PROSPECTING and AIRBORNE MAGNETIC, RADIOMETRIC & VLF-EM REPORT FOR

THE AEROBUS PROJECT,

DISTRICT OF KENORA, ONTARIO

FOR Delta Uranium Inc.

PREPARED BY

Dawn-Ann Metsaranta, M.Sc. Consulting Geologist HILLDALE GEOSCIENCES INC. 537 Hilldale Road Thunder Bay, Ont

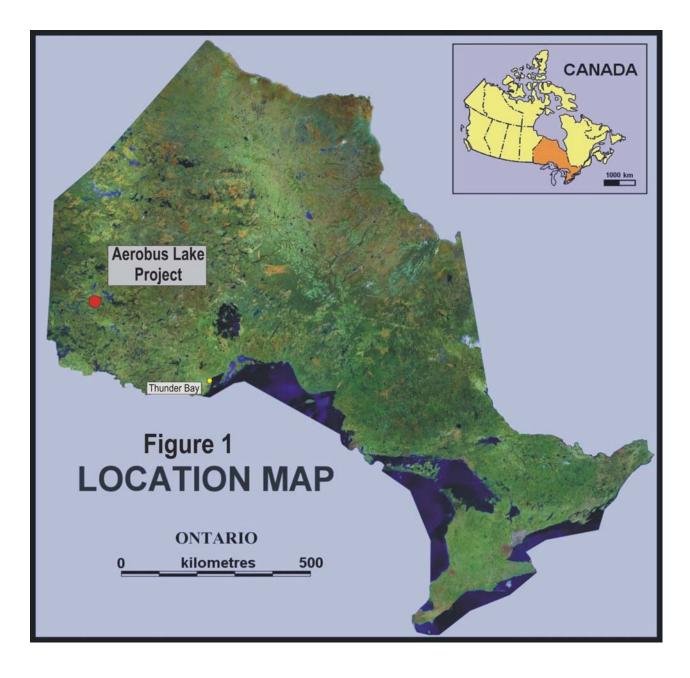
TABLE OF CONTENTS

Property, Location and Access3Previous Exploration8Geology8Airborne Survey10Prospecting10The North Block10Anomaly 110Anomaly 210Anomaly 311Anomaly 411Anomaly 511Anomaly 712Anomaly 812Anomaly 912Anomaly 1013Anomaly 1113Anomaly 414Anomaly 1113Anomaly 1213Anomaly 1313Anomaly 1413Anomaly 1513Anomaly 1613Anomaly 1113Anomaly 1113Anomaly 1113Anomaly 1113Anomaly 1313Anomaly 1414Anomaly 313Anomaly 313Anomaly 313Anomaly 414Anomaly 514Anomaly 614Anomaly 714Conclusions and Recommendations16	Introduction	3
Geology 8 Airborne Survey 10 Prospecting 10 The North Block 10 Anomaly 1 10 Anomaly 2 10 Anomaly 3 10 Anomaly 4 11 Anomaly 5 11 Anomaly 6 12 Anomaly 7 12 Anomaly 8 12 Anomaly 9 12 Anomaly 10 13 Anomaly 11 13 The South Block 13 Anomaly 1 13 Anomaly 1 13 Anomaly 1 13 Anomaly 2 14 Anomaly 3 14	Property, Location and Access	3
Airborne Survey 10 Prospecting 10 The North Block 10 Anomaly 1 10 Anomaly 2 10 Anomaly 3 11 Anomaly 4 11 Anomaly 5 11 Anomaly 6 12 Anomaly 8 12 Anomaly 9 12 Anomaly 10 13 Anomaly 11 13 Anomaly 12 13 Anomaly 13 14 Anomaly 4 14 Anomaly 5 14 Anomaly 6 14 Anomaly 7 14	Previous Exploration	8
Prospecting 10 The North Block 10 Anomaly 1 10 Anomaly 2 10 Anomaly 3 11 Anomaly 4 11 Anomaly 5 11 Anomaly 6 12 Anomaly 8 12 Anomaly 9 12 Anomaly 10 13 Anomaly 11 13 The South Block 13 Anomaly 1 13 Anomaly 1 13 Anomaly 1 13 Anomaly 1 14 Anomaly 2 14 Anomaly 5 14 Anomaly 6 14 Anomaly 7 14	Geology	8
The North Block 10 Anomaly 1 10 Anomaly 2 10 Anomaly 3 11 Anomaly 4 11 Anomaly 5 11 Anomaly 6 12 Anomaly 7 12 Anomaly 8 12 Anomaly 9 12 Anomaly 9 12 Anomaly 10 13 Anomaly 11 13 Anomaly 12 13 Anomaly 13 13 Anomaly 14 14 Anomaly 5 14 Anomaly 6 14 Anomaly 7 14	Airborne Survey	10
Anomaly 1 10 Anomaly 2 10 Anomaly 3 11 Anomaly 4 11 Anomaly 5 11 Anomaly 6 12 Anomaly 7 12 Anomaly 8 12 Anomaly 9 12 Anomaly 10 13 Anomaly 11 13 The South Block 13 Anomaly 3 13 Anomaly 4 14 Anomaly 5 14	Prospecting	10
Anomaly 2	The North Block	10
Anomaly 3	Anomaly 1	10
Anomaly 4	Anomaly 2	10
Anomaly 5	Anomaly 3	11
Anomaly 6	Anomaly 4	11
Anomaly 7	Anomaly 5	11
Anomaly 8	Anomaly 6	12
Anomaly 9	Anomaly 7	12
Anomaly 10	Anomaly 8	12
Anomaly 11	Anomaly 9	12
The South Block13Anomaly 113Anomaly 213Anomaly 313Anomaly 414Anomaly 514Anomaly 614Anomaly 714	Anomaly 10	13
Anomaly 1	Anomaly 11	13
Anomaly 2	The South Block	13
Anomaly 313Anomaly 414Anomaly 514Anomaly 614Anomaly 714	Anomaly 1	13
Anomaly 4	Anomaly 2	13
Anomaly 5	Anomaly 3	13
Anomaly 6	Anomaly 4	14
Anomaly 714	Anomaly 5	14
	Anomaly 6	14
	Conclusions and Recommendations	16

Figures:

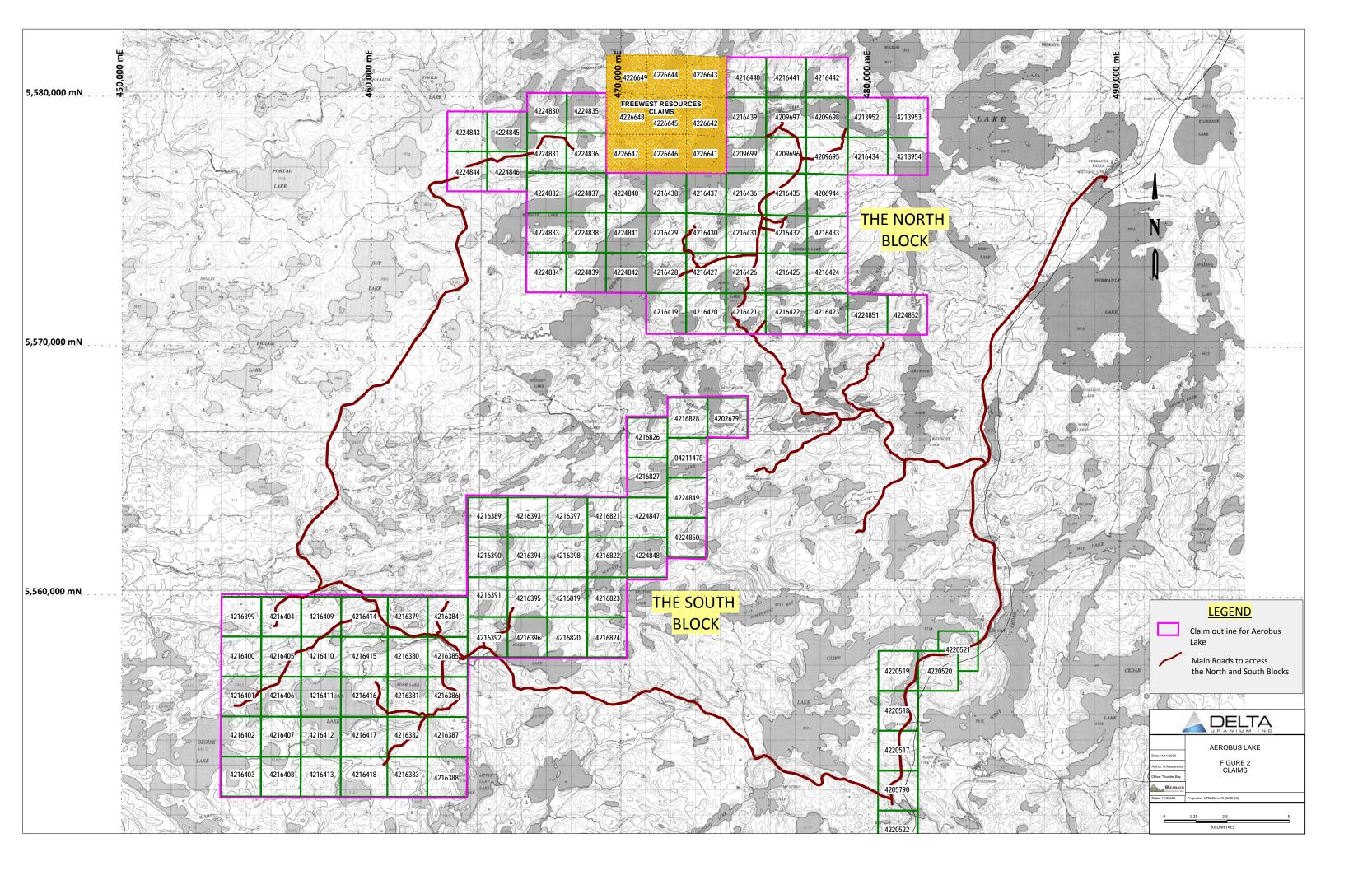
Figure 1 – Location Map Figure 2 – Claim Map	4
Figure 2 – Claim Map	7
Figure 3 – Regional Geology Map	9
Figure 4 – Radiometric Anomaly Map, the North Block	Attached
Figure 5 – Radiometric Anomaly Map, the South Block	Attached
Figure 6 – Sample Locations/Ranges and Traverse lines, the North Block	Attached
Figure 7 – Sample Locations/Ranges and Traverse lines, the South Block	Attached
Figure 8 – U/Th Ratio Anomaly Map	Attached
Figure 9 – Airborne Magnetic Map	Attached
Figure 10 – Sample Numbers, the North Block	Attached
Figure 11 – Sample Numbers, the South Block	Attached
Tables:	
Table 1 – List of Claims for Aerobus Lake Property	5-6
Table 2 – List of Significant Uranium Results	15
Appendix A – Assessment reports of historic exploration on the Aerobus Lake Area.	

••••
18
19


Introduction

This report summarizes a prospecting program carried out during August and September of 2008 by Delta Uranium Inc. in the Aerobus Lake area and an Airborne Survey carried out In June and July 2008 by Terraquest Ltd. The property consists of two blocks of claims: the north block and the south block. The majority of the property is underlain by granite and granite pegmatite with lesser metasedimentary rocks consisting of biotite schist and feldsparbiotite gneiss. The anomalies which were targeted during prospecting were picked out by the magnetic, radiometric and VLF-EM surveys. Background radiometric readings throughout the property range from 200-500 cps, with a few areas of elevated background readings of 400-900 cps. Samples were taken at each anomaly defined by the airborne radiometric survey. Samples of materials of background radioactivity were taken along with samples displaying anomalous radioactivity (i.e. over 900cps). The highest outcrop radiometric readings noted was 40 600 cps in an old pit from 1986, close to the uranium showing. The assay results show this area, the uranium showing, on the top of a large hill to be the most promising for a low grade-large tonnage uranium deposit. There were a few other areas with high uranium assay results, they are small and isolated within average to background readings. One area of interest, with high uranium assay results, was found in a low-lying swamp with very high radiometric readings.

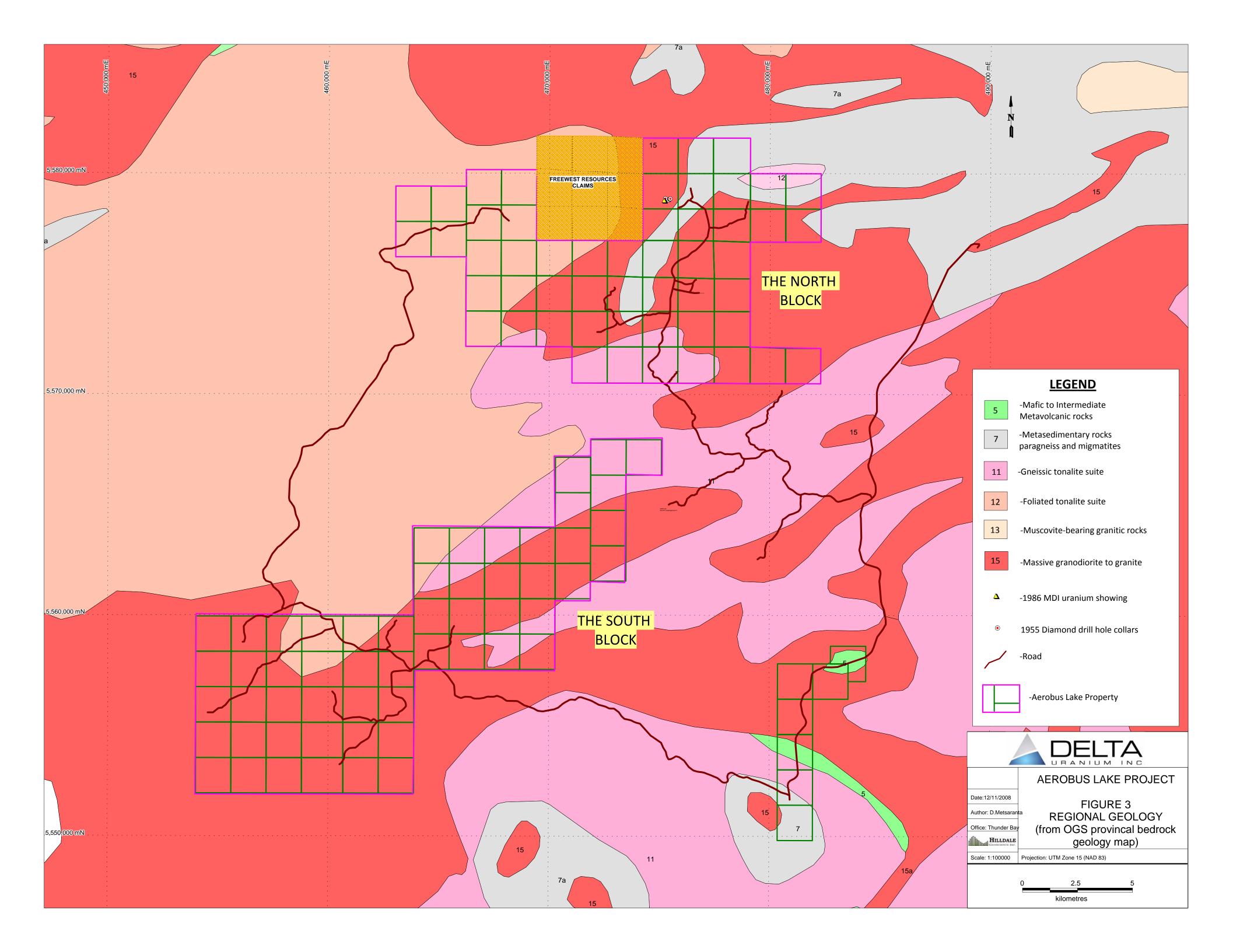
Property, Location and Access


The location to the Aerobus Lake property is shown in Figure 1. Access is by provincial highways 17 and 105 and two main roads with active logging (in the Whisky Jack forest), to the west of the highway 105. The Timber Point Camp road accesses the north block and the Cliff Lake/Wild eyes Camp road accesses the south block. From these two main roads there are a network of side roads and ATV trails. The northern portion of the North Block can only be accessed by boat on Aerobus Lake. There is a boat launch, owned by the Timber Point Camp. A boat can be rented from the lodge owners, or a boat may be launched there. There is a road that would give access to these areas, however, the bridge, which would allow the crossing over the lake, had been removed by Abitibi Consolidated after their logging was completed several years ago. Due to Abitibi's logging on the north side of Aerobus Lake there is a network of roads that can be used once across the lake.

The Aerobus Lake property consists of two separate blocks, the north and south totaling 107 claims, 1712 units and 27392 hectares. Table 1 lists these claims and figure 2 shows the claims. The property is approximately 425 km northwest of Thunder Bay, 140 km northeast of Kenora and 64 km north of Vermillion Bay. It is situated within the Cliff Lake, Aerobus Lake, Golder Lake, Perrault Lake and Wine Lake (Ken) areas of the Kenora Mining Division, in the NTS blocks 52K/03, 52K/04 and 52K/06.

Claim Number	Recording Date	Claim Due Date	Township/Area	Units	Work Required		
4202679	2007-Feb-12	2009-Feb-12	AEROBUS LAKE	16	\$6,400		
4206944	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4209695	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4209696	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4209697	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4209698	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4209699	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4213952	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216419	2007-Jan-18	2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216420	2007-Jan-18	2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216421	2007-Jan-18	2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216422	2007-Jan-18	2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216423	2007-Jan-18	2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216424	2007-Jan-18	2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216425	2007-Jan-18 2007-Jan-18	2009-Jan-18 2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216426	2007-Jan-18 2007-Jan-18	2009-Jan-18 2009-Jan-18	AEROBUS LAKE		\$6,400		
	2007-Jan-18 2007-Jan-18	2009-Jan-18 2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216427				16	. ,		
4216428	2007-Jan-18	2009-Jan-18	AEROBUS LAKE	16	\$6,400		
4216429	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216430	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216431	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216432	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216433	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216434	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216435	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216436	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216437	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216438	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216439	2007-Jan-19	2009-Jan-19	AEROBUS LAKE	16	\$6,400		
4216826	2007-Feb-12	2009-Feb-12	AEROBUS LAKE	16	\$6,400		
4216828	2007-Feb-12	2009-Feb-12	AEROBUS LAKE	16	\$6,400		
4224830	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224831	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224832	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224833	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224834	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224835	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224836	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224837	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224838	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224839	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224840	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224841	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224842	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224843	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224844	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224845	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224846	2008-Aug-08	2010-Aug-08	AEROBUS LAKE	16	\$6,400		
4224851	2008-Aug-08 2008-Aug-01	2010-Aug-00	AEROBUS LAKE	16	\$6,400		
4211478	2000-Adg-01 2007-Feb-12	2010-Aug-01 2009-Feb-12	CLIFF LAKE	16	\$6,400		
			CLIFF LAKE	16	\$6,400		
42163892007-Jan-182009-Jan-1842163902007-Jan-182009-Jan-18				10	ψ0,400		

Claim Number	Recording Date	Claim Due Date	Township/Area	Units	Work Required
4216391	2007-Jan-18	2009-Jan-18	CLIFF LAKE	16	\$6,400
4216392	2007-Jan-18	2009-Jan-18	CLIFF LAKE	16	\$6,400
4216393	2007-Jan-18	2009-Jan-18	CLIFF LAKE	16	\$6,400
4216394	2007-Jan-18	2009-Jan-18	CLIFF LAKE	16	\$6,400
4216395	2007-Jan-18	2009-Jan-18	CLIFF LAKE	16	\$6,400
4216396	2007-Jan-18	2009-Jan-18	CLIFF LAKE	16	\$6,400
4216397	2007-Jan-17	2009-Jan-17	CLIFF LAKE	16	\$6,400
4216398	2007-Jan-17	2009-Jan-17	CLIFF LAKE	16	\$6,400
4216819	2007-Jan-16	2009-Jan-16	CLIFF LAKE	16	\$6,400
4216820	2007-Jan-16	2009-Jan-16	CLIFF LAKE	16	\$6,400
4216821	2007-Jan-17	2009-Jan-17	CLIFF LAKE	16	\$6,400
4216822	2007-Jan-17	2009-Jan-17	CLIFF LAKE	16	\$6,400
4216823	2007-Jan-16	2009-Jan-16	CLIFF LAKE	16	\$6,400
4216824	2007-Jan-16	2009-Jan-16	CLIFF LAKE	16	\$6,400
4216827	2007-Feb-12	2009-Feb-12	CLIFF LAKE	16	\$6,400
4224847	2008-Aug-08	2010-Aug-08	CLIFF LAKE	16	\$6,400
4224848	2008-Aug-08	2010-Aug-08	CLIFF LAKE	16	\$6,400
4224849	2008-Aug-08	2010-Aug-08	CLIFF LAKE	16	\$6,400
4224850	2008-Aug-08	2010-Aug-08	CLIFF LAKE	16	\$6,400
4216379	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216380	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216381	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216382	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216383	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216384	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216385	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216386	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216387	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216388	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216399	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216400	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6.400
4216401	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216402	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216403	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216404	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216405	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216406	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216407	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216408	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216409	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216410	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216411	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216412	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216413	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216414	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216415	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4216416	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216417	2007-Feb-12	2009-Feb-12	GOLDER LAKE	16	\$6,400
4216418	2007-Feb-09	2009-Feb-09	GOLDER LAKE	16	\$6,400
4213953	2007-Jan-19	2009-Jan-19	PERRAULT LAKE	16	\$6,400
4213954	2007-Jan-19	2009-Jan-19	PERRAULT LAKE	16	\$6,400
4224852	2008-Aug-01	2010-Aug-01	PERRAULT LAKE	16	\$6,400
4216440	2000-Aug-01 2007-Jan-19	2009-Jan-19	WINE LAKE (KEN)	16	\$6,400
4216441	2007-Jan-19	2009-Jan-19	WINE LAKE (KEN)	16	\$6,400
4216442	2007-Jan-19	2009-Jan-19	WINE LAKE (KEN)	16	\$6,400
7210742	2007-0011-13	2000-0411-19		10	ψ0,+00


Previous Exploration

There has been little historic exploration activity in the Aerobus Lake and other areas that Delta Uranium's claims cover. This may be due to the assumption that granitoid rocks mainly underlie the area and there is no known potential for any other commodity, other than uranium. In 1955 an unknown company or prospector completed a small drill program of 9 holes, totaling 678 feet. Radiometric readings on drill core were reported to be between background counts and four times background counts. However, the actual value of what was referred to, as the background count was not reported.

