ASSESSMENT REPORT COVERING THE 2008 DIAMOND DRILLING PROGRAM

ON THE

Flint Lake Property

Dogpaw Lake Area, Kenora Mining District

UTM Zone 15 - NAD 83 Projection 440,800m E, 5,464,100m N

PREPARED BY:

Andrew Tims, P.Geo.

Northern Mineral Exploration Services

February 26, 2009

SUMMARY

This report presents and discusses the results of a 4 hole, 428 metre BQTW diamond drill program conducted by SEDEX Resources Corp on the Flint Lake property between May 21th and June 14th, 2008. The Flint Lake Property is located in the Kenora Mining District of Ontario about 70 kilometres southeast of Kenora and approximately 16 kilometres southeast of Sioux Narrows, Ontario.

The property encompasses a portion of the Pipestone-Cameron Deformation Zone (PCDZ). This structure, or a second order splay, hosts the Nuinsco Resources' Cameron Lake gold deposit 7.5 kilometre to the southeast. Immediately 2.3 kilometres to the west Houston Lake Mining's Dubenski Showing is host to an 43-101 indicated resource of 177,400 mt at 7.32g/mt on a second order splay off of the PCDZ.

Previous work has revealed the Flint Lake property hosts the Meahan Showing in a silicified, iron-carbonatized, pyritized, sheared gabbro producing assays of 1 .96 oz/ton, in a quartz vein 0.5 m wide with visible gold.

The SEDEX work program tested the Meahan Showing mineralization and the PCDZ itself. Based on results to date the there is no indication of an eastern strike extent of the Meahan Showing. Drill results by Pango Gold Mines Ltd. in the southeast bay of Flint Lake in 1975 would suggests the Meahan showing continues to the west towards the Dubenski Showing. Drill testing of the Pipestone-Cameron Lake Fault zone itself yielded no anomalous assays. This drill program did not traverse the structure in its entirety. There remain a number of weak IP anomalies within the Pipestone-Cameron Lake Fault that were not tested.

TABLE OF CONTENTS

1

1

SUMMARY	I
INTRODUCTION	1
LOCATION, ACCESS AND PHYSIOGRAPHY	1
CLAIMS AND OWNERSHIP	4
PREVIOUS WORK	6
REGIONAL GEOLOGY	8
PROPERTY GEOLOGY	9
DRILL PROGRAM SUMMARY	13
CONCLUSION AND RECOMMENDATIONS	15
REFERENCES	16
STATEMENT OF QUALIFICATIONS	19
APPENDIX 1 - OFF LAKE PROPERTY DIAMOND DRILL LOGS	20
APPENDIX 2 – DRILL SECTIONS AND PLAN	21
APPENDIX 3 - ANALYTICAL CERTIFICATES	22
APPENDIX 4- SAMPLE PREP AND ANALYTICAL PROCEDURES	23

FIGURES

Figure 1	Flint Lake Property Location Map
Figure 2	Flint Lake Property Claim Map
Figure 3	Flint Lake Regional Geology Map

TABLES

Table 1	Off Lake Property Claims List
Table 2	Diamond Drill Program Details

ii

MAPS in APPENDIX 2

Map 1	DDH Location Map (1:12 500)
Map 2	Section FL08-01 (1:500)
Map 3	Section FL08-02&03 (1:500)
Map 4	Section FL08-04 (1:500)

I

,

ſ

ļ

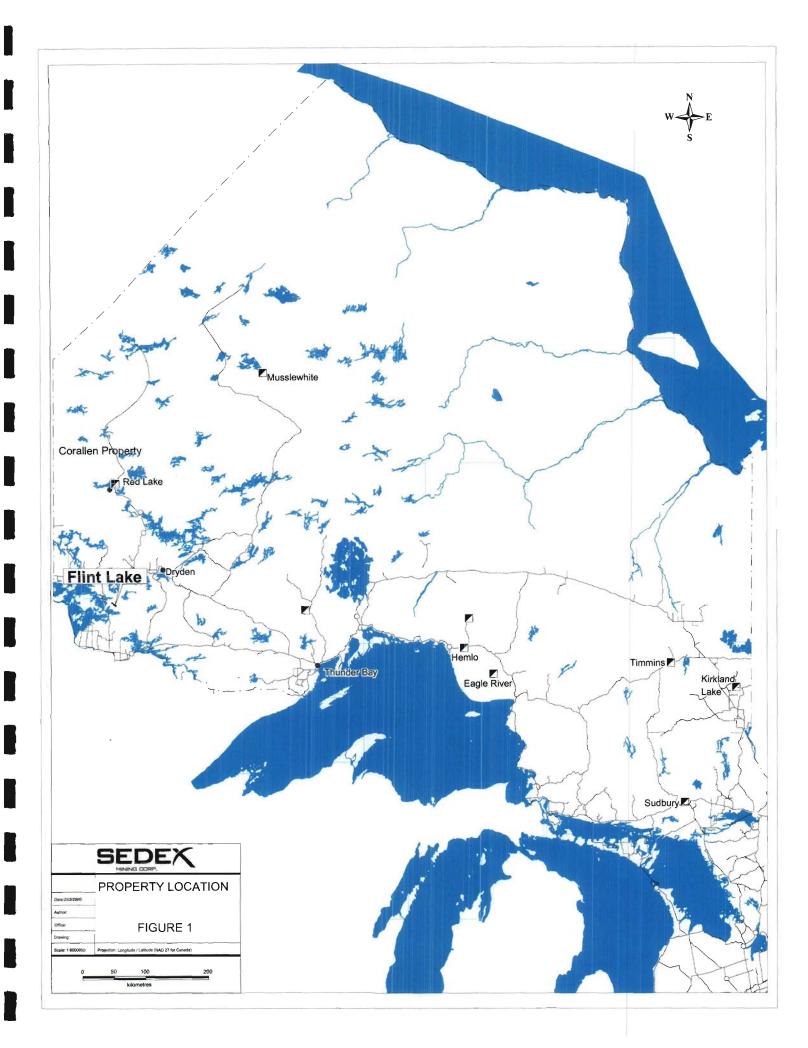
INTRODUCTION

This report presents and summarizes the results of a 4 hole, 428 metre BQTW diamond drill program conducted by SEDEX Mining Corpoation on the Flint Lake property located 70 kilometres southeast of Kenora, Ontario (Figure 1).

The drill program was conducted May 21th to June 14th, 2008. Drill hole selection was based on a compilation of historical work plus magnetic and Induced Polarization geophysical surveys completed in 2007.

Andrew Tims of Thunder Bay, Ontario managed the program with Harvey M. Buck supervising the field work.

LOCATION, ACCESS AND PHYSIOGRAPHY


The Flint Lake Property is located in the Kenora Mining District of Ontario about 70 kilometres southeast of Kenora and approximately 16 kilometres southeast of Sioux Narrows, Ontario. The project area has an NTS map reference of 52 F/5 SW (Figure 2).

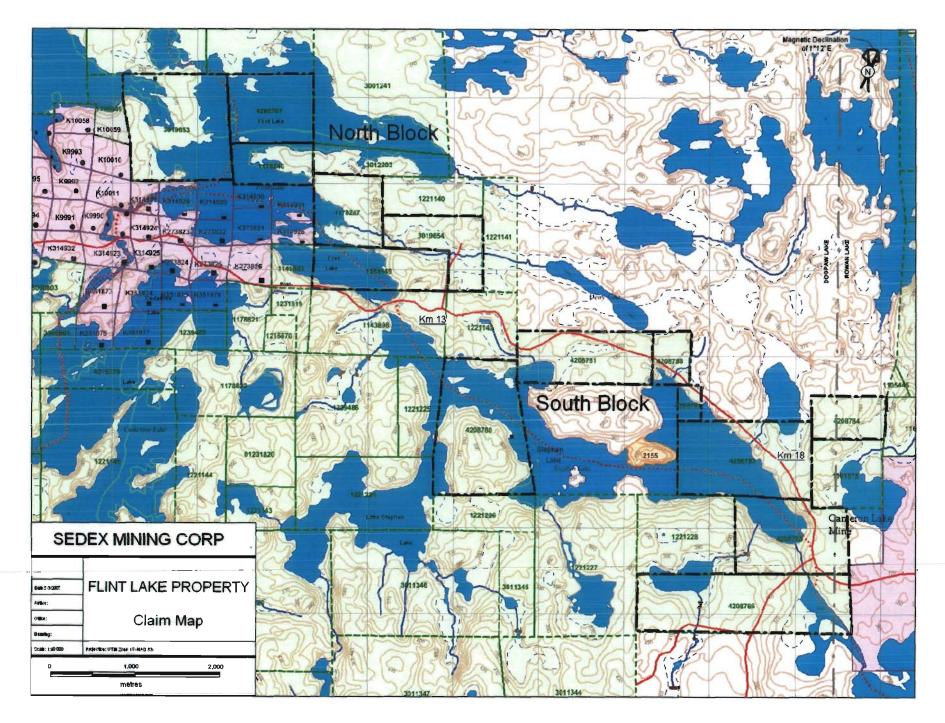
The Cameron Lake Road allows access to the property at kilometre 13 and 18 respectively. This road has a restricted access and a permit from the Ontario Ministry of Natural Resources via Nuinsco Resources Ltd. is required. The Cameron Lake Road leaves Highway 71 about 15 kilometres (9 miles) south of Sioux Narrows. Kilometre markings commence eastward from the saw mill. As the road is quite sinuous with rather poor visibility, the continuous heavy truck traffic requires for safety that all vehicles be equipped with VHF FM Radio with channel "Trucker 5" on frequency 170.310 megahertz.

In areas underlain by mafic volcanics the topography is generally low and undulating with relief generally below 15 metres. Outcrops tend to be infrequent in these areas. However, where underlain by the Kakagi Lake gabbro sills and felsic volcanics, the topography is more pronounced and may vary from 15 metres to 120 metres. Large outcrop exposures are common. Hills are elongated along an eastwest trend which is parallel to the direction of the major geological units. The trend of the hills may terminate abruptly where cut by numerous faults and lineaments of a variety of orientations.

Lakes and swamps are an important component of the landscape in the region. Drainage is controlled by geologic contacts or by lineaments. The predominance of a thick portion of the Kakagi Lake gabbro sill in the center of the project area causes local drainage to flow outward into Flint Lake.

The vegetation is, for the most part, mature Great Lakes – St Lawrence forest. Jack pine and birch tend to dominate in higher elevations. Spruce, alder, and cedar are found in low lying areas. Grasses are prolific in the swamp

CLAIMS AND OWNERSHIP


The property has an area of approximately 1 216 hectares consisting of 76 mineral claim units in 14 claims which lie within the Kenora Mining Division. The Flint Lake property is divided into two non-contiguous claim blocks of six and eight claims respectively to be referred to later as the north and south blocks. The mineral claims comprising the property are presented in Table 1and illustrated in Figure ?.

At the time of the work the claims were under option by SEDEX Mining Corporation from Perry English.

Township/Area	Claim Number	Recording Date	Claim Due Date	Work Required	Total Applied	Total Reserv
DOGPAW LAKE	1178246	1995-Oct-18	2009-Oct-18	\$400	\$10,000	\$6,364
DOGPAW LAKE	1178247	1995-Oct-18	2009-Oct-18	\$25	\$20,775	\$5,660
DOGPAW LAKE	1184549	1996-Aug-16	2009-Aug-16	\$1,600	\$17,600	\$8,625
DOGPAW LAKE	3019653	2006-Jun-08	2009-Jun-08	\$3,600	\$3,600	\$0
DOGPAW LAKE	3019654	2006-Jun-08	2009-Jun-08	\$1,600	\$1,600	\$12,995
DOGPAW LAKE	4208780	2006-Mar-08	2009-Mar-08	\$4,000	\$4,000	\$0
DOGPAW LAKE	4208781	2006-Mar-08	2009-Mar-08	\$2,000	\$2,000	\$2,980
DOGPAW LAKE	4208782	2006-Mar-08	2009-Mar-08	\$800	\$800	\$460
DOGPAW LAKE	4208783	2006-Mar-08	2009-Mar-08	\$3,200	\$3,200	\$0
DOGPAW LAKE	4208784	2006-Mar-08	2009-Mar-08	\$800	\$800	\$0
DOGPAW LAKE	4208785	2006-Mar-08	2009-Mar-08	\$2,800	\$2,800	\$0
DOGPAW LAKE	4208786	2006-Mar-08	2009-Mar-08	\$5,200	\$5,200	\$3,955
DOGPAW LAKE	4208787	2006-Mar-08	2009-Mar-08	\$2,000	\$2,000	\$0
DOGPAW LAKE	4208788	2006-Mar-08	2009-Mar-08	\$400	\$400	\$1,287

 Table 1

 Off Lake Property Claims List (* Barr Optioned Claims)

PREVIOUS WORK

Prospecting in the region was followed discoveries of the Gold Fanner Mine, Flint Lake Prospect, and Dubenski Gold Deposit, followed by shallow exploratory drilling along the main mineralized trend on the Dubenski property, to the west of the property. The Flint Lake property is host to the historic Meahan occurrence. A brief summary of the work covering the Flint Lake property is as follows:

Government Mapping

Lawson briefly explored the Cedartree-Flint Lake part of the Rainy River region in the early 1880s for the Geological Survey of Canada. W. Mcinnes (1902) also worked in the area for the Geological Survey of Canada. No further government work was reported from the region until 1933 when E.M. Burwash produced a report for the Ontario Department of Mines (Burwash, 1933), with maps at a scale of 1 inch to 1 mile. This work was used extensively by prospectors and mining companies in the area until the mid 1970s. J.C. Davies and J.A. Morin conducted a regional mapping survey of the Cedartree Lake area for the Ontario Division of Mines in 1976. In 1980, the Ontario Geological Survey completed a compilation over the Dogpaw Lake area, reported by Rivett and MacTavish as Preliminary Map P2061. Energy Mines and Resources Canada and the Ontario Ministry of Northern Development and Mines conducted an airborne magnetometer and electromagnetic survey over the Dogpaw-Cameron Lake area in 1987. S. Buck conducted a structural and metallogenetic study of the Pipestone-Cameron Deformation Zone in the Flint and Cameron Lakes area for the Ontario Geological Survey in 1988.

Exploration on the Flint Lake Property and Meahan Occurrence

The earliest exploration work reported for the Flint Lake property is from the Meahan occurrence which is located at the eastern end of current claim K 1184549. The occurrence was reported by Davies and Morin (1976) as being originally discovered by J.B. Meahan, and subsequently reported by R. Thomson in 1944. The

showing consists of a series of trenches that expose several pyrite-bearing shear zones and/or narrow quartz veins along a general east-west trend within a maficultramafic intrusion. Gold values ranging up to 2 ounces per ton were reported from one narrow (20 cm) pyrite bearing quartz vein. No diamond drilling has been reported for the Meahan occurrence.

Gateway Uranium Mines drilled two short holes in 1961 on the north shore of the peninsula on current claim K 1178246. Sheared mafic volcanics with minor pyrite were noted in the logs but no assays were reported. Pango Gold Mines Ltd. completed geological mapping, magnetometer and VLF surveys in 1973 and two diamond drill holes in the southeast bay of Flint Lake in 1975. The holes intersected sheared and altered tuff that contained anomalous values of up to 0.01 ounces per

ton Au over 3.0 feet. These holes are assumed to have intersected the eastern extension of the structure hosting the Dubenski deposit.

Several of the Sherritt Gordon diamond drill holes that were completed during the 1980s drilling campaign on the Dubenski gold deposit (adjacent property to the west) were drilled on the east shore of Flint Lake, due west of the main Meahan showing. A drill fence, consisting of three diamond drill holes (FL81-1, 2 and 3) were re-drilled in a second drilling campaign in 1987 by hole FL86-02. No assays were reported from these holes. The re-drilling of the holes and the absence of assays suggests that the holes intersected anomalous gold values.

G. Martin conducted additional stripping and trenching around the historic Meahan trenches in the late 1980s. No assays were reported. Sampling in 1996 and 1997 by the current property vendor, Tim Twomey confirmed the historical high grade gold values from the Meahan trenches and added two coincident humus anomalies.

Avalon Ventures completed reconnaissance geological mapping, linecutting, soil sampling plus magnetometer and induced polarization geophysical survey on the Flint Lake property in 1997 and 1998.

REGIONAL GEOLOGY

The Flint Lake property occurs within the Kakagi-Rowan Lakes greenstone belt, located on the western end of the Wabigoon Subprovince within the Archean Superior Province of the Canadian Shield. The Wabigoon Subprovince is a granitegreenstone terrain separating the gneissic terranes of the Quetico Subprovince to the south and the Winnipeg River Subprovince to the north (Figure ?).

The stratigraphy of the Kakagi-Rowan Lakes greenstone belt consists of a lower and upper volcanic sequence. The lower sequence, the Rowan Group, is comprised of submarine, ultramafic to mafic, komatiitic-tholeiitic volcanic flows and minor interflow sediments (2775-2745 Ma). The upper sequence, the Kakagi Lake Group, is comprised of an intermediate to felsic tholeiitic to calc-alkaline volcaniclastic sequence (2711 Ma). The upper volcaniclastic sequence has been intruded by the Kakagi sills, a series of syn-to post-volcanic ultramafic to mafic sills and dykes. Current work suggests there may be extrusive equivalents within the belt. Geochemical results to date indicate that the majority of the lithologies present in the belt were deposited in a simple, submarine volcanic arc environment (Blackburn, 1991)

The rocks in the property area have been deformed by the Pipestone-Cameron Deformation Zone (PCDZ), a northwest trending brittle-ductile to ductile shear zone. The PCDZ crosscuts the east-west to northeast trending foliation and bedding. Offset stratigraphy along this PCDZ indicates that the deformation zone has produced at least three kilometres of apparent horizontal displacement and an undefined but significant vertical displacement, resulting in a reverse sense of motion, north block up. The rocks immediately south of the PCDZ in the project area have been synclinally folded along an east-west axis. The folded stratigraphy is offset by the PCDZ, indicating that it predates the PCDZ. However, it is unresolved at present whether the east-west oriented folding is related to the predominantly

east-west fabric produced during D2, or whether it was produced by the northdirected stress early in the D3 event. The metamorphic grade within the Kakagi-Rowan Lakes greenstone belt is typically lower greenschist to middle greenschist facies, but it can increase to middle amphibolite facies towards the contact of the belt with the various bounding plutons.

PROPERTY GEOLOGY

Previous geological mapping on the Flint Lake property was carried out during a comprehensive exploration program on this and other contiguous properties being explored by Avalon Ventures Ltd. at the time. In addition, specific areas of the property were prospected and systematic grid mapping was conducted over the land portion of the southernmost claim of the property. The results of the mapping program are shown schematically in Figure 4 and plotted at a scale of 1:5000 on Map 3.

6.1 Stratigraphy

The Flint Lake property is underlain by massive to pillowed mafic volcanic flows of the Rowan Lake Group. The southwestern two-thirds of the property is underlain by intermediate to felsic volcaniclastic flows and mafic dykes of the Kakagi Lake Group. The two groups have been structurally juxtaposed along the Pipestone-Cameron Deformation Zone (PCDZ), a one kilometre wide zone of deformation which runs through the Flint Lake property, trending northwest-southeast.

Rowan Lake Group

The Rowan Lake Group in the property area is comprised of massive to pillowed subaqueous, mafic volcanic flows. The pillowed varieties contain pillows ranging in diameter from 0.5 to 1.2 metres, with selvages typically 1-2 cm thick. Pillow textures on an outcrop on an adjacent property to the north indicate stratigraphic tops are to the south at that location. The Rowan Lake Group covers approximately 60% of the Flint Lake property.

Kakagi Lake Group

The Kakagi Lake Group is comprised of coarse to fine grained, intermediate to felsic volcaniclastic and minor rhyodacitic flows that have been intruded by a series of bedding-parallel ultramafic to mafic sills. The rhyodacitic flows are aerially and volumetrically minor components of the volcanic sequence.

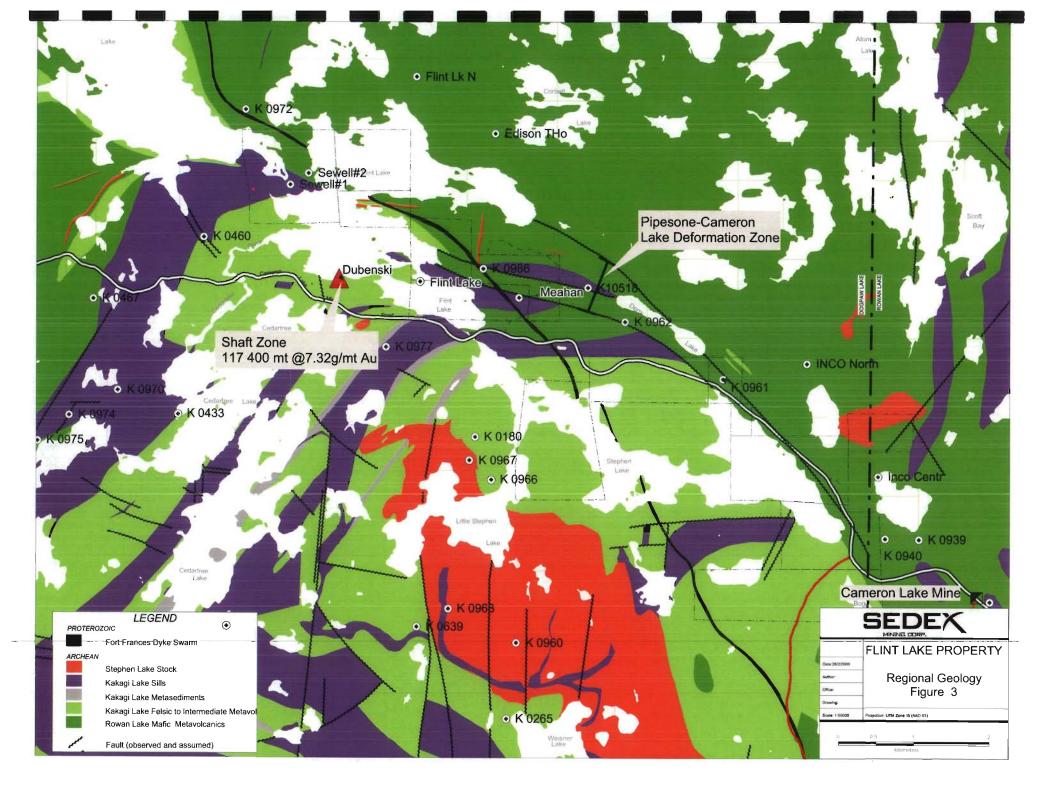
Intermediate to Felsic Volcaniclastic Units

Rhyodacitic lapilli tuff, ash tuff and tuff breccia were mapped along the east shoreline of Flint Lake in the northern half of the Flint Lake property. The units are moderately to strongly foliated, roughly parallel to the trend of the PCDZ, and are variably altered with ankerite and chlorite. Strong sericitization occurs along the shoreline of the southeast bay of Flint Lake and grades northward in several outcrops into a strong Ankerite sericite schist that is exposed on several outcrops within the bay. Drilling beneath the bay along strike approximately 900 metres to the northwest by Pango Gold Mines Ltd. (1973) and Sherritt Gordon Ltd. (1981-1987) intersected numerous zones of highly sheared tuff with significant sericite alteration, local quartz veins and local disseminated pyrite, pyrrhotite and chalcopyrite.

Kakagi Lake Sills

The volcaniclastic sequences and massive flows are intruded by mafic to ultramafic sills of the Kakagi Lake Group. The sills include gabbro, pyroxenite and serpentinite compositions, although gabbro appears to be the dominant lithology in the region. On the Flint Lake property, one sill extends from several islands just outside the property boundary west of the centre claim, across the southern portion of that claim and through the centre of the southernmost claim through the Meahan occurrence. Another sill identified by Davies and Morin, 1976 occurs along the south shore of the southeast bay of Flint Lake (southwest corner of the southernmost claim), immediately west and southeast of Cameron Creek. The sill extends northeast to the shore of Flint Lake where it is crosscut and offset by the PCDZ.

Rhyodacite Flows


Massive rhyodacite flow are present on the property as aphanitic light grey to white and is medium green on fresh surface. No porphyritic component has been reported and primary textures are absent, possibly due to overprinted alteration and shearing from the PCDZ.

Stephen Lake Intrusive Suite

The largest intrusion that was emplaced in the area occurs one kilometre south of the Flint Lake property, north and southwest of Little Stephen Lake. This intrusive body, called the Stephen Lake Pluton, is felsic to intermediate in composition. A quartz-feldspar porphyry dyke, assumed to be related to the Stephen Lake Pluton, outcrops at the western edge of the peninsula on the northernmost claim of the Flint Lake property. This dyke is approximately 150 metres wide, is moderately foliated to locally sheared and shows sericite and ankerite alteration.

Kenora-Fort Frances Dyke Swarm

Two occurrences of diabase dyke on the peninsula in the northernmost claim of the Flint Lake property are interpreted to be a single dyke emplaced as part of the Archean aged Kenora-Fort Frances dyke swarm that occurs through the region.

