a total of 600 metres.

The co-ordination and implementation of the various technical tasks of the exploration work were conducted by project supervisor C Hartley, with field assistance from G Ross, and occasional assistance from D Bryant, S Wojtczak while core logging was completed by B Lentz.

This report describes the diamond drilling program on the Timmins West Project completed in the spring of 2008.

LOCATION AND ACCESS

The Timmins West Property, held by Golden Chalice Resources Inc is located 80 kilometres southwest of Timmins, Ontario (Figure 1). It is comprised of 61 mining claims (706 claim units totalling about 11,552 hectares) that covers northeast and central Penhorwood Township, as well as the west central portion of Kenogaming Township and eastern Keith Township. A complete claims list is in schedule A in back of this report.

The property is readily accessed by motor vehicle from Highway 101 West, The main Kenogaming Timber Road cuts through the eastern portion of the property, Further to the west; a second main gravel road Kukatush road off Highway 101 gives access to the northwest portion of the property. A network of ATV and 4x4 truck trails off these two main

gravel roads give further access to the property.

The main east-west rail line of the Canadian National Railway connecting eastern and western Canada transects the southwest corner of the claim group, about 3 kilometres south of the Radio Hill iron formation.

PREVIOUS WORK

Penhorwood Township has been the focus of much exploration for many years.

The most recent work has been by Golden Chalice Resources Inc. This has included airborne geophysical surveys in 2005 followed by limited ground follow up in 2007 and included trenching, diamond drilling and channel sampling in selected areas.

The Ontario government through the Ontario Geological Survey and Department of Mines and Northern Development has completed a number of geological studies in the area. The work from the government reports include, but are not limited to the following: 1972 "Geology of the Kukatush-Sewell Lake Area District of Sudbury", 1990 "Airborne electromagnetic and total magnetic intensity survey, north Swayze – Montcalm areas", 1995 "Precambrian Geology, Northern Swayze Greenstone Belt", 1996 "Precambrian Geology, Montcalm Greenstone Belt". Other government reports date back to earlier years but have not been part of this research.

Private sector interest in the Swayze Greenstone belt has been ongoing since the early years of the development of the Porcupine Mining District. Much of the interest in the area was as the result of the extensive work by the Ontario government. This has resulted in the location of many gold and base metal prospects as well as industrial minerals.

Perhaps the most extensive work has been completed on the Radio Hill Iron Formation. During the 1960's Kukatush Mining Corporation and Behre Dolbear and Company Inc completed an extensive study here with the objective of bringing the Radio Hill Iron Formation to commercial production for iron ore. This work has included diamond drilling, trenching, bulk sampling, ore reserves, metallurgical pelletizing of the iron ore and mining feasibility studies. These studies report a historical resource, non 43-101 compliant, of a minimum of 158 million tons of banded chert-magnetite iron ore with an average grade of approximately 27.8% acid-soluble iron.

The Kukatush Mining Corporation also outlined a deposit of an estimated 27 million tons containing 29% total iron within the Nat River iron formation.

PROPERTY GEOLOGY

The property lies within the Superior Province of Archean basement rocks, in the Eastern Canadian Shield. It is situated in the north-eastern part of the Swayze Greenstone belt a possible western extension of the Abitibi Greenstone belt.

The property is predominantly underlain by southwest– northeast trending metamorphosed (greenschist) volcanics of the Muskego-Reeves Assemblage ranging from ultramafic to felsic. The mafic volcanics are pillowed to massive andesitic or basaltic flows. They are the dominant rock type on the property. Ultramafic volcanic flow units and/or intrusive sills trending east-west occur in the central portion of the property. They are intercalated with the mafic volcanics.

The east central portion of the property is underlain by felsic volcanics of the Hanrahan Lake Complex that extend west from Kenogaming Township. The felsic volcanics are comprised of tuffs, lapilli tuffs, agglomerates and intermediate to felsic flows and form the core of a major northwest plunging antiform. A fairly continuous iron formation known as the Nat River iron formation marks the boundary between the felsic and the mafic volcanic rocks.

In the northwest portion of the property metasediments, greywackes and conglomerates occur followed by mafic and ultramafic volcanic and to the south by the Radio Hill iron formation.

The north centre part of the property is underlain by north-south trending ultramafic, mafic and felsic porphyry intrusive units that may be part of a layered complex. These intrusive units are interpreted to be sliced up by a series of northeast trending faults. In the southwest the Kukatush Stock (Biotite hornblende granodorite) intrudes the volcanics and in the southeast the Kenogamissi Batholith (hornblende and/or biotite bearing granodiorite to tonalite gneiss). Smaller quartz-feldspar and feldspar porphyry intrusive bodies also occur on the property. All the rock types are intruded by late north to north-northwest trending diabase dykes.

Three major faults cross cut the property, the east-west trending Destor-Porcupine, the east-west trending Jehann Lake Fault and the southwest trending Hardiman Bay Fault.

Discussion and Scope of Work

The diamond drilling totalled 1335 metres in five holes, drilled on the Timmins West Project from April 15 to May 17, 2008. The drilling was contracted to Orbit-Garant Diamond Drilling of Val D'Or, Quebec.

Phase one of the drilling was to determine a possible explanation of moderate airborne electromagnetic conductors located 418750E 5330250N on claim 4207054 and 418750E 5331900N on claim 4207048.

The second phase of the drill program was designed to; 1) examine the Radio Hill iron formation and 2) examine the contact of the iron formation and the mafic volcanics to the north.

The co-ordination and implementation of the various technical tasks of the exploration work were conducted by project supervisor C Hartley, with the assistance of G Ross, and occasional assistance of D Bryant, S Wojtczak while core logging was completed by B Lentz. Maps and sections were prepared by R Sekries. All personal reside in Timmins, Ontario.

All core logging was completed in facilities of Golden Chalice Resources Inc in Timmins, Ontario. The drill core is stored at facilities of Golden Chalice Resources Inc in Timmins, Ontario.

The drill logs for the project in Appendix A.

Table 1: Timmins West Project Log

₿

I

Z

B

Date	Claim No.	Work Completed
April 15	4207054	Mob to Timmins West Project
	4207054	Diamond drilling/ supervision, field supervision and core logging
April 16 to 20		
April 20 to 30	4207048	Diamond drilling/ supervision field supervision and core logging
May 01	3010209	Mobilization of diamond drill to Radio Hill
May 02 to 16	3010209	Radio Hill Diamond drilling/ supervision field supervision and core
		logging
May 16,17		De-mob, supervision and core logging
May 18,19		core logging
May 27 to June 02		Report and prep sections and maps

CONCLUSION AND RECOMMENDATIONS

The Timmins West Property, held under option by Golden Chalice Resources. The property comprises 61 unpatented mining claims (~11,552 hectares) in Penhorwood, Kenogaming, and Keith Townships, located about 80 km southwest of Timmins, Ontario

A 2005 airborne magnetic survey outlined several clusters of weak to strong electromagnetic conductors. Moderate electromagnetic conductors are located at 418750E 5330250N on claim 4207054 and 418750E 5331900N on claim 4207048. In order to test these electromagnetic conductors, a diamond drilling program consisting of three holes was initiated in the spring of 2008. During the period April 15 to April 30, 2008 three holes were drilled for a total of 735 metres.

To examine a possible explanation for these conductors, a diamond drilling program consisting of three holes (TW 08-01 to 03) was initiated in the spring of 2008. During the period April 15 to April 30, 2008 three holes were drilled for a total of 735 metres.

The second objective of the 2008 diamond drill program was to examine the Radio Hill Iron Formation. This exploration drilling consisted of two drill holes. One drill hole Rh-08-01 tested the iron formation and the second hole RH-08-02 to examine the northern contact of the iron formation and with the mafic volcanic. During the period May 01, 2008 to May 17, 2008 two 300 metre drill holes were completed, for a total of 600 metres.

The diamond drilling has successfully explained the electromagnetic conductors as weak conductive zones within sheared mafic volcanic or graphite with local minor pyrite and\or pyrrhotite located on claims 4207054 and 4207048.

The diamond drilling on the Radio Hill Iron Formation has confirmed the continuity of the iron as a chert - magnetite iron formation as demonstrated in hole RH-08-01. Drill hole no. RH-08-02 has confirmed a sequence of mafic to possibly ultramafic volcanic rocks to the north of the iron formation. These volcanic rocks may host economic mineralization in other locations on the Timmins West Property.

It is recommended further exploration work be completed on the Timmins West Property. This may include additional air borne geophysical surveys to cover areas not cover in the earlier surveys. Also additional ground survey work will be required, including, prospecting, trenching, ground geophysical surveys, geological mapping, possibly geochemical soil surveys and more extensive follow-up diamond drilling to test favourable targets.

CERTIFICATE OF QUALIFICATIONS

I, Charles Hartley, of the City of Timmins, Province of Ontario, do hereby certify that:

- (1) I am a professional Consulting Geologist, residing in Timmins Ontario.
- (2) I hold a B.Sc. degree in Geological Sciences (1977) from St. Francis Xavier University, Antigonish, Nova Scotia and a B.Sc. Degree (1994) in Technology in Environmental Studies, University College of Cape Breton, Sydney, Nova Scotia...
- (3) I am a registered professional geoscientist with the Association of Professional Geoscientists of Ontario. A member of the Canadian Institute of Mining and Metallurgy and the Prospectors and Developers Association of Canada.
- (4) This report is based research of assessment and geological reports and supervision of the diamond drilling program on the Timmins West Property in 2008.
- (5) I have no personal interest in the property covered by this report, either direct or indirect.
- (6) Permission is granted for the use of this report, in whole or in part, for assessment and qualification requirements but not for advertising purposes.

C'hale H

Dated at Timmins, Ontario June 05, 2008

Charles Hartley P. Geo. B Sc

BIBLOGRAPHY

Ayer, J. A. 1995. Precambrian geology, Northern Sywayze Greenstone Belt; Ontario Geological Survey, Report 297, 57p.

Milne, V. G. 1972. Geology of the Kukatush – Sewell Lake area, District of Sudbury; Ontario Division of Mines, GR97, 116p. Accompanied by maps 2230, 2231, scale 1inch to ½ mile.

