

Report on the 2010 Diamond Drilling Program

Foley Mine Property

Mine Centre Property Kenora District, Ontario

for

Q-Gold Resources Limited

March 2011

Delio Tortosa M.Sc., P.Eng. Geological Consultant Sault Ste. Marie, Ontario Richard Beard, P.Eng., M.Sc. Northwest Mineral Development Services Kenora, Ontario

Table of Contents

1. Introduction	.1
2. Previous Work on the Property	.1
Period 1893-1900	. 1
Period 1922-27	.2
Period 1979 to 1985	.3
Period 2005 to Present	.3
3. Diamond Drilling Program 2010	.3
4. Geological Units	.4
Trondhjemite	. 5
Altered Trondhjemite	.5
Felsite	.5
Quartz Veins	.6
Unmineralized Quartz	.6
Mineralized Quartz	.6
Quartz Rich Zones	.6
Shear Zones	.6
Fracture Zones	.7
5. Vein Descriptions	.7
Foley Mine Vein Complex	.7
West Vein North	. 8
West Vein Splay	.8
Jumbo Vein	.9
Jumbo Vein Extension	.9
Bonanza Vein	0
6. Mineralization	10
7. Geological Drill Hole Cross Sections	10
West Vein North Section 1 (DDH: Q-WVN-10-01, 02)	11
West Vein North Section 2 (Q-WVN-10-03, 3b, 4, 5)	12
West Vein North Section 3 (Q-WVN-10-06, 07)	12
Jumbo Vein Section 1 (Q-JV-10-01, 02)	13
Bonanza Vein Section 1 (Q-BV-10-01, 02, 03)	13
Jumbo Section 1B (2005 Drill Program, Q-05-7, 8, 9)	4
Jumbo Vein Section 2 (Q-JV-10-03, 04, 05)	15
Jumbo Vein Section 2B (2005 DDH Program; Q-05-04, 05, 06)	15
8. Interpretation and Conclusions	16
West Vein North and West Vein Splay	16
Jumbo Vein	16
Bonanza Vein	16
9. Recommendations	19
10. References	21

List of Figures and Tables

Figure 1:	Interpretation of main structural features, Mine Centre	17
Figure 2:	Idealized Structural Interpretation, Foley Vein Complex	18
Figure 3:	Mine Centre Property General Location Map	22
Figure 4:	Mine Centre Property Geology and Location Map	23
Figure 5:	Detailed Location Map: DDH, Veins, Foley Mine Area	24
Figure 6:	West Vein North, Section 1, Looking North	25
Figure 7:	West Vein North, Section 2, Looking North	26
Figure 8:	West Vein North, Section 3, Looking North	27
Figure 9:	Jumbo Vein, Section 1, Looking North	28
Figure 10:	Bonanza Vein, Section 1, Looking North	29
Figure 11:	Jumbo Vein, Section 1b, Looking North	30
Figure 12:	Jumbo Vein, Section 2, Looking North	31
Figure 13:	JumboVein, Section 2b, Looking North	32

Table 1: Calculated weighted average grade: Foley Mine mineralized veins	.4
Table 2: Foley Mine Area Diamond Drill Holes, 2010	4
Table 3: Foley Mine DDH Program 2010: Summary of Notable Assay Results	17
Table 4: Foley Mine DDH Program 2010: Summary of Assay Results	33

Appendices

Appendix 1: Foley Mine Area DDH Geological Logs, Assays, and Multi-element

Foley Mine Area Diamond Drilling Program 2010

1. Introduction

The Q-Gold properties are situated in the Kenora Mining Division, in unorganized territory in Northwestern Ontario, approximately 65 kilometres east of Fort Frances, Ontario (Figure 3).

The Foley Mine claims are located in the south central portion of the Mine Centre property holdings of Q-Gold Resources Ltd. (Figure 4) and are situated on map sheet NTS 52-C/10. The Foley Mine and vein systems are located on Crown Leases K475099 and K475100. The 2010 drilling program was carried out on Crown Lease K475099, where the Foley Mine workings are situated and where the mineralized veins are accessible from the underground workings. The Mine and drill hole locations are easily accessible from Highway 11 via the Shoal Lake Road, which takes off from Highway 11 one kilometre east of the village of Mine Centre. This road runs south down the full length of the Company's claim groups, providing good access to most of the Mine Centre properties. This is a dirt road that has been upgraded to allow movement of heavy equipment around the property.

2. Previous Work on the Property

The Foley Mine has had an extensive exploration and development history over the past 127 years beginning in 1893, in principally four periods; 1893-1900, 1920-1927, 1979-1985, and the work by Q-Gold from 2005 to the present.

Period 1893-1900

The Foley Mine deposit was discovered in 1893 by Thomas Weigand. During this period, three shafts were sunk on the Foley property, and considerable underground development work was carried out, consisting of drifts, crosscuts and winze. Surface stripping and trenching during this period revealed over 75 veins on the property:

1. The North shaft was sunk on the Bonanza vein to a depth of 431 feet, and development work was carried out on the 100, 150, 300 and 400-foot levels.

2. The South, or #5 shaft was sunk to a depth of 225 feet, with drifting and crosscutting on the 150-foot level.

3.A third shaft, the Lucky Joe shaft, was sunk to a depth of 71 feet. Drifting was carried out in both directions on the 71-foot level along the Lucky Joe vein.

4.A 20 stamp mill was installed on the shore of Shoal Lake in 1896, and the following year, a 4,380-foot gravity tramway was installed between the mine and the mill. 4,412 ounces of gold were reportedly produced during this early period

During this period the Foley Mine produced a recorded 4,412 ounces of gold primarily from the Bonanza Vein between the 100 Level (30.5 m) and the 300 Level (91 m).

Work was suspended in 1899 due to a flattening of the securities market during the Boer War and a rash of fires that burned down many structures in the area, including mills. From 1901 to 1918, no activity was reported.

Period 1922-27

In 1922, the property was purchased by British Canadian Mines Ltd. In the following years through 1927, the Company carried out an aggressive program of mine development, mostly from the North shaft. However, little work appears to have been done on the upper levels. A winze was sunk from the 400-foot level of the North shaft to a depth of 850 feet and levels established on the 500, 600, and 850-foot levels. Extensive lateral development work was carried out on all five levels, intersecting the Bonanza vein, Jumbo vein, West vein, Vowel vein, and the North Sulphide vein as well as other smaller un-named veins. The winze was also driven upward 160 feet from the 400 foot level but never reached surface as planned.

Also between 1920-27, a fourth shaft was sunk on the West Vein. The West Vein was also intersected by a crosscut from the North Shaft on the 400-foot level.

A 120-ton per day cyanide mill was constructed, but the mill never turned over. Consequently, no ore was milled from this period. Only development work was carried out.

One other development of note, occurring during this period, was contained in a report by the Ontario Department of Mines (Sutherland 1925) that reported that British Canadian had carried out a development drilling program targeted to intersect the Foley ore zones at depth (i.e. below the 850-foot level). Sutherland noted that the deep drilling was done in three holes, two from surface for lengths of 1,188 feet and 1,192 feet respectively, and one from the 400' level of the North Shaft for an 814 foot length. Verifiable results of this drilling are not available.

The third British Canadian hole, drilled from inside the Foley Mine on the 400 foot level, reportedly intersected visible gold at 720 feet of hole and encountered a deeper, 15+ metre section of sulphide mineralization thought to be the South Sulfide Vein.

By 1927, during the onset of The Great Depression, the company was encountering financial difficulties, and in that year, all development work (estimated to total approximately \$12 million in today's terms) was terminated and the 60-man work force released. No significant development work has occurred at the Foley Mine since that time.

Period 1979 to 1985

In 1979-1980, Corporate Oil and Gas optioned the property and undertook a drilling program to assess the gold mining potential of the various veins on the Foley property and the adjacent Cone Mine claims. Most of the holes intersected quartz veins at depths on the order of 100 to 150 ft. and some to about 250 ft., but assay results rarely ran higher than trace amounts of gold, over 1 to 3 ft widths. (The highest value was 0.60 ounces gold per ton over a 1.6 ft. core length).

In 1981 and 1982, Sherritt Gordon Mines Ltd. evaluated a large area that included the Foley property. This program included extensive mapping and trench sampling and assaying of the main veins on the property. A sampling program was also conducted on the Foley tailings at that time (Sherritt Gordon Mines, 1982 and 1983). Geology and trench assay plans are available.

Period 2005 to Present

In 2005, Q-Gold carried out a trenching and sampling program on seven vein structures on the Foley property. A total of 117 chip samples were collected from 72 trenches taken across the Jumbo vein, the South Sulphide vein (including the Daisy and the Little Joe veins), the North Sulphide vein, the West vein and the Vowel vein.

Also in 2005, Q-Gold drilled ten structural drill holes on the Foley property to test the downward continuity of the vein system.

In 2007, Q-Gold initiated a program to re-enter the Foley shaft and carry underground sampling to confirm earlier historical grade figures. In 2008, a hoist house and hoist was installed, the shaft dewatered to 150 feet, and the shaft reconstructed to the150 foot level. The underground program is on hold pending the results of the current diamond drilling program.

3. Diamond Drilling Program 2010

The Foley Mine structure consists of several quartz vein systems oriented in a northsouth and northwest-southeast direction with steep dips. These quartz veins include the Bonanza Vein on which the Foley Mine shaft was sunk, the Jumbo Vein, the Vowel Vein, the West Vein North and the Goldpanner Vein. These veins and other associated veins were accessed by historical crosscuts and drifts, which followed the veins on several levels to a depth of 260 metres (850 Level).

Surface stripping and sampling of the Vowel, Jumbo, Goldpanner and West Vein North by Q-Gold Resources Ltd. in 2006 indicated the presence of significant grades of gold and silver over 200-300 metres along strike. There is a strong 'nugget effect' on gold values in these vein systems. No direct correlations have been found between the gold, silver and zinc grades, however gold is most often present where there are sulphides (pyrite, sphalerite, chalcopyrite, galena and argentite).

Vein System	Avg Width (m)	Length (m)	Au g/T	Ag g/T	Zn ppm					
West Vein North	0.62	314	8.38	3.86	444					
Goldpanner Vein	0.36	23	7.74	11.59	2584					
Jumbo Vein	1.13	213	5.25	14.73	2074					
Vowel Vein	0.92	115	5.01	19.10	13807					
Bonanza Vein*	0.48	20	27.38							

 Table 1: Calculated weighted average grade for Foley Mine mineralized veins.

 Q-Gold 2006 trenching/sampling program

* Source: Historical data from Sheritt Gordon Mines Ltd., 1982

During the period July 7, 2010 and October 3, 2010, a diamond drilling program consisting of 16 NQ-size drill holes (2223.5 metres) was completed on the Foley Mine property. The drilling program was designed to test these vein systems to a depth from 75 to 130 metres at locations where there was known surface mineralization. Drill holes were designed as two and three drill hole fans at 25-metre spacing in order to produce cross-sections of the geology, vein system, and assays. The intent of the drill program was to establish continuity of the vein system, intersect areas of known surface mineralization at depth, and better understand the interconnectivity of the vein complex.

Section	DDH	Length	Azimuth	Dip
WVN Section 1	Q-WVN-10-01	98	270	-45
WVN Section 1	Q-WVN-10-02	136	270	-60
WVN Section 2	Q-WVN-10-03	99	270	-45
WVN Section 2	Q-WVN-10-03B	107	270	-40
WVN Section 2	Q-WVN-10-04	161	270	-55
WVN Section 2	Q-WVN-10-05	125	270	-65
WVN Section 3	Q-WVN-10-06	86	270	-45
WVN Section 3	Q-WVN-10-07	119	270	-60
BV Section 1	Q-BV-10-01	102	270	-45
BV Section 1	Q-BV-10-02	141	270	-60
BV Section 1	Q-BV-10-03	219	270	-70
JV Section 1	Q-JV-10-01	147.5	270	-45
JV Section 1	Q-JV-10-02	200	270	-60
JV Section 2	Q-JV-10-03	108	270	-45
JV Section 2	Q-JV-10-04	180	270	-60
JV Section 2	Q-JV-10-05	195	270	-70
Total		2223.5		

Table 2: Foley Mine Area Diamond Drill Holes, 2010

The drilling program was supervised by Richard Beard, P.Eng., 1138 Hillside Crescent, Kenora, ON, P9N 2X9.

4. Geological Units

The major rock types in the Foley Mine area consist of trondhjemite and altered trondhjemite that are intruded by narrow felsite dikes.

Trondhjemite

Trondhjemite is the field term used to classify the Bad Vermillion Felsic Intrusion that ranges in composition between a trondhjemite and a tonalite. In drill core it is medium-grained containing finer-grained sections composed of plagioclase and quartz grains in a fine-grained, dark gray matrix. The quartz grains commonly form as quartz eyes that impart a porphyritic appearance to the rock. Generally it is weakly foliated and altered with sericite and chlorite, and slightly carbonatized.

Colour variations in the trondhjemite vary from pale grey, reddish-brown, light green, and greenish gray. The lighter colour is accompanied by increase in quartz and sericite; the reddish-brown is likely due to an increase in hematite; the light green colour is due to an increase in sericite. There is generally an increase in alteration and foliation/schistosity near the contacts with quarts veins. The trondhjemite contained in quartz veins is highly altered (silicfication, sericitization, carbonatization and chloritization).

The trondhjemite contains irregular patches of quartz and quartz carbonate locally. Carbonate is also finely and irregularly disseminated throughout, usually associated with quartz veinlets and along hairline fractures. Scattered blebs and crystals (+/- 1 to 3 mm) and thin stringers of pyrite are scattered throughout. Rare fine-to coarse-grained sphalerite and galena are associated with some of the more prominent quartz veins. Fractures in the trondhjemite are often smeared with chlorite and occasionally fine pyrite grains.

Altered Trondhjemite

Altered trondhjemite most commonly occurs in close proximity and within quartz veins and quartz rich zones. It varies in colour from greenish to pale/dark grey and is generally fine-grained containing prominent quartz 'eyes'. It commonly has a 'bleached' to pale gray appearance in places. Adjacent to quartz veins it may be strongly sheared or foliated, chloritized and weakly silicified. Carbonatization in the altered trondhjemite is quite noticeable by its light brown colour due to oxidation when left outside on the core racks for a period of time.

Felsite

Felsite is the field term used to classify very fine grained, siliceous dikes that intrude the trondhjemite host rocks. The felsite varies in colour from pale cream to gray to pink. The felsite is often microfractured at various angles with the fractures filled by chlorite. In some drill holes the felsite contains less than 1% pyrite forming thin stringers. In places, the felsite is separated from the trondhjemite host rock by a thin quartz-carbonate veinlet. This has also been observed on surface where felsite occurs at the contact between a mineralized quartz vein and the trondhjemite host rock (Ferguson Prospect).

Contacts with the trondhjemite are generally sharp and core angles are traceable on a drill section and consistent with steeply east-dipping dikes (60-70°). The traceable dikes range

from 0.5 to 1.5 metres, but others less than 0.5 metres are difficult to trace between drill holes on a section.

Quartz Veins

Quartz veins can be subdivided into those that have obvious mineralization and those that appear unmineralized.

Unmineralized Quartz

The quartz is white, massive with occasional streaks of sericite and chlorite. The quartz may contain irregular sections, inclusions and bands of altered trondhjemite. Pyrite occurs as small blebs and thin stringers, occupying generally less than 1%. The quartz is often described as barren looking.

Mineralized Quartz

The quartz is white to gray in colour occurring as bands with seams of sericite and chlorite. Where the quartz contains reddish to reddish-gray sections it is often well mineralized with sphalerite and pyrite. The quartz locally contains bands of altered trondhjemite.

Quartz Rich Zones

Quartz-rich zones represent sections of rock that have varying proportions of quartz and altered trondhjemite. Quartz may comprise 30% - 85% of the rock with altered trondhjemite representing 15% - 70%. The rock may vary from quartz veins separated by altered trondhjemite to large fragments of altered trondhjemite contained within a quartz vein. Often, quartz rich zones are in contact with quartz veins or represent quartz-rich boundaries to large quartz veins. Some quartz rich sections represent a higher concentration of quartz in the trondhjemite along with irregular concentrations of quartz.

Quartz-rich zones are generally less well mineralized than the mineralized quartz veins. The predominant sulphide mineral is pyrite and ranges from less than 1% up to 5%. Pyrite occurs as irregular spots and fine disseminations, and as thin seams and stringers. Where quartz-rich zones are closely associated with mineralized veins, the quartz may contain sphalerite, galena, and chalcopyrite in variable, but generally small concentrations.

Shear Zones

The term shear zone is a field term used to define zones of trondhjemite that are highly sheared. The sheared rock is highly chloritic with stretched blue quartz 'eyes'; chloritic surfaces may be slickensided and quartz-carbonate stringers may occur along the shear plane. Shear zones or sheared trondhjemite are often associated with the quartz vein contacts.

Fracture Zones

A fracture zone represents a section of rock characterized by numerous fractures. Fractures are usually coated with chlorite and the contacts of the fracture zone may have fault gouge consisting of small rock fragments in a chlorite matrix. Fracture zones may contain up to 10% quartz veining and up to 1% disseminated pyrite with trace sphalerite and chalcopyrite.

