SUMMARY REPORT

2008 SUMMER PROSPECTING PROGRAM ON THE DOGPAW LAKE PROPERTY, KENORA MINING DIVISION, NORTHWESTERN ONTARIO

NTS MAP SHEET 52F/05SW

METALS CREEK RESOURCES

TABLE OF CONTENTS

		PAGE
1.0	INTRODUCTION	1
2.0	TERMS OF REFERENCE	1
3.0	LOCATION AND ACCESS	1
4.0	CLAIM HOLDINGS AND PROPERTY DISPOSITION	2
5.0	REGIONAL GEOLOGY	5
6.0	PROPERTY GEOLOGY	6
7.0	EXPLORATION HISTORY	7
8.0	CURRENT PROGRAM	11
	STEPHEN LAKE STOCK AREA BAG LAKE AREA DOGPAW LAKE AREA CEDARTREE LAKE AREA	11 12 12 13
9.0	CONCLUSIONS AND RECOMMENDATIONS	14
10.0	REFERENCES	15

List of Tables

Table 1 – Dogpaw Lake La	nd Tenure Data	2
	List of Figures	
Figure 1 - Regional Location	on Map	3
Figure 2 – Claim Location		4
	List of Appendices	
Appendix I – List of Sampl	e Numbers and UTM Coordinates	16
	volved with Prospecting Program	17
Appendix III – Daily Work		18
Appendix IV – Laboratory	Certificates of Analysis	19
Appendix V – Expenditures	S	20
Appendix VI – Maps (Back	Pockets)	21
Back Pocket 1	Total Property Sample Locations (all samp	ples); 1:500
Back Pocket 2	Total Property Sample Locations (>0.2g/t	Au); 1:500
Back Pocket 3	Total Property Sample Locations (<1.0g/t	Au); 1:500
Back Pocket 4	Stephen Lake Area Sample Numbers and Locat	ions; 1:150
	Bag Lake Area Sample Numbers and Locat	tions; 1:200
	Dogpaw Lake Area Sample Numbers and Locat	
	Cedartree Lake Area Sample Numbers and Locat	tions; 1:200
Back Pocket 5	Stephen Lake Area Tr	acks; 1:200
	Bag Lake Area Tr	
	Dogpaw Lake Area Tr	
	Cedartree Lake Area Tr	
Back Pocket 6	Dogpaw Lake Area Ma	ipping; 1:50

1.0 INTRODUCTION

During the period of September 24th to October 1st, 2008, Metals Creek Resources (MEK) personnel conducted a prospecting program on the Dogpaw Property comprising 29 unpatented staked claims located within the Kenora Mining District, currently owned by North American Uranium Corp. (NAUC), or optioned to NAUC by Endurance Gold Corporation. The purpose of this prospecting program was to evaluate the property for gold potential, to become familiar with historic showings and compile a basic map of the geology on the recently cut grid on the shore of Dogpaw Lake.

2.0 TERMS OF REFERENCE

The historical portion of this report is an extract of a report titled "A Report to Evaluate and Recommend an Exploration Program on the Dogpaw Lake Property of Endurance Gold Corp." dated October, 2004, for Endurance Gold Corp. by Charles Blackburn ("Blackburn") and J. Garry Clark ("Clark").

Map projections are in UTM, North American Datum 83, Zone 15 and all referenced UTM coordinates are in this project unless stated otherwise. Contractions are "mm" = millimeter, "cm" = centimeter, "m" = meters, "km" = kilometers, "g" = gram, "kg" = kilogram, "in" = inch, "ft" = foot, "lb" = pound, "oz" = troy ounce, "oz/ton" = troy ounce per short ton, "g/T" is grams per metric tonne, and "ddh" = diamond drill hole.

3.0 LOCATION AND ACCESS

The Dogpaw Lake property is located within the Kenora Mining District in Northwestern Ontario, within both Tweedsmuir Township and Dogpaw Lake Area. The Dogpaw Lake Property is located within the NTS Map Sheet 52F/05SW as well as small portions of 52F/05SE and 52F/04NW. The Dogpaw property is located approximately 55 km Southeast of the town of Kenora. (Figures 1 & 2).

The various claim blocks of the Dogpaw Lake Property can be accessed by either boat, ski-doo or road. Highway 71, a paved highway transects the western portion of the property and runs mainly North-South.

The Cameron Lake road runs east from Highway 71 through the Southern portion of the Northern block on the Dogpaw Lake Property. This road continues on to the Cameron Lake Gold Project currently being evaluated by Nuinsco Resources.

Lake access can be gained via these roads to enable access to other portions of the property by boat or Ski-Doo.

4.0 CLAIM HOLDINGS AND PROPERTY DISPOSITION

The Dogpaw Lake property comprises 29 unpatented staked claims, with four different claim blocks, totaling 348 units and 5485 hectares (Table 1, and Figure 2). These claims are either owned by North American Uranium Corp., or under an option agreement with Endurance Gold Corporation. The September 2008 prospecting program focused on the northern, central and south-eastern portions on 3 of the 4 separate claim blocks. A summary of the claim holdings is provided below (Table 1).

Table 1: Dogpaw Lake Land Tenure Data

Claim #	Units	Recorded Owner	Recorded	Expiry
1221374	4	Endurance Gold Corporation	2001-Sep-26	2010-Sep-26
3001238	9	Endurance Gold Corporation	2002-Jul-02	2009-Jul-02
3001239	16	Endurance Gold Corporation	2002-Jul-02	2010-Jul-02
3001241	16	Endurance Gold Corporation	2002-Jul-02	2009-Jul-02
3003433	16	Endurance Gold Corporation	2002-Sep-03	2009-Sep-03
3003583	10	Endurance Gold Corporation	2003-Apr-22	2010-Apr-22
3003672	8	Endurance Gold Corporation	2002-Oct-15	2009-Oct-15
3010495	16	Endurance Gold Corporation	2002-Oct-15	2009-Oct-15
3010496	16	Endurance Gold Corporation	2002-Oct-15	2009-Oct-15
3011344	12	Endurance Gold Corporation	2002-Dec-19	2011-Dec-19
3011345	3	Endurance Gold Corporation	2002-Dec-19	2011-Dec-19
3011346	15	Endurance Gold Corporation	2002-Dec-19	2011-Dec-19
3011347	15	Endurance Gold Corporation	2002-Dec-19	2011-Dec-19
4210010	11	North American Uranium Corp.	2006-Jun-12	2009-Jun-12
4213374	3	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4213375	16	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4213376	16	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4213377	16	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4213378	10	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4213379	16	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4213380	16	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4213381	12	North American Uranium Corp.	2007-Mar-12	2010-Mar-12
4228640	4	North American Uranium Corp.	2008-Jan-30	2010-Jan-30
4228641	16	North American Uranium Corp.	2008-Jan-30	2010-Jan-30
4228642	16	North American Uranium Corp.	2008-Jan-30	2010-Jan-30
4228643	16	North American Uranium Corp.	2008-Jan-30	2010-Jan-30
4228644	16	North American Uranium Corp.	2008-Jan-30	2010-Jan-30
<u>3012203</u>	4	North American Uranium Corp.	2003-Apr-22	2010-Apr-22
<u>4215379</u>	4	North American Uranium Corp.	2007-Mar-30	2009-Mar-30

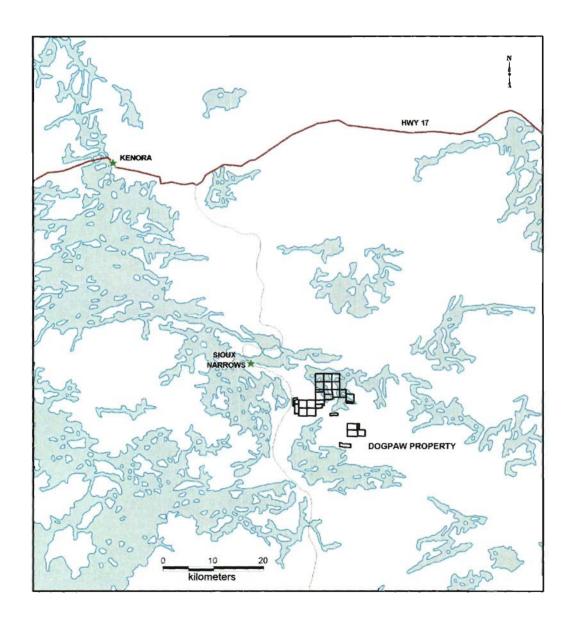


Figure 1 - Regional Location Map

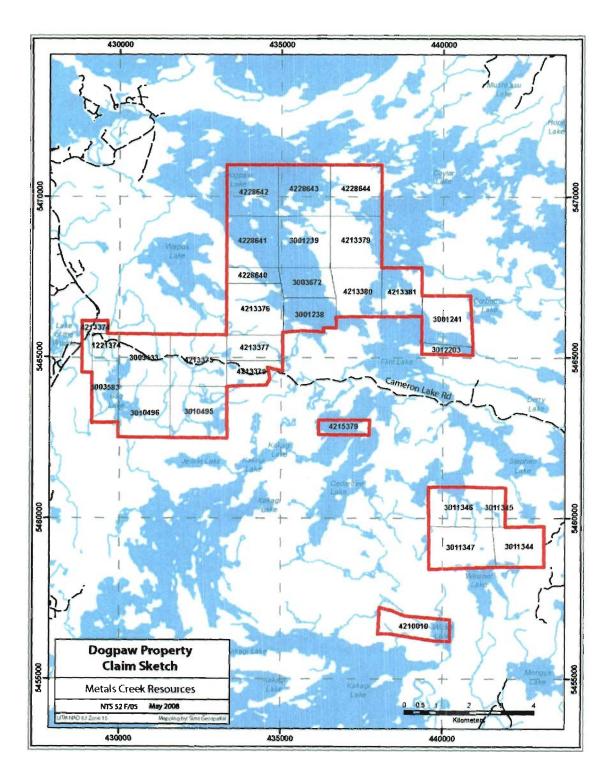


Figure 2 – Claim Location Map

5.0 REGIONAL GEOLOGY

The Dogpaw Lake Property lies within the Archean Superior Craton aged 2.6-2.9 billion years as well as within the central portion of the east-west trending Wabigoon Subprovince.

The Superior Province is subdivided into subprovinces characterized by four combinations of distinctive rock types: volcano-plutonic; metasedimentary; gneissic or plutonic; and high-grade gneiss. The Wabigoon Subprovince is characterized by greenschist facies metamorphic greenstone belts consisting of metavolcanic rocks as well as sedimentary rocks, surrounded and intruded by felsic plutonic rocks.

The Wabigoon Subprovince has been further broken down (informally) by Blackburn et al (1991), into three regions: a Western, a Central and an Eastern Region. The Dogpaw Lake Property lies within the Western Wabigoon region, "a series of interconnected greenstone belts surrounding large elliptical granitoid batholiths.....Volcanic sequences comprise ultramafic (komatiitic), through mafic (tholeiitic, calc-alkalic, and minor alkalic and komatiitic) types, to felsic (mostly calc-alkalic) rocks. Sedimentary sequences are mostly clastic rocks of alluvial fan-fluvial, resedimented (turbidite) and rare platformal facies. Minor chemical metasedimentary rocks are predominantly oxide iron formation." As well as granitoid batholiths, "Numerous smaller post-tectonic granitoid stocks intrude the greenstone belts. Mafic to ultramafic sills and stocks are marginal to batholiths or intrude the metavolcanic sequences." (Blackburn et al 1991, p. 305).

The Dogpaw Lake Property overlies a significant portion of the Kakagi-Rowan Lakes Greenstone Belt. The belt is divided in two by the northwest-trending Pipestone-Cameron Deformation Zone. Although rock types and sequences on either side are similar, no unequivocal stratigraphic correlations have been made across the fault zone.

Southeast of the deformation zone, the correlative Snake Bay and Katimiagamak Lake Groups are the lowermost units. They face towards the centre of the belt, and are composed of mafic volcanic flows intruded by mafic sills. They are overlain by a thick, predominantly pyroclastic, volcanic sequence of mixed chemical composition varying from mafic through felsic, but predominantly intermediate. At their southeastern end they pass into sedimentary rocks (Thompson Bay sediments). This Kakagi Lake Group is in turn intruded by differentiated ultramafic (peridotite and pyroxenite) to mafic (gabbro) sills, called the Kakagi Sills.

Northeast of the Pipestone-Cameron Fault, the correlative Rowan Lake Volcanics and Populus Lake Volcanics are the lowermost, mafic units. They are folded about a northeast-trending anticline at Rowan Lake, and overlain on their south limb by the Cameron Lake Volcanics. The latter sequence is of mixed chemical composition, similar to the Kakagi Lake Group, but not necessarily correlative across the Pipestone-Cameron Fault. The Cameron Lake Volcanics are in turn overlain by the Brooks Lake Volcanics - an upper mafic sequence.

A number of late, post-tectonic stocks intrude the greenstone belts on either side of the Pipestone-Cameron Fault. These include from north to south, the Flora Lake, Nolan Lake, Stephen Lake, Phinney, and Dash Lakes Stocks.

6.0 PROPERTY GEOLOGY

The Dogpaw Lake Property's outer boundary incorporates, to the northeast of the Pipestone-Cameron Fault, a portion of the Rowan Lake Volcanics. The Rowan Lake Volcanics consist predominantly of massive and pillowed basaltic flows, with coarser gabbroic portions.

Southwest of the fault zone, Snake Bay group mafic volcanic flow rocks in the northwest of the property are in contact with pyroclastic rocks of the Kakagi Lake Group along the northwest shore of Emm Bay. This contact has important implications for mineralization. Snake Bay Group volcanics are predominantly massive to pillowed basaltic flows, containing coarser gabbroic bodies that are lenticular to irregular in shape. The latter are generally interpreted to be intrusive (e.g. Davies and Morin 1976a) rather than of flow origin.

The southern portion of the property is entirely underlain by Kakagi Lake Group rocks and the differentiated Kakagi Sills that intrude them. The combined sequence of pyroclastic rocks and peridotite-to-gabbro sills has been folded about the major northeast-trending Emm Bay - Peninsula Bay Syncline.

In the southeast portion of the property, the late tectonic Stephen Lake Stock is intruded into the uppermost or youngest sequences of the Kakagi Lake Group pyroclastic rocks. The stock is described as being mostly heterogeneous by Davies and Morin (1976a): the main internal portion was mapped as massive granodiorite, while dioritic phases appear to characterize the marginal portions. Large angular xenoliths of mafic volcanic rock and gabbro are reported (Davies and Morin 1976a) within the stock, mostly close to its margin. Only the northwest portion of the stock lies outside the current property. The stock is elliptical in shape, with its long axis oriented in a northwest direction. This direction is both parallel to the trend of the major Pipestone - Cameron deformation zone and at right angles to the axial plane of the Emm Bay - Peninsula Bay syncline. Both of these latter structures may have exerted control on the emplacement of the stock, and also have influenced mineralization within it. Small bodies of felsic rock that lie along this northwest trend at Cedartree Lake may be satellitic to the Stephen Lake Stock.

A variety of felsic intrusions occur within the volcanic sequence, both as dikes and sills. They have been described as quartz porphyry, feldspar porphyry and quartz-feldspar porphyry are interpreted to predate the Stephen Lake Stock (Davies and Morin 1976a).

7.0 EXPLORATION HISTORY

Property History

The following property history has been compiled largely by Des Cullen P. Geo 2007.

- 1944: E.M. Robertson and Company Gold mineralization was reported and diamond drilling was done on one of these groups of claims.
- 1944: Frobisher Exploration Company Ltd. Prospecting and drilling of 51 holes totaling (2344 ft total) on the discovery vein. Mostly trace amounts of gold over narrow widths were reported on assay: one high assay of 3.13 ounces gold per ton was reported over 1.8 feet.
- 1944-5: Harry Silverman and Albert Gauthier jointly held a group of claims at Dogpaw Lake, the major portions of which are included in parts of NAUC claims 3001239 and 4213379. Most of the work was done at two places, one on the west side of a small bay on the northeast shore of Dogpaw Lake (now known as the Gauthier Occurrence), and the other on the east side of the same bay. Sylvanite Gold Mines Ltd. optioned the property in 1944. Numerous carbonatized zones that were interpreted to strike in various directions were outlined, sampled and assayed, and values ranging from trace amounts to 2.40 ounces gold per ton from a grab sample were obtained.
- 1960-2: Noranda Mines Ltd. Geological mapping and drilling as follow-up to airborne geophysical survey. Six holes were drilled (1594 ft total).
- 1961: Selco Exploration Company Ltd. geologically mapped a group of claims north of Bag Lake, parts of which are included in NAUC claims 1221374 and 3003583. The claims were optioned from W.A. Johnston and associates and have come to be known as the Jenson-Johnston Prospect. Diamond drilling of 7 holes (1637 ft total). Grab samples taken prior to the drilling at the main occurrence assayed from trace to 0.50 ounces gold per ton, and the highest value obtained from drill core was 0.23 ounces gold per ton over a 2.5 ft core length.
- 1973-4: Chester Kuryliw did geological mapping and ground magnetic surveys over each of two of his claim groups, one at Dogpaw Lake, the other at Caviar and Flint Lakes.
- 1975: Hudson Bay Exploration and Development Company Ltd. conducted an airborne electromagnetic survey directed at base metals at Stephen Lake area.
- 1980: Gulf Minerals Canada Ltd. diamond drilled 9 holes (1058m total) in exploration for gold at the Knapp Prospect at the north end of Bag Lake.
- 1980: Noranda Mines Ltd. did ground magnetometer and IP surveys and geological mapping on their claim group between Flint and Corbett Lakes.

- 1981: Noranda Mines Ltd. completed ground magnetometer and IP survey over the Martin option generating several targets. The targets were drilled in a 7 diamond drillhole program. All drill holes were very short, under 100 feet, and intersected several quartz veins and zones of intense silicification. No assay results are listed.
- 1983: Rio Canex Inc. diamond drilled 3 holes at the north end of Weisner Lake on the same zone that had been previously tested for base metals by Noranda (1960-2) and Goldray (1971, 1975). However, these 3 holes were considerably longer (1849m or 6066 ft total).
- 1983: Southwind Resources Explorations Ltd. (551970 Ontario Ltd.) conducted ground magnetic and electromagnetic surveys on a claim group east of Weisner Lake, all but the eastern portion of which encompasses parts of NAUC claim 3011344.
- **1983-4: FTM Resources Inc.** did magnetic and VLF electromagnetic surveys, a geological survey, stripping and trenching, sampling for assay and soil sampling, all over a claim group that straddled Dogpaw Lake and included the Gauthier Occurrence on the east shore. Assays of 1762ppb gold and 1913ppb gold were obtained from one of the new zones, and 0.686 and 0.275 ounces gold per ton from the older Gauthier Occurrence zone.
- 1983, 86: FGM Management and Gold Corporation sampled for gold on a group of claims at Dogpaw Lake that include parts or all of NAUC claim 3001239. These incorporate the Gauthier Occurrence, previously investigated by FTM Resources Ltd. in 1983-1984. No sample location map is available in the Assessment Files; however, assays above 1 ounce gold per ton were obtained from 4 samples, including one of 3.95 ounce gold per ton from a quartz vein. Three holes were diamond drilled (699 ft total), all to intersect a northwest-trending shear at the Gauthier Occurrence: best assay reported was 0.062 ounce gold per ton for a 1.4 ft core length.
- **1983,84: Frances Resources Ltd.** stripping, preparation of portal and shaft sinking on the number 3 vein in the Wensley Occurrence previously held by Noranda and Roy A. Martin and called the Martin Option. The portal lies on NAUC claim 4210010.
- **1984: Rolls Resources Ltd. (539258 Ontario Ltd.)** ground magnetic and electromagnetic surveys over a claim group at and southeast of Little Stephen Lake that included parts of NAUC claims 3011344, 3011345 and 3011346.
- 1984: Sault Meadows Energy Corporation flew airborne magnetic and electromagnetic surveys over three widely separated areas at the north end of Emm Bay, between Flint and Caviar Lakes, and between Cedartree and Wicks Lakes that covered a number of NAUC claims in those areas.