Ontario Geological Survey 1990. Airborne electromagnetic and total intensity magnetic survey, north Swayze – Montcalm area. Ontario Geological Survey, Map 81377 APPENDIX A DRILL HOLE LOGS

Golden Chalice Resources

	Date: 27	ing: 418750 ation: 0 ar Azi.: 348.0 ar Dip: -45.0 length: 78.00 s: Metric size: NQ : GPS rials left: Casing ar survey: GPS. urvey method: Flexit led by: Orbit- Garant ents: April 20, 2008 ed by: B. Lentz (s) logged: April 21, 2008 ose: storage: GCR Facility Timmins o Geolog m) .00 OVERBURDEN .90 INTERMEDIATE DYKE Grey, fine-grained, massive, homogened Trace pyrite dissemination, rqd 60-70		GOLDEN C	HALICE R	ESOURCES								Pag	e: 1	of 2			
	Northing Easting:				DRIL	L HOLE R	ECORD					Drill	Hole	:	TWC	8-01			
	Elevatio		0			Dip Test Azi,	s *** Dip					Proje Prope				mins We horwood		ship	
	Collar A Collar D				78	350.0	-45.3					Claim North	ing:			7054			
												Easti GPS N	orthi			0300			
	Units:	nits: Metric ore size: NQ										GPS E GPS E	levat	ion:		750			
	Core size: NQ Grid: GPS Materials left: Casing										Date Date	compl	eted;	Apı	il 19, il 🎢	2000	19/	08	
	Materials left: Casing Collar survey: GPS. DH Survey method: Flexit Drilled by: Orbit- Garant Comments: April 20, 2008									Sampl Analy Lab:			NA	sample	ed 🗸	H	4		
										Sampl			NA NA			ı			
	Comments	ollar survey: GPS. H Survey method: Flexit rilled by: Orbit- Garant omments: April 20, 2008 ogged by: B. Lentz									Lab r	eport	:	NA					
	Date(s)	logged:											N	1/1	1	\mathbb{X}	,		
	Purpose: Core sto		GCR Facility Timmins									Č	. 1	XV.	n	ea.	5		
From (m)	То (m)		G	eology			Sample	From (m)	T0 (m)	L (m)	Au ppb	Pt ppb	Fd ppb	Ag ppm	Cu ppm	Ni Ppm	Zn ppm	PD PD	Co PPM
.00	13.00	OVERBURDE	2N																
13.00	15.90	Grey, fin	ne-grained, massive, hom		agnetic.														
15.90	28.70	Grey, mea Sub-round Trace ora Pervasive	lium-grained, massive, h	to 5mm, elong n within strin 30 degrees to	ated by sh gers up to core axis.	nearing. 5 lcm.													
28.70	29.40	INTERMED: Same as 1	IATE DYKE 13-15.9m.																
29 . 40	36.50	Same as 31.20 31	ELDSPAR PORPHYRY 15.9-28.7m. .50 Intermediate dyke, at 40 degrees to cor nal lower contact.		and lower	contacts	5												
36.50	41.30		RITE dium-grained, massive, h ange potassium alteratic																

TW08-01 (continued)

								_	_	-	Pá	age: 2	2 of 2	2	
From (m)	T0 (m)	Geology	Sample	From (m)	To (m)	L (m)	Au ppb	Pt ppb	Pd	Ag ppm	Cu	Ni	Zn	Pb	Co
41.30	44.80	Trace pyrite cubes up to 3mm. Sharp lower contact at 50 degrees to core axis, rqd 75-80%. INTERMEDIATE DYKE Same as 28.7-29.4m. Distinct potassium alteration 5cm in stringers. Sharp lower contact at 30 degrees to core axis.							PPU	ppm	ppm	blu	ppm	ppm	bbw
44.80	69.60	QUARTZ-FELDSPAR PORPHYRY Sheared qtz/feld. Porphyry, same as 29.4-36.5m. Strong shear foliation at 20 degrees to core axis. 54.90 55.70 Intermediate dyke (same as above) sharp lower contact at 40 degrees to core axis. 57.90 58.90 Intermediate dyke (same as above) sharp upper and lower contacts 35 degrees to core axis. 61.50 61.70 Intermediate dyke (same as above) sharp upper and lower contacts at 30 degrees to core axis. 62.50 62.70 Intermediate dyke (same as above) sharp upper and lower contacts at 30 degrees to core axis. 69.20 69.50 Intermediate dyke (same as above) sharp upper and lower contacts at 35 degrees to core axis. 59.20 Sharp upper and lower contacts at 35 degrees to core axis. 50.50 Sharp lower contact at 35 degrees to core axis.													
69.60	78.00	GRANODIORITE Same as 36.5-41.3m. 1% Pyrite, cubic, blebs, and disseminated stringers up to 5mm.													
78.00		END OF HOLE													

	Date: 27	7 May, 2008			GOLDEN CI	HALICE R	ESOURCES	5							Pa	ge: 1	of 7		
	Northing Easting:		5330300 418750		DRIL	L HOLE R	ECORD					Drill	Hole	:	TW	08-02			
	Elevatio		0		***	Dip Test	s ***					Projec	. +.		m : .	nmins W			
	0-11		4.71.15			Azi.	Dip					Proper				nmins w nhorwoo		nehir	-
	Collar A Collar L		175.0 -45.0		20	174.0						Claim				07054	u 10w	nonrt	Ρ
	corrar r	<i>.</i>	-43.0		30 90	176.2 176.5	-45.5 -45.6					North:							
					150	176.9	-45.3					Eastin GPS No			5.2	30300			
	Hole ler	ngth:	306.00		200	178.1	-45.2					GPS E				8750			
	Units: Core siz		Metric NO		250	178.2	-44.9					GPS E	levat	ion:					
	Grid:		GPS		300	178.4	-44.2					Date S				ril 20,			
												Date of			1-	ril 22,			
	Material		Casing									Sample Analy:		e:	NO NA	t sampl	ed		
	Collar s		GPS.									Lab:			NA				
	Drilled	ey method: by:	Reflex Orbit									Sample			NA				
	Comments		Same collar as TWO8	-01								Lab re	eport	:	NA				
	Logged b		B. Lentz											/	- 1	-+2			
		logged:	April 22-24,2008									/	2			///_			
	Purpose: Core sto		GCR Facility Timmir									(1	\checkmark	a	X	1		
												\sim	-0						
From	То				the second s														
(m)	(m)			Geology			Sample	From	To (m)	L (m)	Au	Pt	Pd	Ag	Cu	Ni	Zn	Pb	
(m)	(m)			Geology			Sample	From (m)	To (m)	L (m)	Au ppb	Pt ppb	Pd Ppb	Ag ppm	Cu ppm	Ni ppm	Zn ppm		
(m) .00	(m) 16.00	OVERBURDE	N	Geology			Sample	ſ					- 10						
.00	16.00			Geology			Sample	ſ					- 10						
		QUARTZ-FE	LDSPAR PORPHYRY				Sample	ſ					- 10						
.00	16.00	QUARTZ-FE Grey, med	LDSPAR PORPHYRY lium-grained, massive	, homogenous, non	-magnetic.		Sample	ſ					- 10						
.00	16.00	QUARTZ-FE Grey, med Sub-round Trace ora	LDSPAR PORPHYRY lium-grained, massive led blue quartz blebs nge potassium altera	, homogenous, non up to 5mm, elong tion within strin	ated by she gers up to	1 cm.	Sample	ſ					- 10						
.00	16.00	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive	LDSPAR PORPHYRY lium-grained, massive led blue quartz blebs nge potassium altera shearing/foliation	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree	ated by she gers up to s to core a	lcm.	Sample	ſ					- 10						
.00	16.00	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive	LDSPAR PORPHYRY lium-grained, massive led blue quartz blebs nge potassium altera	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree	ated by she gers up to s to core a	lcm.	Sample	ſ					- 10						
.00	16.00	QUARTZ-FE Grey, mec Sub-round Trace ora Pervasive Sharp low	LDSPAR PORPHYRY lium-grained, massive led blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deg	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree	ated by she gers up to s to core a	lcm.	Sample	ſ					- 10						
.00	16.00 21.30	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive Sharp low QUARTZ-FE	ELDSPAR PORPHYRY lium-grained, massive led blue quartz blebs inge potassium altera shearing/foliation er contact at 30 dec ELDSPAR PORPHYRY	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree grees to core axis	ated by sha gers up to s to core a , rqd 60-70	lcm. axis. D%.		ſ					- 10						
.00	16.00 21.30	QUARTZ-FF Grey, mec Sub-round Trace ora Pervasive Sharp low QUARTZ-FF QtZ/feld. non-magne	ELDSPAR PORPHYRY lium-grained, massive led blue quartz blebs nge potassium altera shearing/foliation er contact at 30 dec ELDSPAR PORPHYRY Porphyry?, grey, m tic.	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree grees to core axis	ated by sha gers up to s to core a , rqd 60-70	lcm. axis. D%.		ſ					- 10						
.00	16.00 21.30	QUARTZ-FE Grey, mec Sub-rounc Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue c	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 dec LDSPAR PORPHYRY Porphyry?, grey, m tic.	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree rees to core axis wedium-grained, ma	ated by sha gers up to s to core a , rqd 60-70	lcm. axis. D%.		ſ					- 10						
.00 16.00 21.30	16.00 21.30 26.40	QUARTZ-FE Grey, mec Sub-round Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue of 201 Black	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deq LDSPAR PORPHYRY Porphyry?, grey, m tic. quartz. grains up to 3mm, r	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree rees to core axis wedium-grained, ma	ated by sha gers up to s to core a , rqd 60-70	lcm. axis. D%.		ſ					- 10						
.00	16.00 21.30	QUARTZ-FE Grey, mec Sub-rounc Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue o 201 Black QUARTZ-FE	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deq LDSPAR PORPHYRY Porphyry?, grey, m tic. quartz. Sprains up to 3mm, r	, homogenous, non up to 5mm, elong tion within strin at 30 - 40 degree rees to core axis wedium-grained, ma	ated by sha gers up to s to core a , rqd 60-70	lcm. axis. D%.		ſ					- 10						
.00 16.00 21.30	16.00 21.30 26.40	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue o 201 Black QUARTZ-FE Same as 1	LDSPAR PORPHYRY lium-grained, massive led blue quartz blebs inge potassium altera shearing/foliation er contact at 30 dec LDSPAR PORPHYRY Porphyry?, grey, m tic. uartz. grains up to 3mm, r LDSPAR PORPHYRY 6-21.3m.	e, homogenous, non i up to 5mm, elong ition within strin at 30 - 40 degree prees to core axis redium-grained, ma	ated by sha gers up to s to core a , rqd 60-70 ssive, homo	lcm. axis. D%.		ſ					- 10						
.00 16.00 21.30	16.00 21.30 26.40	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue o 201 Black QUARTZ-FE Same as 1	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deq LDSPAR PORPHYRY Porphyry?, grey, m tic. quartz. Sprains up to 3mm, r	e, homogenous, non i up to 5mm, elong ition within strin at 30 - 40 degree prees to core axis redium-grained, ma	ated by sha gers up to s to core a , rqd 60-70 ssive, homo	lcm. axis. D%.		ſ					- 10						
.00 16.00 21.30	16.00 21.30 26.40 31.80	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue o 201 Black QUARTZ-FE Same as 1 Sharp low INTERMED1	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deg LDSPAR PORPHYRY Porphyry?, grey, m tic. grains up to 3mm, r LDSPAR PORPHYRY 6-21.3m. er contact at 30 deg ATE DYKE	e, homogenous, non s up to 5mm, elong tion within strin at 30 - 40 degree prees to core axis medium-grained, ma eqd 60-70%.	ated by sha gers up to s to core a , rqd 60-70 ssive, hom	lcm. axis. D%.		ſ					- 10						
.00 16.00 21.30 26.40	16.00 21.30 26.40 31.80	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue o 201 Black QUARTZ-FE Same as 1 Sharp low INTERMED1 Grey, fir	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deg LDSPAR PORPHYRY Porphyry?, grey, m tic. quartz. grains up to 3mm, r LDSPAR PORPHYRY 6-21.3m. er contact at 30 deg ATE DYKE e-grained, massive,	e, homogenous, non s up to 5mm, elong tion within strin at 30 - 40 degree prees to core axis medium-grained, ma eqd 60-70%.	ated by sha gers up to s to core a , rqd 60-70 ssive, hom	lcm. axis. D%.		ſ					- 10						
.00 16.00 21.30 26.40	16.00 21.30 26.40 31.80	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue o 201 Black QUARTZ-FE Same as 1 Sharp low INTERMEDI Grey, fir Trace pyr	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deg LDSPAR PORPHYRY Porphyry?, grey, m tic. quartz. Stans up to 3mm, r LDSPAR PORPHYRY 6-21.3m. er contact at 30 deg ATE DYKE e-grained, massive, ite dissemination.	e, homogenous, non i up to 5mm, elong ition within strin at 30 - 40 degree prees to core axis redium-grained, ma eqd 60-70%. prees to core axis homogenous, non-m	ated by sha gers up to s to core a , rqd 60-70 ssive, homo agnetic.	lcm. axis. D%. ogenous,		ſ					- 10						
.00 16.00 21.30 26.40	16.00 21.30 26.40 31.80	QUARTZ-FE Grey, med Sub-round Trace ora Pervasive Sharp low QUARTZ-FE Qtz/feld. non-magne No blue o 201 Black QUARTZ-FE Same as 1 Sharp low INTERMEDI Grey, fir Trace pyr	LDSPAR PORPHYRY lium-grained, massive ed blue quartz blebs nge potassium altera shearing/foliation er contact at 30 deg LDSPAR PORPHYRY Porphyry?, grey, m tic. quartz. grains up to 3mm, r LDSPAR PORPHYRY 6-21.3m. er contact at 30 deg ATE DYKE e-grained, massive,	e, homogenous, non i up to 5mm, elong ition within strin at 30 - 40 degree prees to core axis redium-grained, ma eqd 60-70%. prees to core axis homogenous, non-m	ated by sha gers up to s to core a , rqd 60-70 ssive, homo agnetic.	lcm. axis. D%. ogenous,		ſ					- 10						

