ASSESSMENT REPORT

HIGHBANK LAKE PROPERTY

BMA 523861, 523862, 524861 and 524862 Northern Ontario, Canada

Northern Shield Resources Ltd. Suite 1600, 150 Metcalfe Street Ottawa, Ontario, Canada K2P 1P1

August 15th, 2008

Prepared By: Christine Vaillancourt and Ian Bliss

TABLE OF CONTENTS

LIST OF FIGURES	2
LIST OF TABLES	2
LIST OF APPENDICES	3
1.0 INTRODUCTION	4
2.0 GEOLOGICAL SETTING	8
2.1 REGIONAL GEOLOGY 2.2 PROPERTY GEOLOGY 2.3 QUATERNARY GEOLOGY	
3.0 DIAMOND DRILLING PROGRAM	17
3.1 INTRODUCTION	17 17
5.0 DISCUSSION	19
6.0 RECOMMENDATIONS FOR FUTURE DRILLING	23
7.0 REFERENCES	

LIST OF FIGURES

FIGURE 1.1. HIGHBANK LAKE PROPERTY LOCATION MAP	3 7
FIGURE 2.1. REGIONAL TECTONIC SUBDIVISIONS OF NORTHERN ONTARIO (AFTER STOTT ET AL., 2007))
FIGURE 2.2. GEOLOGY OF THE HIGHBANK LAKE AREA. MODIFIED FROM ONTARIO GEOLOGICAL SURVEY	
(1992)	-
FROM GEOPHYSICAL SURVEY. BACKGROUND SURVEY IS FROM ONTARIO GEOLOGICAL SURVEY (2003)	
AND HIGH RESOLUTION AREA (CENTERED ON THE LAYERED SEQUENCE) IS FROM HIGH RESOLUTION AIRBORNE MAGNETIC SURVEY BY NORTHERN SHIELD RESOURCES	5
FIGURE 2.4A. MAGMATICALLY LAYERED GABBROS AND ANORTHOSITES ON THE OUTCROP IN THE)
ATTAWAPISKAT RIVER, NORTH OF HIGHBANK LAKE. THIS OUTCROP WAS PREVIOUSLY MAPPED AS	
"DIORITE" BY THURSTON AND CARTER (1970)	1
FIGURE 2.4B. RHYTHMIC LAYERING ON THE SAME OUTCROP AS IN FIGURE 2.4A	
Figure 3.1. Tonalitic and granitic units from hole 078HB-04, 85.0 m.	
Figure 3.2. Mafic dike or fragment, hole 07HB-04, 150.75 m.	
Figure 5.1 Cr/V values along a NW-SE section through the intrusion.	
FIGURE 5.2. SHARP CONTACT BETWEEN SULPHIDE-POOR LEUCOGABBRO AND SULPHIDE-RICH MELAGABBRO.	
	,
FIGURE 5.3. SELECTED METAL VARIATION IN THE AREA OF THE PGE-ENRICHED REEF IN HOLE 07HB-05 22	
FIGURE 5.4. COMPARATIVE PLOTS OF CU/PT+PD FOR HIGHBANK LAKE AND THE BUSHVELD COMPLEX 23	
FIGURE 6.1. LOCATION OF PROPOSED DRILL HOLES FOR FUTURE DRILLING.	
FIGURE 6.2. REINTERPRETATION OF POSSIBLE BEDROCK CONDUCTORS BY LAURIE REED	

LIST OF TABLES

TABLE 3.1	. DRILL HOLE LOCATIONS AND DESCRIPTIONS	. 17
	Northern Shield Resources Inc. Assessment Report – Highbank Lake, Ontario, Canada August 15 th , 2008	2

LIST OF APPENDICES

- Appendix 1 Listing of mining claims with expiry dates and work commitment requirements
- Appendix 2 Drill logs for diamond-drill hole 07HB-04
- Appendix 3 Assay results for diamond-drill hole 07HB-04
- Appendix 4 Whole-rock geochemistry results for diamond-drill hole 07HB-04
- Appendix 5 Drill section for holes 07HB-04

1.0 INTRODUCTION

This report describes the diamond-drilling program carried by Northern Shield Resources during the summer of 2007 on its Highbank Lake property located in the James Bay Lowlands of Ontario. It is specific to the South Bloc of the Property where Hole 07HB-04 was drilled. The other 6 holes that were drilled during this program are on the North Bloc of the property and will be described in details in a future report.

The mining claims that comprise the Highbank Lake Property are located 350 kilometres northwest of the town of Hearst, Ontario, in the Highbank Lake/Attawapiskat River area, and within the National Topographic System (NTS) map area 43D/08 (Figure 1). The mining claims lie within numbered townships BMA 523861, 523862, 524861 and 524862 of the Porcupine Mining Division, District of Cochrane, Ontario.

The Property is accessible only by floatplane and boat, with the Attawapiskat River providing the main waterway. A tent camp previously used by de Beers and now operated by Harry Baxter of Ogoki, Ontario, is located on a peninsula on the west shore of Highbank Lake. The drill sites are only accessible by helicopter in the summer and snow mobile in the winter.

The Highbank Lake Property consists of two non-contiguous claim groups, for which staking originally started in 2001. The Property comprises 145 unpatented mining claim blocs, totalling 2,134 mining claims or units (16 hectares per unit) that cover 36,144 hectares (Appendix 1, Figure 1.1). The mining claims are held 100% by Northern Shield and have not been legally surveyed. All claims are currently in good standing.

The Property is located within the Archaean Sachigo Superterrane of the Superior Structural Province of the Canadian Shield. According to recent subdivisions of the Sachigo Superterrane (see Figure 2.1), the Fishtrap Intrusive Complex underlying the Property is located at or near the boundary between the 2.87 to 2.72 Ga and possibly younger Oxford-Stull Domain to the north and the Island Lake Domaine (part of the 3.0 Ga North Caribou Terrane) to the south (Stott and Rayner 2004, Stott et al. 2007 and Stott, 2007a-b). However, the subdivisions are based mostly on work carried out on the western portion of the Sachigo Superterrane and since there is very little data available in the area of the Property, this boundary remains highly speculative in the west.

The association between mafic rocks observed in the field and a well-layered stratigraphy delineated by airborne magnetic fabrics suggests that the Fishtrap Intrusive Complex has potential for "reefstyle" platinum-group element ("PGE") mineralization similar to the mineralization found in the

Bushveld Igneous Complex of South Africa or the Stillwater Complex in Montana, USA. The Bushveld Igneous Complex in South Africa hosts the world's largest deposits of platinum, and comprises a well-layered suite of mafic and ultramafic rocks with PGE typically associated with thin chromite-rich "reefs". Discovery of significant quantities of detrital chromite and chromitite fragments within the Highbank Lake Property supports an exploration model based on Bushveld-style mineralization.

A wide variety of exploration work has been completed at the Highbank Lake Property since 2003 and includes different types of overburden geochemistry, heavy mineral count and chemistry, lithogeochemistry, diamond drilling, airborne and ground geophysical surveying and petrographic study of core and boulder samples, including mineral chemistry by scanning electron microscope (SEM).

Very encouraging results were obtained from a large coverage of MMI® (Mobile Metal Ions) geochemistry on 23 profiles for a total of 75 line kilometres. Significant anomalies in one or many of the elements Pd, Pt, Ni, Cu, Co and Cr were identified and some are consistent along layers defined by the airborne magnetic surveys. Three lines of deep looking IP survey were carried out approximately over MMI® lines in the northwestern portion of the Property, where PGE and other metal anomalies were well defined. A number of chargeability and conductivity anomalies were identified with the survey and were used, in combination with the MMI® results, to define drill targets for the summer 2006 first diamond drilling program. No mineralized horizon that could explain the MMI® anomalies was intersected during this program. A fall diamond-drilling program was also carried in 2006 to follow up on results obtained during the summer program and also to investigate 9i targets on the south bloc of the property.

This report describes Hole 07HB-04 that is part of the third diamond-drill program, which was carried during the summer 2007. Drill targets were selected on the better understanding of the geometry of the intrusion acquired during the two previous drill programs from core study, petrography, lithogeochemistry and structural analysis. Seven holes for a total of 3395 metres were drilled between June and August 2007. The work reported in this assessment was supervised by Christine Vaillancourt, P.Geo. The location of the holes with details are reported on Figure 1.2 (drill plans). The logs for the hole are detailed in Appendix 2 and the assay results are reported in Appendix 3. Whole rock geochemistry was also carried on a selection of samples and the results are reported in Appendix 4. The sections for the hole is in Appendix 5.

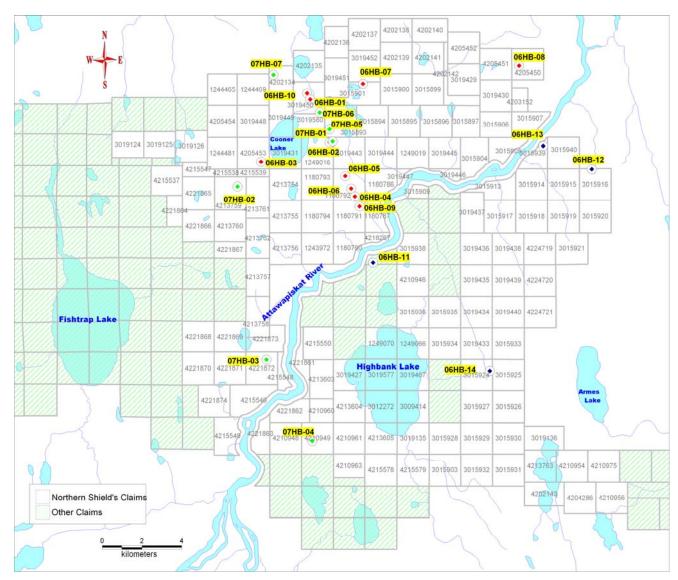


Figure 1.1. Highbank Lake Property location map.

Northern Shield Resources Inc. Assessment Report – Highbank Lake, Ontario, Canada August 15th, 2008

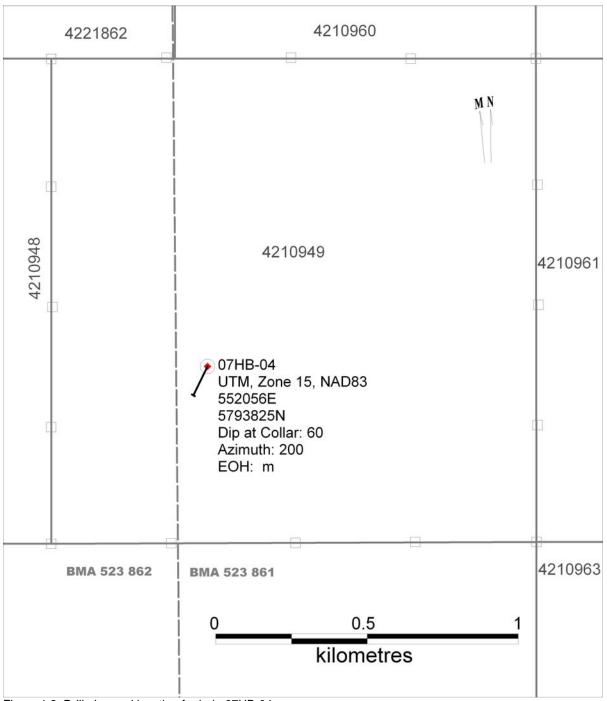


Figure 1.2. Drill plan and location for hole 07HB-04.

No significant mineralization was intersected in hole 07HB-04.

2.0 GEOLOGICAL SETTING

2.1 Regional Geology

The Highbank Lake Property lies within the Sachigo Superterrane of the Northwestern Superior Province in Northern Ontario. The Superior Province covers an area of 1,572,000 km², which represents 23% of the earth's exposed Archaean crust (Thurston, 1991). The Superior Province is divided into numerous Superterranes, Terranes and Domaines (Figure 2.1), each bounded by linear faults and characterized by differing lithologies, structural/tectonic conditions, ages and metamorphic conditions. The Domaines are typically of one of three dominance: 1) Volcano-plutonic, consisting of low-grade metamorphic greenstone belts, typically intruded by granitic magmas, and products of multiple deformation events; 2) Metasedimentary, dominated by clastic metasedimentary rocks and displaying different grades of metamorphism; 3) Gneissic/plutonic, comprised of tonalitic gneiss containing early plutonic and volcanic mafic enclaves, and larger volumes of granitoid plutons; and, 4) High-grade gneissic, characterized by amphibolite to granulite facies igneous and metasedimentary gneisses intruded by tonalitic, granodioritic and syenitic magmas (Card and Ciesieliski, 1986).

