

DIAMOND DRILLING ASSESSMENT REPORT on TEXMONT PROPERTY -2007 CAMPAIGN Section 9900

Bartlett and Geike Townships, Porcupine Mining Division, Ontario, Canada

Prepared for

FLETCHER NICKEL INC.

Suite 1000-141 University Avenue, Toronto, Ontario, M5H 3M5 Tel: 1(416) 642-3575; Fax: 1(416) 363-7875

Brian Wright Geological Technologist

October 17 2008

Table of Contents

Table of Contents	2
Property description and accessibility	3
Previous exploration and development work	3
Previous Drilling Fletcher Nickel	6
2006 Drilling Program	
2008 Drilling Section 9950	
References	

Figures

-

.

Figure 1:	Texmont location map	2
Figure 2:	Texmont Drill plan	13

Appendix A:	Diamond Drill sections
Appendix B:	Diamond Drill Logs
Appendix C:	Assay certificates

Property description and accessibility

The Texmont Property sits on the boundary of Bartlett and Geikie Townships in the Porcupine Mining Division of the Province of Ontario, Canada. The township boundary line runs through the center of the Property (Figure 1). The approximate center of the Property is at latitude $\sim 48^{\circ}$ 09' 55" N and longitude $\sim 81^{\circ}$ 12' 15" W (NAD 83, UTM Zone 17, $\sim 484820m$ E, $\sim 5334690m$ N, and NTS 42A/03). The Property comprises fourteen (14) contiguous mining leases (Table 1). The Texmont Property is approximately 35 km SSE of Timmins, the nearest permanent community, along well-maintained gravel-covered roads (extending south down Pine St., Timmins) including new logging roads, using properly equipped trucks. A snow plough could keep the current mine road open throughout the winter. Timber resources are actively being forested to the immediate west of the mine site and good gravel logging roads are currently in active use. Abundant gravel resources occur in moraines and eskers along these roads, and sand resources are also available nearby.

Lease (L) and Claim No. (C)	Township	Area (hectares or claim units)	Expiry date	Rights Mining (M), Surface (S)
P36052 (L)	Geikie	16.750 ha	February 28, 2007	M & S
P36097 (L)	Bartlett	12.497 ha	February 28, 2007	M & S
P36098 (L)	Bartlett	14.383 ha	February 28, 2007	M & S
P36099 (L)	Bartlett	12.642 ha	February 28, 2007	M & S
P36100 (L)	Bartlett	11.489 ha	February 28, 2007	M & S
P36101 (L)	Bartlett	9.697 ha	February 28, 2007	M & S
P36102 (L)	Bartlett	14.128 ha	February 28, 2007	M & S
P36106 (L)	Geikie	12.946 ha	February 28, 2007	M & S
P36107 (L)	Geikie	17.563 ha	February 28, 2007	M & S
P36108 (L)	Geikie	16.471 ha	February 28, 2007	M & S
P36109 (L)	Geikie	14.763 ha	February 28, 2007	M & S
P36110 (L)	Geikie	13.452 ha	February 28, 2007	M & S
P36475 (L)	Bartlett	10.069 ha	February 28, 2007	M & S
P36883 (L)	Bartlett	11.242 ha	February 28, 2007	M & S

Table 1	 Texmont 	Property	Mining	Leases
---------	-----------------------------	----------	--------	--------

Previous exploration and development work

The Dominion Gulf Company staked the Texmont Property in 1950 while exploring for asbestos – chrysotile asbestos occurs in serpentinized ultramafics. In 1951, property prospecting found disseminated and veinlet pentlandite in outcrop. Dominion Gulf then conducted an exploration program including further prospecting, geological mapping, ground geophysics, and diamond drilling around the sulphide discovery.

Jarvis P. Kellogg of Boston, Mass. acquired the Texmont Property and subsequently, in 1957, the Property was optioned and then purchased by Fatima Mining Company Limited ("Fatima").

Fatima initially drilled 23 surface diamond drill holes for a total of 6.231 ft, and followed with a further 27,044 ft in 1959 (Leigh, 1971). In 1959-1960, Fatima commenced the sinking of a 3-compartment shaft to a depth of 790 ft with stations at ~150 ft, ~300 ft, ~450 ft, ~600 ft, and ~742 ft. In 1960, underground work comprised 1,550 ft of drifting and crosscutting on the 450 level, and 1,450 ft of lateral work; as well as 250 ft of raising on the 742 ft level. A total of 165 diamond drill holes for 19,690 ft were drilled underground. In 1964, Fatima changed its name to Texmont Mines Limited. In 1965-1966, Texmont drilled 42 holes in a surface till-sampling program to determine whether geochemical halos occurred above nickel sulphide on the property, in a partnership with the Canadian Nickel Company ("Canadian Nickel," a wholly-owned subsidiary of INCO Ltd., then called the International Nickel Company). On June 30, 1966, Canadian Nickel earned a 15% interest in the Texmont Property.

In 1970, Sheridan Geophysics negotiated a 20-year lease on the Texmont Property with a further 20 year (renewal) from Texmont Mines Limited. Sheridan Geophysics then undertook to bring the mine into production. Mill production commenced on July 1, 1971 at a rated capacity of 500 tons per day and a hydrometallurgical smelter was put at the mine site to create a capacity of 200,000 lbs of refined nickel products per month. Sulphide concentrates were stockpiled and concentrate grade averaged 17% nickel.

During the production phase, diesel generators supplied power at the mine. The high cost of diesel caused by the "Energy Crisis" in 1971 as well as a newly imposed and onerous fuel-oil tax helped in the decision to suspend production operations in December 1972. In 1975, the fuel-oil tax was rescinded (too late to reopen the mine); most of the remaining concentrate stockpiles and refined nickel products were shipped to Europe. A quarter century-long lag in metal prices prevented renewed mining operations.

Several "lenses" of mineralization were outlined by surface exploration prior to commencement of underground development. According to available mine plan and section data sets, 6 "lenses" of mineralization were identified and marked as Zones "A," "B," "C," "D," "South," and "North." The "A" zone had the bulk of "identified resources." Zones "B," "C," and "D" have been partly explored underground. "South" and "North" zones have been identified by surface drilling.

Year(s)	Program/Work	Comments
1949-1950	Geophysics and prospecting	Airborne magnetic survey
1951	Discovery of nickel sulphide in outcrop	Small trench remains can be seen in outcrop south of the headframe
1951-1955	Surface Drilling	23 surface drill hole program totalling 6,231 feet
1957-1959	Surface Drilling	37 surface drill hole program totalling 27,044 feet
1959	A three compartment shaft	To a vertical depth of 790 feet with levels established at 150 feet

Table 2 - Summary of Former Exploration Work at Texmont

		(level 1), 300 feet (level 2), 450 feet (level 3), 600 feet (level 4) and 742 feet (level 5).
1959-1960	Underground Development	Completed 1,550 feet of drifting on level 3, 1,450 feet on level 2 and 250 feet of raising on level 5.
1961	Underground Drilling	19,690 feet of underground drilling in 165 holes and an additional 6,387 of surface drilling
1965-1966	Surface Drilling	Completed 42 surface auger drill holes for till geochemistry.
1971	Evaluation and "Resource Calculations"	e.g., Leigh, 3.19 million tons @ 0.92% nickel
1971	Start of Production	Milling at a rated capacity of 500 tons per day
1972	Ceased Operations	"Oil Crisis" and imposition of an onerous fuel oil surtax

The current work program consists of the recovery of former mine data, modelling of the known mineralization, preliminary drilling, and budget calculations. Site cleanup and environmental studies were also conducted.

Three programs of surface geophysics have been performed by Exsics Exploration Ltd. ("Exsics") of Timmins;¹ a ground magnetic survey and two induced polarization ("IP") surveys (a test survey, and a more extensive survey).

Since the target mineralization is disseminated in its peridotite host, two IP test lines were conducted across known zones of mineralization immediately south and north of the former mine buildings (where E-W access was possible).

Canadian Nickel conducted a till sampling survey across the Texmont Property in an effort to find sulphide nickel within soil fines (E.H. Cornford to G.W. Thrall, INCO Ltd. memorandum dated March 27, 1967). Chemical method of extraction was sample boiling in 1% HCl solution which does not readily strip nickel from silicates. Sulphide mineralization is shown to the north of the mine workings and nickel-anomalous till samples are apparent.

¹ Exsics Exploration Ltd., Hollinger Building, 637 Algonquin Boulevard East, Unit 13, P.O. Box 1880, Timmins, Ontario, P4N 7X1.

Previous Drilling Fletcher Nickel 2006 Drilling Program

2006 drilling activity focused on three objectives:

- a) The exploration of the open pit potential of the "Main" and "South" zones as historically identified on the Texmont Property.
- b) Upgrading of a "mineral resource" to be NI43-101 compliant Quality Assurance Quality Control ("QA/QC") requirements are being conducted for items identified by Wayne Valliant P.Geo, a mining geological consultant.²
- c) Data corroboration confirmation of former mine data widths and grades.

The drilling program was conducted under the supervision of David Beilhartz P.Geo. Eleven (11) NQ-sized holes have been drilled in the vicinity of the former Texmont headframe, distributed on 5 transversal sections with a typical distance of 50 meters between two holes (figure 2). Drill holes are inclined 45 to 50 degrees and range from 67.5m to 230m in depth (average 158m), for a total length of 1736 meters of drilling.

Hole	Northing	Easting	Easting	Northing	Claims #	Dip	Depth
			UTM	UTM			
TEX06-01	10000	0+25E	484863	5334537	P36052 (34,85%); P36102 (65,15%)	-45	194
TEX06-02	10000	0+60E	484898	5334540	P36052 (100%)	-45	67.5
TEX06-03	10000	0+95E	484933	5334544	P36052 (100%)	-45	101.1
TEX06-04	10000	0+72E	484913	533454	P36052 (100%)	-45	84.4
TEX06-05	100 50	0+55E	484896	5334587	P36110 (70,7%); P36102 (29,3%)	-45	158
TEX06-06	100 50	0+90E	484936	5334590	P36110 (75,9%); P36102 (24,1%)	-45	212
TEX06-07	99 50	0+40E	484885	5334485	P36052 (49,6%); P36102 (50,43%)	-45	203
TEX06-08	99 50	0+83E	484930	5334485	P36052 (98,7%); P36102 (1,3%)	-50	176
TEX06-09	99 00	0+13E	484845	5334435	P36052 (28,4%); P36102 (71,6%)	-45	188
TEX06-10	99 00	0+50E	484891	5334435	P36052 (45%); P36102 (55%)	-45	230
TEX06-11	98 50	0+15W	484817	5334385	P36052 (11,5%); P36102 (85,5%)	-45	122
					Total drilling	1736	m

Holes TEX06-01 to TEX06-08 have been drilled in the upper part of the "Main Zone" and have intersected historical grade nickel mineralization within an envelope of disseminated mineralization. Holes TEX06-02 to TEX06-04 failed to test the full extent of the mineralization due to underground workings, but they intersected potential open-pit grade mineralization (and widths) on the sides of the former. Holes TEX06-09 and TEX06-10 intersected weaker mineralization between the Main and South zones. These holes intersected slightly deeper levels because a pond is located in the favoured drilling setup location - no historical data was available. Hole TEX06-11 was the first of several holes planned to test the shallow levels of the "South Zone." Drilling intersected a zone of stringer sulphides and a wider zone of disseminated sulphides.

TEXMC	NT DRIL	LING SUI	MMARY	metric	Interse	ection	metric	% Ni
Hole TEX06-	Northing (metric)	Easting (metric)	Dip	Length of hole	From	То	Length	Grade
01	1000	0+25E	-45	194.0	23.00	42.00	19.00	0.95
02*	1000	0+60E	-45	67.5				
03*	1000	0+95E	-45	101.1	90.00	92.00	2.00	1.18
04*	1000	0+72E	-45	84.4	78.00	80.00	2.00	0.97
05	1050	0+55E	-45	158.0	47.00	55.20	8.20	1.15
06	1050	0+90E	-45	212.0	91.00	104.00	13.00	0.62
07	950	0+40E	-45	203.0	67.00	81.00	14.00	0.95
08	950	0+83E	-50	176.0	117.50	142.00	24.50	0.42
09	900	0+13E	-45	188.0	75.00	169.00	85.00	0.33
10	900	0+50E	-45	230.0	92.00	93.30	1.30	***0.94
					113.00	114.00	1.00	0.87
					139.00	140.00	1.00	0.83
11	850	0+15W	-45	122.0	59.00	70.00	11.00	0.45

Table 3 – Test drilling Texmont Mine (0.7% Ni cut off)

Note: * Breakthrough into former mine workings.. *** Dykes cross-cutting mineralization located between 93.0 m and 113.0 m.

2008 Drilling Section 9900

The 2007-2008 Drilling program is focus on extending nickel mineralization along strike and down dip of prior drill campaigns. This section will deal with results of holes drilled on section 9900. The drilling program was conducted under the supervision of David Beilhartz P.Geo.

Hole	Northing	Easting	Easting	Northing	Claims #	Dip	Depth
	Grid	Grid	UTM	UTM			m
TEX07-16	9900	1+30E	484978	5334443	P36052P36102	-50	299.0
TEX07-18	9900	2+80E	485128	5334449	P36052	-62	510.5
TEX07-19	9900	2+80E	485128	5334449	P36052	-47	410.4
	-				Total	1219.9	 m

All 3 (three) completed on section 9900 intersected significant Mineralization and were successful in extending the known mineralization beneath the previous workings. Drill hole 07-16 had intersections that included 0.45 Ni over 13.7 meters. Drill hole 07-18 had intersections that includes 0.48 Ni over 7.2 meters. Drill hole 07-19 had intersections that included 0.55 Ni over 8.4 meters. The results of the drilling have greatly expanded the tonnage potential of the Texmont deposit.

References

Butler Hadyn R. (2007), Technical (Geological) Report on the Texmont and Bartlett-English Properties, NI43-101, 75 pp.

