

2104NW8201 63.4114 EMERSON

010

SILICA SAND RESOURCE AT ADAM CREEK ONTARIO

٠

Ł

by

Aaron Jaan Saber, Ph.D., P.Eng.(Ontario),Eng.(Quebec)

Suite 406 800 Eglinton Avenue West Toronto, Ontario M5N 1G1

Tel: (416) 781-4798

31 May 1982

Copyright 1982 A.J.Saber

82/5/31 Silica Sand Resource at Adam Creek Ontario

Author's Note:

,

The Author is a Registered Professional Engineer in Ontario and a Registered Engineer in Quebec and is a Member of the Engineering Institute of Canada.

Page 2

The Author is a graduate of Princeton University (Aerospace and Mechanical Sciences, Ph.D., 1974, M.A., 1971) and the University of Toronto (Mechanical Engineering, B.A.Sc., Honours, 1969).

The Author holds the position of tenured Assistant Professor of Engineering at Concordia University, Montreal, Quebec.

The Author has drawn freely from the following:

- Boyd, B.W. "Silica," Individual review of Canadian minerals industry, Government Publishing Centre, Supply and Services Canada, Hull, Quebec KIA ØS9, 1980.
- Guillet, G.R., "Lignite and Industrial Mineral Resources of the oose River Basin Property of Lignasco Resources Limited," Project G1-7, April 1981.
- 3. Guillet, G.R., "Fossil Fuel Program, Moose River Basin Drilling Project, District of Cochrane," Ontario Geological Survey OFR 5276, 1979.

The samples were prepared on 11 and 12 May 1982, at the Selco, Inc. laboratory, 1173 Roland, Thunder Bay, Ontario. Chemical analyses of the silica content were made at the analytical chemistry laboratory at Concordia University, Montreal, Quebec. •

ABSTRACT

Silica sand recovered in cores from a sonic drill program conducted near Adam Creek in 1982 has a high (up to 98%) silica content with low (less than Ø.12%) iron oxide content. The material is suitable as a raw material for the production of glass. The market for the material is presented. At \$11.80 per tonne, the deposit, estimated at half a billion tonnes, is evaluated at \$5.9 billion. The cost of production is about \$9.00 per tonne. Additional drilling is needed to delineate the extent of the deposit. •

Table of Co

Page 4

42104NW8201 63.4114 EMERSON

Ø10C

Frontispiece. Author's Note. Abstract. Table of Contents.	page	1 2 3 4
1. Introduction - A Silica Sand Resource Project.		5
2. Silica and Silica Sand and Their Use.		7
3. Silica Sand at Adam Creek.		8
4. The Site at Adam Creek.		9
5. Exploration Completed by Lignasco Resources Limi	ted.	1Ø
Appendix A - Drillhole Logs.		11
Appendix B - Visual Observation of Cores.		12
Appendix C - Water Content.	:	13

Tables.

14

1.

Introduction - A Silica Sand Resource Project.

Silica occurs in nature as quartz in a variety of rocks and sediments. However, the value of a deposit depends on its purity and accessibility to markets. Indeed, commercial sources are limited only to those supplies which have very high purity and which can provide the material to a market at a competitive price. Such sources are rare.

Some Canadian suppliers, as of 1978, are listed by Province in Table I. However, these suppliers do not provide all the silica requirements of Canada. In 1980, 1,177,306 metric tonnes of silica sand were imported into Canada (valued at \$17,336,000 or \$14.73 per tonne). This is approximately the same quantity as the domestic Ontario production of 967,000 tonnes (valued at \$9,100,000 or \$9.41 per tonne) over the same period.

Most of the imported silica sand is imported from a sole supplier at Ottawa, Illinois. However, it is reported that the Illinois supply is not maintaining the level of suitability that the market demands. Furthermore, both Ontario and Quebec are experiencing shortages of silica supply, today. This is not only because of the high cost of imports, but also because of the apparent decreased quality of the imported supply. Ontario, alone, consumes more than 1 million tonnes of silica annually. This silica has been valued at \$31 million (i.e., 31 \$/tonne), F.O.B. the user Of this 1 million tonnes, nearly 600,000 tonnes were site. used for glassmaking. Only 230,000 tonnes used for glassmaking were purchased in Ontario, the balance (370,000 tonnes) were purchased from the United States. Indeed, almost 70% of total silica requirements in the provinces of Ontario and Quebec are imported.

A silica sand supply, one that can meet the stringent raw material specifications, appears to be available in the Adam Creek area of northeastern Ontario, on lands that have been licenced for exploration by the Government of Ontario to Lignasco Resources Limited, of Toronto.

During February and March 1982, a sonic drilling program was conducted on a portion of the 92,745 acre tract licenced to Lignasco Resources Limited. The site is located approximately 60 km north of Kapuskasing, Ontario near the Kipling Dam, at Adam Creek. The effort falls under a Joint Venture program with Selco, Inc, Toronto, Canada. Six drill holes were sunk as part of the project. Each drilling operation recovered a relatively undisturbed core about 10 cm diameter. Although all cores show silica sand of various grades and sizes, In that drlling program silica sand of exceptional purity was obtained. The silica sand, of 125 micron to 1 mm in mean size, is found below approximately 60 feet (18 metres) of overburden.

In order to review the competitive nature of the Adam Creek silica sand in the marketplace, attention if focussed here on the existing Ontario supplier, Indusmin Limited. Indusmin Limited quarries a high-grade silica deposit on Badgeley Island in Geogian Bay. The deposit is reported to contain 12.6 million metric tonnes of very pure Precambrian Lorraine quartzite. The primary crushing plant is located about 190 km north of Midland, across Georgian Bay. Midland is approximately 120 km north of Toronto. The Badgely Island operation has a capacity of 1 million tonnes per year, while the Midland plant capacity is half that.

The recoverable silica sand at Adam Creek includes 103,000 tonnes per acre (66 million tonnes per square mile) which appears to be of glass grade purity. The total deposit of glass grade silica sand may exceed half a billion tonnes, over an area of 5000 acres (8 square miles). The value of such a glass grade deposit, at \$11.80 per tonne F.O.B. Adam Creek, is over \$1,200,000 per acre or over \$770,000,000 per square mile.

Supplying the Ontario demand for silica sand that is imported from the United States, approximately 370,000 tonnes per annum, requires a production cost of approximately \$9 per tonne. The profit, then, is 370,000(11.8-9) = \$1,040,000 per annum. The cost of the necessary preliminary work before mining, that is, drilling delineate the deposit, planning including financial to arrangements, and contract definition is approximately \$465,000.

2.

.

Silica and Silica Sand and Their Use.

Silica sand is a naturally occuring silicone dioxide crystal solid appearing as granules, or may be fabriacted by crushing quartzite or sandstone. Depending on the size of the granules and the proportions of "impurities" such as iron oxide, aluminum oxide and oxides of other metals, silica sand has a variety of uses. These uses are listed in Table II. 3. Silica Sand at Adam Creek.

Quartz Sand of high natural purity is located on the Lignasco Resources Limited licence lands. These sands, according to Guillet, G.R., (Reference 2), coming from the Moose River Basin consist predominately of clear, colourless, subgranular grains, in the size range of 8 to 140 mesh.

The area has been drilled and the sands analysed at the Analytical Chemistry Laboratory of Concordia University, Montreal, Quebec. Samples subjected to dry magnetic separation have given analyses as shown in Table III. The high silica content, low iron content and chromium-free nature of the silica sand, coupled with its physical size in the natural state make this medium ideal for glass-making, including the production of fibre-optic grade products. 4. The Site at Adam Creek.

The site of the silica sand deposit is located in the James Bay Lowlands area of Ontario. The site, at Adam Creek, lies approximately 100 km north of Kapuskasing, is serviced by an all-weather road, lies approximately 40 km west of the Ontario Northland Railway, and is about 100 km from the Trans-Canada Highway and the Canadian National Railway through Kapuskasing. The site is serviced by Ontario Hydro, since the Kipling Generating Station is surrounded by the licence area.

The area falls within the Pre-Cambrian escarpment, and largely within the limits of the District of Cochrane. The area is drained by the Missinaibi, Mattagami and Opasatika rivers, which converge to the north-east to form the Moose River.

The area was studied in a 1978 drilling program conducted by the Ontario Geological Survey, in a program involving a total of eight drillholes. Six of the 1978 drill holes lie in an east-west line, at 8 to 14 km spacing. The two remaining drillholes lies approximately 5 to 10 km north of the east-west baseline. In all, the drillingwas 1177 metres (3862 feet), with the deepest hole drilled to 189 metres (620 feet).

Only drill hole 78-07, located in Hecla Township, to the west of the Pike River, failed to locate a silica sand deposit.

The most accessable deposit formation, in terms of transporation, lies in Emerson, Kipling and Sanborn Townships.

,

5. Exploration Completed by Lignasco Resources Limited.

Lignasco Resources Limited has conducted a winter drilling program to detail the deposits observed in the 1978 drilling program conducted by the Ontario Geological Survey. The program centres on drill holes located in Sanborn, Kipling and Emerson Townships.

The drilling was done using a sonic drill. This drill provides a continuous lozenge core approximately 10 cm diameter. This core is relatively undisturbed and provides samples of material sufficiently large that they can be analysed in detail.

The core for one of the holes, J1-2, located in the eastern half of Kipling Township, has been examined by this author and is discussed in the appendices.

The drilling program is valuated at approximately half a million dollars.

Appendix A - Drillhole Logs.

.

Drill logs have been prepared by H. Verma, the site geologist for the drilling program. These logs are tabulated in Table V.

Appendix B - Visual Observation of Cores.

The core from drillhole J1-2, located in the eastern half of Kipling Township has been examined visually. The locations along the core of the samplings is given in Table IV.

The core is essentially undifferentiated until 55 feet (17 metres), where the quaternary/cretaceous boundary is intersected. The demarcation is determined by the chemical activity of the calcareous content of the core down to the boundary: a drop of acid causes chemical reaction to occur until suddenly, at 55 feet, the activity ceases. The core examination begins at this point.

The core contains various sizes and grades of silica, powdered to a greater or lesser degree by kaolin, china clay. For example, at 60 feet (18 metres), a view under a 16X magnifying lens reveals apparently clear, colourless silica sand crystals coated in a light-grey, whitish powder. There are a few black or brown coloured particles, but these are few and far between.

Observing the sample under a 20X glass reveals a few brown-coloured units dispersed in a granular matrix of $\emptyset.5$ to 1 mm sized particles.

A discussion of the structure of the samples is given in Table VI. Appendix C - Water Content.

The water content of the core is estimated using a sample from the 58 foot depth location. A portion of sample designation J1-2-1, with a total mass of about 70 grams, was heated in an electric oven at 150 C for about 1 hour. The mass decreased to 61 grams, indicating that the water content of the core is about 12.86 per cent.

TABLE I

Some 1978 Canadian Suppliers of Silica

- Newfoundland Newfoundland Enterprises Limited, subsidiary of Armand Sicotte & Sons Limited; at Villa Marie
- Quebec Indusmin Limited; near Saint-Canut and near Saint-Donat

Union Carbide Canada Mining Ltd; near Melocheville

Baskatong Quartz products Ltd; near La Galette

Montreal Siica Mines Ltd; near Ormstown

Ontario Indusmin Limited; on Badgeley Island

Manitoba Steel Brothers Canada Limited; at Black Island

Saskatchewan Hudson Bay Mining and Smelting Co Limited; in the vicinity of Flin Flon

Alberta Sil Silica Ltd; at Bruderheim

British Columbia Pacifica Silica Limited; near Oliver. 82/5/31

the

in

TABLE II

Uses of Silica Sand

Glass: High-purity, naturally-occurring sand or material produced by crushing quartzite or sandstone is used in the maufacture of glass. minor amounts of certain elements are particularly objectionable because they act as powerful For example, chromium colourants. should not exceed six parts per million and cobalt not over two parts per million. Glass fibre optics technology, developing over the last few years, promises to become important in communications, an area in which Canada is an acknowledged world leader, as glass fibre replaces copper cable in several applications. Silicon Carbide: Silica sand used in the manufacture of silicon carbide should have a silica content of at least 99 per Iron and alumina should be cent. less than Ø.1 per cent each; lime, magnesia and phosphorous should be absent. Sand should be 100 mesh with the bulk of it plus 35 mesh. Sand is used in the Hydraulic Fracturing: hydraulic fracturing of oil-bearing strata to increase open pore spaces, thus increasing the productivity of the oil well. Sand used for this purpose should be clean and dry, have a high compressive strength, be free of acid consuming constituents and have a grain size of between 20 and 35 mesh. Grains should be well-rounded to

formation in order to provide maximum permeability. Foundary Sand: Naturally occurring sand or material produced by crushing friable sandstone is used in the foundary industry for moulding. For foundary purposes, the chemical

facilitate placement

composition of the sand is not as its important as phyical properties. For the end-use, a highly refractory sand, having well-rounded grains with frosted or pitted surfaces, is preferred. Grain sizes vary between 20 and 200 mesh. Rounded grains are preferable to angular fragments because they allow maximum escape of gas during casting.

Sand for the manufacture of sodium silicate should contain more than 99 per cent silica, less than 0.25 per cent alumins, less than 0.05 cent lime and per maqnesia combined, and less than 0.03 per cent iron (III) oxide. All sand should be between 20 and 100 mesh.

Slilica flour, produced bv fine-grinding quartzite, sandstone, or lump quartz; or as a by-product in sand sifting, is used in the ceramics industry for enamels, frits, and pottery flint. For use in enamels, the silica four must be over 97.5 per cent silica with less than Ø.5 per cent alumina, and less than $\emptyset.2$ per cent ferric oxide. Silica flour is also used as an inert filler in rubber and asbestos cement products, as an extender in paints and as an abrasive agent in soaps and scouring pads. It is used increasingly in autoclave-cured concrete products such as building blocks and panels, where approximately 25 kg of silica flour is used for every 100 kg of Portland cement.

Quartz crystal with desirable piezoelectric properties is being used in the Canadian electronics industry. Natural crystal must be perfectly transparent and free from all impurities and other flaws. The individual crystals should have a mass of 100 g or more and measure at least 5 cm in length and 2.5 cm in girth. There is no production of quartz crystal in Canada.

Sodium Silicate:

Silica Flour:

Quartz Crystal:

Domestic requirements are met by imports from the United States and to a lesser extent Brazil.

Other Uses: Coarsely ground, closely sized quartz, quartzite, sandstone and sand are used as abrasive grit in sandblasting and in the maufacture of sandpaper. Various grades of sand are used as filtering media in water-treatment plants. Silica is also required in Portland Cement maufacture if there is insufficient silica in the limestone or in other raw materials used in the process. 82/5/31

TABLE III

Analysis of Adam Creek Silica Sand(%)

Sample	Si 02	Fe 203	Al 203	Cr 203	Residual
J1-2-1	97.05	0.031	0.75	0.002	2.167 %
J1-2-2	94.20	0.101	1.21	Ø.ØØ8	4.571
J1-2-3	97.67	Ø.131	Ø.68	0.001	1.518
J1-2-4	98.07	0.032	0.64	<0.001	1.258
J1-2-5	98.27	0.025	Ø.47	<0.001	1.235
J1-2-6	94.13	0.111	1.18	0.003	4.576
J1-2-7	97.65	0.028	0.90	0.001	1.421
J1-2-8	98.16	Ø.161	Ø.61	0.002	1.067
J1-2-9	96.89	0.026	0.65	0.001	2.433
J1-2-1Ø	93.06	0.034	1.05	0.002	5.854

Notes: (1) error on silica +0.1,-0 (2) contents of residual may include silica, calcium and clay

•

TABLE IV

Sample Depths and Designations, J1-2 Drill Hole

Sample Designation		Thickness (Feet)	Dry Silica (125 microns - 1mm) (%)
J1-2-1	58	5	58.3
J1-2-2	61	10	30.3
J1-2-3	83	lØ	66.2
J1-2-4	92	3.5	53.7
J1-2-5	107	5	52.3
J1-2-6	117	6	67.8
J1-2-7	137	5	50.6
J1-2-8	148	15	58.7
J1-2-9	168	15	25.0
J1-2-10	183	14	10.4

82/5/31

TABLE V

Drill Hole Logs.

A typical cover-section with multiple loles ?

```
(a) 55-60 Non-cacareous coarse silica sand - kaolin
matrix with increasing kaolin toward the
bottom (J1-2-1, 58 feet);
```

- (b) 60-65 Medium to coarse greyish-white silica sand kaolin matrix (J1-2-2, 61 feet);
- (c) 65-70 Medium to coarse silica sand kaolin matrix;
- (d) 7Ø-73 Fine silica sand kaolin matrix;
- (e) 73-75 Brown, hard fireclay;
- (f) 75-80 Whitish grey fine to medium-grained silica sand kaolin matrix;
- (g) 80-85 White, fine-grained silica sand kaolin matrix, with abundant kaolin (J1-2-3, 83 feet);
- (h) 85-9Ø Same as above (g). However, the core box was lost during transit from the site to camp. The box was later recovered, but the core is likely disturbed;
- (i) 90-93 Medium to coarse, grey to greyish-white silica sand - kaolin matrix with lesser amounts of kaolin (J1-2-4, 92 feet);
- (j) 93-93.5 Greyish-white, medium-grained silica sand kaolin matrix;
- (k) 93.5-96 Grey to yellowish-brown fireclay;
- (1) 96-100 Reddish-brown fireclay;
- (m) 100-105 Greyish, medium-grained silica sand kaolin matrix;
- (n) 105-110 White, fine to medium-grained silica sand kaolin matrix (J1-2-5, 107 feet);
- (o) 110-114 Grey, medium to fine-grained silica sand kaolin matrix, with only some kaolin;
- (p) 114-117 Grey to white, fine to medium-grained silica sand - kaolin matrix (J1-2-6, 117 feet);
- (q) 117-120 Fine, white silica sand kaolin matrix;

A.J. Saber

82/5/31 Silica Sand Resource at Adam Creek Ontario

٠

Page 21

(r) 120-125	Coarse silica sand with some heavy minerals. Minor amounts of kaolin;
(s) 125-127.5	Grey, fine silica sand - kaolin matrix;
(t) 127.5-130	Grey fireclay;
(u) 130-134	Grey, fine, sandy clay;
(v) 134-135	Grey, coarse silica sand - kaolin matrix with very little kaolin;
(w) 135-140	Fine to medium-grained silica sand - kaolin matrix with grey rim observed around the perimeter of the core (J1-2-7, 137 feet);
(x) 140-185	Greyish-white, medium to coarse-grained silica sand - kaolin matrix (J1-2-8, 148 feet) (J1-2-9, 168 feet) (J1-2-10, 183 feet);
(y) 185-194	Medium to coarse-grained silica sand - kaolin matrix;

TABLE VI

Visual Observation of Cores.

- J1-2-1 Some large-grained particles, generally beige in colour. Some grey particles.
- J1-2-2 More coarse-grained particles, generally beige in colour. Some grey particles.
- J1-2-3 Whiter colour here than the previous two samples, with fewer of the large-grained particles.
- J1-2-4 Generally white in colour, with some small black dust-like elements.
- J1-2-5 Does not have the same small black dots of dust observed in J1-2-4.
- J1-2-6 The vast majority of this material has a fine-grained nature: the coarse grained fraction appears to be very small.
- J1-2-7 The fine-grained material represents most of the mass of the sample. The remainder is deemed to be of relatively coarse grain.
- J1-2-8 The fine-grained material comprises most of the sample. There are plasticky lumps that are separated as part of the coarse grained mass in a Sewco wet separator. This plasticky material appears to be the agglomeration of smaller solid fragments held together in a fine wet clay powder matrix. There appear to be some shiny flake-like material which may be mica.
- J1-2-9 Most of this material is course-grained, with a small fraction fine-grained. The quyantity of the plastick material observed earlier appears to have increased. There also appear to be mica fines in the sediment.
- J1-2-10 A small fraction is fine-grained, the balance course. The quantity of mica-like material has decreased. In the coarse fraction, chirt and jasper have been found, although the majority of particles are coarse-grained silica sand globules of various colour.

SILICA SAND RESOURCE AT ADAM CREEK ONTARIO

•

٩

by

Aaron Jaan Saber, Ph.D., P.Eng.(Ontario),Eng.(Quebec)

Suite 406 800 Eglinton Avenue West Toronto, Ontario M5N 1G1

Tel: (416) 781-4798

31 May 1982

A.J. Saber

۲

020

LIGNASCO RESOURCES LIMITED Suite 2308 390 Bay Street Toronto, Ontario

PROGRESS REPORT ON ACTIVITIES TO 30 APRIL 1982 EXPLORATORY LICENCE OF OCCUPATION NUMBER 14890

•

7 September 1982

TABLE OF CONTENT

020C

Page No.

1.0	INTRODUCTION	1	
	1.1 Purpose of Report	1	
	1.2 Location and Access	1	
.2.0	DESCRIPTION OF PROGRAM	1	
3.0	REGIONAL GEOLOGY	2	
4.0	DESCRIPTION OF RESULTS	2	
	4.1 Geophysical Surveys	2	
	4.2 Drilling	4	
5.0	SECOND PROGRAM	5	
	REFERENCES		
	APPENDIX A - Drill Logs		

APPENDIX B - Geophysical Plans

•

•

1.0 INTRODUCTION

1.1 Purpose of Report

This report summarizes the results of exploration activities conducted on Exploratory Licence of Occupation No. 14890, to 30 April, 1982.

1.2 Location and Access

The area is located about 200km north northwest of Timmins and includes parts of the Townships of Sanborn, Kipling and Emerson.

Access to the centre of the area is possible via gravel roads from either Kapuskasing or Abitibi Canyon. The roads provide service routes to several dams on the Mattagami River.

Beyond the dam sites heavy mobile equipment can only be moved in winter along packed winter roads. Movement of personnel between work sites is best achieved using helicopter support.

For the program described here, a drill camp was established near Kipling Dam. The helicopter crew and geophysical crew stayed at the town of Smoky Falls, about 5km south of the property. Officials of Ontario Hydro, and especially the staff of Spruce Falls Power at Smoky Falls were very helpful.

2.0 DESCRIPTION OF PROGRAM

The program being conducted is designed to search for lignite and, along with Selco, Inc. to look for economic diamondiferous kimberlite pipes.

Airborne magnetometer surveys provide potential kimberlite targets for detailed ground geophysical definition. Evaluation of the ground geophysics leads to selection of anomalies for drill testing. A single hole is collared on a target, with the objective being to identify the anomaly source, and if of interest, provide sufficient drill core (\approx 50kg) for mineralogical and chemical investigation. No determination of any diamond - bearing potential

2/...

of a kimberlite is possible at this stage. If a given anomaly meets both the size and mineralogical criteria, a further bulk test, requiring 10 tonnes or more will be used for processing to establish the presence of diamonds. If diamonds were found in a particular pipe, a quantitative assessment of grade would require the extraction of some thousands of tonnes.

O REGIONAL GEOLOGY

The Licence covers a small portion of the southern flank of the Moose River Basin. Roughly the southern third of the property is underlain by Precambrian rocks.

Outcrops are very few and limited to water courses, but drilling by the Ontario Government, and various companies in the area has established a good stratigraphic framework for the Moose River Basin. Most of the Licence area is underlain by an extensive and thick till cover, which mantles a sequence of unconsolidated Lower Cretaceous beds of the Mattagami Formation. The latter unit is comprised of silica sands, varicolored clays and silts, and occasional lignite seams. (Telford et al 1975). Much of the previous work in the region has been directed toward the industrial minerals and lignite deposits. (Op. cit.)

) DESCRIPTION OF RESULTS

Geophysical Surveys

In 1981 the property was covered by an airborne magnetometer survey as part of a larger regional program. Coverage on the Licence consisted of flight lines at a nominal spacing of 250m and terrain clearance of 60m. Total volume was about 1500 line-km.

Nine geophysical grids were cut and surveyed in the area. All grids were surveyed using a nuclear precession magnetometer. Line and station separation were a maximum of 100m and 25m respectively. Diurnal variations were removed from the results. One grid (14-6) was surveyed the previous winter in the follow-up work of another program. The costs of this work are not included in the expenditure statement. Total surveying in 1982 was 157km.

- 2 -

Following is a brief commentary on results.

Grid I4-6

A good small target is centered at 00/050S, and extends off the west end of the grid. Drill testing should await the results of drilling adjacent anomaly I4-200.

Grid 14-200

A good small target is centered at 500W/200N. Diamond drilling is recommended.

Grid J1-1

A large strong positive response with an amplitude of about 700nT is centered at 200E/400S. Diamond drilling is recommended.

Grid J1-2

A very large lobate anomaly is located in the centre of the grid. A drill hole collared at 100S/300W was abandoned at 147m (482'). The anomaly source was not intersected. No further work is warranted at present.

Grid J1-3

Several sharp but low amplitude anomalies are present in the east half of the survey. The grid is underlain by basement rocks and the responses seem typical of this setting. No further work is warranted pending additional studies.

Grid J1-5

All anomalies detected have either a cultural or basement \checkmark source. No further work is warranted.

Grid J1-6

Two anomalies of possible interest appear at 800W/200S and 400W/300S. The grid is underlain by Precambrian rocks, and while anomaly patterns on the grid confirm this setting, the land should be retained pending further study.

4/...

رى

Grid J8-100

A single good circular anomaly is centered at 700W/450N. The source is likely deep (>150m) and therefore drill-testing is not recommended, pending the results of other regional drilling.

Grid J8-101

A small circular positive anomaly is centered at 200N/300E. The anomaly was drilled (see below).

2 Drilling

The winter drilling program was conducted using a Sonic drill operated by Midwest Drilling of Winnipeg. The rig was modified to include a Longyear 150 drill head, so that regular diamond drilling (NQ) could follow Sonic coring. The Sonic drill was chosen for the job so that good core recovery would be achieved in the unconsolidated units.

The drill rig was mounted on a Nodwell carrier accompanied by a trailer. Unfortunately very poor frost conditions in the extensive muskeg cover necessitated long meandering drill moves, and very expensive site preparation. The rig proved to be very successful (but at great cost) in recovering Lower Cretaceous and Quaternary tills.

Four holes totalling 439m were drilled for Lignasco in the vicinity of O.G.S. hole 78 - 06. Copies of drill logs are appended.

Two holes were completed on geophysical anomalies.

Hole J8-101 was drilled to a depth 73m. A dark massive ultramafic intrusive was intersected under a till cover of 55m. Laboratory-testing of the core remains to be completed, but early petrographic work indicates the rock consists of olivine phenocrysts set in a groundmass of lath-like pyroxenes. The rock is not likely a true kimberlite, but final classification must await further studies. V)

A hole was drilled on J1-2, which was finally abandoned at 147m. Bedrock was never reached. After passing through about 16m of tills, a long interval of largely silica sands (to 59m) was encountered. This was followed by intercalated sands and clays, and some lignite beds. Given the depth of cover on this grid, additional drilling on this anomaly is not warranted.

5.0 SECOND PROGRAM

If the ground conditions had permitted the Sonic drill to be more "mobile" two other holes had been planned for the past winter. Instead, the two holes (on I4-200 and J1-1) will be completed with a helicopter supported diamond drill in the next Commitment Period. The balance of proposed expenditures cover related laboratory studies. A listing of the proposed budget is set out below.

DIAMOND DRILLING		\$50,000
Contract Chgs. 250m @ \$140, Helicopter Chgs. 30 hrs. @ 5		
GEOCHEMICAL STUDIES		10,000
SUPPORT		10,000
SUPERVISION		15,000
	TOTAL	\$85,000

CONTINGENCY - \$250,000

Depending upon the geochemical studies and the regional program results, one bulk test could be initiated in this area, and this is estimated to cost about \$250,000.

- 5 -

٠.

Lignasco Resources Limited

January-April 1982 Drilling Program

Drill Logs

LIGNASCO RESOURCES LIMITED

A DESCRIPTION OF THE PARTY OF T

JANUARY-APRIL 1982 Drifting Program Drilling: Midwest Drilling, Winnipeg Geology: Harish M. Verma

DRILL LOG: DRILLHOLE NO. SL 82-01. Location: 800 metres south of OGS Drillhole 78-06 (Long. 82 13'43"W, Lat.50 15'30"N) Sanborn Township Started March 16, Finished March 20, 1982 Sheet 1 of 5

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
0- 	14 14 14 14 14 14 14 14 14 14	Sonic	0'-19' Muskeg
20	4		19' - 27' Greenish grey. highly calcareous plastic clay
30			27' - 33' Grey, very dense, coarse, silty and dry till
40			 33' - 35' Very dense, sandy calcareous till 35' - 36' Grey, calcareous clay till 36' - 41' Grey. ca; careous coarse sand with pebbles (? sandy till) 41' - 42' Grey, coarse, calcareous sand 42' - 50' Grey, coarse, very sandy, highly calcareous till with large cobbles
50			50' - 52' Grey, gravelly sand, highly calcareous 52' - 56' Grey, sandy, gravel rich till
60 <u></u>	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		 56' - 58' Grey, very sandy, coarse till 58' - 60' Grey, clay till 60' - 65' Grey, sandy gravel with large pebbles and cobbles 65' - 72' Same as above
70			72' - 76' Grey, calcareous gravel, mostly pebble size
- 80			76' - 79' Grey, coarse, sandy gravel with big cobbles 79' - 80' Dark grey coarse till with muddy matrix

ere sider in the second states and the second states

and the second second

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. $\frac{S1}{5}$ 82 - 01. Sheet 2 of 5.

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
80 -	0.0	Sonic	80' - 85' Grey, calcareous silty till
	4.4.5		85' - 87' Sandy gravel with large cobbles
-	47		87' - 90' Grey, calcareous silty till
90	4		90' - 92' Grey, medium grained sand 92' - 95' Dark grey, coarse, very sandy, highly calcareous till 95' -100' Grey, very sandy till
	0 V 1		100'-102' Grey, medium to coarse grained sand
			102'-106' Grey, coarse sand with pebbles
			106'-110' Dark grey coarse, very sandy, highly calcareous till
110			110'-112' Grey, coarse sand with pebbles 112'-114' Grey, sandy till
	4 4 4 4 4 4 4 4 4		114'-116' Grey clay till 116'-120' Dark grey, coarse sandy till
120			120'-127' Dark grey to brown coarse hard muddy till
130			127'-141' Same as above with large clasts
140			141'-144.5'Grey, coarse, calcareous clay till
144.5	۵. 		QUATERNARY-CRETACEOUS CONTACT
150			147.5'-148.5' Red fireclay 148.5'-160'White to light grey, medium grained silica sand kaolin matrix with some sections showing coarse grained matrix
160			

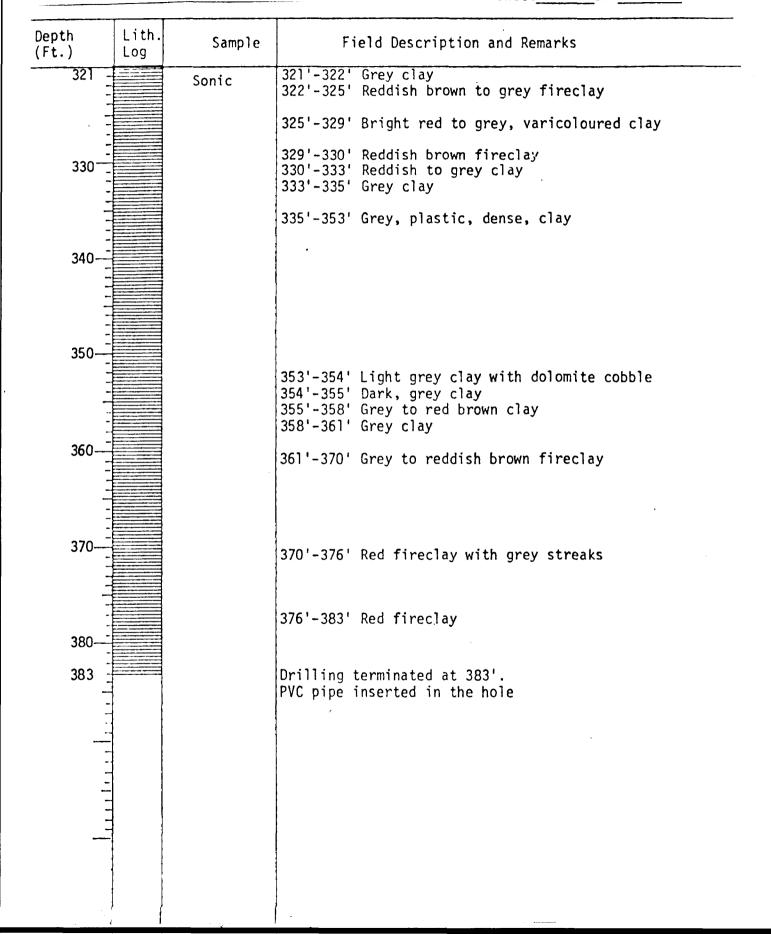
LIGNICO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. SL 82-01 Sheet 3 of 5.

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
160		Sonic	160'-166' Greyish white, medium grained silica sand kaolin matrix
170			166'-168' Same as above but getting coarser 168'-171' Brown fireclay
	******		171'-173' Grey, sandy clay 173'-174' White to light grey coarse silica sand kaolin matrix 174'-178' Fine grained silica sand kaolin matrix
- - 180			178'-182' Fine grained silica sand kaolin matrix- richer in kaolin 182'-186' Medium grained, white silica sand kaolin
			matrix 186'-188' Fine grained white silica sand kaolin matrix
190			188'-195' Medium to coarse grained silica sand kaolin matrix - many coarse quatrz grains
200-1			195'-220' Predominantly medium grained slilica sand kaolin matrix – some sections showing coarser quartz grains
210			
220			220'-233' Medium grained white silica sand kaolin matrix
- - 230			
			233'-234' Medium grained, greyish silica sand kaolin matrix - lesser amount of kaolin 234'-235' Dark grey clay
240			234 -235 Dark grey clay 235'-236' Light to dark brown fireclay 236'-240' Dark brown carbonaceous clay

-

LIGICO RESOURCES LIMITED JANUARY-APRIL 1982


Drilling Program

DRILLHOLE NO. SL 82-01 Sheet 4 of 5.

