

MUD LAKE PROPERTY

REPORT ON

THE 2008 SUMMER AND FALL EXPLORATION PROGRAMS INCLUDING MECHANICAL STRIPPING, DIAMOND DRILLING AND SAMPLING

ELMHIRST AND WALTERS TOWNSHIPS THUNDER BAY MINING DISTRICT ONTARIO NTS 42 E/13

Mike Koziol, P. Geo. January 22, 2010

SUMMARY AND RECOMMENDATIONS

This report describes the exploration work completed on the Mud Lake property between July and November 2008. The Mud Lake project is located in the Elmhirst, Rickaby and Walters townships approximately 25 km northwest of Beardmore, Ontario. The property consists of 20 claims that cover 2,592 hectares.

Previous work resulted in the recognition of a major shear zone, The Mud Lake Shear ("MLS") that extends for over six kilometres on the property. Gold occurs at several locations along the MLS and results include up to 50.6 g/t gold in grab samples and 13.9 g/t gold across 1.0m in drill cores.

The Mud Lake project is underlain mostly by the Coyle Lake felsic intrusive stock which occupies approximately 70% of the property. The rest of the property is underlain by felsic and intermediate volcanic rocks.

The 2008 program included mechanical stripping, geological mapping, sampling and diamond drilling of 1,009m in 12 holes. Stripping was carried out in seven areas exposing strong shear zones and occasionally quartz veining. Trench 6 Extension exposed 100m long quartz vein that locally returned up to 3.31 g/t gold across 1.0m channel sample

Diamond drilling tested five areas including the southwest extension of the Oliver Severn Showing. Of the 12 holes drilled, MUD08-40 intersected a 2.5m wide zone of quartz veining in sheared diorite. The hole is located 100m southwest along strike from the Oliver Severn Showing and returned anomalous gold of 0.19 g/t gold over 1.0m in the vein and also in the sheared host rock (0.182 g/t gold across 1.0m). The remaining holes failed to intersected significant veining and gold mineralization.

Based on results from this program and previous work additional prospecting and mechanical stripping is recommended along the Oliver Severn-Trench A trend; in the area of Trench E; and in the high priority areas identified previously especially along the No 3 and No 4 showings.

TABLE OF CONTENTS

SUMMARY AND RECCOMENDATIONS

1.0 INTRODUCTION	1
1.1 Property and Title	1
1.2 Location, Access and Infrastructure	4
1.3 Physiography	4
1.4 Previous Work	5
1.5 Compilation of Previous Work and Results	5
1.6 Work Completed During the 2008 Programs	6
2.0 GEOLOGY AND MINERALIZATION	6
3.0 MECHANICAL TRENCHING, MAPPING AND SAMPLING	8
3.1 Trenching Program Work Description	8
3.2 Trenching Program Results	9
4.0 2008 DIAMOND DRILLING	10
4.1 Logistics for the 2008 Winter Program	10
4.2 Drill Hole Descriptions and Results	12
5.0 CONCLUSIONS	13
6.0 RECCOMMENDATIONS	14
7.0 REFERRENCES	14
8.0 CERTIFICATES	16
FIGURES	
Figure 1 Property Location	2
Figure 2 Claims Map	3
TABLES	

Table 1 List of Claims Making up the Mud Lake Property	1
Table 2 Summary of Significant Assay Results from the	
2007-08 Mud Lake Drilling Programs	5
Table 3 2008 Diamond Drill Hole Statistics	11

Mud Lake Property Report on the 2008 Summer and Fall Exploration Programs

APPENDICES

APPENDIX A	Diamond Drill Hole Logs
APPENDIX B	Diamond Drill Hole Gold Assay and ICP Certificates
APPENDIX C	Trenching Sample Descriptions, Gold Assay and ICP Certificates
APPENDIX D	Rousell Structural Report
APPENDIX E	Tremblay 2008 Prospecting Sample Descriptions and Gold Results
APPENDIX F	Summary of Work Performed

MAPS (back of the report)

- Map 1 Compilation of Work Completed, West Sheet 1:5,000
- Map 2 Compilation of Work Completed, East Sheet 1:5,000
- Map 3 2008 Trenching, Trench "A" 1:250
- Map 4 2008 Trenching, No 7, "B" and "C" Trenches 1:250
- Map 5 2008 Trenching, No 6 Extension Trench 1:250
- Map 6 2008 Trenching, Trenches "E" and "F" 1:250
- Map 7 Section MUD08-31 1:250
- Map 8 Section MUD08-32 1:250
- Map 9 Section MUD08-33 1:250
- Map 10 Section MUD08-34 1:250
- Map 11 Section MUD08-35 1:250
- Map 12 Section MUD08-36 1:250
- Map 13 Sections MUD08-37 and 38 1:250
- Map 14 Section MUD08-39 1:250
- Map 15 Section MUD08-40 1:250
- Map 16 Section MUD08-41 1:250
- Map 17 Section MUD08-42 1:250

1.0 INTRODUCTION

This report describes results from exploration work completed on the Mud Lake property from July 24 to November 11, 2008. This work included mechanical stripping, washing, geological mapping and sampling of stripped areas and diamond drilling.

1.1 Property and Title

The Mud Lake property lies in the Thunder Bay Mining District and consists of 20 claims located in Elmhirst, Walters and Rickaby Townships. It is covered by NTS map sheets 42 E/13 and the approximate UTM coordinates in NAD 83 (Zone 16) for the centre of the property are 450000 m E and 5512000 m N.

Claims are owned 100% by Alto Ventures Ltd. and occupy crown lands covering an area of approximately 2,592 hectares. Wescan Goldfields Inc was working towards earning a 50% interest in the property when the work was in progress. Subsequently, in January 2009 Wescan terminated their option to earn an interest in the project. A list of claims making up the Mud Lake Property is presented in Table 1.

		Dete		\$ Annual	
	т 1 [.]	Date		W Ork	
Claim	Township	Recorded	Due Date	Required	Claim Units
Number					
1204947	Elmhirst	Apr 29/96	Apr 29/11	2400	6
1204950	Elmhirst	Dec 04/96	Dec 04/10	5600	14
1205012	Elmhirst	Mar 10/98	Mar 10/11	1200	3
1205082	Elmhirst	June 09/99	June 09/11	3600	9
1205084	Elmhirst	June 09/99	June 09/11	1200	3
1210760	Elmhirst	Aug 06/97	Aug 06/11	4800	12
1215312	Elmhirst	Aug 11/99	Aug 11/10	400	1
1232680	Elmhirst	May 08/98	May 08/11	800	2
3011485	Elmhirst	Aug 09/04	Aug 09/10	4400	11
3011486	Elmhirst	Aug 09/04	Aug 09/10	4800	12
4203980	Elmhirst	Aug 09/05	Aug 09/10	400	1
4211616	Elmhirst	Oct 05/06	Oct 05/10	1200	3
4211242	Elmhirst	Oct 13/06	Oct 13/10	5600	14
4213484	Kaby Lake	Apr 19/07	Apr 19/11	2400	6
4211617	Rickaby	Oct 05/06	Oct 05/10	6400	16
3011482	Walters	Aug 09/04	Aug 09/10	6400	16
3011483	Walters	Aug 09/04	Aug 09/10	5600	14
3011484	Walters	Aug 09/04	Aug 09/11	1600	4
4213483	Walters	Apr 19/07	Apr 19/11	3600	9
4213485	Walters	Apr 19/07	Apr 19/11	2400	6
Totals	20 claims	_	2,592 ha	\$64800	162 units

Table 1 List of claims making up the Mud Lake property

1.2 Location, Access and Infrastructure

The project is situated approximately 25 km northeast of the Town of Beardmore, 55 km west of the Town of Geraldton and 190 km northeast of the City of Thunder Bay.

From Thunder Bay or Geraldton, the property can be reached by traveling along the Trans-Canada Highway (No. 11) to the intersection with Ontario Tertiary Highway 801, some 22 km east of the town of Beardmore. The southwest and central portions of the property are easily accessible by following this road some 10 km northwestward and by turning northeast onto a former logging road which is the property's main access road (Main Road). Access to the northwestern portion of the property is possible via the Main Road. The property is also accessible by continuing several kilometres further on the 801 to the Namewaminikan (Sturgeon) River and by then turning northeast onto an old road just before the bridge. This road lies along the river (River Road) and leads to the northeast showings.

Old forestry roads provide good access to most of the property area. Most of these roads are overgrown but could be refurbished at low cost and then be accessible to most vehicles. At this time, most roads are only easily accessible to ATV vehicles, with one exception, the Wolf Road, which provides good access to the Oliver Severn and No. 6 showings. It is accessible to 4x4 trucks, even in wet conditions, and by 4X2 vehicles during the dry summer season.

In terms of access to heavy drill equipment, most of the gold showings could be easily accessible all-year round.

General labour is readily available from the nearby communities of Jellicoe, Geraldton and Beardmore. More specialized mining and exploration personnel, services and equipment are available from the more distant cities of Timmins, Sudbury and Thunder Bay.

1.3 Physiography

Forestry operations were carried out some 15 years ago and most of the area explored is covered by a re-growth consisting mainly of grey pine. A few stands of mature timber were left behind here and there, notably in the area spanning the No. 1 to Oliver Severn Showing and southwest of the South Trench area.

The terrain is generally very sandy and well drained and consists of rolling hills with a maximum relief in the order of 30-50 m. Outcrop exposure is locally very abundant and in areas devoid of outcrops, glacial till cover is expected to be thin and in the order of 1 to 5 metres. A glacial esker forms a ridge along the northeast end of the property.

A series of small lakes and a creek lying along a northeast-flowing drainage occurs near the centre of the property and water for drilling operations along this drainage system is readily available.

1.4 Previous Work

Early exploration on the property dates back to the 1930's. Work consisting of mainly prospecting, geological mapping, trenching, ground geophysics, and soil and rock geochemistry. Very limited diamond drilling was carried out intermittently by various companies and prospectors prior to 2004. Section 6.0 in this report provides a list of the companies and assessment file reports that have submitted work on the property prior to exploration by Alto.

In 2005 Alto completed a Resistivity/Induced Polarization survey (Rivest, 2005) and a program of geological mapping and sampling (Tremblay, 2005). Alto completed comprehensive exploration programs in 2007 and 2008 that included diamond drilling, prospecting, geological mapping, mechanical stripping and sampling (Tremblay et al, 2008)

1.5 Compilation of Previous Work and Results

A compilation of selected previous work is presented on maps 1 and 2. Results from the Alto work include the recognition of the Mud Lake Shear System, a zone of intermittent intense shearing, strong alteration and locally quartz veining that persists for more than six kilometres on the property. Prior to the current program, 12 of the quartz-veined shear areas were stripped and washed. Each of these areas returned anomalous gold, up to 50.6 g/g gold in grab samples. Alto Ventures completed two diamond drilling programs in 2007 and 2008 that consisted of an aggregate 2,036m in 30 holes. Results from these programs are encouraging. A summary of these in presented in Table 2 below (Tremblay et al, 2008).

Hole	From	То	Width	Au (g/t)	Au (g/t)	Au (g/t)	Zone
	(m)	(m)	(m)	(average)	(original)	(metallic)	
MUD07-01	15.1	16.1	1.0	0.90	0.99	0.81	Trench 6
MUD07-03	15.3	16.0	0.7	3.25	3.2	3.3	Trench 6
MUD07-06	12.3	18.4	6.1	3.49	3.39	3.59	Oliver-Seven -
							Zone 1
includes	14.9	15.4	0.5	9.8	9.64	9.97	
and	17.4	18.4	1.0	14.43	13.97	14.89	
	28.6	29.6	1.0	6.22	5.56	6.88	Oliver-Severn -
							Zone 2
MUD07-11	26.5	28.5	2.0	2.11	2.11		Clarke South Zone
	51.5	53.2	1.7	2.35	2.35		Clarke North Zone
MUD07-12	80.0	88.8	8.0	0.90	0.94		Clarke North Zone
includes	82.8	84.8	2.0	1.96	2.16	1.76	
MUD07-14	19.0	21.0	2.0	2.24	2.12	2.36	Showing # 3
MUD07-16	21.1	21.6	0.5	5.77	6.34	5.20	Showing #4
MUD07-17	23.7	24.7	1.0	3.23	3.77	2.69	Showing #4

 Table 2. Summary of Significant (Au > 1 g/t) Assay Results from the 2007-08 Mud Lake

 Drilling Programs.

MUD07-19	61.3	62.3	1.0	0.81	1.44	0.189	Showing #5
MUD08-22	36.6	37.6	1.0	7.68	7.25	8.12	Oliver Severn
MUD08-23	23.8	24.7	0.9	2.75	2.0	3.5	Oliver Severn
MUD08-24	19.0	21.0	2.0	1.13	1.21	1.05	Clarke North Zone
MUD08-25	42.5	43.5	1.0	2.85	3.2	2.5	Clarke North Zone

1.6 Work Completed During the 2008 Programs

Field work completed during the 2008 programs includes mechanical stripping, washing and sampling of seven areas. Following the surface work, 12 diamond drill holes, totaling 1,009m were completed to further test the shear zones exposed by the stripping.

Dr. Don Rousell, Professor Emeritus from Laurentian University was contracted to conduct a structural study on the Trench 6 and 6 Extension showings. The section of his report pertaining to his work at Mud Lake is included as Appendix D.

A prospecting program was also completed on the property by Robert Tremblay, P.Geo. to the east of the Mud Lake Shear. This program will be reported on separately but the results are included with this report to complete the data set. Sample locations are shown on Map 1 and Map 2 and the samples descriptions and results are included in Appendix E

2.0 GEOLOGY AND MINERALIZATION

Regional geology and property geology were described in some detail in past reports by the Ontario Geological Survey, in reports authored by Mackasey (1976) and Mackasey and Wallace (1978) from which key excerpts have been taken.

Regionally, the Mud Lake property area is underlain by metavolcanics and igneous rocks of early Precambrian (Archean) age within the Wabigoon sub-province of the Canadian Shield. The oldest rocks are metavolcanics and metasediments, which are intruded by trondhjemite, quartz diorite, gabbro and related igneous rocks in the form of stocks, lenses and dikes. The metavolcanic rocks range in composition from mafic to felsic and, along with their intercalated metasedimentary sequences, lie along an east-west axis. They form the southern limb of a broad west-trending regional fold. The dominant schistosity and major regional faults such as the Paint Lake fault also strike roughly east-west. The Paint Lake fault is a major east striking regional feature that extends for over 100 km from Lake Nipigon eastward towards Geraldton and the Mud Lake property lies just north of this fault.

In the property area, schistosities locally trend east-northeast to northeast, especially along the boundaries of the large stocks which intrude the volcano-sedimentary belt. Finally, northeast-trending faults are abundant in this area, locally displacing east-west regional faults and granite-volcanic contacts.

The Mud Lake project is underlain mostly by the Coyle Lake stock which occupies

approximately 70% of the property. With a mineralogy ranging from granodiorite to trondhjemite, the intrusive is mostly massive, medium grained and porphyritic in places. The outer boundary (contact zone) is composed of hybrid intrusive rocks of dioritic composition and reported to be several metres in width.

In the centre of the property, the intrusive displays a moderate to strong tectonic fabric, in the form of an increasingly well developed schistosity when approaching a well defined northeast-trending fault (unnamed) which transects the Coyle Lake stock. This fault lies along a valley comprising a series of small lakes and a creek which extends over the entire property.

The main gold-bearing structure identified to date on the property has been named the "Mud Lake Shear ("MLS"). In the northern part of the property, it lies parallel and close to the main fault described in the previous paragraph (Maps 1 and 2) and includes showings No.1, 2, 3, 4, 5 and Oliver Severn. In the central portion, near the area of showing No. 6, the shear turns away from the main fault to a more west-south-westerly direction and would then host the Clarke and South Trench showings.

The strong northeast shearing is accompanied by quartz veining where most of the gold is concentrated. Folding and resulting brecciation of the shear zone occur at several locations along the MLS creating a significant thickening of gold-bearing quartz zones. Such folding and brecciation is best exposed at the Oliver Severn, No.6 and Clark showings.

A detailed structural study was completed during the current program on the No 6 and 6 Extension showings by Dr. Don Rousell formerly from Laurentian University. The section of the report pertaining to Mud Lake is included as Appendix D.

Sulphide mineralization in the granodiorite is generally very weak. Along the Mud Lake Shear zone, sulphides locally occur in concentrations generally ranging from trace to 1%. Consisting of disseminated pyrite and trace amounts of chalcopyrite; sulphides occur in the quartz veins injected along the fault. Locally, stronger sulphide concentrations ranging from 5 to 25% occur in millimetre to centimetre-thick siliceous bands usually occurring at or near the outer boundaries of the shear zone, or in pods within folded sections of the MLS.

Intermediate to mafic dykes have also been observed on the property and primarily along the MLS. The intrusive rocks vary from massive to strongly sheared. They appear to be mostly dioritic to gabbroic in composition, but could be locally ultramafic.

A well exposed north-south lying diabase dyke constitutes the youngest intrusive on the property (Tremblay 2005). The dyke, which reaches 25-30 metres in thickness, cuts through the Clarke Showing and has been traced northward and southward over several hundred metres.

Finally, a well developed north-northeast trending fault system has been observed

throughout the work area, as illustrated on the detailed maps of many of the showings. Striking at an azimuth averaging 020 degrees, this fault system is late, transecting and locally displacing, more often in a sinistral manner, the MLS and its quartz veins.

The Coyle Lake stock is in contact with intermediate to felsic volcanic rocks near the south and southeast ends of the property. This package includes felsic fragmentals and foliated flows.

3.0 MECHANICAL TRENCHING, MAPPING AND SAMPLING

3.1 Trenching Program Work Description

The mechanical trenching, mapping and sampling program was carried out during the period from July 24 to September 21, 2008 at seven locations (see Map 1). Mechanized stripping was completed by Marc's Backhoe Service from the nearby village of Jellicoe using a Cat 325B backhoe. Hand stripping and washing of the exposed bedrock, rock sawing, channel sampling and chaining were completed by Mr. Robert Cote of Cote Enterprises and Mr. Richard Cote, both from the Town of Beardmore. They also provided the rental of pressure pumps, hoses and rock saws needed to complete the work as well as All Terrain Vehicles as required. A total of 79 machine hours were charged for the excavator and 30 man days of manual labour for washing, trench cleaning, channel sawing and sampling.

The cleared areas were mapped and marked for channel sampling by Richard Lumb, Junior Geologist, under the supervision of Mike Koziol, P. Geo. Channel sampling was completed using a diamond blade saw. The channels were cut to a depth of approximately 10 cm and a width of 3 cm. The length of each sample varied depending on the mineralized rocks but most were in the 1.0 m range. Locations and results of the various samples cut are shown on individual trench maps included with this report.

Alto personnel stayed initially at Endy's Bush Camps and later moved to a house rented in the Town of Beardmore. The crews commuted to the field and their respective home locations by rental trucks.

Altogether, 153 rock channel samples were collected during this program. Samples were delivered by Alto personnel to Accurassay Laboratories in Thunder Bay. The gold assaying method uses a standard Fire Assay with AA finish technique on a 30 gram subsample taken from a 500 gram split from the submitted sample. The laboratory ran internal check assays every 10 samples to ensure lab quality control. The samples were also tested for other elements using ICP scan methods. Assay certificates for all samples are included in Appendix C.

3.2. Trenching Program Results

Trench A (Oliver Severn Extension, Map 4)

Trench A is located approximately 20m west of the Oliver Severn trench. The extension to the Oliver Severn trench reveals a southwesterly continuation of the quartz vein as well as minor quartz and quartz-carbonate veining. The quartz vein hosts patches of disseminated pyrite, chalcopyrite, arsenopyrite, galena and specularite as well as fragments of chloritized mafic rock. The mafic dyke mentioned in other trenches runs along side the quartz vein to the northwest in this trench. Both the quartz vein and mafic dyke are hosted in sheared diorite, which becomes progressively less sheared away from the area of quartz veining. This area was drilled previously and significant gold results were obtained (Tremblay et al, 2008)

Seven channel samples were cut and anomalous gold was obtained, including 1,817 ppb across 1.0m channel cut (Appendix C).

No.7 Trench (Map 4)

Trenching exposed an outcrop 50m long, 15m wide at the eastern end, tapering to 5m at the west end. A quartz vein runs the length of the trench, varying in width from a few centimetres to 30cm wide. A potassic alteration halo surrounds the vein in the centre of the outcrop, denoted by replacement of plagioclase feldspars by pink k- feldspar. A fine grained mafic dyke is exposed at the widest, eastern end of the trench.

Thirty Five channel samples were cut along the No. 7 Trench. Generally, gold values were weak, up to 353 ppb across 1.0m channel cut (Appendix C)

Trench B (Roadside Trench, Map 4)

Trenching either side of the road used to access the Oliver Severn area revealed sheared diorite. A mafic dyke is exposed to the south of the road at the west edge of the outcrop. The dyke runs NE-SW and is strongly sheared. Also to the south of the road, at the east end of the trench is a small section of mafic volcanic breccia. Twenty channel samples were cut and returned only weakly anomalous gold, maximum 39 ppb.

Trench C (Hammerhead Trench, Map 4)

Trenching revealed an intensely sheared outcrop of diorite. At the south west end of the trench there is a blowout of a quartz vein, similar to that seen in the extension to the No.6 trench. The quartz contains fragments of chloritized mafic material as seen elsewhere, although the dyke itself does not appear to be present. A small outlying outcrop to the northwest of the trench exposes two parallel quartz veins and a mafic dyke in weakly sheared diorite. Note that one of the quartz veins on the map has an 'apparent width' of 2.5m due to a diagonal section being exposed – in reality both quartz veins are approximately 20cm wide.

Twenty five channel samples were cut to sample this trench. Weakly anomalous gold was obtained in most samples, up to 87 ppb (Appendix C).

No.6 Extension (Map 5)

This trench was excavated to expose quartz veins found by prospecting to the northeast of previously mapped and sampled Trench No 6 (Tremblay, 2005; Tremblay et al., 2008). Trenching exposed a further 100m of shearing, 5-10m wide. Within the shear, the quartz vein noted in the No.6 trench continues for the whole length of the outcrop. The quartz vein locally pinches to a few centimetres and forms rolling swells with apparent widths of up to 3m. Occasionally the vein does not outcrop on surface, and in others it bifurcates into two separate veins. The vein frequently includes fragments of the mafic dyke which runs the length of the trench and in places appears to subsume the entire dyke, as well as fragments of diorite wall rock.

Forty five saw cut channel samples were collected from this trench. Anomalous gold was obtained from several including 3,310 ppb across 1.0m (see Appendix C).

A detailed structural study of Trench 6 Extension was completed by Dr. Don Rousell and is included as Appendix D.

Trench E (Map 6)

Trench E is located along the excavator access trail, approximately 200m southwest of Trench 6. The trench includes two areas of stripping. The area closest to the trail exposed an east striking clear white quartz vein hosted by diorite. This vein is 30cm wide. About 10m south of the vein, the diorite hosts a sheared mafic dyke mineralized with up to 10% pyrite. Three saw cut channels samples were take from the quartz vein and no gold was detected in them.

The second area is located approximately 25m northwest of the above. This stripped area exposed sheared diorite. Seven saw cut channel samples were taken and two of these returned anomalous gold including 99 ppb and 205 ppb.

Trench F (map 6)

This trench is located approximately 250m west of Trench E. The trench was opened to follow up a gold anomaly of 1.85 g/t reported from the 2007-2008 prospecting work by Tremblay et al, 2008. The stripping exposed a 20m wide zone of variably sheared diorite. The gold anomalous value reported previously is associated with a small (0.2m x 0.2m) pod of flat-lying quartz vein breccia. Only one sample was collected from this trench and it returned 6ppb gold.

4.0 2008 DIAMOND DRILLING

4.1 Logistics for the 2008 Drill Program

The purpose of the diamond drill program was to further test the Mud Lake Shear along the segment between the Oliver Severn Showing and the Trench No 6 focusing on the newly stripped areas. The diamond drilling was completed between October 1 and October 21, 2008 by Cobra Diamond Drilling of Sudbury and consisted of 1,009 metres in 12 holes.

The contractor's drill crews were housed at Endy's Bush Camp located at the 5km marker on Provincial Highway 801 and 5 km south of the property. Alto's crews were housed in a rented house in Beardmore and core logging and sampling was completed at Alto's core logging facility in Beardmore. Access to the property was by rental trucks and All Terrain Vehicles.

The drilling was supervised by Richard Lumb, Junior Geologist, under the direction of Mike Koziol, P. Geo. Initial core logging was carried out by Richard Lumb during the drilling program. At the end of each shift, the drill cores were picked up at the drill site by Alto personnel and transported to Alto's core logging and sampling facilities in Beardmore. The NQ-size core was then logged and marked for sampling. Sampling procedures included sawing the specific samples in half, placing one half into numbered sample bags and replacing the other half in the core box for storage for future use. The bags were then sealed and delivered by Alto staff to Accurassay Laboratories in Thunder Bay for analyses. Core sawing was completed by Richard Cote in October and November 2008.

Gold assays were performed at Accurassay Laboratories in Thunder Bay, Ontario. The gold assaying method uses a standard Fire Assay with AA finish technique on a 30 gram sub-sample taken from a 500 gram split from the submitted sample. Commercially prepared standards were inserted by Alto every 25 samples to ensure precision of the results. The laboratory ran internal check assays every 10 samples to ensure lab quality control. Any sample that returned >1 g/t gold was automatically re-sampled from the reject and the re-sample was assayed to confirm the gold content. The results reported represent the weighted average of all analyses performed on each sample. The samples were analyzed.

Table 3 provides the diamond drill hole statistics. Geological drill logs and assay certificates are included in Appendix A and B respectively. Geological cross sections are included in the back pocket as Maps 7 to 17.

14010 5 20			ie statistic	5			
DDH #	Northing	Easting	Azimuth	Dip	Depth	Claim	Target
MUD08-	5511780	449270	127.8	-50.7	71	1204947	Tr 6 Extension
31							
MUD08-	5511820	449284	125.8	-50.5	62	1204947	Tr 6 Extension
32							
MUD08-	5511864	449318	119.8	-50.9	56	1204947	Tr 6 Extension
33							
MUD08-	5511907	449480	326.8	-49.7	50	1204947	Trench 7
34							
MUD08-	5511926	449527	330.3	-49.5	50	1204947	Trench 7

Table 3 2008 Diamond Drill Hole Statistics

35							
MUD08-	5512071	449743	325.2	-49.8	116	1204947	Trench C
36							
MUD08-	5512125	449839	326.1	-50.4	137	3011485	Trench C
37							
MUD08-	5512042	449892	331.7	-50.4	149	3011485	Wolf Trench
38							
MUD08-	5512520	450436	356.1	-50	47	1205082	Tr A Extension
39							
MUD08-	5512545	450505	348.4	-50.3	64	1205082	Tr A Extension
40							
MUD08-	5512107	449973	336	-49.8	104	3011485	Wolf Trench
41							
MUD08-	5511746	449199	126.1	-48.8	103	1204947	Tr 6 Extension
42							
Total					1,009		

4.2 Drill Hole Descriptions and Results

Trench 6 Extension

Holes MUD09-31, 32 and 33 were drilled to test the Mud Lake Shear below Trench 6 Extension and MUD08-42 was drilled to undercut previously drilled hole MUD07-01 where a one metre wide quartz vein returned 0.9 g/t gold. Each of the 2008 drill holes cut strongly shear intrusive but no significant alteration, veining or gold were intersected.

Trench 7

MUD08-34 and 35 were drilled 50m apart to undercut the shear zone exposed in Trench 7. MUD08-34 intersected sheared diorite near the top of the hole from 12 to 16.75m. The shear contains up to 2% pyrite but no significant veining and gold values are at or below detection levels. MUD08-35 intersected sheared diorite from 24.8 to 29m. The shear is silicified but no significant quartz veining was intersected and the gold values are near detection levels.

Trench C

MUD08-36 and 37 were drilled to undercut the shear zone exposed in Trench C and the possible extension approximately 150m along strike to the northeast of Trench C. MUD08-36 intersected sheared diorite from 48.9 to 54.75m. Quartz veining, up to 5%, was intersected from 53.6 to 54.75. Neither the shear zone nor the veins returned significant gold values.

MUD08-37 was drilled to a depth of 137m but failed to intersect significant shearing or veining.

Wolf Trench

MUD08-38 and 41 were drilled 100m apart to undercut the shear zones exposed previously at the Wolf trench. MUD08-38 intersected sheared diorite from 34.5 to 38.8m but no quartz veining. MUD08-41 did not intersect zones of significant shearing or veining.

Trench A Extension

MUD08-39 and 40 were drilled 100m apart to test for possible strike extensions to the Oliver Severn zone. MUD08-39 intersected sheared mafic from 13.6 to 18.8m. After MUD08-40 was drilled, it is possible that this hole was stopped short before it reached its intended target.

MUD08-40 is located 100m southwest and along strike from the Oliver Severn Showing. The hole intersected sheared diorite from 24.3 to 26m but no significant veining. A second shear was intersected from 43.5 to 50.38m. This shear is in dark green mafic rock, similar to the host rocks at the Oliver Severn showing. This shear is also host to a brecciated white quartz vein from 44.3 to 45.75m. The quartz vein is weakly anomalous in gold, assaying 0.19 g/t gold from 45.0 to 46.0m. The sheared wall rock adjacent to the vein is also anomalous assaying 0.182 g/t gold from 46.0 to 47.0m. This shear requires additional work along strike and to depth as it is gold bearing at the Oliver Severn Showing.

5.0 CONCLUSIONS

The Mud Lake Property is located in the Elmhirst, Rickaby and Walters townships, approximately 25 km northeast of Beardmore, Ontario. The property consists of 20 staked mineral claims that cover an area of approximately 2,592 hectares

An extensive exploration programs which included mechanical stripping, washing, sampling and diamond drilling were completed during the 2008 summer and fall seasons. A structural study was also completed over the Trench 6 Extension.

Seven areas were stripped along the Mud Lake Shear to further evaluate its gold potential. Sheared diorite with variable alteration was exposed at each of the areas stripped. Significant anomalous gold values were obtained from the Trench A (Oliver Sever Extension), Trench 6 Extension and Trench E areas. The gold is associated with strong shearing, alteration and some quartz veining.

In total, 1,009m of NQ size core were drilled in 12 holes testing five surface exposures of the Mud Lake Shear. Strong shearing was intersected in most of the holes but significant veining was obtained in only one (MUD08-40) that was drilled to test for extensions to the Oliver Severn shear-vein sets. This hole intersected 2.45m vein zone and the vein

and the sheared host rock are both anomalous in gold (0.19 g/t and 0.182 g/t each across 1.0m core lengths). Another hole (MUD08-39) testing this same target may have been stopped short.

The 2008 programs have confirmed that shearing is strong along the Mud lake Shear. Drilling near the Oliver Severn Showing suggest further work is required in that area. Results from previous programs suggest additional exploration is required in the Clarke, and Clarke extension areas as well as the gold zones reported from trenches No 3 and No 4. More sampling should be completed in the areas of Trench E and F. No further work is required in the areas of Trench No 7, B and C.

6.0 **RECOMMENDATIONS**

The recommendations below are based on results from the program documented in this report as well as past work completed by Alto and previous holders of the property. The following work is recommended:

Prospecting and mechanical stripping along the Oliver Severn-Trench A trend;

Prospecting and mechanical stripping in the area of Trench E;

Prospecting and mechanical stripping in the high priority areas identify previously on trend with the No 3 and No 4 showings.

7.0 **REFERENCES**

Bruce, E.I., 1936: The eastern part of the Sturgeon River area; Ontario Dept. Mines, Vol. 45, Pt.2, 1936, p.1-59. (Published 1937) Accompanied by Map 45a, scale 1 inch to 1mile.

Drost, A., 1995, Report on a Mechanical Stripping and Rock Sampling Program, Oliver-Severn No. 2 Zone, Elmhirst Township, Thunder Bay Mining Division, for EDDA Resources, 1995, Assessment file # W9540.00143

Houghton, F., Clarke, L., 1999, Houghton-Clarke Prop., Elmhirst & Walters Tp., 42E12NE, 42E13SE, MEI #:168, 1999, Assessment file # 2.20049

Houghton, F., 1999, Report on 1999 Exploration on the Mud Lake Property, Elmhirst TWP., Claim Map G-162., NTS 42E/13SE, 2001, Assessment file # 2.21037

Houghton, F., 1997, Summary of Work Performed on the Clarke-Houghton Property, 1997, Assessment file # 2.17839

Huska, K.J., 1980, Assessment Report, Coyle Lake Claim Group, By K.J. Huska for Mattagami Lake Exploration Ltd., 1980, Assessment file # 2.3512

Mattagami Lake Exploration Ltd., Diamond Drilling, 1981, AFRI # 42E13SE0151

Mackasey, W.O., 1976: Geology of Walters and Leduc Townships, District of Thunder Bay; Ontario Div. Mines, GR 149, 58p. Accompanied by Map 2356, scale 1 inch to ¹/₂ mile(1:31,680).

Mackasey, W.O., and Wallace, H., 1978: Geology of Elmhirst and Rickaby Townships, District of Thunder Bay; Ontario Geological Survey Report 168, 101p. Accompanied by Map 2373, scale 1 inch to ½ mile (1:31,680).

Parres, J., General Report with Assays, 1995, Assessment file # 2.16069

Parres, J., 1993, OPAP Project #OP-638, Oliver-Severn Property, Elmhirst Township, Thunder Bay Mining Division, 1993, Assessment file # OP92-638

Rivest, H., 2005, Alto Ventures Ltd. Resistivity/Induced Polarization Survey, Mud Lake Project, Elmhirst Township, Geraldton-Beardmore Gold Camp, Ontario, Canada, Logistics and Interpretation Report, 05N872, internal report.

Sutherland, D.B., 1981, Report on the Induced Polarization & Resistivity Survey, Coyle Lake Claim Group, in the Geraldton Project Area, District of Thunder Bay, for Mattagami Lake Exploration Ltd., 1981, Assessment file # 2.4437

Tremblay, R. J., 2005, Alto Ventures Ltd. Mud Lake Project, Report on Summer 2005 Geological Mapping and Sampling, internal report, October 2005

Tremblay, R. J., and Koziol, M., 2008, Alto Ventures Ltd. Mud Lake Project, Report on the 2007 Exploration Program Including Diamond Drilling, Prospecting and Mechanical Stripping, internal report, May, 2008

Walker, S., 1990, Noranda Exploration Company, Ltd., Noranda Exploration Company, Ltd, 1989 Oliver-Severn Work Report, Elmhirst and Walters Townships, Thunder Bay Mining Division, Northwestern Ontario Division, 1990, Assessment file # 2.13156

Walmsley, T., 1990, Noranda Exploration Company, Ltd., Report on Geophysical Survey, Oliver Severn Property, NTS 42E/12,13, Northwestern Ontario Division, 1990, Assessment file # 2.13156

8.0 CERTIFICATES

I, Marian (Mike) Koziol, P. Geo., P. Eng., resident at 26 Cognac Court, Sudbury, Ontario, P3E 6L4 do hereby certify that:

1. I am currently employed as President and CEO by Alto Ventures Ltd.

2. I graduated from McGill University, Montreal, Quebec with a B.Sc. degree in Geological Sciences in 1978.

3. I am a licensed member of the Professional Engineers of Ontario (No. 100026045) and a licensed member of the Association of Professional Geoscientists of Ontario (No. 1009). I am also a member of the Association of Professional Engineers and Geoscientists of Saskatchewan (No. 05638).

4. I have worked continuously as an exploration geologist since my graduation, exploring for gold and base metals deposits in the Canadian Shield including the Churchill Province of Saskatchewan and Manitoba and the Superior Province of Manitoba, Ontario and Quebec.

5. I have read the definition of "Qualified Person" as set out in National Instrument 43-101 and certify that I fulfill the requirements to be a Qualified Person for the purposes of NI43-101 by reason of my education, relevant past work experience and affiliation with professional association as defined in NI43-101.

6. I have personally worked on the Mud Lake property and supervised the programs described in this report.

8. As of the date of this certification, I am not aware of any material fact or change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

9. I do not hold a direct interest in the Mud Lake property but I do own shares of Alto Ventures Ltd and am an Officer and Director of the Company and for the purposes of this report I am not an independent Qualified Person as defined by Section 1.5 of NI43-101.