- Coad, P.R. (1979): Nickel Sulphide Deposits Associated with Ultramafic Rocks of the Abitibi Belt and Economic Potential of Mafic-Ultramafic Intrusions; *Ontario Geological Survey*, Study 20.
- Leigh, O.E. (1971): Texmont Mines Limited, Bartlett and Geikie Township Property, filed with Ontario Securities Commission February 29, 1972.
- Pyke, D.R. and assistants (1971): Bartlett and Geikie Townships, Ontario Geological Survey, Map 2364.
- Pyke, D.R. (1975): Geology of the Redstone River Area, District of Timiskaming, Ontario Division of Mines, Open File Report 5153.
- Pyke, D.R., A.J. Naldrett and A.P. Eckstrand (1973): Archean ultramafic flows in Munro Township, Ontario; *Geological Society of America Bulletin*, 84, p.955-978.

Statement of Qualifications

I Brian James Wright hereby certify that;

- 1. I live at. 503 Northern and Central Road Hagar Ontario P0M 1X0
- 2. That I am a consultant for Fletcher Nickel Inc.
- 3. That I Completed my Education at the Haileybury School of Mines in 1983
- 4. That I have been actively involved in Mining and Mineral Exploration for 23 years

Pim Want

Brian James Wright 2008-10-17

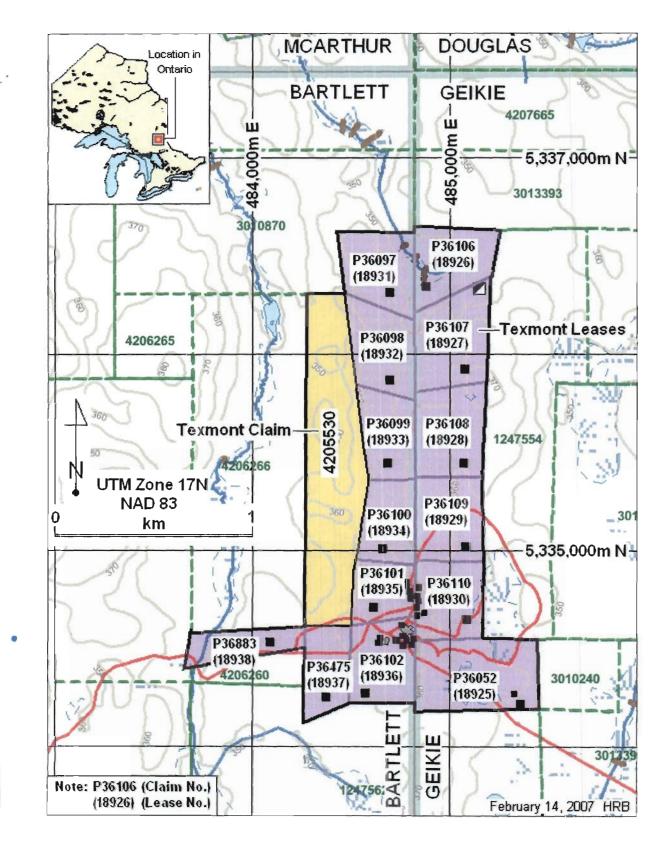


Figure 1 location Map

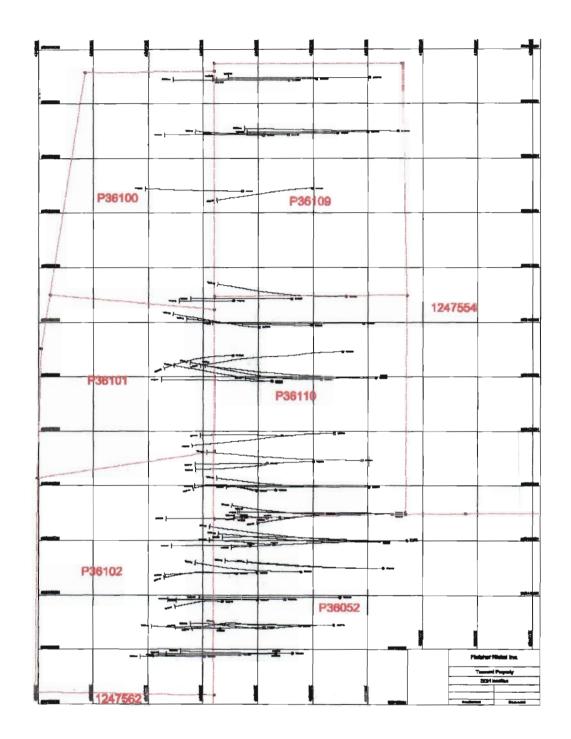
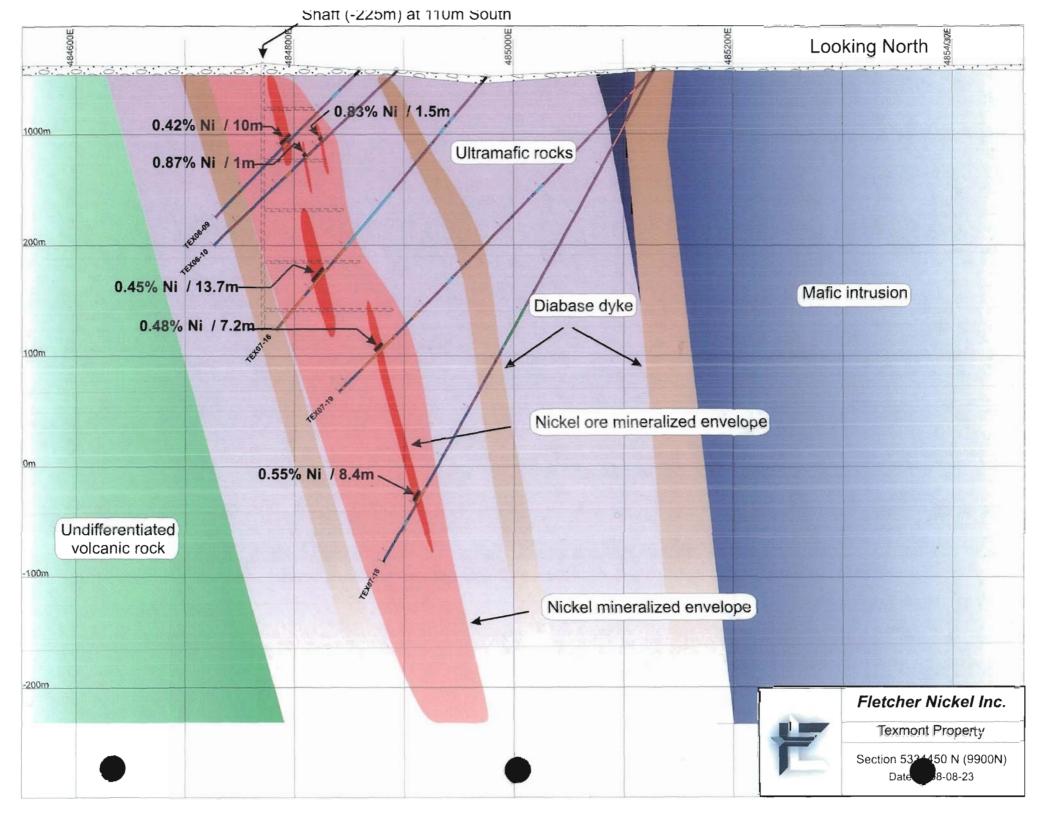
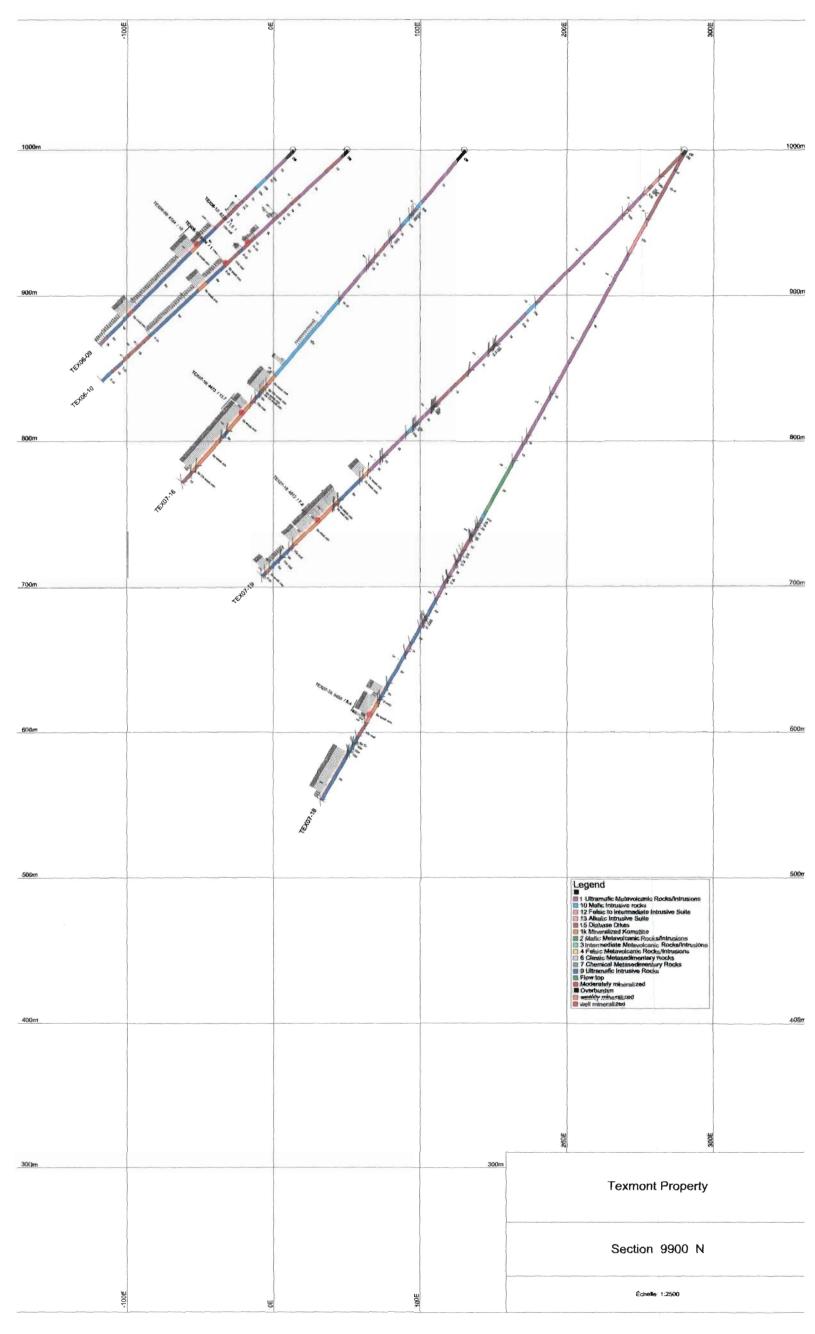




Figure 2 Drill plan

Appendix A

.

Appendix B

DDH:TEX07.13Claims title: P36052 Township: :Gekke LotSection :: Level LotDrilled by : MW diamond drilling co. Described by : GiguerFrom : 2007-10-20 Description date : Motor J3/14 2007.To: 2007-11-05 Description date : Motor J3/14 2007.ColarColarGridUTMAzimuth: 270.00° Plunge: -62.00° Latitude (North) Latitude (North) ElevationGridUTMTypePoptaVanueta Plunge: -63.00° Latitude (Sast) Latitude (Sast) LevationTo: 2007-11-05 MS00.0TypePoptaLongitude (East) Latitude (North) ElevationUTMTypePoptaVanueta Plunge: -61.30°RemarksMasher0.00 m 270.04° 41.35°No 41.35°No No					Fletcher			
Description date : " $M_{0U} 13_{3}/4 2007.$ Collar Grid UTM Azimuth : 270.00° Longitude (East) 280.0 485128 Down hole survey Type Depth Azimuth Plunge : 12000° Azimuth : 270.00° Collar Type Depth Azimuth Plunge Invalid Remarks Maxibor 300 m 270.00°	DDH : TEX07-18			Township : Ge Range :		L	evel :	nins Ont
Collar Grid UTM Azimuth :270.00° Longitude (East) 280.0 485128 Plunge :-62.00° Latitude (North) 280.0 5334449 Down hole survey 1000.0 1000 1000 Maxibor 300 m 270.04° -61.5° No Maxibor 200 m 270.1° -61.5° No Maxibor 300 m 270.04° -61.3° No Maxibor 200 m 270.1° -61.3° No Maxibor 900 m 270.1° -61.3° No Maxibor 12.00 m 270.1° -61.3° No Maxibor 12.00 m 270.1° -61.3° No Maxibor 12.00 m 270.2° -61.4° No Maxibor 12.00 m 270.2° -61.4° No Maxibor 20.00 m 270.2° -61.5° No Maxibor 30.00 m 270.2° -61.5° No Maxibor			drilling co.	1	From : 2007			
Azimuth : 270.00° Longitude (Korth) 280.0 485128 Plunge : 60.00° Laittude (North) 9900.0 334449 Down hole survey		-				7000	13,74 2007-	
Type Depth Azimuth Plunge Invalid Remarks Maxibor 0.00 m 270.00° -61.55° No Maxibor 6.00 m 270.04° -61.35° No Maxibor 6.00 m 270.04° -61.35° No Maxibor 0.00 m 270.04° -61.33° No Maxibor 12.00 m 270.16° -61.33° No Maxibor 15.00 m 270.16° -61.33° No Maxibor 15.00 m 270.16° -61.34° No Maxibor 18.00 m 270.24° -61.37° No Maxibor 21.00 m 270.24° -61.37° No Maxibor 21.00 m 270.32° -61.30° No Maxibor 21.00 m 270.32° -61.30° No Maxibor 30.00 m 270.32° -61.30° No Maxibor 31.00 m 270.42° -61.34° No Maxibor 32.00 m 270.48°		Azimuth : Plunge : Length :	-62.00° 510.50 m	Latitude (North)	280.0 9900.0	485128 5334449		
Maxibor 0.00 m 270.00° -61.55° No Maxibor 3.00 m 270.04° -61.35° No Maxibor 9.00 m 270.11° -61.50° No Maxibor 9.00 m 270.11° -61.50° No Maxibor 9.00 m 270.11° -61.50° No Maxibor 12.00 m 270.16° -61.33° No Maxibor 15.00 m 270.20° -61.49° No Maxibor 21.00 m 270.20° -61.49° No Maxibor 21.00 m 270.23° -61.50° No Maxibor 20.00 m 270.33° -61.32° No Maxibor 20.00 m 270.32° -61.50° No Maxibor 30.00 m 270.42° -61.32° No Maxibor 30.00 m 270.42° -61.22° No Maxibor 36.00 m 270.48° -61.29° No				Plunge	Invalid		Romarks	
	Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor	6.00 m 9.00 m 12.00 m 15.00 m 21.00 m 24.00 m 27.00 m 30.00 m	270.03° 270.11° 270.16° 270.15° 270.20° 270.24° 270.31° 270.32° 270.35° 270.35°	-61.33° 1 -61.50° 1 -61.33° 1 -61.34° 1 -61.37° 1 -61.31° 1 -61.32° 1 -61.32° 1 -61.32° 1	No No No No No No No No No No			
Core size : Carotte NQ Cemented : No Stored : No								
Diect : Texmont Gestion Aline Leclerc Inc. 2008							Stored : No	

. .