DRILL PROGRAM SUMMARY

Drilling commenced on May 21th and ended on June 14th, 2008. Layne Christensen Canada Ltd based in Sudbury, Ontario was contracted to perform the diamond drilling using a tracked CS1000. The 428 m drill program consisted of four BQTW holes.

Drill hole FL08-01 was completed on claim 420783 in the south block. While hole FL0802 and FL0803 collared at the same location on the North Block on claim 3019654. The final hole, FL08-04 collared on claim 1178247 also in the North Block. Diamond drill logs are located in Appendix 1 while assay certificates for gold and ICP are listed in Appendix 3.

A total of 204 samples were taken for Au fire assay with an AA finish plus a 32 element ICP-MS scan. An additional 5 standards and seven blank material were inserted for quality control of the assay results. No Au assay was possible for sample 438386 as there was insufficient quantity to complete both ICP and Au assays. Assay procedures for Accurassay Laboratories of Thunder Bay are listed in Appendix 4. Sample lengths averaged 1.1 metres.

Samples were split on the property and shipped to Accurassay Laboratories by Gardwine Transport Inc in Fort Francis. All drill cores are cross piled on property.

	Diamond Drill Program Details										
Hole	Easting	Northing	Azimuth	Dip	Elevation	Length					
FL08-1	445095	5461604	225	-50	369	200					
FL08-2	440942	5464015	180	-50	341	212					
FL08-3	440942	5464018	360	-50	341	203					
FL08-4	440119	5464631	180	-50	342	209					

Table 2 Diamond Drill Program Details

Drill log Summary

Drill hole <u>FL08-1</u> was spotted to test an irregularity in the magnetic fabric within the Pipestone-Cameron Lake Fault zone on the south claim block. The hole intersected strongly foliated and variably ankerite altered mafic volcanics from the collar down to 160 m. After which a 2 m wide weakly foliated to massive quartz porphyry intrusive hosting 5-8% mafic volcanic zenoliths was encountered followed by a quartz gabbro to 178 m. A weakly bleached, moderately silicified massive mafic flow completed the hole.

Drill hole <u>FL08-02</u> was collared on line 11+00E on the north claim block to test the coincident MMI Au in soil and IP chargeability/resistivity anomaly 150 along strike of the Meahan Showing. Variably altered and strained massive and pillowed mafic volcanic flows were encountered to 98 m. Intervals of above average quartz veining bleached the unit producing the intermediate volcanic units noted in the log. Such a bleached quartz-ankerite veined interval yielded the highest Au assay 373 ppb Au at the mafic volcanic/gabbro contact at 98 m. The serpentine-talc altered intrusive continued to 198 m followed by a mafic volcanic flow as mentioned above.

Drill hole <u>FL08-03</u> was drilled from the same setup as FL08-02 with an opposite azimuth of 360° to drill test under the swamp covered Pipestone-Cameron Lake Fault zone. The hole collared into strong to intensely foliated and crenulated mafic volcanics showing moderate to strong ankerite bleaching. Multiple generations of quartz-carbonate and quartz-ankerite are present. The more intensely altered intervals are labelled as intermediate in composition within the log. Assays were all less than 100 ppb Au.

Drill hole <u>FL08-04</u> tested the northern edge of the Pipestone-Cameron Lake Fault zone where Au in soil anomaly was produced by previous workers. The hole

collared in massive diabase which was logged as gabbro to a depth of 105 m. A well foliated massive and pillowed mafic volcanic unit followed to 196 m. A weakly silicified mafic lapilli tuff completed the hole to 209 m. No significant assays were produced.

CONCLUSION AND RECOMMENDATIONS

Based on results to date the there is no indication of an eastern strike extent of the Meahan Showing. Drill results by Pango Gold Mines Ltd. in the southeast bay of Flint Lake in 1975 would suggest the Meahan showing continues to the west towards the Dubenski Showing. Drill testing of the Pipestone-Cameron Lake Fault zone itself yielded no anomalous assays. This drill program did not traverse the structure in its entirety. There remain a number of weak IP anomalies within the Pipestone-Cameron Lake Fault on 11+00E.

REFERENCES

- Beard, R. C., and Garratt, G. L., 1984. Gold Deposits of the Kenora-Fort Frances Area, Districts of Kenora and Rainy River, Ontario Geological Survey Mineral Deposit Circular 16, 46p.
 Accompanied by Chart A, scale 1:253,440 or 1 inch to 4 miles.
- Blackburn, C. E., and Janes, D. A., 1983. Gold Deposits in Northwestern Ontario. In The Geology of Gold in Ontario, Ontario Geological Survey Misc. Paper 110, ed. By
- Buck, S., 1988. Structural and Metallogenetic Studies in the Flint-Cameron Lakes Area, District of Kenora. Ontario Geological Survey OFR 5682.
- Burwash, E. M., 1933. Geology of the Kakagi Lake Area; p. 41-92 in Ontario Dept. Mines, Vol. 42, Pt. 4. Accompanied by Maps 42b and 42c, scale 1 inch to 1 mile.
- Davies, J. C., and Morin, J. A., 1976. Geology of the Cedartree Lake Area, District of Kenora; Ontario Div. Mines, GR134, 52p. Accompanied by Map 2319, scale 1 inch to ½ mile.
- Johns, G. W., 1985. Kakagi Lake-Rowan Lake Regional Geology, District of Kenora, pp.41-45. In Summary of Field Work and Other Activities 1985, Ontario Geological Survey Misc. Paper 126, ed. By J. Wood, O. L. White, R. B. Barlow and A. C. Colvine.
- Kaye, L., 1981. Kakagi Lake. Ontario Geological Survey Map 2447, Precambrian Geology Series, scale 1 inch to ½ mile, geology, 1973..
- Melling, D. R. 1986. The Occurrence of Gold in the Cameron-Rowan Lakes Area: Preliminary report on the Monte Cristo and Victor Island Gold Prospects in the Monte Cristo Shear Zone; p. 252-260 *in* Summary of Field Work and Other Activities, 1986 by the Ontario Geological Survey, edited by P. C. Thurston, O. L. White, R. B. Barlow, M. E. Cherry and A. C. Colvine, Ontario Geological Survey, Misc. Paper 132, 435p. Accompanied by 1 Chart.
- Melling, D. R., Blackburn, C. E., Watkinson, D. H., and parker, J. R., 1988. Geological setting of gold, western Wabigoon Subprovince, Canadian Shield: exploration targets in mixed volcanic successions in Can Jour. Earth Sci., 25, pp. 2075-2088.

Melling, D. R., and Watkinson, D. H., 1985. The Cameron Lake Deposit. In Institute on Lake

Superior Geology, 31st Annual Meeting, Kenora, 1985, ed. By G. P. Beakhouse.

- Melling, D. R., Watkinson, D. H., Poulsen, K. H., and Chorlton, L. B., 1985. The Geological Setting and Genesis of the Cameron Lake Gold Deposit *in* Geoscience Research Grant Program Summary of Research 1984-1985, Ontario Geological Survey Misc. Paper 127, ed. By V. G. Milne, pp. 136-150.
- Melling, D. R., Watkinson, D. H., Poulsen, K. H., Chorlton, L. B., and Hunter, A. D., 1986. The Cameron Lake Gold Deposit, Northwestern Ontario, Canada: Geological Setting, Structure and Alteration *in* Gold '86 Proceedings Volume, edited by A. J. Macdonald, Toronto, 1986, pp.149-169.
- Melling, D. R., Watkinson, D. H., and Taylor, R. P., 1987. Detailed Lithological, Structural, and Alteration Mapping of the Cameron Lake Gold Deposit, Northwestern Ontario; p. 66-71 in Summary of Field Work and Other Activities, 1987 by the Ontario Geological Survey, edited by P. C. Thurston, O. L. White, R. B. Barlow, M.
- Rees, K. and Campbell, I., 1999. Report on 1997 -1998 Exploration Program Flint Lake Property Sioux Narrows, Ontario, Dogpaw Lake Area G-2613 Kenora Mining Division, Ontario, Avalon Ventures Ltd., MNDM Assessment Files, 79 p.
- Rivett, A.S. and MacTavish, A.D., 1980. Dogpaw Lake, District of Kenora, Ontario Geological Survey preliminary Map P2061, Kenora Data Series, Scale 1:15,840 or l inch to 1A mile..
- Thomson, R., 1944. Report on the Meahan Claim Group, Flint Lake; unpublished report for Ontario Department of Mines, Resident Geologist's Files, Ontario Ministry of Natural Resources, Kenora
- Twomey, T.J., 1995. Report on Geology and Humus Surveys and Stripping, Flint Lake Property, NTS 52 F/5 SW, OPAP 1995, January 31, 1997
- Twomey, T.J., 1997. Report on Geology and Humus Surveys and Stripping, Flint Lake Property, NTS 52 F/5 SW, OPAP 1996, January 31, 1997

Twomey, T.J., 2001. Report on Stripping, Flint Lake Property, MNDM, Assessment Files. 14 p

STATEMENT OF QUALIFICATIONS

I, Andrew A. B. Tims, of 317 Sillesdale Cr., Thunder Bay Ontario hereby certify that:

- 1.) I am the author of this report.
- 2.) I graduated from Carleton University, in Ottawa, with a Bachelor of Science Degree in Geology (1989).
- 3.) I possess a valid prospector's license and have been practising my profession as a geologist involved in mineral exploration for the past 20 years.
- 4.) I am a practising member of the Association of Professional Geoscientist of Ontario as well as a Fellow of the Geological Association of Canada.
- 5.) I do not hold or expect to receive any interest in the property described in this report.
- 6.) I consent to the use of this report by Rainy River Resources Inc.

Thunder Bay, Ontario February 27, 2009

ral cho

Andrew Tims Geologist Northern Mineral Exploration Services

APPENDIX 1 - Flint Lake Property Diamond Drill Logs

I

I

I

I

Northern Minerals Exploration Services DIAMOND DRILL LOG

Hole Number FL08-1

Page 1 of 1 Drill Log Summary

Project Number	Flint	Objective		Т	<i>Tests</i>	
NTS	52F/5SW			Depth (m) Azi	i muth (d)	Dip (d)
Project Name	Flint	Drilling Company Lay	yne Christensen Canada Ltd.	15	220.4	-48.6
Township/Area	Rowan Lake area	Start Date (m/d/y)	22/05/2008	50	221.4	-46.9
Claim Number	K 4208783	Finish Date (m/d/y)	24/05/2008	100	221	-47.5
		Date Logged (m/d/y)	28/05/2008	150	222.6	-46.2
UTM Zone	15 U			200	223	-44.8
		Geologist	H. M. BUCK			
UTM Easting (m)	445095					
		Hole Length	200			
UTM Northing (m)	5461604					
		Core Location	15 U 440584 5463587			
Grid Identifier	Line 7+99 mN, 1+57 mE					
Easting (+E,-W)	157	Distance to Water		,		
Northing (+N,-S)	799	Core Size	NQ			
Elevation:	369	Casing Lost	0	T	\sum	
Drill Log Summary:						
DracLog Summary.	• _					

Northern Mineral Exploration

DLAMOND DRILL LOG

Project Number

Hole Number

Flint FL08-1

<u>From</u>	<u>To</u>	Rock Type Rock Code	Geology	Sample No.	From	To	Length	<u>.4u (ppb)</u>	<u>Au (g/t)</u>
0	3.55	Overburden							
3.55	5.92	Mafic flow	Green to dark green to reddish brown, highly altered and strained mafic volcanic that is fine-grained (recrystallized). The rock is composed of 30% light phase and 70% dark phase minerals that include feldspar, quartz? and chlorite. Soft platy pinkish brown bands may be serpentine or talc and are found throughout the interval. It is well banded in the lowest m which contains up to 15% 2 mm thick quartz ankerite veins, and the core is foliated throughout, with banding on mm to 1/3 cm scale. The foliation varies between 55° & 62° TCA and generally increases downhole. No magnetism was detected. Quartz-amkerite veins to 2 mm thick are generally found in the basal m of the core and follow foliation. They all appear to be partially boudinaged and are anastomosing. Several veins with irregular boundaries crosscut the foliation above the basal section and reach 1/3 of a cm across Hematite coatings on fractures and thin layers following the foliation (especially at the base) are found throughout the interval. Pyrite was not observed but may be present as very small grains. The base of the interval is the last occurrence of semi-competent rock above a fault zone						

2a

Northern Mineral Exploration Project Number Hole Number DLAMOND DRILL LOG									
From	Τυ	Rock Type Rock Code	Geology	Sample No.	From	<u> </u>	Length	<u>. Au (ppb)</u>	Au (g/t)
5.92	8.94	Fault zone	Pinkish to green to grey core that consists of fault gauge and short sections of semi-competent core to 5 cm wide. The core is fine-grained and contains abundant fissile to crumbly core sections, with the remainder being rubble & fault gauge. Approximately 1.8 m of core was lost in the 3 m run. Carbonate is present as ankerite and calcite. The foliation is at approximately 60°. Several reminant quartz-ankerite veins following foliation and reaching 1/2 cm thick are present. Hematite as pinkish stains is found above 8 m depth Pyrite was not observed The base of the interval is ground away as the underlying core surface						
8.94	11.7	Mafic volcanic?	The core is off white to green, depending on the amount of quartz- ankerite veins and is very well foliated and banded. Origional provenance is difficult to determine, but reminant core appears to be very fine-grained mafic rock with lots of chlorite. Banding/foliation varies between 56° and 70° TCA, and the core appears to be highly strained. The core is non magnetic Buff to off white quartz-ankerite veins comprise about 15 to 70% of the core and vary from mm scale to approximately 2 cm, but generally are several mm thick and follow the foliation. The boundaries of these veins anastomose while others are partially boudinaged Some rare 2-3 mm thick and mildly irregular quartz-carbonate veins crosscut the quartz ankerite veins and the foliation, but they are barren. Pyrite is uncommon as very fine-grained crystals found disseminated within the quartz-ankerite veins	438251 438252 438253	8.94 9.7 10.7	9.7 10.7 11.7	0.76 1.00 1.00	16 2.5 6	

Northern Mineral Exploration <u>DIAMOND_DRILL LOG</u>						Project Number Hole Number			Flint FL08-1
^r rom	To	Rock Type Rock Code	Geology	Sample No.	From	To	Length	<u>.4. (ppb)</u>	<u>Au (g/t)</u>
1.7	12.9	Intermediate volcanic?	Buff white to tan very well foliated and banded core that lacks chlorite and is composed of very fine-grained quartz, ankerite and a platy soft pinkish brown mineral that may be serpentine or talc. The interval bands are anastomosing for the most part, often show the beginnings of boudinage and contain dm scale sections that are crenulated, contorted and folded. The foliation varies between 60° and 70° TCA. The rock is not magnetic Yellow tan to grey white quartz-ankerite veins from mm to 3 cm wide occur throughout the interval and are separated from each other by pinkish brown anastomosing layers of soft platy serpentine or talc. Pyrite as rare very fine-grained material The entire interval appears to have been largely converted to quartz- ankerite veining. Pyrite is rare as very fine-grained material in the veining The base of the interval is the base of the pervasive quartz-ankerite zone and is sharp but irregular and is within a crunulated zone	438254	11.7	12.9	1.20	7	
2.9	19.16	Mafic volcanic	The core is off white to green depending on the amount of quartz- ankerite veins and is very well foliated and banded. Origional	438255	12.9	13.9	1.00	14	
			provenance is difficult to determine, but reminant core appears to be	438256	13.9	14.9	1.00	11	
			very fine-grained mafic rock with lots of chlorite. Banding/foliation varies between 69° and 80° TCA, and the core appears to be highly strained.	438257	14.9	15.9	1.00	7	
			Much of the core is crenulated, with veining exhibiting anastomosing boundaries and partial boudinaging. The core is non magnetic	438259	15.9	16.9	1.00	17	
			Buff to off white quartz-ankerite veins comprise about 20 to 75% of the	438260	16.9	17.9	1.00	14	
			core and vary from mm scale to 5 cm, but generally are several mm thick and follow the foliation except where the core is crenulated. The boundaries of most of these veins anastomose, with others being partially boudinaged Several 2-3 mm thick and mildly irregular quartz-carbonate veins crosscut the quartz ankerite veins and the foliation, but they are barren. Pyrite is uncommon as very fine-grained crystals generally found	438261	17.9	19.16	1.26	10	
		2a	disseminated within the quartz-ankerite veins						

Northern Mineral Exploration

DIAMOND DRILL LOG

<u>From</u>	<u> </u>	Rock Type Rock Code	Geology	Sample No.	<u>From</u>	<u>To</u>	Length	<u>Au (ppb)</u>	<u>Au (g/t)</u>
19.16	55.64	Mafic Volcanic	Grey green to green to dark green very fine-grained to aphanitic foliated to massive mafic volcanic with the foliation varying from 65° at the top to 60° below 30 m depth. Carbonate in the matrix is associated with carbonate veining an varies from none to strong in the matrix. The first 1.5 m are more boudinaged and anastomosing than in the remainder of the unit and have contained quartz-ankerite veins. White carbonate rich veins are very common just below the top of the unit associated with the foliation, which they follow to 32 m depth, when they become more randomely oriented to approximately 50 m, when they once again follow the foliation. They vary from submm scale to 3.5 cm wide and some show signs of boudinaging and/or folding, especially near the top. Pyrite generally rare but does get to 3-5% in several veins. White quartz-carbonate veins to 12-13 cm wide with sharp contacts but irregular boundaries found occasionally, associated with dark green phase (chlorite?), epidote rims and up to 1% pyrite, as mm sized subhedral to euhedral crystals generally found near the boundaries of the vein. The best example is found between 39.15 and 39.50 m. Quartz-ankerite veins and small boudinages found within the top several m, and places here resemble spotty rock due to the boudinage which follow the foliation. Quartz-carbonate veins crosscut the quartz-ankerite veins. Pyrite is rare. Silicification as spotty to pervasive alteration in the rim areas of quartz carbonate veins and rarely as streaks or curving veins within the matrix of the volcanic. Hematite as very thin coatings on fractures here and there. Pyrite varies from generally rare to ~1% of the core as disseminated euhedral grains to 1.5 mm, but generally smaller and very rarely in carbonate veins and in most carbonate quartz veins (see above) The base of the interval is a fault at 65° TCA with 1/2 to 1 cm of brown clay rich fault gouge between competent rock.	438262 438263 438265 438266 438266 438267	19.16 35 36 37.5 39 40	20.16 36 37.5 39 40 41	1.00 1.50 1.50 1.00 1.00	2.5 10 2.5 5 8 13	
		2a							

Project Number

Hole Number

Flint

FL08-1

Northern	Mineral	Exploration
----------	---------	-------------

DIAMOND DRILL LOG

<u>From</u>	<u>To</u>	Rock Type <u>Rock Code</u>	Geology	Sample No.	<u> </u>	<u></u>	Length	<u>.4u (ppb)</u>	<u>Au (g/t)</u>
55.64	68.8	Mafic Volcanic	Tan to green to dark green very fine-grained to aphanitic metavolcanic that goes from foliated/banded to well foliated/banded after two meters	438268	56.3	57.3	1.00	10	
			above the base. The foliation varies between 64° and 71° TCA. Banding	438269	57.3	58.8	1.50	11	
			is from mm to cm scale (generally quartz-ankerite veins), with edges	438270	58.8	60.3	1.50	9	
			varying from straight to anastomosing to crenulated (20%) to boudinaged. The rock has been considerably strained in this section but reminant amigdules to 1 cm are present for ~20 cm, centered on 57.3 m.	438271	60.3	61.8	1.50	11	
				438272	61.8	63.3	1.50	12	
			White quartz-carbonate-ankerite veins to 4 cm wide, with sharp contacts but irregular boundaries, found occasionally associated with	438273	63.3	64.8	1.50	11	
			dark green phase (chlorite?), with the ankerite bordering the vein and up to 1% pyrite as mm sized subhedral to euhedral crystals and masses	438274	64.8	66.3	1.50	9	
			generally found near the boundaries of the vein. The best example is	438275	66.3	67.8	1.50	7	
			found centered at 86.15 m. These veins crosscut the quartz-ankerite banding and crenulation Yellow-white quartz-ankerite veins from several mm to 1/2 cm band the core, varying from anastamosing boundaries to crenulated core to small boudinages found after 57.30 m. Quartz-carbonate-ankerite veins crosscut the quartz-ankerite veins. Pyrite is rare. White carbonate rich veins to 1 cm wide are found from the top to ~58.4 m and crosscut the foliation. They are associated with the carbonate filled amygdules and at the section base with quartz-ankerite veins Silicification of the core is weak under the fault but strengthens after 57.4 m. The alteration lightens the core colour where it is strong Pyrite is generally rare as disseminated euhedral grains to 1 mm, and is usually found in the quartz ankerite-carbonate veins The base of the interval is a sharp at 68° but contorted. The contact is defined as the last occurrence of pervasive quartz-ankerite veining and	438276	67.8	68.8	1.00	6	

Project Number Hole Number

Flint

FL08-1

Northern Mineral Exploration <u>DIAMOND DRILL LOG</u>						Project Number Hole Number			Flint FL08-1
From	To	Rock Type Rock Code	Geology	Sample No.	From	<u>1 To</u>	Length	<u>.4u (ppb)</u>	<u>Au (g/t)</u>
68.8	87.13	Mafic volcanic	Grey green to green to dark green very fine-grained to aphanitic foliated to massive mafic volcanic with the foliation varying from 60° TCA in the top half to 78 m, then increases to 70° TCA at the base. Carbonate in the matrix is associated with carbonate veining and varies from rare to strong in the matrix. Between 70 and 80 m, the rock is weak to strongly magnetic and 1 mm sized magnetite crystals are visible at 78.55 m White carbonate rich veins are very common in the middle of the unit associated with the foliation, which they follow or vary from to small degrees. They vary from submm scale to 3 cm wide and some show signs of boudinaging and/or folding, especially after 77 m, where boundaries and directions become more random and veins often crosscut the foliation. Pyrite generally rare. Some veins associated with dm patches of highly carbonate and silica altered core White quartz-carbonate veins to 3.5 cm wide with sharp contacts but irregular boundaries found occasionally, associated with dark green phase (chlorite?), and rare pyrite as mm sized subhedral to euhedral crystals found throughout the vein. The best example is found at 81.05 m. Pyrite as trace disseminated euhedral grains to 1.5 mm, and very rarely in carbonate veins and in most carbonate-quartz veins. The base of the interval is a band at 70° TCA, where the first carbonate-ankerite veins occur and coincidentally the core turns pale green due to increased silicification .	438277 438279	68.8 86.13	69.8 87.13	1.00	7 7	

Northern Mineral Exploration <u>DI4MOND DRILL LOG</u>							ect Number Hole Numb	Flint FL08-1	
From	<u>To</u>	Rock Type Rock Code	Geology	Sample No.	<u>From</u>	<u>To</u>	Length	. <u>4u (ppb)</u>	<u>Au (g/t)</u>
87.13	94.02	Mafic volcanic	Pale green to green very fine-grained to aphanitic metavolcanic that is	438280	87.13	88.63	1.50	9	
			well foliated/banded throughout. The foliation varies between 66° and 71° TCA. Banding is from mm to cm scale (generally quartz-ankerite	438281	88.63	90.13	1.50	8	
			veins), with edges varying from straight to anastomosing to crenulated (5-10%) to boudinaged. The rock has been considerably strained in this	438282	90.13	91.63	1.50	8	
			section. White quartz-carbonate-ankerite veins to 8 cm wide with sharp contacts but irregular boundaries found occasionally associated with dark green	438283 438284	91.63 93.02	93.02 94.02	1.39 1.00	8	
			phase (chlorite?), and rare pyrite as mm sized subhedral to euhedral crystals. The best examples are found between 89.28 and 89.64 m. These veins crosscut the quartz ankerite banding at shallow angles Yellow white quartz-ankerite veins from several mm to 1/2 cm band the core, varying from anastamosing boundaries to crenulated core to small boudinages found throughout. Pyrite is rare. White carbonate rich veins to 2 cm wide are found throughout and crosscut to follow the foliation. Masses that are subangular and up to 5 cm wide found in the lowest part. Veining is less common in the more silicified parts Silicified. The alteration lightens the core colour where it is strong Pyrite is generally rare as disseminated euhedral grains to 1 mm, and is usually found in the quartz ankerite-carbonate veins The base of the interval is a sharp boundary with a carbonate vein at 60° TCA. The contact is the last occurrence of pervasive quartz-ankerite	430204	55.62	54.02	1.00	U	