- 1984-5: Flint Rock Mines Ltd. completed geological mapping and airborne electromagnetic and magnetic surveys directed at gold exploration over a claim group between Little Stephen and Weisner Lakes.
- 1984, 86: Micham Exploration Inc. completed an airborne electromagnetic and magnetic surveys, geological mapping and follow-up diamond drilling directed at gold exploration on a group of claims between Dogpaw, Caviar and Flint Lakes, that included the Flint Lake Mine Occurrence. The claims are included in all or parts of NAUC claims 4213379, 3003672, 3001238, 4213380, 4213381 and 3001241. A new gold showing north of the mine assayed 263 ppb gold; while a 902 ppb assay was obtained from an outcrop adjacent to a regionally extensive Proterozoic age diabase dike located close to the south end of Dogpaw Lake. The drilling consisted of four holes (543 ft total) all drilled to test the zone that hosts the Flint Lake Mine Occurrence: trace amounts of gold were typically assayed, the best assay being 0.014 ounce gold per ton over a 2 ft core length. Eighteen samples of "cobbed ore" taken from the old stockpile at the mine assayed from trace to 8.36 ounces gold per ton, for an average of 2.70 ounces per ton.
- 1985-9: Dunfrazier Gold Corporation Inc. acquired by staking a large claim holding now included in portions or all of NAUC claims 1221374, 3003433, 3010496, 4213375, 4213377, 3010495 and 3003583. Over a 5-year period, geological, magnetic and biogeochemical surveys were conducted over all or portions of the ground, and follow-up diamond drilling, trenching and sampling for assay done, all directed at gold exploration. Ogden (1985a) identified numerous targets and was of the opinion that strong north trending zones had not been recognized in previous work including drilling by Gulf Minerals Canada Ltd. in 1980. In 1985, 10 holes (3920 ft total) were drilled on various targets (Ogden 1985b). Four holes were drilled on the Knapp prospect, previously drilled by Gulf: Ogden targeted two of these holes to test one of the northerly lineaments. Anomalous gold values were obtained on assay, the highest being 1200 ppb over a 2.7 ft core length and 6795 ppb over a 2.5 ft length.
- 1987-8: Granges Exploration Ltd. opened up a trench on present NAUC claim 1221374, from which 6 samples were taken for assay, the highest returning 14.30 grams per tonne across 1m. Subsequently the company did electromagnetic and magnetic surveys across a claim group that included NAUC claims 1221374 and 3003583. Diamond drilling of 12 holes (1390m total) was done to test northerly-trending geophysical targets. Seven of the holes were drilled in the vicinity of the Jenson-Johnston Prospect, which was previously examined and drilled by Selco in 1961, south of, but close to the Cameron Lake Road. The rest were located to the south, on the west side of Bag Lake: two of the holes lay just outside and to the west of the NAUC claim group. The drilling confirmed gold at the original occurrence, with a best assay of 34.90 grams per tonne for a core length of 0.25 m.
- 1988: Joe Hinzer and John Ternowesky conducted an airborne magnetic and electromagnetic survey over a claim group that extended from the north end of Mongus Lake north-northwestward to Little Stephen Lake and included Weisner Lake.

- 1988 Teeshin Resources completed a large exploration program including diamond drilling and 350 feet of drifting on the number 3 vein on the Wensley Occurrence, now NAUC claim 4210010. Conclusions of the program were that the gold is in the vein only and so limited to narrow, uneconomic widths. Further exploration was recommended to further investigate the potential of the vein down dip and along strike.
- 1997-8: Avalor Ventures Ltd., conducted: a ground magnetometer survey, an induced polarization/resistivity survey, geological mapping, rock geochemistry and soil sampling (mobile metal ion technology), on a claim group that covers part or all of NAUC claims 4213381 and 3001241.
- 1997-9: Starcore Resources Ltd. conducted a ground magnetometer survey, an induced polarization/resistivity survey, geological mapping, rock geochemistry and soil sampling (mobile metal ion technology) on a claim group that covers parts or all of NAUC claims 3001238, 3001239, 4213379, 4213380 and 3003672.
- 1997-8, 2000: Hornby Bay Exploration Ltd. conducted an airborne electromagnetic and magnetic survey over a large claim group that encompassed most of Kakagi Lake, eastward to Cameron Lake and northwestward to Cedartree Lake. A prospecting reconnaissance of the entire area was done in 1997-1998. However, no gold values were obtained on assay of samples taken on present NAUC ground. Detailed geological mapping was done in small selected areas in 2000, including west of Wicks Lake on leased claim CLM368.
- 1998: Ken Fenwick, as part of a prospecting program on his claims in the vicinity of Highway 71 that included NAUC claims 1221374 and 3003583, obtained gold assays of 1100 ppb and 1500 ppb from shear zones close to the Cameron Lake road in proximity to the Jenson-Johnston Prospect.
- **2000:** Hornby Bay Exploration Limited completed a short, four day, geological mapping program over the Wensley Occurrence covering NAUC claim 4210010. High grade gold assays were returned from grab samples in the area as well as elevated PGM values.
- 2003: 6172342 Canada Ltd., as part of a prospecting program on their claims in the vicinity of northeast Bag Lake, (that currently include NAUC claims 1221374 and 3003433), grab sampling obtained gold assays ranging between 123 ppb and 47746 ppb, from twenty-two samples.
- **2004: 6172342 Canada Ltd.,** as part of a short reconnaissance mapping program on their claim 3001275 (now NAUC's claim 4215379) in the vicinity of central Cedartree Lake and the historical Robertson Occurrence grab sampling obtained no significant gold or PGE assays, from thirty samples.
- 2003-2004: Endurance Gold Corp. completed a series of exploration programs on the Dogpaw Lake Property between the summer of 2003 and the fall of 2004 (following

compilation work by Cunniah Lake Inc.). The work comprised prospecting, geological mapping, sampling, diamond drilling, line cutting, humus sampling, and airborne geophysics. Two new showings were discovered during this work, the Starlyght and the New Dogpaw Showings. Exploration completed by Endurance Gold Corp. on the Starlyght Showing fifteen grab samples taken in the area returned assayed gold values ranging from 3,189 ppb to 47,290 ppb. During the period February 28 through March 19, 2004, a seven hole, 850.4 metre diamond drilling program was completed on the Starlyght Showing and returned results up to 4.71 g/t Au over 0.3 metres.

2007: North American Uranium Corp. completed a 3 hole diamond drilling program during March 2007, in the vicinity of the Starlyght and Weisner Lake North Showings for a total of 765.0 meters. Two of the holes were laid out to test the Starlyght Occurrence while the third tested the Weisner Lake North Showing. The holes were oriented to test and intersect gold mineralization related to a strong, complex fracture-alteration system trending roughly north-south within the granodioritic Stephen Lake Stock. All three holes intersected zones of variably altered and mineralized granitic rocks, with altered-mineralized zones exhibiting variable silicification, iron-carbonate, potassium feldspar, sericite, epidote, chlorite and variable pyrite. Highlighted assays included 1.178g/t Au over 7.7m in hole DP-07-08, 1.4g/t Au over 5.0m in hole DP-07-09, and 0.564g/t Au over 3.8m in hole DP-07-10.

8.0 CURRENT PROGRAM

From September 23rd to October 2nd, Metals Creek Resources personnel conducted a prospecting program on 3 separate claim blocks that encompass 4 different areas located to the north, on the shores of Dogpaw Lake, to the west, surrounding Bag Lake, to the south, on the northern portion of the Stephen Lake Stock and a centrally located claim on Cedartree Lake. The program consisted of prospecting and minor mapping with a total of 309 grab samples collected and approximately 14.7km of grid mapped.

Stephen Lake Stock

A highlighted area of the prospecting program came from the Stephen Lake Stock where 127 out of the 309 total grab samples were taken. From 127 samples, 72 (or 56.7%) returned anomalous Au values over 0.2 g/t including 40 (or 31.5%) of the 127 samples producing values over 1.0 g/t Au and 10 samples (7.8%) over 5.0 g/t Au. The majority of these samples were taken from zones of variably altered and mineralized granodiorite exhibiting variable silicification, iron-carbonate, potassium feldspar, sericite, epidote, chlorite and variable pyrite. Alteration and mineralization located on the property is predominantly found in north-south oriented structures which seem to lie on the edges of swamps or creek beds where lower topography exists. Subsequently, major quartz veining on the property seemed to be oriented perpendicular to alteration in an east-west direction and unrelated to mineralization.

Starlyght (UTM 440843E 5459673N): The Starlyght Showing within the Stephen Lake Stock is host to many favourable historic grab samples and drill results. Various grab

samples have been previously taken with gold values up to 47.29 g/t. Recent (2007) drill results show 1.178g/t Au over 7.7m in hole DP-07-08 and 1.40g/t Au over 5.0m in hole DP-07-09. The program conducted by Metals Creek Resources did not concentrate directly on the Starlyght Showing but more in close proximity to the historic gold values. 5 samples were taken approximately 50m west of the showing and ranged in gold value from <0.005 to 0.106 g/t Au. Another sample was taken 60m north of the most northerly Starlyght sample and returned with a grade of 1.479 g/t Au. 110m north of the Starlyght, 2 samples were taken but only revealed gold assays of 0.194 and <0.005 g/t Au.

D-zone (UTM 440039E 5460447N): The D-zone consists of 5 grab samples, all within 10m of each other, found during the 2008 prospecting done by MEK. The area was hand stripped and samples were taken in various locations. The outcrop is altered granodiorite exhibiting strong silicification and carbonatization and sulphide content from trace to 7% locally. The 5 grab samples returned assay values of 2.096 g/t Au, 4.697 g/t Au, 5.357 g/t Au, 6.664 g/t Au, and 18.560 g/t Au.

Bag Lake Area

72 out of the 309 total samples were taken on or around the Bag Lake area. Of the 72 samples, 23 (or 31.9%) returned anomalous Au assays over 0.2 g/t which included 9 (or 12.5%) of the 72 samples producing values over 1.0 g/t Au. The majority of these samples were taken in centimeter to meter wide zones of quartz and iron carbonate-rich volcanics which commonly display silicification and trace sulphide within sheared intervals. Sulphide throughout the Bag Lake Area ranges from mainly trace to 20% pyrite, which is found locally. Two historic named showings were visited during the 2008 MEK prospecting program and the areas are described below.

Knapp (Bag Lake) Showing (UTM 430600E 5464820N): 2008 MEK sampling of the Knapp (Bag Lake) showing returned assay values consistent with those taken from previous and historic exploration programs. A total of 7 additional samples were taken by MEK personnel at the Knapp Showing. These assays returned values of 90.510, 57.450, 55.595, 35.897, 0.565 and <0.005 g/t Au. Historically, samples have ranged from below the detection limit up to 95 g/t Au.

Jenson-Johnson (UTM 429734E 5465346N): 2008 MEK sampling of the Jenson-Johnson area also returned similar values to those previously obtained. 3 MEK samples were taken and returned assays of 12.51, 0.355, and 0.262 g/t Au. Historic sampling in proximal relation to MEK sampling returned assays up to 29 g/t Au.

Dogpaw Lake Area

In April 2008, Metals Creek cut a grid for the purpose of an IP survey on the eastern shore of Dogpaw Lake. The September 2008 prospecting program included expeditiously mapping this grid over a span of two days where geology, mineralization and lithological contacts were investigated. A map was compiled and is present at the end of the report (Back Pocket 6).

96 samples were collected during mapping and prospecting on the cut grid on the east shore of Dogpaw Lake. Of the 96 samples, 10 (or 10.4%) returned anomalous assay values of 0.2 g/t Au or higher which included 2 (or 2.1%) of the 96 samples producing values over 1.0 g/t Au. These samples were similar in lithology to those taken around Bag Lake as prospective areas commonly showed silicified and cabonatized volcanics and local, thin quartz veins. Samples ranged in sulphide content from nil to trace up to 10% pyrite.

New Dogpaw (UTM 435961E 5468265N): Grab samples taken from the New Dogpaw showing were slightly lower in gold value than channel and grab samples taken previously. 3 samples were taken containing gold values of 0.699, 0.576 and 0.562 g/t Au. Due to the nature of the outcrop, grab samples were difficult to obtain and more representative samples would have been taken by rock saw. Previously surface grab samples have shown up to 23 g/t Au in close proximity to 2008 sampling.

Cedartree Lake Claim

14 samples were taken during the 2008 MEK prospecting of a lone claim on Cedartree Lake. One day was spent prospecting islands, lakeshore and various inland outcrops. Rocktypes observed were mostly barren gabbro and intermediate volcanics which were sampled where increased felsic content and/or alteration appeared greater. The 14 samples taken all returned low Au values ranging between <0.005 g/t Au and 0.175 g/t Au.

A total of 309 grab samples were taken in the 2008 Metals Creek Resources prospecting program over the entire property (Back Pocket 1). Sampling was performed from locations where historic anomalous Au values were located and due diligence was needed, or from formerly unmapped and unsampled outcrop. Samples were taken in areas related to alteration and/or sulphide content, where the majority of samples taken showed moderate to strong carbonate, shearing and/or quartz content. Of the 309 samples, 106 (or 34.3%) were considered anomalous with assays above 0.2 g/t Au (Back Pocket 2), with 51 (or 16.5%) of the 309 samples taken returning assays over 1.0 g/t Au (Back Pocket 3). A complete list of sample locations and assay certificates are available in Appendix 1 and IV respectively at the end of this report.

9.0 CONCLUSION AND RECOMMENDATIONS

The prospecting and mapping program in 2008 was successful in identifying previously unknown mineralized zones (D-zone and numerous other elevated gold values on the property). The prospecting program proved to be very useful in delineating areas to focus future work on. Due of time constraints, access and property size, local areas such as the southern portion of the Stephen Lake claims, northeast of the Cameron Lake Rd near Bag Lake and far eastern portions of the claim block on Caviar Lake were not examined. It is recommended that additional prospecting be completed over these under explored areas to determine any mineral potential of these claims. Further prospecting and hand stripping in close proximity of newly discovered, higher grade Au grab samples is needed to determine rough lengths and continuity of mineralized outcrop. It is also highly recommended that an Induced Polarization (IP) survey be conducted over the topographically favourable, western portion of the Stephen Lake Stock. This IP survey would be expected to outline zones of alteration and mineralization typical to this area which could be followed up by prospecting, trenching and/or drilling. A mechanical stripping and channel sampling program is also recommended over the D-zone area and other showings present within the Stephen Lake Stock. The stripping and sampling, along with the IP survey, would firmly verify if these areas could warrant future drill programs.

Approximated Recommended Expenditures:

Additional prospecting for half the time of above program:	\$20,000
Induced Polarization Survey:	
Line Cutting: 16.4km @ \$650/km	\$10,660
IP Survey: 16.4km @ \$1200/km	\$19,680
Mobilization:	\$4,000
Total IP Cost:	\$34,340
Trenching:	
800m @ 100m/12hr day @ \$120/hr	\$11,520
Mobilization:	<u>\$9,000</u>
Total Trenching Cost:	\$20,520
TOTAL	\$74,860

10.0 REFERENCES

- Cullen, D. D. 2007. Technical Report on the Dogpaw Property, Kenora Mining Division; *report for* North American Uranium Corp., 50p.
- Jeffs, C. 2007. Geological Mapping Program, Dogpaw Lake Program, Kenora District; report for North American Uranium Corp., 16p.
- MacIsaac, M. 2007. March 2007 Diamond Drill Program, Dogpaw Lake Property, Kenora Mining Division; *report for* North American Uranium., 1, 5-7p.
- Ravnaas, C., Raoul, A. and Wilson, S. 2003. Kenora District; *in* Report of Activities 2002, Resident Geologist Program, Red Lake Regional Geologist, Ontario Geological Survey, Open File Report 6110, 51p.

APPENDIX I

Sample Numbers and UTM Coordinates

Waypoint	Date	Zone	Easting	Northing	Elevation	Au (ppb)	Au (g/t)	Description
MAM-08-003	24-Sep-08	15U	430603	5464836	371 m	565	0.565	alt fv; str carb; silicious; 1-3%py; 131/82S
MAM-08-004	24-Sep-08	15U	430691	5464669	368 m	6	0.006	carbonitized mv; tr diss py; heaved blds in clear cut; possible extension of Bag Occ.
MAM-08-005	24-Sep-08	15U	430775	5464643	365 m	10	0.01	alt fv; mod carb; tr diss py; relatively massive; clearcut
MAM-08-006	24-Sep-08	15U	431223	5464110	367 m	23	0.023	shear zone w/in mv; in clearcut; intense carbonitization; local qtz stringers; tr diss py; 148/90; 1-2m wide
MAM-08-009	26-Sep-08	15U	439896	5460261	372m	<5	<0.005	qtz vein; milky white; contact with granite; qv approx 1.5m wide; brecciated contact; no mineralization
MAM-08-010	26-Sep-08	15U	439893	5460263	372m	<5	<0.005	same as above
MAM-08-011	26-Sep-08	15U	439897	5460268	371m	611	0.611	float adjacent to qv; intense carb; 1-2% py
MAM-08-012	26-Sep-08	15U	439887	5460222	379m	12	0.012	found on side of cliff; seems to be dipping into cliff; on. 285/40; approx. 4m; milky white w minor carb on contacts
MAM-08-013	26-Sep-08	15U	439887	5460225	378m	5	0.005	found on side of cliff; seems to be dipping into cliff; ori. 285/40; approx. 4m; milky white w minor carb on contacts
MAM-08-014	26-Sep-08	15U	439896	5460220	378m	< 5	<0.005	found on side of cliff; seems to be dipping into cliff; on. 285/40; approx. 4m; milky white w minor carb on contacts
MAM-08-015	26-Sep-08	15U	439891	5460221	377m	95	0.095	granodiorite w strong kspar an alt pods; tr py and qtz stringers
MAM-08-016	26-Sep-08	15U	439890	5460224	378m	83		found on side of cliff; appears to be dipping into cliff; ori. 285/40; approx. 4m; milky white w minor carb on contacts
MAM-08-017	27-Sep-08	15U	436219	5468763	351m	279		qtz-carb float within alt fv; silicious; carbonatized; qtz has 1-2% py; intervaly carbonatized
MAM-08-018	27-Sep-08	15U	436203	5468720	364m	<5	<0.005	carb fv?; strongly alt; silicious; carbonatized; rusty; 1-2% diss pyr; 61-85S
MAM-08-019	27-Sep-08	15U	436178	5468705	366m	<5	<0.005	qtz vein; milky white; carbonatized; boulders within carbonatized mv; 88-90 dip
MAM-08-020	27-Sep-08	15U	436042	5468450	349m	734	0.734	no description
MAM-08-021	27-Sep-08	15U	436353	5468782	344m	9	0.009	quartz vein; rusty w/in altered fv; 1% pyr; along swamp; approx L9+50 14+25N
MAM-08-022	27-Sep-08	15U	436353	5468781	345m	<5	<0.005	leached/silicified mv; bleached; 1-2% pyrite; light grey
MAM-08-023	27-Sep-08	15U	436333	5468783	345m	<5		alt fv; str silicification' 1-2% diss pyr; sheared; 110°-85°N along swamp
MAM-08-024	27-Sep-08	15U	436297	5468794	344m	<5	<0.005	qtz stockwork/vein; 1-2m within mafic volcanics; shears 1-2% pyr; rusty; strongly altered; edge of swamp
MAM-08-025	28-Sep-08	15U	437178	5467873	371m	<5	<0.005	L22+00E/14+65N; mafic tuff; f.gr; massive; minor chlorite-carb; 1% pyr
MAM-08-026	28-Sep-08	15U	437048	5468032	367m	<5	< 0.005	L20E/14+70N: carbonatized QP; str alt; 1% py; qtz stringer; at contact with mafic tuff
MAM-08-027	28-Sep-08	15U	436609	5467631	362m	<5		sheared mafic vol; tr py; str chl
MAM-08-028	28-Sep-08	15U	436370	5467425	348m	<5		sheared int/fel vol; mod sericite; trace diss py; 107°-78°S; L20E/5+40N
DHJ-08-001	24-Sep-08	15U	430698	5464691	366 m	33	0.033	mv; heavily carbonitized; shear zone at ~228/90; no sulphide
DHJ-08-002	24-Sep-08	15U	430702	5464689	364 m	225	0.225	fv; strongly silicified w minor qtz veinlets; minor carb also; no visible sulphide
DHJ-08-003	24-Sep-08	15U	430763	5464602	352 m	1962	1.962	int vol; heavily carbonitized; qtz veining; tr py; edge of cliff along structure
DHJ-08-004	24-Sep-08	15U	430767	5464609	352 m	41	0.041	similar to 003
DHJ-08-005	24-Sep-08	15U	430698	5464303	352 m	246	0.246	alt fv; strong potassic alt; silicious; tr py
DHJ-08-006	24-Sep-08	15U	430781	5464203	356 m	221		alt fv; strong potassic alt; thin qtz veinlets; tr py
DHJ-08-007	24-Sep-08	15U	430574	5463888	352 m	286	0.286	qtz vein; no visible sulphide; milky white
DHJ-08-008	24-Sep-08	15U	430578	5463885	351 m	373	0.373	silicified mv; 1.5% py; highly silicified; greeny; 50% qtz
DHJ-08-009	24-Sep-08	15U	430571	5463889	351 m	15906	15.906	qtz vein; tr cpy w tr py; 85% qtz
DHJ-08-010	24-Sep-08	15U	430567	5463893	351 m	993	0.993	silicified mv; 50% qtz stringers; strong carb alt; 0.25-0.5% py
DHJ-08-011	24-Sep-08	15U	429720	5465382	343 m	262	0.262	alt mv; minor carb alt; thin qtz/felds stringers; 2% py
DHJ-08-012	24-Sep-08	15U	429734	5465346	341 m	12510	12.51	alt vol; intense Fe-carb alt; up to 20% py on local fractures; avg 2-3% py overall
DHJ-08-013	24-Sep-08	15U	429735	5465368	339 m	355	0.355	alt mv; massive; fgr; 2% diss py; oriented 194
DHJ-08-014	24-Sep-08	15U	430579	5465067	353 m	153	0.153	mv; schistose w strong Fe-carb alt; minor qtz/felds stringers foliated @ 136/85
DHJ-08-015	24-Sep-08	15U	430072	5465389	349 m	527	0.527	fv; north of road; foliated and silic. fv; qtz stockwork up to 2% minor pyrite; str Fe-carb; ori. 151/81
DHJ-08-016	25-Sep-08	15U	440818	5459851	353m	194	0.194	granodiorite; deep orange/red colour; silicified carb alt; crumbly; oriented 198/78
DHJ-08-017	25-Sep-08	15U	440811	5459798	361m	1479	1.479	same as 016