Туре	Depth	Azimuth	Plunge	Invalid	Remarks
Maxibor	39.00 m	270.51°	-61.38°	No	
Aaxibor	42.00 m	270.54°	-61.46°	No	
Aaxibor	45.00 m	270.60°	-61.36°	No	
Aaxibor	48.00 m	270.66°	-61.37°	No	
Aaxibor	51.00 m	270.70°	-61.29°	No	
Maxibor	54.00 m	270.81°	-61.24°	No	
Maxibor	57.00 m	270.82°	-61.26°	No	
Maxibor	60.00 m	270.94°	-61.25°	No	
Maxibor	63.00 m	270.94 271.07°	-61.26°	No	
Maxibor	66.00 m	271.16°	-61.24°	No	
Maxibor	69.00 m	271.21°	-61.26° -61.36°	No No	
Maxibor	72.00 m	271.27°			
Maxibor	75.00 m	271.32°	-61.34°	No	
Maxibor	78.00 m	271.35°	-61.32°	No	
Maxibor	81.00 m	271.37°	-61.35°	No	
Maxibor	84.00 m	271.44°	-61.28°	No	
Maxibor	87.00 m	271.44°	-61.32°	No	
Maxibor	90.00 m	271.49°	-61.28°	No	
Maxibor	93.00 m	271.52°	-61.44°	No	
Maxibor	96.00 m	271.57°	-61.28°	No	
Maxibor	99.00 m	271.58°	-61.29°	No	
Maxibor	102.00 m	271.60°	-61.25°	No	
Maxibor	105.00 m	271.61°	-61.28°	No	
Maxibor	108.00 m	271.68°	-61.39°	No	
Maxibor	111.00 m	271.65°	-61.28°	No	
Maxibor	114.00 m	271.65°	-61.30°	No	
Maxibor	117.00 m	271.68°	-61.29°	No	
Maxibor	120.00 m	271.67°	-61.22°	No	
Maxibor	123.00 m	271.69°	-61.22°	No	
	125.00 m	271.68°	-61.28°	No	
Maxibor		271.69°	-61.21°	No	
Maxibor	129.00 m	271.69° 271.73°	-61.22°	No	
Maxibor	132.00 m			No	
Maxibor	135.00 m	271.83°	-61.19°		
Maxibor	138.00 m	271.84°	-61.24°	No	
Maxibor	141.00 m	271.91°	-61.14°	No	
Maxibor	144.00 m	271.89°	-61.27°	No	
Maxibor	147.00 m	271.94°	-61.12°	No	
Maxibor	150.00 m	271.98°	-61.14°	No	
Maxibor	153.00 m	272.01°	-61.12°	No	
Maxibor	156.00 m	272.01°	-61.14°	No	
Maxibor	159.00 m	272.01°	-61.13°	No	
Maxibor	162.00 m	272.10°	-61.12°	No	
Maxibor	165.00 m	272.16°	-61.17°	No	
Maxibor	168.00 m	272.17°	-61.11°	No	
Maxibor	171.00 m	272.23°	-61,17°	No	
Maxibor	174.00 m	272.26°	-61.09°	No	
Maxibor	177.00 m	272.21°	-61.08°	No	
Maxibor	180.00 m	272.28°	-61.19°	No	

Fl	etc	her
----	-----	-----

Туре	Depth	Azimuth	Plunge	Invalid	Remarks	
axibor	183.00 m	272.41°	-61.08°	No		
axibor	186.00 m	272.37°	-61.10°	No		
axibor	189.00 m	272.47°	-61.04°	No		
laxibor	192.00 m	272.46°	-61.24°	No		
laxibor	195.00 m	272.51°	-61.01°	No		
Aaxibor	198.00 m	272.55°	-61.03°	No		
Aaxibor	201.00 m	272.56°	-61.00°	No		
laxibor	204.00 m	272.65°	-60.96°	No		
faxibor	207.00 m	272.66°	-60.96°	No		
laxibor	210.00 m	272.72°	-60.90°	No		
laxibor	213.00 m	272.65°	-61.01°	No		
laxibor	216.00 m	272.65°	-60.93°	No		
laxibor	219.00 m	272.68°	-61.03°	No		
Aaxibor	222.00 m	272.68°	-61.00°	No		
Aaxibor	225.00 m	272.65°	-60.99°	No		
Aaxibor	228.00 m	272.71°	-60.91°	No		
Aaxibor	231.00 m	272.75°	-60.89°	No		
Aaxibor	234.00 m	272.79°	-60.94°	No		
Aaxibor	237.00 m	272.79°	-61.05°	No		
Aaxibor	240.00 m	272.80°	-60.97°	No		
laxibor	243.00 m	272.89°	-60.95°	No		
Aaxibor	246.00 m	272.90°	-60.90°	No		
Aaxibor	249.00 m	272.92°	-60.93°	No		
Aaxibor	252.00 m	272.92°	-60.91°	No		
Aaxibor	255.00 m	272.92°	-60.88°	No		
Aaxibor	258.00 m	272.94 273.01°	-60.84°	No		
Aaxibor	261.00 m	273.08°	-60.84°	No		
Aaxibor	264.00 m	273.08°	-60.84 -60.83°	No		
Aaxibor	267.00 m	273.13°	-61.02°	No		
laxibor	270.00 m	273.15°	-60.83°	No		
laxibor laxibor	273.00 m	273.18°	-60.83°			
laxibor		273.08°	-60.82°	No		
Aaxibor Aaxibor	276.00 m		-60.82°	No No		
	279.00 m	273.12°				
Aaxibor Aaxibor	282.00 m	273.12° 273.09°	-60.86° -60.85°	No		
Aaxibor Aaxibor	285.00 m			No		
faxibor	288.00 m	273.16°	-60.96°	No		
Aaxibor	291.00 m	273.21°	-60.80°	No		
Aaxibor	294.00 m	273.29°	-60.78°	No		
faxibor	297.00 m	273.36°	-60.77°	No		
laxibor	300.00 m	273.39°	-60.78°	No		
laxibor	303.00 m	273.44°	-60.94°	No		
laxibor	306.00 m	273.51°	-60.75°	No		
laxibor	309.00 m	273.49°	-60.87°	No		
laxibor	312.00 m	273.49°	-60.79°	No		
laxibor	315.00 m	273.53°	-60.71°	No		
laxibor	318.00 m	273.51°	-60.69°	No		
Aaxibor	321.00 m	273.59°	-60.79°	No		
laxibor	324.00 m	273.70°	-60.68°	No		

,

FI	etcher	
- T , T	CIUNCI	

Туре	Depth	Azimuth	Plunge	Invalid	Remarks	
laxibor	327.00 m	273.64°	-60.76°	No		
Aaxibor	330.00 m	273.75°	-60.68°	No		
Aaxibor	333.00 m	273.75°	-60.74°	No		
Maxibor	336.00 m	273.71°	-60.69°	No		
Aaxibor	339.00 m	273.75°	-60.71°	No		
Maxibor	342.00 m	273.72°	-60.71°	No		
Aaxibor	345.00 m	273.72°	-60.67°	No		
Aaxibor	348.00 m	273.69°	-60.67°	No		
Maxibor	351.00 m	273.67°	-60.70°	No		
Maxibor	354.00 m	273.74°	-60.62°	No		
Maxibor	357.00 m	273.79°	-60.79°	No		
Maxibor	360.00 m	273.77°	-60.59°	No		
Aaxibor	363.00 m	273.79°	-60.67°	No		
Aaxibor	366.00 m	273.77°	-60.69°	No		
Maxibor	369.00 m	273.80°	-60.76°	No		
Maxibor	372.00 m	273.86°	-60.78°	No		
Maxibor	375.00 m	273.93°	-60.64°	No		
Maxibor	378.00 m	273.89°	-60.63°	No		
Maxibor	381.00 m	273.84°	-60.69°	No		
Aaxibor	384.00 m	273.93°	-60.62°	No		
Maxibor	387.00 m	273.86°	-60.63°	No		
Maxibor	390.00 m	273.96°	-60.62°	No		
Aaxibor	393.00 m	274.05°	-60.61°	No		
Maxibor	396.00 m	273.98°	-60.58°	No		
Maxibor	399.00 m	274.00°	-60.49°	No		
Maxibor	402.00 m	274.05°	-60.57°	No		
Maxibor	405.00 m	274.06°	-60.48°	No		
Maxibor	408.00 m	274.07°	-60.52°	No		
Maxibor	411.00 m	274.07°	-60.42°	No		
Maxibor	414.00 m	274.09°	-60.59°	No		
Maxibor	417.00 m	274.20°	-60.43°	No		
Maxibor	420.00 m	274.18°	-60.43°	No		
Maxibor	426.00 m	274.16°	-60.27°	No		
]			
	ł					

		DESCRIPTION		ASSAYS						
		DESCRIPTION	From	То	Number	Length	Ni (ppm)			
0.00	1.50	OB								
		Overburden								
		Casing, sand and gravel.								
.50	54.30	15 ol								
		Olivine Diabase								
		Medium grey, moderately magnetic, hard, ophitic texture, massive, composed by plagioclase, amphibole±biotite. Gradual								
		transition from fine grained to very fine grained diabase in the last 7m toward contact with monzodiorite with a sharp contact at	1							
		35°ca. Diabase is cut by a few medium-light grey, very fine grained and thin dykes. These dykes are probably of dioritic or	{							
	00.00	monzodioritic composition.		1		(
54.30	80.90	126								
		Monzodiorite	1							
		Diorite or monzodiorite, medium-light grey, fine grained, non magnetic, hard, massive or light foliation (35°ca) probably	ļ	ł		(
		magmatic. At the upper contat, monzodiorite has diabase enclaves of 3cm and 1 cm. Light hematization give a pinkish color to feldspath and cut by few epidote veinlets (inm; 70°ca, 50°ca and 37°ca). Between 74.56m and 75.12m, an enclave of komatiite								
		with spinifex texture is enclosed in monzodiorite		ł			1			
30.90	190.14	lk		ļ		{				
50.70	190.14	Komatiite								
		Dark grey, fine grained to coarse grained with spinifex texture well developped. Numerous flow can be observed. At the top of	Ì			ĺ				
		several flow, breccia with fragments between 1 cm to 7 cm are found. Komatiite is massive to moderately foliated (40°ca) at the		ļ						
		base of komatilite with spinific texture. Moderately hard to moderately soft toward bottom of the hole. Moderately magnetic to	ĺ	1						
		non magnetic toward bottom of the hole. Upper contact with monzodiorite is sharp and straight at 20°ca. Between 180.3m and]						
		184.05m, several shear zones are present with a width from 5cm to 1.2m (20°ca)	ļ	[ļ				
	180.30	184.05 SHR		ł						
		Shear Zone								
		Between 180.3m and 184.05m, several shear zones are present with a width from 5cm to 1.2m (20°ca)		1						
190.14	190.67	15								
		Diabase								
00 / 7	222.42	Dark grey, very fine grained, moderately hard, non magnetic, ophitic texture.		1						
190.67	223.63	lk Kanadh					1			
		Komatiite		ļ						
		Dark grey to black, finc grained to coarse grained with spinifex texture well developped. Komatiite is massive to moderately foliated (30°ca). Moderately soft to moderately hard. Non magnetic to moderately magnetic. Fault zone between 219.1 and 221m								
		where komatile is highly fractured and more altered by tale.					1			
	219.10	221.00 Fa		1	ĺ					
	219.10	Fault								
		Fault zone between 219.1 and 221m where komatilte is highly fractured and more altered by talc.		[
223.63	229.78	lk	ļ		1					
		Komatiite								
		Probably komatiite or peridotic dyke with a medium grey-green color. It is massive, moderately soft and non magnetic. Cut by)	1						
		numerous brittle fractures. Moderately altered by talc. Sharp upper contact at 35°ca.	1							
29.78	243.84	lk								
		Komatiite								
		Dark grey to black, fine grained to coarse grained with spinifex texture well developped. Some zones have cumulate texture.								
		Komatiite is massive to moderately foliated (30°ca). Moderately soft and moderately altered by talc. Non magnetic to weakly								
		magnetic.								
243.84	284.50	2a								
		Mafie Volcanie								

