

METALS CREEK RESOURCES 2008 DIAMOND DRILLING REPORT TILLEX PROPERTY

LARDER LAKE MINING DIVISION, ONTARIO

NTS 42-A-7

Prepared

by

Don Heerema Jr.

of

TABLE OF CONTENTS

SUMMARY	
	Page
Intr	CODUCTION1
Loc	ATION AND ACCESS1
TER	MS OF REFERENCE1
Pro	PERTY STATUS1
REG	IONAL GEOLOGY4
Pro	PERTY GEOLOGY4
EXP	LORATION HISTORY5
PERS	SONNEL
2008	3 DRILLING7
Con	CLUSIONS AND RECOMMENDATIONS
EXP	ENDITURES11
Ref	ERENCES12
	LIST OF FIGURES, AND MAPS
FIGURE 1	REGIONAL LOCATION MAP
FIGURE 2	CLAIM STATUS MAP
FIGURE 3	HISTORIC DRILL PLAN6

LIST OF TABLES

MEK DRILL PLAN.....9

TABLE 1	Corran	CONDITATES
TABLE 1	COLLARI	Coordinates8
INDLL	COLLAN	>OORDHALLO

LIST OF APPENDICES

APPENDIX I	STATEMENT OF QUALIFICATIONS (DON HEEREMA)
Appendix II	ASSAY CERTIFICATES
Appendix III	DRILL SECTION
APPENDIX IV	DRILL SECTION

FIGURE 4

MAP SLEEVE

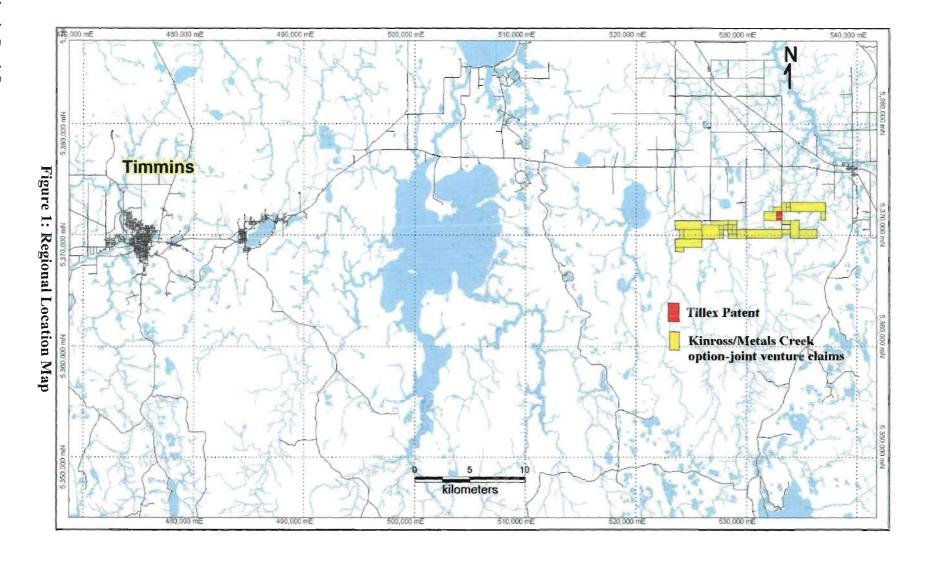
Introduction

In August of 2008, Metals Creek Resources (MEK) drilled two NQ diameter diamond drill holes totaling 276 meters. The drilling was conducted by Bradley Brothers Limited out of Timmins, Ontario. The drilling was initiated for the purposes of confirming the presence of copper bearing mineralization.

The work was conducted on the Tillex property which consists of 1 patented claim (12566) that lies approximately 55 kilometers east of Timmins, Ontario along the eastern boundary of Currie Township. The patent lies within a larger land package of contiguous mining claims in Currie and Bowman Townships. The credits of the drilling program are transferred to the contiguous optioned Currie-Bowman property.

Location and Access

The Tillex patent is situated along the eastern boundary of Currie Township, approximately 55 kilometers east of the city of Timmins. Travel time to the property is roughly 15 minutes from the town of Matheson.


The patent is easily accessible by traveling east from Timmins on Highway 101 to Fisher Road South. Fisher Road is an all season gravel road, south off Hwy 101, that extends for 4.8 kilometers to the south-east corner of the patent. An ATV road extends to the west from the Fisher Road parking area.

Terms of Reference

Map projections are in UTM, North American Datum 83, Zone 17 and all referenced UTM coordinates are in this project unless stated otherwise. Contractions are "mm" = millimeter, "cm" = centimeter, "m" = meters, "km" = kilometers, "g" = gram, "kg" = kilogram, "in" = inch, "ft" = foot, "lb" = pound, "oz" = troy ounce, "oz/ton" = troy ounce per short ton, "g/T" is grams per metric tonne, and "ddh" = diamond drill hole.

Property Status

The property consists of 1 patented claim (12566) that lies within Currie Township and is registered in the Larder Lake Mining Division, administered out of Kirkland Lake, Ontario. The patent is located between two larger claim blocks held by Kinross Gold Corp in an option-joint venture with North American Uranium which is a 100% owned subsidiary of Metals Creek Resources, resulting in a contiguous block of claims. (Figure 2)

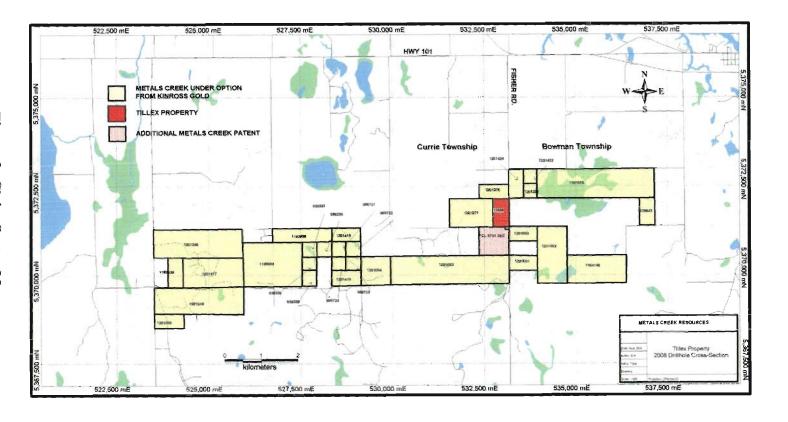


Figure 2: Claim Status Map

Regional Geology

With a lack of outcrop in the Currie and Bowman Townships, the underlying geology can only be derived from the geophysical surveys and drill holes in the area. The property is said to be within the Kinojevis North Assemblage. The overburden has been proven to reach vertical depths of 75 meters in the area. The overburden is mainly comprised of varied clays. The Kinojevis North Assemblage is a steeply dipping, south facing succession of pillowed, tholeitic basalt and minor rhyolite. Interflow metasedimentary rocks, including chert, carbonaceous siltstone, lithic-wacke and crystal tuff are scarce. Meta-basalt members are laterally continuous over tens of kilometers and form distinct magnesium and iron-rich units. Some flows are locally feldspar-phyric and/or variolitic. The assemblage is truncated to the north by the Porcupine-Destor Deformation Zone.

Property Geology

Mineralization appears to be stratabound, hosted within a thick package of felsic volcaniclastic rocks (dacite tuff) and graphitic argillite. Thick sills of feldspar porphyry are spatially associated with the mineralization, intruding both the argillitic sediments and felsic volcaniclastic rocks. These sills are generally unaltered to weakly altered and contain weak mineralization. Pyrite and chalcopyrite content of the zone varies from banded and disseminated. The thickness of the chalcopyrite/pyrite mineralization within the graphitic argillites generally exceeds 20 meters, with the intensity gradually diminishing northwards into a relatively unaltered felsic volcaniclastic (dacite tuff) rock.

Many drill holes intersect between 10 to 35 meters of mineralized graphitic argillites containing up to 4-5% chalcopyrite +/- pyrite. The argillites are sub-vertical to steeply dipping (eastward) and strike at approximately 045°. The chalcopyrite mineralization can be found locally within dacites and dacite tuffs to the west as well. The mineralized argillites are often intruded by feldspar porphyry creating two zones of mineralization referred to as the "hangingwall" and "footwall" zones. A diabase sill averaging 25 meters in drill thickness lies immediately to the east of the argillites. The chalcopyrite mineralization within the argillites is mainly in the form of stringers and fine disseminations along with occasional balls, associated with qtz/feldspar stringers and veinlets. Most of the mineralization is formed parallel to bedding, but cross-cutting stringers are not un-common. Clots or balls of mineralization are generally elongate parallel to stratigraphy and reach as large as 3-4cm in diameter.

Exploration History

The deposit is reputed to be the first discovery resulting from a basal till sampling program in Canada. The program was initiated and managed by Derry Michener & Booth in 1973 and financed by the Tillex Syndicate that consisted of Canadian Nickel Company Limited (Canico), Asarco Exploration Company of Canada Limited and Brascan Resources Limited.

The Tillex Syndicate utilized a dual tube reverse circulation Acker rotary drill, mounted on a Flextrack Nodwell Carrier. The overburden drill holes were located downice and laterally from AEM conductors previously identified by Canico. Nine targets were initially targeted by 22 overburden drill holes. One of these holes intersected basal sand and gravel with cobbles of argillite, andesite, porphyritic granite; including a 2 foot diameter boulder of chalcopyrite-bearing argillite. The feldspar porphyry bedrock was weakly mineralized and contained chlorite and pyrite mineralization. Subsequent overburden drill holes further defined the anomaly.

The overburden drill hole geochemical anomalies were followed by Fluxgate magnetometer and McPhar vertical loop electromagnetic surveys to better define the airborne electromagnetic anomaly. These surveys defined three conductive sub-parallel zones. Additional electromagnetic surveys conducted by Asarco further defined two of the conductive zones and negated the third zone as a conductive overburden response. These two conductors were targeted by the initial drilling and define the Tillex deposit. Subsequent, more detailed magnetometer surveying defined the distribution of the post-mineral diabase dyke that occurs immediately to the east of the main mineralized area.