5. Vein Descriptions

Foley Mine Vein Complex

The host rock for the Foley Mine vein complex is a massive, equigranular, medium to coarse-grained felsic intrusive sill with a composition ranging from trondhjemite to tonalite (Figure 4). The vein complex consists of several quartz vein systems oriented in a north-south and northwest-southeast direction with steep dips. These quartz veins include the Bonanza Vein on which the Foley Mine shaft was sunk, the Jumbo Vein, the Vowel Vein, and the West Vein North. These veins and other associated veins were accessed by historical crosscuts and drifts, which followed the veins on several levels to a depth of 260 metres (850 Level).

The host rock trondhjemite adjacent to the veins is commonly sheared with the foliation displaying an oblique angle to the vein contact indicating a left lateral movement in the shear zone. The sheared host rocks are altered showing evidence of carbonatization, sericitization, and chloritization. Slickensides on the shear surface adjacent to the quartz veins are sub-horizontal.

The vein mineralization is characterized by the presence of disseminate and network pyrite, with minor sphalerite, galena, chalcopyrite, argentite, and free gold hosted in rosy to white quartz. The sulphides generally tend to comprise <5% but in places will increase to 5-10%. The veins range from 1 to 2 metres wide with sharp vein contacts and a pinch and swell character.

Quartz veins encountered in drill holes are classified based on the original surface naming convention. These include the West Vein North, Jumbo Vein, Jumbo Vein Extension, and Bonanza Vein. A new vein identified during the drill program is termed the West Vein Splay. Veins such as the Goldpanner Vein are splays of limited extent off the West Vein North and were not identified in drill core.

The interpretation of veins on each cross section is based on the presence and location of quartz veins and quartz rich zones in drill holes and on surface, on the angle of the vein contact with the core axis and the presence of the vein on adjacent sections. Use was also made of the location of historical mine drifts that are thought to have followed quartz veins.

West Vein North

The West Vein North has been stripped and sampled over a distance of 314 metres ranging from 0.2 to 1.74 metres wide with an average width of 0.62 metres. There is a 200-metre gap between the northern and southern sections of the West Vein that was not stripped or sampled due to overburden thickness. It has not been determined whether the northern and southern sections are connected, but they appear to be aligned.

The West Vein North is connected to the Foley Mine workings at the 400 Level via a crosscut. Drifting along the vein on the 400 Level aligns with the vein on surface (Figure 5). A 27-metre shaft was sunk on the West Vein North, but no information is available on development. The West Splay Vein (also referred to as the Goldpanner Vein), splays off the West Vein North about 60 metres north of the shaft. Sampling in the area of this vein junction returned significant grades.

West Vein North has a north-south trend and dips vertically to steeply east. On surface the vein contains splays which verge to the south-southeast. The Goldpanner Vein represents one of these splays and is located 60 metres north of the historical shaft. The vein was traced over a distance of 25 metres on surface.

Three drill hole sections were placed north of the historical shaft and spaced at 25 metres. Six drill holes intersected the West Vein North.

West Vein North is characterized by white massive quartz with a very 'streaky' appearance caused by irregular concentrations of chlorite and sericite within the quartz. The more mineralized sections have up to 2-4% pyrite, 2% galena, and trace chalcopyrite and sphalerite.

The West Vein North is closely associated with the West Vein Splay that appears to be a major splay off the West Vein North.

West Vein Splay

The West Vein Splay has not been identified on surface, possibly because of overburden cover. Three drill sections spaced at 25 metres intersected the West Vein Splay in 8 drill holes.

The West Vein Splay is curvilinear, dipping vertically to steeply east. The vein appears to merge with the West Vein North in the northern drill section at about the 400 Level (118 metre depth). It then diverges on Section 2 and 3 at 25 and 50 metres south occurring 15-20 metres east of West Vein North. These features suggest that it may be a splay off the West Vein North.

The West Vein Splay is characterized by a white to pinkish quartz with dark chloritic streaks. Mineralized zones contain up to 2-3% pyrite, 3% sphalerite, and less than 1% chalcopyrite. The vein contains sections of altered trondhjemite.

Gold values intersected consist of 5.88 g/T over 0.47 metres in a quartz vein and 6.48 g/T over 1.7 metres in a quartz rich zone.

Jumbo Vein

On surface the Jumbo Vein strikes 325° to 330° and dips $75^{\circ} - 90^{\circ}$ northeast. There are several splay veins which branch off to the north from the Jumbo Vein, one of which is the Bonanza Vein. The Jumbo Vein ranges in width between 0.4 and 1.95 metres on surface, averaging 1.13 metres over a distance of 213 metres.

The Jumbo Vein was intersected on three drill hole sections by 7 drill holes from the 2010 drill program, and on two sections by 6 drill holes in the 2005 drill program. On cross sections, the Jumbo Vein has a 'pinch and swell' nature ranging from less than 0.5 metres up to 7.5 metres and averaging 1-2 metres.

The Jumbo Vein is characterized by a variation from a quartz vein to a quartz rich zone. The quartz vein is white, massive, with seams of chlorite and sericite imparting a banded appearance. Quartz rich zones represent wider sections of the vein consisting of intermixed bands of altered trondhjemite and quartz veins. The quartz veins range from white to greenish to pinkish in colour and contain streaks with chlorite and sericite. The quartz rich zones may be contained between quartz veins or occur adjacent to wide quartz veins resulting in a broader width to the vein as a whole.

Mineralized zones consist of up to 2% sphalerite as irregular blebs and seams, less than 1% chalcopyrite and pyrite and fine-grained galena. The quartz can have up to 4-5% pyrite as spots and seams, and contain inclusions of altered trondhjemite in places.

Jumbo Vein Extension

The Jumbo Vein Extension is the northwest extension to the Jumbo Vein. It is separated from the Jumbo Vein by overburden and it is not known whether there is a direct connection or the veins pinch-out. The vein varies from 0.2 to 1.74 metres in width with an average width of 0.62 metres extending over 54 metres. Much of the vein is less than 0.5 metres and it displays a 'pinch and swell' nature.

The vein was intersected on two drill sections by 6 drill holes with an apparent width ranging from 0.2 to 1.35 metres. The vein is steeply dipping and curvilinear extending from surface to a depth of about 50 metres.

The Jumbo Vein Extension is characterized by white, massive quartz, which in places may be reddish gray and streaky. A banded or streaky appearance is a result of inclusions of altered trondhjemite and seams of chlorite. Mineralized zones can have up to 1.5% sphalerite as irregular spots and seams and as bands of disseminated pyrite, often near the contacts.

Bonanza Vein

The Bonanza Vein is currently not exposed on surface due to construction on the Foley Mine site. The Foley Mine shaft is situated directly on the Bonanza vein with mine workings on 8 mine levels indicating drifting on the vein to the north and south over varying distances. Much of the production from the Foley Mine was derived from mining the Bonanza Vein between the 100 and 300 Level, and had an average grade of 0.46 ounces/ton (Schnieders and Dutka, 1985).

In 1983, Sherritt Gordon Mines Ltd. stripped and sampled the Bonanza vein south of the Foley Mine shaft (Scime, 1983). The vein has a north south trend with a steep dip on surface. Recalculated weighted averages from sample assays indicate that the Bonanza Vein contains 27.4 g/T over an average width of 0.48 metres and a length of 20 metres.

One drill section intersected the Bonanza Vein in 3 drill holes. The vein is interpreted as dipping steeply to the east at 70° . The vein does not follow the historical drifting to the south of the Foley Shaft. A second quartz vein was intersected which is interpreted to be a splay vein that aligns with the 150 Level drift and the projection of other drifts on the 100 and 300 Levels. This splay vein likely represents the Bonanza Vein that was accessed by the historical drift. The east-dipping vein was apparently not explored by drifting.

The Bonanza Vein is characterized by a white to pinkish quartz containing thin irregular sections of altered trondhjemite. The quartz contains chlorite and sericite seams near the contacts with the trondhjemite host rock. Mineralized sections of the vein contain up to 1% sphalerite, 2-5% pyrite, with trace galena and chalcopyrite. The sulphides occur as blebs and stringers, with pyrite occurring as thin seams and coarse crystals.

6. Mineralization

Mineralization occurs in the form of pyrite with varying amounts of sphalerite, galena, chalcopyrite, and rare visible gold. The pyrite varies form less than 1% up to 5% and occurs as disseminations, small blebs, crystals, and thin seams and stringers. Sphalerite varies from less than 1% up to 5% locally and occurs as irregular blebs, thin seams and stringers, spots and blebs. Galena varies from less than 1% up to 2% and occurs as fine spots and tiny blebs. Chalcopyrite is generally less than 1% and occurs as small irregular blebs and occasional stringers. Visible gold was identified in a vein as an irregular grain about 3 x 5 mm in size. The sulphide minerals may occur separately, but generally in close spatial association.

7. Geological Drill Hole Cross Sections

A series of preliminary geological cross sections were constructed using the geological drill logs for the Foley Mine 2010 DDH Program. Cross sections were also constructed

for two drill sections across the Jumbo Vein from the 2005 DDH geological logs. This provides an almost complete sectional view of the Jumbo Vein spaced every 25 metres.

The interpretation of quartz veins and other geological units (i.e. felsite dikes) on a drill section is based on the drill log information such as, the presence of quartz or a quartz rich zone, the angle of the vein contact with the core axis, the presence of the vein on surface, and the presence of the quartz vein and other lithologic units in adjacent sections. Use was also made of the location of historical underground drifts, on the assumption that the drifts tend to follow quartz veins. All vein widths noted are apparent widths (core lengths). Cross Sections are describe from north to south, and all sections ore east-west, facing north.

West Vein North Section 1 (DDH: Q-WVN-10-01, 02)

Two drill holes intersected three veins: the Jumbo Vein Extension, the West Vein Splay, and the West Vein North.

The *Jumbo Vein Extension* is defined by a mineralized quartz rich zone and a quartz vein. The vein is near vertical and has an arcuate form. It extends over a know depth of 25 metres from surface and varies between 0.2 and 1.35 metres in width. The quartz veins consist of white quartz separated by bands of altered trondhjemite. The quartz may contain up to 1.5% sphalerite as irregular spots and seams, and less than 1% pyrite as disseminations and crystals.

The *West Vein Splay* is interpreted as a splay vein on the hanging wall side of the West Vein North. The vein extends over a known distance of about 75 metres and merges with the West Vein North above the Goldpanner Drift on the 400 level (118 metre depth). The quartz is locally banded with sericite and contains bands and inclusions of altered trondhjemite. The quartz may contain 2-3% pyrite as small blebs, crystals, and stringers, and less than 1% sphalerite as blebs, and trace galena as tiny blebs. Drill holes intersected 5.88 g/t Au over 0.47 metres and 6.48 g/t Au over 1.7 metres on the West Vein Splay.

Three wide and closely spaced quartz veins occur at a 40-metre depth and were only intersected by Q-WVN-10-02 (-60°). These veins cannot be correlated with any other veins on the section. The veins and an associated fracture zone have low angles to the core axis, or parallel to the core axis. This suggests that the veins are oriented at a high angle to the cross section.

West Vein North extends over a depth of about 125 metres from surface. It has a curvilinear form with a steep easterly dip, and ranges from 0.67 to 0.90 metres in width. The quartz vein is white, massive with the occasional streaks of sericite and chlorite. The intersected parts of the vein contain up to 2-4% pyrite, 2% galena, and traces of chalcopyrite and sphalerite. West Vein North carried 4.26 g/t Au over 0.67 metres in one intersection.

West Vein North Section 2 (Q-WVN-10-03, 3b, 4, 5)

Drill holes intersected three veins: the Jumbo Vein Extension, the West Vein Splay, and the West Vein North.

The *Jumbo Vein Extension* extends from surface to a known depth of 45 metres. The vein ranges in width from 0.08 to 0.91 metres and is steeply dipping with a curvilinear form. A felsite dike occurs 10-12 metres west of the vein and is steeply dipping to the east, following a similar curvilinear form as the vein. The Jumbo Vein carried minor silver values and low gold

The *West Vein Splay* was intersected by four drill holes and extends over a know depth of 100 metres. The vein is curvilinear and steeply dipping ranging in width from 0.21 to 1.9 metres. The upper portion of the West Vein Splay has not been identified on surface. The deeper portion of the vein was intersected just above an underground opening – likely a stope on the Goldpanner Drift. The vein is mineralized in places with up to 2-3% pyrite, 3% sphalerite, and less than 1% chalcopyrite. The West Vein Splay carried low to moderate silver values, anomalous gold values, and up to 0.4% zinc.

West Vein North was intersected by two drill holes. The vein extends over 125-metre depth from surface and has a curvilinear form with vertical to steep dips and varies from 0.85 to 1.79 metres in width. The vein lines up with the projected extension of the West Drift on the 400 Level (122.5 metre depth). The West Vein North consists of both quartz veins and quartz rich zones. The sections of quartz intersected are white, massive and contains less than 1% pyrite as fine stringers and trace sphalerite. The West Vein North contains anomalous gold in one intersection.

West Vein North Section 3 (Q-WVN-10-06, 07)

Two drill holes intersected the West Vein Splay and the West Vein North. The drill section was set up west of the Jumbo Vein and so was not intersected.

The *West Vein Splay* is interpreted to extend over a depth of about 75 metres and varied from 0.31 to 1.08 metres in width. The vein is steeply dipping and has an arcuate shape, which is inferred to extend to the 400 Level Goldpanner drift. The intersected quartz vein is white to creamy coloured with a moderate amount of carbonate occurring as spots and segregations. The vein contains bands and inclusions of trondhjemite. Mineralized sections contain 3-5% pyrite and trace sphalerite. The West Vein Splay contains low silver values.

West Vein North extends from surface to a known depth of about 125 metres and ranges from 0.48 to 0.94 metres in width. The vein has a curvilinear form and dips vertically to steeple east and west. The deeper portion of the vein is aligned with the West Vein Drift on the 400 Level (121.5 metre depth). The intersected quartz vein is white, massive with some streaking and alteration, and contains less than 1% pyrite. The wall rock consists of altered trondhjemite, which extends up to 2 metres from the vein contact. Both gold and silver values are low.

Jumbo Vein Section 1 (Q-JV-10-01, 02)

Two drill holes intersected the Jumbo Vein, the West Vein Splay, and West Vein North. Several new veins were intersected between the Jumbo Vein and the West Vein Splay that may represent splay veins on the footwall side of the Jumbo Vein.

The *Jumbo Vein* extends from surface to a known depth of about 50 metres. It has an arcuate shape dipping from vertical to steeply east. The vein ranges in width from 0.4 to 1.13 metres. The intersected sections of the quartz vein consist of white to gray quartz with some reddish sections. The vein appears layered and streaky caused by inclusions of trondhjemite and seams of chlorite and sericite. Up to 5% pyrite occurs as thin streaks and as disseminated small crystals, along with traces of sphalerite. Drill holes intersected moderate silver values and 5.06 g/t Au over 1.13 metres.

The *West Vein Splay* is interpreted as steeply east dipping and varying from 0.2 to 0.81 metres in width. The vein extends over a known depth of about 75 metres, and is thought to merge with the West Vein North at a shallow depth below surface (30-40 metres). The vein consists of massive white quartz with locally reddish sections and streaky chlorite in places. Pyrite occurs as widely scattered crystals and thin discontinuous seams. Drill holes intersected low gold, anomalous silver, and low zinc values.

West Vein North was intersected by one drill hole (Q-JV-10-02) and is represented by two quartz veins separated by a section of trondhjemite 1.42 metres wide. The quartz veins are 1.05 and 0.95 metres wide and consist of white streaky quartz containing irregular chlorite and sericite concentrations and seams. Pyrite occurs as coarse crystals and fine disseminations. The vein aligns with the West Vein Drift on the 400 level (131.5 metre depth) and suggests a steep easterly dip. The inferred depth extent is 75 metres. The connection to the surface vein can only be assumed. A drill hole intersected background gold, silver, and zinc values

Recommendation:

- A shallow drill hole is required on this section at -40° to test the location of the West Vein North and where the West Vein Splay is thought to merge.
- Drill hole Q-JV-10-01 should be extended another 20 metres to determine the location of West Vein North.

Bonanza Vein Section 1 (Q-BV-10-01, 02, 03)

Three drill holes intersected the Bonanza Vein, the Jumbo Vein and an unclassified vein near the 400 Level (132.5 metre depth). The drill holes were not designed to intersect West Vein North.

The *Bonanza Vein* consists of a quartz vein ranging in width from 0.23 to 2.06 metres extending from surface over a known depth of about 50 metres. The vein dips at 700 east and appears to be associated with a splay vein with a near vertical dip. This splay vein lines up with the 150 Level drift and the projection of the 100 and 200 Level drifts for an

inferred depth of 75 metres from surface. The east-dipping vein is characterized by a white to pinkish quartz containing thin irregular sections of trondhjemite. Moderate sericite and chlorite alteration is concentrated at the vein contacts. The mineralized section contains up to 1% sphalerite and less than 1% chalcopyrite as small irregular blebs and occasional stringers. Pyrite accounts for less than 1% and occurs as coarse crystals largely concentrated in chlorite seams. Three drill holes intersected significant grades of gold: 106.7 g/t Au over 0.23 metres, 4.52 g/t Au over 0.76 metres, and 4.44 g/t Au over 1.38 metres.