Original Signed in Sudbury, Ontario on this 22nd day of January, 2010

Marian (Mike) Koziol, P. Geo., P. Eng

APPENDIX A

DIAMOND DRILL HOLE LOGS

Jun 21, 2009			Alto	Ven	tures	Ltd.				DETA	LED LC)G								Pa	age 1 of 3
Hole Number: MU	D08-31																		U	nits: METRI	С
Project Name: Project Number: Location: Date Started: Date Completed: Logged By:	Mud Lal Mud Lal Surface Oct 05, Oct 06, Richard	ke ke 2008 2008 Lumb					Primary North: East: Elev: Collar Si Multisho Pulse El	Coordinate 5511780. 449270.0 349.00 urvey: t Survey: M Survey:	es Grid: .00 00 Y N N	UTM83-17 Plugged: N Hole Size: NC Casing: Le	2 t in Hole			Field North Eas Elev Con	d Coordi th: 0.0 t: 0.0 t: 0.0 tractor: e Storag	inates)0)0)0 Cot le: Cor	Grid: bra Drilling re Shed		Collar I Collar A Length: Start D Final D	Dip: Az: epth: epth:	-50.70 127.90 70.00 1.00 71.00
Comments:																					
Sample Average	es																				
Survey Data Depth Azim Decino Decino	uth mal [Dip Decimal	Test Type	Flag			Cor	nments			Depth	Azimuth Decimal	Dip Decir	o mal	Test Type	Flag		Commer	nts		
50.00 12	27.90	-50.70	ezShot	ОК																	
Detailed Litholo	ogy				1.10 1					O		F actor		A 	ssay Da	ata	A	 A	7	0	
1.00	7.40 7	7b, diorite Around 50 groundma Alteration 1.000 - Mafic grou Fexture 1.000 - Massive.	% coars ss of am 7.400 undmass 7.400 Undeforr	e (up to phibole, :Alterat Modera is perva : Textu ned. Gra	5mm acro feldspar ion Type: ite, Altera asively ch ire: ij ain size va	oss) feldsp and minor Chloritized tion Style: loritised	par phenocr biotite and d, Alteration Selectively	ysts in a fir quartz n Intensity: v Pervasive	ne grained												
7.40	8.13 1 r r s	IOa, quart Quartz-ha mafic rock A small (ha malachite Structure 7.400 - vein intero Mineraliza 7.950 - A small, h traces of r	z-carbo emetite v (now ch alf-cm) c round th 8.130 cepted at ation 7.960 alf-cm so nalachite	nate ve vein. The loritised ube of fi e edges : Struc : 30 degr : , Cp: - quare of e arounce	in e quartz h). ne-graine ture: VN, rees to co 1.0, Py: 1. mixed, fir the edge	as entrain d pyrite mi Core Axis: re axis 0 ne-grained	ed fragmer ixed with cl : 30 pyrite and	nts of a fine nalcopyrite chalcopyrit	-grained and traces o te with	f											

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-31

Detailed Lithology From To			Assay Data										
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm	
8.13	31.43	7b, diorite Diorite [as above described]. Medium to coarse grained phenocrysts in a fine grained groundmass. Includes occasional, small patches of groundmass without any, or only a few phenocrysts, although the majority of the unit contains 50-60% feldspar phenocrysts. Infrequent, small quartz veinlets, including a 1cm quartz-ankerite veinlet at 22.68m. Patches of diorite that appears to have been silicified, with quartz replacing much of the feldspar, become more frequent towards the end of the unit. Alteration 8.150 - 31.430 :Alteration Type: Chloritized, Alteration Intensity: Moderate, Alteration Style: Selectively Pervasive Mafic groundmass is pervasively chloritised 8.150 - 31.430 :Alteration Type: Silicified, Alteration Intensity: Moderate-Strong, Alteration Style: Selectively Pervasive Feldspar phenocrysts and groundmass silicified in patches. Possibly related to minor quartz veining. Roughly a third of the unit is altered this way. MINOR INTERVALS: Minor Interval: 30.13 - 31.43 7b, diorite				·							
31.43	41.05	7b\$, schistose diorite Sheared diorite Structure 31.430 - 41.050 : Structure: SHR, Core Axis: 45 A sharp upper contact into shearing - lower contact graded over 15cm. Shearing grades from moderate to strong and back into moderate Veining 37.000 - 40.000 :% Veining: 5, Ank: 1, QTZ: 4, Vein Type: Str Quartz-carb veinlets. Very minor Haematite stringers. 5cm, shear-parallel quartz-carbonate vein from 38.60 - 38.65m probably corresponds to the larger quarts vein exposed at the surface. MINOR INTERVALS: Minor Interval: 37.35 - 40.87 7b\$, schistose diorite Strongly sheared diorite	745351 745352 745353 745354 745355	36.00 37.00 38.00 39.00 40.00	37.00 38.00 39.00 40.00 41.00	0 1.00 0 1.00 0 1.00 0 1.00 0 1.00	0.0280 0.0025 0.0025 0.0025 0.0050		0.5000 0.5000 0.5000 0.5000	58.0000 31.0000 28.0000 39.0000 59.0000	49.0000 18.0000 24.0000 20.0000 27.0000	10.0000 14.0000 10.0000 13.0000 19.0000	

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-31

Detailed Lit	hology				Ass	say Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
41.05	71.00	7b, diorite										
		Alteration 41.050 - 71.000 :Alteration Type: Silicified, Alteration Intensity: Moderate-Strong, Alteration Style: Selectively Pervasive Feldspar phenocrysts and groundmass silicified in patches. Possibly related to minor quartz veining. Roughly a third of the unit is altered this way. 41.050 - 71.000 :Alteration Type: Chloritized, Alteration Intensity: Moderate, Alteration Style: Selectively Pervasive Mafic groundmass is pervasively chloritised 41.050 - 71.000 :Alteration Type: Saussurization, Alteration Intensity: Intense, Alteration Style: Selective Sausseritisation of feldspars in intermittent and infrequent patches										

Jun 21, 2009	Alto Ventures Ltd.	D	DETAILED LOG			Page 1 of 3
Hole Number: M	1UD08-32				Units: METF	RIC
Project Name: Project Number:	Mud Lake Mud Lake	Primary Coordinates Grid: UTM North: 5511820.00	83-17	Field Coordinates Grid: North: 0.00	Collar Dip: Collar Az:	-50.50 125.80
Location:	Surface	Elev: 353.00		Elev: 0.00	Start Depth:	60.50 1.50
Date Started: Date Completed: Logged By:	Oct 06, 2008 Oct 07, 2008 Richard Lumb	Collar Survey: Y Plugg Multishot Survey: N Hole S Pulse EM Survey: N Casing	ied: N Size: NQ ig: Left in Hole	Contractor: Cobra Drilling Core Storage: Mine Site	Final Depth:	62.00
Comments: Sample Avera	ges					
Survey Data	5					

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
17.00	122.20	-50.30	ezShot	ОК		65.00	125.80	-50.50	ezShot	OK	

Detailed Lith	nology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
From 1.50	To 17.80	Lithology 7b, diorite Medium-coarse diorite. 50-60% feldspar phenocrysts in a groundmass of feldspar and fine grained amphibole and biotite. The groundmass is pervasively chloritised. The feldspars are, in places, saussuritised. Intermittent patches of K-feldspar replacement of the primary feldspars is associated with minor quartz veinlets. Larger patches, up to 3m wide, of intense silicification. Particularly associated with shearing. Alteration 1.500 - 17.800 :Alteration Type: Chloritized, Alteration Intensity: Moderate-Strong, Alteration Style: Selectively Pervasive Pervasive chloritisation of mafic groundmass 1.500 - 17.800 :Alteration Type: Saussurization, Alteration Intensity: Weak-Moderate, Alteration Style: Selective Intermittent patches of saussuritised feldspars 1.500 - 17.800 :Alteration Type: Silicified, Alteration Intensity: Weak-Moderate, Alteration Style: Selective Intermittent patches of saussuritised feldspars 1.500 - 17.800 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Selective	Sample Number 745356	From 17.30	To 18.30	Length 1.00	Au gpt 0.0080	Au repeat	Ag ppm 0.5000	Zn ppm 25.0000	Cu ppm 97.0000	Pb ppm 10.0000
		veining and shearing										
		Mineralization										
		17.200 - 17.500 : , Py: 2.0, Vg: N, Style: Disseminated										
		sheared half metre above quartz vein. Minor quartz-k-feldspar veining.										

Alto Ventures Ltd.

DETAILED LOG

Page 2 of 3

Hole Number: MUD08-32

Detailed Lithology				Ass	say Data						
From To	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
17.80 18.	 4 10, quartz vein Quartz-k-feldspar vein. Some epidote in the selvage with 5% pyrite disseminated Structure 17.800 - 18.140 : Structure: VN, Core Axis: 35 weak shearing at upper contact Mineralization 17.800 - 18.140 : , Py: 5.0, Vg: N, Style: Disseminated 										
18.14 35.	 7b, diorite Diorite as described above Alteration 19.900 - 21.900 : Alteration Type: Saussurization, Alteration Intensity: Strong, Alteration Style: Pervasive Intermittent patches of intense saussuritisation associated with narrow veinlets 21.900 - 22.950 : Alteration Type: Hematized, Alteration Intensity: Moderate, Alteration Style: Selective Partial replacement of the majority of felspars 28.400 - 28.700 : Alteration Type: Saussuritisation associated with narrow veinlets 28.400 - 28.700 : Alteration Type: Saussurization, Alteration Intensity: Strong, Alteration Style: Pervasive Intermittent patches of intense saussuritisation associated with narrow veinlets 28.700 - 29.000 : Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Selective Patches of silicification of feldspars and groundmass, associated with quartz veining and shearing										
35.23 35.	 10, quartz vein Quartz vein with minor carbonate and k-feldspar. Small inclusions of entrained mafic material. Veining 35.230 - 35.600 :% Veining: 70, Ank: 10, QTZ: 90, Vein Type: Vu 										

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-32

Detailed Lith	ology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
35.60	40.72	7b, diorite Diorite as described above Alteration 35.600 - 40.720 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Selective Patches of silicification of feldspars and groundmass, associated with quartz veining and shearing 38.540 - 38.590 :Alteration Type: Saussurization, Alteration Intensity: Strong, Alteration Style: Pervasive intense saussuritisation associated with narrow veinlets	745357	40.00	41.00	1.00	0.0025		0.5000	37.0000	20.0000	12.0000
40.72	45.64	 7b\$, schistose diorite The shear grades from and back into the massive diorite over 10-20cm Alteration 40.720 - 45.640 :Alteration Type: Sericitized, Alteration Intensity: Strong, Alteration Style: Pervasive Frequent patches of sericitisation Structure 44.900 - 45.040 : Structure: VN, Core Axis: 40 MINOR INTERVALS: Minor Interval: 44.9 - 45.04 10a, quartz-carbonate vein 	745358 745359 745360 745361 745362	41.00 42.00 43.00 44.00 45.00	42.00 43.00 44.00 45.00 46.00	1.00 1.00 1.00 1.00	0.0025 0.0025 0.0025 0.0025		0.5000 0.5000 0.5000 0.5000	54.0000 67.0000 38.0000 33.0000 34.0000	4.0000 2.0000 14.0000 31.0000 27.0000	12.0000 13.0000 12.0000 10.0000
45.64	62.00	7b, diorite Diorite as described above	745363 745364 745365 745366	50.00 51.00 52.00 53.00	51.00 52.00 53.00 54.00	1.00 1.00 1.00 1.00	0.0025 0.0025 0.0025 0.0025		2.0000 0.5000 0.5000 0.5000	39.0000 43.0000 43.0000 46.0000	23.0000 22.0000 37.0000 76.0000	14.0000 10.0000 11.0000 9.0000

Jun 21, 2009	Alto Ventures Ltd.	DETAILED LOG			Page 1 of 3
Hole Number: M	IUD08-33			Units: ME	TRIC
Project Name: Project Number: Location:	Mud Lake Mud Lake Surface	Primary Coordinates Grid: UTM83-17 North: 5511864.00 East: 449318.00	Field Coordinates Grid: North: 0.00 East: 0.00	Collar Dip: Collar Az: Length:	-50.90 119.80 54.55
Date Started: Date Completed: Logged By:	Oct 08, 2008 Oct 08, 2008 Richard Lumb	Elev: 347.00 Collar Survey: Y Plugged: N Multishot Survey: N Hole Size: NQ Pulse EM Survey: N Casing: Left in Hole	Elev: 0.00 Contractor: Cobra Drilling Core Storage: Mine Site	Start Depth: Final Depth:	1.50 56.05
Comments:					

Sample Averages

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
17.00	119.80	-50.90	ezShot	ОК		50.00	115.20	-51.10	ezShot	ОК	

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-33

Detailed Lit	hology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
1.50	27.57	7b, diorite	745367	27.00	28.00	1.00	0.0100		0.5000	37.0000	41.0000	10.0000
		Alteration										
		1.500 - 26.380 :Alteration Type: Saussurization, Alteration Intensity: Weak-Moderate, Alteration Style: Selective										
		feldspars are saussuritised to varying degrees throughout the unit.										
		7.400 - 355.000 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Pervasive										
		pervasive replacement of feldspars with quartz and silica flooding of the groundmass										
		16.250 - 16.600 :Alteration Type: Hematized, Alteration Intensity: Moderate, Alteration Style: Selective										
		partial replacement of feldspars with haematite										
		26.300 - 27.570 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Pervasive										
		Strong silicifiation of feldspars and groundmass directly above fault zone										
		Mineralization										
		2.680 - 2.730 : , Py: 4.0, Vg: N, Other Min: Hematite, Other Pct: 7.0										
		Haematite in stringers, pyrite in isolated cubes 7.400 - 9.350 : , Py: 2.0, Vg: N										
		Cubes of pyrite, concentrated at the upper and lower contacts of the silica-altered zone										
		Texture										
		6.000 - 26.380 : Texture: lb										
		Medium-coarse feldspar phenocrysts in a fine grained groundmass of feldspar, amphibole and biotite										
		MINOR INTERVALS:										
		Minor Interval:										
		2.68 - 2.73 10, quartz vein										
		Quartz vein with haematite stringers, pyrite cubes and entrained mafic material Minor Interval:										
		5.5 - 6.95 10, quartz vein										
		Coarse crystalline, fracture-filling quartz vein - 2-4cm wide, running subparallel to the core axis.										
27.57	30.90	FZ, fault zone	745368	28.00	29.00	1.00	0.0210		0.5000	36.0000	37.0000	9.0000
		Diorite hosted fault zone, sub parallel to core axis.	745369	29.00	30.00	1.00	0.0070		0.5000	35.0000	24.0000	9.0000
		Mineralization	745370	30.00	31.00	1.00	0.0170		0.5000	31.0000	44.0000	10.0000
		27.570 - 30.900 : , Py: 2.0, Gn: .0, Vg: N										
		Disseminated pyrite throughout fault zone										

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-33

Detailed Lit	hology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
30.90	47.65	7b, diorite	745371	37.00	38.00	1.00	0.0025		0.5000	33.0000	34.0000	8.0000
		Strong silicified diorite	745372	47.00	48.00	1.00	0.0060		0.5000	44.0000	36.0000	8.0000
		Alteration										
		30.900 - 47.650 :Alteration Type: Silicified, Alteration Intensity: Intense, Alteration Style: Pervasive										
		Intense silicification of feldspar phenocrysts and groundmass										
		30.900 - 47.650 :Alteration Type: Chloritized, Alteration Intensity: Strong, Alteration Style: Pervasive										
		Strong chloritisation of mafic groundmass										
47.65	51.85	7b, diorite	745373	48.00	49.00	1.00	0.0025		0.5000	55.0000	15.0000	13.0000
		Sheared diorite	745374	49.00	50.00	1.00	0.0025		0.5000	50.0000	51.0000	14.0000
		Alteration	745376	50.00	51.00	1.00	0.0400		0.5000	34.0000	41.0000	9.0000
		51.750 - 51.850 : Alteration Type: Sericitized, Alteration Intensity:	745377	51.00	52.00	1.00	0.0580		0.5000	26.0000	35.0000	9.0000
		Moderate, Alteration Style: Stringers										
		Structure										
		47.650 - 51.850 : Structure: SHR, Core Axis: 35										
51.85	56.05	7b, diorite										
		Alteration										
		51.850 - 56.050 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Pervasive										
		Intense silicification of feldspar phenocrysts and groundmass										
		Texture										
		51.850 - 56.050 : Texture: -										
		Largely massive but with a weak foliation in places.										

Jun 21, 2009)		Alto	Ven	tures Ltd.			DETAI	LED LC)G								Pa	ge 1 of 2
Hole Numbe	er: MUD08-3	34															Un	its: METRIC	;
Project Nam	ne: Mud L	ake				Primary Coordinates	Grid:	UTM83-17				Field Coc	rdinates	Grid:			Collar D	ip:	-49.70
Project Num	nber: Mud L	ake				North: 5511907.00						North:	0.00				Collar A	Z:	326.80
Location:	Surfa	ce				East: 449480.00						East:	0.00				Length:		50.00
						Elev: 350.00		.				Elev:	0.00				Start De	pth:	0.00
Date Starte	d: Oct 0	9, 2008				Collar Survey: N		Plugged: N				Contracto	or: Cob	ra Drilling			Final De	eptn:	50.00
Date Compl	eted: Oct 0	9, 2008				Multishot Survey: N		Hole Size: NG	2			Core Stor	age: Cor	e Shed					
Logged By:	Richa	rd Lumb				Pulse EM Survey: N		Casing: Lef	t in Hole										
Comments:																			
Sample Av	verages																		
Survey Da	ata																		
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag		Comments			Depth	Azimuth Decimal	Dip	o Test	Flag			Comment	S		
50.00	326.80	-49.70	ezShot	ОК															
Detailed L	ithology		•		• •					·	-	Assay	Data						
From	То				Lithology			Sample Num	ber	From		То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	12.00	7b, diori	te																
		Massive,	medium-o	coarse c	diorite														
		Alteratio	n o																
		0	- 12,000	:Alterat	tion Type: Silicified.	Alteration Intensity: Modera	te.												
		, i i i i i i i i i i i i i i i i i i i		Alterati	on Style: Pervasive)	,												
		Silicificat	tion of feld	Ispar ph	enocrysts and grou	Indmass													
		0	- 12.000	Modera	ate, Alteration Style	: Pervasive	ly.												
		K-feldsp	ar replace	ment of	plagioclase feldspa	ars													
12.00	16.75	7b\$, sch	istose die	orite				745378		14	1.00	15.00	1.00	0.0060)	0.5000	61.0000	69.0000	14.000
		Strongly	sheared d	liorite (p	ossible mafic dyke	or mafic volcanics?)		745379		15	5.00	16.00	1.00	0.0050)	0.5000	60.0000	42.0000	13.000
		12 000	e - 16.750	Struc	ture SHR Core A	ris: 55		745380		16	5.00	17.00	1.00	0.0070)	0.5000	63.0000	33.0000	13.000
		Minerali	ration	. 5000															
		16.500	- 16.750	:, Pv: 2	2.0, Vg: N, Style: Di	isseminated													
				, ,	, , , , , , , , ,														

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-34

Detailed Lit	hology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
16.75	21.14	7b, diorite Intensely pervasive alteration to silica and k-feldspar. Graded upper and lower contacts approximately im each. Alteration 16.750 - 21.140 :Alteration Type: Potassic alteration, Alteration Intensity: Intense, Alteration Style: Pervasive K-feldspar and quartz flood the groundmass and replace phenocrysts. Some small biotite stringers and around 5% carbonate in patches Structure 17.700 - 20.500 : Structure: SHR, Core Axis: 40	745381 745382 745383 745384 745385	17.00 18.00 19.00 20.00 21.00	18.00 19.00 20.00 21.00 22.00	1.00 1.00 1.00 1.00 1.00	0.0090 0.0070 0.0070 0.0025 0.0025		0.5000 0.5000 0.5000 0.5000 0.5000	28.0000 17.0000 16.0000 42.0000 48.0000	26.0000 14.0000 23.0000 10.0000 21.0000	8.0000 11.0000 9.0000 10.0000 8.0000
21.14	36.65	16.750 - 21.140 : , Py: 1.0, Vg: N, Style: Disseminated 7b, diorite Alteration 21.140 - 26.500 : Alteration Type: Silicified, Alteration Intensity: Moderate-Strong, Alteration Style: Pervasive Strong silicification for several metres past the shear zone 26.500 - 48.100 : Alteration Type: Saussurization, Alteration Intensity: Moderate, Alteration Style: Selective Saussuritisation of feldspars to varying degrees throughout the diorite Structure 25.800 - 26.100 : Structure: SHR, Core Axis: 75 MINOR INTERVALS: Minor Interval: 25.8 - 26.1 7b\$, schistose diorite	745386 745387	22.00 30.50	23.00 31.20	<u>1.00</u> 0.70	0.0025		0.5000	37.0000 41.0000	28.0000	9.0000
36.65	37.20	 10, quartz vein White quartz vein withe entrained mafic fragments, a large fragments of diorite and minor patches of carbonate (<4%) Structure 36.650 - 37.200 : Structure: VN, Core Axis: 40 7b, diorite 										
48.10	50.00	6, matic intrusive Massive mafic dyke										

Jun 21, 2009)		Alto	Ven	tures Ltd.			DETAI	LED LC)G								Pa	age 1 of 2
Hole Numbe	er: MUD08-3	35															Ur	nits: METRI	C
Project Nam Project Num Location: Date Started Date Compl Logged By: Comments:	ct Name: Mud Lake Primary Coordinates Gr ct Number: Mud Lake North: 5511926.00 ion: Surface East: 449527.00 ion: Surface Collar Survey: Y Completed: Oct 09, 2008 Collar Survey: Y Completed: Oct 09, 2008 Multishot Survey: N ed By: Richard Lumb Pulse EM Survey: N nents: Dip Tott Flog Comments						Grid: F	UTM83-17 Plugged: N Hole Size: NQ Casing: Lef	t in Hole		F N E C C	Tield Coord Iorth: 0 East: 0 Elev: 0 Contractor Core Stora	dinates .00 .00 .00 : Cr age: Cr	Grid: obra Drilling ore Shed			Collar E Collar A Length: Start De Final De	Dip: Az: epth: epth:	-49.50 330.30 50.00 0.00 50.00
Sample Av	verages ata																		
Depth	Azimuth Decimal	th Dip Test Flag Comments al Decimal Type							Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	1		Commen	its		
17.00	330.30	Decimal Type																	
Detailed L	ithology	0 -49.90 ezShot OK										Assay D	Data						
From	То				Lithology			Sample Num	ber	From	То	b L	ength.	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	1.50 21.37	OB, Ove 7b, diori Diorite. M groundm porphyrit Alteratio 1.500 Patchy d 13.500 replacen Veining 1.500 Quartz s with entr	rburden te Massive an ass of fine ic diorite. n - 21.370 evelopme - 18.000 hent of fek - 21.370 tringers ar ained mafi	d undef feldspa :Alterat Weak-f nt of sa :Alterat Strong- dspars a :% Veir ad narro ic inclus	ormed. Medium-coar r, amphibole and bio ion Type: Saussuriza Moderate, Alteration S ion Type: Silicified, A Intense, Alteration S ind flooding of ground ning: 1, Vein Type: Ve w veins. Often with h ions.	se feldspar phenocrysts i tite. Occasional inclusion tion, Alteration Intensity: Style: Selective Iteration Intensity: tyle: Pervasive dmass e aematite stringers. Veins	in a s of												

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-35

Detailed Lit	hology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
21.37	24.83	7b, diorite Highly silicified upper contact of the target shear zone Alteration 21.370 - 24.830 :Alteration Type: Silicified, Alteration Intensity: Intense, Alteration Style: Pervasive Intense silicification between undeformed diorite and shear zone	745388	24.00	25.00	1.00	0.0025		0.5000	9.0000	33.0000	4.0000
24.83	29.05	7b\$, schistose diorite Shear zone Alteration 24.830 - 29.050 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Pervasive Structure 24.830 - 29.050 : Structure: SHR, Core Axis: 73 Target shear zone. Strongly sheared, though intensity varies slightly throughout zone. Mineralization 24.830 - 29.050	745389 745390 745391 745392 745393	25.00 26.00 27.00 28.00 29.00	26.00 27.00 28.00 29.00 30.00	1.00 1.00 1.00 1.00 1.00	0.0060 0.0025 0.0025 0.0080 0.0025		0.5000 0.5000 0.5000 0.5000 0.5000	29.0000 33.0000 25.0000 30.0000 40.0000	12.0000 21.0000 10.0000 13.0000 16.0000	8.0000 10.0000 9.0000 11.0000 9.0000
29.05	42.13	7b, diorite Alteration 29.050 - 42.130 :Alteration Type: Saussurization, Alteration Intensity: Moderate, Alteration Style: Selective partial replacement of feldspars to varying degrees Mineralization 42.000 - 49.100 : , Py: 5.0, Vg: N, Style: Disseminated Veining 32.000 - 35.000 :% Veining: 5, QTZ: 50, Fsp: 50, Vein Type: B Two quartz-k-feldspar veins (5cm) with entrained mafic inclusions.	745394	30.00	31.00	1.00	0.0025		0.5000	48.0000	25.0000	10.0000
42.13	49.10	6, mafic intrusive Fine-grained mafic dyke	745395 745396	46.00 47.00	47.00 48.00	1.00 1.00	0.0025 0.0025		0.5000 0.5000	82.0000 78.0000	124.0000 119.0000	15.0000 13.0000
49.10	50.00	7b, diorite										

Jun 21, 2009			Alto	Vent	tures Ltd.			DETA	AILED LC	G								Pa	ge 1 of 3
Hole Number: M	IUD08-3	6															Un	its: METRIC	;
Project Name: Project Number: Location: Date Started: Date Completed: Logged By: Comments:	Mud L Mud L Surfac Oct 10 Oct 11 Richar	ake ake e , 2008 , 2008 d Lumb	Primary Coordinates Grid: North: 5512071.00 East: 449743.00 Elev: 348.00 Collar Survey: Y Multishot Survey: N Pulse EM Survey: N					UTM83-17 Field Coordinates Grid: North: 0.00 East: 0.00 Elev: 0.00 Plugged: N Contractor: Cobra Drilling Hole Size: NQ Core Storage: Core Shed Casing: Left in Hole							Collar D Collar A Length: Start De Final De	ip: z: pth: pth:	-49.80 325.20 116.00 0.00 116.00		
Sample Average	ges																		
Depth Azi	imuth cimal	Dip Decimal	Test Type	Flag		Comments			Depth	Azimuth Decimal	Di Deci	ip imal	Test Type	Flag		 Comments	;		
17.00	325.20	-49.80	ezShot	ОК					117.00	329.20	-50	0.10	ezShot	ОК					
Detailed Litho	logy												Assay Da	ita					
From	То	Lithology						Sample Number From To Length Au gpt Au repeat Ag ppm							Zn ppm	Cu ppm	Pb ppm		
0	1.50	OB, Ove	rburden																
1.50	48.92	 7b, diorit 7b, diorit Diorite. M fine-grain inclusion Alteratio 1.500 Patchy s 24.800 Silicificat 30.900 Structure 25.520 Weak sh Veining 34.950 Haematit 	te Massive, un ed ground s of diorite n - 48.920 aussuritise - 27.780 tion - prob - 32.050 e - 26.480 tear - 35.600 te stringer	ndeform dmass o e porphyi :Alterati Alterati Alterati ably rela :Alterati Strong- : Struct :% Vein s	ed. Medium-coarse f feldspar, amphibo ry on Type: Saussuri te, Alteration Style feldspars on Type: Silicified, on Style: Pervasive ting to a small, loc on Type: Silicified, Intense, Alteration ture: SHR, Core As sing: 5, Vein Type:	e grained phenocrysts in ole and biotite. Occasional zation, Alteration Intensity: Selective Alteration Intensity: Strong al shear Alteration Intensity: Style: Pervasive xis: 38 Str	9,	745397 745398		47 48	3.00	48 49	3.00	<u>1.00</u> <u>1.00</u>	0.0025	0.5000	44.0000	26.0000 12.0000	11.000 9.000

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-36

Detailed Lithology			Assay Data										
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm	
48.92	54.75	7b\$, schistose diorite	745399	49.00	50.00	1.00	0.0025		0.5000	46.0000	14.0000	10.0000	
		Shear strongly sheared in places but with sections of weak shearing between	745401	50.00	51.00	1.00	0.0025		0.5000	43.0000	16.0000	8.0000	
		Structure	745402	53.00	54.00	1.00	0.0025		0.5000	61.0000	11.0000	15.0000	
		48.920 - 54.750 : Structure: SHR, Core Axis: 38	745403	54.00	55.00	1.00	0.0025		0.5000	67.0000	13.0000	15.0000	
		Shear zone. Sheared diorite											
		Mineralization											
		48.920 - 54.750 : , Py: 2.0, Vg: N, Style: Disseminated											
		Veining											
		53.600 - 54.750 :% Veining: 15, QTZ: 98, Vein Type: FF											
		5% py in sheared mafics associated with quartz											
		MINOR INTERVALS:											
		Minor Interval:											
		48.92 - 49.33 10, quartz vein											
		Minor Interval:											
		50 - 50.2 10, quartz vein											
		Quartz vein with chloritic mafic inclusions											
54.75	60.18	7b, diorite											
		Diorite as described above											
60.18	60.32	8a, aplite			•								
		Contacts at 65 degrees to core axis											
60.32	80.08	7b, diorite	745404	74.00	75.00	1.00	0.0400		0.5000	34.0000	1568.0000	10.0000	
		Diorite as described above	745405	75.00	76.00	1.00	0.0025		0.5000	46.0000	31.0000	12.0000	
		Mineralization	745406	80.00	81.00	1.00	0.0025		0.5000	70.0000	61.0000	13.0000	
		74.150 - 75.000 : , Cp: 5.0, Vg: N, Style: Blebby											
		74.150 - 75.000 : , Py: 4.0, Vg: N, Style: Coarse Grained											
		Coarse grained dissems of pyrite in mafic rock, associated with quartz											
		Veining											
		veining											
		14.150 - 75.000 .% vening. 20, Q12. 90, veninger F											
		10% cpy blebs with quartz											
Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-36

Detailed Lit	hology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
80.08	81.26	7b\$, schistose diorite Strongly sheared diorite Structure 80.080 - 81.260 : Structure: SHR, Core Axis: 38 Strong shear	745407	81.00	82.00	1.00	0.0025	, ,	0.5000	39.0000	7.0000	12.0000
81.26	84.03	7b, diorite Diorite as described above	745408	84.00	85.00	1.00	0.0080)	0.5000	93.0000	35.0000	18.0000
84.03	85.67	 6, mafic intrusive mafic dyke, sheared with contacts at 38 degrees to axis Structure 84.030 - 85.670 : Structure: SHR, Core Axis: 38 Strong shear 	745409	85.00	86.00	1.00	0.0060		0.5000	95.0000	46.0000	17.0000
85.67	91.00	7b, diorite Diorite as described above	745410 745411 745412 745413 745414	86.00 87.00 88.00 89.00 90.00	87.00 88.00 89.00 90.00 91.00	1.00 1.00 1.00 1.00 1.00	0.0025 0.0025 0.0025 0.0025 0.0070	5 5 5	0.5000 0.5000 0.5000 0.5000 0.5000	48.0000 42.0000 36.0000 31.0000 29.0000	83.0000 31.0000 71.0000 52.0000 76.0000	11.0000 11.0000 10.0000 12.0000 9.0000
91.00	100.80	7b\$, schistose diorite Structure 91.000 - 100.800 : Structure: SHR, Core Axis: 42 Moderate shearing Veining 91.000 - 100.800 :% Veining: 5, Cal: 20, QTZ: 80, Vein Type: FF	745415 745416 745417 745418 745419 745420 745421 745423 745424	91.00 92.00 93.00 94.00 95.00 96.00 97.00 98.00 99.00 100.00	92.00 93.00 94.00 95.00 96.00 97.00 98.00 99.00 100.00 101.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.0140 0.0080 0.0025 0.0120 0.0025 0.0025 0.0025 0.0025 0.0025	Image: state	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	26.0000 21.0000 22.0000 26.0000 28.0000 39.0000 68.0000 74.0000 48.0000	83.0000 7.0000 28.0000 26.0000 31.0000 31.0000 53.0000 83.0000 49.0000	9.0000 8.0000 7.0000 8.0000 9.0000 10.0000 14.0000 16.0000 9.0000
100.80	105.53	7b, diorite Diorite as described above										
105.53	105.94	8, felsic intrusive Felsic porphyry										
105.94	116.00	7b, diorite Diorite as described above										

Jun 21, 2009			Alto	Ven	tures Ltd.			DETAI	LED LO	G								Р	age 1 of 2
Hole Number	: MUD08-3	57															Ur	iits: METRI	С
Project Name Project Numb Location: Date Started: Date Comple Logged By: Comments:	e: Mud L ber: Mud L Surfa Oct 1 ¹ ted: Oct 12 Richa	ake ake ce 1, 2008 2, 2008 rd Lumb				Primary Coordinates North: 5512125.00 East: 449839.00 Elev: 348.00 Collar Survey: Y Multishot Survey: N Pulse EM Survey: N	Grid: F H	UTM83-17 Plugged: N Hole Size: NG Casing: Lef	t in Hole		Fi N Ei C C	eld Coord orth: 0.0 ast: 0.0 lev: 0.0 ontractor: ore Storag	inates 00 00 00 Cot ge: Cor	Grid: ora Drilling re Shed			Collar D Collar A Length: Start De Final De	ip: z: epth: epth:	-50.40 326.10 137.01 0.00 137.01
Sample Ave	erages																		
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag		Comments			Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag			Commen	ts		
17.00 100.00	326.10 332.80	-50.40 -50.90	ezShot ezShot	ОК ОК					50.00 137.00	328.80 337.80	-49.90 -49.20	ezShot ezShot	ОК ОК						
Detailed Lit	thology											Assay Da	ata						
From	То				Lithology			Sample Num	ber	From	То	Le	ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	1.50	OB, Ove	rburden																
1.50	39.00	7b, diorif Diorite. M a fine gro diorite pro Alteratio 1.500 - Throughor replaced texture 1.500 - Occasior groundm	te Massive an bundmass ophyry (up n - 39.000 but unit th by quartz - 39.000 nal patche mass	d largel of felds to 15cr :Alterat Modera and the :Alterat Modera s of per	y undeformed. Medi par, amphibole and l n across). ion Type: Silicified, A tte-Strong, Alteratior patches of silicificati groundmass is floo ion Type: Saussuriz tte-Strong, Alteratior vasive saussuritisati	um-coarse feldspar pheno biotite. Occasional inclusio Alteration Intensity: a Style: Selectively Pervas on where feldspars are ded obscuring the original ation, Alteration Intensity: a Style: Patchy on affect feldspars and	ocrysts in ons of ive												
39.00	42.60	6, mafic i upper cor Structure 39.000	intrusive ntact 50 de e - 42.600	egrees, : Struc	lower 35 ture: SHR, Core Axia	s: 47													

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-37

Detailed Lit	hology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
42.60	137.00	7b, diorite	745426	73.00	74.00	1.00	0.0025		1.0000	24.0000	9.0000	11.0000
		Diorite as described above	745427	102.00	103.00	1.00	0.0025		0.5000	24.0000	17.0000	7.0000
		Structure										
		73.320 - 73.321 : Structure: CNT, Core Axis: 45										
		sharp contact 73.620 - 73.621 : Structure: CNT, Core Axis: 70										
		Mineralization										
		61.320 - 61.720 : , Cp: 1.0, Vg: N, Style: Veins										
		minor cpy in quartz veinlet in larger quartz vein										
		73.320 - 73.620 : , Py: 5.0, Vg: N, Style: Stringers										
		also disseminated pyrite										
		100.450 - 100.550 : , Vg: N, Other Min: Hematite, Other Pct: 5.0, Style: Stringers										
		Associated with quartz veinlet										
		103.700 - 105.350 : , Vg: N, Other Min: Hematite, Other Pct: 5.0, Style: Stringers										
		Associated with quartz veinlet										
		Veining 100.450 - 100.550 :% Veining: 10, QTZ: 90, Vein Type: Ve										
		Quartz with disseminated haematite										
		102.350 - 102.600 :% Veining: 100, QTZ: 100, Vein Type: Mass										
		white quartz										
		102.850 - 103.050 :% Veining: 100, QTZ: 100, Vein Type: Mass										
		white quartz										
		103.700 - 105.350 :% Veining: 20, QTZ: 90, Vein Type: Ve										
		Quartz with disseminated haematite										
		125.700 - 126.150 .% veining. 20, Cal. 30, Q12. 70, vein Type. ve										
		MINOR INTERVALS:										
		Minor Interval:										
		61.32 - 61.72 10, quartz vein										
		Millior Interval: 73.32 - 73.62.10. quartz vein										
		Quartz breccia vein with entrained mafic fragments										
137.00	137.01	EOH, end of hole										

Jun 21, 2009)		Alto	Ven	tures Ltd.			DETAI	LED LO	G								Pa	ge 1 of 3
Hole Numbe	er: MUD08-	38															Un	its: METRIC	;
Project Nam Project Num Location: Date Started Date Compl Logged By:	ne: Mud I nber: Mud I Surfa d: Oct 1 leted: Oct 1 Richa	_ake _ake ce 2, 2008 3, 2008 ard Lumb				Primary Coordina North: 551204 East: 449892 Elev: 347.00 Collar Survey: Multishot Survey: Pulse EM Survey	tes Grid: 2.00 2.00 Y N : N	UTM83-17 Plugged: N Hole Size: NC Casing: Lef) t in Hole		Fi Na El Ca Ca	eld Coord orth: 0.0 ast: 0.0 lev: 0.0 ontractor: ore Storaç	linates 00 00 00 Cob ge: Core	Grid: ra Drilling e Shed			Collar D Collar A Length: Start De Final De	p: :: : pth: pth:	-50.40 331.70 149.01 0.00 149.01
Sample A	voragos																		
Survey Da	verages																		
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag		Comments			Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag			Comment	S		
17.00	331.70 331.40	-50.40	ezShot	OK					50.00	330.70	-50.60	ezShot	ОК						
	331.40	-50.70	ezonot	UK									<u> </u>						
	.itnology				lithology/			Comple Num	hor	From	То	Assay D	ata	Au ant	Auropost	A a nnm	70.000		Dhaam
From	10 3.00		rburden		Lithology			Sample Num	ber	From	10		ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cuppm	Pb ppm
3.00	34.55	7b, diori Diorite. N groundm porphyry	te lassive, u ass of felo	ndeform Ispar, ar	ned. Medium-coarse mphibole and biotite	e feldspar phenocryst e. Occasional inclusio	ts in a fine ons of diorite	745428 745429 745430		20 29 30	.00 2 .75 3 .45 3	21.00 30.45 31.05	1.00 0.70 0.60	0.0025 0.0025 0.0025		0.5000 0.5000 0.5000	41.0000 30.0000 79.0000	7.0000 24.0000 6.0000	6.000 7.000 9.000
		Alteratio 3.000 occasior groundm Structur 20.000 True wid	n - 34.550 hal patche hass. Asso e - 20.350 th 7cm	:Alterati Alterati s of pervociated v	ion Type: Silicified, on Style: Patchy vasive silicification o vith small shears ar ture: VN, Core Axis	Alteration Intensity: Note the feldspars and ad quartz veinlets.	Weak,												
		26.700 True wid Minerali 26.700	- 28.000 th 7cm zation - 28.000	: Struc :, Vg: I Selvag	ture: VN, Core Axis N, Other Min: Hema e Controlled	:: 5 tite, Other Pct: 5.0, \$	Style:												
		Veining 20.000 Quartz w 26.700 Quartz v	- 20.350 rith haema - 28.000 ein with cl	:% Veir atite strir :% Veir nloritic m	ning: 100, QTZ: 99, ngers (5%) ning: 100, Vein Typ nafic inclusions	Vein Type: Mass e: Mass													

Alto Ventures Ltd.