The Tillex Syndicate conducted 8,098 feet of BQ core drilling in 24 holes in the fall/winter of 1974-1975 to test the geophysical anomalies defined in the ground surveys. This drilling was followed by an additional 5,739 feet of BQ core drilling in 9 holes during the winter of 1976. Of this drilling, 17 of 33 holes are on the Tillex Property. (Figure 3)

Mr. Paul Nichols of Westmin Resources Limited undertook a resource estimate of the Tillex deposit on the Tillex Property in 1990 and calculated a non 43-101 compliant resource of 1,338,000 metric tonnes grading 1.56% copper. There is insufficient drill hole information to calculate a detailed resource and the above estimate should be considered to be in the inferred or potential category.

Metals Creek Resources

5

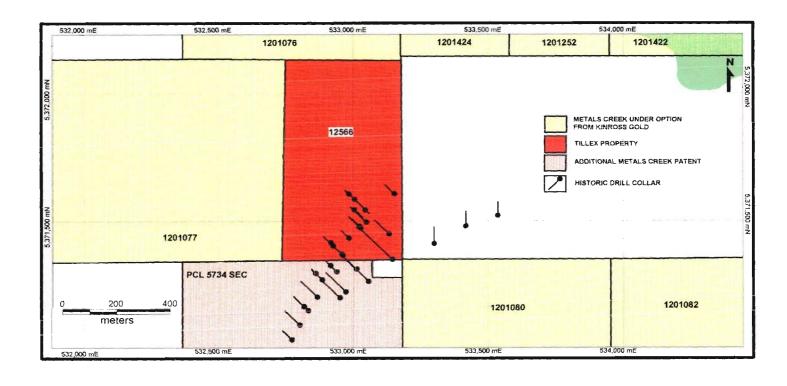


Figure 3: Historical Drill Plan

Personnel

Bradley Brothers Limited of Timmins, Ontario was contracted by MEK to undertake the diamond drilling portion of the program. Metals Creek employees were responsible for supervising the drilling as well as core logging and cutting.

Bradley Brothers Limited Hwy 101 West P.O. Box 485 Timmins, Ontario P4N 7E7

Don Heerema Jr., Supervised drill program and logged core 871-B Tungsten St.
Thunder Bay, Ontario
P7B 6H2

Jeff Myllyaho, Supervised drill program and cut core 871-B Tungsten St. Thunder Bay, Ontario P7B 6H2

2008 Drilling

During August, 2008, MEK drilled two confirmation diamond drill holes on the Tillex deposit totaling 276 meters. The drilling was conducted by Bradley Brothers Ltd. out of Timmins, Ontario. Both holes were drilled with NQ diameter rods and NW casing. The drilling was initiated to confirm and duplicate the intercepts of chalcopyrite mineralization within a graphitic argillite package that was used in calculating the resource estimate. The holes were collared and oriented in an attempt to twin historic holes T-9 and T-15. Historic hole T-15 was twinned by TX08-001 and T-9 was twinned by TX08-002. (Figure 4)

The collar positions were spotted by MEK geologists using a hand held Garmin 76CXs gps system. Front and back sites were compassed in at 315°, later to be utilized for drill alignment.

The core was picked up by MEK geologists from the drill site and taken to a logging facility on highway 101, were it was subsequently logged and cut. All logging was conducted by geologist D.Heerema.

The twinning resulted in very similar lithologies to the historic holes; intercepting mineralized graphitic argillites and weakly mineralized dacites with minor chloritic alteration. The graphitic argillites were extremely blocky and recoveries varied. Hole TX08-001 resulted in extremely poor core recoveries.

Sampling/Assaying

Both holes were sampled entirely, ranging from 1m to 3m samples depending on the core recovery. One meter sampling was the preferred method, but poor core recoveries did not allow for accurate sampling at 1m intervals. As mentioned above, TX08-001 resulted in extremely poor core recovery within the argillite units and therefore 3m samples resulted. All sampling was kept within lithological contacts.

Blanks and standards were also submitted within the sampling series as a means of quality assurance and quality control. Blanks were submitted at random within every set of 20 samples (1-20, 21-40, 41-60, etc...). Two different Cu standards were also submitted at random within every set of 30 samples (1-30, 31-60, 61-90, etc...).

All of the samples were cut by MEK personnel on a masonry saw. One half of the core was placed back in the core tray and the other bagged and tagged for the purpose of assaying. A total of 176 samples of the core were delivered by MEK geologists to Accurassay Laboratories in Thunder Bay, Ontario as the primary laboratory. Ten percent of the samples were sent as coarse reject from Accurassay to Activation Laboratories in Thunder Bay, Ontario as independent checks. All 176 samples were analyzed for Au using aqua regia digestion and atomic absorption finish.

Table 1.0 Collar Coordinates

Hole-ID	Easting	Northing	Elevation	Azimuth	Dip	Length
TX08-001	533021.0	5371478.0	269m	315°	-50°	137m
TX08-002	533021.5	5371478.0	269m	315°	-71°	139m

UTM NAD 83 Zone 17

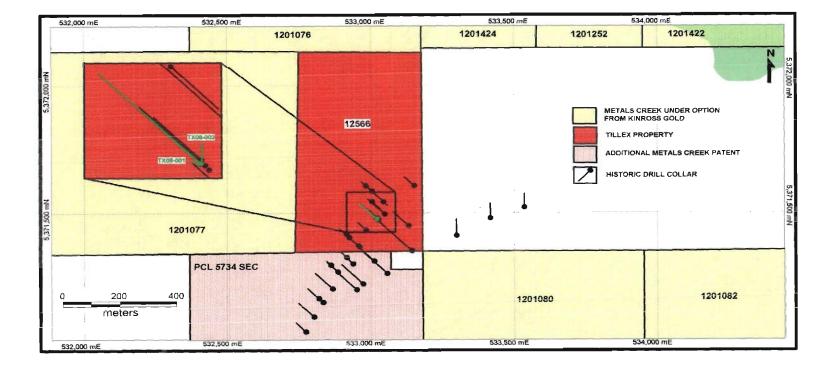


Figure 4: MEK Drill Plan

Conclusions and Recommendations

The results of the confirmation drilling look encouraging, illustrating that the chalcopyrite mineralization intersected in the present drilling is very similar in appearance and widths. Lithological contacts encountered in the historic drilling are a very close match to the present drilling which shows a remarkable twin and accuracy in collar coordinates of historic drilling.

Because of very little outcrop on the property, it is recommended that additional drilling be conducted to tighten drill spacings currently at 60m sections, to 30m as well as additional drilling on open targets at depth. Drilling of any untested targets along strike to the north and south maybe warranted after conducting ground magnetics and HLEM surveys.

Expenditures

Below is a list of expenditures incurred for the diamond drilling program and report writing.

Total	\$65,962.55
Assays	\$ 2,640.00
Accommodations &Trans	\$ 4,275.30
Geologists Labour	\$ 5,525.00
Diamond Drilling Mob-Demob	\$51,002.25 \$ 2,520.00

References

Heerema, D.

2008: Metals Creek Resources Line-cutting and Geophysics Report, Currie-Bowman Property

APPENDIX I

STATEMENT OF QUALIFICATIONS

- I, Don Heerema Jr., hereby certify that:
 - 1. I am a practicing geologist in Thunder Bay, Ontario and reside at 26 Burriss St., Thunder Bay, Ontario, P7A 3C9.
 - 2. I am a graduate of Lakehead University with a HBSc. in Geology.
 - 3. I am a Canadian Citizen.
 - 4. I have practiced my profession full time since graduation in 2002.
 - 5. I am a practicing member of the Association of Professional Geoscientists of Ontario. (Registration #1528)
 - 6. I do not have, nor do I expect to receive, directly or indirectly, any interest in the properties of Metals Creek Resources.

Signature:

Date:

Appendix II Assay Certificates

, ti .

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Tet: (807) 626-1630

Fax: (807) 622-7571

Aug 27, 2008

Date Completed:

Sep 17, 2008

Job#:

200843212

Reference:

Sample #:

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.018	< 0.001	18	TX08-001-001		270349
0.030	< 0.001	30	TX08-001-002		270350
0.030	< 0.001	30	TX08-001-003		270351
< 0.005	< 0.001	<5	TX08-001-004		270352
0.012	< 0.001	12	TX08-001-005		270353
0.006	< 0.001	6	TX08-001-006		270354
< 0.005	< 0.001	<5	TX08-001-007		270355
< 0.005	< 0.001	<5	TX08-001-008		270356
< 0.005	< 0.001	<5	TX08-001-009		270357
< 0.005	< 0.001	<5	TX08-001-009	Dup	270358
0.007	< 0.001	7	TX08-001-010		270359
0.011	< 0.001	11	TX08-001-011		270360
0.008	< 0.001	8	TX08-001-012		270361
0.007	< 0.001	7	TX08-001-013		270362
0.008	< 0.001	8	TX08-001-014		270363
0.007	< 0.001	7	TX08-001-015		270364
0.009	< 0.001	9	TX08-001-016		270365
0.007	< 0.001	7	TX08-001-017		270366
< 0.005	< 0.001	<5	TX08-001-018		270367
0.009	< 0.001	9	TX08-001-019		270368
< 0.005	< 0.001	<5	TX08-001-019	Dup	270369
0.008	< 0.001	8	TX08-001-020		270370
< 0.005	< 0.001	<5	TX08-001-021		270371
0.005	< 0.001	5	TX08-001-022		270372

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256

Date Received: Aug 27, 2008

Date Completed: Sep 17, 2008

> Job #: 200843212

Reference:

Sample #: 176 Core

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.008	< 0.001	8	TX08-001-023		270373
< 0.005	< 0.001	<5	TX08-001-024		270374
0.006	< 0.001	6	TX08-001-025		270375
0.164	0.005	164	TX08-001-026		270376
0.007	< 0.001	7	TX08-001-027		270377
< 0.005	< 0.001	<5	TX08-001-028		270378
0.011	< 0.001	11	TX08-001-029		270379
0.011	<0.001	11	TX08-001-029	Dup	270380
< 0.005	< 0.001	<5	TX08-001-030		270381
< 0.005	< 0.001	<5	TX08-001-031		270382
< 0.005	< 0.001	<5	TX08-001-032		270383
< 0.005	< 0.001	<5	TX08-001-033		270384
< 0.005	< 0.001	<5	TX08-001-034		270385
< 0.005	< 0.001	<5	TX08-001-035		270386
< 0.005	< 0.001	<5	TX08-001-036		270387
< 0.005	< 0.001	<5	TX08-001-037		270388
< 0.005	< 0.001	<5	TX08-001-038		270389
< 0.005	< 0.001	<5	TX08-001-039		270390
< 0.005	< 0.001	<5	TX08-001-039	Dup	270391
< 0.005	< 0.001	<5	TX08-001-040		270392
< 0.005	< 0.001	<5	TX08-001-041		270393
< 0.005	< 0.001	<5	TX08-001-042		270394
< 0.005	< 0.001	<5	TX08-001-043		270395
0.006	< 0.001	6	TX08-001-044		270396

Thunder Bay, ON Canada P7B 5X5

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received: Aug 27, 2008

Date Completed: Sep 17, 2008

Job #: 200843212

Reference:

Sample #: 176 Core

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
< 0.005	<0.001	<5	TX08-001-045		270397
< 0.005	<0.001	<5	TX08-001-046		270398
0.006	< 0.001	6	TX08-001-047		270399
< 0.005	< 0.001	<5	TX08-001-048		270400
< 0.005	< 0.001	<5	TX08-001-049		270401
< 0.005	< 0.001	<5	TX08-001-050		270402
< 0.005	< 0.001	<5	TX08-001-051		270403
< 0.005	< 0.001	<5	TX08-001-051	Dup	270404
0.007	< 0.001	7	TX08-001-052		270405
0.009	< 0.001	9	TX08-001-053		270406
0.009	< 0.001	9	TX08-001-054		270407
0.014	< 0.001	14	TX08-001-055		270408
< 0.005	< 0.001	<5	TX08-001-056		270409
1.276	0.037	1276	TX08-001-057		270410
0.014	< 0.001	14	TX08-001-058		270411
0.009	< 0.001	9	TX08-001-059		270412
< 0.005	< 0.001	<5	TX08-001-060		270413
0.011	< 0.001	11	TX08-001-061		270414
0.013	< 0.001	13	TX08-001-062		270415
0.019	< 0.001	19	TX08-001-063		270416
0.007	< 0.001	7	TX08-001-064		270417
0.014	< 0.001	14	TX08-001-065		270418
< 0.005	< 0.001	<5	TX08-001-066		270419
< 0.005	< 0.001	<5	TX08-001-067		270420

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Aug 27, 2008

Date Completed:

Sep 17, 2008

Job #:

200843212

Core

Reference:

Sample #: 176

		F			
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
< 0.005	< 0.001	<5	TX08-002-001		270421
0.005	<0.001	5	TX08-002-002		270422
0.009	<0.001	9	TX08-002-002	Rep	270423
0.013	< 0.001	13	TX08-002-003		270424
0.014	<0.001	14	TX08-002-004		270425
0.010	<0.001	10	TX08-002-005		270426
0.016	< 0.001	16	TX08-002-006		270427
< 0.005	< 0.001	<5	TX08-002-007		270428
0.034	<0.001	34	TX08-002-008		270429
< 0.005	< 0.001	<5	TX08-002-009		270430
0.030	<0.001	30	TX08-002-010		270431
0.031	< 0.001	31	TX08-002-011		270432
0.039	0.001	39	TX08-002-012		270433
0.036	0.001	36	TX08-002-012	Dup	270434
0.037	0.001	37	TX08-002-013		270435
0.041	0.001	41	TX08-002-014		270436
0.042	0.001	42	TX08-002-015		270437
0.036	0.001	36	TX08-002-016		270438
0.060	0.002	60	TX08-002-017		270439
0.049	0.001	49	TX08-002-018		270440
0.041	0.001	41	TX08-002-019		270441
0.037	0.001	37	TX08-002-020		270442
0.046	0.001	46	TX08-002-021		270443
0.042	0.001	42	TX08-002-022		270444

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Aug 27, 2008

Date Completed:

Sep 17, 2008

Job #:

200843212

176

Reference:

Sample #:

A	A	A	_		
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.043	0.001	43	TX08-002-022	Dup	270445
1.258	0.037	1258	TX08-002-023		270446
0.105	0.003	105	TX08-002-024		270447
0.050	0.001	50	TX08-002-025		270448
0.039	0.001	39	TX08-002-026		270449
0.047	0.001	47	TX08-002-027		270450
0.035	0.001	35	TX08-002-028		270451
0.007	< 0.001	7	TX08-002-029		270452
0.009	< 0.001	9	TX08-002-030		270453
0.041	0.001	41	TX08-002-031		270454
0.014	< 0.001	14	TX08-002-032		270455
0.013	< 0.001	13	TX08-002-032	Dup	270456
0.010	< 9.001	10	TX08-002-033		270457
0.016	< 0.001	16	TX08-002-034		270458
0.021	< 0.001	21	TX08-002-035		270459
0.013	< 0.001	13	TX08-002-036		270460
0.012	< 0.001	12	TX08-002-037		270461
0.015	< 0.001	15	TX08-002-038		270462
0.015	< 0.001	15	TX08-002-039		270463
0.014	< 0.001	14	TX08-002-040		270464
0.015	< 0.001	15	TX08-002-041		270465
0.018	< 0.001	18	TX08-002-042		270466
0.012	< 0.001	12	TX08-002-042	Dup	270467
0.014	< 0.001	14	TX08-002-043		270468

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Aug 27, 2008

Date Completed:

Sep 17, 2008

Job #:

200843212

176

Reference:

Sample #:

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.012	< 0.001	12	TX08-002-044		270469
0.016	< 0.001	16	TX08-002-045		270470
0.019	< 0.001	19	TX08-002-046		270471
0.010	< 0.001	10	TX08-002-047		270472
0.009	< 0.001	9	TX08-002-048		270473
0.179	0.005	179	TX08-002-049		270474
0.013	< 0.001	13	TX08-002-050		270475
0.012	< 0.001	12	TX08-002-051		270476
0.010	< 0.001	10	TX08-002-052		270477
0.008	<0.001	8	TX08-002-052	Dup	270478
0.010	< 0.001	10	TX08-002-053		270479
0.011	< 0.001	11	TX08-002-054		270480
< 0.005	< 0.001	<5	TX08-002-055		270481
< 0.005	< 0.001	<5	TX08-002-056		270482
< 0.005	<0.001	<5	TX08-002-057		270483
< 0.005	< 0.001	<5	TX08-002-058		270484
< 0.005	< 0.001	<5	TX08-002-059		270485
< 0.005	< 0.001	<5	TX08-002-060		270486
< 0.005	< 0.001	<5	TX08-002-061		270487
< 0.005	< 0.001	<5	TX08-002-062		270488
< 0.005	< 0.001	<5	TX08-002-062	Rep	270489
< 0.005	< 0.001	<5	TX08-002-063		270490
< 0.005	<0.001	<5	TX08-002-064		270491
< 0.005	< 0.001	<5	TX08-002-065		270492

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Aug 27, 2008

Date Completed:

Sep 17, 2008

Job #:

200843212

176

Reference:

Sample #:

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
< 0.005	< 0.001	<5	TX08-002-066		270493
< 0.005	< 0.001	<5	TX08-002-067		270494
< 0.005	< 0.001	<5	TX08-002-068		270495
< 0.005	< 0.001	<5	TX08-002-069		270496
< 0.005	< 0.001	<5	TX08-002-070		270497
< 0.005	< 0.001	<5	TX08-002-071		270498
< 0.005	< 0.001	<5	TX08-002-072		270499
< 0.005	< 0.001	<5	TX08-002-072	Dup	270500
0.015	< 0.001	15	TX08-002-073		270501
< 0.005	< 0.001	<5	TX08-002-074		270502
0.012	< 0.001	12	TX08-002-075		270503
0.032	< 0.001	32	TX08-002-076		270504
< 0.005	< 0.001	<5	TX08-002-077		270505
0.020	< 0.001	20	TX08-002-078		270506
0.039	0.001	39	TX08-002-079		270507
0.021	< 0.001	21	TX08-002-080		270508
0.006	< 0.001	6	TX08-002-081		270509
0.006	< 0.001	6	TX08-002-082		270510
0.006	< 0.001	6	TX08-002-082	Dup	270511
<0.005	< 0.001	<5	TX08-002-083		270512
< 0.005	< 0.001	<5	TX08-002-084		270513
< 0.005	< 0.001	<5	TX08-002-085		270514
0.198	0.006	198	TX08-002-086		270515
< 0.005	< 0.001	<5	TX08-002-087		270516

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Aug 27, 2008

Date Completed:

Sep 17, 2008

Job #:

200843212

Reference:

Sample #: 176

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
< 0.005	< 0.001	<5	TX08-002-088		270517
< 0.005	<0.001	<5	TX08-002-089		270518
< 0.005	< 0.001	<5	TX08-002-090		270519
< 0.005	< 0.001	<5	TX08-002-091		270520
0.011	<0.001	11	TX08-002-092		270521
0.009	< 0.001	9	TX08-002-092	Dup	270522
< 0.005	<0.001	<5	TX08-002-093		270523
< 0.005	< 0.001	<5	TX08-002-094		270524
0.017	< 0.001	17	TX08-002-095		270525
0.017	<0.001	17	TX08-002-096		270526
< 0.005	< 0.001	<5	TX08-002-097		270527
< 0.005	< 0.001	<5	TX08-002-098		270528
0.009	< 0.001	9	TX08-002-099		270529
0.006	< 0.001	6	TX08-002-100		270530
< 0.005	< 0.001	<5	TX08-002-101		270531
< 0.005	<0.001	<5	TX08-002-102		270532
< 0.005	< 0.001	<5	TX08-002-102	Dup	270533
< 0.005	< 0.001	<5	TX08-002-103		270534
< 0.005	< 0.001	<5	TX08-002-104		270535
< 0.005	< 0.001	<5	TX08-002-105		270536
< 0.005	< 0.001	<5	TX08-002-106		270537
< 0.005	<0.001	<5	TX08-002-107		270538
< 0.005	<0.001	<5	TX08-002-108		270539
< 0.005	< 0.001	<5	TX08-002-109		270540