The *Jumbo Vein* consists of a quartz vein and a quartz rich zone that dips at 75° east, ranging in width from 0.32 to 1.25 metres, and extending over a known depth of about 100 metres from surface. The vein and is aligned with the 400 level drift and is assumed to extend to about a 130 metre depth. The Jumbo Vein is characterized by massive white quartz with seams of sericite and chlorite largely concentrated along contacts. The quart rich section consists of quartz and carbonate irregularly mixed with trondhjemite. Mineralized sections contain up to 2% sphalerite as irregular blebs and seams, and less than 1% chalcopyrite and pyrite intermixed with sphalerite. The Jumbo Vein was intersected in two drill holes with one intersection containing 0.55 g/t Au, 5.2 g/t Ag, and 0.46 % Zn over 1.25 metres.

An *unclassified vein* was intersected near the 400 Level consisting of quartz veins and quartz rich zones. The vein dips 650 east and extends over a known depth of about 50 metres, ranging in width from 0.67 to 2.15 metres. The vein may be an extension of the West Vein Splay. The vein is characterized by massive light gray to white quartz containing prominent streaks of chlorite and sericite. The quartz contains carbonate as thin stringers and fracture fillings. Pyrite accounts for less than 1% and occurs as small blebs, thin stringers, and as fine to coarse crystals largely concentrated along thin seams. Two drill holes intersected low silver values.

Recommendation:

- Drill hole Q-BV-10-01 and 02 could be extended another 50 metres to assess the continuity of the new vein (West Vein Splay) and to intersect any vein associated with the Goldpanner drift on the 400 Level.

Jumbo Section 1B (2005 Drill Program, Q-05-7, 8, 9)

Three drill holes intersected the Jumbo Vein. One drill hole intersected a mineralized vein east of the Jumbo Vein that is thought to be an extension or splay from the Bonanza Vein.

The *Jumbo Vein* consists of a quartz vein ranging in width from 1.51 to 3.3 metres and extending from surface to a know depth of 175 metres. The vein is curvilinear with a near vertical dip. The Jumbo Vein consists of gray to white quartz containing altered trondhjemite sections. Mineralized zones contain up to 15% pyrite, 2% sphalerite, 2% pyrrhotite, and trace galena. Visible gold was noted. Two drill holes from the 2005 drill

program intersected a composite assay grade of 24.34 g/t Au, 7.95 g/t Ag, and 0.18% Zn over 3.3 metres in one hole, and 1.2 g/t Au, 6.94 g/t Ag, and 0.22% Zn over 3.29 metres.

An *unclassified mineralized quartz vein* east of the Jumbo Vein was intersected by one drill hole. The quartz vein is 1.8 metres wide, dips steeply east and lines up with a drift on the 400 Level (130.5 metre depth). It extends over a known depth of about 25 metres and is assumed to extend 125 metes (400 Level). The vein consists of white quartz containing sections of trondhjemite. Mineralized zones consist of 1% finely disseminated galena with up to 0.5% pyrite and trace sphalerite. Black tourmaline occurs in hairline fractures. One drill hole intersected 6.67 g/t Au and 2.8 g/t Ag over 0.5 metres.

Jumbo Vein Section 2 (Q-JV-10-03, 04, 05)

Three drill holes intersected the Jumbo Vein and one drill hole intersected an unclassified vein to the east that may be associated with the Bonanza Vein.

The *Jumbo Vein* extends from surface to an estimated depth of 175 metres and ranges from 2.07 to 8.31 metres in width (core length). The vein is vertical to steeply dipping east and west with a curvilinear shape. The variations in width suggest a pinch and swell nature to the vein.

The Jumbo Vein consists of quartz veins and quartz rich zones. The wider zones are produced by a combination of quartz veins and quartz rich zones. The quartz is white to gray, massive and contains inclusions of altered trondhjemite along with prominent dark streaks and sections of chlorite and sericite. Mineralized zones contain up to 5-6% pyrite as thin seams, disseminations and concentrations; in places, sphalerite accounts for up to 2% occurring as small spots. Quartz rich zones contain a greater content of trondhjemite. Pyrite accounts for less than 1% and occurs mainly along sheared vein contacts. Three drill holes intersected low silver values.

An *unclassified vein* consisting of quartz vein and quartz rich zone was intersected by one drill hole in the hanging wall rocks, but cannot be correlated with any other quartz veins. The vein may represent a splay from the Bonanza Vein. The vein is 1 mete wide and consists of quartz with chlorite and sericite streaks and inclusions of altered trondhjemite. The quartz may contain up to 8% carbonate as spots and seams, 5% pyrite as thin seams and coarse crystals, and up to 1% sphalerite as irregular spots. One drill hole intersected low to background gold, silver, and zinc values, except for one quartz rich zone containing 0.73 g/t Au and, 9.5 g/t Ag, and .05 % zn over 0.82 metres.

Jumbo Vein Section 2B (2005 DDH Program; Q-05-04, 05, 06)

Three drill holes intersected the Jumbo Vein and a felsite dike to the east in the hanging wall.

The *Jumbo Vein* varies in width from 1.33 to 7.3 metres and extends from surface over a known depth of 125 metres. The vein dips at 800 east and has a pinch and swell nature. The vein is in-line with a drift on the 400 Level (129.5 metre depth). The vein consists

white quartz with pinkish staining and contains sections of foliated trondhjemite. Mineralized zones consist of up to 5% pyrite, 1% sphalerite and trace galena. Three drill holes interested low to background values of gold, silver and zinc.

A *felsite dike* occurs in trondhjemite on the hanging wall of the Jumbo Vein. The felsite dike dips 60° east and extends over a known depth of about 40 metres, ranging in width form 1.15 to 2.2 metres. The felsite dike is fine grained, siliceous, tan to pinkish colour, with dark green hairline fractures at multiple angles. The hairline fractures are cemented by tourmaline or chlorite.

8. Interpretation and Conclusions

West Vein North and West Vein Splay

The cross sections for West Vein North identified the presence of the West Vein North from surface to the 400 Level (122 m). The drilling also identified a new vein, referred to as the West Vein Splay. Both veins can be followed in each of the three cross sections and the veins appear to merge to the north. The veins range from 0.5 to 1.5 metres wide and intersected gold along with silver and zinc values in Section 1, but only low silver and zinc values in Sections 2 and 3. West Vein North and West Vein Splay can be correlated with drifting on the 400 Level.

Jumbo Vein

The Jumbo Vein was intersected by 7 drill holes in the 2010 drill program and by 6 drill holes in the 2005 drill program. At the northern end, the Jumbo Vein ranges from less than 0.5 to 1 metre in width; this increases to the south from 1 to 7.5 metres in width. This increase in width is primarily due to the 'pinch and swell' nature of the vein brought about by the presence of wide quartz-rich zones consisting of intermixed bands of altered trondhjemite and quartz.

From three cross sections through the wider portions of the Jumbo Vein, spaced at 25 metre intervals, only one section intersected significant gold values, along with silver and zinc. This reflects the irregular distribution of the mineralization within the vein system, but also the strong 'Nugget Effect' on gold within the vein system.

Bonanza Vein

The Bonanza Vein south of the Foley Mine shaft was intersected by three drill holes on the section. The vein dips steeply to the east at -70°, ranges in width from 0.25 to 1.5 metres, and is mineralized in all three intersections with significant gold values (Table 3). The Foley Mine workings do not align with the dip of the Bonanza Vein, but appear to follow a possible splay vein. The Bonanza Vein was not mine to the south of the Foley Mine shaft.

DDH	From	То	Width	Lithology	VeinID	Au g t	Aggt	Zn %	Pb %	Cu%
WVN-01	13.00	13.20	0.2	Quartz Vein	Jumbo Vein Ext	<.03	6.4	0.11		
WVN-01	79.14	79.61	0.47	Quartz Vein	WVN Splay	5.88	1.4	0.04	0.04	
WVN-01	85.56	85.88	0.32	Quartz Vein	West Vein North	4.26	14.7	0.75	0.37	
WVN-02	105.30	107.00	1.7	Quartz Rich Zone	WVN Splay	6.48	0.7	<0.01		<0.01
WVN-02	109.10	110.00	0.9	Quartz Vein	West Vein North	0.05	7.8	0.49		
WVN-04	101.15	101.42	0.27	Quartz Vein	WVN Splay	0.31	16.5	0.13		
JV-02	37.43	38.59	1.16	Quartz Vein	Jumbo Vein	5.06	2.2	0.04		
BV-1	29.46	29.69	0.23	Quartz Vein	Bonanza Vein	106.7	27.6	0.08		
BV-1	67.2	68.45	1.25	Quartz Vein	Jumbo Vein	0.55	5.2	0.46		
BV-2	35.73	36.49	0.76	Quartz Vein	Bonanza Vein	4.52	3	<0.01		
BV-2	126.24	126.53	0.29	Quartz Rich Zone	Unclassified Vein	<.03	10.3	0.69		
BV-3	42.23	43.61	1.38	Quartz Vein	Bonanza Vein	4.44	0.9	<0.01		
JV-3	56.7	57.95	1.25	Quartz Vein	Jumbo Vein	0.31	5.6	0.22		
JV-4	168.88	169.7	0.82	Quartz Rich Zone	Unclassified Vein	0.73	9.5	0.05		

Table 3: Foley Mine DDH Program 2010: Summary of Notable Assay Results

Structural Model

The Foley Mine and vein system displays consistent left lateral movement in the sheared host rocks adjacent to the veins. This is consistent with regional shortening (Figure 1) from the west-northwest/east-southeast as described by Poulsen (2000). The northwest and north-south strike of the veins and vein splays may reflect the progressive deformation and change in the orientation of regional shortening. It is quite likely that northwest structures and related veins are the early primary structures and that the north-south trending structures and veins reflect later deformation and vein formation. Notably these veins would include the Bonanza Vein, West Vein North, and the Vowel Vein, which have higher gold content than northwest trending veins and splays.

An idealized structural interpretation for the Foley Mine Vein Complex (Figure 2) suggests that the northwest trending structures represent an early stage of shearing and quartz veining which was followed by a later period of north-south trending shearing and veining. The north-south veins appear to be splay veins related to the northwest trending early vein system and, notably, almost all the historical mine shafts are located on the north-south veins. This may indicate that the north-south vein systems like the Bonanza Vein have a higher gold content. This is partly indicated by the composite assay values calculated for samples derived from vein systems such as the Vowel Vein, Bonanza Vein, and West Vein North.

Figure 2: Idealized Structural Interpretation, Foley Mine Vein Complex

Conclusions

Based on prior surface mapping, sampling and assaying, prior drill programs (Q-Gold 2005 drilling), and the Foley Mine 2010 drill program, the Foley Mine underground workings access a large and widely spaced vein complex. The intent of the 2010 drill program was to test several of the vein systems to a depth of 75-135 metres and try to establish the continuity of the vein, the continuity of mineralization from surface, and correlate the vein where possible to underground drifts, particularly on the 400 Level. Because of the previously known irregular distribution of mineralization within the vein systems and the 'Nugget Effect' on gold values, continuity of grade was not expected, and the assay results are reflective of this.

The Bonanza Vein may represent a departure from the norm, in that significant gold grades were intersected in a fan of three drill holes (Table 3). Vein intercepts are separated by 10 metres and are within 50 metres of surface, where channel sampling indicated a weighted average grade of about 27 g/T over a strike distance of 20 metres (Scime, 1983). In addition, the Bonanza Vein was mined north of the Foley Mine shaft and had an average grade of 0.46 oz/t (Schnieders and Dutka, 1985).

The vein systems that were drilled in 2010 can be traced to a depth of 75-135 metres and some veins correlate with the location of the underground workings. A new vein was identified as the West Vein Splay and is likely a splay vein related to the West Vein North. There are a number of unclassified veins that were encountered during the drilling and are difficult to correlate due to lack of information or were not intersected elsewhere. Some of these may represent splay veins or 'ladder veins' related to the larger and more continuous vein systems.

With the exception of the Jumbo Vein, which has been drilled at a 25 metre spacing for most of its known length, the West Vein North has been drilled over a length of 50 metres compared to a surface vein exposure of over 300 metres; the Bonanza Vein below and along strike from the mined-out workings has not been drill tested, and the Vowel Vein has not been drill tested. In order to properly test these vein systems to a depth of 75-135 metres requires additional drilling. The irregular distribution of mineralization and the Nugget Effect on gold requires that a greater degree of confidence be acquired on the continuity of grade for gold, silver and zinc.

The detailed structural model should be used to assist in interpreting the vein system and with continued exploration of the Foley Mine area, can provide additional information to alter and improve the working model. The Foley Mine vein complex continues to be impressive where exposed on surface. Sulphide-rich grab samples commonly grade between 10 and 50 g/t Au. Further exploration work needs to be completed to properly assess its mineral potential.

9. Recommendations

- 1. A Phase 2 drill program is recommended to test the Bonanza vein north of the Foley Mine shaft, below the mined-out workings and along strike to the north. The Vowel Vein, east of the Bonanza Vein should be drill tested in conjunction with the Bonanza Vein drilling. The Bonanza Vein south of the Foley Mine shaft should be tested down-dip by an additional set of drill holes that would determine the vein extent to the 400 Level.
- 2. A detailed sampling program should be completed on the exposed sections of the Jumbo Vein in order to establish the continuity of gold, silver, and zinc grades. This could be best achieved by a mini-bulk sampling program: blasting and

sampling the veins over 5 metre intervals in order to get a representative sample (similar to panel sampling).

10. References

Beard, R., 2007. A Proposal for an Underground Exploration Program on The Foley Mine Property for Q-Gold Resources, Inc., Mine Centre Area Rainy River District, Unpublished Company Report.

Beard, R., 2006. Report on the Northwestern Ontario Gold & Base Metal Properties, Mine Centre Area, Rainy River District, held by Hexagon Gold (Ontario) Ltd. Unpublished Company Report.

Scime, V., 1983. Geology Report, Mine Centre, Project No. 1367; Report for Sherritt Gordon Mines Limited, Dryden, Ontario.

Schnieders B. and Dutka, R., 1985. Property Visits and Reports of the Atikokan Economic Geologist, 1979-1983, Ontario Geological Survey, Open File Report 5539

Poulsen K. H., 2000. Archean Metallogeny of the Mine Centre-Fort Frances Area, Ontario Geological Survey, Report 266, 121 pages, 1 map insert.

Poulsen K. H., 2000. Geological Setting of Mineralization in the Mine Centre Area, Ontario Geological Survey, Mineral Deposits Circular 29, 78 pages, 1 map insert.