Lith. pth Field Description and Remarks Sample t.) Log 240-240'-242' Dark brown to black carbonaceous clay Sonic 242'-245' Clay as above but becoming sandy 245'-247' LIGNITE iegies (State 247'-249' Brown fireclay 249'-251' Grey sand 250 251'-252' Grey, medium grained sand 252'-256' Grey to brown carbonaceous clay with fragments of lignite 256'-264' Dark brown, tan brown, grey stiff, plastic clay 260___ 264'-278'Grey, highly silty, micaceous clay 270-278'-285.5' Brown dense clay 280-285.5'-289' Dense brown clay-somewhat sandy below 287' 289'-290' Grey, fine grained clayey sand 290-290'-293' Micaceous sand with high clay content 293'-296' Grey, fine grained clayey sand 296'-299' Grey sand with abundant clay content 299'-301' Fine to medium grained, grey sand 300-301'-305' Grey, fine grained, clayey sand 305'-309' Mostly grey to greyish white sand 309'-321' Fine to medium grained grey sand 310-320-

LIGNETO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. SL 82-01 Sheet 5 of 5

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

•

Druging: Midwest Drilling, Winnipeg Geology: Harish M. Verma Sheet 1 of 5

DRILL LOG: DRILL HOLE NO: <u>SL 82-02</u> LOCATION: 800 metres southeast of 03S drillhole No. 78-06(Long. 82 13'43" W: Lat. 50°15'30" N) Sanborn Township

Started: March 29, Finished April 1, 1982

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
10		Sonic	0' - 20' Muskeg
20			20' - 25' Light grey, calcareous clayey till
30			25' - 30' Greyish brown sandy silt till 30' - 33' Coarse to medium gravelly sand 33' - 35' Light greyish to brown sandy silt till 35' - 38' Light grey sand
40			 38' - 43' Coarse, grey, gravelly sand 43' - 44' Gravel 44' - 45' Grey, coarse sand and some sandy till 45' - 47' Grey, coarse sand and sandy till - more clasts 47' - 50' Light grey, fine sandy till
50			 50° Erght grey, The sandy till 51' - 55' Dark grey, sandy, calcareous till 55' - 60' Grey, fine grained sand with grey clay laminations
60			60' - 67' Light grey, fine grained sand 67' - 79' Dark grey, fine grained sand
70			79' - 80' Very fine grained, somewhat clayey sand

LIGNECO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

•

. . *

DRILLHOLE NO. <u>SL 82-02</u>. Sheet <u>2</u> of <u>5</u>.

Depth Lith. Sample Field Description and Remarks (Ft.)	
80 Sonic 80' - 89' Very fine, somewhat clayey sar	nd
90	
95' - 98' Olive grey sandy till with cla	asts
100	s sand
	with darker
113'-122' Light grey fine grained sand	
120	
	11
132'-140' Olive grey, calcareous clay t large clasts	
140	yey
145'-149' Olive grey calcareous very sa	ndy till
149'-152.5' Coarse, gravelly sand with	large nebbles
	large peoples
152.5UATERNARY-CRETACEOUS CONTACT 152.5'-154' Tan fireclay	kaolin matnix
154'-156' Dark grey coarse silica sand l non-calcareous- reduced kaolin 156'-160' Fine to medium grained silica	n
$160 - \frac{100}{100}$ with abundant kaolin	

LIGUECO RESOURCES LIMITED JANURY-APRIL 1982

Drilling Program

ł

•

DRILLHOLE NO.<u>SL 82-02</u>. Sheet_3__of__5___.

160 - 	 Sonic	 160'-161' Dirty grey sandy gravel with large pebble and cobble 161'-165' Dark greyish green fine grained calcareous san 165'-168' Dark olive grey sandy calcareous till 168'-173' Coarse dark grey gravel - calcareous Note: From 160' to 173', the sediments appear to be Duaternary deposits. These may have been deposite
180		in an underground channel.
		173'-183.5 Very fine grained greyish white silica sand kaolin matrix with abundant kaolin
190		183.5'-185'Medium to coarse grained greyish white silica sand kaolin matrix with kaolin 185'-190' Medium to coarse grained greyish white silica sand akolin matrix with increased kaolin 190'-191' Fine grained light grey sand - little kaolin 191'-195' Greyish white, coarse to medium grained silica sand kaolin matrix
200		195'-200' Dark grey, carbonaceous hard clay 200'-206' Grey, fine grained sand 206'-213' Greyish white, fine grained silica sand- 213'-231' Hedium grained, greyish white silica sand- kaolin matrix
210		
220		
230		231'-234' Coarse grained, grey quartz sand 234'-236' Tan to grey coarse grained sand 236'-238' Dark grey sand with detrital lignite
240		238'-240' Light grey to tan brown coarse sand

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Diling Program

٠

DRILLHOLE NO. SL 82-02 Sheet 4 of 5

İ

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks				
240		SONIC	240'-242' 242'-244' 244'-246'	Coarse grained grey sand with detrital lignite Tan grey, fine grained sand			
250 - -			246'-252' 252'-256'	Light grey fine grained sand Grey, fine grained sand			
-			256'-260'	Fan grey, fine grained sand			
260			260'-264'	Dark grey, medium grained sand			
			264'-268'	Grey, fine grained sand			
270 — 			268'-276'	Coarse grained dark grey sand			
			276'-280'	Medium grained grey sand			
280			280'-282' 282'-288'	Fine grained grey sand Medium grained grey sand			
290			288'-289' 289'-292' 292'-300'				
300			300'-310'	Dark grey plastic clay			
310			310'-320'	Dark grey to black, plastic, hard carbonaceous clay with fragments of detrital lignite increasing towards the bottom			
320							
1			77				

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

dis to the . •

DRILLHOLE NO. SL 82-02 Sheet 5 of 5

1

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
320 -		SONIC	320'-332' Dark grey, plastic, very hard slightly sandy clay
330		NQ	332'-336' Dark brown plastic very hard non calcareous clay
			336'-344' Dark grey plastic hard non calcareous clay
340			2441 2461 Dank brown plactic pantly laminatod clay
			344'-346' Dark brown plastic, partly laminated clay 346'-356' Darker clay as above, calcareous
- 350			
			?CRETACEOUS -DEVONIAN CONTACT 356'-364' Grey calcareous shale and argillaceous
360			limestone
364_			Drilling terminated at 364' PVC pipe inserted in the hole
-		-	

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 mrilling Program

•

Drilling: Midwest Drilling, Winnipeg Geology: Harish M. Verma Sheet 1 of 5 DRILL LOG: DRILLHOLE NO. SL 82-03 LOCATION: 1600 metres southeast of OGS drj11hole 78-06(Long. 82 13'43" W: Lat. 50 15'30" N) Started March 24, Finished March 29, 1982

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
0		SONIC	0'-17' Muskeg
10	* * * *		17' - 25' Greyish brown calcareous coarse till
20			17 – 25 Greytsh brown carcareous coarse (111
30 —	4 4 4		 25' - 27' Brownish grey, clayey, calcareous coarse till 27' - 32' Olive grey, coarse calcareous clay till with large clasts
	Ф 7 7		32' - 36' Grey, calcareous sandy till
	A D		36' - 40' Till as above changing to coarse sand
40	4 4 0 4 4 0		40' - 41' Grey, coarse sand 41' - 46' Grey, coarse, very sandy calcareous till
-	Р .		46' - 49' Grey, gravelly sand - calcareous
			49' - 52' Dark grey, gravelly sand
	а. р,		52' - 54' Grey, alluvial sand 54' - 56' Olive grey, calcareous coarse till 56' - 58' Fine grained grey sand
60			 58' - 60' Grey, coarse grained calcareous gravelly sand 60' - 62' Olive grey, coarse calcareous clay till 62' - 66' Dark grey coarse calcareous gravelly sand to sandy till
-	Ч. 1 . 1		66' - 70' Olive grey sandy clay till
70 —	4.4		70' - 75' Olive grey calcareous clay till
			75' - 78' Same as above with abunadant clasts
80 —			78' - 80' Dark grey to olive grey calcareous clay till with small scattered clasts

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

İ

1

.

DRILLHOLE NO. <u>SL 82-03</u>. Sheet__2___of___5___.

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
80		SONIC	80' - 96' Dark grey to olive grey calcareous clay till with small scattered clasts
90	2 2 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4		96' - 100' Darker olive grey to brown hard calcareous till with increasing clasts
100,	4 		100'- 108' Fine grained calcareous grey sand
109 110			108' -109 Gravel QUATERNARY CRETACEOUS CONTACT 109-110 Coarse, greyish white, non calcareous silica sand-kaolin matrix
120			110'-115' Grey quartz sand, little kaolin 115'-130' Greyish white, medium grained silica sand - kaolin matrix
130			130'-136' Grey, medium grained silica sand-kaolin matrix wit lesser amount of kaolin
140			136'-141' Same as above with increased amount of kaolin 141'-146' Same as above with a darker heavy mineral zone at 145'
			146'-151' Medium to coarse grained silica sand-kaolin matrix - greyish white
150			151'-155' Black carbonaceous clay with lignite fragments and some sandy sections 155'-157' Dark grey sandy carbonaceous clay 157'-158' Tan sandy clay
160			158'-158' Tan sundy clay 158'-159' Dark grey sandy carbonaceous clay 159'-160 Tan coloured sandy clay

NASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

. •

DRILLHOLE NO. SL 82-03 Sheet 3 of 5

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
160		Sonic	160'-162' Grey to tan grey fine grained sand 162'-168' Grey, plastic sandy clay
170			168'-171' Fine grained grey sand - very little kaolin 171'-173' Coarse grained, greyish white silica sand- kaolin matrix 175'-177.5' LIGNITE
			177.5'- 178' Carbonaceous clay 178'-179' Coarse grained sand with detrital lignite 179'-181' Tan brown fireclay 181'-182' Tan to tan-grey sandy clay 182'-183' Dirty brown clayey sand 183'-185' Dirty grey quartz sand without kaolin 185'-190' Tan to grey micaceous clay with fine grained sand
- 190			190'-190.5' LIGNITE 190.5'-191' Sandy clay 191'-193' Grey, fine grained sand- little kaolin 193'-195' Medium grained silica sand-kaolin matrix with reduced kaolin 195'-210' Greyish white, coarse to medium grained
200			silica sand-kaolin matrix
210			210'-225' Greyish white silica sand with reduced amount of kaolin

deres and the second

NAME!

JANUARY-APRIL 1982 Drilling Program

·····

1

a local incluments stability

•

DRILLHOLE NO.<u>SL 82-03</u>. Sheet_4__of__5___.

÷.

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
240 -		SONIC	240'-262' Light grey sand
250			Note: The sample from 236'-262' was drilled in one run and was accidentally dropped in the hole while being retreived. It was later picked up but may have been contaminated with sluffing from the hole
260			262'-266.5 Dark grey sand, probable sluff from the hole
270			266.5'-270'light brown and grey, very hard, plastic dense clay 270'-286' Light brown to dark grey plastic, very dense clay with some red clay intercalations
280			CRETACEOUS-DEVONIAN CONTACT ?
- - 290			286'-294' Dark brown laminated clay with disseminated pyrite - clay is non-calcareous
		NQ	294'-303' Dark brown pyritiferous non-calcareous clay
300			303'-304' Lighter brown clay as above - no pyrite 304'-305' Harder dark brown laminated clay (Shale?) with pyrite
310			305'-315' Dark brown laminated clay as above
			315'-319' Grey calcareous shale
320			319'-320' Grey calcareous shale with argillaceous limestone

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

•

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
320 -		NQ	320'-326' Grey calcareous shale with argillaceous limestone
330			Drilling terminated at 326' PVC pipe inserted in the hole.
- - - - - - - - - - - - - - - - - - -			
	ĺ	-	

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILL LOG: DRILLHOLE NO. <u>SL 82-04</u> LOCATION: 1400 metres <u>SSE of OGS</u> Drillhole No. 78-06 (Long: 82°13'43"W; Lat.50°15'30 N") Sanborn Township Started March 20, Finished March 24, 1982

ling - Midwest Drilling

ogy: Harish M. Verma

Sheet 1 of 5 .

oth t.)	Lith. Log	Sample	Field Description and Remarks	,
10	یر ک بر بر بر بر بر	SONIC	0' - 19' Muskeg	
20			19'- 21' Grey clay - sample washed out 21' - 24' Fine grained grey calcareous sand with some clay 24' - 36' Fine to medium grained grey calcareous sand	, E
			36' - 40' Coarse grained, grey, calcareous sand	·y

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

t, et ave

DRILLHOL	E	NO. SL	82-04	
Sheet	2	of	5	

1. 29 200

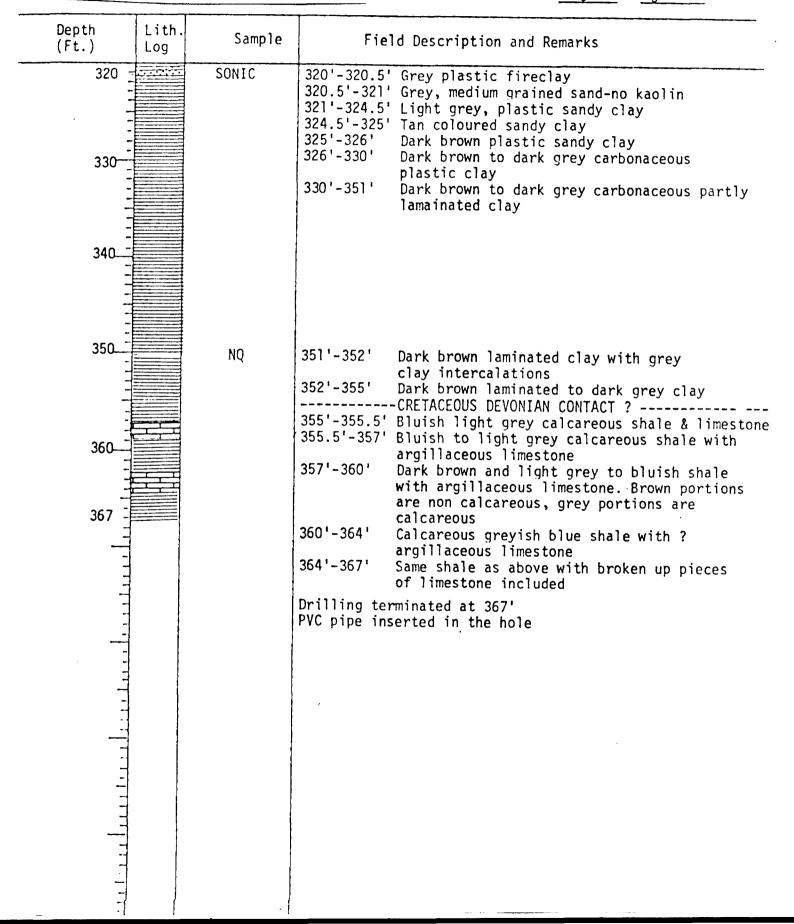
Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
80 -		Sonic	80' - 83' Grey, coarse, sandy clay till with
	× • ΔΔ		abundant clasts 83' - 86' More sandy, grey, coarse, calcarecus clay till
-			86' - 89' Clay till as above with large cobbles at 88'
90	9 9 4		89' - 90' Grey, calcareous clay till 90' - 95' Grey, calcareous clay till with numerous
-	5		clasts
-	14 7 7		95' -100' Grey calcareous, sandy till with abundant clay content
100-	A		100'-103' Coarse gravel with many rounded pebbles and cobble
103 -			QUATERNARY-CRETACEOUS CONTACT
-			103'-106' Fine grained, greyish white silica sand- kaolin matrix-non calcareous
-			106'-108' White to tan coloured fireclay
110-			108'-111' Interlaminated orange, red and grey fireclay - plastic, non calcareous
-			111'-115 5Light grey, fine grained, micaceous sand with very little kaolin
			115.5'-116 Darker, heavy mineral zone with hematite and
120-	-		magnetite 116'-118' Light grey, micaceous, fine grained sand with very
			little kaolin content 118'-125' Fine grained silica sand-kaolin matrix with
			abundant kaolin 125'-138' Medium grained silica sand- kaolin matrix with
-			abundant kaolin
1 30			
-			138'-142' Red, coarse grained sand
-			
140			1142'-146' Greyish white, coarse grained silica sand-
-			kaolin matrix
			146'-159' Medium grained to coarse grained greyish
			white silica sand-kaolin matrix
150			
-			

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. SL 82-04 . Sheet 3 of 5.

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
160		SONIC	160'-165' Fine grained, white silica sand-kaolin matrix
170			165'-168' Light brown to tan coloured fireclay 168'-170' Greyish white silica sand-kaolin matrix 170'-174' Medium grained silica sand-little kaolin
			174'-177' Fine to medium grained greyish white silica sand with some kaolin. Yellowish rim around perimeter of the core
180			177'-180' Greyish white, medium grained silica sand- kaolin matrix
			180'-190' Greyish white, fine grained silica sand - kaolin matrix
190 —			190'-201.5'Medium to fine grained silica sand kaolin matrix
200			201.5-203.5'MIXED WOODY AND EARTHY LIGNITE
			203.5'-205' Tan to light brown fireclay
- - -			205'-209' Coarse, grey sand - no kaolin
210			209'-212.5' Dark grey medium grained sand - no kaolin 212.5'-214 Dark grey, coarse grained muddy sand 214'-217' Dark brown fireclay
			217'-221' Grey, medium grained sand - very little kaolin
220			221'-222' Grey, fine grained sand with darker rim around core
			222'-226' Dark grey, clayey sand 226'-230' Grey, coarse grained sand
230			230'-234' Same as above with some clayey sections
-			234'-235' Dark grey sandy clay 235'-238' Grey, medium grained sand
240			238'-240' Fine grained sand with some clay
	')		
	1		

JAGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program


DRILLHOLE NO. SL 82-04 Sheet 4 of 5

ē. 🖌

Depth (Ft.)	Lith. Log	Sample	Fiel	d Description and Remarks
240		SONIC	240'-242' 242'-244.5' 244.5'-245 245'-247'	Grey clay Tan to light brown fireclay Grey sand, fine grained Dark grey clay with some fine sand
250			247'-248' 248'-251'	Dark grey Dark grey muddy sand Dark grey to brown clay with fine grained sand
			251'-253' 253'-256' 256'-259'	Tan to grey clay with fine grained sand Light grey sand - little kaolin Light grey to dark grey medium grained sand - no clay
260			259'-261' 261'-263' 263'-264'	Light grey sand as above Dark grey fine grained sand - no kaolin Dark grey sandy clay
			264'-270'	Tan to light grey, medium grained sand
270			270'-274'	Light grey, fine grained clayey sand
			.274'-276' 276'-278' 278'-282-	Greyish white, fine grained silica sand- kaolin matrix Same as above - medium grained Dark grey, fine to medium grained
280			282'-289'	sand - core loss Dark grey, medium to coarse grained sand
- 290			289'-290' 290'-300'	Fine grained silica sand-kaolin matrix Same as above but getting medium grained
300			300'-304'	Same as above but with reduced kaolin
			304'-305'	Greyish white, medium grained silica sand- kaolin matrix
310			305'-309' 309'-312'	Dark grey, coarse sand Dark grey, plastic, carbonaceous clay
			312'-319' 319'-320'	Red and grey fireclay Grey plastic fireclay
320				

GNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. <u>SL 82-04</u> Sheet 5 of 5

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

Drilling: Midwest Drilling, Winnipeg Geology: Harish M. Verma DRILL LOG: DRILLHOLE NO. J-1-2 Location: Grid J-1-2; 100S/300W) Kipling Township Started: March 6, Finished March 11,1982 Sheet______6___.

Depth (Ft.)	Lith. Log	Sample	Fie	eld Description and Remarks
0	± 	SONIC	0'-14'	Core Loss - bottom part has calcareous grey till. Upper part is Muskeg.
10	* * *		14'-19'	Calcareous grey clay with very few small clasts
20			19'-22.5' 22. 5 '-26'	Greyish to greyish brown coarse calcareous till Very dense, coarse, calcareous grey till
			26'-30'	with clasts Greyish to greyish brown coarse till
30			30'-55'	Very coarse and dense calcareous grey till with numerous clasts
40				
50				
			Q 55'-60' 60'-65'	UATERNARY-CRETACEOUS CONTACT
			65'-70'	Medium to coarse grained silica sand-kaolin matrix
70			70'-73'	Fine grained silica sand - kaolin matrix
- - - - - - - - - - 			73'-75' 75'-80'	Brown hard fireclay Greyish white fine to medium grained silica sand kaolin matrix
80				

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

a service decimental

DRILLHOLE NO. <u>J-1-2</u>. Sheet <u>2</u> of <u>5</u>.

Depth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
80 -			80'-85'	White, fine grained silica sand- kaolin matrix with abundant kaolin
90			85'-90' '90'-93'	Same as above (Box with sample lost during transit from site to camp, but was later recovered - sample may be disturbed) Medium to coarse grained, grey to greyish white silica sand - kaolin matrix - lesser amount of kaolin
100-			93'-93.5' 93.5'-96' 96'-100' 100'-105'	Greyish white, medium grained silica sand kaolin matrix Grey to yellowish brown fireclay Reddish brown fireclay Greyish, medium grained silica sand-kaolin
			105'-110'	matrix Same as above but fine to medium grained
110-			110'-114'	Same as above but grey in colour and with lesser amount of kaolin
			114'-117'	Same as above but colour changes to greyish white
120			117'-120' 120'-125'	Fine grained, white silica sand-kaolin matrix Coarse grained silica sand with some heavy minerals - minor amounts of kaolin
111			125'-127.5	'Grey, fine grained silica sand-kaolin matrix
-				'Grey fireclay
130				Grey, fine sandy clay
			134'-135' 135140'	matrix with very little kaolin Fine to medium grained white silica sand - kaolin matrix with grey rim around the
			140'-160'	perimeter of the core Greyish white, medium to coarse grained silic sand-kaolin matrix
150				
 160				

•

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. J-1-2. Sheet_3__of_6___.

Depth (Ft.)	Lith. Log	Sample	Fiel	ld Description and Remarks
160		Sonic	160'-194'	Greyish white, medium to coarse grained silica sand - kaolin matrix
170				
180			.	
190			194'-195'	Black, plastic carbonaceous clay
200				WOODY LIGNITE Black to brown carbonaceous clay with some lignite fragments Black to brown carbonaceous clay
			203'-206' 206'-214'	Reddish to dark brown carbonaceous clay (?fireclay) Black carbonaceous clay
210 			214'-217'	Silty, sandy, grey to dark brown clay
			217'-221'	Grey, coarse sand - little kaolin
220			221'-222' 222'-227'	Light brown clay (?Fireclay) Black carbonaceous clay
230			227'-230' 230'-235'	Grey to dark brown sandy clay - transition zone between the zone above and the zone belo Black carbonaceous clay
			235'-238'	Highly carbonaceous black clay approaching earthy lignite
240			238'-240'	Medium to coarse grained silica sand - kaolin matrix

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

. **.**•

DRILLHOLE NO. J-1-2 . Sheet 4 of 6 .

Depth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
240 -		Sonic	240'-243'	Medium to coarse grained silica sand -
			243'-248'	kaolin matrix Fine grained silica sand - kaolin matrix
250			248'-254'	Same as above but getting coarse grained
			254'-258'	Brown fireclay
260			258'-262' 262'-266'	left in the core barrel and could not be retreived, but is most probably the brown fireclay as above and below Brown fireclay
			266'-269'	Lost due to washing
-			269'-273'	Dark grey to brown plastic fireclay
270			273'-278'	Very dense, grey to brown clay
280			278'-281' 281'-285'	Grey, plastic fireclay Grey, plastic fireclay with brown inclusions
			285'-290'	White, fine to medium grained silica sand- kaolin matrix
290			290'-295' 295'-299'	Same as above but mostly medium grained Whitish (turning grey towards the bottom) silica sand kaolin matrix - also getting coarser towards the bottom
			299'-300'	Highly carbonaceous clay bordering on earthy lignite
300			300'-303' 303'-305'	Woody lignite - almost no water Black carbonaceous clay
			305'-307' 307'-310'	Black carbonaceous clay - some sand at the top Dark brown to black carbonaceous clay
310	36		310'-313'	Mixture of coarse sand, black carbonaceous clay and lignite fragments
- - - - - -			313'-320'	WOODY LIGNITE
320				

· DRILL LOG

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. J-1-2 Sheet 5 of 6.

pth t.)	Lith. Log	Sample	Fiel	ld Description and Remarks
320		SONIC	320'-324' 324'-325' 325'-326' 326'-329'	WOODY LIGNITE Highly lignitic black carbonaceous clay Same as above, probable sluffing Brown to black carbonaceous clay, somewhat sandy at the bottom and within this run
330			329'-332' 332'-335' 335'-337'	Black carbonaceous clay Black to brown carbonaceous clay with some sand Black to brown carbonaceous clay - plastic
340			337'-340'	in places Black highly carbonaceous clay with thin (1"-2") lignite seam at 339'
350			340'-341' 341'-343.5' 343.5-345' 345'-346.5'	Black, carbonaceous clay
			346.5'-347' 347'-352' 352'-357' 357'-371'	
360				quartz grains
			371'-377'	Sand as above, but getting medium to coarse
			377'-382'	grained Same as above, mixed with clay at the bottom
380—			382'-387'	Medium to coarse grained, grey sand
			387'-392'	Same as above but getting coarser
			392'-396'	Greyish black, sandy clay
400				Grey, fine grained sand Coarse sand, mixed with dark grey clay Grey to black, very hard, sandy clay

LI SCO RESOURCES LIMITED JANGARY-APRIL 1982 Drilling Program

•

DRILLHOLE NO. <u>J -1-2</u>. Sheet <u>6</u> of <u>6</u>.

Depth Ft.)	Lith. Log	Sample	Field	d Description and Remarks
400		SONIC	400'-402' 402'-415'	Grey to black, very hard, sandy clay Sample mixed because of difficulties in retreiving it. Mostly dark coarse sand with some clay mixed in it
410			415'-430'	Greyish yellow, medium to coarse sand
420				
430		NQ	430',-435'	Grey to dark grey, medium to coarse sand
440			435'-455'	Co.re washed out, probably coarse sand
450			455'-457'	Black, highly carbonaceous clay with
460		Sonic	457'-480'	fragments of lignite Sample washed out - coarse sand
470			·	
480				robably hard clay - no sample retreived
482 *				rminated at 482' serted in the hole

LIGNASCO RESOURCES LIMITED JAN RY-APRIL 1982 Driving Program

`• .

.

DRILL LOG: DRILLHOLE NO. J-8-101 LOCATION: Grid J-8-101 (200N/300E) Sanborn Township Started: Feb 22, Finished Feb 26, 1982

Drilling: Midwest Drilling, Winnipeg Geology: Harish N. Verma

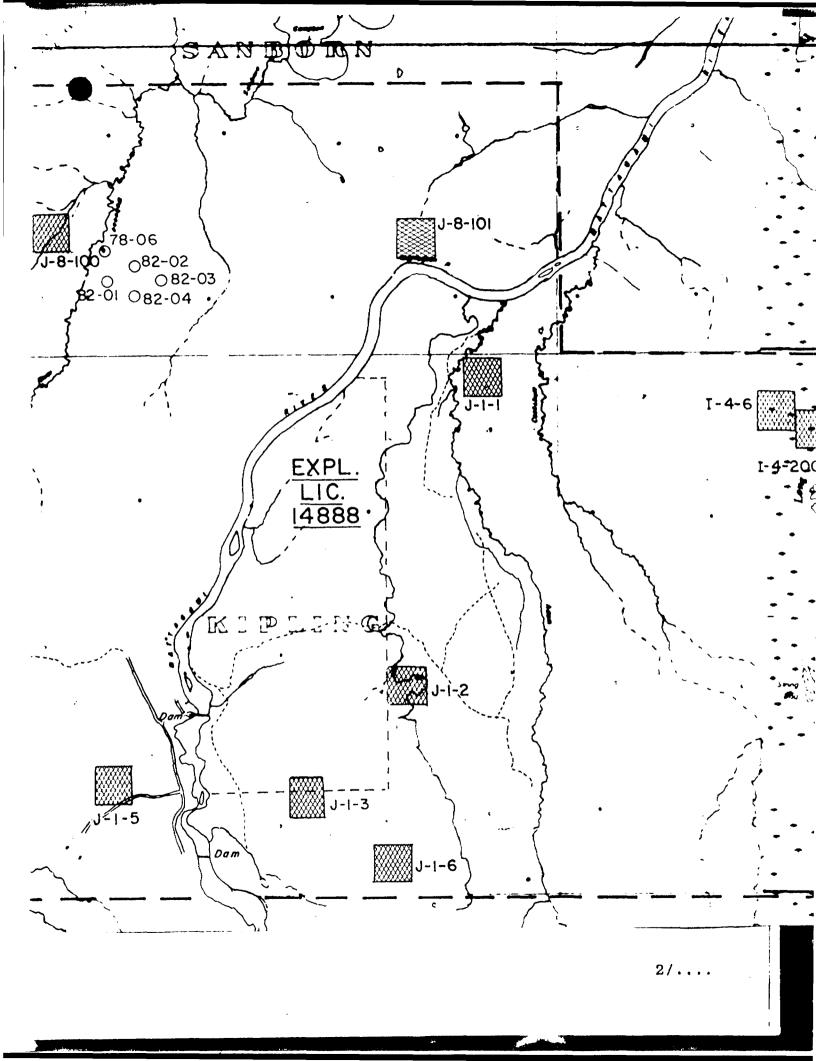
Shect 1 of 3

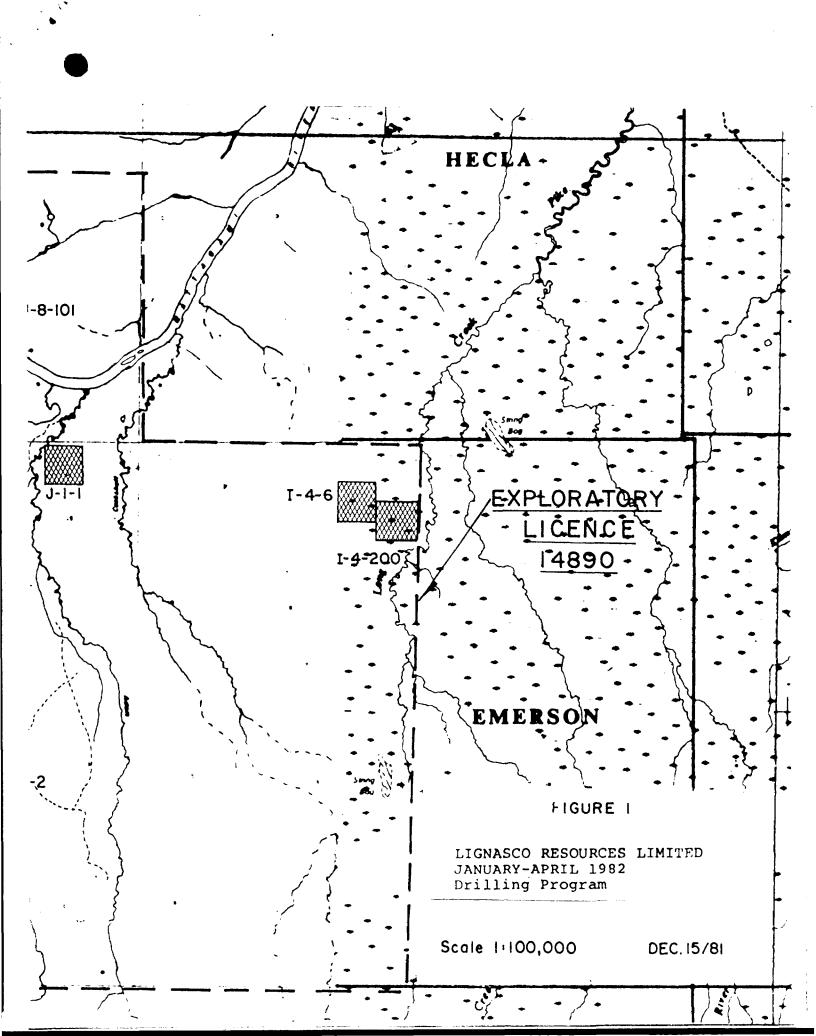
Depth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
0 _	<u>ب</u> د.	SONIC	0'-5'	Black organic clay mixed with twigs
10	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5'-20'	Light brown weathered gritty till with interlayers of grey plastic clay, sandy at places
20			20'-32.5'	Light brown to greyish brown very dense till with small (5-10mm) clasts. Matrix is silt to clay size. Till is highly calcareous
30			32.5'-40'	Same as above but slightly greyer in colour Clasts are bigger and matrix is coarser
40			40'-50'	Grey till with reduced number of clasts Matrix is silty clay increasing sand towards the bottom
50			50'-70'	Mixture of grey clay and silt as above, only a few clasts
60			•	
70	0. P 4 b		70'~80'	Same as above with increasing number of clasts- large limestone clast at 70'- Pegmatite boulder at 74'.
80				

INASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. J-8-101 Sheet 2 of 3

Depth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
80 -		Sonic	80'-90'	Grey, fine grained till with increasing number of clasts
90			90'-100'	Grey, clayey, silt till, fairly friable
100			100'-102' 102'-110'	Coarse gravel Dark brown organic silt till - calcareous
110			110'-120'	Blackish brown, highly organic gritty clay till getting harder down section with subangular quartzitic clasts. At the bottom is a much harder till with very large highly calcareous limestone clasts
120	A A A A A		120'-132'	Dark brown clay till with larger clasts than above and also some lignite fragments
130			132'-135' 135'-140'	Grey, finer grained till with lesser number of clasts - highly calcareous Very dense dark brown till with numerous large (upto 10 mm) rounded clasts - mostly ar
140			140'-160'	quartzite- matrix is fine grained Same as above but the colour changes to somewhat greener
150	A C C C C			
160	b A			- - -
	1 1	i l	and the second second second second second second second second second second second second second second second	


LIGNASCO RESOURCES LIMITED JANNARY-APRIL 1982 Driving Program


-

, **.**• $\boldsymbol{\xi}_{c}$

DRILLHOLE NO.J - 8 - 101Sheet 3 of 3.