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Wednesday, September 17, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256

Date Received:

Aug 27, 2008

Date Completed:

Sep 17, 2008

Job #:

200843212

Reference:

Sample #:

176

Core

Acc#

Client ID

Αu ppb

Αu oz/t

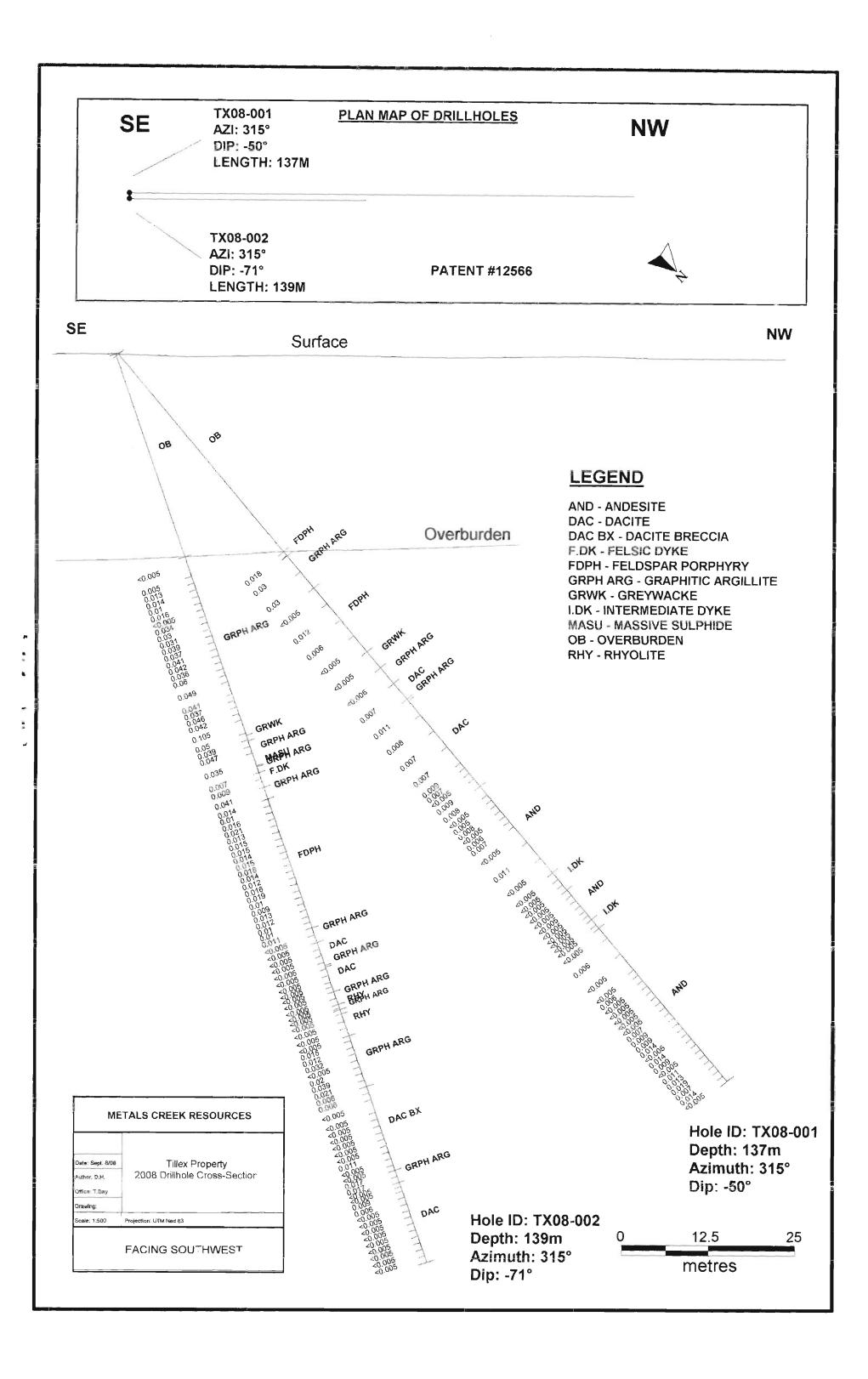
Au g/t (ppm)

PROCEDURE CODES: AL4AU3, AL4Ag, AL4Cu, AL4Pb, AL4Zn

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not


be reproduced except in full, without the written

approval of the laboratory

AL903-0730-09/17/2008 9:44 AM

Appendix III

Drill Section

Appendix IV

Drill Logs

PROPERTY: Tillex	CLAIM NO.:	patent 12566		_	DOWNHOLE SURVEY METHOD: EZ Shot	REMARKS: Attempting to twin historic diamond drill hole T-15.
HOLE NO.: TX08-001	LENGTH (m):	137.00	CORE SIZE:	NQ	DOWNHOLE SURVEY BY: Drillers	1
COORD SYSTEM: UTM Nad 83	NORTHING:	5371478.000	EASTING:	533021.000	COLLAR SURVEY BY: Don/Jeff (GPS)	1
SECTION: N/A	ZONE:	N/A	ELEVATION (m):	269.000	DRILLING COMPANY: Bradley Brothers] /
COLLAR ORIENTATION (AZIMUTH/DIP) :	PLANNED:	315.0 / -50.0	SURVEYED:	315.000 / -50.000	DATE LOGGED: Aug. 20, 2008 TO Aug. 22, 2008	Core Storage: St.Andrews Page 1 of 7
HOLE STARTED: August 18, 2008	HOLE FINISHED	: August 21, 2008	MAG:	11W	LOGGED BY: D.Heerema	

		<u> </u>			_					X	//					
	RAGE	DECODIDATION	% Core	ROCK	Alt'n	Bx Matrix			SAME						SSAYS	
FROM	ТО	DESCRIPTION	Recov	CODE	Plag Pxr	Comp Pro	op'n No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Cu (%) Au (ı/t) Pb (%) Zn (%)	Ag (g/t)
0.00	37.20	OVERBURDEN														
		COLOUR: variable														
		GRAIN SIZE: variable														
		Boulders of mafic volcanics and granite with some small cobbles and pebbles mixed in.														
		III														
37.20	38.00	FELDSPAR PORPHYRY		fdph			001	37.20	37.97	0.77	0.75	1:0	0.	018		
		COLOUR: grey														
		GRAIN SIZE: medium-grained														
		Very fine grained and silicous groundmass of qtz and amphiboles with 40% altered feldspar phenocrysts. Phenocrysts are dull in appearance showing evidence of saussuritization with diffuse grain boundaries. Chalcopyrite mineralization present as fine disseminations and coarser blebs that favor late structures such as fractures.														
		<i>III</i>														
38.00	44.00	GRAPHITIC ARGILLITE		grph arg	-	<u></u>	002	38.00	41.00	3.00	1.5	1:0	0.	030		
		COLOUR: black		grph arg	_		003	41.00	44.00	3.00	1.5	1:0		030	-	
		GRAIN SIZE: very fine-grained														

LOGGED B	Y: D.Heere	ma	SIGNATURE:		F	ROPERTY	: Tillex				ZONE:	N/A			HOLE	NO.: TX0	8-001		Page	2 of 7
METER	RAGE			% Core	ROCK	Alt'n	Bx Ma	trix			SAMI	PLES					ASS			
FROM	то		DESCRIPTION	Recov	CODE	Plag Pxr	Comp	Prop'n N	lo. F	ROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Cu (%)	Au (g/t)	Pb (%)	Zn (%)	Ag (g/t)	
		ca. Local white stringer containing sulphide mi and blebs of fine-grain overall sulphide contents of the core recovery of the core reco	lite with bedding at approx 42 degrees to ers of feldspar (<1mm) are present neralization in the form of thin stringers ed cpy and py at approx 1:3. The nt is approx 1.5%. The rock is relatively th. his interval is only 30.8% due to grinding 1.85m of the 6m interval was recovered.																	
		///																		
44.00	56.00	FELDSPAR PORPHY	RY		fdph		_	(004	44.00	47.00	3.00	0.75	1:0		0.002				
4-1.00	00.00				fdph				005	47.00	50.00	3.00	1_	1:0		0.012				
		G			fdph		_		006	50.00	53.00	3.00	2.5	1:0		0.006				
		GRAIN SIZE: me	dium-grained		fdph			(007	53.00	56.00	3.00	1:0	1:0		0.002				
		distinguishable grains magnetic. Chalcopyrite mineraliz disseminations with or The overall cpy conter	htly lighter in colour with more and homogeneous throughout. Non-cation throughout as fine sporadic ecasional blebs and rare thin stringers. In the sapprox 1.5-2% throughout. And blocky resulting in poor core recovery 2m interval, only 5m was recovered with a long.																	
56.00	59.00	GREYWACKE			grwk				008	56.00	59.00	3.00	3	1:0		0.002		_		
30.00	59.00		21/		_															
		3 1																		
		GRAIN SIZE: fine	e-medium-grained																	
		Gritty looking grey ma	ssive material with abundant qtz																	