Figure 3: Q-Gold Resources Property Location Map

Figure 4: General Geology and Location Map, Foley Mine Complex

Figure 5: Foley Mine Area, Proposed Drill Holes

Figure 6: West Vein North, Section 1, Looking North

Figure 7: West Vein North, Section 2, Looking North

Figure 8: West Vein North, Section 1, Looking North

Figure 9: Jumbo Vein, Section 1, Looking North

Figure 10: Bonanza Vein, Section 1, Looking North

Figure 11: Jumbo Vein, Section 1b, Looking North

Figure 12: Jumbo Vein, Section 2, Looking North

Figure 13: Jumbo Vein, Section 2b, Looking North

DDH	SampleID	From	То	Width	Lithology	VeinID	Au gpt	Aggt	Zn %	Pb %	Cu%
WVN-01	55352	10.90	13.00	2.91	TRONDHJEMITE		<.03	1.3	0.02		
WVN-01	55353	13.00	13.20	0.2	QUARTZ VEIN	Jumbo Vein Ext	<.03	6.4	0.11		
WVN-01	55356	79.14	79.61	0.47	QUARTZ VEIN	WVN Splay	5.88	1.4	0.04	0.04	
WVN-01	55360	85.56	85.88	0.32	QUARTZ VEIN	West Vein North	4.26	14.7	0.75	0.37	
WVN-01	55361	85.88	86.23	0.35	QUARTZ VEIN	West Vein North	0.07	0.5	0.01		
WVN-02	55367	17.87	19.22	1.35	QUARTZ RICH ZONE	Jumbo Vein Ext	<.03	1	0.14		
WVN-02	55370	41.43	43.37	1.94	QUARTZ VEIN	Unclassified	<.03	<0.2	<0.01		
WVN-02	55372	45.38	46.44	1.06	QUARTZ VEIN	Unclassified	<.03	0.4	<0.01		
WVN-02	55376	49.40	50.37	0.97	QUARTZ VEIN	Unclassified	<.03	<0.2	<0.01		
WVN-02	55379	105.30	107.00	1.7	QUARTZ RICH ZONE	WVN Splay	6.48	0.7	<0.01		< 0.01
WVN-02	55381	109.10	110.00	0.9	QUARTZ VEIN	West Vein North	0.05	7.8	0.49		
WVN-03	55384	17.99	18.16	0.17	QUARTZ VEIN	Jumbo Vein Ext	0.91	1.8	0.01		
WVN-03	55387	81.75	81.96	0.21	QUARTZ VEIN	WVN Splay	<.03	1.5	0.04		
WVN-04	55389	24.44	24.63	0.19	QUARTZ VEIN	Jumbo Vein Ext	<.03	0.7	<0.01		
WVN-04	55391	61.12	62.23	1.11	QUARTZ RICH ZONE	WVN Splay	0.05	1.2	0.13		
WVN-04	55392	62.23	64.07	1.84	QUARTZ RICH ZONE	WVN Splay	<.03	0.6	0.04		
WVN-04	55394	100.73	101.15	0.42	QUARTZ VEIN	WVN Splay	<.03	1.6	0.07		
WVN-04	55395	101.15	101.42	0.27	QUARTZ VEIN	WVN Splay	0.31	16.5	0.13		
WVN-05	55399	37.02	37.27	0.25	QUARTZ VEIN	Jumbo Vein Ext	<.03	3.4	0.07		
WVN-05	55402	122.10	122.70	0.6	QUARTZ VEIN	WVN Splay	<.03	0.5	0.14		
WVN-05	55403	122.70	123.58	0.88	QUARTZ VEIN	WVN Splay	<.03	1.6	0.39		
WVN-03B	55408	65.9	67.3	1.4	QUARTZ VEIN	WVN Splay	0.07	0.6	0.09		
WVN-03B	55409	67.3	68.54	1.24	QUARTZ VEIN	WVN Splay	<.03	0.3	0.06		
WVN-03B	55413	100.36	101.42	1.06	QUARTZ VEIN	West Vein North	<0.5	0.3	<.01		
WVN-03B	55414	101.42	102.15	0.73	QUARTZ VEIN	West Vein North	0.29	0.9	0.02		
WVN-06	55415	32.07	32.3	0.23	QUARTZ VEIN	Unclassified	<.03	0.9	0.04		
WVN-06	55416	43.92	44.98	1.06	QUARTZ RICH ZONE	WVN Splay	0.35	1.2	< 0.01		
WVN-07	55422	71.18	71.49	0.31	QUARTZ VEIN	WVN Splay	<.03	1.3	0.01		

Table 4: Foley Mine DDH Program 2010 Assay Results
DDH	SampleID	From	То	Width	Lithology	VeinID	Au gpt	Ag g t	Zn %	Pb %	Cu%
JV-01	55424	22.73	22.83	0.1	TRONDHJEMITE		<.03	2.5	0.57		
JV-01	55425	29.97	30.37	0.4	QUARTZ VEIN	Jumbo Vein Ext	0.25	1.8	0.11		
JV-01	55426	37.43	38.29	0.86	QUARTZ VEIN	Unclassified	<.03	<0.2	<0.01		
JV-01	55427	46.49	46.65	0.16	TRONDHJEMITE		<.03	1.9	0.07		
J V-0 1	55431	133.8	134.21	0.41	QUARTZ VEIN	WVN Splay	<.03	<0.2	0.02		
JV-02	55433	37.43	38.59	1.16	QUARTZ VEIN	Jumbo Vein	5.06	2.2	0.04		
JV-02	55434	73.56	74.09	0.53	QUARTZ VEIN	Unclassified	0.75	2.5	0.18		
JV-02	55435	74.09	74.48	0.39	QUARTZ RICH ZONE	Unclassified	<.03	0.6	80.0		
JV-02	55436	74.48	76.1	1.62	QUARTZ RICH ZONE	Unclassified	<.03	0.4	0.03		
JV-02	55438	88.78	89.23	0.45	QUARTZ VEIN	Unclassified	0.83	0.5	<0.01		
JV-02	55439	89.23	89.79	0.56	QUARTZ VEIN	Unclassified	0.33	1.2	0.12		
JV-02	55441	89.79	90.25	0.46	QUARTZ VEIN	Unclassified	0.08	3.7	0.05		
JV-02	55445	169.08	169.3	0.22	QUARTZ VEIN	WVN Splay	<.03	0.3	0.17		
JV-02	55449	191.38	192.43	1.05	QUARTZ VEIN	West Vein North	<.03	<0.2	<0.01		
JV-02	54502	193.85	194.8	0.95	QUARTZ VEIN	West Vein North	<.03	<0.2	0.02		
JV-02	54504	178.15	178.57	0.42	QUARTZ RICH ZONE	Unclassified	<.03	<0.2	<0.01		
BV-1	54505	29.46	29.69	0.23	QUARTZ VEIN	Bonanza Vein	106.7	27.6	0.08		
3V-1	54507	67.2	68.45	1.25	QUARTZ VEIN	Jumbo Vein	0.55	5.2	0.46		
3V-1	54509	97.31	97.5	0.19	QUARTZ VEIN	Unclassified	<.03	2.1	0.04		
3V-2	54512	35.73	36.49	0.76	QUARTZ VEIN	Bonanza Vein	4.52	3	<0.01		
BV-2	54514	126.24	126.53	0.29	QUARTZ RICH ZONE	Unclassified	<.03	10.3	0.69		
3V-2	54515	135.93	136.4	0.47	QUARTZ RICH ZONE	Unclassified	<.03	1.3	<0.01		
3V-2	54516	136.4	137	0.6	QUARTZ VEIN	Unclassified	<.03	1.7	< 0.01		
BV-2	54517	137	138.06	1.06	TRONDHJEMITE		<.03	1.4	0.01		
3V-2	54518	138.06	138.73	0.67	QUARTZ VEIN	Unclassified	<.03	0.7	<0.01		
BV-3	54522	42.23	43.61	1.38	QUARTZ VEIN	Bonanza Vein	4.44	0.9	< 0.01		
JV-3	54535	56.7	57.95	1.25	QUARTZ VEIN	Jumbo Vein	0.31	5.6	0.22		
JV-3	54536	57.95	58.67	0.72	QUARTZ VEIN	Jumbo Vein	0.24	1	0.03		
JV-3	54537	58.67	58.77	0.1	QUARTZ VEIN	Jumbo Vein	0.31	3.6	0.07		
JV-4	54538	59.83	60.22	0.39	QUARTZ VEIN	Bonanza Vein	0.93	2.2	0.02		

DDH	SampleID	From	То	Width	Lithology	VeinID	Au gpt	Aggt	Zn %	Pb %	Cu%
JV-4	54539	60.22	60.82	0.6	QUARTZ VEIN	Bonanza Vein	<.03	0.5	0.11		
JV-4	54541	77.89	80.97	3.08	QUARTZ RICH ZONE	Jumbo Vein	<.03	0.3	<0.01		
JV-4	54542	80.97	83.07	2.1	QUARTZ RICH ZONE	Jumbo Vein	0.12	0.6	0.01		
JV-4	54543	83.07	83.5	0.43	QUARTZ RICH ZONE	Jumbo Vein	<.03	0.5	0.04		
JV-4	54544	83.5	84	0.5	QUARTZ RICH ZONE	Jumbo Vein	0.04	0.8	0.02		
JV-4	54545	84	84.27	0.27	QUARTZ RICH ZONE	Jumbo Vein	0.03	0.3	0.03		
JV-4	54546	84.27	87.32	3.05	QUARTZ RICH ZONE	Jumbo Vein	<.03	0.6	0.07		
JV-4	54547	87.32	88.7	1.38	QUARTZ RICH ZONE	Jumbo Vein	<.03	0.7	<0.01		
JV-4	54548	88.7	89.54	0.84	QUARTZ RICH ZONE	Jumbo Vein	<.03	<0.2	< 0.01		
JV-4	54551	154	154.46	0.46	QUARTZ RICH ZONE	Unclassified	<.03	0.3	<0.01		
JV-4	54552	149.62	149.81	0.19	QUARTZ VEIN	Unclassified	<.03	<0.2	< 0.01		
JV-4	54553	161.42	161.89	0.47	QUARTZ VEIN	Unclassified	<.03	0.7	<0.01		
JV-4	54554	161.89	164.12	2.23	TRONDHJEMITE	Unclassified	<.03	<0.2	< 0.01		
JV-4	54555	168.88	169.7	0.82	QUARTZ RICH ZONE	Unclassified	0.73	9.5	0.05		
JV-5	54556	152.34	153	0.66	QUARTZ VEIN	Jumbo Vein	0.05	0.7	0.04		
JV-5	54557	153	154.24	1.24	TRONDHJEMITE	Jumbo Vein	<.03	<0.2	0.05		
JV-5	54558	154.24	154.9	0.66	QUARTZ RICH ZONE	Jumbo Vein	<.03	0.2	0.02		
JV-5	54559	154.9	155.17	0.27	TRONDHJEMITE	Jumbo Vein	<.03	<0.2	0.01		
JV-5	54561	155.17	155.71	0.54	QUARTZ VEIN	Jumbo Vein	0.23	1.7	0.02		
JV-5	54562	155.71	157.7	1.99	QUARTZ VEIN	Jumbo Vein	0.05	<0.2	<0.01		
JV-5	54563	155.7	158.36	2.66	QUARTZ VEIN	Jumbo Vein	<.03	0.7	< 0.01		

Resources Ltd			D	ril	lhole L	0g					Units Meters
										Q-0	Gold (Ontario) Ltd
Province/State	Co-ordinate System	n		G	rid/Proper	ty			Hole Type	Length	Date Started
Ontario	UTM NAD83 Canad	la Zo	one 15	Fc	oley Mine C	Grid			Exploration hole	102.00	9/6/2010
District	UTM North	U	TM East	Le	ocal Grid I	E	Loca	ıl Grid N	Collar Survey Meth	od	Date Completed
Kenora	5394344	52	25676	22	225.00		2275	.00	MNR DEM		9/8/2010
Project	UTM Elevation	Az	imuth Astro. (°)	A	Azimuth Grid (°)		Dip	(°)	Drill Contractor		Date Logged
Foley Mine	378.00	27	1.80		-4			50	C3 Drilling Compan	y	
Area	Claim No.	N	TS Sheet	Sı	Supervised By				Logged By	<u></u>	Verified
Mine Center	K-475099								Richard Beard		
Zone/Prospect	Assessment Rpt. N	0. Ce	ore Storage					Plug Depth	Makes Water	Canned	Environmental
		Fc	ort Frances Office	8						<i>∠</i>	
Core Size (1) NQ	Casing Put	lled	Casing (1) 2.39		Steel	Plug	ged	Pulsed	Geophysics Contra	ctor	Date Pulsed
(2)		ĺ	(2)								
Purpose			Results					Comments			
Intersect Bonanza and Jum	Intersected Bonanza Vein, Bonanza Splay, and Jumbo Vein.					Should deepen drill hole an additional 40 metres to assess QV and QRZ above 400 level. GPS average collar elevation 378 metres					

Survey Tests

Distance	Grid Azin Original	nuth (°) Final	Astro. Aziı Original	nuth (°) Final	Dip (°) Original Final	Use Test	Survey Method	Mag. Field (nT)	Comments
102.00			274.6		-44.7	✓	Reflex EZ		At 6 m. Az 271.8 dip -44.5

Lithology				_	Аи	Ag	Zn	Cu	Pb %
From To	Sample i	# From	То	Len.	ррт	ppm	/0	/0	/0
0.00 - 2.39 OVB <u>Overburden</u> Casing									
 2.39 - 29.46 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE Generally medium grained with occasional finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately to locally highly altered with sericite, chlorite, and some carbonate. Irregular patches and veinlets of quartz and qtz/carbonate locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-60 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Medium to light grey to greenish, moderately sericite alteration. Rare, up to 1 cm wide veinlets of qtz/carbonate. Occasional irregular concentrations of quartz and larger quartz eyes. Pale carbonate concentrations along contacts of quartz veinlets . 1 cm veinlets at 17.74, 21.2, 24.61. Tr pyrite throughout. 2.39 - 8.00 9c Trondhjemite (quartz porphyritic) core highly fractured w/ numerous low angle fractures. Rusty along fractures. Below 									
8.0, slight to light fracturing. Fracture CA variable. 16.40 - 16.50 CLV Chlorite Vein a 10 cm wide section w/ closely spaced chlorite smeared fractures. CA 60 deg.									
29.46 - 29.69 QV Quartz Vein QUARTZ VEIN White to translucent and massive. Mod sericite/chlorite alterations near contacts. Relatively unfractured. +/- 1% sphalerite and < 1% chalcopyrite as small irregular blebs and Occasional stringers. CA=65-70 deg. Bonanza Vein Splay.	54505	29.46	29.69	0.23	106.7	27.6	0.08		
 29.69 - 67.20 9c <u>Trondhiemite (quartz porphvritic)</u> TRONDHJEMITE Similar to above, but more quartz rich w/ larger quartz eyes and more sericite/chlorite alteration. At 36.6, fractured. CA=43-50 deg. At 58.9, several quartz rich sections & veinlets (+/_ 1 cm wide). 33.50 - 33.70 9i Trondhjemite, altered a 20 cm wide section of heavy sericite alteration. 	54506	34.00	34.50	0.50	0.015	0.6	0.005		
34.00 - 34.50 QRZ Quartz Rich Zone a quartz rich section w/ 30% quartz as enlarged eyes in a sericite matrix, occasionally									

Lithology From To	Samula #	t From	То	Ган	Аи ррт	Ag ppm	Zn %	Cu %	Pb %
as thin veinlets. CA=45-55 degs. At 34.0, a 1.2 cm wide qtz/carbonate veinlet, moderately fractured. Bonanza Vein?	Sample	<u>110m</u>	10	Len.					
34.50 - 34.57 QCV Quartz Carbonate Vein a 7 cm wide qtz/carbonate veinlet, highly to moderately fractured. 2% carbonate, largely concentrated along fractures in the quartz. Tr Py.									
36.00 - 36.03 QVLT Quartz Veinlets a 3 cm wide section of reddish qtz., w/ tr Py.									
67.20 - 68.45 QV Quartz Vein QUARTZ VEIN 95 % quartz. Quartz is massive & white w/ 4% seams of sericite/chlorite, largely conc. along contacts. 2% sphalerite as irregular blebs & seams. Blebs sometimes up to1 cm in size. < 1% chalcopyrite & pyrite intermixed with the sphalerite. Some fine grained galena possible. Contacts sharp & distinct, CA=46 deg. Little alteration of the trondhjemite at contacts.	54507	67.20	68.45	1.25	0.55	5.2	0.46		
 68.45 - 97.31 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE. Typical. Occasional Qtz/carbonate veinlets up to2 cm wide at variable CAs. 79.72 - 80.60 QRZ Quartz Rich Zone 79.72 - 80.60 More quartz rich w/ thin veinlets of qtz/carbonate; 80.05 - 80.12 A 7 cm wide qtz/carbonate veinlet, fractured w/ fractures filled w/ chlorite & carbonate Tr Py 									
97.31 - 97.50 QV <u>Quartz Vein</u> QUARTZ VEIN Massive, white to locally reddish. At lower contact, several 1-2 cm wide stringers of chlorite containing <1% Py & possibly tr. Sphalerite (?). Jumbo Vein.	54509	97.31	97.50	0.19	0.015	2.1	0.04		
97.50 - 102.00 9c <u>Trondhiemite (quartz porphyritic)</u> TRONDHJEMITETypical. As from 2.39 - 29.46 97.50 - 100.68 9c Trondhjemite (quartz porphyritic) 97.50 – 100.68 Slightly more quartz rich with large quartz eyes & scattered 1-2 cm wide qtz/carb veinlets. Tr Py as small xls.									