DRI-UR-0018 25-Sep-58 15U 40776 5459886 353m 109 0.100 granodomine, tiess carb: very sillicious: criented 19290									
DH-Lin-202 65-Sep-08 15,0 459925 5690565 356m 7 0.007 massive ctz. title cath: mixer has granodorite; and billionite; ordered 180/90 DH-Lin-202 75-Sep-08 15,0 440/935 569056 356m 60 0.016 20	DHJ-08-018	25-Sep-08	15U	440778	5459686	383m	106	0.106	granodiorite; less carb; very silicious; oriented 192/90
DPI-J08-022 28-Sep-08 TSU 439928 5460960 554m 16 0.016 granodiorite, mod all, minor carb. no sulphide. orienter 19899 minor produce 0.5% py DPI-J08-022 28-Sep-08 TSU 440035 546044 359m 4697 4.697 degradority 4.697 degrad	DHJ-08-019	26-Sep-08	15U	439925		356m	37		
DPI-LIG-2022 58-Sep-08 TSU 440035 546046 359m 5567 5.357 at granocionite, sillicified and cash aft; the 2% pyrite, or 19579, minimum of 5m wide; ~0.5% py DPI-LIG-2024 58-Sep-08 TSU 440035 546046 359m 6694 5687 5697 5997 5	DHJ-08-020	26-Sep-08	15U	439925	5460658	355m	7		
DH-J08-022 28-Sep-08 15U 440003 5460447 359m 4997 4,697 31 granodorites, sillorified and cath att; It to 2% pytes, on 15979, minimum of 5m wide; - 15% py DH-J08-025 28-Sep-08 15U 440003 5460447 359m 6564 6,664 at granodic sillorified and cath att; It to 2% pytes, on 15979, minimum of 5m wide; - 15% py DH-J08-025 28-Sep-08 15U 440003 5460346 355m 664 6,664 at granodic sillorified and cath att; It to 2% pytes, on 15979, minimum of 5m wide; - 15% py DH-J08-027 28-Sep-08 15U 440002 5460345 355m 664 6,664 at granodic sillorified and cath att; It to 2% pytes, on 15979, minimum of 5m wide; - 15% py DH-J08-027 28-Sep-08 15U 440002 5460345 355m 664 6,664 at granodic sillorified and cath att; It to 2% pytes, on 15979, minimum of 5m wide; - 34% py DH-J08-027 27-Sep-08 15U 440002 5460355 355m 504 0,664 at granodic sillorified and cath att; It to 2% pytes, on 15979, minimum of 5m wide; - 34% py DH-J08-037 27-Sep-08 15U 456036 5460363 357m 52 0,052 minimum of 5m wide; - 34% py 3575 346000000000000000000000000000000000000	DHJ-08-021	26-Sep-08	15U	439928	5460560				
DH-108-024 28-Sep-08 15U 440038 5460447 356m 0.0564 557m 0.0564 0.05	DHJ-08-022	26-Sep-08	15U	440035	5460446				
DPI-J08-QS2 28-Sep-08 51.0 440039 546944 3697 3697 18590 185	DHJ-08-023	26-Sep-08	15U	440035		359m	4697	4.697	
DPI-J08-027 28-Sep-08 55U 440028 468944 350m 1560 15.66 all grandelories . Billoffed and carb ell; the 2k pyrite, orl. 19979, minimum of 5m wide; 3-4% py DPI-J08-027 27-Sep-08 55U 440026 468036 355m 3266 3266 3267 32	DHJ-08-024	26-Sep-08	15Ü	440038	5460447	358m	2096	2.096	
DH-L06-027 26-Sep-08 15U 440026 5460346 355m 604 0.604 well abilitized w mimor carb; silicious w 4% diss py	DHJ-08-025	26-Sep-08	15U	440038	5460446	357m	6664	6.664	
DHJ.08.028 28-5ep-08 15U 440020 4460322 355m 3205 3.29	DHJ-08-026	26-Sep-08	15U	440039	5460447	360m	18560	18.56	
DH-J08-029 27-Sep-08 15U 49626 6467803 357m 52 0.052 mrv, minor salicidates), 3mr qtz veni; 2-3% diss pyr	DHJ-08-027	26-Sep-08	15U	440026	5460346	353m	604	0.604	well albitized w minor carb; silicious w 4% diss py
DH-J08-031 27-Sep-08 15U 436276 5468264 382m 1574 1574 mir, minor carbonate 3-5% (gr cubic pyr	DHJ-08-028	26-Sep-08	15U	440020	5460352	355m	3295	3.295	same as 027; 4-5% pyrite
DHJ-08-031 77-Sep-08 15U 435957 5468256 327m 576 5	DHJ-08-029	27-Sep-08	15U	436626	5467803	357m	-	0.052	mv; minor silicification; 3cm qtz vein; 2-3% diss pyr
DHJ-08-032 27-Sep-08 15U 436937 5468265 327m 576 0.576 sercicle schist, oriented 278-50; strong sercicle att; 2% pyr	DHJ-08-030	27-Sep-08	15U	436278	5468204	362m	1574	1.574	mv; minor carbonate; 3-5% f.gr cubic pyr
DHJ.08-034 27-Sep-08 15U 436131 5488125 354m 7 0.007 Intermediate tuff; 35% cherty fragments; occasional pyrite clasts	DHJ-08-031	27-Sep-08	15Ü	435961	5468265	328m	562	0.562	
DHJ-08-034 27-Sep-08 15U 438178 5468139 353m 7 0.007 Intermediate turft, 35% cherty fragments; occasional pyrite clasts DHJ-08-035 27-Sep-08 15U 438178 5468160 358m 5 0.005 Cycle 15U 0.007 Cycle 0.007	DHJ-08-032	27-Sep-08	15Ü	435957	5468256	327m	576	0.576	sericite schist; oriented 278-50; strong sericite alt; 2% pyr
DHJ-08-036 27-Sep-08 15U 436476 5468423 358m 612 0.612 silicified my; 3% pyrite; minor carb alt	DHJ-08-033	27-Sep-08	15U	436131	5468125	354m	7	0.007	
DHJ-08-036 27-Sep-08 15U 436476 5468423 358m 612 0.612 silicified my; 3% pyrite; minor carb alt	DHJ-08-034	27-Sep-08	15U	436136	5468139	353m	7	0.007	
DHJ-08-037 27-Sep-08 15U 436530 5468344 364m 98 0.098 mv; minor carbonate; 2% pyrite provided provid	DHJ-08-035	27-Sep-08	15U	436176	5468160	358m	<5	<0.005	qtz vein; 0.5-0.75m wide vein containing clasts of silicified mv; minor carbonate alt; sporadic sulphide
DHJ-08-033 27-Sep-08 15U 436254 5468102 370m 7 0.007 granodio bldr; str. bleached and albitized; minor silic.; 8-9% pyrite; angular bldrs poss. close to source DHJ-08-040 28-Sep-08 15U 436613 5467893 362m 21 0.021 alt mv; qtz vein; 4cm wide; strong carb + bleaching; 5-6% pyr; oriented 296-74° DHJ-08-041 28-Sep-08 15U 436733 5468255 366m 23 0.023 no description DHJ-08-042 28-Sep-08 15U 436541 5468091 369m 45 40.005 no description DHJ-08-043 28-Sep-08 15U 436543 5468065 373m 16 0.016 qtz vein; 3cm wide; 0.5% pyr on qtz; oriented 292°-58° DHJ-08-043 28-Sep-08 15U 436483 5468008 370m 10 0.011 qtz vein; 0.25-0.58m wide oriented 306°-62°; 100% quartz; no sulphide DHJ-08-043 28-Sep-08 15U 436482 5468007 370m 7 0.007 mv; 8% pyr DHJ-08-046 28-Sep-08 15U 436481 5468009 370m 25 0.025 qtz vein; no sulphide DHJ-08-046 28-Sep-08 15U 436481 5468009 370m 25 0.025 qtz vein; no sulphide DHJ-08-046 29-Sep-08 15U 43748 5462783 334m 45 6-0.005 qtz vein; no sulphide DHJ-08-046 29-Sep-08 15U 437348 5462783 333m 102 0.102 ft/greywacke; ftgr. massive; gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-051 29-Sep-08 15U 437360 5462783 333m 102 0.102 ft/greywacke; ftgr. massive; gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-051 29-Sep-08 15U 437360 5462783 332m 105 0.105 ft/ side yeight appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°81° DHJ-08-051 29-Sep-08 15U 437360 5462783 332m 105 0.105 ft/ side yeight appearance; grey; tr fracture pyr; tracture pyr; tract	DHJ-08-036	27-Sep-08	15U	436476	5468423	358m	612	0.612	silicified mv; 3% pyrite; minor carb alt
DHJ-08-039 28-Sep-08 15U 436613 5467889 357m 208 0.208 mv; thin silicious vein; 2% pyr; L18+00E ~11+32N	DHJ-08-037	27-Sep-08	15U	436530	5468344	364m	98	0.098	
DHJ-08-040 28-Sep-08 15U 436621 5467893 362m 21 0.021 alt mv; qtz vein; 4cm wide; strong carb + bleaching; 5-6% pyr; oriented 296-74° DHJ-08-041 28-Sep-08 15U 436733 5468255 366m 23 0.023 no description DHJ-08-043 28-Sep-08 15U 436544 5468091 369m <5 <0.005 DHJ-08-043 28-Sep-08 15U 436545 5468065 373m 16 0.016 qtz vein; 3cm wide; 0.5% pyr on qtz; oriented 292°-58° DHJ-08-044 28-Sep-08 15U 436483 5468008 370m 10 0.011 qtz vein; 0.25-0.65m wide oriented 306°-62°; 100% quartz; no sulphide DHJ-08-045 28-Sep-08 15U 436483 5468008 370m 7 0.007 mv; 8% pyr DHJ-08-046 28-Sep-08 15U 436481 5468090 370m 25 0.025 0.025 qtz vein; no sulphide DHJ-08-047 29-Sep-08 15U 43745 5462943 334m <5 <0.005 chl schist; str foliation at 240°/75°; minor carb/sericite; thin qtz; trace pyr DHJ-08-048 29-Sep-08 15U 437348 5462768 334m 26 0.026 greywackefv, f.gr massive; grifty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-050 29-Sep-08 15U 437354 5462783 333m 102 0.102 fi/greywacke; fgr; massive; grifty appearance; no visible sulphide; oriented 040°/73° DHJ-08-050 12-Sep-08 15U 437308 5462765 373m 52 0.025 carb. fr, 318°/64°; strong carb alt; we speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-051 29-Sep-08 15U 437398 5464283 373m 98 0.098 alt festion in the sulphide; oriented 040°/73° DHJ-08-055 1-Oct-08 15U 43242 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/88° DHJ-08-056 1-Oct-08 15U 43788 5465268 385m 271 0.034 qtz eye rhyolite; beigetan; frace diss pyr; massive DHJ-08-058 1-Oct-08 15U 43788 5465268 385m 271 0.271 qtz eye porphyr; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-038	27-Sep-08	15U	436254	5468102	370m	7	0.007	
DHJ-08-041 28-Sep-08 15U 436733 5468255 366m 23 0.023 no description	DHJ-08-039	28-Sep-08	15U	436613	5467889	357m	208	0.208	
DHJ-08-042 28-Sep-08 15U 436514 5468091 369m <5 <0.005 no description DHJ-08-043 28-Sep-08 15U 436516 5468065 373m 16 0.016 qtz vein; 3cm wide; 0.5% pyr on qtz; oriented 292°-58° DHJ-08-044 28-Sep-08 15U 436481 5468008 370m 10 0.01 qtz vein; 0.25-0.65m wide oriented 306°-62°; 100% quartz; no sulphide DHJ-08-045 28-Sep-08 15U 436481 5468009 370m 7 0.007 mv; 8% pyr DHJ-08-046 28-Sep-08 15U 436481 5468009 370m 25 0.025 qtz vein; no sulphide DHJ-08-047 29-Sep-08 15U 43748 5462768 334m <5 <0.005 chl schist; str foliation at 240°/75°; minor carb/sericite; thin qtz; trace pyr DHJ-08-048 29-Sep-08 15U 437348 5462768 334m 26 0.026 greywacke/fv; f.gr massive; gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-049 29-Sep-08 15U 437364 5462763 332m 102 0.102 fv/greywacke; fgr; massive; 5% diss pyr DHJ-08-050 29-Sep-08 15U 437360 5462766 332m 14 0.014 fyholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-051 29-Sep-08 15U 437500 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; or visible sulphide; oriented 040°/773° DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1 cm; str py min. at approx 5%; 3-4% in width DHJ-08-055 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; belgetan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; belgetan; trace diss pyr; massive DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 140 0.019 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-040	28-Sep-08	15U	436621	5467893	362m	21	0.021	alt mv; qtz vein; 4cm wide; strong carb + bleaching; 5-6% pyr; oriented 296-74°
DHJ-08-043	DHJ-08-041	28-Sep-08	15U	436733	5468255	366m	23	0.023	no description
DHJ-08-044 28-Sep-08 15U 436483 5468008 370m 10 0.01 qtz vein; 0.25-0.65m wide oriented 306°-62°; 100% quartz; no sulphide DHJ-08-045 28-Sep-08 15U 436482 5468007 370m 7 0.007 mv; 8% pyr DHJ-08-046 28-Sep-08 15U 436481 5468009 370m 25 0.025 qtz vein; no sulphide DHJ-08-047 29-Sep-08 15U 436745 5462943 334m <5 <0.005 chl schist; str foliation at 240°/75°; minor carb/sericite; thin qtz; trace pyr DHJ-08-048 29-Sep-08 15U 437348 5462768 334m 26 0.026 greywacke/fy; f.gr massive; gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-049 29-Sep-08 15U 437354 5462783 333m 102 0.102 fv/greywacke; fgr; massive; 5% diss pyr DHJ-08-050 29-Sep-08 15U 437360 5462767 332m 14 0.014 fyholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-052 29-Sep-08 15U 437350 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; on visible sulphide; oriented 040°/73° DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 98 0.098 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beigetan; trace diss pyr; massive DHJ-08-056 1-Oct-08 15U 432422 5464330 383m 383 0.383 alt fv; carb; sericite alt; qtz eye; 292°/86° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-042	28-Sep-08	15U	436544	5468091	369m	<5	<0.005	no description
DHJ-08-045 28-Sep-08 15U 436482 5468007 370m 7 0.007 mv; 8% pyr DHJ-08-046 28-Sep-08 15U 436481 5468009 370m 25 0.025 qtz vein; no sulphide DHJ-08-047 29-Sep-08 15U 436745 5462943 334m <5 <0.005 chl schist; str foliation at 240°/75°; minor carb/sericite; thin qtz; trace pyr DHJ-08-048 29-Sep-08 15U 437348 5462768 334m 26 0.026 greywacke/fv; f.gr massive: gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-049 29-Sep-08 15U 437345 5462783 333m 102 0.102 fv/greywacke; fgr; massive: 5% diss pyr DHJ-08-050 29-Sep-08 15U 437360 5462787 332m 14 0.014 ryholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-051 29-Sep-08 15U 437508 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 98 0.098 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-055 1-Oct-08 15U 432412 546435 381m 16 0.016 qtz eye rhyolite; bejet/an; trace diss pyr; massive DHJ-08-056 1-Oct-08 15U 431768 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-058 1-Oct-08 15U 431253 5465268 385m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-043	28-Sep-08	15U	436516	5468065	373m	16	0.016	
DHJ-08-046 28-Sep-08 15U 436481 5468009 370m 25 0.025 qtz vein; no sulphide DHJ-08-047 29-Sep-08 15U 436745 5462943 334m <5 <0.005 chl schist; str foliation at 240°/75°; minor carb/sericite; thin qtz; trace pyr DHJ-08-048 29-Sep-08 15U 437348 5462768 334m 26 0.026 greywacke/fv; f.gr massive; gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-049 29-Sep-08 15U 437354 5462783 333m 102 0.102 fv/greywacke; fgr; massive; 5% diss pyr DHJ-08-050 29-Sep-08 15U 437360 5462776 332m 14 0.014 ryholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-051 29-Sep-08 15U 437508 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width DHJ-08-053 1-Oct-08 15U 432492 546435 381m 16 0.016 qtz eye rhyolite; beige/fan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464350 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-057 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-058 1-Oct-08 15U 43168 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyr; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-044	28-Sep-08	15U	436483	5468008	370m	10	0.01	qtz vein; 0.25-0.65m wide oriented 306°-62°; 100% quartz; no sulphide
DHJ-08-047 29-Sep-08 15U 437348 5462943 334m <5 <0.005 chl schist; str foliation at 240°/75°; minor carb/sericite; thin qtz; trace pyr DHJ-08-048 29-Sep-08 15U 437348 5462768 334m 26 0.026 greywacke/fv; f.gr massive; gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-049 29-Sep-08 15U 437354 5462783 333m 102 0.102 fv/greywacke; fgr; massive; 5% diss pyr DHJ-08-050 29-Sep-08 15U 437360 5462776 332m 14 0.014 ryholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-051 29-Sep-08 15U 437508 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb att; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width DHJ-08-053 1-Oct-08 15U 432492 5464350 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-058 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-045	28-Sep-08	15U	436482	5468007	370m	7	0.007	mv; 8% pyr
DHJ-08-048 29-Sep-08 15U 437348 5462768 334m 26 0.026 greywacke/fv; f.gr massive; gritty appearance; 4% diss pyr; found along store of Cedartree Lake DHJ-08-049 29-Sep-08 15U 437354 5462783 333m 102 0.102 fv/greywacke; fgr; massive; 5% diss pyr DHJ-08-050 29-Sep-08 15U 437360 5462776 332m 14 0.014 ryholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-051 29-Sep-08 15U 437508 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 98 0.098 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-058 1-Oct-08 15U 43168 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-046	28-Sep-08	15U	436481	5468009	370m	25	0.025	qtz vein; no sulphide
DHJ-08-049 29-Sep-08 15U 437354 5462783 333m 102 0.102 fv/greywacke; fgr; massive; 5% diss pyr DHJ-08-050 29-Sep-08 15U 437360 5462776 332m 14 0.014 ryholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-051 29-Sep-08 15U 437508 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 98 0.098 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by t	DHJ-08-047	29-Sep-08	15U	436745	5462943	334m	<5	<0.005	chl schist; str foliation at 240°/75°; minor carb/sericite; thin qtz; trace pyr
DHJ-08-050 29-Sep-08 15U 437360 5462776 332m 14 0.014 ryholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81° DHJ-08-051 29-Sep-08 15U 437508 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width 0.094 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-048	29-Sep-08	15U	437348	5462768	334m	26	0.026	
DHJ-08-051 29-Sep-08 15U 437508 5462988 332m 105 0.105 fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73° DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 98 0.098 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-049	29-Sep-08	15U	437354	5462783	333m	102	0.102	
DHJ-08-052 29-Sep-08 15U 431139 5464785 373m 52 0.052 carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 98 0.098 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-050	29-Sep-08	15U	437360	5462776	332m	14	0.014	ryholite; cherty appearance; grey; tr fracture pyr; clasts of f.gr pyr occasional; found further uphill @ 243°/81°
DHJ-08-053 1-Oct-08 15U 432398 5464524 373m 98 0.098 alt felsic intrusive; orange/red colour; albitized; tr py DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-051	29-Sep-08	15U	437508	5462988	332m	105	0.105	fv; alt w speckled carb; somewhat cherty appearance; no visible sulphide; oriented 040°/73°
DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-052	29-Sep-08	15U	431139	5464785	373m	52	0.052	carb. fv; 318°/64°; strong carb alt; weathered rhind of 1cm; str py min. at approx 5%; 3-4% in width
DHJ-08-054 1-Oct-08 15U 432412 5464435 381m 16 0.016 qtz eye rhyolite; beige/tan; trace diss pyr; massive DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-053	1-Oct-08	15U	432398	5464524	373m		0.098	
DHJ-08-055 1-Oct-08 15U 432422 5464380 383m 383 0.383 alt fv; carb; sericite alt; qtz eyes; 292°/68° DHJ-08-056 1-Oct-08 15U 431820 5465601 375m 34 0.034 mv; brecciated by thin anastomosing qtz stringers; minor rust; oriented 316°/80° DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide		1-Oct-08	15U	432412	5464435	381m	16	0.016	qtz eye rhyolite; beige/tan; trace diss pyr; massive
DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-055	1-Oct-08	15U	432422	5464380	383m	383	0.383	
DHJ-08-057 1-Oct-08 15U 431768 5465620 380m 109 0.109 mv; same as DHJ-08-056 but contains tr/minor py DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide	DHJ-08-056	1-Oct-08	15U	431820	5465601	375m	34	0.034	
DHJ-08-058 1-Oct-08 15U 431253 5465268 365m 271 0.271 qtz eye porphyry; orange with k-spar; 5% transparent qtz eyes; no sulphide			15U	431768	5465620	380m	109	0.109	
			15U	431253	5465268	365m	271	0.271	
			15U	430671	5465645	366m	123	0.123	qtz eye porphyry; deep red/orange; minor bleaching; 2% diss py