DETAILED LOG

Page 2 of 3

Hole Number: MUD08-38

Detailed Lith	nology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
34.55	38.85	7b\$, schistose diorite Alteration 34.550 - 38.850 :Alteration Type: Silicified, Alteration Intensity: Moderate-Strong, Alteration Style: Pervasive replacement of feldspars and flooding of groundmass 34.550 - 38.850 :Alteration Type: Hematite, Alteration Intensity: Weak-Moderate, Alteration Style: Patchy patchy developement of haematite throughout shear zone Structure 34.550 - 38.850 : Structure: SHR, Core Axis: 87										
38.85	62.63	7b, diorite Diorite as described above Structure 54.900 - 55.300 : Structure: VN, Core Axis: 90 Chloritised mafic rock with brecciated quartz fragments Veining 54.900 - 55.300 :% Veining: 100, QTZ: 30, Vein Type: B Predominantly chloritised mafic rock with quartz and a haematitic selvage	745431	53.15	54.00	0.85	0.0025		0.5000	79.0000	3.0000	14.0000
62.63	70.30	6, mafic intrusive Structure 62.630 - 63.631 : Structure: CNT, Core Axis: 50 Sharp contact Mineralization 69.700 - 70.300 : , Py: 3.0, Vg: N, Style: Coarse Grained associated with minor calcite veinlets	745432	69.40	70.60	1.20	0.0060		0.5000	90.0000	95.0000	27.0000

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-38

Detailed Litl	hology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
70.30	149.00	7b, diorite	745433	74.00	75.00	1.00	0.0025		0.5000	50.0000	6.0000	10.0000
		As described above	745434	75.00	76.00	1.00	0.0025		0.5000	37.0000	8.0000	7.0000
		Alteration	745435	76.00	77.00	1.00	0.0025		0.5000	24.0000	9.0000	7.0000
		70.300 - 149.000 :Alteration Type: Saussurization, Alteration Intensity:	745436	77.00	78.00	1.00	0.0025		0.5000	25.0000	4.0000	9.0000
		Strong, Alteration Style: Patchy	745437	78.00	79.00	1.00	0.0025		0.5000	35.0000	6.0000	13.0000
		Occasional veinlet controlled patches of saussuritisation	745438	79.00	80.00	1.00	0.0025		0.5000	47.0000	8.0000	13.0000
		106.200 - 110.050 :Alteration Type: Saussurization, Alteration Intensity: Strong Alteration Style: Patchy	745439	80.00	81.00	1.00	0.0025		0.5000	44.0000	14.0000	10.0000
		intermittent, veinlet controlled saussuritisation of feldspars	745440	81.00	82.00	1.00	0.0025		0.5000	35.0000	5.0000	9.0000
		106.200 - 110.050 :Alteration Type: Hematite, Alteration Intensity: Moderate, Alteration Style: Vein	745441	82.00	83.00	1.00	0.0025		0.5000	59.0000	4.0000	10.0000
		haematite in and around veinlets, also associated with saussuritisation 123.750 - 125.700 :Alteration Type: Silicified, Alteration Intensity: Strong-Intense, Alteration Style: Pervasive										
		silicification due to shearing 130.950 - 131.250 :Alteration Type: Silicified, Alteration Intensity: Intense, Alteration Style: Pervasive										
		135.000 - 142.000 :Alteration Type: Silicified, Alteration Intensity: Intense, Alteration Style: Pervasive										
		135.100 - 135.600 :Alteration Type: Silicified, Alteration Intensity: Intense, Alteration Style: Pervasive										
		Structure 70.300 - 70.301 : Structure: CNT, Core Axis: 56										
		Sharp contact 75.700 - 82.800 : Structure: VN, Core Axis: 55										
		A 40cm vein with several smaller ones immediately above and below 124.250 - 124.500 : Structure: SHR, Core Axis: 80										
		Minor shear with quartz veinlets and minor haematite Veining										
		75.700 - 82.800 :% Veining: 40, QTZ: 95, Vein Type: Mass										
		Quartz veining with entrained chloritised mafic inclusions										
149.00	149.01	EOH, end of hole			•							

Jun 21, 2009			Alto	Ven	tures Ltd.		DETA		G								Paç	је 1 of 2
Hole Numbe	er: MUD08-3	39														Unit	s: METRIC	;
Project Nam Project Num Location: Date Startec Date Comple Logged By:	e: Mud L ber: Mud L Surfac d: Oct 1; eted: Oct 1; Richa	.ake .ake ce 3, 2008 3, 2008 ird Lumb				Primary CoordinatesGrid:North:5512520.00East:450436.00Elev:337.00Collar Survey:YMultishot Survey:NPulse EM Survey:N	UTM83-17 Plugged: N Hole Size: N Casing: L	۱ ۱Q eft in Hole, capr		Fi N E C C	ield Coord orth: 0. ast: 0. lev: 0. ontractor: ore Stora	dinates .00 .00 .00 : Cobr ge: Mine	Grid: ra Drilling Site			Collar Dip Collar Az Length: Start Dep Final Dep): - : 3 yth: yth:	-50.00 356.10 47.01 0.00 47.01
Sample A																		
Survey Da	Ita																	
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag		Comments		Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag			Comments	}		
17.00	356.10	-50.00	ezShot	ОК				47.00	357.20	-50.20	ezShot	ОК						
Detailed L	ithology										Assay D	Data						
From	То				Lithology		Sample Nur	mber	From	То	Le	ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	1.50	OB, Over	rburden															
1.50	13.60	7b, diorit Diorite. <i>N</i> a fine grc	i e lassive an oundmass	id largel of felds	ly undeformed. Medi spar, amphibole and	um-coarse feldspar phenocrysts biotite.	in 745442 745443 745444		8. 9. 10.	00 .00 1 .00 /	9.00 0.00 1.00	1.00 1.00 1.00	0.0025 0.0025 0.0025		0.5000 0.5000 0.5000	68.0000 58.0000 56.0000	34.0000 39.0000 32.0000	7.000 8.000 10.000
		Alteration 5.000 ·	n · 11.200	:Alterat Alterati	tion Type: Hematite, ion Style: Pervasive	Alteration Intensity: Moderate,	745445 745446 745447		11. 12. 13.	00 1 .00 1 .00 .00	2.00 3.00 4.00	1.00 1.00 1.00	0.0025 0.0025 0.0070		1.0000 0.5000 0.5000	37.0000 37.0000 49.0000	45.0000 24.0000 43.0000	6.0000 9.0000 12.000
		Most like 11.200 · Most like	 Iy associa 13.600 Iv associa 	Alterat: Alterat: Alterati ated with	tion Type: Hematite, ion Style: Pervasive h shearing below	Alteration Intensity: Intense,												
13.60	18.80	7b\$, sch	istose dic mafic. Pro	orite	a dvke		745448		14.	.00 1	5.00	1.00 1.00	0.0025		2.0000	53.0000 32.0000	4.0000	17.000
		Alteratio 18.150	n - 24.500	:Alterat	tion Type: Hematite,	Alteration Intensity: Weak,	745451 745452		<u> </u>	.00 1	17.00 18.00	1.00	0.0080		0.5000	46.0000 74.0000	19.0000 5.0000	8.000
		Most like Structure 13.600 · Strong s'	ly associa ϶ - 18.800 hearing	ted with	n shearing below cture: SHR, Core Axi	s: 45	145455		16.	00	9.00	1.00	0.0025		0.5000	45.0000	19.0000	8.000
18.80	47.00	7b, diorit Alteratio 22.400 · replacen	n - 47.000	:Alterat Alterati dspars a	tion Type: Silicified, , ion Style: Pervasive and flooding of the g	Alteration Intensity: Strong,	745454		19.	00 2	20.00	1.00	0.0060		0.5000	42.0000	41.0000	7.0000

Jun 21, 2009		Alto Ventures Ltd.	DETAILED LC	DG							Pa	ige 2 of 2
Hole Number	r: MUD08-3	9								Un	iits: METRIC	>
Detailed Li	thology				Ass	say Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
47.00	47.01	EOH, end of hole			·		•	•				•

Jun 21, 2009			Alto	Ven	tures Ltd.			DETA		G								Pa	ge 1 of 3
Hole Number	: MUD08-/	40															Uni	ts: METRIC	
Project Name Project Numb Location:	e: Mud l ber: Mud l Surfa	Lake Lake ce				Primary Coo North: 55 East: 45 Elev: 32	rdinates Grid 12545.00 0505.00 7.00	d: UTM83-17			1	Field Coord North: 0 East: 0 Elev: 0	dinates .00 .00 .00	Grid:			Collar Di Collar A Length: Start De	p: z: ;	-50.30 348.40 64.01 0.00
Date Started: Date Comple Logged By: Comments:	Oct 1 ted: Oct 1 Richa	3, 2008 3, 2008 ard Lumb				Collar Surver Multishot Sur Pulse EM Su	y: Y rvey: N ırvey: N	Plugged: N Hole Size: N Casing: Le	l IQ eft in Hole, capp	bed	(Contractor	: Cob ge: Cor	ra Drilling e Shed			Final De	pth:	64.01
Sample Ave	erages																		
Survey Dat	ta																		
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag		Comme	nts		Depth	Azimuth Decimal	Dip Decima	Test I Type	Flag			Comment	s		
17.00 65.00	338.40 348.20	-50.30 -50.40	ezShot ezShot	ОК ОК					50.00	340.10	-50.20) ezShot	ОК						
Detailed Li	thology											Assay D	Data						
From	То				Lithology			Sample Nu	mber	From	Т	o L	ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	1.50	OB, Ove	rburden							•					·				
1.50	10.20	 7b, diorit Diorite. M Alteratio 1.500 Silcificati 	te Iassive an n - 10.200	d largel :Alterat Alterati	y undeformed. Perv ion Type: Silicified, on Style: Pervasive nd groundmass due	vasively silicified Alteration Inten to proximal she	l sity: Strong, earing	745468		10	.00	11.00	1.00	0.0060	D	0.5000	93.0000	50.0000	19.000
10.20	10.65	5 7b\$, sch Strongly mafic dyk Structur 10.200 Strong s	istose dic chloritic bu ke that's bu e 10.650 hear.	orite ut with a een stro : Struc	lot of quartz. Probangly sheared and m ture: SHR, Core Ax	ably a mixture of nixed up. is: 60	f quartz vein and												
10.65	24.35	5 7b, diori	te					745455		23	.00	24.00	1.00	0.0080	0	0.5000	48.0000	63.0000	9.00
		Alteratio 10.650 Silcificati	n - 43.550	:Alterat Alterati spars ar	ion Type: Silicified, on Style: Pervasive nd groundmass due	Alteration Intent	sity: Strong, earing	745456		24	.00	25.00	1.00	0.0080		2.0000	77.0000	5.0000	13.000

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-40

Detailed Lit	hology				Assa	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
24.35	26.02	7b\$, schistose diorite	745457	25.00	26.00	1.00	0.0110	, ,	2.0000	67.0000	2.0000	16.0000
		Sheared diorite but with a high proportion of mafic material - possibly incorporated a mafic dyke into the shear	745458	26.00	27.00	1.00	0.0025		1.0000	84.0000	21.0000	11.0000
		Structure 24.350 - 26.020 : Structure: SHR, Core Axis: 60 Strong shear										
26.02	43.55	7b, diorite	745459	27.00	28.00	1.00	0.0090	,	0.5000	20.0000	36.0000	7.0000
		Alteration	745460	28.00	29.00	1.00	0.0060	J	1.0000	20.0000	37.0000	6.0000
		27.900 - 28.200 :Alteration Type: Hematite, Alteration Intensity: Intense, Alteration Style: Pervasive	745461	43.00	44.00	1.00	0.0025		0.5000	68.0000	74.0000	11.0000
		Veining 27.000 - 27.750 :% Veining: 60, Cal: 5, QTZ: 95, Vein Type: Mass										
		Core touches the edge of a subparallel quartz vein with narrow carbonate edges										
43.55	44.32	7b\$, schistose diorite	745462	44.00	45.00	1.00	0.0180		0.5000	59.0000	47.0000	11.0000
		Structure43.550 -44.320 : Structure: SHR, Core Axis: 53Moderate shearMineralization43.550 -50.380 : , Cp: 1.0, Py: 2.0, Vg: N, Style: Disseminated										
44.32	45.75	10. guartz vein	745463	45.00	46.00	1.00	0.1190	1	1.0000	55.0000	137.0000	14.0000
		White quartz with minor carbonate. Small, whispy inclusions of mafic material and slighly larger in inclusions carrying sulphides Veining 44.320 - 45.750 :% Veining: 100, Cal: 2, QTZ: 98, Vein Type: Mass										
45.75	50.38	7b\$, schistose diorite	745464	46.00	47.00	1.00	0.1820	J	0.5000	111.0000	1615.0000	23.0000
		Structure	745465	47.00	48.00	1.00	0.0650		0.5000	89.0000	1330.0000	34.0000
		45.750 - 50.380 : Structure: SHR, Core Axis: 53	745466	48.00	49.00	1.00	0.0370	·	0.5000	89.0000	115.0000	25.0000
		Moderate shear Veining 45.750 - 50.380 :% Veining: 10, Cal: 30, QTZ: 70, Vein Type: Str	745467	49.00	50.20	1.20	0.0410		0.5000	69.0000	41.0000	17.0000

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-40

Detailed Lit	thology				Ass	ay Data						
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
50.38	64.00	7b, diorite										
		Veining										
		52.900 - 53.000 :% Veining: 100, Cal: 80, QTZ: 10, Fsp: 10, Vein Type: B										
		also fragments of mafic rock										
64.00	64.01	EOH, end of hole										

Jun 21, 2009	Alto Ventures Ltd.		DETAILED LOG			Page 1 of 2
Hole Number: M	IUD08-41				Units: ME	TRIC
Project Name:	Mud Lake	Primary Coordinates Grid:	UTM83-17	Field Coordinates Grid:	Collar Dip:	-49.80
Project Number:	Mud Lake	North: 5512107.00		North: 0.00	Collar Az:	336.00
Location:	Surface	East: 449973.00		East: 0.00	Length:	104.01
		Elev: 341.00		Elev: 0.00	Start Depth:	0.00
Date Started:	Oct 14, 2008	Collar Survey: N I	Plugged: N	Contractor: Cobra Drilling	Final Depth:	104.01
Date Completed:	Oct 14, 2008	Multishot Survey: N	Hole Size: NQ	Core Storage: Mine Site		
Logged By:	Richard Lumb	Pulse EM Survey: N	Casing: Left in Hole, capped			
Comments:						
Sample Avera	ges					

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	DepthAzimuthDipTestFlagCommentsDecimalDecimalType </th <th></th> <th></th>											
17.00	123.50	-49.80	ezShot	DO			50.00	125.20	-49.20	ezShot	DO						
104.00	344.20	-49.80	ezShot	OK													
Detailed L	ithology					Assay Data											
From	То				Lithology	Sample Num	ber	From	То	Le	ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	1.50	OB, Ove	rburden														
		Alteratio	n														
		0 ·	- 0	:													

DETAILED LOG

Hole Number: MUD08-41

Detailed Lith	nology		Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
1.50	31.73	7b, diorite	745472	27.40	28.00	0.60	0.1310		0.5000	479.0000	57.0000	9.0000
		Diorite. Massive and largely undeformed. Medium-coarse feldspar phenocrysts in	745473	28.00	29.00	1.00	0.0050		0.5000	112.0000	9.0000	9.0000
		a fine groundmass of feldspar, amphibole and biotite. Occasional small	745474	29.00	30.00	1.00	0.0025		0.5000	60.0000	4.0000	15.0000
		inclusions of diorite porphyry.	745476	30.00	31.00	1.00	0.0025		0.5000	28.0000	3.0000	11.0000
		Alteration	745477	31.00	31.70	0.70	0.0025		0.5000	31.0000	2.0000	11.0000
		Alteration Style: Pervasive										
		Pervasive silicification of feldspars and groundmass, occurring in patches 27.550 - 31.700 :Alteration Type: Potassic alteration, Alteration Intensity: Intense, Alteration Style: Pervasive										
		red alteration along fractures and feldspars, possible K alteration or hematite										
		Structure										
		3.100 - 4.100 : Structure: SHR, Core Axis: 80										
		weak shear										
		24.100 - 27.400 : Structure: SHR, Core Axis: 60										
		weak shear										
		31.700 - 31.701 : Structure: CNT, Core Axis: 60										
		Sharp contact with chilled margin										
		31.701 - 31.702 : Structure: CNT, Core Axis: 42										
		Sharp contact										
		Mineralization										
		27.550 - 31.700 : , Py: 3.0, Vg: N, Other Min: Calcite, Other Pct: 3.0, Style: Disseminated										
31.73	38.23	6, mafic intrusive			·							
38.23	79.70	7b, diorite	745469	77.70	78.70	1.00	0.0025		1.0000	41.0000	15.0000	13.0000
		Diorite as described above	745470	78.70	79.70	1.00	0.0025		0.5000	35.0000	14.0000	12.0000
		Alteration										
		77.850 - 79.700 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Pervasive										
		relating to quartz veining below										
		Mineralization										
		77.850 - 79.700 : , Py: 2.0, Vg: N, Style: Disseminated										
79.70	80.37	10, quartz vein	745471	79.70	80.40	0.70	0.0025		0.5000	44.0000	20.0000	10.0000
		Structure										
		79.800 - 80.740 : Structure: VN, Core Axis: 43										
		Quartz-k-feldspar-mafic breccia										
80.37	104.00	7b, diorite										
		Diorite as described above										
104.00	104.01	EOH, end of hole										

Jun 21, 2009	Alto Ventures Ltd.	DETAILED LOG			Page 1 of 2
Hole Number: M	UD08-42			Units: ME	TRIC
Project Name:	Mud Lake	Primary Coordinates Grid: UTM83-17	Field Coordinates Grid:	Collar Dip:	-48.80 126 10
Location:	Mud Lake Surface	East: 449199.00 Elev: 351.00	East: 0.00 Elev: 0.00	Length: Start Depth:	103.00
Date Started:	Oct 15, 2008	Collar Survey: Y Plugged: N	Contractor: Cobra Drilling	Final Depth:	103.00
Date Completed:	Oct 15, 2008	Multishot Survey: N Hole Size: NQ	Core Storage: Core Shed		
Logged By:	Richard Lumb	Pulse EM Survey: N Casing: Left in Hole, capped			
Comments:					
Sample Average	ges				
Survey Data					

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Con	nments	DepthAzimuthDipTestFlagCommentsDecimalDecimalType </th <th></th>											
100.00	126.10	-48.80	ezShot	ОК														
Detailed L	ithology						Assay Data											
From	То				Lithology		Sample Num	ber	From	То	Le	ength	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
0	3.00	OB, Ove	rburden															
		Veining																
		0	- 0	:, Vein	Туре:													

Alto Ventures Ltd.

DETAILED LOG

Hole Number: MUD08-42

Detailed Litholo	ly l	Assay Data									
From To	Lithology	Sample Number	From	То	Length	Au gpt	Au repeat	Ag ppm	Zn ppm	Cu ppm	Pb ppm
3.00 6	.90 7b, diorite	745478	33.00	33.80	0.80	0.0025		0.5000	51.0000	39.0000	9.0000
	Diorite. Massive and undeformed. Medium-coarse feldspar phenocrysts in a fine	745488	58.30	58.90	0.60	0.0025		0.5000	27.0000	5.0000	10.0000
	 Dionte: Massive and underformed: Medium-coarse feldspar prenocrysts in a line groundmass of feldspar, amphibole and biotite. Alteration 3.000 - 69.900 :Alteration Type: Saussurization, Alteration Intensity: Strong, Alteration Style: Patchy Patchily pervasive 50.250 - 53.000 :Alteration Type: Silicified, Alteration Intensity: Strong, Alteration Style: Pervasive 63.200 - 75.900 :Alteration Type: Silicified, Alteration Intensity: Intense, Alteration Style: Pervasive associated with shearing Structure 33.200 - 33.700 : Structure: SHR, Core Axis: 60 weak shear Mineralization 33.200 - 33.700 :, Py: 5.0, Vg: N, Style: Coarse Grained Disseminated, coarse grained pyrite Veining 58.400 - 58.800 :% Veining: 100, QTZ: 60, Vein Type: B Quartz-mafic breccia MINOR INTERVALS: Minor Interval: 	/40400	50.30	36.94	0.60	0.0023		0.5000	27.0000	5.0000	10.0000
	62.68 - 63 8a, aplite										
66.90 7	5.10 7b\$, schistose diorite	745479	67.00	68.00	1.00	0.0025		0.5000	61.0000	20.0000	8.0000
	Structure	745480	68.00	69.00	1.00	0.0025		0.5000	67.0000	39.0000	11.0000
	66.900 - 75.100 : Structure: SHR, Core Axis: 55	745481	69.00	70.00	1.00	0.0025		0.5000	59.0000	25.0000	11.0000
	target shear zone	745482	70.00	71.00	1.00	0.0090		0.5000	48.0000	66.0000	12.0000
	Mineralization	745483	71.00	72.00	1.00	0.0025		0.5000	52.0000	32.0000	9.0000
	70.550 - 70.560 : , Py: 90.0, Vg: N, Style: Stringers	745484	72.00	73.00	1.00	0.0025		0.5000	75.0000	34.0000	11.0000
	Pyrite stringer	745485	73.00	74.00	1.00	0.0025		0.5000	52.0000	30.0000	11.0000
		745486	74.00	75.00	1.00	0.0025		0.5000	54.0000	17.0000	9.0000
		745487	75.00	76.00	1.00	0.0025		0.5000	58.0000	18.0000	10.0000
75.10 10	3.00 7b, diorite	745489	83.25	84.25	1.00	0.0025		0.5000	55.0000	5.0000	12.0000
	Diorite as described above	745490	84.25	85.00	0.75	0.0025		0.5000	63.0000	7.0000	11.0000
	Alteration	745491	85.00	86.00	1.00	0.0060		0.5000	134.0000	21.0000	27.0000
	83.300 - 86.200 :Alteration Type: Silicified, Alteration Intensity: Intense, Alteration Style: Pervasive	745492	86.00	87.00	1.00	0.0025		0.5000	104.0000	6.0000	17.0000

APPENDIX B

DIAMOND DRILL HOLE GOLD ASSAY AND ICP CERTIFICATES

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Oct 22, 2008	,
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Nov 11, 2008	8
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	200843984	
Email#: koziol@altoventures.com	Reference:		
	Sample #:	142 Core	;

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
328297		745351	28	< 0.001	0.028
328298		745352	<5	< 0.001	< 0.005
328299		745353	<5	< 0.001	< 0.005
328300		745354	<5	< 0.001	< 0.005
328301		745355	5	< 0.001	0.005
328302		745356	8	< 0.001	0.008
328303		745357	<5	< 0.001	< 0.005
328304		745358	<5	<0.001	< 0.005
328305		745359	6	<0.001	0.006
328306	Dup	745359	<5	<0.001	< 0.005
328307		745360	<5	<0.001	< 0.005
328308		745361	<5	<0.001	< 0.005
328309		745362	<5	<0.001	< 0.005
328310		745363	<5	< 0.001	< 0.005
328311		745364	<5	< 0.001	< 0.005
328312		745365	<5	< 0.001	< 0.005
328313		745366	<5	<0.001	< 0.005
328314		745367	10	< 0.001	0.010
328315		745368	21	<0.001	0.021
328316		745369	13	<0.001	0.013
328317	Dup	745369	7	<0.001	0.007
328318		745370	17	<0.001	0.017
328319		745371	<5	< 0.001	< 0.005
328320		745372	6	< 0.001	0.006

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Oct 22	, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Nov 11	1, 2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	200843	3984
Email#: koziol@altoventures.com	Reference:		
	Sample #:	142	Core

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
328321		745373	<5	< 0.001	< 0.005
328322		745374	<5	< 0.001	< 0.005
328323		745375	4934	0.144	4.934
328324		745376	40	0.001	0.040
328325		745377	58	0.002	0.058
328326		745378	6	< 0.001	0.006
328327		745379	6	< 0.001	0.006
328328	Dup	745379	5	< 0.001	0.005
328329		745380	7	< 0.001	0.007
328330		745381	9	< 0.001	0.009
328331		745382	7	< 0.001	0.007
328332		745383	7	< 0.001	0.007
328333		745384	<5	< 0.001	< 0.005
328334		745385	<5	< 0.001	< 0.005
328335		745386	<5	< 0.001	< 0.005
328336		745387	<5	< 0.001	< 0.005
328337		745388	<5	< 0.001	< 0.005
328338		745389	<5	< 0.001	< 0.005
328339	Dup	745389	6	< 0.001	0.006
328340		745390	<5	< 0.001	< 0.005
328341		745391	<5	< 0.001	< 0.005
328342		745392	8	< 0.001	0.008
328343		745393	<5	< 0.001	< 0.005
328344		745394	<5	< 0.001	< 0.005

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Oct 22, 2008	,
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Nov 11, 2008	8
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	200843984	
Email#: koziol@altoventures.com	Reference:		
	Sample #:	142 Core	;

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
328345		745395	<5	< 0.001	< 0.005
328346		745396	<5	< 0.001	< 0.005
328347		745397	<5	< 0.001	< 0.005
328348		745398	<5	< 0.001	< 0.005
328349		745399	<5	< 0.001	< 0.005
328350	Dup	745399	<5	< 0.001	< 0.005
328351		745400	4875	0.142	4.875
328352		745401	<5	< 0.001	< 0.005
328353		745402	<5	< 0.001	< 0.005
328354		745403	<5	< 0.001	< 0.005
328355		745404	40	0.001	0.040
328356		745405	<5	< 0.001	< 0.005
328357		745406	<5	< 0.001	< 0.005
328358		745407	<5	< 0.001	< 0.005
328359		745408	8	< 0.001	0.008
328360		745409	<5	< 0.001	< 0.005
328361	Rep	745409	6	< 0.001	0.006
328362		745410	<5	< 0.001	< 0.005
328363		745411	<5	< 0.001	< 0.005
328364		745412	<5	< 0.001	< 0.005
328365		745413	<5	< 0.001	< 0.005
328366		745414	7	< 0.001	0.007
328367		745415	14	< 0.001	0.014
328368		745416	8	< 0.001	0.008

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Oct 22, 2008	,
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Nov 11, 2008	8
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	200843984	
Email#: koziol@altoventures.com	Reference:		
	Sample #:	142 Core	;

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
328369		745417	<5	<0.001	<0.005
328370		745418	12	< 0.001	0.012
328371		745419	<5	< 0.001	< 0.005
328372	Dup	745419	<5	<0.001	< 0.005
328373		745420	<5	<0.001	< 0.005
328374		745421	<5	<0.001	< 0.005
328375		745422	<5	< 0.001	< 0.005
328376		745423	<5	< 0.001	< 0.005
328377		745424	<5	< 0.001	< 0.005
328378		745425	4912	0.143	4.912
328379		745426	<5	< 0.001	< 0.005
328380		745427	<5	< 0.001	< 0.005
328381		745428	<5	< 0.001	< 0.005
328382		745429	<5	< 0.001	< 0.005
328383	Dup	745429	<5	<0.001	< 0.005
328384	_	745430	<5	<0.001	< 0.005
328385		745431	<5	< 0.001	< 0.005
328386		745432	6	< 0.001	0.006
328387		745433	<5	< 0.001	< 0.005
328388		745434	<5	< 0.001	< 0.005
328389		745435	<5	< 0.001	< 0.005
328390		745436	<5	< 0.001	< 0.005
328391		745437	<5	< 0.001	< 0.005
328392		745438	<5	< 0.001	< 0.005

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Oct 22, 2008	,
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Nov 11, 2008	8
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	200843984	
Email#: koziol@altoventures.com	Reference:		
	Sample #:	142 Core	;

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc #
<0.005	< 0.001	<5	745439		328393
<0.005	< 0.001	<5	745439	Dup	328394
<0.005	< 0.001	<5	745440		328395
<0.005	< 0.001	<5	745441		328396
< 0.005	< 0.001	<5	745442		328397
< 0.005	< 0.001	<5	745443		328398
< 0.005	< 0.001	<5	745444		328399
< 0.005	< 0.001	<5	745445		328400
< 0.005	< 0.001	<5	745446		328401
0.007	< 0.001	7	745447		328402
< 0.005	< 0.001	<5	745448		328403
< 0.005	< 0.001	<5	745449		328404
< 0.005	< 0.001	<5	745449	Dup	328405
4.894	0.143	4894	745450		328406
0.008	< 0.001	8	745451		328407
<0.005	< 0.001	<5	745452		328408
< 0.005	< 0.001	<5	745453		328409
0.006	< 0.001	6	745454		328410
0.008	< 0.001	8	745455		328411
0.008	< 0.001	8	745456		328412
0.011	< 0.001	11	745457		328413
< 0.005	< 0.001	<5	745458		328414
0.011	< 0.001	11	745459		328415
0.009	< 0.001	9	745459	Dup	328416

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Oct 22, 20	08
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Nov 11, 20	008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	200843984	4
Email#: koziol@altoventures.com	Reference:		
	Sample #:	142 Co	ore

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
328417		745460	6	< 0.001	0.006
328418		745461	<5	< 0.001	< 0.005
328419		745462	18	< 0.001	0.018
328420		745463	119	0.003	0.119
328421		745464	182	0.005	0.182
328422		745465	65	0.002	0.065
328423		745466	37	0.001	0.037
328424		745467	41	0.001	0.041
328425		745468	6	< 0.001	0.006
328426		745469	<5	< 0.001	< 0.005
328427	Rep	745469	<5	< 0.001	< 0.005
328428		745470	<5	< 0.001	< 0.005
328429		745471	<5	< 0.001	< 0.005
328430		745472	131	0.004	0.131
328431		745473	5	< 0.001	0.005
328432		745474	<5	< 0.001	< 0.005
328433		745475	5071	0.148	5.071
328434		745476	<5	< 0.001	< 0.005
328435		745477	<5	< 0.001	< 0.005
328436		745478	<5	< 0.001	< 0.005
328437		745479	<5	< 0.001	< 0.005
328438	Dup	745479	<5	< 0.001	< 0.005
328439		745480	<5	< 0.001	< 0.005
328440		745481	<5	< 0.001	< 0.005

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Tuesday, November 11, 2008

Alto Ventures Ltd.	Date Received:	Oct 22	, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Nov 11	1, 2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	200843	3984
Email#: koziol@altoventures.com	Reference:		
	Sample #:	142	Core

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	#	Acc #
0.009	< 0.001	9	745482	1	328441
< 0.005	< 0.001	<5	745483	2	328442
< 0.005	< 0.001	<5	745484	3	328443
< 0.005	< 0.001	<5	745485	4	328444
< 0.005	< 0.001	<5	745486	5	328445
< 0.005	< 0.001	<5	745487	6	328446
< 0.005	< 0.001	<5	745488	7	328447
< 0.005	< 0.001	<5	745489	8	328448
< 0.005	< 0.001	<5	Dup 745489	9	328449
< 0.005	< 0.001	<5	745490	0	328450
0.006	< 0.001	6	745491	1	328451
< 0.005	< 0.001	<5	745492	2	328452

Certified By:

PROCEDURE CODES: AL4AU3, AL4ICPAR

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0519-11/11/2008 10:42 AM

BRUSSERAG A

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM Job Number: 200843984 Date Received: Oct 22, 2008 Number of Samples: 142 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID:

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
*The methods used for these analysis are not accredited under ISO/IEC 17025

* The results included on this report relate only to the items tested

Accur. # C	lient Tag	Ag ppm	AI %	As	B	Ba	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	K %	Li	Mg	Mn	Mo	Na	Ni	Ρ	Pb	Sb	Se	Si	Sn	Sr	Ti	ΤI	v	w	Y	Zn
				1.1		F.P	pp	PP····	,,	ppm	ppin	ppm	ppm	70	70	ppin	70	ppm	ppm	70	ррт	ppm	ppm	ppm	ppm	%	ppm	ppm	ррт	ppm	ррт	ppm	ppm	ppm
328297	745351	<1	1.84	6	57	25	<1	6	3.10	<4	15	75	49	3.37	0.12	15	1 12	659	1	0.04	30	598	10	<5	< 5	0.00	<10	71	<100	4	26	-10	~	50
328298	745352	<1	1.41	2	52	43	<1	3	3.89	<4	16	32	18	2.66	0.25	10	0.78	580	<1	0.02	25	304	14	-J 0	~5	0.09	<10	67	<100	-1	20	\$10	5	58
328299	745353	<1	1.29	<2	47	44	<1	2	4.31	<4	12	33	24	2 79	0.28	11	0.81	603	-1	0.02	25	640	10	5	~5	0.00	<10	70	<100	~1	13	<10	6	31
328300	745354	<1	1.30	2	51	19	<1	5	3 43	<4	15	16	20	3.47	0.10	12	1 1 1	715	-1	0.00	20	220	10	- 5	< 5	0.09	< 10	/3	<100	ۍ	12	<10	6	28
328301	745355	<1	1.80	6	41	25	<1	9	3.98	<4	25	41	27	4.65	0.10	13	1 10	019	~1	0.02	20	529	10	<i>'</i>	<5 .C	0.06	<10	60	<100	<1	18	<10	6	39
328302	745356	<1	0.87	11	43	38	<1	5	4.61	<4	20	53	07	1.83	0.14	0	0.62	424	2	0.02	29	022	19	8	<5	0.08	<10	71	<100	<1	17	<10	5	59
328303	745357	<1	1,47	5	49	18	<1	6	4 12	<4	15	36	20	3 33	0.10	13	1 12	720	5	0.03	20	770	10	<5	<0	0.08	<10	28	583	1	15	<10	6	25
328304	745358	<1	1,59	<2	40	12	<1	2	3 22	<4	15	21	4	3.52	0.12	14	1.13	674	~1	0.03	20	770	12	11	<5	0.07	<10	85	<100	<1	22	<10	5	37
328305	745359	<1	1.82	6	49	14	<1	6	3.47	<4	16	37	3	3 78	0.00	16	1.17	606	~1	0.03	20	272	12	10	<5	0.07	<10	59	<100	<1	25	<10	4	54
328306	745359	<1	1.81	<2	44	14	<1	11	3.47	<4	18	36	2	3.70	0.10	16	1.20	606	~1	0.04	31	212	14	10	<5	0.09	<10	56	<100	<1	30	<10	4	63
328307	745360	<1	1 25	2	52	14	<1	6	3.47	< 1	13	26	14	3.75	0.10	11	1.44	670	~!	0.03	31	500	13	<5	<5	80.0	<10	52	<100	<1	30	<10	4	67
328308	745361	<1	1 07	2	43	20	<1	å	3.65	~	17	20	21	3.20	0.09		1.11	679	~ 1	0.03	30	561	12	<5	<5	0.05	<10	62	<100	1	20	<10	4	38
328309	745362	<1	1.00	<2	52	19	<1	5	3.67	< A	12	40	27	3.10	0.24	0	1.08	673	1	0.03	66	358	12	9	<5	0.07	<10	72	<100	4	14	<10	5	33
328310	745363	2	1.00	3	46	21	-1	6	3.07	~4	1.4	1200	27	2.09	0.12	10	1.13	007	1	0.02	33	724	10	6	<5	0.04	<10	84	<100	<1	13	<10	4	34
328311	745364	<u>د</u> 1	1.40	5	42	25	~1	4	2.31	~4	14	1390	23	3.07	0.15	13	0.88	682	33	0.02	82	883	14	13	<5	0.07	<10	71	<100	<1	19	<10	5	39
328312	745365	21	1.47	-2	40	15	~1	4	3.75	<4 	10	230	22	2.95	0.15	11	0.92	742	5	0.03	36	467	10	8	<5	0.07	<10	80	<100	<1	17	<10	6	43
328313	745366	~1	1.0	~2	49	10	~1	2	3.73	<4	16	66	37	3.02	0.07	11	1.03	598	1	0.04	30	535	11	9	<5	0.07	<10	89	<100	<1	32	<10	5	43
328314	745367	~1	1.45	~2	10	21	~1	0	2.93	<4	11	46	/6	3.00	0.08	10	1.05	530	<1	0.03	33	628	9	8	<5	0.06	<10	68	<100	<1	26	<10	7	46
328315	745368	~1	1.30	4	42	21	<1	2	3.69	<4	15	50	41	2.68	0.10	13	0.96	516	<1	0.03	25	618	10	7	<5	0.06	<10	45	724	<1	28	<10	7	37
328316	745360	~1	1.10	4	44	10	<1	2	4.48	<4	16	30	37	2.62	0.06	12	0.96	573	3	0.04	23	473	9	8	<5	0.06	<10	75	637	1	30	<10	7	36
220210	745309	51	1.15	~2	54	8	<1	6	4.15	<4	11	78	19	2.38	0.03	11	0.94	522	1	0.05	22	481	7	7	<5	0.09	<10	64	613	<1	25	<10	6	37
220210	740309	<1	1.12	5	51	8	<1	1	4.06	<4	11	192	24	2.37	0.03	11	0.92	518	11	0.05	61	469	9	6	<5	0.10	<10	63	621	<1	25	<10	6	35
320310	740370	<1	1.08	4	52	9	<1	5	4.73	<4	10	37	44	2.26	0:04	10	0.80	529	<1	0.04	18	494	10	<5	<5	0.07	<10	65	752	<1	29	<10	7	31