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
160		SONIC	160'-178' Very dense dark brown to brownish green till with numerous rounded clasts- matrix is fine grained
180			178'-185' Ground ultra mafic - medium grained blocks and fragments with rock powder magnetic with minor sulphides - first two feet is highly altered
190		NQ	185'-240' Fine to medium grained ultramafic (magnetic greenish black to greyish black -serpentinized rock - quite soft with seams of green clay and soft altered material - fractured sections alternate with massive sections Minor sulphides (Pyrite and Pyrhotite) disseminated throughout the section). Some relict olivine laths visible as small dark, euhedral to subhedral crystals - fine calcite stringers common
210			
220			
240			Drilling terminated at 240' PVC pipe inserted in the hole

42104NW8201 63.4114 EMERSON

030

LIGNASCO RESOURCES LIMITED OMEP DESIGNATED PROGRAMME REGISTRATION NUMBER OM81-5-C-132

Final Report

bу

Aaron Jaan Saber, Ph.D., P.Eng.(Untario), Eng.(Quebec)

Suite 406 800 Eglinton Avenue West Toronto, Ontario M5N 1G1

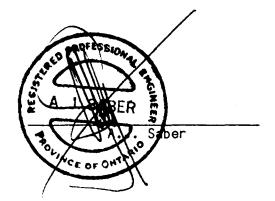
Tel: (416) 781-4798

15 November 1982

This document must be referenced if cited.

LIGNASCO RESOURCES LIMITED OMEP DESIGNATED PROGRAMME REGISTRATION NUMBER OM81-5-C-132

Final Report


by

Aaron Jaan Saber, Ph.D., P.Eng.(Ontario), Eng.(Quebec)

Suite 406 800 Eglinton Avenue West Toronto, Ontario M5N 1G1

Tel: (416) 781-4798

15 November 1982

This report has been prepared on behalf of Lignasco Resources Limited for the Ministry of Natural Resources of the Province of Ontario, with respect to the Ontario Mineral Exploration Program (OMEP) for Designated Program OM-5-C-132: Attn: Mr. B. Gordon, OMEP Administrator, Mining Tax Assessment Branch, Toronto.

This report may be copied in whole or in part, provided credit is given as follows:

Saber, A.J., "Lignasco Resources Limited OMEP Designated Program, Registration Number UM81-5-C-132 (Final Report)," prepared for the Ministry of Natural Resources on behalf of Lignasco Resources Limited, Toronto, Ontario, Canada, 15 November 1982. 82/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 2

Author's Note:

ð

The Author is a Registered Professional Engineer in Ontario and a Registered Engineer in Quebec and is a Member of the Engineering Institute of Canada and the Canadian Institute of Mining and Metallurgy.

The Author is a graduate of Princeton University (Aerospace and Mechanical Sciences, Ph.D., 1974, M.A., 1971) and the University of Toronto (Mechanical Engineering, B.A.Sc., Honours, 1969).

The Author holds the position of tenured Assistant Professor of Engineering at Concordia University, Montreal, Quebec.

Samples for testing were prepared on 11 and 12 May 1982, at the Selco, Inc. laboratory, 1173 Roland, Thunder Bay, Ontario. Chemical analyses of the silica content were made at the analytical chemistry laboratory at Concordia University, Montreal, Quebec.

A.J. Saber, Ph.D., P.Eng.

ABSTRACT

Exploration work conducted by Lignasco Resources Limited, on its licence area (Number 14890) in Kipling, Emerson and Sanborn Townships in Northeastern Ontario, has been designated by the Ontario Mineral Exploration Program (OM81-5-C-132). The work conducted between 1 January 1982 and 30 June 1982 is discussed. The material presented includes the drilling program and logs; silica sand, kaolin, and lignite discoveries; dimaondiferous kimberlite potential; expenditures of \$343,417; a claim for \$82,344; value of the silica sand; and future work plans.

82/11/15

1/15 Lignasco Resources Limited - OM&1-5-C-132

Page 4

Table of

030C

Auth Abst Tabl List	tispiece. or's Note. ract. e of Contents. of Tables. of Figures.	page	1 2 3 4 5 6
1.	Introduction		. 7
2.	Index and Location Maps		8
3.	Previous Work		9
4.	Geophysical Surveys		11
5.	Drilling Program	••••	13
6.	Drill Logs	• • • •	17
7.	Lignite at Adam Creek	• • • •	22
.5	Silica Sand at Adam Creek	••••	24
9.	Kaolin at Adam Creek	••••	26
10.	Diamondiferous Kimberlites	••••	27
11.	Expenditures and Claim	• • • •	28
12.	Discussion and Conclusions	• • • •	31
19	Future Work	• • • •	36
14.	References	••••	38

Appendix A. Drill Hole Logs.

Figures.

Maps.

A.J. Saber, Ph.D., P.Eng.

82/11/15 Lignasco Resources Limited - OM81-5-C-132

List of Tables.

0

- Table | Grid Locations.
- Table II Lignasco Resources Limited Drillhole Data January to April 1982.
- Table III Drill Hole Logs.
- Table IV Sample Depths and Designations, J1-2 Drill Hole.
- Table V Visual Observation of Cores.

Table VI Lignite Sequences Observed at Adam Creek.

Table VII Analysis of Adam Creek Silica Sand.

Table VIII Expenditures.

Table IX Some 1978 Canadian Suppliers of Silica.

Table X Uses of Silica Sand.

Page 5

List of Figures.

- Figure 1 Ontario Geology and the Lignasco Resources Limited Area.
- Figure 2 The Lignasco Resources Limited Area.
- Figure 3 Ontario Geological Survey 1978 Drill Hole Locations.

Fgure 4 Lignasco 1982 Drill Hole Locations.

Figure 5 Equilateral Drill Hole Locations.

Figure 6 Site Drill Hole Rosette.

Figure 7 Proposed 50 Drill Hole Grid.

A.J. Saber, Ph.D., P.Eng.

32/11/15 Lignasco Resources Limited - 0M81-5-C-132

1. Introduction.

This report covers exploration work conducted in the James Bay Lowlands of Northeastern Untario. The region explored includes portions of Kipling, Sanborn and Emerson Townships, licenced to Lignasco Resources Limited under Exploratory Licence of Occupation Number 14890.

The period covered in this report is from 1 January 1981 to 30 June 1982. The work has been considered a "Designated Program" under the "Ontario Mineral Exploration Program," (OMEP) and issued the Registration Number OM81-5-C-132 on 25 March 1982.

This reports discusses the location and surface conditions of the site; geophysical surveys; drilling, including drill hole locations and logs; lignite discoveries, silica sand; and kaolin. The expenditures are also discussed. Finally, conclusions based on the findings are presented, and future plans are shown.

A.J. Saber, Ph.D., P.Eng.

.../8

Page 7

2. Index and Location Maps.

The exploration program is conducted in the region which was designated by this author as the "Adam Creek Area of the James Bay Lowlands." [1] The region, shown in Figure 1, a map of the Province of Ontario, is located in the southern part of the Moose River Basin, in the southernly part of the lowlands. The area falls north of the Precambrian Escarpment, and largely within the limits of the District of Cochrane. The area is drained by the Missinaibi, Mattagami and Opasatika Rivers, which converge to the northeast to form the Moose River.

The specific region of interest is shown in Figure 2. The region covers approximately 92,745 acres in the Townships of Kipling, Emerson and Sanborn.

The site, at Adam Creek, lies approximately 100 km north of Kapuskasing, is serviced by an all-weather road, lies approximately 40 km west of the Ontario Northland Railway, and is about 100 km from the Trans-Canada Highway and the Canadian National Railway through Kapuskasing. The site is serviced by Ontario Hydro, since the Kipling Generating Station is surrounded by the licence area.

The surface features of these regions are shown in Department of Mines and Technical Surveys Canada, Surveys and Mapping Branch, Maps 42-1 (Moose River) and 42-J (Smoky Falls). They are detailed in maps 42-J/1, 42-J/8 and 42-1/4.

High Resoultion Aeromagnetic Survey data are shown in Maps 1, 2 and 3, enclosed; and Grid are shown in Maps 4 to 13, enclosed.

δ2/11/15 Lignasco Resources Limited - UM81-5-C-132

Page 9

3. Previous Work.

The region is generally flat, featureless terrain and has been described by Guillet as follows: [2]

Variegated (red, brown, grey) clay and silt marks the top of the Mattagami Type B unit ..., in direct contatct with Adam till at a depth of 43 metres. Type B sediments comprise a section 22 metres thick that is predominantly medium to coarse grained kaolinite-rich quartz sand with several thick sections of guartz gravel. At a depth of 65 metres, a layer of black carbonaceous clay marks the top of the Type A sediments which continue to a depth of 119 metres. At or about this depth is the top of the Devonian Long Rapids formation, a grey clay-shale, difficult to distinguish from some of the Mattagami clay beds. A lignite seam 1 metre thick occurs at a depth of 71 metres, and a 6 metre seam occurs at a depth of 96 metres.

The region was explored as part of the 1978 Ontario Geological Survey (OGS) drilling program in the Moose River Basin.[2] That program involved drilling a total of eight holes, using a reverse circulation approach in a summer drilling program. The locations of those holes is shown in Figure 3. Six of those holes lie in line in the east-west direction, at 8 to 14 km (5 to 9 mile) spacing along a line at approximately 50 degrees, 10 minutes North, centred at approximately 82 degrees, 35 minutes West. The wto remaining drill holes lie approximately 5 to 10 km (3 to 6 miles) north of the east-west baseline. In all, the total drilling was 1177 metres (3862 feet), with the deepest hole drilled to 189 metres (620 feet).

One of the OGS drill holes, number 78-06, was reported to have located a previously unrecorded lignite seam. This newly discovered reserve was presumed to consist of two main seams: The first a metre (3 feet) thick at the 71 metre (233 feet) depth and the second 6 metres (20 feet) thick at the 96 metre (306 feet) level. The coal is bounded from above by a refractory clay layer and from below by a carbonaceous clay layer. This structure encourages the formation of a natural reactor cavity for underground coal conversion. [3]

In addition to the lignite deposit, the OGS drilling reported finding quartz sands, refractory clays and kaolitic clays. Furthermore, holes 78-01 and 78-08 show coal reserves, quartz sands and clays.

In addition to the OGS exploration program, work by SELCO, Inc, reveals the promise of diamondiferous kimberlites on the same area.[4]

A.J. Saber, Ph.D., P.Eng.

82/11/15 Lignasco Resources Limited - UM81-5-C-132 Page 10

The previous drilling program, conducted by the Ontario Geological Survey reported:

> Any drilling in muskeg terrain can be expected to be hampered to some extent by the wettness of the The excessive use of drilling water, land. particularly when operating by reverse circulation, added to the wettness of the site. Once off the drilling platform, it was not to flounder knww-deep in the boggy uncommon While these conditions caused terrain. some discomfort, they impeded very little the progress of the drilling program... The benefit of a summer drilling program serviced by helicopter. verses a winter program using a winter road are partly reflectde in the difference in cost between helicopter and the estimate for road the construction and maintenance. The estimate for the winter road was \$150,000 to \$165,000, whereas the actual cost for helicopter servicing was half that amount. Additionally, the use of helicopters minimizes the environmental impact, whereas the trace of winter roads creates a long-lasting impact on the muskeg terrain. As to winter drilling, it is generally conceded to be perhaps 20% more costly than summer drilling whatever access (in used, simply because of the increased problems of working in freezing conditions.

The total cost for the 1978 OGS drilling program was reported to be \$263,347.41, or a cost per foot drilled of \$68.19. Overall average recovery was reported to be 57.4 per cent, using triple-tube coring operations.

The three holes (78-01, -06 and -08) lie within 10 km (6 miles) miles of existing all-weather roads, and so are close to transportation routes. The driving time to the site, from Smooth Rock Falls, is approximately 2 hours.

A.J. Saber, Ph.D., P.Eng.

82/11/15 Lignasco Resources Limited - UM81-5-C-132 Page 11

4. Geophysical Surveys.

Airborne magnetometer surveys have provided potential kimberlite targets for detailed ground geophysical definition. As was mentioned above, the geomagnetic data from the geophysical surveys is summarized in Maps 1 to 12.

Evaluation of the ground geophysics led to a selection of anomalies for drill testing. A single hole is directed to a target, with the object of the drilling to identify the anomaly source and to provide sufficient drill core (50 kg) for mineralogical and chemical testing.

Coverage of the area was conducted by air in 1981. That work consisted of flight lines 250 metres nominal spacing with a surface terrain clearance of 60 metres. Total coverage was about 1500 line-km.

Nine geophysical grids were cut and surveyed. All grids were surveyed using a nuclear precession magnetometer. Line and station separation were a maximum of 100 and 25 metres respectively. Diurnal variations were removed from the results. Total surveying from 8 January to 30 June 1982 was 157 km.

The results are referred to the map locations shown in Figure $\lfloor 4 \rfloor$, where the grid locations are referenced. The grids are discussed in Table 1.

TABLE I

Grid Locations.

- Grid 14-6 This grid is a good, small target, entred at 00/050S, and extends off the west end of the grid. Drill testing waits the results of drilling adjacent anomaly 14-200.
- Grid 14-200 A good drilling target is centred at 500W/200N.
- Grid J1-1 A large strong positive response with an amplitude of about 700nT is centred at 200E/400S.
- Crid J1-2 A very large lobate anomaly is located at the centre of the grid.
- Grid J1-3 Several sharp but low amplitude anomalies are present in the east half of the survey. The grid is underlain by basement rocks and the responses seem typical of this setting.
- Grid J1-5 All anomalies detected have either a cultural of basement source.
- Grid J1-6 Two anomalies of possible interest appear at 800W/200S and 400W/300S. The grid is underlain by Precambrian rocks, and while anomaly patterns on the grid confirm this setting, the land is considered retained pending further study.
- Grid J8-100 A single good circular anomaly is centres at 700W/450N. The \checkmark source is likely deep (over 150 metres).

Grid J8-101 A small circular positive anomaly is centred at 200N/300E.

.../13

4.

5. Drilling Program.

Drilling was planned on the basis of the anomalies discussed above, and on the basis of the 6 metre lignite seam reported by the Untario Geological Survey.

A winter drilling program was planned in order to take advantage of a Hawker-Siddeley Sonic Drill, operated by Midwest Drlling of Winnipeg. The drill rig was mounted on a Nodwell carrier accomapnied by a trailer.

The rig was modified to include a Longyear 150 drill head, so that regular NQ diamond drilling could follow sonic coring. The sonic drill was chosen for the job since its 15 cm diameter core provides a relatively undisturbed sample, and since recovery is both large and good. The sonic drill is particularly applicable in unconsolidated wet units as found at Adam Creek.

The drilling was planned for January to April 1982. Unfortunatly, the weather conditions in the James Bay Lowlands in the Fall of 1981, led to a snowfall prior to the winter freeze. This made the construction of winter roads uncertain and difficult. As a result, conditions in the extensive muskeg cover necessitated long, meandering rig moves, and very expensive site preparation. In any event, the rig proved to be successful in recovering Lower Cretaceous and Quaternary tills with a recovery and retention factor better than 95 per cent. This vastly exceeds the recovery reported by the úGS with triple tube boring. Furthermore, the use of the sonic drill allowed a relatively undisturbed sample to be recovered, yielding unquestionable raw data for logging and analysis.

Four holes were drilled in the vicinity of OGS hole 78-06 (82 degrees 13 minutes 43 seconds West longitude, and 50 degrees 15 minutes 30 seconds North latitude). Holes were drilled on an equilateral triangle grid pattern and the sides of each triangle are 800 metres long, as shown in the diagram.(Figure 5) Using such an equilateral triangle pattern allows maximum geological coverage with a predetermined number of drillholes.

The lignite search drill hole locations on site are shown in Figure 6. These locations are based on existing drillhole 78-06 having shown a 6 metre lignite seam. Based on Campbell Lake (1948), holes are drilled no further NORTH than the location of 78-06. And based on 78-01 and 78-08, the general direction of drilling may appear to swing to the south-east. With those considerations, a set of 4 or more drillholes are sited as indicated here.

The first hole drilled was 82-01, 800 metres due south of the site of 78-06. Hole 82-01 is located at station 'a' in the diagram.

Hole 82-02 was located at station 'b', 800 metres from station 'a', along a line 30 degrees declination of the east-west horizon through 78-06.

62/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 14

Hole 82-03 was located dependant on the results of 78-06, 82-01 and 82-02. With 82-01 and 82-02 showing lignite occurance equal to or less than 6 metres at approximately 100 metres depth or deeper, then 82-03 was to be located at station 'c'. If the overburden is shallower than 100 metres, or if the seam is thicker than 6 metres, then 82-03 is to be orilled at station 'd'. In general the siting of drillholes was to be in the direction in which the lignite seam appears to be increasing. This siting is illustrated for the case of drillhole 82-04:

Drillhole 82-04 is to be drilled dependant on the locations of 82-01, 82-02, and 82-03. If stations 'a', 'b' and 'c' have been drilled, then 82-04 is to be located at 'g' if the seams at 'a' and 'c' have a larger average thickness than those at 'a' and 'b'. Likewise, if the average depth of lignite at 'a' and 'b' exceeds that at 'a' and 'c', then 82-04 is to be drilled at station 'd'. If the average lignite thickness of stations 'c' and 'b' exceeds either of those two averages above, then, drillhole 82-04 is to be executed at 'i' if 'c' shows the largest seam, at 'e' if 'a' shows the largest seam and at 'k' if the largest seam is at 'b'.

If stations 'a', 'b' and 'd' have been drilled, Then 62-04 is to be located by averaging the the seam hicknesses in pairs: viz, 'a'-'b', 'b'-d', and 'a'-'d' and drilling along the line that shows the highest average lignite thickness in the direction in which the thickness is increasing. For example, performing the avaraging in pairs may show that the 'b'-'d' pair has revealed the largest portion of a lignite lens. In that case, 82-04 is located at 'k' if 'b''s seam is larger than 'a''s or at 'g' if the opposite is true.

Should there be occasion to make additional drilling, such drilling is to proceed in the direction of increasing lignite appearance.

If holes cannot be drilled to within 80 metres of the stations on the grid, then a new station point should be located as close as possible to 800 metres from already-drilled sites. If it is necessary to drill at distances over 100 metres from the specified site, then, a new grid must be established with its first hole no closer than 720 metres from any already-drilled hole, and no further than 880 metres from such holes.

32/11/15 Lignasco Resources Limited - 0M81-5-C-132 Page 15

Two holes were completed for geophysical anomaly examination. The locations of all six holes drilled in the January to April 1982 period are listed in Table II. The total drilling was 659 metres (2162 feet), providing 15 cm (6 inch) diameter core, logged, and boxed, relatively undisturbed.

A.J. Saber, Ph.D., P.Eng.

TABLE II

Lignasco Resources Limited Drillhole Data January to April 1982

Drill Hole (Design.)	Longitude (d-m-s)	Latitude (d-m-s)		pth (m)	Dates (1982)
82-01	82-13-43	50-15-30	383	116.7	16/3 - 20/3
82-02	82-13-43	50-15-30	364	110.9	29/3 - 1/4
82-03	82-13-43	50-15-30	326	99.4	24/3 - 29/3
82-04	82-13-43	50-15-30	367	111.9	20/3 - 24/3
J 1- 2	Gria J1-2	100S/300W	482	146.9	6/3 - 11/3
€38-101	Grid J8-101	200N/300E	240	73.2	22/2 - 26/2
TOTAL			2162	659.0	22/2 - 1/4

A.J. Saber, Ph.D., P.Eng.

82/11/15 Lignasco Resources Limited - UM81-5-C-132 Page 17

6. Drill Logs.

The drill logs derived from the drilling program discussed above are provided in Appendix A. The drill logs have been prepared by H. Verma, the site geologist for the drilling program. A protion of the log for drill hole J1-2 is discussed in Tables III to V.

Table III discusses a portion of the log for drill hole J1-2. The core shows silica sand/kaolin matrices extending from approximately 50 feet (16 metres) to over 200 feet (65 metres).

The silica sand was washed in a SWECO wet separater and dried to give the results shown in Table IV. Table IV gives sample depths and designations, it shows the thickness of 10 selected sequences ranging from 3.5 feet (1 metre) to 10 feet (3 metres), and also provides the dry silica sand fraction for the sequence.

The core from drillhole J1-2, located in the eastern half of Kipling Township has been examined visually. The locations along the core of the samplings is given in Table IV. The core is essentially undifferentiated until 55 feet (17 metres), where the quaternary/cretaceous boundary is intersected. The demarcation is determined by the chemical activity of the careous content of the core down to the boundary: a drop of acid causes chemical reaction to occur until suddenly, at 55 feet, the activity ceases. The core examination begins at this point.

The core contains various sizes and grades of silica, powdered to a greater or lesser degree by kaolin, china clay. For example, at 60 feet (18 metres), a view under a 16X magnifying lens reveals apparently clear, colourless silica sand crystals coated in a light-grey, whitish powder. There are a few black or brown coloured particles, but these are few and far between.

Observing the sample under a 20X glass reveals a few brown-coloured units dispersed in a granular matrix of 0.5 to 1 mm sized particles.

A discussion of the appearance of the samples is given in Table V.

The water content of the core is estimated using a sample from the 58 foot depth location. A portion of sample designation J1-2-1, with a total mass of about 70 grams, was heated in an electric oven at 150 C for about 1 hour. The mass decreased to 61 grams, indicating that the water content of the core is about 12.86 per cent.

A.J. Saber, Ph.D., P.Eng.

TABLE III

Drill Hole Logs.

- (a) 55-60 Non-cacareous coarse silica sand kaolin matrix with increasing kaolin toward the bottom (J1-2-1, 58 feet);
- (b) 60-65 Medium to coarse greyish-white silica sand kaolin matrix (J1-2-2, 61 feet);
- (c) 65-70 Medium to coarse silica sand kaolin matrix;
- (d) 70-73 Fine silica sand kaolin matrix;
- (e) 73-75 Brown, hard fireclay;
- (f) 75-80 Whitish grey fine to medium-grained silica sand kaolin matrix;
- (
 80-85 White, fine-grained silica sand kaolin matrix, with abundant kaolin (J1-2-3, 83 feet);
- (h) 85-90 Same as above (g). However, the core box was lost during transit from the site to camp. The box was later recovered, but the core is likely disturbed;
- (i) 90-93 Medium to coarse, grey to greyish-white silica sand kaolin matrix with lesser amounts of kaolin (J1-2-4, 92 feet);
- (j) 93-93.5 Greyish-white, medium-grained silica sand kaolin matrix;
- (k) 93.5-96 Grey to yellowish-brown fireclay;
- (1) 96-100 Reddish-brown fireclay;
- (m) 100-105 Greyish, medium-grained silica sand kaolin matrix;
- (n) 105-110 White, fine to medium-grained silica sand kaolin matrix (J1-2-5, 107 feet);
- (o) 110-114 Grey, medium to fine-grained silica sand kaolin matrix, with only some kaolin;
- (p) 114-117 Grey to white, fine to medium-grained silica sand kaolin matrix (J1-2-6, 117 feet);
- (q) 117-120 Fine, white silica sand kaolin matrix;
- (r) 120-125 Coarse silica sand with some heavy minerals. Minor amounts of kaolin;

(s) 125-127.5 Grey, fine silica sand - kaolin matrix;

A.J. Saber, Ph.D., P.Eng. .../19

(+)	127.5-130	Grey	firec	lay;
-----	-----------	------	-------	------

- (u) 130-134 Grey, fine, sandy clay;
- (v) 134-135 Grey, coarse silica sand kaolin matrix with very little kaolin;
- (w) 135-140 Fine to medium-grained silica sand kaolin matrix with grey rim observed around the perimeter of the core (J1-2-7, 137 feet);
- (x) 140-185 Greyish-white, medium to coarse-grained silica sand kaolin matrix (J1-2-8, 148 feet) (J1-2-9, 168 feet) (J1-2-10, 183 feet);
- (y) 185-194 Medium to coarse-grained silica sand kaolin matrix;

TABLE IV

Sample Depths and Designations, J1-2 Drill Hole

Sample Designation	Depth (Feet)	Thickness (Feet)	Dry Silica (125 microns - 1mm) (%)
J1-2-1	58	5	58.3
J1-2-2	61	10	30.3
J1-2-3	83	10	66.2
J1-2-4	92	3.5	53.7
J1-2-5	107	5	52.3
J1-2-6	117	6	67.8
J1-2-7	137	5	50.6
J1-2-8	148	15	58.7
J1-2-9	168	15	25.0
J1-2-10	183	14	10.4

A.J. Saber, Ph.D., P.Eng.

TABLE V

Visual Observation of Cores.

- J1-2-1 Some large-grained particles, generally beige in colour. Some grey particles.
- J1-2-2 More coarse-grained particles, generally beige in colour. Some grey particles.
- J1-2-3 Whiter colour here than the previous two samples, with fewer of the large-grained particles.
- J1-2-4 Generally white in colour, with some small black dust-like elements.
- J1-2-5 Does not have the same small black dots of dust observed in J1-2-4.
- J1-2-6 The vast majority of this material has a fine-grained nature: the coarse grained fraction appears to be very small.
- J1-2-7 The fine-grained material represents most of the mass of the sample. The remainder is deemed to be of relatively coarse grain.
- J1-2-6 The fine-grained material comprises most of the sample. There are plasticky lumps that are separated as part of the coarse grained mass in a Sewco wet separator. This plasticky material appears to be the agglomeration of smaller solid fragments held together in a fine wet clay powder matrix. There appear to be some shiny flake-like material which may be mica.
- J1-2-9 Most of this material is course-grained, with a small fraction fine-grained. The quantity of the plastick material observed earlier appears to have increased. There also appear to be mica fines in the sediment.
- J1-2-10 A small fraction is fine-grained, the balance course. The quantity of mica-like material has decreased. In the coarse fraction, cnirt and jasper have been found, although the majority of the particles are coarse-grained silica sand globules of various colour.

62/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 22

7. Lignite at Adam Creek.

Lignite of 6 metres thickness observed by the Untario Geological Survey at their station 78-06, was not observed by Lignasco Resources Limited in the January to April 1982 program. Nevertheless, other sequences were recorded.

First, in the case of the four holes at 82 degrees 13 minutes 43 seconds West longitude and 50 degrees 15 minutes 30 seconds North latitude, lignite was observed in all of the four holes. Also, only hole J8-101 did not provide a lignitic intersection.

As the map (Figure 4) illustrates, only J8-101 lies near a river, the Mattagami. Furthermore, correlation with the Cretaceous Tyrell Sea, suggests that lignite could only be expected at the ancient shore.

This leads to identification of the source lignite field for Ontario at the border of the shore of the Tyrell Sea. The deposit in this case, over the 92,745 acres of Lignasco Resources Limited licence lands exceeds 1 million tonnes. In any event, further exploration for lignite must be undertaken for evaluation.

Lignite Sequences Observed at Adam Creek

Drill Hole (Designation)	Depth (Feet)	Lignite Thickness ()
82-01	245	2 feet
62-02	315	fragments
82-03	153 175 190	fragments 2 feet 1 foot
82-04	202	2 feet
J1-2	190 300 313 341	0.5 feet 5 feet 11 feet 2 feet
J8-101		

.../24

_ مے از مراجب ہے۔

62/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 24

¿. Silica Sand at Adam Creek.

The exploration and subsequent analyses show that quartz sand of high natural purity is located on the Lignasco Resources Limited licence lands. The sands have been analysed at the Analytical Chemistry Laboratory of Concordia University, Montreal, Quebec. Samples subjected to dry magnetic separation have given analyses as shown in Table VII. The high silica content, low iron content and chromium-free nature of the silica sand, coupled with its physical size in the natural state make this medium ideal for glass-making, including the production of fibre-optic grade products.

A.J. Saber, Ph.D., P.Eng.

Lignasco Resources Limited - UM&1-5-C-132 Page 25

Analysis of Adam Creek Silica Sand(%)

Sample	STÚ2	Fe203	A1203	Cr203	Residual
J1-2-1	97.05	0.031	0.75	0.002	2.167 %
J1 - 2-2	94.20	0.101	1.21	0.008	4.571
J1-2-3	97.67	0.131	0.68	0.001	1.518
J1-2-4	98.07	0.032	0.64	\$0.001	1.258
J1-2-5	98.27	0.025	0.47	\$0.001	1.235
J1-2-6	94.13	0.111	1.18	0.003	4.576
J1-2-7	97.65	0.028	0.90	0.001	1.421
J1-2-8	98.16	0.161	0.61	0.002	1.067
J1-2-9	96.85	0.026	0.65	0.001	2.433
J1-2-10	93.06	0.034	1.05	0.002	5.854

Notes: (1) error on silica +0.1,-0 (2) contents of residual may include silica, calcium and clay

9. Kaolin at Adam Creek.

In addition to the observed lignite and silica sand, the site at Adam Creek shows high quality kaolin as part of the silica sand / kaolin matrix. Indeed, for drill hole J1-2, the kaolin observed at approximately 140 feet (40 metres) below the overburden, reveals plasticky white globules of significant reflectivity.

It is the opinion of this author that these globules represent competition for the kaolin currently imported into Canada. 82/11/15 Lignasco Resources Limited - UM81-5-C-132 Page 27

10. Diamondiferous Kimberlites.

The magnetic anomalies have suggested drilling at grid locations J1-2 and J8-101.

Hole J8-101 was drilled to a depth of 73 metres. A dark massive ultramafic intrusive was intersected under a till cover of 55 mtres. Laboratory testing of the core remains to be completed, but early petrographic work indicates the rock consists of oviline phenocrysts set in a groundmass of lath-like pyroxenes. The rock is not likely a true kimberlite, but a final classification demands further study.

A hole was also drilled on J1-2. This hole was abandoned at 147 metres. Bedrock was not reached. After passing through about 16 metres of till, a long interval of silica sand (to 59 metres) was encountered. This was followed by intercalated sands and clays, and some lignite beds as indicated above. Given the depth of cover, additional drilling is not warranted.

62/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 28

11. Expenditures and Claim.

2

Expenditures are based on the actual work done on site due to the drilling program and to direct analyses of cores. The actual claims are based on the 50% of a Joint Venture between Lignasco Resources Limited and Selco, Inc. in the search for diamondiferous kimberlites, and 100% of the lignite program.

The expenditures for the program are itemized in Table VIII. This expenditure exceeds the Proposed Budget of 329,377 by 14,040 (4%). The ACTUAL CLAIM is therefore only 329,377.

The grant requested is therefore \$82,344.

TABLE VIII

Expenditures.

Ground Geophysics:

157 kilometres of magnetometer surveys, by S. Bosum Contracting, Cibougamau, Quebec 12 January 1982 to 10 March 1982 \$9,206

Direct Expense (50%): \$4,603

Contract Draughting and Contouring by Dataplotting Services, Don Mills, Untario, \$1,672

Direct Expense (50%): \$836

Line Cutting:

8 grids, total 157 kilometres, by S. Bosum Contracting, Chibougamau, Quebec, \$18,072.

Direct Expense (50%): \$9,036

Diamond Drilling:

4 noles, 438.9 metres by Midwest Diamond Drilling, Winnipeg, Manitoba, at \$458.43 per metre.

Direct Expense (100%): \$201,204

2 holes, 221.1 metres by Midwest Diamond Drilling, Winnipeg, Manitoba, at \$458.43 per metre.

Direct Expense (50%): \$50,450.22

Ground Support:

Camp Operation, including food supplies (\$10,225), Accomodation (\$2,846), vehicle rental and operation (\$1,755), draughting (\$818), other (\$711), \$16,355.

Derect Expense (100% of 4/6 ths and 50% of 2/6 ths): \$13,629

Helicopter Services:

North Star Helicopters, Hearst, Ontario, A-Star Charter, \$430 per hour, \$33,370.

Direct Expense (100% of 4/6 ths and 50% of 2/6 ths): \$27,808

Supervision:

.../30

للدائية الدائية مترضر مترسم متراثية الرائم متراثية ال

Un site (\$10,742), general (\$12,609), \$23,351.
Direct Expense (100% of 4/6 ths and 50% of 2/6 ths): \$19,459.
Testing:
Silica Sand Testing (\$2,500)
Direct Expense (100%): \$2,500
Report Production:
Direct Expense (100%): \$10,000

TOTAL CLAIM: \$343,417

A.J. Saber, Ph.D., P.Eng.

62/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 31

12. Discussion and Conclusions.

Hydrocarbon fuels are supplied to the Province of Ontario from outside its borders. This supply is argued to be satisfactory. Consequently, lignite development as a substitute source of fuel may be delayed. Nevertheless, silica sand and kaolin are in demand.

Silica occurs in nature as quartz in a variety of rocks and sediments. However, the value of a deposit depends on its purity and accessibility to markets. Indeed, commercial sources are limited only to those supplies which have very high purity and which can provide the material to a market at a competitive price. Such sources are rare.

Some Canadian suppliers, as of 1978, are listed by Province in Table IX. However, these suppliers do not provide all the silica requirements of Canada. In 1980, 1,177,306 metric tonnes of silica sand were imported into Canada (valued at \$17,336,000 or \$14.73 per tonne). This is approximately the same quantity as the domestic Ontario production of 967,000 tonnes (valued at \$9,100,000 or \$9.41 per tonne) over the same period.

Most of the imported silica sand is imported from a sole supplier at Ottawa, Illinois. However, it is reported that the Illinois supply is not maintaining the level of suitability that the market demands. Furthermore, both Ontario and Quebec are experiencing shortages of silica supply, today. This is not only because of the high cost of imports, but also because of the apparent decreased quality of the imported supply. Ontario, alone, consumes more than 1 million tonnes of silica annually. This silica has been valued at \$31 million (i.e., 31 \$/tonne), F.O.B. the user site. Of this 1 million tonnes, nearly 600,000 tonnes were used for glassmaking. Only 230,000 tonnes used for glassmaking were purchased in Ontario, the balance (370,000 tonnes) were purchased from the United States. Indeed, almost 70% of total silica requirements in the provinces of Ontario and Quebec are imported. The silica sand supply at Adam Creek can meet the stringent raw material specifications the Ontario market demands.

Although all cores show silica sand of various grades and sizes, the drilling program found silica sand of exceptional purity. The silica sand, of 125 micron to 1 mm in mean size, is found below approximately 60 feet (18 metres) of overburden.