There is one historical uranium showing in the area; it is called the Aerobus Lake occurrence. It is described in the MNDM Mineral Deposit Inventory (MDI) and in this report is referred to as the "MDI occurrence". The MDI occurrence was discovered in 1986 and is located on the north side of Aerobus Lake. The best assays recorded for this area are $0.06 \% U_3O_8$ over 1.68 m including $0.07\% U_3O_8$ over 0.61 m. Grab samples taken by the OGS in 1976 assayed 0.03 and 0.006 % U_3O_8 . The old showing and 9 drill hole locations are shown on the geology map (Figure 3) and the logs are in Appendix A.

Geology

The regional geology of the Aerobus Lake property is dominated by massive medium grained granodiorite to granite and a gneissic tonalite suite, with minor paragniess, migmatites and metasedimentary rocks, as well as a foliated tonalite suite. Figure 3 shows the regional geology taken from the Ontario Bedrock map from the Ontario Geological Survey. There has been no recent federal, provincial or company geological mapping completed in the Aerobus Lake area.

Airborne Survey

Terraquest Ltd. completed an airborne survey including high resolution magnetic, radiometric and XDS VLF-EM surveys over the Aerobus property between the 19th of June and the 4th of July 2008. The results of the survey are presented on 16 different maps (1 flight patch map, 1 digital terrain map, 5 magnetic maps, 5 radiometric maps and 4 VLF/XDS maps). The logistics report written by Terraquest Ltd. is in Appendix C.

Prospecting

Prospecting of the Aerobus Lake Property was completed between August 19th and September 15th by Danny Rivard, Joe Granstrom, Emilio Calderon, Arno Ducharme and Dawn-Ann Metsaranta for Delta Uranium Inc. The radiometric anomalies that were targeted and prospected are shown in figure 4 (the north block) and figure 5 (the south block). Each of the anomalies was numbered in each of the claim block for ease of reference as shown in figure 4 and figure 5. All prospecting sample locations and traverses are presented in figure 6 (the north block) and figure 7 (the south block). The UTM locations and results for the significant uranium samples found on the property are given in table 2 and the analytical results are in Appendix B. There was only one U/Th ratio anomaly, in the north block, that was prospected. Figure 8 shows the U/Th ratio anomaly map. Figure 9 is a map of the magnetic survey. Figures 10 and 11 give the sample locations and sample numbers for reference.

Prospecting was done using the RS 125 gamma ray spectrometer and all readings quoted in this report are "total counts". Samples collected for assay were sent to Actlabs in Thunder Bay, Ontario where samples were prepared, then sent to Actlabs in Ancaster, Ontario and assayed for uranium using the delayed neutron counting (DNC) method.

The North Block

Anomaly 1

This anomaly was a strong one and was the largest on the radiometric survey map. This area was accessed by an ATV and foot traverse. Ground radiometric readings with the scintillometer showed background levels of 400-600 cps, with many anomalous areas with readings between 1000 cps to 3000 cps. The higher readings were found along fractures within a coarser grained pegmatite or near contacts with biotite-feldspar gneiss, which forms xenoliths or bands in the granite. The best result for this area was 593 ppm U_3O_8 .

Anomaly 2

This area was accessed by the same ATV trail then on foot. There were three separate anomalies in area 2, one large strong anomaly, and two moderate anomalies. Background scintillometer readings for the most north anomaly were between 300 and 500 cps. The highest reading found in this first area was 3100 cps and the assay results were generally between 11 and 40 ppm U_3O_8 with the highest results being 556 ppm, 599 ppm and 691 ppm U_3O_8 . The geology in this area was generally granite with some pegmatite patches.

The next anomaly is a small one with the highest assay result being 126 ppm U_3O_8 . The average reading in this area was 500 cps. The highest reading was 2000 cps.

The third area was just off the ATV trail and was the closest to the main road. Many of the readings were between 300-500 cps. There were a few readings higher than 1000 cps, one at 1800 and another at 3000, but they were in small pockets of coarser grained pegmatite within the granite. The best assay was for the 3000 cps sample at 115 ppm U_3O_8 .

Anomaly 3

Anomaly 3 was a moderately strong anomaly and was accessed by the same ATV trail as Anomaly 1 & 2. The background readings from this anomaly were generally between 400-500 cps with only isolated areas of anomalous radiometric readings. Generally, samples from the anomalous zones gave scintillometer readings between 1000 and 2800 cps. The highest assay for this area was 138 ppm U_3O_8 . Outcrop is rare in this area and it is only found along the cliff sides. The higher readings were all found along fractures within the granite.

Anomaly 4

There were three small anomalies in this area.

The anomaly on the east side of the road had background readings of 300-600 cps. Anamalous radioactivity was confined to pegmatitic zones within the granite with the highest noted reading being 3400 cps. The best result in this area was 75 ppm U_3O_8 .

The larger anomaly in this area is south the first one and to the west of the main road. There is an old road that makes traversing to this area quite easy. Outcrop in the area consisted primarily of granite with subordinate biotite-schist and biotite-feldspar gneiss. Background radiometric readings were generally 400-500 cps throughout the area with anomalously high readings of 1000 to 3000 cps. Anomalous readings were typically associated with the contacts between the granite and metasedimentary rocks. The majority of the assay results were between 16 and 55 ppm U_3O_8 , with a two higher values of 93 and 113 ppm U_3O_8 .

The last area of this anomaly is further west of the road and is the only area with a U/Th ratio anomaly (Figure 8). This area is has no bedrock and is in a low-lying swamp. Although there was no outcrop in the area highly anomalous radiometric readings were present in the organic-rich swamp deposits. The highest readings are around the lowest, wettest spot in the swamp, and range from 9000 to 22000 cps. A sample from the lowest spot in the swamp had a scintillometer reading of 4300 cps and an assay result of 3469 ppm U_3O_8 . Additional samples assayed between 413 and 1109 ppm U_3O_8 . Samples consisted of black organic muddy material, with the water squeezed out of the sample bag. All samples were taken 25 cm below the surface.

Anomaly 5

Anomaly 5 was weak and approximately 1.5 km on the east side of the access road. Background radiometric readings from this anomaly were between 300-500 cps. Samples were taken where readings were above 1200 cps, the highest was at 7600 cps. There were some low assay results as well as many above 100 ppm U_3O_8 . The two highest results were

724 and 1239 ppm U_3O_8 . Outcrops at this anomaly consisted of medium-grained granite with biotite-rich metasedimentary xenoliths and minor thin pegmatite dikes. High radiometrics readings were found in the pegmatitic granite dikes and at the granite-metasediment contacts.

Anomaly 6

There were two weak anomalies in this area. The anomaly is located close to the access road. The rocks at anomaly 6 were generally medium-grained, non-magnetic granite. The background radioactivity was between 300-400 cps with only minor anomalous radioactivity. The two most radioactive samples that were taken gave radiometric readings of 900 and 1200 cps. Assays from this anomaly were low, the highest being 42 ppm U_3O_8 .

Anomaly 7

This anomaly was not prospected due to lack of time and priority to prospect other anomalies.

Anomaly 8

Four radiometric peaks make up the bulk of this anomaly and two smaller peaks are located to the north. Access to this anomaly area is by boat only. There is a small wood dock on the northeast arm of north Aerobus Lake. From the dock there are trails that lead close to the various "peaks" within the anomaly. There is a 40-foot bridge that would make road access possible however the bridge deck was removed once the forestry company completed their logging several years ago. The bridge footings are still in place. Background scintillometer readings in the area were like most other areas and ranged between 300 and 600 cps.

The most anomalous area on the radiometric map corresponds with the magnetic high that covers the entire hillside (see Figure 9) and the drilling done in 1955 on the uranium showing. This showing has scintillometer readings up to 40600 cps. The rocks in the area are medium-grained granite with small patches of coarser-grained pegmatite throughout and many small biotite-schist xenoliths. The highest readings are found along the contacts with the granite and the schist. There were two assay results around 2000 ppm U_3O_8 and one at 5156 ppm U_3O_8 .

The main part of the anomaly has readings up to 24000 cps and the best assay result from it is 3339 ppm U_3O_8 . There were several other good assay results in this area including 261 ppm, 525 ppm and 893 ppm U_3O_8 . All the high scintillometer readings were found in a small area on the top of a hill. The outcrops in the area again consisted of a medium-grained biotite granite.

The other small peaks in this area had background radiometric readings of around 300 cps with isolated anomalous zones with readings up to 2500 cps. The best assay result was 117 ppm U_3O_8 , but the majority of results were less than 100 ppm U_3O_8 .

Anomaly 9

This anomaly is relatively weak. Access is only possible by boat. The rocks at anomaly 9 consist medium-grained granite with pockets of granite pegmatite and metasedimentary

xenoliths and bands mainly running east-west. The average background reading for this anomaly was 500 cps or lower. Anomalous radiometric readings were typically around 1500 cps but ranged as high as 12400 cps. The best assay results were 862 ppm and 775 ppm U_3O_8 .

Anomaly 10

This anomaly is accessible by road. The anomaly consists of several many weakly to moderately anomalous areas. The background readings are as expected, 400cps or lower. The rocks consist mainly of light pink medium-grained biotite granite and patches of pink granite pegmatite. The highest radiometric readings noted in the anomaly are 1000cps and are found within the granite pegmatite. The best sample from this anomaly assayed 138 ppm U_3O_8 .

Anomaly 11

Access to this anomaly is possible using a boat via Aerobus and Bornite Lake. Background radioactivity in the anomaly area ranges between 300 to 400 cps. Outcrops at the anomaly consist of medium-grained biotite granite and granite pegmatite. Minor magnetite is present within the granite and granite pegmatite. Radiometric readings up to 1600 cps were found within the pegmatite but assay results were only as high as 52 ppm U_3O_8 .

The South Block

Anomaly 1

This anomaly is accessible by the Cliff Lake/Wild Eyes Camp dirt road, as are all the anomalies in the south block. Two moderate to weak radiometric peaks were prospected. Background radiometric readings ranged from 300-400 cps. Outcrops examined consist of medium-grained pink to light pink granite with about 5% biotite throughout. The majority of samples taken gave 500-600cps and the most radioactive sample gave a scintillometer reading of 2000 cps. All sample assay results were less than 20 ppm U_3O_8 for this anomaly.

Anomaly 2

Anomaly 2 is the largest and strongest anomaly in the south block. The anomaly is accessible by the same via the same road as Anomaly 1. The geology at the anomaly consists of medium-grained pink granite with patches of coarser grained granite pegmatite. Magnetite and biotite are present in minor quantities. Background radiometric readings in the area are between 300-450 cps with pockets of up to 3000 cps. The higher scintillometer readings corresponded with the more biotite-rich sections. The best assay results were 332 ppm and 254 ppm U_3O_8 for samples that read 3000 cps and 700 cps respectively.

Anomaly 3

Anomaly 3 is a weak anomaly. Outcrops at anomaly 3 are rare but consist of mediumgrained granite, minor xenoliths of metasedimentary rock and patches of granite pegmatite. Biotite and magnetite is common in both the granite and metasedimentary rocks. Boulders are common in the area and are comprised of similar lithologies to the outcrop. The background at this anomaly was 200-300 cps with very few spots at 500 cps.

Anomaly 4

Two hills make up this weak anomaly. Outcrops at the anomaly consist of fine- to mediumgrained granite with many granite pegmatite dikes and veins. The background here is about 400 cps. A few points above 500 cps were found and sampled. However, the assay results were no more than 10 ppm U_3O_8 .

Anomaly 5

Anomaly 5 consist of several small weak peaks. Outcrops noted during prospecting were comprised mainly of medium-grained biotite-poor granite. Background scintillometer readings were 200-300 cps and one sample at 1400 cps was found. The assay results were less than 70 ppm U_3O_8 .

Anomaly 6

Anomaly 6 consists of several weakly anomalous areas along the Cliff Lake road. No significant radioactivity was noted and no samples were taken.

Anomaly 7

This anomaly is a weak to moderate elongated anomaly that runs along a ridge. The anomaly is accessible by road and ATV. The background radiometric readings are 350-500 cps. The rocks were medium grained granite with biotite and no magnetite. There were several patches of pegmatite along the ridge. The average sample gave about 700-800cps. One sample was as high as 2400 cps and assayed 283 ppm U_3O_8 . Other assay results were lower with a few around 70 ppm U_3O_8 .

Table	2. Summar	y of Significa	пі Аббаў	
Sample #	E_NAD83_15	N NAD83 15	CPS	U308
-				(ppm)
244253	460996		700	416.54
244254	460926		1100	350.46
244257	464940		1600	283.20
244261	475282	5578649	8000	
244262	475247	5578628	20000	
244263	475246		17000	
244269	474764		24000	3339.40
244273	474742	5578776	9600	
244288	476683	5572962	1000	177.00
244289	476688	5572983	8000	724.52
244291	476719	5573029	1800	127.44
244292	476714	5573019	4000	147.50
244302	460894	5557127	3000	332.76
244305	460968	5557184	1400	220.66
244323	475273	5578634	7200	230.10
244324	475240	5578605	11200	676.14
244325	475240	5578644	40600	2478.00
244329	461009	5556750	700	254.88
244345	474755	5578586	7000	525.10
244346	474782	5578632	7700	261.96
244351	475273	5578673	15000	820.10
244353	475239	5578640	27000	2501.60
244355	475214	5578631	22100	329.22
244357	474780	5578598	12100	893.26
244368	476676	5572929	1200	172.28
244369	476684	5572928	7600	1239.00
244375	468917	5574393	12400	775.26
244401	468799	5574239	10000	862.58
244408	468984	5577974	500	138.06
244438	472205	5572312	2000	138.06
244453	472872	5573151	2000	126.26
244467	472700	5574202	1400	556.96
244473	472708	5574122	2350	599.44
244478	472756		1500	691.48
244479	472775	5574170	2000	191.16
247904	474666	5574737	18000	1109.20
247905	474659	5574728	22000	964.06
247906	474659	5574748	9000	413.00
247907	474646		12000	604.16
247908	474662	5574730	4300	3469.20
247918	472673	5575167	800	159.30
247924	473021	5575311	2000	153.40
247928	473168	5575369	3000	593.54

 Table 2 : Summary of Significant Assay Results

Conclusions and Recommendations

Prospecting carried out on the north and south blocks of the Aerobus Lake property has confirmed the presence of uranium mineralization associated with several of the airborne radiometric anomalies located on the property.

Anomalies 1, 2, 3, 4 and 8 of the north block showed the most encouraging results. A more detailed prospecting program over these areas is recommended. In addition a two phase drilling program is recommended for anomaly 8. The initial phase should consist of 1500m of drilling. Contingent on results of the initial drilling program, a further 2500m program should be conducted.

Results from the south block were less promising and only anomaly 2 showed any encouraging results. Further prospecting of anomaly 2 is recommended.

Respectfully Submitted

D. Metsarabe

Dawn-Ann Metsaranta, M.Sc.

Appendix A

52K06SW0001 10 AEROBUS LAKE

010

Diamond Drilling

Area AEROBUS LAKE

Report Nº 10

Work performed by: Unkown

Claim Nº	Hole NQ	Footage	Date	Note
K 21334	1	81.0'	0ct/55	
	2	66.51	0ct/55	
	3	74.0'	0 ct/ 55	
	4	61.0'	Oct/55	
	5	117.5'	Oct/55	
	6	23.0'	Oct/55	
	7	99.01	0 ct/ 55	
	8	101.0'	Oct/55	
	9	55.0'	0ct/55	
		612		

Notes:

	RING													PAGE NOOF
DIP	COLL.		PROPERTY. AOT	obus Lake										LOCATION N 13
тот	. DEPTI	H 81 CORI	e size X. Ray Starte	D Octob	er_19	55	co	OMPLET	ED					•
FROM	то		DESCRIPTION	FOLIATION To Core Lth	SAMPLE NO.	FROM	то	CORE R'C'D	Core Length		ASS	AYS	1	REMARKS
0	6	Biotite Feld	ispar Gneiss	60					1	1				
6	73	Quartz Diori	te										_	
71	15	Biotite Feld	Ispar Gneiss	60										
15	22	Red Granite.	pegmatitic.											
_ 22	23	Biotite Feld	sper gneiss	40										
23	24	Red Granite	coarse grained.											
24	_27	Quartz Diori	te, gneissic sper Gneiss with some	60				ļ	1					
27	40	Biotite Feld	sper Gneiss with some		4 					4				
		narrow bands	vof Quartz.											
40	41	Quartz Diori	te- coarse biotite.			40	41	<u> </u>	1	0.06	<u>U308</u>	Loui	valent.	4X Background.
41	43	Dark basic D	yke			41	43	2	2	0.07	11		TR	
45	42章	Quartz Diori	te, coarse grained.7X 1	ogra.										
<u>42</u> 2	<u>478</u>	Juartz Diori	te, fine grained and			47	101	01	01		±1		n	
401	00	gneissic.	2X background. tic Granite, Lost core	26 76		42.	472	62	23	0.03				
-472	11	Pink Pegnati	tic Granite, lost core	41-40.				1		+				<u></u>
	61	Crow Cronito	spar Gneiss					-		†				
-17-	-01-	Grey Grante							1				1	
	81	End of Hole.											- <u> </u>	
						l		1						
<u></u>														
			· · · · · · · · · · · · · · · · · · ·						ļ					
			· · · · · · · · · · · · · · · · · · ·											
								ļ	ļ	↓				
										<u> </u>				
									 	+				
									<u> -</u>	┼──┤				······
			· · · · · · · · · · · · · · · · · · ·							┼──┼				· · · · · · · · · · · · · · · · · · ·
										+				
		······								┝			+	
										┼──┤-				
			· · · · · · · · · · · · · · · · · · ·			1				· ·		1	1 F	
									÷	+ +				

•

нот	_E NO.,	2		1	DIAM	ION	DI	DRIL '	L L(OG				HOLE NO2
BE/	ARING	140												PAGE NO 0F. 1
		30	PROPERTYAer	obus La	ke			. <u> </u>						LOCATION N 12
тот	. DEPT	H 662 CORE	E SIZE X Ray STARTED	October	<u> 195</u> 5		C	OMPLET	(ED					
FROM	то		DESCRIPTION	FOLIATION To Core Lth	SAMPLE NO.	FROM	то	CORE R'C'D	Core Length	•		ASSAY	s	REMARKS
0	4	Biotite Felds	ispar Gneiss	70										
4	4	Quartz Diori	ite.								<u> </u>			
41	8월	Biotite Feld	spar Gneiss	45	'	'	1				T			
<u> </u>	<u>12</u>	Pink granite	2.			<u> </u>	<u> </u>	<u></u>	. <u> </u>		<u> </u>	<u></u>		
		vellow stain	itic Granite with sparse 1. 2-3X Background.							<u> </u>	-		<u></u>	
15	19	Biotite feld	spar Gneiss	60	<u> </u>	ļ!				<u> </u>				·
19	192	Quartz Diori'	ite, gneissic. 13X bgrd.		<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>	ļ			<u> </u>	
_ <u>19</u> #	27	Biotite Feld	ispar Gneiss with 4" of	45		<u> </u> '		+	+		_	<u></u>	++	
			te at 222 - 2X bgrd.		'	<u> </u> '	<u> </u>	+	+'		1	∔	++	· · · · · · · · · · · · · · · · · · ·
	28	Quartz Diori	ite, 50% coarse grained		'	ļ	 			+			++	
'			2X background	+ (0			 		+'	+'	<u> </u>		++	
			isper Gneiss, some sulphid		+'			+	+'	<u> </u>		∔	++	
30	-32-	Grey Graniti	ic Gneiss. 4" at 30 whic	- h	-	<u> </u>]	t	+	+	+	<u> </u>	+	++	
32	AL	is coarse gr	reined- 11X background. dspar Gneiss	40	_ _ '	+'			+			+	+	
-16	40	Crew Groies	ic Diorite grading to		- <u> </u> '	+	<u> </u>	+		<u>+</u>	+	+	+	
	+++++++++++++++++++++++++++++++++++++++	ALEY MICTOST	grained Pegmatite.	+	+'	46	48	2	2	N11	117	n8 a	guiv.	2X background.
48	54	Dark basic D	ALATHER LEAMANING.	+	'	18	<u>40</u> 54		6	Nil	102		1 1	, <u>ZA</u> DaGKground.
<u> </u>	51	Dark Dasto P	ite, gneissic.	1	+			31		Nil	+ 11	,†		2-3X background.
571	624	Riati to Fali	dspar Gneiss, coarse	+			218	-73	28		+	+	+	
-21-8-	CC 8	biotite at 6	Lo Poot	50	, /	++		+	·'	+		1	+	
621	661	Dink Granit/	e. From 622-632 1t 1s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+	+		+	·'		+	+	+	
-96-6-1	000	mer and m	eissic - 2X back ground.		+ <i>י</i>	†		1	<u> </u>		+	+	+	
		-Broj can Bur	Teste - cr brow Stame	1	·,		1		h	1		1	1	
					· · · · · · · · · · · · · · · · · · ·		F				1	1		
	66 1	End of Hole				· _ ·	1		,			1		
,		L			<u> </u>		1		′					
					<u> </u>	<u>[</u> !	I		<u> </u>					
					'		Ĺ'		′			T		
					′	<u> </u>	Ē				Ţ			
		4			<u> </u>								<u> </u>	
·					' '				<u> </u> '					· · · · · · · · · · · · · · · · · · ·
	Ļ]				- '	ļ/	 		'		<u> </u>			
	Ļ]	<u></u>		`	↓ '	ļ!	 	'	<u> </u> '			1		
		<u> </u>					<u> </u>		<u> </u>		1	<u> </u>		
1	DRILLE	ED BY. S.Duggan	n & C.St.Paul	_									SI	IGNED BY. Margin

.