LOGGED I	BY: D.Heere	ma SIGNATURE:		F	PROPERTY	: Tillex				ZONE:	: N/A			HOLI	E NO.: TX0	8-001		Page 3 of
METE	RAGE		%	ROCK	Alt'n	Bx N	Matrix			SAMI	PLES					ASS	SAYS	
FROM	то	DESCRIPTION	Core Recov	CODE	Plag Pxr	Comp	Prop'n	No.	FROM (m)	TO (m)	LENGTH	%S	Cpy:Py	Cu (%)	Au (g/t)	Pb (%)	Zn (%)	Ag (g/t)
		flooding. The unit appears brecciated by thin qtz veinlets (<1cm wide) with associated cpy. The qtz veinlets show evidence of microfaulting and possible folding. The qtz is milky white to soft grey in colour. The cpy consists of blebs ranging from 1mm to 5cm, usually found within the qtz. Minor brown sulphide likely po within thin fractures. Scratches grey to black so not sphalerite.																
		Poor core recovery here also.																
		III																
59.00	62.00	GRAPHITIC ARGILLITE	25	grph arg			_	009	59.00	62.00	3.00	tr	tr:0		0.002			
		COLOUR: grey/black																
		GRAIN SIZE: very fine-grained																
		Dark grey to black with a shiny lusture as a result of the graphite. Abundant graphite and little sulphide. Bedding orientation is approx 50 degrees to ca. Minor pyrite with trace cpy locally. Core recovery of approx 25%. Recovered 0.77m of 3m interval.																
60.00	04.45	DACITE	22	dac	_		_	010	62.00	65.00	3.00	0.25			0.007			
62.00	81.45	DACITE	85	dac				011	65.00	68.00	3.00	5	-		0.011			
		COLOUR: green/grey	47	dac				012		71.00	3.00	5	0:1		0.008			_
		GRAIN SIZE: fine-grained	43	dac	_			013	71.00	74.00	3.00	4	0:1		0.007			
				Blank				014	74.00	74.00	0.00		0:1		0.008			
		Dull looking unit of grey volcanics with localized silicous areas	47 95	dac	_			015 016	74.00 77.00	77.00 78.00	3.00 1.00	3	0:1		0.007			
		that may possibly represent rhyolite. The rock is fairly massive		dac			_	016	78.00	79.00	1.00	2	0:1		0.003			

LOGGED	BY: D.Heere	ema S	GNATURE:	ļ	PROPERTY	: Tillex			ZONE:	N/A			HOLE NO.: TX0	B-001	Pag	ge 4 of 7
MET	ERAGE		%	ROCK	Alt'n	Bx Mat	rix		SAME	PLES				ASSAYS		
FROM	то	DESCRIPTION	Core Recov	CODE	Plag Pxr	Comp	Prop'n No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Cu (%) Au (g/t)	Pb (%) Zn (%)	Ag (g/t)	
	1 .0	with a weak local foliation at approx 45-50 degree	s to ca. 95	dac			018	79.00	80.00	1.00	1.5	0:1	0.002			
		Occasional thin qtz veinlet, but overall fairly mass		dac			019	80.00	81.45	1.45	0.5	0:1	0.009			
		Sulphides are present throughout in the form of fr														
ļ		po + py with areas of very finely disseminated ma														
		Overall sulphide content is approx 2-3% with area	s that reach													
		as high as 6-7%. The disseminated sulphides are	associated													
		with the more foliated material.														
		The core is very blocky and much of the core has	been ground													
		by drilling. Recoveries are poor and therefore fro	m-to													
		measurements are difficult to determine.														
		65.00 - 65.35??: graphitic argillite														
		-abundant pyrite as disseminations forming string	ers within													
		minor S-folds														
		68.75-69.00??: aplite dike containing 8% py + 0.5	% po													
		-rubbly contacts so actual length is unknown														
		73.80 - 74.50??: rhyolite														
		-more silicous and lighter in colour														
		<u>-</u>														
		III														
81.45	97.75	ANDESITE	95	and		_	020		83.00	1.55	0.25	0:1	0.008	<u> </u>		_
		COLOUR: green/grey	95	and		_	021		84.00	1.00	tr	-	0.002			
		• • • • • • • • • • • • • • • • • • • •	97	and			022		85.00	1.00	<0.25	-	0.005			
		GRAIN SIZE: fine-grained	97	and		_	023		86.00	1.00	tr_	- 0.4	0.008			
			100	and .			024		87.00	1.00	tr	0:1	0.002 0.006			-
		More mafic than the dacite logged above. These	volcanics are	and			025		88.00 88.00	0.00	0.5	0:1	0.008			
		darker and remain massive with slightly better co		Standard			026		89.00	1.00	0.5	0:1	0.104			
		than the dacites. The unit is extremely chloritic a		and and			028		92.00	3.00	tr	0:1	0.007			
		intruded by numerous thin quartz/feldspar veinlet		and			029		95.00	3.00	tr	1:1	0.011			
		1cm wide. The veinlets are wavy with sharp con		and			030		97.75	2.75	tr	0:1	0.002			
		sulphide.	04	und			000		=		-		_			
		The sulphide present within this unit are found m	ainly along													

LOGGED E	BY: D.Heere	ema	SIGNATURE:		F	ROPERTY	: Tillex			ZONE:	N/A			HOLE NO.: TX	08-001	Page 5 of 1
METE	RAGE			% Core	ROCK	Alt'n	Bx Matrix			SAME	PLES				ASSAYS	
FROM	TO		DESCRIPTION	Recov	CODE	Plag Pxr	Comp Prop	'n No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Cu (%) Au (g/t)	Pb (%) Zn (%)	Ag (g/t)
			canics or within the silicous veinlets. The spyrite with trace to minor po. Overall ed at <1%.													
			ound core from 90m to 95m. Extremely resulted in 3m sampling.													
		///														
97.75	100.98	INTERMEDIATE D	IKE	100	Int. Dk			031	97.75	99.00	1.25	1	0:1	0.002		
		COLOUR:	green/grey	100	Int. Dk			032	99.00	100.00	1.00	1	0:1	0.002		
		•		100	Int. dk			033	100.00	100.98	0.98	1	0:1	0.002		
		massive intermedia contacts are very sl The rock is massive sets at 45 and 55 de The contacts are fir weakly resembles of	AIN SIZE: very fine-grained s is a moderately to strongly magnetic unit resembling a ssive intermediate volcanic that is quite silicous. The stacts are very sharp with what appear to be chill margins. The prock is massive and homogeneous with a well formed joint at 45 and 55 degrees. The contacts are finer-grained and lighter green colour that akly resembles obsidian. The intermediate volcanic that is quite silicous. The intermediate volcanic that akly resembles obsidian. The intermediate volcanic that is quite silicous. The intermediate volcanic that is a very silicous that a very silic													
		///														
100.98	106.55	ANDESITE	-	100	and	_		034	100.98	102.00	1.02	0.75	0:1	0.002		
		COLOUR:	green/grey	100	and			035	102.00	103.00	1.00	tr	-	0.002		
		`	fine-grained	90	and			036	103.00	104.00	1.00	0.25	0:1	0.002		
		OIVAIN SIZE.	me-gramed	100	and			037	104.00	105.00	1.00	tr	-	0.002		
					Blank			038	105.00	105.00	0.00		-	0.002		
		Similar to above but lack the abundance of qtz veinlets that are seen in the andesites above. The host andesite is very chloritic with black chlorite on fracture faces. The silicous veining often has sericite and localized green fuchsite. One vein contains minor amounts of very soft green serpentine.	90	and and			039	105.00	105.80 106.55	0.80	0.25 tr	0:1	0.002 0.002			

