

ALTO VENTURES LTD. 2008 DIAMOND DRILLING PROGRAM EMPRESS PROJECT SYINE TOWNSHIP NORTHWESTERN ONTARIO NTS 42D/15

Mike Koziol, P. Geo., P. Eng.

December 31, 2008

SUMMARY

The Empress project is located approximately 100 kilometres west of Hemlo, and 15 kilometres northeast of Terrace Bay in the Syine Township in northwestern Ontario. The property consists of 12 contiguous unpatented mining claims (46 claim units) that cover an area of approximately 736 ha.

A two hole, 332m diamond drilling program was completed in October 2008 to test the Empress Structure, a major northeast trending shear zone that has been traced for more than 1.6 km east of the former Empress Mine. Each of the drill holes intersected quartz veining associated with sheared, altered and sulphide mineralized metasedimentary rocks. Anomalous gold was obtained from each of the drill holes, up to 0.66 g/t Au across 2.3 m in EMP08-02 including 2.04 g/t Au across 0.5m. The drilling confirmed the continuation of the gold mineralized structure to depth at the locations tested.

Based on the results of this program and previous surface work completed to the east along the Empress Structure, diamond drilling is recommended on lines 6+00E and 9+00E where previous trenching confirmed that the Empress Structure is wide and highly anomalous in gold.

TABLE OF CONTENTS

SUMMARY

1.0 INTRODUCTION	
1.1 Location and Access	1
1.2 Physiography	1
1.3 Cultural Features	1
1.4 Property and Tenure	1
1.5 Previous Work	3
2.0 THE 2008 DIAMOND DRILLING PROGRAM	4
2.1 Objectives	4
2.2 Logistics	4
2.3 Drill Hole Descriptions	5
3.0 CONCLUSIONS	7
4.0 RECOMMENDATIONS	7
5.0 REFERENCES	7
CERTIFICATES OF AUTHOR	8
FIGURES	
Figure 1 – Location Map	2
Figure 2 – Claims Map	2
TABLES	
Table 1 List of Claims – Empress Property	3
APPENDICES	
Appendix A – Diamond Drill Hole Logs Appendix B – Gold Assays and ICP Certificates	
MAPS	
Map 1 – Geology and Diamond Drill Hole Locations	in back po

Map 2 – Geological Cross Section EMP08-01 Map 3 – Geological Cross Section EMP08-02 in back pocket in back pocket in back pocket

1.0 INTRODUCTION

1.1 Location and Access

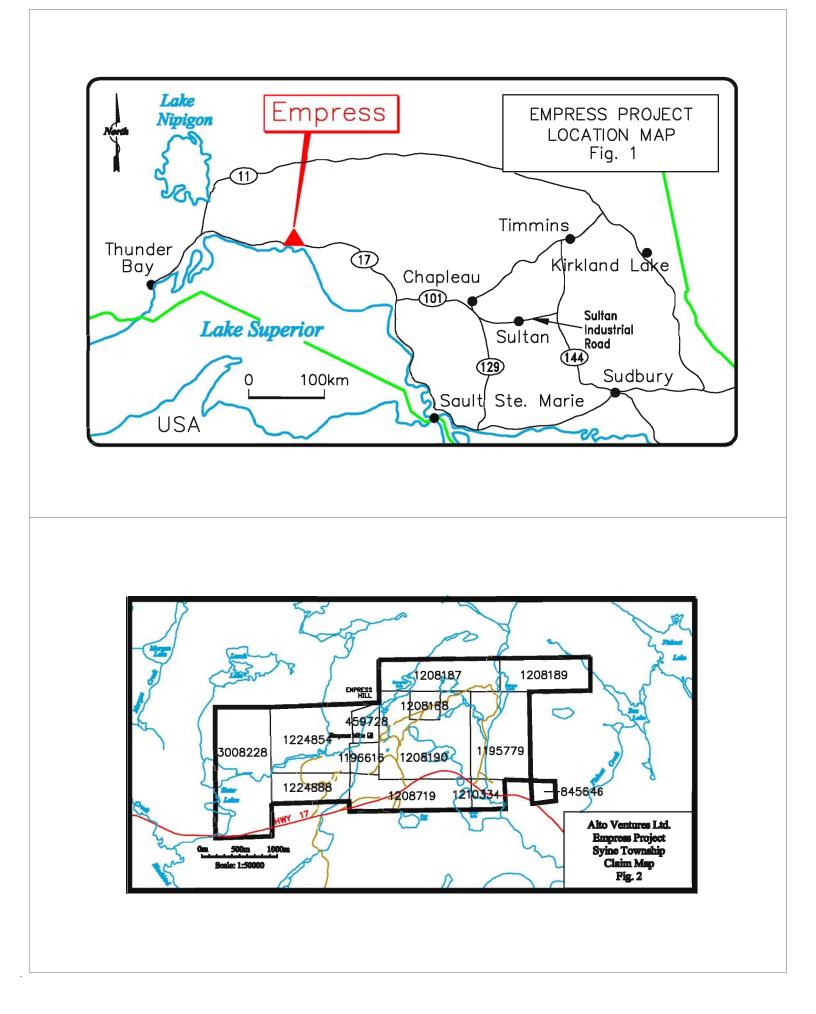
The Empress Project is located approximately 100 km west of Hemlo and 15 km east of Terrace Bay. The property lies in the Syine Township and it is covered by NTS sheet 42D/15.

The Trans-Canada Highway number 17 passes through the south part of the property and old logging and mining roads which are now reduced to ATV trails provide further access to the claims.

1.2 Physiography

Topographic relief on Empress is fairly accentuated, with elevations ranging from 240 m to over 470 m above mean sea level. Steep hills and ridges are commonly flanked by rock cliffs and deep ravines, often occupied by beaver ponds and swamps which predominantly extend in an east-west direction. Locally the Empress Hill rises 410 m above mean sea level and is a dominant feature visible from Highway 17. These topographic features do present some challenges in moving with a diamond drill and should be factored into the planning of future drilling programs.

Vegetation cover is moderate, dominated by spruce, white birch, balsam fir, and small amounts of trembling aspen. Undergrowth is moderate to thick, and consists of mountain maple and young conifers. Low-lying areas in the southwest portion of the property, from the foot of Empress Hill and east towards Christie Lake were clear-cut by logging operations and are now occupied by sparse white birch, young balsam fir, and thick moose maple making prospecting and mapping in these areas difficult and unpleasant.


There is a moderate amount of outcrop on the property, but exposure is commonly masked by the undergrowth and by a cover of moss and detrital material.

1.3 Cultural Features

Cultural features found on the property are mostly related to the past mining activities at the Empress Mine (claim 459728 – not part of the Empress Project) in the early 1900's. These features include old adits and shafts, rock dams and steel water lines, cement foundations, waste dumps, trenches, casings, pipes, and metal debris. More recent features include logging trails and roads and hunting cabins.

1.4 Property and Tenure

The property consists of 12 contiguous unpatented mining claims, for a total of 46 units covering 736 hectares. The claim group lies within the Terrace Bay and Geraldton M.N.R. administrative districts and the Thunder Bay Mining Division, and is represented on claim map G634, Syine Township.

Certain parts of the property are also held by private individuals who have surface rights. Claims making up the Empress Property are listed in Table 1.

Table 1: L	list of Claims - Em	press rrojec	L	
Claim	Record Date	Units	Township	Surface Rights
1195779	Jul 15/96	6	Syine	
1196616	Mar 28/96	1	Syine	Yes R589
1208187	Feb 13/96	4	Syine	
1208188	May 17/96	1	Syine	Yes R567
1208189	Feb 13/96	3	Syine	
1208190	May 17/96	8	Syine	Yes R567
1208719	Apr 16/96	4	Syine	
1210334	Feb 12/97	1	Syine	
1224854	May 21/96	6	Syine	Yes R589
1224888	Dec 11/96	3	Syine	
3008228	Jul 11/05	8	Syine	
845646	Dec 27/85	1	Syine	

Table 1: List of Claims - Empress Project

1.5 Previous Work

1.5.2 Exploration History

Economic interest within the Schreiber-Hemlo District began in 1851 with the discovery of Canada's first molybdenite occurrence in the Terrace Bay area and subsequently there were several periods when significant work was completed in the project area prior to Alto's current drilling program (Koziol, 2007, Samson, 1999, Schnieders et al., 1996). These Include:

1895 - 1900: The Empress Gold Mining Company was incorporated, and various test shafts, adits and pits were sunk on a series of gold-bearing quartz veins. A 10-stamp mill was erected, and 112 ounces of gold were produced from 1100 tons of ore (calculated aver. of 0.1 oz/t or 3.5 g/t Au). Operations were eventually shut down due to lack of funds.

1936 - 1937: The Empress Consolidated Gold Mines Ltd. was incorporated and signed an option agreement with Czarina Gold Mines in order to extensively re-evaluate the Empress mine. Dozens of trenches now found on the Empress claim block can be attributed to this period of activity.

1984 - 1987: Bell Geological Services conducted a diamond drilling program in 1984 consisting of 1557 m (5106 ft) in 12 holes, testing various anomalies detected in the vicinity of the Ursa Major occurrence (486 m in 4 holes), the Empress Mine (587 m in 4 holes), and along the Empress Structure (483 m in 4 holes). The most encouraging results included 44.23 g/t over 0.61 m (ddh 441-84-8), the presence of visible gold in ddh 441-84-1, and several sub economic intersections hosted by a "carbonatized sericitic

shear" coincident with the Empress Structure. Another follow-up program further testing the Empress Structure was completed in 1987 (1674 m in 10 holes); The drill logs for this last program were submitted for assessment with the MNDM, but the corresponding report and assay results were not found.

1998-2005: Cameco Gold Inc. (a subsidiary of Cameco Corporation (Cameco) acquired the property in 1998 and started work in 1999. Cameco's 1999 program involved an intensive review of the southern portion of the property including line cutting and geological mapping. The mapping program was followed by the stripping of eight historical trenches distributed over a strike length of 1.4 km to the east of the former Empress Mine. The stripped areas were mapped and 308 channel samples were collected. To enhance the understanding of the Empress system, 8.8 km of dipole-dipole IP was conducted on selected grid lines at locations northeast and southwest of the Empress Mine. Twelve diamond drill holes totaling 1800 metres drilled previously by Micham Resource in 1984 and 1987 were re-logged and re-sampled. In 2000, Cameco performed a geological survey and bulk till sampling program to follow-up previous year's results and to further explore the property (McCracken, 2000). The property lay dormant since.

Alto Ventures Limited purchased the property from Cameco Corporation in 2005. In 2006 Alto completed geological work and recommended diamond drilling (Koziol, 2007).

2.0 THE 2008 DIAMOND DRILLING PROGRAM

2.1 Objectives

The objectives of the Alto 2008 program were to drill the Empress Structure on lines 1+00E and 2+00E to undercut the mineralization found in surface trenches and intersected in previous drilling.