The Sachigo Superterrane is bounded to the north by the Northern Superior Superterrane while the southern limit is in contact with the sedimentary English River bassins. Recent work integrating mapping, geochronology and isotopic studies has outlined important subdivisions of what was previously defined as the Sachigo Subprovince (e.g., Skulski et al., 2000; Corkery et al., 2001; Stone, 2005; Stott and Rayner, 2004, and Rayner and Stott, 2005), which were defined as the following tectonic terranes: 1) the 3.0 Ga North Caribou Terrane to the south; 2) a juvenile 2.73 to 2.72 Ga Oxford-Stull Terrane in the centre; and, 3) the reworked 3.6 Ga crust of the Northern Superior Superterrane to the north. Most recent work redefines the subprovinces in a more complex division or Superterranes, Terranes and Domaines (Figure 2.1) in light of the better understanding of the tectonic assembly through a progression of orogenies acquired through field work, new geochronology and Sm-Nd isotopic studies (Stott et al. 2007, Stott, 2007a and b). There is general agreement on these subdivisions although there is still a lot of uncertainty in regards to the exact location of the boundaries, especially on the eastern side where little to no data is available. The Fishtrap Intrusive Complex, which underlies the Property, is located at or near the boundary between the Oxford-Stull Domain to the north and the Island Lake Domain of the North Caribou Terrane to the south.

Felsic to Intermediate Intrusive Rocks

Granitic rocks represent the dominant lithology in the Sachigo Superterrane and include, from oldest

to youngest: gneissic tonalites; foliated tonalites; a muscovite granodiorite-granite series; and, a diorite-monzonite-granodiorite suite (Thurston et al., 1991).

Gneissic Tonalites

These intrusive rocks are amongst the oldest examples of plutonic rocks (Thurston et al., 1991), and can be divided into melanocratic (>20% amphibole) and leucocratic (<20% amphibole) series, although dominated by the latter. These rocks are heterogeneous, typically cut by several generations of granitic dikes, and may contain mafic inclusions up to kilometre-scale in diameter (Thurston et al., 1991). The origin of these inclusions can be traced back to supracrustal xenoliths and tectonized mafic dikes. Tonalitic rocks display a general west to northwest strike in their layering. This layering shows divergence around younger intrusive complexes and in the vicinity of shear zones. Contact relationships with greenstone belts are almost invariably tectonic, while more gradational with other felsic intrusions (Thurston et al., 1991).

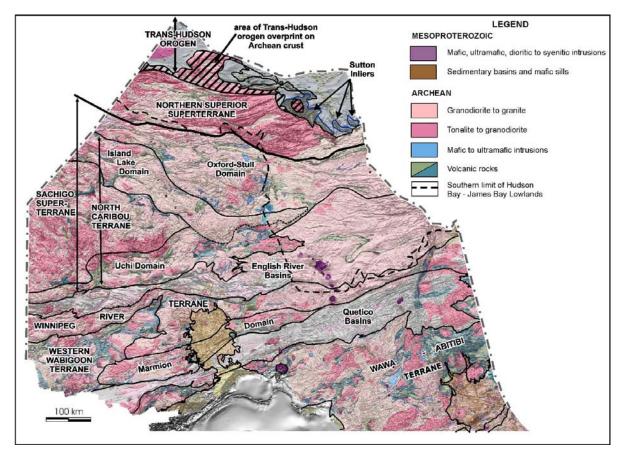


Figure 2.1. Regional tectonic subdivisions of northern Ontario (after Stott et al., 2007).

Foliated Tonalite

In the Sachigo, foliated tonalites include mafic and felsic members, which characteristically form

irregular batholiths and stocks at the interface between greenstone belts and massive tonalite (Stone, 19

89; Thurston et al., 1991). Mafic tonalite typically contains less than 20% mafic minerals, which is usually hornblende but more felsic versions are dominated by biotite in their mafic assemblage. Rocks are generally medium- to coarse-grained, and relatively homogeneous, although megacrystic and clotty amphibole are common in hornblende tonalites and granodiorites (Thurston et al., 1991). The intrusions are well foliated, with foliation defined by oriented lenticles of quartz, plagioclase, biotite and hornblende (Thurston et al., 1991).

Massive Granodiorite-Granite

Within the granodiorite to granite suite, feldspar-megacrystic granodiorite and biotite granodiorite form the two most voluminous lithologies (Thurston et al., 1991). Megacrystic varieties are grey to pink, and contain feldspar megacrysts up to 2 cm in length and generally less than 15% mafic constituents, including possible relict clinopyroxene (Thurston et al., 1991). Magnetite is common in this series and accounts for its high magnetic signature in regional aeromagnetic surveys. Massive biotite-granodiorites are weakly foliated, pale pink in colour, and contain irregular pods of pegmatitic material (Thurston et al., 1991). Mafic minerals, dominated by biotite, typically make up less than 10% of the rock.

Muscovite-Bearing Granite

Members of this suite range from granodiorite to granite, are coarse-grained to pegmatitic, and often contain metasedimentary xenoliths. They include two-mica granites and leucogranites, which are commonly associated with major shear zones in the Sachigo Subprovince. Their young ages (2653 Ma) compared to two-mica granites in the southern Superior Province, smaller sizes and tectonic association suggest that these granites may have formed from melting of metasedimentary units during late block-to-block movement (Thurston et al., 1991).

Diorite-Monzonite-Granodiorite

The diorite-monzonite-granodiorite suite of rocks represents the youngest felsic to intermediate intrusion event in the Sachigo Superterrane. They range between quartz-diorite and quartz-monzonite. Mafic minerals can be abundant (up to 30%) and are typically dominated by hornblende over biotite, with occasional pyroxene (Thurston et al., 1991). Rocks of this suite show a spatial association with mafic intrusive rocks, and usually display a gradational transition to gabbroic compositions. Their mafic mineralogy and inclusion-rich nature suggest that they are mantle derived, similarly to monzodiorite plutons in the southern Superior (Stern et al., 1989).

Mafic Intrusive Rocks

Pre-tectonic mafic intrusive rocks are considered to be synvolcanic by Thurston et al. (1991), and

comprise predominantly mafic to ultramafic sills. Post-tectonic magmatism in the northwestern Superior Province includes three diabase dike swarms, including the 2170 Ma Marathon swarm (Fahrig and West, 1986), 1883 Ma Molson Swarm (Heaman et al., 1986) and the 1267 Ma MacKenzie Swarm (LeCheminant and Heaman, 1989).

Big Trout Lake Intrusive Complex

The Big Trout Lake Intrusive Complex is the largest exposed mafic-ultramatic intrusion of the Sachigo superterrane, and consists of a folded 5,000 m thick sill containing a 500 m thick lower ultramatic sequence of dunite, chromite and chromite-rich layers overlain by homogeneous peridotite. Two batches of tholeiitic magma are indicated in the formation of the sill (Borthwick and Naldrett, 1984).

Landsdowne House Igneous Complex

The Lansdowne House Igneous Complex is well described in two technical reports for Aurora Platinum Corp. (Winter, 2003; Mazur and Osmani, 2002). It occurs in the Oxford-Stull Domaine, near the faulted contact with the Island Lake Domaine of the North Caribou Terrane. The complex can be separated into three zones: 1) Ultramafic Basal zone composed of layered peridotite and pyroxenite; 2) Middle zone, composed of cumulate gabbro and minor ultramafic units; and, 3) Upper zone, composed of a sequence of diorite, leucogabbro, anorthosite and magnetite-gabbro. Both sulphide-poor horizons rich in PGE and Cu-Ni disseminated to massive sulphides were encountered in the Middle zone, whereas V-Ti rich zones are described in magnetite-gabbro of the Upper zone.

Fishtrap Intrusive Complex

The Fishtrap Intrusive Complex is situated in the extreme southeast corner of the exposed Sachigo Superterrane, and is partly overlain by Paleozoic sedimentary rocks of the Hudson Platform (Thurston et al., 1991). Prior to the drill programs carried by Northern Shield, very little work had been undertaken on the complex, and its definition was based on very limited bedrock exposure. Outcrops consist of gabbroic lithologies in the western section of the complex and well layered anorthosite, gabbro and pyroxenite in the east. The Fishtrap Lake Intrusive Complex underlies the property and is described in details in the following sections of this report.

2.2 Property Geology

The Highbank Lake Property was staked to cover an area interpreted from geophysical data to be the eastern continuation of the Fishtrap Intrusive Complex. This intrusive complex was first mapped on provincial geology maps as a 20 km x 10 km ultramafic-mafic intrusion centered on Fishtrap Lake (Figure 2.2). Early mapping of the complex located only two outcrops on the northeast shores of Fishtrap Lake, where the lithology was described as a very coarse-grained (up to 5 x 1 inch crystal sizes) hornblende-gabbro (Thurston and Carter, 1970). A third outcrop, located downstream in the Attawapiskat River just north of Highbank Lake, was described as a dioritic rock consisting of 15-20%

quartz, 30% hornblende and dark grey plagioclase feldspar. This body was for a long time mapped on provincial geology maps as a 10 km diameter diorite intrusion, separate from the Fishtrap Intrusive Complex. In 2000, and prior to any field visit, Northern Shield reinterpreted the magnetic data as a partially over-turned layered intrusion with the "dioritic" rocks in the vicinity of Highbank Lake potentially representing the end stages of fractionation of the ultramafic-mafic magma as seen at Fishtrap Lake. This reinterpretation was largely based on the provincial magnetic maps that showed crude concentric layering of the rocks at Highbank Lake. As is described in more detail below, the outcrop previously reported as "dioritic" has later been identified by Northern Shield as magmatic layers of anorthosite and gabbro.

The extensive tonalitic gneisses, which dominate the area, are hosts to the complex along with minor metasedimentary and metavolcanic rocks. To the north, the Fishtrap Intrusive Complex is in contact with a thin (5 km wide) lens of Archean metasedimentary rocks, while a small section of mafic metavolcanic rocks is partially enclosed by rocks of the Fishtrap Intrusive Complex at its western limits (Figure 2.2). Younger Palaeozoic carbonate rocks occur to the east, and partially cover the eastern section of the Fishtrap Intrusive Complex at Highbank Lake.

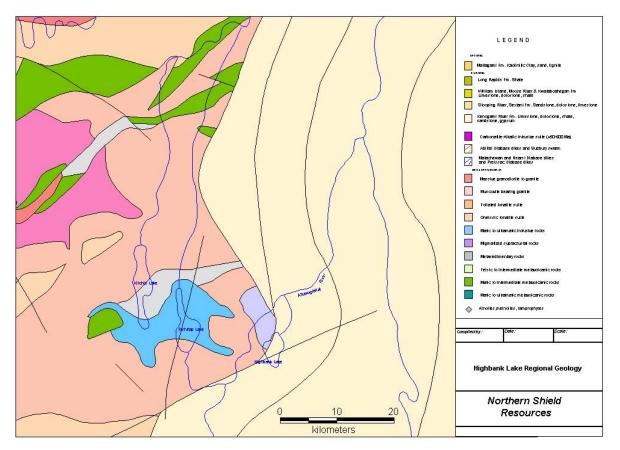


Figure 2.2. Geology of the Highbank Lake Area. Modified from Ontario Geological Survey (1992).

Northern Shield Resources Inc. Assessment Report – Highbank Lake, Ontario, Canada August 15th, 2008 The high resolution airborne magnetic survey completed by Northern Shield in 2003 shows a remarkably well-banded and concentric signature of the alternating lithologies of the layered intrusion (Figure 2.3).

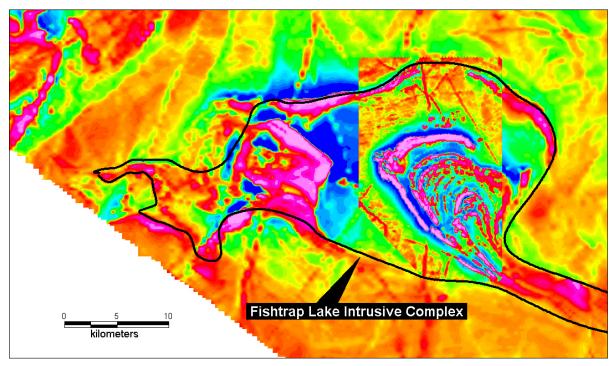


Figure 2.3. Revised outline of the Fishtrap Intrusive Complex as expanded and interpreted from geophysical Survey. Background survey is from Ontario Geological Survey (2003) and high resolution area (centered on the Layered Sequence) is from high resolution airborne magnetic survey by Northern Shield Resources.

The only outcrop within the Highbank Lake Property occurs as an irregular-shaped island on the shore of the Attawapiskat River (Figures 2.4a and b). The outcrop, located at UTM 554080 E and 5802520 N (NAD 83, Zone 16), is approximately 200 m x 75 m in size and although the outcrop has not been mapped in great detail, it is composed dominantly of alternating layers of metamorphosed anorthosite and gabbro with volumetrically sub-ordinate ultramafic (amphibolite) layers (Figures 2.4a and b). At this location, layers generally strike north-south and dip 55° east. This is consistent with the dip modelled from ground magnetic survey. A number of narrow, east-west trending shear zones were also observed on the outcrop. These shear zones are generally only a few centimetres in width and the surrounding anorthosites and gabbros are massive, displaying no obvious penetrative

foliation. Similar shear zones are common in core and may or may not be accompanied by more penetrative deformation in surrounding area.

Figure 2.4a. Magmatically layered gabbros and anorthosites on the outcrop in the Attawapiskat River, north of Highbank Lake. This outcrop was previously mapped as "diorite" by Thurston and Carter (1970).