. . .

TW08-02 (continued)

Page: 2 of 7

34.70 3	(m) 36.10	Same as 26.4-31.8m. Sharp lower contact at 25 degrees to core axis.	 (m)	(m)	(m)	ppb	ppb.	ppb	b bw					
	36.10					<u> </u>		FFC	PEm	ppm	ppm	₽₽m	ppm	PFm
	36.10													
26.10		QUARTZ-FELDSPAR PORPHYRY Qtz/feld. Porphyry?, same as 21.3-26.4m. Sharp lower contact at 30 degrees to core axis.												
36.10 3	38.90	QUARTZ-FELDSPAR PORPHYRY Same as 32.2-34.7m. Sharp lower contact at 35 degrees to core axis, rqd 70-80%.												
38.90 3	39.80	INTERMEDIATE DYKE Same as 31.8-32.2m. Sharp lower contact at 40 degrees to core axis.												
39.80 4	40.20	QUARTZ-FELDSPAR PORPHYRY Same as 36.1-38.9m. Sharp lower contact at 40 degrees to core axis, rqd 70-80%.												
40.20 4	42.20	INTERMEDIATE DYKE Same as 38.9-39.8m. Sharp lower contact at 30 degrees to core axis.												
42.20 4	13.80	QUARTZ-FELDSPAR PORPHYRY Same as above. Heavily sheared at 40 degrees to core axis. Sharp lower contact at 35 degrees to core axis, rqd 70-80%.												
43.80 5	52.00	<pre>GRANODIORITE Grey, medium-grained, massive, homogenous, non-magnetic. Trace orange potassium alteration within stringers up to 1 cm. Trace pyrite cubes. 44.30 44.50 Heavy potassium alteration with 4cm limonite? orange oxidation mineral. 45.90 45.20 QUART2-FELDSPAR PORPHYRY dyke with sharp upper and lower contacts at 35 degrees to core axis, rqd 75~80%.</pre>												
52.00 6	60.30	Same as 42.2-43.8m. 58.30 58.50 20cm shear at 45 degrees to core axis, 2cm quartz/carbonate vein with green serpentinization at both contacts. Trace pyrite stringers within shear.												
60.30 6	63.50	Sharp lower contact at 25 degrees to core axis, rqd 70-80%. INTERMEDIATE DYKE Same as 40.2-42.2m. Sharp lower contact at 35 degrees to core axis.												
63.50 6	69.50	QUARTZ-FELDSPAR PORPHYRY												

TW08-02 (continued)

From То Geology Sample From То L Au Ρt ₽d Aq Cu Ni Zn Рb C (m) (m) (m) (m) (m) ppb ppb ppb ppm ppm ppm ppm ppm ppm Same as 52-60.3m. Sharp lower contact at 70 degrees to core axis, rqd 70-80%. 69.50 70.70 INTERMEDIATE DYKE Same as 60.3-63.5m. Sharp lower contact at 25 degrees to core axis. 70.70 78.80 QUARTZ-FELDSPAR PORPHYRY Same as 63.5-69.5m. 72.30 73.00 Intermediate dyke, same as above. Sharp upper and lower contacts at 40 degrees to core axis. 76.20 77.10 Intermediate dyke, same as above. Sharp upper and lower contacts at 30 degrees to core axis, rqd 70-80%. 83.00 INTERMEDIATE DYKE 78.80 Same as above. Sharp lower contact at 30 degrees to core axis. 83.00 96.70 QUARTZ-FELDSPAR PORPHYRY Same as 70.7-78.8m. Sharp lower contact at 30 degrees to core axis, rgd 70-80%. 96.70 114.00 GRANODIORITE Same as 43.8-52m. Trace pyrite, 10-15% quartz stringers lcm with potassium alteration. Sharp lower contact at 60 degrees to core axis. 114.00 116.70 QUARTZ-FELDSPAR PORPHYRY Same as 83-96.7m. Porphyritic texture elongated into stringers at 60 degrees to core axis by dominant shearing. Sharp lower contact at 40 degrees to core axis, rqd 70-80%. 116.70 118.00 INTERMEDIATE DYKE Same as 78.8-83m. Increase to up to 1% disseminated pyrite. Sharp lower contact at 60 degrees to core axis. 118.00 121.00 QUARTZ-FELDSPAR PORPHYRY Same as 114-116.7m. Sharp lower contact at 50 degrees to core axis, rqd 70-80%. 121.00 122.60 GRANODIORITE Same as 96.7-114m. 121.50 121.90 Sheared intermediate dyke, up to 1% pyrite dissemination 10-15% sheared quartz/carbonate stringers, sharp upper and lower contacts at 60 degrees to core axis. Sharp lower contact at 50 degrees to core axis, rqd 70%.

Page: 3 of 7

· .

TW08-02 (continued)

From	То									-	Pa	age:	4 of 7		
(m)	10 (m)	Geology	Sample	From	То	L	Au	Pt	Pd	Ag	Cu	Ni	Zn	Pb	Co
<u> </u>	<u> </u>			(m)	(m)	(m)	ppb	bbp	ppb	ppm	ppm	ppm	ppm	ppm	ppm
122.€0	173.30	Same as 118-121m. Sharp lower contact at 65 degrees to core axis, rqd 70-80%. 122.90 123.40 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 60 degrees to core axis. 125.60 125.90 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 60 degrees to core axis. 128.80 129.20 Sheared intermediate dyke, same as above. Sharp upper at 65 degrees to core axis. 136.80 137.20 Sheared intermediate dyke, same as above. Sharp lower at 35 degrees to core axis. 136.80 137.20 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 40 degrees to core axis. 141.30 141.60 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 60 degrees to core axis. 146.60 147.40 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 45 degrees to core axis. 146.60 147.40 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 45 degrees to core axis. 143.20 163.60 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 55 degrees to core axis. 163.20 163.60 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 55 degrees to core axis.									Ppm	P1-m		β . β.	ppm
		171.60 171.90 Sheared intermediate dyke, same as above.											1		
173.30	175.00	Sharp upper and lower contacts at 55 degrees to core axis.													

Page: 4 of 7

TW08-02 (continued)

From	То					<u>لەر مەر</u>					re	ige: 5	5 of 7		
(m)	10 (m)	Geology	Sample	From	То	L	Au	Pt	Pd	Ag	Cu	Ni	Zn	Pb	Co
				(m)	(m)	(m)	ppb	ppb	ppb	ppm	ppm	ppm	ppm	Ppm	ppm
210.40	222.10	Similar to 121.1-122.6. Medium-grained, massive, homogenous, non-magnetic.													
		Orange potassium alteration along quartz stringers up to 3 mm. No pervasive alteration as in 121.1-122.6. Sharp lower contact at 70 degrees to core axis, rqd 70%.													
222.10	236.60	MAFIC INTRUSIVE (GABBRO?) Shear zone. Same as 175-210.4m. Less pervasive sulfides, up to 1%. Dominant chlorite/sericite alteration appears at 231.9-234.9m. Lots of inclusions/dykes, rqd 50-60%. 224.70 224.90 Sheared intermediate dyke, same as above. Irregular upper and lower contacts at 60 degrees to core axis. 225.10 226.00 QUARTZ-FELDSPAR PORPHYRY. Highly silicified basal breccia at upper contact. Serpentinized alteration. Sharp upper and lower contacts at 70 degrees to core axis. 227.00 227.30 Sheared intermediate dyke, same as above. Sharp upper contact at 60 degrees to core axis. Sharp lower contact at 75 degrees to core axis. 227.30 228.10 QUARTZ-FELDSPAR PORPHYRY, same as above. No breccia with only slight silicification 5%. Sharp lower contact at 70 degrees to core axis. 228.70 231.90 QUARTZ-FELDSPAR PORPHYRY, same as above. Sharp upper and lower contacts at 70 degrees to core axis.													
236.60		Same as above. Orange potassium alteration along quartz veins up to 5cm and stringers. Shearing foliation becomes less intense at 254.5m and gradually fades into a minor shear foliation at 45 degrees to core axis. Sharp lower contact at 70 degrees to core axis, QUARTZ-FELDSPAR PORPHYRY 75-80%. 252.30 253.00 Sheared intermediate dyke, same as above. Sharp upper contact at 65 degrees to core axis. Sharp lower contact at 35 degrees to core axis.													
274.10	277.40	MAFIC INTRUSIVE (GABBRO?) Same as above, shear zone. Darker green color, 50-60% chlorite/serpentine alteration. 5% Quartz/carbonate stringers up to 3mm. Trace pyrite dissemination, rqd 70%.													