The Empress Structure is a zone of shearing and deformation that has been previously exposed by trenching and stripping at various locations for more than 1.6 km to the east of the former Empress Mine (Samson, 1999). The most sheared portion of the structure varies from less than 15 to 25 m in width, and strikes slightly oblique to stratigraphy, at 070° azimuth, dipping variably to the south from 90° to less than 50°. Host rocks to the Empress Structure are a sequence of fine grained to cherty metasedimentary rocks bound to the northwest and southeast by mafic flows and locally fine gabbroic intrusives (Koziol, 2007).

2.2 Logistics

The 2008 diamond drilling was carried out under contract to Cobra Diamond Drilling Ltd of Sudbury. The drill mobilized to the property on September 29 and demobilized on

October 6. Two NQ-size holes totaling 332 m were drilled. Field operations were supervised by Richard Lumb, Junior Geologist employed by Alto Ventures under the direction of Mike Koziol P. Geo.

The drill crews and Alto personnel were housed at the Red Dog Inn Hotel in Terrace Bay, approximately 14 km from the property. Access to Terrace Bay and to the property was gained by pick up trucks with 4 wheel drive capability. After the drilling was completed, the drill cores were transported to Alto's core logging and sampling facilities in Beardmore. The core was later logged and sampled in October and November by Richard Lumb and Mike Koziol. The NQ-size cores selected for analyses were sawed in half and one half was delivered to a commercial laboratory by Alto staff for analyses and the other half retained for future reference at Alto's core storage yard in Beardmore.

Gold assays were performed at Accurassay Laboratories in Thunder Bay, Ontario. The gold assaying method uses a standard Fire Assay with AA finish technique on a 30 gram sub-sample taken from a 500 gram split from the submitted sample. Commercially prepared standards were inserted by Alto every 25 samples to ensure precision of the results. The laboratory ran internal check assays every 10 samples to ensure lab quality control. Any sample that returned >1 g/t gold was automatically re-sampled from the reject and re-sample assayed to confirm the gold content. The results reported represent the weighted average of all analyses performed on each sample. The samples were also tested for other using ICP scan methods. In total, 62 samples were analyzed for gold and other elements and 25 of the original sample rejects were re-analyzed for gold to check for "nugget effect".

A property visit was carried out in early September to spot drill collars for the current program and examine the terrain and determine what influence the rugged topography will have on locating specific drill holes for this and future drill campaigns. The topography is very rough and access for drilling the northeastern sections of the Empress Shear is best gained during the winter months along frozen swamps and creeks that trend sub-parallel to the Empress Structure.

2.3 Drill Hole Descriptions

EMP08-01

EMP08-01 intersected bedrock at 15.0 m. From 15.0 to 81.2 m the hole cut through a sequence of mafic volcanic flows, fine grained gabbro dykes and interflow sedimentary units. A sequence of interflow metasedimentary rocks was intersected from 81.2 to 104 m including finely bedded clastic beds interbedded with cherty units. The main mineralized zone was intersected from 104.0 to 124.46 and is made up of finely laminated cherty rocks interbedded with fine beds of clastic sedimentary rocks. On average this zone contains 5% pyrite mainly as fine disseminated crystals and locally as stringers and clusters of coarse pyrite occurring parallel to a foliation which ranges from 60° to 85°. Areas of most interest include three main veins occurring from 106.45 to

107.37 (Vein 1); 112.93 to 115.1 (Vein 2); and 115.76 to 116.9 (Vein 3). The areas between the larger veins include narrow (<10 cm wide) quartz veins and sections containing up to 10% pyrite. The section from 116.8 to 124.46 includes 20% quartz veining, mainly as narrow veins except from 122.28 to 122.61 m which includes 85% quartz vein material and 5% pyrite as massive clusters near the upper contact of the vein and as fine disseminated pyrite grains throughout the rest of the interval. Veins also contain inclusions of fine black biotite and carbonate. A fault gouge zone was intersected from 124.46 to 124.83 m. From 124.83 the hole remained in mainly mafic flows to 163 m where it was terminated.

Vein 1 includes pyrite, chalcopyrite and galena all occurring as clusters focused along fractures in the vein. Locally the vein is vuggy with fine galena and pyrite occurring in the vugs. Vein 2 is a composite vein made up of a massive white quartz that is intruded by coarser pegmatitic quartz veins; the widest pegmatitic vein is 0.6m wide. Vein 2 is mostly barren of sulphide mineralization except for few clusters of chalcopyrite and pyrite in the massive white quartz which forms only 30% of this interval.

Vein 2 and Vein 3 are separated by silicified (chert) finely banded rock containing 5% fine disseminated pyrite and 10% quartz veining with pyrite clusters in the quartz veins.

Vein 3 is a massive white quartz vein with few clusters of chalcopyrite and pyrite including a 2 cm band in the centre of the vein that contains 5% chalcopyrite and 5% pyrite.

Anomalous gold values were obtained in both the quartz veins and the altered and sulphide mineralized metasedimentary rocks that host the veins. Some of these anomalous areas include 0.49 g/t Au across 1.0 m from 106.35 to 107.35m; 0.46 g/t Au across 0.95m from 111.35 to 112.3m; and 0.21 g/t Au across 2.1m from 119.5 to 121.6m.

EMP08-02

EMP08-02 intersected bedrock at 18.5 m. From 18.5 to 29.0 m the rock is very blocky, sheared and weathered and it was necessary to ream casing to that depth. A sequence of mafic flows interbedded with metasedimentary rocks was intersected from 18.5 to 108.5 m. This sequence is intruded by several fine grained gabbroic units.

The main zone of veining starts at 108.5m and continues to 113m consisting of 40% quartz veins that are up to 0.3m wide and areas of silica flooding. Impressive light-tan sericite, apple green chlorite (fuchsite ?), green chlorite, epidote, hematite and locally wisps of "chamois" coloured sericite form the alteration package associated with this zone. Veins also contain clusters of pyrite, chalcopyrite and galena. Hematite alteration is weak and occurs along fractures in the wall rocks but not in the veins. Sulphide mineralization averages 5% over this mineralized interval.

The interval from 113.0 to 122.5 m is dominated by bedded clastic sedimentary rocks and mafic flows are dominant from 122.5 to 169 m. The hole ends at 169 m. A fault

gouge zone occurs from 117.4 to 118.0 m.

Anomalous gold occurs in the upper part of the main mineralized zone including the section from 108.5 to 110.8 m averaging 0.66 g/t Au across 2.3m. This section includes 2.04 g/t Au across 0.5m.

3.0 CONCLUSIONS

Two diamond drill holes totaling 332 m of drilling were completed to test the Empress Structure on Alto's lines 1+00E and 2+00E, east of the former Empress Mine. Each of the drill holes intersected quartz veining associated with sheared, altered and sulphide mineralized metasedimentary rocks. Anomalous gold was obtained from each of the drill holes up to 0.66 g/t Au across 2.3 m in EMP08-02 including 2.04 g/t Au across 0.5m.

The drilling confirmed the continuation of the gold mineralized structure to depth at the locations tested.

4.0 RECCOMENDATIONS

Based on the results of this program and previous surface work completed to the east along the Empress Structure, diamond drilling is recommended on lines 6+00E and 9+00E where previous trenching confirmed that the Empress Structure is wide and highly anomalous in gold.

5.0 **REFERENCES**

Koziol, M., 2007: Alto Ventures Ltd, 2006 Exploration Program, Empress Project, Syine Township Northwestern Ontario, NTS 42D/15, Unpublished Company Report.

McCracken, T. 2000: Cameco Gold Inc., 2000 Summer Exploration Program, Empress Project, Syine Township and Santoy Lake Area, Northwestern Ontario, NTS 42D/15. Unpublished Company Report.

Samson, J. 1999: Cameco Gold Inc. 1999 Exploration Program Empress Project, Syine Township and Santoy Lake Area, Northwestern Ontario, NTS-42D/15. Unpublished Company Report.

Schnieders, B.R., Smyk, M.C., Speed, A.A. and McKay, D.B. 1996: Mineral occurrences in the Nipigon-Marathon area, Volumes 1 and 2; Ontario Geological Survey, Open File Report 5951, 912p.

CERTIFICATES

I, Marian (Mike) Koziol, P. Geo., P. Eng., resident at 26 Cognac Court, Sudbury, Ontario, P3E 6L4 do hereby certify that:

1. I am currently employed as President and CEO by Alto Ventures Ltd.

2. I graduated from McGill University, Montreal, Quebec with a B.Sc. degree in Geological Sciences in 1978.

3. I am a licensed member of the Professional Engineers of Ontario (No. 100026045) and a licensed member of the Association of Professional Geoscientists of Ontario (No. 1009). I am also a member of the Association of Professional Engineers and Geoscientists of Saskatchewan (No. 05638).

4. I have worked continuously as an exploration geologist since my graduation, exploring for gold and base metals deposits in the Canadian Shield including the Churchill Province of Saskatchewan and Manitoba and the Superior Province of Manitoba, Ontario and Quebec.

5. I have read the definition of "Qualified Person" as set out in National Instrument 43-101 and certify that I fulfill the requirements to be a Qualified Person for the purposes of NI43-101 by reason of my education, relevant past work experience and affiliation with professional association as defined in NI43-101.

6. I have personally worked on the Empress property and supervised the programs described in this report.

8. As of the date of this certification, I am not aware of any material fact or change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

9. I do not hold a direct interest in the property but I do own shares of Alto Ventures Ltd and am an Officer and Director of the Company and for the purposes of this report I am not an independent Qualified Person as defined by Section 1.5 of NI43-101.

Original Signed in Sudbury, Ontario on this 31st day of December, 2008

Marian (Mike) Koziol, P. Geo., P. Eng

APPENDIX A

Diamond Drill Hole Logs

lan 05, 2009		Alto	Ventures Ltd.			DETAI	LED LO	G								Pag	ge 1 of 4
Hole Number:	EMP08-01														Uni	ts: METRIC	
Project Name: Project Numbe Location: Date Started: Date Complete Logged By: Comments: Tes cample Ave	er: Empre Surfac Sep 29 ed: Oct 02 Richar st Empress	ss e 1, 2008	I+00E	Primary Coordinates North: 5412060.00 East: 501718.00 Elev: 300.00 Collar Survey: N Multishot Survey: N Pulse EM Survey: N	Ho	ugged: N ble Size: NC	t in Hole		Ni Ei Ci	eld Coord orth: 0.0 ast: 0.0 ev: 0.0 ontractor: ore Storag	00 00 00 Cobr	Grid: ra Drilling e Shed			Collar Di Collar Az Length: Start Dej Final Dej	:: 3 1 oth:	-50.60 332.50 163.10 0.00 163.10
	Azimuth	Dip Decimal Type -50.60 ezShot -49.90 ezShot		Comments			Depth 50.00 151.00	Azimuth Decimal 333.10 331.10	Dip Decimal -49.70 -48.80	Test Type ezShot ezShot	Flag OK OK			Comment	s		
Detailed Lit	hology	·	· ·						•	Assay Da	ata						
From	То		Lithology			Sample Num	ber	From	То	Le	ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb pp
0	15.00	OB, Overburden														•	
15.00	21.50	5bc, chert								-							
21.50	22.10	11c, chlorite schi	ist														
22.10	26.20	5bc, chert															
26.20	70.00	1, mafic volcanics	s														
70.00		70.000 - 124.830 Sheared sediment															
71.40		7b, diorite															
78.75		1, mafic volcanics	s			689573				1.30	1.00	0.0110	1	0.5000	241.0000	224.0000	
81.20		Mineralization	0 : Structure: FOL, Core Axi 0 : , Py: 2.0, Style: Stringers	s: 50		689574 689576				2.30	1.00 0.50	0.0150		0.5000 0.5000	581.0000 96.0000	289.0000 8.0000	
82.70	00 40	11c, chlorite schi				689577			.80 8	3.40	0.60	0.0050		0.5000	101.0000	8.0000	0.