Figure 2.4b. Rhythmic layering on the same outcrop as in Figure 2.4a.

On the outcrop, the anorthosites consist of 90-95% plagioclase up to 1 centimetre in length. Other minerals in the rock include epidote, chlorite and amphibole. The gabbro is composed of plagioclase and amphibole, with accessory magnetite. Local pyrrhotite was also observed. No visual evidence of penetrative fabric was detected on the outcrop.

Rhythmically layered horizons between one and two metres thick were also observed on the outcrop. These horizons are composed of alternating one to two centimetre thick layers of dark, green-black amphibole-rich and light, anorthositic units. The "gneissic banding" reported by Palmer (2003) is reinterpreted to be rhythmic layering resulting from magmatic processes.

Diamond drilling confirmed that the Fishtrap Intrusive Complex is composed generally of layered sequences of gabbro, anorthosite and pyroxenite. The units are described in more details in Vaillancourt and Bliss, 2007 (NI43-101 compliant Technical Report) for the holes that were drilled in 2006 and in this report's Section 3-<u>Diamond-Drilling Results</u>. To date, it is interpreted that the drilling was mostly carried in the shallower portion of the intrusion. Locating the deeper, more ultramafic section will be the focus of the next drill program.

Although there is no direct evidence to date of folding such as clear repetition of reversed stratigraphic sequences, a number of features support a model that involves large-scale folding for the interpretation of the geometry of the intrusion. One of the most obvious feature is the repetition of a vanadium-rich magnetite-gabbro layer intersected in two different locations, which is interpreted to represent the uppermost (most evolved) section of the intrusion. This sequence was intersected in the central part of the intrusion and also on the northern rim. This repetition is interpreted to be the result of a large-scale anticline. Lithogeochemistry is consistent with this interpretation and has also been very useful to refine the understanding of the general stratigraphy and structural history of the intrusion. More details of the geochemical interpretations and important features are detailed in sections 5-Discussion and 6-Recommendations for Future Drilling of this report.

There is no known outcrop exposure of diabase dikes in the Fishtrap intrusion but many were found in core. Before drilling started, at least two sets of diabase dikes were presumed to occur based on the orientations of linear magnetic features, and the description of known dikes in the surrounding area. These include at least two large dikes of the Mackenzie Swarm (1267 Ma; LeCheminant and Heaman, 1989), which trend ~330° and cut through the entire length of the Fishtrap Intrusive Complex. Five other large dikes with variable orientation occur in the middle of the Property.

The diabase that was most frequently intersected in core occurred in small dikes, typically less than one metre wide. It is logged as pyrite-speckled dike or simply diabase dike. It consists of an aphanitic to fine-grained diabase, it is weakly to not magnetic, and varies in color from dark grey to buff brown where it has a more altered appearance. These dikes generally contain disseminated cubic pyrite in variable proportion that can be up to 20%. Not much description of the different diabase swarms in this part of the province is available for comparison and no description found in government literature mentions high abundance of pyrite. It is therefore unsure which swarm these small dikes are related to.

Hole 06HB-13 was drilled at the eastern margin of the intrusion and intersected a different and larger (30 metres intersection) diabase dike. This diabase is very fine to fine-grained, dark grey to black in color, moderately to strongly magnetic, and contains large saussuritized plagioclase glomerocrysts, which is a common feature in dikes of the Matachewan swarm to which it may be associated.

2.3 Quaternary Geology

The dominant ice direction in the area of the Fishtrap Intrusive Complex, as determined from airphoto and satellite image analysis by Northern Shield is approximately 165°. This differs significantly from the area east and west of Highbank Lake, where the glacial fabric trends 230°-250° (Thurston and Carter, 1970). However, striations trending 250-265° have been noted on the outcrop and

proximal to the Property. The boundary between these two zones of differing ice direction is sharp. Although detailed quaternary studies have not been carried out in the area, the till is generally composed of pebble-rich clay and generally varies between 35 to 70 metres in thickness although through down to 125 metres were encountered. An esker is present in the center of the Property directly to the north of Highbank Lake, and locally controls the path of the Attawapiskat River.

3.0 DIAMOND DRILLING PROGRAM

3.1 Introduction

Northern Shield Resources completed a 2048 metre diamond drill program in June and July 2006, a 1330 metre program in October and November 2006 and a 3395 metre program between June and August 2007 on its Highbank Lake Property in northwestern Ontario. The work reported in this assessment was supervised by Christine Vaillancourt, P.Geo. The programs are funded by Impala Platinum Holdings Limited of South Africa as part of the terms of an earn-in option agreement. The programs were designed to test a number of targets generated through analysis of geophysical surveys and surface geochemistry for the first programs, and with the understanding of the geometry and structure acquired from lithological, structural and geochemical study of the core for the later program. This report describes diamond-drill hole 07HB-04. The location of the hole and the orientation, dip and length are compiled in Table 3.1. The logs for the hole are detailed in Appendix 2 and the assay results are reported in Appendix 3. Whole rock geochemistry was also carried on a selection of samples and the results are reported in Appendix 4. The section for the hole is in Appendix 5.

Tuble 0.1. Dilli	lolo looutio	io una accom					
Hole	Easting	Northina	Azimuth	Dip at	Depth	Overburden	Paleozoic
Number	Easting	Northing	Azimuth	Collar	(m)	(m)	(m)
07HB-04	552056	5793825	206	60	211.4	61.6	2.35

Table 3.1. Drill hole locations and descriptions.

3.2 Summer 2007 Diamond-Drilling Program

The summer drill program was designed to test a series of targets generated from new geological and structural models based on the data obtained from the previous drill programs.

The drill used for this program was the same drill used for the Fall 2006 program, which had been left on the property during winter 2006. Hence Boart Longyear Inc. was contracted to undertake this follow up drill program between June and September 2007. The drill, a Longyear Fly 38 had been mobilized to Highbank Lake starting October 5th, 2006 from Hearst Air Service's Base in Carey Lake,

Ontario, for the Fall 2006 drill program. Drill parts and required lumber and other equipments were mobilized in several Turbo Otter flights, and the two largest parts were brought in by helicopter (Aerospatiale A350-B2).

All drill crew and camp personnel for the Summer 2007 drill program were mobilized to Highbank Lake on June 11th and 12th and drilling commenced on June 13th.

DDH 07HB-04			
Collar UTMN:	5,793,825	Core Angle:	
Collar UTME:	549,762	Dip of Lithology:	
Drilling Azimuth:	225°	Main Lithology:	Diorite, tonalite, granodiorite, granite
Dip at Collar:	-70°	Main Mineralization:	

Over the break, FNX approached Northern Shield and again asked if it had any interest in purchasing their claims at Fishtrap Lake which cover the western part of the intrusion. Northern Shield expressed a general interest in acquiring the claims and re-iterated its last proposal. In light of these discussions, the order of the planned drill holes was revised and it was decided to test the banded magnetic unit in the south that trends westward onto FNXs claims. Modeling suggests these layers are probably magnetite reefs but they could also represent the ultramafic portion of the intrusion. It was thought that the identification of the lithologies at that location would help determine if it was worth the resources and time to negotiate a deal with FNX.

Bedrock was reached at a depth of 62 metres where 2.4 metres of Paleozoic limestone and 5 metres of green sandstones and clays were intersected before reaching Archean basement. A variety of tonalite, granodiorite and granites relatively similar to those found in hole 07HB-03 were intersected in this hole as well (Figure 3.20). Mafic, more gabbroic sections were also present in this hole and were thought to potentially represent dikes of the Fishtrap Lake intrusion (Figure 3.21). Whole-rock geochemistry performed on one sample revealed however that these units are more likely genetically related to the granitoid basement. The hole had to be stopped at a depth of 211.4 metres due to instability of the unconsolidated material encountered directly below the Paleozoic limestone, which was falling in the hole and complicating drilling significantly.

Figure 3.1. Tonalitic and granitic units from hole 078HB-04, 85.0 m.

Figure 3.2. Mafic dike or fragment, hole 07HB-04, 150.75 m.

5.0 Discussion

Amongst the 7 holes drilled during this program, four intersected lithologies belonging to the Fishtrap Lake intrusion and the other three intersected country rock. These three holes allowed refining the definition of the boundaries of the intrusion. Hole 07HB-03 was drilled to investigate the possibility that deeper stratigraphic layers of the intrusion may have been brought closer to surface as a result of the formation of a dome through folding at that location. The hole intersected only granitic rocks that may either be part of the host gneissic tonalite suite or late granitoids which postdate the emplacement of the Fishtrap intrusion. If these units are part of the older tonalite suite, than this may imply that the model was right except that the rocks intersected are from below the intrusion. If the granitic rocks are younger than the Fishtrap intrusion, than the drill was unfortunately setup on a dike or a small stock.

Holes 07HB-01, 05 and 06 were intended to form a continuous fence but no repetition of stratigraphy was clearly identified between the top and bottom of the holes. This may indicate that layers are displaced either by folds or faults between the holes. No clear and unambiguous lithological indicators of stratigraphic-up were encountered in these holes but some features in holes 07HB-01 and 05 may indicate that the stratigraphy is upward, suggesting that these holes are on the upright flank of the anticline that is responsible for the repetition of the vanadium-rich layer at the location of holes 06HB-01 and 10.

As was the case for the other two drill programs, lithogeochemistry was an essential tool to understand the layout of the intrusion. The geochemistry clearly indicates that the most primitive rocks intersected in this program are in holes 07HB-01 and 07HB-05 as shown for example by the significantly higher Cr/V ratios (Figure 5.1) and other elements. The lithologies intersected in hole 07HB-02 appeared in general more mafic (more abundant and longer pyroxenite and/or peridotite sections and overall more melanocratic gabbros) but geochemistry revealed that the rock sequence was more evolved than those intersected in holes 07HB-01 and 05. In general, the geochemical patterns along hole 07HB-01 appear to be more consistent and progressive, except at or near the location of the PGE enrichment, where there is a quick shift in the chemistry. The geochemical trends in hole 07HB-05 are much less consistent than in 07HB-01, which may be the result of stratigraphic discontinuity caused by faults or folds or, a series cyclic units.

Low tenor PGE mineralization was intersected in holes 07HB-01 and 07HB-05. The 07HB-01 intersection assayed 124 ppb Pt and 20 ppb Pd and is hosted in a rather non-descript gabbro unit and is not associated with any sulphides or chromite. The unit is heavily altered which may explain the high Pt:Pd ratio and there are no visually identifiable boundaries confining the mineralization. In drill-hole 07HB-05 the mineralization is associated with minor amounts of visible pyrrhotite, chalcopyrite and pentlandite. The PGE enriched zone is associated with sharp changes in lithology

and also chemistry. Figure 5.2 shows the sharp contact between a leucogabbro and a sulphide-rich melagabbro. Note that the sample that returned the highest Pt assay overlaps that contact. The variations of the metals in the area of the Pt enrichment in this hole are reported in Figure 5.3. This diagram shows that Pt, Ni and Cu behave in the exact same manner along the mineralized section with a slow increase from approximately 324 metres, to the sharp peek at the sample centered on 336.2, and back to lower values. This is precisely what would be expected from reef-style mineralization.

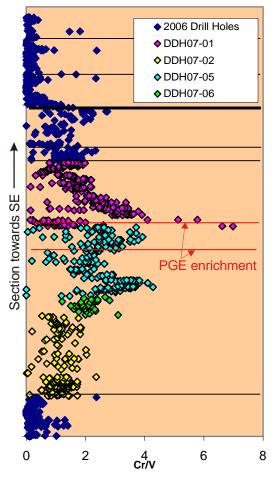
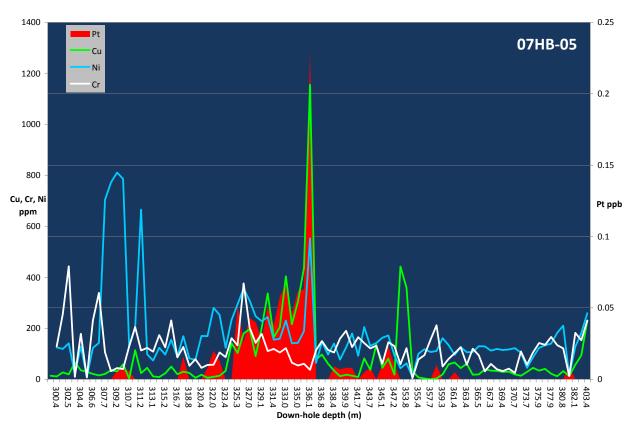
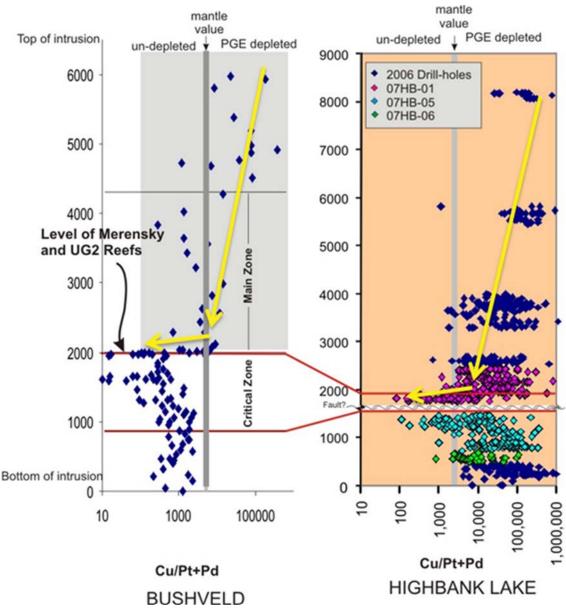
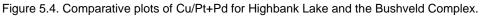


Figure 5.1 Cr/V values along a NW-SE section through the intrusion.