DHJ-08-060	1-Oct-08	15U	429994	5465487	364m	64	0.064	int vol; massive; mod silicousness; tr_pyr; minor rusty fractures																																																																																																																																																																																																															
JMM-08-060	25-Sep-08	15U	440506	5460249	350m	<5	<0.005	med to c.gr granodiorite; bluish qtz eyes; nil to very tr py; most likely subcrop																																																																																																																																																																																																															
JMM-08-061	25-Sep-08	15Ū	440817	5459851	354m	<5	<0.005	198/80; alt and carb granodio; more fel. than surr. country rock; tr. v.f.gr py; rubbly																																																																																																																																																																																																															
JMM-08-062	25-Sep-08	15Ū	440780	5459709	385m	<5	<0.005	carbonatized granodiorite; str carb; minor tr py; float																																																																																																																																																																																																															
JMM-08-063	25-Sep-08	15U	440780	5459709	377m	<5	<0.005	quartz vein; float; milky white; minor qtz																																																																																																																																																																																																															
JMM-08-064	25-Sep-08	15U	440774	5459708	383m	67	0.067	same as DHJ-08-017; silicified and carb granodiorite; oriented 212/85																																																																																																																																																																																																															
JMM-08-065	25-Sep-08	15Ū	440772	5459704	379m	9	0.009	same as 064																																																																																																																																																																																																															
JMM-08-066	26-Sep-08	15U	439923	5460663	345m	24	0.024	same as Don's DHJ-08-019 qtz vein; slightly more carb; tr py; -69 dip																																																																																																																																																																																																															
JMM-08-067	26-Sep-08	15U	439931	5460523	360m	24	0.024	qtz pod/stockworking; milky white; mod carb along contacts; ~2m along face of hill; <0.5m wide; tr to nil py																																																																																																																																																																																																															
JMM-08-068	26-Sep-08	15U	440025	5460356	352m	2913	2.913	bleached and altered granodiorite; perv carb; blocky o/c; ~0.25% py; mostly barren; edge of zone??																																																																																																																																																																																																															
JMM-08-069	27-Sep-08	15U	436301	5468173	366m	20	0.02	thin (2-3cm) qtz vein; tr-0.5% py w/in qtz; subcrop on side of hill; milky white; minor carb																																																																																																																																																																																																															
JMM-08-070	27-Sep-08	15U	436280	5468201	362m	8	0.008	carb fv; 50° strike/ 75° dip SE; tr-1% py																																																																																																																																																																																																															
JMM-08-071	27-Sep-08	15U	435963	5468266	332m	699	0.699	qtz vein; 223°/72° SW; minor tr py; local carb																																																																																																																																																																																																															
JMM-08-072	27-Sep-08	15U	436122	5468377	368m	19	0.019	qtz vein; tr py; 10-25cm; milky white																																																																																																																																																																																																															
JMM-08-073	27-Sep-08	15U	436370	5468602	357m	76	0.076	mv; local silicified frags; sampled silicious felsic portion of o/c; mod. to str. carb; 1-2% f.gr py																																																																																																																																																																																																															
JMM-08-074	27-Sep-08	15U	436292	5468382	369m	<5	<0.005	north edge of strongly alt shear zone; strong silicification; tr py; 270° strike; vertical to 76° dip																																																																																																																																																																																																															
JMM-08-075	27-Sep-08	15Ū	436312	5468384	370m	415	0.415	south edge of strongly alt shear zone; strong silicification; tr py; 270° strike; vertical to 76° dip																																																																																																																																																																																																															
JMM-08-076	28-Sep-08	15U	437070	5467260	369m	<5	<0.005	sheared mv/tuff; locally silicious; felsic inclusions; tr-nil sulphide (v.f.gr); 280°-90°																																																																																																																																																																																																															
JMM-08-077	28-Sep-08	15U	436940	5467391	368m	<5	<0.005	qtz within sheared mv; milky white; minor carb; nil to <tr py<="" td=""></tr> <tr><td>JMM-08-078</td><td>28-Sep-08</td><td>15U</td><td>437018</td><td>5467455</td><td>375m</td><td><5</td><td><0.005</td><td>per. carb; fv (pos. very alt. + bleached mv); tr specks of pyr; rusted; rubble under thick ob</td></tr> <tr><td>JMM-08-079</td><td>28-Sep-08</td><td>15U</td><td>437236</td><td>5467664</td><td>366m</td><td>21</td><td>0.021</td><td>mv; pod of highly carb. and mod. silic. area; tr py; minor shr in area; majority of o/c massive mv</td></tr> <tr><td>JMM-08-080</td><td>29-Sep-08</td><td>15U</td><td>436793</td><td>5462967</td><td>330m</td><td>11</td><td>0.011</td><td>shr mafic tuff; local fragments stretched ~2:1/3:1; no visible min; minor carb; trace K-alt; shr @ 60°; vertical dip</td></tr> <tr><td>JMM-08-081</td><td>29-Sep-08</td><td>15Ū</td><td>436760</td><td>5462950</td><td>329m</td><td><5</td><td><0.005</td><td>carb rusted mv tuff; broken subcrop off o/c w/in 1m; qtz flooding throughout; tr f.gr py; edge of island</td></tr> <tr><td>JMM-08-082</td><td>29-Sep-08</td><td>15U</td><td>437427</td><td>5462965</td><td>329m</td><td>175</td><td>0.175</td><td>fel/int vol carb zone; small pod 3-4m off shore; perv. carb; tr-0.5% f.gr pyr; pos. old showing on map;</td></tr> <tr><td>JMM-08-083</td><td>29-Sep-08</td><td>15U</td><td>437428</td><td>5462965</td><td>326m</td><td><5</td><td><0.005</td><td>fel/int vol carb zone; small pod 3-4m off shore; perv. carb; tr-0.5% f.gr pyr; pos. old showing on map;</td></tr> <tr><td>JMM-08-084</td><td>29-Sep-08</td><td>15U</td><td>437395</td><td>5462950</td><td>333m</td><td><5</td><td><0.005</td><td>int vol; minor shr @ 40°/65°E; carb. into lake; local rust; ~30m away from 082/083; tr-1% f.gr pyr</td></tr> <tr><td>JMM-08-085</td><td>29-Sep-08</td><td>15U</td><td>437394</td><td>5462948</td><td>333m</td><td><5</td><td><0.005</td><td>int vol; minor shr @ 40°/65°E; carb. into lake; local rust; ~30m away from 082/083; tr-1% f.gr pyr</td></tr> <tr><td>JMM-08-086</td><td>29-Sep-08</td><td>15Ū</td><td>431143</td><td>5464773</td><td>376m</td><td>14</td><td>0.014</td><td>highly carb. vol; weathered; very rusty surface; brown colour; 1% vfg pyr; 318°/64°</td></tr> <tr><td>JMM-08-087</td><td>30-Sep-08</td><td>15Ū</td><td>431658</td><td>5462843</td><td>351m</td><td><5</td><td><0.005</td><td>qtz vein/silicified mv; 80% grey/white qtz; tr py; chlorite alt</td></tr> <tr><td>JMM-08-088</td><td>30-Sep-08</td><td>15U</td><td>431599</td><td>5462727</td><td>350m</td><td><5</td><td><0.005</td><td>carbonaceous zone oriented @ 136°/82°; minimum of 1.5m wide</td></tr> <tr><td>JMM-08-089</td><td>30-Sep-08</td><td>15U</td><td>431599</td><td>5462726</td><td>351m</td><td><5</td><td><0.005</td><td>carbonaceous zone oriented @ 136°/82°; minimum of 1.5m wide</td></tr> <tr><td>JMM-08-090</td><td>30-Sep-08</td><td>15U</td><td>431810</td><td>5462712</td><td>352m</td><td>208</td><td>0.208</td><td>sheared volcanics; minor carb; thin qtz veining; trace pyr; 122°/80°; 8" wide</td></tr> <tr><td>JMM-08-091</td><td>30-Sep-08</td><td>15U</td><td>431012</td><td>5463174</td><td>353m</td><td>47</td><td>0.047</td><td>rusted shr zone; per carb; ~5m wide trench; near logging road; ~312°/81°NE; w/in mv host rock; tr-5% py</td></tr> <tr><td>JMM-08-092</td><td>30-Sep-08</td><td>15U</td><td>430993</td><td>5463162</td><td>353m</td><td>9</td><td>0.009</td><td>shear at 351°/85°; pyrite veining</td></tr> <tr><td>JMM-08-093</td><td>30-Sep-08</td><td>15U</td><td>432414</td><td>5464746</td><td>357m</td><td>784</td><td>0.784</td><td>fv; weathered and carb; light grey fresh surface; min. zone of ~50cm w/in mod.min. larger unit; 6-7% pyr</td></tr> <tr><td>JMM-08-094</td><td>30-Sep-08</td><td>15U</td><td>432342</td><td>5464822</td><td>368m</td><td>18</td><td>0.018</td><td>intense carb zone (possibly mv); sheared 158°/84°W; slightly brecciated; nil to very tr py</td></tr> <tr><td>JMM-08-095</td><td>30-Sep-08</td><td>15U</td><td>432300</td><td>5464771</td><td>361m</td><td><5</td><td><0.005</td><td>alt mv; strongly carbonatized; no sulphides; 100°/74°</td></tr> <tr><td>JMM-08-096</td><td>30-Sep-08</td><td>15Ū</td><td>432430</td><td>5464720</td><td>359m</td><td><5</td><td><0.005</td><td>tuff breccia; str rust on surface; angular felsic clasts from mm to cm scale; tr pyr; on. at 88° to 90°</td></tr> <tr><td>JMM-08-097</td><td>30-Sep-08</td><td>15U</td><td>431012</td><td>5463174</td><td>353m</td><td>106</td><td>0.106</td><td>rusted shr zone; per carb; ~5m wide trench; near logging road; ~312°/81°NE; w/in mv host rock; tr-5% py</td></tr> <tr><td>JMM-08-098</td><td>1-Oct-08</td><td>15Ū</td><td>432500</td><td>5464491</td><td>376m</td><td><5</td><td><0.005</td><td>tuff breccia; mv with light green colour, silic. frags; perv. rusted nm of o/c; tr-0.5% f.gr. pyr</td></tr> <tr><td>JMM-08-099</td><td>1-Oct-08</td><td>15U</td><td>432152</td><td>5465228</td><td>384m</td><td><5</td><td><0.005</td><td>int to more fv; up to 5%(locally) vfgr pyr; little to no carb; subcrop on hillside?; fairly massive</td></tr> <tr><td></td><td></td><td>15U</td><td>432145</td><td>5465224</td><td>384m</td><td><5</td><td>< 0.005</td><td>perv carb; very alt fv?; under uprooted tree; very blocky and broken; host is similar to JMM-099</td></tr>	JMM-08-078	28-Sep-08	15U	437018	5467455	375m	<5	<0.005	per. carb; fv (pos. very alt. + bleached mv); tr specks of pyr; rusted; rubble under thick ob	JMM-08-079	28-Sep-08	15U	437236	5467664	366m	21	0.021	mv; pod of highly carb. and mod. silic. area; tr py; minor shr in area; majority of o/c massive mv	JMM-08-080	29-Sep-08	15U	436793	5462967	330m	11	0.011	shr mafic tuff; local fragments stretched ~2:1/3:1; no visible min; minor carb; trace K-alt; shr @ 60°; vertical dip	JMM-08-081	29-Sep-08	15Ū	436760	5462950	329m	<5	<0.005	carb rusted mv tuff; broken subcrop off o/c w/in 1m; qtz flooding throughout; tr f.gr py; edge of island	JMM-08-082	29-Sep-08	15U	437427	5462965	329m	175	0.175	fel/int vol carb zone; small pod 3-4m off shore; perv. carb; tr-0.5% f.gr pyr; pos. old showing on map;	JMM-08-083	29-Sep-08	15U	437428	5462965	326m	<5	<0.005	fel/int vol carb zone; small pod 3-4m off shore; perv. carb; tr-0.5% f.gr pyr; pos. old showing on map;	JMM-08-084	29-Sep-08	15U	437395	5462950	333m	<5	<0.005	int vol; minor shr @ 40°/65°E; carb. into lake; local rust; ~30m away from 082/083; tr-1% f.gr pyr	JMM-08-085	29-Sep-08	15U	437394	5462948	333m	<5	<0.005	int vol; minor shr @ 40°/65°E; carb. into lake; local rust; ~30m away from 082/083; tr-1% f.gr pyr	JMM-08-086	29-Sep-08	15Ū	431143	5464773	376m	14	0.014	highly carb. vol; weathered; very rusty surface; brown colour; 1% vfg pyr; 318°/64°	JMM-08-087	30-Sep-08	15Ū	431658	5462843	351m	<5	<0.005	qtz vein/silicified mv; 80% grey/white qtz; tr py; chlorite alt	JMM-08-088	30-Sep-08	15U	431599	5462727	350m	<5	<0.005	carbonaceous zone oriented @ 136°/82°; minimum of 1.5m wide	JMM-08-089	30-Sep-08	15U	431599	5462726	351m	<5	<0.005	carbonaceous zone oriented @ 136°/82°; minimum of 1.5m wide	JMM-08-090	30-Sep-08	15U	431810	5462712	352m	208	0.208	sheared volcanics; minor carb; thin qtz veining; trace pyr; 122°/80°; 8" wide	JMM-08-091	30-Sep-08	15U	431012	5463174	353m	47	0.047	rusted shr zone; per carb; ~5m wide trench; near logging road; ~312°/81°NE; w/in mv host rock; tr-5% py	JMM-08-092	30-Sep-08	15U	430993	5463162	353m	9	0.009	shear at 351°/85°; pyrite veining	JMM-08-093	30-Sep-08	15U	432414	5464746	357m	784	0.784	fv; weathered and carb; light grey fresh surface; min. zone of ~50cm w/in mod.min. larger unit; 6-7% pyr	JMM-08-094	30-Sep-08	15U	432342	5464822	368m	18	0.018	intense carb zone (possibly mv); sheared 158°/84°W; slightly brecciated; nil to very tr py	JMM-08-095	30-Sep-08	15U	432300	5464771	361m	<5	<0.005	alt mv; strongly carbonatized; no sulphides; 100°/74°	JMM-08-096	30-Sep-08	15Ū	432430	5464720	359m	<5	<0.005	tuff breccia; str rust on surface; angular felsic clasts from mm to cm scale; tr pyr; on. at 88° to 90°	JMM-08-097	30-Sep-08	15U	431012	5463174	353m	106	0.106	rusted shr zone; per carb; ~5m wide trench; near logging road; ~312°/81°NE; w/in mv host rock; tr-5% py	JMM-08-098	1-Oct-08	15Ū	432500	5464491	376m	<5	<0.005	tuff breccia; mv with light green colour, silic. frags; perv. rusted nm of o/c; tr-0.5% f.gr. pyr	JMM-08-099	1-Oct-08	15U	432152	5465228	384m	< 5	<0.005	int to more fv; up to 5%(locally) vfgr pyr; little to no carb; subcrop on hillside?; fairly massive			15U	432145	5465224	384m	<5	< 0.005	perv carb; very alt fv?; under uprooted tree; very blocky and broken; host is similar to JMM-099
JMM-08-078	28-Sep-08	15U	437018	5467455	375m	<5	<0.005	per. carb; fv (pos. very alt. + bleached mv); tr specks of pyr; rusted; rubble under thick ob																																																																																																																																																																																																															
JMM-08-079	28-Sep-08	15U	437236	5467664	366m	21	0.021	mv; pod of highly carb. and mod. silic. area; tr py; minor shr in area; majority of o/c massive mv																																																																																																																																																																																																															
JMM-08-080	29-Sep-08	15U	436793	5462967	330m	11	0.011	shr mafic tuff; local fragments stretched ~2:1/3:1; no visible min; minor carb; trace K-alt; shr @ 60°; vertical dip																																																																																																																																																																																																															
JMM-08-081	29-Sep-08	15Ū	436760	5462950	329m	<5	<0.005	carb rusted mv tuff; broken subcrop off o/c w/in 1m; qtz flooding throughout; tr f.gr py; edge of island																																																																																																																																																																																																															
JMM-08-082	29-Sep-08	15U	437427	5462965	329m	175	0.175	fel/int vol carb zone; small pod 3-4m off shore; perv. carb; tr-0.5% f.gr pyr; pos. old showing on map;																																																																																																																																																																																																															
JMM-08-083	29-Sep-08	15U	437428	5462965	326m	<5	<0.005	fel/int vol carb zone; small pod 3-4m off shore; perv. carb; tr-0.5% f.gr pyr; pos. old showing on map;																																																																																																																																																																																																															
JMM-08-084	29-Sep-08	15U	437395	5462950	333m	<5	<0.005	int vol; minor shr @ 40°/65°E; carb. into lake; local rust; ~30m away from 082/083; tr-1% f.gr pyr																																																																																																																																																																																																															
JMM-08-085	29-Sep-08	15U	437394	5462948	333m	<5	<0.005	int vol; minor shr @ 40°/65°E; carb. into lake; local rust; ~30m away from 082/083; tr-1% f.gr pyr																																																																																																																																																																																																															
JMM-08-086	29-Sep-08	15Ū	431143	5464773	376m	14	0.014	highly carb. vol; weathered; very rusty surface; brown colour; 1% vfg pyr; 318°/64°																																																																																																																																																																																																															
JMM-08-087	30-Sep-08	15Ū	431658	5462843	351m	<5	<0.005	qtz vein/silicified mv; 80% grey/white qtz; tr py; chlorite alt																																																																																																																																																																																																															
JMM-08-088	30-Sep-08	15U	431599	5462727	350m	<5	<0.005	carbonaceous zone oriented @ 136°/82°; minimum of 1.5m wide																																																																																																																																																																																																															
JMM-08-089	30-Sep-08	15U	431599	5462726	351m	<5	<0.005	carbonaceous zone oriented @ 136°/82°; minimum of 1.5m wide																																																																																																																																																																																																															
JMM-08-090	30-Sep-08	15U	431810	5462712	352m	208	0.208	sheared volcanics; minor carb; thin qtz veining; trace pyr; 122°/80°; 8" wide																																																																																																																																																																																																															
JMM-08-091	30-Sep-08	15U	431012	5463174	353m	47	0.047	rusted shr zone; per carb; ~5m wide trench; near logging road; ~312°/81°NE; w/in mv host rock; tr-5% py																																																																																																																																																																																																															
JMM-08-092	30-Sep-08	15U	430993	5463162	353m	9	0.009	shear at 351°/85°; pyrite veining																																																																																																																																																																																																															
JMM-08-093	30-Sep-08	15U	432414	5464746	357m	784	0.784	fv; weathered and carb; light grey fresh surface; min. zone of ~50cm w/in mod.min. larger unit; 6-7% pyr																																																																																																																																																																																																															
JMM-08-094	30-Sep-08	15U	432342	5464822	368m	18	0.018	intense carb zone (possibly mv); sheared 158°/84°W; slightly brecciated; nil to very tr py																																																																																																																																																																																																															
JMM-08-095	30-Sep-08	15U	432300	5464771	361m	<5	<0.005	alt mv; strongly carbonatized; no sulphides; 100°/74°																																																																																																																																																																																																															
JMM-08-096	30-Sep-08	15Ū	432430	5464720	359m	<5	<0.005	tuff breccia; str rust on surface; angular felsic clasts from mm to cm scale; tr pyr; on. at 88° to 90°																																																																																																																																																																																																															
JMM-08-097	30-Sep-08	15U	431012	5463174	353m	106	0.106	rusted shr zone; per carb; ~5m wide trench; near logging road; ~312°/81°NE; w/in mv host rock; tr-5% py																																																																																																																																																																																																															
JMM-08-098	1-Oct-08	15Ū	432500	5464491	376m	<5	<0.005	tuff breccia; mv with light green colour, silic. frags; perv. rusted nm of o/c; tr-0.5% f.gr. pyr																																																																																																																																																																																																															
JMM-08-099	1-Oct-08	15U	432152	5465228	384m	< 5	<0.005	int to more fv; up to 5%(locally) vfgr pyr; little to no carb; subcrop on hillside?; fairly massive																																																																																																																																																																																																															
		15U	432145	5465224	384m	<5	< 0.005	perv carb; very alt fv?; under uprooted tree; very blocky and broken; host is similar to JMM-099																																																																																																																																																																																																															