Page: 5 of 7

TW08-02 (continued)

From	То		(Pa	age: (6 of 7	·	
(m)	(m)	Geology	Sample	From (m)	То (m)	L (m)	Au ppb	Pt ppb	Pd	Ag	Cu	Ni	Zn	Pb	Co
		275.50 275.70 Sheared intermediate dyke, same as above. Sharp upper and lower contacts at 70 degrees to core axis. 277.10 277.20 Sheared intermediate dyke, same as above. 1% Pyrite dissemination. Sharp upper and lower contacts at 60 degrees to core axis.					PPD	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm
277.40	279.40	QUART2-FELDSPAR PORPHYRY Same as above. No quartz/carbonate stringers or potassium alteration. No notable shear foliation. Broken sharp lower contact.													
279.40	286.60	MAFIC INTRUSIVE (GABBRO?) Same as above, sheared zone at 55 degrees to core axis. Darker green color, 50-60% chlorite/serpentine alteration. 5% Quartz/carbonate stringers up to 3mm. Trace pyrite blebs up to 1cm, and dissemination, rqd 70%. Sharp lower contact at 55 degrees to core axis. 283.80 283.90 QUARTZ-FELDSPAR PORPHYRY dike. Sharp upper and lower contacts at 60 degrees to core axis.													
286.60	288.90	INTERMEDIATE DYKE Same as above. Trace pyrite dissemination. Sharp lower contact at.													
288.90	301.40	MAFIC INTRUSIVE (GABBRO?) Same as above, sheared zone at 55 degrees to core axis. Darker green color, 50-60% chlorite/serpentine alteration. 5% Quartz/carbonate stringers up to 3mm. Trace pyrite blebs up to 1cm, and dissemination, rqd 70%. Sharp lower contact at 55 degrees to core axis.													
301.40	302.40	QUARTZ-FELDSPAR PORPHYRY Same as above. Sharp lower contact at 60 degrees to core axis.							â						
302.40	303.30	MAFIC INTRUSIVE (GABBPO?) Same as above, sheared zone. Darker green color, 50-60% chlorite/serpentine alteration. 5% Quartz/carbonate stringers up to 3 mm. Trace pyrite dissemination, rqd 70%.													
303.30	305.00	QUARTZ-FELDSPAR PORPHYRY Same as above. 303.80 304.00 Sheared intermediate dyke, same as above. Broken sharp lower contact.							Ē						
305.00	306.00	MAFIC INTRUSIVE (GABBRO?) Same as above, sheared zone. Darker green color, 50-60% chlorite/serpentine alteration.													

TW08-02 (continued)

	100-02										Pa	age:	7 of 7		
From (m)	То (m)	Geology	Sample	From (m)	То (m)	L (m)	Au ppb	Pt ppb	Pd ppb	Ag ppm	Cu ppm	Ni ppm	Zn ppm	₽b ppm	Co ppm
306.00		5% Quartz/carbonate stringers up to 3mm. Trace pyrite dissemination, rqd 70%. END OF HOLE													

	Date: 27	7 May, 2008	3		GOLDEN C	HALICE R	ESOURCES	5							Fag	e: 1	of 4	
	Northing	-	5330950		DRII	L HOLE R	ECORD					Drill	Hole		-	8-03		
	Easting: Elevatio		418750 0										nore.	•	100	0-03		
			0			Dip Test Azi.	s *** Díp					Projec				mins W		
	Collar H		180.0		bop ci		bip					Proper Claim:				norwoo 7048	d Town	ship
	Collar I	Dib:	-45.0		33 90	180.2 179.4	-46.1 -46.4					Northi Eastir	ing:		120	1040		
	Hole ler	hath:	351.00		150	181.6						GPS No			533	1950		
	Units:		Metric		200 250	182.6 184.4	-47.2 -47.6					GPS Ea		2	418	750		
	Core siz	ze:	NQ		306	184.2						GPS El Date S		•				
	Grid:		GPS		351							Date d				il 22, il 30,		
	Material	ls left.	Casing									Sample				sampl		
	Collar s		GPS.									Analys	ses:		NA	-		
	DH Surve	ey method:	Flexit									Lab: Sample	acari	ios.	NA NA			
	Drilled		Orbit									Lab re			NA			
	Comments Logged k		B. Lentz	,														
		logged:	April 24,2008 - 70 4	102/08										/ /	2	11		
	Purpose:	:	B. Lentz April 24,2008 ~ ~ 24 &	e 11							1	A r	\checkmark		V	1,		
	Core sto	orage:	GCR Facility Timmins							C	\mathcal{C}	ð		a	D	21		
rom (m)	То (m)		C	eology			Sample	From	То	L	Au	Pt	Pd	Ag	Сл	Ni	Zn	₽b
		2								1 /	A						a a	
							<u> </u>	(m)	(m)	(m)	bbp	ppb	ppb	ppm	ppm	ppm	ppm	ppm
								(m)	(m)	(m)	- bbp	ppb	ppb	ppm	ppm	ppm	ppm.	ppm
.00	18.00	OVERBURDE Casing le	N ft in place.					(m)	(m)	(m)	P5p	ддд	ppp	mqq	ppm	mqq	ppm	ppm
.00	18.00	Casing le	ft in place.					(m)	(m)	(m)	bbp	dqq	ppb	ppm	ppm	ppm	ppm	ppm
		Casing le MAFIC VOI Basalt g	eft in place. CANICS grey green, fine grained	, massive, chlo	ritic, lo	ocal 1 to		(m)	(m)	(m)	ppb	qqq	bbp	ppm	ppm	ppm	ppm	ppm
	21.00	Casing le MAFIC VOI Basalt g 5 mm calc	ft in place. CANICS	, massive, chlo s along fractur	ritic, lo es.	cal 1 to		(m)	(m)	(m)	qdđ	pp	ЪЪр	ppm	ppm	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey	oft in place. CANICS prey green, fine grained wite +\- quartz stringer , fine-grained, massive	s along fractur	es.	ocal 1 to		(m)	(m)	(m)	qqq	дđ	БЪр	ppm	ppm	ppm	mqq	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic	oft in place. CANICS prey green, fine grained ite +\- quartz stringer , fine-grained, massive locally, weakly magneti	s along fractur , homogenous. c to non - magn	es.	cal 1 to		(m)	(m)	(m)	dqq	bbp	Ppp	ppm	ppm	mqq	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic 21.00 26.	<pre>#ft in place. CANICS rey green, fine grained ite +\- quartz stringer , fine-grained, massive locally, weakly magneti 00 5-8cm epidote altere 00 75-80% silicificati</pre>	<pre>s along fractur , homogenous. c to non - magr d porphoblasts</pre>	es. etic.			(m)	(m)	(m)	dqq	ppb	ppb	ppm	тц	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt o 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53.	<pre>eft in place. CANICS grey green, fine grained site +\- quartz stringer , fine-grained, massive locally, weakly magneti 00 5-8cm epidote altere 00 75-80% silicificati stringers 3-10 cm.</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epido	es. etic. te altera			(m)	(m)	(m)	dqq	ppb	ppb	ppm	тqq	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69.	<pre>eft in place. CANICS rey green, fine grained site +\- quartz stringer docally, weakly magneti 00 5-8cm epidote altere 00 75-80% silicificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epido ts with rqd 0-1 stringers 3-10c	es. etic. te altera 0%. m.	tion and		(m)	(m)	(m) 1	- Edd	bbp	ppb	ppm	тq	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69. Poorly r	<pre>eft in place. CANICS rey green, fine grained tite +\- quartz stringer , fine-grained, massive locally, weakly magneti 00 5-80% epidote altere 00 75-80% silicificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/ eqd 25-30%, many small</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epido ts with rqd 0-1 stringers 3-10c	es. etic. te altera 0%. m.	tion and		(m)	(m)	(m) 1	- L D D D D D D D D D D D	ppb	pp	ppm	ΡŢ	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69. Poorly r throughou	<pre>eft in place. CANICS rey green, fine grained tite +\- quartz stringer , fine-grained, massive locally, weakly magneti 00 5-8cm epidote altere 00 75-80% silicificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/ gd 25-30%, many small t the hole.</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epido ts with rqd 0-1 stringers 3-10c 0.5m patches of	es. etic. te altera 0%. m. 3~10cm f	tion and		(m)	(m)	(m) 1	- Edd	ppb	pp	ppm	ΡĘΨ	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt of 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69. Poorly r throughou Upper cor	<pre>eft in place. CANICS grey green, fine grained site +\- quartz stringer , fine-grained, massive locally, weakly magneti 00 5-80% suilcificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/ eqd 25-30%, many small t the hole. that with basalt is sha</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epido ts with rqd 0-1 stringers 3-10c 0.5m patches of rp 35 degrees t	es. etic. te altera 0%. m. 3~10cm f	tion and		(m)	(m)	(m) 1	- Edd	ppb	pp	ppm	ΡĘΨ	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69. Poorly r throughou Upper cor 114.00 11 128.00 13	<pre>eft in place. CANICS rey green, fine grained site +\- quartz stringer docally, weakly magneti 00 5-8cm epidote altere 00 75-80% silicificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/ eqd 25-30%, many small t the hole. that with basalt is sha 7.00 2-5 mm quartz/calci</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epido ts with rqd 0-1 stringers 3-10c 0.5m patches of rp 35 degrees t ite stringers.	es. etic. te altera 0%. m. 3~10cm f o core ax	tion and		(m)	(m)	(m)	- T T T T T T T T T T T T T T T T T T T	ppb	pp	ppm	ΡĘΨ	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69. Poorly r throughou Upper cor 114.00 11 128.00 13 132.00 13	<pre>sft in place. CANICS rey green, fine grained site +\- quartz stringer d, fine-grained, massive locally, weakly magneti 00 5-80% silicificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/ eqd 25-30%, many small t the hole. stact with basalt is sha 7.00 2-5 mm quartz/calc 0.00 2-5 mm quartz/calc</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epide ts with rqd 0-1 stringers 3-10c 0.5m patches of rp 35 degrees t ite stringers. te stringers.	es. etic. te altera 0%. m. 3~10cm f o core ax	tion and		(m)	(m)	(m) 1	- T T T T T T T T T T T T T T T T T T T	ppb	pp	ppm	ΡĘΨ	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt g 5 mm calc DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69. Poorly r throughou Upper cor 114.00 11 128.00 13 132.00 14	<pre>sft in place. CANICS rey green, fine grained site +\- quartz stringer docally, weakly magneti 00 5-8cm epidote altere 00 75-80% silicificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/ eqd 25-30%, many small at the hole. htact with basalt is sha 7.00 2-5 mm quartz/calc 0.00 Small broken fragm 7.00 Small broken fragm 7.00 2-5 mm quartz/calc</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epido ts with rqd 0-1 stringers 3-10c 0.5m patches of rp 35 degrees t ite stringers. te stringers. ents with rqd 0 te stringers.	es. etic. te altera 0%. 3~10cm f o core ax -10%.	tion and		(m)	(m)	(m) 1	- T T T T T T T T T T T T T T T T T T T	ppb	ppb	ppm	ΡĘΨ	ppm	ppm	ppm
8.00	21.00	Casing le MAFIC VOI Basalt of 5 mm calco DIABASE Dark grey Magnetic 21.00 26. 52.00 53. 56.40 70. 67.00 69. Poorly r throughou Upper cor 114.00 11 128.00 13 132.00 14 152.70 15	<pre>sft in place. CANICS rey green, fine grained site +\- quartz stringer d, fine-grained, massive locally, weakly magneti 00 5-80% silicificati stringers 3-10 cm. 40 Small broken fragmer 00 Patchy quartz veins/ eqd 25-30%, many small t the hole. stact with basalt is sha 7.00 2-5 mm quartz/calc 0.00 2-5 mm quartz/calc</pre>	s along fractur , homogenous. c to non - magr d porphoblasts. on with epide ts with rqd 0-1 stringers 3-10c 0.5m patches of rp 35 degrees t ite stringers. te stringers. ents with rqd 0 te stringers.	es. etic. te altera 0%. 3~10cm f o core ax -10%. -10%.	tion and		(m)	(m)	(m)	- - - - - - - - - - - - - - - - - - -	ppb	ppb	ppm	ΡĘΨ	ppm	ppm	bbw