Northern Shield Resources Inc. Assessment Report – Highbank Lake, Ontario, Canada August 15th, 2008


Figure 5.2. Sharp contact between sulphide-poor leucogabbro and sulphide-rich melagabbro.

With the exception of portions of holes 07HB-01, 07HB-05 and 06HB-03, lithologies intersected are PGE depleted with Cu/Pt+Pd ratios higher than the primitive mantle, suggesting that PGE have been extracted from the magma by sulfides segregating in the lower portion of intrusion (Figure 5.4). The bottom of hole 07HB-01 displays the lowest values and a very sudden shift from PGE-depleted magma to PGE enriched, therefore strengthening the interpretation that a PGE mineralized reef may be situated very nearby, in the layers immediately below those intersected at the end of that hole. This observed trend is consistent with data from the Bushveld and other layered intrusions where the transition from depleted to enriched magma occurs proximal to the main PGE-bearing reefs.

Figure 5.3. Selected metal variation in the area of the PGE-enriched reef in hole 07HB-05.

6.0 RECOMMENDATIONS FOR FUTURE DRILLING

The proposed drill holes for a future program are reported in Figure 6.1.

The analysis of geochemical trends and ratios along a section through all holes drilled to date indicates that the deepest stratigraphic layers of the intrusion were intersected in holes 07HB-01 and 05. However, no clear repetition of the bottom of hole 07HB-01 was identified at the top of hole 07HB-05, implying that there may be structural complications between the two holes. Drill-hole

07HB-01 ended in a 10 meter wide zone of complete silicification. This may mark the position of a fault between the two drill-holes. Because the bottom of hole 07HB-01 intersected the layers that appear to resemble the beginning of a Bushveld style "Critical Zone", it would have been ideal to drill a hole between holes 07HB-01 and 07HB-05 in an attempt to intersect the layers situated directly below the bottom of hole 07HB-01. However, due to the structural complications along this profile it is recommended to move clockwise (eastward) along strike and drill this horizon where it is not influenced by the fault.

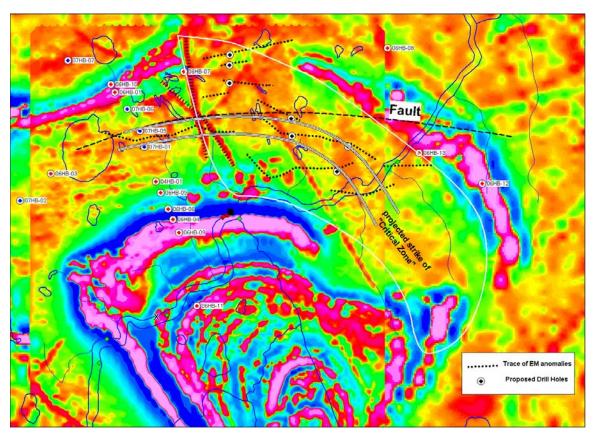


Figure 6.1. Location of proposed drill holes for future drilling.

Hole 07HB-02 and 06HB-03 appear to have intersected deeper layers than the other holes except for holes 07HB-01 and 05. This could indicate that the core of the anticline that brings the deeper layers up along these 4 holes may be plunging towards the west. If this is the case, it means that yet deeper layers will have been brought up along the same anticline axes towards the E and NE. The AeroTEM II survey flown over the Highbank property was recently reviewed by Laurie Reed, who re-interpreted numerous EM anomalies to be sourced in bedrock and not in overburden as originally concluded. Several of these EM anomalies are located in the area to the ENE where the proposed model of the west-plunging anticline suggests that the Critical Zone layers could have been brought

up nearer surface. This reinforces the model and makes the shaded area on Figure 5.4 an important target area for the next drill program.

The re-interpretation of the AeroTEM survey also underlined an alignment of possibly bedrock sourced EM anomalies along the southeastern "tail" of the intrusion (see Figure 5.4). These anomalies coincide with a magnetic high area and represent a target of interest for Ni-Cu-(PGE) sulphide mineralisation.

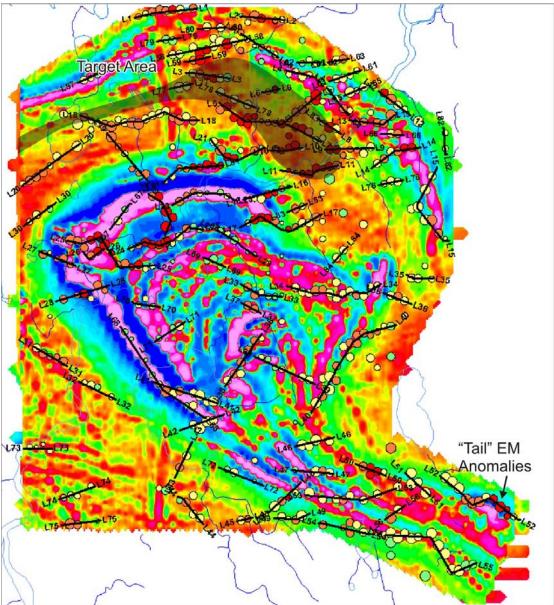


Figure 6.2. Reinterpretation of possible bedrock conductors by Laurie Reed.

7.0 REFERENCES

- Borthwich, A.A. and Naldrett, A.J., 1984. Platinum group elements in layered intrusions. *In* Geoscience Research Grant Program, Summary of Research, 1983-1984, Ontario Geological Survey, Miscellaneous Paper 121, p.13-35.
- Card, K.D. and Ciesieleski, A., 1986. DNAG#1. Subdivisions of the Superior Province of the Canadian Shield, Geoscience Canada, v. 13, p.5-13.
- Corkery, M.T., Syme, E.C., Bailes, A.H., Skulski, T., Whalen, J.B., Böhm, C., Lin, S., Stone, D. and Davis, D.W., 2001. Archean crustal development and assembly of the northwest Superior Province circa 2700 Ma in central Manitoba and northwestern Ontario (abstract). In 2001 Western superior Transect Seventh Annual Workshop. Lithoprobe Report 80, Lithoprobe Secretariat, University of British Columbia, p.142.
- Fahrig, W.F. and West, T.D. 1986. Diabase dike swarms of the Canadian Shield. Geological Survey of Canada, Map 1627A, scale 1:4 873 900 (approx.).
- Heaman, L.M., Machado, N., Krogh, T.E. and Weber, W., 1986. Precise U-Pb zircon ages for the Molson dike swarm and the Fox River sill: constraints for early Proterozoic crustal evolution in northeastern Manitoba, Canada. Contributions to Mineralogy and Petrology, v.94, p.82-89.
- LeCheminant, A.N. and Heaman, L.M., 1989. Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth and Planetary Science Letters, v.96, p.38-48.
- Mazur, R.J. and Osmani, I.A., 2002. Aurora Platinum Corp. Lansdowne House Property, Bartman Lake area, northwestern Ontario. Technical Report, National Instrument 43-101 F1, 45 pages.
- Ontario Geological Survey, 1992. Bedrock geology of Ontario. Ontario Geological Survey, ERLIS Dataset 6.
- Ontario Geological Survey, 2003. Ontario airborne geophysical surveys, magnetic data, Attawapiskat area. Ontario Geological Survey, Geophysical Data Set 1211.
- Palmer, D. 2003. Highbank Lake Property, Work Report 2001-2003. Unpublished report prepared for Northern Shield Resources Inc., 133 pages.
- Rayner, N. and Stott, G.M., 2005. Discrimination of Archean domains in the Sachigo Subprovince: A progress report on the geochronology. *In* Summary of Field Work and Other Activities 2005, Ontario Geological Survey, Open File Report 6172, p. 10-1 to 10-21.
- Skulski, T., Corkery, M.T., Stone, D., Whalen, J.G. and Stern, R.A., 2000. Geological and geochronological investigations in the Stull Lake-Edmund Lake greenstone belt and granitoid rocks of the northwestern Superior Province. *In* Report of Activities 2000, Manitoba Industry, Trade and Mines, p. 117-128.
- Stern, R.A., Hansen, G.N. and Shirey, S.B., 1989. Petrogenesis of mantle-derived LILE-enriched Archean monzodiorites and trachyandesites in the southwestern Superior Province. Canadian Journal of Earth Sciences, v.26, p.1688-1712.
- Stone, D., 2005. Geology of the northern Superior area, Ontario. Ontario Geological Survey, Open File Report 6140, 94p.

- Stone, D., 1989. Geology of the Berens River Subprovince: Cobham Lake and Nungesser Lake areas. In Summary of Field Work and Other Activities 1989, Ontario Geological Survey, Miscellaneous Paper 146, p.22-31.
- Stott, G.M., 2007a. Precambrian geology of the Hudson Bay and James Bay lowlands region interpreted from aeromagnetic data west sheet; Ontario Geological Survey, Preliminary Map P.3597, scale 1:500 000.
- Stott, G.M., 2007b. Precambrian geology of the Hudson Bay and James Bay lowlands region interpreted from aeromagnetic data east sheet; Ontario Geological Survey, Preliminary Map P.3598, scale 1:500 000.
- Stott, G.M. and Rayner, N., 2004. Discrimination of Archean domains in the Sachigo Subprovince. *In* Summary of Field Work and Other Activities 2004, Ontario Geological Survey, Open File Report 6145, p. 10-1 to 10-8.
- Stott, G.M., Corkery, T., Leclair, A., Boily, M. and Percival, J. 2007. A revised terrane map for the Superior Province as interpreted from aeromagnetic data. *In* Woodruff, L. (ed.), Institute on Lake Superior Geology Proceedings, 53rd Annual Meeting, Lutsen, Minnesota, v.53, part 1, p.74-75.
- Thurston, P.C. and Carter, M.W., 1970. Operation Fort Hope. Ontario Department of Mines, Miscellaneous Paper 42, 64 pages.
- Thurston, P.C., 1991. Archean geology of Ontario: Introduction. *In* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.73-78.
- Thurston, P.C., Osmani, I.A. and Stone, D., 1991. Northwestern Superior Province: review and terrane analysis. *In* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.81-144.
- Vaillancourt, C. and Bliss, I.C., 2007. Report on Diamond Drilling Highbank Lake Property, BMA 523861, 523862, 524861 and 524862, Northern Ontario, Canada. Technical Report, National Instrument 43-101 F1, 65 pages.
- Winter, L.D.S., 2003. Aurora Platinum Corp. Lansdowne House Property, Bartman Lake area, northwestern Ontario. Technical Report, National Instrument 43-101 F1, 23 pages.