DIP	COLL.	30 PROPERTY.	Aerobus Lake									LOCATIONN
тот	. DEPT	H 74 CORE SIZE X Ray	STARTED October	1955.		C	COMPLETED				-	
FROM	то	DESCRIPTION	FOLIATION To Core Lth	SAMPLE NO.	FROM	то	CORE R'C'D	Core Length		ASSAYS		REMARK
0	5	Biotite Feldspar Gneiss				<u>.</u>					1	
5	52	Quartz Diorite			1		+	1				
51	211	Biotite Feldspar Gneiss		1								
211	23	Quertz Diorite					1					
23	43	Biotite Feldspar Gneiss		1	1							
43	49	Pegmetitic Diorite.				ļ						
49	54	Dark Basic Dyke.			<u> </u>							
54	54 <u>;</u>	Quartz Diorite				ļ						
<u>54</u>	57 ±	Biotite Feldspar Gneiss.				<u> </u>						
<u>57</u> 2	74	Red to Grey Granite.			 -							
	74	End of Hole			-	1	ļ					
	-				ļ		<u> </u>					
				_								
								+				
	·	· · · · · · · · · · · · · · · · · · ·			t							
				1				<u> </u>				
				†				 		-		
				1				1				
							ł —					
				1								
					T							
					1							
				1	ł	ļ	1					-
				ļ	-		ļ					
				 	ļ	ļ	 	↓				
				<u> </u>	 		+				<u> </u>	
. <u> </u>				1			<u> </u>	<u> </u>				
				}	 			<u>↓ </u>				
				<u> </u>	1	1						
		-		1	1		1					

	RING	 30	lemol 1										PAGE NO
	COLL.		PROPERTY. Aerob										LOCATION
тот.	, DEPTH	61 CORE SIZE X Ray	_ STARTED.	Octobr	<u>x 195</u>	i5 .	cc	MPLET	'ED	<u></u>		-	
FROM	то	DESCRIPTION		FOLIATION To Core Lth	SAMPLE NO.	FROM	то	CORE R'C'D	Core Length		ASSAYS		REMAR
. 0	7	Biotite Feldspar Gaeis		1	++			<u> </u> !		İİ			
$-\dot{7}$	82	Pegmatitic Granite.	~	+	++			<u> </u>					
85	12	Biotite Feldspar Gneis	·S •					1		1			
12	13	Coarse Grained Pegmati	te.										
13	26	Biotite Feldsper Gneis	8.	<u>_</u>									
26		Pegmatitic Granite with	h some Diorit	;e	!	26	29	04	24	NII		bekgrd.	0508 equiv.
29	292	Biotite Feldspar Gneis	8	4	<u> </u>	·		ļ	┟───┤	ļ			
<u> </u>	20	Pegmatite.			+	 		<u> </u>	───┤	<u>├───</u>			
<u>30</u> 44	44	Biotite feldspar Gneis Red Granite, coarse g	<u>S.</u>		+	 		<u> </u>]	<u>}</u> }	j			
		<u>neu vrantie , coarse g</u>			▶			<u> </u>					
	61	End of Hole.			++			{					
				<u> </u>				L'	\square	\square			
				+				ļ!		·			
				<u></u>		<u>+</u>		<u> '</u>		<u> </u>			
					++			 					
		h #k		+				<u>↓</u>	<u> </u>				
+				+	++	_		 	<u>├</u>	┟ ────┤ ───			
			,	+	++	ł-		<u>├</u> ──┤					
	·			1	† +								
	·			1									
_							1						
										i			
						·····		ļ!		í			
			N 101 - 10 - 10 - 10 - 10 - 10 - 10 - 10		ļ]				\square				
					41]	<u> </u>	 	·			
					+		!	\square	┝──┤	<u> </u>			
					++		!	↓]	┟∔	├─── ├ ──			
					++	+		┢──┤					
				·	+			 	┢────┤	·			
					4	_]	<u> </u>	\vdash	⊢			· · · · · · · · · · · · · · · · · · ·

	E NO	<u> 5 </u>		Ŧ	DIAM	ION	DT	JRILI	- LC	ЭG	-					HOLE NO	5 11
			y Aerobu	<u>18 Lake.</u>	<u>*</u>						_						Q £ 8: 5
т от	. DEPTH	H 117 core size X Rey	STARTED_	October	<u>· 19</u> 55	j.	Cr	OMPLETI	'ED							-	
ROM	то	DESCRIPTION		FOLIATION To Core Lth	SAMPLE NO.	FROM	то	CORE R'C'D	Core Length	,	'	ASSAYS	5:		-	R <i>1</i>	EMARKS
0		Quartz Diorite, some finely d:	is semin-	,,					1								
		ated pyrite.	J	+'	<u> </u> '	<u>+</u> '	· '		+ [!]	<u> </u>	+Ì	<u> </u>	<u>.</u>	4	<u> </u>		
1		Coarse grained Pegnatite.		<u>+</u>	·	+'	+	i	───┘	++	ı			+	+		<u> </u>
2		Pegmatitic Quartz Diorite, son pyrite.	<u>ne chaic</u>	<u>}</u>			•		ł	+		<u> </u>		<u></u>	<u> </u>		
6	7	Dark Basic Dyke	J	· '	<u> </u>	- 	· '		+ ¹	L	Ļ	 '	_				
7	_16_+	Pegmatitic Quartz Diorite, son	me pyrit	e.	 '	<u>+</u>	· '	- <u> </u>	+ ^I		ı	'			<u> </u>		
16 -	772	Dark Basic Dyke.		+'	 '	 '	· '		+ ^j	++	<u> </u>	[']	+				
17븅		Biotite Feldsper Gneiss with pegmatite.		<u> </u> '		<u> </u>	<u>+</u>			<u> </u>	ł	<u> </u>		<u> </u>	<u>+</u>		
21	- 37	Pogmatite with some Biotite I	Feldspar	<u>,</u> ′	<u> </u>	'	'	'	 +			'					
2		Cneiss bands. 36-37 permatite	e 31 bgr	<u>d</u>	 _'	36	37	' <u>1</u> '	1 1	Nil	3X	bckg	ard.		<u>U308</u>	equiv.	
7	60	Biotito Feldspar Gneiss with	occass-	•	 '	<u> </u>	·'	_ _ '	ا <u>ــــــــــــــــــــــــــــــــــــ</u>		اا	 '			<u> </u>		
<u> </u>		ional bands of Quartz. 37-50	∕ foliati	pn'	'	<u> </u>	· '	<u> </u>	ا ــــــــــــــــــــــــــــــــــــ		لــــــا	·		-			
		indicates folding.		·	 '	 '	· '	- '	+!	 	ا لــــــــــــــــــــــــــــــــــــ	[']		4	4		
0	65	Quartz Diorite with some pgm	atite	+'	 '		·'	- '	+		+	 '	<u> </u>				
52	- 68 -	Biotito Feldspar Gneiss]	+'	 '	68	+20-	+'	+		Ļ	<u></u>		+		<u> </u>	
8~	69	Permatitie Diorite.		+'	<u>+'</u>	100 h	69	⊥ '	1 0	0.03	ل	<u>+ 🖻 🗛</u> '	<u>pck</u>	rd.	0308	equiv.	
9	-81+	Biotito Feldspar Gnedss- 712-	-72 mass	/ = '	+'	74	81	+ <u>-</u> '	+	+	Ļ	-			-+		
		ime chalopyrite. 74-81 gran:	itic.		 '	- <mark>14</mark>	+ <u>6</u> T ,	5	5 N	Nil		1 <u>1</u> 2X			71		
31 −†	-84-	Biotite Feldspar Gneiss with	bands of	≰ ′	+'	—	+ '	·'	├ ───┘	┥──┤	·	+'	+		+		
	0r1	Dark basic Dyke		t'	· ['	<u> </u>	+	+	+l	++	$ \longrightarrow $	·'	+		+		
84				t'	+	t	·+'	<i>'</i>	<u>├</u> ───── ↓	+	·+	<u>+</u> '	+		+		
851		Coarse Pegmutitic & some Dio	rite.	t'	+'	\vdash	+'	·+	${ \longmapsto}$	+	+	+'	+	+	+		
88	-91+	Dark Basic Dyke.		t'	├ ──'	+J	† '	_	├──	++		·			+		
<u>91</u>	-92#	Quartz Diorite.		t'	↓	t	+'	+'	${\longmapsto}$	${ \longmapsto}$	·+	t'	+	+	+		
92 2 	-95+	Biotite Feldspar Gneiss with		t'	{ '	$\underbrace{ \qquad }$	+'	+'	├──	${ \underbrace{ \qquad } }$	·+	t'	+	+	+		
+		diorite.		t'	+ ′	f'	· +'	+	<u>├</u> ────┤	++	+	·'	+	+	+		
95 +	-98+	Dark Basie Dyke.		t'	+	+	† '	+	F	├ ───┤·	·+	·'	+	+	+		
98 	102+	Biotite Feldsper Gnelss, ben	, dēē. ;	t'	├ ──'	 ;	t'	<i>·</i>	${ \rule{0.5ex}{1.5ex}}^+$	++	·+	·'		+'	+		·
105+	1021	Pogmatitie diorite.	+	t'	}	<u></u> †−−−−	t'	+'	${\bf F}^{-\!-\!-\!+}$	<u>├</u>	·+	t'	+	+	+		
021	105	Dark Basic Dyke.		t'	J	 	†'	+	[+	+	·+	t'	+		+		·
105 	117:	Coarse Grained Granits]	+	t,	1	f+	t'	+		<u>├───</u> ┤-	·	· · · · · · · · · · · · · · · · · · ·	+		<u>†</u>		
		End of Hole.		· · · · · · · · · · · · · · · · · · ·		ţł	1'	++	\longrightarrow	┌── ┼	, -	t'	+	+	+		
i .	1701			· · · · · · · · · · · · · · · · · · ·	·'	·	+ ·		فسيسم			·		+	+		

.

SIGNED BY.

	robus Leke.			<u> </u>					LOCATION
TOT. DEPTH 23 CORE SIZE X-RAY STAF	RTED October	r,1955	5.	Cf	OMPLET	TED	 <u> </u>	-	
FROM TO DESCRIPTION	FOLIATION To Core Lth	SAMPLE NO.	FROM	то	CORE R'C'D	E Core Length	 ASSAYS		REMARK
0 10 Diorite, fine grained with small			<u>} </u>					<u> </u>	
fragments of pink pegmatite.		······································							
10 11 Rusty slip. 11 21 Pink Pegmatite.	′	<u> </u>	ļ'	<u> </u>	<u> </u>		 \downarrow		
11 21 Pink Pegnatite.		'	<u> </u>		+	+	 ++		
21 23 Rusty slip.	/	'	<u>+</u> '	+	+	++	 +		· · ·
23 End of Hole.		'	'		<u> </u>		 +		
	,		′						
Note; Hole stopped due to cave.	'	·'	'		<u> </u>	++	 Ţ		
	'	'	 '	<u> </u>		4	 		
	'	+'	·'			+	 +		
	· <u></u> '	+'	+'	+		+	 +		
		+'		 		1	 ++-	·	
		·			+	1	 +		
			· · · · · · · · · · · · · · · · · · ·						
		′	' ـــــــ '						
	'	- '	 '	<u> </u>	- <u> </u>				
	······································	·'	 '	+			 <u> </u>		
		+'	+'			+	 ++		<u> </u>
	·	·'	<u> </u>	+	 		 +-+		
	·'	+'	<i>├</i> '	1	+	+ +	 ++		
		+	'		+	+	 +		
		†*	†		1	+	 +		
		· ′	<u> </u>		<u>t</u>				
	,	'	;						
	′	- '	<u> </u>	<u> </u>			Ţ		
		<u>+ </u>	 '			<u> </u>	 <u>↓</u>		
	'	·'	<u> </u> '		- 	+	 ++-		
	·'	+'	<u>+</u> '	 	<u>+</u>		 ++-		
	·'	+'	 '	+	+	+	 +		
	'	+'	+		+	+	 		
		+	·'	<u> </u>		+	 ++-		

DRILLED BY. --- S. Duggan & C.St. Paul.

SIGNED BY. 1 Appendix B

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
244251	461039	5557236		averages, 400-500	3.1	1.1	
244252	461019	5557209		AVERAGE SAMPLE	8.1	1.1	9.56
244253	460996	5557182		AVERAGE SAMPLE	353.0	1.0	416.54
244254	460926	5557141	1100	AVERAGE WAS 700-800	297.0	1.1	350.46
244255	460689	5556991	900		26.4	1.1	31.15
244256	465020	5559313		red granite with mag	53.3	1.0	62.89
244257	464940	5559270		coarse grained pegmatite, magnetic	240.0	1.1	283.20
244258	475710	5575651		white granite.	9.8	1.1	11.56
244259	475658	5575606	2200	red and white granite with pegmatite. No mag.	52.5	1.1	61.95
244260	475300	5578653	2000		27.5	1.0	32.45
244261	475282	5578649	8000		200.0	1.0	236.00
244262	475247	5578628	20000		4370.0	1.1	5156.60
244263	475246	5578649	17000		2010.0	1.1	2371.80
244264	475256	5578657	500		25.3	1.0	29.85
244265	475239	5578629	500		19.6	1.1	23.13
244266	475236	5578612	5000		6.8	1.1	8.02
244267	475219	5578569	7900		457.0	1.1	539.26
244268	475143	5518584	500		10.9	1.1	12.86
244269	474764	5578597	24000		2830.0	1.0	3339.40
244270	474755	5578812	4300	magnetic	65.8	1.1	77.64
244271	474750	5578718	2000		60.1	1.0	70.92
244272	474720	5578684	4900		76.2	1.1	89.92
244273	474742	5578776	9600		258.0	1.1	304.44
244274	474658	5578629	5500		24.2	1.1	28.56
244275	474759	5579128	1500		21.9	1.1	25.84
244276	474701	5579133	500		28.1	1.0	33.16
244277	475298	5580875	400		3.5	1.0	4.13
244278	475224	5580899	400		4.1	1.1	4.84
244279	476091	5579487	900	white granite.	12.8	1.1	15.10
244280	476099	5579520	6000	fine grained metasediments and quartz rich granite.	97.5	1.1	115.05
244281	468356	5576531	700	averages 300-500 all over, very low. Boulders were 500-700 cps	6.4	1.0	7.55
244282	466642	5576145	800	400 -600 cps background, red granite, biotite.	14.4	1.0	16.99
244283	466494	5576269	2900	magnetic, granite, fine grained.	53.0	1.1	62.54
244284	466553	5576208	600	400-600 average, granite.	4.4	1.1	5.19
244285	466584	5576185		average sample	3.3	1.0	
244286	466936	5576283		300-600 background	12.3	1.1	14.51

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
244287	476628	5572899	1600	red granite, biotite	28.4	1.0	33.51
244288	476683	5572962	1000		150.0	1.1	177.00
244289	476688	5572983	8000	e-w running strike of 2500 cps, red biotite, biotite	614.0	1.0	724.52
244290	476710	5573021	1500	red and white granite	89.8	1.0	105.96
244291	476719	5573029	1800	red granite	108.0	1.1	127.44
244292	476714	5573019	4000	red granite	125.0	1.0	147.50
244301	460239	5556900	450	PINK GRANITE, pegmatite with biotite, AVERAGE SAMPLE	3.4	1.1	4.01
244302	460894	5557127	3000	Area of 350 to 900 cps, granite, biotite and magnetite.	282.0	1.1	332.76
244303	460889	5557141	500	pink granite, course grained, non-mag.	7.8	1.0	9.20
244304	460988	5557144	750	averages 350-600	7.5	1.1	8.85
244305	460968	5557184	1400	averages 500-850	187.0	1.0	220.66
244306	460678	5556998	350	average sample, granite, biotite with magnetite.	5.3	1.1	6.25
244307	461058	5556850	520	pink granite, med-fine grained, magnetite	5.9	1.1	6.96
244308	461034	5556868	2800	pink to white granite, mag.	96.4	1.0	113.75
244309	461019	5556831	2400	pink medium grained granite	29.4	1.1	34.69
244310	459643	5556171	2000	pin granite, medium to coarse grained, 1 % in area of magnetite.	11.9	1.0	14.04
244311	459636	5556157	350	average pink granite sample, little magnetite	5.5	1.0	6.49
244312	459594	5556057	600	dike of fine grained granite	4.5	1.0	5.31
244313	460676	5555439	400	average pink granite sample, magnetite and biotite.	3.5	1.1	4.13
244314	460668	5555466	500	average sample, pink medium grained granite. Magnetite.	5.4	1.0	6.37
244315	465094	5559662	1400	pink granite with fracture filled with pegmatite and biotite, no mag.	11.0	1.1	12.98
244316	465077	5559652	1400	pink granite , fine to medium grained, no mag, biotite.	67.5	1.1	79.65
244317	465356	5560168	350	pink granite, med-fine grained, no magnetite	3.0	1.0	3.54
244318	465372	5559974	460	fine grained granite with biotite.	6.7	1.1	7.91
244319	475734	5575849	3400	dike, 1 meter wide. Pink granite, biotite and no mag.	64.0	1.1	75.52
244320	475847	5575874	900	pink granite, biotite and magnetite.	44.2	1.1	52.16
244321	475861	5575877	1700	pink medium grained granite, biotite and magnetite.	56.8	1.1	67.02
244322	475861	5575885	550	pink granite, biotite and no mag.	13.9	1.0	16.40
244323	475273	5578634	7200	pink granite, coarse-grained, 10-20 % biotite.	195.0	1.0	230.10
244324	475240	5578605	11200	Pink granite, coarse-grained, with biotite	573.0	1.1	676.14
244325	475240	5578644	40600	old trench, pink granite, yellow stained.	2100.0	1.1	2478.00
244326	478964	5568232	300	pink, med. Grained granite. Patches of pegmatite.	1.5	1.1	1.77
244327	461043	5556816	350	pink granite, non-mag.	7.6	1.0	8.97
244328	461074	5556863	600	pink granite, spot close by was 2100 cps, but couldn't get sample	5.8	1.1	6.84
244329	461009	5556750	700	white medium grained granite with green mineral? (chlorite?)15%	216.0	1.1	254.88
244330	461121	5556844	500	course-grained pegmatite, small patch, up to 660 cps	3.8	1.1	4.48