🧶 Re	esource	s Ltd						MG DDH Geochem										Q-Gold (Ontario) Ltd		
Sample	From	Тө	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Lab Report		
54505	29.46	29.69	0.23	34.7	0.22	2.3	5	10	6	48	0.36	4.7	5.4	124	121.2	0.77	0.5	S40653-d		
54506	34.00	35.00	1.00	0.05	0.47	1.4	0.0065	10	21	0.3	2.41	0.05	4.5	86	10.4	1.08	1	S40655-d		
54507	67.20	68.45	1.25	4	0.03	2.6	0.0173	10	3	5.5	0.04	36.1	3.7	190	337.4	0.47	0.5	S40653-d		
54508	79.72	80.60	0.88	0.6	0.16	0.9	0.0049	10	31	0.6	2.69	1.6	5.3	75	20.6	1.02	0.5	S40655-d		
54509	97.31	97.50	0.19	0.7	0.05	5.5	0.0636	10	7	0.9	0.35	2.6	4.6	73	12.2	0.58	0.5	S40653-d		

0

Con	Resources	Ltd
-----	-----------	-----

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	Тө	Len.	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Se	Th	Lab Report
-				ppm	%	ppm	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	
54505	29.46	29.69	0.23	0.09	0.03	2	0.13	0.2	9.1	0.004	9.5	0.001	1006.6	0.12	0.2	0.05	0.5		S40653-d
54506	34.00	35.00	1.00	0.005	0.16	19	0.49	2.5	2	0.005	7	0.023	6	0.08	0.05	0.3	0.25		S40655-d
54507	67.20	68.45	1.25	0.15	0.02	0.5	0.01	0.2	0.5	0.005	5.6	0.0005	104.7	0.37	0.2	0.05	0.25		S40653-d
54508	79.72	80.60	0.88	0.005	0.18	11	0.16	3.2	1.3	0.015	5.2	0.023	61.5	0.21	0.2	0.2	0.25		S40655-d
54509	97.31	97.50	0.19	0.07	0.03	2	0.03	0.7	0.5	0.002	4	0.002	246.4	0.47	0.5	0.05	0.25		S40653-d

R	esource	s Ltd							MG DDH Geochem	Q-Gold (Ontario) Ltd
Sample	From	То	Len.	Tl ppm	U ppm	V DDM	W DDM	Zn ppm		Lab Report
54505	29.46	29.69	0.23	0.05	0.1	1	0.05	747		S40653-d
54506	34.00	35.00	1.00	0.05	0.5	1	0.2	40		S40655-d
54507	67.20	68.45	1.25	0.05	0.05	1	0.05	5083		S40653-d
54508	79.72	80.60	0.88	0.05	1.1	1	0.4	166		S40655-d
54509	97.31	97.50	0.19	0.05	0.4	1	0.1	341		S40653-d

0

Resources Ltd			Di	rillhole L	og					Units Meters
									<i>Q</i> -	Gold (Ontario) Ltd
Province/State	Co-ord	inate System		Grid/Proper	ty			Hole Type	Length	Date Started
Ontario	UTM N/	AD83 Canada	Zone 15	Foley Mine C	Grid			Exploration hole	141.00	9/8/2010
District	UTM N	Vorth	UTM East	Local Grid	E La	ocal	Grid N	Collar Survey Met	hod	Date Completed
Kenora	539434	4	525676	2225.00	22	275.0	00	MNR DEM		9/10/2010
Project	UTM E	Elevation	Azimuth Astro. (°)	Azimuth Gr	id (°) D	ip (°	9	Drill Contractor		Date Logged
Foley Mine	372.00		272.90		-6	0.20	0	C3 Drilling Compar	ıy	
Area	Claim I	No.	NTS Sheet	Supervised I	By			Logged By		Verified
Mine Center	K-4750	99						Richard Beard		
Zone/Prospect	Assessn	nent Rpt. No.	Core Storage				Plug Depth	Makas Watan	Environmental	
			Fort Frances Office						Cappea ✓	Inspection
Core Size (1) NQ		Casing Pulle	d Casing (1) 2.22	Steel	Pluggea	1	Pulsed	Geophysics Contra	ictor	Date Pulsed
(2)			(2)							
Purpose		-1	Results			0	Comments			
Intersect Bonanza and Jumbo	o Vein		Intersected Bonar Splay, and Jumbo Quartz Rich Zone level (125 metre o	nza Vein, Bon Vein. Quartz s encountered lepth)	anza z veins ar d near 40	nd 10	GPS average	collar elevation 378	metres	
Survey Tests	4.70				0					

Distance	Grid Azin	nuth (°)	Astro. Azir	nuth (°)	Dip (°)	Use	Survey Method	Mag. Field	Comments	
	Original	Final	Original	Final	Original Final	Test	8.25	(n T)		
141.00			276.8		-59.8	✓			At 9 m. Az 272.9 Dip -60.2	

Lithology	0	E	T.	T	Au nnm	Ag nnm	Zn %	Cu %	Pb %
0.00 - 2.20 OVB <u>Overburden</u> Casing	Sample.#	<u>From</u>		<u>Len.</u>	<u></u>	<u>PP</u>			/0
2.20 - 35.73 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE Generally medium grained with occasional finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately to locally highly altered with sericite, chlorite, and some carbonate. Irregular patches and veinlets of quartz and qtz/carbonate locally. Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures. Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-60 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Slight carbonate disseminated throughout. Rare, thin qtz/carb veinlets & concentrations, 1- 2 cm wide. Slight to moderate fracturing at varying CAs. At 13.1, an altered section, creamy coloured & mottled appearance. More sericitic w/ more prominent qtz. eyes near contacts w/ QV below.									
35.73 - 36.49 QV Quartz Vein QUARTZ VEIN Quartz = 85-90%. White to pinkish w/ thin irregular sections of trondhjemite. Moderate carbonate < 1% Py as co. xls, largely concentrated in chloritic seams at contactwith trond. sections. Rare (<1%) irreg. small spots of galena (+sphalerite ?), sometimes containing trace chalcopyrite. Lower contacts sharp, CA=54 deg.	54512	35.73	36.49	0.76	4.52	3	0.005		
 36.49 - 80.63 9c Trondhjemite (quartz porphyritic) TRONDHJEMITETypical. More altered and sericitic near contact w/ QV above. Rare qtz/carb veinlets. Moderate fractured, CA=28-35 degs., occasional low angle. 36.49 - 50.00 9c Trondhjemite (quartz porphyritic) Scattered chlorite rich sections, w/ chlorite occurring as thin fr. fillings & in matrix. Mod carbonate as med. sized spots, thin seams & concentrations. Trace Py xls, often assoc. with more chloritic sections. At 48.0, broken and fractured core. Becomes darker in colour and more mottled appearing with depth. 									
80.63 - 80.95 QRZ <u>Quartz Rich Zone</u> QUARTZ RICH SECTION Quartz = 15-20%. White w/ prominent carbonate Quartz occurs irregularly, mixed w/ trondhjemite. 2% prominent xls & spots of Py.	54513	80.63	80.95	0.32	0.015	0.3	0.005		

Lithology From To	Sample.# From	То	Len.	Au ppm	Ag ppm	Zn %	Си %	Pb %
 80.95 - 126.24 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. Typical. Rare thin qtz/carbonate veinlets. Largely unfractured. 107.75 - 107.92 F Felsite 107.75 - 107.92 2-4 cm wide bands of very fine grained tan rock (felsite dike material of very fine grained phase of trondhjemite). Moderate sharp contacts, CA=50 deg. 2-3% co. grained to crystalline Py as spots up to 6 mm in size. 117.00 - 117.02 QCVLT Quartz Carbonate Veinlet a 2 cm wide section or veinlet of carb/qtz. w/ tiny spots of dark mineral (tourmaline?). 120.20 - 120.22 QCVLT Quartz Carbonate Veinlet a sheared, 2 cm wide qtz/carb veinlet. < Py xls, mainly along contacts. Rare spots of black metallic mineral. Trace sphalerite. 								
126.24 - 126.53 QRZ Quartz Rich Zone QUARTZ RICH SECTION 80-85 % quartz. Quartz is massive, light grey w/ prominent streaks of chlorite/sericite. Intruded trondhjemite is quartz rich w/ prominent quartz eyes. 1-2% sulphides consisting of coarse Py xls associated with small blebs of sphalerite & galena & trace chalcopyrite., largely concentrated alone thin seams.	54514 126.24	126.53	0.29	0.015	10.3	0.69		
126.53 - 135.93 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. Similar section from 2.22 - 35.73								
135.93 - 136.40 QRZ Quartz Rich Zone QUARTZ RICH SECTION. 35-40% quartz. Quartz occurs as an irregular & distorted quartz vein w/ low core angle, in trondhjemite. Mod carbonate < 1% Py as fine to coarse xls, largely conc. along contacts.	54515 135.93	136.40	0.47	0.015	1.3	0.005		
136.40 - 137.00 QV <u>Quartz Vein</u> QUARTZ VEIN. 95% quartz. White to light grey. Moderate fractured. Carbonate as thin stringers & fracture fillings. <1% Py as small blebs & thin stringers.	54516 136.40	137.00	0.60	0.015	1.7	0.005		

Litholog	y						Аи	Ag	Zn	Cu	Pb
From	То		Sample #	From	То	Len.	ррт	ррт	%	%	%
137.00 -	138.06	9c Trondhjemite (quartz porphyritic) TRONDHJEMITE. Slightly more quartz rich than typical w/ prominent quartz eyes. Occasional thin, vague quartz concentrations.	54517	137.00	138.06	1.06	0.015	1.4	0.01		
138.06 -	138.73	QV Quartz Vein QUARTZ VEIN. 80% quartz. White & massive w/ several 3-4 cm wide sections of trondhjemite. Barren except for 1-2% Py as coarse xls, small blebs & thin seams.	54518	138.06	138.73	0.67	0.015	0.7	0.005		
138.73 -	141.00	9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. Typical as from 2.22 - 35.73									

	Resources	Ltd
00	11000 ar ces	

MG DDH Geochem

Q-Gold (Ontario) Ltd

79-																		
Sample	From	То	Len.	Ag	Al	As	Au	В	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Lab Report
×				ppm	%	ррт	ррт	ррт	ppm	ppm	%	ррт	ppm	ррт	ppm	%	ррт	
54512	35.73	36.49	0.76	3.3	0.25	2.3	5	10	26	11.3	1.32	0.2	3.7	183	43.3	0.97	0.5	S40653-d
54513	80.63	80.95	0.32	0.2	0.16	2.7	0.0049	10	27	0.3	1.35	0.1	4.4	72	7.7	1.17	0.5	S40655-d
54514	124.24	126.53	2.29	5.5	0.2	1.3	0.1043	10	29	10.3	0.91	25.1	10.1	120	140.8	0.83	0.5	S40653-d
54515	135.93	136.40	0.47	0.2	0.29	2	0.0105	10	36	0.4	2.41	0.05	5.4	134	15.4	0.9	0.5	S40653-d
54516	136.40	137.00	0.60	0.2	0.25	2.9	0.0145	10	18	0.8	1.53	0.2	6.7	173	19.8	1	0.5	S40653-d
54517	137.00	138.06	1.06	0.3	0.24	1.9	0.0799	10	35	0.3	1.36	1	4.5	140	21.6	0.72	0.5	S40653-d
54518	138.06	138.73	0.67	0.2	0.1	8.7	0.0313	10	19	0.4	0.27	0.05	5.7	164	13.2	0.67	0.5	S40653-d

	Resources	Ltd
--	-----------	-----

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
54512	35.73	36.49	0.76	0.01	0.13	12	0.25	1.7	4.2	0.006	9.3	0.017	36.4	0.05	0.05	0.2	0.25		S40653-d
54513	80.63	80.95	0.32	0.005	0.14	15	0.21	4.4	0.4	0.034	4.8	0.034	10.5	0.61	0.2	0.4	0.25		S40655-d
54514	124.24	126.53	2.29	0.05	0.17	10	0.08	2.4	0.9	0.008	5.7	0.019	274.4	0.46	0.3	0.2	0.25		S40653-d
54515	135.93	136.40	0.47	0.005	0.2	13	0.12	3.4	0.4	0.01	9.4	0.03	19.4	0.28	0.2	0.2	0.25		S40653-d
54516	136.40	137.00	0.60	0.005	0.09	5	0.11	1.3	0.3	0.005	10.3	0.012	13.1	0.31	0.1	0.2	0.25		S40653-d
54517	137.00	138.06	1.06	0.17	0.2	17	0.1	4.4	0.8	0.005	9.6	0.034	24.7	0.19	0.4	0.2	0.25		S40653-d
54518	138.06	138.73	0.67	0.005	0.11	6	0.03	1.3	0.3	0.005	5	0.01	7.9	0.4	0.05	0.05	0.25		S40653-d

R	esource	s Ltd							MG DDH Geochem	Q-Gold (Ontario) Ltd
Sample	From	Тө	Len.	Tl	U	V	W	Zn		Lab Report
				ppm	ppm	ppm	ppm	ppm		
54512	35.73	36.49	0.76	0.05	0.7	1	0.1	59		S40653-d
54513	80.63	80.95	0.32	0.05	2.3	1	0.2	31		S40655-d
54514	124.24	126.53	2.29	0.05	2.1	1	0.1	3185		S40653-d
54515	135.93	136.40	0.47	0.05	0.9	1	0.2	26		S40653-d
54516	136.40	137.00	0.60	0.05	0.5	1	0.1	71		S40653-d
54517	137.00	138.06	1.06	0.05	1.5	3	0.3	109		S40653-d
54518	138.06	138.73	0.67	0.05	0.5	1	0.1	23		S 40653-d

0

Resources Ltd		Di	rillhole Log					Units Meters
							<i>Q</i> -	Gold (Ontario) Ltd
Province/State	Co-ordinate System		Grid/Property			Hole Type	Length	Date Started
Ontario	UTM NAD83 Canada	a Zone 15	Foley Mine Grid			Exploration hole	219.00	9/10/2010
District	UTM North	UTM East	Local Grid E	Loc	al Grid N	Collar Survey Met	hod	Date Completed
Kenora	5394344	525676	2225.00	2275	5.00	MNR DEM		9/12/2010
Project	UTM Elevation	Azimuth Astro. (°)	Azimuth Grid (°)	Dip	(°)	Drill Contractor		Date Logged
Foley Mine	372.00	270.00		-70.	00	C3 Drilling Compar	ıy	
Area	Claim No.	NTS Sheet	Supervised By	1947		Logged By		Verified
Mine Center	K-475099					Richard Beard		
Zone/Prospect	Assessment Rpt. No.	Core Storage			Plug Depth	Makas Watan	Cannad	Environmental
		Fort Frances Office					Cappea	Inspection
Core Size (1) NQ	Casing Pull	ed Casing (1) 1.50	Steel Plu	gged	Pulsed	Geophysics Contra	ctor	Date Pulsed
(2)		(2)						
Purpose		Results			Comments	1		
Intersect Bonanza and Jum	bo Vein	Intersected Bonar Splay, and thin Ju and Quartz Rich 2 400 level (125 me	nza Vein, Bonanza Imbo Vein. Quartz Zones encountered Itre depth)	veins I near	GPS average	collar elevation 378	metres	
Suman Tasts		10 			_			

Survey Tests

Distance	Grid Azin	nuth (°)	Astro. Azir	muth (°)	Dip (°)	Use	Survey Method	Mag. Field	Comments
	Original	Final	Original	Final	Original Final	Test	8.40°	(n T)	
219.00			273.8		-70	\checkmark	Reflex EZ		check driller slip

					ЛИ	Ag	Ln	Cu	Pb
From To	Sample #	# From	То	Len.	ррт	ррт	%	%	%
0.00 - 1.50 OVB <u>Overburden</u> Casing									
 1.50 - 41.55 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE Generally medium grained with occasional finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately to locally highly altered with sericite, chlorite, and some carbonate. Irregular patches and veinlets of quartz and qtz/carbonate locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures. Fractures often smeared with chlorite and occasionally with fine pyrite. 19.00 - 19.70 9c Trondhjemite (quartz porphyritic) Sub-parallel fracture. 30.75 - 30.78 									
31.00 - 41.55 9c Trondhjemite (quartz porphyritic) Below 31.0, lighter coloured. Below 36.0, several 1-3 cm wide qtz/carb veinlets. Carbonate prominent. Tr Py, mainly along contacts w/ trondhjemite.									
 41.55 - 43.61 QV <u>Quartz Vein</u> QUARTZ VEIN White, slightly fractured, minor carbonate Except below 43.3 where qtz is fractured & distorted. Largely barren. At 42.3, occass, blebs & xls. of Py. Rare tiny blebs of galena (?) or hematite. Rare chalcopyrite (?). Trondhjemite at lower contact highly altered w/ chlorite. Moderately and irregularly foliated. Bonanza Vein. 	54519 54521 54522	41.55 41.78 42.23	41.78 42.23 43.61	0.23 0.45 1.38	0.015 0.015 4.44	0.6 0.4 0.9	0.1 0.005 0.005		
41.55 - 41.78 QV Quartz Vein 80% quartz.									
41.78 - 42.23 9i Trondhjemite, altered Section of trondhjemite, highly altered w/ chlorite.									
42.23 - 43.61 QV Quartz Vein 95% quartz. CA=48 deg.									

Litholo	зy							Аи	Ag	Zn	Cu	Pb
From	То			Sample #	From	То	Len.	ррт	ррт	%	%	%
43.61	- 62.13	9c TRC alter cm is chloi	Trondhjemite (quartz porphyritic) NDHJEMITE. Typical. Medium To fine grained. Greenish grey in colour. Moderately ed w/ sericite. Rare thin qtz. And qtz/carb veinlets. Relatively unfractured. Upper 20 s highly chloritized and moderately sheared. Lower contact w/ QV below is also highly ritized and sheared.									
62.13	- 63.62	QV QUA core 20 d fragr	Quartz Vein RTZ VEIN35% quartz. White to pinkish, very irregular & distorted, sub-parallel to axis. Considerable low angle fracturing w/ chlorite coated fracture surfaces. CA=15- egs. Largely barren. At upper contact, trondhjemite is highly chloritized & sheared, w/ nents of qtz & some fault gouge. 30-40% carbonate over 8 cm. Bonanza Vein.	54523	62.13	63.62	1.49	0.015	0.8	0.02		
63.62	- 131.54	9c TRC	Trondhjemite (quartz porphyritic) NDHJEMITE As from 1.5 - 41.55. Very little fracturing. Rare qtz/carb veinlets.									
78	3.00 - 9	93.00	9c Trondhjemite (quartz porphyritic) Pale colour w/ mottled appearance.									
93	3.00 - 1	11.00	9c Trondhjemite (quartz porphyritic) Finer grained than typical w/ less prominent qtz eyes. Only slightly to moderate alteration. At 99.23, a 2 cm wide qtz/carb veinlet w/ tr. sphalerite & Py									
118	8.50 - 1	20.30	9c Trondhjemite (quartz porphyritic) Mottled appearance.									
120	0.90 - 1	20.95	F Felsite a 5 cm wide FELSIC DIKE, very fine grained, pinkish to tan. CA=80 deg.									
120	6.14 - 1	26.18	F Felsite a 4 cm wide FELSIC DIKE,as above. CA=45 deg.									
131.54	- 131.86	QV QUA chloi	Quartz Vein RTZ VEIN White w/ minor streaks of chlorite. Barren looking except for <4% Py at itic contacts. Contacts are chloritic, sheared and slickensided. CA=28-30 deg.	54534	131.54	131.86	0.32	0.015	1.8	0.01		
131.86	- 151.10	9 c TRC grair	Trondhjemite (quartz porphyritic) NDHJEMITE As from 1.5 - 41.55. Largely unfractured. Below 148.7, becomes finer and less porphyritic.									