MMANG-101 1-0-0-08 151 431564 454500 384m 55 0.005 and ministrative depth of the property of									1 20 (a) high and a second of the second of
TMM-CRS-103 1-Oct-08 15.01 439691 5469257 352m 29 0.029 schell mr. 1557/62*W to vertical dip, mod carb and serticite, if sulph; heavy do; seems to be o'c (RSS-S6-002 65-56-60 15.01 439694 546620 362m 57540 77.45	JMM-08-101	1-Oct-08	15U	431564	5465000	384m	55	0.055	carb mv; sulph zone of ~30m (max); visible carb zone of a few m; massive mv; minor sil; ~3% pyr;
Incompage 1911 430900 5444820 382m 57450 57.45 estands/christon rusty share cath set 10% by 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000	JMM-08-102								
CCSSS 06/07 26-Sep-08 TSU 430904 5444820 392m 55599 55.599 Sheared rasty goasin highly at 20% by									
FIGSS-86-003 24-Sep-08 19U 430598 5464624 350m 3597 3587								-	
Incompage 12-Sep-08 19U 430937 5464827 356m 36817 36841 3681	RCSS-08-002	26-Sep-08	15U						
RGSS-80-005 24-Sep-08 SU 49058 544442 395m 3641 3441 345 345 344442 355m 41 0.041 345 345 344442 355m 41 0.041 345		- '	15U		-				
RGSS-08-07 24-Sp-08 51, 1 49058 5464424 380m 470 0.47 carb GID 2-5% by atch	RCSS-08-004	24-Sep-08	15U -		_	_			
RCSS-08-007 24-Sep-08 15U 430627 5464540 385m 6 0.066 abstraction in the control of the control	RCSS-08-005	24-Sep-08	15U						
RCSS-08-009 24-Sep-08 15U 430627 464340 361m 68 0.066 carb shearzone granite mixed through 2% py RCSS-08-009 24-Sep-08 15U 430865 5460208 380m 77 0.077 carb shearzone granite mixed through 2% py RCSS-08-011 28-Sep-08 15U 430865 5460208 380m 144 0.144 nuge qtz ven through granites tr py RCSS-08-011 28-Sep-08 15U 430873 460509 342m 2239 2239 sill GD carb 2-5% py RCSS-08-013 28-Sep-08 15U 430975 5460462 350m 759 0.759 at carb 5460450 375 m 391 0.391 at carb 6.10-12% py RCSS-08-015 28-Sep-08 15U 430975 5460462 350m 759 0.759 at carb 6.10-12% py RCSS-08-015 28-Sep-08 15U 430975 5460465 361m 391 0.391 at carb 6.10-12% py dtz rich RCSS-08-015 28-Sep-08 15U 430975 5460465 361m 391 0.391 at carb 6.10-12% py dtz rich RCSS-08-016 28-Sep-08 15U 430975 5460465 364m 1742 1.742 carb at GD hard 6.10-12% py dtz rich RCSS-08-016 28-Sep-08 15U 430976 5460450 364m 1742 1.742 carb at GD hard 6.10-12% py dtz rich RCSS-08-016 28-Sep-08 15U 430978 5460451 351m 121 0.121 at carb GD 1-2% py dtz rich RCSS-08-017 27-Sep-08 15U 430978 5460451 351m 121 0.121 at carb GD 1-2% py dtz rich RCSS-08-018 28-Sep-08 15U 430978 5460451 351m 121 0.121 at carb GD 1-2% py dtz rich RCSS-08-019 27-Sep-08 15U 430978 5460451 351m 121 0.121 at carb GD 1-2% py dtz rich RCSS-08-019 27-Sep-08 15U 430982 5460731 365m 121 0.017 ny carbonated trick for the carb for py and malichite; outcrop RCSS-08-020 27-Sep-08 15U 430450 5460929 367m 17 0.017 ny carbonated trick for the carb for py outcrop RCSS-08-022 27-Sep-08 15U 430450 5460929 367m 17 0.017 ny carbonated trick for the carb for py outcrop RCSS-08-022 27-Sep-08 15U 430510 5460451 3560419 366m 153 0.153 quartz rubble; ustyr travial unitar for py outcrop RCSS-08-022 27-Sep-08 15U 430520 5460226 363m 157 0.057 ny carbonated trick for the carb for py outcrop RCSS-08-023 27-Sep-08 15U 430520 5460226 363m 157 0.057 ny carbonated trick for the carb for py outcrop RCSS-08-023 27-Sep-08 15U 430520 5460226 363m 157 0.056 sheet zero for py outcrop RCSS-08-023 27-Sep-08 15U 430520 5460226 370m 157 0.050 0.050 0.050 0.050 0			15U						
RCSS-08-019 24-58-p-08 15U 430866 5469238 360m 144 0.144 https://doi.org/10.1009/10.10	RCSS-08-007	24-Sep-08	15U						
RCSS-08-011 25-Sep-08 15U 439985 5460280 380m 1444 0.144 huge-gitz ven through granites tr py RCSS-06-011 26-Sep-08 15U 439973 5460591 343m 4086 4.086 sli alt G/D carb 2-5% py RCSS-08-013 26-Sep-08 15U 439975 5460462 350m 759 0.759 at carb G/D carb 2-5% py RCSS-08-013 26-Sep-08 15U 439975 5460462 350m 759 0.759 at carb G/D 1-2% py RCSS-08-013 26-Sep-08 15U 439975 5460462 350m 759 0.759 at carb G/D 1-2% py RCSS-08-015 26-Sep-08 15U 439905 5460450 364m 2535 2.535 at carb G/D 1-2% py qtz rich RCSS-08-016 36-Sep-08 15U 439905 5460450 364m 2535 2.535 at carb G/D 1-2% py qtz rich RCSS-08-017 26-Sep-08 15U 439914 546051 351m 121 10.121 at carb G/D 1-2% py qtz rich RCSS-08-017 26-Sep-08 15U 439741 5460514 351m 121 0.121 at carb G/D 1-2% py qtz rich RCSS-08-018 27-Sep-08 15U 439862 5460793 367m 177 0.017 nust carb G/D qtz rich RCSS-08-020 27-Sep-08 15U 439645 5467992 367m 67 0.067 carbonated brechia quartz rich trace of py, outcrop RCSS-08-022 27-Sep-08 15U 438115 5468419 388m 153 0.133 quartz nuble, rusty trace of py, outcrop RCSS-08-023 27-Sep-08 15U 438115 5468213 359m 157 0.157 nusty carbonated urit, trace of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468223 359m 157 0.157 nusty carbonate quartz rich trace of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468223 359m 157 0.157 nusty carbonated quartz rich race of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468223 359m 157 0.157 nusty carbonate quartz vein, trace of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468224 366m < 0.068 shear zone through malics quart chirace of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468224 366m < 0.068 shear zone through malics quart chirace of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468224 366m < 0.006 shear zone through malics quart chirace of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468224 366m < 0.006 shear zone through malics quart chirace of py, outcrop RCSS-08-027 27-Sep-08 15U 438212 5468224 366m < 0.006 shear zone through malics quart chirace of py, outcrop RCSS-08-027 27-Sep-08 15U 4382	RCSS-08-008		15U	430627					
RCSS-08-011 28-Sep-08 15U 439801 5460591 343m 4086 4.096 sil alt GID carb 2-5% py RCSS-08-012 28-Sep-08 15U 439795 5460599 342m 2239 2239 sil alt GID carb 2-5% py RCSS-08-013 26-Sep-08 15U 439795 5460462 350m 759 0.759 alt carb GID 1-2% py qt rich RCSS-08-014 28-Sep-08 15U 439807 5460450 351m 391 0.391 alt carb GID 1-2% py qt rich RCSS-08-016 28-Sep-08 15U 439807 5460450 351m 391 0.391 alt carb GID 1-2% py qt rich RCSS-08-016 28-Sep-08 15U 439765 5460450 351m 391 0.391 alt carb GID 1-2% py qt rich RCSS-08-017 28-Sep-08 15U 439765 5460451 344m 1742 1.742 carb alt GID hemitire tr py RCSS-08-018 28-Sep-08 15U 439761 5460514 351m 121 0.121 alt carb GID 1-2% py qt rich RCSS-08-019 27-Sep-08 15U 439761 5460514 351m 121 0.121 alt carb GID 1-2% py qt rich RCSS-08-019 27-Sep-08 15U 439802 5460734 365m 2449 2.449 alt carb GID qt rich RCSS-08-019 27-Sep-08 15U 439802 5460734 365m 17 0.017 nusty carbonated tuff, race of cpy and malichite; outcrop RCSS-08-021 27-Sep-08 15U 43910 546819 367m 67 0.067 carbonated breeful quartz rich trace of py; outcrop RCSS-08-021 27-Sep-08 15U 439115 5468371 354m 103 0.103 quartz nubble, rusty trace of py; outcrop RCSS-08-022 27-Sep-08 15U 439115 5468419 368m 68 0.068 shear zone through malic 2% py rusty, outcrop RCSS-08-022 27-Sep-08 15U 439624 5468233 359m 157 0.157 nusty carbonated quartz vient, trace of py; float RCSS-08-022 27-Sep-08 15U 439624 546823 359m 157 0.157 nusty carbonated quartz vient, trace of py; float RCSS-08-022 27-Sep-08 15U 439624 546822 369m 45 <0.005 quartz stringers through malic trace of py; outcrop RCSS-08-023 27-Sep-08 15U 439624 34682 371m 45 <0.005 quartz stringers through malic trace of py; outcrop RCSS-08-023 27-Sep-08 15U 436243 356m 45 <0.005 quartz stringers through malic trace of py; outcrop RCSS-08-023 27-Sep-08 15U 436243 366824 371m 45 <0.005 quartz stringers through malic trace of py; outcrop RCSS-08-033 27-Sep-08 15U 436243 346821 372m 45 <0.005 quartz stringers through carb malic trace of py; outcrop RCSS-08-033 27-Sep-08 15U 436243 346821 373m 45 <0	RCSS-08-009	24-Sep-08							
RCSS-08-012 26-Sap-08 15U 439793 5460462 350m 759 0.759 at carb GD 1-2% by gtz rich RCSS-08-013 26-Sap-08 15U 439807 5460462 350m 759 0.759 at carb GD 1-2% by gtz rich RCSS-08-016 26-Sap-08 15U 439805 5460465 351m 391 0.391 at carb GD 1-2% by gtz rich RCSS-08-016 26-Sap-08 15U 439805 5460465 364m 2535 2.555 at carb GD 1-2% by gtz rich RCSS-08-017 26-Sap-08 15U 439805 5460461 344m 1742 1.742 carb GD 1-2% by gtz rich RCSS-08-017 26-Sap-08 15U 439814 5460514 351m 121 0.121 at carb GD 1-2% by gtz rich RCSS-08-018 26-Sap-08 15U 439741 5460514 351m 121 0.121 at carb GD 12-2% by gtz rich RCSS-08-019 27-Sap-08 15U 43962 5460793 367m 17 0.017 rusty carbonated truff, trace of py, and malichite; outcrop RCSS-08-020 27-Sap-08 15U 436450 5467992 367m 67 0.067 carbonated brechia quartz rich trace of py, outcrop RCSS-08-020 27-Sap-08 15U 436450 5469793 364m 103 0.103 quartz rubble, ruspe of py, outcrop RCSS-08-020 27-Sap-08 15U 43616 5468791 364m 153 0.153 quartz rubble, ruspe of py, outcrop RCSS-08-020 27-Sap-08 15U 436116 5468171 364m 153 0.153 quartz rubble, ruspe of py, outcrop RCSS-08-020 27-Sap-08 15U 436225 5468223 359m 157 0.157 rusty carbonated quartz rich trace of py, outcrop RCSS-08-020 27-Sap-08 15U 436225 5468226 365m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 5468226 365m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 5468226 365m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 5468226 365m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 36602 370 m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 36602 36600 <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 36602 370 m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 36602 370 m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 36602 370 m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 36602 370 m <5 <0.005 million for py, outcrop RCSS-08-020 27-Sap-08 15U 436225 36602 370 m <5 <0.005 million	RCSS-08-010	25-Sep-08	15Ü	439896					
RCSS-08-013 28-Sep-08 15U 439795 5460462 350m 759 0.759 att carb G/D 1-2% py qtz rich RCSS-08-014 28-Sep-08 15U 439807 5460450 351m 391 0.391 RCSS-08-015 150-Sep-08 15U 439786 5460450 351m 391 0.391 RCSS-08-016 28-Sep-08 15U 439786 5460450 354m 1742 1.742 ath att G/D 1-2% py qtz rich RCSS-08-016 28-Sep-08 15U 439786 5460481 344m 1742 1.742 carb att G/D hemitite tr py RCSS-08-018 15U 439986 5460450 358m 2449 2.449 att carb G/D 12% py qtz rich RCSS-08-018 15U 439786 5460481 344m 1742 1.742 carb att G/D hemitite tr py RCSS-08-018 28-Sep-08 15U 439962 5460734 365m 2449 2.449 att carb G/D 12% py qtz rich RCSS-08-019 27-Sep-08 15U 439862 5460734 365m 2449 2.449 att carb G/D 12% py qtz rich RCSS-08-019 27-Sep-08 15U 439486 5467993 367m 17 0.017 nusty carbonated tuff, trace of cpy and malichite; outcrop RCSS-08-02 27-Sep-08 15U 436120 5468379 367m 67 0.067 RCSS-08-02 27-Sep-08 15U 436120 5468379 364m 103 0.103 quartz ribble, rusty trace of py; outcrop RCSS-08-02 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusty; outcrop RCSS-08-02 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusty; outcrop RCSS-08-02 27-Sep-08 15U 436124 5468233 359m 157 0.157 nusty carbonate quartz rich py; outcrop RCSS-08-02 27-Sep-08 15U 436124 546823 359m 157 0.157 nusty carbonate quartz rich py; outcrop RCSS-08-027 27-Sep-08 15U 436224 5468220 369m 45 <0.005 quartz ribble; outcrop RCSS-08-027 27-Sep-08 15U 436224 5468221 371m 45 <0.005 quartz ribble; outcrop RCSS-08-029 27-Sep-08 15U 436224 5468221 372m 149 0.149 nusty starb gers trace of py; outcrop RCSS-08-032 27-Sep-08 15U 436234 5468213 375m 45 <0.005 quartz ribble; outcrop RCSS-08-032 27-Sep-08 15U 436243 5468214 383m 45 <0.005 quartz ribble; outcrop RCSS-08-032 27-Sep-08 15U 436243 5468214 383m 45 <0.005 sit nusty carb trace of py; outcrop RCSS-08-032 27-Sep-08 15U 436243 5468214 383m 45 <0.005 list py; outcrop RCSS-08-032 27-Sep-08 15U 436243 5468217 383m 45 <0.005 sit nusty carb trace of py; outcrop RCSS-08-033 27-Sep-08 15U 436243	RCSS-08-011	26-Sep-08	15U	439801	5460591				
RCSS-08-014 26-Sep-08 15U 439807 5460450 351m 391 0.391 alt carb GID 1-2% by gtx inch RCSS-08-015 26-Sep-08 15U 439805 5460450 364m 2535 2.535 RCSS-08-016 25-Sep-08 15U 439806 5460451 351m 1742 1.742 RCSS-08-017 26-Sep-08 15U 439741 5460514 351m 121 0.121 RCSS-08-018 26-Sep-08 15U 439845 5460734 365m 2449 2.449 RCSS-08-019 27-Sep-08 15U 438450 5467933 367m 17 0.017 RCSS-08-019 27-Sep-08 15U 438450 5467992 367m 67 0.067 RCSS-08-020 27-Sep-08 15U 438450 5467992 367m 67 0.067 RCSS-08-020 27-Sep-08 15U 43615 5468371 364m 153 0.153 RCSS-08-020 27-Sep-08 15U 43615 5468371 364m 153 0.153 RCSS-08-020 27-Sep-08 15U 43615 546826 363m 55 0.055 RCSS-08-020 27-Sep-08 15U 43615 546826 363m 55 0.005 RCSS-08-020 27-Sep-08 15U 43615 546826 363m 55 0.005 RCSS-08-020 27-Sep-08 15U 43622 5468223 369m 50 0.005 RCSS-08-020 27-Sep-08 15U 43622 5468223 369m 55 0.005 RCSS-08-020 27-Sep-08 15U 43622 5468223 369m 55 0.005 RCSS-08-020 27-Sep-08 15U 43622 5468223 369m 55 0.005 RCSS-08-020 27-Sep-08 15U 43622 5468220 379m 55 0.005 RCSS-08-020 27-Sep-08 15U 43624 546826 379m 55 0.005 RCSS-08-020	RCSS-08-012	26-Sep-08	15U	439793					
RCSS-08-016 26-Sep-08 15U 439805 5460450 364m 2535 2.535 alt carb G/D 1-2% py qtz rich	RCSS-08-013	26-Sep-08	15U	439795	5460462	350m		0.759	
RCSS-08-017 26-Sep-08 15U 439786 5460481 344m 1742 1.742 carb att G/D hemitite tr py RCSS-08-017 18-Sep-08 15U 439741 5460514 351m 121 0.121 att carb G/D try RCSS-08-018 26-Sep-08 15U 439895 5460734 365m 2449 2.449 att carb G/D try in the G/D t	RCSS-08-014	26-Sep-08	15Ü	439807	5460450	351m			
RCSS-08-0117 28-Sep-08 15U 439741 5460514 351m 121 0.121 alt carb G/D tr py	RCSS-08-015	26-Sep-08	15Ü	439805	5460450	364m			
RCSS-08-018 26-Sep-08 15U 439962 5460734 365m 2449 2.449 alt carb G/D qtz rich RCSS-08-019 27-Sep-08 15U 436448 5467993 367m 17 0.017 rusty carbonated tuff, trace of cpy and malichite; outcrop RCSS-08-021 27-Sep-08 15U 436150 5468379 364m 103 0.103 quartz rubble, rusty trace of py; outcrop RCSS-08-022 27-Sep-08 15U 436116 5468371 364m 153 0.153 quartz rubble, rusty trace of py; outcrop RCSS-08-023 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusty; outcrop RCSS-08-024 27-Sep-08 15U 436242 5468233 359m 157 0.157 rusty carbonate quartz vib. ruscy py rusty; outcrop RCSS-08-025 27-Sep-08 15U 436242 5468226 363m <5 <0.005 ruscy carbonate quartz vib. ruscy carbonated precisionate quartz vib. ruscy carbonated precisionated quartz vib. ruscy carbonated precisionated quartz vib. ruscy carbonated precisionated quartz vib. rus	RCSS-08-016	26-Sep-08	15U	439786	5460481	344m		1.742	carb alt G/D hemitite tr py
RCSS-08-019 27-Sep-08 15U 436445 5467993 367m 17 0.017 nusty carbonated tuff, trace of cpy and malichite; outcrop RCSS-08-020 27-Sep-08 15U 436450 5468379 364m 103 0.103 quartz rubble, rusby trace of py; outcrop RCSS-08-021 27-Sep-08 15U 436120 5468379 364m 103 0.103 quartz rubble, rusby trace of py; outcrop RCSS-08-022 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusby; outcrop RCSS-08-023 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusby; outcrop RCSS-08-025 27-Sep-08 15U 436225 5468223 359m 157 0.157 nusty carbonate quartz vein, trace of py; outcrop RCSS-08-026 27-Sep-08 15U 436224 5468226 365m <5 <0.005 mafic carb quartz stringers trace of py; outcrop RCSS-08-026 27-Sep-08 15U 436224 5468224 366m <5 <0.005 quartz stringers through mafic trace of py; outcrop RCSS-08-028 27-Sep-08 15U 436224 5468224 366m <5 <0.005 quartz stringers through mafic trace of py; outcrop RCSS-08-028 27-Sep-08 15U 436224 5468224 366m <5 <0.005 quartz stringers through mafic trace of py; outcrop RCSS-08-028 27-Sep-08 15U 436224 5468224 366m <5 <0.005 quartz stringers through mafic trace of py; outcrop RCSS-08-032 27-Sep-08 15U 436224 5468224 371m <5 <0.005 quartz stringers through mafic trace of py; outcrop RCSS-08-031 27-Sep-08 15U 436245 5468224 372m 149 0.149 nusty shearcone through mafic trace of py; outcrop RCSS-08-032 27-Sep-08 15U 436245 5468217 370m <5 <0.005 sil nusty carb trace of py; outcrop RCSS-08-033 27-Sep-08 15U 436245 3468211 335m <5 <0.005 sil nusty carb trace of py; outcrop RCSS-08-033 27-Sep-08 15U 436448 5467993 370m <5 <0.005 nusty carbonated brechiated qtr ich trace of py; outcrop RCSS-08-035 27-Sep-08 15U 436448 5467993 370m <5 <0.005 nusty carbonated	RCSS-08-017	26-Sep-08	15Ü	439741	5460514	351m	121	0.121	alt carb G/D tr py
RCSS-08-021 27-Sep-08 15U 436450 5467992 367m 67 0.067 carbonated brechia quartz rich trace of py; outcrop	RCSS-08-018	26-Sep-08	15Ú	439962	5460734	365m			
RCSS-08-021 27-Sep-08 15U 436120 5468379 364m 103 0.103 quartz rubble, rusty trace of py; outcrop RCSS-08-022 27-Sep-08 15U 436116 5468371 364m 153 0.153 quartz rubble, rusty trace of py; outcrop RCSS-08-023 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusty; outcrop RCSS-08-023 27-Sep-08 15U 436225 5468233 358m 157 0.157 rusty carbonate quartz vein, trace of py; float RCSS-08-025 27-Sep-08 15U 436225 5468226 363m <5	RCSS-08-019	27-Sep-08	15U	436448	5467993	367m			
RCSS-08-022 27-Sep-08 15U 436116 5468371 364m 153 0.153 quartz rubble, vuggy, 2 % py; outcrop RCSS-08-023 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusty; outcrop RCSS-08-024 27-Sep-08 15U 436242 5468233 359m 157 0.157 rusty carbonate quartz vin, trace of py; float RCSS-08-025 27-Sep-08 15U 436225 5468226 363m 5 <0.005	RCSS-08-020	27-Sep-08	15Ú	436450	5467992	367m			
RCSS-08-023 27-Sep-08 15U 436115 5468419 368m 68 0.068 shear zone through mafic 2% py rusty; outcrop RCSS-08-024 27-Sep-08 15U 436242 5468233 359m 157 0.157 rusty carbonate quartz vein, trace of py; float RCSS-08-025 27-Sep-08 15U 436225 5468226 363m <5	RCSS-08-021	27-Sep-08	15U	436120	5468379	364m		0.103	
RCSS-08-024 27-Sep-08 15U 436242 5468233 359m 157 0.157 rusty carbonate quartz vein, trace of py; float RCSS-08-025 27-Sep-08 15U 436225 5468226 369m <5	RCSS-08-022	27-Sep-08	15Ü	436116	5468371	364m	153	0.153	
RCSS-08-025 27-Sep-08 15U 436225 5468226 363m <5 < 0.005 mafic carb quartz stringers trace of py; outcrop RCSS-08-026 27-Sep-08 15U 436224 5468220 369m <5	RCSS-08-023	27-Sep-08	15U	436115	5468419	368m		_	
RCSS-08-026 27-Sep-08 15U 436224 5468220 369m <5 < 0.005 quartz stringers through mafic trsce of py; outcrop RCSS-08-027 27-Sep-08 15U 436212 5468224 366m <5	RCSS-08-024	27-Sep-08	15 U	436242	5468233	359m	157	0.157	
RCSS-08-027 27-Sep-08 15U 436212 5468224 366m <5 < 0.005 qtz through carb mafic trace of py; outcrop RCSS-08-028 27-Sep-08 15U 436206 5468224 371m <5	RCSS-08-025	27-Sep-08	15Ü	436225		363m	<5		
RCSS-08-028 27-Sep-08 15U 436206 5468224 371m <5 <0.005 qtz through carb mafic trace of py; outcrop RCSS-08-029 27-Sep-08 15U 436203 5468221 372m 149 0.149 rusty shearzone through mafics qtz rich sericite trace of py; outcrop RCSS-08-030 27-Sep-08 15U 436242 5468216 379m <5	RCSS-08-026	27-Sep-08	15U	436224	5468220	369m	<5	<0.005	
RCSS-08-029 27-Sep-08 15U 436203 5468221 372m 149 0.149 rusty shearzone through mafics qtz rich sericite trace of py; outcrop RCSS-08-030 27-Sep-08 15U 436242 5468216 379m <5	RCSS-08-027	27-Sep-08	15U	436212	5468224	366m	<5	<0.005	qtz through carb mafic trace of py; outcrop
RCSS-08-030 27-Sep-08 15U 436242 5468216 379m <5 <0.005 sil rusty carb trace of py; outcrop RCSS-08-031 27-Sep-08 15U 436243 5468211 383m <5	RCSS-08-028	27-Sep-08	15Ú	436206				<0.005	
RCSS-08-031 27-Sep-08 15U 436243 5468211 383m <5 <0.005 sil rusty carb trace of py; outcrop RCSS-08-032 27-Sep-08 15U 436327 5468217 370m <5	RCSS-08-029	27-Sep-08	15U	436203	5468221	372m	149	0.149	
RCSS-08-032 27-Sep-08 15U 436327 5468217 370m <5 <0.005 rusty carb mafic qtz rich 2% py; outcrop RCSS-08-033 27-Sep-08 15U 436448 5467993 370m <5	RCSS-08-030	27-Sep-08	15U	436242	5468216	379m	<5	<0.005	sil rusty carb trace of py; outcrop
RCSS-08-033 27-Sep-08 15U 436448 5467993 370m <5 <0.005 rusty carbonated brechiated qtz rich trace of py; outcrop RCSS-08-034 27-Sep-08 15U 436997 5467993 370m <5	RCSS-08-031	27-Sep-08	15U	436243	5468211	383m	<5		
RCSS-08-034 27-Sep-08 15U 436997 5467993 370m <5 <0.005 rusty carbonated brechiated qtz rich trace of py; outcrop RCSS-08-035 27-Sep-08 15U 436448 5467993 370m <5	RCSS-08-032	27-Sep-08	15U	436327	5468217	370m	<5	<0.005	rusty carb mafic qtz rich 2% py; outcrop
RCSS-08-034 27-Sep-08 15U 436997 5467993 370m <5 <0.005 rusty carbonated brechiated qtz rich trace of py; outcrop RCSS-08-035 27-Sep-08 15U 436448 5467993 370m <5			15U	436448	5467993	370m	<5	<0.005	
RCSS-08-035 27-Sep-08 15U 436448 5467993 370m <5 <0.005 rusty carbonated brechiated qtz rich trace of py; outcrop RCSS-08-036 28-Sep-08 15U 437728 5466982 328m 12 0.012 carbonated mafic with little stringers of qtz 2-4% py; outcrop RCSS-08-037 28-Sep-08 15U 435489 5469148 334m <5			15U	436997	5467993	370m	<5	<0.005	
RCSS-08-036 28-Sep-08 15U 437728 5466982 328m 12 0.012 carbonated mafic with little stringers of qtz 2-4% py; outcrop RCSS-08-037 28-Sep-08 15U 435489 5469148 334m <5	RCSS-08-035	27-Sep-08	15U	436448	5467993	370m	<5	<0.005	rusty carbonated brechiated qtz rich trace of py; outcrop
RCSS-08-037 28-Sep-08 15U 435489 5469148 334m <5 <0.005 carbonated mafic with quartz trace of py; outcrop RCSS-08-038 28-Sep-08 15U 435495 5469150 331m <5			15U	437728	5466982	328m	12	0.012	carbonated mafic with little stringers of qtz 2-4% py; outcrop
RCSS-08-038 28-Sep-08 15U 435495 5469150 331m <5 <0.005 carbonated mafic with sericite and qtz trace of py; outcrop			15U	435489	5469148	334m	<5	<0.005	carbonated mafic with quartz trace of py; outcrop
			15U	435495	5469150	331m	<5	<0.005	carbonated mafic with sericite and qtz trace of py; outcrop
			15U	435189	5469244	332m	<5	<0.005	carbonated mafic with sericite and qtz trace of py; outcrop