٠

			ASSAYS					
		DESCRIPTION	From	То	Number	Length	Ni (ppm)	
284.50	288.22	Dark grey, massive, very fine grained, moderately hard, moderately magnetic. Cut by brittle fractures filled by carbonate. 10a Mafic Dyke						
		Medium-dark green, massive, fine grained, hard and non magnetic. Cut by a few carbonate veins						
288.22	289.80	2a Mafic Volcanic						
		Dark grey, massive, very fine grained, moderately hard, moderately magnetic. Cut by brittle fractures filled by carbonate.						
289.80	292.60	lk Komatiite						
		Komatiite or peridotite moderatly altered by carbonate with a medium grey color. Massive, moderately soft and weakly to non magnetic Cut by diffuse carbonate veins						
292.60	295.10	2a Mafic Volcanic						
		Sheared mafic volcanic. Medium-dark grey-green, foliation well developped (35°ca) marked by biotite-rich layer. Rock is moderately hard and non magnetic. A thin chalcopyrite veinlets.						
295.10	301.90	lk Komatiite						
		Dark grey to dark grey-green, non magnetic, moderately foliated (15°ca) and moderately soft. Moderately altered by talc. Fine grained to coarse grained with weakly to well developped spinifex texture.						
301.90	302.15	15 Diabase						
		Dark green, non magnetic, fine grained, massive, hard. Upper contact (45°ca) and lower contact (45°ca) with komatiite are sharp.						
302.15	303.35	lk Konstiite						
		Komatiite Medium grey to dark green, non magnetic, moderately foliated (40°ca). Moderately soft to soft. Strong carbonate alteration between 302.15 and 303 m and moderate talc alteration between 303 and 303.35m. Fine grained						
303.35	313.88	15 Diabase						
		Medium grey-green (salt and pepper), fine grained, hard, massive. Cut by 2% carbonate veinlets and veins (<1cm; 32°ca and 62°ca). Upper contact is not well defined. Lower contact (25°ca) with komatiite is sharp.						
313.88	314.80	lk Komatiite						
		Dark grey-green, very weakly magnetic, moderately soft, massive, spinifex texture grade from fine grained to coarse grained (5mm to 5 cm)						
314.80	318.18	15 Diabase						
		Dark green to brown, fine grained, 10% biotite and 2% pyrite. Non magnetic, moderately hard and massive.Upper contact (50°ca) and lower contact (50°ca) with komatiite are sharp.						
318.18	322.25	1k						
		Komatiite Dark grey-green, very weakly magnetic, moderately soft, massive, fine grained to coarse grained, spinifex texture.	[Í		
322.25	323.02	15						
		Diabase Dark green to brown, fine grained, 5% biotite. Non magnetic, moderately hard and massive. Upper contact (45°ca) and lower contact (50°ca) with komatiite are sharp.						
323.02	334.40	lk						
		Komatiite						

		Fletcher								
		DESCRIPTION	ASSAYS							
			From	То	Number	Length	Ni (ppm)			
334.40	334.65	Dark grey-green to medium grey, non magnetic to weakly magnetic, moderately soft, massive to well foliated (35°ca). Spinifex texture grade from fine grained to coarse grained between 323.02m and 326.5 m. Then, komatiite becomes moderately altered by carbonate and no more spinifex could be seen. 15 Diabase								
224.65	225.05	Dark grey, fine grained, non magnetic, moderately hard and massive. Upper contact (35°ca) with komatiite is injected by carbonate-pyrite veins and lower contact is sharp (15°ca)								
334.65	335.05	lk Komatiite		{						
		Dark medium grey, non magnetic, moderately soft, well foliated (35°ca). komatiite is moderately altered by carbonate and is cut by 10% carbonate veins.								
335.05	339.25	15 Diabase Dark grey-brown, fine grained. Non magnetic, moderately hard and weakly foliated (35° to 45°ca). Upper contact (50°ca) is sharp								
	336.20	and lower contact (45°ca) with komatiite is cut by several carbonate veins. 337.20 SHR Shear Zone								
339.25	351.70	Shear zone in diabase, well foliated (50°ca) marked by thin biotite rich layer. Moderately soft and non magnetic.				ſ	- -			
557.25	551.70	Komatiite Medium green to dark grey, fine grained to coarse grained with spinifex texture on nearly all the intersection and moderately foliated (45°ca) near the upper contact to massive. Non magnetic to moderately magnetic where spinifex are serpentinized and enhanced magnetite crystallization. Soft to moderately soft.								
351.70	366.28	9a Peridotite Dark grey to black, moderately hard, fine grained, massive, non magnetic and moderately hard to soft. Carbonate alteration begins at 362.55 m with thin carbonate veinlets and pervasive carbonate alteration. Talc alteration begins at 363.75 m and								
366.28	366.50	hardness lowered toward the bottom of the hole. 15 Diabase								
366.50	368.85	Dark grey, non magnetic, hard, fine grained and massive. Sharp upper contact (60° ca) and lower contact (60° ca) 1k				Į				
368.85	370.00	Komatiite Dark grey to medium grey, massive to moderately foliated (40°ca). Moderate talc alteration and core is moderately soft to soft. 15								
500.05	570.00	Diabase Dark grey, non magnetic, hard, fine grained and massive. Sharp upper contact (45°ca) and lower contact (50°ca)								
370.00	373.94	 1k Komatiite Dark grey to medium grey, massive to moderately foliated (40°ca). Moderate talc alteration and core is moderately soft to soft. 								
373.94	386.80	One pyrrhoite massive lense (1cm x 3cm) 9a Paridetite								
386.80	393.85	Peridotite Peridotite or komatiite. Dark grey to black, moderately hard, fine grained, massive, moderately magnetic and moderately hard. Light serpentine alteration. Cut by few carbonate veinlets. Upper contact and lower contact are diffuse and not visible.								
200.00	5,5,05	Komatiite								

					ASSA	YS	
		DESCRIPTION	From	То	Number	Length	Ni (ppm)
393.85	419.10	Komatiite with spinifex texture (5mm to 10cm). Dark grey to medium grey, massive to moderately foliated (40°ca). Moderate talc alteration and core is moderately soft. 9a Peridotite Peridotite or komatiite with cumulate texture. Dark grey to black, moderately hard, fine grained, moderately foliated (35°ca), moderately magnetic and moderately hard. Light serpentine alteration. At 398m, talc vein with a width of 2 cm cut peridotite. Between 402.95m and 407m, 10% talc veins and talc-carbonate veins (5°ca and 40°ca; 2mm to 2 cm). Upper contact is more sharp than contact of the above peridotite with komatiite.					
419.10	429.50	9a Peridotite Not mineralized to weakly mineralized with disseminated pentlandite cluster (<1%). Black, fine grained, moderately strong magnetic, moderately hard, massive to weakly foliated (30°ca). Few thin serpentine veinlets	422.00 423.00 424.00 425.00 426.00 427.00 428.00	423.00 424.00 425.00 426.00 427.00 428.00 429.50	760 761 762 763 764 765 768	1.00 1.00 1.00 1.00 1.00 1.00 1.00	2260 2470 3490 3370 3200 2520 2530
429.50	431.64	9 serp Serpentine Altered Peridotite Light green, moderately soft, moderately magnetic, moderately foliated (35°ca). Injected by thin carbonate veinlets parallele to foliation	429.50 431.00	431.00	769 770	1.50 1.50 1.00	2700 2220
431.64	449.50	9a weak min Weakly Mineralized Peridotite Weakly mineralized with some intersection moderately mineralized with disseminated pentlandite cluster (<1%) to finely disseminated pentlandite and some semi-massive pentlandite veins with net texture. Black, fine grained, moderately strong magnetic, moderately hard, massive to weakly foliated (30°ca). Few thin serpentine veinlets. Peridotite is serpentinized on last 70 cm near lower contact with matachewan dyke.	432.00 433.00 434.00 435.00 436.00 437.00 438.00 439.00 440.00 441.00 442.00 444.00 445.10 445.10 445.70 446.70 447.40	433.00 434.00 435.00 435.00 437.00 438.00 439.00 440.00 441.00 442.00 444.00 444.00 445.10 444.70 446.70 446.70 447.40 449.00	771 772 773 774 775 776 777 778 779 780 781 780 781 782 783 784 785 786 787	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.10\\ 0.60\\ 1.00\\ 1.00\\ 1.60\\$	2680 3220 3020 2800 3480 2280 1700 4710 3120 8190 4630 3170 6530 1490 9210 6790 1760
449.50	460.87	15a mat Matachewan Dyke Glomeroporphyric diabase dyke with 5% green felspar (2mm to 2cm). Medium grey, fine grained and medium grained, massive, hard and non magnetic. Both contact with peridotite are very fine grained and darker					
460.87	465.90	9a Tc Talc Altered Peridotite Talc altered peridotite or komatiite. Heterogeneous color from medium grey to dark grey to medium grey-green. Non magnetic, moderately foliated (40°ca) and soft. Cut by 5% tale veins (1cm to 4cm; 40°ca).					
465.90	466.50	 Mafic Dyke Medium green, non magnetic, fine to medium grained, foliated (20°ca), hard. Cut by carbonatate veinlets. Contact with peridotite 					

		DESCRIPTION	ASSAYS					
		DESCRIPTION	From	То	Number	Length	Ni (ppm)	
		is sharp (50°ca) and fine grained.						
66.50	472.10	10a						
		Mafic Dyke						
		Dark green, non magnetic, fine to medium grained, foliated (45°ca), hard. Cut by 10% carbonate veinlets. Upper contact (45°ca)						
	172.01	and lower contact (0° to 25°ca) with medium green mafic dyke are sharp.			1			
72.10	473.04	10a		ł	Į			
		Mafic Dyke						
		Medium green, non magnetic, fine to medium grained, foliated (20°ca), hard. Cut by few carbonate veins. This dyke intruded dark green mafic dyke on 60 cm nearly parallele to care axis	}	1				
	472.80	473.04 Fa	473.00	474.00	788	1.00	2020	
	4/2.00	Fault	475.00	474.00	/00	1.00	2020	
		Mafic dyke is strongly fractured in small fragments			Ì			
73.04	510.50	9a	474.00	475.00	789	1.00	2610	
75.04	510.50	Peridotite	475.00	476.00	790	1.00	2060	
		Not mineralized to weakly mineralized with disseminated pentlandite cluster (<1%). Black, fine grained, moderate-strong	476.00	477.00	791	1.00	3890	
		magnetic to weakly magnetic in some short intersection, moderately hard, massive to weakly foliated (30°ca). Few thin chrysotile	477.00	478.00	792	1.00	4530	
		veinlets. Between 487 m and 497 m, peridotite is carbonatized and some serpentinized olivine are not carbonatized. Olivine is	478.00	479.00	795	1.00	2360	
		cumulate phase. Between 491m and 510.5m, peridotite is cut by few carbonate veins and serpentine veins	479.00	480.00	796	1.00	2550	
			480.00	481.00	797	1.00	2750	
			481.00	482.00	798	1.00	2990	
			482.00	483.00	799	1.00	2140	
			483.00	484.00	800	1.00	2780	
			484.00	485.00	267167	1.00	2710	
			485.00	486.00	267168	1.00	2380	
			486.00	487.00	267169	1.00	3630	
			487.00	488.00	267170	1.00	2750	
			488.00	489.00	267171	1.00	2240	
			489.00	490.00	267172	1.00	2030	
			490.00	491.00	267173	1.00	3430	
			491.00	492.00	267174	1.00	1830	
			492.00	493.00	267175	1.00	2000	
			493.00	494.00	267176	1.00	3780	
			494.00	495.00	267177 267178	1.00	2230 1920	
			495.00	490.00	267179	1.00	1920	
			497.00	498.00	267180	1.00	1890	
			498.00	499.00	267181	1.00	1750	
			499.00	500.00	267182	1.00	2900	
			500.00	501.00	267183	1.00	3180	
			501.00	502.00	267184	1.00	3040	
			502.00	503.00	267185	1.00	2900	
			503.00	504.00	267186	1.00	2090	
			504.00	505.00	267189	1.00	2020	
			505.00	506.00	267190	1.00	3220	
			506.00	507.50	267191	1.50	2360	
			507.50	509.00	267192	1.50	2050	
			509.00	510.50	267193	1.50	1670	

	Fletcher					
	DESCRIPTION			ASSA		
510.50 DDH end Number of samples : 62 Number of sampled length : 64.50	DESCRIPTION	From	To	ASSA	YS Length	Ni (ppm)

*

				Fletcher			
DDH : TEX07-19			Claims title : P3 Township : Ge Range : Lot :		Sectio Level Work		Ont
Described by	: MW diamond : Giguère	drilling co.]	From : 2007- Description date : 2007-	Nov. 30	To:2007-11-23 20ァフ	
	Azimuth : 2 Plunge : - Length : 4	-47.00° 410.40 m	Longitude (East) Latitude (North) Elevation	Grid 280.0 9900.0 1000.0	UTM 485128 5334449 1000		
Туре	own hole survey Depth	Azimuth	Plunge	Invalid	Re	marks	
Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor Maxibor	0.00 m 3.00 m 6.00 m 9.00 m 12.00 m 15.00 m 21.00 m 24.00 m 27.00 m 30.00 m 33.00 m	270.00° 270.02° 270.02° 270.05° 270.10° 270.10° 270.12° 270.20° 270.21° 270.25° 270.25° 270.39° 270.40° 270.37°	-46.17° 1 -46.03° 1 -46.05° 1 -46.06° 1 -45.97° 1 -46.06° 1 -45.92° 1 -46.01° 1 -46.04° 1 -45.93° 1 -46.01° 1	No No No No No No No No No No No No			
R	emarks ——						
Core size : Ca	arotte NQ			Cemented : No		Stored : No	
Project : Texr	nont		(Bestion Aline Leclero	: Inc.		2008-08-28