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
244331	461185	5556852	500	medium to coarse grained granite, up to 20% biotite.	12.1	1.0	14.28
244332	461660	5556944		average granite sample	3.3	1.1	3.89
244333	461340	5557129	440	average granite sample, 10 % biotite, non-mag	4.0	1.1	4.72
244334	459665	5556002	550	medium grained pink granite, less than 5% biotite	12.2	1.0	14.40
				pegmatite dikes, throughout fine to medium grained granite. Pink to			
244335	462219	5554832		purple feldspar xlls.	4.0	1.1	4.72
244336	462262	5554670		medium grained pink granite. Weakly magnetic.	5.2	1.1	6.14
244337	464049	5558475		pegmatite patch in granite.	8.6	1.1	10.15
244338	464558	5558715	880	medium grained granite, non-magnetic	9.8	1.0	11.56
044000	405000	5550000	770	coarse gained pegmatite in the medium grained granite, magnetite,	10.0	1.0	10.74
244339	465082	5559668		10-15 % mafics average granite sample	10.8 3.9	1.0 1.1	12.74
244340	465022	5559639		fine to medium grained granite, very magnetic, less than 5 % mafics			4.60
244341	462556	5557793			28.2	1.0	33.28
244342	479949	5571008		medium grained, granite, non mag.	35.8	1.0	42.24
244343	480535	5571046		medium grained, granite, 5-10% biotite.	28.4	1.1	33.51
244344	474735	5578679		At old MDI occurrence, granite, biotite rich.	65.5	1.0	77.29
244345	474755	5578586	7000	coarse- grained pegmatite, pink, with yellow alteration. Large biotite	445.0	1.0	525.10
044040	474700	5570000	7700	med-coarse grained granite, biotite rich, weak red alteration, and	222.0		004.00
244346	474782	5578632		yellow alteration pink granite, medium grained	222.0	1.1	261.96
244347	474532	5578561		medium grained granite, very magneitc, pink	17.4	1.1	20.53
244348	474296	5578848	670	coarse grained pegmatite with magnetite at contact with	8.2	1.0	9.68
244349	474296	5578870	770	metasediment inclusion.	25.2	1.0	29.74
244350	474339	5578857		medium grained peg, no magnetite near this sample.	13.7	1.1	16.17
244351	475273	5578673		pink granite, coarse grained.	695.0	1.0	820.10
244352	475268	5578679		average sample, white to pink granite.	14.9	1.1	17.58
244353	475239	5578640		old trench, altered white clear quartz, biotite rich and trace pyrite.	2120.0	1.1	2501.60
244354	475242	5578645		sediment in middle of trench.	7.6	1.0	8.97
244355	475214	5578631	22100	grantie, 10 to 40 % biotite.	279.0	1.1	329.22
244356	475156	5578601		old trench, porphyritic, sulphides.	13.5	1.0	15.93
244357	474780	5578598	12100	biotite rich granite dike.	757.0	1.1	893.26
244358	474735	5578649	500	pink granite	2.4	1.1	2.83
244359	474724	5579101		pink granite	90.7	1.1	107.03
244360	476104	5579500		pegmatite with biotite. Background is 400 cps.	99.3	1.0	117.17
244361	468371	5576414		grantie,	10.0	1.1	11.80
244362	468146	5576674		pegmatite	13.6	1.0	16.05
244363	466617	5576198		pegmatite	44.9	1.0	52.98

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
244364	466553	5576215		pegmtite	5.5	1.1	6.49
244365	466611	5576184		pegmatite	25.2	1.1	29.74
244366	466779	5576176		granite, pegmatite	3.1	1.1	3.66
244367	476639	5572880		pink granite with pegmatite and biotite	29.6	1.0	34.93
244368	476676	5572929		pegmatite with bioite	146.0	1.0	172.28
244369	476684	5572928	7600	granite with pegmatite, biotite, massive	1050.0	1.0	1239.00
244370	476690	5572937		pink granite	7.4	1.1	8.73
244371	476765	5572989	1900	pink granite contact with volcanic	64.8	1.0	76.46
244372	476725	5573093	1200	pegmatite, within 5 meters there is a 2000, a 15000 and 1000, too round to get samples	45.4	1.0	53.57
244373	476694	5573107	1300	500 background	14.6	1.0	17.23
244374	468914	5574389		white granite with some smokey quartz visible , continous veining of 3000 cps for ~ 10 m from this sample	28.9	1.1	34.10
244375	468917	5574393	12400	background 500cpsm pegmatite, strikes E-W, covered with moss	657.0	1.0	775.26
244401	468799	5574239		red-white granite, sediments running east-west along where sample was taking	731.0	1.0	862.58
244402	468802	5574242		background sample	14.3	1.0	16.87
244403	468807	5574271		grey-white coarse grained granite	37.7	1.0	44.49
244404	468913	5574390	600	pegmatite, background 700 cps	7.5	1.0	8.85
244405	469021	5574423	800	reddish granite pegmatite	1.2	1.1	1.42
244406	471512	5572034	1200	white granite, magnetic	10.3	1.1	12.15
244407	471565	5572092	1000	white granite	7.5	1.0	8.85
244408	468984	5577974	500	pegmatite	117.0	1.0	138.06
244409	469056	5577214		background 400 average	2.1	1.0	2.48
244426	459678	5559359	800	medium grained granite, less than 5 % biotite.	55.0	1.1	64.90
244427	473081	5573229	800	1000 off to side, just couldn't get sample, white granite, with metasediment	25.9	1.1	30.56
244428	472097	5572246		foliated granite, gniessic, pink and grey, biotite.	24.5	1.1	28.91
244429	472106	5572260		gniessic, pink granite	6.2	1.0	7.32
244430	472115	5572261		pink granite	11.3	1.0	13.33
244431	472127	5572265		pink granite, foliated, lots of biotite	28.6	1.0	33.75
244432	472134	5572270		granite, biotite rich	37.3	1.1	44.01
244433	472142	5572278		pink granite, medium grained	39.0	1.0	46.02
244434	472158	5572281		grey granite	6.2	1.1	7.32
244435	472165	5572293		area is 1300 cps, with one high spot. Pink coarse grained pegmatite	34.6	1.0	40.83
244436	472176	5572292		pink granite, medium grained	7.8	1.0	9.20
244437	472195	5572315	1000	pink granite, medium grained	20.7	1.0	24.43

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
244438	472205	5572312	2000	granite, magnetic, large grains of black magnetite, medium grained	117.0	1.1	138.06
244439	472205	5572333	2600	non-magnetic granite, pink to red, altered, sericite?? Yellowish	20.1	1.0	23.72
244440	472248	5572337	950	pink granite, medium grained, 20% biotite.	4.3	1.0	5.07
244441	472268	5572345	900	granite, very silicous, less than 5% biotite, non-mag.	31.2	1.0	36.82
244442	472279	5572350	1000	pink coase-grained, granite/pegmatite, bitotie-5%	27.9	1.0	32.92
				pink medium grained granite, lots of quartz, altered red and yellow			
244443	472282	5572347		feldspar	73.2	1.1	86.38
244444	472312	5572354	1330	pink granite, medium grained, , background is 500cps	94.1	1.0	111.04
244445	472022	5572001	770	background is 300-400 with this one high small spot, pink granite, with magnetite patches throughout.	2.1	1.1	2.48
244446	471986	5572003		granite, medium grained, magnetic, ,background is 300-400 cps	37.5	1.0	44.25
244447	471946	5572034		granite, patches are magnetic	8.6	1.0	10.15
244448	471907	5572024		background is 400-500 cps, pink medium grained granite, non-	38.0	1.0	44.84
244449	471864	5572096		right beside a 2200 cps, pink granite.	48.8	1.0	57.58
244450	472903	5573189		medium grained, granite, weakly magnetic	40.1	1.0	47.32
244451	472882	5573179		pink, medium grained, granite, 10-15 % biotite, non-magnetic	48.9	1.1	57.70
244452	472875	5573152		white granite, medium grained, non-magnetic	25.8	1.0	30.44
244453	472872	5573151		white granite, all area is 1100-1800 cps along fracture running NE-	107.0	1.1	126.26
				grey granite, foliated, biotite rich, sample is close to a coarser pegmatite that is 600 cps. This is along strike with the last couple of			
244454	472843	5573150	1000	samples.	13.1	1.1	15.46
244455	472782	5573176	1000	pink granite, high spots under the moss, non-magnetic	44.2	1.0	52.16
244456	472784	5573192	1100	pegmatite, pink non-magnetic	15.0	1.1	17.70
244457	472796	5573218	800	pink granite	18.5	1.1	21.83
244458	472791	5573243	1000	pink granite, 20-30 % biotite	62.8	1.1	74.10
244459	472841	5573204	850	grey granite, very biotite rich	12.6	1.0	14.87
244460	472843	5573191	1000	pink granite, biotite rich	74.9	1.1	88.38
244461	472865	5573616	500	pink coarse to medium grained granite, background is 500 cps everywhere, lots of moss, higher when dug. Large boulders are 800 cps.	10.3	1.1	12.15
244462	472843	5573643		white, medium grained grainte	34.7	1.1	40.95
244463	472607	5574218		pink granite, non-magnetic, background is 500-700 cps.	9.4	1.1	11.09
211100	112001	007 1210	1000	medium grained, pink granite, biotite rich, non-magnetic, background	0.4		11.00
244464	472626	5574211	1000	400-600 cps. Large outcrop!!	38.7	1.1	45.67
244465	472675	5574218		pink granite, non-magnetic, medium grained	7.4	1.1	8.73
244466	472711	5574209		pink granite, magnetic, medium to coarse grained.	27.7	1.0	32.69
244467	472700	5574202		pink granite, magnetic, 600-700 cps background in area	472.0	1.0	556.96

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
044400	470704	5574000	0.400	pink granite, non-magnetic, yellow alteration to some felspars, and	20.2	1.0	00.00
244468	472731	5574206		green alteration, chlorite maybe?	28.3	1.0	33.39
244469	472752	5574213		pink granite, weakly magnetic, yellowish tinge alteration	50.3	1.1	59.35
244470	472820	5574219		pink medium grained, granite, weakly magnetic	36.2	1.0	42.72
244471	472766	5574129		pink medium grained granite, non-magnetic	27.2	1.1	32.10
244472	472729	5574146	1200	pink medium grained, granite, magnetic	19.1	1.0	22.54
044470	(70700		0050	medium grained pink, magnetic, granite, yellow alteration-sericite,	500.0		=
244473	472708	5574122		area is 500-650 cps background	508.0	1.1	599.44
244474	472639	5574092		pink medium grained granite	34.8	1.1	41.06
244475	472751	5574088		pink granite, non-magnetic, medium grained	16.4	1.1	19.35
244476	472798	5574021		medium grained, granite, magnetic, pink	27.9	1.1	32.92
244477	472830	5574046	1500	pink medium grained granite, non-magnetic	44.5	1.1	52.51
				red granite, altered yellow and red, weak green, medium grained,			
244478	472756	5574137		magnetic	586.0	1.1	691.48
244479	472775	5574170		pink granite, weakly magnetic	162.0	1.1	191.16
244480	472778	5574206		pink medium grained granite	48.5	1.0	57.23
244481	472777	5574221		pink, magnetic, granite, medium grained, weakly yellow alteration	27.6	1.0	32.57
244482	472640	5574232		beside 1200cps, pink granite, magnetic, medium grained.	32.4	1.0	38.23
244483	475333	5574778		pink granite, medium grained, non-magnetic	39.6	1.1	46.73
244484	475318	5574753	1500	pink granite, non-magnetic, medium grained	25.3	1.1	29.85
				pink granite, medium grained, background is 600-900cps. Weakly			
244485	475309	5574742		magnetic, altered.	25.5	1.1	30.09
244486	475288	5574730		dark pink, granite, magentic, altered, medium grained.	47.8	1.0	56.40
244487	475269	5574729	1300	weakly magnetic, pink to grey granite, fine grained biotite rich	25.3	1.1	29.85
244488	475200	5574663	1000	pink granite, medium grained, non-magnetic	32.7	1.0	38.59
244489	475096	5574666	2000	granite, pink, medium grained, magnetic	96.6	1.0	113.99
244490	475059	5574637	1400	magnetic, altered yellow (sericite) granite, medium grained	23.1	1.0	27.26
				white granite, very altered and crumbly, yellow alteration, red on			
244491	475035	5574634	2100	weathered surface, magnetic	7.2	1.0	8.50
				pink granite, medium grained, magnetic, green alteration? Weak			
244492	475025	5574597		yellow alteration as well	28.5	1.0	33.63
244493	474990	5574585		fine to medium grained granite, biotite rich	32.7	1.0	38.59
244494	474961	5574573		medium to coarse grained granite, pink, weak yellow lateration	15.5	1.0	
244495	474941	5574563	1400	pink granite, medium grained, altered yellow and red, non-magnetic	18.7	1.1	22.07
				weakly magnetic, pink granite, fine grained at contact with medium			
244496	474900	5574528		grained	38.2	1.0	45.08
244497	474925	5574668		pink medium grained granite, magnetic	25.2	1.1	29.74
244498	475067	5574954	2200	pink pegmatite, medium to coarse grained weakly magnetic	29.3	1.1	34.57

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
244499	475054	5574970	1500	red-yellow altered granite, medium grained, magnetic, boitite rich	16.3	1.0	
244500	475053	5574955		weakly magnetic, pegmatite, coarse grained, light pink, lots of biotite	79.0	1.0	93.22
247901	475018	5574939	1100	pink medium grained, granite,magnetic	13.9	1.0	16.40
247902	475014	5574919		magnetic, medium grained, pink granite	22.8	1.1	26.90
				pink, strong red alteration and weak yellow alteration to granite, fine to			
247903	475028	5574905	1100	medium grained, non-magnetic	25.5	1.1	30.09
247004	474666	EE74707	10000	started at 6000 cps on top of moss, then dug out for sample, taken	940.0	0.5	1100.00
247904	474666	5574737		~10 inches down. sample taken 12 inches down. Started at 1200 cps before dug		0.5	1109.20
247905	474659	5574728	22000	started at 7000 cps before dug, sample taken ~6 inches down, very	817.0	0.0	964.06
247906	474659	5574748	9000	watery	350.0	0.4	413.00
247907	474646	5574734		6000 cps before dug, sample taken 8 inches down	512.0	0.5	604.16
247908	474662	5574730		sample taken in the lowest point in swamp, 3200 cps on top of wet	2940.0	0.5	3469.20
247909	472883	5574909		pink medium grained, granite,magnetic	21.8	1.1	25.72
247910	472912	5574933		pink medium grained, granite, non-magnetic	17.0	1.0	20.06
247911	472744	5574997		medium grained granite, magnetic	24.6	1.0	29.03
		001 1001		background sample (500-700 cps in area), medium grained granite,			
247912	472757	5575085	650	non-magnetic, pink with weak yellow alteration	26.4	1.1	31.15
247913	472680	5575064		pink granite, medium grained magnetic	19.8	1.1	23.36
247914	472649	5575051	1000	pink granite, non-magnetic,	20.4	1.1	24.07
247915	472583	5575036	1000	white granite, non-magnetic, medium grained, lots of biotite	38.6	1.1	45.55
247916	472604	5575087	700	pink granite, weakly altered red, medium grained	21.2	1.1	25.02
				white/pink granite, non-magnetic, red and yellow alteration, weakly			
247917	472650	5575102		foliated? Weak green alteration	27.5	1.0	32.45
247918	472673	5575167		non-magnetic, pink with weak green alteration, granite medium	135.0	1.1	159.30
247919	472728	5575191		background sample, medium grained granite	12.4	1.1	14.63
247920	472865	5575220		medium grained granite, magnetic	12.8	1.0	15.10
247921	472909	5575193		magnetic, pink granite, biotite rich	18.3	1.1	21.59
247922	472975	5575255		background, pink granite, non-magnetic	28.3	1.1	33.39
247923	472997	5575265		magnetic, medium grained, pink granite	42.1	1.1	49.68
247924	473021	5575311	2000	magnetic, pink pegmatite	130.0	1.0	153.40
247925	473085	5575327	600	background, granite at contact between fine and medium grained,	13.5	1.0	15.93
247925	473065			weakly magnetic white gneiss, very silicous, foliated 40-220°, non-magnetic	33.0	1.0	38.94
247926	473113	5575356		white, medium grained granite, magnetic	45.9	1.0	38.94 54.16
247927 247928	473137 473168			white pegmatite, coarse-grained, strikes 55-235°	45.9 503.0	1.0	54.16 593.54
247928	473166	5575389		very silicous, medium grained, pink granite, non-magnetic	25.0	1.1	29.50

Sample #	E_NAD83_15	N_NAD83_15	CPS	DESCRIPTION	U ppm	Mass g	U3O8 (ppm)
247930	473100	5575408	1300	non-magnetic, pink medium grained, granite	67.9	1.1	80.12
247931	473087	5575393	1100	pink non-magnetic granite, very silicous	14.2	1.1	16.76
247932	473435	5575421	550	background sample, white granite, medium grained, weakly magnetic	8.5	1.1	10.03
247933	473587	5575483	600	pink granite, lots of biotite, medium to coarse grained granite	19.7	1.1	23.25
247934	473613	5575342	700	white coarse grained granite, biotite rich	21.8	1.1	25.72
247935	473600	5575333	1200	white granite, medium to coarse grained non-magnetic, less than 5 % biotite	91.9	1.0	108.44
247936	473499	5574665	700	magnetic, fine to medium grained granite, grey, lots of biotite	49.9	1.1	58.88
247937	473501	5574640	900	pink medium grained granite, non-magnetic	7.3	1.1	8.61
247938	473473	5574647	1000	pink pegmatite, non-magnetic	18.6	1.0	21.95
247939	473472	5574670	1800	coarse to medium grained, non-magnetic, pink granite	25.7	1.1	30.33
247940	473446	5574643	900	pink, non-magnetic, medium to coarse granied pegmatite, less than 5 % biotite	12.2	1.0	14.40
247941	474100	5573261	1800	whtie granite at contact with foliated biotite schist	14.7	1.1	17.35
247942	474096	5573248	3000	pink , non-magnetic, medium grained granite	97.8	1.1	115.40
247943	474073	5573212	950	pink granite, medium grained	29.2	1.1	34.46
247944	474052	5573255	700	pink granite, medium grained, less than 5 % biotite	43.8	1.1	51.68
247945	474015	5573231	500	coarse grained pegmatite, non-magnetic, very little biotite	6.6	1.1	7.79
247946	456078	5555626		pink granite, medium grained, very magnetic, background is 300 cps at most, boulders everywhere, very little outcrop.	6.8	1.0	8.02
186431	471553	5572069		pegmatite, readings up to 2500 cps for 30 meters east of sample location	104.0	1.0	122.72
186432	469018	5577987		low background, no highs, granite, stikes E-W	3.4	1.1	4.01
186433	469062	5577147	1000	granite	9.7	1.0	11.45

Quality Analysis ...

Innovative Technologies

Date Submitted:28-Aug-08Invoice No.:A08-5650Invoice Date:18-Sep-08Your Reference:Aerobus Lake Property

Delta Uranium 10th Floor, 56 Temperance Street Toronto ON M5H 3V5 Canada

ATTN: Colin Bowdidge

CERTIFICATE OF ANALYSIS

47 Rock samples were submitted for analysis.

The following analytical package was requested: Code 5D-U-Total DNC

REPORT **A08-5650**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

Elitsa Hrischeva, Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com

nalyte Symbol	U	Mass
nit Symbol	ppm	g
etection Limit	0.1	
nalysis Method	DNC	DNC
44251	3.1	1.052
44252	8.1	1.095
4253	353	1.037
14254	297	1.094
14255	26.4	1.058
4256	53.3	1.033
4257	240	1.068
258	9.8	1.056
259	52.5	1.097
4301	3.4	1.070
4302	282	1.070
302	7.8	1.072
4303	7.8	1.021
304 305	7.5 187	1.061
306	5.3	1.059
1307	5.9	1.069
1308	96.4	1.044
1309	29.4	1.086
4310	11.9	1.038
4311	5.5	1.001
1312	4.5	1.035
313	3.5	1.083
314	5.4	1.023
4315	11.0	1.055
4316	67.5	1.055
14317	3.0	1.011
4318	6.7	1.070
4319	64.0	1.071
4320	44.2	1.073
4321	56.8	1.055
4322	13.9	1.046
14326	1.5	1.074
4327	7.6	1.020
4328	5.8	1.054
14329	216	1.093
44330	3.8	1.083
44331	12.1	1.012
44332	3.3	1.085
44333	4.0	1.085
244334	12.2	1.043
44335	4.0	1.074
244336	5.2	1.055
244338	9.8	1.043
244339	10.8	1.014
44340	3.9	1.065
244341	28.2	1.038

Activation Laboratories Ltd. Report: A08-5650

Quality Control		
Analyte Symbol	U	Mass
Unit Symbol	ppm	g
Detection Limit	0.1	
Analysis Method	DNC	DNC
DH-1a Meas	2630	
DH-1a Meas DH-1a Cert	2630	
DH-1a Meas	2590	
DH-1a Cert	2630	
SY-2 Meas	283	
SY-2 Cert	284	
SY-2 Meas	285	
SY-2 Cert	284	
BL-4a Meas	1270	
BL-4a Cert	1250	
BL-4a Meas	1260	
BL-4a Cert 244321 Orig	1250 56.8	1.055
244321 Ong 244321 Split	56.9	1.055
Method Blank Method	< 0.1	1.000
Blank		

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 02-Sep-08

 Invoice No.:
 A08-5726

 Invoice Date:
 18-Sep-08

 Your Reference:

Delta Uranium 10th Floor, 56 Temperance Street Toronto ON M5H 3V5 Canada

ATTN: Colin Bowdidge

CERTIFICATE OF ANALYSIS

20 Rock samples were submitted for analysis.

The following analytical package was requested: Code 5D-U-Total DNC

REPORT **A08-5726**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

Elitsa Hrischeva, Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com

Analyte Symbol	U	Mass
Unit Symbol	ppm	g
Detection Limit	0.1	
Analysis Method	DNC	DNC
244323	195	1.038
244324	573	1.054
244325	2100	1.068
244351	695	1.025
244352	14.9	1.092
244353	2120	1.059
244354	7.6	1.037
244355	279	1.054
244356	13.5	1.032
244357	757	1.064
244260	27.5	1.036
244261	200	1.031
244262	4370	1.061
244263	2010	1.054
244263	25.3	1.010
244265	25.5 19.6	1.072
244265	6.8	1.072
244266	6.8 457	1.078
244268	10.9	1.063
244269	2830	1.049

Quality Control		
Analyte Symbol	U	Mass
Unit Symbol	ppm	g
Detection Limit	0.1	
Analysis Method	DNC	DNC
DH-1a Meas	2630	
DH-1a Cert	2630	
DH-1a Meas	2590	
DH-1a Cert	2630	
SY-2 Meas	283	
SY-2 Cert	284	
SY-2 Meas	285	
SY-2 Cert	284	
BL-4a Meas	1270	
BL-4a Cert	1250	
BL-4a Meas	1260	
BL-4a Cert	1250	4 000
Method Blank Method Blank	< 0.1	1.000

Quality Analysis ...