DETAILED LOG

Hole Number: EMP08-01

Jan 05, 2009

Detailed Li	thology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
83.40	84.90	5, sediment	689578	83.40	84.30	0.90	0.0080		2.0000	137.0000		0.50
			689579	84.30	85.40	1.10	0.0060		0.5000	459.0000	172.0000	0.50
84.90	87.30	5bc, chert	689580	85.40	86.40	1.00	0.0140		0.5000			0.50
			689581	86.40	87.40	1.00	0.0150		0.5000	1360.0000	304.0000	0.50
87.30	92.25	5, sediment										
92.25	93.75	5bc, chert										
93.75	104.05	5, sediment										-
		Structure										
		93.750 - 104.050 : Structure: FOL, Core Axis: 65										
104.05	106.45	5bc, chert	689582	105.10	106.35	1.25	0.0920		0.5000	793.0000		0.50
		very fine chery siltstone, finely laminated	689583	106.35	107.35	1.00	0.4770	0.5070	25.0000	1396.0000	2296.0000	3539.00
		Structure 104.050 - 106.450 : Structure: FOL, Core Axis: 70										
		Mineralization										
		104.050 - 106.450 : , Cp: 1.0, Py: 2.0, Style: Disseminated										
		Veining										
		106.350 - 107.370 :% Veining: 80, QTZ: 100, Vein Type: Mass										
		grey white, fractured, 5% sulphides mainly cp, gn and lesser py										
106.45	107.37	10, quartz vein	689584	107.35	108.35	1.00	0.0740	0.0770	0.5000	2214.0000	204.0000	14.00
		Slightly haematitic quartz vein with chalcopyrite, pyrite and galena in disseminated clots										
		Mineralization										
		106.450 - 106.800 : , Cp: 6.0, Gn: 2.0, Style: Disseminated/Blebby										
107.37	108.35	5bc, chert										
		Upper part of interval is mainly chert and towards bottom consist of chert interlayerd with siltstone										
		Mineralization										
		107.370 - 112.930 : , Py: 5.0, Style: Disseminated										
108.35	108.50	10, quartz vein	689585	108.35	109.35	1.00	0.0590	0.0780	0.5000	1996.0000	153.0000	0.50
		Veining										
		108.350 - 108.500 :% Veining: 95, QTZ: 100, Vein Type: Mass										
108.50	110.39	5ac, siltstone	689586	109.35	110.35	1.00	0.0400			228.0000		0.50
		silttone interlayered with fne chert beds	689587	110.35	111.35	1.00	0.0370	0.0320	0.5000	834.0000	37.0000	1.00
		Structure 108.500 - 110.390 : Structure: FOL, Core Axis: 70										

Page 2 of 4

DETAILED LOG

Hole Number: EMP08-01

Jan 05, 2009

Detailed Lit	thology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
110.39	110.51	10, quartz vein Veining 110.390 - 110.510 :% Veining: 95, QTZ: 100, Vein Type: Mass				LI				1	1	
110.51	111.96	5ac, siltstone siltstone interlayered with chert	689588 689589	111.35 111.85	111.85 112.30		0.1050 0.9330	0.1070 0.7100	0.5000 0.5000			0.500 1.000
111.96	112.16	10a, quartz-carbonate vein Veining 111.960 - 112.160 :% Veining: 80, Ank: 20, QTZ: 80, Vein Type: Mass										
112.16	112.93	5bc, chert Mainly chert interlayered with siltstone beds	689590 689591	112.30 112.90	112.90 113.90		0.1100 0.0140	0.0750 0.0190	0.5000		38.0000 795.0000	0.500 7.000
112.93	115.09	10a, quartz-carbonate vein Mineralization 112.930 - 115.090 : , Cp: 1.0, Py: 2.0, Style: Disseminated/Blebby Veining 112.930 - 115.090 :% Veining: 95, Ank: 5, QTZ: 95, Vein Type: Mass dirty-white vein intruded by coarser pegmatitic qtz vein, white vein contains clusters of py and minor cp	689592 689593	113.90 114.90	114.90 115.90		0.0370 0.1060	0.0610 0.0980	0.5000 0.5000			2.000
115.09	115.24	5bc, chert										
115.24	115.34	10, quartz vein Mineralization 115.240 - 115.340 : , Py: 10.0, Style: Blebby Veining 115.240 - 115.340 :% Veining: 95, QTZ: 100, Vein Type: Mass										
115.34	115.76	5bc, chert Mineralization 115.340 - 115.760 : , Py: 5.0, Style: Fine Grained very fine disseminations			·							
115.76	116.90	10, quartz vein with very minor carbonate Mineralization 116.350 - 116.380 : , Cp: 5.0, Py: 5.0, Style: Disseminated/Blebby Veining 115.760 - 116.900 :% Veining: 95, QTZ: 100, Vein Type: Mass massive white vein, fractured, contains minor py and cp	689594 689595	115.90 116.60	116.60 117.10		0.0800	0.0790 0.0080	2.0000			0.5000

Page 3 of 4

DETAILED LOG

Hole Number: EMP08-01

Jan 05, 2009

etailed Lit	hology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppn
116.90	119.05	5bc, chert	689596	117.10	118.00	0.90	0.0860	0.0960	0.5000	92.0000	91.0000	0.5
		Sequence of fine grained greywacke interbeded with siltstone and less frequently	689597	118.00	118.50	0.50	0.0470	0.0550	0.5000	230.0000	51.0000	0.5
		narrow chert beds	689598	118.50	119.00	0.50	0.0370	0.0420	0.5000	838.0000	190.0000	0.5
		Mineralization	689599	119.00	119.50	0.50	0.0090	0.0170	0.5000	259.0000	63.0000	1.0
		116.900 - 119.050 : , Cp: 1.0, Py: 5.0, Style: Disseminated										
119.05		5aba, greywacke										
		Massive beds of relatively fresh greywacke										
		Mineralization										
		119.050 - 119.450 : , Py: 2.0, Style: Disseminated										
119.45	122.28	5ac, siltstone	689601	119.50	120.20	0.70	0.4100	0.4290	0.5000	1226.0000	245.0000	0.
		Interlayered siltstones with fine grained greywacke and less frequent chert beds	689602	120.20	121.00	0.80	0.1010	0.0900	0.5000	2516.0000	236.0000	0.
		Structure	689603	121.00	121.60	0.60	0.1160	0.1310	0.5000	3323.0000	144.0000	0.
		119.450 - 122.280 : Structure: FOL, Core Axis: 70	689604	121.60	122.30	0.70	0.0550	0.0400	0.5000	337.0000	69.0000	0.
		Mineralization										
		119.450 - 122.280 : , Py: 7.0, Style: Disseminated										
122.28	122.61	10, quartz vein	689605	122.30	123.10	0.80	0.0520		0.5000	1219.0000	381.0000	0.5
		Mineralization										
		122.280 - 122.320 : , Py: 70.0, Style: Semi-Massive										
		122.320 - 124.460 : , Cp: 2.0, Py: 3.0, Style: Disseminated										
		Veining										
		122.280 - 122.610 :% Veining: 85, QTZ: 100, Vein Type: Mass										
		massive white vein, contains band of py clusters near top and minor										
		disseminated cp and py along fractures, contains 10% inclusions of chlorite and biotite										
122.61	124.46	5ac. siltstone	689606	123.10	124.10	1.00	0.0500		0.5000	2338.0000	857.0000	2.0
122.01	-	Fine grained greywacke and silstone beds,	689607	123.10	124.80	0.70	0.0270		0.5000	898.0000	183.0000	2.
124.46		FZ, fault zone	689608	124.80	125.80	1.00	0.0290		0.5000	325.0000	63.0000	4.
127.40		Sheared and carbonate-biotite altered, muddy textured greywacks, fault appears	000000	124.00	125.00	1.00	0.0230		0.0000	525.0000	03.0000	
		to occur parallel to suparallel to foliation/bedding										
124.83	163.00	1, mafic volcanics										
163.00	163.10	EOH, end of hole			· · ·							

Page 4 of 4

Jan 05, 2009	Alto Ventures Ltd.		DETAILED LOG			Page 1 of 6
Hole Number: E	MP08-02				Units: METF	RIC
Project Name:	Empress	Primary Coordinates Grid:	UTM83-17	Field Coordinates Grid:	Collar Dip: Collar Az:	-50.10
Project Number: Location:	Empress Surface	North: 5412102.00 East: 501811.00 Elev: 300.00		North: 0.00 East: 0.00 Elev: 0.00	Length: Start Depth:	323.20 169.00 0.00
Date Started:	Oct 03, 2008	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	169.00
Date Completed: Logged By:	Oct 06, 2008 Richard Lumb/Mike Koziol	Multishot Survey: N Pulse EM Survey: N	Hole Size: Casing: Left in Hole	Core Storage: Mine Site		
Comments: Test	Empress Structure on L2+00E					
Sample Avera	ges					

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments		Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag			Comment	S		
38.00	323.20	-50.10	ezShot	ОК			100.00	325.50	-49.20	ezShot	ОК						
170.00	326.40	-49.00	ezShot	ОК													
Detailed Li	ithology									Assay D	ata						
From	То				Lithology	Sample Num	ber	From	То	Le	ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	18.50	OB, Ove	rburden					ł	•								
18.50	18.75	1a\$, maf	ic schist			1											
		Biotite sc	hist, possi	ble bou	lder												
18.75	19.05	8c, grani	ite														
19.05	20.60	5bc, che	rt														
20.60	25.50	6aa, lam	prophyre														
		Dyke, da core is bl	rk grey and ocky, badl	d black, y broke	cuts cherty sedimentary sequence, near top of hole n and exact width of dyke is not certain												