In order to review the competitive nature of the Adam Creek silica sand in the marketplace, attention is focussed here on the existing Ontario supplier, indusmin Limited. Indusmin Limited quarries a high-grade silica deposit on Badgeley Island in Geogian Bay. The deposit is reported to contain 12.6 million metric tonnes of very pure Precambrian Lorraine quartzite. The primary crushing plant is located about 190 km north of Midland, across Georgian Bay. Midland is approximately 120 km north of Toronto. The Badgely Island operation has a capacity of 1 million tonnes per year, while the Midland plant capacity is half that. b2/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 32

The recoverable silica sand at Adam Creek includes 103,000 tonnes per acre (66 million tonnes per square mile) which appears to be of glass grade purity. The total deposit of glass grade silica sand may exceed half a billion tonnes, over an area of 5000 acres (8 square miles). The value of such a glass grade deposit, at \$11.80 per tonne F.O.B. Adam Creek, is over \$1,200,000 per acre or over \$770,000,000 per square mile.

Supplying the Ontario demand for silica sand that is imported from the United States, approximately 370,000 tonnes per annum, requires a production cost of approximately \$9 per tonne. The profit, then, is 370,000(11.8-9) = \$1,040,000 per annum. The cost of the necessary preliminary work before mining, that is, drilling to delineate the deposit, planning including financial arrangements, and contract definition is approximately \$465,000.

Depending on the size of the granules and the proportions of "impurities" such as iron oxide, aluminum oxide and oxides of other metals, silica sand has a variety of uses. These uses are listed in Table X.

A.J. Saber, Ph.D., P.Eng.

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILL LOG: DRILLHOLE NO. J-1-2 Location: Grid J-1-2; 100S/300W) Kipling Township Started: March 6, Finished March 11,1982 Sheet 1 of 6

Drilling: Midwest Drilling, Winnipeg Geology: Harish M. Verma

	Depth (Ft.)	Lith. Log	Sample	Fie	eld Description and Remarks
	0 		SONIC	0'-14'	Core Loss - bottom part has calcareous grey till. Upper part is Muskeg.
	10	 		14'-19'	Cal <u>care</u> ous grey clay with very few small clasts
	20	7 À		19'-22.5'	Greyish to greyish brown coarse calcareous till Very dense, coarse, calcareous grey till
	-			26'-30'	with clasts Greyish to greyish brown coarse till
	30			30'-55'	Very coarse and dense calcareous grey till wit numerous clasts
•	40				
	50 <u>-</u>				
	60 <u>-</u>			Q1 55'-60' 60'-65' 65'-70'	UATERNARY-CRETACEOUS CONTACT Non calcareous coarse silica sand - kaolin matrix with increasing kaolin towards the bottom Medium to coarse grained greyish white silica sand-kaolin matrix Medium to coarse grained silica sand-kaolin
	70			70'-73'	matrix Fine grained silica sand – kaolin matrix
				73'-75' 75'-80'	Brown hard fireclay Greyish white fine to medium grained silica sand kaolin matrix
	80				
				•	

GNASCO RESOURCES LIMITED NUARY-APRIL 1982 Drilling Program

÷.,

DRILLHOLE NO. J-1-2 Sheet 2 of 6

Depth (Ft.)	Lith. Log	Sampl e	Fie	eld Description and Remarks
80			80'-85'	White, fine grained silica sand- kaolin matrix with abundant kaolin
1-2-3 -> -			85'-90'	Same as above (Box with sample lost during transit from site to camp, but was later recovered - sample may be disturbed)
			·90'-93'	Medium to coarse grained, grey to greyish white silica sand - kaolin matrix - lesser amount of kaolin
			93'-93.5'	Greyish white, medium grained silica sand kaolin matrix
-			93.5'-96'	Grey to yellowish brown fireclay
100			96'-100' 100'-105'	Reddish brown fireclay Greyish, medium grained silica sand-kaolin matrix
トンビー			105'-110'	Same as above but fine to medium grained
110			110'-114'	Same as above but grey in colour and with lesser amount of kaolin
			114'-117'	Same as above but colour changes to greyish white
1-2-6-> 1		• · · · ·	⊨117'-120'	Fine grained, white silica sand-kaolin matri
120			120'-125'	Coarse g <mark>rained silica sand with som</mark> e heavy minerals - minor amounts of kaolin
			125'-127.5	'Grey, fine grained silica sand-kaolin matrix
-			127.5'-130	'Grey fireclay
130			130'-134'	Grey, fine sandy clay
			134'-135'	Grey, coarse grained silica sand - kaolin matrix with very little kaolin
/-=-// → -			135140'	Fine to medium grained white silica sand - kaolin matrix with grey rim around the
			140'-160'	perimeter of the core Greyish white, medium to coarse grained sili sand-kaolin matrix
1-2-3-2			,	
150				
-				
160				

The second designed and the second states of the second states of the second states and the second states are

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

.

DRILLHOLE NO. J-1-2 Sheet 3 of 6

۰,

2.3.

1

Depth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
160 - - -		Sonic	160'-194'	Greyish white, medium to coarse grained silica sand - kaolin matrix
//-2? → 170				
180				
190— 			194'-195' 195'-195.5'	Black, plastic carbonaceous clay WOODY LIGNITE
200			195.5'-197' 197'-203'	Black to brown carbonaceous clay with some lignite fragments Black to brown carbonaceous clay
			203'-206' 206'-214'	Reddish to dark brown carbonaceous clay (?fireclay) Black carbonaceous clay
210			214'-217'	Silty, sandy, grey to dark brown clay
			217'-221'	Grey, coarse sand - little kaolin
220{ 			221'-222' 222'-227'	Light brown clay (?Fireclay) Black carbonaceous clay
			227'-230' 230'-235'	Grey to dark brown sandy clay - transition zone between the zone above and the zone bel Black carbonaceous clay
230			235'-238'	Highly carbonaceous black clay approaching
240			238'-240'	earthy lignite Medium to coarse∘grained silica sand - kaolin matrix

LASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

2.1

DRILLHOLE NO. J-1-2 Sheet 4 of 6

1

Depth (Ft.)	Lith. Log	Sample	Fie	eld Description and Remarks
240 -		Sonic	240'-243'	Medium to coarse grained silica sand - kaolin matrix
- - -			243'-248'	Fine grained silica sand - kaolin matrix
- - 250			248'-254'	Same as above but getting coarse grained
			254'-258'	Brown fireclay
260			258'-262' 262'-266'	left in the core barrel and could not be retreived, but is most probably the brown fireclay as above and below Brown fireclay
			266'-269'	Lost due to washing
-			269'-273'	Dark grey to brown plastic fireclay
270			273'-278'	Very dense, grey to brown clay
280			278'-281' 281'-285'	Grey, plastic fireclay Grey, plastic fireclay with brown inclusions
 			285'-290'	White, fine to medium grained silica sand- kaolin matrix
290			290'-295' 295'-299'	Same as above but mostly medium grained Whitish (turning grey towards the bottom) silica sand kaolin matrix - also getting coarser towards the bottom
-			299'-300'	Highly carbonaceous clay bordering on
300			300'-303' 303'-305'	earthy lignite Woody lignite – almost no water Black carbonaceous clay
			305'-307' 307'~310'	Black carbonaceous clay - some sand at the t Dark brown to black carbonaceous clay
310		,	310'-313'	Mixture of coarse sand, black carbonaceous clay and lignite fragments
			313'-320'	WOODY LIGNITE
320				
}				

· DRILL LOG

LINASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

• 21

DRILLHOLE NO. J-1-2 Sheet 5 of 6

1.71.12

ı

oth)	Lith. Log	Sample	Fiel	d Description and Remarks
320		SONIC	320'-324' 324'-325' 325'-326' 326'-329'	WOODY LIGNITE Highly lignitic black carbonaceous clay Same as above, probable sluffing Brown to black carbonaceous clay, somewhat sandy at the bottom and within this run
330			329'-332' 332'-335' 335'-337'	Black carbonaceous clay Black to brown carbonaceous clay with some sand Black to brown carbonaceous clay - plastic
340			337'-340' 340'-341'	in places Black highly carbonaceous clay with thin (1"-2") lignite seam at 339' Black carbonaceous clay
350-			341'-343.5' 343. [*] 5-345'	
			346.5'-347' 347'-352' 352'-357' 357'-371'	Grey clay with some fine sand Grey, fine to medium grained sand Fine to medium grained, grey sand Grey, fine to medium grained sand with angular quartz grains
360				
370			371'-377'	Sand as above, but getting medium to coarse grained
			377'-382'	Same as above, mixed with clay at the bottom
380			382'-387'	Medium to coarse grained, grey sand
390			387'-392'	Same as above but getting coarser
	0		396'- 397' 397'-397.5'	Greyish black, sandy clay Grey, fine grained sand Coarse sand, mixed with dark grey clay Grey to black, very hard, sandy clay
400				, , , , , , , , , , , , , , , , , , ,

LIGNASCO RESOURCES LIMITED JOARY-APRIL 1982

Drilling Program

· ·

DRILLHOLE NO. J - 1 - 2. Sheet <u>6</u> of <u>6</u>.

4

 \mathbf{s}^{\prime}

)epth Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
400 -		SONIC	400'-402' 402'-415'	Grey to black, very hard, sandy clay Sample mixed because of difficulties in retreiving it. Mostly dark coarse sand with some clay mixed in it
420			415'-430'	Greyish yellow, medium to coarse sand
430		NQ	4 30 ' - 4 35 '	Grey to dark grey, medium to coarse sand
440			435'-455'	Core washed out, probably coarse sand
450			455'-457'	Black, highly carbonaceous clay with fragments of lignite
460		Sonic	457'-480'	Sample washed out - coarse sand
470				
480 482			Drilling te	Probably hard clay - no sample retreived erminated at 482' eserted in the hole

Lignasco Resources Limited - OM81-5-C-132 Page

Page 33

TABLE IX

Some 1978 Canadian Suppliers of Silica

Newfoundland Newfoundland Enterprises Limited, subsidiary of Armand Sicotte & Sons Limited; at Villa Marie

Quebec Indusmin Limited; near Saint-Canut and near Saint-Donat

> Union Carbide Canada Mining Ltd; near Melocheville

Baskatong Quartz products Ltd; near La Galette

Montreal Siica Mines Ltd; near Ormstown

Untario Indusmin Limited; on Badgeley Island

Manitoba Steel Brothers Canada Limited; at Black Island

Saskatchewan Hudson Bay Mining and Smelting Co Limited; in the vicinity of Flin Flon

Alberta Sil Silica Ltd; at Bruderheim

British Columbia Pacifica Silica Limited; near Oliver.

A.J. Saber, Ph.D., P.Eng.

TABLE X

Uses of Silica Sand

Glass: High-purity, naturally-occurring sand or material produced by crushing quartzite or sandstone is used in the maufacture of glass. minor amounts of certain elements are particularly objectionable because they act as powerful colourants. For example, chromium should not exceed six parts per million and cobalt not over two parts per million. Glass fibre optics technology, developing over the last few years, promises to become important in communications, an area in which Canada is an acknowledged world leader, as glass fibre replaces copper cable in several applications.

Silicon Carbide: Silica sand used in the manufacture of silicon carbide should have a silica content of at least 99 per cent. Iron and alumina should be less than 0.1 per cent each; lime, magnesia and phosphorous should be absent. Sand should be 100 mesh with the bulk of it plus 35 mesh.

Sand is used in the hydraulic fracturing of Hydraulic Fracturing: oil-bearing strata to increase open pore spaces, thus increasing the productivity of the oil well. Sand used for this purpose should be clean and dry, have a high compressive strength, be free of acid consuming constituents and have a grain size of between 20 and 35 mesh. Grains should be well-rounded to facilitate placement in the formation order to provide in maximum permeability.

Naturally occurring sand or material produced by Foundary Sand: crushing friable sandstone is used in the foundary industry for moulding. For foundary purposes, the chemical composition of the sand is not as important as its phylical properties. For the highly end-use, а refractory sand, having well-rounded grains with frosted or pitted surfaces, is preferred. Grain sizes vary between 20 and 200 mesh. Rounded grains are preferable to angular fragments because they allow maximum escape of gas during casting.

Sodium Silicate: Sand for the manufacture of sodium silicate should contain more than 99 per cent silica, less than 0.25 per cent alumins, less than 0.05 per cent lime and magnesia combined, and less than 0.03 per cent iron (111) oxide. All sand should be between

A.J. Saber, Ph.D., P.Eng.

Lignasco Resources Limited - OM81-5-C-132 Page 35

20 and 100 mesh.

Silica Flour:

flour, produced Slilica by fine-grinding quartzite, sandstone, or lump quartz; or as a by-product in sand sifting, is used in the ceramics industry for enamels, frits, and pottery For use in enamels, the silica four must flint. be over 97.5 per cent silica with less than 0.5 per cent alumina, and less than 0.2 per cent ferric oxide. Silica flour is also used as an filler in rubber and asbestos cement inert products, as an extender in paints and as an abrasive agent in soaps and scouring pads. It is used increasingly in autoclave-cured concrete products such as building blocks and panels, where approximately 25 kg of silica flour is used for every 100 kg of Portland cement.

Quartz Crystal: Quartz crystal with desirable piezoelectric properties is being used in the Canadian Natural crystal must be electronics industry. perfectly transparent and free from all impurities and other flaws. The individual crystals should have a mass of 100 g or more and measure at least 5 cm in length and 2.5 cm in girth. There is no production of quartz crystal in Canada. Domestic requirements are met by imports from the United States and to a lesser extent Brazil.

Other Uses: Coarsely ground, closely sized quartz, quartzite, sandstone and sand are used as abrasive grit in sandblasting and in the maufacture of sandpaper. Various grades of sand are used as filtering media in water-treatment plants. Silica is also required in Portland Cement maufacture if there is insufficient silica in the limestone or in other raw materials used in the process.

A.J. Saber, Ph.D., P.Eng.

82/11/15 Lignasco Resources Limited - JM81-5-C-132 Page 36

13. Future Work.

ð

Future work focusses on two types of area designation. The first is associated with the gomagnetic anomalies, while the second is associated with the balance of the land area.

Associated with the first area are two more sites, on 14-200 and J1-1. These holes are being examined using helicopted supported drilling. The balance of the land, approximately 88,845 acres, is to be explored using a portable vibra-core drill.

The program proposed is designed to delineate kaolin, silica sand, refractory clay and lignite resources that were found during the 1981-1982 drilling program.

In the past program, one hole was drilled in Kipling Township and five holes were drilled in Emerson Township. The future program is to be planned to have 50 holes drilled throughout the area. Each hole is scheduled to be cast to a depth of at least 300 feet, for total drilling of 15,000 feet (4570 metres).

The corer is fitted with a BQ rod, approximately 1.81 inches I.D., to allow for the extraction of standard size core. The device has been used elsewhere in the Province of Ontario as well as abroad. Nevertheless, this type of drilling is new to the area. However, the extraction of a relatively undisturbed core centre warrants exploration with this device.

The drilling program presented below is aimed at mapping a large portion of the region, in a regular manner. However, it is necessary to point out that flexibility is required in order to mount an effective program. First, the generally wet terrain may make accessibility to map-sited locations difficult. Consequently, leeway is allowed in mobilization of the drill rig to allow drilling at a site that may be more accessible and/or less hazardous than the ones map-sited. In addition, no drilling is planned in the vicinity of rivers, allowing a margin of at least 1000 feet (300 metres) from the river centre to the region of drilling interest. Next, in some cases, loss or casing or other drilling encumbrances may suggest movement of the drilling away from the sited location entirely. In that case, the geologist on site, in consultation with the drill manager and the drill team members may elect to abandon a specific grid region. This latter case will be made up by the selection of an alternative site. Finally, drilling in this region, an area that has not been heavily explored, may show trends of geology or resources that the geologist may find suggest changes of the drill plan. Lignasco requests, prior to commencement, that allowances for such suggested variations be Drill sites are shown on the attached map (Figure 7). In the made. illustration, the exploration area is divided into rectangles on a grid pattern, approximately 1.6 miles (2.6 km) on a side. Grid locations which have previously been drilled by Lignasco Resources Limited are excluded Also excluded from enumeration are sites earmarked for from enumeration. drilling or otherwise drilled on the portion of the licence area not covered by the 88,845 tract discussed here.

82/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 37

Surface feature maps indicate that some zones are boggy, with string bogs in particular. Consequently, "precise" locations for drillholes can not be established at this time. In any event, the drill team will note the location of each drillhole within the designated grid location.

In the event that a drill hole cannot be placed within a drill location, a suitable alternate site will be discussed.

Drilling is planned to commence in the region of the Kipling Dam, in Kipling Township.

It is noted here that the enumeration of the drill hole grid is not meant to suggest the order of drilling. 82/11/15 Lignasco Resources Limited - OM81-5-C-132 Page 38

14. References.

- Saber, A.J., "A Canadian Program for In-Situ Coal Conversion," Paper Number 82-33-32, 33rd Annual Technical Meeting of the Petroleum Society of the Canadian Institute of Mining and Metallurgy, Calgary, Alberta, 6-9 June 1982.
- [2] Guillet, G.R., "Fossil Fuel Program, Moose River Drilling Project, District of Cochrane," Untario Geological Survey, Open File Report (OFR) 5276, 121 pages, 8 tables, 4 figures, 16 photos (xerox copies), two figures in back pocket, 1979.
- [3] Saber, A.J., "Unsolicited Proposal for In-Situ Coal Conversion of Adam Creek Ontario Lignite," submitted to the Ministry of Energy, Government of Ontario, dated 16 February 1982, 120 pages.
- Anderson, W.J., "Smoky Falls Project, Progress Report on Activities," Report NTS 42J8, J1, 14, undated, Selco, Inc., Toronto, Ontario, 1982.

· Appenaix A - Drill Logs.

A.J. Saber, Ph.D., P.Eng.

. LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

7

Priling: Midwest Drilling, Winnipeg eogy: Harish M. Verma

DRILL LOG: DRILLHOLE NO. SL 82-01. Location: 800 metres south of OGS Drillhole 78-06 (Long. 82°13'43"W, Lat.50°15'30"N) Sanborn Township Started March 16, Finished March 20, 1982 Sheet 1 of 5

÷

t.)	Lith. Log	Sample	Field Description and Remarks
0-	- M	Sonic	0'-19' Muskeg
, - -			
-	_سد. _عور		
10 -	يد بد		
-	*		
	<u>*</u>		
20			19' - 27' Greenish grey. highly calcareous plastic clay
			Ciay
			27' ~ 33' Grey, very dense, coarse, silty and dry
30			till
	0.4.4		221 - 251 Very James condu enlemente till
			33' - 35' Very dense, sandy calcareous till 35' - 36' Grey, calcareous clay till
- 1	9.4		<pre>36' - 41' Grey. ca;careous coarse sand with pebbles</pre>
40	<u> </u>		41' - 42' Grey, coarse, calcareous sand 42' - 50' Grey, coarse, very sandy, highly calcareous
	A: A .		till with large cobbles
50	4. Þ. Þ.		50' - 52' Grey, gravelly sand, highly calcareous
	4 A A		52' - 56' Grey, sandy, gravel rich till
			56' - 58' Grey, very sandy, coarse till 58' - 60' Grey, clay till
60	P. A.		60' - 65' Grey, sandy gravel with large pebbles
			and cobbles
			65' - 72' Same as above
70			72' - 76' Grey, calcareous gravel, mostly pebble size .
{• {•	· · · · · · · · · · · · · · · · · · ·		
			76' - 79' Grey, coarse, sandy gravel with big cobbles
80			79' - 80' Dark grey coarse till with muddy matrix

.....

1 .

STREET SCORE

16-91-2-C20 : '

ĩ

	RY-APRIL .ng Progr			DRILLHOLE NO. S1 82 - 01. Sheet 2 of 5		
Depth (Ft.)	Lith. Log	Sample	Fie	eld Description and Remarks		
		Sonic	80' - 85'	Grey, calcareous silty till		
•			85' - 87'	Sandy gravel with large cobbles		
	-A. V. V.		87' - 90'	Grey, calcareous silty till		
90 -	- 0 0		90' - 92'	Grey, medium grained sand		
	Δ.		92' - 95'	Dark grey, coarse, very sandy, highly		
	_t ⊲ Þ.,		95' -100'	calcareous till Grey, very sandy till		
			55 100			
100-	_ <			Grey, medium to coarse grained sand		
			102'-106'	Grey, coarse sand with pebbles		
			106'-110'	Dark grey coarse, very sandy, highly		
	-			calcareous till		
110-	-		110'-112' 112'-114'			
			112 -114	•		
	- 0 8		116'-120'			
120-			120'-127'	Dark grey to brown coarse hard muddy ti		
	- 4.07		1071 1411	Contractions with laws slasts		
			127-141	Same as above with large clasts		
130	- A - A					
	- 0 0					
140-						
140**			141'-144.5	G'Grey, coarse, calcareous clay till		
144.5				TERNARY-CRETACEOUS CONTACT		
	-		144.5'-147 147.5'-148	7.5' Dark grey, non calcareous clay 8.5' Red fireclay		
150			148.5'-160)'White to light grey, medium grained silica sand kaolin matrix with		
				some sections showing coarse grained ma		
-	3					

LIC SCO RESOURCES LIMITED NUARY-APRIL 1982 Lilling Program

.

:

DRILLHOLE NO. SL 82-01 Sheet 3 of 5

, i

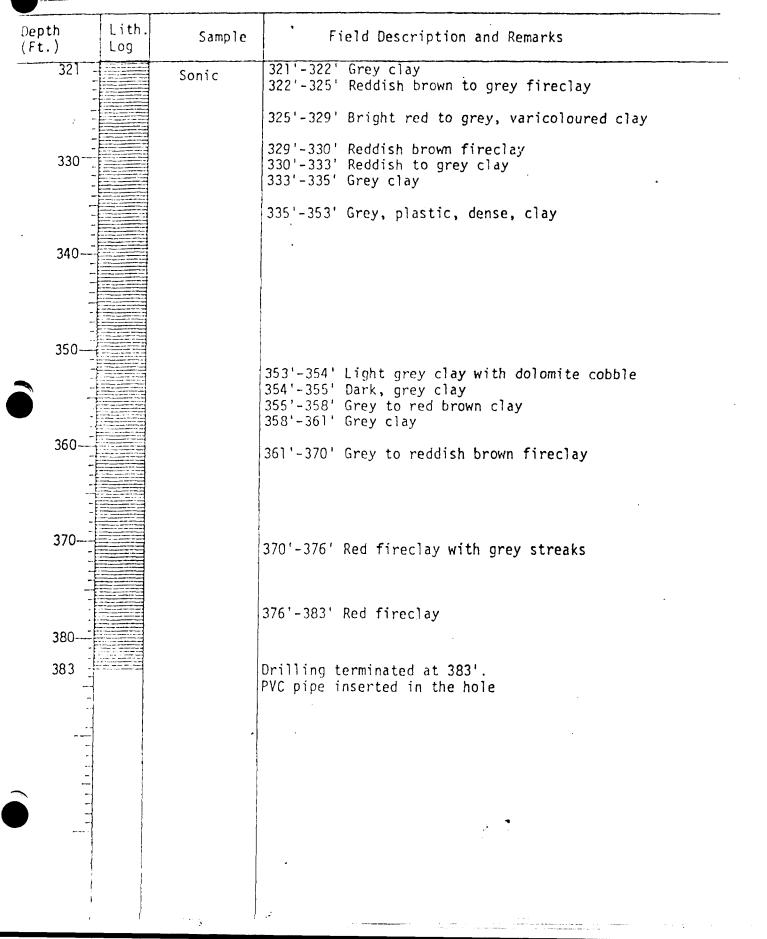
⊃epth [Ft.)	Lith. Log	Sample	Field Description and Remarks	
160-		Sonic	160'-166' Greyish white, medium grained silica sand kaolin matrix	u
			166'-168' Same as above but getting coarser 168'-171' Brown fireclay	
170			171'-173' Grey, sandy clay 173'-174' White to light grey coarse silica sand kaolin matrix	
180			174'-178' Fine grained silica sand kaolin matrix 178'-182' Fine grained silica sand kaolin matrix- richer in kaolin	
			182'-186' Medium grained, white silica sand kaolin matrix 186'-188' Fine grained white silica sand kaolin matr	ix
- - - 190			188'-195' Medium to coarse grained silica sand kaoli matrix - many coarse quatrz grains	n
200			195'-220' Predominantly medium grained slilica sand kaolin matrix - some sections showing coarser quartz grains	
210				
			-	
220			220'-233' Medium grained whit <mark>e silica sand kaolin</mark> matrix	
230			233'-234' Medium grained, greyish silica sand	
240			kaolin matrix - lesser amount of kaolin 234'-235' Dark grey clay 235'-236' Light to dark brown, fireclay 236'-240' Dark brown carbonáceous clay	

.

LIGNASCO RESOURCES LIMITED IA RY-APRIL 1992 Filling Program

DRILLHOLE NO. SL 82-01. Sheet 4 of 5.

Lith. Field Description and Remarks oth Sample LOQ t.) 240'-242' Dark brown to black carbonaceous clay 240-Sonic 242'-245' Clay as above but becoming sandy 245'-247' LIGNITE 247'-249' Brown fireclay 249'-251' Grey sand 250___ 251'-252' Grey, medium grained sand 252'-256' Grey to brown carbonaceous clay with fragments of lignite 256'-264' Dark brown, tan brown, grey stiff, plastic clay 260___ 264'-278'Grey, highly silty, micaceous clay 270---278'-285.5' Brown dense clay 280----285.5'-289' Dense brown clay-somewhat sandy below 287' 289'-290' Grey, fine grained clayey sand 290'-293' Micaceous sand with high clay content 290-293'-296' Grey, fine grained clayey sand 296'-299' Grey sand with abundant clay content 299'-301' Fine to medium grained, grey sand 301'-305' Grey, fine grained, clayey sand 300-305'-309' Mostly grey to greyish white sand 309'-321' Fine to medium grained grey sand 310-2 320 -3


LIGNASCO RESOURCES LIMITED JAN BY-APRIL 1982

illing Program

₹.,

DRILLHOLE NO. SL 82-01.

Sheet 5 of 5

JANUARY Drillin Drillin	-APRI: g Prov Midwe		LOCATION: 800 metres southeast of 735 drillhole No. 78-06(Long. 82 13'43" W:
Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
0 		Sonic	0' - 20' Muskeg
20			20' - 25' Light grey, calcareous clayey till 25' - 30' Greyish brown sandy silt till
30			30' - 33' Coarse to medium gravelly sand 33' - 35' Light greyish to brown sandy silt till 35' - 38' Light grey sand
40			 38' - 43' Coarse, grey, gravelly sand 43' - 44' Gravel 44' - 45' Grey, coarse sand and some sandy till 45' - 47' Grey, coarse sand and sandy till - more clasts 47' - 50' Light grey, fine sandy till
50	4 4 9 7 7 7		51' - 55' Dark grey, sandy, calcareous till 55' - 60' Grey, fine grained sand with grey clay laminations
60			60' - 67' Light grey, fine grained sand 67' - 79' Dark grey, fine grained sand
70			79' - 80' Very fine grained, somewhat clayey sand

LIGHISCO RESOURCES LIMITED

NCRY-APRIL 1982 illing Program DRILLHOLE NO. <u>SL 82-02</u>. Sheet 2 of 5 .

Lith. Depth Field Description and Remarks Sample (Ft.) Log 80 80' - 89' Very fine, somewhat clayey sand Sonic 89' - 90' Same as above, getting coarser 90 -90' - 95' Very fine grained calcareous sand 95' - 98' Olive grey sandy till with clasts 98' - 100' Grey, fine grained calcareous sand 100'-101' Fine grained, sandy till 100 101'-109' Light grey, fine grained sand 109'-113' Light frey, fine grained sand with darker zone at 110'-110.5'. 110 113'-122' Light grey fine grained sand 120 122'-123' Grey, coarse, gravelly sand 123'-131' Grey, fine grained sand 131'-132' Dark grey, calcareous clay till 132'-140' Olive grey, calcareous clay till with large clasts 130 140'-142' Dark olive grey sandy till 140 142'-145' Same as above but getting clayey 145'-149' Olive grey calcareous very sandy till 149'-152.5' Coarse, gravelly sand with large pebbles 150 ----QUATERNARY-CRETACEOUS CONTACT----152.5 152.5'-154' Tan fireclay 154'-156' Dark grey coarse silica sand kaolin matrix non-calcareous- reduced kaolin 156'-160' Fine to medium grained silica sand kaolin matrix 160 with abundant kaolin

DRI	LL	LOG	

LIGNASCO RESOURCES LIMITED JACARY-APRIL 1982 rilling Program

•-

• ,*

DRILLHOLE NO.SL 82-02 . Sheet 3 of 5 .

1

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
160 		Sonic	 160'-161' Dirty grey sandy gravel with large pebble and cobble 161'-165' Dark greyish green fine grained calcareous sand 165'-168' Dark olive grey sandy calcareous till 168'-173' Coarse dark grey gravel - calcareous Note: From 160' to 173'. the sediments appear to be Duaternary deposits. These may have been deposited in an underground channel. 173'-183.5 Very fine grained greyish white silica sand
180			kaolin matrix with abundant kaolin
190			183.5'-185'Medium to coarse grained greyish white silica sand kaolin matrix with kaolin 185'-190' Medium to coarse grained greyish white silica sand akolin matrix with increased kaolin 190'-191' Fine grained light grey sand - little kaolin 191'-195' Greyish white, coarse to medium grained silica sand kaolin matrix
200			195'-200' Dark grey, carbonaceous hard clay 200'-206' Grey, fine grained sand 206'-213' Greyish white, fine grained silica sand- 213'-231' Hedium orained, greyish white silica sand- kaolin matrix
210			-
220			•
230-		•	231'-234' Coarse grained, grey quartz sand 234'-236' Tan to grey coarse grained sand
240			236'-238' Dark grey sand with detrital lignite 238'-240' Light grey to tan brown coarse sand
1			

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 illing Program

÷ '

DRILLHOLE NO. SL 82-02 Sheet 4 of 5

 ${\bf A}_{i}$

Depth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
240		SONIC	240'-242' 242'-244' 244'-246' 246'-252'	Coarse grained grey sand with detrital lignite Tan grey, fine grained sand
250 —				Grey, fine grained sand
-			256'-260'	Fan grey, fine grained sand
260 —			260'-264'	Dark grey, medium grained sand
-			264'-268'	Grey, fine grained sand
270 —			268'-276'	Coarse grained dark grey sand
			276'-280'	Medium grained grey sand
280			280'-282' 282'-288'	Fine grained grey sand Medium grained grey sand
290			288'-289' 289'-292' 292'-300'	Dark gre y, coarse sand Dark grey , fine sand Dark grey , medium grained sand
300			300'-310'	Dark grey plastic clay
310			310'-320'	Dark grey to black, plastic, hard carbonaceous clay with fragments of detrita lignite increasing towards the bottom
320				
ر ای <u>ش</u> ار در د				

JANUARY-APRIL 1982 Drilling Program

يم.

DRILLHOLE NO. SL 82-02 Sheet 5 of 5

.

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
320 -		SONIC	320'-332' Dark grey, plastic, very hard slightly sandy clay
330		NQ	332'-336' Dark brown plastic very hard non calcareous clay
340			336'-344' Dark grey plastic hard non calcareous clay
			344'-346' Dark brown plastic, partly laminated clay 346'-356' Darker clay as above, calcareous
350			?CRETACEOUS -DEVONIAN CONTACT 356'-364' Grey calcareous shale and argillaceous limestone
360			Drilling terminated at 364' PVC pipe inserted in the hole
	•		•
		,	

	JANUARY Drillin Drilling	-ЛРВІЦ <u>q Proq</u> : Midwet		drjllhole 78-06(Long, 82°13'43" W: Lat.
	Depth (Ft.)	Lith. Log	Samp1e	Field Description and Remarks
	0		SONIC	0'-17' Muskeg
	10	_± 		
	ـــــــــــــــــــــــــــــــــــــ	× × ×		17' - 25' Greyish brown calcareous coarse till
	20 —			
	30			25' - 27' Brownish grey, clayey, calcareous coarse till 27' - 32' Olive grey, coarse calcareous clay till with large clasts
		A D A		32' - 36' Grey, calcareous sandy till 36' - 40' Till as above changing to coarse sand
	40			40' - 41' Grey, coarse sand 41' - 46' Grey, coarse, very sandy calcareous till
	 			46' - 49' Grey, gravelly sand - calcareous 49' - 52' Dark grey, gravelly sand '
	50			52' - 54' Grey, alluvial sand 54' - 56' Olive grey, calcareous coarse till 56' - 58' Fine grained grey sand
	60			 58' - 60' Grey, coarse grained calcareous gravelly sand 60' - 62' Olive grey, coarse calcareous clay till 62' - 66' Dark grey coarse calcareous gravelly sand to sandy till
		<		66' - 70' Olive grey sandy clay till 70' - 75' Olive grey calcareous clay till
	70		• •	75' - 78' Same as above with abunadant clasts
Õ	80			78' - 80' Dark grey to olive grey calcareous clay till with small scattered clasts

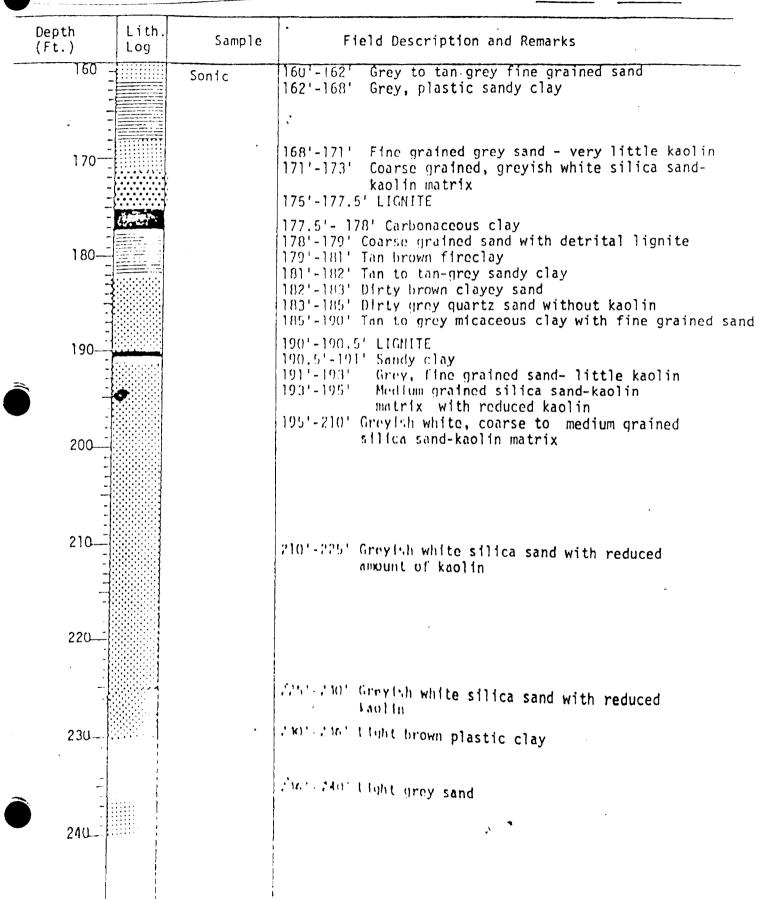
NASCO RESOURCES LIMITED WARY-APRIL 1982 Drilling Program

7

0

۰ ۱.