Innovative Technologies

Date Submitted:08-Sep-08Invoice No.:A08-5956Invoice Date:01-Oct-08Your Reference:Aerobus Lake Property

Delta Uranium 10th Floor, 56 Temperance Street Toronto ON M5H 3V5 Canada

ATTN: Colin Bowdidge

CERTIFICATE OF ANALYSIS

24 Rock samples were submitted for analysis.

The following analytical package was requested: Code 5D-U-Total DNC

REPORT **A08-5956**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

Elitsa Hrischeva, Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com

Analyte Symbol	U	Mass
Unit Symbol	ppm	g
Detection Limit	0.1	3
Analysis Method	DNC	DNC
244270	65.8	1.067
244271	60.1	1.023
244272	76.2	1.050
244273	258	1.069
244274	24.2	1.095
244275	21.9	1.053
244276	28.1	1.018
244277	3.5	1.008
244278	4.1	1.083
244279	12.8	1.052
244280	97.5	1.064
244337	8.6	1.085
244342	35.8	1.036
244343	28.4	1.097
244344	65.5	1.035
244345	445	1.030
244346	222	1.089
244347	17.4	1.070
244348	8.2	1.043
244349	25.2	1.046
244350	13.7	1.077
244358	2.4	1.074
244359	90.7	1.050
244426	55.0	1.088
-	,	

Quality Control		
Analyte Symbol	U	Mass
Unit Symbol	ppm	g
Detection Limit	0.1	
Analysis Method	DNC	DNC
DH-1a Meas	2670	
DH-1a Cert	2630	
DH-1a Meas	2600	
DH-1a Cert	2630	
SY-2 Meas	284	
SY-2 Cert	284	
SY-2 Meas	284	
SY-2 Cert	284	
BL-4a Meas	1250	
BL-4a Cert	1250	
BL-4a Meas	1280	
BL-4a Cert	1250	4 000
Method Blank Method Blank	< 0.1	1.000

Quality Analysis ...

Innovative Technologies

Date Submitted:17-Sep-08Invoice No.:A08-6265Invoice Date:16-Oct-08Your Reference:Aerobus Lake Property

Delta Uranium 10th Floor, 56 Temperance Street Toronto ON M5H 3V5 Canada

ATTN: Colin Bowdidge

CERTIFICATE OF ANALYSIS

155 Rock samples and 5 Soil samples were submitted for analysis.

The following analytical package was requested: Code 5D-U-Total DNC

REPORT **A08-6265**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

Elitsa Hrischeva, Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com

			Activation Laboratories Ltd. Report. A00-0205
Analyte Symbol	U	Mass	
Unit Symbol	ppm	g	
Detection Limit	0.1		
Analysis Method	DNC	DNC	
186431	104	1.032	
186432	3.4	1.073	
186433	9.7	1.005	
244281	6.4	1.005	
244282	14.4	1.030	
244283	53.0	1.078	
244284	4.4	1.090	
244285	3.3	1.028	
244286	12.3	1.053	
244287	28.4	1.023	
244288	150	1.057	
244289 244290	614 89.8	1.034 1.019	
244290 244291	89.8 108	1.019	
244291	108	1.000	
244232	99.3	1.030	
244361	10.0	1.055	
244362	13.6	1.046	
244363	44.9	1.040	
244364	5.5	1.073	
244365	25.2	1.070	
244366	3.1	1.077	
244367	29.6	1.045	
244368	146	1.025	
244369	1050	1.034	
244370	7.4	1.063	
244371	64.8	1.042	
244372	45.4	1.048	
244373	14.6	1.047	
244374	28.9	1.071	
244375	657	1.026	
244401	731	1.041	
244402	14.3	1.023	
244403	37.7	1.035	
244404	7.5	1.028	
244405 244406	1.2 10.3	1.081 1.053	
244406	7.5	1.053	
244407	7.5 117	1.046	
244408	2.1	1.007	
244403	25.9	1.072	
244428	24.5	1.084	
244429	6.2	1.007	
244430	11.3	1.011	
244431	28.6	1.038	
244432	37.3	1.076	
244433	39.0	1.012	
244434	6.2	1.076	
244435	34.6	1.039	
244436	7.8	1.030	
244437	20.7	1.028	
244438	117	1.065	
			Page 2 of 6

Activation Laboratories Ltd. Report: A08-6265

			Activation Laboratories Ltu. Report. A00-0205
Analyte Symbol	U	Mass	
Unit Symbol	ppm	g	
Detection Limit	0.1		
Analysis Method	DNC	DNC	
244439	20.1	1.023	
244440	4.3	1.045	
244441	31.2	1.042	
244442	27.9	1.028	
244443	73.2	1.090	
244444	94.1	1.030	
244445	2.1	1.059	
244446	37.5	1.045	
244447	8.6	1.015	
244448	38.0	1.011	
244449	48.8	1.035	
244450	40.1	1.024	
244451	48.9	1.096	
244452	25.8	1.043	
244453	107	1.056	
244454	13.1	1.054	
244455	44.2	1.043	
244456	15.0	1.064	
244457	18.5	1.051	
244458	62.8	1.092	
244459	12.6	1.038	
244460	74.9	1.064	
244461	10.3	1.062	
244462	34.7	1.053	
244463	9.4	1.090	
244464	38.7	1.077	
244465	7.4	1.095	
244466	27.7	1.024	
244467	472	1.038	
244468 244469	28.3 50.3	1.049 1.083	
244469 244470	36.2	1.083	
244470 244471	36.2 27.2	1.037	
244471	19.1	1.023	
244472	508	1.025	
244473	34.8	1.053	
244474 244475	34.8 16.4	1.055	
244475	27.9	1.055	
244470	44.5	1.054	
244477	586	1.078	
244479	162	1.061	
244480	48.5	1.025	
244481	27.6	1.003	
244482	32.4	1.044	
244483	39.6	1.059	
244484	25.3	1.076	
244485	25.5	1.067	
244486	47.8	1.037	
244487	25.3	1.062	
244488	32.7	1.021	
244489	96.6	1.043	
244490	23.1	1.037	

			Activation Laboratories Ltu. Report. A00-0205	
Analyte Symbol	U	Mass	s · · · · · · · · · · · · · · · · · · ·	
Jnit Symbol	ppm	g	9	
Detection Limit	0.1			
Analysis Method	DNC	DNC		
244491	7.2	1.023	3	
244492	28.5	1.007	7	
244493	32.7	1.022	2	
244494	15.5	1.028	3	
244495	18.7	1.052	2	
244496	38.2	1.017		
244497	25.2	1.060		
244498	29.3	1.076		
244499	16.3	1.023		
244500	79.0	1.009		
247901	13.9	1.013		
247902	22.8	1.070		
247903 247904	25.5 940	1.059 0.480		
247905	940 817	0.460		
247906	350	0.444		
247907	512	0.543		
247908	2940	0.473		
247909	21.8	1.070		
247910	17.0	1.015		
247911	24.6	1.048	3	
247912	26.4	1.063	3	
247913	19.8	1.061	1	
247914	20.4	1.061	1	
247915	38.6	1.068	3	
247916	21.2	1.097		
247917	27.5	1.032		
247918	135	1.070		
247919	12.4	1.083		
247920	12.8	1.046		
247921 247922	18.3 28.3	1.080 1.059		
247923	42.1	1.063		
247924	130	1.042		
247925	13.5	1.023		
247926	33.0	1.033		
247927	45.9	1.030		
247928	503	1.073	3	
247929	25.0	1.013	3	
247930	67.9	1.055	5	
247931	14.2	1.083	3	
247932	8.5	1.058	3	
247933	19.7	1.089		
247934	21.8	1.062		
247935	91.9	1.049		
247936	49.9	1.062		
247937	7.3	1.092		
247938	18.6	1.028		
247939	25.7	1.085		
247940	12.2	1.028		
247941	14.7	1.056		
247942	97.8	1.066		
			Page 4 of 6	

Activation Laboratories Ltd. Report: A08-6265

			Activation Laboratories Ltd. Report: A08-6265
Analyte Symbol	U	Mass	
Unit Symbol	ppm	g	
Detection Limit	0.1		
Analysis Method	DNC	DNC	
247943	29.2	1.069	
247944	43.8	1.073	
247945	6.6	1.066	
247946	6.8	1.036	

Unit Symbol PP Detection Limit 0 Analysis Method DN DH-1a Meas 266 DH-1a Cert 263 DH-1a Cert 265 DH-1a Cert 263 SY-2 Meas 22 SY-2 Cert 28	U Mass ppm g 0.1 DNC DNC 2660 2630 2630 2630 280 284
Unit Symbol PP Detection Limit 0 Analysis Method DN DH-1a Meas 266 DH-1a Cert 263 DH-1a Cert 265 DH-1a Cert 263 SY-2 Meas 22 SY-2 Cert 28	ppm g 0.1 DNC DNC 2660 2630 2590 2630 280
Unit Symbol PP Detection Limit 0 Analysis Method DN DH-1a Meas 266 DH-1a Cert 263 DH-1a Cert 265 DH-1a Cert 265 SY-2 Meas 22 SY-2 Cert 28	ppm g 0.1 DNC DNC 2660 2630 2590 2630 280
Detection Limit 0 Analysis Method DN DH-1a Meas 266 DH-1a Cert 263 DH-1a Meas 255 DH-1a Cert 263 SY-2 Meas 22 SY-2 Cert 28	0.1 DNC DNC 2660 2630 2590 2630 280
Analysis Method DN DH-1a Meas 266 DH-1a Cert 263 DH-1a Meas 255 DH-1a Cert 263 SY-2 Meas 225 SY-2 Cert 226	DNC DNC 2660 2630 2590 2630 280
DH-1a Meas 266 DH-1a Cert 263 DH-1a Cert 263 DH-1a Cert 263 SY-2 Meas 266 SY-2 Cert 265	2660 2630 2590 2630 280
DH-1a Cert 263 DH-1a Meas 255 DH-1a Cert 263 SY-2 Meas 265 SY-2 Cert 285	2630 2590 2630 280
DH-1a Meas 255 DH-1a Cert 263 SY-2 Meas 28 SY-2 Cert 28	2590 2630 280
DH-1a Cert 263 SY-2 Meas 28 SY-2 Cert 28	2630 280
SY-2 Meas28SY-2 Cert28	280
SY-2 Cert 28	
	284
	201
SY-2 Meas 28	280
SY-2 Cert 28	284
BL-4a Meas 128	1280
BL-4a Cert 125	1250
244374 Orig 28	28.9 1.071
244374 Split 28	28.0 1.066
244436 Orig 7	7.8 1.030
	8.1 1.023
	37.5 1.045
	38.0 1.070
	27.9 1.055
	28.3 1.039
	47.8 1.037
	48.1 1.029
247936 Orig 49	49.9 1.062
-	
247936 Split 47	47.5 1.084 < 0.1 1.000

Appendix C

TERRAQUEST LTD.

Operations Report for DELTA URANIUM INC.

High Resolution Magnetic, Radiometric & XDS VLF-EM Airborne Survey Aerobus Project Dryden, Ontario

December 9, 2008

Report #: B-269

Requested by: **David Palmer** DELTA URANIUM INC.

Prepared by: Charles Barrie, Managing Partner *Terraquest Ltd.*

1

Table of Contents

1.	INTR	ODUCTION	4
	1.1.	EXECUTIVE SUMMARY	4
	1.2.	LOCATION	
2.		/EY SPECIFICATIONS	
,	2.1.	LINES AND DATA	6
	2.1. 2.2.	SURVEY KILOMETRAGE	
-	2.2.	NAVIGATION SPECIFICATIONS	
-	2.3.	FLIGHT PLAN	
-	2.5.	TOLERANCES - REFLIGHT	9
-	1.	Traverse Line Interval	
	2.	Terrain Clearance:	
	3.	Diurnal Variation:	
	4.	GPS Data:	9
	5.	Radio Transmission:	9
	6.	Sample Density:	
4	2.6.	NAVIGATION	9
3.	AIRB	ORNE GEOPHYSICAL EQUIPMENT1	0
		EQUIPMENT SUMMARY1	
	3.1.		
	3.2. 3.3.	SURVEY AIRCRAFT	
-	5.5. 1.	High Sensitivity Magnetometers:	
	1. 2.	Tri-Axial Fluxgate Magnetic Sensor	
	2. 3.	Radar Altimeter	
	3. 4.	Barometric Altimeter	
	 5.	Data Acquisition & Magnetic Compensation System	
	5. 6.	Gamma Ray Spectrometer	
	7.	Navigation System	
	<i>8</i> .	GPS Differential Receiver	
	9.	Terraquest XDS VLF-EM System	
4.		STATION EQUIPMENT	
		BASE STATION MAGNETOMETER	
	4.1. 4.2.	BASE STATION MAGNETOMETER	
5.	TEST	'S AND CALIBRATIONS 1	
4	5.1.	MAGNETIC FIGURE OF MERIT 1	
	5.2.	MAGNETIC LAG	
	5.3.	RADIOMETRIC SAMPLE CHECKS	
	5.4.	RADIOMETRIC SENSITIVITY FACTORS	
•	5.5.	RADIOMETRIC ALTITUDE ATTENUATION	
4	5.6.	RADIOMETRIC COMPTON COEFFICIENTS	6

6.	LOGI	STICS	17
	6.1.	PERSONNEL	
	6.2.	FLIGHT REPORTING	
	6.3.	BASE OF OPERATIONS	17
7.	DATA	PROCESSING	18
	7.1.	DATA QUALITY CONTROL	18
	7.2.	FINAL MAGNETIC DATA PROCESSING	18
	7.3.	FINAL ELECTROMAGNETC DATA PROCESSING	20
	7.4.	FINAL RADIOMETRIC DATA PROCESSING.	
	7.5.	LIST OF FINAL PRODUCTS	24
8.	SUMN	MARY	25
9.	APPE	NDICES	26
	9.1.	APPENDIX I - CERTIFICATE OF QUALIFICATION	26
	9.2.	APPENDIX II – DAILY LOG	
	9.3.	APPENDIX III – FIGURE OF MERIT	31
	9.4.	APPENDIX IV - RADAR ALTIMETER CALIBRATION	
	9.5.	APPENDIX V – COMPTON COEFFICIENTS	33
	9.6.	APPENDIX VI – ALTITUDE ATTENTUATION	
	9.7.	APPENDIX VII – SENSITIVITY FACTORS	
	9.8.	APPENDIX VIII - RADIOMETRIC COEFICIENTS	
	9.9.	APPENDIX IX – README FILE	41

1. Introduction

1.1. Executive Summary

This report describes the specifications and parameters of an airborne geophysical survey carried out for:

DELTA URANIUM INC.

56 Temperance Street, 10th Floor Toronto, ON M5H 3V3

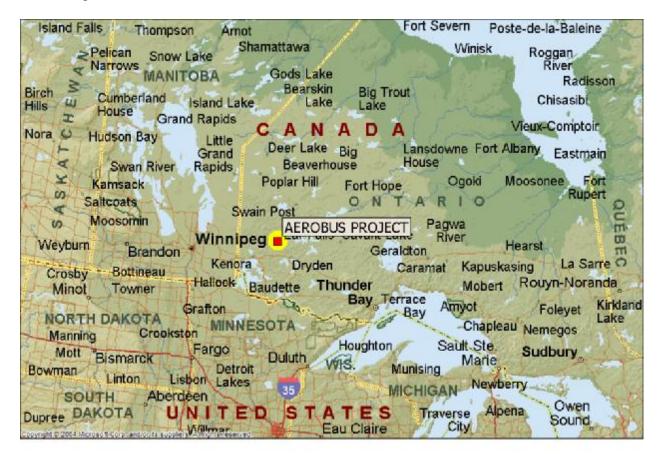
Attention: David Palmer Phone: 416-363-3582 Fax: 866-288-3582

wisaacs@deltauranium.com

The survey was performed by:

TERRAQUEST LTD.

2-2800 John Street, Markham ON, Canada L3R 0E2


Phone: 905-477-2800 ext. 22 Email: <u>hb@terraquest.ca</u>.

The purpose of the survey of this type is to collect geophysical data that can be used to prospect directly for economic minerals that are characterized by anomalous magnetic, radioactive or conductive responses. Secondly, the geophysical patterns can be used indirectly for exploration by mapping the geology in detail, including faults shear zones, folding, alteration zones and other structures.

To obtain this data, the area was systematically traversed by aircraft carrying geophysical equipment along parallel flight lines. The lines are oriented to intersect the geology and structure so as to provide optimum contour patterns of the geophysical data.

1.2. Location

The survey is located in north western Ontario, approximately 65 kilometres northwest of the town of Dryden. It can be accessed by bush roads from highway 105. The survey area includes all or portions of Segise, Golder, Adam, Fluke, Schultz, Beaton, Cliff, Fleet, Minor, Bednargik, Honest, Aerobus, Hogg, Ryan, Sniezek, Bornite, and Wabaskang Lakes. The survey outline is rectangular; the east-west maximum dimension is 36 kilometres and the maximum north-south dimension is 38 kilometres. The centre of the area is approximately 50 degrees 15 minutes north and 93 degrees 25 minutes west.

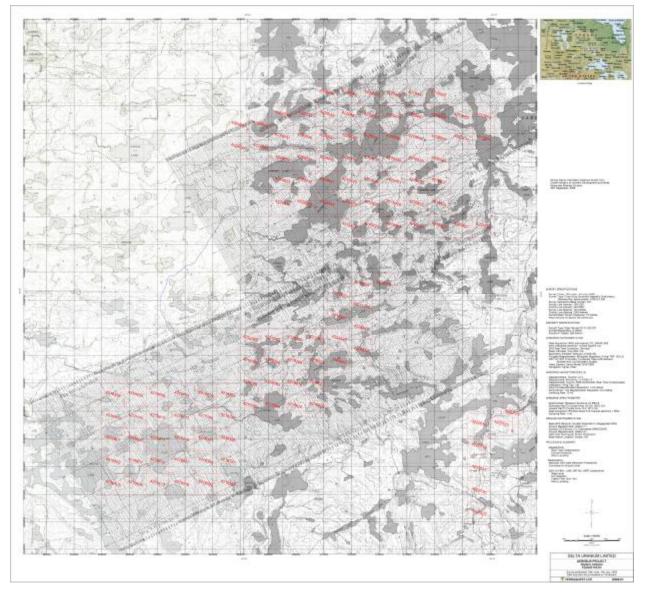
2. SURVEY SPECIFICATIONS

2.1. LINES AND DATA

Parameter	Specification	Instrument Precision
Aircraft Speed	288 km/hr	
Sampling Interval	6-8m (10Hz)	
Flight-line Interval	100 m	+/- 3m
Flight-line Direction	150/330 degrees	
Control-line Interval	2,000 m	+/- 3m
Control-line Direction	224/064 degrees	
Aircraft MTC	70 m	+/- 5m
Mag Sensor MTC	70 m	+/- 5m

2.2. SURVEY KILOMETRAGE

Survey Kilometers:	Amended July 04/08	
Lines	5,504.0 km	
Tie	881.9 km	
Total	6,385.9 km	


2.3. NAVIGATION SPECIFICATIONS

The following files are the navigation parameter files, which include the survey corner coordinates in NAD83 projection zones 17, line spacing, line direction, master line and other navigational parameters. The survey outline, corners 3 and 4 were modified during the survey.