Listing of Mining Claims with Expiry Dates and Work Commitment Requirements

Drill Logs for Diamond-Drill Hole 07HB-04

Assay Results for Diamond-Drill Hole 07HB-04

Whole-Rock Geochemistry Results for Diamond-Drill Hole 07HB-04

Drill Section for Diamond-Drill Hole 07HB-04

Township	Claim	Recording	Claim Due	Status	% Option	Work	Total	Total	Claim
• • •	Number	Date	Date			Required	Applied	Reserve	Bank
			North Blo	С					
BMA 524861	1180786	18-Oct-2001	18-Oct-2008	Active	60	\$5,600	\$28,000	\$0	\$0
BMA 524861	1180787	18-Oct-2001	18-Oct-2008	Active	60	\$4,000	\$20,000	\$198	\$0
BMA 524861	1180790	18-Oct-2001	18-Oct-2008	Active	60	\$5,200	\$26,000	\$0	\$0
BMA 524861	1180791	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$32,000	\$92,554	\$0
BMA 524861	1180792	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$32,000	\$99,744	\$0
BMA 524861	1180793	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$32,000	\$0	\$0
BMA 524861	1180794	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$32,000	\$0	\$0
BMA 524861	1243972	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$32,000	\$0	\$0
BMA 524862	1244465	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	1244469	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	1244481	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	1249016	8-Oct-2003	8-Oct-2008	Active	60	\$6,400	\$19,200	\$1,789	\$0
BMA 524861	1249019	8-Oct-2003	8-Oct-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861	3015893	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	3015894	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	3015895	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	3015896	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	3015897	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	3015899	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	3015900	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	3015901	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$79,620	\$0
BMA 524861	3015904	22-Jul-2005	22-Jul-2008	Active	60	\$5,600	\$5,600	\$0	\$0
BMA 524861	3015905	22-Jul-2005	22-Jul-2008	Active	60	\$4,800	\$4,800	\$0	\$0
BMA 524861	3015906	22-Jul-2005	22-Jul-2008	Active	60	\$5,600	\$5,600	\$0	\$0
BMA 524861	3015907	22-Jul-2005	22-Jul-2008	Active	60	\$4,800	\$4,800	\$0	\$0
BMA 524862	3019124	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 524862	3019125	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$12,800	\$1,006	\$0
BMA 524862	3019126	18-Oct-2001	18-Oct-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 524861	3019429	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861	3019430	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524862	3019431	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861	3019443	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$55	\$0
BMA 524861	3019444	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861	3019445	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861	3019446	18-Nov-2003	18-Nov-2008	Active	60	\$2,400	\$7,200	\$0	\$0
BMA 524861	3019447	18-Nov-2003	18-Nov-2008	Active	60	\$1,200	\$3,600	\$0	\$0
BMA 524861	3019448	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524862	3019449	18-Nov-2003	18-Nov-2008	Active	60	\$6,000	\$18,000	\$0	\$0
BMA 524861	3019450	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$94,666	\$0
BMA 524861	3019451	18-Nov-2003	18-Nov-2008	Active	60	\$6,000	\$18,000	\$0	\$0
BMA 524861	3019452	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861		7-Jan-2005	7-Jan-2009	Active	60	\$4,800	\$9,600	\$0	\$0
BMA 524862		17-May-2006	17-May-2009	Active	60	\$4,800	\$4,800	\$0	\$0
BMA 524861		17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	4202136	17-May-2006	17-May-2009	Active	60	\$4,800	\$4,800	\$0	\$0
BMA 524861		17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		17-May-2006	17-May-2009	Active	60	\$4,800	\$4,800	\$0	\$0
BMA 524861	4202139	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0

Township	Claim Number	Recording Date	Claim Due Date	Status	% Option	Work Required	Total Applied	Total Reserve	Claim Bank
BMA 524861		17-May-2006	17-May-2009	Active	60	\$5,600	\$5,600	\$0	\$0
BMA 524861	4202141	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	4202142	17-May-2006	17-May-2009	Active	60	\$3,200	\$3,200	\$0	\$0
BMA 524861	4203152	14-Sep-2005	14-Sep-2008	Active	60	\$1,006	\$3,794	\$0	\$0
BMA 524861	4205450	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	4205451	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861	4205452	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	4205453	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$56,141	\$0
BMA 524862	4205454	17-May-2006	17-May-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	4213754	21-Nov-2006	21-Nov-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	4213755	21-Nov-2006	21-Nov-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	4213756	21-Nov-2006	21-Nov-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	4213757	21-Nov-2006	21-Nov-2009	Active	60	\$6,000	\$6,000	\$0	\$0
BMA 523862	4213758	21-Nov-2006	21-Nov-2009	Active	60	\$6,000	\$6,000	\$0	\$0
BMA 524862	4213759	21-Nov-2006	21-Nov-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	4213760	21-Nov-2006	21-Nov-2009	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524862	4213761	7-Dec-2006	7-Dec-2008	Active	60	\$6,000	\$0	\$0	\$0
BMA 524862	4213762	7-Dec-2006	7-Dec-2008	Active	60	\$6,000	\$0	\$0	\$0
BMA 524862	4215537	26-Jun-2007	26-Jun-2009	Active	60	\$6,400	\$0	\$0	\$0
BMA 524862	4215538	26-Jun-2007	26-Jun-2009	Active	60	\$1,200	\$0	\$0	\$0
BMA 524862	4215539	26-Jun-2007	26-Jun-2009	Active	60	\$1,600	\$0	\$0	\$0
BMA 523862	4215546	26-Jun-2007	26-Jun-2009	Active	60	\$6,400	\$0	\$0	\$0
BMA 524862	4215547	26-Jun-2007	26-Jun-2009	Active	60	\$2,800	\$0	\$0	\$0
BMA 523862	4215548	26-Jun-2007	26-Jun-2009	Active	60	\$2,400	\$0	\$0	\$0
BMA 523862	4215549	26-Jun-2007	26-Jun-2009	Active	60	\$6,400	\$0	\$0	\$0

	Claim	Recording	Claim Due	0	%	Work	Total	Total	Claim
Township	Number	Date	Date	Status	Option	Required	Applied	Reserve	Bank
			South Blo	00		<u> </u>			
BMA 523861	1249066	17-Aug-2004	17-Aug-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 523861		17-Aug-2004	17-Aug-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 523861		17-Aug-2004	17-Aug-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 523861		17-Aug-2004	17-Aug-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 523861		14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$2,000	\$2,000	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$5,200	\$5,200	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$5,280	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 524861		22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861		14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$64,479	\$0
BMA 523861		14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861		14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861		14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3015928	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3015929	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3015930	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3015931	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3015932	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$8,099	\$0
BMA 523861	3015933	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$1,068	\$0
BMA 523861	3015934	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$1,068	\$0
BMA 523861	3015935	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$1,068	\$0
BMA 523861	3015936	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$1,068	\$0
BMA 523861	3015937	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$4,548	\$0
BMA 524861	3015938	14-Jul-2005	14-Jul-2008	Active	60	\$6,400	\$6,400	\$1,268	\$0
BMA 524861	3015939	22-Jul-2005	22-Jul-2008	Active	60	\$3,200	\$3,200	\$72,899	\$0
BMA 524861	3015940	22-Jul-2005	22-Jul-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3019132	7-Jan-2005	7-Dec-2008	Active	60	\$6,000	\$6,000	\$0	\$0
BMA 523861	3019133	7-Jan-2005	7-Dec-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3019134	7-Jan-2005	7-Dec-2008	Active	60	\$6,400	\$6,400	\$0	\$0
BMA 523861	3019135	4-Nov-2004	4-Nov-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 523861	3019136	27-Oct-2005	27-Oct-2008	Active	60	\$6,000	\$6,000	\$10,230	\$0
BMA 523861	3019427	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	3019433	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	3019434	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	3019435	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861	3019436	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 524861	3019437	18-Nov-2003	18-Nov-2008	Active	60	\$6,000	\$18,000	\$0	\$0
BMA 524861	3019438	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	3019439	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	3019440	18-Nov-2003	18-Nov-2008	Active	60	\$6,400	\$19,200	\$0	\$0

Taumahin	Claim	Recording	Claim Due	Chattara	%	Work	Total	Total	Claim
Township	Number	Date	Date	Status	Option	Required	Applied	Reserve	Bank
BMA 523861	3019467	17-Aug-2004	17-Aug-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 523861	3019577	17-Aug-2004	17-Aug-2008	Active	60	\$6,400	\$12,800	\$0	\$0
BMA 523861	4202143	21-Nov-2006	21-Nov-2008	Active	60	\$6,000	\$0	\$0	\$0
BMA 523861	4204286	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4210946	25-Aug-2006	25-Aug-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523862	4210948	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4210949	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4210954	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4210956	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4210960	21-Nov-2006	21-Nov-2008	Active	60	\$3,600	\$0	\$0	\$0
BMA 523861	4210961	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4210963	21-Nov-2006	21-Nov-2008	Active	60	\$4,800	\$0	\$0	\$0
BMA 523861	4210975	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4213603	9-Jul-2008	9-Jul-2010	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	4213604	9-Jul-2008	9-Jul-2010	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	4213605	9-Jul-2008	9-Jul-2010	Active	60	\$6,400	\$19,200	\$0	\$0
BMA 523861	4213763	21-Nov-2006	21-Nov-2008	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4215550	26-Jun-2007	26-Jun-2009	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4215578	26-Jun-2007	26-Jun-2009	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4215579	26-Jun-2007	26-Jun-2009	Active	60	\$6,400	\$0	\$0	\$0
BMA 523862	4221861	26-Jun-2007	26-Jun-2009	Active	60	\$4,000	\$0	\$0	\$0
BMA 523862	4221862	26-Jun-2007	26-Jun-2009	Active	60	\$4,800	\$0	\$0	\$0
BMA 523862	4221863	26-Jun-2007	26-Jun-2009	Active	60	\$3,600	\$0	\$0	\$0
BMA 524861	4224719	16-Nov-2007	16-Nov-2009	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4224720	16-Nov-2007	16-Nov-2009	Active	60	\$6,400	\$0	\$0	\$0
BMA 523861	4224721	16-Nov-2007	16-Nov-2009	Active	60	\$6,400	\$0	\$0	\$0

			Drill Log
Compa	ny Name:	Northern Shield Resources	DDH Number: 07HB-04
Propert	y Name:	Highbank Lake	Collar UTMN: 5793825
Locatio	n:	250 km north of Nakina, ON	Collar UTME: 552056
		75 km northwest of Ogoki	Zone, Datum: 16, NAD83
Claim N	lumber:	4210949	Drilling Azimuth: 206°
			Core Size: BQTK (BQ Thin Wall)
Drilling	Company:	Boart Longyear	Dip at Collar: 60°
Date of	start:	24-Jul-07	Hole Length: 211.4 m
Date co	mpleted:	1-Aug-07	Logs by: C. Vaillancourt
			Core Storage: Warehouse in Hearst
From	То	Rock Type	Description
	61.60	Overburden	
61.60	63.95	Paleozoic limestone	- fossil-rich
63.95	67.50	Sandstone to clay	- pale green, competent, mixed sandstone slowly and gradually grading
			into a bright green and soft clay
			- sandstone at top is composed of 50% subrounded qz particles and
			50% carbonatious green clay matrix
			- cb only near top of intersection, solid clay does not generally react to
			acid
67.50	67.80	Paleozoic limestone	- looks like an altered piece - not sure why it is there, could be a core
			tube emptying issue
67.80	68.90	Sand	- unconsolidated??, held together by a matrix of greenish clay
68.90	84.60	Fine-grained granodiorite	- very homogeneous in general
			- pale orangy-grey to dark grey
			- not really foliated generally but some local moderately foliated sections

81.3-81.5 - qz-rich granitic pegmatite

- looks more qz-rich, coarser grain

together in that intersection

- same as 68.9

- ep alteration on pg

84.60

86.95

86.95

97.20

Fine to medium-grained

Fine-grained granodiorite

granite?

- some fine cb-rich veins with orange alteration halos around

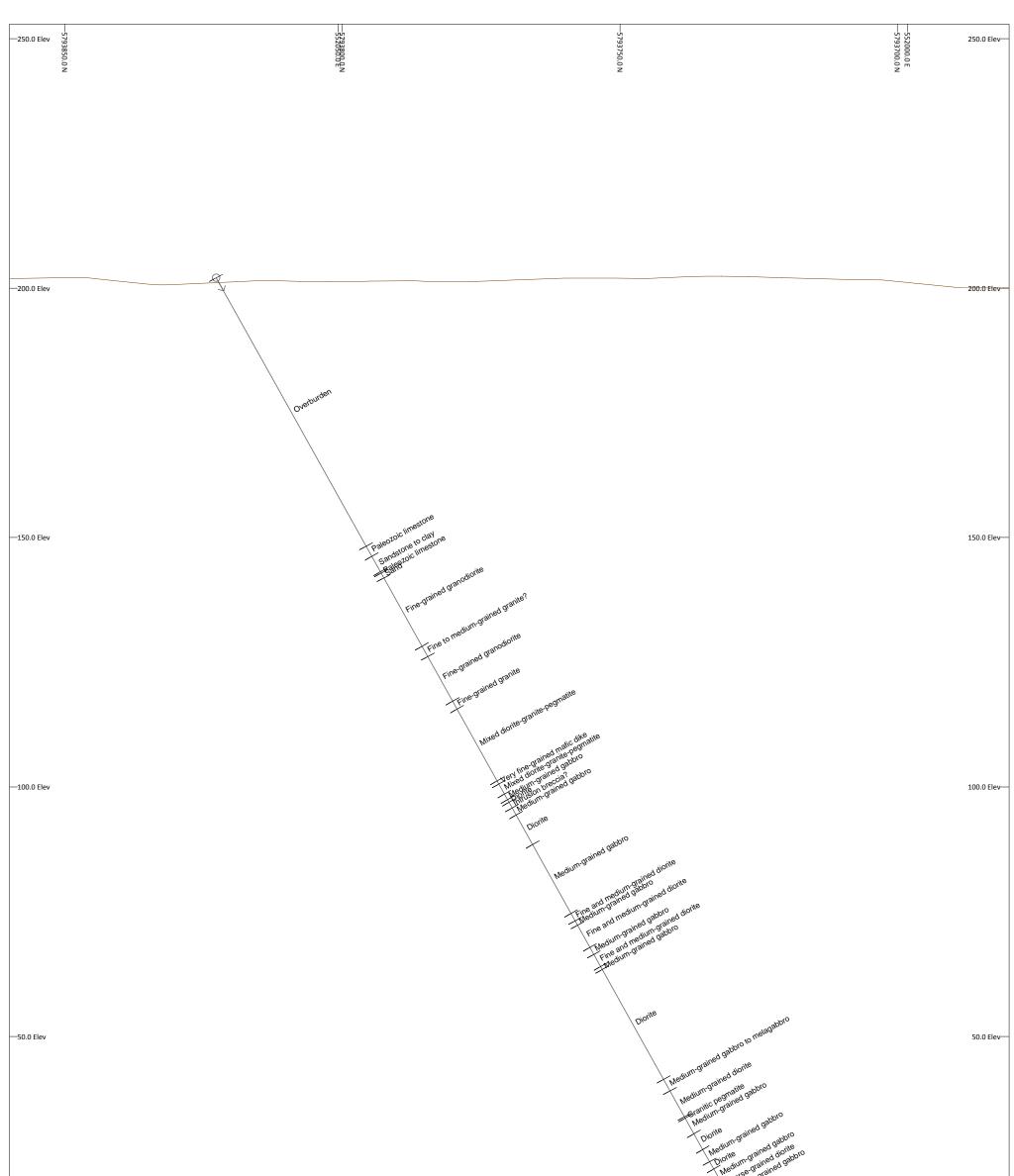
- some small sections turned into "mud" - see top of pic. 77.2