DETAILED LOG

Hole Number: EMP08-02

Jan 05, 2009

Detailed Lit	thology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
25.50	30.20	5bc, chert	689609	26.50	28.00	1.50	0.0110	ĺ	0.5000	139.0000	32.0000	0.500
			689610	28.00	29.00	1.00	0.0090		0.5000	161.0000	54.0000	0.500
		pyrite occurs locally disseminated along foliation as well as thin discontinuous stringers, average 3% py for the interal	689611	29.00	30.20	1.20	0.0100		0.5000	313.0000	84.0000	0.500
		Alteration										
		25.500 - 30.200 :Alteration Type: Biotite, Alteration Intensity: Moderate, Alteration Style: Patchy										
		25.500 - 30.200 :Alteration Type: Sericitized, Alteration Intensity: Moderate, Alteration Style: Selective										
		25.500 - 30.200 :Alteration Type: Silicified, Alteration Intensity: Moderate, Alteration Style: Patchy										
		Structure										
		30.000 - 30.200 : Structure: LAM, Core Axis: 70										
		lamminations/bedding Mineralization										
		25.500 - 30.200 : , Py: 3.0, Style: Disseminated										
		mainly disseminated, locally as fine stringers along lamina										
30.20	92 60	6b, gabbro										
30.20	83.00	b) gappro Fine grained, massive rock that has been foliated at 45 to CA, locally contains patches of calcite alteration occurring parallel to foliation, may be coarser grained massive flow sequence? Contact with underlyin sequence is uneven and chilled.										
		Structure 56.000 - 56.100 : Structure: FOL. Core Axis: 50										
		81.000 - 81.500 : Structure: FOL, Core Axis: 35										
		local brown biotite alteration near calcite altered bands, both alterations occur parralel to foliation										

Page 2 of 6

DETAILED LOG

Hole Number: EMP08-02

Jan 05, 2009

Detailed Lit	hology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
83.60	89.50	5bc, chert	689612	83.60	84.50	0.90	0.0090		0.5000	134.0000	65.0000	0.5000
		interval is a mixture of fine clastic brown and black biotite rich sediments and	689613	84.50	85.50	1.00	0.0110		0.5000	1178.0000	183.0000	0.5000
		mafic tuff interlayered with chert beds. Chert beds are up to 1.5 cm wide.	689614	85.50	86.50	1.00	0.0110		2.0000	147.0000	106.0000	0.5000
		Interval contains 5% sulphides scattered throughout mainly as stringers overprinting the bedding, interval is cut by few <10cm wide fine grained gabbro?	689615	86.50	87.50	1.00	0.0120		2.0000	433.0000	103.0000	0.5000
		dykes at 90 to CA	689616	87.50	88.50	1.00	0.0090		2.0000	227.0000	121.0000	0.5000
		Alteration	689617	88.50	89.50	1.00	0.0025		2.0000	110.0000	127.0000	0.5000
		83.600 - 85.500 :Alteration Type: Biotite, Alteration Intensity: Moderate, Alteration Style: Pervasive										
		brown biotite										
		83.600 - 85.500 :Alteration Type: Calcite, Alteration Intensity: Weak, Alteration Style: Patchy										
		83.600 - 85.500 :Alteration Type: Silicified, Alteration Intensity: Moderate, Alteration Style: Selective										
		85.500 - 89.500 :Alteration Type: Chloritized, Alteration Intensity: Moderate, Alteration Style: Pervasive										
		85.500 - 89.500 :Alteration Type: Biotite, Alteration Intensity: Moderate, Alteration Style: Pervasive										
		black biotite										
		85.500 - 89.500 :Alteration Type: Silicified, Alteration Intensity: Moderate, Alteration Style: Selective										
		as silica flooding and "pseudo veins"										
		Structure										
		83.600 - 83.650 : Structure: FOL, Core Axis: 30										
		contact with underlying sedimentary sequence is uneven and chilled 84.000 - 85.000 : Structure: BD, Core Axis: 70										
		85.000 - 86.000 : Structure: BD, Core Axis: 60										
		89.000 - 89.500 : Structure: BD, Core Axis: 45										
		cherty beds										
		Mineralization										
		83.600 - 89.500 : , Cp: .1, Py: 3.0, Po: 2.9, Style: Stringers										
		stringers overprinting bedding and locally finely disseminated sub-parallel bedding										
89.50	108.50	1, mafic volcanics										
		Sequence on massive and amygduloidal flows, localy more massive and possible fine grained gabbro feeder dykes, locally sections more chlotitic and calcite bearing and may represent breaks between individual flows. At 96 to 97 m, rock is foliated and may be a mafic tuff layer. Occasional py along fractures. Lower 0.5m is a flow breccia.										
		Structure 96.000 - 97.000 : Structure: FOL, Core Axis: 65										
		foliation may be tuff bedding										

Page 3 of 6

DETAILED LOG

Hole Number: EMP08-02

Jan 05, 2009

Detailed Lit	hology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
108.50	113.00	15, Mineralized Zone	689618	108.50	109.00	0.50	0.1750	0.1720	0.5000	175.0000	142.0000	3.0000
		Zone is made up of narrow qtz veins, up to 40 cm that are mineralized with	689619	109.00	109.80	0.80	0.2420	0.3400	8.0000	933.0000	1165.0000	609.0000
		mainly galena, pyrite and chalcopyrite. host to veins is altered and sheared	689620	109.80	110.30	0.50	2.0390	2.0510	3.0000	651.0000	113.0000	25.0000
		sericite-biotite-chlorite-fuchsite altered sediment that also contains 1 to 3% fine disseminated and stringer py and minor cp. Vein contacts are at 70 to 80 to CA	689621	110.30	110.80	0.50	0.1590		0.5000	48.0000	15.0000	0.5000
		and paralel to foliaton. Sulphides in veins make up 5%	689622	110.80	111.40	0.60	0.0200		0.5000	77.0000	10.0000	1.0000
		Alteration	689623	111.40	112.20	0.80	0.0960		0.5000			3.0000
		108.500 - 113.000 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Selective	689624	112.20	113.00	0.80	0.0150		0.5000	1872.0000	230.0000	3.0000
		mainly as quartz veins										
		108.500 - 113.000 :Alteration Type: Sericitized, Alteration Intensity: Strong, Alteration Style: Selective										
		along fractures in wall rock and veins, locally get patches of "chamois" coloured sericite										
		108.500 - 113.000 :Alteration Type: Chloritized, Alteration Intensity: Moderate, Alteration Style: Selective										
		along foliation										
		108.500 - 113.000 :Alteration Type: Biotite, Alteration Intensity: Moderate, Alteration Style: Selective										
		brown biotite more limited to original rock composition 109.000 - 109.500 :Alteration Type: Fuchsite, Alteration Intensity: Moderate, Alteration Style: Patchy										
		localized to near conacts with qtz veins										
		109.500 - 117.400 :Alteration Type: Chloritized, Alteration Intensity: Weak, Alteration Style: Pervasive										
		along foliation										
		Structure										
		108.500 - 108.510 : Structure: CNT, Core Axis: 50										
		contact with flows and sediments										
		Mineralization										
		108.500 - 113.000 : , Cp: 1.0, Py: 2.0, Gn: 2.0, Style: Disseminated/Blebby										
		blebs up to .7 cm disseminated throuhout the veins and host rock, gn limited to veins										
		Veining										
		108.500 - 113.000 :% Veining: 40, Cal: 5, QTZ: 95, Vein Type: Mass										
		massive veins up to 40 cm wide and pieces/pods of vein material										

Page 4 of 6

DETAILED LOG

Hole Number: EMP08-02

Jan 05, 2009

Detailed Lit	hology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
113.00	117.40	5ac, siltstone	689626	113.00	114.00	1.00	0.0360		0.5000	2651.0000	307.0000	4.0000
		interbedded siltone and argillite beds, argillite is locally strongly biotitic, possible	689627	114.00	115.00	1.00	0.0380		0.5000	1419.0000	233.0000	4.0000
		graphite or fine black chlorite, two narrow, 10 cm wide, qtz veins in interval, 1 to	689628	115.00	116.00	1.00	0.0110		0.5000	314.0000		0.5000
		3% diseminated py and minor cp as stringers, towards bottom unit contains broken chert beds	689629	116.00	117.00	1.00	0.0140		0.5000			2.0000
		Structure	689630	117.00	118.00	1.00	0.0150		0.5000	1006.0000	84.0000	1.0000
		113.000 - 113.020 : Structure: FOL, Core Axis: 50										
		113.500 - 113.600 : Structure: SHR, Core Axis: 50										
		biotite along shear sufaces wrapping around broken rock										
		Mineralization										
		113.000 - 117.400 : , Py: 2.0, Style: Stringers										
		stringers and finely disseminated but localized to argillite beds										
		Veining										
		113.000 - 117.400 :% Veining: 3, QTZ: 95, Vein Type: Mass										
		one of he veins contains small bleb of sphalerite										
117.40	118.00	FZ, fault zone										
		Gouge zone fault appears to be in chert beds										
		Alteration										
		117.400 - 122.500 :Alteration Type: Chloritized, Alteration Intensity: Weak, Alteration Style: Pervasive										
		along foliation										
		117.400 - 122.500 :Alteration Type: Sericitized, Alteration Intensity: Weak, Alteration Style: Selective										
		along foliation of certain beds										
		Structure 117.400 - 118.000 : Structure: FLTZ, Core Axis: 85										
		contorted and folded, brittle/ductile fault										
		Mineralization										
		117.400 - 122.500 : , Py: 1.0, Style: Stringers										
		more localized and decreases towards bottom of hole										

Page 5 of 6

DETAILED LOG

Hole Number: EMP08-02

Jan 05, 2009

Detailed Lit	thology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
118.00	122.50	5ac, siltstone	689631	118.00	119.00	1.00	0.0100		0.5000	315.0000	76.0000	0.5000
		same unit as above fault, sulphide content decreases to 1% over the entire unit	689632	119.00	120.00	1.00	0.0060		0.5000	85.0000	32.0000	3.0000
		Structure	689633	120.00	121.00	1.00	0.0200		0.5000	2311.0000	141.0000	3.0000
		119.000 - 119.100 : Structure: FOL, Core Axis: 60	689634	121.00	122.00	1.00	0.0120		0.5000	1178.0000	159.0000	2.0000
		foliation appears to follow bedding 119.100 - 122.500 : Structure: FOL, Core Axis: 60										
122.50	131.00	1, mafic volcanics mafic flows, locally narow intervals of inter-flow sediments										
		Structure 122.500 - 122.510 : Structure: CNT, Core Axis: 60 contact with underlying flows										
131.00	132.50	5ac, siltstone interbedded siltstone and argillite, minor py along some beds.			·							
132.50		1, mafic volcanics sequence of mafic flows with associated flow breccias, loally brown botite-chlorite altered. Structure										
		161.000 - 161.100 : Structure: FOL, Core Axis: 50			<u> </u>							
168.99	169.00	EOH, end of hole										

Page 6 of 6

APPENDIX B

Gold Assays and ICP Certificates

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Empress

Certificate of Analysis

Friday, November 28, 2008

Alto Ventures Ltd. Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN P3E5P5 Ph#: (705) 522-6372 Fax#: (705) 522-8856 Email#: koziol@altoventures.com Date Received: Nov 6, 2008 Date Completed: Nov 20, 2008

Job #: 200844194

Reference:

Sample #: 62 Core

Acc #	Client ID	Au ppb	Pt ppb	Pd ppb	Rh ppb	Ag ppm	Co ppm	Cu ppm	Fe ppm	Ni ppm	Pb ppm	Zn ppm
346220	689573	рр5 11	666	666	666	66.00	66	P.L	le le	1-1		
346221	689574	15										
346222	689575	3655										
346223	689576	19										
346224	689577	5										
346225	689578	8										
346226	689579	6										
346227	689580	14										
346228	689581	15										
346229	689582	66										
346230 Dup	689582	92										
346231	689583	477										
346232	689584	74										
346233	689585	59										
346234	689586	40										
346235	689587	37										
346236	689588	105										
346237	689589	933										
346238	689590	110										
346239	689591	14										
346240	689592	68										
346241 Dup	689592	37										
346242	689593	106										