Page 1 of 8

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM Job Number: 200843984 Date Received: Oct 22, 2008 Number of Samples: 142 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID:

.

of the laboratory. *The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

* The results included on this report relate only to the items tested

Accur. # Cl	ient Tag	Ag	AI	As	В	Ва	Be	Bi	Са	Cd	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Mo	Na	Ni	р	Pb	Sb	Se	Si	Sn	Sr	Ti	TI	v	w	Y	Zn
		ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
328319	745371	<1	1 26	6	43	33	<1	3	2.61	-1	10	96	24	2 6 1	0.15	10	0.04	424		0.00	24	674	0											
328320	745372	<1	1 39	<2	41	15	<1	3	2.01	-4	10	30	26	2.01	0.15	10	0.04	424	~ 1	0.03	34	5/1	8	11	<5	0.06	<10	61	<100	<1	15	<10	5	33
328321	745373	<1	1.86	3	49	21	<1	6	3.68	-4	15	170	15	2.01	0.07	20	1 1 1	401	1	0.03	25	415	8	11	<5	0.04	<10	69	<100	5	24	<10	4	44
328322	745374	<1	1 74	<2	48	17	<1	5	4 37	~4	14	134	51	3.93	0.13	10	1.11	665	2	0.03	39	124	13	8	<5	0.08	<10	87	<100	3	21	<10	5	55
328323	745375	<1	1.47	3865	48	160	<1	11	1 36	<4	9	30	57	7.63	0.15	13	0.73	431	5 5	0.02	35	710	14	9	<5	0.00	<10	113	<100	3	1/	<10	5	50
328324	745376	<1	1.23	9	44	20	<1	3	3.56	<4	10	47	41	2.46	0.21	13	0.75	527	2	0.07	24	1042	101	-7	<5	0.03	<10	129	769	<1	38	<10	5	59
328325	745377	<1	0.99	18	40	18	<1	2	3.89	<4	13	22	35	2.40	0.10	11	0.00	536	2	0.02	22	900	9	6	<0 25	0.07	<10	93	<100	4	10	<10	4	34
328326	745378	<1	2.60	2	42	16	<1	8	3 55	<4	24	70	69	4 25	0.08	32	2.02	731	~1	0.02	76	099	9 14	0	<5 <5	0.05	<10	74	<100	4	8	<10	5	26
328327	745379	<1	2.47	<2	40	26	<1	3	3.73	<4	20	55	43	4.03	0.00	30	1 80	726	<1 <1	0.02	65	510	14	9 10	<5	0.00	<10	74	<100	< 1	39	<10	5	61
328328	745379	<1	2.58	<2	43	28	<1	7	3.82	<4	21	71	42	4.18	0.10	31	1.00	745	21	0.04	70	540	10	10	<5 <6	0.09	<10	00	<100	<1 - 1	30	<10	5	60
328329	745380	<1	2.37	<2	39	32	<1	2	2.98	<4	20	67	33	3.07	0.08	20	1.91	618	21	0.04	66	549	12	10	< <u>5</u>	0.00	<10	0Z	<100	~ 1	37	<10	5	60
328330	745381	<1	1.08	4	47	54	<1	2	3.01	<4	10	74	26	2 31	0.00	13	0.83	460	~1	0.03	20	667	10	10	<5 ~E	0.08	<10	69	<100	8	33	<10	5	63
328331	745382	<1	0.46	3	45	27	<1	3	2.80	<4	8	82	14	2.51	0.05	5	0.05	400	1	0.03	17	676	0	0	<5 -5	0.05	<10	84	<100	<1	14	<10	5	28
328332	745383	<1	0.38	4	56	22	<1	1	3.02	<4	8	26	23	1.84	0.12	4	0.55	435	-1	0.04	16	020	0	9	<5 <c< td=""><td>0.05</td><td><10</td><td>58</td><td><100</td><td><1</td><td>11</td><td><10</td><td>6</td><td>17</td></c<>	0.05	<10	58	<100	<1	11	<10	6	17
328333	745384	<1	1.21	<2	40	30	<1	<1	2.26	<4	12	87	10	2.66	0.14	14	0.04	400	~1	0.05	27	245	10	/	<0 <0	0.04	<10	64	<100	<1	1	<10	6	16
328334	745385	<1	1.34	4	36	25	<1	3	2 34	<4	10	56	21	2.50	0.14	16	0.00	411	~1	0.03	21	015	0	0	<5 20	0.09	<10	52	<100	<1	16	<10	5	42
328335	745386	<1	1.23	<2	41	24	<1	6	2 78	<4	10	82	28	2.02	0.12	15	0.95	504	~1	0.04	24	015	0	0	<0 	0.09	<10	46	<100	<1	15	<10	5	48
328336	745387	1	1.21	4	39	12	<1	3	4 55	<4	9	43	20	2.55	0.12	14	0.00	814	~1	0.03	20	921	9	0	<0 -/	0.08	< 10	43	<100	3	14	<10	6	37
328337	745388	<1	0.57	<2	37	47	<1	2	1.64	<4	4	110	23	1 12	0.03	14	0.07	215	1	0.02	16	490	9	,	<5 <5	0.05	<10	62	3/3	1	15	<10	5	41
328338	745389	<1	1.22	4	32	27	<1	5	3.00	<4	11	31	11	230	0.15	10	0.27	485	-1	0.04	25	409	4	0	<5 ~5	0.07	< 10	42	138	1	4	<10	6	9
328339	745389	<1	1.25	4	38	26	<1	2	3.12	<4	12	42	12	2 37	0.15	11	0.86	502	2	0.02	20	420	0	~5 6	<5 26	0.00	×10	83 83	144	<1	13	<10	5	31
328340	745390	<1	1.40	3	36	27	<1	9	2.68	<4	14	65	21	2 71	0.15	12	1.00	523	J <1	0.03	30	420 550	10	0	>⊃ ∠⊑	0.00	<10 <10	03 70	147	<1	13	<10	5	29
			-					-	2.00				~ '	a/ 1	0.17	ד	1.00	525	~ 1	0.04	50	228	10	~5	~5	0.09	10	13	<100	4	18	<10	6	33

Page 2 of 8

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM Job Number: 200843984 Date Received: Oct 22, 2008 Number of Samples: 142 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID:

.

of the laboratory. *The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

* The results included on this report relate only to the items tested

Accur. #	Client Tag	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Co	Сг	Cu	Fe	к	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Se	Si	Sn	Sr	Ti	τı	V	w	Y	Zn
		ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
328341	745391	<1	1.12	6	34	24	<1	3	3.06	<4	10	36	10	2.43	0.12	10	0.85	505	<1	0.04	24	424	9	9	<5	0.06	<10	81	<100	<1	16	<10	6	25
328342	745392	<1	1.34	<2	40	41	<1	3	3.40	<4	13	82	13	2.71	0.22	11	0.97	607	<1	0.05	31	592	11	5	<5	0.10	<10	79	283	<1	20	<10	7	30
328343	745393	<1	1.32	<2	39	28	<1	6	1.99	<4	21	49	16	2.41	0.11	12	0.91	477	2	0.03	30	323	9	8	<5	0.07	<10	31	665	<1	15	<10	8	40
328344	745394	<1	1.55	4	37	34	<1	<1	3.50	<4	22	76	25	2.58	0.13	15	1.09	665	<1	0.05	33	441	10	6	<5	0.12	<10	45	837	<'	25	<10	9	48
328345	745395	<1	3.08	6	41	5	<1	11	1.58	<4	44	166	124	5.58	<0.01	23	2.62	984	<1	0.03	75	281	15	6	<5	0.08	<10	33	2315	1	93	<10	5	82
328346	745396	<1	2.89	7	37	4	<1	7	1.58	<4	50	166	119	5.41	<0.01	20	2.42	944	<1	0.02	70	265	13	10	<5	0.10	<10	33	1953	<1	86	<10	4	78
328347	745397	<1	1.73	5	35	26	<1	2	1.70	<4	15	106	26	3.04	0.10	14	1.25	473	3	0.05	48	714	11	6	<5	0.12	<10	34	1082	<1	35	<10	8	44
328348	745398	<1	1.80	5	35	41	<1	5	2.81	<4	18	190	12	3.21	0.22	16	1.21	542	<1	0.04	44	787	9	8	<5	0.13	<10	29	859	<1	26	<10	8	46
328349	745399	<1	1.55	3	34	27	<1	4	1.54	<4	14	134	14	2.84	0.12	14	1.11	430	<1	0.04	36	270	10	9	<5	0.09	<10	17	630	<1	22	<10	6	42
328350	745399	<1	1.64	3	34	28	<1	3	1.63	<4	14	113	14	2.99	0.12	15	1.17	450	<1	0.04	36	703	10	9	<5	0.11	<10	17	632	<1	24	<10	6	46
328351	745400	<1	1.46	4009	36	161	<1	10	1.35	<4	9	33	59	7.72	0.21	11	0.74	433	6	0.06	25	739	38	7	<5	0.04	<10	130	693	3	38	<10	5	61
328352	745401	<1	1.56	3	36	26	<1	<1	3.33	<4	13	166	16	2.89	0.11	13	1.09	523	2	0.05	33	500	8	9	<5	0.11	<10	23	688	<1	24	<10	10	43
328353	745402	<1	2.19	<2	32	24	<1	7	2.82	<4	19	121	11	3.91	0.12	18	1.59	631	<1	0.04	58	655	15	6	<5	0.13	<10	38	824	<1	33	<10	8	61
328354	745403	<1	2.44	2	35	36	<1	5	2.77	<4	22	217	13	4.25	0.19	21	1.78	685	3	0.03	76	969	15	8	<5	0.15	<10	41	1003	<1	31	<10	7	67
328355	745404	<1	1.38	<2	38	52	<1	3	3.19	<4	13	108	1568	2.58	0.20	12	0.88	492	<1	0.04	28	426	10	7	<5	0.10	<10	37	1010	<1	18	<10	, q	34
328356	745405	<1	1.68	<2	37	36	<1	4	2.55	<4	15	155	31	3.00	0.14	14	1 14	478	<1	0.05	35	648	12	6	<5	0.12	<10	40	989	<1	26	<10	8	46
328357	745406	<1	2.41	4	45	31	<1	5	3 65	<4	21	104	61	4 16	0.14	23	1.83	683	<1	0.03	61	1214	13	6	<5	0.10	<10	59	814	<1	18	<10	9	70
328358	745407	<1	1.61	<2	38	43	<1	5	2.74	<4	11	152	7	2.85	0.17	14	1 07	488	<1	0.05	36	634	12	12	<5	0.12	<10	53	<100	1	20	<10	11	20
328359	745408	<1	3.34	3	42	14	<1	5	4.15	<4	32	142	35	5 74	0.06	31	2 64	923	<1	0.04	89	444	18	9	<5	0.12	<10	78	767	, <1	84	<10	13	03
328360	745409	<1	2.98	3	40	21	<1	4	3.02	<4	25	135	63	5.10	0.09	27	2.24	830	<1	0.03	63	809	18	8	<5	0.10	<10	53	114	<1	57	<10	q	105
328361	745409	<1	2.82	<2	33	19	<1	13	3.07	<4	24	113	46	4.83	0.08	25	2.13	796	<1	0.03	65	635	17	5	<5	0.10	<10	55	207	<1	56	<10	10	95
328362	745410	<1	1.69	<2	34	32	<1	7	2.37	<4	13	165	83	3.02	0.15	13	1.08	476	2	0.06	31	579	11	5	<5	0.17	<10	48	<100	<1	23	<10	9	48

Page 3 of 8

Marca and a second

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM * The results included on this report relate only to the items tested Job Number: 200843984 * This Certificate of Analysis should not be reproduced except in full, without the written approval Date Received: Oct 22, 2008 of the laboratory. Number of Samples: 142 *The methods used for these analysis are not accredited under ISO/IEC 17025 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID: Accur. # Client Tag Al Ag As в Ba Be Bi Са Cd Co Сг Cu Fe к Mg Li Mn Мо Na Ni Pb Ρ Sb Se Si Sn Sr Ti TL v W Y Zn ppm % non % nnm nnm ppm nom ppm ppm ppm % % % ppm ppm ppm ppm % ppm mag ppm mag mag % ppm ppm ppm ppm ppm ppm ppm ppm 328363 745411 <1 1.51 <2 36 34 <1 4 2.83 <4 12 86 31 2.75 0.15 11 0.95 546 <1 0.05 25 457 11 9 <5 0.13 <10 53 <100 <1 17 <10 42 6 328364 745412 <1 1.50 <2 40 44 <1 2 2.01 <4 10 197 71 2.73 0.21 11 0.87 493 <1 0.04 24 676 10 <5 0.05 <5 43 <10 <100 2 14 <10 6 36 328365 745413 <1 1.32 <2 42 43 2 <1 2.19 <4 12 102 52 2.37 0.18 9 0.79 450 <1 0.04 21 685 12 7 <5 0.05 <10 50 <100 <1 16 <10 31 6 328366 745414 <1 1.29 <2 38 46 <1 4 3.03 <4 13 215 76 2.32 0.21 g 0.70 546 <1 0.04 22 266 9 <5 <5 0.05 47 <10 <100 <1 14 <10 8 29 328367 745415 <1 1.17 <2 42 45 <1 5 2.70 <4 12 133 83 1.96 0.27 8 0.58 475 <1 0.03 22 255 9 5 <5 0.05 <10 72 <100 9 3 <10 4 26 328368 745416 <1 1.10 5 44 50 <1 <1 1.93 <4 11 205 7 1,86 0.27 7 0.50 349 <1 0.04 18 478 8 7 <5 0.05 <10 52 <100 <1 8 <10 21 4 328369 745417 <1 1.18 4 44 42 <1 <1 1.87 <4 8 115 7 2.19 0.21 7 0.61 328 <1 0.04 20 367 7 <5 <5 0.04 <10 42 <100 <1 12 <10 4 22 328370 745418 <1 1.28 <2 43 46 <1 4 2.18 <4 8 224 28 2.35 0.24 8 0.65 347 <1 0.05 21 474 8 5 <5 0.04 <10 40 <100 <1 22 14 <10 4 328371 745419 <1 1.24 2 43 36 <1 5 3.13 <4 11 85 27 2.44 0.23 8 0.78 476 <1 0.03 23 148 8 6 0.04 <5 67 <10 <100 <1 14 <10 5 27 328372 745419 <1 1.23 <2 38 35 <1 3 3.14 <4 10 82 26 2.46 0,22 9 0.78 481 <1 0.03 24 621 8 6 <5 0.04 65 <10 <100 <1 13 <10 5 26 328373 745420 <1 1.35 <2 41 43 <1 3 3.23 <4 13 106 31 2.52 0.31 9 0.78 495 <1 0.03 26 626 9 7 0.05 <5 <10 68 <100 4 14 <10 5 28 328374 745421 <1 1.62 3 36 38 <1 6 3.96 <4 13 41 31 3.03 0.26 13 1.05 648 0.03 29 <1 426 10 7 <5 0.06 <10 86 <100 2 18 <10 5 39 328375 745422 <1 2.07 <2 37 68 <1 10 3.85 <4 18 76 53 4.02 0.12 19 1 69 728 <1 0.04 32 1173 14 <5 <5 0.07 <10 138 <100 67 <1 <10 7 68 328376 745423 <1 2.79 5 42 372 <1 10 5.13 <4 27 291 83 4.80 0.04 28 2.97 940 0.04 53 1 1549 16 <5 <5 0.10 <10 233 104 117 4 <10 9 74 328377 745424 <1 1.75 3 42 70 <1 5 3.11 <4 13 65 49 3.04 0.22 15 1.09 532 <1 0.04 27 566 9 9 0.06 <5 <10 77 <100 <1 27 <10 48 -5 328378 745425 <1 1.45 3470 43 155 <1 9 1.33 <4 9 30 54 7.01 0.21 10 0.69 409 5 0.07 22 380 37 7 <5 0.03 <10 119 916 <1 39 <10 55 -5 745426 328379 1 1.22 7 49 48 <1 2 3.79 <4 15 173 q 2.46 0.29 11 0.79 483 0.04 25 1 581 11 <5 <5 0.04 <10 64 1553 <1 30 <10 24 16 328380 745427 <1 1,11 <2 45 49 <1 <1 1.35 <4 8 159 17 1.81 0.15 10 0.65 270 <1 0.04 19 7 191 <5 <5 0.04 <10 25 1305 2 23 <10 24 8 328381 745428 1.12 <1 <2 45 37 <1 3 2.83 <4 8 298 7 1.90 0.08 9 0.57 409 0.05 18 412 6 <5 0.04 50 <5 <10 1236 <1 26 <10 10 41 328382 745429 <1 0.69 <2 36 17 <1 <1 4.28 <4 5 154 23 1 4 5 0.07 7 0.40 506 <1 0.04 11 260 7 <5 <5 0.03 <10 30 545 <1 16 <10 29 9 328383 745429 <1 0.72 3 46 16 <1 3 4.48 <4 4 152 24 1.49 0.07 7 0.41 524 <1 0.04 12 <100 7 <5 0.04 <5 <10 31 540 2 16 <10 9 30 328384 745430 <1 1.55 <2 38 21 <1 5 1.31 <4 13 252 6 3.21 0:09 17 0.98 547 <1 0.03 27 452 9 7 <5 0.04 <10 13 798 <1 21 <10 79 8

Page 4 of 8

Tei: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM Job Number: 200843984 Date Received: Oct 22, 2008 Number of Samples: 142 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID:

-

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory. *The methods used for these analysis are not accredited under ISO/IEC 17025

* The results included on this report relate only to the items tested

Accur. # Cli	ient Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
328385	745431	<1	2.37	<2	41	31	<1	6	3.61	<4	13	224	3	4 63	0.11	19	1 73	893	<1	0.05	46	<100	14	10	<5	0.07	<10	62	1201	-1	48	<10	13	70
328386	745432	<1	3.29	5	39	9	<1	9	4 22	<4	38	166	95	6 15	0.03	30	2.61	1138	<1	0.03	64	429	27	<5	-5	0.07	<10	40	2907	1	145	<10	11	00
328387	745433	<1	1.74	4	29	51	<1	2	2 19	<4	14	182	6	3.01	0.23	13	1.07	501	1	0.00	31	300	10	7	~5	0.05	<10	25	1160	1	24	~10	14	50
328388	745434	<1	1.27	4	40	37	<1	<1	1.92	<4	11	293	8	2.34	0.16	10	0.78	413	<1	0.04	25	444	7	, 8	~5	0.05	<10	2J 10	1006	-1	20	<10	0	30
328389	745435	<1	0.94	4	36	34	<1	3	1 74	<4	6	328	g	1.82	0.15	7	0.58	341	<1	0.04	20	160	7	6	~5	0.05	<10	10	660	~1	20	<10	9	24
328390	745436	<1	1.22	6	37	83	<1	3	3.86	<4	8	320	4	1 91	0.35	ģ	0.58	457	-1	0.00	10	501	, 0	-5	~5	0.00	<10	21	757	~1	10	<10	10	24
328391	745437	<1	1.51	4	39	67	<1	<1	1.85	<4	11	168	6	2.43	0.29	11	0.83	400	<1	0.04	25	218	13	6	~5	0.00	<10	21	1331	2	22	<10	10	20
328392	745438	<1	1,84	<2	44	62	<1	5	2.97	<4	13	199	8	3.01	0.27	13	1.06	553	1	0.05	32	100	13	7	~5	0.04	<10	20	1300	2	28	<10	12	47
328393	745439	<1	1.60	5	42	63	<1	4	2.23	<4	12	172	14	2 57	0.28	11	0.92	439	<1	0.00	29	567	10	<5	<5	0.04	<10	24	1204	-1	20	~10	11	40
328394	745439	<1	1.53	<2	41	60	<1	2	2.17	<4	12	167	14	2.50	0.26	11	0.89	427	<1	0.04	28	449	10	7	~5	0.04	<10	24	1236	~1	27	<10	11	40
328395	745440	<1	1.42	<2	45	62	<1	5	1.89	<4	11	382	5	2.50	0.29	11	0.00	409	5	0.03	27	248	0	6	~5	0.04	<10	14	027	2	20	~10	10	44 25
328396	745441	<1	1.87	<2	42	34	<1	4	1 77	<4	16	225	4	3.56	0.14	17	1.24	566	<1	0.00	36	408	10	6	~5	0.04	<10	19	1061	~1	21	<10	0	50
328397	745442	<1	1.37	5	37	55	<1	7	1 4 1	<4	11	224	34	2 43	0.24	۰. ۵	0.71	502	-1	0.04	20	400	7	5	~5	0.00	<10	10	1267	2	27	<10	10	59
328398	745443	<1	1 11	<2	38	40	<1	<1	1 10	<4	q	231	30	2.40	0.18	8	0.65	115	~1	0.00	10	617	0	7	~5	0.03	~10	40	1170	-1	27	<10	12	60
328399	745444	<1	1 34	3	38	47	<1	<1	1.56	<4	10	231	32	2 47	0.70	10	0.00	402	~1	0.04	21	210	10	7	~5	0.04	<10	24	1205	~1	22	~10	10	50
328400	745445	1	1.06	5	35	35	<1	<1	1.58	<4	8	184	45	1.96	0.10	8	0.64	401	~1	0.03	17	440	6	/ /E	~5	0.05	<10	10	1590	~1	20	~10	14	מכ דר
328401	745446	<1	1.26	3	43	30	<1	<1	1.53	<4	10	212	24	2.22	0.10	11	0.88	414	4	0.04	22	200	0	0	~5	0.05	<10	10	1520	~1	19	<10	14	37
328402	745447	<1	2 11	3	45	24	<1	3	7.01	<4	21	553	43	2.86	0.20	21	2 00	776	c1	0.03	145	000	10	10	~5	0.00	~10	140	767	~1	Z4 54	~10	13	37
328403	745448	2	2.83	3	42	67	1	5	8.63	<4	29	861	4	3 11	0.12	22	1 34	867	~1	0.04	241	1610	17	11	<5 <6	0.09	<10	119	212	~	51	<10	11	49
328404	745449	<1	1.34	4	45	33	<1	4	3.12	<4	12	363	438	2.18	0.10	12	0.00	475	1	0.02	241	1010	10	- 7	~5	0.00	<10	104	100	4	40	<10	9	53
328405	745449	<1	1.31	<2	41	33	<1	6	3.03	<4	13	356	432	2.10	0.20	11	0.55	415	4	0.03	44	40Z	0	7	<5 <5	0.06	<10	44	102	2	10	<10	10	31
328406	745450	2	1.56	3722	49	165	<1	8	1.42	<4	10	32	57	7.41	0.23	11	0.30	436	5	0.03	24	698	35	6	<5 <5	0.08	<10	42 130	987	<1	14 42	<10 <10	6	32 61

Page 5 of 8

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assav@accurassav.com

of the laboratory.

* The results included on this report relate only to the items tested

*The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM Job Number: 200843984 Date Received: Oct 22, 2008 Number of Samples: 142 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID:

.

Accur. # Client Tag AI В Fe Ag As Ba Be Bi Са Cđ Co Cr Cu ĸ Li Mg Mn Мо Na Ni Ρ Pb Sb Se Si Sn Sr Ti ΤI V w Υ Zn mag % nga ppm ppm ppm maa % ppm ppm ppm ppm % % ppm % ppm ppm % ppm ppm ppm ppm ppm % ppm mag mag mag mag mag mag mag 328407 745451 <1 1.34 41 29 8 <1 5 2.62 <4 9 227 19 2.31 0.22 15 0.75 482 3 0.04 25 393 8 <5 <5 0.05 <10 37 100 <1 14 <10 9 46 328408 745452 2.89 45 562 1 8 2 7 6.60 <4 36 932 5 3.85 1.55 32 6.11 887 <1 0.04 293 897 <5 0.06 <10 1281 2 79 <10 74 14 q 346 7 328409 745453 <1 1.33 <2 43 29 <1 5 2.67 <4 9 219 19 2.33 0.21 15 0.77 0.04 26 0.05 <10 38 486 412 8 6 <5 <100 <1 13 <10 9 45 328410 745454 <1 1.12 4 37 27 <1 5 2.06 <4 8 164 41 2.16 0.14 11 0.66 473 <1 0.03 19 387 7 6 <5 0.04 <10 32 120 <1 12 <10 10 42 328411 745455 <1 1.35 <2 47 92 63 <1 6 4.53 <4 17 315 2.88 0.55 18 1.93 733 2 0.05 74 662 9 <5 <5 0.06 <10 131 744 <1 49 <10 10 48 328412 745456 2 3.08 3 45 621 2 9 7.24 39 977 5 1.66 6.59 <4 4.11 34 957 <1 0.04 312 1142 13 10 <5 0.08 <10 382 1354 2 85 <10 8 77 328413 745457 2 2.88 <2 43 386 963 1 10 6 78 <4 35 933 2 3.84 0.79 29 6.28 <1 0.03 279 942 16 <5 0.10 <10 334 717 65 <10 67 11 <1 7 328414 745458 1 2.85 3 42 483 10 37 21 4.23 1 7 34 <4 866 0.46 26 6.62 1062 <1 0.03 287 1066 11 5 <5 0.08 <10 367 442 2 57 <10 9 84 328415 745459 <1 0.91 5 41 57 <1 4 1.65 <4 6 322 36 1.71 0.25 6 0.50 364 4 0.06 16 609 7 6 <5 0.05 <10 38 <100 4 10 <10 6 20 328416 745459 <1 0.93 6 44 59 <1 3 1.65 <4 6 336 36 1,73 0.26 6 0.50 368 3 0.06 16 187 7 <5 <5 0.04 <10 38 <100 <1 10 <10 6 20 328417 745460 1 0.94 5 50 61 <4 331 37 1.73 <1 <1 1.71 7 0.26 7 0.50 374 4 0.06 17 440 6 <5 0.04 <10 40 <100 <10 20 8 <1 11 7 745461 328418 <1 1.92 <2 36 41 <1 4 2.01 <4 22 235 74 4.45 0.20 14 1.18 550 <1 0.03 31 139 11 10 <5 0.04 <10 30 <100 5 54 <10 8 68 328419 745462 <1 1.53 3 26 41 <1 13 1.67 <4 18 411 47 3.62 0.11 11 0.97 429 <1 0.02 23 358 11 7 <5 0.05 <10 24 <100 <1 49 <10 6 59 328420 745463 1 1.68 <2 26 44 <1 5 1.81 <4 34 451 137 4.38 0.12 12 1.10 519 1 0.02 28 <100 14 <5 <5 0.06 <10 26 60 55 <100 <1 <10 5 328421 745464 <1 3.37 6 42 23 <1 12 5.80 <4 37 140 1615 7.91 0.13 31 2.23 1222 2 0.02 30 523 23 <5 0.08 <10 71 <100 <10 12 111 8 <1 112 328422 745465 <1 3.08 5 41 30 <1 14 8.98 <4 33 138 1330 7.56 0.15 25 2 18 1853 3 0.02 30 425 34 8 <5 0.07 <10 148 <100 <1 104 <10 17 89 328423 745466 <1 2.92 7 39 41 11 35 81 115 24 0.02 28 420 25 0.06 <1 8.13 <4 6.59 0.19 1.85 1617 6 <5 <5 <10 141 107 3 92 <10 17 89 328424 745467 <1 2.67 6 32 49 13 35 91 41 530 <1 7.64 <4 5.62 0.21 26 1.74 1618 1 0.03 22 17 10 <5 0.07 <10 116 582 <1 81 <10 20 69 328425 745468 <1 2,22 3 49 34 260 <1 <1 6.70 <4 16 50 3.62 0.13 24 1.98 946 0.04 39 1002 19 <5 0.09 <10 186 585 <1 70 <10 13 93 1 7 328426 745469 <1 41 20 1.44 4 <1 4 3.67 <4 12 169 15 2.79 0.09 9 0.98 613 <1 0.05 30 268 11 7 <5 0.05 <10 57 1413 <1 35 <10 10 37 328427 745469 1 1.54 4 45 21 <1 <1 3.89 <4 13 180 15 2.93 0.10 10 1.04 647 <1 0.05 31 410 13 <5 0.05 <10 60 1524 5 <1 38 <10 11 41 328428 745470 <1 1.43 4 45 20 <1 2 3.67 <4 12 180 14 2.72 0.09 9 0.96 605 <1 0.05 29 342 12 9 <5 0.04 <10 57 1425 <1 34 <10 10 35

Certified By Derek Demianiuk, H.Bsc.

Page 6 of 8

Thunder Bay, ON Canada P7B 5X5

1046 Gorham Street

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM Job Number: 200843984 Date Received: Oct 22, 2008 Number of Samples: 142 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID:

.

~

of the laboratory. *The methods used for these analysis are not accredited under ISO/IEC 17025

* This Certificate of Analysis should not be reproduced except in full, without the written approval

* The results included on this report relate only to the items tested

Accur. #	Client Tag	Ag	AI	As	В	Ba	Ве	Bi	Са	Cd	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Se	Si	Sn	Sr	Ti	ΤI	V	w	Y	Zn
		ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
328429	745471	<1	1.67	5	45	44	<1	2	3.01	<4	14	233	20	2 95	0.21	10	1 01	620	1	0.06	33	582	10	~ 5	~5	0.05	<10	20	1691	-1	22	-10	10	
328430	745472	<1	1.12	5	38	17	<1	3	5.60	<4	11	183	57	2 23	0.07	8	0.72	706	<1	0.00	28	540	0	~5	~5	0.00	~10	59	1001	~1	33	<10	12	44
328431	745473	<1	0.43	4	36	30	<1	5	3.32	<4	10	154	q	2.59	0.22	2	0.68	584	<1	0.00	18	312	0	6	~5	0.00	<10	60	<100	6	23	<10	۱۱ د	479
328432	745474	<1	0.37	<2	37	27	<1	2	4.50	<4	13	89	4	3 19	0.20	2	0.00	837	1	0.00	24	526	15	7	<5	0.05	<10	87	<100	2	15	<10	5	112
328433	745475	<1	1.55	3843	44	167	<1	- 10	1.43	<4	10	48	, 60	7.64	0.20	11	0.34	443	, я	0.07	32	916	36	11	~5	0.03	<10	172	065	~1	42	<10	6	50
328434	745476	<1	0.45	7	31	39	<1	2	3.86	<4	7	79	3	2 57	0.30	2	0.84	741	<1	0.05	14	551	11	-5	~5	0.03	<10	57	-100	~1	42	<10	6	79
328435	745477	<1	0.47	<2	38	29	<1	1	4 12	<4	11	111	2	2.07	0.00	3	0.89	729	<1	0.00	28	226	11	7	~5	0.04	<10	74	<100	2	16	<10	כ 7	20
328436	745478	<1	1.51	3	40	53	<1	2	2.47	<4	14	160	39	2 75	0.27	15	0.00	468	2	0.00	30	674	a	7	<5	0.05	<10	22	1800	-1	41	<10	11	31 E1
328437	745479	<1	1.90	4	34	49	<1	2	3 19	<4	15	128	19	3 10	0.28	14	1.02	545	2	0.04	34	186	12	, 8	~5	0.05	<10	54	220	~1	141 DA	~10		51
328438	745479	<1	1.90	<2	40	48	<1	5	3 21	<4	14	108	20	3.10	0.20	15	1.02	540	<u>د</u>	0.04	27	604	0	7	~5	0.05	<10	54	200	~1	24	<10	0	62
328439	745480	<1	1.98	6	33	39	<1	6	3 1 5	<4	16	120	20	3 44	0.20	15	1 13	567	2	0.04	35	761	11	, o	<5 <6	0.00	<10	55	106	~1	24	<10	8	61
328440	745481	<1	1 91	4	37	47	<1	3	3 42	< 4	13	110	25	3.17	0.24	14	1.13	505	2	0.04	30	500	11	0	<0 <5	0.00	<10	20	100	~ 1	25	<10	/	67
328441	745482	<1	1.45	Å	34	47	<1	7	2.60	-4	15	193	66	2 70	0.20	10	0.02	519	2	0.04	32	110	11	10	<0 	0.07	<10	72	109	2	24	<10	6	59
328442	745483	<1	1.40	т 2	36	45	21	-1	2.00	~4	12	171	22	2.13	0.01	0	0.05	610	2	0.03	29	F 40	12	0	<5	0.06	<10	59	<100	<1	13	<10	5	48
328443	745484	c1	1.58	4	41	33	~1	5	2.50	~4	12	157	24	2.05	0.20	10	0.95	637	2	0.04	30	546	9	ь -	<5	0.05	<10	64	<100	2	19	<10	5	52
328444	745485	<1 <1	1.30	-2	41	34	~1	2	2.00	-4	14	170	34	3.00	0.10	12	1.07	593	1	0.04	31	362	11	1	<5	0.05	<10	/1	<100	<1	32	<10	4	75
328445	745486	~1	1.57	~2	20	42	~1	-1	2.00	~4	11	100	30	2.95	0.24	10	0.98	664	1	0.04	33	887	11	<5	<5	0.04	<10	61	<100	<1	19	<10	4	52
328446	745487	~1	1.71	4	42	43	~1	2	3.10	<4	11	180	10	3.27	0.27	12	1.08	833	1	0.04	31	490	g	8	<5	0.05	<10	81	<100	<1	22	<10	5	54
328447	745488	~1	1.20		43	44	~1		2.07	<4	14	215	10	3.07	0.21	12	1.03	639	2	0.04	32	384	10	_	<5	0.05	<10	43	949	<1	32	<10	11	58
328448	745480	~1	1.39	~2	43	01	~1	~ 1	9.81	<4	10	184	5	1.99	0.32	11	0.68	935	<1	0.03	20	275	10	/	<5	0.08	<10	61	1082	<1	18	<10	12	27
328440	745409	~1	1.72	2	42	04	~ 1	5	1.93	<4	10	339	5	2.87	0.19	13	1.11	548	2	0.05	36	381	12	<5	<5	0.07	<10	32	1526	<1	30	<10	8	56
328460	745409	~1	172	-2	43	27	<1	<1	1.92	<4	15	344	5	2.85	0.20	13	1.10	543	2	0.05	32	443	12	7	<5	0.06	<10	32	1588	3	31	<10	8	55
520450	140490	~1	1.73	~2	41	31	<1	<1	2.68	<4	15	158	1	3.07	U.14	12	1.11	695	2	0.04	34	650	11	7	<5	0.05	<10	32	1203	1	32	<10	11	63

Page 7 of 8

• •••

•

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tet: (807) 626-1630 www Fax: (807) 622-7571 ass

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-11-12 10:26:31 AM Job Number: 200843984 Date Received: Oct 22, 2008 Number of Samples: 142 Type of Sample: Core Date Completed: Nov 11, 2008 Project ID:							* The * This	 * The results included on this report relate only to the items tested * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory. *The methods used for these analysis are not accredited under ISO/IEC 17025 																										
Accur. # Cli	ent Tag	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
328451 328452	745491 745492	<1 <1	3.40 2.72	<2 3	38 39	48 42	<1 <1	20 8	2.11 2.54	<4 <4	29 22	206 176	21 6	7.10 5.31	0.27 0.26	26 21	1.67 1.38	981 990	4 1	0.02 0.02	39 37	766 306	27 17	6 7	<5 <5	0.08 0.07	<10 <10	28 33	869 988	<1 <1	35 29	<10 <10	12 12	134 104

Certified By Derek Demianiuk, H.Bsc.