- core is very mixed-up and flipped (helper problem) - no two pieces fit

From	То	Rock Type	Description	
97.20	99.00	Fine-grained granite	- somewhat coarser than diorite	
99.00	115.50	Mixed diorite-granite-	- pale grey diorite, darker grey diorite, qz-rich pegmatite, and coarser	
		pegmatite	more granitic rock	
			- sections of epidotized dark rock, bt-rich - could be altered piece of	
			mafic intrusion	
115.50	116.20	Very fine-grained mafic dike	- very slightly magnetic	
116.20	118.50	Mixed diorite-granite-		
		pegmatite		
118.50	119.80	Medium-grained gabbro	- possibly from Fishtrap Intrusion	
			- upper contact not too clear but looks like diorite is intruding gabbro -	
			one pg cx from gabbro seems to be cut at contact	
			- moderate foliation at 50° to perpendicular	
	120.40	Diorite	- moderate foliation at 50° to perpendicular	
120.40	121.70	Intrusion breccia?	- looks like a mafic matrix with pegmatitic fragments???	
121.70	123.30	Medium-grained gabbro	- possibly from Fishtrap Intrusion	
			- strong epidote alteration on plagioclase, some potassic alteration	
123.30	130.10	Diorite	- mixture of different color and grain size	
			- local strong potassic alteration	
130.10	145.90	Medium-grained gabbro	- mafic minerals mostly chlorite and biotite	
			- silicified and strong epidote alteration of plagioclase	
			- multiple qz-rich very coarse-grained to pegmatitic granite and other	
			diorite injections	
			- no obvious layering or foliation	
145.90	147.60	Fine and medium-grained	- multi-phase injections	
		diorite		
-	148.60	Medium-grained gabbro		
148.60	153.70	Fine and medium-grained	- multi-phase injections	
		diorite		
-	155.30	Medium-grained gabbro		
155.30	158.10	Fine and medium-grained	- multi-phase injections	
		diorite		
158.10	158.80	Medium-grained gabbro	- typically not magnetic or very weakly	
158.80	184.00	Diorite	- very siliceous	
			- multiple orange veins, crumbly sections	
			- granitic intersections are smaller and less abundant	

From	То	Rock Type	Description	
			 sections possibly a bit porphyritic - texture mostly erased by alteration (silicification) 	
184.00	186.65	Medium-grained gabbro to melagabbro	- injected with diorites and coarse-grained granite	
			- 1 cm granitic injections near top and bottom of intersection	
			- foliation is weak at top and stronger at bottom of intersection with	
			epidote alteration and py cubes - these tend to be a bit more magnetic	
186.65	192.60	Medium-grained diorite	- relatively homogeneous	
			- orange alteration	
			- pegmatitic looking sections	
			188.3-188.5 - Piece of gabbro	
192.60	192.90	Granitic pegmatite		
192.90	196.50	Medium-grained gabbro	- injected by diorites and granites	
196.50	200.10	Diorite	- mixed	
			- some granitic dikes	
			- some pegmatitic dikes	
			- epidote altered mafic sections - these are typically slightly magnetic	
			- up hole contact has 20 cm piece of gabbro in diorite	
200.10	202.90	Medium-grained gabbro	- qz veins	
			- granitic veins	
			- titanite? or altered oxides	
202.90		Diorite		
204.60		Medium-grained gabbro		
207.40	209.00	Coarse-grained diorite	- lots of qz veins	
			- mixed zone with mafic fragments??	
209.00	211.40	Medium-grained gabbro		

				PG	M-ICP2	4		ME-ICP61	l .																									
				-	۸u	Pt	Pd	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sr	Ti	V	W	Zn
				PI	om	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
				LO 0.	001	0.005	0.001	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1	10	2
Sample	Hole	From	<u>To</u>	HI	10	10	10	100	25	10000	10000	1000	10000	25	500	10000	10000	10000	25	10	15	10000	10000	10	10000	10000	10000	10	10000	10000	10	10000	10000	10000
515801	07HB-04	141.00m	142.00m	Λ	ID	ND	ND	ND	9.19	8	160	1	ND	5.80	ND	35	29	110	6.67	1.07	3.08	993	ND	2.80	73	500	2	0.10	5	435	0.54	203	ND	99
515803	07HB-04	179.99m	180.00m	N	ID	ND	ND	ND	9.93	ND	80	0.8	ND	6.88	ND	37	25	132	7.46	0.72	3.23	1,050	ND	2.84	77	720	4	0.18	ND	465	0.59	235		99
515802	07HB-04	195.50m	196.46m	~	ID	ND	ND	ND	9.08	ND	100	0.8	ND	5.74	ND	32	22	68	7.12	0.85	2.88	1,015	ND	2.93	53	850	2	0.12	ND	450	0.58	193	ND	106


				ME-XRF06															
					SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5	SrO	BaO	LOI	Total
					%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
				HI	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Sample	From	<u>To</u>	Characterization	LO	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
07HB-04A	204.93m	205.33	n MG gabbro		50.32	18.29	10.10	9.51	5.06	3.67	0.78	0.01	0.92	0.13	0.13	0.04	0.01	0.84	99.81

	ME-MS81															
	Ag	Ba	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Ga	Gd	Hf	Но	La	Lu
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	1	0.5	0.5	0.5	10	0.01	5	0.1	0.03	0.03	0.1	0.05	0.2	0.01	0.5	0.01
	1000	10000	10000	10000	10000	10000	10000	1000	1000	1000	1000	1000	10000	1000	10000	1000
07HB-04A 204.93m 205.33m MG gabbro	ND	65.10	27.10	40.40	40	1.07	133	1.74	0.98	0.94	20.1	2.38	1.8	0.37	11.50	0.14

	ME-MS81															
	Мо	Nb	Nd	Ni	Pb	Pr	Rb	Sm	Sn	Sr	Та	Tb	Th	TI	Tm	U
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	2	0.2	0.1	5	5	0.03	0.2	0.03	1	0.1	0.1	0.01	0.05	0.5	0.01	0.05
	10000	10000	10000	10000	10000	1000	10000	1000	10000	10000	10000	1000	1000	1000	1000	1000
07HB-04A 204.93m 205.33m MG gabbro	2	4.5	13.50	80	ND	3.51	12.50	2.54	1.0	423.00	0.30	0.35	0.39	ND	0.15	0.46

	ME-MS81						PGM-ICP2	3		S-IR08
	V	W	Y	Yb	Zn	Zr	Au	Pt	Pd	S
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	5	1	0.5	0.03	5	0.5	0.001	0.005	0.001	0.01
	10000	10000	10000	1000	10000	10000	10	10	10	50
204.93m 205.33m MG gabbro	226	1	9	0.88	90	71	0.002	ND	0.001	0.19

07HB-04A

			Meaner Granner Hooster Granner Heedum Granner	
—0.0 Elev				0.0 Elev—
	5793850.0 N	 5793750.0 N	HIGHBA Hole 07HB-04	N K LAKE Section Azimuth: 296 CARACLE CREEK INTERNATIONAL CONSULTING INC. Geological Consultants - Project Management

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1 Page: 1 Finalized Date: 13-SEP-2007 Account: NORSHI

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
LOG-24	Pulp Login - Rcd w/o Barcode
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um
	WEI-21 LOG-22 LOG-24 PUL-QC CRU-31 SPL-21

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
PGM-ICP24	Pt, Pd, Au 50g FA ICP	ICP-AES

To: NORTHERN SHIELD RESOURCES INC. ATTN: IAN BLISS SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

aurence (1)

Lawrence Ng, Laboratory Manager - Vancouver

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 13-SEP-2007 Account: NORSHI

										CERTIF	ICATE (OF ANA	LYSIS	TM070	085907	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP24 Au ppm 0.001	PGM-ICP24 Pt ppm 0.005	PGM-ICP24 Pd ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1
515801 515802 515803 515805		1.74 1.73 1.46 1.56	<0.001 <0.001 <0.001 <0.001	<0.005 <0.005 <0.005 0.031	<0.001 <0.001 <0.001 0.013	<0.5 <0.5 <0.5 <0.5	9.19 9.08 9.93 10.00	8 <5 <5 <5	160 100 80 70	1.0 0.8 0.8 <0.5	<2 <2 <2 <2	5.80 5.74 6.88 8.68	<0.5 <0.5 <0.5 <0.5	35 32 37 36	29 22 25 286	110 68 132 43
515806 515807 515808 515809 515810		2.35 1.60 0.87 1.69 1.73	0.001 <0.001 <0.001 0.001 0.001	0.010 <0.005 <0.005 <0.005 <0.005	0.010 0.007 0.003 0.005 0.005	<0.5 <0.5 <0.5 <0.5 <0.5	7.18 10.10 9.42 11.05 8.96	<5 <5 9 <5	20 50 60 50 20	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 2 2	4.63 8.39 8.34 8.89 5.95	<0.5 <0.5 <0.5 <0.5 <0.5	92 38 28 35 68	46 97 86 106 78	86 80 58 78 85
515811 515812 515813 515814 515815 515816		1.73 1.78 2.21 0.58 0.88 1.61	0.001 0.002 <0.001 0.001 0.001 <0.001	<0.005 0.005 <0.005 <0.005 0.005 <0.005	0.008 0.007 0.006 0.004 0.001 <0.001	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	9.74 9.43 9.66 9.60 9.75 10.60	<5 <5 <5 <5 <5 <5 <5	30 30 30 30 30 30 30	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	3 <2 <2 <2 <2 <2 <2 <2	8.34 7.33 7.83 8.20 8.58 9.42	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	29 42 40 32 29 20	56 47 35 4 116 150	71 84 83 46 39 51
515817 515818 515819 515820 515821		0.73 1.15 1.79 0.05 1.75	0.003 <0.001 0.004 0.161 0.001	<0.005 0.006 <0.005 0.286 <0.005	0.004 0.001 0.003 1.190 0.003	<0.5 0.8 <0.5 1.4 <0.5	8.62 10.60 9.99 8.42 10.30	<5 <5 <5 <5 <5 <5 <5	20 60 20 330 40	<0.5 <0.5 <0.5 0.6 <0.5	<2 <2 <2 <2 <2 <2 <2	9.66 8.64 9.87 8.39 8.88	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	55 23 18 63 19	62 208 182 148 164	894 58 9 3940 66
515822 515823 515824 515825 515826		2.18 1.97 1.58 0.90 0.93	0.001 0.001 <0.001 0.002 0.002	0.005 0.009 0.006 0.008 0.007	<0.001 0.004 0.002 0.002 0.001	<0.5 <0.5 <0.5 <0.5 <0.5	10.35 11.40 9.20 9.79 9.62	<5 <5 <5 <5 <5	20 30 20 110 120	<0.5 <0.5 <0.5 <0.5 0.8	<2 2 <2 <2 <2 <2	9.73 9.12 7.30 8.72 8.87	<0.5 <0.5 <0.5 <0.5 <0.5	24 35 51 25 32	231 20 70 118 11	83 95 77 28 357
515827 515828 515829 515830 515831		1.84 1.50 1.72 1.79 1.79	0.002 0.001 0.001 0.001 <0.001	0.009 0.014 0.019 0.008 0.010	0.002 0.003 0.005 0.005 0.005	<0.5 <0.5 <0.5 <0.5 <0.5	10.85 9.83 10.40 10.25 10.40	<5 <5 <5 <5 <5	20 20 20 10 20	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	10.10 9.32 8.86 8.61 8.35	<0.5 <0.5 <0.5 <0.5 <0.5	26 23 26 37 41	175 124 78 12 40	63 85 36 13 6
515832 515833 515834 515835 515835 515836		1.60 1.84 1.74 0.82 1.80	0.001 0.001 0.001 <0.001 0.001	0.005 0.005 0.006 0.006 0.005	0.004 0.004 0.003 0.003 0.001	<0.5 <0.5 <0.5 <0.5 <0.5	9.50 9.57 9.21 9.53 10.05	<5 <5 <5 <5 <5	10 20 30 10 10	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	7.98 7.16 5.41 7.83 8.08	<0.5 <0.5 <0.5 <0.5 <0.5	37 45 46 45 38	32 33 29 29 55	12 16 7 1 35
515837 515838 515839 515840 515841		0.97 0.83 1.79 0.05 1.81	<0.001 <0.001 0.004 0.004 0.001	<0.005 <0.005 <0.005 <0.005 <0.005	0.001 0.001 <0.001 <0.001 0.001	<0.5 <0.5 <0.5 <0.5 <0.5	9.73 10.00 9.66 0.33 9.58	<5 <5 <5 <5 <5	10 10 20 10 10	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	8.71 8.59 8.83 0.03 9.14	<0.5 <0.5 <0.5 <0.5 <0.5	28 26 22 <1 20	16 32 16 3 11	78 22 24 3 23