. 1

TW08-03 (continued)

From	То					_					Pa	ige:	2 of 4		
(m)	(m)	Geology	Sample	From (m)	To (m)	L (m)	Au ppb	Pt ppb	Pd PFb	Ag PFM	Cu ppm	Ni ppm	Zn ppm	Pb Ppm	Co PPm
		alteration, 60-70% silicified. 197.50 203.00 Small broken fragments with rqd 0-10%. 220.00 222.00 Chill zone grading into the contact. Sharp contact at 222m and up to 5cm potassium altered quartz/carbonate vein at 40 degrees to core axis.													
222.00	233.30	MAFIC VOLCANICS Same as 18-21m, rqd 65-70%. 233.00 235.70 Heavily epidote and chlorite altered. Pandom and 40 tca quartz/carbonate stringers 3-10cm are pervasive throughout this sub-unit 65-75%. Sharp lower contact into DIABASE is distinguished by the dominating quartz/carbonate stringers at 55 tca.													
233.30	266.80	DIABASE Same as 21-222m, rgd 45-503.													
265.80	271.20	MAFIC VOLCANICS Same as 222-233m. Trace cubic and disseminated pyrite. Sharp lower contact at 70 degrees to core axis, rqd 65-70%.													
271.20	272.00	QUART2-FELDSPAR PORPHYRY Heavily silicified, 70-80% porphyritic. Trace cubic and disseminated pyrite. Sharp lower contact at 65 degrees to core axis.								ţ					
272.00	276.00	MAFIC VOLCANICS Same as 266.8-271.2m, rqd 65-705. 272.50 272.90 Up to 5cm potassium altered quartz/carbonate vein at 70 degrees to core axis. Epidote alteration also noted within the altered qtz/carb veins. Sharp lower contact at 65 degrees to core axis.													
276.00	277.10	MAFIC VOLCANIC / SHEARED TUFF Heavily sheared with a 70 foliation. Stretched/elongated fragments. 276.10 276.20 Small QUARTZ-FELDSPAR PORPHYRY dike same as 271.2-272m no shearing or foliation, highly silicified sharp upper and lower contacts at 65 degrees to core axis. Sharp lower contact into MAFIC VOLCANICS at 60 degrees to core axis.													
277.10	280.40	MAFIC VOLCANICS Same as 272-276m, rqd 65-70%.													
280.40	281.20	DIABASE Same as above, locally magnetic. Trace cubic and disseminated pyrite. Sharp upper contact at 85 .													

Page: 2 of 4

TW08-03 (continued)

From	То				<u></u>			_			Pa	ige:	3 of 4		
(m)	10 (m)	Geology	Sample	From (m)	То (m)	L (m)	Au ppb	Pt ppb	Pd ppb	Ag ppm	Cu ppm	Ni ppm	Zn PPM	Pb ppm	Co
281.20	291.70	Sharp lower contact at 90 , rgd 45-50%. MAFIC VOLCANICS Same as above. Trace sulfide stringers, trace up to 3mm magnetic pyrrhotite blebs. Sharp lower contact at 65 tca, rgd 65-70%.													
291.70	297.60	GRAPHITIC ARGILLITE Black, aphanitic, massive, homogenous, non-magnetic. Pervasive bedding? foliation at 70 0.5% Pyrite stringers, cubes, and disseminated along foliation, rqd 50%. Sharp lower contact at 65 .													
297.60	299.40	FELSIC DYKE White-peach, bleached felsic dyke. Fine-grained, 50-60% feldspar, 20% quartz. Up to 1% fracture filled stringers. Sharp lower contact at 70 .													
299.40	301.10	GRAPHITIC ARGILLITE Same as 291.7-297.6m. 0.5m Fragmental graphite with a very poorly rqd 0%. Sharp lower contact at 70 .													
301.10	302.00	INTERMEDIATE DYKE Fine-grained, massive, homogenous, non-magnetic. Trace quartz/carbonate stringers up to 1mm. Sharp lower contact at 75													
302.00	311.00	GRAPHITIC ARGILLITE Similar to 291.7-297.6m. Pervasive shear foliation at 70 . 2-3% Of patches of mafic volcanics mixed/interfingered with graphite patches. 1% Pyrite stringers, some condensed 2-5cm patches of pyrite stringers 0.5-1cm.													
311.00	324.90	MAFIC VOLCANIC / SHEARED TUFF Grey, fine-grained, massive, non-magnetic. Sheared fragments elongated at 70 . Trace sulfides.													
324.90	348.70	FELDSPAR PORPHYRY Medium to fine-grained, grey, massive, non-magnetic. Up to 1% blue quartz eyes 2-5mm. Sheared mafic volcanic tuff fragments 0.5-1cm at 5-10%. Mafic fragments 1-10cm patches up to 3%. Random quartz/carbonate stringers up to 1cm at 5%. Trace patches of epidote alteration within stringers.													

Page: 3 of 4

•

TW08-03 (continued)

Page: 4 of 4

From	То		<u>, </u>		<u> </u>						Pa	age: 4	4 of 4		
(m)	(m)	Geology	Sample	From (m)	То (m)	L (m)	Au ppb	Pt ppb	Pd ppb	Ag maga	Cu mgg	Ni PEM	Zn ppm	Pb	Co
	351.00	Sub-angular cherty fragments 1-3cm at up to 12. Sharp lower contact at 65 . MAFIC VOLCANIC / SHEARED TUFF Same as 311-324.9m. END OF HOLE			(m)	(m)	ppb	ppb	ppb	Ag ppm	Cu ppm	bi bi Ni	2n Fbw		

E	Date: 27	May, 2008			GOLDEN C	HALICE R	ESQURCES								Pag	e: 1	of 4	
	Northing Easting:	/	5334105 413020		DRIL	L HOLE RE	ECORD					Drill	Hole	:	RH	8-01		
C	Elevatic Collar A Collar [Azi.:	413 180.0 -45.0			Dip Test: Azi. 181.7 182.8 183.2	5 +** Dip -44.3 ~43.5 ~43.0					Proje Prope Claim North Easti	rty: : ing: ng:		Per 301 NA NA	lio Hil horwoo .0209		
U C	Hole ler Jnits: Core siz Grid:	-	300.00 Metric NQ GPS		200 250 300	183.5 184.1 185.0	-42.6 -42.3 -42.6					GPS N GPS E GPS E Date Date	astin levat Start compl	g: ion: ed: eted:	413	14105 8020 .9m asl	06/	- 8
C L D	Collar s	ey method: by:	Casing Chained, GPS. Flexit Orbit									Sample Analy Lab: Sample Lab re	ses: e ser	ies:	NA NA NA NA	sample	ed C	
D P	Logged b Date(s) Purpose: Core sto	logged:	B. Lentz May 5,2008 — GCR Facility Ti	may 09/0.	804						Ć		10	n l	H	Z		
rom (m)	To (m)			Geology			Sample	From (m)	Т0 (m)	L (m)	Au ppb	Pt PFb	Pd Ppb	Ag ppm	Cu ppm	Ni ppm	Zn PPm	Pb ppm
.00	11.00	OVERBURDE	4															
1.00	51.50	Orange/red Heavy lime 30% Chert 10-15% Mag Fragmented 33.30 36.4 30-40% Mag Trace pyr:	d, regolith, ver onite, goethite, bands 3-10cm. gnetite bands ar d with poorly re 40 Highly silici gnetite bands ar	oxidation mine od disseminated d 10-20%. fied chert sect od patches 0.5-1	3-5cm.													
1.50	74.40	Bleached, 20t Magnet Slight for along fol 40-50% 00 and 40-50 3-5% Pyr: massive p Trace chal	Lite banding and oblication at 40 d lation angle. Wartz filled fra degrees to core degrees to core te stringers an write stringers. Loopyrite spees	l patches 1-5cm. legrees to core e axis orientati ed disseminated, in stringers.	axis, stringers o	oriented , random tches of												

.