~

				Fle	etcher
Туре	Depth	Azimuth	Plunge	Invalid	Remarks
Maxibor	39.00 m	270.43°	-46.03°	No	
Maxibor	42.00 m	270.48°	-45.97°	No	
Maxibor	45.00 m	270.53°	-45.88°	No	
Maxibor	48.00 m	270.59°	-46.03°	No	
Maxibor	51.00 m	270.61°	-45.90°	No	
Maxibor	54.00 m	270.67°	-45.90°	No	
Maxibor	57.00 m	270.73°	-45.88°	No	
Maxibor	60.00 m	270.71°	-45.85°	No	
Maxibor	63.00 m	270.73°	-45.98°	No	
Maxibor	66.00 m	270.80°	-45.75°	No	
Maxibor	69.00 m	270.77°	-45.87°	No	
Maxibor	72.00 m	270.82°	-45.88°	No	
Maxibor	75.00 m	270.96°	-45.86°	No	
Maxibor	78.00 m	270.94°	-46.02°	No	
Maxibor	81.00 m	270.91°	-45.77°	No	
Maxibor	84.00 m	270.96°	-45.82°	No	
Maxibor	87.00 m	271.06°	-45.80°	No	
Maxibor	90.00 m	271.08°	-45.75°	No	
Maxibor	93.00 m	271.13°	-45.72°	No	
Maxibor	96.00 m	271.23°	-45.67°	No	
Maxibor	99.00 m	271.26°	-45.68°	No	
Maxibor	102.00 m	271.26°	-45.65°	No	
Maxibor	105.00 m	271.34°	-45.67°	No	
Maxibor	108.00 m	271.40°	-45.62°	No	
Maxibor	111.00 m	271.45°	-45.62°	No	
Maxibor	114.00 m	271.49°	-45.65°	No	
Maxibor	117.00 m	271.53°	-45.65°	No	
Maxibor	120.00 m	271.63°	-45.65°	No	
Maxibor	123.00 m	271.65°	-45.58°	No	
Maxibor	126.00 m	271.75°	-45.59°	No	
Maxibor	129.00 m	271.80°	-45.62°	No	
Maxibor	132.00 m	271.83°	-45.56°	No	
Maxibor Maxibor	135.00 m 138.00 m	271.80° 271.87°	-45.66°	No	
Maxibor	138.00 m 141.00 m	271.87	-45.65° -45.70°	No	
Maxibor	144.00 m	271.94°	-45.65°	No	
Maxibor	144.00 m	271.94 271.99°	-45.66°	No No	
Maxibor	150.00 m	271.99°	-45.62°	No	
Maxibor	153.00 m	272.03°	-45.64°	No	
Maxibor	156.00 m	272.10°	-45.53°	No	
Maxibor	159.00 m	272.10 272.11°	-45.64°	No	
Maxibor	162.00 m	272.19°	-45.56°	No	
Maxibor	165.00 m	272.22°	-45.56°	No	
Maxibor	168.00 m	272.22°	-45.53°	No	
Maxibor	171.00 m	272.35°	-45.51°	No	
Maxibor	174.00 m	272.44°	-45.52°	No	
Maxibor	177.00 m	272.45°	-45.46°	No	
Maxibor	180.00 m	272.46°	-45.43°	No	

Fletcher										
Туре	Depth	Azimuth	Plunge	Invalid	Remarks					
Maxibor	183.00 m	272.58°	-45.37°	No						
Maxibor	186.00 m	272.63°	-45.41°	No						
Maxibor	189.00 m	272.65°	-45.42°	No						
Maxibor	192.00 m	272.65°	-45.42°	No						
Maxibor	195.00 m	272.69°	-45.43°	No						
Maxibor	198.00 m	272.69°	-45.51°	No						
Maxibor	201.00 m	272.74°	-45.38°	No						
Maxibor	204.00 m	272.81°	-45.43°	No						
Maxibor	207.00 m	272.98°	-45.41°	No						
Maxibor	210.00 m	273.08°	-45.33°	No						
Maxibor	213.00 m	273.10°	-45.32°	No						
Maxibor	216.00 m	273.12°	-45.34°	No						
Maxibor	219.00 m	273.21°	-45.34°	No						
Maxibor	222.00 m	273.22°	-45.25°	No						
Maxibor	225.00 m	273.31°	-45.21°	No						
Maxibor	228.00 m	273.34°	-45.18°	No						
Maxibor	231.00 m	273.41°	-45.16°	No						
Maxibor	234.00 m	273.49°	-45.14°	No						
Maxibor	237.00 m	273.48°	-45.11°	No						
Maxibor	240.00 m	273.58°	-45.06°	No						
Maxibor	243.00 m	273.66°	-45.02°	No						
Maxibor	246.00 m	273.68°	-44.99°	No						
Maxibor	249.00 m	273.76°	-45.04°	No						
Maxibor	252.00 m	273.87°	-45.01°	No						
Maxibor	255.00 m	273.90°	-45.08° -45.08°	No No						
Maxibor	258.00 m	273.88°	-45.08°	No						
Maxibor	261.00 m 264.00 m	273.83° 273.89°	-45.01°	No						
Maxibor Maxibor	264.00 m 267.00 m	273.89°	-45.06°	No						
Maxibor	270.00 m	273.99°	-45.07°	No						
Maxibor	270.00 m 273.00 m	273.99°	-45.04°	No						
Maxibor	275.00 m 276.00 m	273.99 274.03°	-45.00°	No						
Maxibor	279.00 m	274.03°	-45.00°	No						
Maxibor	282.00 m	274.04 274.11°	-44.99°	No						
Maxibor	282.00 m 285.00 m	274.11	-44.99 -44.93°	No						
Maxibor	288.00 m	274.14 274.24°	-44.93	No						
Maxibor	291.00 m	274.23°	-44.88°	No						
Maxibor	294.00 m	274.28°	-44.86°	No						
Maxibor	297.00 m	274.38°	-44.82°	No						
Maxibor	300.00 m	274.37°	-44.80°	No						
Maxibor	303.00 m	274.43°	-44.80°	No						
Maxibor	306.00 m	274.52°	-44.89°	No						
Maxibor	309.00 m	274.55°	-44.85°	No						
Maxibor	312.00 m	274.56°	-44.83°	No						
Maxibor	318.00 m	274.73°	-44.67°	No						
L										

	DESCRIPTION				ASSAYS						
		DESCRIPTION	From	То	Number	Length	Ni (ppm)				
.00	3.80	OB	-								
		Overburden									
		Casing, sand and gravel.									
.80	24.98	15 ol	[1							
		Olivine Diabase	1				1				
		Medium grey, moderately magnetic, hard, ophitic texture, massive, fine grained, composed by plagioclase, olivine,									
		amphibole±biotite. A chilled margin is present in the last 80 cm. It is dark grey and very fine grained. The contact with		1		[
		monzodiorite is sharp at 40°ca.									
4.98	32.65	12b	ļ								
		Monzodiorite									
		Diorite or monzodiorite, medium-light grey-green, fine grained, non magnetic, hard, massive. Light hematization gives a pinkish		1							
		color to feldspath. Cut by few thin (0.5 to 1cm) and very fine grained olivine diabase and by few granitic veins (0.5 to 2cm).	ļ								
		Lower contact with olivine diabase is sharp, but irregular.									
2.65	34.45	15 ol									
		Olivine Diabase		ļ	}						
		Medium grey, moderately magnetic, hard, ophitic texture, massive, very fine grained. All this intersection is similar to chilled									
		margin of above olivine diabase. The contact with monzodiorite is sharp, but irregular with monzodiorite enclave.									
34.45 35	35.20	12b									
		Monzodiorite									
		Diorite or monzodiorite, medium-light grey-green, fine grained, non magnetic, hard, massive. Light hematization gives a pinkish	{								
5 20	26.10	color to feldspath. Lower contact with olivine diabase is sharp, but irregular.									
5.20	36.10	15 ol Olivine Diabase									
		Medium grey, moderately magnetic, hard, ophitic texture, massive, very fine grained. Similar to above olivine diabase. The									
		contact with monzodiorite is sharp, but irregular.	1								
36.10	41.10	12b									
0.10	41,10	Monzodiorite									
		Diorite or monzodiorite, medium-light grey-green, fine grained, non magnetic, hard, massive. Light hematization gives a pinkish									
		color to feldspath. Lower contact with komatilite is sharp, but irregular.	1								
1.10	56.54	lk					1				
		Komatiite	1								
		Dark grey, fine grained to coarse grained with spinifex texture well developped. Few breccia are also found at top of flow.	ļ								
		Komatiite is massive to moderately foliated (55°ca) at the base of komatiite flow within spinifex texture. Moderately hard to			i i						
		moderately soft. Moderately magnetic to non magnetic near contact with diorite. Upper contact with monzodiorite is sharp and									
		straight at 20°ca.									
56.54	60.70	13b									
		Diorite									
		Diorite, medium grey-brown, fine grained, non magnetic, hard, massive. Higher biotite content than above monzodiotirite dyke.									
		Some places are hematized. Diorite is cut by hematite veinlets and by carbonate veins									
50.70	146.05	lk									
		Komatiite									
		Dark grey, fine grained to coarse grained with spinifex texture well developped. Few breccia are also found at top of flow.									
		Komatiite is massive to moderately foliated (40 to 55°ca) at the base of komatiite flow within spinifex texture. Moderately hard to									
	127.00	moderately soft and moderately magnetic to non magnetic.									
	137.88	138.75 SHR Shear Zone									
		Shear Zone Highly deformed komatiite with strong schistosity (55°ca) and strong talc alteration. Black color, soft and non									
		inging detormed contained with strong sensionary (55 ca) and strong take attendion. Black color, soft and non					1				

		DESCRIPTION			ASSA	rs	
		DESCRIPTION	From	То	Number	Length	Ni (ppm)
	142.35	magnetic. Carbonate veinlets injection parallele to schistosity. 142.95 SHR Shear Zone Highly deformed komatiite with strong schistosity (45°ca) and strong talc alteration. Black color, soft and non magnetic. Carbonate veinlets injection parallele to schistosity.					
146.05	155.80	10a Mafic Dyke Medium grey, fine grained, massive, moderately hard and non magnetic.					
155.80	161.30	Ik Komatiite Dark grey, fine grained to coarse grained with nearly all the intersection with spinifex texture. Spinifex grade from fine grained toward coarse grained. Komatiite is massive, moderately soft and non magnetic to weakly magnetic.					
161.30	163.44	10a Mafic Dyke Medium grey, fine grained, massive, moderately hard and non magnetic.					
163.44	185.20	 Ik Komatiite Dark grey, fine grained to coarse grained with several flow marked by spinifex texture. Spinifex grade from fine grained toward coarse grained. Komatiite is massive, moderately soft and non magnetic to weakly magnetic. 					
185.20	185.55	 Diabase Dark grey-brown, line grained, ophitic texture, non magnetic and massive. Contacts with komatiite are sharp at 35°ca. 					
185.55	186.80	Ik Komatiite Dark grey, fine grained to medium grained with some spinifex texture. Komatiite is massive, moderately soft and non magnetic.					
186.80	187.10	 Diabase Dark grey-brown, fine grained, ophitic texture, non magnetic and massive. Contacts with komatilite are sharp at 30°ca. 					
187.10	190.80	Ik Komatilite Dark grey, fine grained with a cumulate texture, generally massive at the exception of one small shear zone (45°ca), moderately					
190.80	191.60	soft to soft and non magnetic. 15 Diabase					2 - -
191.60	210.45	Dark grey-brown, fine grained, ophitic texture, non magnetic and massive. Contacts with komatiite are sharp at 45°ca. lk Komatiite					
		Dark grey, fine grained to coarse grained with several flow marked by spinifex texture. Spinifex grade from fine grained toward coarse grained. Komatiite is massive to weakly foliated (40° ca) and foliation could be marked by very fine grained magnetite. Komatiite is moderately soft and non magnetic to moderately magnetic. Near the upper contact with diabase, komatiite is highly deformed (60° ca). The lower contact with mafic dyke is hard to see and seems to be at low angle ($\sim 20^{\circ}$ ca)					
210.45	243.50	15 Mafic Dyke Dark green to medium green, very fine grained to fine grained, hard, non magnetic and generally massive. This dyke is					
		amphibolitized and some porphyroblastic hornblende are found between 238.3m and 240m. Between 240 m and 243.5 m, it is chloritized and dyke becomes moderately foliated (35°ca). Carbonate veinlets cut dyke in various direction and few quartz-carbonate±pyrite±chalcopyrite veins are found throughout dyke and some chlorite veinlets. Between 226 m to 227.1 m,					

.

.

		DESCRIPTION			ASSAYS	5	
		DESCRIPTION	From	То	Number	Length	Ni (ppm)
243.50	244.90	fine grained komatilite is present. It could be an enclave or dyke direction is parallele to hole and it comes out then comes back. Lower contact with komatilite is chloritized and is difficult to see. 1k					
243.30	244.90	Komatiite					
244.90	245.93	Medium grey, fine grained, light foliation (40°ca), moderately soft and non magnetic. 10a					
		Mafic Dyke Dark brown-green, fine grained, moderately soft, non magnetic and moderately foliated (35°ca).					
245.93	246.73	lk Komatiite					
246.73	246.84	Medium grey, fine grained, light foliation (45°ca), moderately soft and non magnetic. 10a					
		Mafic Dyke Dark brown-green, fine grained, moderately soft, non magnetic and moderately foliated (40°ca).					
246.84	261.85	lk Komatiite					
		Medium grey, fine grained to coarse grained with spinifex texture at the end of intersection, light foliation (45°ca), moderately soft and non magnetic to weakly magnetic. Cut by 5% carbonate veins and veinlets.					
261.85	263.55	10a Mafic Dyke					
263.55	264.90	Medium grey-green, fine grained, moderately soft, weakly magnetic and good foliation (45°ca). 1k					
		Komatiite Medium grey, fine grained, good foliation (40°ca), moderately soft and moderately magnetic. 1% disseminated pyrite with cubic habitus.					
264.90	271.64	10a Mafic Dyke		i			
		Medium grey-green, fine grained, moderately soft near upper contact with komatiite to hard, non magnetic and massive to well developped foliated (45°ca). Injected by not oriented carbonate veins. 1% disseminated pyrite with cubic habitus.					
271.64	294.20	lk Komatiite					
		Medium grey to dark grey, fine grained to coarse grained with spinifex texture on nearly all the intersection, light foliation (45°ca), moderately soft and non magnetic to weakly magnetic and moderately magnetic between 282 m and 289 m, Cut by 5% carbonate veins and veinlets.		l			
294.20	296.20	15 Diabase					
		Dark grey-brown, fine grained with ophitic texture and massive. Dyke is hard and non magnetic. Both contacts with komatiite are sharp (50°ca). Cut by few carbonate-pyrite veins and by few pyrite-biotite veinlets.					
296.20	308.00	lk Komatiite					1
		Medium grey to dark grey, fine grained to coarse grained with spinifex texture in few area, massive to weakly foliated (40°ca), moderately soft to moderately hard and non magnetic to moderately magnetic. Between 297.7m and 299.32m, komatiite is strongly amphibolitized by green hornblende or actinolite needles. From 308m, komatiite is weakly mineralized with few					
308.00	313.25	pentlandite-pyrrhotite blebs (1mm to 5 mm) 1k weak min	308.00	309.00	267194	1.00	1680
		Weakly Mineralized Komatiite	309.00	310.00	267195	1.00	1790