Northern Mineral Exploration <u>DIAMOND DRILL LOG</u>							ect Number Hole Numb	Flint FL08-1	
<u>From</u>	<i>To</i>	Rock Type Rock Code	Geology	Sample No.	From	<u>1 To</u>	Length	.4.11 (ppb)	<u>Au (g/t)</u>
94.02	105.92	2a	Grey green to green to dark green fine-grained to aphanitic foliated to massive mafic volcanic with the foliation/banding at 64° TCA in the silicified zone in the centre of the interval. Carbonate in the matrix is associated with carbonate veining an varies from poor (silicified section) to strong. The rock is nonmagnetic. White carbonate rich veins are very common except in the silicified section, where they are rare. Carbonate veins are associated with the foliation, which they generally follow or vary from to small degrees where more strain is noted. Otherwise the veins crosscut the foliation, or occur as subrounded to subangular blobs to 7 cm The veins vary from submm scale to 2 cm wide and some show signs of boudinaging and/or folding, especially in the bottom half, where boundaries and directions become more random and veins often crosscut the foliation. Pyrite generally rare. Rare white quartz-carbonate-ankerite veins to 2 cm wide with sharp contacts but irregular boundaries, that curve and crosscut the foliation, and quartz-ankerite and carbonate veins. Associated with dark green phase (chlorite?), and rare pyrite as 1/2 mm sized subhedral grains found on the edges of the vein. The example is found centered at 97.09 m. Yellow white quartz-ankerite veins from 2-3 mm to 1.5 cm banding the core, varying from anastamosing boundaries to small partial boudinages found throughout the silicified section. Pyrite is rare. Silicification of the core is moderate and associated with quartz-ankerite banding between ~96.3 & ~98.4 m. The alteration lightens the core colour	438285	94.02 104.42	95.02 105.92	1.00	8	
		2a							

Northern Mineral Exploration <u>DLAMOND DRILL LOG</u>						Proje	Flint FL08-1		
<u>From</u>	To	Rock Type Rock Code	Geology	Sample No.	From	To	Length	<u>.4µ (ppb)</u>	<u>Au (g/t)</u>
105.92	111.36	Mafic volcanic	Tan to pale yellow-green to dark green very fine-grained to aphanitic metavolcanic that is well foliated/banded throughout. The foliation varies	438287	105.92		1.50	11	
			between 62° and 74° TCA. Banding is from mm to cm scale (generally quartz-ankerite veins), with edges varying from straight to anastomosing to boudinaged. The rock has been considerably strained in this section.	438288 438289	107.42 108.42		1.00 1.50	137 9	
			White quartz-carbonate-ankerite veins to 4 cm wide with sharp contacts but irregular boundaries found occasionally, associated with 1% pyrite as 1/2 mm sized subhedral to euhedral crystals, generally found at boundaries. The best example is found between 107.76 and 107.98 m, where heavy silicification has turned the core dark grey. These veins crosscut the quartz-ankerite banding at shallow angles Yellow white quartz-ankerite veins from 2-3 mm to 1 cm cause banding in the core, varying from anastamosing boundaries to small boudinages found throughout. Pyrite is rare. Occasional white carbonate rich veins to 1 cm wide are found throughout except between 107 and 109 m, due to silicification, and basically follow the foliation. Masses that are subangular and up to 2 cm wide found in the lower part, can have vein like sections, and stay within foliation. Veining is less common in the more silicified parts Silicification of the core is moderate to strong, with the top and base less silicified. The alteration lightens the core colour where it is strong Pyrite is generally rare as disseminated euhedral grains to 1 mm, and is usually found in the quartz ankerite-carbonate veins The base of the interval is a diffuse boundary on a carbonate-ankerite vein at 74° TCA. The contact is the last occurrence of pervasive quartz- ankerite veining and heavy to moderate silicification.	438290	109.92	111.30	1.44	13	

Northern Mineral Exploration

DIAMOND DRILL LOG

Hole Number

Flint FL08-1

<u>From</u>	<i>Tø</i>	Rock Type Rock Code	Geology	Sample No	From	<u>To</u>	<u>Length</u>	.4 <u>u (ppb)</u>	<u>Au (g/t)</u>
111.36	127.92	Mafic volcanic	Green to dark green very fine-grained to aphanitic foliated to massive mafic volcanic with the foliation varying from 64° to 71° TCA (in a small silicified section). Carbonate in the matrix is umbiquitous and associated with carbonate veining, and varies from rare to strong in the matrix. Most of the rock is weak to strongly magnetic below the silicified zone and above 26 m White carbonate rich veins are very common throughout the unit, generally associated with the foliation, especially in thinner veins, which generally follow or vary from the foliation to small degrees. They vary from submm scale to 5 cm wide and some show signs of boudinaging and/or folding, while others appear as blotches. This results in boundaries and directions being more random and these veins often crosscut the foliation. Pyrite generally rare. Yellow white quartz-ankerite veins from several mm to 1/2 cm cause banding in the core and are associated with silicification and occur rarely near the base. Banding varies from anastamosing boundaries to small boudinages found in the silicified zone. Pyrite is rare. A single 9 cm quartz-carbonate vein centered at 115.62 m contians molybdenite flakes to 3 mm comprising 1-2% of the vein. The boundaries are irregular and blend into the mafic volcanic. Pyrite to 2 mm is also found associated with the vein and comprises <1% of the vein. Silicification of the core is undectected to moderate with the silicified section being well foliated (71° TCA) and located between 113.42 to 114.05 m. The alteration lightens the core colour where it is strong and increases the strength of the foliation.						
		<u>-u</u>							

Northern Mineral Exploration <u>DI4MOND DRILL LOG</u>						Proj	ect Number Hole Numb	er	Flint FL08-1
_From	To	Rock Type Rock Code	Geology	Sample No.	Fron	<u>ı To</u>	Length	.Au (ppb)	<u>Au (g/t)</u>
127.92	137.75	Mafic volcanic	Tan to light yellow-green to green very fine-grained to aphanitic metavolcanic that is well foliated/banded throughout. The foliation varies between 63° and 75° TCA. Banding is from mm to cm scale (generally	438291 438292	128 129	129 131	1.00 2.00	8 9	
			quartz-ankerite veins), with edges varying from straight to anastomosing to boudinaged. The rock has been considerably strained in this section. No magnetism was observed.	438293	131 132.5	132.5 133.5	1.50	8	
			A fault with 1/3 cm of gouge at 137.37 m with a direction of 69° TCA White quartz-ankerite-carbonate veins to 39 cm wide with sharp	438295	133.5	135	1.50	9	
			 contacts but irregular boundaries found occasionally, associated with up to 2% pyrite as 1/2 mm sized subhedral to euhedral grains in smaller veins. The best example is found between 133.05 and 133.44 m. These veins crosscut the quartz-ankerite banding. Yellow white quartz-ankerite veins from several mm to 1.5 cm cause banding in the core, varying from wavy boundaries to small boudinages to crenulated core, found throughout. Pyrite is rare. Occasional white carbonate rich veins to 2/3 cm wide are found predominately in the upper and lower sections of the interval due to silicification, and basically follow the foliation. However some carbonate veins crosscut the foliation and the quartz-ankerite veining. Veining is less common in the more silicified parts. Silicified. The alteration lightens the core colour throughout and is associated with quartz-ankerite veining. Pyrite is generally 1% or less, as disseminated euhedral grains to 1 mm, and is also found in the quartz ankerite-carbonate and quartz-ankerite veins. The base of the interval is a change from lighter coloured core to dark green core and is an irregular bounded 3 mm carbonate vein at 61° TCA. The contact is the last occurrence of moderate silicification and 	438296 438297	135	136.5 137.75	1.25	9 10	
		2a							

Rock Type Geology rom To Rock Code 75 159.76 Mafic volcanic Light green to green to dark green fine-grained to aphanitic foliated to massive mafic volcanic with the foliation varying from 62° to 71° TCA (in a short, weakly silicified section). Carbonate in the matrix is umbiguitous	<i>Sample <u>No.</u></i> 438299	<u>From</u>	<u> </u>	Length	. <u>4.u.(ppb)</u>	Au (g/t)
massive mafic volcanic with the foliation varying from 62° to 71° TCA (in	438299					
		137.75	138.75	1.00	12	
and associated with carbonate veining and varies from weak to strong in the matrix. Most of the rock is weak to moderately magnetic above 147.5 m White carbonate rich veins are very common throughout the unit, usually associated with the foliation, especially in thinner veins, which generally follow or vary from the foliation to small degrees, but can be far off also. They vary from submm scale to 3 cm wide and often larger veins show signs of boudinaging and/or folding, while others appear as blotches. This results in boundaries and directions being more random and these veins often crosscut the foliation. Pyrite generally rare, but up to 20 to 30% in occasional bands, making lenslike areas in the core. Occasional grey quartz4(carbonate) veins to 4 cm with no contained pyrite but often having pyrite in surrounding carbonate veins. Veins generally follow foliation. Epidotization is occasional as patchy irregular masses to several cm associated with carbonate rich veins Silicification of the core is undectected to weak, with a small silicified section being well foliated (71° TCA) and centered on 142.8 m. The alteration lightens the core colour where it is strong and increases the strength of the foliation. Pyrite varies from <1% to small sections with 2-3% as disseminated euhedral grains to 1.5 mm, and in carbonate veins, some of which are associated with quartz veins. The base of the interval is a sharp, undulating contact approximately at 65° TCA where the last sliver of mafic volcanic and carbonate vein give way to the underlying interval.	438300	158.76	159.76	1.00	11	

		eral Explorat DRILL LOG	n			Projec 	er	Flint FL08-1	
<u>From</u>	<u> </u>	Rock Type Rock Code	Geology	Sample No.	From	To	Length	<u>Au (ppb)</u>	<u> Au (g/t)</u>
59.76	161.64	Quartz porphry	Green to greenish grey medium-grained to aphanitic porphyry with a poor foliation at 59° TCA. Quartz eyes to 2 mm are subrounded and comprise from rare to 3% of the core and are found throughout Carbonate veins common and vary from mm scale veins following the foliation to 2 cm wide masses with irregular and indestinct boundaries that are blob like and discontinous. Some contain pyrite. Pyrite is variable from <1% to about 6% as disseminated crystals to 1 mm and as occasional veins with mm sized crystals that reach 1 cm thick and are primarily pyrite. They sometimes crosscut the foliation at small angles. Also found in carbonate veins in small quantities The base of the interval is sharp						
		7a	 160.1 160.16 Mafic volcanic 2a Green aphanitic mafic volcanic that is non magnetic and has weak to moderate carbonate in the matrix. Small carbonate veins follow the general foliation of the rock and and go from 1 to 3 mm and some small veinlets have ~30% pyrite. Pyrite to 1/2 mm as disseminated crystals <1% of the core The upper and lower contacts are sharp and at 68° and 69° TCA respectively 161.51 161.64 Mafic volcanic 2a Green aphanitic mafic volcanic that is strongly magnetic and has weak to moderate carbonate in the matrix. Mm sized magnetite crystals comprise about 1-1/2% of the core. Small carbonate veins follow the general foliation of the rock and and go from 1 to 4 mm. Pyrite to 1 mm as disseminated crystals comprising ~1% of the core. 						

		eral Explorat	ion		Pro	ject Number Hole Numb	er	Flint FL08-1
From	To	Rock Type Rock Code	Geology	Sample No.	From To	Length	<u>.4µ (ppb)</u>	<u>Au (g/t)</u>
161.64	178.49	Quartz gabbro	Green to dark green to grey-green medium to very fine-grained core with a reminant intrusive texture, especially in the upper portion of the interval. From approximately 170 to172 m core is very fine grained to aphanitic and may contain some metavolcanic?? Quartz grains range from very-fine grained to ~3 mm and very from trace to several percent. Quartz grains are generally subrounded, but subangular and rounded grains exist. About 1/3 of the core is speckled by carbonate-rich white angular to subrounded and flattened reminant feldspars? Carbonate alteration is near umbiquitous and varyies from very weak to strong and is often better near carbonate veins and masses. Magnetism is generally absent, but some sections (10-15%) have weak to moderate magnetism. The core is poorly foliated, but gets better foliated towards the base, especially in the lowest few meters, before the core shows the silicification at the base. Foliation/banding varies from 55 to 53° TCA to 166 m, then increases steadily till it is at 76° TCA just above the base. White carbonate veins are common throughout and vary from mm scale veins generally following the foliation to crosscutting it at high angles, enlarging to 3 cm thick veins and after 171 m becoming irregular masses with distinct boundaries that generally crosscut the foliation. Pyrite occasionally to und in the bottom 1/2 m of the interval, associated with quartz-ankerite discontionous veins from 1 mm to 2-3 mm, occasionally found in the bottom 1/2 m of the interval, associated with quartz-ankerite veins and containing disseminated pyrite to 1%. Hematite rich veinlets crosscutting the foliation occasionally present themselves several m below the top of the interval. Silicification becomes observable below 174-174.5 m and intensifies downhole and is associated with quartz-ankerite veins just above the base.	438303	161.64 162.64 176.99 178.49	1.00	7 20	
		8a						

		eral Explorat DRILL LOG	tion		Flint FL08-1				
From	<i>Tø</i>	Rock Type Rock Code	Geology	Sample No.	From	To	Length	. <u>4u (ppb)</u>	Aµ (g/1)
178.49	200	Mafic volcanic	Pale yellow-green to green to dark green very fine-grained to aphanitic metavolcanic that is well foliated/banded throughout. The foliation varies	438305	178.49		1.50	22	
			between 57° and 80° TCA, with 80° TCA at the top and 70° TCA at the	438306	179.99		1.50	15	
			base, with the center at the lower angles. Banding is from mm to cm scale (generally quartz-ankerite veins above 187.05m), with edges	438307	181.49		1.50	36	
			varying from straight to anastomosing to boudinaged. The rock has been considerably strained in this section. The rock is nonmagnetic. Carbonate	438308	182.99		1.50	11	
			alteration in the matrix is very rare and closely associated with	438309	184.49		1.00	8	
			neighboring carbonate veins. White quartz-ankerite-carbonate veins to 14 cm wide with sharp contacts but irregular boundaries found occasionally, associated with up to 1% pyrite as 1/2 mm sized subhedral to euhedral crystals in the core	438310 438311	185.49 186.99		1.50 1.50	8 39	
			surrounding the veins, generally found at boundaries. The best example	438312	188.49	189.99	1.50	6	
			is centered at 184.65 m. These veins crosscut the quartz-ankerite banding at shallow angles. Some thinner veins are dark grey in colour	438313	189.99		1.00	40	
			and can have 2-3 % pyrite grains	438314	190.99	192.49	1.50	8	
			Yellow white quartz-ankerite veins from several mm to 1 cm cause banding in the core. Boundaries varying from anastamosing boundaries	438315	192.49	193.99	1.50	7	
			to small boudinages found throughout ankerite section above 195 m. Crenulation common in the most silicified part above 187.05 m. Pyrite is	438316	193.99	195.49	1.50	6	
			uncommon within the veins.	438317	195.49		1.50	6	
			Common white carbonate±ankerite rich veins to 1.5 cm wide are found throughout, though they are uncommon and thin between 180 and 187 m	438319	196.99	198.49	1.50	11	
			due to silicification, and basically follow the foliation when they are in more silicified sections and a few mm thick. Masses that are subangular to subrounded and irregular and up to 3 cm wide found in the lower part below 187.05 m, can have vein like sections, and generally stray from the foliation. The first six cm of the interval is a light grey, pyrite rich vein with ~4% pyrite cutting the core at a very high angle. Silicification of the core is moderate to strong, with the most silicified between 180 and 187 m, though the entire interval is silicified to one extent or another. In the strongest silicified section, small dark grey veins form following the foliation and are closely associated with quartz- ankerite veining. The alteration lightens the core colour, especially where it is strong. Pyrite is generally uncommon as disseminated euhedral grains to 1 mm, END OF HOLE	438320	198.49	200	1.51	2.5	
		2a							

Sample No.	Au (ppb)	Au (g/t)	Си (ррт)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Ni (ppm)	Co (ppm)	Pt (ppb)	Pd (ppb)	S%
Project Numbe	r:	Flint									
Hole Nun	ıber:	FL08-1									
438251	16										
438252	2.5										
438253	6										
438254	7										
438255	14										
438256	11										
438257	7										
438259	17										
438260	14										
438261	10										
438262	2.5										
438263	10										
438264	2.5										
438265	5										
438266	8										
438267	13										
438268	10										
438269	11										
438270	9										
438271	11										
February 25, 200	9									Page 1 of 3	Assays

Sample No.	Au (ppb)	.A# (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Ni (ppm)	Co (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
438272	12										
438273	11										
438274	9										
438275	7										
438276	6										
438277	7										
438279	7										
438280	9										
438281	8										
438282	8										
438283	8										
438284	8										
438285	8										
438286	8										
438287	11										
438288	137										
438289	9										
438290	13										
438291	8										
438292	9										
438293	8										
438294	9										
438295	9										
E.L										Pano 7 of 3	A 65/10-5

February 25, 2009

Page 2 of 3 Assays

Sample No.	Au (ppb)	.4 <i>u (g/t)</i>	Cu (ppm)	Zn (ppm)	Pb (ppm)	.4g (ppm)	Ni (ppm)	Cə (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
438296	9										
438297	10										
438299	12										
438300	11										
438303	7										
438304	20										
438305	22										
438306	15										
438307	36										
438308	11										
438309	8										
438310	8										
438311	39										
438312	6										
438313	40										
438314	8										
438315	7										
438316	6										
438317	6										
438319	11										
438320	2.5										

Northern Minerals Exploration Services DIAMOND DRILL LOG

Hole Number FL08-2

Page 1 of 1 Drill Log Summary

Project Number	Flint	Objective To dri	ll the Meahan showing		Tests	
NTS	52F/5SW			Depth (m)	Azimuth (d)	Dip (d)
Project Name	Flint	Drilling Company	Layne Christensen Canada Ltd.	15	181.6	-47.9
Township/Area	Dogpaw Lake area	Start Date (m/d/y)	26/05/2008	101	180.2	-46.4
Claim Number	K 1184549	Finish Date (m/d/y)	27/05/2008	200	180.9	-46.5
		Date Logged (m/d/y,	08/06/2008			
UTM Zone	15 U					
		Geologist	H. M. BUCK			
UTM Easting (m)	440942					
		Hole Length	212			
UTM Northing (m)	5464015					
		Core Location	15 U 440584 5463587			
Grid Identifier	Line 10+84.5 mE, 2+40 mS					
Easting (+E,-W)	1084.5	Distance to Water	15			
Northing (+N,-S)	-240	Core Size	NQ		7	
Elevation:	341	Casing Lost	0	1/-		
Drill Log Summar	p::					

	Northern Mineral Exploration							Project Number Hole Number					
From_	<i>To_</i> _	Rock Type Rock Code	Geology	Sample No.	From	<u>To</u>	Length	.4u (ppb)	Au (g/t)				
o	3.23	Overburden											
3.23	15.98	Mafic volcanic?	Greenish white to green to dark green fine-grained mafic rock that is probably a volcanic or gabbro as the origional textures are mucked up by strain and deformation. The rock has considerable chlorite and a dark phase to 1/2 mm wide. It is often elongated along the foliation comprising up to 10% of the rock. The foliation is well developed throughout, and varies from 52° to 64° TCA. The matrix of the rock does not have noticeable carbonate, even surrounding carbonate veins. No magnetism was detected. Occasional carbonate±quartz veins found before 11 m vary from mm thick veinlets close to the foliation to 1 cm thick veins following the foliation and blobs and irregular masses crosscutting the foliation Rare yellow to light grey quartz-ankerite veins to 1/2 cm thick crosscutting the foliation above 11 m. Greyish blue quartz-ankerite veins common in highly silicified section after 11.2 m and rare above. Best between 12.15 and 13.02 m associated with the highly silicified section of the unit. Boundaries are distinct but often contorted and folded and often cutting the prevaling foliation. Some veins appear boudinaged. Pyrite found throughout as grains to 4 mm and comprising 1 to 8 % of the vein. Associated with sericite schist layers. Hematite as coatings on fracture surfaces and as veinlets associated with the basal fault. Silicification present from 11.0 to 14.4 m, often very strong and as included quartz veins. Small sections starting to resemble a mylonite, the entire silicified part is well foliated Pyrite common as disseminated 1 mm big subhedral to euhedral crystals and aggregates ~1-2% of the rock, but in the silicified section, pyrite can	438321 438322 438323 438324 438325	9.85 10.85 12.35 13.35 14.35	10.85 12.35 13.35 14.35 15.85	1.00 1.50 1.00 1.50	5 8 15 97 7					
			be as much as 5% and is often closely associated with contained quartz-ankerite veins. The base of the unit is a fault with about 1 cm of brown fault gouge and about 2 cm of very rusty rock above and up to 6 cm of rusty rock below the plane of the fault. TCA is unreadable due to fragmentation at the										

<u>DIAMOND DRILL LOG</u>

Project Number	
Hole Number	

		Rock Type	Geology	Sample					
From	To	Rock Code		No.	From	To	Length	<u>Au (ppb)</u>	<u>Au (g/t)</u>
15.98	22.28	Mafic volcanic?	Green to dark green to red-brown fine-grained to very fine-grained mafic rock that is probably a volcanic or gabbro as the origional textures are	438326	16.53	17.53	1.00	9	
			mucked up by strain and deformation. The rock has considerable	438327	17.53	18.53	1.00	56	
			chlorite, and is speckled on a fine scale in places. The foliation is well developed throughout, and varies from 52° to 60° TCA, generally	438328	18.53	20.03	1.50	120	
			increasing downhole. The matrix of the rock does not have noticeable carbonate except for a few spots. No magnetism was detected.	438329	20.03	21.03	1.00	25	
			Rare irregular carbonate veinlets to 1 mm that crosscut the foliation.	438330	21.03	22.28	1.25	13	
			 Rare yellow quartz-ankerite veins to 1 cm thick crosscutting the foliation at small angles. Occasional greyish blue to grey quartz-ankerite veins in highly strained and partly silicified section between 16.5 and 19.9 m. Boundaries are distinct but often contorted and folded and often cutting the prevaling foliation. Some veins appear boudinaged. Pyrite found throughout as grains to 1/2 mm and comprising 1 to 2% of the veins. Hematite associated with the fault at the top of the interval, as coatings on fracture surfaces and as veins and patchy staining to 1 dm wide. Silicification present from 16.5 and 19.9 m, as moderate alteration and as included quartz veins. The entire silicified part is well foliated. Pyrite common as disseminated mm sized subhedral to euhedral crystals, ~1-2% of the rock, but in the silicified section, pyrite can be as much as 3% and is often closely associated with contained quartz-ankerite veins. 						
			The base of the unit is the first occurrence of banding in the lower interval, and has a sharp contact at 64° TCA						
		2a	····						

DIAMOND DRILL LOG

Project Number Hole Number

From	<i>To</i>	Rock Type Rock Code	Geology	Sample <u>No.</u>	From	<u> </u>	Length	Au (ppb)	Au (g/t)
22.28	25.88	Mafic tuff	Tan to green to dark green fine-grained to very fine-grained core. Quartz	438331	22.28	23.28	1.00	115	
			eyes to 2 mm are rare in the matrix. The foliation is well to very well defined and varies between 65° and 71° TCA. The best straining and minor silicification of the rock occurs above ~25 m. The core is non magnetic. Carbonate found only in veining. Lapilli are all considerably	438332	23.28	24.28	1.00	9	
25.88 33.07		2c	flattened along the foliation, with the widest fragment being 32 mm in width and more than the width of the core. Fragments are probably polylithic (intermediate to mafic) and consist of volcanic fragments that are generally sub angular to angular, with some being subrounded. Occasional irregular carbonate veins and blotches to 2 cm that crosscut the foliation. Occasional grey quartz veins associated with silicification are generally about 2 mm wide and have undulating boundaries Pyrite ~1% as disseminated grains to 3 mm with 3-4% pyrite in the last 15 cm or so The base of the unit is sharp, undulating and at 70° TCA						
25.88	33.07	Mafic volcanic?	Greenish grey massive fine-grained core with a good foliation between 62° and 65° TCA. The core is nonmagnetic, and contains carbonate in	438333	29.1	30.1	1.00	25	
			the matrix below 29 m.	438334	30.1	30.6	0.50	309	
			Carbonate±quartz veins occur occasionally and vary from mm sized to 1/2 cm in width and follow or crosscut the foliation. At 30.35 m, a 1 cm	438335	30.6	32.07	1.47	16	
			thick layer adjoining a vein, contains several % pyrite sourounded by two times as much very fine-grained reddish brown mineralization that may be sphalerite? Occasional grey quartz veins to 1.5 cm that are folded and crosscut the foliation and have ~1% pyrite Pyrite generally about 1% as disseminated grains to 1 mm	438336	32.07	33.07	1.00	11	
		2a	28.25 28.56 Mafic tuff 2c Green to dark green fine-grained to very fine-grained core. The foliation is well defined. The core is non magnetic. Carbonate found only in veining. Lapilli are all considerably flattened along the foliation, with the widest fragment being 7 mm in width and more than the width of the core. Fragments appear monolithic (intermediate or mafic) and consist of volcanic fragments that are generally sub angular to angular.Occasional irregular quartz- carbonate veins and blotches to 2/3 cm that crosscut the foliation. Occasional grey quartz veins are generally about 2 mm wide to 7 mm and have undulating boundaries, appear boudinaged and folded and crosscut the foliation, Pyrite ~1% as disseminated grains to 3 mm as euhedral crystals						

DIAMOND DRILL LOG

Project Number	
Hole Number	

From	To	Rock Type Rock Code	Geology	Sample No.	From	Тө	Length	Au (ppb)	<u>A11 (g/t)</u>
<i>From</i> 33.07	34.87		Grey to green-grey fine-grained to very fine-grained core. The foliation is well defined and varies between 53° and 66° TCA. The core is non magnetic. Carbonate found throughout. Lapilli are all considerably flattened along the foliation, with the widest fragment being 30 mm in width and more than the width of the core. Fragments are polylithic (intermediate to mafic) and consist of light grey volcanic fragments that are generally sub angular to angular, often with indestinct boundaries in the more intermediate fragments and a single dark fragment 3 mm wide. Occasional irregular carbonate veins and blotches to 2 cm wide that crosscut the foliation and often show signs of folding. Some are surrounded by pyrite rich zones and have a dark red browm mineralization surrounding them that may be sphalerite. Pyrite ~1-2% as disseminated grains to 2 mm with 3-4% pyrite in small sections. Possible sphaletite as occasional veinlets and veinlets/masses associated with pyrite surrounding some carbonate veins. <1% of the interval. The base of the unit is sharp, undulating, possibly slightly folded and at	438337 438339	33.07 34.07	34.07 34.87	1.00 0.80	330 80	All (g/l)
		3b	50° TCA.						