PROCEDURE CODES: AL4AU3, AL4ICPAR

689594

Certified By:

346243

80

ason Moore, General Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Friday, November 28, 2008

Alto Ventures Ltd. Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN P3E5P5 Ph#: (705) 522-6372 Fax#: (705) 522-8856 Email#: koziol@altoventures.com Date Received: Nov 6, 2008 Date Completed: Nov 20, 2008 Job #: 200844194

Reference:

Sample #: 62 Core

Acc #	Client ID	Au ppb	Pt ppb	Pd ppb	Rh ppb	Ag ppm	Co ppm	Cu ppm	Fe ppm	Ni ppm	Pb ppm	Zn ppm
346244	689595	8										
346245	689596	86										
346246	689597	47										
346247	689598	37										
346248	689599	9						0.400				
346249	689600	1736						8429				
346250	689601	410										
346251	689602	90										
346252 Dup	689602	101										
346253	689603	116										
346254	689604	55										
346255	689605	52										
346256	689606	50										
346257	689607	27										
346258	689608	29										
346259	689609	11										
346260	689610	9										
346261	689611	10										
346262	689612	7										
346263 Dup	689612	9										
346264	689613	11										
346265	689614	11										
346266	689615	12										
346267	689616	9										

PROCEDURE CODES: AL4AU3, AL4ICPAR

Certified By:

hor

ason Moore, General Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Friday, November 28, 2008

Alto Ventures Ltd. Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN P3E5P5 Ph#: (705) 522-6372 Fax#: (705) 522-8856 Email#: koziol@altoventures.com Date Received: Nov 6, 2008 Date Completed: Nov 20, 2008

Job #: 200844194

Reference:

Sample #: 62 Core

Acc #	Client ID	Au	Pt	Pd	Rh	Ag	Со	Cu	Fe	Ni	Pb	Zn
346268	689617	ppb <5	ppb	ppb	ppb	ppm						
346269	689618	175										
346270	689619	242										
346271	689620	2039										
346272	689621	159										
346273	689622	21										
346274 Dup	689622	20										
346275	689623	96										
346276	689624	15										
346277	689625	636										
346278	689626	36										
346279	689627	38										
346280	689628	11										
346281	689629	14										
346282	689630	15										
346283	689631	10										
346284	689632	6										
346285 Rep	689632	6										
346286	689633	20										

PROCEDURE CODES: AL4AU3, AL4ICPAR

689634

Certified By:

346287

Moore, General Manager

12

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL917-0519-11/28/2008 8:53 AM

 Street
 Tel: (807) 626-1630

 ON
 Fax: (807) 622-7571

 5X5
 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

of the laboratory.

Alto Ventures Ltd. Date Created: 08-11-26 11:39:33 AM Job Number: 200844194 Date Received: Nov 6, 2008 Number of Samples: 62 Type of Sample: Core Date Completed: Nov 20, 2008 Project ID:

Zn ΤL V W Υ Si Sn Sr Τi Ρ Pb Sb Se Na Ni Mo Cr Cu Fe к Li Mg Mn Bi Са Cd Со В Ba Be Al As Accur. # Client Tag Ag ppm ppm ppm ppm ppm % ppm maa % ppm ppm ppm ppm ppm % ppm nom 9/ % ppm npm % ppm ppm ppm % ppm ppm ppm non ppm naa mag 14 241 121 <10 3301 <1 <1 <5 <5 0.03 <10 18 1.65 796 12 0.05 59 1866 1.38 39 204 224 8.11 28 689573 139 12 1 24 4 346220 <1 3.68 <2 31 1 581 577 <1 34 <10 12 0.09 <10 13 51 479 <1 <5 <5 4.75 0.26 13 0.78 484 10 0.05 <4 32 262 289 27 51 <1 4 0.64 689574 1.76 2 346221 <1 5 57 40 <10 687 <1 646 13 <5 <5 0.04 <10 142 17 0.06 27 0.78 470 64 8 14 0.22 13 4193 31 169 2 10 1.41 4 12 31 689575 346222 2 1.56 76 <10 7 96 <10 66 914 <1 105 727 <1 <5 <5 0.06 0.92 28 2.46 810 <1 0.04 3.74 25 390 8 689576 2.81 <2 29 143 <1 3 4.68 <4 346223 <1 101 <10 7 <1 77 <5 0.06 <10 64 910 <1 0.04 106 734 <1 7 811 3.75 0.92 29 2.47 4 70 <4 24 388 8 689577 <2 31 143 <1 346224 <1 2.80 4 <10 10 137 2874 121 0.21 <10 28 1 <1 5 <5 1 40 1006 10 0.03 76 1264 19 40 193 87 6.45 1.08 2 50 <4 346225 689578 2 2.95 <2 29 250 1 9 13 459 <10 <5 0.09 <10 11 692 <1 8 355 <1 5 0.02 27 12 0.67 480 11 0.61 <4 20 253 172 4.24 0.30 28 <1 2 346226 689579 <1 1.62 <2 41 14 852 <1 13 11 557 <5 <5 0.07 <10 16 419 9 0.02 35 432 <1 0.23 13 0.56 201 4 34 <4 27 206 346227 689580 1.50 <2 28 34 1 3 0.64 <1 16 12 1360 1489 <1 46 <5 <5 0.07 <10 15 48 693 <1 10 5.33 0.30 18 0.78 510 0.02 1.17 5 37 252 304 27 47 3 346228 689581 <1 1.88 3 1 790 <10 9 <1 15 <10 47 <100 29 635 <1 <5 <5 0.04 451 6 0.02 3.06 0.34 4 0.37 200 689582 26 56 <1 <1 2.71 <4 18 196 346229 <1 1.03 6 793 <1 14 <10 8 <100 <1 <5 <5 0.04 <10 46 33 628 0.37 449 6 0.02 194 197 3.04 0.34 4 17 689582 5 25 55 <1 2 2.71 <4 346230 <1 1.01 1396 2 16 4 <10 64 <1008 28 116 3539 <5 <5 0.08 236 8 0.02 0.05 7 0.19 13 5 469 2296 2.46 346231 689583 11 39 212 <1 39 2.32 25 0.49 26 8 2214 <10 71 <100 <1 8 <5 0.05 403 9 0.03 33 310 14 <5 0.33 5 0.18 204 2.72 3.08 8 25 209 346232 689584 <1 0.76 13 34 80 <1 3 1996 7 <10 43 <100 <1 6 24 <5 <5 0.04 456 <1 349 6 0.02 31 25 216 153 2.45 0.26 5 0.13 6 30 37 <1 3 2.50 346233 689585 <1 0.59 10 7 228 <1 4 <10 <10 27 <100 173 <1 <5 <5 0.06 301 8 0.03 25 7 0.26 22 200 105 2.56 0.33 689586 31 56 <1 2 1.79 <4 346234 <1 0.91 4 <10 7 834 <10 62 <100 <1 4 0.05 155 <5 <5 0.18 322 6 0.03 13 1 37 1.70 0.32 4 2.01 5 10 243 71 <1 346235 689587 <1 0.68 <2 28 <1 2101 6 24 <5 0.05 <10 38 <100<1 8 <5 305 9 0.02 48 357 <1 0.35 3 0.20 2 1.78 8 49 197 208 3.15 346236 689588 <1 0.73 12 27 58 <1 6 576 19 <10 <10 50 157 <1 <5 <5 0.05 0.43 390 11 0.03 34 315 1 5 364 79 2.32 0.23 1.91 <4 18 346237 689589 <1 0.77 4 32 72 <1 <1 <10 9 61 <10 142 279 <1 28 <5 <5 0.07 674 <1 544 14 0.05 39 38 0.40 7 0.47 3.50 <4 29 214 3.71 6 346238 689590 <1 0.91 <2 38 154 <1 <10 16 15 <1 6 0.02 <10 1475 <100 2 0.02 9 <100 7 6 <5 0.17 593 0.82 < 0.01 <1 795 689591 41 62 <1 <1 >10.00 <4 <1 208 346239 1 0.01 <2 26 472 <100 <1 <10 9 146 2 6 <5 0.06 <10 20 1.69 0.07 3 0.17 349 14 0.05 380 213 5.54 <4 14 689592 37 43 <1 <1 346240 1 0.31 <2 25 7 <10 9 466 <100 <1 144 2 6 <5 0.06 <10 345 14 0.05 19 3 0.17 378 207 1.70 0.07 <1 <1 5.49 <4 14 689592 <1 0.30 <2 38 42 346241

* The results included on this report relate only to the items tested

*The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

Certified By: <u>Hully Kampsuria</u> Derek Demianiyk, H.Bsc.

Page 1 of 4

treet Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-26 11:39:33 AM Job Number: 200844194 Date Received: Nov 6, 2008 Number of Samples: 62 Type of Sample: Core Date Completed: Nov 20, 2008 Project ID:

1

• . .