0 AerobusQ7350	-L		
1 Z 15			
2 455000 55	48500	AREA CORNER 1	
2 449000 55	58000	AREA CORNER 2	
2 464500 55	66000	AREA CORNER 3	
2 459000 55	76000	AREA CORNER 4	
2 480500 55	85500	AREA CORNER 5	
2 484500 55	78000	AREA CORNER 6	
2 480000 55	75500	AREA CORNER 7	
2 482000 55	71500	AREA CORNER 8	
2 477000 55	69000	AREA CORNER 9	
2 481500 55	61500	AREA CORNER 10	
4 120	NUMB	ER OF LINES	
5 100.0	SPA	CING, m.	
6 455000 55	48500	MASTER LINE BL	
7 449000 55	80000	MASTER LINE TL	
8 75	MAX	CROSS TRACK, m.	
9 0 0 0 DELTA X/Y/Z			
10 1 LOG FPR EVERY 1 SECS			
11 0.9996000000 0.0 0.0 K0, X/Y SHIFT			
14 200 LINES EXTENDED BEYOND AREA			
16 10 FIRST LINE NUMBER			
	48500 33		
20 WGS-84 6.	378137.0	298.257223563 22 ELLIPSOID	
21 0		QUATORIAL CROSSING	
30 20 9600 N 1 8 RS-232 PORT 2 INCOMING FORMAT			
38 0			
39 5			
41 0.00	SYSTEM LAG, Sec.		
80 0.00		NNED ALTITUDE, units	
83 0		ALTITUDE FOR VERTICAL BAR	
85 100		K VERTICAL BAR SCALE	
102 UTM	U	ΓM X/Y SCALE	

7

2.4. FLIGHT PLAN

2.5. TOLERANCES - REFLIGHT

1. Traverse Line Interval

Re-flights would take place if the flight line separation of the final differentially corrected flight path is greater than 1.25 of the intended line separation over a distance greater than 1 kilometre.

2. Terrain Clearance:

The aircraft mean terrain clearance was to be smoothly maintained at 70 metres MTC in a drape mode. Re-flights were done if the final differentially corrected altitude deviated from the specified flight altitude by \pm -10m over a distance of 3 kilometres or more if, in the pilot's opinion, it was safe to do so.

3. Diurnal Variation:

Diurnal activity in the survey was limited to 20 nT deviations from 5-minute chord.

4. GPS Data:

GPS data included at least 4 satellites for navigation and flight path recovery. There were no significant gaps in any of the digital data including GPS and magnetic data.

5. Radio Transmission:

The aircraft pilot makes no radio transmission that interferes with magnetic response.

6. Sample Density:

A reflight is required if the sample density along one or more of the survey lines exceeds 10 metres over a cumulative total of 1000 metres for the magnetic survey, and 100 metres over a cumulative total of 1000 metres for the radiometric survey.

2.6. NAVIGATION

The satellite navigation system was used to ferry to the survey sites and to survey along each line. The survey coordinates were supplied by the client and were used to establish the survey boundaries and the flight lines. The flight path guidance accuracy is variable depending upon the number and condition (health) of the satellites employed. The accuracy was for the most part better than 10 metres. Real-time GPS correction using the Trimble receiver and Omnistar broadcast services for North America improves the navigational accuracy to about 3 metres or less in the horizontal plane and 4-5 metres in the vertical direction.

3. AIRBORNE GEOPHYSICAL EQUIPMENT

The primary airborne geophysical equipment includes three high sensitivity cesium vapour magnetometers, a gamma ray spectrometer and an XDS VLF-EM system. Ancillary support equipment includes a tri-axial fluxgate magnetometer, recorder, radar altimeter, barometric altimeter, GPS receiver with a real-time correction service, and a navigation system. The navigation system comprises a left/right indicator for the pilot and a screen showing the survey area, planned flight lines, and the real time flight path. All data were collected and stored by the data acquisition system. The following provides detailed equipment specifications:

3.1. EQUIPMENT SUMMARY

Aircraft	Piper Navajo PA 31-325 CR
Equipment:	
Magnetometer (3)	CS-3 Cesium Vapour
3-axis Magnetometer	Billingsley TFM100-G2
Gamma Ray Spectrometer	Radiation Solutions Inc. RSX-5
Gamma Ray Detector Packs	3075 in^3 (50.4 litres) Downward 512 in ³ (8.4 litres) Upward
VLF-EM	Terraquest Ltd: XDS system
GPS Receiver	Trimble AgGPS132
Radar Altimeter	King KRA 10A
Barometric Altimeter	Sensym
Data Acquisition & Compensation	RMS Inc. DAARC 500
Navigation	AgNav Inc. Linav
Tracking Camera	Sony DFW-SX910 (Colour) digital
Magnetic Specifications:	
Lateral Sensor separation	14.6 metres
Longitudinal Sensor separation	9.2 metres
Output Sample Rate	10 Hz
4 th difference noise envelope	0.10 from tail stinger
FOM index (Tail)	<1.5 nT
Sensor Sensitivity	0.001 nT

3.2. SURVEY AIRCRAFT

The Survey Aircraft for this project was a Navajo PA31-325 CR, owned and operated by Terraquest Ltd. The aircraft has been specifically modified with long-range fuel cells and an array of sensors to carry out airborne geophysical surveys.

3.3. SURVEY EQUIPMENT AND SPECIFICATIONS:

1. High Sensitivity Magnetometers:

Three high-resolution cesium vapour magnetometer, manufactured by Scintrex, are mounted in a tail stinger and two wing-tip pods. Fluxgate tri-axial magnetometer, model TFM100-LN by Billingsley Magnetics Ltd., is mounted in front of the tail stinger to monitor aircraft manoeuvre and magnetic interference. The magnetic data is post-flight compensated for aircraft manoeuvre noise.

Type of Magnetometer Sensor	Cesium Vapour
Model	CS-3
Manufacturer	Scintrex Ltd.
Resolution	0.001 nT counting at 0.1 per second
Sensitivity	+/- 0.005 nT
Dynamic Range	15,000 to 100,000 nT
Fourth Difference	0.02 nT
Recorded Sample Rate	0.1 seconds
Noise Envelope	0.10nT (Tail Mag)

Terraquest Ltd., Airborne Geophysical Surveys Contract B-269 11

Tri-Axial Fluxgate	(for compensation, mounted in mid-section of tail
Magnetic Sensor	stinger)
Model	W/FM100G2-1F
Manufacturer	Billingsley Magnetics
Description	Low noise miniature triaxial fluxgate magnetometer
Axial Alignment	> Orthogonality > +/- 1 degree
Accuracy	< +/- 0.75% of full scale (0.5% typical)
Field Measurement	+/- 100,000 nanotesla
Linearity	< +/- 0.015% of full scale
Sensitivity	100 microvolt/nanotesla
Noise	< 12 picotesla RMS/–Hz @ 1 Hz

2. Tri-Axial Fluxgate Magnetic Sensor

3. Radar Altimeter

Altimeter	Radar
Model	KRA-10A
Manufacturer	King
Serial Number	071-1114-00
Accuracy	5% up to 2,500 feet
Calibrate Accuracy	1%
Output	Analog for pilot, converted to digital for data acquisition

4. Barometric Altimeter

Altimeter	Barometric
Model	LX18001AN
Manufacturer	Sensym
Source	coupled to aircraft barometric system

5. Data Acquisition & Magnetic Compensation System

DAS & Compensation	Combined
Model	DAARC 500
Manufacturer	RMS Instruments
Operating System	QNX 6.3 or greater
Time	104 MHz temperature compensated crystal clock
Front End Magnetic	Resolution 0.32pT; system noise <0.1pT; sample rate
Processing	160, 640, 800m or 1280 Hz
Front End - Fluxgate	I/F module; oversampling, self calibrating 16 bit A/D
	converter
Compensation	Improvement Ratio (total field) 10-20 typical
uest Ltd., Airborne Geophysical Surveys	2008/12/09

Operations Report for DELTA URANIUM INC. Aeromagnetic, Radiometric & XDS VLF-EM Survey, Aerobus Project, Dryden, Ontario

Input Serial	8 isolated RS232 channels; ASCII & Binary formats
Input Analog	16 bit, self calibrating A/D conv.
Input Events	Four latched event inputs
Raw Data Logging	At front end sampling rate, 1 MB buffer
	Rate 10, 20 or 40 Hz; Serial up to 115.2 kbps; Recording
Output/Recording	media 1 GB Flash; 80 GB Hard Drive; Flash disk via
	USB; Display
Front Panel Indicators	8 LEDs for mag input; 2 LEDs for Front End status

6. Gamma Ray Spectrometer

Radiometrics Type	Gamma Ray Spectrometer
Model	RSX-5
Manufacturer	Radiation Solutions Inc
Downwards Volume	12 X 256 cubic inches down
Upwards Volume	2 X 256 cubic inches up
Software	Real Time Data Collection
Energy Detection Range	50KeV to 3 MeV
Count Rate	Up to 1000,000 pps communication
Collected Spectrum	256 Channels
Spectra Tracking	Individual detectors with recorded status of tuning
Time to Stabilization	Automatic on natural radionuclei
Spectra Stabilization	Automatic after system calibration
Windows (ROIs)	Additional to full spectra up to 22 special windows
Signal Sampling	20 MHz by internal 12 bit A to D for each detector
Peak Detector	Digital – time resolution 50 nsec.
Dead Time	Negligible for up to 60000 pulses/sec/detector
Pulse Rate per Detector	> 60000 pulses/sec. with negligible dead time
Channel Capacity	Serial among all units (detector, concentrator, host)

7. Navigation System

Navigation & Guidance	Stand alone module
Model	LiNav
Manufacturer	AgNav Inc.
Main Display	LCD Moving map display
Pilot Display	2 line shows left/right, dist. to end of line/survey/
Line	Generates and follows survey lines
Input	GPS with corrections; up to 10 Hz
Media	USB memory stick

GPS Receiver	Differential
Model	Ag132
Manufacturer	Trimble
Antenna	Blade Helical
Channels	12
Position Update	0.5 second for navigation
Correction Service	Real time correction subscription – Omnistar
Sample Rate	1 second
Accuracy	~ 3 meters

8. GPS Differential Receiver

9. Terraquest XDS VLF-EM System

The XDS VLF-EM System is currently being developed by Terraquest Ltd. and is included on this survey primarily to help further develop the system, but in addition if any useful data are obtained, then it may assist the client in their exploration program. It employs 3 orthogonal, air-core coils mounted in the pod of the tail stinger, and coupled with a receiver-console, tuned to receive a range of 22.0 kHz to 26.0 kHz (which includes both Cutler Maine NAA (frequency 24 kHz) and Seattle WA NLK (frequency 24.8 kHz), and measures the X, Y and Z directions of the VLF field. The vertical field is referenced to the line coil.

VLF - EM		
Model	XDS	
Manufacturer	Terraquest Ltd.	
Primary Source	Magnetic field component radiated from government	
	VLF radio transmitter	
Parameters Measured	X, Y and Z components, absolute field	
Frequency Range	22.0 - 26.0 kHz	
Gain	Constant gain setting	
Filtering	No filtering	

4. Base Station Equipment

4.1. BASE STATION MAGNETOMETER

High sensitivity magnetic base station data was provided by a cesium vapour magnetometer logging onto a computer and with time synchronization from the GPS base station receiver.

The magnetometer was the same as used in the aircraft, a CS-2 magnetometer manufactured by Scintrex. The magnetometer processor was a KMAG manufactured by Kroum VS Instruments and the data logger was an iPAQ PDA by Hewlett Packard. The counter was powered by a 10VAC 50/60hz to 30VDC 3.0 amp power supply with an internal 12VDC fan. The logging software SDAS-1 was written by Kroum VS Instrument Ltd. specifically for the pocket pc hardware. It supports real time graphics with selectable windows (uses two user selectable scales, coarse and fine). Time recorded was taken from the base GPS receiver. Magnetic data was logged at 2Hz. Data collection was by RS232 recording ASCII string and stored on flash card.

Ground Magnetometer	Cesium Vapour
Model	CS – 2
Manufacturer	Scintrex
Sensitivity	0.01 nT
Noise Envelope	0.05 nT
Sampling Interval	1 second
Minimum Range	50 -3,500 ft

4.2. BASE STATION GPS RECEIVER

Model	12 channel GPS
Manufacturer	Deluo
Туре	L1, C/A code
Antenna	Built in patch
Logging Rate	1 per second
Power	5 VCD taken from iPAQ power supply

5. TESTS AND CALIBRATIONS

5.1. MAGNETIC FIGURE OF MERIT

Compensation calibration tests were performed to determine the magnetic influence of aircraft maneuvers and the effectiveness of the aircraft compensation method. The aircraft flew a square pattern in the four survey directions at a high altitude over a magnetically quiet area and perform pitches (\pm 5°), rolls (\pm 10°) and yaws (\pm 5°). The sum of the maximum peak-to-peak residual noise amplitudes in the total compensated signal resulting from the twelve maneuvers is referred to as the FOM. The FOM from the right wing, left wing and tail sensors on this survey are 1.26 nT, 1.12 nT and 0.85 nT respectively.

5.2. MAGNETIC LAG

A magnetic lag test was performed by flying a line with discrete anomalies in opposite directions to determine the time lag of the airborne system.

5.3. RADIOMETRIC SAMPLE CHECKS

The performance and consistency of gamma ray system was checked before and after each flight day using sample pucks of uranium, thorium and cesium to ensure that there was no change in the system during the survey.

5.4. RADIOMETRIC SENSITIVITY FACTORS

The radiometric system sensitivity was determined from measurements acquired over the Breckenridge calibration test site monitored by the GSC.

5.5. RADIOMETRIC ALTITUDE ATTENUATION

The radar calibration and altitude attenuation was determined from the results of flying over the runway.

5.6. RADIOMETRIC COMPTON COEFFICIENTS

A pad calibration was performed by the manufacturer prior to installation.

6. LOGISTICS

6.1. PERSONNEL

The contractor supplied the following properly qualified and experienced personnel to carry out the survey and to reduce, compile and report on the data:

Field:	Pilots Operator Geophysicist	Bob Beaulac, Jim McLarty Mike Murphy Carolyn Boone
Office:	Chief Geophysicist Geophysicist Manager	Allen Duffy Patrick Marchesi Charles Barrie

6.2. FLIGHT REPORTING

The aircraft and crew arrived in Dryden on June 18, 2008 and set up the base station. The survey was flown successfully in 19 flights, GXKS-006-024 including all tests and calibrations, over 21 days from June 19 to July 9, 2008. Three days were lost to weather.

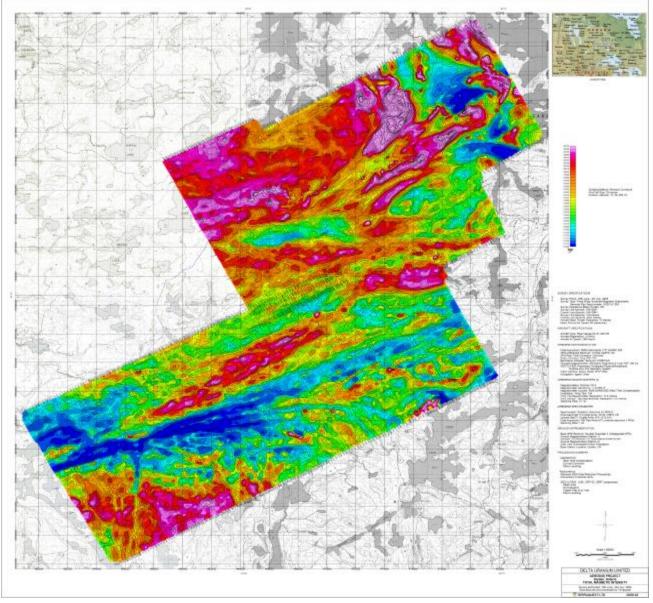
A change in the nature of some of the XDS VLF-EM data occurred on flight 13, but because it was QC'd in profile format during the survey it was not detected until office processing. It was also disguised by another problem which was fixed successfully in the field after flight 13 (see appendix). In post survey investigation it was discovered to be caused by a short circuit in the receiver console. Final processing (Section 7.3) was able to recover the data satisfactorily; this demonstrates the robustness of the XS VLF-EM system.

6.3. BASE OF OPERATIONS

The main base of operations was at Dryden airport, Ontario. The base station (combined high sensitivity magnetic and GPS) was set up at the airport well away from cultural interference. Accommodations for the crew were at the Chalet Inn (807-223-2335). High speed internet was available.

7. Data Processing

7.1. DATA QUALITY CONTROL


The field data were transmitted via internet back to the office to inspect the data for quality control and tolerances on all channels. This included any corrections to the flight path, making flight path plots, importing the base station data, creating a database on a flight-by-flight basis, and posting the data. All data were checked for continuity and integrity. Any errors or omission or data beyond tolerances were flagged for re-flight and the crew was notified ready for their flight in the morning.

7.2. FINAL MAGNETIC DATA PROCESSING

Raw magnetic data were initially compensated for aircraft motion effects prior to calculating measured longitudinal and lateral magnetic gradients. The lateral magnetic gradient was calculated by subtracting the left wing sensor reading from the right wing sensor reading and dividing the resulting value by the tip-to-tip separation (14.6 metres), yielding the measurement expressed as nT/m. The longitudinal gradient was similarly calculated by subtracting the tail sensor measurement from the average of the wing-tip values normalized by the wing-centre to tail sensor separation (9.2 metres). Both gradients were "DC shifted" by subtracting the median value on a line-by-line basis and converted from aircraft-centric to survey grid orientation by selectively inverting (multiplying by -1) in the south and westbound directions. The gradient data was subsequently verified by generating a Reconstructed Total Field (RTF) grid using the Lateral and Longitudinal data grids as input.

In the final correction process, the compensated tail sensor magnetic data were initially corrected with standard tie-line intersection leveling by tying the survey lines to the tie lines using GEOSOFT software. The total field was gridded and micro-leveled in the Fourier domain to reduce any linear noise along the flight path without degrading the geologic signal. The vertical magnetic gradient was subsequently calculated from the final processed total magnetic field data grid (originating from the Tail Sensor). The finalized datasets were gridded with minimum curvature procedure with a cell size of 25 metres.

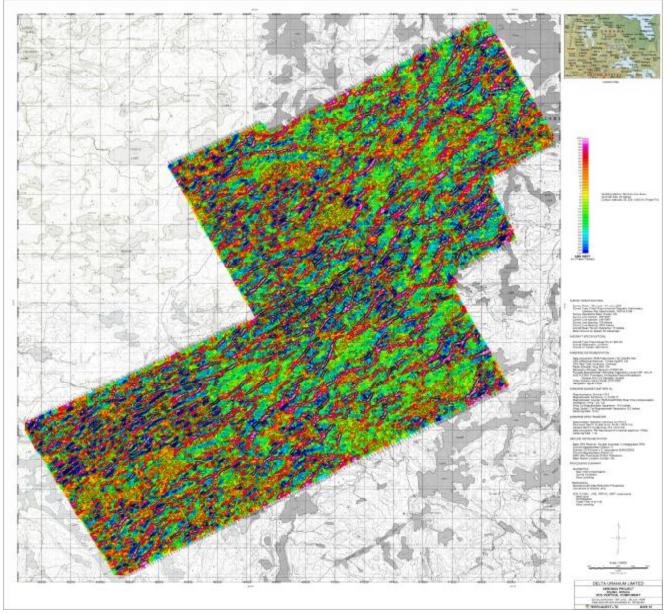
Total Magnetic Field

7.3. FINAL ELECTROMAGNETC DATA PROCESSING

The Terraquest XDS-VLF system is currently in the developmental stage and as such only basic processing has been performed on this data. The x, y and z components of the XDS-VLF-EM data in the range of 22.0 to 26.0 kHz (which include Cutler and Seattle transmitter signals), were inverted, normalized, mean leveled and micro-leveled. The data were gridded with a cell size of 25 metres and presented as contour plots of the Line Field (Vcx) coil, Ortho Field (Vcp) coil and Vertical Field (Hcp).

During the final processing it was observed that the expected peak type anomaly changed to a cross-over type anomaly during flight 13 only in the Line component data. In a post survey investigation a short circuit was discovered in the receiver console. The post flight 13 data were rectified during processing by applying a derivative type formula (Fraser Filter) to convert the cross-over nature to peak type anomalies. This is shown in Map 12, XDS Line Component, where the eastern part of the map shows smooth normal Line data and the western part has been rectified by the derivative. In order to be uniform across the map, the data prior to flight 13 was then treated with a first vertical derivative to provide consistent resolution. The totally rectified version is shown as Map 13 XDS LINE Component Vertical derivative.