DIAMOND DRILL LOG

Project Number Hole Number

From	To	Rock Type Rock Code	Geology	Sample <u>No.</u>	From	То	Length	<u>Au (ppb)</u>	<u>Au (g/t)</u>
34.87	40.91	Mafic volcanic	Greenish grey to grey fine-grained core that is probably a volcanic, with a good foliation between 62° and 65° TCA. Common mm or less, scale	438340	34.87	35.87	1.00	25	
			dark lenses throughout define the foliation. Very rare quartz eyes to 2	438341	35.87	36.87	1.00	6	
			mm observed. The core is nonmagnetic, and contains carbonate in the matrix throughout the interval, varying from weak to moderate in	438342	36.87	37.87	1.00	2.5	
			strength. Carbonate±quartz veins occur commonly and vary from mm sized to 2/3 cm in width and crosscut the foliation, generally at high angles. Almost all	438343 438344	39.41 40.41	40.41 40.91	1.00 0.50	2.5 8	
		2a	are irregular and a few appear broken up britally or boudinaged but are still angular. Uncommon carbonate-ankerite-quartz veins to 1/2 cm that crosscut the foliation to following the foliation with the best section between 36.10 to 36.23 m where it is associated with 1% disseminated pyrite to 1 mm Occasional grey quartz veins to 2 mm that are folded and crosscut the foliation becomming subrounded masses to 2 cm that may be boudinaged vein reminants. Pyrite generally <<1% as disseminated grains to 1 mm, but between 35.56 and 35.66 m, pyrite as 2.5 cm cubes from 3 to 5% of the core, disseminated, often surrounded by carbonate pods. In the bottom 10 cm or so, pyrite in lenslike bodies several mm wide and reaching 2-3% of the core.						
40.91	46.45	Intermediate tuff, Ash tuff	Buff yellow, light grey to grey medium to very fine-grained tuffs. Very well foliated between 61° and 64° TCA. Banding follows foliation and	438345	40.91	41.84	0.93	25	
			varies from occasional in feldspar tuff to banding from 2-4 cm between	438346	41.84	42.84	1.00	18	
			ash tuff and tuff, with the largest ash tuff 28 cm wide (with a fault at the base at 59° TCA at 41.84 m) and the last occurrence at 43.8 m. Tuff	438347	42.84	43.84	1.00	11	
			contains altered and stretched feldspars to 2 mm wide and up to 1 cm long associated with 15% dark grains that have also been elongated.	438348	43.84	45.34	1.50	2.5	
		3b	The whole interval has weak carbonate alteration (except for yellowish ash tuffs) and no observed magnetism. Carbonate±quartz veins occasional throughout and follow the foliation (show signs of boudinage) to crosscutting at moderate to high angles. Pyrite from 2-3% in the top 10 cm as lenslike clumps rich in pyrite that may be lapilli. Generally pyrite is disseminated ~1% of the core and less than 1 mm in size. The base of the interval at 68° TCA. The boundary is somewhat indestinct and may be gradational or altered over a short distance.	438349	45.34	46.45	1.11	36	
Fahr	uurv 25-2	000	• -				Page 5 of 1	A Grotow	and Assave

		neral Explora DRILL LOG	tion			Proje	Flint FL08-2		
From	<i>To</i>	Rock Type Rock Code	Geology	Sample No.	<u>From</u>	<u> </u>	Length	<u>Au (ppb)</u>	Au (g/t)
46.45	52.61	Intermediate tuff	Light grey to grey medium to very fine-grained tuff. Very well foliated between 56° and 63° TCA. Banding follows foliation in feldspar tuff Tuff contains altered and stretched feldspars to 2 mm wide and up to 1 cm long associated with 15% dark lapilli that have also been elongated to several cm. The whole interval has weak carbonate alteration and no observed magnetism. Carbonate±quartz veins occasional throughout and follow the foliation (show signs of boudinage) to crosscutting at moderate angles. Weak to moderate silicification 1.5 m above the base of the interval Generally pyrite is disseminated ~1% of the core and less than 1 mm in size, but several veins to 2 mm contain substantial pyrite. The base of the interval is at the start of the underlying mafic volcanic	438350	46.45	47.45	1.00	14	
		3b	 52.35 52.61 Intermediate tuff 3b Yellowish white core comprising 80% light maaterial to 2 -3 mm with 20 % darker matrix, probably a small ash flow. Quartz eyes to 1 mm are rare. Foliation is well defined and is at 58° TCA with no obvious banding. Core is nonmagnetic but weakly carbonitized throughout. Pyrite <<1% as 1/2 mm disseminated grains. The top of the unit is sharp and is at 51° TCA The base of the unit is at 55° TCA and blends in with the underlying 						

DIAMOND DRILL LOG

F roject Number	Pro	ject	Number	
------------------------	-----	------	--------	--

Hole Number

C	Ta	Rock Type Rock Code	Geology	Sample No.	From	То	Length	Au (ppb)	Au (g/t)
<u> </u>		AUCK LOUP		1 (0)	• • •				
52.61	98.53	Mafic volcanic	The interval starts as green and gradually becomes bleached to a ligh grey at the lower contact in a massive flow. The core is very fine-	438351	52.61	54	1.39	34	
			grained to aphanitic. The core is moderately to well foliated throughout	438352	54	55	1.00	137	
			and varies between 60° to 70° TCA, stepening downhole. The entire interval has weak to moderate carbonitization throughout. Magnetism is	438353	55	56	1.00	23	
			weak and here and there except for the breccia in the top 15 cm which is moderate to strong. Leucoxene as beige grains to 1.5 mm, variable	438354	56	57.5	1.50	74	
			but up to 5% and ends at about 66 m	438355	72	73	1.00	101	
			White carbonate±quartz veins are found throughout and vary in size from mm widths to several cm, with smaller regular bounded veins	438356	73	74	1.00	373	
			following the foliation to crosscutting. After 73 m, veins become more common, crosscut more and are generally about 1 cm wide, usually with	438357	74	75.5	1.50	13	
			irregular boundaries.	438359	75.5	77	1.50	2.5	
			Ankerite-carbonate-quartz veins appear at 73 m to 73.6 m coinciding	438360	77	78.5	1.50	2.5	
			with the onset of bleaching. They range from mm scale to 4 cm with 1/2 to 1% disseminated pyrite near the margins.	438361	78.5	80	1.50	2.5	
			Bleaching starts at 73 m and continues to the bottom of the interval 4 Silicification at 55.50 m for 10 cm associated with 10% pyrite			81.5	1.50	2.5	
			From 74.3 to 92.2 m, bright green fuschite alteration initially being spotty and becoming more prevelant at 87 m till it stops. Initially in small veinlike	438363	81.5	83	1.50	2.5	
			sections following the foliation becoming patchy with veinlike sections	438364	83	84.5	1.50	2.5	
			closely associated with carbonate veining.	438365	84.5	86	1.50	17	
			Pyrite generally 1% as disseminated crystals to 1 mm. Small sections in the top quarter increase to 10% pyrite but are not extensive with one associated with silicification	438366	86	87.5	1.50	7	
			The base is sharp and is at 70° TCA.	438367	87.5	89	1.50	9	
				438368	89	90.5	1.50	8	
				438369	90.5	92	1.50	2.5	
				438370	92	93.5	1.50	6	
				438371	93.5	95	1.50	2.5	
				438371	95	96.5	1.50	2.5	
								9	
				438373	96.5	98.53	2.03	3	

DIAMOND DRILL LOG

Project Number

Hole Number

From	To	Rock Type Rock Code	Geology	Sample No.	From	Тө	Length	Au (ppb)	Au (g/t)
9 8 .53	197.96	Gabbro	Dark bluish grey to dark grey to black medium to fine-grained massive to weakly foliated core. The foliation in the core is most notable at the top	438374	98.53	99.53	1.00	156	
			and bottom and decreases from 72° TCA to 61° TCA at the top and	438375	127.25	129.25	2.00	2.5	
			increases from 55° to 78° TCA just above the base of the interval. The core is highly altered and is soft, with a lot of contained talc and possibly	438376	129.25	131.25	2.00	2.5	
			serpentine replacing the original mineralogy. The entire interval is moderately to strongly magnetic except for the top 2 m and the bottom	438377	131.25	133.25	2.00	2.5	
			1.5 m, where the core is more greenish. Carbonate alteration is weak to	438379	133.25	135.25	2.00	2.5	
			generally none throughout the interval, except in the bottom 1.5 m where it is moderate and is associated with more greenish core.	438380	143	144.5	1.50	2.5	
			White carbonate veins found in the top 2 m and basal 3 m that range from mm scale to 5 cm wide and generally follow the foliation or	438381	144.5	146.5	2.00	8	
			crosscut it at small angles. Rarely they are folded. Pyrite rare but	438382	162.25	163.75	1.50	2.5	
			euhedral crystals to 2 cm found in pods near the bottom. Yellowish to white quartz±ankerite±carbonate veins found throughout	438383	163.75	165.25	1.50	2.5	
			but most common above 118 m. before 108 m they are from mm scale to	438384	192.71	193.71	1.00	2.5	
			several cm wide and generally follow the foliation or crosscut it at shallow angles. Veins show wavy edges and can be folded and partly	438385	193.71	194.96	1.25	2.5	
			boudinaged. Below this they are much more rare but are generally several cm or more and usually crosscut the foliation with irregular	438386	194.96	196.46	1.50	2.5	
			shaped veining. They are sometimes associated with fuschite alteration.	438387	196.46	197.96	1.50	10	
			Pyrite varies from rare to several % disseminated within these veins. Pale greenish carbonate-fuschite?±quartz veins common in the non bleached section between the top and bottom of the interval, as irregular mm to cm scale veining that is chaotic and crosscuts the foliation and themselves, but are cut by later quartz±ankerite±carbonate veins. They are often associated with patchy fuschite alteration in the gabbro. Pyrite ~1% as up to 2 mm euhedral crystals Fuschite alteration as fuschite rich veins or lenses to 1 cm wide and as patchy fuschite in the core matrix, locally up to 15%, is first encountered at 110.5 m and is last noted at 169.0 m. Patches are never more than 1 dm wide. Hematite staining in a 1 mm thick fault gouge is found at 65° TCA at 109.09 m, and the upper surface is polished with parallel stria ~ perpendicular to the plane of faulting where the ovoid is thinnest. Also found as fracture coating at 184.2 m Pyrite is found throughout, generally <1% as disseminated grains but increases over short sections to 5% or so. Uncommon pyrite rich veins						
Esharan 25	2000						Page 8 of 1	() Geolog	v and Assays

Project Number

Hole Number

Flint FL08-2

DIAMOND DRILL LOG

From	To	Rock Type Rock Code	Geology	Sample <u>No.</u>	From	To	Length	<u>Au (ppb)</u>	Au (g/t)
			to several mm wide are found throughout. Near the base, cubes to 2 cm wide surrounded by a thin pod of carbonate. Pyrite is also found in the carbonate-fuschite?±quartz veins. The basal contact is at 83° TCA and is sharp						
		8a							
197.96	203.36	Mafic volcanic	Dark grey to grey to dark green very fine-grained to aphanitic massive to	438388	197.96	198.96	1.00	232	
			well foliated volcanic with the foliation from 70° to 72° TCA throughout. The lower dark green section is generally weakly magnetic. The entire	438389	198.96	199.96	1.00	22	
			interval has weak carbonate. Common white carbonate veins generally follow the foliation or crosscut						
			it at low angles and vary from mm scale to ~1 cm. In the dark green section, masses of carbonate to several cm wide with irregular						
			boundaries generally crosscut the foliation. Veins can comprise up to 50% of the core but generally about 5%. Pyrite ~1% or less but near the						
			top, small sections with up to 6% pyrite as cubes to 2.5 mm are present						
			Pyrite ~1% as disseminated grains to 1 mm, and as described above The basal contact is sharp and is at 70° TCA						
		2a							

DIAMOND DRILL LOG

Project Number Hole Number

Flint

FL08-2

From	To	Rock Type Rock Code	Geology	Sample No.	From	То	Length	.Au (ppb)	Au (g/t)
	040						-		
203.36	212	Intermediate dike	Grey to dark grey fine-grained to aphanitic core that is moderately to well foliated throughout. Foliation between 64° and 70° TCA, though it drops	438390	204.37		1.00	11	
			to 60° in the short silicified zone. Small 5 cm thick sections of altered	438391	205.37	206.47	1.10	17	
			mafic volcanic are distributed here and there within the interval. The core is non magnetic throughout. Carbonate varies from none to weak spotty	438392	206.47	207.47	1.00	26	
			alteration, often associated with carbonate veins Carbonate veins common in the top few meters then becoming	438393	207.47	208.1	0.63	78	
			progressively rare the further downhole. They are generally smaller than	438394	208.1	209.1	1.00	25	
		3с	 1 cm and crosscut the foliation with irregular (often partly folded) larger veins too slightly crosscutting to following the foliation with thinner veins near the top. Quartz-ankerite±carbonate are yellowish white to white, range from mm to cm scale, when following the foliation often appear partly boudinaged. When crosscutting the foliation, they are often folded and some boudinaged. A small strongly silicified section is centered at 207.15 m and is about 15-20 cm long Weak to moderate bleaching is variably present from 206 m to the base. Pyrite is disseminated to 1-2% to 1 mm in size, with occasional mm to cm thick bands containing up to 30% pyrite crosscutting the foliation at small angles. The bands are most prevalent 20 cm above and 10 cm below the silicified section, but occasionally occur throughout the rest of the 207.47 208.1 Mafic volcanic 2a Grey to dark grey very fine-grained to aphanitic moderately foliated volcanic with the foliation at 71° TCA throughout. The interval is nonmagnetic. The entire interval has weak carbonate. Common white carbonate veins generally follow the foliation or crosscut it at low angles and vary from mm scale to ~1/2 cm. Veins generally about 5% of the core. Pyrite ~1% as disseminated grains to 1 mm. Occasional quartz-ankerite-carbonate veins to 2/3 cm that are 		200.1	203.1			
			partially boudinaged and follow the foliation. Pyrite ~1-2% with more near the top, as cubes to 1.5 mm (generally a lot smaller) with uncommon pyrite rich slivers with 10-20% pyrite within. End of Hole						

Sample No.	Au (ppb)	.Au (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Ni (ppm)	Co (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
Project Numbe	r:	1234									
Hole Nun	ıber:	FL08-2									
438321	5										
438322	8										
438323	15										
438324	97										
438325	7										
438326	9										
438327	56										
438328	120										
438329	25										
438330	13										
438331	115										
438332	9										
438333	25										
438334	309										
438335	16										
438336	11										
438337	330										
438339	80										
438340	25										
438341	6										
										Door Lofd	100 000

February 25, 2009

Page 1 of 4 Assays

Sample No.	Au (ppb)	Au (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	.Ag (ppm)	Ni (ppm)	Сө (ррт)	Pt (ppb)	Pd (ppb)	<i>S%</i>
438342	2.5										
438343	2.5										
438344	8										
438345	25										
438346	18										
438347	11										
438348	2.5										
438349	36										
438350	14										
438351	34										
438352	137										
438353	23										
438354	74										
438355	101										
438356	373										
438357	13										
438359	2.5										
438360	2.5										
438361	2.5										
438362	2.5										
438363	2.5										
438364	2.5										
438365	17										
Fabra and 75 - 2000										Page 2 of 4	Assays

February 25, 2009

Page 2 of 4 Assays

Sample No.	Au (ppb)	Au (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	.Ag (ppm)	Ni (ppm)	Cə (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
438366	7										
438367	9										
438368	8										
438369	2.5										
438370	6										
438371	2.5										
438372	2.5										
438373	9										
438374	156										
438375	2.5										
438376	2.5										
43.8377	2.5										
438379	2.5										
438380	2.5										
438381	8										
438382	2.5										
438383	2.5										
438384	2.5										
438385	2.5										
438386	2.5										
438387	10										
438388	232										
438389	22										
1. J										Page 3 of 4	Assavs

February 25, 2009

Page 3 of 4 Assays

Sample No.	Au (ppb) Au (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Ni (ppm)	Со (ррт)	Pt (ppb)	Pd (ppb)	<i>S%</i>
438390	11									
438391	17									
438392	26									
438393	78									
438394	25									
700077	23									

Northern Minerals Exploration Services DIAMOND DRILL LOG

Hole Number FL08-3

Page 1 of 1 Drill Log Summary

Project Number	Flint	Objective To drill the	ne Meahan showing		Tests	
NTS	52F/5SW			Depth (m)	Azimuth (d)	Dip (d)
Project Name	Flint	Drilling Company	Layne Christensen Canada Ltd.	20	357.5	-50
Township/Area	Dogpaw Lake area	Start Date (m/d/y)	27/05/2008	103	358.5	-49.4
Claim Number	K 1184549	Finish Date (m/d/y)	29/05/2008	203	0.6	-47.7
		Date Logged (m/d/y)	21/06/2008			
UTM Zone	15 U					
UTM Easting (m)		Geologist	H. M. BUCK			
UTM Easting (m)	440942	Hole Length	202			
UTM Northing (m)	5464018	noie Lengin	203			
	3404010	Core Location	15 U 440588 5463587			
Grid Identifier	Line 10+84.5 mE, 2+38.5 mS					
Easting (+E,-W)	1084.5	Distance to Water	15			
Northing (+N,-S)	238.5	Core Size	NQ	,)		
Elevation:	341	Casing Lost	0			
Drill Log Summa	ry:					

DIAMOND DRILL LOG

Project Number	Flint
Hole Number	FL08-3

From T	Rock Type ToRock Code	Geology	Sample Nø.	From	To	Length	<u>Ан (ppb)</u>	<u>Au (g/t)</u>
0 3.96	6 Overburden							
3.96 11.1	8 Mafic volcanic	Green medium to very fine-grained core that appears to be chlorite rich because it has numerous dark green lens like spots to 3 mm throughout. It is very well foliated and shows signs of kinking here and there, especially at the base of the interval. Foliation varies between 24° and 28° TCA. The basal ~20 cm are quite schisty, with kinked sericite schist layers. The core is nonmagnetic and no carbonate was observed in the matrix. Quartz±ankerite±carbonate veins are white to yellowish white, are uncommon, and range from mm scale to 2 cm wide. A 1 cm vein of grey quartz at 4.4 m has 1% pyrite as disseminated grains to 1mm and is partially boudinaged. The remaining veins generally crosscut the foliation at small angles or follow it. Edges vary from slightly wavy to completely boudinaged. Hematite on rare fractures. The last several m appear to be mildly bleached in a patchy fashion. Pyrite to 1% as small disseminated grains to 1/2 mm. The base of the interval is a quartz vein separating the tow units, is partly folded but is about 18° TCA. Impossible to determine if contact						
11.18 13.2	2 Intermediate tuff 3b	The core is buff white, is medium to very fine-grained and has several % quartz eyes that exhibit pressure shadows in the plane of the foliation at 19° TCA. Sericite is present along the plane of foliation. The core is nonmagnetic and carbonate was not detected in the matrix. Occasional thin and discontinous quartz veins to 1 mm Hematite staining on rare fractures and in a small section of core where it occupies thin sericite rich layers. Pyrite as very fine-grained crystals ~1%, but variable within the interval The base of the interval is sharp and is at 24° TCA just above a small						

Northern Mineral Exploration <u>DIAMOND DRILL LOG</u>			on			Proje	Flint FL08-3		
From	To	Rock Type Rock Code	Geology	Sample No.	From	To	Length	<u>Au (ppb)</u>	<u>Au (g/t)</u>
13.2	25.84		The colour is green to tan and locally tan. It is fine to very-fine grained with sections or layers of sericite schist. The interval is extremely	438395	17	17.59	0.59	2.5	
			strained and has an intense foliation that varies between 14° and 30° TCA, with the steepest value at 18 m. No magnetism was detected. Original protoliths are diffulcult to distinguish, but probably were mafic	438396 438397	17.59 18.84	18.84 20.34	1.25 1.50	2.5 12	
			and intermediate volcanics. A fault of 30 cm width is found at 24.10 m and is filled with at least several cm of hematite rich clay and reminant rock fragments, along with	438399 438400	20.34 21.84	21.84 22.84	1.50 1.00	6 7	
			later quartz-carbonate veining. The slip plane is at 26° TCA. White to yellowish quartz-ankerite veining found throughout the interval	438401	22.84	23.84	1.00	6	
			from mm scale to about 1 cm, generally following or closely following the foliation, veining wavy to boudinaged. It is fractured by later quartz- carbonate-ankerite veining.	438402 438403	23.84 24.84	24.84 25.84	1.00 1.00	2.5 5	
			Carbonate veining locally brecciates the country rock as irregular 5 cm patch just above the base of the interval White quartz-carbonate-ankerite veining is associated with faulting at 24.10 m and as a 6 cm wide vein at 23.0 m. The lower vein is associated with occasional masses of chalcopyrite to 5 mm comprising several % of the core. Hematite to 1 mm wide visible on fractures and within layering/foliation of the rock. Much of the core is altered to sericite, which is found along the foliation of the rock Pyrite as rare disseminated grains to 1/2 mm throughout. The base of the interval is at a broken section, at the base of the					-	

		eral Explorat	ion			-	rt Number Hole Numb	er	Flint FL08-3
<u> </u>	To	Rock Type Rock Code	Geology	Sample <u>No</u> .	From	To	Length	<u>.Au (ppb)</u>	<u>Au (g/1)</u>
25.84	52.98	Mafic volcanic	The core is light green to green and locally tan. It is fine to very-fine grained with sections or layers of sericite schist and distinct tan intervals in the darker core. The interval is moderately to strongly strained and has a strong foliation that varies between 15° and 32° TCA, with the steepest value at 50.0 m. Some undulating foliation, with minor displacement, was observed at 32.5 m. with the steepest value at 18 m. No magnetism was detected, along with no carbonate alteration of the matrix. Original protoliths are diffulcult to distinguish, but probably were mafic and intermediate volcanics. Several small faults of indeterminate width are found at 29.85 m and at 33.00 m and have several cm of clay and reminant rock fragments. White to yellowish quartz-ankerite veining found throughout the interval from mm scale to about 1.5 cm, generally following or closely following the foliation, veining wavy to boudinaged. Pink to white quartz veining as an irregular 13 cm wide vein centered at 48.8 m, is associated with hematite veining in the quartz Hematite to 1 mm wide visible on fractures and within layering/foliation of the rock. Much of the core is altered to sericite which is found along the foliation of the rock. Pyrite as rare disseminated grains to 1/2 mm throughout. The lower contact is sharp contact @ 15° TCA;						

	Vorthern Mineral Exploration <u>DIAMOND DRILL LOG</u>						ect Number Hole Numb	er	Flint FL08-3
From	To	Rock Type Rock Code	Geology	Sample <u>No</u> ,	From	To	Length	. <u>Au (ppb)</u>	Au (g/t)
52.98	70.31	Mafic volcanic	The core is light green to beige and locally tan. It is fine to very-fine grained with sections or layers of sericite schist. The interval is	438404	54.4	55.4	1.00	2.5	
			moderately to strongly strained and has a strong foliation that varies between 18° and 23° TCA. Some kinking of the foliation here and there,	438405 438406	55.4 56.9	56.9 57.9	1.50 1.00	2.5 14	
			with the best observed at ~61.5 m. No magnetism was detected, along with no carbonate alteration of the matrix. Original protoliths are diffulcult to distinguish, but probably were dominately mafic and subordinate	438407	57.9	58.85	0.95	5	
			intermediate volcanics or dikes.	438408	58.85	59.85	1.00	7	
			No definate faults were observed, but a sections of rock fragments is	438409	59.85	60.85	1.00	21	
			present at ~65.85 -66.44 m. Small white discontinous mm thick lens's of carbonate very rare and no more than 2 cm long following foliation before 66.44 m, after which	438410	60.85	61.85	1.00	2.5	
			commom carbonate±quartz veins to 4 mm wide with partially boudinaged	438411	61.85	62.85	1.00	6	
			boundaries, crosscut the foliation at steep angles. Patches to several cm are also present.	438412	62.85	63.85	1.00	2.5	
			White to yellowish quartz-ankerite veining found occasionally throughout	438413	63.85	64.85	1.00	2.5	
			the interval from mm scale to about 5 cm, generally following or closely following the foliation, veining wavy to partly boudinaged. The largest	438414	64.85	65.85	1.00	2.5	
			vein contains about 1% pyrite associated with fractures in the quartz and reaching 1.5 mm in size.	438415	65.85	66.85	1.00	2.5	
			Between 64.98 and 65.45 m, a large area of irregular white quartz with minor ankerite has blitzed the origonal rock and exhibits angular fragments of the protolith with disrupted foliation Orange to reddish brown hematite to 1 mm wide visible on fractures (some with rims to 1 cm wide) and within layering/foliation of the rock. Much of the core is altered to sericite which is found along the foliation of the rock Pyrite as disseminated euhedral crystals to 2 mm and about 1%, except between 57.10 and 63.90 m where it is much more abundant, reaching ~15 to 25% over short intervals. Between 57.20 - 57.90 m, pyrite in multiple layers to 1.2 cm thick with up to mm sized grains comprising 25% of the layers and also some boudinaged layers to 6 or 7 cm long here, associated with 1% nodular crystals to 3 mm growing in and around the pyrite rich layers. Between 59.17 -59.50 m, pyrite in several partly boudinaged layers to 3 cm that contain ~25% pyrite as nodules to 5 mm and reminant subhedral crystals to ~1 mm. Pyrite rich boudinages of veins to 6.5 cm long and up to 1 cm wide contain ~20% pyrite grains to 1 mm are found between 61.85 to 63.85 m and comprise up to ~7% of the core	438416	66.85	67.85	1.00	2.5	

Northern Mineral Exploration **Project Number** Hole Number FL08-3 DLAMOND DRILL LOG Rock Type Geology Sample To Rock Code From No. From To Length Au (ppb) Au (g/t) The lower contact is sharp @ 25° TCA 2a 70.31 86.28 Mafic volcanic Dark greenish-grey to beige and locally orange. It is fine to very-fine grained with narrow layers of sericite schist and distinct beige sections in the darker core. The interval is moderately to strongly strained and has a strong foliation that varies between 20° and 25° TCA. Some kinking in the foliation with very minor displacement was observed at 79.7 m. No magnetism was detected, along with no carbonate alteration of the matrix. Original protoliths are diffulcult to distinguish, but probably were mafic volcanics and intermediate volcanics/dikes. From 81.0 to 82.8 m, the rock is extensively fractured, has late veining

and brittle fracturing of the rock and has parts with clay with reminant rock fragments that suggest a fault zone. Another smaller zone from 84.6 to 85.0 m contains fault gouge and later quartz veining. White carbonate veining is common throughout and ranges from mm scale discontinous veinlets following or crosscutting foliation to generally larger veining to several cm that normally crosscuts, to blobs that may be boudinaged veins. Partial boudinaging is common in larger veins. Some thin veining crosscuts quartz-carbonate veining in the upper fault zone.