* The results included on this report relate only to the items tested
 * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
 *The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Cl	lient Tag	- Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	Tł ppm	V ppm	W ppm	Y ppm	Zn ppm
346242	689593	<1	0.30	<2	36	42	<1	<1	5.53	<4	14	380	210	1.71	0.07	3	0.17	349	14	0.05	19	145	2	5	<5	0.06	<10	476	<100	<1	7	<10	9	27
346243	689594	2	0.10	<2	37	10	<1	<1	1.22	<4	5	871	414	1.29	0.02	1	0.04	169	9	0.04	27	<100	<1	7	<5	0.04	<10	76	<100	<1	<2	<10	2	16
346244	689595	1	0.03	<2	33	6	<1	<1	0.42	<4	1	710	43	0.78	<0.01	<1	0.01	<100	6	0.02	25	<100	<1	13	<5	0.03	<10	29	<100	<1	<2	<10	<1	61
346245	689596	<1	1.14	6	33	96	1	4	2.10	<4	31	332	91	4.06	0.30	8	0.55	370	14	0.04	40	432	<1	9	<5	0.04	<10	47	<100	<1	16	<10	6	92
346246	689597	<1	1.63	3	33	91	2	6	4.60	<4	22	370	51	4.07	0.26	12	0.87	665	8	0.02	48	635	<1	8	<5	0.04	<10	58	<100	<1	20	<10	9	230
346247	689598	<1	0.98	4	29	44	1	<1	1.81	5	30	281	190	3.53	0.29	7	0.37	315	13	0.02	43	429	<1	11	<5	0.03	<10	33	<100	<1	13	10	6	838
346248	689599	<1	2.29	2	33	79	<1	3	5.99	<4	25	314	63	3.42	0.69	25	1.97	771	1	0.04	88	674	1	8	<5	0.11	<10	89	705	1	45	<10	8	259
346249	689600	3	1.19	31	50	183	2	5	0.95	<4	21	74	>5,000	4.13	0.47	6	0.65	241	752	0.05	70	605	8	19	<5	0.05	<10	51	450	<1	37	11	9	77
346250	689601	<1	0.97	5	32	65	<1	4	2.70	7	37	157	245	4.58	0.30	9	0.56	507	20	0.02	47	506	<1	<5	<5	0.03	<10	52	347	<1	21	15	8	1226
346251	689602	<1	0.75	11	27	56	<1	2	3.79	7	36	177	240	3.72	0.34	4	0.21	632	10	0.02	51	585	1	<5	<5	0.04	<10	82	<100	<1	11	29	10	2470
346252	689602	<1	0.74	13	25	55	<1	3	3.82	7	37	173	236	3.74	0.33	4	0.21	634	10	0.02	51	586	<1	<5	<5	0.04	<10	82	<100	<1	11	30	10	2516
346253	689603	<1	0.86	<2	26	65	<1	3	2.89	9	25	176	144	3.00	0.35	6	0.26	584	7	0.02	35	580	<1	<5	<5	0.04	<10	63	<100	<1	12	39	9	3323
346254	689604	<1	1.37	<2	32	83	1	3	3.48	<4	19	155	69	3.90	0.41	11	0.62	710	7	0.03	28	789	<1	<5	<5	0.03	<10	80	437	<1	29	<10	11	337
346255	689605	<1	0.99	<2	26	51	1	4	2.70	8	67	325	381	3.82	0.21	9	0.39	537	9	0.02	43	525	<1	<5	<5	0.04	<10	48	<100	<1	12	15	11	1219
346256	689606	<1	1.05	<2	29	49	<1	4	3.00	9	37	179	857	3.84	0.25	6	0.39	514	9	0.02	55	588	2	10	<5	0.05	<10	48	<100	<1	10	27	10	2338
346257	689607	<1	1.31	<2	33	41	1	2	4.14	<4	23	229	183	4.28	0.24	6	0.47	699	8	0.02	42	593	2	16	<5	0.02	<10	76	<100	<1	23	11	12	898
346258	689608	<1	3.48	2	31	408	2	9	5.81	5	35	139	63	8.17	0.18	24	1.89	1168	13	0.03	62	1313	4	18	<5	0.03	<10	108	<100	2	99	<10	18	325
346259	689609	<1	1.34	<2	27	30	1	2	0.84	<4	7	290	32	2.75	0.44	16	0.78	228	7	0.02	12	207	<1	16	<5	0.04	<10	18	175	<1	9	<10	14	139
346260	689610	<1	1.74	<2	33	112	<1	4	3.20	<4	18	380	54	3.20	0.64	25	1.26	495	5	0.05	43	350	<1	10	<5	0.06	<10	42	498	<1	36	<10	11	161
346261	689611	<1	2.07	3	33	70	1	4	4.17	<4	24	193	84	3.74	0.82	29	1.73	603	5	0.03	39	677	<1	6	<5	0.06	<10	39	1070	4	49	<10	10	313
346262	689612	<1	0.93	<2	28	86	<1	3	1.31	<4	9	207	65	2.09	0.31	11	0.53	338	4	0.06	15	306	<1	<5	<5	0.04	<10	13	750	<1	18	<10	5	133
346263	689612	<1	0.93	<2	29	84	<1	<1	1.32	<4	10	209	65	2.10	0.31	11	0.54	339	4	0.06	17	307	<1	6	<5	0.05	<10	13	727	<1	17	<10	5	134

Page 2 of 4

MANSELLY -

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assav@accurassav.com

Alto Ventures Ltd. Date Created: 08-11-26 11:39:33 AM * The results included on this report relate only to the items tested Job Number: 200844194 * This Certificate of Analysis should not be reproduced except in full, without the written approval Date Received: Nov 6, 2008 of the laboratory Number of Samples: 62 *The methods used for these analysis are not accredited under ISO/IEC 17025 Type of Sample: Core Date Completed: Nov 20, 2008 Project ID: Accur. # Client Tag Ag AI As В Ba Be Bi Са Cd Cr ĸ Co Cu Fe Mg Li Mn Mo Na Ni Ρ Pb Sb Se Si Sn Sr Ti ΤL V W Y Zn % ppm ppm ppm ppm ppm ppm % ppm ppm ppm % % ppm % % nda nnm nnm ppm ppm ppm ppm mag % ppm ppm ppm mag mag ppm ngq ppm 346264 689613 <1 1.19 <2 28 117 <1 <1 1.81 <4 24 214 183 3.63 0.59 0.59 11 484 7 0.05 40 597 <1 <5 <5 0.04 28 8 1178 <10 17 965 <1 14 346265 689614 2 1.91 3 29 46 <1 3 3.13 <4 42 180 106 0.30 0.89 4.7112 848 7 0.08 78 1789 <1 <5 <5 0.18 <10 24 3509 <1 102 <10 10 147 346266 689615 2 2,11 <2 31 133 1 3 3.26 <4 32 183 103 6.21 0.55 16 1.12 1070 10 52 0.07 1432 <1 6 <5 0.06 <10 32 1977 2 88 <10 13 433 346267 689616 2 2.32 <2 25 291 <1 5 2.29 <4 29 166 121 6.35 15 1.26 1.16 932 9 0.08 41 1387 <1 <5 0.06 <10 28 76 <10 15 227 5 2244 <1 346268 689617 2 2.18 <2 31 222 <1 2 1.74 <4 30 119 127 5.20 0.92 12 1.47 652 7 36 0.13 1607 <5 <1 <5 0.31 <10 20 2911 <1 74 <10 15 110 346269 689618 <1 1.20 <2 36 357 1 35 1.15 6 7.04 <4 73 142 7.27 0.57 9 1611 10 0.08 47 1481 3 <5 13 0.03 <10 115 625 2 101 <10 24 175 346270 689619 8 0.55 <2 27 184 <1 14 3.99 9 33 406 1165 4.36 0.18 0.72 900 10 0.06 49 4 533 609 24 <5 0.05 <10 173 13 <100 <1 35 11 933 346271 689620 3 0.19 3 32 58 <1 <1 1.27 7 8 375 113 1.38 0.08 2 0.07 127 4 0.04 15 106 25 15 <5 0.05 <10 46 <100 <1 10 <10 2 651 346272 689621 <1 0.60 <2 22 49 <1 <1 2.51 6 73 <4 15 1.19 0.34 0.12 4 324 5 0.03 7 166 <1 9 <5 0.07 <10 92 <100 <1 7 <10 8 48 346273 689622 <1 0.63 <2 30 1585 <1 <1 2.98 <4 10 541 10 1.79 0.25 0.41 6 368 7 0.09 34 263 <5 <5 0.08 <10 3 78 2 126 149 <1 15 <10 346274 689622 <1 0.62 <2 35 1398 <1 3 3.00 <4 11 531 10 1.79 0.25 0.41 369 7 35 6 0.09 267 1 7 <5 0.07 <10 124 149 <1 14 <10 3 77 346275 689623 <1 0.72 2 25 362 <1 <1 5.33 4 16 146 31 2.54 0.22 1.59 750 6 <1 0.06 56 477 3 14 <5 0.05 <10 252 <1 17 <10 6 312 <100 346276 689624 <1 0.47 11 28 38 <1 <1 2.36 21 35 185 230 2.13 0.14 4 0.46 358 21 0.05 35 190 22 3 <5 <5 0.05 <10 65 <100 <1 8 4 1872 346277 689625 8 1.66 66 38 214 <1 <1 1.02 6 22 80 1244 4.30 0.22 12 0.96 524 57 180 620 0.10 120 7 13 <5 0.04 18 45 1202 <1 62 25 636 346278 689626 <1 0.74 25 27 35 <1 5 2.28 9 63 294 307 4.20 0.24 3 0.22 398 14 0.03 62 381 32 4 <5 <5 0.04 <10 42 <100 <1 11 8 2651 346279 689627 <1 0.78 11 24 44 <1 4 1.68 4 39 120 233 3.59 0.22 2 0.30 316 9 0.03 44 355 4 <5 0.03 <10 27 10 18 5 <5 <100 <1 1419 346280 689628 <1 2.07 3 29 59 1 4 1.41 <4 14 72 69 3.41 0.22 16 1.36 330 7 0.04 19 256 <1 <5 0.06 <10 24 <100 14 <10 5 314 5 <1 346281 689629 <1 1.52 4 31 68 6 2.65 1 4 34 346 129 3.65 0.22 10 0.95 443 9 0.03 61 422 2 <5 0.06 <10 48 <100 <1 13 14 6 1247 8 346282 689630 <1 1.65 6 28 51 3 1.77 20 1 <4 170 84 0.23 3.31 10 1.27 333 5 0.03 33 741 1 32 <5 <10 32 25 11 7 1006 0.04 <100 <1 346283 689631 <1 0.91 <2 26 40 <1 <1 1.04 <4 11 87 76 1.89 0.26 0.44 213 12 -5 4 0.03 156 <1 32 <5 0.03 <10 26 <100 5 <10 6 315 <1 346284 689632 <1 1.84 <2 33 85 <1 <1 4.46 <4 18 240 2.92 34 0.26 15 1 40 635 2 0.07 64 558 3 8 <5 0.04 <10 73 172 <1 37 <10 8 81 346285 689632 <1 1,97 <2 30 95 <1 5 4.69 <4 19 297 32 3.10 0.28 16 1.49 668 4 0.07 69 564 3 5 <5 0.06 <10 77 187 39 <10 8 85 4 ħ

Page 3 of 4

ſ

-

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Job Numb Date Rece Number o Type of S	ited: 08-11- per: 200844 eived: Nov 6 f Samples: ample: Core pleted: Nov	194 6, 200 62	08										* This	s Certi of the	ficate (labora	of Ana itory.	n this r Ilysis sl these a	hould i	not be	repro	duced	d exce	pt in fu				tten a	pprov	al					
Accur. # C	• .	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
346286 346287	689633 689634	<1 <1	0.93 0.91	5 18	30 22	47 39	<1 <1	<1 2	2.68 3.85	7 <4	36 24	60 116	141 159	3.23 2.89	0.26 0.24	3 7	0.42 0.27	497 658	8 6	0.03 0.03	43 32	426 395	3 2	6 13	<5 <5	0.03 0.03	<10 <10	43 52	<100 <100	<1 <1	8 7	27 14	9 17	231 1 1178

Certified By: Kompire. Derek Demianiuk, H.Bsc.

Page 4 of 4

Emp.