		DESCRIPTION	ASSAYS					
		DESCRIPTION	From	То	Number	Length	Ni (ppm	
		moderately soft to moderately hard and non magnetic to moderately magnetic. Komatiite is weakly mineralized with few	311.00	312.00	267197	1.00	1930	
		pentlandite-pyrrhotite blebs (1mm to 5 mm)	312.00	313.00	267198	1.00	1440	
			313.00	314.00	267199	1.00	1860	
3.25	316.00	9a weak min	314.00	315.00	267200	1.00	2820	
		Weakly Mineralized Peridotite	315.00	316.00	267201	1.00	2670	
		Weakly mineralized peridotite. Peridotite is dark grey to black, fine grained, massive and has cumulate texture. It is cut by 10% chrysotile veinlets (60°ca) between 315m and 315.2m.						
6.00	337.00	9a	334.00	335.00	267202	1.00	1900	
		Peridotite	335.00	336.00	267203	1.00	2600	
		Not mineralized to weakly mineralized peridotite. Dark grey to black, fine grained, weakly to moderately foliated (45°ca) toward bottom of hole and has cumulate texture. It is generally moderately altered by serpentine. In less altered area, peridotite shows a patchy texture. Peridotite is cut by few chrysotile veinlets (45°ca to 60°ca). A few serpentine veins also cut peridotite (0.2 cm to 1 cm). Spinifex texture is found on 48 cm and it is probably a komatilitic dyke.	336.00	337.00	267204	1.00	2770	
7.00	340.75	9a weak min	337.00	338.00	267205	1.00	3460	
		Weakly Mineralized Peridotite	338.00	339.00	267206	1.00	2570	
		Weakly mineralized peridotite with disseminated sulphide. Peridotite is dark grey to black, fine grained, strongly magnetic,	339.00	340.00	267207	1.00	2380	
		moderately hard, moderately foliated (50°ca) and has cumulate texture. Peridotite is generally moderately altered by serpentine. Peridotite is cut by few chrysotile veinlets and serpentine veins (0.2 cm to 1 cm).	340.00	340.75	267208	0.75	2490	
0.75	341.60	9a well min	340.75	341.60	267209	0.85	13800	
		Well Mineralized Peridotite Well mineralized peridotite. Dark grey to black, fine grained, strongly magnetic, moderately hard, moderately foliated (40°ca) and has cumulate texture. Peridotite is generally moderately altered by scrpentine. Peridotite is cut by few chrysotile veinlets and serpentine veins (0.2 cm to 1 cm).						
1.60	380.50	9a weak min	341.60	342.60	267210	1.00	2370	
1.00	580.50	Weakly Mineralized Peridotite	342.60	343.30	267210	0.70	2700	
		Weakly mineralized peridotite. Peridotite is dark grey to black, fine grained, strongly magnetic, moderately hard, moderately	343.30	344.00	267212	0.70	2640	
		foliated (40 to 45°ca) and has cumulate texture. Peridotite is generally moderately altered by serpentine. Peridotite is cut by few	344.00	345.00	267212	1.00	2730	
				345.00	267215			
		chrysotile veinlets and serpentine veins (0.2 cm to 1 cm). Between 373m to 378m, 10% serpentine-talc veins at low angle with ca				1.00	3080	
		cut peridotite (0.5 cm to 4 cm).	346.00	347.00	267217	1.00	2450	
			347.00	348.00	267218	1.00	3280	
			348.00	348.80	267219	0.80	2310	
			348.80	349.40	267220	0.60	2360	
			349.40	350.00	267221	0.60	2960	
			350.00	351.00	267222	1.00	2780	
			351.00	352.00	267223	1.00	2550	
			352.00	352.80	267224	0.80	2370	
			352.80	353.30	267225	0.50	7810	
			353.30	354.30	267226	1.00	2350	
			354.30	355.30	267227	1.00	3250	
			355.30	356.00	267228	0.70	6330	
			356.00	356.70	267229	0.70	13100	
			356.70	358.00	267230	1.30	3890	
			358.00	359.00	267231	1.00	2430	
			359.00	360.00	267232	1.00	4050	
			360.00	361.00	267232	1.00	1660	
			361.00	362.00	267233	1.00	1720	
			362.00	363.00	267235	1.00	2170	

		DESCRIPTION	ASSAYS From To Number L			YS	
	30					Length	Ní (ppm)
			363.00	364.00	267236	1.00	2270
			364.00	365.00	267237	1.00	2630
			365.00	366.00	267238	1.00	2760
			366.00	367.00	267239	1.00	2390
			367.00	368.00	267240	1.00	1660
			368.00	369.00	267243	1.00	3450
			369.00	369.80	267244	0.80	4580
			369.80	371.00	267245	1.20	4400
			371.00	372.00	267246	1.00	2440
			372.00	373.00	267247	1.00	2930
			373.00	374.00	267248	1.00	2410
			374.00	375.00	267249	1.00	1760
			375.00	376.00	267250	1.00	1950
			376.00	377.00	267251	1.00	2390
			377.00	378.00	267252	1.00	2070
			378.00	379.00	267253	1.00	2290
			379.00	380.00	267254	1.00	2090
80.50	384.30	15a mat					
		Matachewan Dyke	1				
		Glomerophyric dyke with green feldspar (2mm to 1cm), medium grey, hard, non magnetic, massive and fine grained. Sharp		1		J	
		contact with peridotite, but each contacts are highly fractured.					
84.30	392.40	9a	386.00	387.50	267255	1.50	2200
		Peridotite	387.50	389.00	267256	1.50	1830
		Serpentinized peridotite, dark green to black, fine grained, moderately magnetic, moderately hard, moderately foliated (40°ca)	389.00	390.50	267257	1.50	2120
		and cumulate texture. Peridotite is cut by few carbonate veins (0.2 cm to 1 cm), chrysotile veinlets and serpentine veins.	390.50	392.00	267258	1.50	1880
			392.00	393.50	267259	1.50	1050
92.40	392.50	15a mat					1
		Matachewan Dyke		1			
		Medium grey, hard, non magnetic, massive and fine grained. Sharp contact with peridotite (35 and 38°ca).	1				
92.50	403.00	9a	393.50	395.00	267260	1.50	2080
		Peridotite	395.00	396.50	267261	1.50	2210
		Serpentinized peridotite, dark green to black, fine grained, moderately magnetic, moderately hard, moderately foliated (40°ca)	396.50	398.00	267262	1.50	2470
		and cumulate texture. Peridotite is cut by few carbonate veins (0.2 cm to 1 cm), chrysotile veinlets and serpentine veins.	398.00	399.50	267263	1.50	2260
			399.50	401.00	267264	1.50	2010
			401.00	402.00	267265	1.00	1500
			402.00	403.00	267266	1.00	1660
03.00	407.00	9a weak min	403.00	404.00	267267	1.00	1420
		Weakly Mineralized Peridotite	404.00	405.00	267270	1.00	2730
		Weakly mineralized with 1% or less than 1% disseminated penlandite clusters. Serpentinized peridotite, dark green to black, fine	405.00	406.00	267271	1.00	2450
		grained, moderately magnetic, moderately hard, moderately foliated (45°ca) and cumulate texture. Peridotite is cut by few	406.00	407.00	267272	1.00	2550
		carbonate veins (0.2 cm to 1 cm), chrysotile veinlets and serpentine veins.					
07.00	410.40	9 cb	407.00	408.50	267273	1.50	1770
		Carbonate Altered Peridotite					
		Peridotite becomes carbonate altered and has colour from medium grey-green to light grey-green, moderately soft, moderately magnetic and lightly to moderately foliated (50°ca). Trace of disseminated sulphide.					

DESCRIPTION						ASSAV	YS	
		DESCRIPTION		From	То	Number	Length	Ni (ppm
0.40	DDH end Number of samples : 74 Number of samples QAQC : 6 Total sampled length : 76.50							
		Ban Wat						
		p.m. com						
		1						

٠

				Fletcher		
DDH : TEX07-16			Claims title : P36 Township : Geil Range : Lot :		Section : Level : Work place :	170 Jaguar Road, Timmins Ont
Described by	-	drilling co.		rom : 2007 escription date : ?	09-25 To:2 00-4/17, 8, 20	007-10-11 DO 7
	Length :	-50.00° 299.00 m	Longitude (East) Latitude (North) Elevation	Grid 130.0 9900.0 1000.0	UTM 484978 5334443 1000	
Туре	Down hole survey Depth	Azimuth	Plunge	nvalid	Remarks	
Flexite Flexite Flexite Flexite Flexite Flexite Flexite	20.00 m 71.00 m 122.00 m 173.00 m 224.00 m 275.00 m 299.00 m	282.80° 286.60° 272.50° 260.00° 278.60° 253.90° 279.60°	-50.20° Yee -50.00° Yee -50.00° No -49.70° Yee -49.30° No -48.90° Yoe -48.80° No	es 5341 5661 es 5805 5244 es 5480		
F	Remarks — ——			I		
Core size : C	arotte NQ			Cemented : No	Stor	ed : No
Project : Tex	mont		Ge	estion Aline Lecle	re Inc.	2008-08-28

•

					ASSA	YS	
		DESCRIPTION	From	То	Number	Length	Ni (ppm)
0.00	9.00	OB					
		Overburden					
		Casing, sand and gravel.			,		
9.00	46.05	lk					
		Komatiite					}
		Dark grey to dark green, fine to coarse grained with several area with spinifex texture (14.25-15.9m : 0.5-4 cm; 34-35.8m : 0.5-6 cm; 45.2-46.05m : 0.5 and 3 cm, graded from coarse grained to fine grained). Soft to moderately soft, particularly soft between 9m and 34m where komatilite is moderately altered by talc, then komatilite has low talc alteration. Non to weakly magnetic. Massive to weakly foliated excepted two shear zones between 33.85m and 33.95m (45°ca) and between 37.35m and 37.45m (35°ca).					
	33.85	33.95 SHR					1
		Shear Zone Shear zone (45°ca)					
	37.35	37.45 SHR Shear Zone Shear zone (35°ca)					
46.05	52.35	10a					
40.05	52.55	Mafic Dyke		1			(
		Dark grey, hard, weakly to moderately magnetic, cut by several brittle fractures filled by carbonate and quartz. Massive					}
52.35	54.15	lk		1			
52.35	54.15	Komatiite					1
		Dark grey, moderately hard, fine grained to coarse grained with one zone with spinifex texture between 52.45 and 53m (0.2-1cm), non magnetic, massive					
54.15	55.90	10a					
		Mafic Dyke					
		Mafic or intermediate dyke, medium grey, weakly foliated (40°ca), hard, non magnetic, ophitic texture, medium grained, disseminated pyrite (<1%)					
55.90	57.50	lk	[
		Komatiite					
		Medium grey, non magnetic, massive, moderately hard, fine to coarse grained, spinifex texture between 55.9 and 57.5m (0.2-1cm)					
57.50	57.90	15	1			(1
		Diabase					
		Medium grey, ophitic texture, fine grained, moderately hard, non magnetic, massive with disseminated pyrite (fine grained,					
67.00	59.50	trace). Sharp contact with komatiite.					
57.90	58.50	lk Konseite					
		Komatiite Medium grey (darker than diabase). Fine grained with spinifex texture between 57.9 and 58.5m (0.2 to 0.5cm) on all the					
58.50	67.70	intersection. Massive. Non magnetic. Moderately hard. 10a		1			
38.30	07.70	Mafic Dyke					
		Matic Dyke Mafic or intermediate dyke, medium grey, weakly foliated (45°ca), hard, non magnetic, some area with ophitic texture, medium					
		grained, disseminated pyrite (trace). Cut by few felsic vein (quartz-albite) slightly hematized (1 to 5 mm).					
67.70	75.58	lk]]	
07.70	15.50	Komatiite					
		Medium grey to dark grey, moderately soft to moderately hard, non magnetic, fine to coarse grained with many layers with					
		spinifex textures (67.85-69.17m : 0.2 to 8 cm; 72.1-73.17m : 0.2 to 2 cm; 74-75.46m : 0.2 to 2 cm, grade from fine grained to]			
		medium grained) and one layer grades from fine to medium grained. Massive.					
		measure Branes, and one myst Brades none time to measure Branes.		1			

Fletcher

Project : Texmont

.