White to yellowish quartz-ankerite veining found occasionally in the interval as mm scale to about cm scale barren veining following foliation with wavy to partly boudinaged borders, as irregular bounded and folded barren veins to several cm as at 85.95 m and finally as up to 25 cm long barren vein starting at 84.75 m. Hematite visible rarely on fractures and much more commonly within

layering/foliation of the rock to 2 mm wide as red brown to orange layers

Some of the core is altered to sericite which is found along the foliation of the rock

Pyrite as disseminated grains to 1 mm throughou at <1%.

2a

Flint

DIAMOND DRILL LOG

Project	Number	
---------	--------	--

Hole Number

<u> </u>	To	Rock Type Rock Code	Geology	Sample No.	From	<u>To</u>	Length	<u>.4u (ppb)</u>	<u>Au (g/t)</u>
86.28	109.19	Intermediate (lapilli) tuff	Light yellow-grey to greenish-grey with dark grey-black bands and mauve section. It is fine to very-fine grained with layers of sericite and distinct beige sections in the darker core. The interval is moderately strained and has a strong foliation that varies between 17° and 27° TCA, with the shallowest at 87.0 m and the steepest at 98.0 m. Some kinking in the foliation was observed here and there, including the basal contact. No magnetism was detected, along with ~10% weak carbonate alteration of the matrix. Original protoliths are diffulcult to distinguish, but probably was intermediate volcanics with minor intercalated dark brown to black siltstones to about 4 cm wide. Occasional reminant lapilli?? to 1/2 cm wide are highly stretched and difficult to distiguish from boudinaged veins. From ~87.4 to ~88.6 m, the rock is extensively fractured, has late veining in the reminant rock and has a clay section with reminant rock fragments that suggest a fault zone. A fracture zone from 105.0 to 107.2 m contains no fault gouge but is extensively fractured. White carbonate veining is common in the first several m and ranges from mm scale discontinous veinlets following or crosscutting foliation to cm sized blobs that may be boudinaged veins. White to yellowish quartz-ankerite-carbonate veining found throughout the interval as mm scale to several cm scale barren veining following foliation with wavy to partly boudinaged borders, or crosscutting it at steep angles, often shoeing highly irregular partially boudinaged edges with minor folding Hematite within layering/foliation of the rock to 2 mm wide as red brown to orange layers and as mauve coloration in the fault gouge clays and associated rock fragments Some of the core is altered to sericite which is found along the foliation of the rock Pyrite as disseminated grains to 1 mm throughout at <1%, with rare discontinous veinlets with 10 to 20% very fine-grained pyrite						

DIAMOND DRILL LOG

Project Number

Hole Number

From	To	Rock Type Rock Code	Geology	Sample No.	From	<u> </u>	Length	<u>.4u (ppb)</u>	<u>Au (g/t)</u>
109.19	129.35	Intermediate tuff	Light tan to greenish-grey core that is fine to very-fine grained. The interval is moderately strained and has a moderate to strong foliation that	438417	118.5	119.5	1.00	2.5	
			varies from 27° TCA at the top, gradually falling to 12° TCA at 126.4 m,	438419	119.5	120.5	1.00	6	
			then rising to 18° TCA at the base. Some weak kinking in the foliation was observed here and there. No magnetism was detected, along with	438420	120.5	122	1.50	2.5	
			no carbonate alteration of the matrix. Original protoliths are diffulcult to distinguish, but probably were intermediate volcanics.	438421	122	123.25	1.25	7	
			White carbonate±ankerite±quartz veining is common throughout and	438422	123.25	124.75	1.50	2.5	
			ranges from mm scale discontinous veinlets crosscutting foliation to 5 cm long blobs that have irregular shapes and reach 1.5 cm.	438423	124.75	125.8	1.05	2.5	
			White to yellowish quartz-ankerite-carbonate veining found throughout the interval as mm scale to cm scale barren veining following foliation	438424	125.8	127.2	1.40	6	
			with wavy boundaries to completely boudinaged veins, all generally	438425	127.2	128.2	1.00	2.5	
			following the foliation. Between ~ 124.85 and ~125.77 m, a large irregular bounded vein with trace pyrite and enclosed rock fragments dominates the core. Rarely, some of the core is altered to sericite which is found along the foliation of the rock Pyrite as disseminated grains to 1 mm throughout at ~1/2%, with discontinous veins that were probably boudinaged with 10 to 30% fine- grained pyrite. The boudinaged veins are occurring between 109.60 m and 113.10 m as up to 5% of the core (usually about 3%), between 114.10 to 116.40 m as up to 2-3% of the core, between 119.58 to 124.02 m as up to 8% of the core. All three zones contain nodular pyrite to 3 mm comprising <1% of the core The lower contact is sharp, but slightly undulating @ ~18° TCA						
		3b							

Northern Mineral Exploration F DIAMOND DRILL LOG						Project Number Hole Number			
Rock Type <u>From To Rock Code</u>	Geology	Sample No.	From	To	Length	.4u (ppb)	<u>Au (g/t)</u>		
fine grain and has a TCA, with fault at 13 there, with and no c diffulcult minor lap crn are hi found her reminant From 136 veining in sections approxim carbonate White cas scale disc often exh veins. White to the interv with wavy angles, o minor fold Some of i of the roc	.05 to 136.38 m, the rock is extensively fractured, has late the reminant rock and has carbonate rich fault gouge clay with reminant rock fragments at the top and base, both ately 2 cm wide with the latter at 13° TCA. A fault at 27° with rich fault gouge 1/2 cm wide at 136.88 m. bonate veining is common in the interval and ranges from mm continous veinlets following or usually crosscutting foliation, biting minor folding, to cm sized blobs that may be boudinaged rellowish quartz-carbonate-ankerite veining found throughout al as mm scale to cm scale barren veining following foliation to partly boudinaged borders, or crosscutting it at steep ten showing highly irregular partially boudinaged edges with ing.								

		eral Explorat	ion			-	rt Number Hole Numb	er	Flint FL08-3
<u> </u>	To	Rock Type Rock Code	Geology	Sample No.	From	To	Length	<u>.44 (ppb)</u>	<u>Au (g/t)</u>
150.93	160.72	Mafic volcanic	Grey to greenish-grey, fine to very-fine grained rock with narrow layers of sericite schist and some bleaching. The interval is moderately to strongly strained and has a strong foliation that is generally low but varies between 15° and 42° TCA just above the base, with a peak of 25 ° TCA in the foliation at 154.0 m. Some kinking in the foliation was observed. No magnetism was detected, along with minor carbonate alteration through much of the matrix. Original protoliths are diffulcult to distinguish, but probably was mafic volcanics. White carbonate veining occurs occasionally throughout and ranges from <1 mm to several mm as discontinous veinlets generally following and rarely crosscutting the foliation at steep angles. White to yellowish quartz-ankerite veining occasional in the interval as mm scale to about cm scale barren veining crosscutting foliation with wavy to irregular bounded edges and sometimes mildly folded to partly boudinaged borders, often associated with kinking of the foliation. Rare veins following the foliation appear boudinaged an between 155.21 to 155.36 m, a late 4 cm wide vein with <1% very fine-grained pyrite Rare boudinages of grey quartz veins to 3 cm long follow the foliation. Weak to moderate bleaching of the core betweem 153 and 155.5 m Some of the core is altered to sericite which is found along the foliation of the rock Pyrite as disseminated grains to 1 mm throughout at ~1%, with rare poorly nodular pyrites to 2 mm here and there The lower contact is sharp but quite undulatory @ ~40° TCA.						

Northern Mineral Exploration <u>DIAMOND DRILL LOG</u>							:t Number Hole Numb 	e r	Flint FL08-3
<u>From</u>	<i>Tv</i>	Rock Type Rock Code	Geology	Sample No.	From	To	Length	.4.µ. (ppb)	<u>Au (g/t)</u>
60.72	203	Intermediate tuff	Light-grey to greenish-grey to dark grey with small light-tan bands. It is fine to very-fine grained with layers of sericite. The interval is moderately strained and has a moderate to strong foliation that varies between 19° and 30° TCA, with the shallowest at 169 m and the steepest at the top and at at 192 m. Some kinking in the foliation was observed here and there. Banding varies from several cm scale to m scale and reflects differences in protolith. No magnetism was detected and carbonate alteration was present in about 70% of the matrix. Original protoliths are diffulcult to distinguish, but probably were intermediate volcanics with minor lapilli tuffs?. Occasional reminant lapill?? to 2 mm wide by several cm are highly stretched and difficult to distiguish from boudinaged veins, found here and there. Several 20 to ~100 cm wide light tan bands may be reminant ash tuffs. Small dm to half dm scale green bands may be reminant mafic dikes. White carbonate veining is occasional in the interval and ranges from mm scale discontinous veinlets following or usually crosscutting foliation, often exhibiting minor folding, to cm sized blobs that may be boudinaged veins. White to yellowish quartz-carbonate-ankerite veining folund throughout the interval as mm scale to cm scale barren veining following foliation with wavy to partly boudinaged borders, or crosscutting it at steep angles, often showing highly irregular partially boudinaged reminants. The top of the interval is a late 30 cm long vein with very irregular boundaries and lots of included chlorite, but is barren of pyrite. Several smaller late veins are rarely found throughout the rest of the interval Some of the core is altered to sericite which is found along the foliation of the rock. Pyrite as disseminated grains to 1 mm throughout at <1%, with rare discontinous veinlets with 10% very fine-grained pyrite. Occasional nodular pyrite to 4 mm found occasionally						
			End of Hole						

Sample No.	Au (ppb)	.4u (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Ni (ppm)	Co (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
Project Numb	2 r:	1234									
Hole Number:		FL08-3									
438395	2.5										
438396	2.5										
438397	12										
438399	6										
438400	7										
438401	6										
438402	2.5										
438403	5										
438404	2.5										
438405	2.5										
438406	14										
438407	5										
438408	7										
438409	21										
438410	2.5										
438411	6										
438412	2.5										
438413	2.5										
438414	2.5										
438415	2.5										
										Danu Laf?	4 00 0000

February 25, 2009

Page 1 of 2 Assays

Sample No.	Au (ppb)	.Au (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	.4g (ppm)	Ni (ppm)	Co (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
438416	2.5										
438417	2.5										
438419	6										
438420	2.5										
438421	7										
438422	2.5										
438423	2.5										
438424	6										
438425	2.5										

Northern Minerals Exploration Services DIAMOND DRILL LOG

Hole Number FL08-4

Page 1 of 1 Drill Log Summary

Project Number	Flint	Objective			Tests	
NTS	52F/5SW			Depth (m)	Azimuth (d)	Dip (d)
Project Name	Flint	Drilling Company Lay	ne Christensen Canada Ltd.	23	17 9	-50.3
Township/Area	Dogpaw Lake area	Start Date (m/d/y)	29/05/2008	101	172	-50.3
Claim Numher	K 1178247	Finish Date (m/d/y)	31/05/2008	209	188.1	-48.5
		Date Logged (m/d/y)	14/06/2008			
UTM Zone	15 U					
		Geologist	H. M. BUCK			
UTM Easting (m)	440119					
		Hole Length	209			
UTM Northing (m)	5464631					
		Core Location	15 U 440588 5463587			
Grid Identifier	Line 2+51 mE, 3+56.5 mN					
Easting (+E,-W)	251	Distance to Water	200			
Northing (+NS)	356.5	Core Size	NQ	2		
Elevation:	342	Casing Lost	0	,/2		
				4		
Drill Log Summary	•			A		
Drai Log Summary	•			#		

		neral Explorat	ion			Proj	ect Number Hole Numbe	Flint FL08-4	
<u> </u>	To	Rock Type Rock Code	Geology	Sample No.	From	<u>To</u>	Length	Au (ppb)	Au (g/t)
0	2	Overburden							
2	30	Gabbro	Dark grey-green homogeneous massive medium-grained rock with a salt and pepper texture. The core is moderately to strongly magnetic, except where epidote has altered it in dm scale bands. No carbonate except for occasional epidote altered gabbro and small blobs to 5 cm with larger white specks, many of which also contain carbonate. The lowest 4 m are a chill margin. Epidote as fracture filling alteration from 1/2 mm to 1 cm with associated patchy epidotization of the gabbro out to ~1 dm. Very minor red-brown hematite on fractures near the surface. Pyrite as very fine-grained sulfides in trace quantities. The base of the interval is the middle of a large 60 cm wide bull white quartz-carbonate vein						
		8a							
30	61.51	Gabbro	Pale green to grey massive to subordinate weakly foliated fine-grained rock with an igneous texture that is largely overprinted by pervasive	438426	53	54	1.00	7	
			epidote alteration. The core is weak to moderately magnetic, except for	438427 438428	54 55	55 56	1.00 1.00	64 18	
			epidote altered gabbro. Weak pervasive carbonate. The lowest 75 cm are a chill margin, with about 25 cm of cm to 1/2 dm scale brecciation.	430420					
			Quartz-epidote-garnet veins from 5 mm to 3 cm are common, with two smaller veins having trace pyrite and rare chalcopyrite. Garnet to 2 cm is	438429	56	57	1.00	24	
			found in the wall rock margins.	438430	57	58	1.00	21	
			White carbonate veinlet to 1 mm just above the base. Epidote as pervasive to patchy alteration throughout. Pyrite as very fine-grained sulfides in trace quantities and in quartz- epidote garnet veins The base of the interval is a sharp slightly anastomosing contact at 40° TCA	438431	58	59	1.00	14	
		8a							

Northern Mineral Exploration

DIAMOND DRILL LOG

Project Number

Hole Number

Flint FL08-4

<u>From</u>	<u>To</u>	Rock Type Rock Code	Geology	Sample <u>No</u> .	From	<u>To</u>	<u>Length</u>	.4 <u>u (ppb)</u>	<u>Au (g/t)</u>
61.51	72.13	Syenite dike	Grey brown homogeneous and massive fine-grained equigrannular dike, with a poorly preserved igneous texture, Composed of dominant						
			feldspar, ~ 10% quartz, and 5-8% dark mineral phase. The core is generally weakly magnetic, except for the bottom 2 m. Weak carbonate alteration is present throughout. Epidote veins from 1 to 5 mm, often with surrounding halos (several on the up side only).						
			Rare white carbonate veins to 2 mm Epidote as pervasive alteration from 1/2 dm to ~1/2 m, usually surrounding veins or fractures Pyrite as anhedral grains to 1/2 mm disseminated throughout <<1% The base of the interval is sharp and undulating and is at 35° TCA						
		9b							
72.13	105.43	Gabbro	Grey to green-grey massive to weakly foliated fine-grained rock with an salt and pepper texture. The core is moderately to strongly magnetic,	438432	78.5	80	1.50	13	
			except for epidote altered sections. Weak pervasive carbonate. No	438433	80	81.5	1.50	20	
			observed chill margin. White to pinkish mm scale carbonate-quartz veinlets that have regular	438434	81.5	83	1.50	12	
			boundaries varying to several cm with irregular boundaries with the best starting at 80.00 m and having up to 2% pyrite. Chalcopyrite in 2 mm	438435	83	84.5	1.50	12	
			thick vein at 100.56 m, to 2 mm, several present. Generally at low angles	438436	84.5	86	1.50	16	
			to the core. Near the top of the interval, some of these veins contain epidote.	438437	86	87.5	1.50	11	
			White to grey quartz-carbonate veins from 1/2 cm to 2 cm cutting the core at high angles. One had very fine-grained black mineralization in the	438439	87.5	89	1.50	2.5	
			centre that may be tourmaline. A 3 cm vein 25 cm above th base had	438440	98	99.5	1.50	18	
			chalcopyrite crystals to 4 mm comprising about 10% of the vein. Grey silica flooding from 83.2 to 87.6 m, up to 15 cm wide with minor	438441	99.5	101	1.50	16	
			carbonate	438442	101	102.5	1.50	10	
			Pyrite as fine-grained crystals to 1% of the core with local sections reaching 2-3 %.	438443	102.5	104	1.50	9	
			The base of the interval is a sharp at 53° TCA	438444	104	105.43	1.43	8	
		8a							

Geology and Assays

		ieral Explora				Proje	Flint FL08-4		
F r om	<u> </u>	Rock Type Rock Code	Geology	Sample No.	From	<u> </u>	Length	<u>Au (ppb)</u>	<u>Au (g/1)</u>
5.43	195.95	Mafic volcanic	Green to dark green fine-grained to aphanitic volcanic that is weakly to moderately well foliated between 50° and 65° TCA. Massive flow with	438445	105.43	107	1.57	13	
			possible pillows at 145.5 m. The magnetism is quite variable and ranges	438446	107	108.5	1.50	2.5	
			from none to strong. Pervasive weak carbonate locally intensifying where more carbonate veins are found.	438447	108.5	110	1.50	8	
			Common white carbonate-quartz veins are generally low angle and crosscut the foliation. They vary from mm sized veins that are regularily	438448	110	111.5	1.50	12	
			bounded to 2 cm wide veins with irregular boundaries.	438449	111.5	113	1.50	12	
			Yellowish quartz-ankerite-carbonate veins from mm scale to 3 cm, often becoming brecciated and boudinaged, follow the foliation and are barren.	438450	113	114.5	1.50	11	
			Found between 110.5 to 111.37, 148.5 to 153.75, and 176.1 to 176.67 m.	438451	114.5	116	1.50	11	
			The core tends to be moderately bleached where more veining is	438452	116	117.5	1.50	10	
			present. Pyrite between 1/2 and 1% of the core, reaching 1 mm as euhedral	438453	117.5	119	1.50	28	
			165.5 166.5 Feldspar porphyry 7b	438454	148.5	149.58	1.08	7	
			Grey fine-grained feldspar phyric dike with feldspars to 3 mm in moderately foliated rock at 42° TCA. Possible guartz eyes to 4 mm.	438455 438455	149.58 149.58	150.5 150.5	0.92 0.92	2.5 2.5	
			No observed sulfides. The upper contact is sharp at 68° TCA, and the lower contact is completely disrupted by guartz carbonate	438455 438456	150.5	152	1.50	2.5	
				438457	152	153.75	1.75	21	
				438458	173	174.5	1.50	26	
				438459	174.5	176.1	1.60	2.5	
				438460	176.1	177	0.90	22	
				438461	177	178	1.00	17	
				438462	178	179	1.00	2.5	

Northern Mineral Exploration

DIAMOND DRILL LOG

Project Number

Hole Number

Flint FL08-4

<u>From</u>	<i>To</i>	Rock Type Rock Code	Geology	Sample No.	From	To	Length	<u>Au (ppb)</u>	<u>Au (g/t)</u>
195.95	209	Mafic (Iapilli) tuff	Light grey to grey, moderately to well foliated tuff that is fine-grained to very fine-grained. Foliation from 63° to 68° TCA. Banding in the core follows foliation and reflects differences in tuff units shown by the amount of chlorite and in some cases lapilli. Lapilli are polylithic with equal proportions of dark mafic fragments 10 mm by at least 5 cm, occasionally with 10-15% pyrite (usually less), and beige fragments that are smaller. Both are highly stretched, but some ends appear angular to subangular. The units are less than 1/2 m and contain up to 20-25% lapilli. The interval is nonmagnetic. Weak pervasive carbonate alteration starts several m below the top. White carbonate veining common from 2 mm to 1 cm, usually cutting the foliation at small angles. White to yellowish quartz-carbonate-ankerite veining from 2 mm to 13 cm (at 203.96 m). Often appear disrupted and may be several concurrent veins, some appear partly boudinaged, and almost all appear to crosscut the foliation at shallow angles. Barren for pyrite or as rare grains, though a few have small mm scale concentrations outside their boundaries. Silicification as weak to moderate alteration in a small 30 cm band at 208.5 m with ~1% pyrite. Pyrite ~1% throughout, as fine-grained disseminated euhedral crystals, with small bands to 5 cm where pyrite reaches 3%, and occasionally in discontinous veinlets and/or lens with up to 50% pyrite. End of Hole.						