RGSS-80-041 85-Sep-08 18U 4359672 54596852 329m 45 4,0,005 musty controlled malic base of by p. dutrop RGSS-80-043 85-Sep-08 15U 459165 54677362 321m 45 4,0,005 musty controlled malic base of by p. dutrop RGSS-80-045 85-Sep-08 15U 459166 54677362 321m 45 4,005 musty controlled malic base of by p. dutrop RGSS-80-045 85-Sep-08 15U 459166 5487744 38m 15 0.005 musty controlled malic base of by p. dutrop RGSS-80-045 85-Sep-08 15U 459162 5487744 38m 15 0.015 musty controlled malic base of by p. dutrop RGSS-80-047 85-Sep-08 15U 459162 5487744 38m 15 0.015 musty controlled malic base of by p. dutrop RGSS-80-047 85-Sep-08 15U 458767 5467343 32m 0 0.006 musty controlled malic base of by p. dutrop RGSS-80-049 85-Sep-08 15U 458767 5467343 32m 4 0.005 musty controlled malic base of by p. dutrop 90	DCCC 00 040 I	20.0= 00	4511	425077	5469079	327m	<5	<0.005	rusty altered sericite shearzone trace of py; outcrop
RGSS-86-08/2 28-Sep-08 19J. 48186 567374 254m 45 40,005 usery combinated malic frame of pyr, float RGSS-96-08-18-2 58-Sep-08 15J. 48186 567362 32 fm 6 00.00 usery combinated malic frame of pyr, custron RGSS-96-048-18-3 58-Sep-08 15J. 48186 567343 33 mm 15 00.00 usery cambanated malic frame of pyr, custron RGSS-96-046-18-3 58-Sep-08 15J. 48198 567343 33 mm 15 00.15 usery cambanated malic frame of pyr, float RGSS-96-046-18-3 58-Sep-08 15J. 48198 567359 30 mm 7 0.007 usery cambanated malic frame of pyr, float RGSS-96-046-18-3 58-Sep-08 15J. 48198 567359 30 mm 7 0.007 usery cambanated malic frame of pyr, float RGSS-96-046-18-3 58-Sep-08 15J. 48209 568734-3 30 mm 6 0.006 usery cambanated malic frame of pyr, float RGSS-96-040-07-3 58-Sep-08 15J. 48209 568736-3 30 mm 3 0.013 usery cambanated malic frame of pyr, bus									
Incompanies 190 19									
RCSS-08-046 28-Sep-08 15U 49-191 49-191 54-1							-		
FIGSS-86-946 28-sep-08 15U 439199 5467346 329m 16 0.015 custy-quarks through mafic trace of py, outcrop custor-pg cu	_								
ICSSS-80-646 28-Sep-08 15U 439192 5467345 327m 7 0.07 0.07 0.05		,							
RGSS-08-047 28-Sep-08 59.1 456194 846736 320m 7 0.007 nusty carbonated maffer series alteration. Next 1605S-08-068 28-Sep-08 59.1 456197 8467348 322m 55 50.005 nusty carbonated maffer series alteration. Next 1605S-08-068 28-Sep-08 59.1 456200 6467348 322m 55 50.005 nusty carbonated maffer series alteration 10% by subcrop 1605S-08-068 28-Sep-08 59.1 456200 6467348 322m 32.00 4667316 323m 32.00 40.024 nusty carbonated maffer series alteration 10% by subcrop 1605S-08-068 28-Sep-08 59.1 456222 5467308 322m 32.00 322m 32.00 10.00 1									
RCSS-08-084 28-59-08 15U 436201 646734 325m 5 456736 325m 456736 325									
RCSS-08-049 28-Sep-08 15U 43820 5467343 322m 45 40.005 40							· ·		
RCSS-08-060 28-Sep-08 TSU 436229 5467303 332m 34 0.034 rusty carbonated mafic sericle alteration 10% py; subcrop									
RCSS-08-061 28-Sep-08 15U 439220 4467303 332m 34 0.034 rusty carbonated mafic sericite alteration 10% py; subcrop									
RCSS-08-062 28-Sep-08 15U 436222 5467308 328m 24 0.024 usty carbonated mafic sericle alteration 10% py, subcrop									
RCSS-08-053 28-Sep-08 15U 436224 5467309 325m 325m 82 0.082 rusty carbonated mafic sericite alteration 10% py; subcrop									
RCSS-08-065 28-Sep-08 15U 436225 5467309 325m 82 0.082 usily carbonated mafic sericitie alteration 10% py; subcrop									
RCSS-08-055 28-Sep-08 15U 436225 5467309 328m 27 0.027 tusty carbonated mafic sericle alteration 10% by; subcrop RCSS-08-065 28-Sep-08 15U 436216 5467310 329m 26 0.026 tusty carbonated mafic sericle alteration 10% by; subcrop RCSS-08-07 28-Sep-08 15U 437355 5462818 335m 18 0.018 tusty carbonated mafic sericle alteration 10% by; subcrop RCSS-08-060 29-Sep-08 15U 437355 5462818 335m 18 0.018 tusty carbonated mafic sericle alteration 10% by; subcrop RCSS-08-060 30-Sep-08 15U 437355 5462818 335m 18 0.018 tusty carbonated mafic sericle alteration 10% by; subcrop RCSS-08-060 30-Sep-08 15U 436944 5466280 328m < 5 0.005 carbonated qtz rich sericle shear zone trace of py; outcrop RCSS-08-060 30-Sep-08 15U 436941 5466283 328m 5 0.005 small qtz ven through carbonated race of py; outcrop RCSS-08-060 30-Sep-08 15U 436940 5466376 337m 43 0.043 30cm qtz ven through carbonated mafic sericle trace of py; outcrop RCSS-08-060 30-Sep-08 15U 436800 5466376 337m 43 0.043 30cm qtz ven through sheared mafic sericle trace of py; outcrop RCSS-08-065 30-Sep-08 15U 436810 5466372 348m 16 0.016 15cm qtz ven trough altered mafic shear sericle trace of py; outcrop RCSS-08-066 30-Sep-08 15U 436804 5466373 330m 7 0.007 20cm qtz ven through sheared shared up mafic sericle trace of py; outcrop RCSS-08-066 30-Sep-08 15U 436804 5466373 330m 7 0.007 16ox wide qtz through altered shared up mafic sericle trace of py; outcrop RCSS-08-066 30-Sep-08 15U 436804 5466373 330m 7 0.007 16ox wide qtz through altered shared up mafic sericle trace of py; outcrop RCSS-08-070 30-Sep-08 15U 436804 5466373 330m < 5 0.005 16ox wide qtz through altered shared up mafic sericle trace of py; outcrop RCSS-08-070 30-Sep-08 15U 436804 5466373 330m < 5 0.005 16ox wide qtz through altered shared up mafic sericle trace of py; outcrop RCSS-08-070 30-Sep-08 15U 436804 5466373 330m < 5 0.005 10ox wide qtz through mafic shear sericle trace of py; outcrop RCSS-08-070 30-Sep-08 15U 436804 5466373 330m < 5 0.005 10ox wide qtz through mafic shear sericle trace of py; outcrop RCSS-08-									
RCSS-08-056 28-Sep-08 15U 436216 5467310 329m 26 0.026 1usty carbonated mafic sericle alteration 10% py; subcrop 15U 437381 5462843 335m 22 0.022 1usty uggy gabbro 5-10% by 15U 437381 5462843 335m 18 0.018 18 0.014									
RCSS-08-057 29-Sep-08 15U 437315 5462813 335m 22 0.022 rusty ruggy gabbro 5-10% by		28-Sep-08	15U ¹						
RCSS-08-088 29-Sep-08 15U 437355 5462818 335m 18 0.018 usty carb maffic tr py RCSS-08-08-09 39-Sep-08 15U 437374 5462815 335m 14 0.014 rusty carb maffic tr py RCSS-08-060 30-Sep-08 15U 436944 546283 328m 5 0.005 chonsted ct rich seriotic shear zone trace of py; outcrop RCSS-08-061 30-Sep-08 15U 436848 5466363 328m 5 0.005 small qtz ven through carb sericite mafic shear zone trace of py; outcrop RCSS-08-063 30-Sep-08 15U 436848 5466363 328m 5 0.005 small qtz ven through carb sericite mafic shear zone trace of py; outcrop RCSS-08-063 30-Sep-08 15U 436800 5466376 337m 43 0.043 30cm qtz ven through sericite mafic sericite trace of py; outcrop RCSS-08-069 30-Sep-08 15U 436801 5466372 348m 16 0.016 15cm qtz ven through sericite mafic sericite trace of py cpy; outcrop RCSS-08-067 30-Sep-08						329m			
RCSS-08-080 29-Sep-08 15U 437374 5462815 330m 14 0.014 rusty carb mafic tripy									
RCSS-08-061 30-Sep-08 15U 436944 5466280 326m < 5 < 0.005 carbonated qtz rich sericite shear zone trace of py; outcrop	RCSS-08-058	29-Sep-08	15U	437355		335m		0.018	rusty carb mafic tr py
RCSS-08-061 30-Sep-08 15U 436941 5466283 328m 5 0.005 small qtz vein through carb sericite mafic shear zone trace of py; outcrop	RCSS-08-059	29-Sep-08	15U			330m	14	0.014	
RCSS-08-062 30-Sep-08 15U 436848 5466362 323m 2397 2.397 rusty mafic vuggy carb trace of py; float	RCSS-08-060			436944	5466280			<0.005	
RCSS-08-064 30-Sep-08 15U 43680 5466376 337m 43 0.043 30cm qtz vein through sheared mafic sercite trace of py; outcrop	RCSS-08-061	30-Sep-08	15U	436941					
RCSS-08-064 30-Sep-08 15U 436816 5466354 355m 7 0.007 20 cm qtz vein through sericite mafic trace of py cpy; outcrop	RCSS-08-062	30-Sep-08	15U	436848	5466362		2397	2.397	
RCSS-08-065 30-Sep-08 15U 436810 5466372 348m 16 0.016 15cm qtz vein trough altered mafic shear sericite trace of py cpy; outcrop RCSS-08-066 30-Sep-08 15U 436804 5466378 330m 7 0.007 foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop RCSS-08-067 30-Sep-08 15U 436804 5466377 328m 8 0.008 foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop RCSS-08-068 30-Sep-08 15U 436804 5466377 330m -5 <0.005	RCSS-08-063	30-Sep-08	15U	436800			43	0.043	
RCSS-08-066 30-Sep-08 15U 436804 5466378 330m 7 0.007 foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop RCSS-08-067 30-Sep-08 15U 436804 5466377 328m 8 0.008 foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop RCSS-08-068 30-Sep-08 15U 436804 5466377 330m <5	RCSS-08-064	30-Sep-08	15U	436816	5466354	355m	7	0.007	
RCSS-08-067 30-Sep-08 15U 436804 5466377 328m 8 0.008 foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop RCSS-08-068 30-Sep-08 15U 436804 5466377 330m <5	RCSS-08-065	30-Sep-08	15U	436810	5466372	348m	16	0.016	15cm qtz vein trough altered mafic shear sericite trace of py cpy; outcrop
RCSS-08-068 30-Sep-08 15U 436804 5466377 330m <5 <0.005 foot wide qtz through altered shared up mafic sericite trace of py; outcrop RCSS-08-069 30-Sep-08 15U 436808 5466373 330m <5	RCSS-08-066	30-Sep-08	15U	436804	5466378	330m	7	0.007	foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop
RCSS-08-069 30-Sep-08 15U 436808 5466373 330m <5 <0.005 20 cm qtz vein through mafic shear sericite trace of py; outcrop RCSS-08-070 30-Sep-08 15U 436683 5466454 336m 7 0.007 rusty shear zone qtz rich sericite trace of py; outcrop RCSS-08-071 30-Sep-08 15U 436669 5466474 324m <5	RCSS-08-067	30-Sep-08	15U	436804	5466377	328m	8	0.008	foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop
RCSS-08-070 30-Sep-08 15U 436683 5466454 336m 7 0.007 rusty shear zone qtz rich sericite trace of py; outcrop RCSS-08-071 30-Sep-08 15U 436669 5466547 324m <5	RCSS-08-068	30-Sep-08	15U	436804	5466377	330m	<5	<0.005	foot wide qtz through altered shared up mafic sericite trace of py cpy; outcrop
RCSS-08-071 30-Sep-08 15U 436669 5466547 324m <5	RCSS-08-069	30-Sep-08	15U	436808	5466373	330m	<5	<0.005	20 cm qtz vein through mafic shear sericite trace of py; outcrop
RCSS-08-072 30-Sep-08 15U 436686 5466496 324m <5 <0.005 2 foot qtz vein through mafic shear sericite altered; outcrop RCSS-08-073 30-Sep-08 15U 436364 5466874 325m <5	RCSS-08-070	30-Sep-08	15U	436683	5466454	336m	7	0.007	rusty shear zone qtz nch sericite trace of py; outcrop
RCSS-08-073 30-Sep-08 15U 436364 5466874 325m <5 <0.005 2 foot qtz vein through mafic shear sericite altered; outcrop RCSS-08-074 30-Sep-08 15U 436363 5466874 331m <5	RCSS-08-071	30-Sep-08	15U	436669	5466547	324m	<5	<0.005	1 foot wide qtz vein through mafic shear sericite; outcrop
RCSS-08-074 30-Sep-08 15U 436363 5466874 331m <5	RCSS-08-072	30-Sep-08	15U	436686	5466496	324m	<5	<0.005	2 foot qtz vein through mafic shear sericite altered; outcrop
RCSS-08-075 30-Sep-08 15U 436362 5466872 326m <5 <0.005 1m wide qtz vein through mafics sericite; outcrop RCSS-08-076 30-Sep-08 15U 436302 5467002 326m <5	RCSS-08-073	30-Sep-08	15U	436364	5466874	325m	<5	<0.005	2 foot qtz vein through mafic shear sericite altered; outcrop
RCSS-08-075 30-Sep-08 15U 436362 5466872 326m <5 <0.005 1m wide qtz vein through mafics sericite; outcrop RCSS-08-076 30-Sep-08 15U 436302 5467002 326m <5	RCSS-08-074	30-Sep-08	15U	436363	5466874	331m	<5	<0.005	rusty carbed mafic malichite staining; outcrop
RCSS-08-076 30-Sep-08 15U 436302 5467002 326m <5			15U	436362	5466872	326m	<5	<0.005	1m wide qtz vein through mafics sericite; outcrop
RCSS-08-077 1-Oct-08 15U 432784 5463013 357m 6 0.006 rusty carb mafic 1-2%py RCSS-08-078 1-Oct-08 15U 432792 5463003 360m 7 0.007 rusty carb mafic 1-2%py RCSS-08-080 1-Oct-08 15U 432810 5463479 370m 8 0.008 rusty carb mafic tr py RCSS-08-081 1-Oct-08 15U 432821 5463488 375m 5 0.005 rusty carb mafic tr py	RCSS-08-076	30-Sep-08	15U	436302	5467002	326m	<5	<0.005	10-15cm wide qtz vein through mafic shear sericite cpy; outcrop
RCSS-08-078 1-Oct-08 15U 432792 5463003 360m 7 0.007 rusty carb mafic 1-2%py RCSS-08-080 1-Oct-08 15U 432810 5463479 370m 8 0.008 rusty carb mafic tr py RCSS-08-081 1-Oct-08 15U 432821 5463488 375m 5 0.005 rusty carb mafic tr py					5463013	357m	6	0.006	rusty carb mafic 1-2%py
RCSS-08-080 1-Oct-08 15U 432810 5463479 370m 8 0.008 rusty carb mafic tr py RCSS-08-081 1-Oct-08 15U 432821 5463488 375m 5 0.005 rusty carb mafic tr py				432792		360m	7	0.007	
RCSS-08-081 1-Oct-08 15U 432821 5463488 375m 5 0.005 rusty carb mafic tr py			15U			370m	8	0.008	
						375m	5	0.005	rusty carb mafic tr py
	RCSS-08-082	1-Oct-08	15U	432849			7	0.007	