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 13-SEP-2007 Account: NORSHI

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

										CERTIF		OF ANA	LYSIS	TM070)85907	
Sample Description	Method Analyte Units LOR	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10
515801 515802		6.67 7.12	1.07 0.85	3.08 2.88	993 1015	<1 <1	2.80 2.93	73 53	500 850	2 2	0.10 0.12	5 <5	435 450	0.54 0.58	203 193	<10 <10
515803		7.46	0.85	3.23	1015	<1	2.83	33 77	720	4	0.12	<5	450	0.58	235	<10
515805		4.44	0.37	4.57	815	<1	1.43	146	60	<2	0.02	<5	248	0.00	77	<10
515806		8.50	0.69	7.69	1080	<1	0.61	419	60	<2	0.05	5	90	0.04	19	<10
515807		4.20	0.44	3.59	594	<1	1.46	181	60	<2	0.04	<5	293	0.07	37	<10
515808		3.20	0.40	2.70	462	<1	1.55	128	60	<2	0.02	<5	292	0.07	33	<10
515809		3.96	0.36	3.49	579	<1	1.58	153	60	<2	0.04	<5	269	0.08	42	<10
515810		7.41	0.44	6.76	970	1	0.90	311	80	<2	0.08	<5	125	0.07	33	<10
515811		3.31	0.16	2.59	448	<1	1.63	139	60	<2	0.10	<5	266	0.06	24	<10
515812		4.55	0.35	3.86	561	<1	1.26	199	70	<2	0.10	<5	213	0.06	23	<10
515813		4.02	0.15	3.03	548	<1	1.63	173	70	<2	0.10	<5	263	0.05	19	<10
515814		3.18	0.14	2.42	455	<1	1.82	151	60	<2	0.06	<5	247	0.03	9	<10
515815		3.43	0.18	2.82	559	<1	1.63	127	60	<2	0.05	<5	261	0.08	45	<10
515816		2.99	0.11	2.48	487	<1	1.72	91	100	<2	0.04	<5	269	0.10	61	<10
515817		7.69	0.16	5.93	1100	1	1.05	91	1180	<2	0.57	<5	413	0.63	264	<10
515818		3.45	0.22	2.85	581	<1	2.11	100	60	<2	0.01	<5	399	0.11	75	<10
515819		3.18	0.10	2.43	582	2	1.67	97	80	<2	<0.01	<5	276	0.11	66	<10
515820 515821		9.49 2.92	0.46 0.20	4.15 2.52	1400 551	1 <1	1.73 1.93	281 97	1800 80	3 <2	0.85 0.03	<5 <5	673 266	0.59 0.11	322 65	<10 <10
515822		3.31	0.14	3.01	579	<1	1.42	112	70	<2	0.05	<5	247	0.12	80	<10
515823 515824		3.65 5.37	0.08 0.15	2.70 4.45	486 736	<1 <1	1.82 1.24	197 281	70 60	<2 <2	0.14 0.11	<5 <5	289 235	0.05 0.05	15 28	<10 <10
515825		3.51	0.13	2.93	587	<1	1.56	121	340	<2	0.04	<5 <5	712	0.03	20 53	<10
515826		7.05	0.32	3.74	994	<1	1.80	34	3200	<2	1.04	<5	1160	0.58	236	<10
515827		3.12	0.04	2.75	517	<1	1.49	131	70	2	0.02	<5	260	0.08	50	<10
515828		2.64	0.05	2.17	411	<1	1.59	118	50	<2	0.05	<5	242	0.06	35	<10
515829		3.20	0.06	2.62	492	<1	1.74	159	50	<2	0.03	<5	264	0.05	21	<10
515830		3.97	0.01	3.23	503	<1	1.48	202	70	<2	0.02	<5	251	0.04	9	<10
515831		4.36	0.01	3.69	576	1	1.46	192	70	<2	0.01	<5	240	0.05	15	10
515832		3.83	0.01	3.09	507	<1	1.33	177	70	<2	0.02	<5	226	0.04	12	<10
515833		4.16	0.03	3.56	548	<1	1.38	206	90	5	0.02	5	229	0.05	16	<10
515834		4.54	0.06	4.05	584	<1	1.86	222	70	5	0.01	<5	242	0.04	10	<10
515835		4.68	0.01	3.64	622	<1	1.23	265	80	<2	0.01	<5	325	0.04	11	<10
515836		4.35	0.01	3.34	584	<1	1.40	182	60	5	0.15	<5	217	0.04	14	<10
515837		3.14	0.01	2.15	417	<1	1.69	132	60	4	0.28	<5	244	0.04	17	<10
515838		3.14	0.01	2.24	428	<1	1.62	125	70	<2	0.09	<5	236	0.04	13	<10
515839		2.63	0.01	1.67	357	1	1.74	99	60	3	0.07	<5	260	0.04	11	<10
515840		0.04	0.11	0.02	12	<1	0.01	<1	40	<2	0.01	<5	5	0.02	1	<10
515841		2.33	<0.01	1.38	327	1	1.73	87	70	3	0.08	<5	268	0.06	20	<10

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 13-SEP-2007 Account: NORSHI

Sample Description	Method Analyte Units LOR	ME-ICP61 Zn ppm 2
515801 515802 515803 515805 515806		99 106 99 35 61
515807 515808 515809 515810 515811		31 28 34 58 24
515812 515813 515814 515815 515815		34 30 26 24 24
515817 515818 515819 515820 515821		60 29 30 92 30
515822 515823 515824 515825 515825 515826		26 32 46 36 50
515827 515828 515829 515830 515831		23 24 23 29 33
515832 515833 515834 515835 515836		28 38 41 38 38
515837 515838 515839 515840 515841		25 28 22 <2 19

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 13-SEP-2007 Account: NORSHI

hod Ilyte iits DR	WEI-21 Recvd Wt.	PGM-ICP24	PGM-ICP24												
JR	kg	Au ppm	Pt ppm	PGM-ICP24 Pd ppm	ME-ICP61 Ag ppm	ME-ICP61 Al %	ME-ICP61 As ppm	ME-ICP61 Ba ppm	ME-ICP61 Be ppm	ME-ICP61 Bi ppm	ME-ICP61 Ca %	ME-ICP61 Cd ppm	ME-ICP61 Co ppm	ME-ICP61 Cr ppm	ME-ICP61 Cu ppm
	0.02	0.001	0.005	0.001	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1
	1.92	0.001	0.006	0.004	<0.5	9.86	10	150	<0.5	<2	7.82	<0.5	84	164	8
	1.31	<0.001	<0.005	0.003	<0.5	7.55	<5	50	<0.5	5	5.19	<0.5	118	76	2
	1.67	0.001	0.006	0.002	<0.5	6.50	<5	20	<0.5	3	3.47	<0.5	147	70	36
	1.69	<0.001	0.005	0.006	<0.5	5.67	<5	10	<0.5	2	2.84	<0.5	167	52	14
	1.52	<0.001	<0.005	0.008	<0.5	3.68	<5	10	<0.5	<2	3.81	<0.5	152	50	82
	0.85 1.34 1.83	<0.001 0.001 <0.001	0.019 <0.005 0.008	0.012 0.002 0.002	<0.5 <0.5 <0.5	7.22 11.40 11.60	7 <5 <5	10 40 20	<0.5 <0.5 <0.5	6 5 <2	3.16 8.51 8.98	<0.5 <0.5 <0.5	149 49 49	66 62 111	11 28 22 72
	1.74	0.001	<0.005 0.022	0.004	<0.5 <0.5	12.40	<5 <5	30 30	<0.5 <0.5	6 5	9.29 6.83	<0.5 <0.5	46 88	83 89	59
	2.04	0.001	0.010	0.009	<0.5	9.62	<5	20	<0.5	2	6.57	<0.5	91	46	64
	1.86	<0.001	0.005	0.004	<0.5	9.55	<5	20	<0.5	<2	6.58	<0.5	84	48	55
	1.25	<0.001	<0.005	0.003	<0.5	7.97	<5	10	<0.5	3	7.09	<0.5	94	117	3
	0.96	<0.001	<0.005	0.004	<0.5	6.22	<5	<10	<0.5	5	5.40	<0.5	111	67	4
	1.73	<0.001	0.007	0.004	<0.5	6.49	<5	<10	<0.5	3	4.59	<0.5	141	51	2
	1.73	<0.001	0.005	0.002	<0.5	10.45	<5	50	<0.5	4	8.80	<0.5	27	60	13
	1.66	<0.001	<0.005	0.002	<0.5	9.71	<5	30	<0.5	3	7.66	<0.5	48	38	45
	1.33	0.001	<0.005	0.002	<0.5	11.10	<5	20	<0.5	2	8.76	<0.5	36	339	15
	0.04	0.112	0.338	1.145	2.3	8.62	<5	340	0.7	<2	8.18	<0.5	68	158	4050
	1.75	0.001	<0.005	0.003	<0.5	5.76	<5	<10	<0.5	<2	4.03	<0.5	133	106	21
	0.83	0.001	<0.005	0.006	<0.5	4.26	<5	<10	<0.5	3	2.36	<0.5	160	32	35
	1.58	0.001	0.006	0.006	<0.5	3.33	<5	<10	<0.5	4	1.87	<0.5	159	44	31
	0.65	<0.001	0.007	0.002	<0.5	1.88	<5	<10	<0.5	<2	4.34	<0.5	148	40	59
	0.89	<0.001	0.006	0.001	<0.5	10.30	<5	20	<0.5	2	7.92	<0.5	35	129	3
	0.58	<0.001	<0.005	0.003	<0.5	6.82	<5	<10	<0.5	<2	2.74	<0.5	136	113	24
	0.63	0.006	0.007	0.007	<0.5	9.21	<5	10	<0.5	2	7.55	<0.5	49	257	478
	1.44	<0.001	<0.005	0.007	<0.5	10.25	<5	20	<0.5	5	8.79	<0.5	33	37	74
	1.50	0.001	<0.005	0.002	<0.5	9.54	<5	10	<0.5	2	8.91	<0.5	24	178	12
	1.07	0.002	<0.005	<0.001	<0.5	9.35	<5	20	<0.5	3	9.19	<0.5	7	59	11
	1.17	<0.001	<0.005	<0.001	<0.5	10.50	<5	10	<0.5	2	9.43	<0.5	17	212	7
	1.32	0.001	<0.005	0.002	<0.5	10.30	<5	10	<0.5	<2	9.93	<0.5	24	219	21
	1.50	<0.001	<0.005	0.001	<0.5	10.05	<5	10	<0.5	2	9.67	<0.5	27	218	20
	1.69	<0.001	<0.005	0.001	<0.5	10.55	<5	10	<0.5	3	10.20	<0.5	27	447	14
	0.94	0.003	0.038	0.064	<0.5	10.60	<5	20	<0.5	<2	8.64	<0.5	25	119	165
		1.31 1.67 1.69 1.52 0.85 1.34 1.83 1.74 1.49 2.04 1.86 1.25 0.96 1.73 1.66 1.33 0.04 1.75 0.83 1.58 0.63 1.44 1.50 1.07 1.17 1.32 1.50 1.69	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.31 -0.001 -0.005 0.003 -0.5 7.55 -55 20 -0.5 3 3.47 -0.5 118 76 1.69 -0.001 0.005 0.006 -0.5 5.67 -5 10 -0.5 2 2.84 -0.5 147 70 1.69 -0.001 -0.005 0.008 -0.5 7.57 10 -0.5 -2 2.84 -0.5 147 70 1.80 -0.001 0.019 0.012 -0.5 7.22 7 10 -0.5 6 3.16 -0.5 149 66 1.34 0.001 -0.005 0.002 -0.5 11.40 -5 40 -0.5 6 9.29 -0.5 46 83 1.49 0.001 0.005 0.004 -0.5 9.62 -5 20 -0.5 4 6.83 -0.5 84 48 1.25 -0.001 0.005 0.004 -0.5 4.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 13-SEP-2007 Account: NORSHI