Northern Mineral Exploration DIAMOND DRILL LOG

Sample No.	Au (ppb)	.4u (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Ni (ppm)	Co (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
Project Numbe	rr:	1234									
Hole Nun	ıber:	FL08-4									
438426	7										
438427	64										
438428	18										
438429	24										
438430	21										
438431	14										
438432	13										
438433	20										
438434	12										
438435	12										
438436	16										
438437	11										
438439	2.5										
438440	18										
438441	16										
438442	10										
438443	9										
438444	8										
438445	13										
438446	2.5										
										Dana 1 of 7	4.00.0000

February 25, 2009

Page 1 of 2 Assays

Northern Mineral Exploration DIAMOND DRILL LOG

Sample No.	Au (ppb)	.4 <i>u (g/t)</i>	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Ni (ppm)	Co (ppm)	Pt (ppb)	Pd (ppb)	<i>S%</i>
438447	8										
438448	12										
438449	12										
438450	11										
438451	11										
438452	10										
438453	28										
438454	7										
438455	2.5										
438456	2.5										
438457	21										
438458	26										
438459	2.5										
438460	22										
438461	17										
438462	2.5										

APPENDIX 2 – Drill Sections and Plan

DDH Location Map (1:12 500) Section FL08-01 (1:500) FL08-02& 03 (1:500) FL08-04 (1:500)

APPENDIX 3 - Analytical Certificates

Flint Lake

Reference:

Certificate of Analysis

Wednesday, July 9, 2008

Slocan Minerals Ltd	Date Received:	Jun 17, 2008
711-675 West Hastings Street Vancouver, BC, CAN	Date Completed:	Jul 9, 2008
V6B1N2 Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca		
	Job #:	200841897

				Sample #:	118	Rock
Acc #	C	lient ID	Au ppb	Au oz/t		Au g/t (ppm)
163714		438251	16	<0.001		0.016
163715		438252	<5	< 0.001		< 0.005
163716		438253	6	< 0.001		0.006
163717		438254	7	< 0.001		0.007
163718		438255	14	<0.001		0.014
163719		438256	11	< 0.001		0.011
163720		438257	7	< 0.001		0.007
163721		438258	Insufficient Sample			
163722		438259	17	< 0.001		0.017
163723		438260	14	<0.001		0.014
163724		438261	<5	< 0.001		< 0.005
163725	Dup	438261	10	< 0.001		0.010
163726		438262	<5	< 0.001		< 0.005
163727		438263	10	< 0.001		0.010
163728		438264	<5	< 0.001		<0.005
163729		438265	5	<0.001		0.005
163730		438266	8	< 0.001		0.008
163731		438267	13	<0.001		0.013
163732		438268	10	<0.001		0.010
163733		438269	11	< 0.001		0.011
163734		438270	9	< 0.001		0.009
163735		438271	11	< 0.001		0.011
163736	Dup	438271	11	< 0.001		0.011
163737		438272	12	< 0.001		0.012

Certificate of Analysis

Acc #

163738

163739

163740

163741

Wednesday, July 9, 2008

Slocan Minerals Ltd	Date Received:	Jun 17, 2008
711-675 West Hastings Street Vancouver, BC, CAN	Date Completed:	Jul 9, 2008
V6B1N2 Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	T 1 //	200941907
	Job #:	200841897

Flint Lake Reference: Sample #: Rock 118 Au Au Au Client ID g/t (ppm) oz/t ppb 0.011 < 0.001 438273 11 0.009 9 < 0.001 438274 0.007 7 < 0.001 438275 < 0.001 0.006 438276 6

163742		438277	7	<0.001	0.007
163743		438278	<5	<0.001	< 0.005
163744		438279	7	< 0.001	0.007
163745		438280	9	<0.001	0.009
163746		438281	7	<0.001	0.007
163747	Dup	438281	8	<0.001	0.008
163748		438282	8	<0.001	0.008
163749		438283	8	<0.001	0.008
163750		438284	8	<0.001	0.008
163751		438285	8	<0.001	0.008
163752		438286	8	<0.001	0.008
163753		438287	11	<0.001	0.011
163754		438288	137	0.004	0.137
163755		438289	9	<0.001	0.009
163756		438290	13	<0.001	0.013
163757		438291	8	<0.001	0.008
163758		438292	8	<0.001	0.008
163759	Dup	438292	9	< 0.001	0.009
163760		438293	8	< 0.001	0.008
163761		438294	9	<0.001	0.009

Certificate of Analysis

Wednesday, July 9, 2008

Slocan Minerals Ltd	Date Received:	Jun 17, 2008
711-675 West Hastings Street Vancouver, BC, CAN	Date Completed:	Jul 9, 2008
V6B1N2		
Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	Job #:	200841897

Reference: Flint Lake Sample #: 118 Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc #
0.009	<0.001	9	438295		163762
0.009	<0.001	9	438296		163763
0.010	<0.001	10	438297		163764
2.473	0.072	2473	438298		163765
0.012	<0.001	12	438299		163766
0.011	<0.001	11	438300		163767
0.011	<0.001	11	438300	Dup	163768
0.008	< 0.001	8	438301		163769
0.007	< 0.001	7	438302		163770
0.007	< 0.001	7	438303		163771
0.020	< 0.001	20	438304		163772
0.022	<0.001	22	438305		163773
0.015	<0.001	15	438306		163774
0.036	0.001	36	438307		163775
0.011	<0.001	11	438308		163776
0.008	<0.001	8	438309		163777
0.008	<0.001	8	438310		163778
0.008	<0.001	8	438310	Dup	163779
0.039	0.001	39	438311		163780
0.006	<0.001	6	438312		163781
0.040	0.001	40	438313		163782
0.008	<0.001	8	438314		163783
0.007	<0.001	7	438315		163784
0.006	<0.001	6	438316		163785

5.375

Certificate of Analysis

Wednesday, July 9, 2008

Slocan Minerals Ltd	Date Received:	Jun 17, 2008
711-675 West Hastings Street Vancouver, BC, CAN	Date Completed:	Jul 9, 2008
V6B1N2 Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	Job #:	200841897

				Reference:	Flint Lake	
				Sample #:	118 Rock	
Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
163786		438317	6	<0.001	0.006	
163787		438318	<5	<0.001	< 0.005	
163788		438319	11	<0.001	0.011	
163789		438320	<5	<0.001	< 0.005	
163790	Dup	438320	<5	<0.001	< 0.005	
163791		438321	5	<0.001	0.005	
163792		438322	8	<0.001	0.008	
163793		438323	15	<0.001	0.015	
163794		438324	97	0.003	0.097	
163795		438325	7	< 0.001	0.007	
163796		438326	9	<0.001	0.009	
163797		438327	56	0.002	0.056	
163798		438328	120	0.003	0.120	
163799		438329	25	<0.001	0.025	
163800		438330	13	<0.001	0.013	
163801	Rep	438330	12	<0.001	0.012	
163802		438331	115	0.003	0.115	
163803		438332	9	<0.001	0.009	
163804		438333	25	<0.001	0.025	
163805		438334	309	0.009	0.309	
163806		438335	16	< 0.001	0.016	
163807		438336	11	< 0.001	0.011	
163808		438337	330	0.010	0.330	

5375

438338

0.157

163809

Rock

Sample #:

Certificate of Analysis

Wednesday, July 9, 2008

Slocan Minerals Ltd	Date Received:	Jun 17, 2008
711-675 West Hastings Street Vancouver, BC, CAN V6B1N2	Date Completed:	Jul 9, 2008
Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	Job #:	200841897
	Reference:	Flint Lake

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
163810		438339	80	0.002	0.080
163811		438340	25	<0.001	0.025
163812	Dup	438340	34	0.001	0.034
163813		438341	6	< 0.001	0.006
163814		438342	<5	< 0.001	< 0.005
163815		438343	<5	<0.001	< 0.005
163816		438344	8	<0.001	0.008
163817		438345	25	<0.001	0.025
163818		438346	18	< 0.001	0.018
163819		438347	11	< 0.001	0.011
163820		438348	<5	<0.001	< 0.005
163821		438349	36	0.001	0.036
163822		438350	14	< 0.001	0.014
163823	Dup	438350	9	< 0.001	0.009
163824		438351	34	< 0.001	0.034
163825		438352	137	0.004	0.137
163826		438353	23	<0.001	0.023
163827		438354	74	0.002	0.074
163828		438355	101	0.003	0.101
163829		438356	373	0.011	0.373
163830		438357	13	<0.001	0.013
163831		438358	<5	<0.001	< 0.005
163832		438359	<5	< 0.001	< 0.005
163833		438360	<5	<0.001	< 0.005

Sample #:

Rock

Certificate of Analysis

Wednesday, July 9, 2008

Slocan Minerals Ltd	Date Received:	Jun 17, 2008
711-675 West Hastings Street Vancouver, BC, CAN	Date Completed:	Jul 9, 2008
V6B1N2		
Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	Job #:	200841897
	Reference:	Flint Lake

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
163834	Dup	438360	<5	<0.001	< 0.005
163835		438361	<5	<0.001	< 0.005
163836		438362	<5	<0.001	< 0.005
163837		438363	<5	< 0.001	< 0.005
163838		438364	<5	<0.001	< 0.005
163839		438365	17	<0.001	0.017
163840		438366	7	<0.001	0.007
163841		438367	9	<0.001	0.009
163842		438368	8	<0.001	0.008

PROCEDURE CODES: AL4AU3, AL4ICPAR

Certified By:

ason Moore, General Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0744-07/09/2008 12:58 PM

Core

Sample #:

Certificate of Analysis

Tuesday, July 22, 2008

Slocan Minerals Ltd	Date Received:	Jun 23, 2008
711-675 West Hastings Street Vancouver, BC, CAN V6B1N2	Date Completed:	Jul 22, 2008
VoB11N2 Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	Job #:	200842008
	Reference:	Flint Lake

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
171604		438369	<5	<0.001	< 0.005
171605		438370	6	< 0.001	0.006
171606		438371	<5	<0.001	< 0.005
171607		438372	<5	<0.001	<0.005
171608		438373	9	<0.001	0.009
171609		438374	156	0.005	0.156
171610		438375	<5	< 0.001	<0.005
171611	Dup	438375	<5	<0.001	< 0.005
171612		438376	<5	<0.001	< 0.005
171613		438377	<5	<0.001	<0.005
171614		438378	5345	0.156	5.345
171615		438379	<5	<0.001	<0.005
171616		438380	<5	<0.001	<0.005
171617		438381	8	<0.001	0.008
171618		438382	<5	<0.001	< 0.005
171619		438383	<5	<0.001	< 0.005
171620		438384	<5	<0.001	< 0.005
171621		438385	<5	<0.001	< 0.005
171622	Dup	438385	<5	<0.001	< 0.005
171623		438386	Insufficient Sample		
171624		438387	10	<0.001	0.010
171625		438388	232	0.007	0.232
171626		438389	22	< 0.001	0.022
171627		438390	11	<0.001	0.011

Core

Sample #:

Certificate of Analysis

Tuesday, July 22, 2008

Slocan Minerals Ltd	Date Received:	Jun 23, 2008
711-675 West Hastings Street Vancouver, BC, CAN V6B1N2	Date Completed:	Jul 22, 2008
Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	Job #:	200842008
	Reference:	Flint Lake

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
171628		438391	17	<0.001	0.017
171629		438392	26	<0.001	0.026
171630		438393	78	0.002	0.078
171631		438394	25	< 0.001	0.025
171632		438395	<5	<0.001	< 0.005
171633	Rep	438395	<5	<0.001	< 0.005
171634		438396	<5	<0.001	< 0.005
171635		438397	12	<0.001	0.012
171636		438398	11	<0.001	0.011
171637		438399	6	<0.001	0.006
171638		438400	7	< 0.001	0.007
171639		438401	6	< 0.001	0.006
171640		438402	<5	< 0.001	< 0.005
171641		438403	5	< 0.001	0.005
171642		438404	<5	<0.001	< 0.005
171643		438405	<5	<0.001	<0.005
171644	Dup	438405	<5	< 0.001	<0.005
171645		438406	14	<0.001	0.014
171646		438407	5	<0.001	0.005
171647		438408	7	<0.001	0.007
171648		438409	21	<0.001	0.021
171649		438410	<5	< 0.001	< 0.005
171650		438411	6	< 0.001	0.006
171651		438412	<5	< 0.001	< 0.005

Certificate of Analysis

Tuesday, July 22, 2008

171671

171672

171673

171674

171675

Tuesday, July	22, 2008					
Slocan Minerals Ltd 711-675 West Hastings Street Vancouver, BC, CAN V6B1N2				Date Received: Date Completed:		23, 2008 2, 2008
	eymbuck@ho	tmail.com, geo_tims@s	ahw.ca	Job #:	2008	42008
				Reference:	Flint	Lake
				Sample #:	96	Core
Acc #		Client ID	Au ppb	Au oz/t		Au g/t (ppm)
171652		438413	<5	< 0.001		< 0.005
171653		438414	<5	<0.001		< 0.005
171654		438415	<5	<0.001		< 0.005
171655	Dup	438415	<5	<0.001		< 0.005
171656	·	438416	<5	<0.001		< 0.005
171657		438417	<5	<0.001		< 0.005
171658		438418	5465	0.159		5.465
171659		438419	6	< 0.001		0.006
171660		438420	<5	<0.001		< 0.005
171661		438421	7	<0.001		0.007
171662		438422	<5	<0.001		< 0.005
171663		438423	<5	<0.001		< 0.005
171664		438424	6	<0.001		0.006
171665		438425	<5	< 0.001		< 0.005
171666	Dup	438425	<5	<0.001		<0.005
171667		438426	7	<0.001		0.007
171668		438427	64	0.002		0.064
171669		438428	18	<0.001		0.018
171670		438429	24	<0.001		0.024

438430

438431

438432

438433

438434

0.021

0.014

0.013

0.020

0.012

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

21

14

13

20

12

Certificate of Analysis

Tuesday, July 22, 2008

,,,	,,					
Slocan Minerals Ltd 711-675 West Hastings Street				Date Received:	Jun 23, 2008	
Vancouver, BC, CAN V6B1N2 Email#: harveymbuck@hotmail.com, geo tims@sahw.ca			Date Completed:	Jul 2	2, 2008	
Email#: harv	eymbuck@ho	otmail.com, geo_tims@s	sahw.ca	Job #:	200842008	
				Reference:	Flint	t Lake
				Sample #:	96	Core
Acc #		Client ID	Au ppb	Au oz/t		Au g/t (ppm)
171676		438435	12	< 0.001		0.012
171677	Dup	438435	9	< 0.001		0.009
171678		438436	16	<0.001		0.016
171679		438437	11	<0.001		0.011
171680		438438	9	<0.001		0.009
171681		438439	<5	<0.001		< 0.005
171682		438440	18	<0.001		0.018
171683		438441	16	<0.001		0.016
171684		438442	10	<0.001		0.010
171685		438443	9	<0.001		0.009
171686		438444	8	< 0.001		0.008
171687		438445	13	<0.001		0.013
171688	Dup	438445	20	<0.001		0.020
171689		438446	<5	<0.001		<0.005
171690		438447	8	<0.001		0.008
171691		438448	12	<0.001		0.012
171692		438449	12	< 0.001		0.012

11

11

10

28

7

<5

<5

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.011

0.011

0.010

0.028

0.007

< 0.005

<0.005

438450

438451

438452

438453

438454

438455

438455

171693

171694

171695

171696

171697

171698

171699

Dup

Flint Lake

Core

96

Reference:

Sample #:

Certificate of Analysis

Tuesday, July 22, 2008

Slocan Minerals Ltd 711-675 West Hastings Street Vancouver, BC, CAN V6B1N2	Date Received: Date Completed:	Jun 23, 2008 Jul 22, 2008
Email#: harveymbuck@hotmail.com, geo_tims@sahw.ca	Job #:	200842008

	Ĩ			
Au g/t (ppm)	Au oz/t	Au ppb	Client ID	Acc #
<0.005	< 0.001	<5	438456	171700
0.021	<0.001	21	438457	171701
0.026	<0.001	26	438458	171702
<0.005	<0.001	<5	438459	171703
0.022	<0.001	22	438460	171704
0.017	<0.001	17	438461	171705
< 0.005	<0.001	<5	438462	171706
4.101	0.120	4101	438463	171707
<0.005	<0.001	<5	438464	171708

Certified By:

PROCEDURE CODES: AL4AU3, AL4ICPAR

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0744-07/22/2008 4:47 PM

Slocan Minerals Ltd Date Created: 08-07-28 10:01:50 AM Job Number: 200842008 Date Received: Jun 23, 2008 Number of Samples: 96 Type of Sample: Core Date Completed: Jul 22, 2008 Project ID: Flint Lake

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

	Accur. # C	lient Tag Ag	Al	As	В				Ca	Cd		Cr	Cu	Fe	K ø⁄	Li	Mg			Na	Ni	P	Pb	Sb Se	Si	Sn	Sr Ti	TI	V	W		Zn
_		ppr	n %	ppm	ppm	ppm p	pm	ppm	70	ррт	ppm	ppm	ppm	70	%	ppm	70	ppm	ppm	70	ррт	ppm	ppm	ppm ppi	11 70	ppm	ppm ppn	i ppm	ppr	n ppm	ppm	ppm
	171604	438369 <1	2.62	2 27	34	23 <	1	7	6.12	<4	37	818	80	3.56	5 0.11	. 20) 1.17	855	<1	0.1	. 65	111	127	6 <5	0.0	5 <10	34 <10	0 5		28 <10	3	21
	171605	438370 <1	6.14	4 54	42	21 <	1	12	9.57	<u>ک</u>	1 72	893	57	7.57	7 0.11	. 50	3.12	1647	<1	0.07	169	104	260	8 <5	0.0	7 <10	43 <10	0 4	. 4	49 <10	3	64
	171606	438371 <1	5.6	5 49	53	28 <	1	10	9.57	<4	62	549	90	6.69	9 0.14	45	5 3.12	1544	<1	0.05	165	<100	222	9 <5	0.0	6 <10	43 <10	0 4	1 3	37 <10	4	42
	171607	438372 <1	5.7	5 31	51	27 <	1	8	>10.0)<4	55	399	71	6.1	5 0.11	. 48	3.59	1603	<1	0.04	169	<100	216	<5 <5	0.0	7 <10	54 10	8 4	1 3	35 <10	5	34
	171608	438373 <1	7.	5 27	46	16 <	1	10	9.54	. 4	1 78	673	22	7.64	4 0.05	65	5 4.93	1850	<1	0.04	271	<100	277	10 <5	0.0	7 <10	58 17	3 5	; <u>-</u>	70 <10	4	55
	171609	438374	2 7.9	6 24	45	2	1	19	>10.0) (5 87	2046	13	9.79	9 <0.02	1 43	3 5.97	2878	<1	0.02	373	264	311	. 18 <5	0.0	6 <10	93 30	27	' 1:	15 <10	6	77
	171610	438375 <1	2.5	9 44	88	2	2	15	2.38	6	5 135	712	60	>10.	0 <0.02	1 3	3 >10.0) 1869	<1	0.03	733	105	319	13 <5	0.0	5 <10	54 19	1 5	i (62 <10	4	7
	171611	438375 <1	2.5	1 29	103	2	1	21	2.35	6	5 117	698	59	>10.	0 <0.02	1 3	3 >10.0) 1867	<1	0.03	716	5 104	364	13 <5	0.0	5 <10	54 19	66	; (60 <10	4	7
	171612	438376 <1	2.7	2 50	111	2	1	17	1.62	. 6	5 137	760	74	>10.	0 < 0.02	1 3	3 >10.0) 1731	<1	0.04	746	5 <100	380	10 <5	0.0	5 <10	42 19	67	' (63 <10	3	9
	171613	438377 <1	2.74	4 44	115	2	2	22	2.1	. 6	5 137	833	74	>10.	0 < 0.02	1 3	3 >10.0) 2167	<1	0.05	i 787	′ <100	336	13 <5	0.0	6 <10	60 21	4 5	i (64 <10	3	9
	171614	438378 <1	0.24	47	45	72 <	:1	7	0.24	<4	3	7	8	3.89	9 0.01	1 2	2 0.11	138	4	0.17	' 4	724	312	<5 <5	0.0	3 <10	10 <10	0 2	-	3 <10	3	18
	171615	438379 <1	2.5	7 58	114	2	2	20	1.26	i 6	5 144	757	39	>10.	0 < 0.02	1 3	3 >10.0) 1687	<1	0.04	831	. 105	331	. 13 <5	0.0	7 <10	42 20	98	6	63 <10	3	7
	171616	438380 <1	2.8	974	99	3	2	20	0.85	6	5 154	1373	12	>10.	0<0.0	1 4	\$ >10.0) 1683	<1	0.03	809	<100	366	44 <5	0.0	2 <10	31 21	9 9) 7	77 <10	2	11
_	171617	438381 <1	2.8	2 57	97	2	2	13	2.57	' (5 147	1146	6 45	>10.	0 < 0.02	1 4	1 >10.0) 1829	<1	0.03	857	′ <100	319	14 <5	0.0	5 <10	99 16	76	5 7	76 <10	3	9
	171618	438382 <1	2.8	3 47	104	7	1	14	1.83	6	5 119	816	48	9.79	9 <0.03	1 5	5 >10.0) 1513	<1	0.03	3 723	s <100	360	9 <5	0.0	5 <10	64 17	27	' (68 <10	3	7
	171619	438383 <1	3.0	1 61	106	6	2	20	1.83	6	5 133	844	62	>10.	0 < 0.0	1 4	\$ >10.0) 1393	<1	0.04	758	8 <100	307	12 <5	0.0	6 <10	64 20	32	2 7	73 <10	4	8
	171620	438384 <1	4.6	8 22	54	2	1	15	3.23	5 5	5 95	1793	49	8.4	6 <0.0	1 3	3 7.34	2072	<1	0.02	2 511	. 227	282	13 <5	0.0	2 <10	98 15	07	' 14	42 <10	4	30
	171621	438385 <1	3.5	5 18	51	41 <	:1	16	3.49) <4	87	1528	38	7.0	5 <0.02	1 4	4 6.03	1583	<1	0.04	396	5 191	251	. 10 <5	0.0	3 <10	203 16	0 4	1	07 <10	4	25
	171622	438385 <1	4.2	9 22	55	49 <	:1	16	3.78	; 4	4 98	1771	. 42	8.0	1 <0.03	1 4	1 6.84	1735	<1	0.04	440) 206	275	15 <5	0.0	3 <10	220 20	68	8 12	23 <10	4	27
	171623	438386 <1	5.4	7 19	61	23	1	19	3.89) !	5 105	2335	53	8.6	1 <0.0	1 4	1 7.06	1365	<1	0.04	445	5 153	328	15 <5	0.0	3 <10	279 23	37	15	53 <10	4	46
	171624	438387	1 5.9	88	50	3	1	18	2.53	; 4	1 79	2063	86	7.7	6 <0.0	1 5	5 6.65	1351	<1	0.02	436	5 251	250	14 <5	0.0	3 <10	134 55	56	i 14	44 <10	4	62
-	171625	438388 <1	3.7	3 21	51	5 <	:1	13	7.78	s <4	38	112	184	6.4	2 <0.02	1 19	5 2.86	1611	<1	0.07	/ 109	465	229	<5 <5	0.0	6 <10	272 51	37	<u> </u>	93 <10	6	59
	171626	438389 <1	5.4	69	45	8	2	16	6.99) !	5 56	373	83	9.14	4 <0.03	1 24	1 3.78	1566	<1	0.07	190	2680) 317	7 <5	0.0	6 <10	362 12	1 3	20	03 <10	11	96
	171627	438390 <1	2.1	89	46	55 <	:1	4	3.18	\$ <4	25	82	61	4.1	3 0.24	13	3 1.28	447	′ <1	0.07	25	496	5 156	<5 <5	0.0	3 <10	186 <10	0 4		21 <10	3	22
	171628	438391 <1	2.2	27	40	48 <	:1	16	2.29) <4	25	112	92	3.9	9 0.21	19	5 1.45	364	<1	0.08	8 25	526	5 143	<5 <5	0.0	3 <10	139 <10	0 5	; ;	22 <10	3	25
	171629	438392 <1	1.8	9 11	. 42	53 <	:1	7	2.39) <4	35	116	5 142	4.04	4 0.26	5 12	2 1.11	461	. 4	0.09	9 40	566	5 152	<5 <5	0.0	3 <10	142 <10	0 4	1	17 <10	3	68
	171630	438393 <1	4.0	2 12	28	32	1	10	4.97	' 4	4 39	52	94	7.5	8 0.16	5 25	5 2.41	. 1416	4	0.05	5 41	. 1127	263	<5 <5	0.0	5 <10	255 <10	0 3	3 7	70 <10	4	153
	171631	438394 <1	2.0	19	40	37 <	:1	6	4.11	. <4	21	. 93	56	4.:	1 0.21	l 13	3 1.41	1012	<1	0.06	5 28	658	155	s <5 <5	0.0	4 <10	192 <10	0 5		26 <10	3	63
	171632	438395 <1	1.3	86	37	16 <	:1	7	5.4	<4	19	104	453	5.1	7 0.1	l 12	2 1.93	1391	<1	0.12	2 28	3 406	5 182	<5 <5	0.0	5 <10	130 <10	0 4	1	14 <10	3	53
	171633	438395 <1	1.4	63	36	17 <	:1	9	5.52	. <4	20	103	431	5.34	4 0.1	l 13	3 1.98	1434	<1	0.12	28	8 417	194	<5 <5	0.0	5 <10	134 <10	0 5	; 1	15 <10	3	55
	171634	438396 <1	0.9	28	35	18 <	:1	4	7.04	↓ <4	19	107	4 9	4.94	4 0.11	L 8	3 2.3	1628	<1	0.12	29	642	184	<5 <5	0.0	4 <10	166 <10	0 3	; 1	16 <10	5	57
	171635	438397 <1	2.8	9 15	36	13	1	26	4.79) 4	4 74	318	3 147	8.	2 0.06	5 28	3 2.29	1348	4	0.07	' 149	336	269	8 <5	0.0	6 <10	105 <10	0 3	; 7	78 <10	3	144
	171636	438398 <1	1.3	16	58	150 <	:1	3	1.69) <4	19	245	5 49	2.7	6 0.81	L 37	7 1.32	452	<1	0.25	5 44	2961	. 96	s <5 <5	0.0	4 <10	152 268	2 4	1 7	70 <10	13	43
	171637	438399 <1	0.5	2 4	35	15 <	:1	6	4.12	2 <4	g	130) 23	2.3	1 0.1	L 4	4 1.5	655	<1	0.12	2 2 5	5 448	86	s <5 <5	0.0	3 <10	101 <10	0 3	: 1	11 <10	4	17
	171638	438400 <1	0.3	56	35	12 <	:1	3	5.1	. <4	9	90	20	2.6	1 0.08	3 3	3 1.84	718	s <1	0.1	l 15	5 414	100	<5 <5	0.0	3 <10	119 <10	0 5	i	6 <10	4	17