RH08-01 (continued)

From To Geology Sample From То L Au Ρt Pd Aq Cu Ni Zn Pb (m) (m) Co (m) (m) (m) ppb ppb ppb prm ppm ppm ppm Ebw bbw 74.40 87.50 ARGILLITE / IRON FORMATION Grey, fine-grained to aphanitic, massive, magnetic. 30-40% Black disseminated magnetite and banding 1-3cm at a pervasive foliation of 40-50 degrees to core axis. Unit defined by the lack of quartz and heavy silicification. Very pervasive foliation of 40-50 degrees to core axis in both the argillite and magnetite layers not found in the chert. Very fractured with randomly oriented quartz stringers, no carbonate alteration. 1-2: Angular brecciated fragments of both slate and magnetite 1-3cm. Trace pyrite stringers, blebs, and disseminated. Light brown carbonate restricted to stringers and fracters, rgd 80-90%. 87.50 92.10 GREYWACKE Light grey, medium-grained, massive, homogenous, non-magnetic. Broken into many fragments with poorly rgd 0-10%. Broken sharp contacts both upper and lower. 92.10 101.00 ARGILLITE / IRON FORMATION Same as 74.4-87.5m. Broken sharp lower contact at 94m, rgd 80-90%. 101.00 134.50 CHERTY IRON FORMATION Same as 51.5-74.4m. Dark green chlorite and epidote alteration along filled fractures and stringers. 20-30% Patches of magnetite bands 1-2cm. Gradational contact into the sa unit below, very fractured and brecciated, rqd 80-90%. 106.00 119.50 Argillite iron formation. Same as 74.4-87.5m. 118.00 118.60 Greywacke. Same as 87.5-92.1m. 119.00 119.50 Greywacke. Same as 87.5-92.1m. 119.50 123.80 Cherty iron formation. Same as 101-134.5m, rgd 80-90%. 20-30% Patches of magnetite bands 1-2cm. 5 Cm patches of sulfides at 126m, predominantly pyrite, trace chalco?. 123.80 134.50 Greywacke. Same as 87.5-92.1m. 134.50 139.50 ARGILLITE / IRON FORMATION Similar to 74.4-87.5m. 50% Black magnetite bands 2-5cm at 50-80 degrees to core axis degrees to core axis. Heavily fractured and brecciated magnetite bands. 3-5cm Patches of 1-3% pyrite stringers and disseminated.

Page: 2 of 4

RH08-01 (continued)

Page: 3 of 4

From	To									_		age:	3 of 4		
(m)	То (m)	Geology	Sample	From (m)	То (m)	L (m)	Au ppb	Pt ppb	Pd ppb	Ag PPm	Cu PPm	Ni PPm	Zn ppm	Pb ppm	Co ppm
139.50	144.00	Sharp broken lower contact into CHERT unit, rqd 80-90%. CHERTY IRON FORMATION Same as above. 20-30% Angular fractured/brecciated fragments of magnetite and chert 1-3cm. 20-30% Magnetite bands and clasts 2-5cm, orientation random and 30-40 degrees to core axis. Gradational lower contact into sa unit, rqd 80-90%.	1 1												
144.00	179.40	<pre>ARGILLITE / IRON FORMATION Similar to 134.5~139.5m, rqd 90-100%. Upper contact 144-145.5m concentrated pyrite, chalco? stringers and bands 3-10cm at 2% overall. 50. Magnetite bands 2-5cm. Banding orientation very random and deformed. 5% Light yellow/green epidote alteration in some bands 0.5-1cm. 159.00 159.50 50% silicious bleaching, stringers, and fragments, 1-2% pyrite stringers. At 164m 0.5-1% chalco in silicious stringers 3-5mm. 164.50 170.00 5-20% red jasper/hematite banding and coloration, grading throughout. Largest dark red band 5cm, most faint and 1-3cm, orientation of 35 degrees to core axis. At 177m, few red jasper/hematite bands 3-5cm. Sharp broken lower contact into CHERT unit, rqd 80-90%.</pre>													
179.40	181.20	CHERTY IRON FORMATION Same as 139.5-144. Sharp lower contact at 40 degrees to core axis.													
181.20	205.80	ARGILLITE / IRON FORMATION Same as before. 40-50% Concentrated bands of magnetite 3-5cm, random and 30-40 degrees to core axis.													
205.80	228.00	CHERTY IRON FORMATION Same as above. 212.50 216.00 10-15cm soft green patches of heavy chlorite/serpentine alteration. Trace cubic and disseminated pyrite stringers and vugs. 213.00 216.00 30% weathered iron patches, brown/rust weathering with broken fragments.													
228.00	253.10	LOWER GRAPHITIC ARGILLITE / IRON FORMATION Very similar to ARGILLITE / IRON FORMATION unit in grey/black color, aphanitic grain size, massive. Bands are much thinner (3-5mm) and are all close to 80-90 degrees to core axis degrees to core axis. No magnetics with with with weak, patchy magnetism interflow any, no magnetite mineralization or banding.													

RH08-01 (continued)

Fage: 4 of 4

L'area	<i>m</i>		<u> </u>	r <u> </u>	<u></u>			_				age:	4 01 4		
From (m)	01 (m)	Geology	Sample	From	То	L	Au	Ρt	Pd	Ag	Cu	Ni	Zn	Рb	Co
	<u> </u>			(m)	(m)	(m)	ppb	bbp	ppb	ppm	ppm	ppm	ppm	ppm	ppm
253.10	257.00	Foliation is all near verticle. Trace sulfides, mostly stringers of cubic pyrite 2-5mm. 239.50 239.80 Intermediate dyke?. Grey, fine to medium-grained, massive, homogenous, non-magnetic. Sharp upper and lower contacts at approx 90 degrees to core axis INTERMEDIATE DYKE Same as above. Few angular chert fragments 2-5cm with epidote alteration. Near contact with the CHERTY IRON FORMATION unit. Sharp broken lower contact into MAFIC VOLCANICS unit.													
257.00	300.00	 MAFIC VOLCANICS Light green, fine-grained, non-magnetic. 70-803 Heavy silica bleaching and alteration. Light green chlorite/epidote alteration pervasive throughout the unit, heavy alteration in angluar chert clasts. Tuff fragments with sub-angular feldspar, chlorite, quartz clasts. 2-3% Quartz/carbonate stringers 2-5mm. 259.20 259.40 Intermediate dyke as above. Sharp upper and lower contacts 70-80 degrees to core axis. 260.90 261.00 INTERMEDIATE DYKE same as above. Sharp upper and lower contacts 70-80 degrees to core axis. 261.90 262.40 INTERMEDIATE DYKE same as above. Sharp upper and lower contacts 70-80 degrees to core axis. 263.10 263.60 INTERMEDIATE DYKE same as above. Sharp upper and lower contacts 70-80 degrees to core axis. 264.50 INTERMEDIATE DYKE same as above. Sharp upper and lower contacts 70-80 degrees to core axis. 265.10 267.50 INTERMEDIATE DYKE same as above. Sharp upper and lower contacts 70-80 degrees to core axis. 266.50 267.50 INTERMEDIATE DYKE same as above. Sharp upper and lower contacts 70-80 degrees to core axis. 266.50 267.50 INTERMEDIATE DYKE same as above. Sharp upper and lower contacts 70-80 degrees to core axis. 													
500.00															