DRILLHOLE NO. SL 82-03 Sheet 2 of 5.


. ·

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
80		SONIC	80' - 96' Dark grey to olive grey calcareous clay till with small scattered clasts
90			
	A 4		96' - 100' Darker olive grey to brown hard calcareous till with increasing clasts
100			100'- 108' Fine grained calcareous grey sand
109 110-			108' -109 Gravel QUATERNARY CRETACEOUS CONTACT 109-110 Coarse, greyish white, non calcareous silica
			sand-kaolin matrix 110'-115' Grey quartz sand, little kaolin 115'-130' Greyish white, medium grained silica sand - kaolin matrix
120			
130			130'-136' Grey, medium grained silica sand-kaolin matrix wi lesser amount of kaolin
			136'-141' Same as above with increased amount of kaolin
140-			141'-146' Same as above with a darker heavy mineral zone at 145'
- 			146'-151' Medium to coarse grained silica sand-kaolin matrix - greyish white
150		,	151'-155' Black carbonaceous clay with lignite fragments and some sandy sections
160-			155'-157' Dark grey sandy carbonaceous clay 157'-158' Tan sandy clay 158'-159' Dark grey sandy carbonaceous clay 159'-160 Tan coloured sandy clay
	1	1	

LIGNASCO RESOURCES LIMITED NUARY-APRIL 1982

Drilling Program

DRILLHOLE NO. SL 82-03 Sheet 3 of 5

SNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

÷

DRILLHOLE NO.SL 82-03 Sheet 4 of 5

4

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
240 -		SONIC	240'-262' Light grey sand
250			Note: The sample from 236'-262' was drilled in one run and was accidentally dropped in the hole while being retreived. It was later picked up but may have been contaminated with sluffing from the hole
260			262'-266.5 Dark grey sand, probable sluff from the
			hole .
			266.5'-270'light brown and grey, very hard, plastic dense clay
270			270'-286' Light brown to dark grey plastic, very dense clay with some red clay intercalations
280			CRETACEOUS-DEVONIAN CONTACT ?
290			286'-294' Dark brown laminated clay with disseminated pyrite - clay is non-calcareous
		NQ	294'-303' Dark brown p yritiferous non-calcareou s clay
300			303'-304' Lighter brown clay as above - no pyrite 304'-305' Harder dark brown laminated clay (Shale?)
310			with pyrite 305'-315' Dark brown laminated clay as above
			315'-319' Grey calca reous shale
320			319'-320' Grey calcareous shale with argillaceous limestone

k	*,	
Ô	GNASCO RESOURCES JANUARY-APRIL 1982 Drilling Program	LIMITED

•,

.

DRILLHOLE NO. SL 82-03Sheet 5 of 5.

ł

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
320 -		NQ .	320'-326' Grey calcareous shale with argillaceous limestone
, 			Drilling terminated at 326' PVC pipe inserted in the hole.
		. .	
		•	
. I			

	Midwest rish M.	Drilling Verma	Lat.50 ⁰ 15'30 N"} Sanborn Township Started March 20, Finished March 24, 1982 Sheet <u>1</u> of <u>5</u> .	
.th :.)	Lith. Log	Sample	Field Description and Remarks	
0		SONIC	0' - 19' Muskeg	j
20			 19'- 21' Grey clay - sample washed out 21' - 24' Fine grained grey calcareous sand with some clay 24' - 36' Fine to medium grained grey calcareous sand 	: e
30			36' - 40' Coarse grained, grey, calcareous sand	
40			40' - 47' Grey, medium grained calcareous sand	Â
50	ν. Α. Α. Α.		 47' - 50' Grey calcareous clay till with clasts 50' - 52' Grey, medium grained calcareous and clayey sand 52' - 53' Grey clay till 53' - 56' Grey, coarse grained calcareous sand 	
60			 56' - 58' Grey, coarse calcareous clay till with large clasts 58' - 59.5' PEAT BED (Pleistocene Peat) 59.5' - 60' Grey, coarse calcareous till with clasts 60' - 62' Grey calcareous clay 62' - 63' Grey, calcareous clay till 63' - 66' Grey, coarse, clayey and sandy till with 	
70			numerous clasts 66' - 71' Dry, grey, coarse calcareous clay till 72' - 74' Grey, clay till 74' - 80' Grey coarse clay till with many clasts	
80	0 * D * V			

1746. 1941

NASCO RESOURCES LIMITED LINASCO RESOURCES JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. SL 82-04 Sheet 2 of 5

٢

Depth (Ft.)	Lith. Log	Sample	Field Description and Remarks
80	- A -	Sonic	80' - 83' Grey, coarse, sandy clay till with
		001110	abundant clasts 83' - 86' More sandy, grey, coarse, calcarecus
			clay till
			86' - 89' Clay till as above with large cobbles at 88'
90 -			89' - 90' Grey, calcareous clay till
	P 0 1		90' - 95' Grey, calcareous clay till with numerous
- -			clasts 95' -100' Grey calcareous, sandy till with abundant
			clay content
100 -			100'-103' Coarse gravel with many rounded pebbles and co
103	-		QUATERNARY-CRETACEOUS CONTACT
-	-		103'-106' Fine grained, greyish white silica sand- kaolin matrix-non calcareous
			106'-108' White to tan coloured fireclay
110-			108'-111' Interlaminated orange, red and grey fireclay - plastic, non calcareous
	-		111'-115 5Light grey, fine grained, micaceous sand
-			with very little kaolin 115.5'-116 Darker, heavy mineral zone with hematite and
	-		magnetite
120-	-		116'-118' Light grey, micaceous, fine grained sand with little kaolin content
	-		118'-125' Fine grained silica sand-kaolin matrix with
-	-		abundant kaolin 125'-138' Medium grained silica sand- kaolin matrix with
	-		abundant kaolin
1 30	-		
	-		
-			138'-142' Red, coarse grained sand
140-			1421 1461 Chavingh white common anning dilion cond
			142'-146' Greyish white, coarse grained silica sand- kaolin matrix
-			
	-		146'-159' Medium grained to coarse grained greyish white silica sand-kaolin matrix
150			·
	-	i	
•~ •			
- 			159'-160' Fine grained, white, silica sand-kaolin matrix
1600	-		
	1		· · · · · · · · · · · · · · · · · · ·
	j j		

GNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

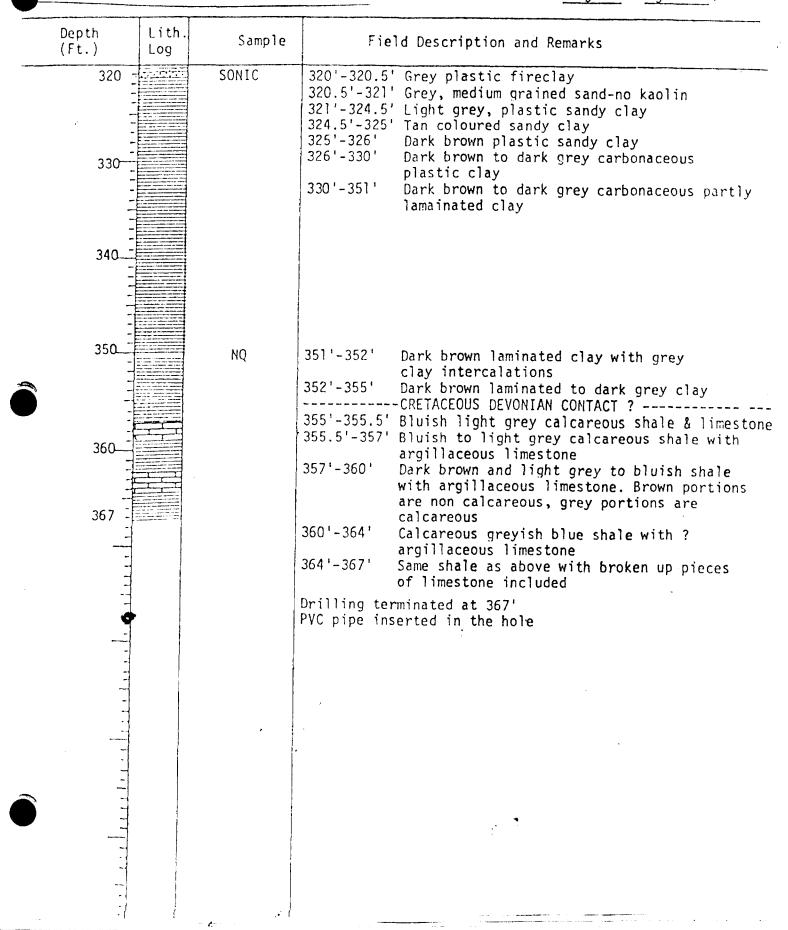
· · · ·

DRILLHOLE NO. SL 82-04. Sheet 3 of 5.

:

Depth	Lith. Log	Sample	Field Description and Remarks
(Ft.) 160		SONIC	160'-165' Fine grained, white silica sand-kaolin matrix
170			165'-168' Light brown to tan coloured fireclay 168'-170' Greyish white silica sand-kaolin matrix 170'-174' Medium grained silica sand-little kaolin
	- - - -		174'-177' Fine to medium grained greyish white silica sand with some kaolin. Yellowish rim around perimeter of the core
180			<pre>perimeter of the core 177'-180' Greyish white, medium grained silica sand- kaolin matrix 180'-190' Greyish white, fine grained silica sand - kaolin matrix</pre>
190 -			190'-201.5'Medium to fine grained silica sand kaolin matrix
200			201.5-203.5'MIXED WOODY AND EARTHY LIGNITE
200			203.5'-205' Tan to light brown fireclay 205'-209' Coarse, grey sand - no kaolin
210			209'-212.5' Dark grey medium grained sand - no kaolin 212.5'-214 Dark grey, coarse grained muddy sand 214'-217' Dark brown fireclay
			217'-221' Grey, medium grained sand - very little kaolin
220			221'-222' Grey, fine grained sand with darker rim around core
			222'-226' Dark grey, clayey sand 226'-230' Grey, coarse grained sand
230			230'-234' Same as above with some clayey sections 234'-235' Dark grey sandy clay
			234'-235' Dark grey sandy city 235'-238' Grey, medium grained sand 238'-240' Fine grained sand with some clay
240			
	1		
	ſ	1.	

IGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program


: '

DRILLHOLE NO. SL 82-04 Sheet 4 of 5

Depth (Ft.)	Lith. Log	Sample	Fiel	Field Description and Remarks		
240 -		SONIC		Grey clay Tan to light brown fireclay		
- - - 250			244.5'-245 245'-247' 247'-248' 248'-251'	Grey sand, fine grained Dark grey clay with some fine sand Dark grey Dark grey muddy sand Dark grey to brown clay with fine grained sand		
· · · · · · · · · · · · · · · · · · ·			251'-253' 253'-256' 256'-259'	Tan to grey clay with fine grained sand Light grey sand - little kaolin Light grey to dark grey medium grained sand - no clay		
260			259'-261' 261'-263' 263'-264' 264'-270'	Light grey sand as above Dark grey fine grained sand - no kaolin Dark grey sandy clay Tan to light grey, medium grained sand		
270			270'-274'	Light grey, fine grained clayey sand		
			274'-276'	Greyish white, fine grained silica sand- kaolin matrix		
280			276'-278' 278'-282- 282'-289'	Same as above - medium grained Dark grey, fine to medium grained sand - core loss Dark grey, medium to coarse grained sand		
			289'-290' 290'-300'	Fine grained silica sand-kaolin matrix Same as above but getting medium grained		
300			300'-304'	Same as above but with reduced kaolin		
-			304'-305'	Greyish white, medium grained silica sand- kaolin matrix		
			305'-309' 309'-312'	Dark grey, coarse sand Dark grey, plastic, carbonaceous clay		
310			312'-319' 319'-320'	Red and grey fireclay Grey plastic fireclay		
320-						

GNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. <u>SL 82-04</u>. Sheet 5 of 5

LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 ling Program Dı

...

DRILL LOG: DRILLHOLE NO. J-8-101 LOCATION: Grid J-8-101 (200N/300E)

rilling: Midwest Drilling, Winnipeg Geology: Harish 1:. Verma

Sanborn Township Started: Feb 22, Finished Feb 26, 1982

Shect 1 of 3

Depth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
0 _		SONIC	0'-5'	Black organic clay mixed with twigs
10			5'-20'	Light brown weathered gritty till with interlayers of grey plastic clay, sandy at places
20			20'-32.5'	Light brown to greyish brown very dense till with small (5-10mm) clasts. Matrix is silt to clay size. Till is highly calcareous
30			32.5'-40'	Same as above but slightly greyer in colour Clasts are bigger and matrix is coarser
40			40'-50'	Grey till with reduced number of clasts Matrix is silty clay increasing sand towards the bottom
50			50'-70'	Mixture of grey clay and silt as above, only a few clasts
60			70'-80'	Same as above with increasing number of clasts- large limestone clast at 70'- Pegmatite boulder at 74'.

DR	IL	LI	LOG

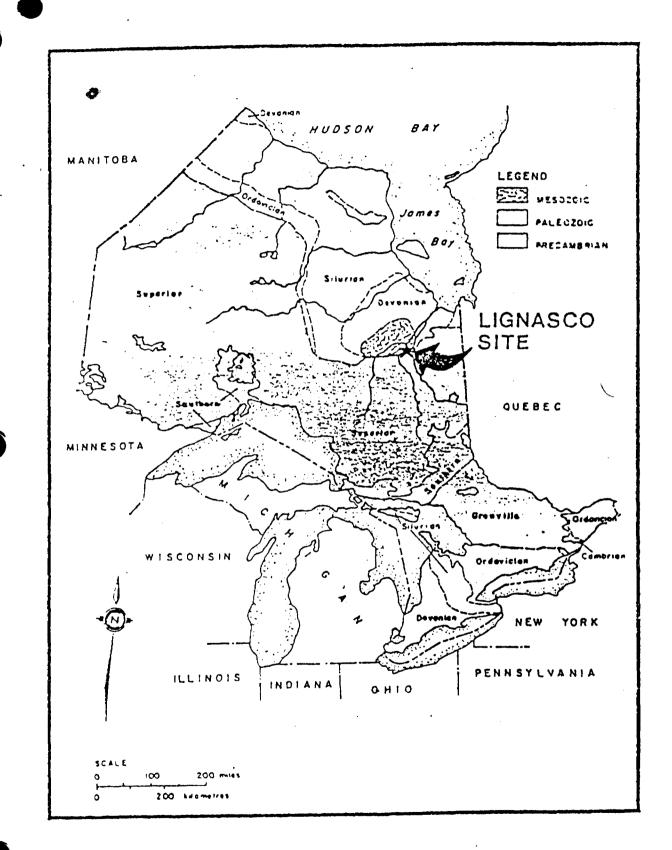
GNASCO RESOURCES LIMITED UUARY-APRIL 1982 Drilling Program

DRILLHOLE NO. J-8-101 Sheet 2 of 3

ţ

こうちょう しんちょう あいしん しんかん あいてん

Depth (Ft.)	Lith. Log	Sample	Fie	eld Description and Remarks
80		Sonic	80'-90'	Grey, fine grained till with increasing number of clasts
. · · ·			90'-100'	Grey, clayey, silt till, fairly friable
90			90 - 100	drey, clayey, sinc citr, latting intable
100	0-0-0-1		100'-102'	Coarse gravel
-	V .		102'-110'	Dark brown <mark>organ</mark> ic silt till - calcareous
110	2 0 0 V		110'-120'	Blackish brown, highly organic gritty clay till getting harder down section with
-			v	subangular quartzitic clasts. At the bottom is a much harder till with very large highly calcareous limestone clasts
120	2 V 4 0 4		120'-132'	Dark brown clay till with larger clasts than above and also some lignite fragments
- 				
130	2 4 4 5 7 5		132'-135'	Grey, finer grained till with lesser number of clasts - highly calcareous
- 	2 - A		135'-140'	Very dense dark brown till with numerous large (upto 10 mm) rounded clasts - mostly quartzite- matrix is fine grained
140			140'-160'	Same as above but the colour changes to somewhat greener
			· ·	
160	N . A .			•
}	ļ			


LIGNASCO RESOURCES LIMITED JANUARY-APRIL 1982 Di ling Program

•

DRILLHOLE NO. J - 8 - 101Sheet 3 of 3.

epth (Ft.)	Lith. Log	Sample	Fie	ld Description and Remarks
160 		SONIC	160'-178'	Very dense dark brown to brownish green till with numerous rounded clasts- matrix is fine grained
180			178'-185'	Ground ultra mafic - medium grained blocks and fragments with rock powder magnetic with minor sulphides - first two feet is highly altered
		NQ	185'-240'	Fine to medium grained ultramafic (magnetic greenish black to greyish black -serpenti- nized rock - quite soft with seams of green clay and soft altered material - fractured sections alternate with massive sections Minor sulphides (Pyrite and Pyrhotite) disseminated throughout the section).
200				Some relict olivine laths visible as small dark, euhedral to subhedral crystals - fine calcite stringers common
210				
220				
230				rminated at 240' serted in the hole
240			ric pipe in	

isure 1 - Ontario Geolosy and the Lisnasco Resources Limited Area.

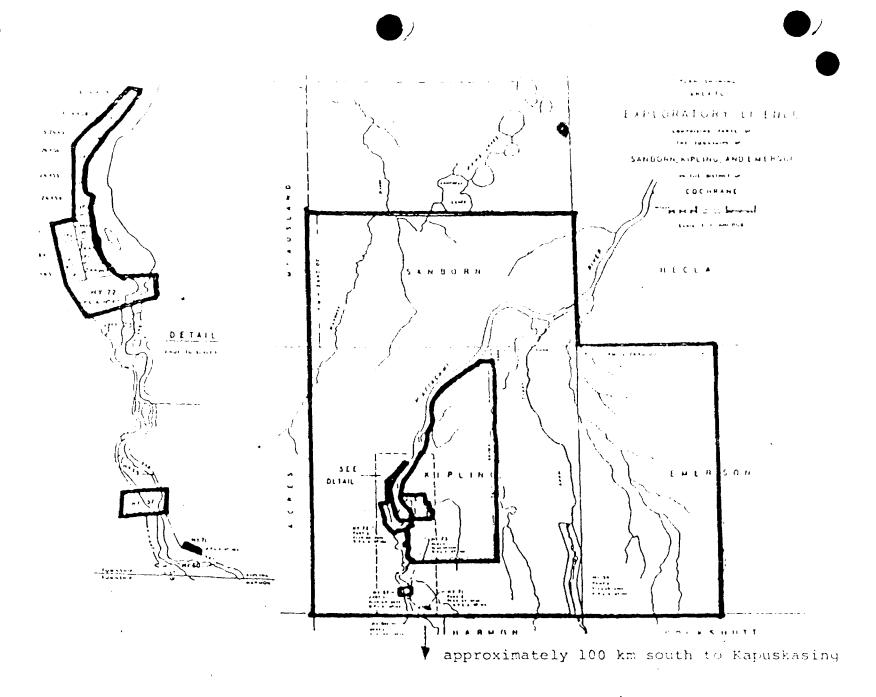


Figure 2 The Lignasco Resources Limited Area.

.

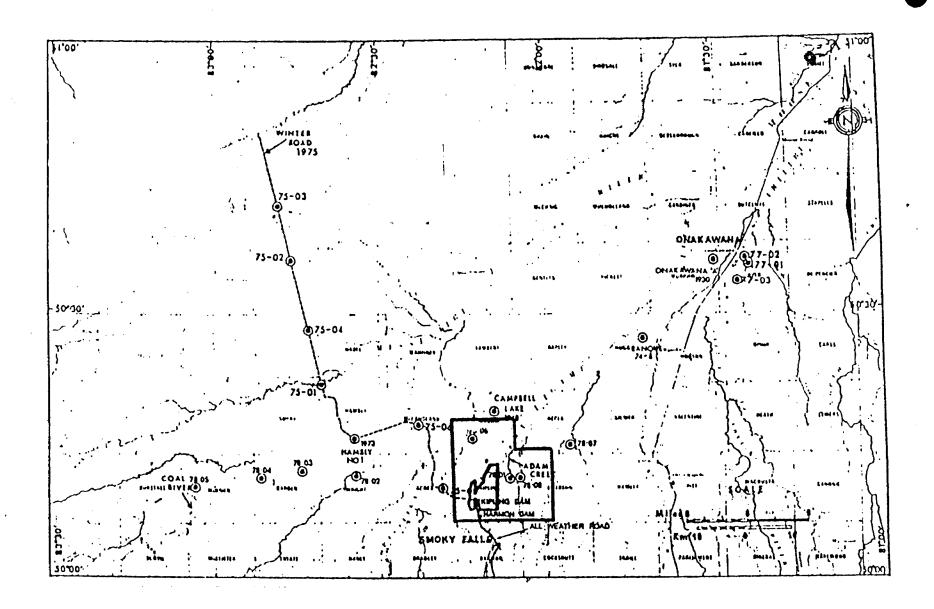
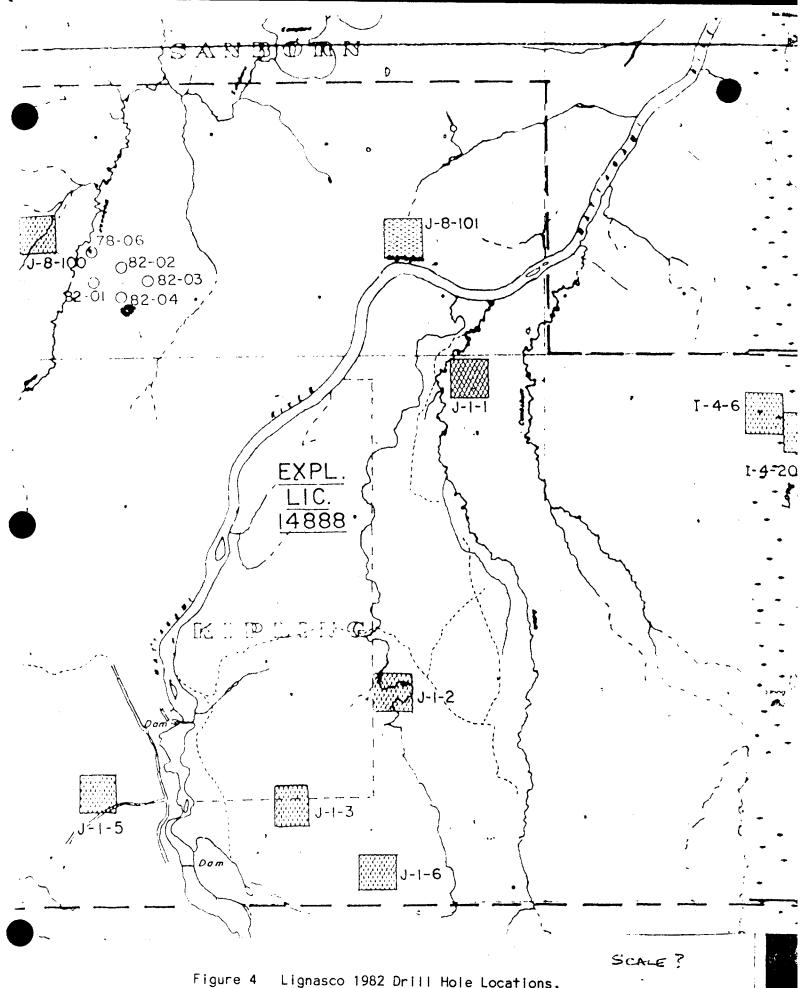
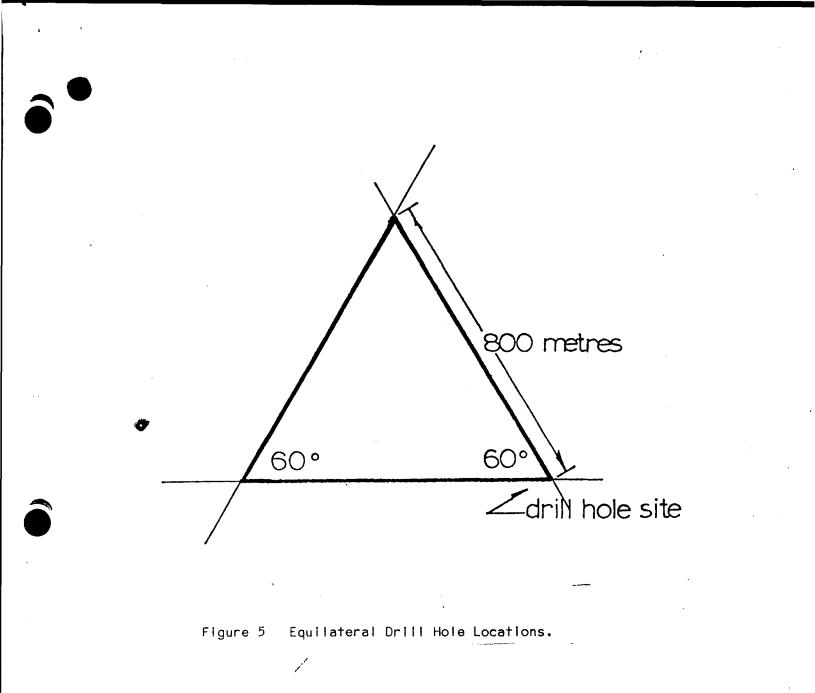
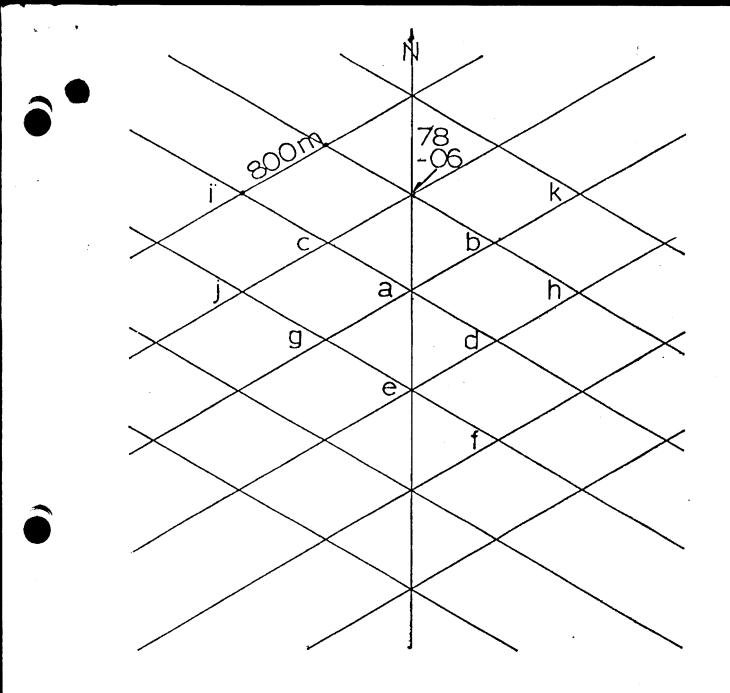
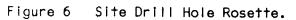




Figure 3 Untario Geological Survey 1978 Drill Hole Locations.




Lignasco 1982 Drill Hole Locations.

.

.

¢

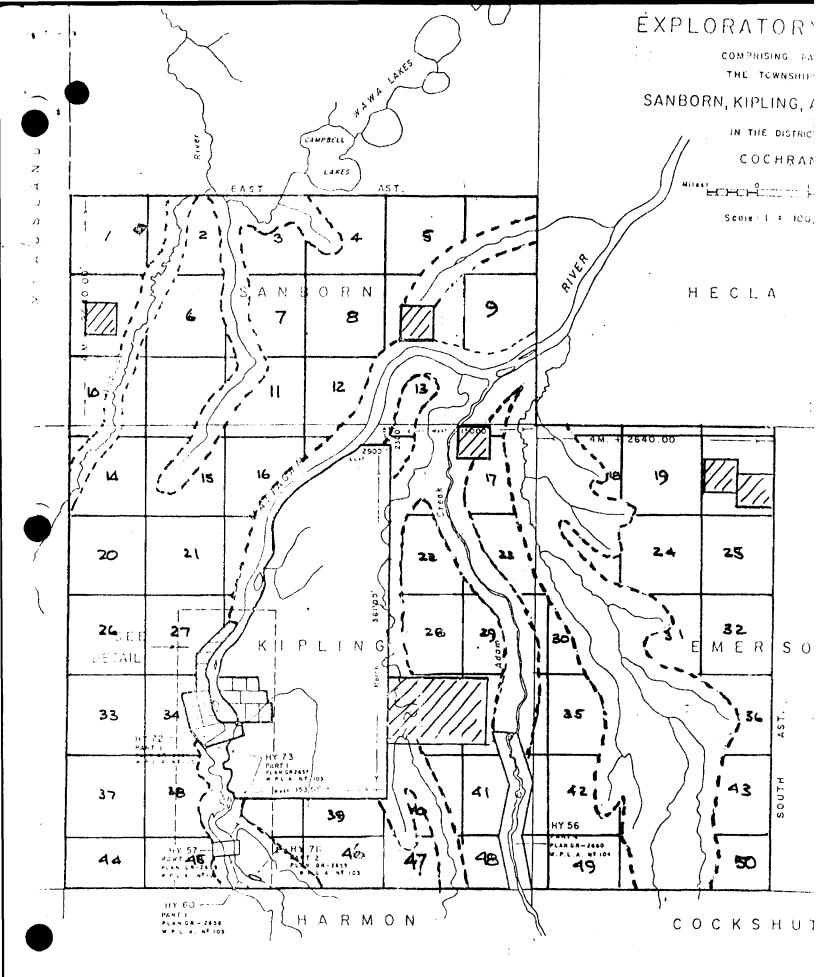


Figure 7 Proposed 50 Drill Hole Grid.

14 EMERSON

900

800 Eglinton Ave Toronto, Ontano mon vi Tel. 781-4798

Dr. A.J. Saber, pr

15 November 1982

Ref: omel5no2/s7

Mr. J.B. Gordon Evaluator OMEP Queen's Park Room 4651 Whitney Block 99 Wellesley Street West Toronto, Ontario

Dear Mr. Gordon:

Enclosed in my report "Lignasco Resources Limited, OMEP Designated Programme, Registration Number OM81-5-C-132," dated 15 November 1982.

This consitutes the final report for the program period ending 30 June 1982.

Sincerel Jaan Saber, Ph.D., P.Eng., Eng.