Lithology From To	Quanta	# Engen	Т.	T	Au nnm	Ag nnm	Zn %	Cu %	Pb %
	Sample	F rrom	10	Len.	<i>rr</i>	<i>rr</i>		, 0	
151.10 - 153.97 QRZ <u>Quartz Rich Zone</u> QUARTZ RICH ZONE Consists of one 5 cm wide QV and five. 1-2 cm wide qtz veinlets. Minor carbonate, mainly along vein contacts and in sericite/chlorite concentrations. Irregular contacts & core angles. Tr Py. Unclassified Vein.	54524 54525 54526	151.10 153.39 153.61	153.39 153.61 153.97	2.29 0.22 0.36	0.015 0.015 0.015	1.7 1.1 0.7	0.005 0.005 0.005		
153.39 - 153.44 QVLT Quartz Veinlets a 4-5 cm wide quartz veinlet. 1% sulphides as one 3 mm bleb of sphalerite and one 8 mm crystals of py.									
153.97 - 158.62 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Similar to section from 1.5 - 41.55. Becomes darker &more chloritic as lower contact w/ QV is approached.									
158.62 - 160.77 QV Quartz Vein QUARTZ VEIN interlayered with TRONDHJEMITE (QRZ?)20-25% quartz as veins up to 9- 14 cm wide and scattered thinner quartz veinlets and concentrations. Quartz veins are mod. streaky w/ chlorite/sericite. Some carbonate. CAs irregular. Unclassified Vein.	54527 54528 54529	158.62 158.92 160.50	158.92 160.50 160.77	0.30 1.58 0.27	0.015 0.015 0.015	1.1 0.3 0.1	0.005 0.02 0.005		
158.62 - 158.72 QV Quartz Vein A 10 cm wide QV, very chloritic along contacts, w/ some scattered streaks & splotches of chlorite. +/- 1% Py as coarse patches & fine seams. Tr. sphalerite. Contact CAs=20-25 deg.									
159.30 - 159.33 QVLT Quartz Veinlets a 3 cm wide qtz veinlet. Chloritic seams throughout vein. CA=26-32 deg. Tr. Py.									
159.33 - 160.50 9i Trondhjemite, altered Highly altered & chloritic trondhjemite contains concentrations and irregular veinlets ofquartz.									
160.50 - 160.77 QV Quartz Vein QUARTZ VEIN 90% quartz. Minor carbonate mainly along contacts. Irregular CAs.									
160.77 - 172.05 9c <u>Trondhiemite (quartz porphyritic)</u> TRONDHJEMITE As from 1.5 - 41.55. Occasional irregular chlorite rich sections w/ thin qtz. veinlets & concentrations, especially at 165.40.									
171.46 - 171.48 QVLT Quartz Veinlets									

Lithology				_	Аи	Ag	Zn %	Cu %	Pb %
From 10 A 2 cm wide qtz. veinlet w/ sheared & chloritic contacts, and one 1 cm spot of Py. CA=15 deg.	Sample †	<u> From</u>	<u> </u>	Len.	ppm	ppm	70	/0	/0
172.05 - 173.21 F <u>Felsite</u> FELSITE DIKE Consists of 2 sections, 18 & 42 cm wide separated by 53 cm of trondhjemite. Fine grained & pinkish in colour. CA=60-70 deg.									
173.21 - 213.99 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Similar to above, but more fractured w/ thin chloritic frs. CA=25-30 deg Scattered thin qtz/carb veinlets, generally less than 2 cm wide. Minor Py, especially smeared on chloritic fractures. Below 210.0, trondhjemite becomes progressively more chloritic and dark coloured.									
182.65 - 183.10 F Felsite FELSITE DIKE Fractured w/ fractures filled w/ chlorite, and one thin qtz/carbonate veinlet.									
 191.04 - 191.09 QCVLT Quartz Carbonate Veinlet A 5 cm wide qtz/carb veinlet w/ prominent carbonate along contacts. CA=20 deg. Tr. Py along contacts. 									
191.31 - 191.70 9c Trondhjemite (quartz porphyritic) Core is more fine grained and lighter coloured.									
198.50 - 198.54 QVLT Quartz Veinlets A 2-4 cm wide quartz veinlet.									
211.50 - 213.66 9c Trondhjemite (quartz porphyritic) More quartz rich w/ prominent qtz eyes, scattered qtz concentrations & occasional veinlets. 15-20% quartz. Trondhjemite matrix is chloritic. +/- 1% Py as xls and smears along fractures.									
213.66 - 213.82 QCVLT Quartz Carbonate Veinlet Two 3.5 and 8 cm wide qtz/carb veinlets separated by highly chloritized trond. Quartz is translucent to white w/ seams & concentrations of chlorite. 1-2% Py as fine disseminated and occasional coarse grains.									
213.99 - 219.00 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Darker and more chloritic than above. Occasional thin qtz/carb veinlets.									

Resources	Ltd
-----------	-----

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Ag	Al ø/	As	Au	В	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe ø⁄	Ga	Lab Report
				ррт	/0	ppm	ppm	ррт	ppm	ppm	/0	ppm	ppm	ppm	ррт	/0	ррт	
54520																		
54530																		
54519	41.55	41.78	0.23	0.5	0.14	2.1	0.0041	10	22	0.1	1.29	7.3	5.5	106	16.7	0.56	0.5	S40655-d
54521	41.78	42.23	0.45	0.1	0.24	2	0.0105	10	38	0.2	1.52	0.2	4.3	130	9	0.6	0.5	S40655-d
54522	42.23	43.61	1.38	0.6	0.13	3.1	0.1559	10	12	1.2	1.29	0.3	2.3	205	15.1	0.62	0.5	S40653-d
54534	131.54	131.86	0.32	1.9	0.03	0.25	0.0017	10	6	3.6	0.34	0.7	0.8	132	5.7	0.28	0.5	S40658-d
54524	151.10	153.39	2.29	1.4	0.2	0.25	0.0024	10	47	2.1	0.89	0.3	1.1	86	6.8	0.36	0.5	S40655-d
54525	153.39	153.61	0.22	1.1	0.17	0.25	0.0018	10	39	2.6	1.27	0.3	0.7	106	3.4	0.29	0.5	S40655-d
54526	153.61	153.97	0.36	0.2	0.18	0.25	0.0031	10	42	0.4	1.01	0.05	2.8	95	20.5	0.6	0.5	S40655-d
54527	158.62	158.92	0.30	0.8	0.17	0.8	0.0052	10	28	1.8	0.74	0.6	4.5	122	21.6	0.91	0.5	S40655-d
54528	158.92	160.50	1.58	0.1	0.2	0.25	0.00025	10	40	0.2	0.84	0.8	1.5	88	7.8	0.34	0.5	S40658-d
54529	160.50	160.77	0.27	0.05	0.12	0.25	0.0008	10	28	0.05	0.31	0.05	0.5	120	2.9	0.23	0.5	S40658-d
54531	191.04	191.31	0.27	0.1	0.13	0.25	0.0692	10	24	0.05	0.47	59.2	2.8	118	7	0.65	0.5	S40658-d
54532	211.50	213.66	2.16	0.1	0.22	0.6	0.0009	10	35	0.1	0.94	0.4	2.2	83	8.5	0.45	0.5	S40658-d
54533	213.66	213.99	0.33	0.2	0.3	2.1	0.0011	10	36	0.3	0.5	4.7	4.5	97	9	0.68	0.5	S40658-d

Res	ources Ltd
-----	------------

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
54520																			
54530																			
54519	41.55	41.78	0.23	0.04	0.12	6	0.12	2.5	2.9	0.02	7.6	0.006	378.8	0.15	0.3	0.1	0.25		S40655-d
54521	41.78	42.23	0.45	0.01	0.19	14	0.11	2.5	3.8	0.008	5.7	0.021	28.9	0.12	0.1	0.2	0.25		S40655-d
54522	42.23	43.61	1.38	0.005	0.07	6	0.31	0.9	2.6	0.007	6	0.006	61.2	0.06	0.1	0.2	0.25		S40653-d
54534	131.54	131.86	0.32	0.005	0.03	1	0.005	0.4	4.2	0.005	2.7	0.002	98.7	0.025	0.05	0.05	0.25		S40658-d
54524	151.10	153.39	2.29	0.005	0.2	20	0.02	4.3	11.2	0.027	3.3	0.012	41.1	0.09	0.05	0.2	0.25		S40655-d
54525	153.39	153.61	0.22	0.005	0.17	11	0.01	2.2	12.4	0.016	2.7	0.013	53.4	0.025	0.05	0.1	0.6		S40655-d
54526	153.61	153.97	0.36	0.005	0.19	15	0.02	4	1.2	0.022	3.9	0.012	11.9	0.24	0.05	0.2	0.25		S40655-d
54527	158.62	158.92	0.30	0.005	0.14	7	0.1	2.9	3.2	0.005	3.8	0.005	39.2	0.33	0.05	0.1	0.25		S40655-d
54528	158.92	160.50	1.58	0.005	0.21	24	0.01	4.2	10.7	0.018	2.4	0.008	7.7	0.1	0.05	0.2	0.25		S40658-d
54529	160.50	160.77	0.27	0.005	0.13	14	0.005	1.9	16.2	0.005	2.5	0.005	1.5	0.025	0.05	0.05	0.25		S40658-d
54531	191.04	191.31	0.27	0.2	0.1	9	0.07	1.5	1	0.015	3.2	0.004	10.9	0.39	0.05	0.1	0.6		S40658-d
54532	211.50	213.66	2.16	0.005	0.19	17	0.02	4.4	2.3	0.019	3.9	0.009	12.5	0.16	0.05	0.1	0.25		S40658-d
54533	213.66	213.99	0.33	0.03	0.18	10	0.03	4.4	0.5	0.002	3.2	0.01	25.6	0.24	0.05	0.2	0.25		S40658-d

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Tl ppm	U DDM	V ppm	W DDM	Zn ppm	Lab Report
54520					PP	PP			
54530									
54519	41.55	41.78	0.23	0.05	12.5	1	0.05	903	S40655-d
54521	41.78	42.23	0.45	0.05	3.1	1	0.1	21	S40655-d
54522	42.23	43.61	1.38	0.05	4	1	0.05	56	S40653-d
54534	131.54	131.86	0.32	0.05	0.3	1	0.05	99	S40658-d
54524	151.10	153.39	2.29	0.05	2.5	1	0.3	42	S40655-d
54525	153.39	153.61	0.22	0.05	1.1	1	0.4	27	S40655-d
54526	153.61	153.97	0.36	0.05	1.8	1	0.2	7	S40655-d
54527	158.62	158.92	0.30	0.05	0.8	1	0.05	74	S40655-d
54528	158.92	160.50	1.58	0.05	1.4	1	0.2	95	S40658-d
54529	160.50	160.77	0.27	0.05	0.6	1	0.05	4	S40658-d
54531	191.04	191.31	0.27	0.05	0.7	1	0.2	6828	S40658-d
54532	211.50	213.66	2.16	0.05	2.1	1	0.05	54	S40658-d
54533	213.66	213.99	0.33	0.05	2.3	1	0.1	839	S40658-d

Resources Ltd		Di	rillhole Log					Units Meters
							<i>Q</i> -	Gold (Ontario) Ltd
Province/State	Co-ordinate System		Grid/Property			Hole Type	Length	Date Started
Ontario	UTM NAD83 Canada	Zone 15	Foley Mine Grid			Exploration hole	147.50	7/25/2010
District	UTM North	UTM East	Local Grid E	Local	Grid N	Collar Survey Metho	od	Date Completed
Kenora	5394366	525629	2275.00	2295.	00	MNR DEM		7/27/2010
Project	UTM Elevation	Azimuth Astro. (°)	Azimuth Grid (?)	Dip (9	Drill Contractor		Date Logged
Foley Mine	371.00	270.00		-45.00	C	C3 Drilling Company	8	
Area	Claim No.	NTS Sheet	Supervised By			Logged By		Verified
Mine Center	K-475099					Richard Beard		
Zone/Prospect	Assessment Rpt. No.	Core Storage	1		Plug Depth	Makas Watan	Cannad	Environmental
		Fort Frances Office					Cappea ✓	Inspection
Core Size (1)NQ	Casing Pulle	ed Casing (1) 1.69	Steel Plug	gged	Pulsed	Geophysics Contract	tor	Date Pulsed
(2)		(2)						
Purpose	·	Results		0	Comments			
Intersect Jumbo Vein and We	st Vein North	Intersected Jumbo Jumbo Splay Vein Splay.	o Vein; intersected a, Intersected Wes	t Vein N	DDH needs to North. GPS average	be extended 20 metre	es to test f	or the West Vein
Survey Tests								
Distance Grid Azin Original	uth (°) Astro. Azim Final Original	uth (°) Dip (°) Final Original F	Use S ïnal Test	urvey M	Aethod N	Mag. Field Commen (nT)	ots	

~

Reflex EZ

-44.2

267.6

147.50

Lithology		" T	Æ	T	Аи	Ag	Zn %	Cu %	Pb %
	Sample	F From	10	Len.	<i>PP</i>	<i>PP</i>	/0	/0	
0.00 - 1.69 OVB <u>Overburden</u> Casing									
 1.69 - 29.94 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITEMedium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and qtz/carbonate locally. Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures. Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-55 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Pale grey to reddish brown to light green in colour. Grain size varies. Occasional thin qtz./carbonate veinlets, occasionally containing tr. sphalerite & galena (?). 1.69 - 10.00 9c Trondhjemite (quartz porphyritic) Core fractured & broken. At 5.0, a 10 cm wide section, cream coloured, feldspar rich & altered. 22.73 - 22.83 QVLT Quartz Veinlets 22.73 - 22.83 A 2 cm wide dtz/carbonate veinlet, locally reddish. CA=30 deg. Tr. Py. 	55424	22.73	22.83	0.10	0.015	2.5	0.57		
1% galena (?). 29.94 - 30.37 QV <u>Quartz Vein</u> QUARTZ VEIN.Reddish in grey in colour. Layered and streaky from inclusions of trond. and seams of chlorite & fine Py. Some fracturing of thequartz. CA=42-45 deg. 5% Py as thin streaks and disseminated small xls.Tr. sphalerite. Jumbo Vein	55425	29.97	30.37	0.40	0.25	1.8	0.11		
30.37 - 37.43 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical, as from 1.69 - 29.94									
37.43 - 38.29 QV <u>Quartz Vein</u> QUARTZ VEIN.Light grey & streaky w/ chlorite & sericite. CA=10 deg. Moderate carbonate. Slight fracturing w/ CA=40-55 deg. Tr. Py. Jumbo Vein Splay?	55426	37.43	38.29	0.86	0.015	0.1	0.005		

Lithology					Аи	Ag	Zn	Cu	Pb
From To	<u>Sample</u> ‡	# From	То	Len.	ррт	ррт	%	%	%
38.29 - 102.11 9c <u>Trondhiemite (quartz porphyritic)</u>	55 407	40,40	40.05	0.46	0.015	10	0.07		
TRONDHJEMITE. Typical, but with more prominent blue qtz. eyes. Tr. Py throughout.	55427	46.49 58.81	46.65 58.92	0.16 0.11	0.015 0.65	1.9 2.4	0.07 0.21		
38.29 - 46.499cTrondhjemite (quartz porphyritic)Trondhjemite with quartz veinlets. Widely scattered thin qtz. & qtz/carbonate veinlets. At 39.6, irregular veinlet & concentration of qtz. Tr. galena. At 41.15, a 1.5 cm wide qtz.veinlet. Tr. sphalerite. At 41.79, a 0.7 cm wide qtz. veinlet.									
46.49 - 46.65 QVLT Quartz Veinlets A 3 cm wide section of thin qtz. veinlets, streaky with chlorite & py. 8% Py as thin (4 mm wide) stringers. CA=32 deg.									
54.50 - 54.51 QVLT Quartz Veinlets a 1.5 cm wide qtz. veinlet w/ some carb. CA=30 deg.									
58.05 - 58.06 QVLT Quartz Veinlets a 1.5 cm wide qtz/carbonate veinlet. CA=60 deg.									
58.81 - 58.92 QV Quartz Vein 58.81 – 58.92 A 5 cm wide QV, white & streaky. <1% sphalerite as thin irreg spots and seams. Ty. Py. CA=56 deg.									
 73.60 - 79.48 9c Trondhjemite (quartz porphyritic) Trondhjemite is lighter grey and finer grained than above w/ only sparce qtz. eyes. 2- 3 % Py finely disseminated throughout. 									
79.48 - 102.11 9c Trondhjemite (quartz porphyritic) Trondhjemite is darker & more reddish in colour. Occasional spots & thin seams of qtz/carbonate									
102.11 - 102.33 F <u>Felsite</u> FELSITE DIKE.Reddish & very fine grained with irregular contacts.									
102.33 - 117.65 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.More mottled and coarse grained than above.									
117.65 - 117.83 F <u>Felsite</u> FELSITE DIKE.Reddish & very fine grained with irregular contacts. Contact CA=65-70 deg.									