Page 8 of 8

APPENDIX C

TRENCHING SAMPLE DESCRIPTIONS, GOLD ASSAY AND ICP CERTIFICATES

Tag #	Field	Easting	Northing	Type	Au	
0	Name	0	0	21	(ppb)	
744606	Trench "F"			G	<5	Quartz flooded diorite.
744607	Oliver Severn Trench			С	673	Quartz-carbonate vein with traces of pyrite and arsenopyrite. Some mafic fragments.
744608					1817	Quartz vein. 1% pyrite disseminated in mafic veinlets
744609					15	Quartz vein. Large mafic fragments. Traces of pyrite
744610					675	Quartz vein and mafic dyke. Potassic alteration in quartz. 1% pyrite and trace chalcopyrite
744611					45	Quartz vein. A few small mafic inclusions. Traces of pyrite
744612					16	Quartz vein. A few small mafic inclusions. Traces of pyrite
744613					52	Quartz, small mafic inclusions. 1% pyrite
744614	Trench "C"				34	Strongly sheared diorite. Trace pyrite
744615					8/9	Very strongly sheared diorite. Trace pyrite and arsenopyrite
744616					<5	Very strongly sheared diorite.
744617					7	Very strongly sheared diorite with quartz veining
744618					<5	Very strongly sheared diorite.
744619					10	Strongly sheared diorite. Strongly chloritic. Quartz vein with trace arsenopyrite and pyrite.
744620					21	Quartz vein with entrained mafic fragments. Trace chalcopyrite.
744621					11	Ductile deformed diorite with mafic fragments. Trace chalcopyrite
744622					<5	Mafic dyke material with intensely silicified patches and altered diorite
744623					<5	Mafic dyke material with intensely silicified patches and altered diorite
744624					<5	Sheared diorite with small mafic dyke and 40cm clean quartz vein.
744707					9	Strongly sheared diorite
744708					24	Strongly sheared diorite with moderate k-
						feldspar alteration
744709					49/58	Strongly sheared diorite with strong k-
						feldspar alteration
744710					45	Strongly sheared diorite with moderate k-feldspar alteration
744711					25	Strongly sheared diorite with weak to moderate k-feldspar alteration
744712		1			48	Strongly sheared diorite

APPENDIX C – Mud Lake 2008 Trench Sample descriptions

744714 38 Sheared diorite. Strongly chloritised, but still with quart zyes. 744715 87 Sheared diorite - weak k-feldspar alteration. Strongly chloritised, but still with quart zyes. 744716 50 Sheared diorite with mafic inclusions and quartz-carbonate veining 744717 18 Sheared diorite with mafic inclusions and quartz-carbonate veining 744718 13 Sheared diorite with mafic inclusions 744625 No 7 129 Quartz vein with wide potassic alteration. Trace pyrite and chalcopyrite 744626 < 5 Sheared diorite - strong K-feldspar alteration. Trace pyrite and chalcopyrite 744626 7 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinites 744628 7 Sheared diorite. No K-feldspar alteration with patches of fine-grained biotite along quartz veinites 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinites 744630 28 Sheared diorite. No k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744631 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633	744713		26	Quartz vein
744715 87 Sheared diorite - weak k-feldspar alteration. Strongly chloritised, but still with quartz eyes. 744716 50 Sheared diorite with mafic inclusions 744717 18 Sheared diorite with mafic inclusions and quartz-carbonate veining 744718 13 Sheared diorite with mafic inclusions 744625 No 7 12/9 Quartz vein with wide potassic alteration. Trace pyrite and chalcopyrite 744626 <5	744714		38	Sheared diorite. Strongly chloritised, but still with quartz eyes.
144716 50 Sheared diorite with mafic inclusions and quartz eyes. 744716 18 Sheared diorite with mafic inclusions and quartz carbonate veining 744718 13 Sheared diorite with mafic inclusions and quartz carbonate veining 744718 13 Sheared diorite with mafic inclusions and quartz carbonate veining 744625 No 7 12/9 Quartz vein with wide potassic alteration. 744626 - - Sheared diorite - strong K-feldspar alteration. 744627 - 7 Diorite - intense K-feldspar alteration. 744628 7 Sheared diorite with quartz events. 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite. No K-feldspar alteration. 744631 13 Sheared diorite. No K-feldspar alteration. 744631 13 Sheared diorite. No K-feldspar alteration. 744633 11 Sheared diorite. No K-feldspar alteration. 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 - 5 Sheared diorite	744715		87	Sheared diorite - weak k-feldspar
744716 50 Sheared diorite with mafic inclusions 744717 18 Sheared diorite with mafic inclusions and quartz-carbonate veining 744717 13 Sheared diorite with mafic inclusions 744718 13 Sheared diorite with mafic inclusions 744625 No 7 Trench 12.9 744626 <5				alteration. Strongly chloritised, but still
744716 50 Sheared diorite with mafic inclusions 744717 18 Sheared diorite with mafic inclusions and quarz carbonate veining 744718 13 Sheared diorite with mafic inclusions 744625 No 7 Trench 12/9 744626 - - 744627 No 7 Trench 12/9 744628 - Sheared diorite - strong K-feldspar alteration. 744629 7 Sheared mafic dyke 744629 7 Sheared mafic dyke 744630 28 Sheared diorite with quarz veinlets and intense K-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite with quarz veinlets and intense K-feldspar alteration. Trace pyrite and chalcopyrite 744631 28 Sheared diorite. No K-feldspar alteration. Trace pyrite 744631 11 Sheared diorite. No K-feldspar alteration. Trace pyrite 744632 63 Quarz-k-feldspar alteration. Trace of pyrite. 744633 63 Quarz-k-feldspar alteration. Trace pyrite and chalcopyrite 744634 63 </td <td></td> <td></td> <td></td> <td>with quartz eyes.</td>				with quartz eyes.
744717 18 Sheared diorite with mafic inclusions and quatz-carbonate veining 744718 13 Sheared diorite with mafic inclusions 744625 No 7 12/9 Quartz vein with wide potassic alteration. Trace pyrite and chalcopyrite 744626 Sheared diorite - strong K-feldspar alteration 744627 7 Diorite - moderate shearing, K-feldspar alteration 744628 7 Sheared mafic dyke 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite. with quartz veinlets and intense K-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. No k-feldspar alteration. Trace pyrite and chalcopyrite 744632 11 Sheared diorite. No k-feldspar alteration. Trace of pyrite. 744631 63 Quartz-k-feldspar ulteration. Trace pyrite 744633 63 Quartz-k-feldspar alteration. Trace pyrite 744634 63 Quartz-k-feldspar alteration. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <	744716		50	Sheared diorite with mafic inclusions
744718 13 Sheared diorite with mafic inclusions 744625 No 7 12/9 Quartz vein with wide potassic alteration. 744626 Sheared diorite with mafic inclusions 744626 Sheared diorite with wide potassic alteration. 744626 Sheared diorite - strong K-feldspar alteration. 744627 7 Sheared mafic dyke 744628 7 Sheared mafic dyke 744629 19 Diorite - indense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. No k-feldspar alteration. 744632 11 Sheared diorite. No k-feldspar alteration. 744633 63 Quartz-k-feldspar alteration. 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 744636	744717		18	Sheared diorite with mafic inclusions and
744718 13 Sheared diorite with mafic inclusions 744625 No 7 Trench 12/9 Quartz vein with wide potassic alteration. Trace pyrite and chalcopyrite 744626 <5				quartz-carbonate veining
744625 No 7 Trench 12/9 Quartz vein with wide potassic alteration. 744626 <5	744718		13	Sheared diorite with mafic inclusions
744625 No 7 12/9 Quartz vein with wide potassic alteration. Trace pyrite and chalcopyrite 744626 <5	-			
744626 Sheared diorite - strong K-feldspar alteration 744627 7 Diorite - moderate shearing, K-feldspar alteration. Up to 1% pyrite 744628 7 Sheared mafic dyke 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite and chalcopyrite 744632 11 Sheared diorite. No k-feldspar alteration. Trace of pyrite. 744633 11 Sheared diorite. No k-feldspar alteration. Trace of pyrite. 744634 63 Quartz-k-feldspar vein. Trace pyrite and chalcopyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744625	No 7	12/9	Quartz vein with wide potassic alteration.
744626 <5		Irench		Trace pyrite and chalcopyrite
744627 alteration 744627 7 Diorite - moderate shearing. K-feldspar alteration. Up to 1% pyrite 744628 7 Sheared mafic dyke 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite 744632 11 Sheared diorite. No k-feldspar alteration. Trace of pyrite. 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744626		<5	Sheared diorite - strong K-feldspar
744627 7 Diorite - moderate shearing, K-feldspar alteration. Up to 1% pyrite 744628 7 Sheared mafic dyke 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veriflets 744630 28 Sheared diorite with quartz veinlets and intense K-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of K-feldspar alteration. Trace pyrite and chalcopyrite 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite and chalcopyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5				alteration
744627 7 Dionite - moderate shearing, K-Feldspar alteration. Up to 1% pyrite 744628 7 Sheared mafic dyke 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite and theration. Trace of fine pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite and chalcopyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744607		7	D'aite and ante to aire K filler
744628 7 Sheared mafic dyke 744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. No k-feldspar alteration. Trace pyrite and chalcopyrite 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite and chalcopyrite 744635 618 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	/4462/		/	Diorite - moderate shearing. K-feldspar
744628 7 Sheared mafic dyke 744629 19 Diorite - intense K-feldspar alteration with patchess of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense K-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of pyrite. 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5				alteration. Up to 1% pyrite
744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite and chalcopyrite 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744628		7	Sheared mafic dyke
744629 19 Diorite - intense K-feldspar alteration with patches of fine-grained biotite along quartz veinlets 744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744020		1	Sheared mane dyke
744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite and chalcopyrite 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744629		19	Diorite - intense K-feldspar alteration with
744630 28 Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace pyrite. 744631 13 Sheared diorite. Patches of k-feldspar alteration. Trace of pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5				patches of fine-grained biotite along quartz
74463028Sheared diorite with quartz veinlets and intense k-feldspar alteration. Trace pyrite and chalcopyrite74463113Sheared diorite. Patches of k-feldspar alteration. Traces of pyrite.74463211Sheared diorite. No k-feldspar alteration. Trace of fine pyrite74463311Sheared diorite. No k-feldspar alteration. Trace of fine pyrite74463463Quartz-k-feldspar vein. Trace pyrite7446356/18Sheared diorite. Trace pyrite and chalcopyrite744636<5				veinlets
744630 28 Sheared ubrite with quark veniets and intense k-feldspar alteration. Trace pyrite and chalcopyrite 744631 13 Sheared diorite. Patches of k-feldspar alteration. Traces of pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite and chalcopyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744620		28	Shooned dignite with quarter weinlate and
744631 13 Sheared diorite. Patches of k-feldspar alteration. Traces of pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite. 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744030		20	intense k feldspar alteration. Trace pyrite
744631 13 Sheared diorite. Patches of k-feldspar alteration. Traces of pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5				and chalcopyrite
744631 13 Sheared diorite. Patches of k-feldspar alteration. Traces of pyrite. 744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5				
74463211Sheared diorite. No k-feldspar alteration. Trace of fine pyrite74463311Sheared diorite. No k-feldspar alteration. Trace of fine pyrite74463463Quartz-k-feldspar vein. Trace pyrite74463563Quartz-k-feldspar vein. Trace pyrite7446366/18Sheared diorite. Trace pyrite and chalcopyrite7446375Sheared diorite. Trace pyrite and chalcopyrite7446389Sheared diorite. Strong, but patchy k- feldspar alteration7446405Sheared diorite with 1% pyrite74464142Quartz and k-feldspar flooded diorite.	744631		13	Sheared diorite. Patches of k-feldspar
74463211Sheared diorite. No k-feldspar alteration. Trace of fine pyrite74463311Sheared diorite. No k-feldspar alteration. Trace of fine pyrite74463463Quartz-k-feldspar vein. Trace pyrite74463563Quartz-k-feldspar vein. Trace pyrite7446366/18Sheared diorite. Trace pyrite and chalcopyrite7446375Sheared diorite. Trace pyrite and chalcopyrite7446389Sheared diorite. Strong, but patchy k- feldspar alteration74463914Sheared diorite with moderate k-feldspar alteration and 1% pyrite74464142Quartz and k-feldspar flooded diorite.				alteration. Traces of pyrite.
744632 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744633 63 Quartz-k-feldspar vein. Trace pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5				
74463311Sheared diorite. No k-feldspar alteration. Trace of fine pyrite74463463Quartz-k-feldspar vein. Trace pyrite7446356/18Sheared diorite. Trace pyrite and chalcopyrite744636<5	744632		11	Sheared diorite. No k-feldspar alteration.
744633 11 Sheared diorite. No k-feldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5				Trace of fine pyrite
744633 11 Sheared diorite. No k-reldspar alteration. Trace of fine pyrite 744634 63 Quartz-k-feldspar vein. Trace pyrite 744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744622		11	Share 1 d'acte Na 1 Caldana alternetica
74463463Quartz-k-feldspar vein. Trace pyrite7446356/18Sheared diorite. Trace pyrite and chalcopyrite744636<5	/44633		11	Sheared diorite. No K-feldspar alteration.
74463463Quartz-k-feldspar vein. Trace pyrite7446356/18Sheared diorite. Trace pyrite and chalcopyrite744636<5				Trace of the pyrite
744635 6/18 Sheared diorite. Trace pyrite and chalcopyrite 744636 <5	744634		63	Quartz-k-feldspar vein Trace pyrite
7446356/18Sheared diorite. Trace pyrite and chalcopyrite744636<5	/ 11051		05	Qualiz k leidspar vein. Trace pyrite
744636<74463774463774463874463974464074464174464218<	744635		6/18	Sheared diorite. Trace pyrite and
744636<5Sheared diorite. Trace pyrite and chalcopyrite7446375Sheared diorite. Patches of k-feldspar alteration7446389Sheared diorite. Strong, but patchy k- feldspar alteration74463914Sheared diorite with 1% pyrite7446405Sheared diorite with 1% pyrite74464142Quartz and k-feldspar flooded diorite.74464218Diorite. Moderate to strong k-feldspar				chalcopyrite
744636<5Sheared diorite. Trace pyrite and chalcopyrite7446375Sheared diorite. Patches of k-feldspar alteration7446389Sheared diorite. Strong, but patchy k- feldspar alteration74463914Sheared diorite with 1% pyrite7446405Sheared diorite with 1% pyrite74464142Quartz and k-feldspar flooded diorite.74464218Diorite. Moderate to strong k-feldspar				
7446375Sheared diorite. Patches of k-feldspar alteration7446389Sheared diorite. Strong, but patchy k- feldspar alteration74463914Sheared diorite with 1% pyrite7446405Sheared diorite with moderate k-feldspar alteration and 1% pyrite74464142Quartz and k-feldspar flooded diorite.74464218Diorite. Moderate to strong k-feldspar	744636		<5	Sheared diorite. Trace pyrite and
7446375Sheared diorite. Patches of k-feldspar alteration7446389Sheared diorite. Strong, but patchy k- feldspar alteration74463914Sheared diorite with 1% pyrite7446405Sheared diorite with moderate k-feldspar alteration and 1% pyrite74464142Quartz and k-feldspar flooded diorite.74464218Diorite. Moderate to strong k-feldspar				chalcopyrite
744638 9 Sheared diorite. Strong, but patchy k-feldspar alteration 744639 14 Sheared diorite with 1% pyrite 744640 5 Sheared diorite with moderate k-feldspar alteration and 1% pyrite 744641 42 Quartz and k-feldspar flooded diorite. 744642 18 Diorite. Moderate to strong k-feldspar	744637		5	Sheared diorite. Patches of k-feldspar
744038 9 Sheared diorite. Strong, but patchy k-feldspar alteration 744639 14 Sheared diorite with 1% pyrite 744640 5 Sheared diorite with moderate k-feldspar alteration and 1% pyrite 744641 42 Quartz and k-feldspar flooded diorite. 744642 18 Diorite. Moderate to strong k-feldspar	744620			alteration
744639 14 Sheared diorite with 1% pyrite 744640 5 Sheared diorite with moderate k-feldspar alteration and 1% pyrite 744641 42 Quartz and k-feldspar flooded diorite. 744642 18 Diorite. Moderate to strong k-feldspar	/44638		9	Sheared diorite. Strong, but patchy k-
744640 5 Sheared diorite with 1% pyrite 744641 42 Quartz and k-feldspar flooded diorite. 744642 18 Diorite. Moderate to strong k-feldspar	744620		1.4	Sheared diorite with 1% purits
744641 42 Quartz and k-feldspar flooded diorite. 744642 18 Diorite. Moderate to strong k-feldspar	744039		5	Sheared diorite with moderate k feldspor
74464142Quartz and k-feldspar flooded diorite.74464218Diorite. Moderate to strong k-feldspar	/0-+0		5	alteration and 1% pyrite
744642 18 Diorite. Moderate to strong k-feldspar	744641		42	Ouartz and k-feldspar flooded diorite
	744642		18	Diorite. Moderate to strong k-feldspar

						alteration.
744643					<5	Diorite. Moderate to strong k-feldspar
						alteration.
744644					6	Sheared diorite. Weak k-feldspar
						alteration. 1% pyrite
744645					8/18	Diorite. K-feldspar alteration (weak to
						moderate) 1-2% pyrite
					_	
744646					7	Sheared diorite. Strong, patchy k-feldspar
						alteration
744647		-		-	. –	
/4464/					<5	Sheared diorite with moderate k-feldspar
						arteration and 1% pyrite and trace
						arsenopyrite
744648					0	Sheared diorite with moderate k feldspar
/ ++0+0					,	alteration and 1% pyrite
						anoration and 170 pyrite
744649					32	Quartz vein with intense k-feldspar
/ 11015					52	alteration selvage. Trace pyrite
						chalcopyrite and galena
744650					353	Quartz with intense k-feldspar alteration.
						Trace pyrite and chalcopyrite.
744701					25	Quartz with intense k-feldspar alteration.
						Some small mafic fragments. Trace pyrite
						and chalcopyrite.
744702					11	Diorite. Chlorite and k-feldspar alteration.
						Trace pyrite
744703					25	Quartz vein with strong k-feldspar
						selvages. 1% pyrite
744704				-	10	
/44/04					12	Diorite. K-reispar alteration with chloritic
						patches. 1% pyrite
744705					30	Coarse grained diorite Weakly sheared
744703					50	with weak k feldspar alteration
						with weak k-reluspar aneration.
744706					12	Coarse grained diorite Weakly sheared
/ + + / 00					12	with weak k-feldspar alteration
	Trench				22/39	
744719	"В"					Sheared mafic dyke
					9	Quartz vein with a few mafic fragments
744720						included
					9	Sheared diorite. Sericitised. Trace of fine
744721						pyrite and arsenopyrite
744722					12	Sheared diorite
744723					17	Sheared diorite. Trace pyrite
744724					20	Sheared mafic dyke
744725					12	Sheared mafic dyke

/44/26 6 Sheared matic dyke				
744727 7 Sheared mafic dyke				
744728 35 Strongly sheared diorite				
744729 7/6 Sheared diorite				
744730 <5 Sheared coarse-grained diorite				
744731 <5 Sheared diorite				
744732 <5 Ouartz vein and intensely silicified	l selvage			
<5 Very strongly sheared and faulted	mafic			
744733 dyke				
744734 <5 Sheared diorite with weak k-altera	tion			
<5 Sheared, coarse-grained diorite. M	oderate			
744735 k-feldspar alteration				
<5 Sheared, coarse-grained diorite, M	oderate			
744736 k-feldspar alteration. 1% pyrite				
No 6 <5 Sheared mafic with quartz-carbona	te vein			
744737 Extend with entrained matic fragments.				
<5 Sheared diorite. Well developed cl	lorite			
744738				
<5/<5 Sheared diorite. Well developed cl	lorite			
744739				
744740 22 Sheared diorite.				
744741 <5 Sheared diorite				
28 Coarse diorite relatively unsheare	1 but			
highly silicifed with several quartz	veins			
and entrained mafic fragments. Tr	ice			
744742				
<5 Coarse diorite, relatively unsheare	d but			
highly silicifed with several quartz	veins			
and entrained mafic fragments.				
<5 Coarse diorite with quartz vein and	1			
744744 silicified selvage				
744745 <5 Sheared mafic plus quartz vein				
<5 Ouartz vein. Patches of carbonate	and			
744746 mafic fragments				
748 Quartz vein. Patches of carbonate	and			
744747 mafic fragments				
61 Sheared diorite. Highly silicified v	vith			
744748 entrained mafic.				
744749 7/<5 Sheared diorite				
3557 Quartz vein with entrained mafic				
744750 fragments				
3065 Quartz veing with mafic fragments	s, up to			
744751 1% pyrite				
13 Sheared diorite and guartz vein and	d mafic			
744752 fragments				
744753 33 Quartz vein with mafic fragments				
6 Coarse diorite with everal large ma	afic			
744754 fragments				
744755 5 Sheared diorite with large mafic fr	agments			
744756 8 Sheared diorite with large mafic fr	agments			
744757 23 Sheared mafic	~			
744758 <5 Sheared diorite with rusty quartz y	ein			
744759 Sheared coarse diorite with weak l	. -			
				feldspar alteration
--------	--------	--	-------	--
			7	Quartz vein with sericite selvage and mafic
744760				fragments
744761			7	Quartz vein with mafic fragments
744762			12	Quartz vein with mafic fragments
			<5	Quartz vein with mafic fragments with fine
744763				pyrite stringers
			7	Sheared diorite. Ouartz vein with entrained
744764				mafic fragments. Upto 1% pyrite
			320	Ouartz vein. Some mafic fragments with
744765				disseminated pyrite
			76	Sheared diorite with mafic fragments and
744766				~1% pyrite in stringers
			3135	Diorite - intensely silicified. 1-2%
744767				disseminated pyrite.
			710	Sheared and ductily deformed diorite with
				entrained mafic fragments and 1% pyrite
744768				and trace chalcopyrite.
			392.	Sheared diorite with quartz vein and 1%
744769			284	disseminated pyrite
744770			2307	Sheared and silicifed diorite with 2% pyrite
744771			13	White quartz vein. Trace pyrite
			10	Sheared diorite with 1% chalcopyrite and
744772				trace pyrite
744773			11	Sheared diorite. Trace pyrite
744774			11	Sheared diorite
			21	Ouartz vein with 1% pyrite and small.
744775				entrained fragments of mafic dyke.
			41	Sheared diorite with patches of silica
744776				flooding.1% pyrite
			<5	Sheared diorite with mafic fragments and
744777				silica flooding.
	Trench		<5	
744778	"Е"			White guartz vein
			<5/<5	Coarse diorite with moderate k-feldspar
744779				alteration. Cuts two 20cm quartz veins
744780			<5	Coarse diorite with moderate k-feldspar
				alteration. Cuts two 20cm quartz veins
			<5	Coarse diorite, unsheared to moderately
744781				sheared, in bands.
			<5	Coarse diorite, unsheared to moderately
744782				sheared, in bands.
744783			<5	Coarse, weakly sheared diorite
			99	Moderately to strongly sheared diorite.
				Moderate k-fledspar alteration. Trace
744784				pyrite
			<5	Moderately to strongly sheared diorite.
				Moderate k-fledspar alteration. Trace
744785				pyrite
			<5	Sheared diorite. Weak k-feldspar
744786				alteration. Trace pyrite.
			205	Intense k-feldspar alteration. Lesser silica
744787				flooding. 1-2% pyrite

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Sep 12	2, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Oct 7,	2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	20084	3375
Email#: koziol@altoventures.com	Reference:		
	Sample #:	126	Rock

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
282334		744606	6	< 0.001	0.006
282335		744607	673	0.020	0.673
282336		744608	1817	0.053	1.817
282337		744609	15	< 0.001	0.015
282338		744610	675	0.020	0.675
282339		744611	45	0.001	0.045
282340		744612	16	< 0.001	0.016
282341		744613	52	0.002	0.052
282342		744614	34	0.001	0.034
282343		744615	8	< 0.001	0.008
282344	Dup	744615	9	< 0.001	0.009
282345		744616	<5	< 0.001	< 0.005
282346		744617	7	< 0.001	0.007
282347		744618	<5	< 0.001	< 0.005
282348		744619	10	< 0.001	0.010
282349		744620	21	< 0.001	0.021
282350		744621	11	< 0.001	0.011
282351		744622	<5	< 0.001	< 0.005
282352		744623	<5	< 0.001	< 0.005
282353		744624	<5	< 0.001	< 0.005
282354		744625	12	< 0.001	0.012
282355	Dup	744625	9	< 0.001	0.009
282356		744626	<5	< 0.001	< 0.005
282357		744627	7	< 0.001	0.007

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Sep 12	2, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Oct 7,	2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	20084	3375
Email#: koziol@altoventures.com	Reference:		
	Sample #:	126	Rock

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
282358		744628	7	< 0.001	0.007
282359		744629	19	< 0.001	0.019
282360		744630	28	< 0.001	0.028
282361		744631	13	< 0.001	0.013
282362		744632	11	< 0.001	0.011
282363		744633	11	< 0.001	0.011
282364		744634	63	0.002	0.063
282365		744635	6	< 0.001	0.006
282366	Dup	744635	18	< 0.001	0.018
282367		744636	<5	< 0.001	< 0.005
282368		744637	5	< 0.001	0.005
282369		744638	9	< 0.001	0.009
282370		744639	14	< 0.001	0.014
282371		744640	5	< 0.001	0.005
282372		744641	42	0.001	0.042
282373		744642	18	< 0.001	0.018
282374		744643	<5	< 0.001	< 0.005
282375		744644	6	< 0.001	0.006
282376		744645	8	< 0.001	0.008
282377	Dup	744645	16	< 0.001	0.016
282378		744646	7	< 0.001	0.007
282379		744647	<5	< 0.001	< 0.005
282380		744648	9	< 0.001	0.009
282381		744649	32	< 0.001	0.032

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Sep 12	2, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Oct 7,	2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	20084	3375
Email#: koziol@altoventures.com	Reference:		
	Sample #:	126	Rock

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
282382		744650	353	0.010	0.353
282383		766707	9	< 0.001	0.009
282384		766708	24	< 0.001	0.024
282385		766709	49	0.001	0.049
282386	Dup	766709	58	0.002	0.058
282387		766710	45	0.001	0.045
282388		766711	25	< 0.001	0.025
282389		766712	48	0.001	0.048
282390		766713	26	< 0.001	0.026
282391		766714	38	0.001	0.038
282392		766715	87	0.003	0.087
282393		766716	50	0.001	0.050
282394		766717	18	< 0.001	0.018
282395		766718	13	< 0.001	0.013
282396		766719	22	< 0.001	0.022
282397	Rep	766719	39	0.001	0.039
282398		766720	9	< 0.001	0.009
282399		766721	9	< 0.001	0.009
282400		766722	12	< 0.001	0.012
282401		766723	17	< 0.001	0.017
282402		766724	20	< 0.001	0.020
282403		766725	12	< 0.001	0.012
282404		766726	6	< 0.001	0.006
282405		766727	7	< 0.001	0.007

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Sep 12	2, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Oct 7,	2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	20084	3375
Email#: koziol@altoventures.com	Reference:		
	Sample #:	126	Rock

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
282406		766728	35	0.001	0.035
282407		766729	7	< 0.001	0.007
282408	Dup	766729	6	< 0.001	0.006
282409		766730	<5	< 0.001	< 0.005
282410		766731	<5	< 0.001	< 0.005
282411		766732	<5	< 0.001	< 0.005
282412		766733	<5	< 0.001	< 0.005
282413		766734	<5	< 0.001	< 0.005
282414		766735	<5	< 0.001	< 0.005
282415		766736	<5	< 0.001	< 0.005
282416		766737	<5	< 0.001	< 0.005
282417		766738	<5	< 0.001	< 0.005
282418		766739	<5	< 0.001	< 0.005
282419	Dup	766739	<5	< 0.001	< 0.005
282420		766740	22	< 0.001	0.022
282421		766741	<5	< 0.001	< 0.005
282422		766742	28	< 0.001	0.028
282423		766743	<5	< 0.001	< 0.005
282424		766744	<5	< 0.001	< 0.005
282425		766745	<5	< 0.001	< 0.005
282426		766746	<5	< 0.001	< 0.005
282427		766747	748	0.022	0.748
282428		766748	61	0.002	0.061
282429		766749	7	< 0.001	0.007

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Sep 12	2, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Oct 7,	2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	20084	3375
Email#: koziol@altoventures.com	Reference:		
	Sample #:	126	Rock

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
282430	Dup	766749	<5	< 0.001	< 0.005
282431		766750	3557	0.104	3.557
282432		766751	3065	0.089	3.065
282433		766752	13	< 0.001	0.013
282434		766753	33	< 0.001	0.033
282435		766754	6	< 0.001	0.006
282436		766755	5	< 0.001	0.005
282437		766756	8	< 0.001	0.008
282438		766757	23	< 0.001	0.023
282439		766758	<5	< 0.001	< 0.005
282440		766759	<5	< 0.001	< 0.005
282441	Dup	766759	<5	< 0.001	< 0.005
282442		766760	7	< 0.001	0.007
282443		766761	7	< 0.001	0.007
282444		766762	12	< 0.001	0.012
282445		766763	<5	< 0.001	< 0.005
282446		766764	7	< 0.001	0.007
282447		766765	320	0.009	0.320
282448		766766	76	0.002	0.076
282449		766767	3135	0.091	3.135
282450		766768	710	0.021	0.710
282451		766769	392	0.011	0.392
282452	Dup	766769	284	0.008	0.284
282453		766770	2307	0.067	2.307

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Alto Ventures Ltd.	Date Received:	Sep 12	2, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Oct 7,	2008
P3E5P5			
Ph#: (705) 522-6372			
Fax#: (705) 522-8856	Job #:	20084	3375
Email#: koziol@altoventures.com	Reference:		
	Sample #:	126	Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	#	Acc #
0.013	< 0.001	13	766771	4	282454
0.010	< 0.001	10	766772	5	282455
0.011	< 0.001	11	766773	6	282456
0.011	< 0.001	11	766774	7	282457
0.021	< 0.001	21	766775	8	282458
0.041	0.001	41	766776	9	282459
< 0.005	< 0.001	<5	766777	0	282460
< 0.005	< 0.001	<5	766778	1	282461
< 0.005	< 0.001	<5	766779	2	282462
< 0.005	< 0.001	<5	Rep 766779	3	282463
< 0.005	< 0.001	<5	766780	4	282464
< 0.005	< 0.001	<5	766781	5	282465
< 0.005	< 0.001	<5	766782	6	282466
< 0.005	< 0.001	<5	766783	7	282467
0.099	0.003	99	766784	8	282468
< 0.005	< 0.001	<5	766785	9	282469
< 0.005	< 0.001	<5	766786	0	282470
0.205	0.006	205	766787	1	282471

	1046 Gorham Street Thunder Bay, ON Canada P7B 5X5	Tel: (807) 626-1630 Fax: (807) 622-7571		www.accur assay@aco	rassay.com curassay.co	m
Certificate of Analysis						
Tuesday, October 7, 2008						
Alto Ventures Ltd.		Date Rec	eived:	Sep 12	2, 2008	
Unit #8, 1351D Kelly Lake F Sudbury, ON, CAN P3E5P5	2d.	Date Comp	leted:	Oct 7,	2008	
Ph#: (705) 522-6372 Fax#: (705) 522-8856			Job #:	20084	3375	
Email#: koziol@altoventures	.com	Refe	rence:			
		Sam	iple #:	126	Rock	
Acc #	Client ID	Au ppb	A	ku z/t		Au g/t (ppm)

PROCEDURE CODES: AL4AU3, AL4ICPAR

Certified By:

. .

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0519-10/07/2008 4:25 PM

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Thursday, October 9, 2008

Alto Ventures Ltd.	Date Received:	Oct 6, 2008
Unit #8, 1351D Kelly Lake Rd. Sudbury, ON, CAN	Date Completed:	Oct 9, 2008
P3E5P5		
Ph#: (705) 522-6372		
Fax#: (705) 522-8856	Job #:	200843756
Email#: koziol@altoventures.com	Reference:	
	Sample #:	27 Channel

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
310275		744001	<5	< 0.001	< 0.005
310276		744002	<5	< 0.001	< 0.005
310277		744003	<5	< 0.001	< 0.005
310278		744004	<5	< 0.001	< 0.005
310279		744005	<5	< 0.001	< 0.005
310280		744006	<5	< 0.001	< 0.005
310281		744007	<5	< 0.001	< 0.005
310282		744008	<5	< 0.001	< 0.005
310283	Dup	744008	<5	< 0.001	< 0.005
310284		744009	<5	< 0.001	< 0.005
310285		744010	11	< 0.001	0.011
310286		744011	22	< 0.001	0.022
310287		744012	11	< 0.001	0.011
310288		744013	16	< 0.001	0.016
310289		744014	29	< 0.001	0.029
310290		744015	19	< 0.001	0.019
310291		744016	10	< 0.001	0.010
310292		744017	12	< 0.001	0.012
310293		744018	17	< 0.001	0.017
310294	Dup	744018	26	< 0.001	0.026
310295		744019	10	<0.001	0.010
310296		744020	11	<0.001	0.011
310297		744021	10	<0.001	0.010
310298		744701	25	< 0.001	0.025

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Thursday, October 9, 2008

Unit #8, 1351D Kelly Lal Sudbury, ON, CAN P3E5P5 Ph#: (705) 522 6372	ke Rd.	Date Completed:	Oct	9, 2008
Fax#: (705) 522-0372 Fax#: (705) 522-8856 Email#: koziol@altovent	ures.com	Job #: Reference:	2008	843756
		Sample #:	27	Channel
A	Client ID	Au	Au	

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	Acc #
0.011	< 0.001	11	744702	310299
0.025	< 0.001	25	744703	310300
0.012	< 0.001	12	744704	310301
0.030	< 0.001	30	744705	310302
0.012	< 0.001	12	744706	310303

Certified By:

PROCEDURE CODES: AL4AU3, AL4ICPAR

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0519-10/09/2008 4:32 PM

Flud LR - Sampling of Frendry

 Tel:
 (807)
 626-1630
 www.accurassay.com

 Fax:
 (807)
 622-7571
 assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-10-28 04:05:54 PM Job Number: 200843375 Date Received: Sep 12, 2008 Number of Samples: 126 Type of Sample: Rock Date Completed: Oct 7, 2008 Project ID:

11

CONTRACTOR OF

.

The results included on this report relate only to the items tested
 This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

*The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Clie	ent Tag	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Рb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
282334	744606	<1	0.54	6	45	36	<1	6	0.36	<4	5	173	13	1.25	0.18	5	0.26	191	3	0.01	15	299	21	<5	<5	0.02	<10	6	206	73	4	<10	3	216
282335	744607	<1	1.04	6	43	65	<1	7	0.60	<4	44	314	24	3.69	0.25	7	0.77	464	6	0.02	29	388	21	<5	<5	0.02	<10	21	316	288	37	<10	4	40
282336	744608	i 1	0.32	6	44	50	<1	3	0.09	<4	59	379	16	1.55	0.16	2	0.14	<100	4	0.02	20	144	5	<5	<5	0.02	<10	6	<100	<1	11	<10	<1	7
282337	744609	<1	0.92	2	46	38	<1	12	6.32	<4	6	144	4	4.09	0.16	6	2.35	2156	7	0.02	22	253	26	<5	<5	0.02	<10	212	<100	235	23	<10	11	36
282338	744610	1	1.85	8	43	69	<1	10	1.36	<4	61	259	257	6.37	0.27	12	1.41	764	9	0.02	42	469	30	<5	<5	0.02	<10	36	354	<1	64	<10	5	67
282339	744611	<1	0.28	5	47	33	<1	3	0.18	<4	12	431	13	1.08	0.11	2	0.12	133	3	0.02	12	173	8	<5	7	0.02	<10	8	<100	5	9	<10	1	1
282340	744612	<1	0.16	3	46	11	<1	3	0.44	<4	2	317	10	0.82	0.04	1	0.11	220	3	0.01	13	<100	7	<5	<5	0.02	<10	13	<100	47	6	<10	<1	1
282341	744613	s <1	1.60	10	41	58	<1	8	1.73	<4	41	261	88	5.76	0.24	10	1.23	958	7	0.02	26	331	20	<5	<5	0.02	<10	46	260	69	61	<10	4	56
282342	744614	<1	0.82	5	43	62	<1	5	2.20	<4	11	208	47	2.47	0.24	5	0.62	588	6	0.02	22	437	26	<5	<5	0.02	<10	51	<100	30	8	<10	4	21
282343	744615	i <1	0.81	5	37	64	<1	10	3.25	<4	17	65	28	3.24	0.27	6	0.75	880	8	0.02	25	428	18	<5	<5	0.02	<10	65	<100	104	9	<10	6	29
282344	744615	i <1	0.89	4	39	70	<1	8	3.48	<4	20	68	28	3.53	0.28	6	0.84	920	9	0.02	29	420	30	<5	<5	0.02	<10	71	<100	139	10	<10	6	34
282345	744616	5 <1	1.68	7	38	63	<1	9	2.96	<4	18	97	23	4.37	0.27	14	1.08	791	7	0.02	44	472	19	<5	<5	0.02	<10	63	<100	36	19	<10	6	47
282346	744617	· <1	1.66	5	39	75	<1	13	1.20	<4	18	176	13	3.38	0.27	12	0.99	579	6	0.02	28	450	33	<5	<5	0.02	<10	29	<100	<1	17	<10	6	36
282347	744618	3 <1	1.52	<2	41	62	<1	12	2.87	<4	12	100	41	3.44	0.21	12	0.98	690	6	0.02	32	389	18	<5	<5	0.02	<10	57	<100	47	15	<10	6	40
282348	744619) <1	1.67	<2	41	102	<1	17	2.30	<4	19	203	13	3.73	0.25	12	1.11	657	6	0.02	31	226	18	<5	<5	0.02	<10	53	<100	112	17	<10	6	44
282349	744620) <1	0.96	5	47	39	<1	8	0.84	<4	25	356	7	2.48	0.14	8	0.56	306	5	0.02	31	155	18	<5	<5	0.02	<10	27	<100	8	11	<10	4	23
282350	744621	<1	5.22	5	45	33	<1	22	2.65	<4	57	82	1	>10.00	0.15	47	3.30	984	15	0.01	92	499	114	<5	<5	0.02	<10	81	<100	148	49	<10	5	137
282351	744622	2 <1	3.49	4	42	53	<1	19	3.31	<4	30	93	<1	7.16	0.27	33	2.22	847	11	0.02	60	425	29	<5	<5	0.02	<10	100	<100	<1	35	<10	6	90
282352	744623	3 <1	2.82	<2	39	55	<1	11	2.80	<4	23	87	2	5.38	0.28	22	1.76	664	9	0.02	51	424	30	<5	<5	0.02	<10	74	<100	71	30	<10	6	67
282353	744624	۱ <1	2 4 9	9	45	30	<1	12	1.30	<4	21	175	4	5.07	0.14	20	1.65	433	8	0.02	49	182	19	<5	<5	0.02	<10	35	<100	113	27	<10	3	64
282354	744625	5 <1	0.52	5	41	22	<1	7	1.36	<4	6	175	6	1.30	0.09	4	0.26	309	3	0.06	11	248	20	<5	<5	0.02	<10	25	<100	150	8	<10	4	9
282355	744625	5 <1	0.50	<2	42	22	<1	6	1.34	<4	7	176	6	1 29	0.09	4	0.25	304	3	0.06	11	239	21	<5	<5	0.02	<10	26	<100	80	9	<10	4	10
202000	, 44023	, -1	0.00					Ũ		·	·		Ĩ		~	.1			-					-	_					_				
																X			_															

Certified By: Derek Demianiuk, H.Bsc.