EXPLORATORY LICENCE OF OCCUPATION NO. 14890

4

STATEMENT OF EXPENDITURES - MAY 1, 1981 TO APRIL 30, 1982

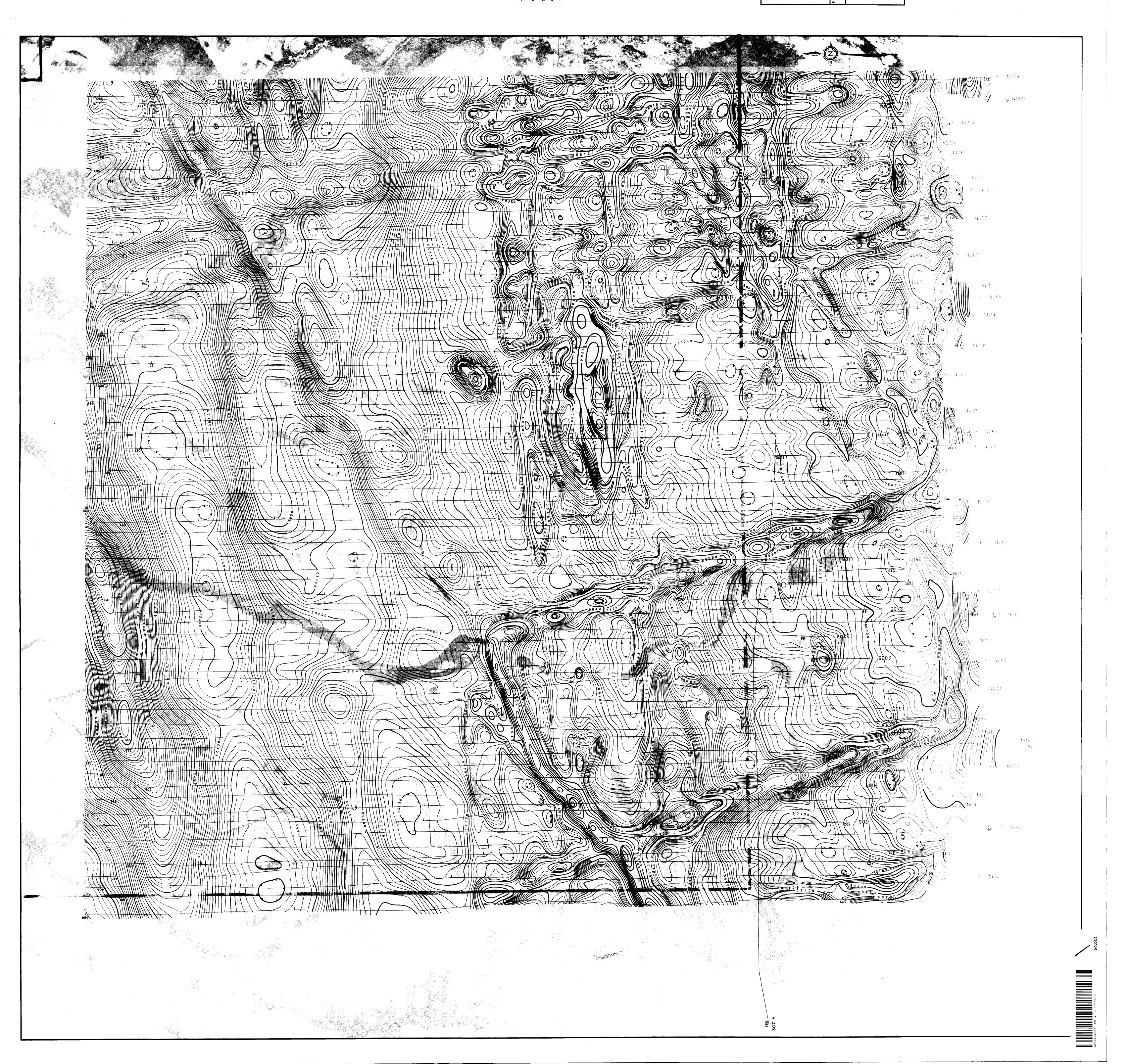
Support

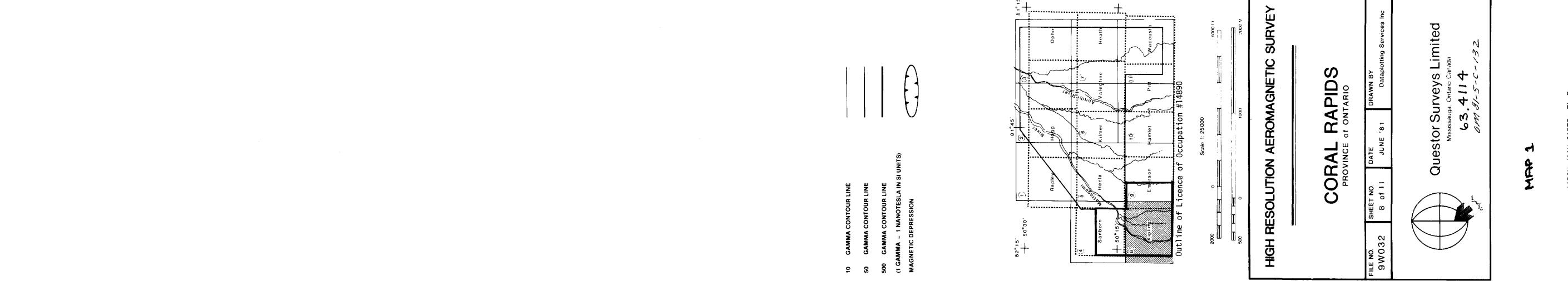
Camp Operation Food and Supplies	\$ 10,225	
Accomodation Vehicle Rental and Operation Draughting Other	2,846 1,755 818 711	
Periods Covered: January 10 to April 5, 1981 approx. 3 working months servicing 3 to 10 men	16,355	
Helicopter Charters North Star Helicopters, Hearst, Ontario A-Star Charter		
\$430 per hour plus fuel	33,370	\$ 49,725
Airborne Survey		
Approximately 1,500 line kilometres of magnetics and data compilation Surveys by Questor Surveys Inc. Toronto, Ontario - June, 1981		30,664
Line Cutting		
8 grids – total 157 kilometres by S. Bosum Contracting, Chibougamau, P.Q. January 12 to March 10, 1982 (1 grid – I4-6 not included)		18,072
Ground Geophysics		
157 kilometres of magnetometer surveys by S. Bosum Contracting, Chibougamau, P.Q. January 12 to March 10, 1982	9,206	
Contract draughting and contouring by Dataplotting Services, Don Mills, Ontario	1,672	10,878
Diamond Drilling		
6 holes - 659 metres by Midwest Diamond Drilling, Winnipeg, Manitoba February 22 to April 1, 1982	209,652	
Helicopter Support North Star Helicopter - A-Star	92,454	302,106

ł

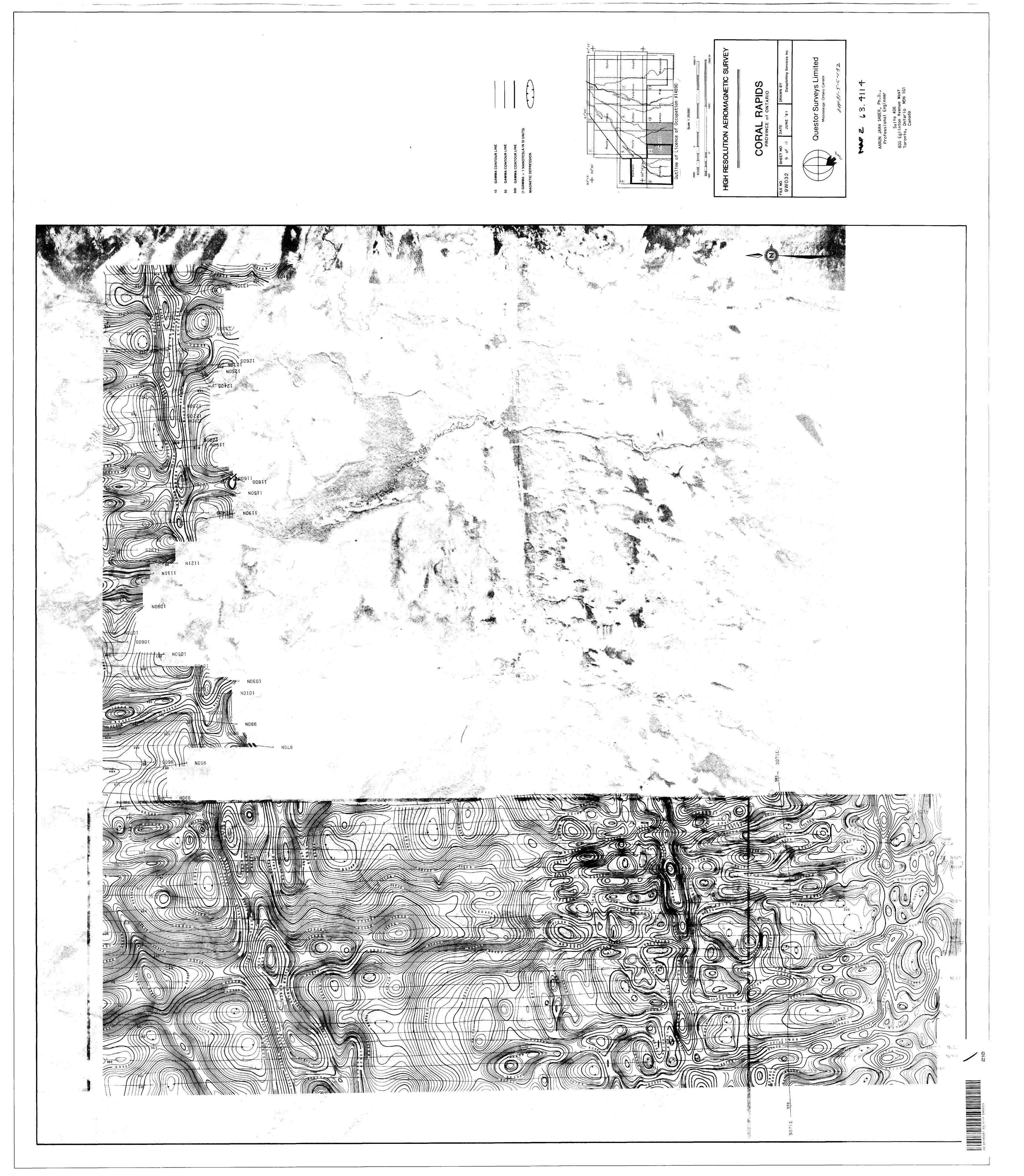
	~ ~	

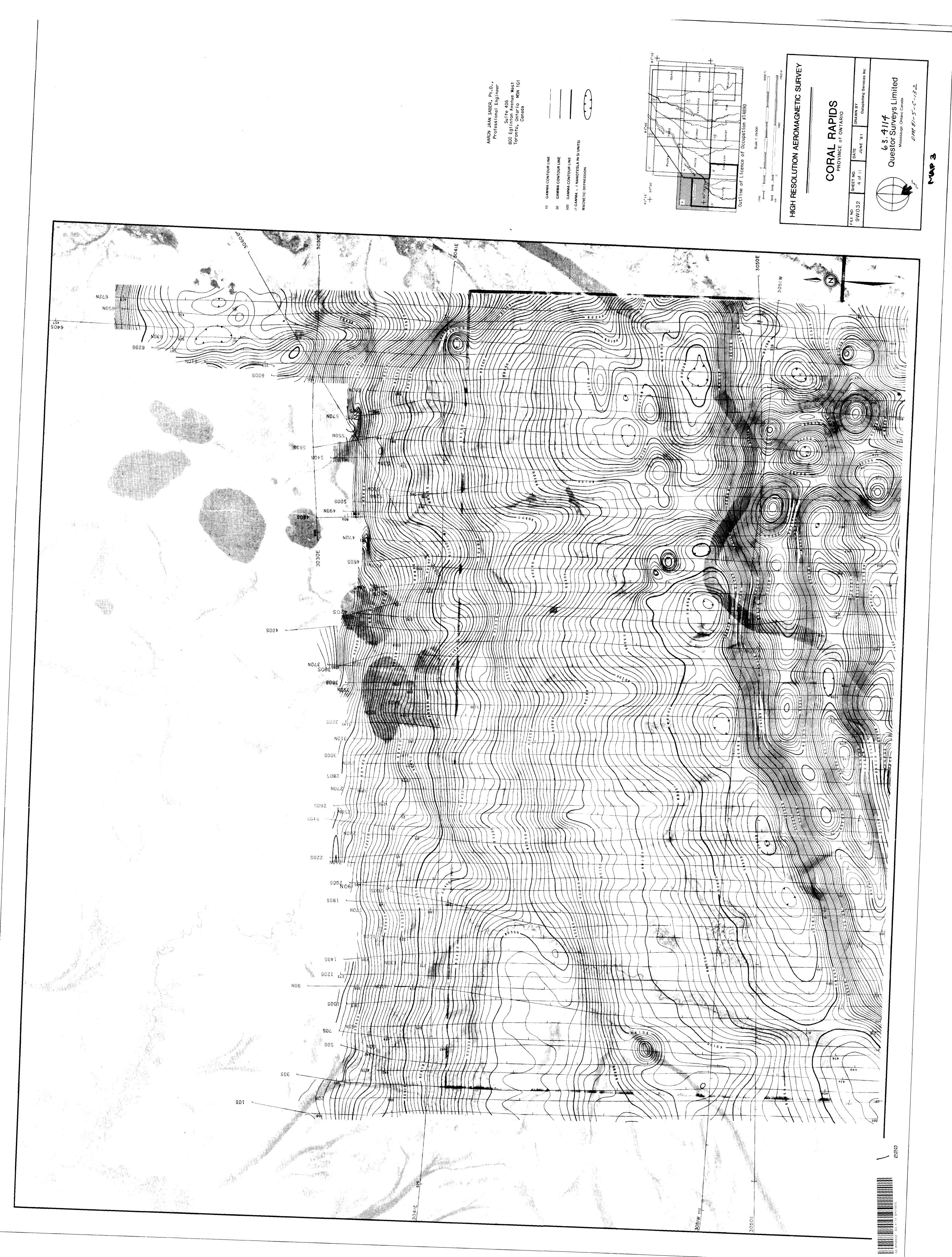
Supervision	\$ 302	\$
Geophysical General (includes expediter) Drill	12,609 10,742	23,653

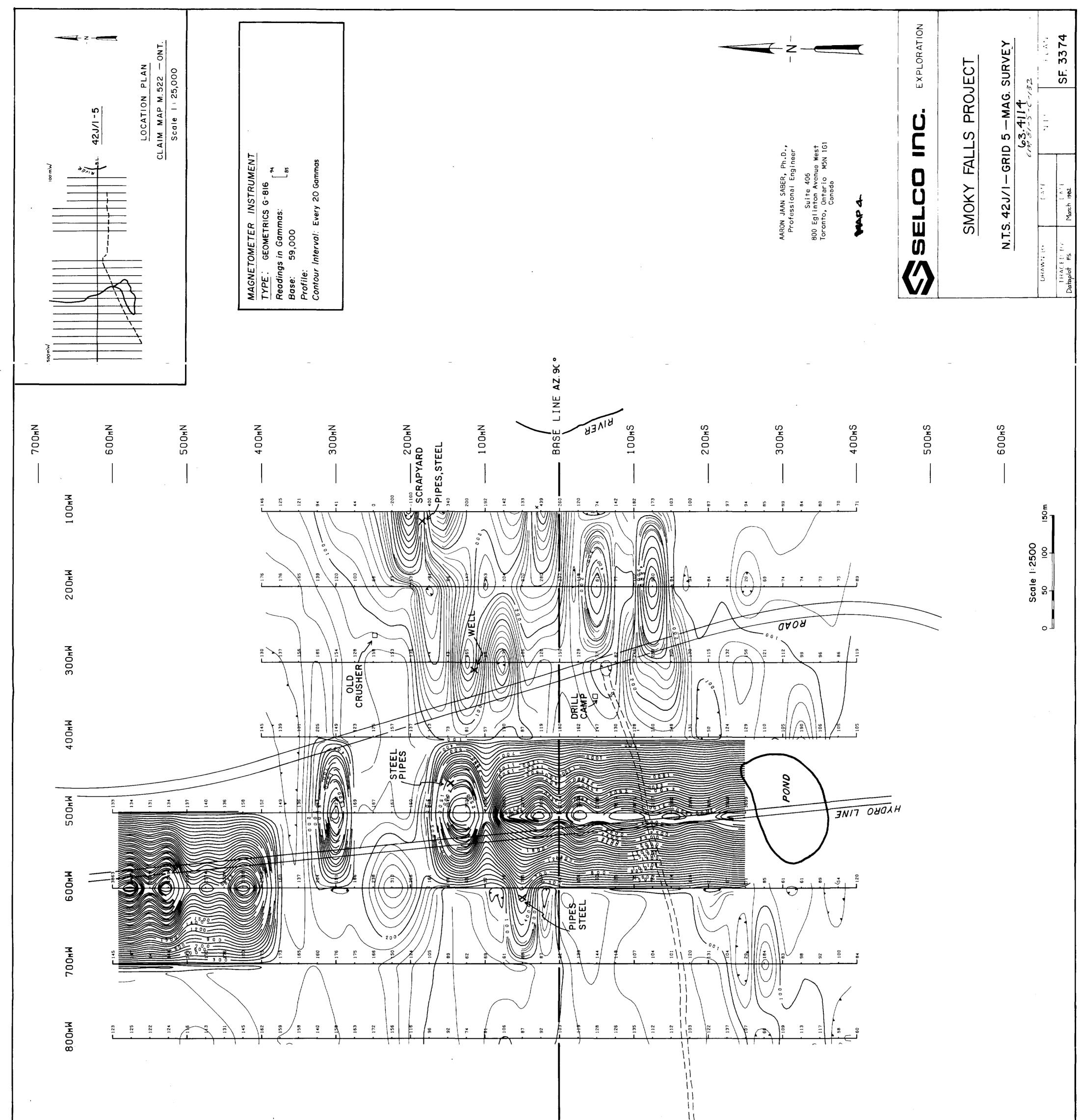

÷


TOTAL

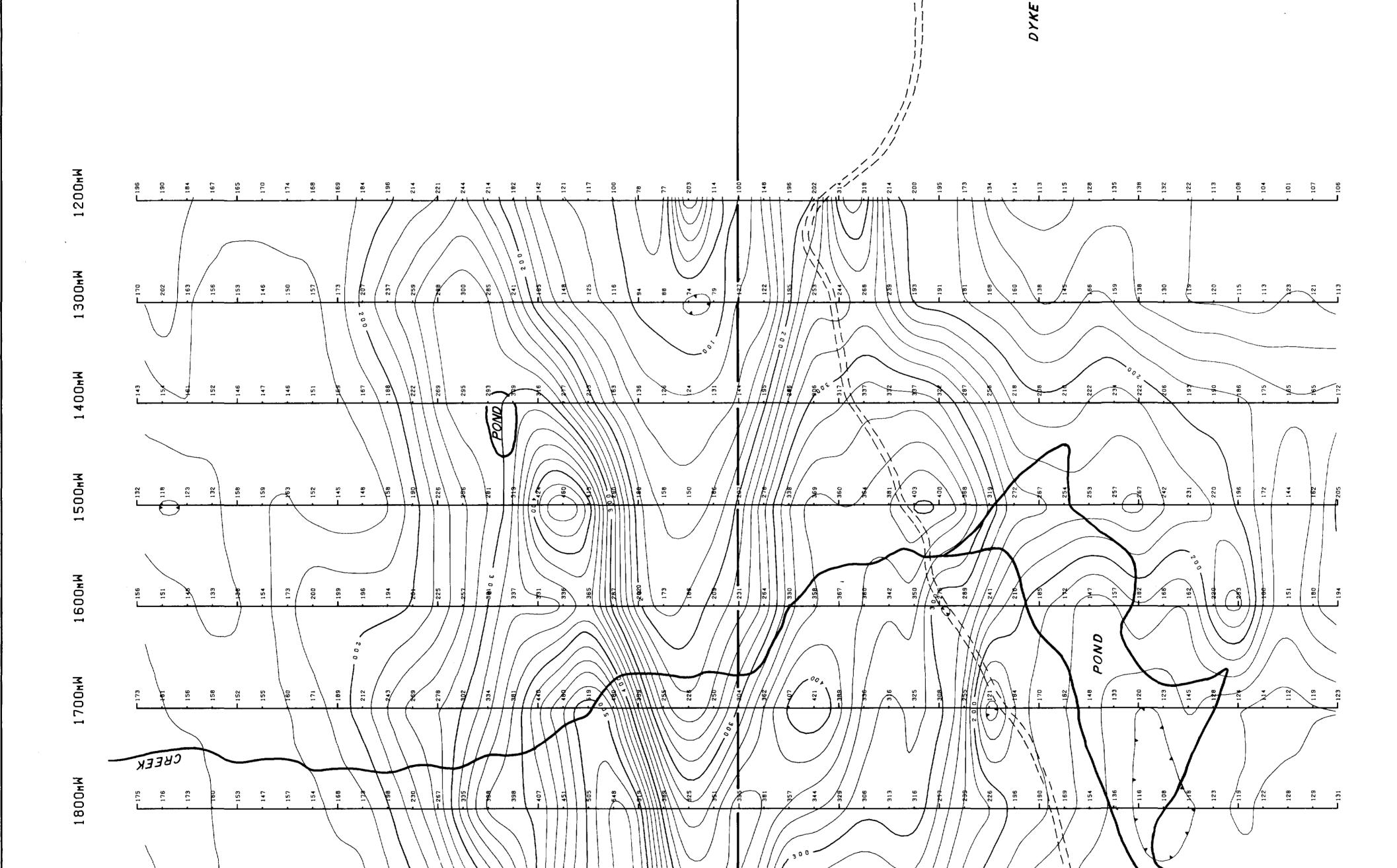
4

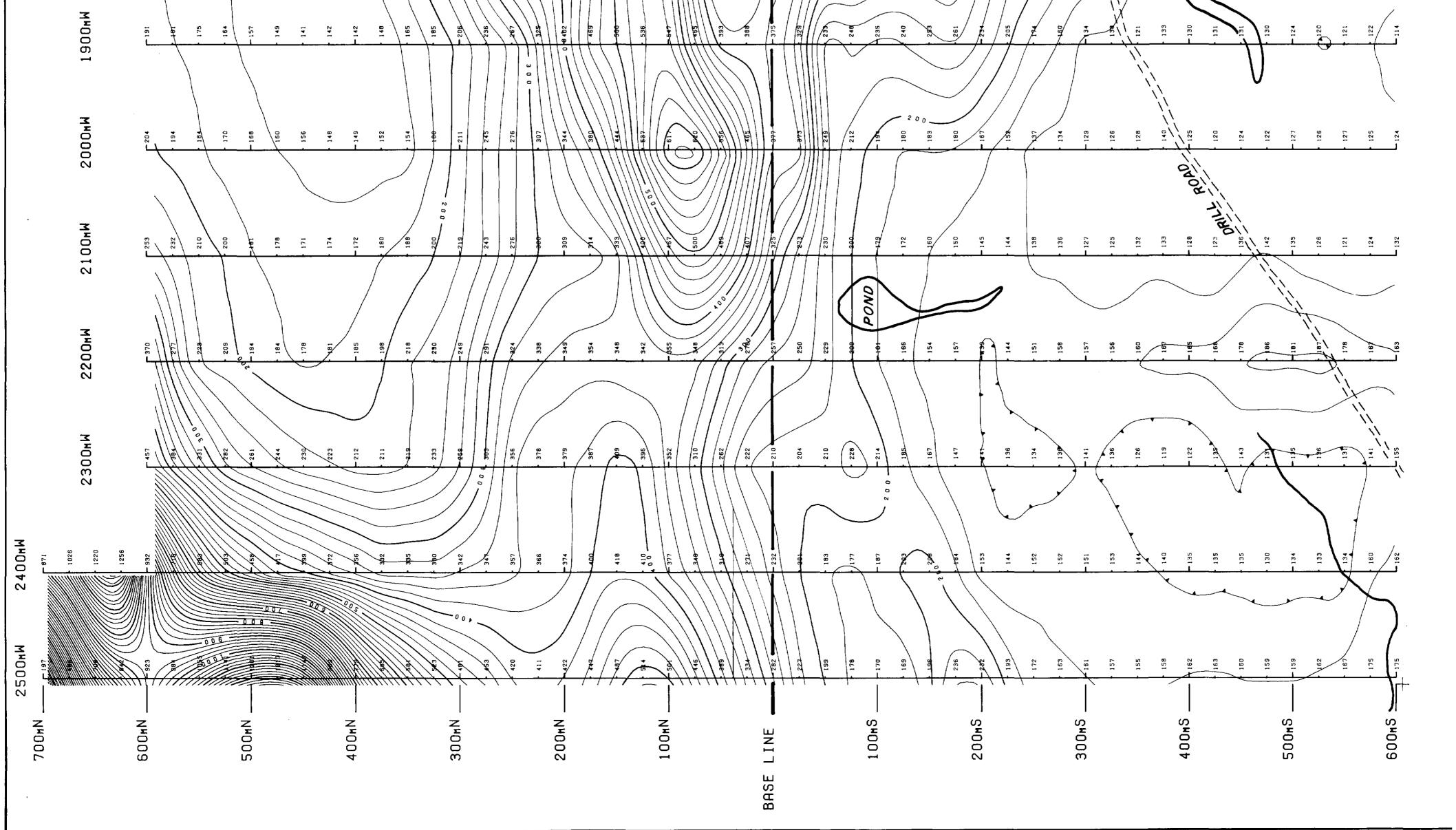

T17

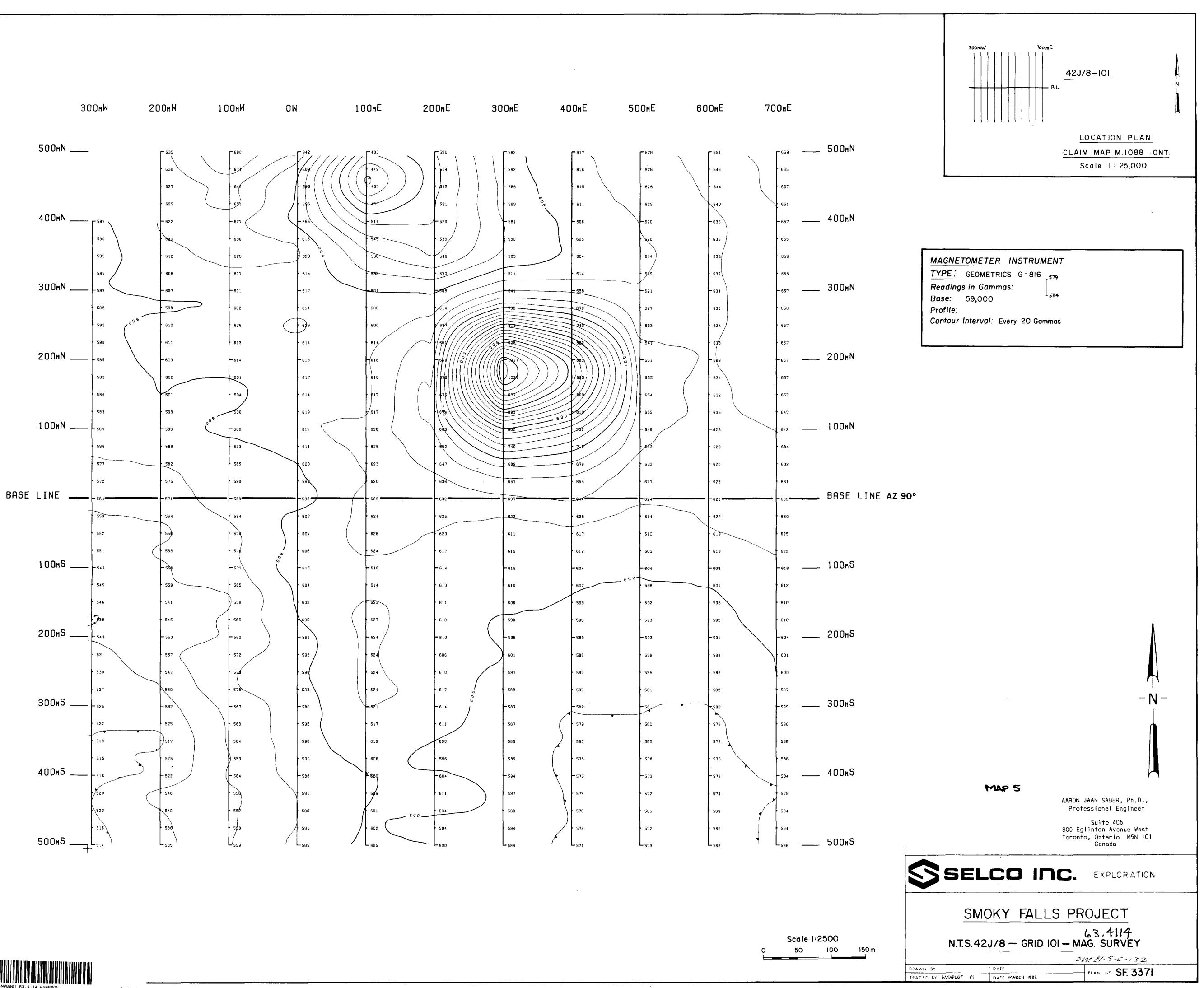

\$<u>435,098</u>



AARON JAAN SABER, F Professional Engi Suite 406 800 Eglinton Avenu Toronto, Ontario 1 Canada






.

.

42104NW8201 63.4114 EMERSON

......

.....