										CERTIF		OF ANA	LYSIS	TM070)85907	
Sample Description	Method Analyte Units LOR	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10
515842 515843 515844 515845 515846 515847		8.01 11.40 12.70 14.65 14.40 13.25	0.09 0.04 0.01 <0.01 <0.01 0.01	7.71 10.35 12.45 13.60 13.65 12.15	1345 1650 1380 1625 1820 1630	<1 <1 <1 <1 <1 <1	0.67 0.22 0.02 0.01 0.01 0.03	401 565 711 776 822 642	60 60 70 80 70 70	<2 <2 <2 <2 <2 <2 <2 <2	<0.01 <0.01 <0.01 0.01 0.13 <0.01	<5 <5 <5 <5 <5 <5	195 14 3 2 4	0.07 0.04 0.04 0.04 0.03 0.04	45 24 20 21 19 23	<10 <10 <10 <10 <10 <10
515848 515849 515850 515851		5.02 5.04 4.67 8.41	0.02 0.01 0.01 0.17	4.14 4.19 3.73 7.28 7.06	765 719 628 1070	<1 <1 <1 <1 <1	1.36 1.56 1.55 1.37	236 225 234 406 406	60 60 70 90	<2 <2 9 <2	<0.01 <0.01 <0.01 0.04 0.05	<5 <5 <5 <5	350 277 259 231 191	0.04 0.06 0.07 0.07 0.06 0.05	27 36 29 31	<10 <10 <10 <10 <10 <10
515852 515853 515854 515855 515856		8.24 8.09 8.19 9.57 11.15	0.11 0.13 0.10 0.08 0.02	6.77 8.15 9.19 11.65	1050 1030 1230 1490 1500	<1 <1 <1 <1	1.13 1.04 0.68 0.44 0.13	390 444 528 685	80 60 60 70	<2 3 <2 2 2	0.09 <0.01 <0.01 <0.01	<5 <5 <5 <5 <5	168 266 44 7	0.05 0.05 0.04 0.04	25 23 36 25 21	<10 <10 <10 <10
515857 515858 515859 515860 515861		3.43 4.72 5.09 9.34 11.85	0.08 0.05 0.10 0.46 0.01	2.50 3.51 4.94 4.26 12.00	619 670 961 1360 1400	<1 <1 <1 <1 <1	2.14 1.74 1.33 1.92 0.06	122 232 143 301 704	90 50 50 1810 980	2 <2 2 11 3	<0.01 0.03 <0.01 0.82 0.07	<5 <5 <5 <5 <5	565 312 269 689 5	0.07 0.05 0.14 0.56 0.11	39 20 112 316 44	<10 <10 <10 <10 <10
515862 515863 515864 515865 515866		12.90 13.60 12.55 4.87 11.50	<0.01 <0.01 <0.01 0.05 0.01	12.90 13.15 12.75 4.12 11.45	1950 1430 1860 876 1350	<1 <1 <1 <1 <1	0.01 0.01 0.02 1.50 0.05	772 811 786 129 665	70 80 50 60 270	2 3 7 <2 <2	0.16 0.16 0.31 <0.01 0.08	<5 <5 <5 5 <5	<1 <1 1 312 7	0.03 0.03 0.03 0.09 0.07	15 14 16 64 40	<10 <10 <10 <10 <10
515867 515868 515869 515870 515871		5.50 3.40 3.35 1.39 2.92	0.05 0.05 0.04 0.03 0.02	5.90 2.25 2.52 0.73 2.34	990 456 560 239 527	<1 <1 <1 <1 <1	1.23 1.57 1.55 2.20 1.77	248 176 115 32 91	50 70 60 60 60	<2 <2 <2 <2 <2 <2 <2	0.11 0.18 0.02 0.02 0.01	<5 <5 <5 <5 5	154 259 228 279 242	0.11 0.06 0.10 0.05 0.10	73 28 64 24 68	<10 <10 <10 <10 <10
515872 515873 515874 515875		3.29 3.31 4.20 3.19	0.02 0.02 0.03 0.05	2.81 2.88 4.17 2.39	567 586 820 494	<1 <1 <1 <1	1.57 1.57 1.34 1.87	116 120 105 155	40 50 50 70	<2 <2 <2 <2	0.03 0.02 0.01 0.07	<5 <5 <5 <5	227 231 200 247	0.10 0.10 0.15 0.07	69 68 118 40	<10 <10 <10 <10

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 13-SEP-2007 Account: NORSHI

	Method Analyte Units LOR	ME-ICP61 Zn ppm 2
515842 515843 515844 515845 515846		76 113 92 88 74
515847 515848 515849 515850 515851		103 49 42 49 66
515852 515853 515854 515855 515856		68 67 70 89 103
515857 515858 515859 515860 515861		36 44 45 100 118
515862 515863 515864 515865 515866		132 83 92 50 122
515867 515868 515869 515870 515871		49 32 29 10 23
515872 515873 515874 515875		25 26 32 28

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1 Page: 1 Finalized Date: 25-SEP-2007 Account: NORSHI

LECO

ICP-AES

	CERTIFICATE TM070921	67		SAMPLE PREPARATIO	ON
			ALS CODE	DESCRIPTION	
22-AUG-2007.	Core samples submitted to our lab in T ccess to data associated with this o		WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
				ANALYTICAL PROCEDU	RES
		-	ALS CODE	DESCRIPTION	INSTRUMENT
			ME-XRF06 OA-GRA06	Whole Rock Package - XRF LOI for ME-XRF06	XRF WST-SIM
			ME-MS81	38 element fusion ICP-MS	ICP-MS

S-IR08

PGM-ICP24

To: NORTHERN SHIELD RESOURCES INC. ATTN: IAN BLISS SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Total Sulphur (Leco)

Pt, Pd, Au 50g FA ICP

aurence (1)

Lawrence Ng, Laboratory Manager - Vancouver

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 25-SEP-2007 Account: NORSHI

Project: HIGHBANK

	Method Analyte Units	WEI-21 Recvd Wt. kg	PGM-ICP24 Au ppm	PGM-ICP24 Pt ppm	PGM-ICP24 Pd ppm	ME-XRF06 SiO2 %	ME-XRF06 Al2O3 %	ME-XRF06 Fe2O3 %	ME-XRF06 CaO %	ME-XRF06 MgO %	ME-XRF06 Na2O %	ME-XRF06 K2O %	ME-XRF06 Cr2O3 %	ME-XRF06 TiO2 %	ME-XRF06 MnO %	ME-XRF06 P2O5 %
Sample Description	LOR	0.02	0.001	0.005	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001
07HB-04A 204.93-205.33	;	0.66	0.002	<0.005	0.001	50.32	18.29	10.10	9.51	5.06	3.67	0.78	0.01	0.92	0.13	0.127
07HB-05A 110.93-111.17		0.35	0.005	<0.005	0.001	48.61	21.40	5.50	14.33	6.36	1.61	0.11	0.08	0.34	0.09	0.019
07HB-05B 152.27-152.60)	0.43	0.005	0.069	0.008	47.56	26.47	4.36	12.37	4.83	2.31	0.11	0.02	0.12	0.06	0.019
07HB-05C 237.44-237.69)	0.36	0.002	<0.005	0.003	45.51	19.50	8.99	11.58	10.18	1.34	0.07	0.05	0.13	0.12	0.017
07HB-05D 237.42-239.60)	0.32	0.001	<0.005	0.003	40.75	13.41	15.46	6.98	17.42	0.26	0.04	0.01	0.05	0.22	0.019
07HB-05E 310.10-310.29)	0.26	0.001	0.015	0.001	46.60	3.75	18.28	4.37	22.16	0.01	<0.01	0.01	0.04	0.19	0.017
07HB-05F 482-482.3		0.35	0.002	<0.005	0.001	47.38	23.77	6.44	12.39	6.23	2.13	0.07	0.03	0.10	0.09	0.019
07HB-05G 591.52-591.79)	0.36	0.002	<0.005	0.001	47.28	17.70	9.19	11.38	10.21	1.73	0.14	0.07	0.19	0.14	0.016
07HB-06A 131.10-131.45	;	0.56	0.001	<0.005	0.001	49.28	13.19	8.47	15.89	9.48	0.40	0.18	0.05	0.44	0.16	0.017

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 25-SEP-2007 Account: NORSHI

Project: HIGHBANK

Sample Description	Method Analyte Units LOR	ME-XRF06 SrO % 0.01	ME-XRF06 BaO % 0.01	ME-XRF06 LOI % 0.01	ME-XRF06 Total % 0.01	ME-MS81 Ag ppm 1	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.5	ME-MS81 Co ppm 0.5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Cu ppm 5	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1
07HB-04A 204.93-205.33	3	0.04	0.01	0.84	99.81	<1	65.1	27.1	40.4	40	1.07	133	1.74	0.98	0.94	20.1
07HB-05A 110.93-111.17	,	0.02	<0.01	1.37	99.85	<1	15.3	2.0	28.5	580	0.30	106	1.02	0.66	0.45	16.6
07HB-05B 152.27-152.60)	0.03	<0.01	1.55	99.81	<1	23.6	1.6	28.1	190	0.38	45	0.24	0.17	0.36	22.4
07HB-05C 237.44-237.69	9	0.02	<0.01	2.30	99.81	<1	8.9	1.2	64.9	330	0.20	23	0.45	0.29	0.30	14.6
07HB-05D 237.42-239.60)	<0.01	<0.01	5.34	99.97	<1	22.4	2.2	120.5	90	0.58	18	0.34	0.26	0.36	12.4
07HB-05E 310.10-310.29)	<0.01	<0.01	4.05	99.48	<1	<0.5	<0.5	151.5	50	0.15	37	0.11	0.07	< 0.03	3.4
07HB-05F 482-482.3		0.02	<0.01	1.32	100.00	<1	6.8	1.1	39.9	200	0.22	34	0.36	0.23	0.30	18.3
07HB-05G 591.52-591.79	9	0.02	<0.01	1.80	99.87	<1	8.3	1.0	60.9	490	1.04	23	0.60	0.39	0.29	13.8
07HB-06A 131.10-131.45	5	0.01	<0.01	1.77	99.34	<1	4.2	2.4	40.0	370	0.25	20	1.55	0.97	0.48	12.6

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 25-SEP-2007 Account: NORSHI

Project: HIGHBANK

Sample Description	Method Analyte Units LOR	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS81 Lu ppm 0.01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1
07HB-04A 204.93-205.33	3	2.38	1.8	0.37	11.5	0.14	2	4.5	13.5	80	<5	3.51	12.5	2.54	1	423
07HB-05A 110.93-111.17	7	0.87	0.3	0.25	<0.5	0.09	<2	0.2	1.7	125	<5	0.34	1.4	0.62	<1	197.0
07HB-05B 152.27-152.60)	0.22	0.2	0.06	2.2	0.04	<2	0.2	0.9	107	<5	0.22	1.4	0.21	<1	266
07HB-05C 237.44-237.69)	0.35	<0.2	0.11	<0.5	0.05	<2	<0.2	0.9	279	<5	0.19	0.4	0.27	<1	221
07HB-05D 237.42-239.60)	0.28	4.1	0.09	<0.5	0.06	2	0.3	1.0	524	<5	0.24	6.4	0.25	<1	12.6
07HB-05E 310.10-310.29)	0.09	<0.2	0.03	<0.5	0.03	<2	<0.2	0.3	718	<5	0.06	<0.2	0.08	<1	1.5
07HB-05F 482-482.3		0.31	0.2	0.08	0.6	0.04	<2	0.2	0.8	155	<5	0.17	0.5	0.20	<1	223
07HB-05G 591.52-591.79	9	0.47	0.2	0.15	<0.5	0.06	<2	<0.2	0.9	234	<5	0.17	4.6	0.32	<1	174.0
07HB-06A 131.10-131.45	5	1.17	0.4	0.37	<0.5	0.15	<2	0.2	2.3	125	<5	0.42	4.3	0.84	<1	120.0

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NORTHERN SHIELD RESOURCES INC. SUITE 1600 - 150 METCALFE STREET OTTAWA ON K2P 1P1

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 25-SEP-2007 Account: NORSHI

Project: HIGHBANK

Sample Description	Method Analyte Units LOR	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 TI ppm 0.5	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	S-IR08 S % 0.01
7HB-04A 204.93-205.33	3	0.3	0.35	0.39	<0.5	0.15	0.46	226	1	9.0	0.88	90	71	0.19
07HB-05A 110.93-111.17	,	<0.1	0.18	0.06	<0.5	0.11	<0.05	115	1	5.6	0.64	36	9	0.07
07HB-05B 152.27-152.60)	<0.1	0.05	0.05	<0.5	0.03	<0.05	29	1	1.3	0.17	35	10	0.02
07HB-05C 237.44-237.69	9	<0.1	0.07	0.09	<0.5	0.05	<0.05	56	1	2.6	0.26	46	5	0.02
7HB-05D 237.42-239.60)	<0.1	0.05	0.31	<0.5	0.05	0.15	22	1	2.1	0.29	106	172	0.02
7HB-05E 310.10-310.29)	<0.1	0.01	< 0.05	<0.5	0.01	<0.05	14	5	0.6	0.10	68	2	0.13
07HB-05F 482-482.3		<0.1	0.05	0.12	<0.5	0.03	<0.05	46	1	1.9	0.22	39	6	0.09
7HB-05G 591.52-591.79	9	<0.1	0.09	< 0.05	<0.5	0.05	<0.05	84	1	3.2	0.35	52	5	0.15
07HB-06A 131.10-131.45	5	<0.1	0.25	0.12	<0.5	0.16	<0.05	215	1	8.4	0.89	46	12	0.06