Page 1 of 7

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-10-28 04:05:54 PM Job Number: 200843375 Date Received: Sep 12, 2008 Number of Samples: 126 Type of Sample: Rock Date Completed: Oct 7, 2008 Project ID:

•

.

.

 * The results included on this report relate only to the items tested
 * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
 *The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Client	Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
																			_					_	_								_	
282356	744626	<1	1.41	5	40	33	<1	8	1.95	<4	13	189	13	2.90	0.21	15	0.90	654	5	0.03	29	427	27	<5	<5	0.02	<10	44	<100	57	12	<10	5	66
282357	744627	<1	1.03	6	43	20	<1	8	0.97	<4	9	191	14	2.13	0.07	12	0.66	378	4	0.04	27	417	29	<5	<5	0.02	<10	18	986	17	21	<10	10	32
282358	744628	<1	4.49	5	49	5	<1	19	3.18	<4	51	192	104	8.83	<0.01	49	3.42	1583	12	0.02	90	222	307	<5	<5	0.02	<10	50	2581	97	198	<10	10	120
282359	744629	<1	0.30	4	41	33	<1	5	1.43	<4	9	215	26	2.31	0.18	2	0.42	355	5	0.05	17	326	27	<5	<5	0.02	<10	35	<100	<1	10	<10	6	12
282360	744630	<1	0.62	<2	46	22	<1	9	1.66	<4	17	92	41	3.74	0.14	7	0.89	428	7	0.03	53	478	24	<5	<5	0.02	<10	50	<100	56	21	<10	7	58
282361	744631	<1	0.76	3	44	38	<1	8	2.02	<4	13	158	12	2.79	0.20	7	0.69	487	5	0.04	34	343	27	<5	<5	0.02	<10	40	<100	61	11	<10	6	24
282362	744632	<1	2.73	<2	44	28	<1	13	2.42	<4	26	132	27	5.02	0.16	31	2.16	648	8	0.03	94	549	26	<5	<5	0.02	<10	54	<100	193	39	<10	5	79
282363	744633	<1	3.08	2	46	26	<1	12	2.73	<4	29	143	41	5.21	0.11	37	2.47	822	10	0.03	104	519	27	<5	<5	0.02	<10	57	<100	100	52	<10	5	83
282364	744634	4	0.53	<2	49	53	<1	12	1.67	<4	10	222	66	2.14	0.12	6	0.40	388	3	0.06	19	185	39	<5	<5	0.02	<10	40	<100	91	12	<10	4	15
282365	744635	<1	1.29	4	44	41	<1	9	1.53	<4	10	195	15	2.56	0.19	13	0.81	398	4	0.05	25	553	29	<5	<5	0.02	<10	43	<100	101	15	<10	5	46
282366	744635	<1	1.27	<2	41	40	<1	8	1.51	<4	10	188	14	2.54	0.19	13	0.80	392	4	0.05	23	548	12	<5	<5	0.02	<10	43	<100	79	14	<10	5	45
282367	744636	<1	1.43	3	40	28	<1	7	1.88	<4	13	125	16	2.66	0.16	17	0.95	452	4	0.03	35	374	31	<5	<5	0.02	<10	49	<100	99	14	<10	5	49
282368	744637	<1	1.16	<2	40	32	<1	7	2.05	<4	9	130	12	2.27	0.18	12	0.70	457	4	0.03	22	343	21	<5	<5	0.02	<10	54	<100	<1	11	<10	5	30
282369	744638	<1	1.23	<2	41	30	<1	8	0.99	<4	10	196	9	2.69	0.15	13	0.76	290	5	0.05	25	401	26	<5	<5	0.02	<10	26	<100	67	15	<10	6	36
282370	744639	<1	1.28	4	44	26	<1	6	1.86	<4	10	118	6	2.45	0.17	14	0.85	752	4	0.03	26	471	18	<5	<5	0.02	<10	39	<100	<1	11	<10	8	68
282371	744640	<1	1.23	4	44	37	<1	7	2.02	<4	10	137	4	2.49	0.21	13	0.80	606	4	0.03	24	295	19	<5	<5	0.02	<10	49	<100	94	13	<10	6	44
282372	744641	<1	0.96	3	47	44	<1	10	1.99	<4	9	183	15	2.31	0.17	10	0.68	455	4	0.06	22	397	27	<5	<5	0.02	<10	64	<100	14	18	<10	5	24
282373	744642	<1	1.14	5	46	37	<1	8	2.00	<4	10	119	12	2.55	0.17	11	0.78	391	4	0.04	28	508	21	<5	<5	0.02	<10	62	<100	13	16	<10	6	26
282374	744643	<1	1.36	5	45	37	<1	10	1.78	<4	11	157	12	2.62	0.21	14	0.80	460	4	0.03	26	493	30	<5	<5	0.02	<10	43	<100	210	13	<10	6	35
282375	744644	<1	1.28	5	47	36	<1	7	1.72	<4	9	204	11	2.41	0.22	13	0.74	500	5	0.04	26	530	18	<5	<5	0.02	<10	37	177	21	13	<10	10	42
282376	744645	<1	1.26	<2	45	48	<1	9	1.72	<4	11	151	13	2.43	0.19	13	0.78	394	3	0.04	28	446	22	<5	<5	0.02	<10	41	<100	46	14	<10	10	28
282377	744645	<1	1.24	3	42	48	<1	7	1.70	<4	10	145	12	2.41	0.99	113	0.77	390	4	0.04	26	512	32	<5	<5	0.02	<10	40	<100	56	14	<10	10	26
																T						<u> </u>												

Certified By: Derek Demianiuk, H.Bsc.

Page 2 of 7

m Street Tel: (807) 626-1630 , ON Fax: (807) 622-7571 3 5X5

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-10-28 04:05:54 PM Job Number: 200843375 Date Received: Sep 12, 2008 Number of Samples: 126 Type of Sample: Rock Date Completed: Oct 7, 2008 Project ID:

.

.

100000000000

* The results included on this report relate only to the items tested
 * This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

*The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Clie	ent Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
282378	744646	<1	0.97	<2	47	36	<1	5	1.44	<4	9	170	31	2.39	0.11	10	0.77	305	3	0.05	24	450	25	<5	<5	0.02	<10	40	<100	213	24	<10	6	28
282379	744647	<1	1.27	3	40	45	<1	8	1.20	<4	11	194	10	2.64	0.19	13	0.89	456	4	0.04	29	412	20	<5	<5	0.02	<10	32	<100	17	15	<10	8	55
282380	744648	<1	1.06	<2	43	36	<1	8	2.24	<4	11	101	10	2.35	0.20	11	0.77	472	4	0.03	26	426	22	<5	<5	0.02	<10	62	<100	93	13	<10	6	33
282381	744649	2	0.86	<2	44	39	<1	14	1.68	<4	9	156	32	2.20	0.16	9	0.64	430	4	0.04	22	374	34	<5	<5	0.02	<10	51	<100	159	17	<10	6	17
282382	744650	3	0.67	3	49	51	<1	11	2.31	<4	11	195	36	2.62	0.14	10	0.63	420	4	0.06	24	536	39	<5	6	0.02	<10	61	<100	35	25	<10	5	20
282383	744707	<1	0.86	4	38	46	<1	7	2.40	<4	14	68	41	3.32	0.25	6	0.63	639	5	0.02	27	552	31	<5	<5	0.03	<10	40	<100	117	10	<10	5	28
282384	744708	i <1	0.93	6	36	44	<1	12	3.27	<4	15	66	49	3.60	0.29	6	0.79	678	5	0.02	31	363	30	<5	<5	0.02	<10	61	<100	31	12	<10	5	33
282385	744709	<1	0.88	8	38	50	<1	9	3.08	<4	15	187	34	3.63	0.30	5	0.73	752	8	0.02	32	535	26	<5	8	0.03	<10	61	<100	127	12	<10	5	31
282386	744709) <1	0.90	9	43	51	<1	11	3.12	<4	14	194	34	3.66	0.31	5	0.74	759	7	0.02	34	437	23	<5	<5	0.03	<10	61	<100	64	12	<10	5	33
282387	744710) <1	1,19	5	41	34	<1	16	1.37	<4	16	93	40	3.39	0.20	10	0.62	650	7	0.02	33	622	28	<5	<5	0.02	<10	18	<100	33	11	<10	7	37
282388	744711	<1	0.91	8	45	41	<1	7	1.79	<4	8	112	26	2.63	0.25	7	0.46	722	5	0.03	24	343	25	<5	<5	0.02	<10	27	<100	46	9	<10	7	20
282389	744712	<1	0.95	5	41	49	<1	8	3.15	<4	20	248	15	3.39	0.35	5	0.87	851	8	0.02	28	533	18	<5	<5	0.03	<10	68	<100	234	12	<10	5	26
282390	744713	s <1	0.58	4	39	72	<1	6	0.31	<4	5	304	8	1.39	0.17	4	0.29	230	3	0.02	18	278	23	<5	<5	0.02	<10	11	<100	108	4	<10	2	8
282391	744714	<1	1.48	3	37	74	<1	7	2.24	<4	14	125	4	3.03	0.31	11	0.78	461	5	0.02	33	579	25	<5	<5	0.02	<10	44	<100	<1	12	<10	5	28
282392	744715	i <1	1.45	<2	39	88	<1	6	2.45	<4	11	283	10	3.13	0.29	12	0.78	548	6	0.04	35	467	24	<5	<5	0.02	<10	43	<100	9	13	<10	5	25
282393	744716	5 <1	1.59	7	36	78	<1	11	3.41	<4	23	52	3	3.45	0.32	12	1.01	813	12	0.02	35	704	29	<5	<5	0.02	<10	80	<100	<1	15	<10	7	36
282394	744717	′ <1	1.31	3	40	65	<1	6	2.32	<4	10	132	10	2.63	0.29	9	0.75	537	4	0.02	21	461	17	<5	<5	0.02	<10	57	<100	195	10	<10	4	24
282395	744718	3 <1	1.77	<2	41	40	<1	9	1.31	<4	25	38	3	3.89	0.08	15	1.21	482	7	0.02	35	350	30	<5	<5	0.02	<10	33	<100	195	16	<10	4	44
282396	744719) <1	2.84	4	44	23	<1	10	2.95	<4	23	112	66	5.00	0.10	35	2.03	762	6	0.03	82	461	31	<5	<5	0.02	<10	45	<100	27	46	<10	6	88
282397	744719) <1	2.87	6	47	27	<1	8	2.91	<4	25	83	57	5.01	0.11	35	2.03	741	8	0.04	81	454	32	<5	<5	0.02	<10	44	<100	75	46	<10	6	86
282398	744720) <1	0.38	5	42	36	<1	2	0.32	<4	1	386	13	0.74	0.19	3	0.09	141	4	0.05	11	143	10	<5	<5	0.02	<10	9	<100	16	<2	<10	4	<1
282399	744721	<1	0.31	3	41	53	<1	4	0.41	<4	2	178	11	0.49	0.14	2	0.08	117	3	0.05	8	192	9	<5	7	0.02	<10	11	<100	<1	<2	<10	4	<1
																_																		

Page 3 of 7

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-10-28 04:05:54 PM Job Number: 200843375 Date Received: Sep 12, 2008 Number of Samples: 126 Type of Sample: Rock Date Completed: Oct 7, 2008 Project ID:

.

.

.

* The results included on this report relate only to the items tested

* This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

*The methods used for these analysis are not accredited under ISO/IEC 17025

Accur. # Clie	nt Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
282400	744722	<1	1.46	4	40	61	<1	5	1.54	<4	14	131	30	2.83	0.19	16	0.93	520	6	0.05	49	375	19	<5	<5	0.02	<10	23	<100	117	16	<10	6	54
282401	744723	<1	2.04	3	41	95	<1	10	1.99	<4	33	128	33	4.93	0.09	25	1.71	917	7	0.03	97	463	33	<5	<5	0.03	<10	32	<100	<1	28	<10	4	93
282402	744724	<1	2.80	7	40	59	<1	13	2.87	<4	27	120	43	5.17	0.05	36	2.29	866	6	0.03	104	386	30	<5	<5	0.03	<10	54	<100	99	65	<10	4	111
282403	744725	<1	1.58	<2	36	39	<1	14	1.75	<4	25	73	65	4.41	0.17	17	1.32	966	6	0.04	81	386	26	<5	<5	0.03	<10	31	<100	75	19	<10	5	77
282404	744726	<1	1.77	5	38	48	<1	14	2.94	<4	26	128	61	4.62	0.19	19	1.69	1038	6	0.03	92	477	22	<5	<5	0.03	<10	51	<100	50	20	<10	5	71
282405	744727	<1	1.93	3	38	38	<1	6	3.18	<4	24	85	53	4.39	0.15	22	1.70	988	6	0.02	91	513	23	<5	<5	0.03	<10	57	<100	143	21	<10	4	61
282406	744728	<1	1.26	3	40	55	<1	10	1.33	<4	9	161	8	2.41	0.13	15	0.76	473	8	0.04	37	381	26	<5	<5	0.02	<10	28	<100	67	13	<10	7	47
282407	744729	<1	1.64	2	40	81	<1	3	1.37	<4	12	239	12	3.06	0.18	18	0.95	485	6	0.06	29	518	24	<5	<5	0.02	<10	21	<100	107	16	<10	5	50
282408	744729	<1	1.58	<2	37	78	<1	8	1.32	<4	11	232	10	2.95	0.18	17	0.91	465	5	0.05	28	370	30	<5	<5	0.02	<10	20	<100	11	16	<10	5	45
282409	744730	<1	1.95	<2	42	79	<1	10	1.06	<4	15	140	15	3.50	0.13	23	1.29	540	5	0.07	41	607	31	<5	<5	0.02	<10	23	<100	62	28	<10	5	57
282410	744731	<1	0.91	<2	37	73	<1	6	1.14	<4	6	129	7	1.63	0.20	9	0.40	381	2	0.04	16	371	27	<5	6	0.02	<10	16	<100	<1	5	<10	4	31
282411	744732	<1	0.23	<2	40	51	<1	3	0.57	<4	2	292	19	0.65	0.13	1	0.04	148	3	0.05	8	128	14	<5	<5	0.02	<10	10	<100	39	<2	<10	5	2
282412	744733	<1	1.79	6	37	103	<1	10	0.94	<4	18	282	23	3.71	0.23	21	1.08	412	7	0.02	48	430	32	<5	<5	0.02	<10	12	<100	55	15	<10	6	47
282413	744734	<1	1.36	3	41	51	<1	5	0.80	<4	11	130	27	2.88	0.11	16	0.81	448	5	0.05	25	348	27	<5	<5	0.02	<10	15	<100	43	13	<10	4	63
282414	744735	<1	1.39	<2	37	42	<1	7	1.65	<4	10	91	10	2.72	0.12	16	0.88	436	6	0.04	33	433	26	<5	<5	0.02	<10	24	<100	17	16	<10	4	43
282415	744736	<1	1.91	<2	40	17	<1	7	2.59	<4	18	123	10	3.79	0.09	23	1.47	610	5	0.03	71	496	22	<5	<5	0.02	<10	44	<100	111	34	<10	4	67
282416	744737	<1	0.96	2	32	40	<1	10	2.55	<4	8	169	36	3.24	0.21	7	0.75	1158	5	0.02	24	247	31	<5	<5	0.02	<10	55	<100	140	11	<10	7	32
282417	744738	<1	2.01	<2	39	57	<1	10	1.36	<4	16	65	24	3.62	0.36	14	0.98	663	8	0.06	40	458	21	<5	<5	0.03	<10	33	<100	12	18	<10	5	46
282418	744739	<1	1.66	2	35	49	<1	12	1.43	<4	18	81	12	3.39	0.26	12	0.96	703	7	0.01	39	499	28	<5	<5	0.02	<10	34	<100	72	14	<10	6	45
282419	744739	<1	1.61	5	36	48	<1	11	1.41	<4	15	96	13	3.30	0.25	12	0.94	689	9	0.01	47	593	29	<5	<5	0.02	<10	34	<100	<1	13	<10	6	40
282420	744740	1	1.59	4	33	53	<1	18	1.14	<4	22	210	23	3.11	0.31	11	0.91	579	18	0.02	69	623	26	<5	<5	0.02	<10	26	<100	40	14	<10	õ	36
282421	744741	<1	1.60	13	36	61	<1	8	0.42	<4	21	257	11	3.09	0.37	. 11	0.84	431	6	0.03	56	601	23	<5	<5	0.02	<10	10	<100	19	12	<10	5	34
									_							X					30	201	20	.0	.0	0.02					. 2	.10	5	54

Page 4 of 7

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-10-28 04:05:54 PM Job Number: 200843375 Date Received: Sep 12, 2008 Number of Samples: 126 Type of Sample: Rock Date Completed: Oct 7, 2008 Project ID:

.

.

-

 This Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
 *The methods used for these analysis are not accredited under ISO/IEC 17025

* The results included on this report relate only to the items tested

Accur. # Clie	nt Tag	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	Tl ppm	V ppm	W ppm	Y ppm	Zn ppm
282422	744742	<1	0.66	6	41	26	<1	5	2.46	<4	5	218	5	1.39	0.15	5	0.36	441	8	0.03	28	693	25	<5	<5	0.02	<10	56	<100	108	8	<10	7	13
282423	744743	<1	1.14	5	42	37	<1	6	2.19	<4	11	133	5	2.07	0.22	9	0.63	433	5	0.05	39	556	28	<5	<5	0.02	<10	51	<100	71	14	<10	11	22
282424	744744	<1	1.26	3	37	39	<1	5	0.58	<4	9	361	9	2.61	0.23	9	0.71	264	5	0.05	32	441	27	<5	<5	0.02	<10	14	<100	53	14	<10	3	34
282425	744745	<1	1.31	3	37	49	<1	7	0.80	<4	9	252	12	2.60	0.28	9	0.74	295	4	0.02	29	533	27	<5	<5	0.02	<10	17	<100	135	11	<10	3	42
282426	744746	<1	0.22	3	39	7	<1	5	0.32	<4	3	293	10	0.79	0.04	2	0.13	110	2	0.02	16	<100	9	<5	<5	0.02	<10	10	<100	104	3	<10	1	14
282427	744747	1	0.55	5	42	8	<1	5	1.39	<4	4	435	15	1.38	0.08	4	0.25	312	3	0.11	23	<100	14	<5	<5	0.03	<10	35	<100	<1	6	<10	3	15
282428	744748	<1	1.35	18	42	26	<1	10	2.62	<4	11	161	11	2.17	0.21	11	0.56	492	3	0.20	30	209	18	<5	<5	0.08	<10	53	<100	168	14	<10	9	23
282429	744749	<1	0.91	4	38	45	<1	4	1.55	<4	10	269	6	1.96	0.25	8	0.45	436	6	0.02	42	431	25	<5	<5	0.02	<10	30	<100	101	6	<10	7	21
282430	744749	<1	0.93	3	40	46	<1	8	1.55	<4	8	236	6	1.97	0.26	8	0.46	434	3	0.02	21	507	19	<5	<5	0.02	<10	30	<100	136	6	<10	7	21
282431	744750	1	0.21	17	38	24	<1	4	1.45	<4	7	328	10	0.99	0.09	1	0.11	247	6	0.01	21	<100	8	<5	<5	0.02	<10	21	<100	79	4	<10	4	4
282432	744751	<1	0.63	32	39	45	<1	5	0.93	<4	6	238	20	1.23	0.25	4	0.21	204	4	0.12	20	247	5	<5	<5	0.03	<10	19	<100	105	5	<10	4	9
282433	744752	<1	0.78	<2	43	22	<1	5	1.06	<4	9	242	7	1.64	0.16	7	0.35	267	4	0.08	22	188	18	<5	<5	0.02	<10	18	<100	22	6	<10	4	18
282434	744753	<1	0.41	<2	40	7	<1	12	0.63	<4	3	504	10	1.16	0.08	3	0.13	187	3	0.12	15	145	8	<5	<5	0.03	<10	14	<100	199	4	<10	2	7
282435	744754	<1	3.31	<2	43	13	<1	10	0.38	<4	31	168	2	6.98	0.15	33	1.95	387	12	0.15	68	257	28	<5	<5	0.04	<10	9	<100	113	25	<10	2	102
282436	744755	<1	4.28	8	44	22	<1	18	2.10	<4	42	104	3	8.90	0.18	44	2.52	770	11	0.14	76	391	34	<5	<5	0.06	<10	42	<100	73	32	<10	7	134
282437	744756	<1	1.08	15	35	36	<1	7	2.02	<4	26	112	10	2.36	0.25	10	0.55	511	5	0.05	28	494	27	<5	<5	0.02	<10	41	<100	<1	9	<10	9	28
282438	744757	<1	1.70	5	32	44	<1	10	3.30	<4	13	154	17	3.34	0.31	13	0.85	1039	7	0.08	39	331	26	<5	<5	0.03	<10	68	<100	117	15	<10	7	40
282439	744758	<1	0.98	2	38	35	<1	12	4.70	<4	12	168	7	3.71	0.27	8	0.97	1298	6	0.16	31	443	26	<5	<5	0.07	<10	90	<100	<1	9	<10	9	43
282440	744759	<1	1.41	3	38	30	<1	10	2.34	<4	11	227	7	2.79	0.22	9	0.69	531	4	0.16	32	485	20	<5	<5	0.04	<10	49	<100	<1	17	<10	5	37
282441	744759	<1	1.29	10	36	27	<1	10	2.20	<4	9	211	7	2.62	0.21	9	0.65	499	4	0.15	34	382	24	<5	<5	0.04	<10	45	<100	60	16	<10	4	36
282442	744760	<1	1.91	6	44	23	<1	16	1.72	<4	20	282	36	3.90	0.18	14	1.00	888	6	0.21	37	375	26	<5	<5	0.05	<10	39	<100	104	17	<10	6	56
282443	744761	<1	0.99	4	44	25	<1	9	1.01	<4	5	368	9	1.50	0.26	7	0.29	289	3	0.30	20	207	21	<5	<5	0.05	<10	24	<100	138	7	<10	4	20

Page 5 of 7

. •

Alto Ventures Ltd.

-

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

* The results included on this report relate only to the items tested Date Created: 08-10-28 04:05:54 PM * This Certificate of Analysis should not be reproduced except in full, without the written approval Job Number: 200843375 of the laboratory Date Received: Sep 12, 2008 *The methods used for these analysis are not accredited under ISO/IEC 17025 Number of Samples: 126 Type of Sample: Rock Date Completed: Oct 7, 2008 Project ID: Υ T1 V w Ti Ρ Pb Sb Se Si Sn Sr Na Ni Mn Мо К Mg Cd Co Cr Cu Fe Li Bi Са В Ba Be AI As Accur. # Client Tag Ag ppm ppm ppm ppm ppm % ppm ppm ppm % ppm % nnna pom mag ppm % % npm ppm ppm % npm ppm ppm % ppm ppm ppm ppm ppm ppm <100 68 10 <10 5 <10 31 19 <5 <5 0.04 0.15 24 319 0.26 10 0.61 364 4 2.38 6 35 32 <1 8 1.18 <4 13 218 1.26 5 744762 <1 4 282444 98 10 <10 <5 0.04 <10 24 <100 22 196 27 <5 0.23 0.45 344 5 12 339 9 2.09 0.36 9 0.79 <4 6 39 47 <1 11 744763 <1 1.27 282445 <100 <1 7 <10 4 <10 22 25 <5 <5 0.03 294 4 0.19 20 472 0.44 1.79 0.30 7 10 206 39 39 <1 8 0.81 <4 8 1.07 6 282446 744764 <1 2 <10 2 6 0.06 <10 21 <100 <1 <5 <100 6 2 0.07 234 2 0.25 10 10 0.68 0.13 <4 3 277 <1 0.79 7 39 6 3 744765 <1 0.48 282447 <100 70 16 <10 7 42 23 <5 <5 0.02 <10 6 0.02 42 410 895 0.26 15 1.03 45 <1 12 2.08 <4 17 140 51 3.73 2 34 1.76 744744 <1 282448 <10 17 <100 <1 4 <10 2 <100 10 <5 <5 0.02 9 24 0.16 3 0.20 275 0.02 356 1.86 0.70 <4 12 417 37 27 <1 2 744767 2 0.42 43 3 282449 <100 112 7 <10 0.02 <10 30 5 19 484 25 <5 <5 385 0.02 5 0.42 1.76 0,23 1.39 <4 11 94 151 12 37 38 <1 6 744768 <1 0.78 282450 48 <100 91 7 <10 3 0.02 <10 25 <5 <5 27 280 0.49 586 8 0.02 120 1.98 0.18 5 12 217 29 <1 8 2.17 <4 0.75 14 38 744769 <1 282451 6 <10 3 134 25 <5 <5 0.02 <10 45 <100 21 321 561 7 0.02 5 0.47 10 198 111 1.88 0.17 38 28 <1 6 2.09 <4 15 0.72 282452 744769 <1 6 <10 3 <100 <1 <5 <5 0.02 <10 35 24 496 7 0.02 28 435 5 0.40 1,99 0.21 <4 18 291 34 24 38 38 <1 7 1.59 0.79 744770 1 282453 <10 <1 <10 11 <100<1 <2 2 <5 <5 0.02 356 <100 2 0.02 9 7 0.40 0.07 <1 0.04 2 182 0.30 <4 42 13 <1 3 <1 0.12 5 282454 744771 6 <10 4 36 <100 58 0.02 <10 300 16 <5 <5 0.34 421 3 0.02 16 17 1.56 0.28 5 1.58 <4 7 210 35 53 <1 4 0.76 5 <1 282455 744772 21 <100 <1 5 <10 3 <5 0.02 <10 23 <5 17 307 5 0.36 261 3 0.03 0.31 0.84 <4 9 140 18 1.64 0.82 9 35 56 <1 4 744773 <1 282456 <10 5 40 <100 115 8 26 <5 <5 0.03 <10 182 360 3 0.17 21 7 0.46 6 1.65 <4 9 235 26 1.98 0.45 7 34 63 <1 1.26 282457 744774 <1 <10 3 23 <100 52 15 <10 235 26 <5 <5 0.02 476 5 0.05 33 0.22 15 1.06 10 3.65 215 36 39 <1 6 0.96 <4 14 1.78 7 744775 <1 282458 <10 7 <10 64 <100 78 11 17 <5 <5 0.04 604 693 6 24 2.68 0.37 11 0.72 0.15 14 186 5 8 2.89 <4 37 52 <1 744776 <1 1.5 5 282459 52 <100 199 12 <10 5 <10 0.03 27 513 27 <5 <5 0.02 5 0.27 11 0.87 608 2 97 10 2.34 <4 14 127 14 39 47 <1 3 744777 <1 1.49 282460 8 190 23 6 <10 1 <10 10 <5 <5 0.02 0.12 <100 4 0.22 160 2 14 9 1 1 4 0.09 404 <1 5 0.11 <4 3 0.49 3 41 12 744778 <1 282461 <10 5 25 773 <1 18 23 <5 <5 0.02 <10 0.04 27 243 354 4 0.10 11 0.68 10 237 6 2.09 <1 7 0.37 <4 46 34 1.08 <2 282462 744779 <1 18 <10 5 <10 24 784 3 <5 0.02 <5 358 4 0.04 24 166 25 0.10 11 0.66 270 7 2.11 <4 9 6 38 35 <1 6 0.39 282463 744779 <1 1.05 <10 <5 8 0.02 <10 16 478 <1 11 3 165 27 2 0.06 15 0.39 219 270 6 1.42 0.07 6 <4 5 <1 2 0.18 45 18 744780 <1 0.67 4 282464 1008 <1 21 <10 10 30 26 <5 <5 0.02 <10 0.74 406 4 0.09 23 337 12 17 2.39 0.33 <4 11 104 50 51 <1 5 1.63 <2 <1 1.23 282465 744781

Page 6 of 7

Zn

ppm

36

27

25

4

53

13

17

20

22

24

6

19

15

20

54

35

43

14

42

37

23

42

· · ·

~ 1

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

ret Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Venture Date Create Job Numbe Date Receiv Number of 3 Type of Sar Date Comp Project ID:	es Ltd. ed: 08-10 r: 20084 ved: Sep Samples Sample: Ro leted: Oc)-28 0 3375 12, 2 126 126 ck ck ct 7, 2	94:05:5 2008 2008	4 PM									* The * Thi *The	e resulf s Certi of the metho	ts inclu ficate labora ods us	uded c of Ana atory. ed for	n this i alysis s these	report hould analys	relate not be is are	e only f e repro	to the oduce ccred	items t d exce ited un	ested pt in fu der IS0	III, wit	nout (1702	the wri	itten a	ipprov	al					
Accur. # Clie	nt Tag	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
282466	744782	<1	1.33	3	38	47	<1	2	1.94	<4	11	169	26	2.78	0.25	12	0.86	452	5	0.06	31	620	33	<5	<5	0.02	<10	47	558	137	23	<10	9	46
282467	744783	<1	1.25	4	42	46	<1	7	1.66	<4	11	138	58	2.69	0.23	11	0.81	429	4	0.10	28	438	29	<5	<5	0,02	<10	46	488	74	23	<10	9	38
282468	744784	<1	0.72	14	33	57	<1	8	1.35	<4	13	203	19	1.66	0.39	6	0.34	311	6	0.04	20	358	23	<5	<5	0.02	<10	37	<100	<1	9	<10	7	19
282469	744785	<1	0.66	4	40	32	<1	5	1.02	<4	4	111	20	1.27	0.23	5	0.31	220	3	0.14	14	307	21	<5	<5	0.02	<10	29	<100	78	7	<10	6	16
282470	744786	<1	1.12	<2	35	31	<1	8	1.74	<4	11	123	20	2.38	0.20	11	0.74	496	5	0.06	26	423	16	<5	<5	0.02	<10	44	<100	100	15	<10	9	43
282471	744787	<1	0.34	<2	40	18	<1	7	0.62	<4	4	230	12	1.13	0.12	3	0.20	157	5	0.08	13	<100	5	<5	<5	0.02	<10	21	<100	163	8	<10	3	4

Certified By Derek Demianiuk, H.Bsc.

Page 7 of 7

NO NO NO

Thunder Bay, ON Canada P7B 5X5

1046 Gorham Street

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-10-27 04:14:34 PM * The results included on this report relate only to the items tested * This Certificate of Analysis should not be reproduced except in full, without the written approval Job Number: 200843756 Date Received: Oct 6, 2008 of the laboratory. Number of Samples: 27 *The methods used for these analysis are not accredited under ISO/IEC 17025 Type of Sample: Channel Date Completed: Oct 9, 2008 Project ID: P Se Si Accur. # Client Tag AI в Ba Be Bi Ca Cď Co Cr Cu Fe ĸ Łi Mg Mn Mo Na Ni Pb Sb Sn Sr Τi Tł V W Y Zn Ag As % % ppm ppm ppm ppm ppm ppm % ppm ppm ppm mqq % % ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm mag ppm ppm 310275 744001 <1 0.40 6 80 3 <1 <1 0 17 <4 5 468 7 1.07 0.01 8 0.22 150 2 0.03 16 137 <5 <5 0.02 <10 9 574 5 7 <10 2 13 4 310276 744002 <1 3 82 13 37 858 413 2.77 <1 13 2.16 <4 124 58 4.19 0.05 48 1.67 <1 0.07 49 19 <5 <5 0.03 <10 41 2437 13 72 <10 6 111 310277 744003 2 3.24 4 92 941 1 16 1.20 <4 43 764 15 3.99 0.24 47 4.01 541 <1 0.36 277 857 18 10 <5 0.02 <10 121 2159 16 96 <10 7 49 310278 744004 <1 1.75 <2 77 17 96 <1 4 1.44 <4 15 160 37 2.76 0.35 15 0.99 463 <1 0.09 27 402 11 <5 <5 0.02 <10 22 1003 5 <10 10 44 310279 744005 <1 1.35 7 71 51 <1 10 2.54 <4 9 190 2.06 0.58 422 2 0.06 23 427 9 <5 <5 0.02 <10 33 541 10 26 4 0.38 11 4 <10 14 310280 744006 <1 1.25 <2 70 55 <1 9 2.74 <4 10 166 2 1.93 0.35 11 0.58 412 <1 0.05 24 402 8 <5 <5 0.02 <10 30 531 7 9 <10 12 24 310281 744007 <1 0.03 <2 78 2 <1 0.06 0.59 < 0.01 <100 12 <100 2 6 <5 0.01 <10 5 <100 3 <2 <1 <4 1 519 6 0.01 <1 1 0.03 <10 <1 1 310282 744008 <1 1.96 5 67 56 <1 9 1.34 <4 12 287 3.56 0.31 15 0.75 728 2 0.06 17 266 15 8 <5 0.02 <10 18 <100 5 10 <10 8 35 4 310283 744008 <1 1.90 4 65 54 <1 1.30 <4 3.47 0.30 15 0.73 709 3 0.06 258 15 <5 <5 0.02 <10 18 <100 2 10 1 11 279 4 17 <10 7 34 310284 744009 <1 1.05 <2 70 42 <1 8 2.42 <4 18 152 1 3.10 0.24 8 0.78 637 1 0.06 31 503 12 <5 <5 0.02 <10 47 <100 6 12 <10 5 36 310285 744010 <1 0.88 8 69 18 <1 8 3.48 <4 392 5 1.85 0.07 15 0.42 1072 2 0.04 29 161 8 6 <5 0.02 <10 55 <100 5 5 <10 8 125 4 310286 744011 <1 21 67 25 19 9 1.71 64 <1 15 0.23 <4 6 254 87 4.33 0.23 0.67 651 6 0.05 16 241 <5 0.02 <10 8 <100 4 7 <10 9 242 310287 744012 <1 68 51 <1 0.85 22 2 10 0.02 <100 5 7 1.44 4 8 <4 7 253 3 2.44 0.21 0.62 746 0.05 37 292 6 <5 <10 15 <10 9 202 310288 744013 <1 0.41 51 68 50 <1 2 2.50 3 0.06 241 16 100 10 8 <5 0.02 <10 5 <100 5 3 8 0.19 <4 411 25 0.17 0.04 11 <10 3 32 310289 744014 <1 0.52 120 62 93 <1 7 0.02 <4 2 369 43 4.03 0.33 2 0.05 <100 17 0.07 11 225 18 <5 <5 0.02 <10 13 <100 3 5 <10 3 20 310290 744015 17 <1 34 67 66 2 0.25 6 222 6 256 5 0.01 <10 8 5 0.91 <1 8 0.02 <4 239 12 3.82 0.18 0.05 9 <5 <100 4 <10 4 79 310291 744016 <1 1.50 4 68 66 <1 0.85 0.27 21 0.76 586 0.07 28 248 8 <5 0.02 <10 612 5 10 6 <4 9 1.92 <1 <5 14 <10 6 99 119 8 310292 744017 <1 1.15 6 67 83 <1 5 0.85 29 1.94 0.34 12 0.36 807 2 0.07 15 275 8 б <5 0.02 <10 22 574 4 6 14 120 <4 8 291 <10 310293 744018 <1 1.75 13 65 42 <1 11 0.04 217 37 4.37 0.19 26 0.73 664 4 0.04 13 263 20 10 <5 0.02 <10 7 <100 5 7 299 <4 4 <10 4 310294 744018 20 68 43 225 688 270 21 <1 1.80 <1 16 0.04 <4 4 40 4.51 0.20 26 0.76 4 0.05 13 8 <5 0.02 <10 9 <100 2 8 <10 4 309 310295 744019 <1 1.54 6 63 80 <1 4 1.08 <4 7 181 3 2.17 0.44 17 0.78 438 <1 0.06 24 420 9 <5 <5 0.02 <10 21 <100 7 7 <10 4 37 310296 744020 <1 1.64 5 74 53 <1 4 1.87 <4 12 205 3 2.18 0.29 15 0.95 429 <1 0.10 31 410 9 <5 <5 0.02 <10 45 867 6 27 <10 9 33 • • Certified-B

Derek Demianiuk, H.Bsc

Page 1 of 2

 Yef:
 (807) 626-1630
 www.accurassay.com

 Fax:
 (807) 622-7571
 assay@accurassay.com

Alto Ventures Ltd. Date Created: 08-10-27 04:14:34 PM * The results included on this report relate only to the items tested Job Number: 200843756 * This Certificate of Analysis should not be reproduced except in full, without the written approval Date Received: Oct 6, 2008 of the laboratory. Number of Samples: 27 *The methods used for these analysis are not accredited under ISO/IEC 17025 Type of Sample: Channel Date Completed: Oct 9, 2008 Project ID: Accur, # Client Tag в Ва Be Са Cd Co Cr Fe Sb Se Si Sn Sr Ag AI As Bi Cu К Li Mg Mn Mo Na Ni P ΡЬ Ti ΤI V w Υ Zn ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm % % ppm % ppm ppm % ppm ppm ppm ppm ppm % ppm ppm ppm maa maa ppm ppm ppm 310297 744021 <1 0.06 3 75 2 <1 0.07 0.67 0.03 <100 0.03 <100 0.01 <10 6 <4 1 500 5 0.01 1 13 2 6 <5 3 <100 6 <2 <10 <1 2 310298 744701 0.97 84 0.02 2 5 32 <1 21 1.91 <4 10 225 55 2.40 0.11 11 0.68 359 2 0.11 23 313 29 <5 <5 <10 63 277 6 25 6 31 <10 310299 744702 <1 1.61 7 72 72 <1 8 1.46 <4 14 206 15 2.58 0.26 15 0.89 455 <1 0.10 29 436 11 5 <5 0.02 <10 38 1128 10 27 <10 10 39 310300 744703 <1 1,19 <2 79 50 <1 18 1.41 <4 12 209 54 2.48 0.20 11 0.80 523 <1 0.09 30 369 11 6 <5 0.02 <10 33 249 9 24 <10 7 29 10301 744704 <1 1.51 4 71 56 <1 13 2.36 387 435 6 0.71 <4 193 90 0.21 15 0.89 <1 0.10 33 g <5 <5 0.02 <10 31 1357 5 25 <10 9 32 10302 744705 <1 1.55 6 66 49 <1 3 0.69 <4 14 171 14 2.38 0.17 15 0.89 388 <1 0.09 30 465 10 <10 32 5 <5 0.02 57 1348 6 29 <10 9 10303 744706 <1 1.29 6 75 34 <1 7 0.57 12 246 13 2.18 0.13 12 0.76 352 <1 0.12 23 427 9 38 <4 <5 <5 0.02 <10 1338 5 31 <10 8 31

Certified By Derek Demianiuk, H.Bsc.