	1 4-11				44 1 /	2.044	Out Serviced Selving FOV on 15-days ONO 00m unide absorbing
624601	15U	440666	5460812				Sol fine grained felsic 5% sulfides O/C 20m wide shoreline
624602	15U	440696	5460854				fine grained silicified through GD 5% fine sulfides
624603	15U	440600	5460707				fractured up GD green Silicified shear strike 130 degrees fractured up tr py
624604	15U	440478	5460502				slightly altered boulders along shoreline up to 1% pyrite carb over fractures
624605	15U	440460	5460525				altered GD carb altered up to 5% pyrite large amount rubble boulders in spots
624606	15U	440453	5460546	1	B10	1.81	sheared altered GD rubble along shore
624607	15U	440453	5460549	2	949	2.949	solicified GD flooded with white alteration 4% pyrite in fractures
624608	15U	440449	5460551	1		1.536	fractured up GD 5%pyrite in fractured places
624609	15U	440446	5460555	2	339	2.339	fractured up GD 5%pyrite in fractured places
624610	15U	440439	5460565	3	07	0.307	altered carb GD trace pyrite rubble shoreline
624611	15U	440426	5460600	6	950	6.95	highly altered GD similar to Starlight showing subcrop
624612	15Ū	440430	5460605	7	'44	0.744	highly altered GD similar to Starlight showing subcrop 3% pyrite
624613	15Ū	440431	5460604	10	155 1	10.155	O/C altered GD 3 - 6%pyrite silic carb 1 meter alt. O/B to east strings of altered to GD
624614	15U	440423	5460603	1	318	1.318	O/C altered GD 3 - 6%pyrite silic carb 1 meter alt. O/B to east strings of altered to GD
624615	15U	440336	5460668		26	0.026	boulder along shoreline trace pyrite trace molly
624616	15U	440318	5460684	7	67	0.767	boulder of altered GD trace pyrite in area of sheared up
624617	15U	440294	5460718	1	562	1.562	qtz flooded altered gd up to 5%py
624618	15U	440287	5460730		331	0.831	boulder of altered GD qtz flooded carb flooded,tr to 1%py
624619	15U	440282	5460731		20	0.02	large boulder of felsic vol, 5 to 10% py po
624620	15U	440270	5460744		18	0.018	large angular boulder of gd with minor qtz flooding
624621	15U	440203	5460768		14	0.014	large boulder of gd minor alteration, tr to .5% py
624622	15U	440178	5460774		180	0.48	boulders of gd with qtz flooding, 1%py
624623	15U	440082	5460819		203	0.203	boulders of gd along shorelineup to 5%py minor alteration
624624	15U	440058	5460823		22	0.022	altered gd carb, sil ,tr py
624625	15U	439987	5460792		11	0.011	brocken up rubbe in alteration, qtz flooded, tr py
624626	15U	439995	5460793		6	0.006	boulders of qtz veininnear sourse,tr to 1% py
624627	15U	439987	5460779	1	211	1.211	subcrop 2 meters wide,qtz flooded, up to 6% py
624628	15U	439991	5460789			0.938	same as 627 5% to 10% py
624629	15U	439976	5460777			0.131	large qtz boulder 2.5 meters long by .75 meters wide. Up to 10 %py tr moly
624630	15U	439977	5460765			0.271	same boulder up to 5% moly, 4%py tr cpy
624631	15U	439969	5460769			0.036	altered gd with 2 cm wide qtz vein subcrop , tr py
624632	15U	439954	5460761			0.222	boulder of gd altered qtz flooded 1 meter wide,up to 5%py (really silicified)
624633	15U	439853	5460790	-		0.747	sil gd tr pylarge boulder under stump
624634	15U	439846	5460837			0.006	boulder of gd fracturedup with fractures of moly and py
624635	15U	439846	5460867	 	370	0.37	fractured up gd altered , tr py
624636	150	439853	5460882	 '		0.006	fractured up gd altered , tr py
624637	15U	439842	5460887	- 		0.038	shear up to 20-Meters wide,all shear completely sheared with ser, carb, tr o/c
624638	150	439841	5460889			0.038	same as 637
624639	15U	439836	5460891			0.012	altered gd qtz flooding tr py
624640	15U	439858	5460900			0.012	subcrop ser sch,carb,tr py boulder
624641	15U	439638	5464862	-		<0.005	sheared up solicified grtz flooded 1 meter wide o/b south side
624642	15U	430575		 		< 0.005	laminated felsic slightly altered 20% pyrite boulder
024042	150	430375	3404334		-J	-0.000	identification original diseases 20% pyrito boolida

204042	T deti 1	100705	5404404		10	0.01	shr mafic minor carb minor grtz po, py, trace cpy on contact with shr carb felsic
624643	15U	430705	5464434				
624644	15U	430705	5464430		92		sheared felsic with carb ser, minor qrtz flooding, trace pyrite
624646	15U	430799	5464350		8		grtz felspar porphry trace sulfids altered carb
624647	15U	430940	5463999		6		grtz flooded carb zone in shear zone trace py strike 170degrees
624648	15U	430935	5464031		1029		qrtz carb vien ser 1 meter wide trace y strike 170degrees
624649	15U	431137	5464301		158		carb mafic minor qrtz trace py 3 meters wide strike 170degrees
624650	15U	431147	5464315		9		mafic? Felsic? Carb houseing trace py
624701	15U	440380	5460273		388		old showing sheared up carb GD breccia 1.5 meters wide str?
624702	15U	440373	5460275		980		carb breccia up to 1% py str 110? Dip 40 N NE?
624703	15U	440346	5460272		1103		carb altered throughout all DG stringers of alteration
624704	15U	440354	5460271		144	0.144	carb altered in GD minor sil, tr py big area of carb alteration up bank of OC
624705	15U	440036	5460050		208	0.208	carb zone in GD tr py probably 1 to 2 meters wide
624706	15U	440036	5460054		793	0.793	carb zone in GD tr py probably 1 to 2 meters wide
624707	15U	440037	5460053		9781	9.781	carb zone in GD tr py probably 1 to 2 meters wide
624708	15U	440034	5460055		1063	1.063	carb zone in GD traced for for 20 meters,up to 2 meters wide,open on both ends
624709	15U	440147	5459732		440	0.44	carb sil up to 5 - 8% py qrtz flooding steep dip to the N NE strike betw 120 and 140 degrees?
624710	15U	440136	5459726		891	0.891	same as 709 unsure of width but appears to be 1/2m wide with py throughout zones
624711	15U	440149	5459727		2557	2.557	same as 710
624712	15U	440130	5459716		574	0.574	same as 710 samples taken over strike length of 12 meters
624713	15U	440075	5459641		991	0.991	altered GD up to 5% py qrtz
624714	15U	440078	5459643		1354	1.354	.5 meters wide of GD altered qrtz carb flooding up to 5% py strike 80 degrees?
624715	15U	439938	5459516		650	0.65	andrews old showing altered GD possible float tr to 1% py
624716	15U	439886	5459920		3205	3.205	sil carb zone up to 1% cubic and fine py
624717	15U	439886	5459920		100	0.1	carb zone qrtz carb flooding up to 5% py 1 meter wide completely buried
624718	15U	439885	5459926		-8	0.008	sil dionte 15% po py
624719	15U	439883	5459922		378	0.378	sil dionte up to 15% po py
624720	15U	439887	5459917		12		sil rusty diorite on contact with GD 10% py po
624721	15U	439869	5459902		6	0.006	rusty diorite up to 10% py po blue qtyz eyes throughout
624722	15U	439882	5459910		17	0.017	gozzin in contact with gabbro and GD 10% py
624723	15U	439891	5459918		7	0.007	breccia between Diorite and GD up to 15% po py
624724	15U	439891	5459946		2408	2.408	grtz carb vien throughout mafic/GD stringers of grtz carb
624725	15U	439902	5459946		48	0.048	grtz vien carb 10cm wide tr py
624726	15U	439892	5459972		16	0.016	carb zone up to 1% py up to 20 Meters wide
624727	15U	439896	5459974		27	0.027	same as 726
624728	15U	439885	5459989		21	0.021	grtz carb running in plce up to 3% py altered
624729	15U	439894	5459981		32	0.032	altered carb zone up to 2% py
624730	15U	439860	5460222		120	0.12	large angular boulder carb grtz flooded
624731	15U	439919	5460434		23195	23.195	intensly altered carb qrtz flooded large area of carb alteration
624731	150	439919	5460434	-	5074	5.074	sil grtz flooded up to 5% py large area of carb alteration
624733	150	439923	5460424		1711	1.711	carb alt tr to 1% py 3 - 4m wide OB on N-side GD on S-side contact str 110 - 120 degrees
					463	0.463	narrow band of carb alteration tr py
624734	15U	439937	5460495		592	0.463	rubble; bldrs w qtz flooding; carb; f.gr; tr py; probably in place
624735	15U	439971	5460716		ეყ∠	0.592	Trubble, blots width industry, carb, r.gr, tripy, probably in place

624736	15U	439956	5460688	2591	2.591	altered granodiorite; tr to 1% py; qtz flooding; old sample (709662); o/c; 170° strike
624737	15U	439863	5460657	1181	1.181	heavy carb; tr py; qtz flooding; o/c
624738	15U	439857	5460660	1958	1.958	heavy carb in granodiorite; altered; tr to 1% py
624739	15Ū	439866	5460659	694	0.694	silicified granodiorite: qtz flooded with up to 1% py
624740	15U	439866	5460662	1575	1.575	silicious altered granodiorite; up to 1% pyrite
624741	15U	439847	5460652	895	0.895	silicious altered o/c; qtz flooding; fractured; tr py
624743	15U	N/A	N/A	13	0.013	no description
624744	15U	439739	5460697	165	0.165	altered granodiorite; tr py; o/c
624745	15U	439702	5460695	3869	3.869	altered granodiorite; 1 to 2% py
624746	15U	439702	5460691	260	0.26	qtz vein; hem altered; wall rock; altered granodiorite
624747	15U	439703	5460691	1883	1.883	altered granodiorite; up to 2% py
624748	15U	439702	5460691	795	0.795	altered granodiorite; up to 1% py
624749	15U	439833	5460360	520	0.52	heavily altered carb shear; tr py; 110°
624750	15U	439830	5460413	6	0.006	qtz vein; bull white in green coarse grained gabbro

Waypoint	Date	Zone	Easting	Northing	Elevation	Au ppb	Pt ppb	Pd ppb	Co ppm	Cu ppm	Ni ppm	Description
MAM-08-007	24-Sep-08	15U	430071	5465386	342 m	<5	<15	<10	128	3133	1663	pyroxenite; 5% sulphide; 3% py, 1% po, 1% cpy; rusty weakly foliated; float
MAM-08-008	24-Sep-08	15U	430073	5465387	343 m	49	38	88	121	2978	1680	gabbro; 5% sulphide; 3% py, 1% po, 1% cpy; massive; rusty patches; float

APPENDIX II

Personnel Involved with Prospecting Program

Personnel included in the 2008 Dogpaw prospecting program

Mick Stares Roy Hill Ricky Crocker Shane Stares Mike MacIsaac Don Heerema Jeff Myllyaho

APPENDIX III

Daily Work Log

Prospecting Log

Sept 22 2009 -	Mick Stares and Roy Hill travelled to Sioux Narrows
Sept 23 2009 -	The rest of the personnel travelled to Sioux Narrows while Mick Stares and Roy Hill prospected shoreline on Stephen Lake sampling mostly boulders of granodiorite
Sept 24 2009 -	Entire crew prospected the areas around Bag Lake mainly concentrating on the eastern side sampling mostly carbonatized volcanics and/or silicious rocks with visible sulphide
Sept 25 2009 -	Entire crew did prospecting traverses on the Stephen Lake Stock south of Stephen Lake sampling carbonate and sulphide rich granodiorite
Sept 26 2009 -	Entire crew did prospecting traverses on the Stephen Lake Stock south of Stephen Lake sampling carbonate and sulphide rich granodiorite while M.Stares and R.Hill travelled back to Thunder Bay in P.M.
Sept 27 2009 -	M.MacIsaac, D.Heerema and J.Myllyaho roughly mapped and sampled along a previously cut grid on the eastern shore of Dogpaw Lake while R.Crocker and S.Stares prospected between grid lines sampling mostly quartz and carbonate-rich rocks
Sept 28 2009 -	M.MacIsaac, D.Heerema and J.Myllyaho roughly mapped and sampled along a previously cut grid on the eastern shore of Dogpaw Lake while R.Crocker and S.Stares prospected between grid lines sampling mostly quartz and carbonate-rich rocks
Sept 29 2009 -	R.Crocker, S.Stares, D.Heerema and J.Myllyaho prospected a lone claim on Cedartree Lake where mostly gabbros and intermediate volcanics were observed where sampling was done on mainly felsic-rich rocks showing increased alteration
Sept 30 2009 -	M.MacIsaac, D.Heerema and J.Myllyaho prospected east of Bag Lake sampling mostly sheared and carbonatized volcanics while R.Crocker and S.Stares prospected the southeastern Dogpaw lakeshore sampling a variety of quartz veins
Oct 1 2009 -	Entire crew prospected north, east and south of the Cameron Lake Road near Bag Lake sampling carbonatized volcanics and/or silicious rocks with visible sulphide
Oct 2 2009 -	Entire Crew travelled back to Thunder Bay

APPENDIX IV

Laboratory Certificates of Analysis

1046 Gorham Street

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256

Fax: (807) 622-7571

Oct 6, 2008 Date Received:

Oct 20, 2008 Date Completed:

> Job #: 200843753

Reference: Project #1900

Sample #: 310 Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.033	< 0.001	33	DHJ-08-001		309843
0.225	0.007	225	DHJ-08-002		309844
1.962	0.057	1962	DHJ-08-003		309845
0.041	0.001	41	DHJ-08-004		309846
0.246	0.007	246	DHJ-08-005		309847
0.221	0.006	221	DHJ-08-006		309848
0.286	0.008	286	DHJ-08-007		309849
0.373	0.011	373	DHJ-08-008		309850
15.906	0.464	15906	DHJ-08-009		309851
16.873	0.492	16873	DHJ-08-009	Dup	309852
0.993	0.029	993	DHJ-08-010		309853
0.262	0.008	262	DHJ-08-011		309854
12.510	0.365	12510	DHJ-08-012		309855
0.355	0.010	355	DHJ-08-013		309856
0.153	0.004	153	DHJ-08-014		309857
0.527	0.015	527	DHJ-08-015		309858
0.194	0.006	194	DHJ-08-016		309859
1.479	0.043	1479	DHJ-08-017		309860
0.106	0.003	106	DHJ-08-018		309861
0.037	0.001	37	DHJ-08-019		309862
0.037	0.001	37	DHJ-08-019	Dup	309863
0.007	< 0.001	7	DHJ-08-020		309864
0.016	<0.001	16	DHJ-08-021		309865
5.35	0.156	5357	DHJ-08-022		309866

1046 Gorham Street

Thunder Bay, ON

Canada P7B 5X5

LABONATORIES

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

www.accurassay.com

assay@accurassay.com

Date Completed:

Oct 20, 2008

Job#:

200843753

Reference:

Project #1900

Sample #:

310

Rock

	ROCK	Jumpie n. 310	'			
Au g/t (ppm)		Au oz/t	Au ppb	Client ID	<i></i>	Acc#
4.697		0.137	4697	DHJ-08-023		309867
2.096		0.061	2096	DHJ-08-024		309868
6.664		0.194	6664	DHJ-08-025		309869
18.560		0.541	18560	DHJ-08-026		309870
0.604		0.018	604	DHJ-08-027		309871
3.295		0.096	3295	DHJ-08-028		309872
0.052		0.002	52	DHJ-08-029		309873
0.057		0.002	57	DHJ-08-029	Dup	309874
1.574		0.046	1574	DHJ-08-030		309875
0.562		0.016	562	DHJ-08-031		309876
0.576		0.017	576	DHJ-08-032		309877
0.007		< 0.001	7	DHJ-08-033		309878
0.007		< 0.001	7	DHJ-08-034		309879
< 0.005		< 0.001	<5	DHJ-08-035		309880
0.612		0.018	612	DHJ-08-036		309881
0.098		0.003	98	DHJ-08-037		309882
0.007		< 0.001	7	DHJ-08-038		309883
0.208		0.006	208	DHJ-08-039		309884
0.204		0.006	204	DHJ-08-039	Dup	309885
0.021		< 0.001	21	DHJ-08-040		309886
0.023		< 0.001	23	DHJ-08-041		309887
< 0.005		< 0.001	<5	DHJ-08-042		309888
0.016		< 0.001	16	DHJ-08-043		309889
0.010		< 0.001	10	DHJ-08-044		309890

1046 Gorham Street

Thunder Bay, ON

Canada P78 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

Rock

	310 Rock	bumple #.			
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.007	< 0.001	7	DHJ-08-045		309891
0.025	< 0.001	25	DHJ-08-046		309892
< 0.005	<0.001	<5	DHJ-08-047		309893
0.026	< 0.001	26	DHJ-08-048		309894
0.102	0.003	102	DHJ-08-049		309895
0.104	0.003	104	DHJ-08-049	Dup	309896
0.014	< 0.001	14	DHJ-08-050		309897
0.105	0.003	105	DHJ-08-051		309898
0.052	0.002	52	DHJ-08-052		309899
0.098	0.003	98	DHJ-08-053		309900
0.016	<0.001	16	DHJ-08-054		309901
0.383	0.011	383	DHJ-08-055		309902
0.034	<0.001	34	DHJ-08-056		309903
0.109	0.003	109	DHJ-08-057		309904
0.271	0.008	271	DHJ-08-058		309905
0.123	0.004	123	DHJ-08-059		309906
0.125	0.004	125	DHJ-08-059	Dup	309907
0.064	0.002	64	DHJ-08-060		309908
0.565	0.016	565	MAM-08-003		309909
0.006	< 0.001	6	MAM-08-004		309910
0.010	< 0.001	10	MAM-08-005		309911
0.023	<0.001	23	MAM-08-006		309912
< 0.005	< 0.001	<5	MAM-08-009		309913
< 0.005	<0.001	<5	MAM-08-010		309914

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.611	0.018	611	MAM-08-011		309915
0.012	< 0.001	12	MAM-08-012		309916
0.005	< 0.001	5	MAM-08-013		309917
0.008	< 0.001	8	MAM-08-013	Dup	309918
< 0.005	< 0.001	<5	MAM-08-014		309919
0.095	0.003	95	MAM-08-015		309920
0.083	0.002	83	MAM-08-016		309921
0.279	0.008	279	MAM-08-017		309922
< 0.005	< 0.001	<5	MAM-08-018		309923
< 0.005	< 0.001	<5	MAM-08-019		309924
0.734	0.021	734	MAM-08-020		309925
0.009	< 0.001	9	MAM-08-021		309926
< 0.005	< 0.001	<5	MAM-08-022		309927
< 0.005	<0.001	<5	MAM-08-023		309928
< 0.005	< 0.001	<5	MAM-08-023	Dup	309929
< 0.005	<0.001	<5	MAM-08-024		309930
< 0.005	<0.001	<5	MAM-08-025		309931
< 0.005	< 0.001	<5	MAM-08-026		309932
< 0.005	<0.001	<5	MAM-08-027		309933
< 0.005	< 0.001	<5	MAM-08-028		309934
< 0.005	< 0.001	<5	JMM-08-060		309935
< 0.005	<0.001	<5	JMM-08-061		309936
< 0.005	< 0.001	<5	JMM-08-062		309937
< 0.005	< 0.001	<5	JMM-08-063		309938

₽ ∧CCURASSAY

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

P/B 6F12 Ph#: 256 Date Received:

Oct 6, 2008

www.accurassay.com

assay@accurassay.com

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

	on. Sto Rook	Sump			
Au g/t (ppm)	Au oz/t	Au ppb	Client ID	-	Acc#
< 0.005	< 0.001	<5	JMM-08-063	Dup	309939
0.067	0.002	67	JMM-08-064		309940
0.009	< 0.001	9	JMM-08-065		309941
0.024	< 0.001	24	JMM-08-066		309942
0.024	< 0.001	24	JMM-08-067		309943
2.913	0.085	2913	JMM-08-068		309944
0.020	< 0.001	20	JMM-08-069		309945
0.008	< 0.001	8	JMM-08-070		309946
0.699	0.020	699	JMM-08-071		309947
0.019	< 0.001	19	JMM-08-072		309948
0.076	0.002	76	JMM-08-073		309949
0.074	0.002	74	JMM-08-073	Dup	309950
< 0.005	< 0.001	<5	JMM-08-074		309951
0.415	0.012	415	JMM-08-075		309952
< 0.005	< 0.001	<5	JMM-08-076		309953
< 0.005	< 0.001	<5	JMM-08-077		309954
< 0.005	< 0.001	<5	JMM-08-078		309955
0.021	< 0.001	21	JMM-08-079		309956
0.011	< 0.001	11	JMM-08-080		309957
< 0.005	< 0.001	<5	JMM-08-081		309958
0.175	0.005	175	JMM-08-082		309959
< 0.005	< 0.001	<5	JMM-08-083		309960
< 0.005	<0.001	<5	JMM-08-083	Dup	309961
< 0.005	<0.001	<5	JMM-08-084		309962

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job#:

200843753

Reference:

Project #1900

Sample #:

Α.,.					
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
< 0.005	< 0.001	<5	JMM-08-085		309963
0.014	< 0.001	14	JMM-08-086		309964
< 0.005	< 0.001	<5	JMM-08-087		309965
< 0.005	< 0.001	<5	JMM-08-088		309966
< 0.005	< 0.001	<5	JMM-08-089		309967
0.208	0.006	208	JMM-08-090		309968
0.047	0.001	4 7	JMM-08-091		309969
0.009	< 0.001	9	JMM-08-092		309970
0.784	0.023	784	JMM-08-093		309971
0.780	0.023	780	JMM-08-093	Rep	309972
0.018	< 0.001	18	JMM-08-094		309973
< 0.005	< 0.001	<5	JMM-08-095		309974
< 0.005	< 0.001	<5	JMM-08-096		309975
0.106	0.003	106	JMM-08-097		309976
< 0.005	< 0.001	<5	JMM-08-098		309977
< 0.005	< 0.001	<5	JMM-08-099		309978
< 0.005	< 0.001	<5	JMM-08-100		309979
0.055	0.002	55	JMM-08-101		309980
< 0.005	< 0.001	<5	JMM-08-102		309981
0.029	< 0.001	29	JMM-08-103		309982
0.025	< 0.001	25	JMM-08-103	Dup	309983
57.450	1.676	57450	RCSS-08-001		309984
55.595	1.622	55595	RCSS-08-002		309985
90.510	2.641	90510	RCSS-08-003		309986

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received: Oct 6, 2008

Date Completed: Oct 20, 2008

Job #: 200843753

Reference: Project #1900

Sample #: 310 Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	
35.897	1.047	35897	RCSS-08-004	
3.641	0.106	3641	RCSS-08-005	
0.470	0.014	470	RCSS-08-006	
0.041	0.001	41	RCSS-08-007	
0.066	0.002	66	RCSS-08-008	
0.077	0.002	77	RCSS-08-009	
0.072	0.002	72	RCSS-08-009	Dup
0.144	0.004	144	RCSS-08-010	
4.086	0.119	4086	RCSS-08-011	
2.239	0.065	2239	RCSS-08-012	
0.759	0.022	759	RCSS-08-013	
0.391	0.011	391	RCSS-08-014	
2.535	0.074	2535	RCSS-08-015	
1.742	0.051	1742	RCSS-08-016	
0.121	0.004	121	RCSS-08-017	
2.449	0.071	2449	RCSS-08-018	
0.017	< 0.001	17	RCSS-08-019	
0.011	< 0.001	11	RCSS-08-019	Dup
0.067	0.002	67	RCSS-08-020	
0.103	0.003	103	RCSS-08-021	
0.153	0.004	153	RCSS-08-022	
0.068	0.002	68	RCSS-08-023	
0.157	0.005	157	RCSS-08-024	
< 0.005	< 0.001	<5	RCSS-08-025	

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received: Oct 6, 2008

Date Completed: Oct 20, 2008

Job #: 200843753

Reference: Project #1900

Sample #: 310 Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	Acc#
< 0.005	< 0.001	<5	RCSS-08-026	10011
< 0.005	< 0.001	<5	RCSS-08-027	10012
< 0.005	<0.001	<5	RCSS-08-028	10013
0.149	0.004	149	RCSS-08-029	0014
0.144	0.004	144	RCSS-08-029	0015 Dup
< 0.005	< 0.001	<5	RCSS-08-030	0016
< 0.005	< 0.001	<5	RCSS-08-031	0017
< 0.005	< 0.001	<5	RCSS-08-032	0018
< 0.005	< 0.001	<5	RCSS-08-033	0019
< 0.005	< 0.001	<5	RCSS-08-034	0020
< 0.005	< 0.001	<5	RCSS-08-035	0021
0.012	< 0.001	12	RCSS-08-036	0022
< 0.005	< 0.001	<5	RCSS-08-037	0023
< 0.005	< 0.001	<5	RCSS-08-038	0024
< 0.005	< 0.001	<5	RCSS-08-039	0025
< 0.005	< 0.001	<5	RCSS-08-039	0026 Dup
< 0.005	< 0.001	<5	RCSS-08-040	0027
< 0.005	< 0.001	<5	RCSS-08-041	0028
< 0.005	< 0.001	<5	RCSS-08-042	0029
< 0.005	< 0.001	<5	RCSS-08-043	0030
0.006	< 0.001	6	RCSS-08-044	0031
0.015	< 0.001	15	RCSS-08-045	0032
0.016	< 0.001	16	RCSS-08-046	0033
0.007	< 0.001	7	RCSS-08-047	0034

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

Date Completed:

1046 Gorham Street

Thunder Bay, ON

Canada P78 5X5

Oct 20, 2008

Job#:

200843753

Reference:

Project #1900

Sample #:

310

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.006	< 0.001	6	RCSS-08-048		310035
< 0.005	< 0.001	<5	RCSS-08-049		10036
< 0.005	< 0.001	<5	RCSS-08-049	Dup	10037
0.013	< 0.001	13	RCSS-08-050		10038
0.034	< 0.001	34	RCSS-08-051		10039
0.024	< 0.001	24	RCSS-08-052		10040
0.136	0.004	136	RCSS-08-053		10041
0.082	0.002	82	RCSS-08-054		10042
0.027	< 0.001	27	RCSS-08-055		10043
0.026	< 0.001	26	RCSS-08-056		10044
0.022	<0.001	22	RCSS-08-057		10045
0.018	< 0.001	18	RCSS-08-058		10046
0.014	< 0.001	14	RCSS-08-059		0047
0.014	< 0.001	14	RCSS-08-059	Rep	10048
< 0.005	<0.001	<5	RCSS-08-060		0049
0.005	< 0.001	5	RCSS-08-061		10050
2.397	0.070	2397	RCSS-08-062		10051
0.043	0.001	43	RCSS-08-063		0052
0.007	< 0.001	7	RCSS-08-064		10053
0.016	< 0.001	16	RCSS-08-065		0054
0.007	< 0.001	7	RCSS-08-066		0055
0.008	< 0.001	8	RCSS-08-067		10056
< 0.005	< 0.001	<5	RCSS-08-068		0057
< 0.005	< 0.001	<5	RCSS-08-069		10058

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

	sio noon	Sample			
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Ace#
< 0.005	< 0.001	<5	RCSS-08-069	Dup	310059
0.007	< 0.001	7	RCSS-08-070		310060
< 0.005	< 0.001	<5	RCSS-08-071		310061
< 0.005	< 0.001	<5	RCSS-08-072		310062
< 0.005	< 0.001	<5	RCSS-08-073		310063
< 0.005	< 0.001	<5	RCSS-08-074		310064
< 0.005	< 0.001	<5	RCSS-08-075		310065
< 0.005	< 0.001	<5	RCSS-08-076		310066
0.006	< 0.001	6	RCSS-08-077		310067
0.007	< 0.001	7	RCSS-08-078		310068
		No Sample Received	RCSS-08-079		310069
		No Sample Received	RCSS-08-079	Dup	310070
0.008	< 0.001	8	RCSS-08-080		310071
0.005	< 0.001	5	RCSS-08-081		310072
0.007	< 0.001	7	RCSS-08-082		310073
0.011	< 0.001	11	624601		310074
0.008	< 0.001	8	624602		310075
0.022	< 0.001	22	624603		310076
8.512	0.248	8512	624604		310077
8.186	0.239	8186	624605		310078
1.810	0.053	1810	624606		310079
2.949	0.086	2949	624607		310080
2.748	0.080	2748	624607	Dup	310081
1.536	0.045	1536	624608		310082

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

Acc#	Client 1D	Au ppb	Au oz/t	Au g/t (ppm)
310083	624609	2339	0.068	2.339
310084	624610	307	0.009	0.307
310085	624611	6950	0.203	6.950
310086	624612	744	0.022	0.744
310087	624613	10155	0.296	10.155
310088	624614	1318	0.038	1.318
310089	624615	26	< 0.001	0.026
310090	624616	767	0.022	0.767
310091	624617	1562	0.046	1.562
310092 Dup	624617	1583	0.046	1.583
310093	624618	831	0.024	0.831
310094	624619	20	< 0.001	0.020
310095	624620	18	< 0.001	0.018
310096	624621	14	< 0.001	0.014
310097	624622	480	0.014	0.480
310098	624623	203	0.006	0.203
310099	624624	22	< 0.001	0.022
310100	624625	11	< 0.001	0.011
310101	624626	6	< 0.001	0.006
310102	624627	1211	0.035	1.211
310103 Dup	624627	1093	0.032	1.093
310104	624628	938	0.027	0.938
310105	624629	131	0.004	0.131
310106	624630	271	0.008	0.271

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

	. STO ROOK	Sampre			
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc #
0.036	0.001	36	624631		310107
0.222	0.006	222	624632		310108
0.747	0.022	747	624633		310109
0.006	< 0.001	6	624634		310110
0.370	0.011	370	624635		310111
0.006	< 0.001	6	624636		310112
0.038	0.001	38	624637		310113
0.039	0.001	39	624637	Dup	310114
0.038	0.001	38	624638		310115
0.012	< 0.001	12	624639		310116
0.013	< 0.001	13	624640		310117
< 0.005	< 0.001	<5	624641		310118
< 0.005	< 0.001	<5	624642		310119
0.010	<0.001	10	624643		310120
0.092	0.003	92	624644		310121
0.133	0.004	133	624645		310122
0.008	< 0.001	8	624646		310123
0.006	< 0.001	6	624647		310124
0.011	< 0.001	11	624647	Rep	310125
1.029	0.030	1029	624648		310126
0.158	0.005	158	624649		310127
0.009	< 0.001	9	624650		310128
		No Sample Received	624700		310129
0.388	0.011	388	624701		310130

Tel: (807) 626 1630 Fax: (807) 622 7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Monday, October 20, 2008

ACCURASSAY

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

	Rock	#: 310	Sample #:			
Au g/t (ppm)		Au oz/t	Au ppb	Client ID		Acc#
0.980		0.029	980	624702		310131
1.103		0.032	1103	624703		310132
0.144		0.004	144	624704		310133
0.208		0.006	208	624705		310134
0.793		0.023	793	624706		310135
0.731		0.021	731	624706	Dup	310136
9.781		0.285	9781	624707		310137
1.063		0.031	1063	624708		310138
0.440		0.013	440	624709		310139
0.891	•	0.026	891	624710		310140
2.557		0.075	2557	624711		310141
0.574		0.017	574	624712		310142
0.991		0.029	991	624713		310143
1.354	•	0.040	1354	624714		310144
0.650		0.019	650	624715		310145
3.205		0.094	3205	624716		310146
3.250		0.095	3250	624716	Dup	310147
0.100		0.003	100	624717		310148
0.008		< 0.001	8	624718		310149
0.378		0.011	378	624719		310150
0.006		< 0.001	6	624721		310151
0.017		< 0.001	17	624722		310152
0.007		< 0.001	7	624723		310153
2.408		0.070	2408	624724		310154

Thunder Bay, ON

Canada P7B 5X5

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: 256

Date Received:

Oct 6, 2008

Date Completed:

Oct 20, 2008

Job #:

200843753

Reference:

Project #1900

Sample #:

310

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.048	0.001	48	624725		310155
0.016	< 0.001	16	624726		310156
0.027	< 0.001	27	624727		310157
0.021	<0.001	21	624728		310158
0.022	< 0.001	22	624728	Dup	310159
0.032	<0.001	32	624729		310160
0.120	0.003	120	624730		310161
23.195	0.677	23195	624731		310162
5.074	0.148	5074	624732		310163
1.711	0.050	1711	624733		310164
0.463	0.014	463	624734		310165
0.592	0.017	592	624735		310166
2.591	0.076	2591	624736		310167
1.181	0.034	1181	624737		310168
1.958	0.057	1958	624738		310169
1.938	0.057	1938	624738	Dup	310170
0.694	0.020	694	624739		310171
1.575	0.046	1575	624740		310172
0.895	0.026	895	624741		310173
	ed	No Sample Receive	624742		310174
0.013	< 0.001	13	624743		310175
0.165	0.005	165	624744		310176
3.869	0.113	3869	624745		310177
0.260	0.008	260	624746		310178

Tel: (807) 626 1630 Fax: (807) 622 7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Monday, October 20, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2 Ph#: 256 Date Received: Oct 6, 2008

Date Completed: Oct 20, 2008

Job #: 200843753

Reference: Project #1900

Sample #: 310 Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	Acc#	Acc
1.883	0.055	1883	624747	310179	31017
0.795	0.023	795	624748	310180	31018
0.812	0.024	812	624748	310181 Rep	31018
0.520	0.015	520	624749	310182	31018
0.006	< 0.001	6	624750	310183	31018

PROCEDURE CODES: AL4AU3

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested
The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0730-10/20/2008 3:48 PM

Tel: (807) 626 1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Thursday, October 23, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN P7B 6H2

Ph#: (807) 345-4990

Fax#: (807) 345-5382

Date Received:

Oct 6, 2008

Date Completed:

Oct 23, 2008

Job#:

200843752

Reference:

Project #1900

Sample #:

2 Rock

Acc#	Client ID		Au Pt ppb ppb	-	Pd ppb	Rh ppb	Ag ppm	Co ppm	Cu ppm	Fe ppm	Ni ppm	Pb ppm	Zn ppm
309840		MAM-08-007	<5	<15	<10			128	3133		1663		
309841		MAM-08-008	49	38	88			121	2978		1680		
309842	Dup	MAM-08-008	51	37	83			130	2879		1706		

PROCEDURE CODES: AL4APP, AL4Cu, AL4Ni, AL4Co

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written

approval of the laboratory

AL917-0730-10/23/2008 4:13 PM

Tel: (807) 626 1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Friday, October 24, 2008

Metals Creek Resources 871-B Tungsten Street Thunder Bay, ON, CAN

P7B 6H2

Ph#: (807) 345-4990 Fax#: (807) 345-5382 Date Received:

Oct 14, 2008

Date Completed:

Oct 24, 2008

Job#:

200843870

Reference:

Extra

Sample #:

Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.012	< 0.001	12	624720		319672
< 0.005	<0.001	<5	624720	Dup	319673

PROCEDURE CODES: AL4AU3

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0730-10/24/2008 3:31 PM