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Friday, December 12, 2008

Alto Ventures Ltd. Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN P3E5P5 Ph#: (705) 522-6372 Fax#: (705) 522-8856 Email#: koziol@altoventures.com

Date Received: Nov 25, 2008 Date Completed: Dec 12, 2008

Job #: 200844447

Reference:

Sample #: 25 Reject's

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
363852	689583	507	0.015	0.507
363853	689584	77	0.002	0.077
363854	689585	78	0.002	0.078
363855	689586	47	0.001	0.047
363856	689587	32	<0.001	0.032
363857	689588	107	0.003	0.107
363858	689589	710	0.021	0.710
363859	689590	75	0.002	0.075
363860	689591	19	<0.001	0.019
363861	689592	61	0.002	0.061
363862	689593	98	0.003	0.098
363863	689594	75	0.002	0.075
363864 Dup	689594	79	0.002	0.079
363865	689595	8	<0.001	0.008
363866	689596	96	0.003	0.096
363867	689597	55	0.002	0.055
363868	689598	42	0.001	0.042
363869	689599	17	<0.001	0.017
363870	689601	429	0.013	0.429
363871	689602	90	0.003	0.090
363872	689603	131	0.004	0.131
363873	689604	40	0.001	0.040
363874	689618	191	0.006	0.191
363875 Dup	689618	172	0.005	0.172

PROCEDURE CODES: AL4AU3

By: r

The results included on this report relate only to the items tested Certified The Certificate of Analysis should not be reproduced except in full, without the written

approval of the laboratory

Derek Demianiuk H.Bsc., Laboratory Manager

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Friday, December 12, 2008

Alto Ventures Ltd. Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN P3E5P5 Ph#: (705) 522-6372 Fax#: (705) 522-8856 Email#: koziol@altoventures.com

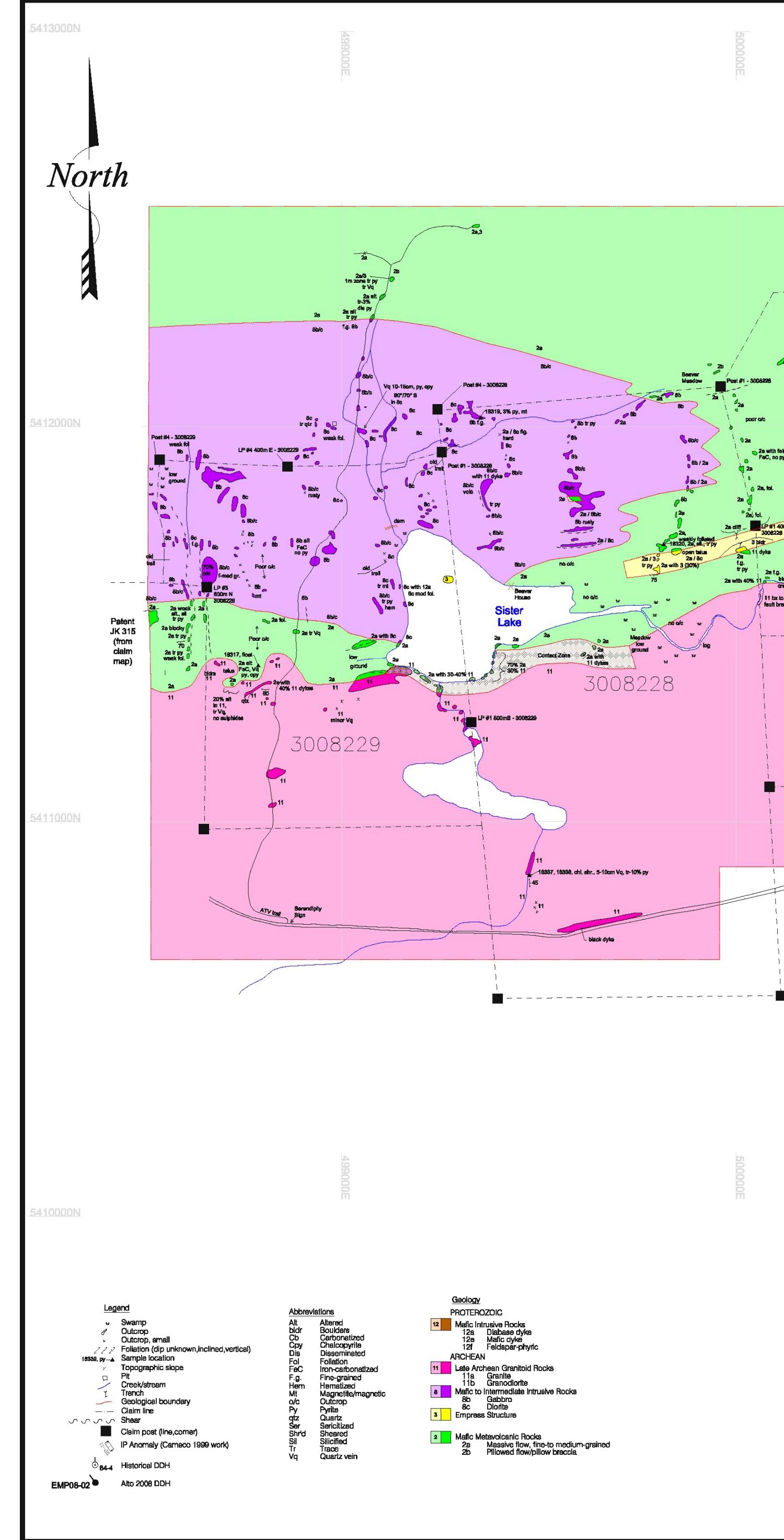
Date Received: Nov 25, 2008 Date Completed: Dec 12, 2008

Job #: 200844447

Reference:

Sample #: 25 Reject's

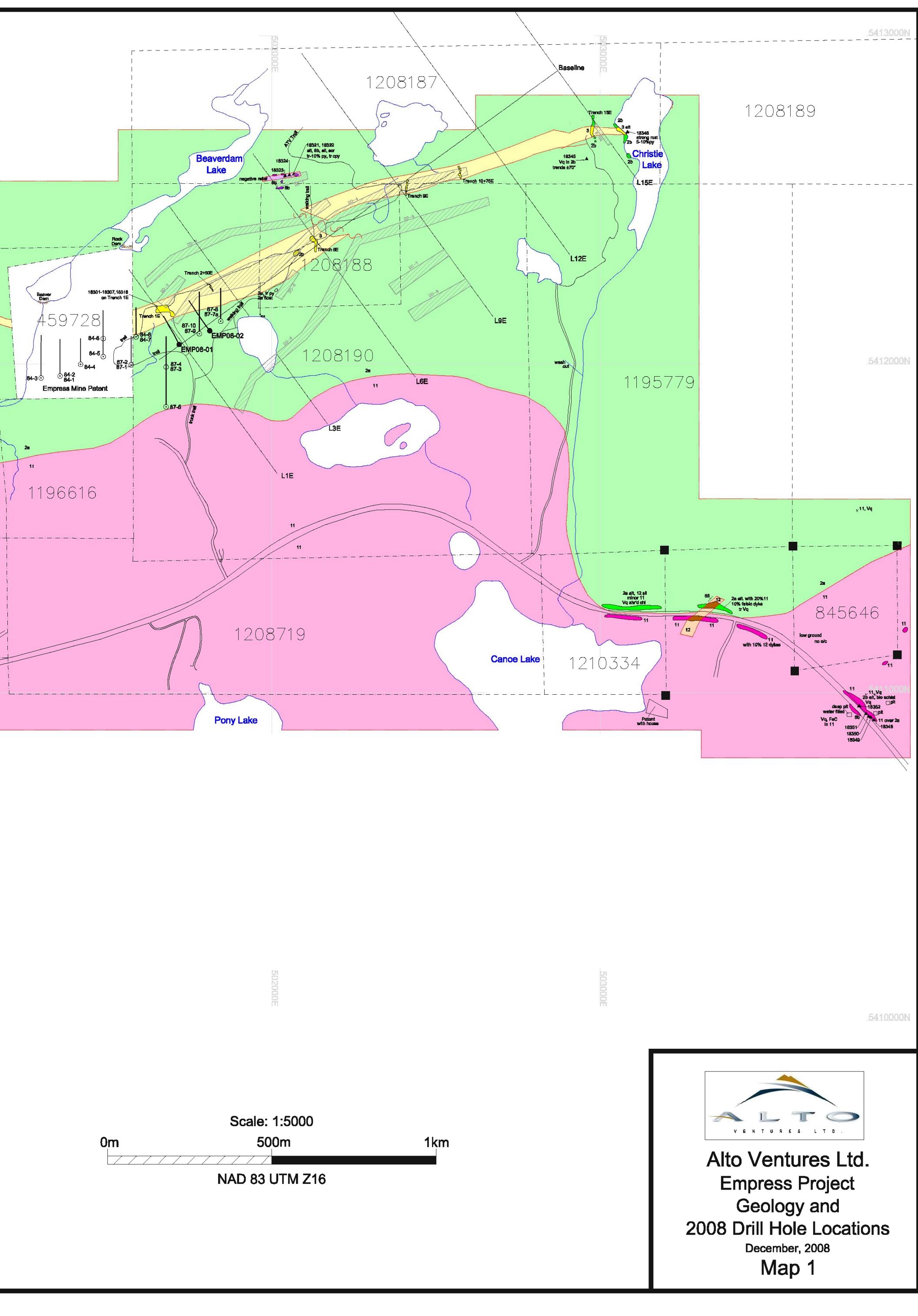
the second second			A MARKAN TANKA
Client ID	Au	Au	Au
Olient ID	ppb	oz/t	g/t (ppm)
689619	340	0.010	0.340
689620	2051	0.060	2.051
689621	164	0.005	0.164
	Client ID 689619 689620	Client ID Au ppb 689619 340 689620 2051	Client ID Au ppb Au oz/t 689619 340 0.010 689620 2051 0.060

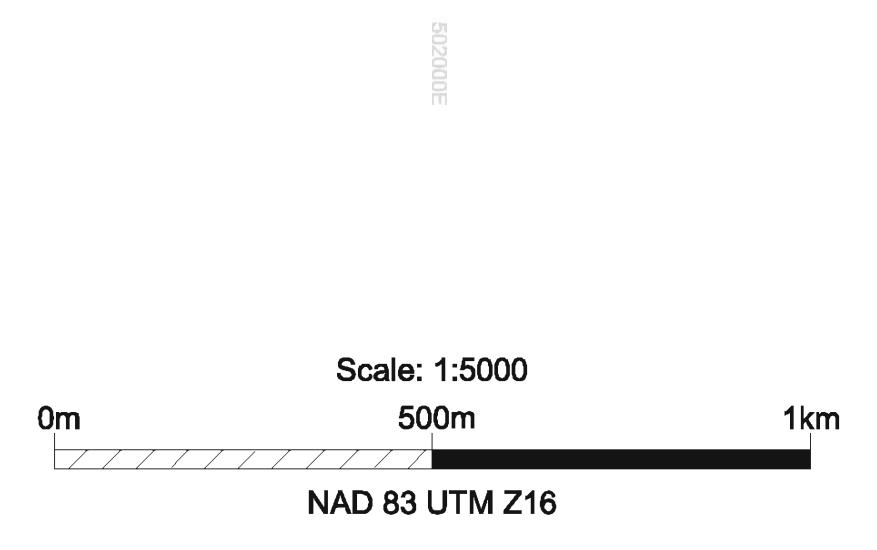

PROCEDURE CODES: AL4AU3

By:

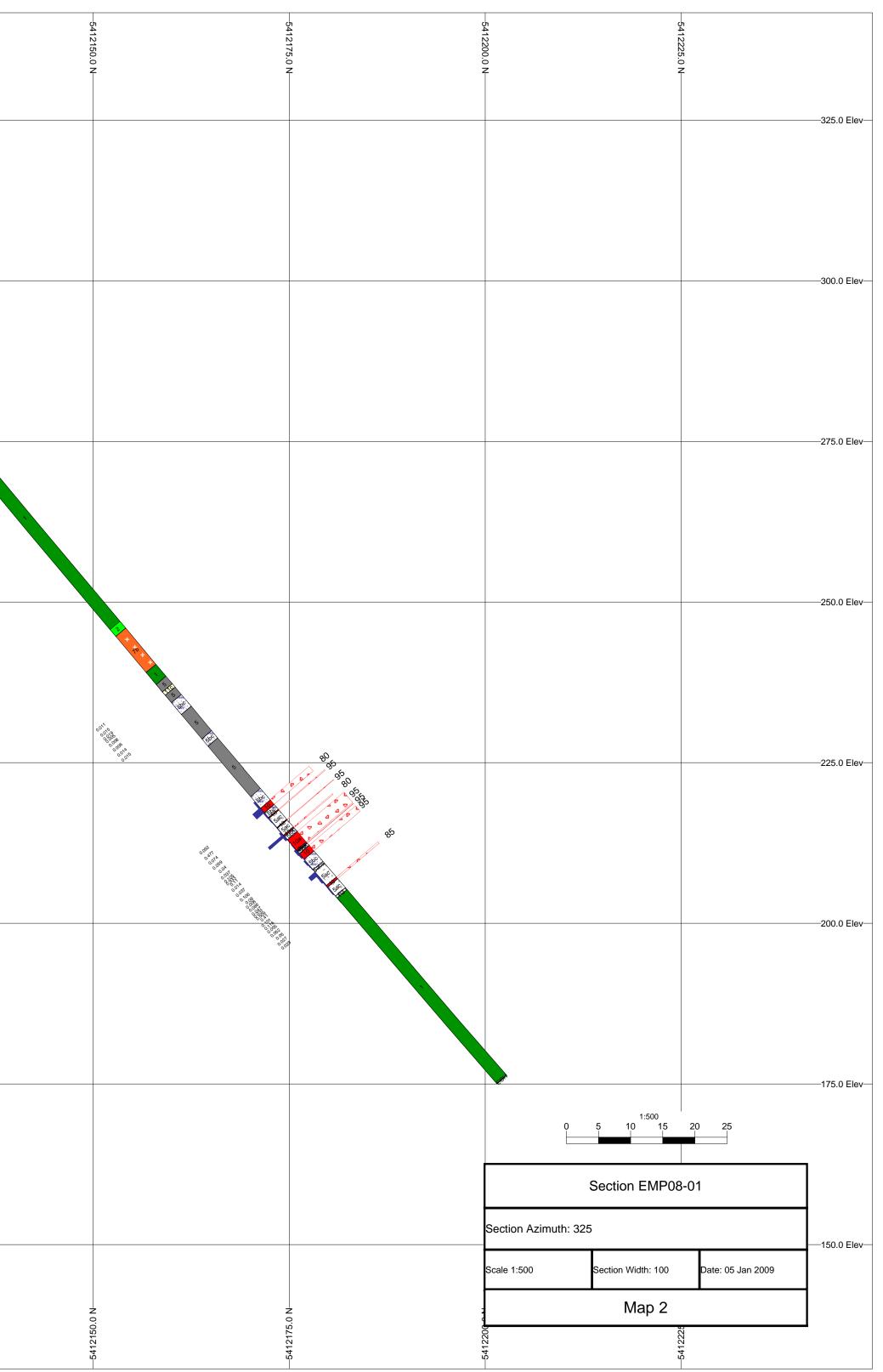
Certified The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

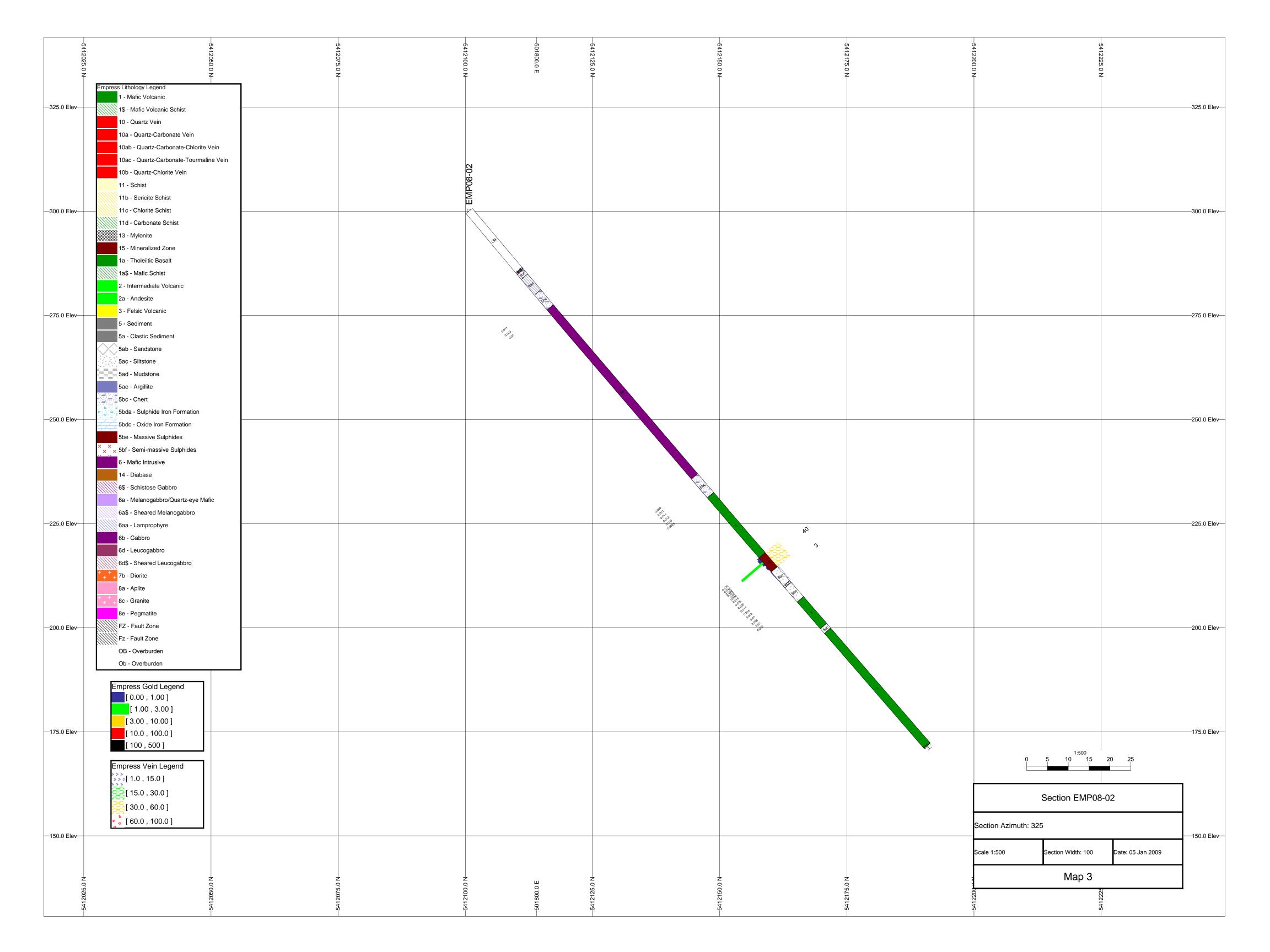
Derek Demianiuk H.Bsc., Laboratory Manager


AL903-0519-12/12/2008 1:43 PM



______ R569 Patent 3008228 1224888 338, chi. shr., 5-10cm Vq, tr-10% py


Assay Values


Sample #	Au (g/t)	Sample #	Au (g/t)
18301	0.166	18324	0.021
18302	0.050	18336	0.010
18303	0.069	18337	0.014
18304	2.278	18338	0.007
18305	0.440	18339	0.067
18306	0.248	18340	0.538
18307	1.662	18341	0.012
18308	0.014	18342	0.427
18309	0.012	18343	1.092
18310	0.924	18344	0.016
18310	0.746	18345	0.013
18311	0.379	18346	0.018
18312	1.214	18346	0.020
18317	0.061	18347	0.011
18318	0.333	18348	0.005
18319	0.017	18349	0.005
18320	0.018	18350	0.005
18321	0.020	18351	0.005
18322	0.020	18352	0.008
18323	0.024	18352	0.005

[]				1
541	-541:	-541	-5412	-5412
5412025.0	5412050.0 N	5412075.0	501800.0 E	5412125.0 N
z		z	c m	o Z
	Empress Lithology Legend			
	1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist			
	10 - Quartz Vein			
	10a - Quartz-Carbonate Vein			
	10ab - Quartz-Carbonate-Chlorite Vein			
	10ac - Quartz-Carbonate-Tourmaline Vein			
	10b - Quartz-Chlorite Vein		0-	
	11 - Schist		EMP08-01	
	11b - Sericite Schist			
	— 11c - Chlorite Schist			
	11d - Carbonate Schist			
	13 - Mylonite		\o*	
	15 - Mineralized Zone			
	1a - Tholeiitic Basalt			Han
	1a\$ - Mafic Schist			THE
	2 - Intermediate Volcanic 2a - Andesite			ape
	3 - Felsic Volcanic			
-275.0 Elev	5 - Sediment			
	5a - Clastic Sediment			
	5ab - Sandstone			
	5ac - Siltstone			
	5ad - Mudstone			
	5ae - Argillite			
	5bc - Chert			
	55da - Sulphide Iron Formation			
	5bdc - Oxide Iron Formation			
	5be - Massive Sulphides			
	5bf - Semi-massive Sulphides 6 - Mafic Intrusive			
	14 - Diabase			
	6\$ - Schistose Gabbro			
	6a - Melanogabbro/Quartz-eye Mafic			
	6a\$ - Sheared Melanogabbro			
-225.0 Elev	6aa - Lamprophyre			
	6b - Gabbro			
	6d - Leucogabbro			
	6d\$ - Sheared Leucogabbro			
	++++7b - Diorite			
	8a - Aplite			
	+ $+$ $+$ $+$ 8c - Granite			
	8e - Pegmatite FZ - Fault Zone			
-200.0 Elev	FZ - Fault Zone			
	OB - Overburden			
	Ob - Overburden			
	Empress Gold Legend			
	[0.00 , 1.00]			
	[1.00 , 3.00] [3.00 , 10.00]			
	[10.0 , 100.0]			
	[100 , 500]			
	Empress Vein Legend			
	[1.0 , 15.0] [15.0 , 30.0]			
	[30.0 , 60.0]			
	ຼຸ້ [60.0 , 100.0]			
-150.0 Elev				
Z	z	z	Ц Z ш	z
5412025.0 N	5412050.0 N	5412075.0 N	54121000.0 N	5412125.0 N
5412	5412	5412	-5412 5018	-5412