Page 2 of 2

APPENDIX D

ROUSELL STRUCTURAL REPORT MUD LAKE PART

STRUCTURAL ANALYSIS OF THE THREE TOWERS, GREENOAKS AND MUD LAKE PROPERTIES, BEARDMORE-GERALDTON GOLD BELT, ONTARIO

DON H. ROUSELL CONSULTING GEOLOGIST

REPORT PREPARED FOR ALTO VENTURES LTD. 2008

CONTENTS

INTRODUCTION	6
THREE TOWERS PROPERTY	6
GREENOAKS PROPERTY	20
MUD LAKE PROPERTY - SHOWING NO. 6	28
MUD LAKE PROPERTY -WOLF TRAIL TRENCH	37
MUD LAKE PROPERTY - OLIVER SEVERN SHOWING	40
ACKNOWLEDGEMENTS	46
REFERENCES	46
APPENDIX – STEREOGRAPHIC PROJECTIONS	47

FIGURES

- 1. Map showing the location of Alto Ventures Ltd. properties in the Beardmore area, Ontario and historic production in the Beardmore-Geraldton Gold Belt. Inset shows Beardmore location. Page 7.
- 2. Structural map of the Three Towers Property. Note that the trench is a continuous strip, 464 m in length, and was mapped from west to east. Station 8 continues to station 9 on following page (lower strip) while station 16 continues along the upper strip at station 17. Page 8,9.
- 3. Stereogram of poles to 27 foliation planes (•). The mean value (x) is 079° 90°. This and subsequent means were calculated according to a method explained in Herget (1977). Three Towers Property. Page 11.
- 4. Sketch of details of the shear zone shown in Photo 1. Three Towers Property. Page 12.
- 5. Stereogram of poles to 41 quartz veins (•). The mean value (x) is 071° 89° NW. Three Towers Property. Page 12.
- 6. Stereogram of poles to 17 fracture planes, i.e. joints (•) and 2 dextral faults (x). Three Towers Property. Page 17.
- Stereogram of a plot of 25 fold hinges as follows: 10 m-folds (x), 8 z-folds (•) and 7 s-folds (○). The mean value (□), omitting the plot in the NE quadrant due to a limitation in the method, is 57° SW 244°. Three Towers Property. Page 17.
- Structural map of the Greenoaks Property, No. 2 Trench Extension and Zone No.
 Inset shows the disposition of the three trenches of the property. Page 21.
- 9. Structural map of Greenoaks Property, No. 4 Zone Trench (left) and No. 5 Zone Trench (right). See Figure 8 for legend. Page 22.
- 10. Stereogram of poles to 34 quartz veins (•). Mean value of 29 poles (x), omitting 3 poles clustered around N and 2 near the primitive in the SE quadrant due to a limitation in the method, is 335° 75° SW. Greenoaks Property. Page 23.
- 11. Stereogram of poles to 10 chlorite dikelets. Greenoaks Property. Page 25.
- 12. Stereogram of poles to 64 fractures of which 6 are faults. d=dextral, s=sinistral. Greenoaks Property. Page 27.
- 13. Contour diagram of poles to 64 fracture planes (Figure 12) using a Kalsbeek net. Contour interval is 2, 4, 6 and 8 % per 1 % area. Insert shows an interpretation of the pattern. Greenoaks Property. Page 27.
- 14. Structural map of the Mud Lake Project Showing No. 6. Page 29.

- 15. Continuation of the structural map of the Mud Lake Project Showing No. 6. See Figure 14 for legend. Page 30.
- 16. Stereogram of poles to 15 foliation planes (•). S = foliation plane and C = cisaillement plane in a shear zone. Mean (x) of poles in the SE quadrant only (N=13) is 039° 67° NW. Mud Lake Project Showing No. 6. Page 31.
- 17. Stereogram of poles to 10 quartz veins (•). Mean (x) is 034° 81° NW. Mud Lake Project Showing No. 6. Page 33.
- Stereogram of a plot of 14 fold hinges (•). Mean value (x) is 17⁰ SW 224^o. Mud Lake Project – Showing No. 6. Page 35.
- 19. Stereogram of poles to 11 fracture planes (•) and 1 dikelet (x). Mud Lake Project Showing No. 6. Page 36.
- 20. Structural map of the Mud Lake Project Wolf Trail Trench. Page 38.
- 21. Stereogram of poles to 9 foliation planes (•), mean (\circ) = 055° 61° SE; 7 slickenline directions (x); and 1 rod (\blacktriangle). R = reverse and S = sinistral displacement. Mud Lake Project Wolf Trail Trench. Page 39.
- 22. Stereogram of poles to 11 quartz veins (•). Mud Lake Project Wolf Trail Trench. Page 39.
- 23. Stereogram of poles to 8 fracture planes (•) and 3 chlorite dikelets (x). Mud Lake Project Wolf Trail Trench. Page 41.
- 24. Structural map of the Mud Lake Project Oliver Severn Showing. Page 42.
- 25. Stereogram of poles to 10 foliation planes (•), mean (\circ) = 058° 83° SE and 2 m-fold hinges (x). Oliver Severn Showing. Page 44.
- 26. Stereogram of poles to 18 quartz veins (•). Oliver Severn Showing. Page 44.
- 27. Stereogram of poles to 26 fractures (•) and 4 shears (x). Oliver Severn Showing. Page 45.

PHOTOS

- 1. A 1 m wide dextral shear zone. The knife (length = 7 cm) is parallel to S_3 planes which are separated by shear bands or C-planes. The shear strain, ψ , = 0.73. Station 7. Page 11.
- 2. An example of quartz veins cross-cutting the foliation. Station 10. Page 13.
- 3. Sigmoidal-shaped quartz indicates boudinage by dextral shear. Station 22. Page 13.

- 4. Oblique dextral shear of sigmodal quartz. Matrix is cross-bedded sandstone Station 16. Page 14.
- 5. Quartz veins cut folds (partly outlined by chalk). Knife is 7 cm long. Station 14. Page 15.
- 6. Quartz veins cut plunging fold with hammer along the hinge. Station 17. Page 15.
- 7. Quartz veins, locally ptygmatic (upper left corner), cut across the foliation and are displaced by shears parallel to the foliation. Station 22. Page 16.
- 8. A sinistral shear zone with quartz extension veins. Card is 8.5 cm long. Station 3. Page 16.
- 9. A s-fold in ductile magnetite and siltstone with >5x thickening in the fold. Sinistral shear. Station 21. Page 19.
- 10. A s-fold with a complete s-shape and > 5x thickening. Sinistral shear. Station 21. Page 19.
- 11. A vuggy quartz vein with abundant hematite, limonite and pyrite. Station 36. Page 23.
- 12. A diffuse-looking vein not cut by the prominent, oblique fractures. Station 43. Page 24.
- 13. Elliptical openings develop where curved fractures enter a vein. Station 41. Page 24.
- 14. A chlorite dikelet is offset by several dextral faults. Tiny quartz veins (below 7 cm- long knife) cut the dikelets. Station 32. Page 25.
- 15. Rusty stain, 1.1 m in diameter, at the intersection of two fractures at 040⁰ 80⁰ NW and 010^o 90^o. Station 25. Page 28.
- 16. 16. A location of complex shearing with two dextral and one sinistral shear zones. See text for details. Station 46. Page 31.
- 17. Quartz vein material, 1.5 m wide, draped over steeply-dipping foliated rock. Station 47. Page 33.
- 18. Horizontal quartz mass, 1 m thick, is underlain by a breccia with clasts of granite and green, fine-grained chlorite material. Station 55. Page 34.
- A vug, 50 x 20 cm, contains euhedral quartz crystal is as much as 4 cm long. Station 55. Page 34.
- 20. Down-plunge view of a fold with hinge attitude of 10° SW 230°. Station 48. Page 35.
- 21. Tectonically elongated schist fragments in a quartz-rich matrix. Station 47. Page 36.
- 22. Fault breccia. Note the green chloritic material. Looking NE. Station 60. Page 41.
- 23. Quartz mass with abundant pyrite. Width of mass = 0.5 m. Station 70. Page 45.

INTRODUCTION

Alto Ventures Ltd. owns five properties in the "Beardmore–Geraldton Gold Belt". These properties are located north of Highway 11, between the towns of Beardmore and Jellicoe (Figure 1). Between August 25 and September 4, 2008, the writer undertook detailed structural mapping of three of these properties, viz. Three Towers (formerly Cote-801), Greenoaks and Mud Lake. Three separate trenches were mapped on the Mud Lake property, viz. Showing No. 6, Wolf Trail and Oliver Severn. The ultimate objective of the investigation was to identify the structures which control the distribution of the gold-bearing quartz veins.

METHOD

Structural data was measured at a total of 74 stations. This included the attitude of foliation, quartz veins, bedding, fractures, dikes, fold hinges and fault striations (slickenlines). The attitude of planar elements are given in terms of strike and dip whereas linear elements (fold hinges, slickenlines) are expressed as plunge and trend. Note that fractures are of two types, viz., those without visible lateral displacement (joints) and those with apparent lateral displacement (faults). The sense of movement of some faults was identified based on the displacement of planar elements or the attitude of slickenlines and the rough-smooth criterion.

For each of the five trenches, the dispositions of the structural elements are plotted on a structural map. Poles to planar elements including quartz veins, foliation, fractures, dikes as well as linear features such as fold hinges are plotted on lower hemisphere equal-area stereograms (see the appendix for an explanation of the technique). Where feasible, mean values were calculated by means of a Braitsch overlay (Herget 1977).

Structural elements are illustrated by a number of photos.

THREE TOWERS PROPERTY

Introduction

The Three Towers Property (formerly Cote – 801) is oriented east-west and is approximately 464 m long and 10 to 20 m wide. Structural data, collected at 24 stations, were plotted on the structural map (Figure 2). Most planar elements, including foliation, quartz veins and fractures strike ENE with steep dips. Bedding is parallel, or nearly so, to the foliation. Fold hinges tend to trend SW with moderate to steep plunges in that direction.

Bedding

Bedrock of the Three Towers Property consists of sandstone, conglomerate, argillite and minor Fe-formation. The metamorphic grade is low. Beds (S_1) strike approximately ENE with steep dips and local overturning of beds. Features such as cross-bedding and scour are well preserved and indicate tops are to the south. The trench coincides with the

Photo 15. Rusty stain, 1.1 m in diameter, at the intersection of two fractures at $040^{\circ} 80^{\circ}$ NW and $010^{\circ} 90^{\circ}$. Station 25.

MUD LAKE PROJECT - SHOWING NO. 6

Introduction

Showing No. 6 extends for 148 m in a NNE direction. A geologic map is available for the southern 43 m only (Figure 14). Granodiorite rocks of the Coyle Stock are, in part, foliated, folded and fractured. Quartz veins and foliation tend to strike NNE, parallel to the trend of the trench (Figures 14 and 15) whereas folds tend to plunge SSW.

Foliation and shear zones

Figure 16 is a stereographic plot of poles to 15 foliation planes. Thirteen on the poles cluster in the SE quadrant. The mean value, SE quadrant only, is 039° 67° NW.

Photo 16 depicts an area of complex shearing. The coin lies on curved S-planes in a dextral shear zone. Approximately 1 cm above the coin, a brown-weathered strip separates this zone from another dextral shear zone. Some quartz-vein material is parallel

Fig. 14. Structural map of the Mud Lake Project - Showing No. 6.

Fig. 15. Continuation of the structural map of the Mud Lake Project – Showing No. 6. See Figure 14 for legend.

Fig. 16. Stereogram of poles to 15 foliation planes (•). S = foliation plane and C = cisaillement plane in a shear zone. Mean (x) of poles in the SE quadrant only (N=13) is 039° 67° NW. Mud Lake Project – Showing No.6.

Photo 16. A location of complex shearing with two dextral and one sinistral shear zones. See text for details. Station 46.

to the shear direction. Above this dextral zone is a narrow band of shearing or cisaillement $(080^{\circ} 48^{\circ} \text{ SE}, \text{ plotted on Figure 16 as C})$ which separates the dextral zone from a sinistral shear zone located at the top of the photo $(038^{\circ} 27^{\circ} \text{ NW plotted on Figure 16 as S})$. Note the quartz vein parallel to the S-planes.

Quartz veins

Most quartz veins strike NE, dip steeply NW and are parallel or nearly so to the foliation. The mean value of the stereo plot (Figure 17) is 034° 81° NW.

Quartz also occurs as subhorizontal masses which appear to be draped over the underlying foliated rock. Photo 17 shows a mass of quartz 1.5 m wide overlying steeplydipping foliated rock. A further example of subhorizontal quartz masses occurs at a locality known as "the nipple". There a quartz mass 1 m thick is underlain by 80 cm of brecciated foliated-granite and green fine-grained soft chloritic material (Photo 18). The fold hinge at the top of the nipple has an attitude of 30^{0} SW 222° while a second small fold plunges in the opposite direction at 010° NE 063°.

A quartz vein with pinch-and-swell-structure indicates some extension parallel to the vein and the foliation. Vugs with quartz crystals occur at several localities. In Photo 19, a vug 50 x 20 cm contains euhedral quartz crystals 4 cm long.

Folds

Figure 18 is a stereo plot of 14 fold hinges. All but one hinge plots in the SW quadrant where the plunge is rather shallow. The mean value is 17° SW 224°. Folds tend to be cm-scale, i.e. with wave lengths and amplitudes of a few cm. Several folds are open. Photo 20 illustrated a fold viewed in a down-plunge direction (10° SW 230°). Note that S-folds and Z-folds formed by sinistral and dextral couples, respectively, are absent.

Fractures

The rocks at Showing No.6 are not strongly fractured. Poles to 11 fractures and 1 chlorite dikelet are set out in Figure 19. There is no preferred orientation of the fractures. No poles plot in the NW quadrant (i.e. no fractures dip SE).

Deformation

The Showing No. 6 trench lies in a deformation zone approximately 10 m wide. The country rocks adjacent to the zone comprise massive granite. The well developed foliation in the zone locally encloses elliptical enclaves of the massive granite. The presence of a local C-S fabric indicates that shearing occurred in the trench. However, tectonically elongate fragments (Photo 21) are not diagnostic of a particular style of deformation, i.e. flattening, shearing or some combination. The apparent absence of small-scale s and z-folds intimate an absence of horizontal sinistral and dextral shearing. However, s and z-folds formed by vertical shearing would not be readily apparent on a horizontal surface. The moderate development of fractures indicates that brittle deformation was not intense. The presence of drusy vugs suggests the quartz was emplaced at a high crustal level.

Fig. 17. Stereogram of poles to 10 quartz veins (•). Mean (x) is 034° 81° NW. Mud Lake Project - Showing No. 6.

Photo 17. Quartz vein material, 1.5 m wide, draped over steeply-dipping foliated rock. Station 47

Photo 18. Horizontal quartz mass, 1 m thick, is underlain by a breccia with clasts of granite and green, fine-grained chlorite material. Station 55.

Photo 19. A vug, 50 x 20 cm, contains euhedral quartz as much as 4 cm long. Station 55.

Photo 20. Down-plunge view of a fold with hinge attitude of 10° SW 230° . Station 48.

Fig. 19. Stereogram of poles to 11 fracture planes (•) and 1 dikelet (x). Mud Lake Project – Showing No.6.

36

- 1. formation of a deformation zone by a combination of shearing and flattening;
- 2. emplacement of quartz veins;
- 3. folding; and
- 4. minor brittle deformation.

Response to questions posed prior to the investigation

- 1. Showing No. 6 is a deformation zone with some shear (dextral and sinistral) and some flattening.
- 2. The mean orientation of the veins is 034° 81° NW.

The foliation is the main control of vein orientation. Folding modifies vein orientation so that a folded vein may become horizontal in the hinge area of a fold.

MUD LAKE PROJECT - WOLF TRAIL TRENCH

Introduction

The Wolf Lake Trench is 12.5 m wide and 99 m long in a direction 055°. The foliation strikes parallel to the long axis of the Trench (Figure 20). The rocks are strongly sheared and brecciated.

Foliation

A stereo-plot of poles to foliation planes (Figure 21) shows a strong cluster in the NW quadrant. The mean attitude of the foliation is 055° 61° SE with the strike parallel to the long axis of the trench.

Slickenlines or fault striations were measured on 7 foliation planes. As might be expected, they plot in or near the SE quadrant. The striations indicate the direction of shear displacement. The actual <u>sense</u> of displacement, using the rough-smooth criterion, is reverse or hanging-wall up. The pitch on all the slickenlines is less than 90° indicating displacement is actually oblique. The displacement on an almost horizontal slickenline (plunge = 10°) is sinistral.

The foliation locally anastomoses around granite enclaves which is a pattern observed in other deformed granitic terrains (Gapais and Choukroune 1983).

Quartz veins

Poles to 11 quartz are plotted on the stereogram of Figure 22. Unlike quartz veins orientations in the other trenches, there is no single preferred orientation. Five of the veins lie in the SW quadrant; with a sixth across the line in the NW quadrant. This group has a strike that is sub-perpendicular to the long axis of the trench. The remaining veins are parallel, or nearly so, to the trench long axis and the mean strike of the foliation.

Fig. 20. Structural map of the Mud Lake Project - Wolf Trail Trench.

Fig. 22. Stereogram of poles to 11 quartz veins (•). Mud Lake Project - Wolf Trail Trench.

Note that both sets of quartz veins were observed to cut the foliation and cross the breccia. Some veins display quartz crystals.

Fractures

Figure 23 is a plot of poles to 8 fracture planes and 3 chlorite dikelets. The fractures lack a preferred orientation and are not strongly developed.

Deformation

The Wolf Trail Trench is a fault zone. Clasts in a prominent, foliated fault breccia (Photo 22) are as much as 0.7 m in length. They are elongated both along strike and down dip. The foliation planes represent shear planes. The "rough-smooth" shear-sense criterion observed on these planes, suggest oblique reverse slip. This criterion is not infallible. The theoretical dip, for normal and reverse faults (with the principal stresses oriented normal and parallel to the earth's surface), is 60° and 30° , respectively. The mean dip of the shear planes is 61° SE which intimates normal faulting. However, this not a "bad" interpretation, as it implies, that the trench is a dilation zone. The formation of fault-breccia suggests a relatively high crustal level (Sibson 1977).

Quartz veins are parallel and normal to the strike of the foliation /shears. Both sets cut the shears and breccia.

The sequence of structural events may be summarized as follows.

- 1. Formation of a shear zone, 99 x 12.5 m, by oblique reverse slip.
- 2. Emplacement of quartz veins oriented parallel and perpendicular to the trench.
- 3. Crustal uplift and erosion. Mild brittle deformation.

Response to questions posed prior to the investigation

- 1. The sense of movement is oblique reverse in a fault/shear zone
- 2. The veins strike parallel and perpendicular to the zone which are the directions of greatest dilation
- 3. as above.

MUD LAKE PROJECT - OLIVER SEVERN SHOWING

Introduction

The Oliver Severn Showing extends 103 m in an ENE to EW direction. The structural map (Figure 24) indicates that the strike of quartz veins and foliation are sub-parallel or oblique to these directions.

Fig. 23. Stereogram of poles to 8 fracture planes (\bullet) and 3 chlorite dikelets (x). Mud Lake Project – Wolf Trail Trench.

Photo 22. Fault breccia. Note the green chloritic material. Looking NE. Station 60.

Foliation

Figure 25 is a stereogram of poles to 10 foliation planes. The mean value is 058° 83° SE.

Quartz veins

Poles to 18 quartz veins are plotted on the stereogram of Figure 26. Several poles lie in the NW quadrant, suggesting that they strike NE, parallel to foliation planes. The plot also indicates several veins which strike between WNW and NNW.

Apart from quartz, the veins contain green schist material, limonite, buff carbonate, azurite, malachite and pyrite (Photo 23).

Folds

The hinge lines of 2 folds are plotted on Figure 25. Both trend NE but plunge in opposite directions.

Fractures

Poles to 26 fractures are plotted on Figure 27. Most fractures strike NE and dip circa 90^{0} . There is also a steeply-dipping set which strikes NW as well as some fractures with assorted strikes and intermediate dips. Also plotted on Figure 26 are 4 NE-striking shears.

Deformation

The Oliver Severn Showing lies in a deformation zone, up to 8 m wide, enclosed by granodiorite. The zone consists of mafic schist which contains local elliptical enclaves of the granodiorite. Apparently deformation was localized in a mafic dike, a less competent rock than the granodiorite. The zone provided a channel for quartz-Fe carbonate-chalcopyrite? – pyrite veins. Unfortunately, it is not possible to unequivocally determine the origin of the foliation (flattening, shearing) as shear-sense indicators are lacking. However, the veins were presumably emplaced in a dilation zone. Accordingly, a shear origin for the zone is favored.

Response to questions posed prior to the investigation.

- 1. It is not possible to determine the style of shearing or sense of movement.
- 2. Most veins strike NE, parallel to the direction of greatest dilation. Some veins strike between ENE and NNE, a diffuse zone of dilation.
- 3. as above for controls of vein distribution.

Note that in granite terrains, such as the Coyle Stock and other local batholiths, deformation may be localized in relatively incompetent mafic dikes. The resultant dilation provides a locus for mineralized quartz veins. Perhaps local mafic dikes should be an exploration target.

Fig. 26. Stereogram of poles to 18 quartz veins (•). Oliver Severn Showing.

Photo 23. Quartz mass with abundant pyrite. Width of mass = 0.5 m. Station 70.

ACKNOWLEDGEMENTS

While in the field the writer benefited from discussions with Mike Koziol and Richard Lumb. Lorraine Dupuis drafted the diagrams and Charlotte Mosher assisted with the make-up of the report.

REFERENCES

Choukroune, Pierre and Gapais, Denis., 1984. Strain patterns in the Aar Granite (Central Alps): orthogneiss developed by bulk inhomogeneous flattening; *Journal of Structural Geology*, v.5, p.411-418.

Lafrance, Bruno, DeWolfe, Jerry C. and Stott, Greg M., 2004. A structural reappraisal of the Beardmor-Geraldton Belt at the southern boundry of the Wabigoon subprovince, Ontario, and implications for gold mineralization; *Canadian Journal of Earth Science*, v.41, p. 217-235.

Mackasey, W.O., 1976. Geology of Walters and Leduc Townships, District of Thunder Bay; Ontario Division of Mines Geoscience Report 149, 58p.

Sibson, R.H., 1977. Fault rocks and fault mechanisms. *Journal of the Geological Society of London*, v.133, p.191-213.

APPENDIX

APPENDIX E

TREMBLAY 2008 PROSPECTING SAMPLE DESCRIPTIONS AND GOLD RESULTS

Sample No. UTM E	Easting UTM	Northing	Location (other)	Description	Sulphides	Structures	Au (pp	ob)
482106	448723	5511825	near sample 15376 (2005)	Weakly magnetic gabbro	15-20% fine Py	Sheared Az. 060, 85 S	<5	
482107 Same	Same	e	Same	Same	Barren	Same	<5	
482108	448837	5511616	;	White-coloured 15 cm qtz veining	Barren	Vein at Az. 300		61
482109	448850	5511597	40 cm from 15386 (2005)	Qtz stockwork	Barren			1845
482110	448844	5511601	~10 m west of 482109					30
482111	448857	5511593	6	Qtz flooding+silicification	Barren	Shd at Az. 060	<5	
482112	449250	5511650	~70 m west of No.6 showing	Hematite-stained Qtz veins	Trace Py	Vein at Az. 290-300	<5	
482113	449155	5511631	~5 m/Az. from 2005 sample	cm-m Chl-Hm-Musc-filled Qtz stockwork	Trace Py	Veining at Az. 280	<5	
482114	449152	5511630	~5 m/Az. from 482113	Same as above	Trace Py	Veining at Az. 280		9
482115	449283	5511676	SW corner of No. 6 trench	3-4 parallel 2-15 cm Qtz veins+chlorite	Trace Cp- one 2-3 mm bleb	Vein at Az. 310	<5	
482116	449865	5511875	South of chain of lakes	0.3-0.75 m-wide Qtz, Chl+Hem	Trace Py	Vein at Az. 290, dip 80 S	<5	
482117 Same	Same	9	~ 3.5 m W of 482116	Same Qtz vein	Trace Py	Same vein as above	<5	
482118	450171	5511681	SE towards Noranda sample	Qtz vein to 30 cm thick	Barren	Vein at Az. 290	<5	
482119	450197	5511741	SE towards Noranda sample	Qtz vein to 30-50 cm thick	Barren	Vein at Az. 290. dip 80 S	<5	
482120	450060	5511600	Vicinity of Noranda sample	Shr+mafic dvking+Qtz veining to 0.75 m	Barren	Vein at Az. 010, dip 90	<5	
482121	450040	5511607	Same	Shr+Chl-Ser. rustv	No sulphides observed	Shr at Az. 050	<5	
481122 Same	Same	9	Same as 482121	30-50 cm thick Qtz	Barren	Shr at Az. 050	<5	
482123	450218	5511777	,	25 cm-wide Shr+Ser+Chl. Fuchsite (?)	Barren	Shr at Az. 055, dip 80 S	<5	
482124	450214	5511772	Near sample 482123	2 m-wide Shd diorite, sericitized	Barren: weakly magnetic	Shr at 055, 80 S	<5	
482125	450208	5511790	On strike NE of 482124	White-coloured 5-25 cm atz veining	Barren	Vein at Az, 290	<5	
482126	450246	5511798	On strike NE of 482124-125	Ser-Chl shear: north half, possible wall	Traces Py and Cp	Shr at Az 055	<5	
482127 Same	Same	, ,	South wall of above shear	Same	Much Mal coating fractures	Same	<5	
482128	450090	5511680	Noranda anomalous sample	Otz in strong shear	Barren	Shr at Az 050	<5	
482129 Same	Same	20011000	Same	0.5 m-wide Shear+Lim-Hem-Chl-Ser	Trace Py-mostly leached out	Same	<5	
482123	450061	5511659	Along strike to the SW	1.5 m moder. Shr	Barren	Shr at Az 060 din 80 S	<5	
482124	450073	5511658	Same	30 cm-wide Shr	Barren	Shr at Az 080 din 80 S	<5	
482132	449987	5511586	Same	30 cm-wide Shr. Ser-Chl	Same	Same	<5	
482132	440035	5511556	Same	20-30 cm-wide Otz vein	Barren	Vein at Az 270 din 80 S	~0	10
482134	440802	5511551	Extension of sample 482133 site	Eolded Otz	Barren	Same	~5	10
482135	450316	5511034	Extension of sample 402100 site	25 cm-wide Otz vein in 40 cm-wide Shr	Barren	Shr+vein at Az 055	~0	8
482136	450778	5512117	Limit of prospecting to SW	M-wide ser-sil Shr with Otz hands	2-5% fine dissem. By cubes	Shr+veining at Az 055		18
482137 Same	Same	20012117	Near sample 482136	Rusty zone in M+ Shr	1-5% fine dissem. Py cubes	Same	~5	10
482137 Game	450633	, 55110/5		Strong m-wide Shr. Sil-Ser-Chl	Barren	Shr at Az 030-040	~5	
744001	4500000	5512258		1 m-wide shear	Barren	Shr at Az 055 din 75 S	<5	15
744001	450905	5512230		Shoor	Barron	Shi at Az. 033, dip 73 3		15
744002	450902	5512331		Shear resembles Wolf trail trench	Barren	Shrat Az 055	~5	0
744003	451002	5512303		20 cm wide Otz voin	Barron	Voin at Az. 200	<5	
744004	451232	5512473		20 cm-wide Otz vein	Barren	Vein at Az. 300	~5	
744005	451320	5512401		Shru Otz voin uminor Chl mofio intrus	Trace of By	Shruyoin of Az, 055	<5	46
744000	431290	55112433		Shri Otz Chl voin rusty pocket compled	1 5% Dy in pocket	Norrow chr at Az, 055		40
744007	449000	5511275	$2 m \text{ on } A_{7}$ OFF from 744007	Shri Qtz with weak rust alliaifiad	1-3% Fy III pocket	Natiow Shi at A2. 055		100
744000 Same	Same	÷	1 5 m on Az. 055 1011 744007	Shrietrong sil sori Otz voinlots	No By observed leached 2	Shrot Az 055		120
744009 Same	Same	-	1.5 m on Az, 055+ m, SE of 000	Shristrong sil sori smokov Otz voiplote	Minor fion Dy outors	311 at A2. 055		1/9
744010 Same	450222	5	N and of N S tranch	Shri 20, 20 om ruchy Otz	Sparce By envetale	Shri Otz at Az 055		7
744011	450332	5511193	5 6 m on Az 200 from No. 011	Otz voining over a width of 1.5 m	Barron	$V_{\text{oin ot } A_7}$ 200		7
744012 744012 Sama	400320	0011190	South well of above shear	Otz dia, strangly silisified, weak mag	5 15% fine discom By: tr Cn	Shoard Az, 060, 95 S		6
744013 Same	450247	FE11000	On atrike and parth of No. 012	Clz dio, stioligiy silicilieu, weak may.	5-15 % lifte disselfi. Fy, tr. Op	Sheared Az. 060, 65 3	Æ	0
744014	450317	5511200	2.5 m north of somela 014	Shu Qiz dio, of chi-sil granoulonite	Sparae Dy anystole	Sheared Az. 055, dip vertical	<0	
744015	450517	5511210	2.5 m north of sample 014	Qtz dio+ Qtz liooding, 10-15% verifiets	Sparse Py crystals		<0	
744010	449714	5511000		2 m-wide shear with Fe-CD alteration		Shirat Az. 055	<0	
744017	449121	5510979		A service parties of Cil Car Oblahaan	40/ Du		<0	
744018	449711	5510990) Descible subscript of new invest	1 m-wide portion of Sil-Ser-Chi shear	1% Py	Shr at Az. 055, dip 90	<5	
744019	449001	5511132	Possible extension of previous	2-3 III wide Shear, Fe-CD allered	T- 40/ D-	Shi at Az. 055, up 60 5	<0	
744020	450225	5511128	45 am from comple 744000	30 cm-wide Ser-Sil-Chi Shr	Tr. 1% Py	Shr at AZ. 055	<5	
744021 Same	Same	3	15 cm from sample 744020	Qtz-flooded	Tr1% Py	Same	<5	
744022	450400	FF44057	12 m Svv from samples 020-021	1.5 m weak snr + Lim-coated fractures	IT. PY	Same	<5	
744023	400166	5511057	4.0 ··· N · (· · · ··· · · · 744000	Sna Qtz alo. + Ser-Sli	Sparse 1% Py	Same	<5	
744024 Same	Same	+	1.0 m N of sample /44023	QIZ NOODING+SILICITICATION	Py to 1%	Same	<5	
744025	450186	5511076		Subcrop, Sna, Sil-Oni granodiorite	Py to 1% locally	Same	<5	
744026	450163	5511063		Sna-Unioritic with fractures/veinlets	5-15% dissem. Py		<5	
/4402/	450153	5511077	NNVV of previous station	Same	5-10% Py		<5	

ALTO VENTURES LTD. MUD LAKE PROJECT 2008 GEOLOGICAL MAPPING AND PROSPECTING BY R.J. TREMBLAY, P.GEO.