Accur. #	Client Tag Ag		-		Ba Be			Cd	Co			Fe %	K ∞∕		Mg ∞	Mn		Na ∞∕						Si Si						N		Zn
171020	ppm		ן וווקי ר		opm pp	in p					ppm		%	ppm 7		ppm						ppm p			• •	pm p	•			-	ppm p	•
171639	438401 <1	0.71	/ r	36	13 <1		4 6.6			125		4.34				1173		0.11		317			_	0.04 <		148 <		_	11 <		5	47
171640	438402 <1	1.14	5	32	15 <1		4 5.1				1357					3 1899		0.12		420	146		_	0.04 <		111 <		5	12 <		5	99
171641	438403 <1	1.51	6	32	14 <1		6 4.9			139			0.09) 1943		0.1		369	151		_	0.04 <		98 <		6	15 <			160
171642	438404 <1	1.33	9	39 20	20 <1		8 3.3			176			0.11			1346		0.08		517	156		_	0.04 <		100 <		4	19 <		4	46
171643	438405 <1	1.27	9	36	22 <1		5 3.6			166		4.86				3 1461		0.07		620	167			0.04 <		111 <		6	18 <		4	51
171644	438405 <1	1.25	8	40	22 <1		11 3.5			163		4.79				3 1435		0.07		616			_	0.04 <		108 <		4	18 <		4	51
171645	438406 <1	1	21	36	33 <1		7 3.3			172			0.17			3 1218		0.13		605	217			0.03 <		112 <		2	14 <		4	47
171646	438407 <1	0.59	9 c	44	34 <1		2 3.1			172			0.16			7 907		0.13		913	105			0.03 <		108 <		2	> 7		5	18
171647	438408 <1	1.72	6 77	47	16 <1			5<4 7 4		169			0.08			1509		0.08		594	175			0.04 <		74 <		2	30 <		3	46
171648	438409 <1 438410 <1	1.59 3.55	27 31	40 50	30 <1 21	r	9 3.1 14 3.		44 84		33		0.16 0.09			1686 3 2226		0.15 0.09		593 696	270 276	8 < 7 <		0.03 < 0.05 <		109 <		2	20 <		4	43
171649 171650	438410 <1	0.84	8	46	23 <1	2	14 3. 6 3.2		04 14				0.09			3 1452		0.09		538	128			0.03 <		95 < 107 <		2 162	95 <		6	107
171650	438411 <1	0.84	8 11	40 40	36 <1		4 3.8			160	17		0.11			5 1432		0.09		652	140			0.03 <		124 <		463	11 < 12 <		4 5	28 25
171651	438412 <1	2.1	6	40 46	21 <1		9 2.9			268			0.18			5 1493		0.13		537			_	0.04 <		70 <		4	23 <		-	25 74
171653	438414 <1	1.88	7	40 49	36 <1		5 3.1		20				0.11			3 1173		0.08		783	165			0.04 <		106 <		4 5	22 <		4 4	63
171654	438415 <1	4.93	, 9	53	24	1	15 4.4						0.1			5 2590		0.03		754	329	 		0.04 <		108 <		5	68 <			141
171655	438415 <1	4.84	9	49	24	2	15 4.3					>10.0				2 2528		0.07		733	364	8 <		0.07 <		107 <		4	66 <			137
171656	438416 <1	1.82	5	45	40 <1	2	8 4.2		15				0.17			5 1889		0.16		565	175		_	0.05 <		122 <		- T - Z	24 <		5	53
171657	438417 <1	1.24	11	48	30 <1		10 3.8			116			0.25) 1658		0.10		965				0.03 <		106 <		4	13 <		5	59
171658	438418 <1	0.24	6	47	74 <1		6 0.2		3	6	8		0.01			3 148		0.17		746	321			0.03 <		100 <		3	3 <		3	20
171659	438419 <1	1.01	12	38	34 <1		10 3.9		18	-	_		0.31) 1942		0.11		975				0.04 <		116 <		3	13 <		4	67
171660	438420 <1	0.74	18	48	19 <1		6 2.4		26				0.15			2 919		0.07		982			_	0.03 <		71 <		2	11 <		4	44
171661	438421 <1	0.5	14	46	19 <1		6 4.7			146			0.17			1782		0.07	17	746	115		_	0.03 <		119 <		4	10 <		4	22
171662	438422 <1	1.46	10	44	22 <1		9 2.7		17			3.99				7 1609		0.07	17	618				0.03 <		74 <		3	16 <		3	69
171663	438423 <1	1.08	8	45	18 <1		5 5.1		10		17		0.17			1859		0.07		520	121			0.04 <		168 <		4			5	39
171664	438424 <1	1.65	10	46	17 <1			2 <4	17				0.14			8 1869		0.06		677			5	0.04 <		105 <		4	15 <		4	80
171665	438425 <1	1.3	16	48	26 <1			8 <4	22				0.23			1691		0.09		910	162	- 5 <		0.04 <		127 <		7	15 <		5	83
171666	438425 <1	1.15	15	41	24 <1		6 4.5		20	163	71	3.96	0.22	8	1.33	3 1604	<1	0.08		837	153	<5 <	5	0.04 <		120 <		6	14 <		4	82
171667	438426 <1	4.27	11	54	61	2	17 2.4	37	52	180	191	>10.0	0.22	22	2.06	5 1722	10	0.13	65	357	410	6 <	5	0.02 <	10	116 2	323	5	216 <		15	73
171668	438427 <1	4.23	7	49	42	2	18 3.	35	48	237	344	8.64	0.14	27	2.33	8 1831	6	0.09	61	619	254	6 <	5	0.03 <	10	63 1	.878	4	176 <	<10	12	76
171669	438428 <1	3.7	10	51	19	1	11 3.	94	60	191	203	8.31	0.04	18	2.09) 1713	5	0.11	53	450	279	<5 <	5	0.04 <	10	87 1	815	2	199 <	<10	9	74
171670	438429 <1	3.35	9	111	24	1	9 3.2	56	49	172	236	9.24	0.07	19	1.81	1613	9	0.1	54	413	319	7 <	5	0.05 <	10	80 1	.807	2	204 <	<10	10	162
171671	438430 <1	4.83	7	50	79	2	13 3.5	2 5	55	188	130	9.63	0.26	45	2.22	2008	8	0.07	55	472	338	6 <	5	0.04 <	10	39 1	.917	3	185 <	<10	12	117
171672	438431 <1	5.25	9	73	85	2	15 3.3	66	64	229	111	>10.0	0.27	28	2.19	2365	10	0.12	45	438	380	6 <	5	0.06 <	10	233 3	593	4	272 <	<10	20	108
171673	438432 <1	5.36	13	54	14	2	18 4.8	5 11	75	108	163	>10.0	0.03	41	1.91	5376	17	0.05	63	508	569	6 <	5	0.05 <	10	62 1	542	9	341 <	<10	15	191
171674	438433 <1	5.31	12	87	10	2	16 6.1	3 13	77	75	152	>10.0	0.02	53	1.96	5 6164	21	0.04	6 9	383	683	10 <	5	0.11 <	10	82	906	11	352 <	<10	13	178
171675	438434 <1	5.58	9	53	31	3	21 2.2	7 13	75	134	127	>10.0	0.08	48	2.11	4143	21	0.06	58	611	678	11 <	5	0.05 <	10	45 1	.600	10	365 <	<10	22	167
171676	438435 <1	5.37	8	54	17	2	20 6.4	77	56	239	109	>10.0	0.02	45	2.66	5 3891	10	0.05	64	1149	378	7 <	5	0.06 <	10	111	817	6	255 <	<10	16	152
171677	438435 <1	5.3	10	56	17	1	19 6.4	37	56	237	106	>10.0	0.02	45	2.67	3902	9	0.05	64	1146	389	8 <	5	0.06 <	10	109	803	5	255 <	<10	16	156
171678	438436 <1	3.81	9	50	61	2	17 4.9	28	70	196	174	>10.0	0.12	23	1.74	3052	11	0.08	76	748	432	8 <	5	0.05 <	10	119	397	5	283 <	<10	17	104
171679	438437 <1	4.04	8	56	37	1	14 5.3	75	50	184	110	9.53	0.09	27	1.99	2592	7	0.07	58	506	334	<5 <	5	0.05 <	10	125	146	5	186 <	<10	9	101
171680	438438 <1	1.6	6	58	200	1	4 2.0	9 <4	23	359	53	3.41	0.88	36	1.56	5 569	<1	0.36	52	3066	134	<5 <	5	0.04 <	10	239 3	112	6	84 <	<10	15	52
171681	438439 <1	4.53	7	54	24	1	13 4.6	25	44	193	77	8.89	0.03	44	2.82	2 2366	3	0.07	46	1809	317	6 <	5	0.05 <	10	134	126	5	192 <	<10	9	112
171682	438440 <1	3.46	7	54	37	2	13 4.9				193					2884		0.06			454	9 <		0.05 <		175 <	100	4	226 <	<10	6	82
171683	438441 <1	3.38	8	54	57	2	11 7.2	37	78	157	187	>10.0	0.2	. 18	1.61	3203	10	0.05	51	573	377	6 <	5	0.06 <	10	271 <	100	3	158 <	:10	7	82

Accur. # C	Client Tag Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sb	Se	Si	Sn	Sr	Ti	TI	v	W	Y	Zn
	ppr	n %	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
171684	438442 <1	2.53	3 12	52	58	2	2 16	5 4.66	9	74	99	96	>10.0	0.2	14	1.25	2421	. 14	0.06	37	644	474	8	<5	0.04	<10	178	<100	5	263	<10	6	62
171685	438443 <1	3.58	B 7	53	64	2	2 18	3 4.65	9) 78	3 154	149	>10.0	0.19	20	1.84	3014	16	0.07	82	680	507	10	<5	0.04	<10	194	<100	6	338	<10	6	98
171686	438444 <1	3	38	47	72	2	2 20) 5.14	8	64	126	126	>10.0	0.18	17	1.56	2913	13	0.06	54	673	443	6	<5	0.05	<10	235	<100	6	242	<10	5	84
171687	438445 <1	3.89	96	59	64	. 1	٤ ١	3 5.31	<4	34	1 79	60	6.74	0.04	31	2.74	1678	<1	0.08	19	1757	241	<5	<5	0.05	<10	261	<100	5	167	′ <10	7	98
171688	438445 <1	4	45	54	65	<1	9	5.44	<4	34	1 81	58	6.85	0.04	32	2.81	. 1704	<1	0.09	20) 1795	246	<5	<5	0.05	<10	268	<100	4	171	<10	7	98
171689	438446 <1	4.04	47	59	118	; 1	L 11	5.58	<4	35	5 130	82	6.77	0.09	36	3.14	1377	′ <1	0.1	. 32	1971	252	5	<5	0.05	<10	260	<100	3	121	<10	8	100
171690	438447 <1	3.5	58	47	100) 1	l 13	3 7.61	<4	38	3 153	46	6.6	0.1	30	3.45	1613	i <1	0.08	49	2316	240	5	<5	0.05	<10	264	<100	7	94	<10	9	83
171691	438448 <1	2.93	19	53	21	<1	10) 9.5	<4	35	5 54	47	7.06	0.08	21	2.84	2519	<1	0.04	- 34	1462	260	<5	<5	0.04	<10	263	<100	6	80	<10	7	76
171692	438449 <1	3.02	28	51	34	1	l 14	3.81	6	5 53	<u>9</u> 3	57	9.84	0.17	17	1.37	2119	11	0.04	49	468	358	6	<5	0.04	<10	152	<100	4	109	<10	4	79
171693	438450 <1	3.1	57	55	20) 1	19	5.95	6	5 59	9 60	119	>10.0	0.09	19	1.42	2928	9	0.05	53	413	335	<5	<5	0.04	<10	200	<100	3	170	<10	4	84
171694	438451 <1	3.23	35	51	10) 2	2 12	2 5.17	5	5 57	7 60	86	8.99	0.05	21	1.37	2848	57	0.03	50	359	311	<5	<5	0.04	<10	122	<100	4	148	<10	5	77
171695	438452 <1	3.62		46	14	. 1	l 11	7.28	e	5 53	96	113	9.56	0.09	23	1.31	. 3360	8	0.04	49	390	337	<5	<5	0.05	<10	133	<100	3	170	<10	6	64
171696	438453 <1	4.53	36	55	9) 1	L 14	6.76	6	6 60) 92	227	>10.0	0.04	29	1.63	3039	9	0.04	58	478	353	5	<5	0.04	<10	114	<100	5	214	<10	7	64
171697	438454 <1	3.5	5 12	59	14	. 2	2 12	2 >10.0	5	33	3 46	47	7.55	0.03	25	2.23	2508	10	0.03	21	. 415	274	7	<5	0.04	<10	312	<100	5	134	<10	6	66
171698	438455 <1	4.2	28	48	42	: 1	19	6.64	5	5 40) 41	46	8.18	0.11	26	2.08	3 1962	6	0.04	22	480	297	<5	<5	0.04	<10	223	<100	4	128	<10	5	72
171699	438455 <1	3.98		51	41	. 1	19	0.00	4	38	3 42			0.11		2.02	1937	5	0.04	21				<5	0.04	<10	218	<100	6	123	<10	5	72
171700	438456 <1	4.25		52	39) 1	l 12		5	4() 90	84	8.58	0.11	27	1.99	2463	6	0.04	28	502	308	5	<5	0.04	<10	233	<100	4	128	22	5	88
171701	438457 <1	4.34		55	14	1		6.77	6	5 47				0.04	26	1.75	3057	' 7	0.02					<5	0.04	<10	234	<100	6	141	. 11	4	100
171702	438458 <1	3.93		54	33	1	17	7.58	<4	34	152	92	6.22	0.07	30	2.67	1335	<1	0.05	52	572	222	<5	<5	0.04	<10	288	<100	5	81	<10	4	83
171703	438459 <1		5 <2	43		5 1		7 5.65		38	3 92	65	6.38	0.15	20	2.75	5 1655	<1	0.04	45	5 1146			<5	0.04	<10		<100	-	44	<10	6	78
171704	438460 <1	1.73		54	21	. <1) 5.75	<4	34	105			0.11			1668		0.04					<5	0.04			<100			<10	4	48
171705	438461 <1	3.57	77	46	25	5 1	l 10) 5.85	e	5 49	9 93	112	9.54	0.15	21	1.83	2681		0.04		3 1111	. 339		<5	0.05	<10	140	<100	4	- 98	<10	6	74
171706	438462 <1	3.72		46			l 13		5	4 2	L 49	196	8.36	0.06			. 3049		0.03		3 704			<5	0.04			<100		117	′ <10	4	
171707	438463 <1	0.20		49		. <1		0.25			-	-	4.1			0.09			0.17					<5	0.04			<100			<10	3	
171708	438464 <1	1.4	4 8	60	154	1	1 5	5 1.84	<4	2:	L 224	51	2.96	0.76	35	1.46	5 495	o <1	0.25	46	3020	106	<5	<5	0.05	<10	173	2971	. 4	76	<10	14	47

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Slocan Minerals Ltd
 Date Created: 08-07-18 12:46:21 PM
 Job Number: 200841897
 Date Received: Jun 17, 2008
 Number of Samples: 118
 Type of Sample: Rock
 Date Completed: Jul 9, 2008
 Project ID: Flint Lake

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

	Accur. # Clie	ent Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
	163714	438251	<1	2.07	8	37	12	1	7	7.08	<4	36	81	132	6.04	0.06	10	2.55	1271	6	0.17	46	420	333	6	<5	0.06	<10	102	<100	8	103	<10	4	82
	163715	438252	<1	1.93	6	41	4	<1	16	6.08	<4	36	91	157	5.92	0.02	10	2.20	1373	5	0.04	44	385	324	5	<5	0.05	<10	66	<100	9	92	<10	4	78
-	163716	438253	<1	1.87	7	42	4	1	6	6.28	<4	35	38	120	5.94	0.03	9	2.23	1182	5	0.07	41	385	317	7	<5	0.07	<10	65	<100	6	89	<10	4	81
	163717	438254	<1	0.5 9	5	34	9	1	11	7.44	<4	24	85	33	4.25	0.04	4	2.45	937	5	0.11	53	553	242	5	<5	0.04	<10	84	<100	5	25	<10	4	60 60
	163718	438255	<1	1.53	7	38	6	<1	4	6.05	<4	39	99	147	5.43	0.03	7	2.16	1054	6	0. 08	51	380	287	8	<5	0.06	<10	68	<100	7	68 00	<10	4	68 67
	163719	438256	<1	1.88	8	43	4	1	11	6.14	<4	39	39	183	5.81	0.03	8	2.33	1186	5	0.06	49	340	308	6	<5	0.06	<10	58	<100	3	88	<10	4	67 57
_	163720	438257	<1	1.64	4	38	6	1	9	4.69	<4	30	126	53	4.85	0.03	7	1.81	915	5	0.07	59	147	266	6	<5	0.06	<10	4/	<100	12	2	<10	3	57 21
	163721	438258	<1	0.20	5	46	71	1	7	0.19	<4	2	5	5	2.91	0.02	2	0.07	103	8	0.14	9	579	301	6	<5	0.03	<10	10	<100	9	∠ 81	<10 <10	4	70
	163722	438259	<1	1.85	8	38	7	1	6	5.90	<4	51	115	110	6.00	0.04	8	2.23	1085	5	0.09	68	274	353	6	<5	0.07	<10	57	<100	2	115	<10	- 1 2	93
	163723	438260	<1	2.51	9	38	11	1	16	6.05	<4	47	56	104	7.09	0.03	12	2.58	1200	5	0.08	70	305	364		<5	0.05	<10	60 61		4	139	<10	3	90
	163724	438261	<1	2.90	9	34	15	1	13	6.29	<4	47	85	119	7.62	0.05	15	2.68	1227	6	0.13	65	323	414	6	<5 	0.05	<10	61 63	<100 <100	9	139	<10	4	91
	163725	438261	<1	3.07	7	39	16	1	8	6.68	<4	50	88	127	8.05	0.05	16	2.83	1300	5	0.13	68	339	431	7	<5	0.06	<10	57	<100	, 6	144	<10	4	78
	163726	438262	<1	3.03	3	38	11	1	15	6.81	<4	44	78	128	7.93	0.04	15	2.41	1293	5	0.10		331	423	1	<5	0.07	<10	57 34	3121	4	115	<10	7	73
	163727	438263	<1	2.71	11	53	4	1	7	3.20	<4	48	79	126	5.87	0.02	7	2.11	1021	5	0.04	62	367	331	<5 -7	<5	0.04	<10 <10	34	3364	1	08	<10	, 8	69
	163728	438264	<1	2.59	8	47	4	<1	18	2.05	<4	45	118	132	5.33	0.02	8	1.96	823	5	0.05		363	265	7	<5	0.04 0.03	<10	37	3239	י ז	97	<10	7	68
_	163729	438265	<1	2.60	18	40	5	1	10	1.41	<4	47	106	151	5.21	0.01	6	1.89	869	4	0.03	62	391	277	/ 5	<5 <5	0.05	<10	40	2203	5	97	<10	6	52
	163730	438266	<1	2.20	10	46	9	1	9	5.41	<4	34	98	140	4.59	0.02	6	1.53	848	4	0.04	45	227	247 423	о 0	<5 <5	0.05	<10	22	4452	7	182	<10	10	98
	163731	438267	<1	3.79	9	44	3	<1	10	2.56	<4	62	95	161	8.36	0.02	10	2.96	1248	5	0.05	-	443	423 463	0	~5 <5	0.06	<10	90	<100	5	223	<10	5	98
	163732	438268	<1	4.11	69	46	3	1	10	9.14	<4	46	48	145	8.43	0.01	15	2.37	1731	5 5	0.03		382 368	403	0 7	~5 <5	0.08	<10	63	<100	1	154	<10	4	94
_	163733	438269	<1	2.63	82	50	29	1	8	6.35	<4	43	40	137	8.36	0.08	11	2.46	1662	5 6	0.10		379	443	7	~5 <5	0.06	<10	80	<100	8	127	<10	4	97
	163734	438270	<1	2.36	38	39	31	2	5	6.32	<4	44	57	143	8.45	0.10	11	2.24	1605	۰ د	0.11	51 5 48	427	439	10	~5 <5	0.10	<10		<100	7	89	<10	5	89
	163735	438271	<1	1.99	11	40	37	1	16	7.29	<4	40	79	126	7.89	0.15	9	2.35	1651	0	0.10	40	421	420	10	-5	0.10	10			•			-	_

Certified By Derek Demianiuk, H.Bsc

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Slocan Minerals Ltd Date Created: 08-07-18 12:46:21 PM Job Number: 200841897 Date Received: Jun 17, 2008 Number of Samples: 118 Type of Sample: Rock Date Completed: Jul 9, 2008 Project ID: Flint Lake

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval

of the laboratory.

	Accur. # Clie	ont Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
	163736	438271	<1	1.97	10	40	37	1	6	7.24	<4	41	62	125	7.83	0.14	9	2.32	1622	5	0.16	46	425	414	7	<5	0.10	<10	109	<100	6	89	<10	4	89
	163737	438272	<1	2.12	9	39	19	1	16	8.23	<4	47	36	141	9.00	0.08	10	2.67	1819	6	0.11	52	365	482	7	<5	0.05	<10	108	<100	8	104	<10	4	98
	163738	438273		2.29	9	34	25	1	9	7.36	<4	44	63	142	8.30	0.10	11	2.46	1637	5	0.15	50	374	450	8	<5	0.06	<10	96	<100	6	118	<10	4	90
-	163739	438274		2.29	10	31	17	1	6	7.38	<4	48	58	147	8.78	0.05	11	2.54	1676	6	0.09	53	372	485	8	<5	0.06	<10	77	<100	5	129	<10	4	99
	163740	438275	<1	2.22	10	33	15	2	7	7.09	<4	48	38	153	8.63	0.06	12	2.49	1548	5	0.12	52	381	468	8	<5	0.06	<10	77	<100	1	123	<10	4	95
	163741	438276	<1	2.63	14	36	16	1	14	6. 94	<4	49	80	143	8.56	0.06	13	2.85	1395	6	0.13	59	386	468	7	<5	0.06	<10	79	<100	5	144	<10	4	89
_	163742	438277	<1	3.97	9	39	2	1	15	6.42	<4	51	62	150	8.97	0.02	16	2.98	1323	5	0.06	58	378	492	9	<5	0.08	<10	124	<100	10	239	<10	4	92
	163743	438278	<1	1.04	8	50	129	1	6	1.41	<4	15	139	32	2.42	0.62	26	1.03	389	5	0.23	40	2282	138	5	<5	0.03	<10	156	2143	5	57	<10	11	45
	163744	438279	<1	4.38	9	41	2	2	7	7.85	<4	49	68	143	8.63	0.02	21	2.68	1490	5	0.04	63	381	471	6	<5	0.07	<10	144	<100	4	238	<10	4	94
	163745	438280	<1	2.94	9	44	15	1	9	6.78	<4	45	113	174	7.83	0.05	14	2.35	1510	5	0.07	58	335	429	7	<5	0.08	<10	94	<100	10	167	<10	4	86
	163746	438281	<1	3.00	9	4 1	9	1	11	7.75	<4	49	52	140	8.26	0.04	15	2.57	1560	5	0.09	59	366	475	8	<5	80.0	<10	105	<100	0	185 179	<10	4	91 96
	163747	438281	<1	2.89	9	40	8	2	4	7.46	<4	48	50	133	7.99	0.04	14	2.48	1503	6	0.09	57	351	432	7	<5	0.08	<10	101	<100	2		<10	4	86 74
	163748	438282	<1	2.50	8	36	17	1	10	5.51	<4	38	48	124	6.79	0.05	12	2.11	1255	6	0.06		312	370	6	<5	0.06	<10	78	<100	7	137	<10	ა ი	74 95
	163749	438283	<1	3.42	8	41	19	1	5	6.57	<4	47	60	140	8.55	0.04	18	2.66	1561	5	0.05		391	473	8	<5	0.07	<10	101	<100	, e	196 239	<10 <10	3 A	95 95
	163750	438284	<1	4.14	6	47	2	1	8	7.23	<4	47	45	146	8.45	0.02	23	2.55	1643	7	0.05		409	455		<5	0.06	<10	137	<100 121	7	239	<10	- 	100
	163751	438285	<1	3.62	5	41	2	2	14	4.70	<4	53	67	133	8.59	0.01	19	2.99	1420	6	0.03		387	461	6	<5	0.05	<10 <10	90 120	121 <100	6	223	<10	3	94
	163752	438286	<1	3.95	5	37	83	1	16	6.14	<4	50	68	140	8.45	0.01	20	2.62	1357	5	0.06		368	445	(<5	0.06	<10	75	<100	10	181	<10	⊿	90
	163753	438287	<1	2.86	8	38	11	1	12	6.44	<4	49	51	144	8.41	0.04	17	2.76	1593	6	0.07	' 59	369	452	0 5	<5	0.07 0.06	<10	91	<100		118	<10	4	88
	163754	438288	<1	2.47	6	36	20	2	12	7.40	<4	48	87	145	8.38	0.08	15	2.74	1601	6	0.09		351	473 477	5 7	<5 <5	0.08	<10	78	<100		149	<10	4	93
_	163755	438289	<1	2.92	9	42	14	1	14	7.16	<4	50	65	141	8.70	0.07	19	2.73	1596	8	0.07	58	363		7	<5 <5	0.07	<10	93	<100		216	<10	4	101
	163756	438290	<1	3.80	11	46	9	1	16	7.06	<4	52	45	151	9.16	0.04	22	2.68	1760	5	0.05		385	526 505	7	~5 <5	0.07	<10	57	<100		198	<10	5	97
	163757	438291	<1	3.32	13	38	26	1	9	6.21	<4	52	50	157	8.67	0.07	16	2.57	1606	9	0.05	5 53	403	505	1	~0	0.00	210	51	- 100	5			Ŭ	0,