7.4. FINAL RADIOMETRIC DATA PROCESSING


The radiometric data were processed according to guidelines established in the definitive IAEA Technical Report "Airborne Gamma Ray Spectrometer Surveying" (IAEA Technical Reports Series No. 323, 1991). The following specifics were performed:

• Recorded as a 256 channel spectrum, the four raw integral (or "terrestrial") windows (Total Count, Potassium, Uranium and Thorium) were initially generated by summing the recorded counts between their appropriate channel limits – as specified below:

	s (bused on o
Total Count:	30 - 233
Potassium:	115 - 131
Uranium:	139 - 156
Thorium:	201 - 233
Cosmic (>3 MeV):	255

256 Channel ROI definitions (based on 0-255 channel indices):

• Since the Radiation Solutions Inc. RSX-5 Spectrometer does not suffer from conventional measurement "dead time", no discrete correction for this effect need be applied.

XDS VLF-EM Vertical Component

21

- The raw count rates were corrected for static and ambient background sources (Aircraft, Cosmic and Radon) by using measurements from the frequent over-water crossings encountered during the survey and from pre- and post- flight over-water 'background' lines (where geologic radiation sources are suppressed).
- The background corrected measurements were corrected for Compton Scattering by application of "Stripping Coefficients" experimentally determined in a specific calibration exercise using standard large-scale radio-element sources (see Appendices).
- Count rates were further adjusted by correction to constant terrain clearance (altitude attenuation correction). This correction step includes the application of exponential attenuation coefficients, specific to each of the four integral windows, determined during a specific calibration procedure (see Appendices).
- As additionally recommended by the Geologic Survey of Canada, the final corrected count rates were passed through an optimized filter, sometimes referred to as a 'Savitsky-Golay' filter, designed to reduce sample overlap effects. This five-point convolution filter has the following (normalized) coefficients:

• Corrected radiometric data are delivered both as count rates (counts-per-second) and as effective ground units by application of sensitivity factors determined experimentally over the Geologic Survey of Canada's test range (Breckenridge Calibration Range, Ottawa - see Appendices). Applicable ground units for each of the four integral windows are as follows:

Total Count :	Exposure Rate, nanoGray/hour	
Potassium :	Percent (%K)	
Uranium:	Parts per Million equivalent Uranium (ppm eU)	
Thorium:	Parts per Million equivalent Thorium (ppm eTh)	

Subscription Research on the local sector of t

Total Count

7.5. LIST OF FINAL PRODUCTS

Two copies of the following colour maps with scanned topographic underlay were produced:

- Map 1: Flight Path
- Map 2: Total Magnetic Intensity of Tail Sensor (nT)
- Map 3: Reconstructed Total Magnetic Intensity
- Map 4: First Vertical Derivative of Tail Sensor (nT/m)
- Map 5: Measured Lateral Magnetic Gradient (nT/m)
- Map 6: Measured longitudinal Magnetic Gradient (nT/m)
- Map 7: Total Count
- Map 8: Potassium
- Map 9: Uranium
- Map 10: Thorium
- Map 11: Ternary Radiometrics
- Map 12: XDS VLF-EM Vcx Line
- Map 13: XDS VLF-EM Vcx Line (Vertical Derivative)
- Map 14: XDS VLF-EM Vcp Ortho
- Map 15: XDS VLF-EM Vcp Vertical
- Map 16: Digital Terrain Model (metres)

The following digital products were produced:

- Digital grid archives on CD-ROM in GEOSOFT
- All GEOSOFT MAP files used to generate the above listed final maps
- Digital Profile Archives on CD-ROM in GEOSOFT GDB format (compatible with 4.1 or higher)

8. SUMMARY

An airborne high sensitivity magnetic, XDS VLF-EM and gamma ray spectrometer survey was performed over the Aerobus Project in northern Ontario, located approximately 65 kilometres northwest of Dryden, Ontario, with 70 metre mean terrain clearance, 100 metre line intervals, 2,000 metre tie line interval, and with data sample points at 8 metres along the flight lines. The base of operations was at Dryden. A high sensitivity magnetic and a GPS base station located at the airport recorded the diurnal magnetic activity and reference GPS time during the survey for adherence to survey tolerances.

The data were subjected to final processing to produce two sets of the following colour maps:

- a) **Magnetics**: total magnetic intensity of tail sensor and first vertical derivative; measured transverse and longitudinal gradients
- b) **XDS VLF-EM**: x, y and z fields
- c) Radiometric: Total Count, Potassium, Uranium and Thorium
- d) Flight Path and Digital Terrain Model

All data have been archived as Geosoft database (GDB); all MAP and GRID files used to make the maps and this report are included in the archive.

The database, profile data and maps can be used along with any other existing geophysical data and geological information to design or augment an ongoing exploration program.

Respectfully Submitted,

Min

Charles Barrie, M.Sc. Vice President Terraquest Ltd.

9. APPENDICES

9.1. APPENDIX I - CERTIFICATE OF QUALIFICATION

I, Charles Barrie, certify that I:

- 1) am registered as a Fellow with the Geological Association of Canada and work professionally as a geologist,
- 2) hold an Honours degree in Geology from McMaster University, Canada, obtained in 1977,
- 3) hold an M.Sc. in Geology from Dalhousie University, Canada, obtained in 1980,
- 4) am a member of the Prospectors and Developers Association of Canada,
- 5) am a member of the Canadian Institute of Mining, Metallurgy and Petroleum,
- 6) have worked as a geologist for over twenty eight years,
- 7) am employed by and am an owner of Terraquest Ltd., specializing in high sensitivity airborne geophysical surveys, and
- 8) have prepared this operations and specifications report pertaining to airborne data collected by Terraquest Ltd.

Markham, Ontario, Canada

Signed

Ma

Charles Q. Barrie, M.Sc. Vice President, Terraquest Ltd.

9.2. APPENDIX II – DAILY LOG

18 JUNE 2008

Arrived in Dryden around 5pm and set-up the base stations same day. I'm recording some sample data.

19 JUNE 2008

Flight 006: Completed a RADAR Altimeter Test (100ft to 1000ft). I completed both a Calibration and Contractual FOM.

I Started survey on Delta Uranium's Aerobus Block, completing all control lines. I also did 2 water lines. The repeat line is 2220.

Base Station: The base stations are running fine;

Notes:

My FOM was no good. I have to fly another FOM tomorrow

Tomorrow morning I will open up the wingtip boom where the sensor lies and make sure it isn't loose. I'll also check inside the wing for anything moving around. I also have to do another FOM.

EM: I adjusted the LF channel on the EM this afternoon.

Tomorrow morning I will see what kind off effects the engines have on the LF channel.

20 JUNE 2008

Flight 007: Completed two FOMs: one on survey headings and one on cardinal headings.

Base Station: The base stations are running fine; nothing further to report.

EM: The LF channel does not saturate on engine-start-up. This is good.

Notes:

This morning before my flight I opened up the left wingtip pod to check the mag sensor for orientation and to see if it got loose. The mag sensors on the left and right are fine. I adjusted the left one by a degree or

The magnetic values of both mags remain similar.

21 JUNE 2008

Flight 008: Completed three FOMs: I used the LSQ from FOM1 for the Contractual FOM. It was hard to get a gradient less than 300nT. A simulation box gave me less than 100nT, but when I did the Calibration FOM, the gradient rose to 300nT or more. The LSQ from FOM1 was the only solution out of three FOMs (So 6 solutions) that had acceptable residual noise over the entire block.

Base Station: The base stations are running fine; nothing further to report.

EM: I haven't flown survey yet with the new gain setting on the LF channel. (I doubled the voltage while sitting on the ground, using ground power.)

Notes: Carolyn called me and confirmed my FOM was good to go. I can survey tomorrow. We plan to get 2 flights done.

22 JUNE 2008

Flight 009: Completed lines 4100 to 3660 inclusive; nothing to report.

Flight 010: Completed lines 3650 to 3280 inclusive; I noticed I wasn't getting Omnistar Differential Correction near the end of our flight. I investigated this and Omnistar released new frequencies on July 02 2008. We have differential GPS on XKS once more. I changed our frequency from 1530.359 to 1557.845. bps remain the same (1200).

Base Station: The GEM base station acted funny today. First, it couldn't lock onto a GPS signal. I changed the cable, which seemed to solve the problem; however, upon looking at the data it seems that instead of GPS timestamps it used record numbers.

Notes:

Tomorrow Jim is going to Sioux Lookout for a 50hr inspection. While he's gone I have to troubleshoot the GEM base station

23 JUNE 2008

I took the van into Canadian Tire. The diagnosis on the van is a coil not firing and spark plug failure. Jim left Dryden this morning and returned from Sioux Lookout this evening. There was nothing changed on the aircraft. A 50 hr inspection includes an oil change.

24 JUNE 2008

Weather conditions this morning prevented us from flying: it rained all night and there was a system right over our block. This afternoon winds kicked up to, gusting to, 25kts.

We picked Bob Beaulac today. Tomorrow morning Jim's going to go out for a few circuits around the airport with Bob before Jim gets out and I hop in.

Base Station: The base GEM base station has GPS again. I don't know why it had a problem last time we flew. The original cable I was using had a BNC to TNC adapter on it. After 'ringing' the cable to makes sure the shield wasn't touching the conductor, I replaced the BNC end with a TNC connector, eliminating the adapter.

25 JUNE 2008

Flight 011: Completed lines 3270 to 2990 inclusive; nothing to report.

Base Station: The base stations are running fine; nothing further to report.

Notes: We couldn't fly this morning due to weather. Jim took Bob up in the plane for a few circuits around the airport so Bob could re-familiarize himself with the aircraft. Bob and I did the flight this afternoon.

26 JUNE 2008

Flight 012: Completed lines 2980 to 2720 inclusive; nothing to report. **Flight 013:** Completed lines 2710 to 2570 inclusive; nothing to report.

Base Station: The base stations are running fine; nothing further to report. **Notes:** I found out today the EM Vertical channel is not responding correctly. After my two flights today I opened up the EM Console to adjust the LF Gain back to its original setting when I first arrived in Dryden. Originally, it was approximately -0.850v. This is what I have now.

27 JUNE 2008

We did not fly due to weather today. I did troubleshoot the EM however.

VERT I/P & O/P wires are fine... they are soldered.

The cut resistor was on the auxiliary board on the VERT channel.

I found a loose GND wire on VERT on the auxiliary board. I soldered it directly to Pin 6 on LMC6081 (I followed the PCB trace).

I re-tuned the LF Gain as the voltage was a little low... it is now at -0.850v.

During my ground test I noticed that ORTHO was saturated at -3VDC or more. Paul says that is OK since we're on the ground. In the air it doesn't saturate.

28 JUNE 2008

Today is a weather day. Pat buses into Dryden today around 5pm.

29 JUNE 2008

Flight 014: Completed lines 2430 to 2010 inclusive; except line 2090 because I used it for the water line; nothing further to report.

Flight 015: Completed lines 2000 to 1680 inclusive; nothing further to report.

Base Station: The GEM base station is doing something weird. I always remove the files from the GSM-19 every night after downloading and backing-up the data. Today, however, it created more than 1 file. It had one file with only records, one file had 1 reading with GPS time @ 000nT, and one had data with GPS time.

30 JUNE 2008

Flight 016: Completed line 2090 and line 1680 to 1210 inclusive; nothing further to report. **Base Station:** The base stations are running fine today. The GEM did not act up; it did not create more than one file.

01 JULY 2008

Flight 017: Pat completed some lines: 1200 to 1150 inclusive; **Base Station:** The base stations are running fine today.

02 JULY 2008

Flight 018: I completed lines 10 to 230 inclusive; weather moved in on our block. The weather kept us from flying for the remainder of the day. **Base Station:** The base stations are running fine today.

03 JULY 2008

Flight 019: Since we flew so late in the day and it is a short flight, Pat went up. He completed about 25 lines (3 hours) **Base Station:** The base stations are running fine today.

Base Station: The base stations are running fine today.

04 JULY 2008

Flight 020: Completed lines 540 to 990 inclusive; I logged WinDaq. **Base Station:** The base stations are running fine; nothing to report. **Notes:** I went up with Bob this morning for our four-hour flight

05 JULY 2008

Flight 021: Pat completed 26 more lines Base Station: The base stations are running fine; nothing to report.

06 JULY 2008

Flight 022: I completed lines 530, 2440 to 2560 inclusive, and lines 4880 to 4410 inclusive. **Base Station:** The base stations are running fine; nothing to report. **Notes:** Winds gusting 27kts and rain on the block prevented a second flight today.

07 JULY 2008

Flight 023: Pat completed the remaining traverse lines on the extended block. B269EX—L.NME. He completed a 4 hour flight.

Base Station: The base stations are running fine; nothing to report.

Notes: There's a 100 hour inspection in 7.7 hours. Bob says he needs 4 hours to get to Buttonville, so that leaves us with 3.7 hours. This is enough to do the remainder of the control lines and some re-fly lines.

08 JULY 2008

We could not fly today. It rained most of the day.

09 JULY 2008

Flight 24: A pre-flight sample check was performed. Flew and completed all tie lines and reflights. Survey completed. A post-flight sample check was performed. We also took down the base stations, uploaded the data, and placed all videos onto CD's. Three copies of each CD were created for backup.

9.3. APPENDIX III – FIGURE OF MERIT

	FOM INDEX :C-GXKS - FLIGHT XKS008 21 JUN 2008 / DRYDEN,ON													
	FOM TEST #4 - SET "A"													
	MAG 1													
DIR														
	FLG		MAX	MIN	MAX	MIN	MAX	MIN						
N	*	9010	0.10	-0.14	0.05	-0.05	0.01	-0.06		0.24	0.10	0.07	0.41	
E		9020	0.03	-0.08	0.01	-0.04	0.02	-0.03		0.11	0.05	0.05	0.21	
s	*	9030	0.06	-0.06	0.02	-0.04	-0.01	-0.07		0.12	0.06	0.06	0.24	
W		9040	0.06	-0.16	0.04	-0.04	0.05	-0.05		0.22	0.08	0.10	0.40	
									SUM	0.69	0.29	0.28	1.26	
									FOM	1.26				
							FÓ	MTRAVE	RSE ONLY	0.65	(x2:	1.30)	

	MAG 2													
DIR	TRAV	LINE	PIT	PITCH		ROLL		YAW		Р	R	Y	SUM	
	FLG		MAX	MIN	MAX	MIN	MAX	MIN						
N	*	9010	0.03	-0.04	0.06	-0.02	0.08	-0.04		0.07	0.08	0.12	0.27	
E		9020	0.05	-0.04	0.02	-0.06	0.05	-0.02		0.09	0.08	0.07	0.24	
s	*	9030	0.05	-0.06	0.02	-0.03	-0.01	-0.07		0.11	0.05	0.06	0.22	
W		9040	0.08	-0.10	0.03	-0.08	0.05	-0.05		0.18	0.11	0.10	0.39	
									SUM	0.45	0.32	0.35	1.12	
									FOM	1.12				
							FC	MTRAVE	RSE ONLY	0.49	(x2:	0.98)	

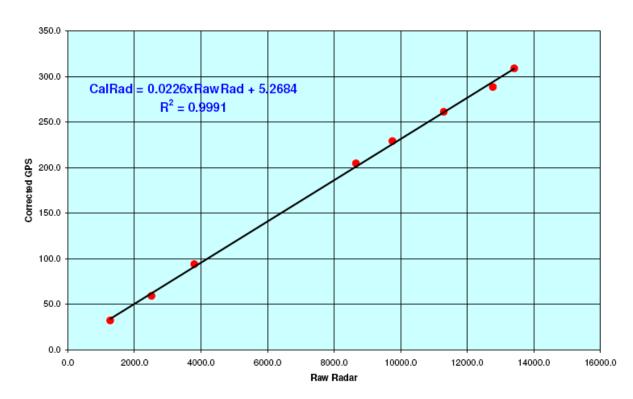
	MAG 3													
DIR	TRAV LINE PITCH		RO	ROLL YAW				Р	R	Y	SUM			
	FLG		MAX	MIN	MAX	MIN	MAX	MIN						
N	*	9010	0.03	-0.13	0.02	-0.05	0.00	-0.03		0.16	0.07	0.03	0.26	
E		9020	0.02	-0.07	-0.01	-0.03	0.02	-0.03		0.09	0.02	0.05	0.16	
s	*	9030	0.05	-0.05	0.00	-0.02	0.01	-0.02		0.10	0.02	0.03	0.15	
W		9040	0.05	-0.11	0.03	-0.03	0.03	-0.03		0.16	0.06	0.06	0.28	
									SUM	0.51	0.17	0.17	0.85	
									FOM	0.85				
							FC	MTRAVE	RSE ONLY	0.41	(x2:	0.82)	

9.4. APPENDIX IV – RADAR ALTIMETER CALIBRATION

B269: RADAR CALIBRATION DATA SUMMARY Calibration performed 19 JUN 08, Flight XKS006 (DRYDEN, ON)											
INTERCEPT 5.2684 SLOPE 0.022624											
LINE	RAW RADAR	GPS ALT	CORRECTED GPS ALT	RAW RADAR	CALIBRATED RADAR	ERROF					
Ground Ref		412.1	0.0								
L80100:6	1276.0	444.4	32.3	1276.0	34.1	1.8					
L80200:6	2515.0	471.4	59.3	2515.0	62.2	2.9					
L80300:6	3800.0	506.2	94.1	3800.0	91.2	-2.9					
L80600:6	8657.0	616.8	204.7	8657.0	201.1	-3.6					
L80700:6	9755.0	641.3	229.2	9755.0	226.0	-3.2					
L80800:6	11296.0	673.3	261.2	11296.0	260.8	-0.4					
L80900:6	12772.0	700.7	288.6	12772.0	294.2	5.6					
L81000:6	13413.0	721.1	309.0	13413.0	308.7	-0.3					

Radar Altimeter Calibration

* Error estimated as (Calibrated Radar) - (Corrected GPS Alt)


Terraquest LTD

Terraquest LTD

Radar Altimeter Calibration

08/12/2008

08/12/2008

Radar Altimeter Calibration

Terraquest Ltd., Airborne Geophysical Surveys Contract B-269

9.5. APPENDIX V – COMPTON COEFFICIENTS

RADIATION SOLUTIONS INC.

CALIBRATION SHEET

Customer: Contact:	1 erreques Charles Be				Date: Lieon.:	April 6, 20 GP
Console :	N/A				Job Orden	80#
Detector 1:					Customer PC	PO#
Detector 2:	N'A					
Channels:	1024	ADC Offset: N/A				
	,	U I A2 I	A3	A4	AS	
High Volta	gres 🔗	60 861	684	640	8/1	
-						
Stripping (Fonstant	"this system"	"poor"	-	nommel"	
Alpha		0.276	0.380		0.250	
Beta		0.418	0.430		0.400	
Gairma		0.764	0.920		0.010	
A		0.046	0.090		0.050	
B G		0.003	0.010 0.060		0.003	
6		0.000	0.060	÷.	0.005	
ROI# Channel		IAEA Specificati [keV]	ion	Label		
1	137-937	410-2810		Total Co.		
2	457-523	1370 1570		Potassiur		
3	653 620	1650-1860	· · · · · · · · · · · · · · · · · · ·	Uranium horium		
4	803-937	2410-2810		Destrain	in	
8						
7					and sold the second	
8	553-520	-680 1960		Jranium Up	per U	
ROW	Cs FWHM	Peak	Th EWHN		Peak	
A1	/ 26	221.79	4 01		871.84	
A1 A2	7.73	220.87	4.23		871.73	
A3	7.31	220.56	4.08	· · · · ·	8/2.08	
A4	7.29	220.98	4.07		672.18	
Sum Da	7.40	221.0B	4.10		371.95	
Sum Up	7.30	219.98	4.45		871.21	

			CALI	BRATIO	N SHE	ET	
						Instrument:	RSX-5
Customer: Contact: Console : Detector 1: Detector 2:	N/A 5515	s Barrie				Date: Tech.: Job Order: Customer PO	April 8, 2005 GP SO# PO#
Channels:	1024	ADC	Offset: N/A	5			
High Volta	ges	A1 630	A2 655	A3 595	A4 647	A5 683	
Stripping C		"th	is system"	"poor"		"normal"	
Alpha Beta	Alpha		0.272	0.380		0.250 0.400	
Gamma A B G			0.775 0.049 0.003	0.920 0.090 0.010		0.810 0.060 0.000	
			0.000	0.060		0.003	
RO#	Chann	100 J	IAEA Specifica [keV]	tion	Lab	1022	
1 2 3	137-93 457-52 553-62	3	410-2810 1370-1570 1660-1860		Total Count Potassium K Uranium U		
4 5	803-93	· · · · ·	2410-2810		Thoriu	10.00 Miles	
6 7							
8	553-62	0	1660-1860		Uranium I	Jpper U	
ROI#	Cs FW		Peak	Th FW	M	Peak 872.65	
A1 A2 A3	7.19		221.32 220.71 220.73	4.17 4.29 3.94		872.65 871.38 872.45	
A4 Sum Dn	7.25 7.34		221.44 221.05	4.36 4.19		872.72 872.31	
Sum Up	7.98		219.92	4.47		871.05	
latheson Bivd. E	i, Unit 4. Mis	sissauga 🔹	Ontario Canada L42	(1V4 + Tel (905)	390 1111 • F	ax (905) 890 1964 + e-mail	sales@radiations:

Terraquest Ltd., Airborne Geophysical Surveys Contract B-269

2008/12/09

			CAL	IBRA	TION	SHE	ET	
							Instrument:	RSX-4
Customer Contact: Console : Detector 1 Detector 2 Channels:	Char 5011 5423 8 N/A						Date: Tech.: Job Order: Customer PO	April 4, 200 GP SO#1270 PO#07041
Gnanneis.	1024	-						
High Volta	iges	A1 636	623	A3 665		A4 619	A5	
22000000000000000000000000000000000000	(58)(1-0)			_				
Stripping	Constan		this system" 0.269		380	-	normal" 0.250	
Alpha Beta		-	0.269		430	-	0.400	
Gamma		-	0.747	0.920		0.810		
A			0.043	0.0	090		0.060	
в			0.000	0.1	010		0.000	
G			0.006	0.	060		0.003	
R0#	Chan	189	IAEA Specific [keV]	A.199353255		Labe	1	
1	137-9	202	410-281			Total Co		
2	457-3	22.232	1370-157	17		Potassiur Uranium	22232.5	
3 4	553-6 803-9		1660-186 2410-281	2		Thorium	2.00	
5	000-5	har:	2410 201			Thomas		
6								
7								
8	553-6	320	1660-186	0	Ur	anium Up	pper U	
							1	
ROI#	100000	WHM	Peak	T	A OF	-	Peak	
A1 A2	7.	33	221 61 221 22		4.05		872.16 872.64	
A2 A3		95	220.93	1	4.05	-	872.97	
A4	6.		221.62	-	3.79		871.64	
Sum Dn		05	221.34	1	4.00		872.31	
	-							
						-		
Sum Up								

C-GXKS : RSI TRI-PACK CALIBRATION VALS (from RSI - 04-APR-08)

Channel Definitions:

ROI	CHANN	IEL LIMS	IAEA SP	PEC (keV)	
	START	END	LOWER	UPPER	LABEL
1	137	937	410	2810	Total Count
2	457	523	1370	1570	Potassium
3	553	620	1660	1860	Uranium
4	803	937	2410	2810	Thorium

Calibration results:

Detector ID	Туре	Alpha	Beta	Gamma	A	В	G
5514	RSX-5	0.2760	0.4180	0.7640	0.0460	0.0030	0.0000
5515	RSX-5	0.2720	0.4140	0.7750	0.0490	0.0030	0.0000
5423	RSX-4	0.2690	0.3840	0.7470	0.0430	0.0000	0.0060
Average		0.2723	0.4053	0.7620	0.0460	0.0020	0.0020

APPENDIX VI – ALTITUDE ATTENTUATION 9.6.