					ASSAYS		
		DESCRIPTION	From	То	Number	Length	Ni (ppm)
75.58 77.00	77.00	 15 Diabase Dark grey, fine grained, massive, subophitic texture, moderately hard, non magnetic. A few disseminated pyrite (medium grained, anhedral) 1k 					
70.05	70.54	Komatiite Medium grey, fine to medium grained with spinifex texture on nearly all the intersection (77-77.78m : 0.2-1cm). Non magnetic, moderately hard and massive.					
78.05	79.54	10 Lamprophyre Medium grey, fine to medium grained, hard, weakly foliated (50°ca). Biotite phenocrysts marked foliation. Non magnetic.					
79.54	85.78	1k Komatiite Dark grey to medium grey and fine grained to coarse grained. Between 79.82 and 82.18m, spinifex texture who defined three flows who graded from fine to coarse grained (0.2 to 1cm; 0.2 to 2cm; 0.5 to 4cm). Between 82.18 and 83.4m, discrete spinifex texture is found and after that, cumulate texture is present. From 83.2 to 85.78m, komatiite has strong tale alteration and soft hardness. This altered intersection has disseminated pyrite (<1%). The upper part of komatiite is moderately hard. Massive.					
85.78	95.05	15 Diabase Dark grey green, fine grained, massive, hard, non magnetic. Very fine grained disseminated pyrite (trace). Cut by quartz-albite-carbonate veins with chalcopyrite. Veins are lightly hematized. Some medium grained feldspars are found toward dyke probably caused by albitization of the dyke.					
95.05	101.25	Ik Komatiite Dark grey, massive to weakly foliated (37°ca), many mafic injection (1 to 10 cm).Moderately soft and non magnetic. Discrete spinifex texture (1 to 3 cm).					
101.25	103.70	 15 Diabase Dark grey to dark green, fine grained, hard except at the contact with komatiite. Contact is altered by talc. Few disseminated 					
103.70	132.90	pyrite (trace). Massive. 1k Komatiite Dark grey, weakly foliated (40°ca). Non magnetic to weakly magnetic. Moderately hard to moderately soft. Between 107.3 and 109.2m, three breccias have fragments between 0.5 and 5 cm (107.3-107.5m : fragments 0.5 to 5 cm; 107.94-108.3m : fragments 1 to 5 cm; 108.86-109.2m : fragments 0.5 to 5 cm. Discrete spinifex texture (0.5 to 8 cm). Lower contact with mafic volacanic is carbonatized and faulted.					
132.90	133.80	1k cb Carbonate Altered Komatiite Carbonatized komatiite in contact with mafic volcanic, light grey, moderately soft and non magnetic. Irregular contact with mafic					
	132.90	volcanic and some fragment of mafic volcanic in komatiite near contact. 133.65 Fa Fault Strong fracturation in carbonate altered komatiite.				r I	
133.80	201.90	10a Mafic Dyke Mafic dyke. Dark green to medium green, hard, weakly magnetic to strongly magnetic and massive to moderately foliated (40 to 50°ca). Quartz-carbonate vein of 30 cm near the contact with komatiite. Generally, gradual contact between medium grained and	155.00 156.50 158.00 159.50	156.50 158.00 159.50 161.00	556 557 558 559	1.50 1.50 1.50 1.50	100 60 40 50

Fletcher

•

Fletcher ASSAYS DESCRIPTION То From Number Length Ni (ppm) fine grained mafic rock, and between strong amphibolitization and light amphibolitization. When mafic rock is strongly 161.00 162.50 560 1.50 40 1.50 50 amphibolitized, it becomes fine grained, weakly magnetic and has a dark green color. Disseminated pyrite, pyte-chalcopyrite 162.50 164.00 561 1.50 40 veinlets and pyrite cluster is found in mafic volcanic. Sulphides are <1%. At one place, pyrite-galena-tourmaline-164.00 165.50 562 1.50 50 quartz-carbonate vein of 2 cm is found. 165.50 563 167.00 167.00 168.50 564 1.50 50 40 168.50 170.00 565 1.50 40 170.00 171.50 566 1.50 50 171.50 173.00 567 1.50 50 173.00 174.50 568 1.50 176.00 40 174.50 569 1.50 70 570 1.00 189.40 190.40 190.40 191.00 571 0.60 80 80 191.00 192.00 572 1.00 50 192.00 193.00 575 1.00200.90 576 1.00 50 201.90 201.90 210.20 9a weak min 201.90 203.00 577 1.10 3390 203.00 204.00 578 1.00 1740 Weakly Mineralized Peridotite 204.00 205.00 579 Dark grey to black, non magnetic to moderately magnetic, moderately soft to soft and massive. Cut by milky quartz veins (2mm 1.001770 to 1 cm; 37°ca to 90°ca). Quartz veins contains sometime thin massive or semi-massive pyrrhotite at the edge of the veins. 205.00 206.00 580 1.00 3190 206.00 581 Mineralization is present as thin pyrrhotite-pentlandite semi-massive veins (0.5 to 1 cm) and as disseminated pentlandite cluster 207.00 1.003590 207.00 2210 of 1cm. No more than 1% sulphides is found in this intersection. 208.00 582 1.00 208.00 2100 209.00 583 1.00 209.00 210.00 584 1.002160 210.00 211.00 585 1.00 3760 210.20 213.20 9a Cb weak min 211.00 212.00 586 1.00 2240 Weakly Mineralized Carbonate Altered Peridotite 212.00 213.00 587 1.00 1860 Carbonate altered peridotite with medium grey to dark green color. Moderately foliated (40°ca), weakly magnetic and soft to 213.00 214.00 588 1.00 1920 moderately soft. Carbonate alteration shows patchy texture with medium grey carbonate altered peridotite around fresher peridotite with a dark green color. 213.20 215.30 9a weak min 214.00 215.00 589 1.00 2290 Weakly Mineralized Peridotite 215.00 216.00 590 1.00 5150 Dark grey, moderately hard, fine grained, moderately magnetic, weakly foliated (40°ca). Weakly mineralized with very fine grained disseminated pyrrhotite and pentlandite. 215.30 217.00 9a Cb weak min 216.00 217.00 591 1.00 1870 Weakly Mineralized Carbonate Altered Peridotite Carbonate and talc altered peridotite with medium grey to light green color. Moderately foliated (40°ca), weakly magnetic and soft to moderately soft. Carbonate alteration overprint talc alteration and peridotite shows patchy texture with medium grey carbonate altered peridotite around green talc altered peridotite. Strong talc alteration intersection is cut by thin carbonate veins parallele or at low angle with foliation. 217.00 221.65 217.00 218.00 592 1.00 9a 810 Peridotite Dark grey, non magnetic, moderately soft, moderately foliated (40°ca). An intersection of 15 cm has strong talc alteration. Few carbonate vein cut peridotite nearly perpendicular to foliation. 226.40 221.65 15a mat Matachewan Dyke Glomeroporphyric diabase dyke with 5% of green feldspars as porphyre. Medium grey, hard, non magnetic, fine grained except medium grained feldspar in glomeropophyre (3mm to 1 cm). Dyke has sharp contacts with peridotite.

Project : Texmont

				ASSA	YS	
	DESCRIPTION	From	То	Number	Length	Ni (ppm)
strongly magnetic, m altered by carbonate along diffuse veins. C pyrrhotite-pentlandite or at 35°ca. Some ba	d Peridotite peridotite with some moderate mineralized intersection. Moderately foliated (30 to 35°ca). Moderately to noderately soft in some intersections more altered by tale to moderately hard. Some small intersections are and have patchy texture. Also, some intersections are altered by serpentine and serpentine is concentrated Cut by 2% quartz-carbonate veins (1 to 10 cm). The eges of some of these veins have 0.5cm of semi-massive te on each sides. Peridotite is also cut by semi-massive pyrrhotite-pentlandite veins perpendicular to core axis anding are formed by interstital sulphides between olivine grains. In these zones, sulphides have net texture, width ranging from 1 cm to 2 cm with an angle of 35°ca. Pentlandite is also found as disseminated clusters.	227.60 228.60 229.30 231.00 232.00 235.20 235.20 236.00 237.00 238.00 240.00 240.00 241.00 241.00 243.00 244.00 244.00 245.00 246.00 246.00 249.00 249.00 250.00	228.60 229.30 230.00 231.00 232.00 235.20 235.20 235.20 235.20 235.20 237.00 237.00 240.00 240.00 241.00 242.00 244.00 244.00 245.00 245.00 246.00 247.00 249.00 250.00 250.00 251.00	593 594 595 596 597 598 599 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618	$\begin{array}{c} 1.00\\ 0.70\\ 0.70\\ 1.00\\$	1070 2330 4740 2990 4000 18400 2750 5480 2350 4160 2100 1890 2040 2110 2510 7100 2340 2920 3880 1460 4830 4070 2540 3870
	Peridotite is more scrpentinized than above witth several thin serpentine veinlets parallele to foliation. Olivine ntinized. A few claysotile veinlets are also present. Strongly magnetic and moderately hard. Weakly foliated	251.00 252.00 253.00 254.00 255.00 256.00	252.00 253.00 254.00 255.00 256.00 257.00	619 620 621 622 623 624	1.00 1.00 1.00 1.00 1.00 1.00	2710 2030 1550 1650 1790 1760
mineralized with pen sulphides. More chry	d Peridotite bove (dark grey to black, moderately hard, strong scrpentinization, strongly magnetic) but it is weakly ntlandite blebs, disseminated pentlandite clusters, pentlandite cluster with net texture and disseminated ysotile veinlets are found in this interserction. Olivine cumulate is easy to show with olivine serpentinization. ely developped and marked by olivine grains (37°ca).	257.00 258.00 259.00 260.00 262.00 262.00 263.00 264.00 266.00 266.00 266.00 266.00 266.00 269.00 270.00 271.00 272.00	258.00 259.00 260.00 261.00 262.00 263.00 264.00 265.00 267.00 268.00 269.00 270.00 271.00 272.00 273.00 274.00	625 626 627 628 629 630 631 632 633 634 635 634 635 636 639 640 641 642 643	$ \begin{array}{c} 1.00\\ 1.00$	2040 2930 3540 5720 2230 2790 2150 2290 2240 2320 2480 2410 2600 2410 2830 2300

Fletcher

				ASSA	YS	
	DESCRIPTION	From	То	Number	Length	Ni (ppm)
	 39.50 9a Cb weak min Weakly Mineralized Carbonate Altered Peridotite Medium grey, moderately soft, weakly to moderately foliated (35°ca) and moderately altered by carbonate. It cut by 5% talc veins (0.5 to 2 cm) and 5% carbonate veins (0.5 to 2 cm). Non magnetic to moderately magnetic. Mineralization is shown as pyrrhotite-pentlandite blebs, disseminated pentlandite clusters and disseminated pyrrhotite and pentlandite. 15 Diabase Diabase or mafic volcanic. In the first seven meter, rock is altered by carbonate and it has a more granular texture and look more like diabase. It has a medium grey color, moderately soft to hard and non magnetic. Then, rock becomes more fine grained and aphanitic and look more like mafic volcanic. It has a medium green color, non magnetic and hard. It is weakly foliated (47 to 52°ca). 	274.00 275.00 275.00 277.00 278.00 279.00 280.00 281.00 282.00 283.00 283.00 284.00 285.00	275.00 276.00 277.00 278.00 279.00 280.00 281.00 282.00 283.00 284.00 285.00 286.00 286.00 287.00 288.00 289.50 291.00	644 645 646 647 648 649 650 651 654 655 655 655 655 655 657 658 659 660 661	1.00 1.50 1.50	2120 2450 1870 2090 2210 2250 2710 2600 1520 2210 1640 3000 5210 4380 1120 1150
N	DH end umber of samples : 98 otal sampled length : 105.10 Man Man					
roiost :	Texmont DDH : TEX07-16					age: 6

Appendix C

.

•

Innovative Technologies

Date Submitted:	29-Jan-08
Invoice No.:	A08-0426
Invoice Date:	26-Feb-08
Your Reference:	TEX07-19

Fletcher Nickel 181 University Ave Suite 2200 Toronto Ontario M5H 3M7

ATTN: Samir Biswas

CERTIFICATE OF ANALYSIS

50 Core samples and 1 Pulp sample were submitted for analysis.

The following analytical package was requested: Code 8 Code 8-Assays

REPORT A08-0426

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

C. Douglas Read, B.Sc. Laboratory Manager

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com

		Activation Laboratories Ltd. Report: A08-0426
Analyte Symbol	N	
Init Symbol	*	
etection Limit	Q.QQ3	
nalysis Method	ICP-OES	
57194	0.168	
67195	0.179	
57196	0.165	
87197	0.193	
67198	0,144	
57199	0.186	
87200	0.282	
57201	0.257	
37202	Q.190	
87203	0.260	
37204	0.277	
87205	0.346	
57208	0.257	
57207 57208	0.238	
37209 37209	1.38	
87210	0.237	
87211	0.270	
7212	0,284	
37213	0.273	
57214	0.004	
7215	1.42	
57216	0.308	
7217	0.245	
57215	0.328	
87219	0.231	
67220	0.236	
67221	0.296	
67222	0.278	
57223	0.255	
7224	0.237	
67225	0.761	
57226	0.235	
37227	0.325	
37228	0.833	
57229	1.31	
57230 57231	0.389 0.243	
7232	0.405	
87233	0.405	
87234	0,172	
7235	0.217	
7236	0.227	
1237	0.263	
7235	0.276	
7239	0.239	
57240	0.165	
87241	0.004	
57242	0.736	
67243	0.345	
REP BLANK	< 0.003	
		Page 2 of 3

		Activation Laboratories Ltd. Report: A08-0426
Quality Contro	d	
Analyte Symbol	N	
Unit Symbol	*	
Detection Limit	0.003	
Analysis Method	ICP-OES	
OREAS 13P Mens	0.235	
OREAS 13P Cert	0.226	
OREAS 14P Meas	2.24	
OREAS 14P Cort	2,10	
267104 Split	0.165	
267194 Split	0.165	
287207 Ong	0,239	
267207 Dup	0.238	
267221 Onig	0.293	
267221 Dup	0.295	
267223 Spill	0,265	
267243 Spt:	0.355	
Method Blank Method Blank	< 0.003	
Method Blank Method Blank	< 0.003	
Method Blank Method Blank	< 0.003	

Analyse Country	NI
Analyte Symbol	
Init Symbol	*
Detection Limit	0,003
Analysis Method	ICP-OES
257244	0.458
267245	0.440
287245	0.244
257247	0.293
287248	0.241
257249	0.176
257250	0.195
257251	0.239
267252	0.207
267253	0.229
267254	0.209
267255	0.220
267255	0.183
287257	0.212
287258	0.188
267259	0.105
257250	0.208
267261	0.221
267252	D.247
267263	0.228
267284	0.201
267265	0.150
267268	0.165
267267	0.160
267298	0.243
267269	1.38
267270	0.275
267271	0.245
267272	0.255
267273	0.177

,

Innovative Technologies

Date Submitted:29-Jan-08Invoice No.:A08-0419Invoice Date:29-Feb-08Your Reference:TEX07-18

Fletcher Nickel 181 University Ave Sulte 2200 Toronto Ontario M5H 3M7 Canada

ATTN: Samir Biswas

CERTIFICATE OF ANALYSIS

68 Core samples and 1 Rock sample were submitted for analysis.

The following analytical package was requested: Code 8 Code 8-Assays

REPORT A08-0419

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

C. Douglas Read, B.Sc. Laboratory Manager

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Cenada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888 228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actiabsint.com ACTLABS GROUP WEBSITE http://www.actiabsint.com

Quality Analysis ...