744028	450033	551096	8	Angular floats, rusty Qtz Dio.	Sparse Py crystals		<5	
744029	449992	551098	5	Shd, Ser-Chl		Shr at Az. 055, dip 80 S		40
744030	449631	551024	5 Last station prospecting to SW	Rusty Shr	1-10% fine dissem. Py	Shr at Az. 055	<5	
744031 Same	Sa	me	Same site as 744030	Qtz flooding+silicification-smokey	Barren	Same	<5	
744032			10 m NE of 744030-031	> 1m-wide Qtz vein	Trace Py	Qtz vein at Az. 010	<5	
744033	450368	551127	1 Traversing NE from old trenches	M-wide rusty Ser-Sil-Chl Shrs, in Qtz dio	To 1% Py, Tr. Cp	Shr at Az. 055, dip 80 S	<5	
744034			5 m on Az. 225 from 744033	Same Shr with Qtz flooding	Fine Py crystals in sil. Bands	Same	<5	
744035			4 m on Az. 290 from 744033	Shr+rusty bands, Sil-Chl qtz veinlets	Tr. Py	Same	<5	
744036	450367	551127	5 8-9 m on Az. 280 from 744033	Shr, Sil-Chl	5-10% Py in bands	Same		11
744037	450358	551128	3 Angular float-locally derived	Shd Qtz dio., similar to previous stations	Py in fractures and veinlets	Same	<5	
744038	450473	551132	7	Narrow shrs+10-20 cm rusty Qtz veins		Same	<5	
744039	450615	551145	6	Rusty cataclastic textured, Qtz flooded			<5	
744040	450658	551151	6	Shd, Sil-Chl-Ser, local rust			<5	
744041	450685	551151	8 Shr at 744040 NE extension	Shd, Sil-Chl-Ser intermittent over 5 m			<5	
744042	450643	551150	5	10-20 cm Qtz veins along rusty shr			<5	
744043	450738	551155	1	Rusty Shears+ Lim-Hem	Tr1% Py in Chl-filled veinlets		<5	
744044	450737	551160	0	Shears+breccia textures; poss. Folding	·		<5	
744045 45005	6 (?)	551172	8	>10 zone of shearing, strongly silicified	Barren		<5	
744046	447761	550965	3	30 cm shear, rusty, minor Qtz			<5	
744047	447864	550975	6	Shr, Sil-Chl-Ser, weak rust			No San	ple Received
744048 Same	Sa	me	2 m SW of 744047	Shd diorite or gabbro + rusty fractures		Schistosity at Az. 055	<5	
744049	447855	550976	4 Near 744048	As above, locally derived angular floats			<5	
744050	447920	550978	2	>3m-wide shr Qtz dio or gabbro		Shr at Az. 040	<5	
744501	453338	551426	0 Along road to showing No. 1	3 parallel 10-30 cm Qtz veins	Barren	Veins at Az. 290	<5	
744502	453055	551419	0	Shd sil. Volcanic	Traces to 1% Po-Py	Shearing at Az. 070, dip 80 S	<5	
744503	453330	551430	3 Along road to showing No. 1	Shd rusty Qtz-diorite-gabbro	Traces Py	Shearing at Az. 070, dip 80 S	<5	
744504	451434	551373	4 Along long Az. 140-320 trench	Shd blue Qtz eye diorite, strongly Sil	Barren	Shearing at Az. 050, dip 80 S	<5	
744505	451450	551372	0 SSE along same trench	0.5 m mod. shd.; chl+sil	Barren	Shearing at Az. 055	<5	
744506			2.5 m SSE of No. 744505	Parallel shear to above	Same	Same	<5	
744507	449715	551211	0	1.0 m-wide Qtz vein	Barren	Vein at Az. 300, 80 NE	<5	
744508	450372	551281	4 IP M-02, 30+40 N, 0+88 W	Weak-moder. Shd, Chl+Ser	Rare traces Py	Shearing at Az. 055	<5	
744509	450489	551308	7 IP M-03, 32+80 N, 2+38 W	0.5-1.0 m-wide rusty Fe-Cb-Ser-Sil shr	Traces to local 1% Py cubes	Shearing at Az. 055, dip 75 S	<5	
744510	452233	551362	0 IP M-12, L 50+00 N, 2+10 E	30 cm wide Qtz-Chl vein in > 1 m-wide Shr	Barren	In shr at Az. 060, dip 80 S		11
744511 Same	Sa	me	Same, SE wall of Qtz vein	Strongly Shd, Ser-Chl-Sil-Fe-Cb	1-2% dissem. Py in bands	Shr as above		22
744512 Same	Sa	me	Same. NW wall of Qtz vein	Same as above	Rare traces Pv	Same		11
744513 Same	Sa	me	Same, 2.5 m NE of 510-512	20 cm wide Qtz-Chl vein in > 1 m-wide Shr	Rare traces Py	Same		16
744514 Same	Sa	me	Same. SE wall of Qtz vein	Strong shr + Sil-Ser (bleached), Hm+Lm	1-7% dissem. Pv cubes	Same		29
744515 Same	Sa	me	Same, NW wall of Qtz vein	Same, more Chl-Sil, weaker Ser, Hm+Lm	Traces Pv	Same		19
744516 Same	Sa	me	Same, 15 m NE, on strike ?	Shd fine grained sil volcanic	Barren	Same		10
744517 Same	Sa	me	Same, 3 m NW of 744516	Weak shd felsic intrusive	Barren	Same		12
744518 Same	Sa	me	Same, 3.5 m SW of 744510-513	Shd Qtz diorite. Chl-Ser-Sil-Lm	Traces to 1% Pv	Same		17
744519 GPS s	signal too	weak	IP M-21, 47+18 N, 2+33 W	< 0.5 m weakly shd, Ser-Sil	Barren	Shr at Az. 055		10
744520 GPS s	signal too	weak	IP M-21, 46+90 N, 2+44 W	> 0.5 m Weak-Moder Shr, Sil-Ser-Chl	Barren	Same		11
744521	451456	551385	0 near 44+30 N, 2+35 W	25 cm-thick Qtz+Chl vein	Barren	Vein at Az. 314, dip vertical		10
744521	451456	551385	0 near 44+30 N, 2+35 W	25 cm-thick Qtz+Chl vein	Barren	Vein at Az. 314, dip vertical		10

APPENDIX F

SUMMARY OF WORK PERFORMED

Summary of Work Performed

Work	Units
------	-------

	Strip/wash/channel					Total Credit
						to Claim
Claim #	Trench #	Cost	Hole #	metres	Cost	
1205082	Trench A	7570	MUD08-39	47	7114	\$24,371
			MUD08-40	64	9687	
1204947	Trench B	7566	MUD08-31	71	10747	\$107,155
	Trench C	7566	MUD08-32	62	9384	
	Trench No 7	7566	MUD08-33	56	8476	
	Trench 6Ex	7566	MUD08-34	50	7568	
			MUD08-35	50	7568	
			MUD08-36	116	17558	
			MUD08-42	103	15590	
1204950	Trench E	7566				\$15,132
	Trench F	7566				
3011485			MUD08-37	137	20736	\$59,030
			MUD08-38	149	22553	
			MUD08-41	104	15741	
Total	7 trenches	\$52966		1,009m	\$152722	\$205,688

Total Drilling Costs: \$152,722 for 1,009m; average cost/m \$151.36 Total Stripping, washing, channel sampling, mapping costs: \$52,966 for 7 trenches, average \$7566 per trench

Trenching, Washing, Sampling Labour Richard Cote Aug 20 to Aug 22, 2008, 3 days trenching, hand stripping Aug 25 to Aug 29, 2008, 5 days trenching, hand stripping, washing Sep 1 to Sep 6, 2008, 6 days outcrop washing Sep 8 to Sep 9, 2008, 2 days channel sampling

Cote Enterprises (Robert Cote)

Aug 20 to Aug 21, 2008, 2 days trenching, hand stripping Aug 25 to Aug 29, 2008, 5 days trenching, hand stripping, washing Sep 1 to Sep 4, 2008, 4 outcrop washing Sep 5, 2008, 1 day channel sampling Sep 8 to Sep 9, 2008 2 days channel sampling

Total 30 man days

Pumps, hoses and washing equipment, rock saw rentals 12 days @ \$200

ATV rentals 26 days @ \$20 Mileage costs by trenching crew total 1,800km @ \$0.50

Machine Costs Marc's Backhoe Service, Jellicoe, Ontario August 25 10 hrs August 26 10 hrs August 27 10 hrs Aug 28 10 hrs August 29 10 hours Sep 1 8 hrs Sept 2 10 hrs Sept 3 9 hrs Sep 5 2 hrs

Total 79 hrs @ \$115 (9085)

Mike Koziol July 24 1 day geology August 14 to 15, 2 days geology August 27, 1 day geology Sept 1 to Sept 4, 4 days geology

Richard Lumb September 1 to 11 (11 days) September 18, 1 day geology September 21, 1 day geology

Total 21 man days

Drilling Supervision

Mike Koziol Sept 24, 1 day spot holes, geology Oct 1, 1 day spot holes Oct 9, 1 day supervision Oct 14, 15, 2 days supervision Oct 27, 1 day core logging Oct 29, 30, 2 days geology

Richard Lumb Oct 5 to Oct 20, 16 days core logging, drill supervision

Total Supervision 24 man days

Moving core for re-examination prior to new drilling Richard Cote

September 10 to 13, 3 days

Robert Cote September 10 to 13, 3 days Mileage charged to moving core 420km @ \$0.50

Robert Cote Oct 5 to 9, core handling, cutting, 3.5 days

Richard Cote Oct 15, 18, 24, 25, 30, core cutting and handling, 4.5 days

Total 14 man days core cutting, handling

5512525N	50E		MUD08-23	ving 2005 S	450650E
gend Diorite Mafic Unit Quartz Quartz Clay-rich Unit strongly sheared chloritic alteration Strongly Deformed Unit Channel Sample with sample number prefixed by 744 Shearing					
Mud Lake Property 2008 Trenching Trench "A" September 25, 2008 Mapped by: Richard Lumb Map 3	NAD 83, UTM Zone 16	5512550N	5512575N	512600N	450675E

-390.0 Elev 4953 30.0 Elev 4953 0.0 Elev 495	-449550.0 E -5512710.0 N -449540.0 E	-5512700.0 N -449570.0 E -449560.0 E
	Mud Lake Lithology Legend	Mud Lake Gold Legend [0.00 , 1.00] [1.00 , 3.00]
	1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist 10 - Quartz Vein 10a - Quartz-Carbonate Vein	[3.00 , 10.00] [10.0 , 100.0] [100 , 500]
	10ab - Quartz-Carbonate-Chlorite Vein 10ac - Quartz-Carbonate-Tourmaline Vein 10b - Quartz-Chlorite Vein 11 - Schist	Mud Lake Vein Legend
360.0 Elev	11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite 1a - Tholeiitic Basalt	[30.0 , 60.0]
	1a\$ - Mafic Schist 2 - Intermediate Volcanic 2a - Andesite 3 - Felsic Volcanic	
	5 - Sediment 5a - Clastic Sediment 5ab - Sandstone	
	5ac - Siltstone 5ad - Mudstone 5ae - Argillite 5bc - Chert	
330.0 Elev	5bda - Sulphide Iron Formation 5bdc - Oxide Iron Formation 5be - Massive Sulphides * * * * * * 5bf - Semi-massive Sulphides	
	6 - Mafic Intrusive 6\$ - Schistose Gabbro 6a - Melanogabbro/Quartz-eye Mafic 6a\$ - Sheared Melanogabbro	
	6b - Gabbro 6d - Leucogabbro 6d\$ - Sheared Leucogabbro 7 - Intermediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite	
	7b - Diorite 7b\$ - Schistose Diorite 7b\$ - Quartz Diorite 7c - Monzonite 7d - Trondjemite	
-290.0 Elev	7e - Tonalite 8 - Felsic Intrusive 14 - Diabase 8a - Aplite + + + + + 8c - Granite 8e - Pegmatite	
-280.0 Elev	FZ - Fault Zone Fz - Fault Zone OB - Overburden Ob - Overburden	
—270.0 Elev Ш 0.0 6644 674 674 674 674 674 674 674 674 67	-449540.0 E 	-449560.0 E

49000.0 F	5512670.0 M		-449670.0 E-	449680.0 Elev 5512660.0 Elev
	2			2
				380.0 Elev—
				370.0 Elev—
				360.0 Elev—
				350.0 Elev—
				340.0 Elev—
				320.0 Elev—
				310.0 Elev
				300.0 Elev—
				200.0 Elov
	Sectio	n MUD08-31		
n Azin	nuth: 110			
:250	Date: 30/1	1/08 S	ection Width: 25	280.0 Elev—
		Map 7		
1106EO O E	-++900000 E			– 4496880.0 5512660.0 Elev– 57126800.0 Elev–

-390.0 Elev 4953 30.0 Elev 4953 0.0 Elev 495	-449550.0 E -5512710.0 N -449540.0 E	-5512700.0 N -449570.0 E -449560.0 E
	Mud Lake Lithology Legend	Mud Lake Gold Legend [0.00 , 1.00] [1.00 , 3.00]
	1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist 10 - Quartz Vein 10a - Quartz-Carbonate Vein	[3.00 , 10.00] [10.0 , 100.0] [100 , 500]
	10ab - Quartz-Carbonate-Chlorite Vein 10ac - Quartz-Carbonate-Tourmaline Vein 10b - Quartz-Chlorite Vein 11 - Schist	Mud Lake Vein Legend
360.0 Elev	11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite 1a - Tholeiitic Basalt	[30.0 , 60.0]
	1a\$ - Mafic Schist 2 - Intermediate Volcanic 2a - Andesite 3 - Felsic Volcanic	
	5 - Sediment 5a - Clastic Sediment 5ab - Sandstone	
	5ac - Siltstone 5ad - Mudstone 5ae - Argillite 5bc - Chert	
330.0 Elev	5bda - Sulphide Iron Formation 5bdc - Oxide Iron Formation 5be - Massive Sulphides * * * * * * 5bf - Semi-massive Sulphides	
	6 - Mafic Intrusive 6\$ - Schistose Gabbro 6a - Melanogabbro/Quartz-eye Mafic 6a\$ - Sheared Melanogabbro	
	6b - Gabbro 6d - Leucogabbro 6d\$ - Sheared Leucogabbro 7 - Intermediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite	
	7b - Diorite 7b\$ - Schistose Diorite 7b\$ - Quartz Diorite 7c - Monzonite 7d - Trondjemite	
-290.0 Elev	7e - Tonalite 8 - Felsic Intrusive 14 - Diabase 8a - Aplite + + + + + 8c - Granite 8e - Pegmatite	
-280.0 Elev	FZ - Fault Zone Fz - Fault Zone OB - Overburden Ob - Overburden	
—270.0 Elev Ш 0.0 6644 674 674 674 674 674 674 674 674 67	-449540.0 E 	-449560.0 E

+	<u> </u>	44		44	44	390.0 Elev
9000.0	12670.	9660.0		9670.0	9680.0	12660.
Г		m		m	m	Z
						370.0 Elev
						360.0 Elev
						250.0 Elov
						310.0 Elev—
						300.0 Elev
_						230.0 EIBV—
		Section N	UD08-32			
ח Azin	nuth: 110					
:250		Date: 30/11/04		tion Width 25		280.0 Elev—
00		N /				
		IVIap	00			
	_ Z					270.0 Elev—
	2670.0	360.0 E		670.0 E	380.0 E	2660.0
9077	5512	-4496		449(-4496	-551

-390.0 Elev 4953 30.0 Elev 4953 0.0 Elev 495	-449550.0 E -5512710.0 N -449540.0 E	-5512700.0 N -449570.0 E -449560.0 E
	Mud Lake Lithology Legend	Mud Lake Gold Legend [0.00 , 1.00] [1.00 , 3.00]
	1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist 10 - Quartz Vein 10a - Quartz-Carbonate Vein	[3.00 , 10.00] [10.0 , 100.0] [100 , 500]
	10ab - Quartz-Carbonate-Chlorite Vein 10ac - Quartz-Carbonate-Tourmaline Vein 10b - Quartz-Chlorite Vein 11 - Schist	Mud Lake Vein Legend
360.0 Elev	11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite 1a - Tholeiitic Basalt	[30.0 , 60.0]
	1a\$ - Mafic Schist 2 - Intermediate Volcanic 2a - Andesite 3 - Felsic Volcanic	
	5 - Sediment 5a - Clastic Sediment 5ab - Sandstone	
	5ac - Siltstone 5ad - Mudstone 5ae - Argillite 5bc - Chert	
330.0 Elev	5bda - Sulphide Iron Formation 5bdc - Oxide Iron Formation 5be - Massive Sulphides * * * * * * 5bf - Semi-massive Sulphides	
	6 - Mafic Intrusive 6\$ - Schistose Gabbro 6a - Melanogabbro/Quartz-eye Mafic 6a\$ - Sheared Melanogabbro	
	6b - Gabbro 6d - Leucogabbro 6d\$ - Sheared Leucogabbro 7 - Intermediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite	
	7b - Diorite 7b\$ - Schistose Diorite 7b\$ - Quartz Diorite 7c - Monzonite 7d - Trondjemite	
-290.0 Elev	7e - Tonalite 8 - Felsic Intrusive 14 - Diabase 8a - Aplite + + + + + 8c - Granite 8e - Pegmatite	
-280.0 Elev	FZ - Fault Zone Fz - Fault Zone OB - Overburden Ob - Overburden	
—270.0 Elev Ш 0.0 6644 674 674 674 674 674 674 674 674 67	-449540.0 E 	-449560.0 E

449000.0 E	5512670.0 N	-449660.0 E	-449670.0 E	-449680.0 E	5-390.0 Elev 512660.0 N
					——380.0 Elev—
					——360.0 Elev—
					350.0 Elev
					——340.0 Elev—
					330.0 Elev
					——320.0 Elev—
					——310.0 Elev—
					300.0 Elev
					——290.0 Elev—
		Section MUE	008-33		
n Azin	nuth: 110				
:250		Date: 30/11/08	Section Width: 25		200.0 EI6V-
		Map 9	1		
	-				––––––––––––––––––––––––––––––––––––––
4406E0 0 E	5512670.0 N	-449660.0 E-	-449670.0 E-	-449680.0 E-	5512660.0 N

4 494900	5511980.	449500.0	-5511970.		5511960.	-449510.0	5511950.	
370.0 Ele	0 Z	m	0 Z		o Z	m	0 Z	
	Mud Lake Lithology Legend 1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist		Mud Lake [0. [1. [3. [10	e Gold Legend 00 , 1.00] 00 , 3.00] 00 , 10.00] 0.0 , 100.0]	I			
	10 - Quartz Vein		[10	00 , 500]				
—350.0 Elev——	10a - Quartz-Carbonate Vein 10ab - Quartz-Carbonate-Chlorite V 10ac - Quartz-Carbonate-Tourmalin 10b - Quartz-Chlorite Vein 11 - Schist 11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite 1a - Tholeiitic Basalt 1a\\$ - Mafic Schist	′ein e	Mud Lake [1.0 [15 [30 60	e Vein Legend 0 , 15.0] 5.0 , 30.0] 9.0 , 60.0] 9.0 , 100.0]				
—340.0 Elev——	2 - Internediate Volcanic 2a - Andesite 3 - Felsic Volcanic 5 - Sediment 5a - Clastic Sediment 5ab - Sandstone 5ac - Siltstone						0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,005 0,005 0,005 0,005
—330.0 Elev——	 5ad - Mudstone 5ae - Argillite 5bc - Chert 5bda - Sulphide Iron Formation 5bdc - Oxide Iron Formation 5be - Massive Sulphides × × × 5bf - Semi-massive Sulphides 					0.00	3 ++++++++++++++++++++++++++++++++++++	
—320.0 Elev——	 6 - Maric Intrusive 6\$ - Schistose Gabbro 6a - Melanogabbro/Quartz-eye Mafi 6a\$ - Sheared Melanogabbro 6b - Gabbro 6d - Leucogabbro 6d\$ - Sheared Leucogabbro 7 - Intermediate Intrusive 	С			++++		+ + + + + + + + + + + + + + + + + + +	
—310.0 Elev——	7a - Mafic Syenite 7aa - Granodiorite 7b - Diorite 7b\$ - Schistose Diorite 7b\$ - Schistose Diorite 7c - Monzonite 7d - Trondjemite 7e - Tonalite				6			
	14 - Diabase 8a - Aplite * + * + 8c - Granite 8e - Pegmatite FZ - Fault Zone Fz - Fault Zone OB - Overburden							
-33 94 90 00EN	Ob - Overburden		-5511970.0 N		5511960.0 N		5511950.0 N	

449499000 日子 	-449500.0 E	-5511970.0 N	5511960.0 N	-4495100 F	5511940.0 N	5511930.0 N 449520.0 E	-5511920.0 N -449530.0 E	-5511910.0 N	5511900.0 N -449540.0 E	—370.0 Elev—
	Mud Lake Lithology Legend	Mud Lake Gold Leger [0.00 , 1.00] [1.00 , 3.00]	nd							
—360.0 Elev——	1 - Malic Volcanic 1\$ - Mafic Volcanic Schist 10 - Quartz Vein 10a - Quartz-Carbonate Vein 10ab - Quartz-Carbonate-Chlorite Vein	[3.00 , 10.00] [10.0 , 100.0] [100 , 500] Mud Lake Vein Legen	d							—360.0 Elev—
—350.0 Elev——	10ac - Quartz-Carbonate-Tourmaline 10b - Quartz-Chlorite Vein 11 - Schist 11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite	[1.0 , 15.0] [15.0 , 30.0] [30.0 , 60.0] [60.0 , 100.0]					μ			—350.0 Elev—
	1a - Tholeiitic Basalt 1a\$ - Mafic Schist 2 - Intermediate Volcanic 2a - Andesite 3 - Felsic Volcanic 5 - Sediment						MUD08-3			—340.0 Elev—
	5a - Clastic Sediment 5ab - Sandstone 5ac - Siltstone 5ad - Mudstone 5ae - Argillite					+ 20 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2				
—330.0 Elev——	5bc - Chert 5bda - Sulphide Iron Formation 5bdc - Oxide Iron Formation 5be - Massive Sulphides * x * x 5bf - Semi-massive Sulphides				0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0					—330.0 Elev—
—320.0 Elev——	 6 - Mafic Intrusive 6\$ - Schistose Gabbro 6a - Melanogabbro/Quartz-eye Mafic 6a\$ - Sheared Melanogabbro 6b - Gabbro 6d - Leucogabbro 6d\$ - Sheared Leucogabbro 				0.0035 + 0.005 + 0.005					—320.0 Elev—
—310.0 Elev——	7 - Internediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite $^+$ + $^+$ 7b - Diorite $^+$ + $^+$ 7b - Diorite $^+$ + $^+$ 7b\$ - Schistose Diorite $^+$ + $^+$ 7bq - Quartz Diorite 7c - Monzonite		0.0025	6	S S					—310.0 Elev—
—300.0 Elev——	7d - Trondjemite 7e - Tonalite 8 - Felsic Intrusive 14 - Diabase 8a - Aplite									—300.0 Elev—
—290.0 Elev—	8e - Pegmatite FZ - Fault Zone Fz - Fault Zone OB - Overburden Ob - Overburden				0	1:250 3 5 8 10 13 15	18 Section Azi	Section MUD08-3 muth: 150 Date: 30/11/08	5 Section Width: 25	—290.0 Elev—
5 5948000EN	-5511980.0 N 449500.0 E	-5511970.0 N	-5511960.0 N		5511940.0 N	-449520.0 E -5511930.0 N	-449530.0 E -5511920.0 N	551910.0 N	449540.0 E 5511900.0 N	

—370.0 Elev——	-5512190.0 N -449810.0 E -5512200.0 N	-5512170.0 N -5512180.0 N -449820.0 E	-449830.0 E	-5512140.0 N -5512150.0 N	56925000EN	-5512110.0 N -449860.0 E -5512120.0 N	-5512090.0 N -449870.0 E -5512100.0 N	-449880.0 E 	-5512070.0 N	5512060.0 N 449890.0 E	-5512040.0 N -5512050.0 N
—360.0 Elev——	Mud Lake Gold Legend [0.00 , 1.00]				g						
—350.0 Elev——	[1.00 , 3.00] [3.00 , 10.00] [10.0 , 100.0] [100 , 500]										
—340.0 Elev——	Mud Lake Vein Legend [1.0 , 15.0] [15.0 , 30.0] [30.0 , 60.0]			+ + + + + + + + + + + + + + + + + + +							Mud Lake Lithology Legend
—330.0 Elev——	[60.0 , 100.0]										1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist 10 - Quartz Vein 10a - Quartz-Carbonate Vein 10ab - Quartz-Carbonate-Chlorite V
—310.0 Elev——				* * * S							10ac - Quartz-Carbonate-Tourmalir 10b - Quartz-Chlorite Vein 11 - Schist 11b - Sericite Schist 11d - Carbonate Schist
—300.0 Elev——		0.00 ⁰ .04 + + + + + + + + + + + + + + + + + + +									13 - Mylonite 1a - Tholeiitic Basalt 1a\$ - Mafic Schist 2 - Intermediate Volcanic 2a - Andesite 3 - Felsic Volcanic 5 - Sediment 5a - Clastic Sediment 5ab - Sandstone
—290.0 Elev——			2								5ac - Siltstone 5ad - Mudstone 5ae - Argillite 5bc - Chert 5bda - Sulphide Iron Formation 5bdc - Oxide Iron Formation 5be - Massive Sulphides × × × × × × × 5bf - Semi-massive Sulphides 6 - Mafic Intrusive 6 - Schistose Gabbro
—270.0 Elev——											6a - Melanogabbro/Quartz-eye Maf 6a\$ - Sheared Melanogabbro 6b - Gabbro 6d - Leucogabbro 6d\$ - Sheared Leucogabbro 7 - Intermediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite
—250.0 Elev——											7b - Dionte 7b - Dionte 7b\$ - Schistose Diorite 7b\$ - Schistose Diorite 7b\$ - Schistose Diorite 7b\$ - Quartz Diorite 7c - Monzonite 7d - Trondjemite 7e - Tonalite
—240.0 Elev——											8 - Felsic Intrusive 14 - Diabase 8a - Aplite + + + + + + + + + * 8c - Granite 8e - Pegmatite
—230.0 Elev——											Fz - Fault Zone OB - Overburden Ob - Overburden
—220.0 Elev——											Section M
—210.0 Elev——								0	1:250 5 10 15	20 25	Section Azimuth: 150 Scale 1:250 Date: 30/11/0
—190.0 Elev——											Map
	-5512200.0 N -449810.0 E -5512190.0 N	-449820.0 E -5512180.0 N -5512180.0 N	-449830.0 E -5512160.0 N	-5512150.0 N -449840.0 E -5512140.0 N	-88985000EN	-5512120.0 N -449860.0 E -5512110.0 N	-5512100.0 N -449870.0 E -5512090.0 N	-5512080.0 N -449880.0 E	-5512070.0 N	-449890.0 E -5512060.0 N	-5512050.0 N -449900.0 E -5512040.0 N

—370.0 Elev———	449810.0 E 5512200.0 N	-5512190.0 N	-5512180.0 N -449820.0 E	-5512170.0 N	-449830.0 E	-5512160.0 N		-449840.0 E -5512150.0 N	-5512140.0 N	- 56925000(EN	-5512120.0 N	-5512110.0 N
—360.0 Elev———	Mud La	ke Gold Legend		7								
—350.0 Elev———		[0.00 , 1.00] [1.00 , 3.00] [3.00 , 10.00] [10.0 , 100.0] [100 , 500]								MUD08-37		
—340.0 Elev———	Mud Lake	e Vein Legend I.0 , 15.0] I5.0 , 30.0]							+ + + + + + + + + + + + + + + + + + +			
—330.0 Elev———		30.0 , 60.0] 60.0 , 100.0]							+3			
—320.0 Elev———							0 +	+ + + +				
—310.0 Elev———						+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +					
—300.0 Elev———					***							
—290.0 Elev——				0.0055 +++++++++++++++++++++++++++++++++	×							
—280.0 Elev———			+	1								
—270.0 Elev———			70 0									++++++++++++++++++++++++++++++++++++++
-260.0 Elev	+++++++++++++++++++++++++++++++++++++++											+ + + + + + + + + + + + + + + + + + +
-250.0 Elev	70										+++++++++++++++++++++++++++++++++++++++	
										+++++++++++++++++++++++++++++++++++++++	+	
—230.0 Elev———										+++++++++++++++++++++++++++++++++++++++		
—220.0 Elev———												
—210.0 Elev———												
—200.0 Elev———												
—190.0 Elev———	7	7				7		7	7	7	7	7
	-5512200.0 l 449810.0 E	-5512190.0 h	-449820.0 E	-5512170.0 N	-449830.0 E-	-5512160.0 h		-5512150.0 -449840.0 E-	-5512140.0 l	-44925000E	-5512120.0 I	-449860.0 E -5512110.0 I

5512660.0 0.0 2 -360.0 Elev	5512650.0 N		5512630.0 N	5512620.0 N	-5512610.0 N	5512600.0 N	-5512590.0 N	-450620.0 E	-5512580.0 N	-5512570.0 N	5512560.0 N	-5512550.0 N	-5512540.0 N	-450630.0 E -5512530.0 N	-5512510.0 N -5512520.0 N	5512500.0 Z
	Mud Lake Lithology Legend			Mud Lake Gold Legend [0.00 , 1.00] [1.00 , 3.00]												
350.0 Elev	1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist 10 - Quartz Vein 10a - Quartz-Carbonate Ve 10ab - Quartz-Carbonate-C	in blorite Vein		[3.00 , 10.00] [10.0 , 100.0] [100 , 500]												350.0 Elev
	10ac - Quartz-Carbonate-T	ourmaline Vein		[1.0 , 15.0]								8-39				
	10b - Quartz-Chlorite Vein			[15.0 , 30.0]												340.0 Elev—
330.0 Elev	11 - Schist 11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite 1a - Tholeiitic Basalt 1a\$ - Mafic Schist 2 - Intermediate Volcanic			[30.0 , 60.0]						0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0						330.0 Elev
	2a - Andesite										68					
	3 - Felsic Volcanic									++						
-320.0 Elev	5a - Clastic Sediment															320.0 Elev—
	5ab - Sandstone 5ac - Siltstone 5ad - Mudstone 5ae - Argillite								+	+++++++++++++++++++++++++++++++++++++++						
-310.0 Elev	5bc - Chert								+++++++++++++++++++++++++++++++++++++++							310.0 Elev
	5bda - Sulphide Iron Forma 5bdc - Oxide Iron Formation 5be - Massive Sulphides × × × × × 5bf - Semi-massive Sulphid 6 - Mafic Intrusive	ition n les						++								
	6\$ - Schistose Gabbro 6a - Melanogabbro/Quartz- 6a\$ - Sheared Melanogabb 6b - Gabbro 6d - Leucogabbro	eye Mafic ro														290.0 Elev
	6d\$ - Sheared Leucogabbro 7 - Intermediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite	0														
-280.0 Elev	7b\$ - Schistose Diorite 7bq - Quartz Diorite 7c - Monzonite 7d - Trondjemite 7e - Tonalite															280.0 Elev
-270.0 Elev	8 - Felsic Intrusive 14 - Diabase 8a - Aplite +++++ 8c - Granite															270.0 Elev—
	8e - Pegmatite													Section MUD	08-39	
-260.0 Elev	FZ - Fault Zone Fz - Fault Zone OB - Overburden												Section Azimu	uth: 170		260.0 Elev—
	Ob - Overburden									Ŏ	1:2: 3 5 8 10	50 0 13 15 18 20	Scale 1:250	Date: 30/11/08	Section Width: 50	
										E E						1 1
-250.0 Elev													_L	Map 14	1	250.0 Elev-
5512660.0 N	-5512650.0 N		-5512630.0 N	-5512620.0 N		-5512600.0 N		-450620.0 E	-5512580.0 N	-5512570.0 N-	-5512560.0 N	-5512550.0 N	-5512540.0 N	-5512530.0 N	-5512520.0 N	-5512500.0 N

55 12660 0 2 360.0 Elev	5512650.0 N		5512630.0 N	5512620.0 N	-5512610.0 N	-5512600.0 N	-450620.0 E -5512590.0 N	-5512580.0 N	-5512570.0 N	-5512560.0 N	-5512550.0 N	5512540.0 N	-450630.0 E 5512530.0 N	-5512510.0 N -5512520.0 N	5512500.0 Z 360.0 Elev
	Mud Lake Lithology Legend			Mud Lake Gold Legend [0.00 , 1.00] [1.00 , 3.00]											
350.0 Elev	1 - Mafic Volcanic 1\$ - Mafic Volcanic Schis 10 - Quartz Vein 10a - Quartz-Carbonate 10ab - Quartz Carbonate	st Vein		[3.00 , 10.00] [10.0 , 100.0] [100 , 500]											350.0 Elev
	10ac - Quartz-Carbonate	-Tourmaline Veil	in	[] [] [] [] [] [] [] [] [] [] [] [] [] [
340.0 Elev	10b - Quartz-Chlorite Ve 11 - Schist 11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite	'n		[15.0 , 30.0] [30.0 , 60.0] [60.0 , 100.0]					8-40						340.0 Elev
-330.0 Elev	1a - Tholeiitic Basalt 1a\$ - Mafic Schist 2 - Intermediate Volcanic 2a - Andesite 3 - Felsic Volcanic 5 - Sediment	:						0. ₀₀₆	OGNW OGN + + + + + + + + + + + + + + + + + + +						330.0 Elev
320.0 Elev	5a - Clastic Sediment 5ab - Sandstone 5ac - Siltstone 5ad - Mudstone 5ae - Argillite						0,000 0,007 0,077 0,077	* * * * * * * * * * * * * * * * * * *							
-300.0 Elev	5bc - Chert 5bda - Sulphide Iron For 5bdc - Oxide Iron Forma 5be - Massive Sulphides × × × × × 5bf - Semi-massive Sulp 6 - Mafic Intrusive	mation tion hides					0.006 + + + + + + + + + + + + + + + + + + +	108 108 100 100 100 100 100 100 100 100							
300.0 Elev	6\$ - Schistose Gabbro 6a - Melanogabbro/Quar 6a\$ - Sheared Melanoga 6b - Gabbro 6d - Leucogabbro	tz-eye Mafic bbro					+ + + + + + + + + + + + + + + + + + + +								300.0 EIEV
-290.0 Elev	6d\$ - Sheared Leucogab 7 - Intermediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite	bro					700 70								290.0 Elev—
-280.0 Elev	* + * + * + * 7b\$ - Schistose Diorite * + * + * + * 7bq - Quartz Diorite 7c - Monzonite 7d - Trondjemite 7e - Tonalite 7e - Tonalite					+ + + + + + + + + + + + + + + + + + +									280.0 Elev
-270.0 Elev	8 - Felsic Intrusive 14 - Diabase 8a - Aplite +++++ 8c - Granite 8e - Pegmatite														270.0 Elev—
-260.0 Elev	FZ - Fault Zone											_	Section MUD	J&-4U	260.0 Elev—
	OB - Overburden Ob - Overburden								0	1:2 3 5 8 10	250 0 13 15 18 20	Section Azimut Scale 1:250	h: 170 Date: 30/11/08	Section Width: 50	
-250.0 Elev												_	Map 15	•	250.0 Elev—
5512660.0 N	5512650.0 N	-45069699.0 EN	5512630.0 N	5512620.0 N	5512610.0 N	5512600.0 N	5512590.0 N	5512580.0 N	5512570.0 N	5512560.0 N	5512550.0 N	5512540.0 N	5512530.0 N -450630.0 E	5512520.0 N	5512500.0 N

	-449810.0 E -5512200.0 N	-5512190.0 N	-5512180.0 N -449820.0 E	-5512170.0 N	-5512160.0 N	-5512150.0 N		88925000EN	-5512120.0 N	-5512110.0 N -449860.0 E	-449870.0 E 5512100.0 N	-5512090.0 N	-449880.0 E 5512080.0 N	-5512070.0 N		-5512050.0 N	- 5512040.0 N - 449900.0 E
—360.0 Elev——		Mud Lake Gold Legend															
—350.0 Elev——		[0.00 , 1.00] [1.00 , 3.00] [3.00 , 10.00] [10.0 , 100.0] [100 , 500]													D08-41		
340.0 Elev		Mud Lake Vein Legend [1.0 , 15.0] [15.0 , 30.0]													UNU (1) (1) (1) (1) (1) (1) (1) (1)		
—330.0 Elev———		[30.0 , 60.0]														+ + + + + + + + + + + + + + + + + + +	
		Mud Lake Lithology Legend 1 - Mafic Volcanic 1\$ - Mafic Volcanic Schist														0: ^{1,3} 15	+ + + + + + + + + + + + + + + + + + +
—310.0 Elev———		10 - Quartz Vein 10a - Quartz-Carbonate Vein 10ab - Quartz-Carbonate-Chlori 10ac - Quartz-Carbonate-Tourm 10b - Quartz-Chlorite Vein	ite Vein naline Vein													0.0025 0.0025	G ++++++++++++++++++++++++++++++++++++
—300.0 Elev——		11 - Schist 11b - Sericite Schist 11d - Carbonate Schist 13 - Mylonite 1a - Tholeiitic Basalt															
—290.0 Elev———		1a\$ - Mafic Schist 2 - Intermediate Volcanic 2a - Andesite 3 - Felsic Volcanic 5 - Sediment															
—280.0 Elev——		5a - Clastic Sediment 5ab - Sandstone 5ac - Siltstone 5ad - Mudstone 5ae - Argillite															
-270.0 Elev		5bc - Chert 5bda - Sulphide Iron Formation 5bdc - Oxide Iron Formation 5be - Massive Sulphides × × × × × × × × 5bf - Semi-massive Sulphides															
—260.0 Elev——		6 - Mafic Intrusive 6\$ - Schistose Gabbro 6a - Melanogabbro/Quartz-eye M 6a\$ - Sheared Melanogabbro 6b - Gabbro	Mafic	-													
250.0 Elev		6d - Leucogabbro 6d\$ - Sheared Leucogabbro 7 - Intermediate Intrusive 7a - Mafic Syenite 7aa - Granodiorite															
—240.0 Elev——		* + + + + + + + + + + + + + + + + + + +															
-230.0 Elev		7e - Tonalite 8 - Felsic Intrusive 14 - Diabase 8a - Aplite + + + + + + + 8c - Granite															
—220.0 Elev———		8e - Pegmatite FZ - Fault Zone Fz - Fault Zone OB - Overburden		-													
-210.0 Elev		Ob - Overburden											0 5	1:250 10 15	20 25	Sec	Section M
—200.0 Elev——																Sca	le 1:250 Date: 30/11/0 Map
—190.0 Elev——	5512200.0 N 449810.0 E	5512190.0 N	449820.0 E 5512180.0 N	5512170.0 N	449830.0 E 5512160.0 N	5512150.0 N	449840.0 E 5512140.0 N	4925000EN	512120.0 N	49860.0 E 512110.0 N	512100.0 N 149870.0 E	512090.0 N	512080.0 N 149880.0 E	512070.0 N	149890.0 E 5512060.0 N	5512050.0 N	49900.0 E 512040.0 N

-390.0 Elev-44 95 30.0 E	449540.0 E	5512710.0 N		-449570.0 E
				Mud Lake Gold Legend [0.00 , 1.00] [1.00 , 3.00] [3.00 , 10.00]
				[10.0 , 100.0] [100 , 500]
		8-42		Mud Lake Vein Legend [1.0 , 15.0] [15.0 , 30.0] [30.0 , 60.0] [60.0 , 100.0]
350.0 Elev		OUUM	B ++++++++++++++++++++++++++++++++++++	
			+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +
-330.0 Elev -320.0 Elev				0.025 0.025
-290.0 Elev				
-280.0 Elev				
—270.0 Elev — ш 0. 00 230 644 4	449540.0 E	5512710.0 N	448000.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-449570.0 E

	- y	•			
	51267	49660	49670	49680	51266
i	0.0 N	0.0 E	.0 E −	0.0 E	0.0 Z
					1
	Mud I	Lake Lithology Legend			
		1 - Mafic Volcanic	; ic Schist		
		10 - Quartz Vein	ic ochist		
		10a - Quartz-Carl	oonate Vein		
		10ab - Quartz-Ca	rbonate-Chlorite Vein		——370.0 Elev—
		10ac - Quartz-Ca	rbonate-Tourmaline Vein		
		11 - Schist			
		11b - Sericite Sch	nist		
		11d - Carbonate	Schist		
		1a - Tholeiitic Bas	salt		
		1a\$ - Mafic Schis	t		
		2 - Intermediate \	/olcanic		
		2a - Andesite	<u>_</u>		
		5 - Sediment			
		5a - Clastic Sedin	nent		
		5ab - Sandstone			
		5ac - Siltstone			
	.=_=.	5ae - Argillite			
	2014/06/2017 1010/2017 2014/2017 1010/2017 1010/2017	5bc - Chert			
	₽	5bda - Sulphide I	ron Formation		
		5be - Massive Su	Iphides		
	× × >	ر <mark>ٽ</mark> × [*] 5bf - Semi-massiv	ve Sulphides		
		6 - Mafic Intrusive)		
		6\$ - Schistose Ga	abbro ro/Quartz-eve Mafic		
		6a\$ - Sheared Me	elanogabbro		
		6b - Gabbro			
		6d - Leucogabbro)		
		7 - Intermediate I	ntrusive		320.0 Elev—
		7a - Mafic Syenite	e		
	+ +	7aa - Granodiorite	e		
	+ +	7b - Diorite	Diorite		
	+++	7bq - Quartz Dior	ite		
		7c - Monzonite			
		7d - Trondjemite			
		8 - Felsic Intrusive	e		
		14 - Diabase			
	+ +	8a - Aplite			
	+ +	8c - Granite			
		FZ - Fault Zone			
		Fz - Fault Zone			
		OB - Overburden			
		Ob - Overburden			290.0 Elev—
	Sectio	n MUD07-01 an	d MUD08-42		
Azir	muth: 110				
050		Date: 20/44/00	Contine Midthe 05		280.0 Elev—
200		Jait. 30/11/08	Section width: 25		
		Map 17			
		ш			270.0 Elev
	350.0 2670.C	<u>360.0</u>	¥70.0	80.01	2660.(
	-449	-449(-4496		-551;