TERRAQUEST LTD

ALT

34.0

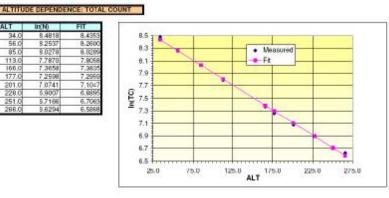
85.0 113.0 166.0 177.0

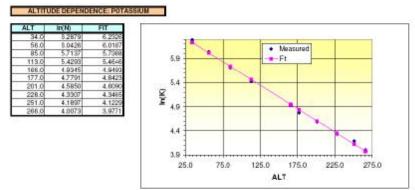
201.0

228.0 251.0

in(N)

9.027 7.787 7.365


116


Radiometric Procedures and Calibrations

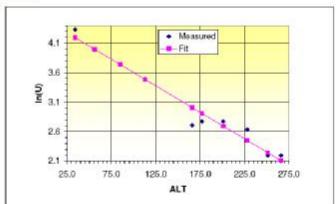
TERRAQUEST C-GXKS / RNS-RSI Config RADIOMETRIC ALTITUDE ATTENUATION CALIBRATION Performed :19 June 2007, Flight XK5006, Dryden, ON Average TC Ior. CPS TH or. CP K (cor. CPS) ш or, CP (metres) 4826. 3842. 3065. 56.0 421.0 54.0 113.0 166.0 177.0 2409.0 1581.0 1422.0 1181.0 993.0 826.0 757.0 228.0 139.0 119.0 33.0 15.0 16.0 80400;8 49 0500% 36 29. 201.0 228.0 251.0 98.0 76.0 66.0 55.0 16.0 268.0 9.0

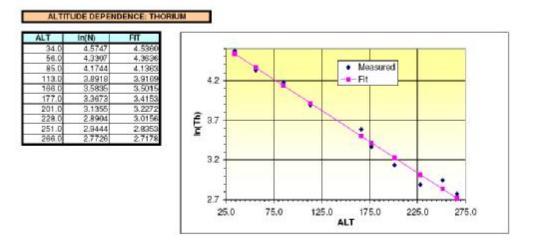
*Average Clearances have been corrected to STP

	ALTITUD	E ATTENUA	TION COEFFI	CIENTS	
	Calculated by L	SO BI to : In	$(N) = ALT^*\mu +$	In(Na) relation	(
1	TC	µ _{tc} =	-0.007968	In(Na)TC =	8.7062
	ĸ	Px =	-0.009722	$\ln(N_0)_{\rm K} =$	8.5822
	U	Put	-0.008989	in(Na)u=	4.5016
1. C	Th	Mage =	-0.007837	In(Na)Th =	4.8025

Altitude Attenuation Coefficients


Page 1/2


08/12/2008


TERRAQUEST LTD

Radiometric Procedures and Calibrations

08/12/2008

9.7. APPENDIX VII – SENSITIVITY FACTORS

Measured Ground Values:								
Exp (TC) : nGy/hr	52.1900							
%K	1.8570							
ppm U	1.2490							
ppm Th	7.8500							

C-GXKS: Ottawa Calibration, Breckendridge Test Line 28 May 2008

 **** Radar Altimeter values adjusted to STP TC,K,U,Th have been stripped with height adjusted values.

Line	Clearanc e (metres)	TC (cps)	K (cps)	U (cps)	Th (cps)	STC (cps/unit)	SK (cps/unit)	SU (cps/unit)	STH (cps/unit)
200	58.0	2919.29	310.39	26.47	76.28		167.15	21.19	9.72
300	84.4	2397.38	245.74	20.52	63.05	45.94	132.33	16.43	
400	114.0	1939.94	189.37	16.41	49.72	37.17	101.98	13.14	6.33
500	145.5	1546.37	139.55	13.41	40.67	29.63	75.15	10.74	5.18
600	180.4	1218.80	101.73	10.91	31.64	23.31	54.78	8.73	4.03
700	206.5	1008.39	83.75	6.36	26.61	19.32	45.10	5.09	3.39
800	234.4	844.55	64.35	6.32	22.24	16.18	34.65	5.08	2.83

		'm"	"b"
Exponential Fit Parameters:	TG	0.9930	83.3623
-	К	0.9911	279.9289
	U	0.9917	34.4941
	TH	0.9930	14.3835

Calculated	Sensitiviti	es	
	CLEARANCE:		70
		ТС	50 .90
		К	149.84
		U	19.20
		TH	8.81

9.8. APPENDIX VIII – RADIOMETRIC COEFICIENTS

R	ADIOMETR	IC CORRECT	FION COEFFI	CIENTS
	AIRCRAF	T: Piper Nav:	ajo 325 (C-G)	(KS)
	RSI RSX /	w 3072 in ³ D	OWN (512 in ⁸	UP)
826	9, Delta Ura	inium Ltd, Diy	/den,ON - Jur	-Jul, 2008
ROI				
		512 CHN #	512 CHN #	(Array indices: 0:511)
	TC	69	469	
	К	229	262	
	U	277	310	
	Th	402	469	
	COSMIC	511	511	
Cosmic Coefficients:		"a"	"b"	
	TC			n/a
	К			
	U			
	Th			
Compton Coefficients:				
	α	0.2723		-from RSI, April 2008
	β	0.4053		
	Y	0.7620		
	а	0.0460		
		El Grad	(0000 40 (2000 D. (ON
Attitude Attenuation:	titude Attenuation: Flight XKS006,19 June 2008, Dryden, ON		e 2008, Dryaen, ON	
	TC	0.007968	m ⁻¹	
	К	0.009722		
	U	0.008989		
	Th	0.007837	m ⁻¹	
Sensitivities (@70 metres)				
	TC	50.90	nGy/hr	-calculated for 70m clearance
	K	149.84	%K	(Breckenridge Test, 28 May 2008)
	U	19.20	ppm eU	
	Th	8.81	ppm eTh	

9.9. APPENDIX IX – README FILE

Terraquest Ltd. Aeromagnetic/Spectrometer/XDS-VLF Survey Project B-269 December, 2008

> for DELTA URANIUM LIMITED AEROBUS PROJECT, Dryden, Ontario

FINAL DATA ARCHIVE

CONTENTS >>>>>

- 1. ARCHIVE INVENTORY
- 2. GEOSOFT OASIS MONTAJ (.GDB, .GBN) DATABASE CONTENTS
- 3. DATA GRIDS
- 4. MAPS
- 5. JPEGS
- 6. README
- 1. ARCHIVE INVENTORY

Inventory of project data files submitted (incl. associated sub-folder name) :

README.TXT

Data\B269ARC.gdb

Grids\TotalMagneticIntensity.grd,.gi Grids\ReconstructedTotalField.grd,.gi Grids\VerticalDerivative.grd,.gi Grids\MeasuredLateralGradient.grd,.gi Grids\MeasuredLongitudinalGradient.grd,.gi Grids\DigitalTerrain.grd,.gi Grids\TotalCount_cps.grd,.gi Grids\TotalCount_gu.grd,.gi Grids\Potassium_cps.grd,.gi Grids\Potassium_gu.grd,.gi

Grids\Uranium_cps.grd,.gi Grids\Uranium_gu.grd,.gi Grids\Thorium_cps.grd,.gi Grids\Thorium_gu.grd,.gi Grids\XDSLine.grd,.gi Grids\XDSLine_VD.grd,.gi Grids\XDSOrtho.grd,.gi Grids\XDSVert.grd,.gi

Maps\FlightPath.map..gm Maps\TotalMagneticIntensity.map,.gm Maps\VerticalDerivative.map,.gm Maps\ReconstructedTotalField.map,.gm Maps\MeasuredLateralGradient.map,.gm Maps\MeasuredLongitudinalGradient.map,.gm Maps\DigitalTerrain.map,.gm Maps\TotalCount.map,.gm Maps\Potassium.map,.gm Maps\Uranium.map,.gm Maps\Thorium.map,.gm Maps\Ternary.map,.gm Maps\XDS Line.map..gm Maps\XDS LineVD.map,.gm Maps\XDS_Ortho.map,.gm Maps\XDS_Vert.map,.gm

Jpegs\FlightPath.jpg,.gi Jpegs\TotalMagneticIntensity.jpg,.gi Jpegs\ReconstructedTotalField.jpg,.gi Jpegs\VerticalDerivative.jpg,gi Jpegs\MeasuredLateralGradient.jpg,.gi Jpegs\MeasuredLongitudinalGradient.jpg,.gi Jpegs\DigitalTerrain.jpg,.gi Jpegs\TotalCount.jpg,.gi Jpegs\Potassium.jpg,.gi Jpegs\Uranium.jpg,.gi Jpegs\Thorium.jpg,.gi Jpegs\Thorium.jpg,.gi Jpegs\XDS_Line.jpg,.gi Jpegs\XDS_Ortho.jpg,.gi

Jpegs\XDS_Vert.jpg,.gi

ReadMe\README.TXT

2. GEOSOFT OASIS MONTAJ (.GDB, GBN) DATABASE CONTENTS

Data is delivered in both Geosoft database (GDB) and Geosoft Binary archive (GBN) formats. Data files

for the AEROBUS LAKE project contain the following channels:

XWIN UTM Easting Zone 15 [WGS 84] World / [NAD83] Canada; Central America; Mexico: USA (ex Hawaii Aleutian Islands) (m) YWIN UTM Northing Zone 15 [WGS 84] World / [NAD83] Canada; Central America; Mexico; USA (ex Hawaii Aleutian Islands) (m) Fiducial (s) RMSFID GPGGA TIME Time (GPS day seconds) RADALT Aircraft Radar Terrain Clearance (m) Aircraft Elevation [WGS 84] World (m) GPGGA ALT GPGGA LAT Latitude [WGS 84] World (decimal degrees) GPGGA LON Longitude [WGS 84] World (decimal degrees) Base Station Diurnal TMI (nT) - Station 1 (Cesium) DIURNAL DIURNAL 2 Base Station Diurnal TMI (nT) - Station 2 (Proton) VMX X-component of Fluxgate Magnetometer (nT) VMY Y-component of Fluxgate Magnetometer (nT) VMZ Z-component of Fluxgate Magnetometer (nT) **TF1UNC** Raw Left Wingtip Sensor Total Magnetic Intensity (nT) Raw Right Wingtip Sensor Total Magnetic Intensity (nT) TF2UNC Raw Tail Sensor Total Magnetic Intensity (nT) **TF3UNC** TF1CMP Compensated Left Wingtip Sensor Total Magnetic Intensity (nT) Compensated Right Wingtip Sensor Total Magnetic Intensity (nT) TF2CMP **TF3CMP** Compensated Tail Sensor Total Magnetic Intensity (nT) Final corrected, levelled Tail Sensor Total Magnetic Intensity (nT) FNLTF3 HGX Measured Lateral Component of Horizontal Magnetic Gradient (nT/m) HGY Measured Longitudinal Component of Horizontal Magnetic Gradient (nT/m) RTF Reconstructed Total Magnetic Field (from measured horizontal gradients) Digital Terrain Model Zone 15 [WGS 84] World / [NAD83] Canada; Central **FDTM** America; Mexico; USA (ex Hawaii Aleutian Islands) (m) SPC DOWN Downward looking 256 channel Radiometric Gamma Ray Spectrum SPC_UP Downward looking 256 channel Radiometric Gamma Ray Spectrum Outside Air Temperature (deg C) TEMP RAWTC Raw Windowed Total Count (cps)

RAWK Raw Windowed Potassium (cps)
RAWU Raw Windowed Thorium (cps)
RAWTH Raw Windowed Uranium (cps)
RAWCOS Raw Windowed Cosmic Channel (cps)
FTC Corrected Total Count, expressed in cps
FK Corrected Potassium, expressed in cps
FU Corrected Uranium, expressed in cps
FTH Corrected Thorium, expressed in cps
STC Corrected Total Count, expressed in ground units (nGy/h)
SK Corrected Potassium, expressed in ground units (%K)
SU Corrected Uranium , expressed in ground units (ppm eU)
STH Corrected Thorium , expressed in ground units (ppm eTh)
LINETOTAL Raw XDS Line component
ORTHOTOTAL Raw XDS Ortho component
VERTTOTAL Raw XDS Vertical component
FNLLIN Processed XDS Line component
FNLLIN_VD Processed XDS Line component (Normalised Vertical Derivative
presentation for improved continuity)
FNLORTHO Processed XDS Ortho component
FNLVERT Processed XDS Vertical component

3. DATA GRIDS

The following Geosoft grids have been supplied for the AEROBUS LAKE project:

TotalMagneticIntensity ReconstructedTotalField VerticalDerivative	25-m cell Calculated Vertical Derivative of measured TMI (nT/m)
MeasuredLateralGradie: (nT/m)	nt 25-m cell Lateral Component of Measured Horizontal Gradient
	Gradient 25-m cell Longitudinal Component of Measured Horizontal
Gradient (nT/m)	
DigitalTerrain	25-m cell Digital Terrain Model (metres)
TotalCount_cps	25-m cell Total Count - counts per second (cps)
Potassium_cps	25-m cell Potassium - counts per second (cps)
Uranium_cps	25-m cell Uranium - counts per second (cps)
Thorium_cps	25-m cell Thorium - counts per second (cps)
TotalCount_gu	25-m cell Total Count - ground units (nGy/h)
Potassium_gu	25-m cell Potassium - ground units (%K)
Uranium_gu	25-m cell Uranium - ground units (eU ppm)
Thorium_gu	25-m cell Thorium - ground units (eTh ppm)

XDSLine XDSLine_VD	25-m cell Processed XDS/VLF LINE EM component 25-m cell Processed XDS/VLF LINE EM component (Normalised Vertical Derivative for improved coninuity)	
XDSOrtho	25-m cell Processed XDS/VLF ORTHO EM component	
XDSVert	25-m cell Processed XDS/VLF VERT EM component	
4. MAPS		
The following map proc	lucts at 1:50,000 scale have been supplied for the AEROBUS project.	
Map images are submit	ted Geosoft 'Packed' Map (viewable with the Oasis montaj viewer	
available as a free down	load from Geosoft).	
-	Flight Path + Claim Boundary overlay superimposed on Topo Base	
TotalMagneticIntensity		
VerticalDerivative	Calculated Vertical Magnetic Derivative Contoured Colour Image,	
Flight Path on Topo Ba	se	
ReconstructedTotalFiel	d Reconstructed Total Magnetif Field (calculated from Horizontal	
Gradients using		
Nel	son Method) Contoured Colour Image, Flight Path on Topo Base	
MeasuredLateralGradie		
Colour Image,	, j	
-	the Path on Topo Base	
-		
MeasuredLateralGradie Colour Image, Flig	nt Measured Lateral (Cross Track) Magnetic Gradient Contoured the Path on Topo Base Gradient Measured Longitudinal (Along Track) Magnetic Gradient	

	Flight Path on Topo Base
DigitalTerrain	Digital Terrain Contoured Colour Image, Flight Path on Topo Base
TotalCount	Total Count Contoured Colour Image (in ground units), Flight Path on
Topo Base	
Potassium	Potassium Contoured Colour Image (in ground units), Flight Path on
Topo Base	
Uranium	Uranium Count Contoured Colour Image (in ground units), Flight Path on
Topo Base	
Thorium	Thorium Contoured Colour Image (in ground units), Flight Path on Topo
Base	
Ternary	Ternary (3 component) Radiometric Image, Flight Path on Topo Base
XDS_Line	XDS/VLF Line Component Contoured Colour Image, Flight Path on
Topo Base	
XDS_LineVD	XDS/VLF Line Component (Vert Derivative enhanced) Contoured
Colour Image,	
	Flight Path on Topo Base

XDS_Ortho	XDS/VLF Ortho Component Contoured Colour Image, Flight Path on
Topo Base XDS_Vert Topo Base	XDS/VLF Vertical Component Contoured Colour Image, Flight Path on
5. JPEGS	
AEROBUS project	products at 1:50,000 scale have been additionally supplied for the in PI JPEG format viewable with virtually any standard graphics/image display
FlightPath TotalMagneticInter	Flight Path + Claim Boundary overlay superimposed on Topo Base nsity TMI Contoured Colour Image, Flight Path on Topo Base
VerticalDerivative	Calculated Vertical Magnetic Derivative Contoured Colour Image,
Flight Path on Topo	o Base
ReconstructedTotal	Field Reconstructed Total Magnetif Field (calculated from Horizontal
Gradients using	
	Nelson Method) Contoured Colour Image, Flight Path on Topo Base
MeasuredLateralGr	adient Measured Lateral (Cross Track) Magnetic Gradient Contoured
Colour Image,	
	Flight Path on Topo Base
	inalGradient Measured Longitudinal (Along Track) Magnetic Gradient
Contoured Colour I	-
	Flight Path on Topo Base
DigitalTerrain	Digital Terrain Contoured Colour Image, Flight Path on Topo Base
TotalCount	Total Count Contoured Colour Image (in ground units), Flight Path on
Topo Base	Determiner Contoured Colour Image (in ground units) Elight Dath on
Potassium Topo Base	Potassium Contoured Colour Image (in ground units), Flight Path on
Uranium	Uranium Count Contoured Colour Image (in ground units), Flight Path on
Topo Base	Granum Count Contoured Colour Image (in ground units), Flight Fath on
Thorium	Thorium Contoured Colour Image (in ground units), Flight Path on Topo
Base	Thoridin Contoured Colour Image (in ground dints), Thght Tati on Topo
Ternary	Ternary (3 component) Radiometric Image, Flight Path on Topo Base
XDS_Line	XDS/VLF Line Component Contoured Colour Image, Flight Path on
Topo Base	
XDS_LineVD	XDS/VLF Line Component (Vert Derivative enhanced) Contoured
Colour Image,	1
	Flight Path on Topo Base

XDS_OrthoXDS/VLF Ortho Component Contoured Colour Image, Flight Path onTopo BaseXDS_VertXDS_VertXDS/VLF Vertical Component Contoured Colour Image, Flight Path onTopo BaseXDS/VLF Vertical Component Contoured Colour Image, Flight Path on

6. README

Copy of the data archive delivery documentation ("README.TXT")

---- Submitted By : -----

Terraquest Ltd. 2-2800 John Street, Markham, Ontario, Canada L3R 0E2

tel. (905) 477-2800 fax. (905) 477-2820 web. <u>info@terraquest.ca</u>

PROC/AD/05.12.2008