Innovative Technologies

Date Submitted:	22-Jan-08
Invoice No.:	A08-0305
Invoice Date:	21-Feb-08
Your Reference:	TEX 07-16

Fletcher Nickel 181 University Ave Suite 2200 Toronto Ontario M5H 3M7 Canada

ATTN: David Beilhatrz

CERTIFICATE OF ANALYSIS

61 Core samples were submitted for analysis.

The following analytical packages were requested:

REPORT A08-0305

Code 1EPI INAA(INAAGEO)/Aqua Regia ICP(AQUAGEO) Code 8 Code 8-Assays

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY :

C. Douglas Read, B.Sc. Laboratory Manager

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancester, Onlario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888 228.5227 FAX +1.905.648.9613 E-MAIL ancester@actiabsint.com ACTLABS GROUP WEBSITE http://www.actiabsint.com

							A	ctivati	on Lat	orator	ies Lto	\$.	Repo	rt: /	408-03	05		
nalyte Symbol	Au	Ag	Cd	Cu	Mл	Mo	Ni	Pb	Źn	S	As	Ba	Hg	Sb	w	Mass	NI	
nit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	PPm	ppm	ppm	*	ppm	ppm	ррлт	ppm	ppm	9	%	
ection Limit	5	0.2	0.5	1	3	2	1	2	1	0.001	2	50	1	0.2	4		0.003	
alysis Method	INAA IN	MULT AA / AR-	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	ARICP	AR-ICP	AR-ICP	INAA	INAA	inaa	INAA	INAA	INAA	ICP-OES	
		ICP	Aurente 1999															
																	0.010	
																	0.006	
																	0.004	
																	0.005	
																	0.004	
																	0.005	
																	0.004	
																	0.005	
																	0.005	
																	0.004	
																	0.004	
																	0.006	
																	0.005	
											-						0.004	
	< 5	< 0.2	< 0.5	52	854	< 2	52	3	85	0.093	< Z	< 50	< 1	0.7	48	28.5		
	75	4.5	8.0	8880	707	69	68	2	124	0.853	7	< 50	< 1	< 0.2	94	26.6	0.008	
	< 5	< 0.2	< 0.5	208	730	6	48	< 2	85	0.041	9	< 50	< 1	0.5	59	27.1	0.008	
																	0.004	
																	0.690	
																	0.005	
																	0.005	
																	0.339 0.174	
																	0.177 0.319	
																	0.359	
																	0.221	
																	0.210 0.218	
																	0.216	
																	0.224	
																	0.192	
																	0.515	
																	0.515	
																	0.081	
																	0.081	
																	0.233	
																	0.474	
																	0.299	
																	0,400	
																	1.84	
																	0.275	
																	0.004	
																	1.45	
																	0.548	
																	0.235	
																	0.416	
																	0.210	
																	0.189	

٠

.

							A	ctivati	on Lai	porator	ries Lto	i .	Repo	rt: /	408-03	105	
Analyte Symbol	Au	Ag	Cd	Cu	Mn	Mo	NI	Pb	Zn	- 5	As	Ba	Hg	S b	W	Ma35	N
Unit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	ppr n	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	Ģ	*
Detection Limit	5	0.2	0.5	1	3	2	1	2	1	0.001	2	50	1	0.2	4		0.003
Analysis Method	inaa I	MULT NAA / AR- ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	INAA	INAA	INAA	INAA	INAA	INAA	ICP-DES
607																	0.204
605																	0.211
609																	0.251
610																	0.710
611																	0.234
612																	0.292
513																	0.388
614																	0.148
615																	0.483
PREP BLANK																	0.005

							A	ctivati	on Lai	borato	ies Lto	i.	Repo	ort:	A08-0	0305
Quality Control																
Analyte Symbol	Au	Ag	Cd	Cu	Mo	Mo	N	Ръ	Zn	S	As	Ba	Sb	w	NL	il.
Unit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	PDrm	ppm	ppm	*	ppm	PPm	ppm	ppm	*	6
Detection Limit	5	0.2	D.5	1	3	2	1	2	1	0.001	2	50	0.2	4	0.003	3
Analysis Method	INAA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	ARICP	AR-ICP	AR-ICP	INAA	INAA	INAA	INAA	ICP-OES	5
GXR-1 Meas		23.0	3.0	1020	698	13	27	550	596	0.175						
GXR-1 Cort GXR-4 Meas		31.0	3.30	1110 8780	852	18.0	41.0	730	760	0.257						
GXR-4 Meas		3.3 4.00	0,8 0,860	6520	142 155	326 310	40 42.0	45 52.0	72 73.0	1.911						
GXR-2 Moas		17.9	4,1	84	1050	<2	18	32.0 772	572	0.037						
GXR-2 Cert		17.0	4.10	76.0	1010	2.10	21.0	690	530	0.0313						
GXR-8 Meas		0.3	1.4	78	1100	< 2	24	103	133	0.016						
GXR-6 Cert		1.30	1.00	56.0	1010	2.40	27.0	101	118	0.0160						
PTC-1a Meas															9.70	0
PTC-1a Cert															10.1	\$
OREAS 13P Moas				2700			2260									
OREAS 13P Cent				2500			2260									
OREAS 13P Moas															0,226	
OREAS 13P Cert															0.228	6
DMMAS-104 Moas	232										1590	. 890	6.2	8		
DMMAS-104 Cert	229										1570	850	5.2	8		
569 Onig															0.004	
589 Dup															0.004	
583 Orig															0.214	
583 Dup 585 Split															0.208	
565 Spill															0.212	
605 Dup															0.208	
815 Spilt															0.487	
Method Blank Method		< 0.2	< 0.5	< 1	< 3	< 2	< 1	< 2	< 1	< 0,001					•	•
Blank								_								
Mothod Blank Mothod															< 0.003	3
Blank Method Blank Method															< 0.003	1
Blank															- 0.003	5

. . .

.

unkyeNkonye0 </th <th></th> <th></th> <th>Activatio</th> <th>n Laboratories Ltd.</th> <th>Report:</th> <th>A08-0328</th> <th></th> <th></th>			Activatio	n Laboratories Ltd.	Report:	A08-0328		
	Analyte Symbol	NI					A 400 Male	
Navyie Method0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	Unit Symbol							
	Detection Limit							
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>	Analysis Method	ICP-OES						
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>	816	0.407						
	617	0.254						
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>	518	0.387						
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>	519	0.271						
220.45230.74240.34250.34260.34270.34280.27290.23200.24200.24210.25220.24230.25240.25250.26260.27270.26280.27290.26290.27200.26200.27200.26210.26220.26230.27240.26240.27250.26260.27270.26280.27290.26290.26200.27210.26220.26230.26240.27250.27260.27270.26280.27290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21290.21200.21200.21 <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	20							
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>								
Bit </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>	123							
SRSR234247248249241241242243244244245245246247248249241241242243244244245245246247248249241241242243244244245245246246247248249241241242243244244245246246247248249241241242243244244245245246246247248249241244244245245246247248249249241241242243244244245246246247248249249241244245246246247248<	624							
NAVA <td>825</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	825							
RadiaSha223334345354355354354355354354355354355355356357357358358359359351351352353354354355355356357357358359354354354355356357358359359350351351352354354355355356357358359359350351352353354354355356357358359359359350350351352353	626							
Sig </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
NA0.721370.731380.241390.231390.241390.241390.241390.241300.241310.241320.241340.241350.251340.241350.251340.251340.241350.241360.241370.251380.251390.251390.251310.251310.251310.251320.251330.251340.251340.251350.251361.41370.251380.251390.25								
N10.7002003103203203303403503603703603703703803904104204304304404404504504604704704804804904904104104104204304404504504604704704804904104104104104204304404504604704804904904904104004104104104204304404404504504604704804904904104404504504604704804904904104104104104204304404404504604704804904904								
N20.29030.29050.21060.30070.00080.21090.31010.30020.31030.32040.30050.31050.32050.31050.32050.32050.32050.32050.32050.34 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
S39.29S40.24S50.24S60.24S70.06S40.21S40.20S40.20S40.20S40.20S40.21S50.24S60.21S60.21S60.25S70.25S60.21S60.21S70.25S60.21S70.25S70.25S70.25S70.25S70.25S70.25S70.25S70.25S70.25S60.21S70.25S60.25S70.25S70.25S70.25S70.25S60.25S70.25S70.25S60.25S70.25S70.25S70.25S80.25S80.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25S90.25 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
S4S24353236363730838324032041321423243324432453446324730483249324932413242324332443245324632473048324932493249324032413242324334443245324632473248324932493249344934413442344334443454345434553456345734583459345934593459345934593459345034503451345234533454345534563456								
3512.323542.343570.03587.23602.353712.353722.353732.353742.353742.353752.353762.353772.353782.353792.353792.353702.353712.353723.353733.453743.553743.553753.553763.553763.563773.563783.563793.563713.563743.563753.563763.573763.563773.563783.563793.563713.563723.563733.563743.563743.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.563753.56								
SA9.248770.008380.22390.241410.241420.201430.212440.245450.260460.27470.20480.21490.21490.21400.21410.21420.21430.21440.21450.21460.21470.21581.44590.21590.21510.21520.05531.44540.21550.21550.21560.21570.21580.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21590.21500.21510.21520.21530.21540.21550.21560.21570.21580.21590.2159 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
37 0.008 38 0.722 39 0.260 41 0.260 42 0.230 43 0.720 44 0.12 45 0.262 46 0.270 47 0.209 48 0.167 49 0.229 40 0.212 41 0.212 42 0.209 43 0.167 44 0.167 45 0.212 46 0.221 47 0.209 52 0.005 53 1.41 54 0.52 55 0.211 54 0.521 55 0.221 55 0.221 55 0.221 56 0.521 57 0.501 58 0.511 59 0.521 59 0.521 59 0.521 59 0.521 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
NA 0.722 194 0.241 141 0.241 142 0.203 144 0.212 145 0.245 146 0.245 147 0.245 148 0.245 149 0.245 141 0.245 145 0.25 151 0.25 152 0.05 153 1.44 154 0.25 155 0.21 156 0.25 157 0.05 158 0.25 159 0.25 151 0.25 152 0.05 153 0.21 154 0.25 155 0.21 156 0.21 157 0.21 158 0.21 159 0.21 159 0.21 159 0.21 159 0.21 159 0.21 159 0.21								
38 0.241 440 0.280 451 0.261 452 0.261 453 0.21 454 0.25 455 0.241 450 0.261 451 0.261 452 0.261 454 0.271 455 0.261 456 0.271 457 0.261 458 0.261 459 0.261 450 0.271 451 0.261 452 0.051 453 0.41 454 0.261 455 0.261 456 0.271 457 0.051 458 0.261 459 0.261 450 0.271 451 0.261 452 0.261 453 0.261 454 0.261 455 0.261 456 0.261 457 0.261 458								
M0 0.250 M2 0.230 M3 0.241 M4 0.212 M5 0.245 M6 0.269 M7 0.259 M6 0.271 M5 0.271 M5 0.269 M6 0.271 M5 0.269 M6 0.271 M5 0.269 M6 0.271 M6 0.271 M5 0.269 M6 0.271 M5 0.269 M6 0.271 M7 0.300 M6 0.214								
42 0.28 43 0.20 44 0.12 45 0.45 46 0.167 47 0.20 48 0.21 49 0.225 50 0.271 51 0.280 52 0.05 53 1.44 54 0.152 55 0.21 56 0.21 57 0.20 58 0.51 59 0.52 59 0.51 59 0.52 59 0.51 59 0.51 59 0.51 59 0.43	40							
443 0.230 444 0.212 455 0.245 46 0.167 47 0.209 48 0.221 49 0.225 50 0.271 51 0.200 52 0.005 53 1.44 54 0.21 55 0.21 56 0.21 57 0.300 58 0.51 59 0.52 50 0.21 56 0.21 57 0.300 58 0.51 59 0.51 59 0.112	141	0.241						
44 0.12 45 0.245 46 0.167 47 0.200 48 0.211 49 0.225 50 0.271 51 0.260 52 0.05 53 1.44 54 0.152 55 0.211 56 0.211 57 0.162 58 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.211 59 0.212	42	0.283						
M45 0.245 M46 0.209 M47 0.209 M48 0.221 M49 0.225 M50 0.271 M51 0.260 M52 0.005 M53 1.44 M54 0.221 M55 0.21 M56 0.152 M57 0.300 M58 0.521 M59 0.434 M50 0.211	H 3							
446 0.167 447 0.209 448 0.221 540 0.271 151 0.260 152 0.14 154 0.152 155 0.271 156 0.271 157 0.300 158 0.271 159 0.164 150 0.164 157 0.300 158 0.521 159 0.300 159 0.300 159 0.301 159 0.302 159 0.302 159 0.302 159 0.302 159 0.302 159 0.302 159 0.302 150 0.302 151 0.302 152 0.302 153 0.302 154 0.302 155 0.302 156 0.302 157 0.302 158 0.302 159	644							
447 0.209 448 0.211 449 0.225 550 0.271 151 0.280 152 0.005 153 1.44 154 0.152 155 0.211 156 0.211 157 0.300 158 0.211 159 0.211 150 0.211 151 0.301 152 0.211 154 0.152 155 0.211	H5							
449 0.221 150 0.271 151 0.260 152 0.005 153 1.44 154 0.152 155 0.221 156 0.221 157 0.221 158 0.164 159 0.164 159 0.164 159 0.121	646							
149 0.25 150 0.271 151 0.280 152 0.005 153 1.44 154 0.152 155 0.221 156 0.231 157 0.300 158 0.51 159 0.51 150 0.51 151 0.300 152 0.300 154 0.51 155 0.51								
150 0.271 151 0.260 152 0.005 153 1.44 154 0.152 155 0.21 156 0.300 157 0.300 158 0.521 159 0.51 150 0.51 150 0.51								
151 0.280 152 0.005 153 1.44 154 0.182 155 0.21 156 0.164 157 0.300 158 0.521 159 0.521 159 0.521 159 0.521 159 0.521								
132 0.005 143 1.44 154 0.152 155 0.221 156 0.164 157 0.300 158 0.521 159 0.521 159 0.521 159 0.521 159 0.521 159 0.521								
1,44 154 0.152 155 0.221 156 0.164 157 0.300 158 0.521 159 0.521 159 0.438 160 0.112								
154 0.152 155 0.221 156 0.164 157 0.300 158 0.521 159 0.438 160 0.112								
55 0.221 56 0.164 57 0.300 58 0.521 59 0.438 60 0.112								
56 0.164 57 0.300 58 0.621 59 0.438 60 0.112								
57 0.300 58 0.521 59 0.438 60 0.112								
158 0.521 159 0.438 160 0.112								
56 0.438 60 0.112								
60 0.112	65 0							
	960							
	361							

Activation Laboratories Ltd. Report: A08-0328