L0+00

**

•

-

42 04NW8201 63.4114 EMERSON

L1+00 E

L2+00 E

L3+00 E

L 5+00 E

•

L4+00 E

r 887

- 859

	849	832	8	38	844 -	858	877	
3+00 N —	040		-827	837			•	000
3+00 N -	~ ~ ~		1			- 84	856	869
	849	831		38	838	848 \	871 ·	
		-842	824	838		- 835	843	868 🔪
	840	818	8	34	841 -	842 -	863	`
		- 833	818	- 831		842	840	859
	828	812 -	A A	30	841 -	836 -	858	
		821	805	827		840	822	854
	0.0			N	070			0.54
2100 1	819	804 -		24	839	829 -		
2+00 N —		814	798	820		840	822	848
	811	798	8 🗸 8	21	∂₂s 835 -	811	836	
		809	792	817		826	813	840
	796	791 -	8	15	818 -	821	826	-
		800	790 °	811		821	818	830
	790	789 1	0		824 ·	819	828	
	790		1		024			0.07
		785	788	81	a 1 5	823	814	827
	790	775 786	1	07	815 -	812 -	825	N
1+00 N —		760	785	\ 810	-	813	815	820
	760	782 -	80	לס {	813	816	820 -	
		748	781	805		· 811	812	808
	746	783		07	809 -	811	802 -	
	140	720 /	-790	808	005	-808		
			· · · · /	/		-	810	1.26
	797	800-	/8	10	79	800 806	796	
		834	809	810			803	793 🔪
	1017	833	8	116 801 802	805	792 -	793 792 793 797 791	4
0+00 BL-	1232	1301-1240-1020 885	845 818 807 8	<u>801 802 </u>	797 795 790-	789 785 777 776	<u>792 793 797 791</u>	790 79
	1515		835 BI5 BO4	4 797 X Q	9 794 791 78 798	7 790 783 776 7 780 7	74 791 794 796 7 796	B 7 790
	1010					100	/90	
		T820	2002	828		794	779	801
	1894		())))))	31	793	781	800 807	1
		1908, 1000 N			1	797		
				\ 840\		191	789	814
-	1820	19080		N 1 N	796	-803		814
	1820		1239	45	796	803	825 819	
-				45 847	\setminus	798	836 850	814
1+00 5 -	1820 1631			45 847 53	796 -	798 869	836 850 845	837
1+00 S —	163 1		1213 1213	45 847 53 859	. 798 ·	798 803 803 869	836 850 845 918 900	
1+00 S —			1239 1213 1000 85	45 847 53 859 61	\setminus	798 803 803 925	836 850 845	837 848
1+00 S —	163 1		1213 1213	45 847 53 859	. 798 ·	798 803 798 925	836 850 845 918 900 852	837
I+00 S —	163 1	1707 10 1234 1545 114 1234 134 1200 134 1200	1213 1213 10 9 10 9 85	45 847 53 859 61	. 798 ·	798 803 798 925	836 850 845 918 900 852 909	837 848
1+00 S —	1631 1450 -	1707 10 1234 1545 124 1311 125 1311 120 1310 1175	1213 1213 1000 86	45 - 847 53 - 859 61 - 86 63	. 798 799	798 803 798 925	836 836 918 900 852 909 875 838	837 848 847
1+00 S —	1631 1450 1231	1707 10 1239 1545 114 1239 131 125 131 125 130 1175 1150 1121	1215 1000 85	45 847 53 859 61 86 86 861	8. 798 799 797	798 803 798 925 800 925 800	836 836 850 845 918 900 852 909 875 838 861	837 848
I+00 S —	1631 1450 -	1707 100 1234 1546 199 1234 1311 129 1175 1311 129 1200 1175 1100 -1082	1213 1213 1000 86 1111 0 86 1111 0 86 1111 0 86 1111 0 86 1111 0 86	45 - 847 53 - 859 61 - 86 - 86 - 86 - 86	. 798 799	798 803 798 925 800 839	836 836 836 850 845 918 900 852 909 875 838 861 823 818	837 848 847 827
I+00 S —	1631 1450 1231 1121	1707 100 1239 1545 190 1239 1311 175 1311 125 1100 -1082 1079 1075	1213 1000 85 1111 1000 86 1111 1009 85	45 - 847 53 - 859 61 - 86 63 - 86 59 - 851	98 799 799 800	798 803 798 925 925 800 839	836 836 836 836 845 918 900 852 909 875 838 861 822 818	837 848 847
	1631 1450 1231	1707 100 1239 1546 199 1239 1311 175 1311 175 1310 1175 1300 1175 1100 -1082 1079 1075 1018	1213 1000 85 1111 0 1069 0 5 6 8 1069 0 5 6 8 1069 0 8 1069 0 8 1069 0 1069 0 1060 0 100 00000	45 - 847 53 - 859 61 - 861 59 - 851 51	8. 798 799 797	798 803 803 869 803 925 798 925 800 839 800 809	836 836 850 845 918 900 852 909 852 852 852 852 852 852 852 852 852 852	837 848 847 827 809
1+00 S	1631 1450 1231 1121	1707 1546 1546 1546 1234 124 124 125 100 1075 100 1075 1008 1003 1025 1003 1025	1213 1000 1111 0 1069 1002	45 - 847 53 - 859 61 - 86 63 - 86 59 - 851	98 799 799 800	798 803 798 925 925 800 839	836 836 836 836 845 918 900 852 909 875 838 861 822 818	837 848 847 827
	1631 1450 1231 1121	1707 100 1545 100 1545 100 1239 1545 100 1239 1000 1000 1000 974	1213 1000 1111/00 1002 1002	45 - 847 53 - 859 61 - 86 - 86 - 86 - 86 - 86 - 85 - 85 - 848	98 799 799 800	798 803 803 869 803 925 798 925 800 839 800 809	836 836 836 850 845 918 900 852 909 875 838 861 822 818 803	837 848 847 827 809
	1631 1450 1231 1121 1044	1707 100 1545 100 1545 100 1239 1545 100 1239 1000 1000 1000 974	1213 1000 1111/00 1002 1002	45 847 53 859 61 861 59 861 51 848 41	98 799 799 797 800 799	798 803 798 869 803 925 798 925 798 925 800 894 800 839 800 809 793 794	825 819 836 850 918 900 852 852 909 852 909 852 861 825 822 818 803 600 792	837 848 847 827 809 793
	1631 1450 1231 1121 1044 968	1707 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10 1546 10	1213 1000 1111 0 1069 1069 1002 1002	45 - 847 53 - 859 61 - 86 - 86 - 86 - 86 - 86 - 85 - 85 - 848 - 41 - 839	98 799 799 797 800 799 792	798 803 798 869 803 925 798 925 798 925 800 839 800 809 793 794 788 794	825 819 836 850 918 900 852 845 909 852 909 875 861 823 803 600 788 792	837 848 847 827 809
	1631 1450 1231 1121 1044	1707 1545 1545 1311 1200 1239 1245 100 100 974 925 919 125	1213 1000 11111 1069 1002 1002 1002 1002 1002 1002 1002 100	45 - 847 53 - 859 61 - 86 - 86 - 86 - 86 - 86 - 85 - 85 - 848 - 41 - 839 - 31	98 799 799 797 800 799	798 803 798 869 803 925 798 925 798 925 800 894 800 839 800 809 793 794 788 782	825 819 836 850 918 900 852 845 909 875 861 825 822 818 803 600 788 782	837 848 847 827 809 793 789
	1631 1450 1231 1121 1044 968 897	1707 1546 1546 1546 1234 124 125 100 - 1082 1000 - 974 -925 900 - 919 879 900 - 919 125	1213 1000 1002 1002 1002 1002 1002 1002	45 847 53 859 61 861 59 851 51 848 41 839 31 826	1 798 799 797 800 799 792 785	798 803 798 869 803 925 798 925 798 894 800 839 800 809 793 794 788 782 785 785	825 819 836 850 918 900 852 909 852 909 852 861 825 822 818 803 600 788 782 781 782	837 848 847 827 809 793
	1631 1450 1231 1121 1044 968	1707 1545 1545 1545 1545 1545 1545 1545 1545 1545 1545 1000 1175 1000 1025 1000 974 925 900 880	1213 1000 11111 1069 1002 1002 1002 1002 1002 1002 1002 100	45 847 53 859 61 86 63 86 59 851 51 848 41 839 31 826 19	98 799 799 797 800 799 792	798 803 798 869 803 925 798 925 798 925 800 839 800 839 800 809 793 794 788 782 785 781	825 819 836 850 918 900 852 845 909 852 909 875 861 825 803 600 788 782 781 771	837 848 847 827 809 793 789 774
	1631 1450 1231 1121 1044 968 897 863	1707 1545 1545 1545 1545 1545 1545 1545 100 100 100 100 100 100 100 10	1213 1000 11111 1069 1002 1002 1002 1002 1002 1002 1002 100	45 847 53 859 61 86 63 86 59 85 85 848 41 839 31 826 19 815	798 799 797 800 799 792 785 781	798 803 798 869 803 925 798 925 798 894 800 839 800 809 793 794 788 782 785 781 780 781	825 819 836 850 918 900 875 838 861 825 803 600 788 782 783 771	837 848 847 827 809 793 789
2+00 S —	1631 1450 1231 1121 1044 968 897	1707 1545 1545 1545 1545 1545 1545 1545 1545 1545 1545 1000 1175 1000	1213 1000 11111 1069 1002 1002 1002 1002 1002 1002 1002 100	45 847 53 859 61 86 63 86 59 851 51 848 41 839 31 826 19	1 798 799 797 800 799 792 785	798 803 798 869 803 925 798 925 798 925 800 839 800 839 800 809 793 794 788 782 785 781	825 819 836 850 918 900 852 845 909 852 909 875 861 825 803 600 788 782 781 771	837 848 847 827 809 793 789 774
2+00 S —	1631 1450 1231 1121 1044 968 897 863	1707 1546	1213 1000 11111 1069 1002 1002 1002 1002 1002 1002 1002 100	45 847 53 859 61 86 63 86 59 85 85 848 41 839 31 826 19 815	798 799 797 800 799 792 785 781	798 803 798 869 803 925 798 925 798 894 800 839 800 809 793 794 788 782 785 781 780 781	825 819 836 850 918 900 875 838 861 825 803 600 788 782 783 771	837 848 847 827 809 793 789 774
	1631 1450 1231 1121 1044 968 897 863 832	1707 1545 1545 1545 1545 1545 1545 1545 1000 1175 1000 1005 1000 100 1000 1	1213 145 1000 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1003 1	45 847 53 859 61 86 63 86 59 85 85 85 848 41 839 31 826 19 815 08 807	799 799 797 800 799 792 785 781 779	798 803 798 869 803 925 798 925 798 925 800 894 800 839 800 809 793 794 788 782 785 781 780 780 777 704	825 819 836 850 918 900 852 909 875 861 825 803 600 788 792 788 782 783 764	837 848 847 827 809 793 789 774 767
2+00 S —	1631 1450 1231 1121 1044 968 897 863	1707 100 1234 1546 100 1234 1546 100 1175 1311 1120 1175 1160 1173 1120 1160 1173 1000 1079 1075 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1000 974 919 879 900 880 841 840 840 821 810 810	1213 145 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1003 1	45 847 53 859 61 86 63 86 59 85 848 41 839 31 826 19 815 08 807 97	798 799 797 800 799 792 785 781	798 803 798 869 803 925 798 925 798 925 798 93 793 794 788 782 785 781 780 780 777 779	825 819 836 850 918 900 852 909 852 909 875 861 823 803 600 803 792 788 782 781 771 783 764	837 848 847 827 809 793 789 774 767 770
2+00 S —	1631 1450 1231 1121 1044 968 897 863 832 814	1707 100 1239 1546 110 1239 1546 110 1200 1311 1175 1311 1125 1160 1173 1100 1082 1079 1075 1003 1025 1000 974 925 919 879 900 841 840 821 810 804 810	1213 145 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1003 1	45 847 53 859 61 86 63 86 59 851 51 848 41 839 31 826 19 815 08 807 97 797	798 799 797 800 799 792 785 781 779 771	798 803 798 869 803 925 798 925 798 925 800 839 800 809 793 794 788 782 785 781 780 780 777 779 774 779	825 819 836 850 918 900 852 909 875 861 825 803 600 803 792 788 782 781 771 783 764 776 762	837 848 847 827 809 793 789 774 767
2+00 S —	1631 1450 1231 1121 1044 968 897 863 832	1707 100 1239 15415 110 1239 15415 1173 1175 1311 1125 1121 1160 1173 1125 1007 1000 974 925 919 879 900 879 880 841 840 821 810 804 803	1213 145 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1003 1	45 847 53 859 61 86 63 86 59 85 86 85 85 848 41 839 31 826 9 815 08 807 97 797 96	799 799 797 800 799 792 785 781 779	798 803 798 869 803 925 798 925 798 925 800 839 800 839 800 809 793 794 788 782 785 781 780 780 777 779 774 771	825 819 836 850 918 900 875 838 861 822 803 600 788 792 788 782 783 764 776 762 776 763	837 848 847 827 809 793 789 774 767 770 759
2+00 S —	 1631 1450 1231 1121 1044 968 897 863 832 814 797 	1707 100 1234 1546 110 1234 1546 110 1234 1311 1125 1121 1160 1173 1125 1079 1075 1082 1079 1075 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1004 840 840 821 810 840 804 803 793	1213 145 1002 1	45 847 53 859 61 861 59 851 51 848 41 839 31 826 19 815 08 807 97 797 96 794	798 799 797 800 799 792 785 781 779 771 771	798 803 798 869 803 925 798 925 798 925 800 839 800 809 793 794 788 782 785 781 780 780 777 779 774 771 762 771	825 819 836 850 918 900 852 909 875 838 861 823 803 600 803 600 788 782 781 771 783 764 776 762 777 763	837 848 847 827 809 793 789 774 767 770
2+00 S —	1631 1450 1231 1121 1044 968 897 863 832 814	1707 100 1239 15415 110 1239 15415 1173 1175 1311 1125 1121 1160 1173 1125 1007 1000 974 925 919 879 900 879 880 841 840 821 810 804 803	1213 145 1002 1	45 847 53 859 61 86 63 86 59 85 86 85 85 848 41 839 31 826 9 815 08 807 97 797 96	798 799 797 800 799 792 785 781 779 771	798 803 798 869 803 925 798 925 798 925 800 839 800 839 800 809 793 794 788 782 785 781 780 780 777 779 774 771	825 819 836 850 918 900 875 838 861 822 803 600 788 792 788 782 783 764 776 762 776 763	837 848 847 827 809 793 789 774 767 770 759 760
2+00 S —	 1631 1450 1231 1121 1044 968 897 863 832 814 797 	1707 100 1234 1546 110 1234 1546 110 1234 1311 1125 1121 1160 1173 1125 1079 1075 1082 1079 1075 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1004 840 840 821 810 840 804 803 793	1213 145 1002 1	45 847 53 859 61 861 59 851 51 848 41 839 31 826 19 815 08 807 97 797 96 794	798 799 797 800 799 792 785 781 779 771 771	798 803 798 869 803 925 798 925 798 925 800 839 800 839 800 809 793 794 788 782 785 781 780 780 777 779 774 771 762 770	825 819 836 850 918 900 852 909 875 838 861 823 803 600 803 600 788 782 781 771 783 764 776 762 777 763	837 848 847 827 809 793 789 774 767 770 759
2+00 S —	 1631 1450 1231 1121 1044 968 897 863 832 814 797 792 	1707 20 239 15415 120 1239 15415 1200 1239 1311 1200 1175 1100 1100 1082 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1004 840 880 821 810 803 804 803 804 793 804 804	1213 145 1002 1	45 847 53 859 61 86 63 861 59 851 51 848 41 839 31 826 19 815 08 807 97 797 796 794 90 786	798 799 797 800 799 792 785 781 779 771 771	798 803 798 869 803 925 798 925 798 925 798 894 800 809 793 794 788 782 785 781 780 780 777 779 774 771 762 770	825 819 836 850 918 900 852 838 909 875 861 822 803 600 788 792 788 782 781 771 783 764 776 762 777 762	837 848 847 827 809 793 789 774 767 770 759 760
2+00 S 3+00 S	 1631 1450 1231 1121 1044 968 897 863 832 814 797 792 778 	1707 100 1234 15415 1200 1234 15415 1200 1175 1311 1200 1121 1160 1173 1130 1100 1000 974 925 919 880 804 840 840 804 803 793 804 783 788	1213 1213 1009 1002	45 847 53 859 61 861 59 851 51 848 41 839 31 826 19 815 08 807 97 797 797 796 794 90 786 82	798 799 797 800 799 792 785 781 779 771 771 766	798 803 798 869 803 925 798 925 798 925 798 93 793 794 788 782 785 781 780 780 777 779 774 771 762 770 767 772	825 819 836 \$50 918 900 852 909 875 861 825 803 600 803 600 803 792 788 782 781 771 783 764 776 762 777 762 771 762 771 757	837 848 847 827 809 793 789 774 767 770 759 760 760 760
2+00 S —	 1631 1450 1231 1121 1044 968 897 863 832 814 797 792 778 	1707 100 1239 1546 110 1239 1546 1173 1200 1311 1125 1121 1160 1173 1125 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1003 1025 1018 1004 840 880 841 840 803 793 804 803 783 788 788	1213 145 1002 1	45 847 53 859 61 86 63 861 59 851 51 848 41 839 31 826 19 815 08 807 97 797 796 794 90 786	798 799 797 800 799 792 785 781 779 771 771 766	798 803 798 869 803 925 798 925 798 925 798 93 793 794 788 782 785 781 780 780 777 779 774 771 762 770 767 772	825 819 836 \$50 918 900 852 909 875 861 825 803 600 803 600 803 792 788 782 781 771 783 764 776 762 777 762 771 762 771 757	837 848 847 827 809 793 789 774 767 770 759 760
2+00 S 3+00 S	 1631 1450 1231 1121 1044 968 897 863 832 814 797 792 778 	1707 100 1234 15415 1200 1234 15415 1200 1175 1311 1200 1121 1160 1173 1130 1100 1000 974 925 919 880 804 840 840 804 803 793 804 783 788	1213 1213 1009 1002	45 847 53 859 61 861 59 851 51 848 41 839 31 826 19 815 08 807 97 797 797 796 794 90 786 82	798 799 797 800 799 792 785 781 779 771 771 766	798 803 798 869 803 925 798 925 798 925 798 93 793 794 788 782 785 781 780 780 777 779 774 771 762 770 767 772	825 819 836 \$50 918 900 852 909 875 861 825 803 600 803 600 803 792 788 782 781 771 783 764 776 762 777 762 771 762 771 757	837 848 847 827 809 793 789 774 767 770 759 760 760 760

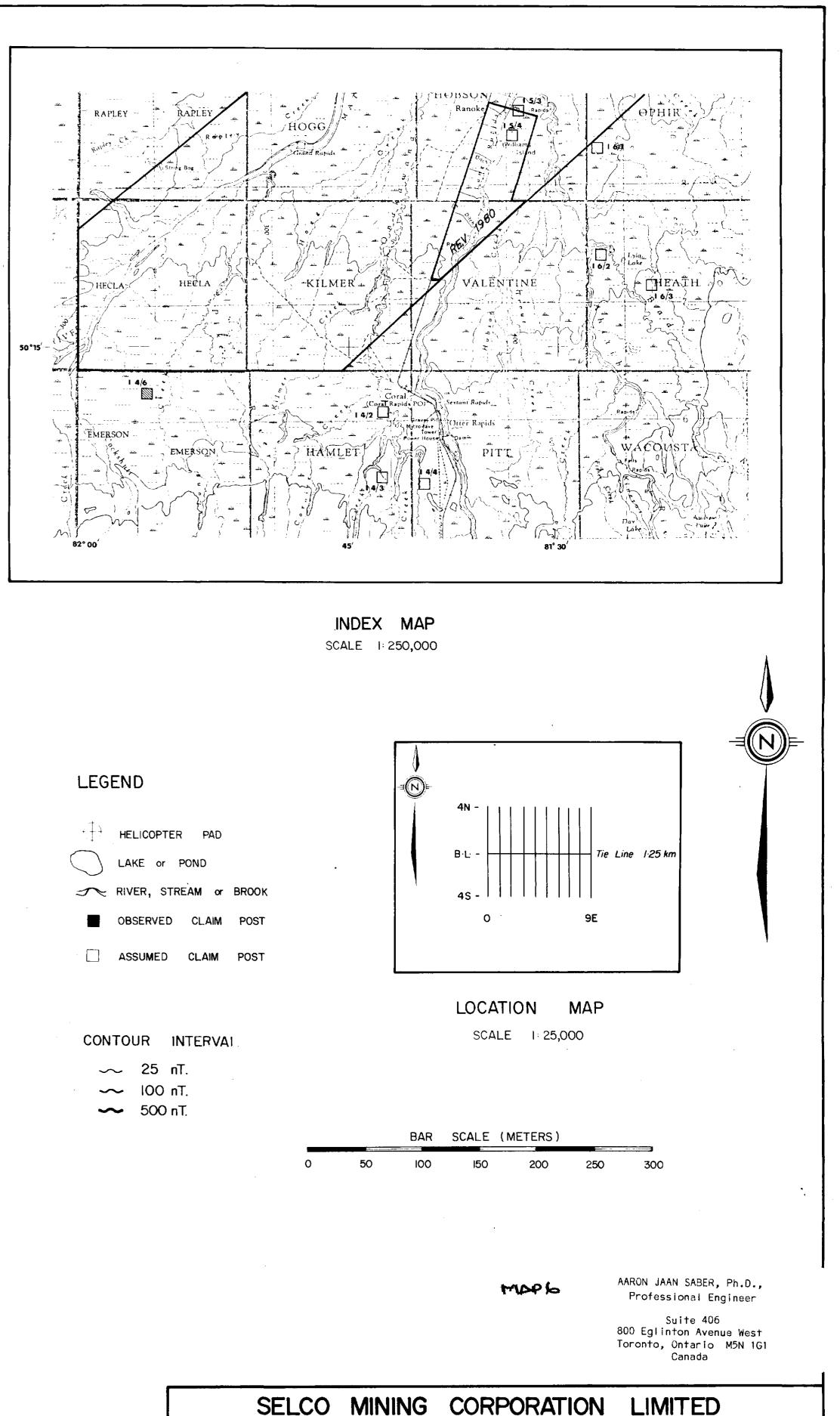
....

4+00 N —

÷

T

r 930 r1038 r92I 930 -Ю35 l 1035 · 884 - 979 93/ 839 -862 \866 933 9 969 1032 1045 1048 /90 /97 Ю44 938 -852 \ **ب**و ب 8उँर -****829 805 -**\89**9 994 · 8|4 81 795 { 859\ -777 179ð \849 78`0 778 · ələ -<u>903</u> 768 · <mark>886 ا</mark> l 772 ^l 762

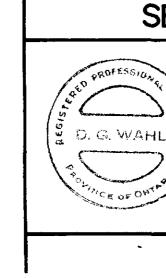

L6+00 E

-

L7+00 E

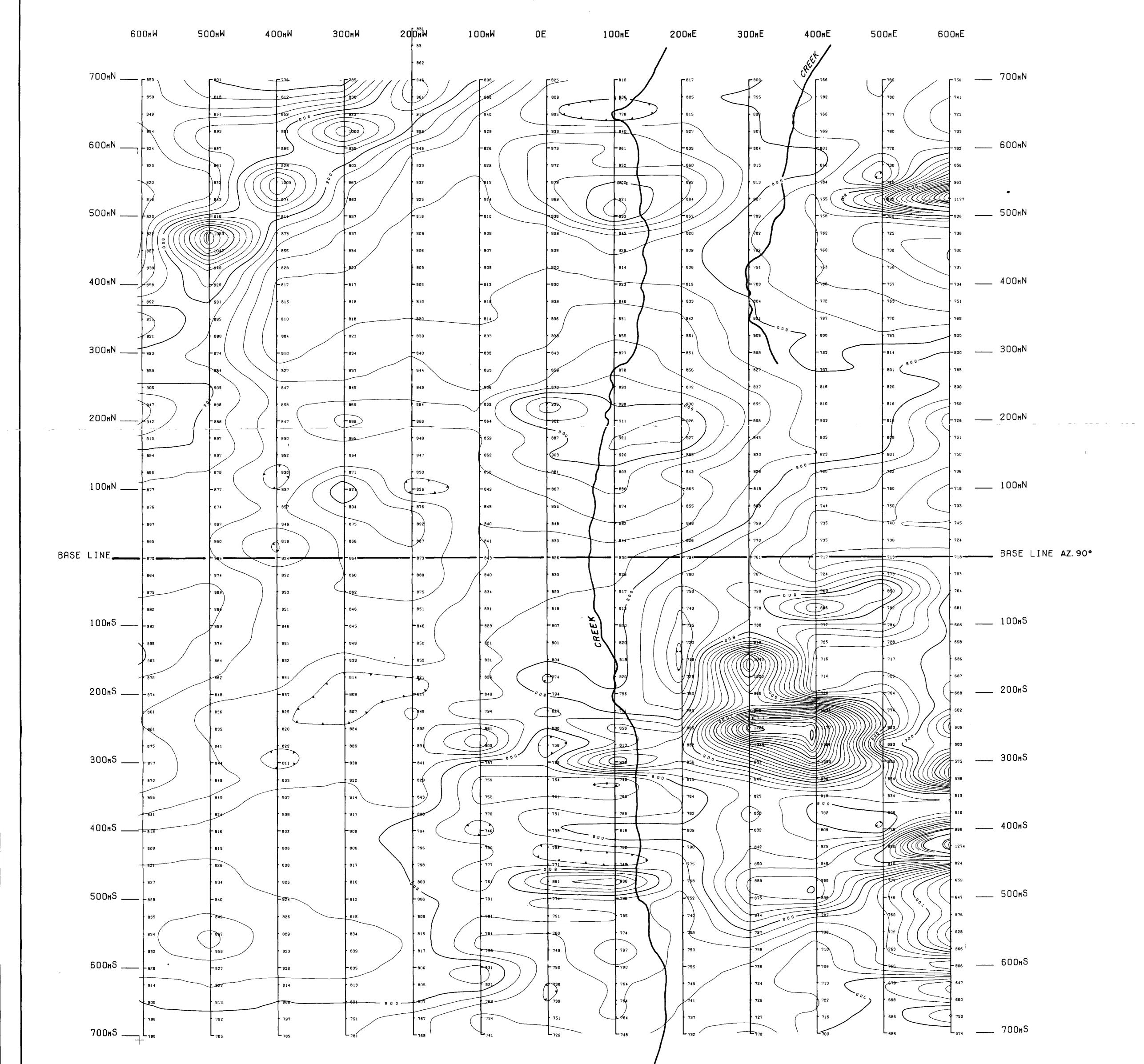
L8+00 E

L9+00 E


•

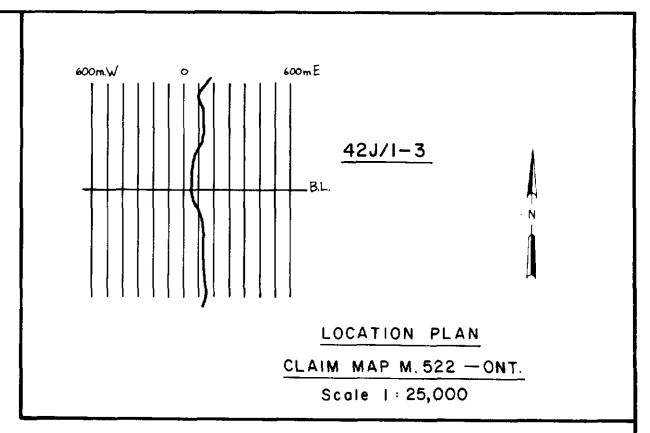
•

BACKGROUND


59,000 nT.

BASE STATION 59,600 nT.

ELC	O MINING CORPORT	ATION	LIMITED	
	SMOKY FALLS P	ROJECT	J.P.P.	REV. OCT 1980
er engineer	MAGNETOMETER	TRACED BY J.P.P.	REV.	
and a large	. GRID	APPROVED	REV.	
	I 4-6	63.411 811181-5-0	T N.T.S. - <i>132</i> 42-1/4	REV.
		SCALE: 1:2,5	00 DWG. NO. SF.3	088


.

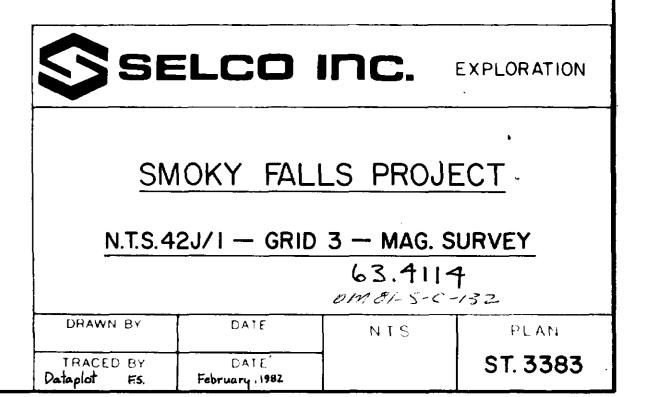
.

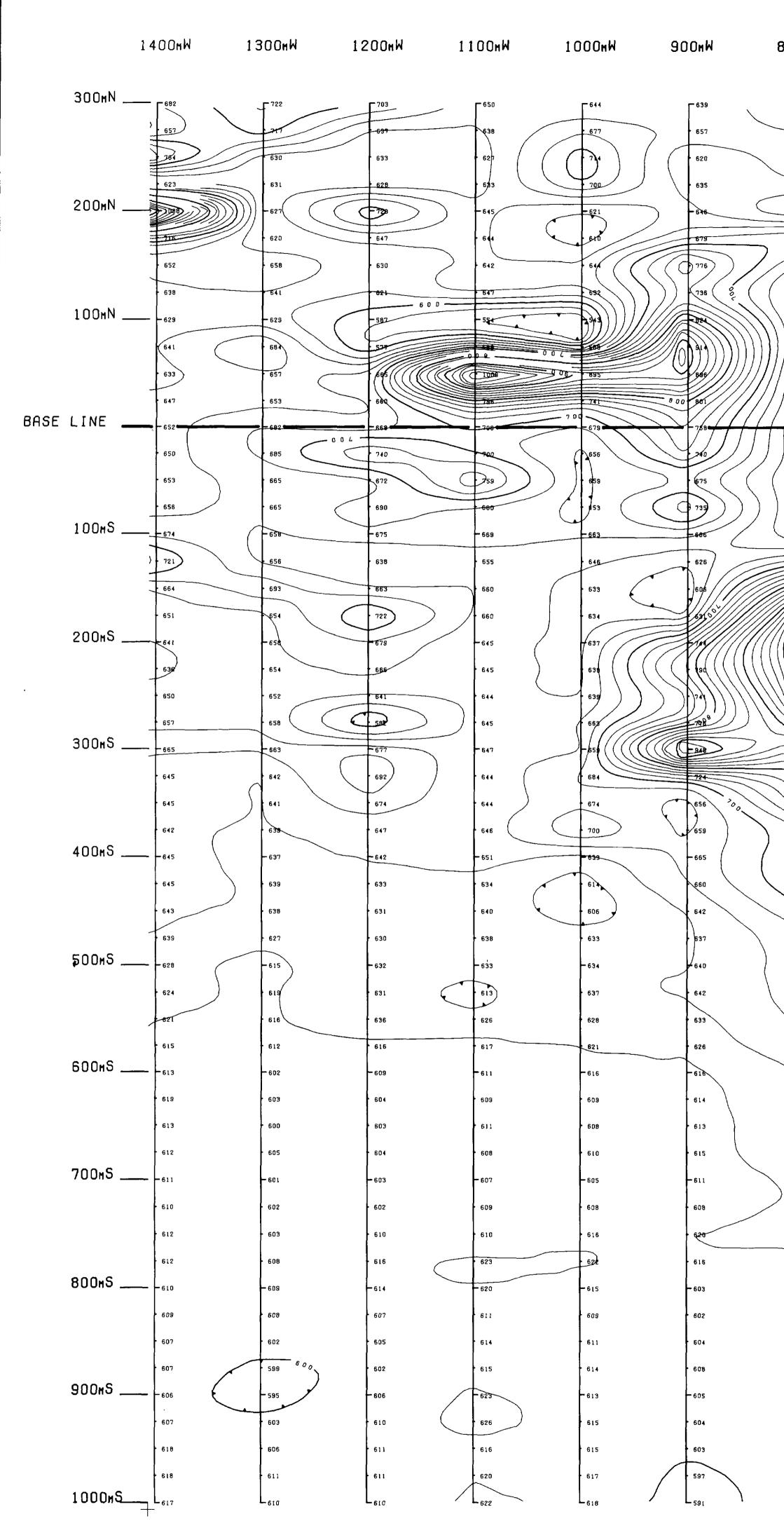
260

Scale | 2500 100 150 m 50 0

MAGNETOMETER INSTRUMENT TYPE: GEOMETRICS G-816 Readings in Gammas: L 666 Base: 59,000 Profile: Contour Interval: Every 20 Gammas

······

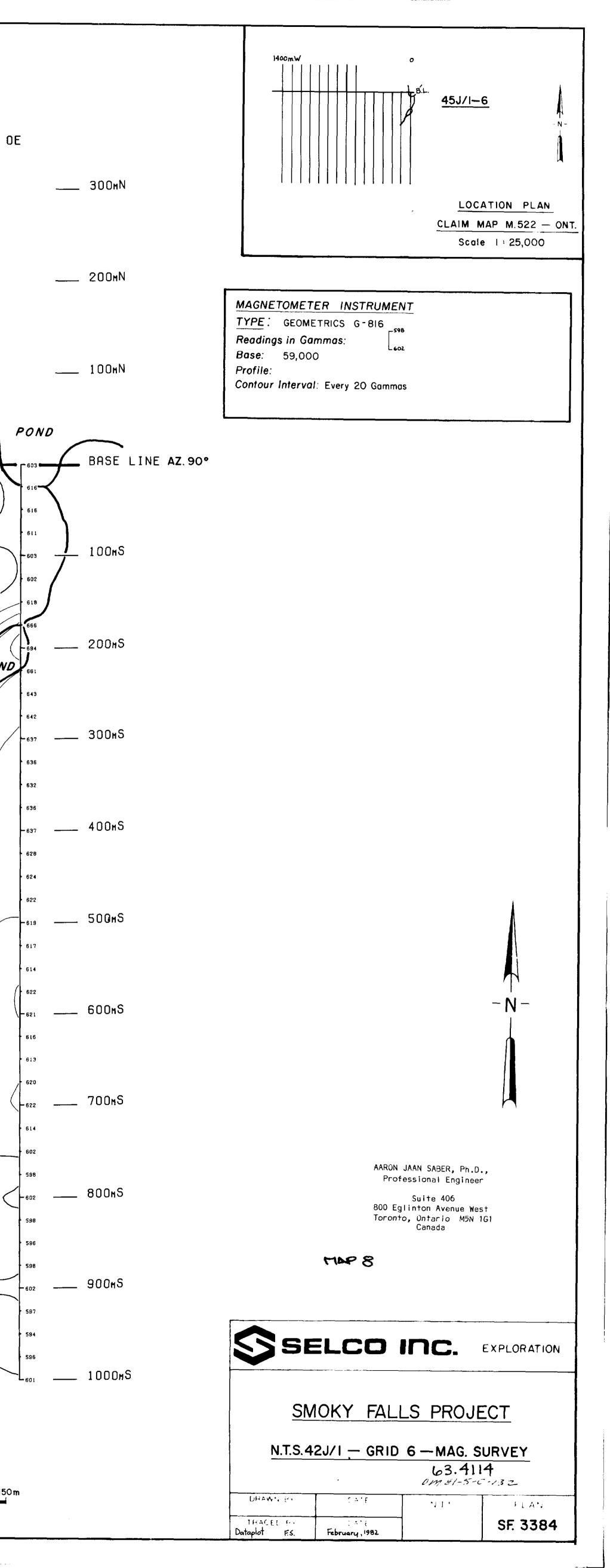


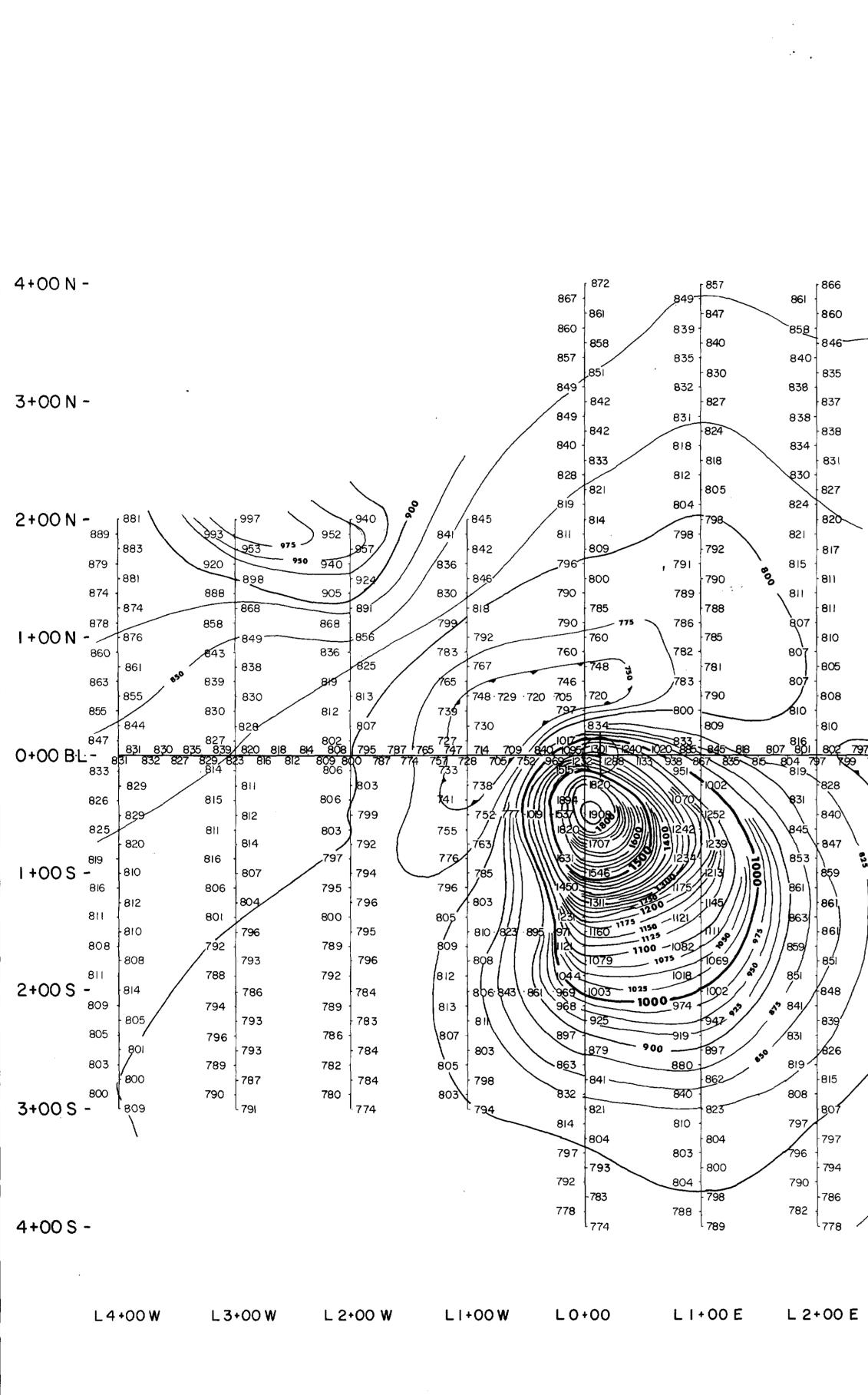

AARON JAAN SABER, Ph.D., Professional Engineer Suite 406 800 Eglinton Avenue West - N -

Toronto, Ontario M5N 1G1 Canada

MAP T

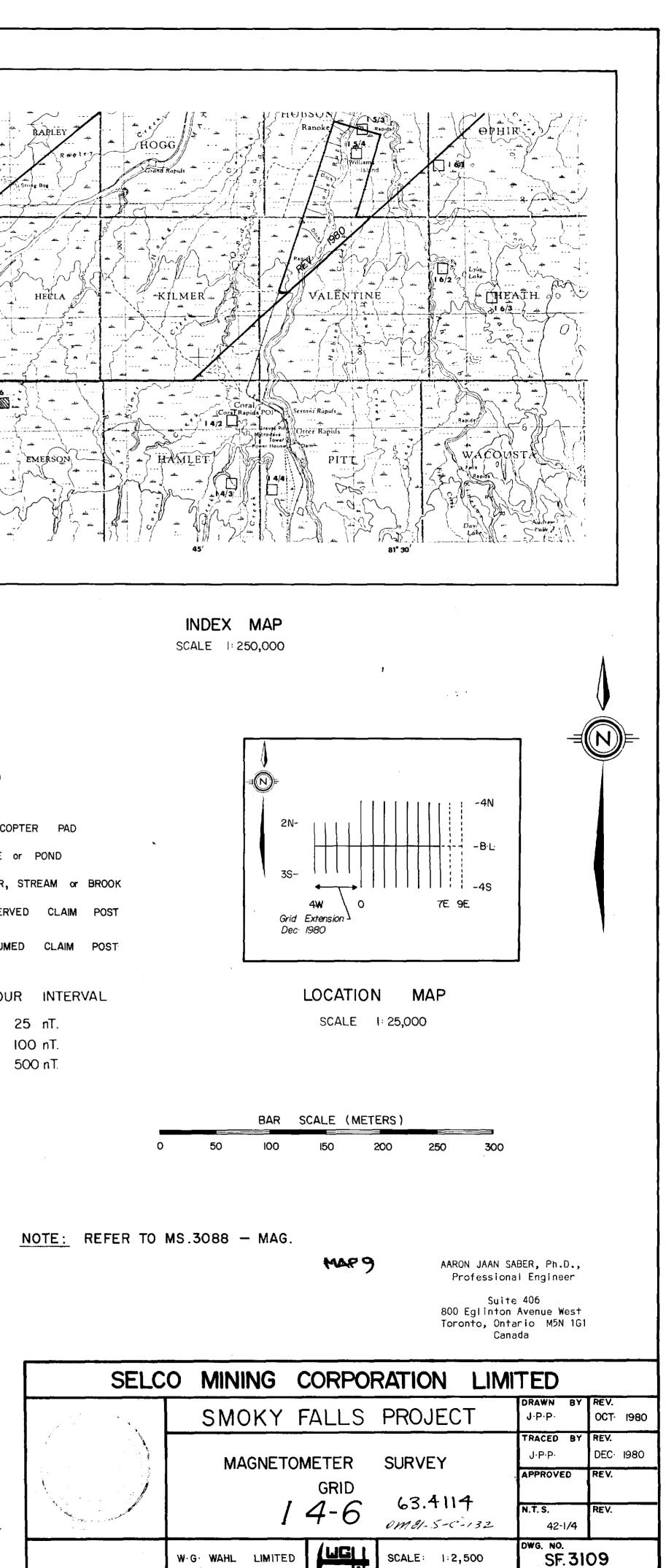
.