Lithology From To	Sample	# From	То	Len.	Au ppm	Ag ppm	Zn %	Cu %	Pb %
 117.83 - 133.40 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE.Slightly coarser grained than typical. At 130.0, a low angle, rusty fracture. 120.08 - 121.01 F Felsite 120.08 - 121.01 Pale greenish, very fine grained and feldspar rich. May be very fine-grained phase of the trondhjemite or a felsite dike. 				2011					
133.40 - 133.80 QV Quartz Vein Mixed TRONDHJEMITE & QUARTZ. A 4 cm wide quartz veinlet separated from the QV below by a 30 cm wide section of quartz rich trondhjemite. Trace Py as fine stringers. CA=48 deg. West Vein Splay									
133.80 - 134.21 QV Quartz Vein QUARTZ VEIN.Massive and white w/ local reddish sections. Occasional stringers of chlorite/sericite. Tr. Py as very fine disseminations and stringers.CA=64 deg. West Vein Splay.	55431	133.80	134.21	0.41	0.015	0.1	0.02		
134.21 - 147.50 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical, as from 1.69 - 29.94. At 140.4, a low angle fracture.									

👰 Re	Resources Ltd MG DDH Geochem																Q-Gold (Ontario) Ltd	
Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Си ррт	Fe %	Ga ppm	Lab Report
55429																		
55424	22.73	22.83	0.10	1.2	0.16	2.8	0.0214	10	25	0.4	2.29	27	12.7	165	15.4	0.88	0.5	S39839-d
55425	29.97	30.37	0.40	1.8	0.24	23.4	0.1952	10	11	4.1	0.31	7.2	13.1	100	30.1	1.5	0.5	S39839-d
55426	37.43	38.29	0.86	0.05	0.21	0.25	0.0059	10	39	0.05	1.28	0.3	2.6	356	9.8	0.8	0.5	S39839-d
55427	46.49	46.65	0.16	2.2	0.19	2.7	0.0119	10	27	3.5	2.28	4.8	8.8	77	47.8	1.22	0.5	S39839-d
55428	58.81	58.92	0.11	2.2	0.19	5.2	0.0412	10	34	4.1	0.54	13.4	5.1	86	13.4	0.64	0.5	S39841-d
55430	133.40	133.80	0.40	0.2	0.2	0.25	0.0022	10	30	0.1	1.03	0.05	1.7	85	6.9	0.39	0.5	S39841-d
55431	133.80	134.21	0.41	0.3	0.04	0.25	0.0118	10	5	0.6	0.09	1.3	3.1	261	20	0.4	0.5	S39839-d

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	Тө	Len.	Hg ppm	К %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
55429																			
55424	22.73	22.83	0.10	0.14	0.12	14	0.21	3.7	0.8	0.014	8.5	0.024	1198	0.34	0.5	0.1	0.6		S39839-d
55425	29.97	30.37	0.40	0.02	0.06	7	0.1	1.2	0.6	0.003	7.8	0.007	112.4	1.05	0.2	0.05	0.25		S39839-d
55426	37.43	38.29	0.86	0.005	0.19	19	0.11	4	1.5	0.008	12.8	0.026	8.3	0.025	0.05	0.2	0.25		S39839-d
55427	46.49	46.65	0.16	0.01	0.14	11	0.07	2.7	0.5	0.004	6.3	0.022	193	0.73	0.3	0.2	0.25		S39839-d
55428	58.81	58.92	0.11	0.05	0.18	12	0.03	5.8	0.3	0.007	6.1	0.018	170.1	0.54	0.05	0.1	0.25		S39841-d
55430	133.40	133.80	0.40	0.005	0.18	22	0.06	2	0.6	0.005	3.6	0.024	8.3	0.025	0.05	0.2	0.25		S39841-d
55431	133.80	134.21	0.41	0.02	0.03	2	0.01	0.2	3.7	0.003	7.6	0.002	15.7	0.025	0.2	0.05	0.25		S39839-d

Reference and the second secon	esource	s Ltd							MG DDH Geochem	Q-Gold (Ontario) Ltd
Sample	From	Тө	Len.	Tl ppm	U ppm	V ppm	W ppm	Zn ppm		Lab Report
55429					••					
55424	22.73	22.83	0.10	0.05	1.3	1	0.05	4394		S39839-d
55425	29.97	30.37	0.40	0.05	0.4	1	0.05	876		S39839-d
55426	37.43	38.29	0.86	0.05	1.4	2	0.2	37		S39839-d
55427	46.49	46.65	0.16	0.05	0.7	1	0.05	653		S39839-d
55428	58.81	58.92	0.11	0.05	0.6	1	0.2	1921		S39841-d
55430	133.40	133.80	0.40	0.05	0.9	1	0.1	14		S39841-d
55431	133.80	134.21	0.41	0.05	0.2	1	0.05	202		S39839-d

	D	rillhole l			Units N	/leters				
								6	-Gold (Ontar	io) Ltd
Co-ordi	inate System		Grid/Prope	erty			Hole Type	Length	Date Started	d
UTM N/	AD83 Canada	Zone 15	Foley Mine Grid			Exploration ho	le 200.00	7/28/2010		
UTM N	orth	UTM East	Local Grid	Local Grid E Loc		ıl Grid N	Collar Survey	Method	Date Compl	leted
539436	6	525629	2275.00		2295	.00	MNR DEM		7/29/2010	
UTM E	levation	Azimuth Astro. (°)	Azimuth G	rid (°)	Dip	(°)	Drill Contract	or	Date Logge	d
372.00		270.00		2013Med (1)	-60.0	00	C3 Drilling Cor	mpany		
Claim 1	No.	NTS Sheet	Supervised	By			Logged By		Verifi	ed
K-47509	99						Richard Beard			
Assessn	nent Rpt. No.	Core Storage			Plug Depth		– Makes Wat	er Capped	Environm Inspecti	ental ion
		Fort Frances Office						\checkmark		
	Casing Pulle	d Casing (1) 2.00	Steel	Plugg	ged	Pulsed	Geophysics Co	ontractor	Date Pul	sed
		(2)								
		Results				Comments				
		over 1.13 metres; splay veins off the intersected West Vein North	intersected a Jumbo Vei Vein Splay a	possible n; ind Wes	e st	GPS average	collar elevation	377 metres		
muth (°) Final	Astro. Azimi Original	uth (°) Dip (°) Final Original H	Use Final Test	Su	rvey .	Method	Mag. Field Co (nT)	omments		
	263.3	-60	\checkmark				re-c	check dip		
	Co-ord UTM N/ UTM N/ 539436 UTM E 372.00 Claim A K-4750 Assess anner Veir	Co-ordinate System UTM NAD83 Canada UTM North 5394366 UTM Elevation 372.00 Claim No. K-475099 Assessment Rpt. No. Casing Puller Danner Vein and West imuth (?) Astro. Azimute Final Original 263.3	Co-ordinate System UTM NAD83 Canada Zone 15 UTM North UTM East 5394366 525629 UTM Elevation Azimuth Astro. (?) 372.00 270.00 Claim No. NTS Sheet K-475099 Fort Frances Office Casing Pulled Casing (1) 2.00 Results Nonner Vein and West Intersected Jumb over 1.13 metres; splay veins off the intersected West Vein North Wanner Vein and West Intersected West Vein North Imuth (?) Astro. Azimuth (?) Dip (?) 263.3 -60	Co-ordinate System Grid/Prope UTM NAD83 Canada Zone 15 Foley Mine UTM North UTM East Local Grid 5394366 525629 2275.00 UTM Elevation Azimuth Astro. (°) Azimuth G 372.00 270.00 270.00 Claim No. NTS Sheet Supervised K-475099 Fort Frances Office Casing Pulled Casing (1) 2.00 Steel (2) (2) (2) (2) (2) Manner Vein and West Intersected Jumbo Vein with Sover 1.13 metres; intersected splay veins off the Jumbo Vein intersected West Vein Splay a Vein North Use imuth (°) Astro. Azimuth (°) Dip (°) Use 263.3 -60 I 1	Co-ordinate System Grid/Property UTM NAD83 Canada Zone 15 Foley Mine Grid UTM North UTM East Local Grid E 5394366 525629 2275.00 UTM Elevation Azimuth Astro. (?) Azimuth Grid (?) 372.00 270.00	Drillhole Log Co-ordinate System Grid/Property UTM NAD83 Canada Zone 15 Foley Mine Grid UTM North UTM East Local Grid E Local 5394366 525629 2275.00 2295 UTM Elevation Azimuth Astro. (°) Azimuth Grid (°) Dip 372.00 270.00 -60.0 -60.0 Claim No. NTS Sheet Supervised By - K-475099 - - - Assessment Rpt. No. Core Storage Fort Frances Office Plugged Casing Pulled Casing (1) 2.00 Steel Plugged Casing Pulled Casing (1) 2.00 Steel Plugged Results - - - - panner Vein and West Intersected Jumbo Vein with 5.08 g/T gold over 1.13 metres; intersected possible splay veins off the Jumbo Vein; intersected West Vein Splay and West Vein North imuth (°) Astro. Azimuth (°) Dip (°) Use Survey Test 263.3 -60 - - -	Drillhole Log Co-ordinate System Grid/Property UTM NAD83 Canada Zone 15 Foley Mine Grid UTM North UTM East Local Grid E Local Grid N 5394366 525629 2275.00 2295.00 UTM Elevation Azimuth Astro. (?) Azimuth Grid (?) Dip (?) 372.00 270.00 -60.00 -60.00 Claim No. NTS Sheet Supervised By	Drillhole Log Co-ordinate System Grid/Property Hole Type UTM NAD83 Canada Zone 15 Foley Mine Grid Exploration ho UTM North UTM East Local Grid E Local Grid N Collar Survey 5394366 525629 2275.00 2295.00 MNR DEM UTM Elevation Azimuth Astro. (?) Azimuth Grid (?) Dip (?) Drill Contract 372.00 270.00 60.00 C3 Drilling Con Claim No. NTS Sheet Supervised By Logged By K-475099 Richard Beard Assessment Rpt. No. Core Storage Plug Depth Makes Wat Source Casing Pulled Casing (1)2.00 Steel Plugged Pulsed Geophysics Ct Casing Pulled Casing (1)2.00 Steel Plugged Pulsed Geophysics Ct Intersected Jumbo Vein with 5.08 g/T gold Goldpanner drift aligns with 1 Goldpanner drift aligns with 1 GPS average collar elevation Intersected Uweb Vein Splay and West Vein North GPS average collar elevation GPS average collar elevation Splay weins off the Jumbo Vein; Intersected West Vein Splay and West Ye	Drillhole Log Co-ordinate System Grid/Property Hole Type Length UTM NAD83 Canada Zone 15 Foley Mine Grid Exploration hole 200.00 UTM North UTM East Local Grid E Local Grid N Collar Survey Method 5394366 525629 2275.00 2295.00 MNR DEM UTM Elevation Azimuth Astro. (?) Azimuth Grid (?) Dip (?) Drilling Company Claim No. NTS Sheet Supervised By Logged By K-475099 K-475099 Intersected Office Image: Casing Pulled Casing (1) 200 Steel Plug Depth Makes Water Capped Intersected Jumbo Vein with 5.08 g/T gold Goodpannts Goodpannts GPS average collar elevation 377 metres anner Vein and West Intersected Jumbo Vein; intersected possible splay veins off the Jumbo Vein; intersected possible splay veins off the Jumbo Vein; intersected West Vein Splay and West Mag. Field Comments immuth (?) Astro. Azimuth (?) Dip (?) Use Survey Method Mag. Field Comments intersected West Vein Splay and West Vein North Test (n1) re-check dip </td <td>Drillhole Log Coordinate System Grid/Property Idle Type Length parts Status UTM NAD83 Canada Zone 15 Foley Mine Grid Exploration hole 200.00 7/28/2010 UTM North UTM East Local Grid E Local Grid N Coltar Survey Method Date Comp. S194386 525629 2275.00 2295.00 MNR DEM 7/29/2010 UTM Elevation Atimuth Astro. (?) Atimuth Grid (?) Dip (?) Drill Contractor Date Logged 372.00 270.00 -60.00 C3 Drilling Company - - - Claim No. NTS Sheet Supervised By Logged By Verifit K.475099 -</td>	Drillhole Log Coordinate System Grid/Property Idle Type Length parts Status UTM NAD83 Canada Zone 15 Foley Mine Grid Exploration hole 200.00 7/28/2010 UTM North UTM East Local Grid E Local Grid N Coltar Survey Method Date Comp. S194386 525629 2275.00 2295.00 MNR DEM 7/29/2010 UTM Elevation Atimuth Astro. (?) Atimuth Grid (?) Dip (?) Drill Contractor Date Logged 372.00 270.00 -60.00 C3 Drilling Company - - - Claim No. NTS Sheet Supervised By Logged By Verifit K.475099 -

Lithology		// T	75	Ŧ	Аи	Ag	Zn %	Cu %	Pb %
10 00 200 OVP Overburden	Sample	f rrom	10	Len.	rr	<u>rr</u>	,,,	, 0	/0
Casing									
2.00 - 22.62 9c <u>Trondhjemite (quartz porphyritic)</u>									
TRONDHJEMITEMedium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and quartz/carbonate locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-40 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Quartz & quartz/carbonate veinlets rare. Relatively un-fractured.									
2.00 - 10.00 9c Trondhjemite (quartz porphyritic)									
22.62 - 22.97 F <u>Felsite</u> FELSITE DIKE.Pale grey, very fine grained, feldspar rich. < 1% Py as thin stringers. CA=34-36 deg.									
22.97 - 37.43 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical. Occasional fractures.									
31.40 - 31.43 QVLT Quartz Veinlets a 2.5 cm wide quartz/carbonate veinlets. 1% Py as fine disseminations and vague stringers. CA=39 deg.									
37.43 - 38.59 QV Quartz Vein QUARTZ VEIN.50% quartz as bands 2 cm to 19 cm wide. Quartz is white to grey w/ some stringers of chlorite/sericite. Moderate carbonate 1-2 % Py as disseminations, stringers and small xls. Jumbo Vein.	55433	37.43	38.59	1.16	5.06	2.2	0.04		

Lithology					Аи	Ag	Zn	Си	Pb
From To	Sample #	ŧ From	Тө	Len.	ррт	ррт	%	%	%
38.59 - 73.56 9c Trondhjemite (quartz porphyritic)									
eyes.									
38.59 - 38.60 QVLT Quartz Veinlets									
A 1 cm wide quartz/carbonate veinlet. CA=38 deg. Tr. Py. Tr. sphalerite.									
52.12 - 52.97 9i Trondhjemite, altered Pale greenish, fine grained & altered.									
58.72 - 58.74 QCV Quartz Carbonate Vein a 1-2 cm wide quartz/carbonate veinlet. CA=38 deg. Tr. galena.									
61.31 – 61.33 QCV Quartz Carbonate Vein a 2 cm wide quartz/carbonate veinlet. Tr. sphalerite.									
61.97 - 61.99 QCV Quartz Carbonate Vein a 1.5 cm wide quartz/carbonate veinlet, Carbonate along veinlet contacts.									
68.70 - 69.29 9c Trondhjemite (quartz porphyritic)									
wide. Tr. Py associated with some vein contacts. CA=25 & 40 deg.									
73.56 - 74.09 QV <u>Quartz Vein</u> QUARTZ VEIN.Massive & white w/ rare streaks of sericite. 5% Py. as several thin seams 1-2 cm wide. < 1% sphalerite as irregular spots. Unclassified Vein.	55434	73.56	74.09	0.53	0.75	2.5	0.18		
74.09 - 76.10 OBZ Quartz Rich Zone									
QUARTZ RICH ZONE.30 – 45% quartz as concentrations and veinlets.Unclassified QRZ.	55435	74.09	74.48	0.39	0.015	0.6	0.08		
	55436	74.48	76.10	1.62	0.015	0.4	0.03		
74.09 - 74.48 QRZ Quartz Rich Zone 30 % quartz as concentrations and one 3 cm wide vein.									
74.48 - 76.10 QRZ Quartz Rich Zone 35–45 % quartz as coarse eyes and one 1.5 cm wide quartz veinlets running parallel to core.									
76.10 - 88.78 9c Trondhiemite (quartz porphyritic)									
TRONDHJEMITE.Typical, as above. Grey to greenish w/ mod quartz eyes. Occasional widely spaced +/- 1 cm wide quartz and quartz/carbonate veinlets. Occasional fractures,									

Lithology From To	Sample	# From	То	Len	Аи ррт	Ag ppm	Zn %	Си %	Pb %
CA 44-50 deg		# ITOM	10	LUII					
86.34 - 88.78 9c Trondhjemite (quartz porphyritic) More quartz rich than above w/ larger quartz eyes. Tr. Py. 86.34 – 86.36 A 2 cm wide quartz veinlet, locally reddish w/ some carbonate stringers within the quartz Tr. Py as 1-2 mm xls. Trace wire lines of unidentified black mineral.									
 88.78 - 90.25 QV Quartz Vein QUARTZ VEIN.White w/ occasional reddish spots & seams. Locally streaked with chlorite & sulphides. 4-5 % sulphides, primarily Py w/ tr. sphalerite & chalcopyrite (?) disseminated throughout but largely concentrated in several 4 cm wide streaky sections. Some streaky sections contain up to 8 % sulphides. CA (top) =25 deg., CA (bottom)=31 deg. Unclassified Vein. 	55438 55439 55441	88.78 89.23 89.79	89.23 89.79 90.25	0.45 0.56 0.46	0.83 0.33 0.08	0.5 1.2 3.7	0.005 0.12 0.05		
90.25 - 151.49 9c <u>Trondhjemite (quartz porphyritic)</u> Typical, as above. Occasional thin veinlets of quartz & quartz/carbonate <1% Py. Fracturing generally slight w/ variable CAs.									
105.02 - 105.22 QRZ Quartz Rich Zone 35% quartz as irregular splotches & thin veinlets.									
106.33 - 106.80 9i Trondhjemite, altered Mottled & creamy coloured. At 106.46, a 1 cm wide quartz veinlet w/ minor carbonate.									
114.50 - 117.00 9i Trondhjemite, altered 114.50 – 117.00 Finer grained and quartz poor, altered & sericitic. At 115.08 – 115.10, a 2 cm wide quartz/carbonate veinlet, streaky w/ sericite. Tr. Py. CA= 27 deg.									
117.00 - 134.74 9i Trondhjemite, altered Slightly more reddish than above. Little fracturing. At 125.60, a 1 cm wide reddish quartz/carbonate veinlet.									
134.74 - 151.59 9i Trondhjemite, altered Finer grained and more altered than above. At 138.7 – 141.5 Several low angle CAs. At 142.31, a 2 cm wide quartz/carbonate stringer. CA=40 deg. At 149.97, a 3 cm wide section of reddish felsitic material.									
151.49 - 151.53 F <u>Felsite</u> FELSITE DIKE.Reddish and fine grained. Ct. CA=40-45 deg. A 2 cm wide quartz/carbonate veinlet at each contact.									