Matter M		BY: D.Heere	ema	SIGNATURE:		F	ROPERTY	: Tillex			ZONE	N/A			HOLE NO.: TX	08-001	Page 6 of 7
Trace prytile with some pyrite associated with the qtz veining. Blocky core with reasonable recoveries. III	МЕТЕ			DECADIDATION	% Core	ROCK	Alt'n	Bx Mat	rix		SAMI	PLES		-		ASSAYS	
Blacky core with reasonable recoveries.	FROM	TO		DESCRIPTION		CODE	Plag Pxr	Comp	Prop'n No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Cu (%) Au (g/t)	Pb (%) Zn (%) Ag (g/t)
106.55 108.20 INTERMEDIATE DIKE 100 Int. Dk 041 106.55 107.55 100 If 0.002			Trace pyrite with s	ome pyrite associated with the qtz veining.							-						
108.20 INTERMEDIATE DIKE 100 Int. Dk 041 10685 107.55 1.00 tr - 0.002			Blocky core with re	easonable recoveries.													
COLOUR: green/grey 100 Int Dk 042 107.55 108.20 0.65 tr 0.0002			///														
Same as the previous intermediate dike unit. Black chlorite along fractures often assocalted with barren white qtz.	106.55	108.20	INTERMEDIATE [DIKE	100	Int. Dk			041	106.55	107.55	1.00	tr		0.002		<u></u>
Same as the previous intermediate dike unit. Black chlorite along fractures often assocaited with barren white qtz.					100	Int. Dk			042	107.55	108.20	0.65	tr			<u>' </u>	
Same as the previous intermediate dike unit. Black chlorite along fractures often associated with barren white qtz. ### 108.20 137.00 ANDESITE COLOUR: green/grey GRAIN SIZE: fine-grained 91 and 044 110.00 113.00 3.00 125 1.3 0.006 GRAIN SIZE: fine-grained 91 and 044 110.00 113.00 3.00 125 1.3 0.006 Fine-grained, blocky andesite that is relatively heterogeneous in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a sausswitzed leucogabbro. Below 114.50m is the andesite is massive with minor felsic 100 and 061 130.00 131.00 100 r - 0.0002																	
108.20 137.00 ANDESITE 53 and 043 108.20 110.00 1.80 0.5 1:1 0.002			GRAIN SIZE:	very fine-grained													
108.20 137.00 ANDESITE COLOUR: green/grey			•														
COLOUR: green/grey GRAIN SIZE: fine-grained Fine-grained, blocky andesite that is relatively heterogeneous in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpty along with py. The greatest cpty content occurs at 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic			///														
GRAIN SIZE: fine-grained 100 and 0.46 118.00 117.00 1.00 0.5 0.1 0.002	108.20	137.00	ANDESITE		53	and			043	108.20	110.00	1.80	0.5	1:1	0.002		_
Fine-grained, blocky andesite that is relatively heterogeneous in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesites with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny bless of cpy along with py. The greatest cpy content occurs at amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Fine-grained, blocky andesite that is relatively heterogeneous in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive and esite is massive with minor felsic 65 and 051 121.00 122.00 10.00 tr - 0.002 100 and 050 122.00 123.00 1.00 tr - 0.002 100 and 053 123.00 124.00 10.00 tr - 0.002 100 and 055 125.00 126.00 10.00 tr - 0.009 100 and 055 125.00 126.00 10.00 tr - 0.009 100 and 055 125.00 126.00 10.00 tr - 0.009 100 and 055 125.00 126.00 10.00 tr - 0.009 100 and 058 127.00 127.00 10.00 tr - 0.002 100 and 058 127.00 127.00 10.00 tr - 0.002 100 and 058 127.00 127.00 10.00 tr - 0.002 100 and 058 127.00 127.00 10.00 tr - 0.002 100 and 059 128.00 129.00 10.00 tr - 0.002 100 and 050 129.00 130.00 1.00 tr - 0.002 100 and 050 129.00 130.00 1.00 tr - 0.002			COLOUR:	green/grey		and			044	110.00		3.00	1.25	1:3	0.006		
Fine-grained, blocky andesite that is relatively heterogeneous in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. How and 049 119.00 110.00 tr - 0.0002 100 and 055 121.00 120.00 1.00 tr - 0.0002 100 and 055 122.00 123.00 1.00 tr - 0.0002 100 and 055 125.00 1.00 tr - 0.0009 100 and 055 125.00 1.00 tr - 0.0002 100 and 055 125.00 1.00 tr - 0.0009 100 and 055 125.00 125.00 1.00 tr - 0.0009 100 and 055 125.00 125.0						and			045	113.00	116.00	3.00		-	0.002		
Fine-grained, blocky andesite that is relatively heterogeneous in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. 100 and 049 119.00 120.00 1.00 tr - 0.002 101 and 050 122.00 122.00 120.00 tr - 0.002 102 and 051 121.00 122.00 1.00 tr - 0.002 103 and 053 123.00 124.00 125.00 1.00 tr - 0.009 104 and 054 124.00 125.00 1.00 tr - 0.009 105 and 055 125.00 126.00 1.00 tr - 0.009 106 and 056 126.00 127.00 1.00 tr - 0.009 107 and 058 127.00 128.00 1.00 tr - 0.002 108 and 059 128.00 129.00 1.00 tr - 0.002 109 and 050 129.00 130.00 1.00 tr - 0.002 100 and 059 128.00 129.00 130.00 1.00 tr - 0.009 100 and 059 128.00 129.00 130.00 1.00 tr - 0.009 100 and 059 128.00 129.00 130.00 1.00 tr - 0.009 100 and 059 128.00 129.00 130.00 1.00 tr - 0.009			GRAIN SIZE:	rine-grained										0:1			
Fine-grained, blocky andesite that is relatively heterogeneous in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 100. Sm. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. 100 and 049 119.00 120.00 1.00 tr - 0.002 101 121.00 122.00 1.00 tr - 0.002 102 121.00 122.00 1.00 tr - 0.002 103 and 054 124.00 125.00 1.00 tr - 0.009 100 and 055 125.00 126.00 1.00 tr - 0.009 100 and 056 126.00 127.00 1.00 tr - 0.002 101 and 058 127.00 127.00 0.00 1.276 102 and 059 128.00 129.00 1.00 tr - 0.009 103 and 059 128.00 129.00 1.00 tr - 0.009 104 and 059 128.00 129.00 1.00 tr - 0.009 105 and 059 128.00 129.00 130.00 tr - 0.009 106 and 059 128.00 129.00 130.00 tr - 0.002							_						tr	_			
in comparison to the rock uphole. These andesites range from massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 100. Sm. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic			Fine-grained block	ky andesite that is relatively beterogeneous													<u> </u>
massive, to speckled (dacite) to intruded heavily by silicous veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 100 and 055 125.00 125.00 1.00 tr - 0.009 100 and 055 125.00 125.00 1.00 tr - 0.009 100 and 055 125.00 126.00 1.00 tr - 0.009 100 and 055 125.00 126.00 1.00 tr - 0.009 100 and 055 125.00 126.00 1.00 tr - 0.009 100 and 056 126.00 127.00 1.00 tr - 0.002 101 and 056 126.00 127.00 1.00 tr - 0.002 102 and 056 126.00 127.00 1.00 tr - 0.002 103 and 056 126.00 127.00 1.00 tr - 0.002 104 amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. 105 and 055 125.00 126.00 1.00 tr - 0.002 106 and 056 126.00 127.00 1.00 tr - 0.002 107 and 058 127.00 128.00 1.00 tr - 0.009 100 and 059 128.00 129.00 1.00 tr - 0.009 100 and 059 128.00 129.00 1.00 tr - 0.009 100 and 060 129.00 130.00 1.00 tr - 0.002 100 and 060 129.00 130.00 1.00 tr - 0.002																	
veins. The unit starts off as a fine grained green/grey massive andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 100 and 055 125.00 126.00 1.00 tr - 0.009 100 and 055 125.00 126.00 1.00 tr - 0.009 100 and 055 125.00 126.00 1.00 tr - 0.009 100 and 056 126.00 127.00 1.00 tr - 0.001 100 and 056 126.00 127.00 1.00 tr - 0.002 101 and 056 126.00 127.00 1.00 tr - 0.002 102 and 056 126.00 127.00 1.00 tr - 0.002 103 and 056 126.00 127.00 12																	
andesite with tremendous qtz veinlets and stringers ranging from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic Indicated the stringers ranging 100 and 1053 123.00 124.00 1.00 tr - 0.009 Indicated the stringers ranging 100 and 1053 123.00 126.00 1.00 tr - 0.009 Indicated the stringers ranging 100 and 1053 123.00 126.00 1.00 tr - 0.009 Indicated the stringers ranging 100 and 1053 123.00 126.00 1.00 tr - 0.009 Indicated the stringers ranging 100 and 1053 123.00 126.00 1.00 tr - 0.009 Indicated the stringers ranging 100 and																	<u></u>
from 1mm to 5-6mm in width. These silicous features are milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic 100 and 105 125.00 126.00 1.00 tr - 0.009 100 and 125.00 126.00 1.00 tr - 0.002 100 and 056 126.00 127.00 127.00 0.00 1.276 100 and 058 127.00 128.00 1.00 tr - 0.014 100 and 059 128.00 129.00 1.00 tr - 0.009 100 and 060 129.00 130.00 1.00 tr - 0.009 100 and 060 129.00 130.00 1.00 tr - 0.002																	
milky white to grey in colouration and locally contain tiny blebs of cpy along with py. The greatest cpy content occurs at 100 and 055 125.00 126.00 1.00 tr - 0.014 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic 100 and 061 130.00 131.00 1.00 - 0.011													_				<u> </u>
of cpy along with py. The greatest cpy content occurs at 100 and 056 126.00 127.00 1.00 tr - 0.002 108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic 100 and 061 130.00 131.00 1.00 tr - 0.002 100.002			milky white to grey	in colouration and locally contain tiny blebs													
108.5m. From approx 112.80 to 114.50m is a section of speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic Standard 057 127.00 127.00 0.00 - - 1.276									_					_ -		_	<u>_</u>
speckled dacite that is soft green in colour with black amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic 100 and 058 127.00 128.00 1.00 tr - 0.009 100 and 060 129.00 130.00 1.00 tr - 0.002 100 and 061 130.00 131.00 1.00 0.001			108.5m. From app	prox 112.80 to 114.50m is a section of									-	-			
amphiboles within. This material has sharp irregular contacts and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic 100 and 100 and 100 129.00 1.00 tr - 0.009 100 and 100					100				_					 -			
and resembles a saussuritized leucogabbro. Below 114.50m is the andesite is massive with minor felsic 100 and 060 129.00 130.00 1.00 tr - 0.002 100 and 061 130.00 131.00 1.00 0.011			amphiboles within.	This material has sharp irregular contacts													
Below 114.50m is the andesite is massive with minor felsic 100 and 061 130.00 131.00 1.00 0.011							_	_					_				
hands that contain assists attention			Below 114.50m is	the andesite is massive with minor felsic							_		-				
			bands that contain	sericite alteration.		and			_					-			

METALS CREEK RESOURCES

LOGGED E	BY: D.Heere	ema SIGNATURE:		F	PROPERTY	∕: Tillex			ZONE:	: N/A			HOLE NO.: TX0	8-001		Page 7 of 7
METE	RAGE		% Core	ROCK	Alt'n	Bx Matrix			SAM	PLES				ASS	AYS	
FROM	то	DESCRIPTION	Recov	CODE	Plag Pxr	Comp Prop'n	No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Cu (%) Au (g/t)	Pb (%)	Zn (%)	Ag (g/t)
		Trace pyrite along local fractures at best.	100	and			063	132.00	133.00	1.00	-	-	0.019			
			100	and			064	133.00	134.00	1.00	•	-	0.007		-	
		Extremely blocky and broken core from 108.20 to 116.00m.	100	and			065	134.00	135.00	1.00	<0.5	-	0.014		-	
			100	and			066	135.00	136.00	1.00	tr	-	0.002			
		133.80 - 134.48m: intermediate dike with sharp chilled margins and wavy contacts generally 5-10 degrees to ca. Minor cubic pyrite.	100	and			067	136.00	137.00	1.00	tr	-	0.002			
		End of Hole														

Printed: Wednesday, September 17, 2008

METALS CREEK RESOURCES

PROPERTY: Tillex	CLAIM NO.:	patent 12566			DOWNHOLE SURVEY METHOD: EZ Shot	REMARKS: Attempted to twin historic hole T-9.
HOLE NO.: TX08-002	LENGTH (m):	139.00	CORE SIZE:	NQ	DOWNHOLE SURVEY BY: Drillers	1
COORD SYSTEM: UTM Nad 83	NORTHING:	5371478.000	EASTING:	533021.500	COLLAR SURVEY BY: Don/Jeff (GPS)	1 /
SECTION: N/A	ZONE:	N/A	ELEVATION (m): 269.000	DRILLING COMPANY: Bradley Brothers	1 /
COLLAR ORIENTATION (AZIMUTH/DIP) :	PLANNED:	315.0 / -71.0	SURVEYED:	1.000 / -1.000	DATE LOGGED: Aug. 23, 2008 TO Aug. 25, 2008	Gore Storage: St.Andrews Page 1 of 7
HOLE STARTED: August 22, 2008	HOLE FINISHED): August 25, 2008	MAG:	11°W	LOGGED BY: D.Heerema	
					~ 1	

ME	TERAGE	DECODIDETION.	% Core	ROCK	Alt'n	Bx Matrix	SAMPLES	ASSAYS
FROM	то	DESCRIPTION	Recov	CODE	Plag Pxr	Comp Prop'n	No. FROM (m) TO (m) LENGTH %S Cpy:Py	Cu (%) Au (g/t) Pb (%) Zn (%) Ag (g/t)
0.00	30.95	OVERBURDEN				-		

30.95 **OVERBURDEN**

COLOUR:

mixed

GRAIN SIZE:

mixed

Boulders and cobbles of granites, volcanics and feldspar porphyry.