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Slocan Minerals Ltd Date Created: 08-07-18 12:46:21 PM Job Number: 200841897 Date Received: Jun 17, 2008 Number of Samples: 118 Type of Sample: Rock Date Completed: Jul 9, 2008 Project ID: Flint Lake

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

	Accur. # Clien		Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	Ti ppm	V ppm	W ppm	Y ppm	Zn ppm
	163758	438292	<1	2.60	14	44	32	2	14	6.57	<4	49	55	150	8.41	0.10	14	2.61	1676	6	0.04	52	398	496	6	<5	0.04	<10	76	<100	7	124	<10	4	92
	163759	438292	<1	2.35	16	43	28	1	6	6.02	<4	44	51	142	7.84	0.10	14	2.40	1574	5	0.04	47	376	439	8	<5	0.04	<10	73	<100	13	114	<10	4	96
-	163760	438293		2.21	19	41	21	1	11	5.58	<4	41	45	137	7.21	0.10	14	2.25	1386	5	0.03	45	343	411	8	<5	0.04	<10	64	<100	5	87	<10	4	95
-	163761	438294		1.99	23	40	18	1	8	6.14	<4	39	95	94	6.93	0.10	13	2.19	1397	6	0.03	41	266	384	7	<5	0.04	<10	56	<100	4	81	<10	4	85
	163762	438295		5.69	33	32	30	1	25	>10.00	7	94	78	306	>10.00	0.14	34	4.12	3093	12	0.05	93	734	904	10	<5	0.05	<10	111	<100	12	239	<10	6	198
	163763	438296		3.27	36	44	13	1	13	5.92	<4	47	136	126	7. 39	0.04	22	2.67	1267	6	0.02	88	372	428	7	<5	0.04	<10	73	<100	6	149	<10	4	100
	163764	438297	<1	0.16	8	36	64	<1	5	0.18	<4	<1	5	5	2.92	0.02	3	0.06	<100	9	0.13	9	557	311	<5	<5	0.02	<10	15	<100	9	2	<10	3	20
	163765	438298		3.75	16	40	2	2	14	5.46	<4	53	48	161	8.19	0.01	17	2.47	1142	5	0.03	54	415	452	6	<5	0.03	<10	112	218	9	248	<10	4	113
	163766	438299	<1	4.13	38	43	3	1	11	5.28	<4	60	128	151	7.91	0.01	18	3.44	1528	7	0.02	114	258	417	9	<5	0.03	<10	26	2490	4	180	<10	7	105
	163767	438300		4.16	38	42	3	1	14	5.30	<4	59	128	144	7.93	0.01	18	3.39	1527	7	0.02	114	255	448	7	<5	0.03	<10	25	2587	5	180	<10	7	107
	163768	438300		1.14	23	50	33	<1	8	2.45	<4	13	110	23	3.00	0.06	5	0.47	610	7	0.07	23	408	178	6	<5	0.02	<10	16	1007	3	42	<10	5	74
	163769	438301	<1	1.00	19	42	55	<1	8	2.28	<4	15	115	21	3.11	0.11	4	0.47	609	6	0.07	25	412	168	<5	<5	0.02	<10	20	1149	4	27	<10	5	60
-	163770	438302	<1	2.47	13	51	2	<1	11	6.91	<4	48	101	115	5.14	0.01	9	2.01	1251	5	0.02	102	194	307	6	<5	0.02	<10	35	2252	10	90	<10	4	74
	163771	438303		3.42	9	49	21	1	11	6.74	<4	43	129	107	7.30	0.04	23	2.01	1417	6	0.03	67	349	417	8	<5	0.03	<10	108	<100	8	168	<10	4	96
	163772	438304		2.95	5	44	17	1	8	6.84	<4	40	150	96	6.84	0.04	18	2.14	1498	5	0.04	75	314	305	6	<5	0.04	<10	80	<100	6	139	<10	4	78
	163773	438305		2.96	7	43	19	1	13	5.80	<4	45	105	112	7.37	0.07	21	2.48	1381	5	0.04	7 9	390	361	6	<5	0.04	<10	41	<100	5	87	<10	5	85
_	163774	438306	<1	3.30	6	36	21	1	9	6.19	<4	45	125	108	7.81	0.08	23	2.51	1431	4	0.05	83	351	359	6	<5	0.04	<10	57	<100	7	107	<10	4	90
	163775	438307		2.78	5	30	14	1	13	5.68	<4	35	74	86	6.71	0.06	21	1.99	1279	5	0.05	56	359	306	6	<5	0.04	<10	48	<100	5	94	<10	4	84
	163776	438308		2.17	6	32	14	1	7	6.21	<4	34	123	94	6.20	0.06	17	2.82	1263	5	0.05	83	231	313	6	<5	0.03	<10	59	<100	5	66	<10	4	70
	163777	438309		2.61	5	33	10	1	5	5.08	<4	35	124	90	6.58	0.05	20	2.81	1245	5	0.05	72	292	331	6	<5	0.04	<10	48	<100	11	95	<10	3	76
	163778	438310		2.61	5	33	11	1	4	5.12	<4	36	123	97	6.62	0.05	21	2.84	1258	5	0.05	72	297	317	<5	<5	0.04	<10	47	<100	3	96	<10	3	79
	163779	438310		2.23	6	32	11	<1	7	6.81	<4	27	92	63	5.13	0.04	17	1.74	1109	5	0.04	46	378	235	5	<5	0.03	<10	80	<100	6	74	<10	4	68

Certified By Derek Demianiuk, H.Bsc.

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Slocan Minerals Ltd Date Created: 08-07-18 12:46:21 PM Job Number: 200841897 Date Received: Jun 17, 2008 Number of Samples: 118 Type of Sample: Rock Date Completed: Jul 9, 2008 Project ID: Flint Lake

* The results included on this report relate only to the items tested
 * This Certificate of Analysis should not be reproduced except in full, without the written approval

of the laboratory.

	Accur. # Cli	ient Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
	163780	438311	<1	2.78	4	48	11	1	5	5.55	<4	27	89	38	5.31	0.03	22	1.91	1061	5	0.04	42	458	281	5	<5	0.04	<10	67	<100	5	92	<10	4	71
	163781	438312	<1	3.01	5	36	6	1	7	5.79	<4	32	111	80	5.83	0.02	23	1.86	1132	4	0.03	56	393	303	<5	<5	0.03	<10	67	<100	8	129	<10	4	82
-	163782	438313	<1	3.87	6	33	9	1	8	6.37	<4	40	155	114	7.03	0.03	31	2.11	1159	5	0.05	78	273	363	9	<5	0.03	<10	77	<100		156	<10	4	87
-	163783	438314	<1	3.88	4	40	4	1	9	9.23	<4	42	167	112	6.93	0.01	26	1.95	1654	5	0.03	81	251	362	7	<5	0.06	<10	101	<100	6	185	<10	4	82
	163784	438315	<1	4.25	7	43	11	1	11	8.62	<4	46	166	122	7.38	0.03	28	2.06	1566	5	0.05	87	290	369	6	<5	0.05	<10	87	<100	8	173	<10	5	80
	163785	438316	<1	4.15	8	31	16	<1	8	7.68	<4	44	168	110	7.17	0.05	26	2.01	1428	5	0.04	88	311	344	5	<5	0.06	<10	59	<100	8	168	<10	5	83
_	163786	438317	<1	1.18	6	53	149	1	7	1.69	<4	18	262	39	2.68	0.66	28	1.29	452	5	0.23	50	2365	149	6	<5	0.04	<10	163	2594	2	69 000	<10	13	48
	163787	438318	<1	4.68	5	43	6	1	8	7.13	<4	48	466	107	7.96	0.01	30	2.52	1414	33	0.03	347	371	387	10	<5	0.06	<10	45	664	8	206	<10	6	86 80
	163788	438319	<1	3.85	5	37	1	1	10	5.10	<4	49	184	106	6.53	<0.01	24	2.25	1233	5	0.02	87	295	320	5	<5	0.05	<10	31	2454		152	<10	-	80 80
	163789	438320	<1	3.89	8	43	2	1	6	5.18	<4	49	179	115	6.60	<0.01	25	2.28	1256	5	0.03	87	301	353	<5	<5	0.05	<10	31	2666	4	154	<10	1	82 26
	163790	438320	<1	0.82	3	43	15	<1	<1	1.84	<4	8	89	16	2.17	0.10	6	0.45	613	5	0.04	17	398	122	<5	<5	0.02	<10	54	<100	2	10	<10	3	26
	163791	438321	<1	1.14	4	44	15	<1	7	2.92	<4	14	78	15	3.35	0.10	9	0.77	1033	4	0.04	25	430	180	<5	<5	0.03	<10	111	<100	3	1/	<10	4	34
	163792	438322	<1	0.59	7	42	15	<1	6	4.76	<4	16	74	13	3.04	0.09	4	1.38	1538	5	0.03	27	334	138	<5	<5	0.03	<10	179	<100	11	9	<10	4	27
	163793	438323	<1	0.81	26	38	16	<1	4	2.47	<4	13	79	18	3.17	0.11	6	0.69	983	4	0.03	23	436	174	<5	<5	0.03	<10	117	<100	5	8	<10	4	34
	163794	438324	<1	1.14	4	31	16	<1	5	1.85	<4	10	65	13	3.04	0.12	8	0.63	918	5	0.04	24	398	165	<5	<5	0.02	<10	109	<100	1	13	<10	3	45 45
-	163795	438325	i <1	1.06	8	34	14	<1	5	1.72	<4	11	56	26	2.56	0.09	7	0.57	903	4	0.03	18	460	137	<5	<5	0.03	<10	94	<100	3	9	<10	3	45 50
-	163796	438326	5 <1	1.52	11	35	17	<1	5	2.61	<4	16	70	18	4.07	0.11	10	0.74	1142	5	0.02	28	444	212	<5	<5	0.03	<10	93	<100	5	14	<10	4	52 46
	163797	438327	′ <1	1.53	11	38	15	1	6	2.00	<4	13	63	15	3.96	0.09	10	0.65	1189	6	0.02	26	414	191	6	<5	0.03	<10	98	<100	5	17	<10	ა ი	46
	163798	438328	s <1	1.49	7	37	20	<1	1	2.61	<4	15	74	12	3.47	0.09	10	0.56	1119	5	0.03	28	489	157	<5	<5	0.03	<10	106	<100	3	17	<10	ა ი	40
	163799	438329) <1	1.61	9	37	18	<1	3	2.00	<4	15	64	16	3.76	0.10	11	0.63	1141	5	0.03		455	180	<5	<5	0.03	<10	117	<100	3	17	<10	ა ი	43
	163800	438330) <1	1.70	9	38	26	<1	4	2.20	<4	15	74	12	3.77	0.14	11	0.63	1202	5	0.04		458	179	<5	<5	0.03	<10	130	<100	3 5	10	<10	Д	40
	163801	438330) <1	1.32	25	42	16	<1	9	2.14	<4	14	58	34	3.43	0.09	9	0.65	1032	5	0.03	26	489	156	<5	<5	0.03	<10	98	<100	Э	15	<10	4	40

Certified P Derek Demianiuk, H.Bsc.

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Slocan Minerals Ltd Date Created: 08-07-18 12:46:21 PM Job Number: 200841897 Date Received: Jun 17, 2008 Number of Samples: 118 Type of Sample: Rock Date Completed: Jul 9, 2008 Project ID: Flint Lake

* This Certificate of Analysis should not be reproduced except in full, without the written approval

* The results included on this report relate only to the items tested

of the laboratory.

	Accur. # Clies	nt Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
	163802	438331	<1	1.98	7	38	14	<1	7	2.02	<4	20	75	19	4.46	0.08	13	0.70	981	6	0.03	33	465	204	6	<5	0.03	<10	147	<100	7	25	<10	3	49
	163803	438332	<1	1.53	7	41	21	<1	13	2.44	<4	13	77	13	3.07	0.12	10	0.53	893	5	0.04	23	418	167	<5	<5	0.03	<10	178	<100	3	17	<10	3	43
_	163804	438333	<1	1.77	17	40	17	<1	4	2.60	<4	19	144	31	3.91	0.10	12	0.61	1079	13	0.03	85	410	195	5	<5	0.03	<10	161	<100	5	20	<10	3	49
	163805	438334	<1	1.62	23	39	21	<1	11	1.65	<4	23	73	16	3.38	0.13	10	0.53	829	6	0.03	44	421	17 9	<5	<5	0.03	<10	112	<100	2	16	<10	3	42
	163806	438335	<1	1.72	9	39	14	<1	1	1.92	<4	11	58	5	3.77	0.08	11	0.63	113 9	6	0.03	22	403	181	<5	<5	0.03	<10	127	<100	5	20	<10	3	47
	163807	438336	<1	1.29	52	41	24	<1	<1	2.57	<4	12	135	26	3.33	0.15	8	0.45	1126	7	0.04	26	386	146	6	<5	0.03	<10	172	<100	3	12	<10	3	38
_	163808	438337	<1	0.17	5	44	63	<1	7	0.19	<4	1	5	4	2.88	0.01	<1	0.06	106	8	0.13	9	558	285	<5	<5	0.02	<10	11	<100	2	3	<10	4	21
	163809	438338	<1	0.89	27	40	23	<1	4	1.97	<4	11	113	24	2.20	0.15	6	0.36	781	5	0.04	23	369	111	6	<5	0.02	<10	123	<100	3	8	<10	3	25
	163810	438339	<1	3.44	91	43	9	1	11	2.91	<4	31	38	41	8.44	0.06	23	1. 40	2105	9	0.06	44	384	420	6	<5	0.05	<10	156	<100	4	60	<10	3	107
	163811	438340	<1	3.39	79	41	9	1	10	2.82	<4	29	36	38	8.29	0.06	23	1.38	2029	9	0.05	43	375	416	6	<5	0.05	<10	152	<100	8	59	<10	4	105
	163812	438340	<1	1.63	19	39	23	<1	5	2.77	<4	12	105	25	3.48	0.16	11	0.59	1046	5	0.07	24	378	184	<5	<5	0.04	<10	166	<100	6	19	<10	4	44
	163813	438341	<1	1.44	12	38	22	<1	7	2.18	<4	8	79	16	3.08	0.12	9	0.52	1036	5	0. 04	20	401	149	5	<5	0.02	<10	142	<100	4	1/	<10	3	39
	163814	438342	<1	1.88	23	39	15	<1	2	3.49	<4	15	45	5	3.81	0.10	13	0.83	1396	4	0.04	29	397	208	<5	<5	0.03	<10	140	<100	6	21	<10	4	62
	163815	438343	<1	1.89	17	37	25	<1	8	3. 46	<4	17	43	6	3.35	0.20	15	1.04	945	4	0.04	25	420	182	<5	<5	0.04	<10	89	<100	10	15	<10	4	45
	163816	438344	<1	1.55	17	38	27	<1	6	2.00	<4	15	42	4	2.74	0.23	10	1.20	734	5	0.03	21	485	156	<5	<5	0.03	<10	27	<100	6	16	<10	4	20
_	163817	438345	<1	1.75	17	32	23	1	8	3.47	<4	21	29	11	4.38	0.16	12	2.05	596	5	0.03	28	485	210	<5	<5	0.03	<10	93	<100	5	23	<10	5	23
	163818	438346	<1	1.43	15	38	28	<1	8	3.28	<4	15	48	9	3.11	0.19	10	0.88	399	4	0.04	25	467	149	<5	<5	0.03	<10	109	<100	4	13	<10	4	29
	163819	438347	<1	1.61	14	35	34	<1	7	2.26	<4	12	37	13	2.75	0.24	10	0.71	484	4	0.05	18	507	122	<5	<5	0.03	<10	92	<100	3	10	<10	3	36
	163820	438348	<1	1.89	17	37	23	<1	8	1.74	<4	16	38	41	4.08	0.16	12	0.82	852	5	0.05	26	450	211	<5	<5	0.03	<10	142	<100	0	18 56	<10 <10	3	68 111
_	163821	438349	<1	3.33	33	39	9	1	10	3.08	<4	24	62	18	8.03	0.05	21	1.18	2044	9	0.05	41	394	406	6	<5	0.05	<10	143	<100	0			4	110
	163822	438350	<1	3.33	28	39	9	<1	8	3.08	<4	22	59	17	8.05	0.05	21	1.18	2088	10	0.05	41	395	419	6	<5 -5	0.05	<10	143	<100	1 21	57 406	<10	4	132
	163823	438350	<1	5.52	14	44	3	2	16	3.92	6	64	25	81	>10.00	0.01	23	1.74	3190	20	0.03	61	426	811	8	<5	0.04	<10	200	301	21	400	<10	o	132

Certified By: Derek Demianiuk, H.Bsc.

Teł: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Slocan Minerals Ltd Date Created: 08-07-18 12:46:21 PM Job Number: 200841897 Date Received: Jun 17, 2008 Number of Samples: 118 Type of Sample: Rock

Date Completed: Jul 9, 2008

Project ID: Flint Lake

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

	Accur. # Clie	ent Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
	163824	438351	<1	5.58	16	41	3	2	14	4.68	7	69	12	88	>10.00	<0.01	22	1. 78	3399	24	0.01	66	416	882	7	<5	0.05	<10	247	319	9	489	<10	6	142
	163825	438352	<1	3.58	7	43	16	1	6	4.19	4	43	38	46	>10.00	0.03	18	1.57	2342	13	0.04	43	504	587	7	<5	0.04	<10	214	137	4	338	<10	6	86
	163826	438353		3.79	37	39	54	1	11	2.51	<4	55	22	43	9.07	0.10	20	1.30	1667	11	0.04	43	497	468	6	<5	0.04	<10	104	<100	4	383	<10	6	87
_	163827	438354	<1	3.79	16	30	23	<1	5	6.92	<4	33	121	3	6.62	0.09	33	1.89	1945	5	0.06	63	<100	343	6	<5	0.05	<10	48	<100	4	61	<10	4	55
	163828	438355	•	4.31	37	39	11	1	13	>10.00	<4	36	406	26	8.90	0.04	28	2.81	2526	5	0.07	81	<100	451	9	<5	0.04	<10	74	<100	9	111	<10	6	61
	163829	438356		3.43	29	31	14	<1	10	7.61	<4	40	603	49	5.02	0.05	33	2.00	1241	5	0.08	74	<100	282	9	<5	0.05	<10	49	<100	4	72	<10	4	37
	163830	438357		1.08	5	46	137	1	<1	1.56	<4	17	240	37	2.45	0.62	26	1.19	414	5	0.21	47	2268	135	<5	<5	0.05	<10	149	2303	2	63	<10	12	45
	163831	438358		2.35	18	27	10	<1	8	7.18	<4	28	427	31	3.47	0.03	24	1.47	995	5	0.06	48	<100	168	6	<5	0.04	<10	41	<100	8	55	<10	4	30
	163832	438359		3.31	20	29	10	<1	11	7.47	<4	35	443	37	4.84	0.03	32	2.01	1062	5	0.08	64	<100	240	7	<5	0.05	<10	43	<100	6	92	<10	4	40
_		438360		3.13	19	30	10	<1	3	7.22	<4	34	421	35	4.62	0.03	30	1.92	1029	5	0.08	61	<100	230	6	<5	0.05	<10	40	<100	6	87	<10	4	39
	163833	438360		2.77	21	29	12	<1	e R	7.20	<4	32	440	33	3.62	0.04	28	1.77	926	4	0.08	55	<100	189	6	<5	0.04	<10	42	<100	5	68	<10	4	33
	163834			2.11	_	32	0	<1	7	7.36	<4	29	447	32	3.76	0.03	26	1.55	969	5	0.05	52	<100	189	6	<5	0.04	<10	37	<100	3	63	<10	4	35
	163835	438361	<1		21		10	<1	10	7.40	-4	37	531	78	4.04	0.03	29	1.62	1008	5	0.06	63	<100	221	6	<5	0.04	<10	37	<100	6	64	<10	3	49
_	163836	438362		2.71	23	32 33	10	<1	•	7.46	-4	38	542	29	3.59	0.05	26	1.55	955	4	0.07	61	<100	178	8	<5	0.04	<10	37	<100	9	53	<10	3	37
	163837	438363		2.57	23	33	12	÷	0		~4	37	553	24	4.58	0.04	29	1.67	1042	4	0.05	65	<100	245	7	<5	0.04	<10	37	<100	6	64	<10	4	72
	163838	438364		2.95	23	32	9	<1	9 10	7.64	~4	24	600		4.10	0.04	25	1.33	938	4	0.06	60	<100	213	8	<5	0.04	<10	34	<100	6	51	<10	3	70
	163839	438365		2.51	18	29	12	<1	10	7.01	4	20	556	20	2.95	0.07	16	0.87	591	-	0.07	50	<100	146	8	<5	0.03	<10	25	<100	4	33	<10	3	31
	163840	438366		1.86	20	29	15	<1	5	4.00	<4	28				-	14			7	0.06		<100	123	6	<5	0.03	<10	27	<100	5	26	<10	3	26
	163841	438367		1.71	19	31	13	<1	4	4.58	<4	28	550	40	2.75	0.06	14 E	0.82	620	4 6			322	57	<5	<5	0.02	<10	6	<100	4	3	<10	7	6
	163842	438368	<1	0.28	23	42	3	1	2	0.11	<4	1	278	15	U.74	0.11	5	0.02	144	0	0.08	16	322	57	~5	-0	0.02	-10	v	- 100	•	5		•	•

APPENDIX 4- Sample Prep and Analytical Procedures

The rock samples are first entered into Accurassay Laboratories Local Information System (LIMS). The samples are dried, if necessary and then jaw crushed to -8mesh, riffle split, a 250 to 400 gram cut is taken and pulverized to 90%-150 mesh, and then matted to ensure homogeneity. Silica sand is used to clean out the pulverizing dishes between each sample to prevent cross contamination. For soils the sample is dried and screened through -80mesh. The –80 portion is fired in the assay lab. For humus, it is dried and the entire sample is blended until larger parts are broken down and then sent to fire assay. The homogeneous sample is then fired in the fire assay lab. The sample is mixed with a lead based flux and fused for an appropriate length of time. The fusing process results is a lead button, which is then placed in a cupelling furnace where all of the lead is absorbed by the cupel and a silver bead, which contains any gold, platinum and palladium, is left in the cupel. The cupel is removed from the furnace and allowed to cool. Once the cupel has cooled sufficiently, the silver bead is placed in an appropriately labeled small test tube and digested using a 1:3 ration of nitric acid to hydrochloric acid. The samples are bulked up with 1.0 mls of distilled deionized water and 1.0 mls of 1% digested lanthanum solution. The total volume is 3.0 mls. The samples cool and are vortexed. The contents are allowed to settle. Once the samples have settled they are analyzed for gold, platinum and palladium using atomic absorption spectroscopy. The atomic absorption spectroscopy unit is calibrated for each element using the appropriate ISO 9002 certified standards in an air-acetylene flame. The results for the atomic absorption are checked by the technician and then forwarded to data entry by means of electronic transfer and a certificate is produced. The Laboratory Manager checks the data and validates it if it is error free. The results are then forwarded to the client by fax, email, floppy or zip disk, or by hardcopy in the mail. NOTE: This method may be altered according to the client's demands. All changes in the method will be discussed with the client and approved by the laboratory manager.

Base metal samples are prepped in the same way as precious metals but are digested using a multi acid digest (HNO_3 , HF, HCI). The samples are bulked up with 2.0 mls of hydrochloric acid and brought to a final volume of 10.0 mls with distilled deionized water. The samples are vortexed and allowed to settle. Once the samples have settled they are analyzed for copper, nickel and cobalt using atomic absorption spectroscopy.

Quality Control

Accurassay Laboratories employs an internal quality control system that tracks certified reference materials and in-house quality assurance standards. Accurassay Laboratories uses a combination of reference materials, including reference materials purchased from CANMET, standards created in-house by the laboratory, and certified calibration standards. Should any of the standards not fall within an acceptable range, reassays will be performed with a new certified reference material. The number of reassays depends on how far the certified reference material falls outside it's acceptable range.

Additionally, Accurassay Laboratories verifies the accuracy of any measuring or dispensing device (i.e scales, dispensers, pipettes, etc.) on a daily basis and are corrected as required.