Date: 2	27 May, 2008			GOLDEN C	HALICE R	ESOURCES								Pag	e: 1	of 3	
Northin		5334330		DRIL	L HOLE R	ECORD					Drill	Hole:	:	RH0	8-02		
Eastine Elevat		413020 420		* * *							Du lu						
Elevat.	ion:	420			Dip Test: Azi.	Dip					Projec Proper				ic Hil horwood		
Collar	Azi.:	180.0		Depen	nei.	Dip					Claim:				0209	1 TOWN	anth
Collar	Dip:	-45.0		60	177.9	-45.7					North			NA			
				102	174.1	-45.5					Eastir			NA			
Hole le	ongth	300.00		150 200	165.9 166.6	-44.4 -43.8					GPS No GPS E				4330		
Units:		Metric		200	170.8	-43.6					GPS E			~413		Ċ	61
Core s		NQ		300	177.9						Date S				0 6, 2	008	-
Grid:		GPS									Date (sampl		18
											Sample		e:		. sampl	ed	-
	als left: survey:	Casing GPS.									Analy: Lab:	ses:		NA NA			
	vey method:										Sample	e ser	ies:	NA			
Drille	d by:	Orbit									Lab re			NA			
Commen																,	
Logged Date (s) logged:	B. Lentz May 18,2008										1	1	1		, 	
Purpos		May 10,2000									Λ	^y ~		-	$-\!\!\!\!\!\!\!\!\!\!\!\!\!\!$,	
Core s	torage:	GCR Facility Timmins	i								Ċ	- D	V &	Ó	$\omega_{\tilde{c}}$	3	
rom To									1	<u></u>	<u> </u>					Ť	
			Geology			Sample	From	То	L	Au	Pt	Pd	Ag	Cu	Ni	Zn	Pb
			Geology		_	Sample	From (m)	To (m)	L (m)	Au ppb	Pt ppb	bbp bd	PPm Ag		ррт.	2n PPm	РЬ РРМ
			Geology			Sample			N 1						7	n 1	
(m) (m)			Geology			Sample			N 1						7	n 1	
			Geology			Sample			N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD	CANIC BRECCIA				Sample			N 1						7	n 1	
(m) (m) .00 49.0	00 OVERBURD 20 MAFIC VOI Grey/gree	CANIC BRECCIA en, fine to medium gra	lined, non-magnet	ic.		Sample			N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VO Grey/gree Pervasive	CANIC BRECCIA en, fine to medium gra chlorite and epidote	lined, non-magnet						N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VO Grey/gree Pervasiv 15-20%	CANIC BRECCIA en, fine to medium gra e chlorite and epidote Quartz stringers with	ained, non-magnet a alteration. h a lineation of	60 degree:	s to core				N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VO Grey/gre Pervasiv 15-20% (axis, no	CANIC BRECCIA en, fine to medium gra chlorite and epidote	ained, non-magnet a alteration. h a lineation of	60 degree:	s to core				N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VO Grey/gree Pervasive 15-20% (axis, no Trace di Heavily	CANIC BRECCIA an, fine to medium gra chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua	hined, non-magnet a alteration. h a lineation of (no fizz with hc artz filled fra	60 degree: 1). ctures, :					N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VO Grey/gree Pervasive 15-20% (axis, no Trace di Heavily range fr	CANIC BRECCIA an, fine to medium gra chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua om 3mm to 5cm and are	lined, non-magnet a alteration. A a lineation of (no fizz with hc artz filled fra angular to sub-r	60 degrees 1). ctures, s ounded.	fragments				N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VO Grey/gree Pervasive 15-20% (axis, no Trace di Heavily range fr 52.00 57	CANIC BRECCIA en, fine to medium gra chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua om 3mm to 5cm and are .00 Very fragmented wa	ained, non-magnet e alteration. h a lineation of (no fizz with hc artz filled fra angular to sub-r ith 60-703 fault	60 degree: 1). ctures, : ounded. gouge mud	fragments				N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VO Grey/gre Pervasive 15-20% (axis, no Trace di. Heavily range fr 52.00 57 57.00 63	CANIC BRECCIA en, fine to medium gra chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua om 3mm to 5cm and are 00 Very fragmented wi	ained, non-magnet e alteration. A a lineation of (no fizz with hc artz filled fra angular to sub-r ith 60-70% fault ith 20-30% fault	60 degrees 1). ctures, s ounded. gouge mud gouge mud	fragments				N 1						7	n 1	
(m) (m) .00 49.0	00 OVERBURD 20 MAFIC VOI Grey/gree Pervasive 15-201 (0 axis, no Trace di Heavily range fr 52.00 57 57.00 63 At 72m, trace py	CANIC BRECCIA en, fine to medium gra e chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua om 3mm to 5cm and are .00 Very fragmented with .00 Very fragmented with 20cm quartz vein rite blebs 2-5mm and of	ained, non-magnet e alteration. h a lineation of (no fizz with ho artz filled fra angular to sub-r ith 60-70% fault with chlorite/e disseminated.	60 degrees 1). ctures, f ounded. gouge mud gouge mud gouge mud pidote al	fragments teration,				N 1						7	n 1	
(m) (m) .00 49.0	00 OVERBURD 20 MAFIC VOI Grey/gree Pervasive 15-201 (0 axis, no Trace di Heavily range fr 52.00 57 57.00 63 At 72m, trace py	CANIC BRECCIA an, fine to medium gra- e chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua- om 3mm to 5cm and are .00 Very fragmented w. .00 Very fragmented w. 20cm quartz vein rite blebs 2-5mm and c. .00 Orange/red rust	ained, non-magnet a alteration. a a lineation of (no fizz with hc artz filled fra angular to sub-r ith 60-70% fault ith 20-30% fault with chlorite/e disseminated. coloration from	60 degrees 1). ctures, f ounded. gouge mud gouge mud gouge mud pidote al	fragments teration,				N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VOI Grey/gree Pervasive 15-20% (axis, no Trace di Heavily range fro 52.00 57 57.00 63 At 72m, trace py 74.00 75	CANIC BRECCIA an, fine to medium gra a chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua om 3mm to 5cm and are .00 Very fragmented wi 20cm quartz vein rite blebs 2-5mm and 0 .00 Orange/red rust oxidation staining	ained, non-magnet a alteration. A a lineation of (no fizz with hc artz filled fra angular to sub-r ith 60-70% fault th 20-30% fault with chlorite/e disseminated. coloration from 3.	60 degree: 1). ctures, sounded. gouge mud gouge mud pidote al	fragments teration, low, iror				N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURD 0 MAFIC VOJ Grey/gre Pervasive 15-20% (axis, no Trace di Heavily range fr 52.00 57 57.00 63 At 72m, trace py 74.00 75 At 87m,	CANIC BRECCIA en, fine to medium gra- e chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua- om 3mm to 5cm and are 00 Very fragmented wi 00 Very fragmented wi 20cm quartz vein rite blebs 2-5mm and co 00 Crange/red rust oxidation stainin intense brecciation br	ained, non-magnet e alteration. A a lineation of (no fizz with hc angular to sub-r ith 60-703 fault ith 20-30% fault with chlorite/e disseminated. coloration from g. ecomes very perva	60 degrees 1). ctures, f ounded. gouge mud gouge mud pidote al fluid f sive at 5	fragments teration, low, iror 0-60%.				N 1						7	n 1	
(m) (m) .00 49.0	0 OVERBURDE MAFIC VOI Grey/gree Pervasive axis, no Trace di Heavily range fr 52.00 57 57.00 63 At 72m, trace py 74.00 75 At 87m, Lineatio shearing	CANIC BRECCIA en, fine to medium gra- e chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua- m 3mm to 5cm and are 00 Very fragmented w. 00 Very fragmented w. 00 Very fragmented w. 00 Very fragmented w. 00 Orange/red rust oxidation staining intense brecciation but n is still dominan features noted.	ained, non-magnet e alteration. a lineation of (no fizz with ho artz filled fra angular to sub-r ith 60-70% fault with chlorite/e disseminated. coloration from 3. ecomes very perva t at 60 degrees t	60 degrees 1). ctures, f ounded. gouge mud gouge mud pidote al fluid f sive at 5 o core ax	fragments teration, low, iror 0-60%. is but no				N 1						7	n 1	
(m) (m) .00 49.0	NO OVERBURDE OVERBURDE OF A State Pervasive 15-201 (C axis, no Trace di Heavily range fr 52.00 57 57.00 63 At 72m, trace py 74.00 75 At 87m, Lineatio shearing At 97m,	CANIC BRECCIA en, fine to medium gra e chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua om 3mm to 5cm and are 00 Very fragmented wi 00 Very fragmented wi 20cm quartz vein rite blebs 2-5mm and o 00 Orange/red rust oxidation staining intense brecciation bo n is still dominan features noted. 8cm white quartz	hined, non-magnet a alteration. h a lineation of (no fizz with hc artz filled fra angular to sub-r ith 60-70% fault with chlorite/e disseminated. coloration from g. ecomes very perva t at 60 degrees t vein without vi	60 degrees 1). ctures, f ounded. gouge mud gouge mud pidote al fluid f sive at 5 o core ax	fragments teration, low, iror 0-60%. is but no				N 1						7	n 1	
(m) (m) .00 49.0	20 OVERBURDI 20 MAFIC VOI Grey/gree Pervasive 15-20% (axis, no Trace di Heavily range fre 52.00 57 57.00 63 At 72m, trace py 74.00 75 At 87m, Lineatio shearing At 97m, sharp co	CANIC BRECCIA en, fine to medium gra- e chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua- m 3mm to 5cm and are 00 Very fragmented w. 00 Very fragmented w. 00 Very fragmented w. 00 Very fragmented w. 00 Orange/red rust oxidation staining intense brecciation but n is still dominan features noted.	ained, non-magnet a alteration. a a lineation of (no fizz with hc artz filled fra angular to sub-r ith 60-70% fault ith 20-30% fault with chlorite/e disseminated. coloration from g. ecomes very perva t at 60 degrees t vein without vi to core axis.	60 degrees 1). ctures, so ounded. gouge mud gouge mud pidote al fluid f sive at 5 o core ax sible sul	fragments teration, low, iror 0-60%. is but no fides and				N 1						7	n 1	
(m) (m) .00 49.0	O OVERBURDI 20 MAFIC VOI Grey/gree Pervasive 15-20% (axis, no Trace di Heavily range fr 52.00 57 57.00 63 At 72m, trace py 74.00 75 At 87m, Lineatio shearing At 97m, sharp co At 105m,	CANIC BRECCIA en, fine to medium gra- e chlorite and epidote Quartz stringers with carbonate alteration sseminated pyrite. brecciated with qua- om 3mm to 5cm and are .00 Very fragmented w. .00 Very fragment	ained, non-magnet a alteration. a a lineation of (no fizz with hc artz filled fra angular to sub-r ith 60-70% fault ith 20-30% fault with chlorite/e disseminated. coloration from g. ecomes very perva t at 60 degrees t vein without vi to core axis.	60 degrees 1). ctures, so ounded. gouge mud gouge mud pidote al fluid f sive at 5 o core ax sible sul	fragments teration, low, iror 0-60%. is but no fides and				N 1						7	n 1	

RH08-02 (continued)