///

GRAPHITIC ARGILLITE 30.95 68.00

COLOUR:

black

GRAIN SIZE:

very fine-grained

Basically a relatively uniform assembalge of mudstone with graphite and occasional silty bands. The bedding is extremely fine and oriented at anywhere from 25-50 degrees to ca. The bedding is evident by thin silty bands as well as the general orientation of the cpy mineralization. The host rock is black with occasional brownish silty bands no wider than 3-4mm thick. Abundant graphite is present throughout with a consistant graphite content.

The cpy mineralization present appears to have been deposited in the argillites by late silicous fluids that form stringers generally parallel to bedding. The cpy has a fairly consistent abundance throughout the entire unit averaging 4-5% with slight increases and decreases. The cpy comes in the form of stringers, disseminations and coarse blebs, with stringer type as most abundant. The stringers are generally 2-

					_		9		
_50	grph arg	001	30.95	34.00	3.05	2	-	0.002	
100	grph arg	002	34.00	35.00	1.00	2.5	-	0.005	
95	grph arg	003	35.00	36.00	1.00	0.5	-	0.013	
98	grph arg	004	36.00	37.00	1.00	2.5	-	0.014	
93	grph arg	005	37.00	38.00	1.00	4	-	0.010	
100	grph arg	006	38.00	39.00	1.00	5	-	0.016	
100	grph arg	007	39.00	40.00	1.00	5	-	0.002	
96	grph arg	008	40.00	41.00	1.00	4	-	0.034	
	Blank	009	41.00	41.00	0.00	-	-	0.002	
97	grph arg	010	41.00	42.00	1.00	5	-	0.030	
93	grph arg	011	42.00	43.00	1.00	5	-	0.031	
100	grph arg	012	43.00	44.00	1.00	5	-	0.039	
88	grph arg	013	44.00	45.00	1.00	6	-	0.037	
79	grph arg	014	45.00	46.00	1.00	7	-	0.041	
98	grph arg	015	46.00	47.00	1.00	3	-	0.042	
100	grph arg	016	47.00	48.00	1.00	8	-	0.036	
93	grph arg	017	48.00	49.00	1.00	6	-	0.060	
74	grph arg	018	49.00	52.00	3.00	7	-	0.049	
100	grph arg	019	52.00	53.00	1.00	10	-	0.041	
94	grph arg	020	53.00	54.00	1.00	5	-	0.037	
95	grph arg	021	54.00	55.00	1.00	6	-	0.046	

GED BY: D.Heer	ema	SIGNATURE:		P	ROPERTY	: Tillex			ZONE	N/A			HOLE NO.: TX0	3-002		Page
METERAGE	DESCRIPT	FION	% Core	ROCK	Alt'n	Bx Matrix			SAMI					ASSA		
ом то	DESCRIPT		Recov	CODE	Plag Pxr	Comp Prop'n		FROM (m)		LENGTH	%S _	Сру:Р	Cu (%) Au (g/t)	Рь (%)	Zn (%) Ag (g	₃/t)
	3mm in width parallel to bedding but		100	grph arg			022	55.00	56.00	1.00	6	_	0.042	_	_	
	stringers cross-cut bedding. The ble			Standard			023	56.00	56.00	0.00		-	1.258			
	3mm to 3cm in diameter, generally e		73	grph arg			024	56.00	58.00	2.00	4	7:1	0.105			
	bedding. The disseminated cpy form		100	grph arg			025	58.00	59.00	1.00	8	-	0.050		-	
	1mm that are found within the beddir		74	grph arg		_	026	59.00	60.00	1.00	5	-	0.039			
	mineralization present, found deeper	in the unit.	100	grph arg			027	60.00	61.00	1.00	4_	8:1	0.047			
			59	grph arg			028	61.00	64.00	3.00	11_	10:1	0.035			
	Very blocky core resulting in local gri		100	F.Dk			029	64.00	65.00	1.00	4.5	3:1	0.007			
	recovery. Localities such as 56.00 to		100	F.Dk			030	65.00	66.24	1.24	4.5	3:1	0.009			
	64.00m are the poorest areas for rec	overy.	45	grph arg			031	66.24	68.00	1.76	1	1:0	0.041			
	58.33 - 58.78m and 58.89 - 59.13m:	greywacke														
	-extremely sharp contacts															
	-poorly sorted and gritty appearance															
	-contains abundant blebby cpy at app	prox 10%														
	At approx 63.00m in an area of poor massive cpy band with wavy irregula															
	64.00 - 66.24m: fine-grained felsic di-appears massive and gritty with mod stringers and disseminations with local grained net-texturing. The overall sufficient support of the sulp associated with thin silicous stringers	derate cpy and py as thin alized areas of weak fine- Ilphide content is approx 4- hides are generally														
	///															
00 87.70	FELDSPAR PORPHYRY		94	fdph			032	68.00	69.00	1.00	2	1:6	0.014			
	COLOUR: grey		96	fdph			033	69.00	70.00	1.00	0.5	1:1	0.010			
	3 - 7		100	fdph			034	70.00	71.00	1.00	tr	1:0	0.016			
	GRAIN SIZE: fine to medium-gr	ainea	100	fdph			035	71.00	72.00	1.00	0.5	1:1	0.021			
			100	fdph			036	72.00	73.00	1.00	0.25	1:0	0.013			
	Hotorogopous unit versies for a fire			Blank			037	73.00	73.00	0.00	-	-	0.012			
	Heterogeneous unit varying from fine phenocrysts to med-coarse grained coarse		100	fdph			038	73.00	74.00	1.00	tr	-	0.015			_
											0.75					

	BY: D.Heer	ma SIGNATURE:		F	PROPERTY:	Tillex			ZONE	N/A			HOLE NO.: TX0	8-002		Page 3 o
METE	RAGE	DECODIDEION	% Core	ROCK	Alt'n	Bx Matrix			SAM	PLES				ASSAY	'S	
FROM	то	DESCRIPTION	Recov	CODE	Plag Pxr	Comp Prop	n No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Р	y Cu (%) Au (g/t)	Pb (%) Zr	1 (%) Ag (g/	t) [
		The entire unit is grey and white with no visible k-spar. The	100	fdph			040	75.00	76.00	1.00	tr	•	0.014			
		unit is foliated nearer the upper and lower contacts at approx	98	fdph			041	76.00	77.00	1.00	0.25	1:0	0.015			
		40 degrees to ca. The center of the unit is coarsest grained	97	fdph	_		042	77.00	78.00	1.00	<0.5	1:4	0.018			
		and massive. Unit is well jointed and locally blocky. Minor	99	fdph			043	78.00	79.00	1.00	tr		0.014			
		inclusions of argillite present near both contacts. The contacts	100	fdph			044	79.00	80.00	1.00	tr	-	0.012			
		are extremely sharp.	100	fdph	-		045	80.00	81.00	1.00	tr		0.016			
		Cpy and py present throughout with the greatest abundance	100	fdph			046	81.00	82.00	1.00	tr		0.019	_		
		found within coarsest and massive section from 82.0 - 87.0m.	100	fdph	_		047	82.00	83.00	1.00	2	4:1	0.010			
		The sulphides are located within fractures as stringers. Cpy:py	100	fdph	_		048	83.00	84.00	1.00	0.5	4:1	0.009			
		ratio of 4:1 resp.	100	Standard fdph			049 050	84.00 84.00		0.00	- 4.75	4.4	0.179			
		Ш	100	fdph			050	85.00	85.00 86.00	1.00	1.75	4:1 4:1	0.013			
		<i>III</i>	100	fdph			051	86.00	86.85	0.85			0.012			
			100	fdph			052	86.85	87.70	0.85	2.5	4:1 4:1	0.010			
87.70	89.96	GRAPHITIC ARGILLITE	90	grph arg			054	87.70	88.80	1.10	2.5	1:5	0.010	-		
07.70	03.30	_	95	grph arg			055	88.80	89.96	1.16	2.5	1:4	0.011			
		COLOUR: black	50	gipiraig			000	00.00	03.30	1.10	2	1.4	0.002			
		GRAIN SIZE: very fine-grained														
		Similar to unit above except pyrite mineralization dominates with less cpy. The sulphides are mainly coarse blebs with few stringers. Sharp upper and lower contacts. Very blocky with breaks along bedding at 55 degrees to ca. Sulphides are approx 2-3% at 5:1 py:cpy.														
		/// // py.opy.														
89.96	97.50	DACITE	100	dac			056	89.96	91.00	1.04	0.75	0:1	0.002			
		COLOUR: grey/green		Blank			057	91.00	91.00	0.00		-	0.002			
		0 3 0	100	dac			058	91.00	92.00	1.00	0.75	1:1	0.002			
		GRAIN SIZE: fine-grained	100	dac			059	92.00	93.00	1.00	0.5	1:1	0.002			
			100	dac			060	93.00	94.00	1.00	2.5	4:1	0.002			
		This volcanic unit is fine-grained and varies slightly in	100	dac			061	94.00	95.00	1.00	1.25	1:2	0.002			
		felsic/silica content from rhyolitic to andesitic with dacite being	100	dac			062	95.00	96.00	1.00	tr		0.002			
		Total State of the It in the International Control of the Italian Co	100	dac			063	96.00	96.75	0.75	tr	-	0.002			