42 04NW8201 63.4114 EMERSON


270

.....

800nW	700nW	600mW	500nW	400nW	300nW	200nW	100mW	0
679	610	√ ⁶⁴³						
660	602	641						
650	632	601						
637	- 640	614						
702	624	639						
561	661	639						
629	597	677					N	
640	-551	582						
613		568						
625	0 6 9	589						
622	600	582						
612	604		536	582	545	575	616	
603	591	635	003	• 599	579	568	532	
605	580	666	016	581	607	. 580	612	
609	599	- 638	723	551	-601 6 0 ⁰	- 593	- 563	
688	661	660	0 0 500	C THE S	80 524	597	565	
321	634	605	558	513	563	596	575	003
30	628	630	542	601B	T T T	573	567	
	630	- SOL	585			568	609	POND
9/15/	6394	592	565			533		
916	694 6 6	633	00	057			673	
841	729 0 0	65		111 1111 Margaret	610	685	661	/
230	707	688			806	663	650	
762	674	186	800		5 766 5 766	663	840	
711	667	700		853	24	657	646)
-717	- 662		700 -729	-1\$5	678	662	541	
713	6 61	648	686	705	665		630	
691	668	641	676	671	640	654	625	
· 672	680	627	638	648	• 631 	► 627 ► 624	- 62B - 626	
666	690	638	627	625	667	620	624	
662	568	633	625	648	842	617	616	
653	670	626	620	621	616	612	601	
638	670	628	- 623	620	- 605	- 608	- 595	
632	670	629	621	616	604	605	600	
629	656	632	617	615	80a	606	602	
628	650	632	613	613	604	601	603	(
623	637	632	- 609 611	- 606 607	- 603	596	608	Ň
. 629	634	617	609	604 60°	594	. 595	599	
613	626	618	603	607	594	- 593	596	
- 610	-628	614	- 604	600	- 595	- 591	- 596	\langle
609	612	610	602	600	· 585	588	598	
606	609	610	601	598	590	579	594	
609	607	609	601	598	585	586	597	
- 610	- 612	- 608	602	- 600	588	- 586	601	\frown
610	608 607	615	600 600	595	591	584	600	
• 609 • 606	607 605	612	500	- 596 - 594	· 593 · 590	589 590	602 0 ₀ g	
	1							``



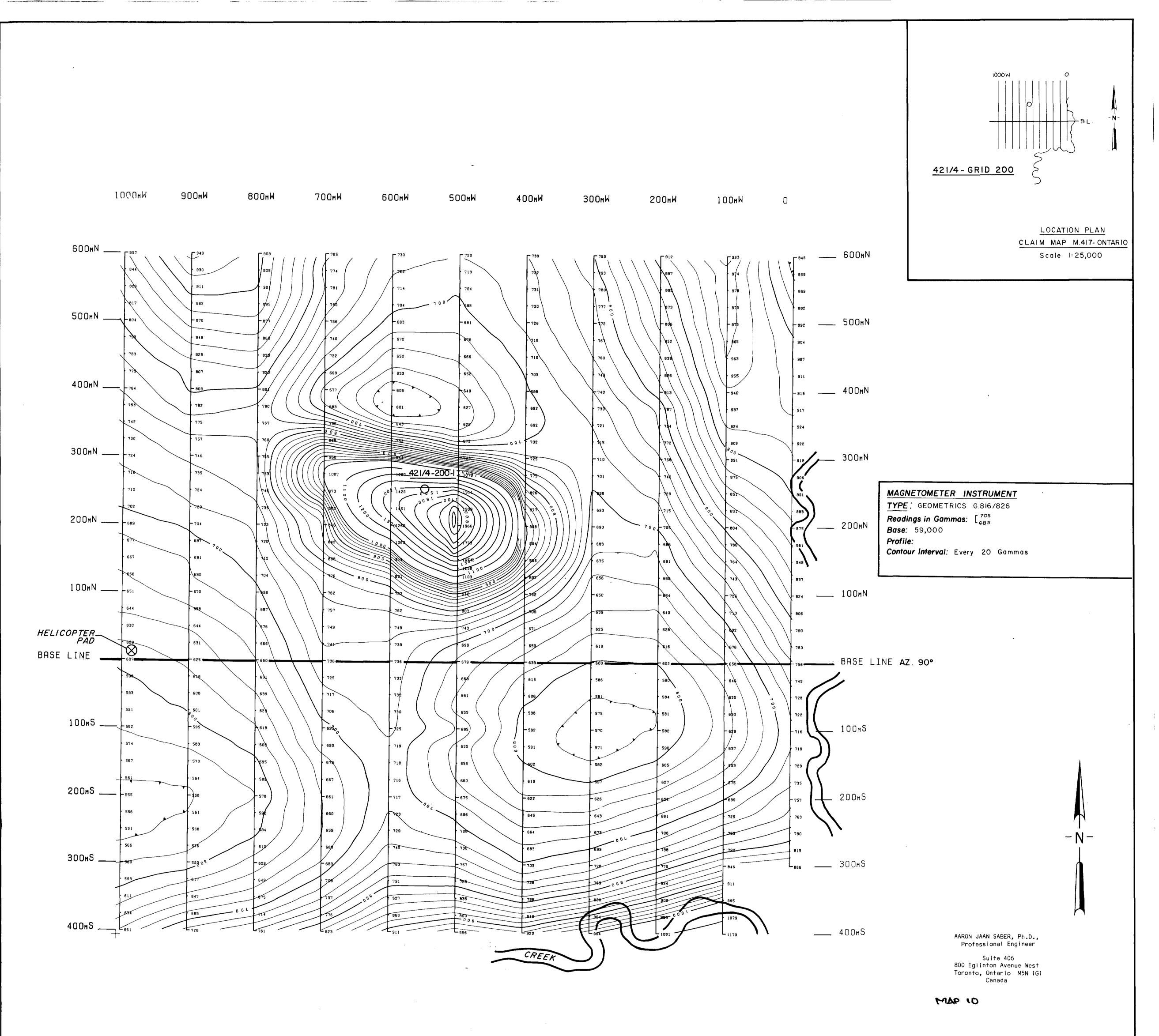
HECLA 50°15 **EMERSON** EMERSON

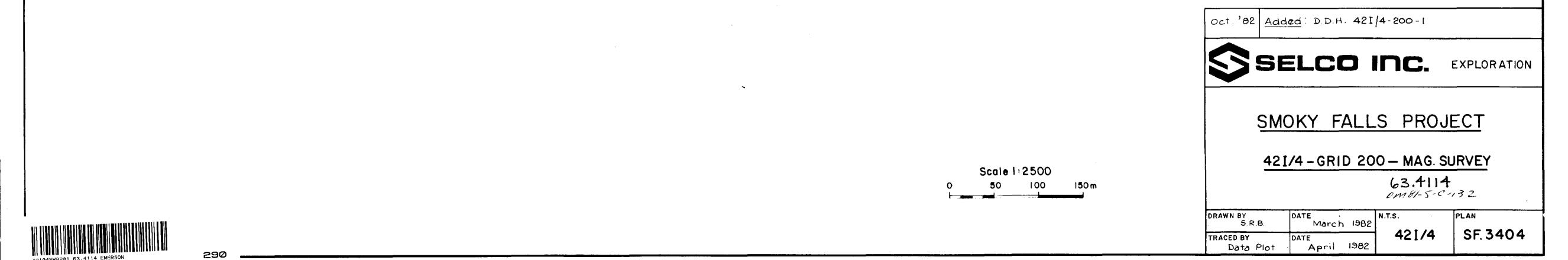
LEGEND

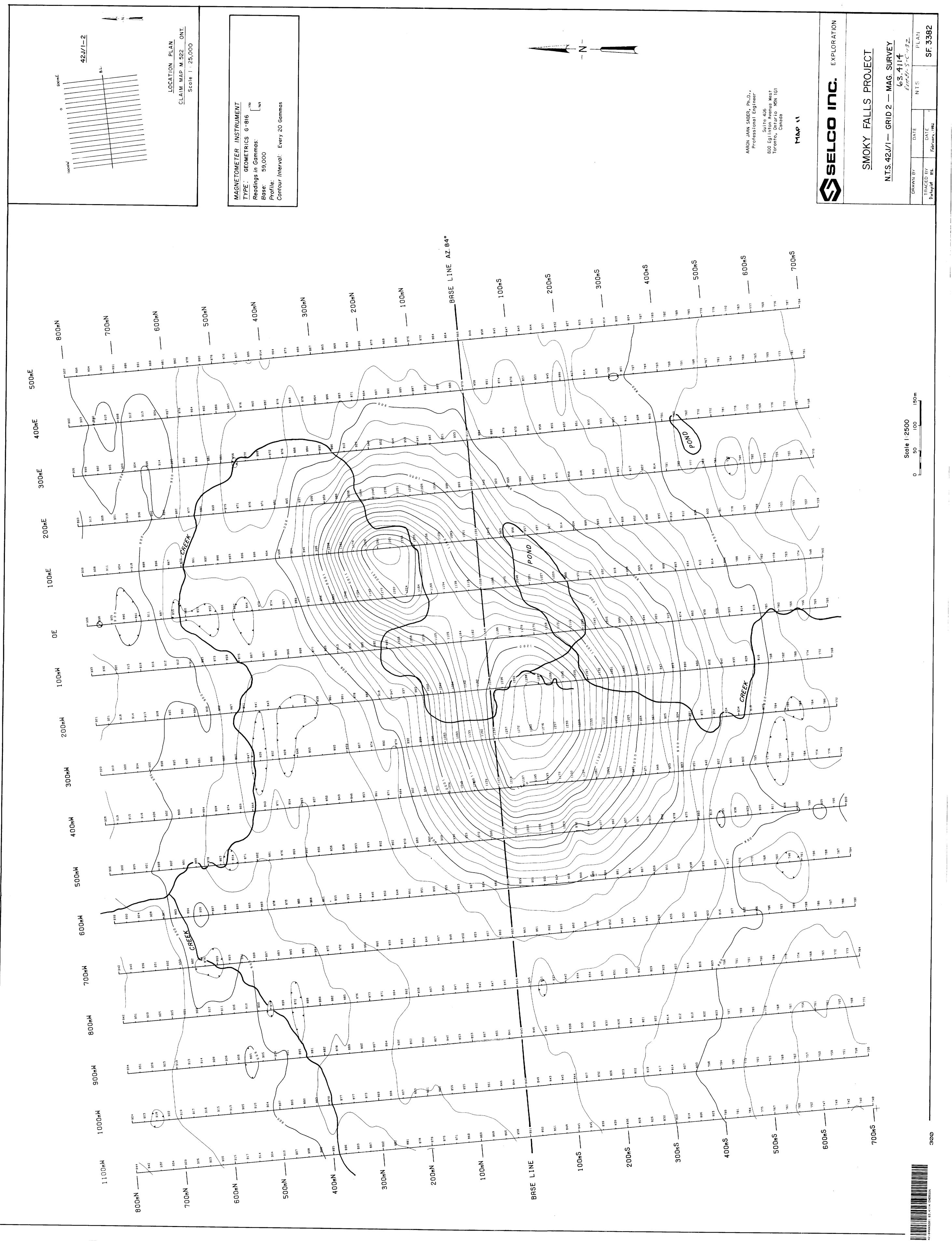
LAKE or POND The RIVER, STREAM or BROOK OBSERVED CLAIM POST ASSUMED CLAIM POST CONTOUR INTERVAL ~~ 25 nT. ∽ 100 nT. 🔶 500 nT.

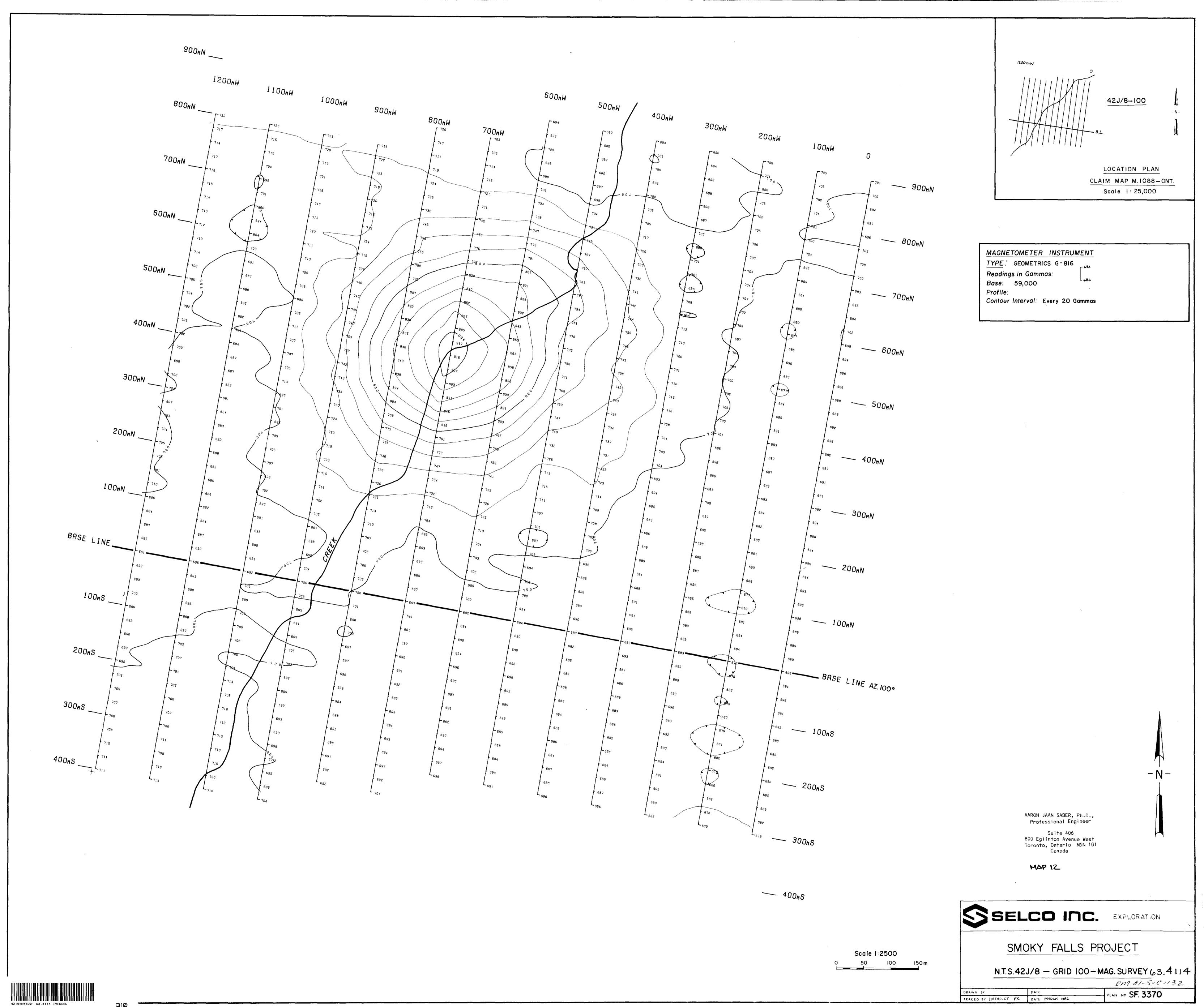
BASE STATION : 59,600 nT.

59,000 nT.

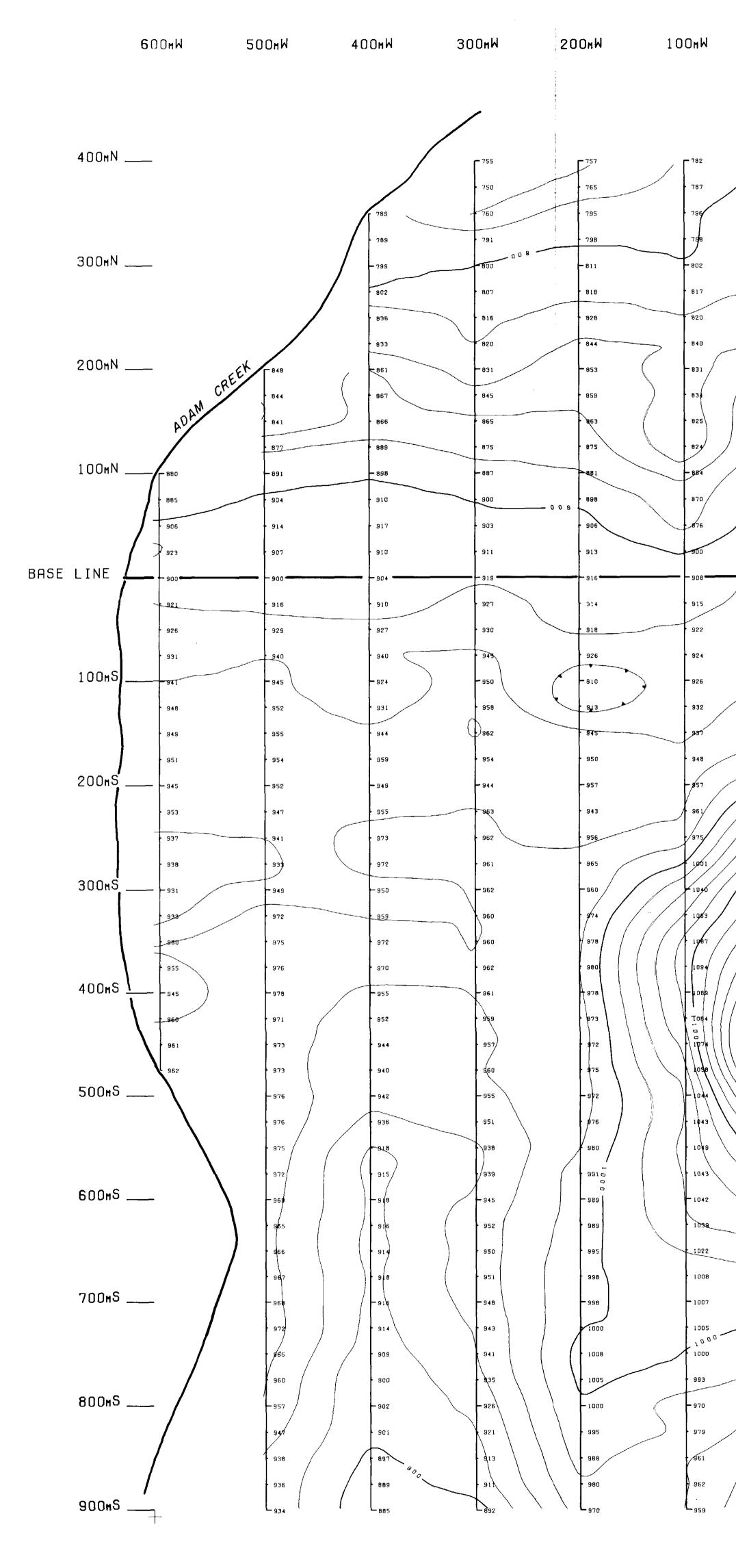

BACKGROUND


L 3+00 E


L 4+00 E

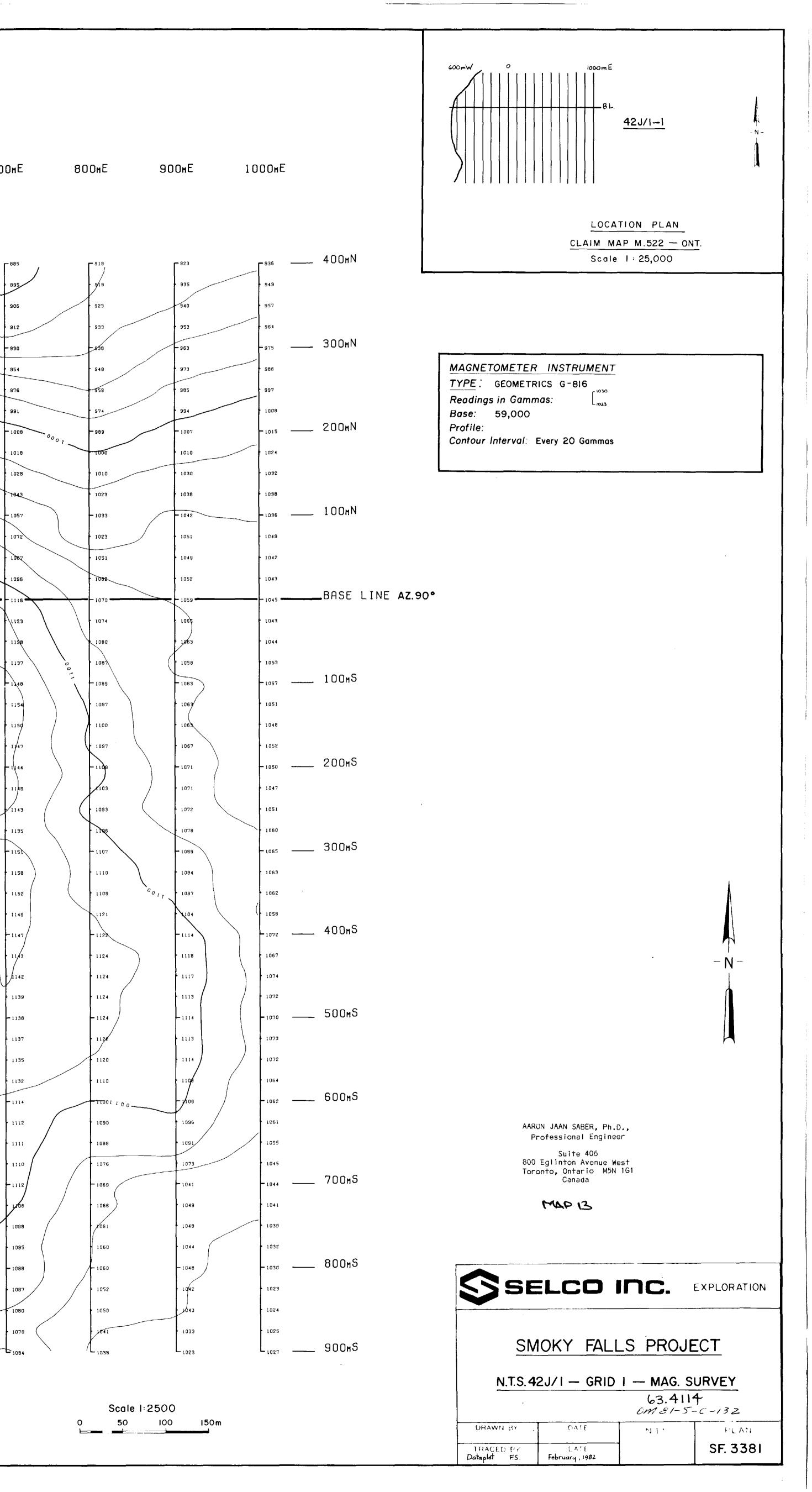

L 5+00 E

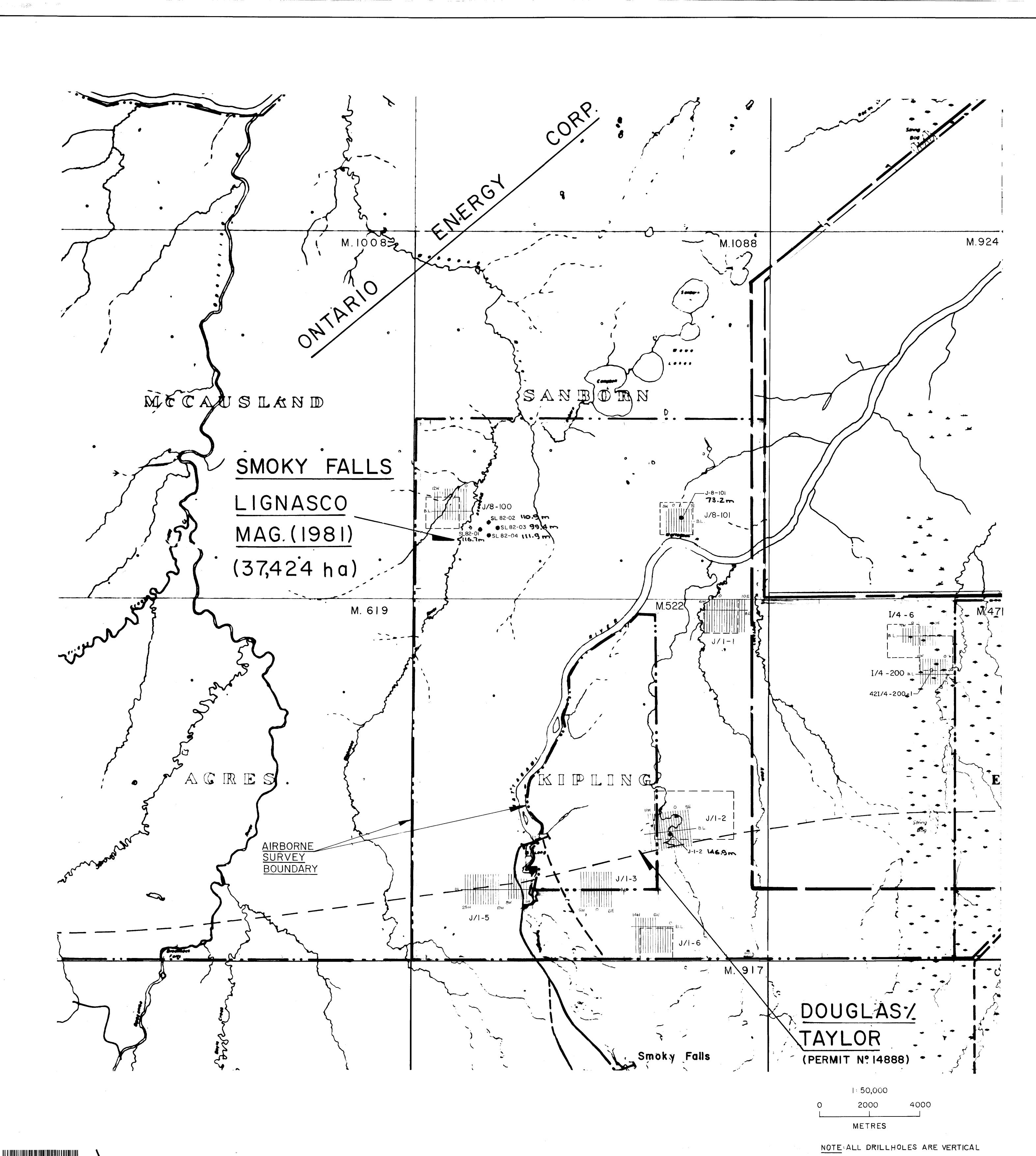
L 7+00 E L 6+00 E



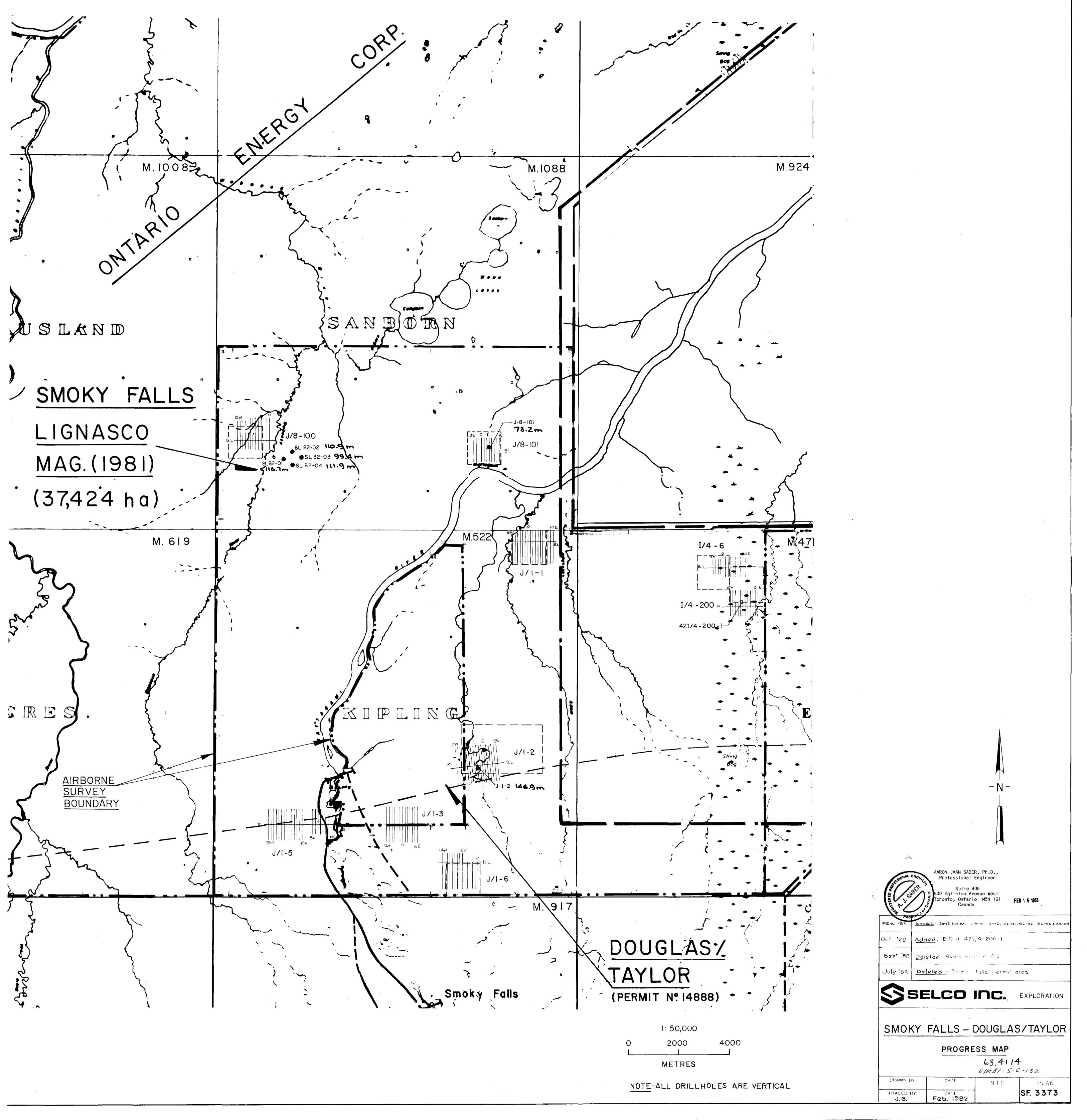
310

.. -




320

0E	10	ОнЕ 20	0мЕ 30	10mE 40	OmE 50	0 m E 60	OmE 70)0
		859	890	930	947	930	904	Γ
	812	872	910	950	977	958		
	815	8/14	529	966	991	981	938	
	820	885	940	980	- 1008 0 7	- 978	- 955	
	823	894	944	992	1021	1013	980	
	833	000	95¢	1011	1037	1031	1007	
		919	- 976		- 1074		1020	
	891	929	978	1037		1093	1030	
	904	938	982	102		1096	1054	
	910	944	993	1041	1086	1100	1078	1
	9(7 921	950	1001	1062	11094	- 1118	-1095	Ţ
	923	966 ¹⁰ 00		1050	1102	1128	- 1111	
	923	970	1010	1045	1104	1136	1131	ł
	- 930	- 968	- 1005	1040	1107	- 1147	- 1140	,-
	929	970	1008	1042	1106	1146	1743	$\left \right\rangle$
	944	965	1003	1048	1100	1185	· 1151 · 1153	ļ
		967	- 10/4		()	1151	- 1165	
	954	985	1027	1053	1106	- 1149	. 1166	ł
	961	1004	1043	V056		1148	- 1161	
	981 00 ⁰	1046	1078	1063	1105	1145	- 1159	ŀ
	1015	1167 1188	21137	1094	1100	- N 38	- 1)163 - 1158	F
	109		3620	1133	1109	7+41	1151	ł
	11/1	1967	1360	1465	1115	1123	- 1144	
	1)65	1293			1122	- 1124	- 1136	F
	1175	(321		1273 Tq13	1130	1126	1135	
	1245			1349	1141	1129	. 1130	
				- 1370	1160	- 1129	- 1129	
	1312	1645	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 1369	1187	1127	1121	ł
	1340 		V ////////////////////////////////////	1368	1164	1126	1120	ł
1.20	4910 2		1168	y315	1174	- 1130	- 1124	
		1613	555	1285	1177	1137	1140	
$\langle \rangle \rangle$		1483	1710	1285	1172	1147	1140	
		1333	1300	1222	1102	1148	1139	
	1019	1221	-1648	1190	1155		- 1135	ŀ
	1056	1105	1200	1150	1155	1146	1130	
	1018	1 1 0 0 1926	+120	1133	1143	1134	1127	
	- 1007	-1058	1106	- 1112	- 1134	-1131	-1124	+
	999	6501	1087	1100	1125	1119	1112	ł
	961 969	1022	1050	1086	1106	1110	1110	
	969	- 987	1019	- 1053	1085		- 1097	-
	942	972	1007	1091	1071	1082	• 1097	
	929	952	1000 991	1019	1060	1076	1088	ł
	916	942	822	1003	1051	1063	• 1079	
, /	L ₉₀₆	925	969		L 1040	L ₁₀₅₇	1063	-£


,

······

42104NW8201 63.4114 EMERSON 330