Page: 2 of 3

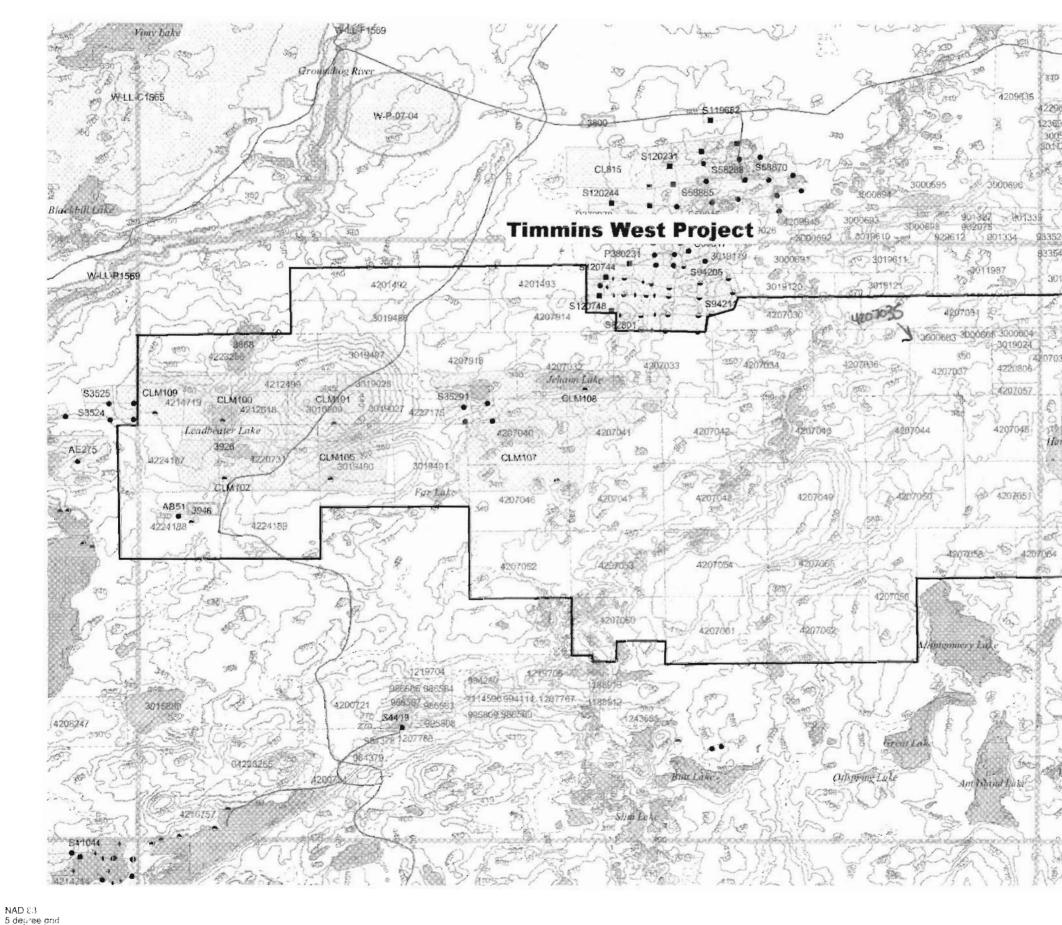
From	To				<u></u>		<u> </u>				re	ige: 2	2 of (5	
rrom (m)	(m)	Geology	Sample	From (m)	To (m)	L (m)	Au ppb	Pt ppb	Pd ppb	Ag ppm	Cu ppm	Ni ppm	Zn ppm	dq mag	Co ppm
		50-60%. 40-50% Silica bleached with patches of the brecciated unit up to 1m and not pervasive or dominant. 20-25% Quartz stringers randomly oriented. Up to 5% brecciated magnetite 2-5mm usually condensed within a 0.5m-1m section. 10-20% Chlorite/epidote alteration, less pervasive than in breccia unit. 0.5-1% Sulfides, cubic pyrite 2-5mm and disseminated in stringers and throughout. At 127.5m, 1m section with 1-2% 3-5mm pyrite stringers. At 132m, 0.5m section has 40-50% magnetite. Sharp lower contact at 70 degrees to core axis.													
139.20	145.00	ARGILLITE / IRON FORMATION Grey, aphanititc, non-magnetic. Prominent lineation at 70 degrees to core axis througout unit. 1-2: Sulfide stringers. Very fragmented core with poorly rqd of 0-10%. Sharp broken lower contact.													
145.00	148.40	CHERTY IRON FORMATION Same as 123.2-139.2m. Sharp broken lower contact.				í									
148.40	152.50	ARGILLITE / IRON FORMATION Argillite iron formation. Same as 139.2-145.6m. Sharp broken lower contact.													
152.50	167.00	CHERTY IRON FORMATION Same as above. 163-166m Very broken/fragmented core with rqd 0%. Sharp broken lower contact.													
167.00	175.50	CHERT Very broken/fragmented core with no rqd%. Silicious, bleached with no magnetite breccia. Faille written on block within broken rubble. Up to 1% weathered sulfides. Lower contact very broken.													
175.50	181.30	PERIDOTITE(?) Peridotite? green, fine grained, non-magnetic. Pervasive chlorite and serpentine alteration 20-30%. Broken core with rqd of 20-30%, fractures at 70 degrees to core axis. Sharp lower contact at 70 degrees to core axis.													
181.30	197.90	MUDSTONE(?) Mudstone? light green/grey, aphanitic, massive, non-magnetic.													

RH08-02 (continued)

	<u> </u>										Pé	ige:	3 of 3	;	
From (m)	To (m)	Geology	Sample	From (m)	To (m)	L (m)	Au ppb	Pt ppb	Pd ppb	Ag ppm	Cu ppm	Ni ppm	2л ppm	Pb Ppm	Co ppm
197.90	300.00	30-40% Light green epidote alteration. Sharp broken lower contact. Very finely laminated, no flow contacts or brecciation which distinguishes it from the MAFIC VOLCANIC BRECCIA unit.													
197.90	360.00	 MAFIC VOLCANIC ERECCIA Similar to 49-123.2m. Dark green, fine grained, massive, non-magnetic. Brecciated fragments up to lcm. 5-10% Quartz carbonate stringers 3-5mm. No visible sulfides. Pervasive 30-40% chlorite/epidote alteration condensed at fracture and stringer fillings. 198.10 198.30 INTERMEDIATE DYKE, grey, fine to medium grained, massive, homogenous, non-magnetic. 3% Quartz stringers 2-3mm. Sharp contacts at 60 degrees to core axis. 215.00 215.60 INTERMEDIATE DYKE, same as above. Sharp contacts at 80 degrees to core axis. 224.10 231.60 INTERMEDIATE DYKE, same as above. Sharp contacts at 65 degrees to core axis. 246.20 247.50 INTERMEDIATE DYKE, same as above. Sharp contacts at 75 degrees to core axis. At 285.5m, 2 cm crystallized calcite vein at 25 degrees to core axis zoned with 2 mm pyrite mineralization. 													
300.00		END OF HOLE.													
															-

Page: 3 of 3

APPENDIX B Expense Report Timmins West Project


For the period April 15 to June 05, 2008

Claim no. 4207054

Diamond drilling 384 metres @ \$136.50/metre Field supervision April 15 to 22, 2008	\$52,416
8 days @ \$350.00\day	\$ 2,800
Core logging 8 days @ \$300.00\day	\$ 2,400
Geological supervision 8 days @ \$300.00\day	\$ 2,400
Transportation truck 8 days @ \$100.00 \day	\$ 800
Drafting maps and sections	\$ 500
Report 2 days @ \$600\day	\$ 1,200
Total this claim	<u>\$62,516</u>
	$\overline{\psi}\overline{\psi}\overline{z},\overline{0}\overline{10}$
Claim no. 4207048	
Diamond drilling 351 metres @ \$136.50/metre	\$47,911
Field supervision April 23 to 30, 2008	<i>•••••••••••••••••••••••••••••••••••••</i>
6 days @ \$350.00\day	\$ 2,100
Core logging 6 days @ \$300.00\day	\$ 1,800
Geological supervision 6 days @ \$300.00\day	\$ 1,800
Transportation truck 6 days @ \$100.00 \day	\$ 600
Drafting maps and sections	\$ 500
Report 2 days @ \$600\day	<u>\$ 1,200</u>
Total this claim	\$55,911
Claim no. 3010209	
Diamond drilling 600 metres @ \$136.50/metre	\$81,900
Field supervision May 01 to 17, 2008	φ01,000
12 days @ \$350.00\day	\$ 4,200
Core logging 12 days @ \$300.00\day	\$ 3,600
Geological supervision 12 days @ \$300.00\day	\$ 3,600
Transportation truck 12 days @ \$100.00 \day	\$ 1,200
Drafting maps and sections	\$ 500
Report 2 days @ \$600\day	\$ 1,200
Total this claim	\$96,200
Tetel	
Total	\$214,627

Township/Area	Claim Number	Number of Units	Recording Date	Claim Due Date
KENOGAMING	4201488	9	April 5, 2006	April 5, 2009
KENOGAMING	4201489	16	April 5, 2006	April 5, 2009
KENOGAMING	4201490	16	April 5, 2006	April 5, 2009
KENOGAMING	4201491	12	April 5, 2006	April 5, 2009
KENOGAMING	4207031	16	June 7, 2005	June 7, 2008
KENOGAMING	4207039	4	June 7, 2005	June 7, 2008
KENOGAMING	4207045	16	June 7, 2005	June 7, 2008
KENOGAMING	4207051	16	June 7, 2005	June 7, 2008
KENOGAMING	4207064	6	June 7, 2005	June 7, 2008
KENOGAMING	4221929	12	August 3, 2007	August 3, 2009
PENHORWOOD	3000603	2	October 15, 2003	October 15, 2009
PENHORWOOD	3000604	2	October 15, 2003	October 15, 2009
PENHORWOOD	3000605	1	January 2, 2004	January 2, 2008
PENHORWOOD	3010209	6	June 25, 2004	June 25, 2009
PENHORWOOD	3019024	2	April 24, 2006	April 24, 2009
PENHORWOOD	3019027	4	October 17, 2006	October 17, 2008
PENHORWOOD	3019028	3	November 14, 2006	November 14, 2008
PENHORWOOD	3019487	10	November 19, 2007	November 19, 2009
PENHORWOOD	3019488	16	December 18, 2007	December 18, 2009
PENHORWOOD	3019491	15	November 19, 2007	November 19, 2009
PENHORWOOD	4201492	16	March 23, 2006	March 23, 2009
PENHORWOOD	4201493	8	March 23, 2006	March 23, 2009
PENHORWOOD	4207030	12	June 7, 2005	June 7, 2008
PENHORWOOD	4207032	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207033	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207034	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207035	1	June 7, 2005	June 7, 2008
PENHORWOOD	4207036	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207037	10	June 7, 2005	June 7, 2009
PENHORWOOD	4207040	15	June 7, 2005	June 7, 2008
PENHORWOOD	4207041	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207042		June 7, 2005	June 7, 2008
PENHORWOOD	4207043	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207044	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207046	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207047	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207048	16	June 7, 2005	June 7, 2008
PENHORWCOD	4207049	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207050	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207052	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207053	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207054	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207055	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207056	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207057	1	June 7, 2005	June 7, 2008
PENHORWOOD	4207058	12	June 7, 2005	June 7, 2008
PENHORWOOD	4207060	14	June 7, 2005	June 7, 2008
PENHORWOOD	4207061	16	June 7, 2005	June 7, 2008
PENHORWOOD	4207062	16	June 7, 2005	June 7, 2008

PENHORWOOD	4207914	9	June 7, 2005	June 7, 2008
PENHORWOOD	4207916	15	June 7, 2005	June 7, 2008
PENHORWOOD	4212499	4	December 14, 2006	December 14, 2008
PENHORWOOD	4212618	4	October 17, 2006	October 17, 2008
PENHORWOOD	4214719	12	March 1, 2007	March 1, 2009
PENHORWOOD	4220731	16	June 22, 2007	June 22, 2009
PENHORWOOD	4220806	4	April 30, 2007	April 30, 2010
PENHORWOOD	4223266	14	November 19, 2007	November 19, 2009
PENHORWOOD	4224188	16	November 19, 2007	November 19, 2009
PENHORWOOD	4224189	16	November 19, 2007	November 19, 2009
PENHORWOOD	4227175	3	November 19, 2007	November 19, 2009
PENHORWOOD	4224187	16	November 19, 2007	November 19, 2009
		700		

W 43/83 3005388 4209637 3767 310 SewellCreck 4229807 120 14212374 12369432 4202901 3 4209835 3005367 3011352 Street Well 450 4209634 4212375 3000697 270 (350 8 210 1207678 3019123 100 933528 933563 933545 933582 933570 878419 893527 370 933569 933576 893528 3015279 933568 933575 893529 1612 Ben Lake 4221929 4220345 \$20 14207039 200 4201488 200 3014975 4201489 1721 Hanrahan Dake - 2× 378 1201490 4225756 ANDESTRO Berg × \$20; 4201491. 9 18 18 E.