	BY: D.Heer	ema S	GNATURE:	F	PROPERTY	: Tillex			ZONE:	N/A			HOLE NO.: TX0	8-002		Page 4 of
	RAGE	DESCRIPTION	% Core	ROCK	Alt'n	Bx Matrix			SAMI					ASSA		
FROM	ТО	the bulk (90%) of the unit. The rock is grey/greer with a weak speckled appearance like a leucogab Relatively massive in texture with only a weak loc Sulphides are present as stringer and disseminate with additional cpy in stringer to blebby form. The abundant from 93.10 to 93.22m. Fairly compoter good joint set. 93.46 - 93.71m: graphitic argillite with 2% py as belongated parallel to bedding.	n in colour obro. cal foliation. ed py upto 1% e cpy is most nt unit with a	dac	Plag Pxr	Comp Pro	p'n No. 064	96.75		0.75	%S 2.25	1:4	Cu (%) Au (g/t) 0.002		in (%) Ag (q	/t)
	99.43	GRAPHITIC ARGILLITE COLOUR: black GRAIN SIZE: fine-grained Very similar the last pyrite rich argillite logged		grph arg grph arg			065 066	97.50 98.50	98.50 99.43	1.00	1	1:6 1:6	0.002			
	104.26	broken core with strong evidence of folding. "S" are present in the bedding. /// RHYOLITE TUFF	100	rhy tuff			067	99.43	100.22	0.79	1	0:1	0.002	_		
		COLOUR: grey/green GRAIN SIZE: fine-grained	90 100 100 100	grph arg rhy tuff rhy tuff rhy tuff			068 069 070 071	100.22 100.84 102.00 103.00	100.84 102.00 103.00 104.26	0.62 1.16 1.00 1.26	4 6 3 5	1:6 0:1 0:1 0:1	0.002 0.002 0.002 0.002			
		Massive felsic volcanic unit with a fine-grained m small darker clasts with diffuse contacts. The hos approx 70% feldspar and qtz with 30% mafics + c clasts are sub-rounded in shape and occasionally bleaching around the contacts. The unit has slight mineral composition forming slightly more mafice.	st rhyolite is clasts. The have nt changes in													

	BY: D.Heer	ema	SIGNATURE:			PROPERTY	: Tillex				ZONE:	N/A			HOLE	NO.: TX	08-002		Pag	je 5 of
	RAGE]	DESCRIPTION	% Core	ROCK	Alt'n	Bx Ma	_			SAME						ASS			
FROM	то	occasional stringe approx 3%. Sections of graph extremely sharp of 100.22 - 100.84m	DESCRIPTION ained pyrite in the form of disseminations and er are present with an overall average of a present with a present with a present a present with a present a	Recov	CODE	Plag Pxr	Comp	Prop'n	No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Си (%)	Au (g/t)	Pb (%)	Zn (%)	Ag (g/t)	
		///																		
104.26	112.00	GRAPHITIC ARG	GILLITE	100	grph arg				072	104.26	105.00	0.74	2.5	1:5		0.002	-			
		COLOUR:	black	100	grph arg	_		(073	105.00	106.00	1.00	5	1:3	_	0.015	_		_	
		GRAIN SIZE:	very fine-grained		Blank			_	074	106.00	106.00	0.00		-	_	0.002				
		GIVAIN SIZE.	very fille-graffled	100	grph arg				075	106.00	107.00	1.00	2.0	1:3		0.012				
				100	grph arg		_		076	107.00	108.00	1.00	1	1:4		0.032				
		Banded argillites	abundant in graphite. The banding is bedding	79 90	grph arg				077	108.00	109.00	1.00	0.5	0:1		0.002				
			s qtz/feldspar stringers that occasionally carry	100	grph arg grph arg				078	109.00	110.00	1.00	1.25	1:3		0.020		_		
			anding/bedding is approx 45-55 degrees to	100	grph arg				079 080	111.00	112.00	1.00	9	1:6 2:1		0.039				
		rock is extremely rock appears to be generally parallel and even form vebrecciation. Tiny Sulphides are predisseminations. Topy. The stringer parallel to bedding associated with the sulphide content of the greatest section 112.00m. Pyrite in the greatest section of the	dence of folding anywhere in this unit. The fine-grained with very little to no silt. The e a mudstone. The silicous stringers are to bedding but occasionally cross-cut bedding sinlets upto 2cm in width with evidence of angular clasts of argillite are found within. Seent as stringers, blebs and minor The predominant sulphide is pyrite with less is like the silicous stringers are generally go but do cross-cut bedding. The cpy is see larger and more silicous structures. Over of approx 3-4%. Sion of mineralization is between 110.23 and is abundant from 110.23 to 111.10m at cpy abundant from 111.60 to 112.00 at																	

	BY: D.Heere	ma SIGNATU	JRE:	F	PROPERTY: Tille	ex	_	ZON	E: N/A			HOLE NO.: TX	08-002	Page 6 of
	ERAGE		% Core	ROCK	Alt'n Bx	Matrix		SAN	MPLES				ASSAYS	
FROM	ТО	DESCRIPTION	Recov	CODE	Plag Pxr Con	np Prop'n N	o. FROM	(m) TO (m	LENGTH	%S	Сру:Ру	Cu (%) Au (g/t)	Pb (%) Zn (%	6) Ag (g/t)
												•		
112.00	124.80	DACITE BRECCIA	100	dac bx		0	31 112.			7	5:1	0.006	<u> </u>	
		COLOUR: green/grey	100	dac bx			32 113.			0.5	1:0	0.006		
		GRAIN SIZE: fine-grained	100	dac bx			33 114.			2	1:4	0.002		
1		The granted	100	Blank			116.	_		•	-	0.002		
			100	dac bx		1	35 116.		_	tr		0.002		
		This unit is different from the volcanics uphole because	of the 100	Standard			36 117.			<u> </u>		0.198		
		erratic changes in composition and sharp contacts of cla		dac bx			37 117.			tr	-	0.002		
		The clasts are too large to be a tuff and is therefore called	ed a 100	dac bx			38 118.0 39 119.0			0.5 <0.5	1:1	0.002		
1		breccia. The host rock is a weakly foliated dacite that ha		dac bx			90 120.				1:1	0.002		
		slight grain size change from fine-grained to slightly coal	rser 100	dac bx			91 121.			3	5:1	0.002		
		locally. The clasts are andesite and rhyolite with occasion	onal 100	dac bx			92 122.0			1.5	3:1	0.002		-
		pieces of argillite. The andesite clasts are darker (more	mafic) 100	dac bx			93 123.0			0.5	2:1	0.002		
		with very diffuse contacts. The rhyolite clasts have the s	sharper 100	dac bx	_		94 124.0			6	4:1	0.002		
		contacts, although some are very diffuse as well. The a										0.002		
		are small and appear to have somewhat gradational con	itacts.											
		The odd section resembles a weak tuffacous unit.												
		Sulphides are present as stringers of cpy associated with												
		silicous stringers. The greatest abundance of cpy occurs												
		the first 80cm of the unit, between 121.0 and 122.2m an	d the											
		last 1m of the unit. Overall cpy content is approx 0.5% .												
		<i>III</i>												
		III												
124.00	100.04	CDADUITIO ADOULLITE								_				
124.80	126.64	GRAPHITIC ARGILLITE	98	grph arg		0:				4	1:0	0.017		
		COLOUR: black	98	grph arg		0:	96 125.7	70 126.64	0.94	4	1:0	0.017		
		GRAIN SIZE: fine-grained												
		3												
		Similar to last described unit of argillite. Black argillite w	vith no											
		visible silt bands. Cpy stringers and blebs throughout wi												
		average of 4%. White qtz flooding present from 124.80												
		125.02m with abundant cpy and local vugs. The qtz has												
		disrupted the fine bedding and caused localized folding of												

METALS CREEK RESOURCES

	BY: D.Heere	ema SIG	SNATURE:		F	PROPERTY	': Tillex			ZONE:	N/A			HOLE NO.: TX	08-002	Pa	age 7 of
	RAGE	DECODIDEION		% Core	ROCK	Alt'n	Bx Matrix			SAMF					ASS	AYS	
FROM	ТО	bedding. Sharp upper contact of the unit at 80 deg The lower contact is rubbly and may represent a fa recovered material is sand to gravel size.	rees to ca.	Recov	CODE	Plag Pxr	Comp Pro	o'n No.	FROM (m)	TO (m)	LENGTH	%S	Сру:Ру	Cu (%) Au (g/t)	Pb (%)	Zn (%) Ag (g/t)	
126.64	139.00	DACITE COLOUR: green/grey	_	90	rhy			097 098	126.64 127.30	127.30 128.00	0.66	0.5 tr	1:1	0.002			
		RAIN SIZE: fine-grained 10 10 10 10 10 10 10 10 10 10 10 10 10	100 100 100	dac dac dac			099 100 101	128.00 129.00 130.00	129.00 130.00 131.00	1.00 1.00 1.00	0.25 tr 0.25	0:1 1:1 1:1	0.009 0.006 0.002				
		This unit starts off as a rhyolite from 126.64 to 128. rhyolite gradationally increases in mafic content int that becomes homogeneous throughout. The rhyol	.00m. The == o a dacite ====================================	100 100 100 90	dac dac dac dac			102 103 104 105	131.00 132.00 133.00 134.00	132.00 133.00 134.00 135.00	1.00 1.00 1.00	- - -	- - -	0.002 0.002 0.002 0.002			
		light in colour and much harder to scratch as a resusilica/felsic content. The dacitic material to the encis massive and fine to medium-grained with a wea	ult of higher This is a second of the hole This is a second or a s	100 100 100	dac dac dac		_	106 107 108	135.00 136.00 137.00	136.00 137.00 138.00	1.00 1.00 1.00	tr tr	-	0.002 0.002 0.002			
	Trace to minor py along fractures. Very blocky grour upper section but Within the last 3m veinlets are comp become quite constringers and vein displaced left-late qtz stringers and vein the stringers are stringers.	igneous texture. Trace to minor pyrite and very occasional thin strin along fractures. Very blocky ground. Few qtz/feldspar stringers and upper section but become for common deeper in the Within the last 3m of the unit, epidote/sericite string veinlets are common at random core angles. Qtz weinlets are common in last 1.2m of the unit. Mastringers and veinlets of epidote and sericite have to displaced left-laterally on micro-faults on the mm-sqtz stringers and veinlets post date the micro-fault.	ger of cpy I veinlets in ne unit. gers and veinlets nny of the been cale. The	100	dac			109	138.00	139.00	1.00	tr	-	0.002			
		///															

Printed: Wednesday, September 17, 2008