Lithology						Аи	Ag	Zn	Cu ø⁄	Pb
From 10	9i <u>Trondhjemite, altered</u> TRONDHJEMITE.Greenish in colour and more fine grained and altered than above. Locally bleached to pale grey. Occasional reddish sections. Slight fracturing. At 151.10, a low angle fracture CA=12 deg.	Sample #	<u>From</u>	<u> </u>	Len.	<u>ppm</u>	ppm	/0	/0	/0
159.90 - 160.31	QRZ Quartz Rich Zone QUARTZ RICH ZONE. 20% quartz as large eyes, irregular patches and stringers, and two 2 cm wide veinlets. Some carbonate, concentrated in the quartz veinlets. Some highly chloritic and foliated sections. Some thin greenish stringers of sericite along thin fractures. Occasional reddish patches and seams.									
160.31 - 161.41	9i <u>Trondhiemite, altered</u> TRONDHJEMITE.Greenish in colour, similar to 151.53 – 159.90									
161.41 - 161.83	F <u>Felsite</u> FELSITE DIKE. Reddish in colour. At lower contact, a 0.8 cm wide quartz/carbonate. Stringer. CA=15 deg.									
161.83 - 162.23	9i <u>Trondhjemite, altered</u> TRONDHJEMITE.Greenish and moderately altered, as above.									
162.23 - 162.52	QRZ Quartz Rich Zone QUARTZ RICH ZONE. Quartz-Carbonate rich section. A 3 cm wide vein of reddish quartz with prominent carbonate both disseminated throughout and concentrated along contacts. CA=16 deg. Moderate streaks of chlorite. Barren looking. At 162.0 - Several low angle fractures									
162.52 - 169.08	9i <u>Trondhiemite. altered</u> TRONDHJEMITE.Greenish and altered, as above.									

Lithology					Au	Ag	Zn	Си	Pb		
From To	Sample #	# From	То	Len.	ррт	ррт	%	%	<u>%</u>		
169.08 - 169.30 QV Quartz Vein											
QUARTZ VEIN.Upper part is streaky w/ chlorite. Lower part is white & massive. Some carbonate spots & stringers. Tr. Py as widely scattered xls., occasionally concentrated in thin, discontinuous seams. CA=30-40 deg. Wset Vein Splay.	55445	169.08	169.30	0.22	0.015	0.3	0.17				
169.30 - 178.15 9i <u>Trondhjemite. altered</u> TRONDHJEMITE.Greenish, similar to above. Little fracturing.											
178.15 - 178.47 QRZ <u>Quartz Rich Zone</u> QUARTZ RICH ZONE. Several white quartz/carbonate veinlets, 1-5 cm wide. 3% carbonate < 1% Py as fine disseminated and several 4 mm wide stringers.	54504	178.15	178.57	0.42	0.015	0.1	0.005				
178.47 - 180.09 9i <u>Trondhiemite, altered</u> TRONDHJEMITE.As above. Moderate altered w/ prominent quartz eyes.											
180.09 - 180.27 SZ <u>Shear Zone</u> SHEAR ZONE. Sheared,chloritic section w/ stretched blue quartz eyes. CA=21 deg.											
 180.27 - 181.60 9; <u>Trondhjemite, altered</u> TRONDHJEMITE.Quartz-rich trondhjemite. Large prominent quartz eyes and scattered quartz concentrations & veinlets up to 2 cm wide. Moderate altered. 181.00 - 181.60 9c Trondhjemite (quartz porphyritic) 2% Py filling fine fractures. 											
 181.60 - 191.38 9; <u>Trondhjemite, altered</u> TRONDHJEMITE.Greenish to dark grey. At 190.0, Several small, weathered out vugs w/ Py. 191.00 - 191.38 QVLT Quartz Veinlets A 1-2 cm wide quartz veinlet parallel to core axis. 											
Litholo	gу						Au	Ag	Zn	Си	Pb
---------	----------	---	----------	--------	--------	------	-------	-----	-------	----	----
From	То		Sample #	From	То	Len.	ррт	ррт	%	%	%
191.38	- 192.43	QV Quartz Vein QUARTZ VEIN.White. Partly massive & pure, partly chloritic as irregular patches & streaks. Moderately carbonate locally. Some sericitic streaks. Largely barren w/ only tr. sphalerite (?) West Vein North.	55449	191.38	192.43	1.05	0.015	0.1	0.005		
192.43	- 193.85	9c <u>Trondhiemite (quartz porphyritic)</u> TRONDHJEMITE.Typical. 5-8% quartz w/ moderate carbonate, as 1-3.5 cm wide veinlets. Veinlets have varying CAs. Barren looking.									
193.85	- 194.80	QV Quartz Vein QUARTZ VEIN.White but very streaky w/ irregular chlorite & sericite concentrations & seams. Barren looking except for tr. Py as coarse xls & fine disseminations along hairline fractures. West Vein North.	54502	193.85	194.80	0.95	0.015	0.1	0.02		
194.80	- 195.80	9i <u>Trondhiemite, altered</u> TRONDHJEMITE. 5% quartz as veinlets, stringers, and irregular patches. Moderate altered w/ chlorite & sericite. Slight to moderate carbonate. Barren looking.									
195.80	- 200.00	9c <u>Trondhjernite (quartz porphyritic)</u> TRONDHJEMITE.Typical. Un-fractured. Trace Py as small xls.									

From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ва ррт	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Lab Report
37.43	38.59	1.16	0.6	0.28	1.2	0.2683	10	34	0.3	0.63	1.9	3.9	301	38.4	0.81	0.5	S39839-d
73.56	74.09	0.53	12	0.17	7.5	1.3684	10	24	22.6	0.82	58.3	11.7	218	37.4	1.6	0.5	S39839-d
74.09	74.48	0.39	0.5	0.21	0.25	0.0012	10	40	0.8	1.09	5	2.1	191	4.9	0.51	0.5	S39839-d
74.48	76.10	1.62	0.4	0.23	0.25	0.00025	10	42	0.6	1.67	2.5	3.1	278	7.7	0.88	0.5	S39839-d
86.34	88.78	2.44	0.3	0.21	1.1	0.0016	10	42	0.3	1.46	1.2	4.8	82	18.7	0.68	0.5	S39841-d
88.78	89.23	0.45	0.6	0.13	0.25	0.0062	10	16	0.5	0.16	0.2	1.7	213	21.1	0.4	0.5	S39839-d
89.23	89.79	0.56	1.2	0.04	1.2	0.1184	10	2	0.05	0.25	7.9	3.6	238	139.4	0.92	0.5	S39839-d
89.79	90.25	0.46	4.1	0.03	0.25	0.0068	10	5	0.6	0.05	2.7	1.5	227	109.2	0.37	0.5	S39839-d
90.25	91.40	1.15	0.05	0.2	0.25	0.0013	10	40	0.3	1.33	0.2	1.8	67	13.2	0.6	0.5	S39841-d
159.90	160.31	0.41	0.3	0.24	0.6	0.00025	10	39	0.05	1.96	0.05	3.9	75	16.7	0.81	0.5	S39844-d
162.23	162.52	0.29	0.1	0.13	1.5	0.0344	10	23	0.1	7.84	0.6	4.6	67	10.5	3.12	0.5	S39844-d
169.08	169.30	0.22	0.2	0.16	0.25	0.0212	10	13	0.3	0.25	8.3	1.9	164	11.8	0.51	0.5	S39842-d
178.15	178.57	0.42	0.05	0.13	0.25	0.0006	10	21	0.05	0.78	0.05	0.8	182	5.2	0.46	0.5	S39842-d
178.47	180.27	1.80	0.05	0.16	0.25	0.0012	10	23	0.05	0.52	0.05	0.8	66	3.5	0.31	0.5	S39844-d
180.27	181.60	1.33	0.05	0.17	0.25	0.0014	10	28	0.05	0.38	0.05	0.8	66	3.9	0.3	0.5	S39844-d
191.00	191.38	0.38	0.05	0.19	0.25	0.00025	10	33	0.05	0.4	0.05	0.4	84	2.7	0.19	0.5	S39844-d
191.38	192.43	1.05	0.1	0.16	0.25	0.0009	10	20	0.4	1.19	0.05	1.2	348	10.2	0.62	0.5	S39842-d
192.43	193.85	1.42	0.05	0.19	0.25	0.00025	10	33	0.05	0.84	0.05	0.4	66	4.3	0.23	0.5	S39844-d
193.85	194.80	0.95	0.05	0.09	0.25	0.0015	10	14	0.05	0.24	1.1	4.4	131	16.2	0.49	0.5	S39842-d
194.80	195.80	1.00	0.05	0.21	0.25	0.00025	10	36	0.05	1.09	0.05	0.4	74	1.8	0.24	0.5	S39844-d
	From 37.43 73.56 74.09 74.48 86.34 88.78 89.23 89.79 90.25 159.90 162.23 169.08 178.15 178.47 180.27 191.00 191.38 192.43 193.85 194.80	FromTo37.4338.5973.5674.0974.4974.4874.4876.1086.3488.7889.2389.2389.2389.7990.2590.2590.2591.40159.90160.31162.23162.52169.08169.30178.15178.57178.47180.27180.27181.60191.00191.38192.43193.85193.85194.80194.80195.80	FromToLen.37.4338.591.1673.5674.090.5374.0974.480.3974.4876.101.6286.3488.782.4488.7889.230.4589.2389.790.5689.7990.250.4690.2591.401.15159.90160.310.41162.23162.520.29169.08169.300.22178.15178.570.42178.47180.271.80180.27181.601.33191.00191.380.38191.38192.431.05192.43193.851.42193.85194.800.95194.80195.801.00	From To Len. Ag ppm 37.43 38.59 1.16 0.6 73.56 74.09 0.53 12 74.09 74.48 0.39 0.5 74.48 76.10 1.62 0.4 86.34 88.78 2.44 0.3 88.78 89.23 0.45 0.6 89.23 89.79 0.56 1.2 89.79 90.25 0.46 4.1 90.25 91.40 1.15 0.05 159.90 160.31 0.41 0.3 162.23 162.52 0.29 0.1 169.08 169.30 0.22 0.2 178.15 178.57 0.42 0.05 178.47 180.27 1.80 0.05 180.27 181.60 1.33 0.05 191.00 191.38 0.38 0.05 191.38 192.43 1.05 0.1 192.43 193.85 1.42	From To Len. Ag ppm Al % 37.43 38.59 1.16 0.6 0.28 73.56 74.09 0.53 12 0.17 74.09 74.48 0.39 0.5 0.21 74.48 76.10 1.62 0.4 0.23 86.34 88.78 2.44 0.3 0.21 88.78 89.23 0.45 0.6 0.13 89.23 89.79 0.56 1.2 0.04 89.79 90.25 0.46 4.1 0.03 90.25 91.40 1.15 0.05 0.2 159.90 160.31 0.41 0.3 0.24 162.23 162.52 0.29 0.1 0.13 169.08 169.30 0.22 0.2 0.16 178.15 178.57 0.42 0.05 0.13 178.47 180.27 1.80 0.05 0.16 180.27 181.60 1.33	From To Len. Ag ppm Al % As ppm 37.43 38.59 1.16 0.6 0.28 1.2 73.56 74.09 0.53 12 0.17 7.5 74.09 74.48 0.39 0.5 0.21 0.25 74.48 76.10 1.62 0.4 0.23 0.25 86.34 88.78 2.44 0.3 0.21 1.1 88.78 89.23 0.45 0.6 0.13 0.25 89.23 89.79 0.56 1.2 0.04 1.2 89.79 90.25 0.46 4.1 0.03 0.25 90.25 91.40 1.15 0.05 0.2 0.25 159.90 160.31 0.41 0.3 0.24 0.6 162.23 162.52 0.29 0.1 0.13 1.5 169.08 169.30 0.22 0.2 0.16 0.25 178.15 178.57 <td< td=""><td>From To Len. Ag ppm Al ppm As ppm Au ppm Au ppm 37.43 38.59 1.16 0.6 0.28 1.2 0.2683 73.56 74.09 0.53 12 0.17 7.5 1.3684 74.09 74.48 0.39 0.5 0.21 0.25 0.0012 74.48 76.10 1.62 0.4 0.23 0.25 0.00025 86.34 88.78 2.44 0.3 0.21 1.1 0.016 88.78 89.23 0.45 0.6 0.13 0.25 0.0062 89.23 89.79 0.56 1.2 0.04 1.2 0.1184 89.79 90.25 0.46 4.1 0.03 0.25 0.0062 90.25 91.40 1.15 0.05 0.2 0.25 0.0013 159.90 160.31 0.41 0.3 0.24 0.6 0.00025 162.23 162.52 0.29</td><td>FromToLen.Ag ppmAl $\%$As ppmAu ppmB ppm$37.43$$38.59$$1.16$$0.6$$0.28$$1.2$$0.2683$$10$$73.56$$74.09$$0.53$$12$$0.17$$7.5$$1.3684$$10$$74.09$$74.48$$0.39$$0.5$$0.21$$0.25$$0.0012$$10$$74.48$$76.10$$1.62$$0.4$$0.23$$0.25$$0.00025$$10$$86.34$$88.78$$2.44$$0.3$$0.21$$1.1$$0.0016$$10$$88.78$$89.23$$0.45$$0.6$$0.13$$0.25$$0.0062$$10$$89.23$$8.79$$0.56$$1.2$$0.04$$1.2$$0.1184$$10$$89.79$$90.25$$0.46$$4.1$$0.03$$0.25$$0.0063$$10$$90.25$$91.40$$1.15$$0.05$$0.2$$0.25$$0.0013$$10$$162.23$$162.52$$0.29$$0.1$$0.13$$1.5$$0.0344$$10$$169.08$$169.30$$0.22$$0.2$$0.16$$0.25$$0.0012$$10$$178.47$$180.27$$1.80$$0.05$$0.16$$0.25$$0.0012$$10$$191.38$$192.43$$1.05$$0.11$$0.16$$0.25$$0.0025$$10$$191.38$$194.80$$0.95$$0.05$$0.19$$0.25$$0.0025$$10$$194.80$$195.80$$1.00$$0.05$<t< td=""><td>FromToLen.Ag ppmAl $%$As ppmAu ppmB ppmBa ppm$37.43$$38.59$$1.16$$0.6$$0.28$$1.2$$0.2683$$10$$34$$73.56$$74.09$$0.53$$12$$0.17$$7.5$$1.3684$$10$$24$$74.09$$74.48$$0.39$$0.5$$0.21$$0.25$$0.0012$$10$$40$$74.48$$76.10$$1.62$$0.4$$0.23$$0.25$$0.0025$$10$$42$$86.34$$88.78$$2.44$$0.3$$0.21$$1.1$$0.016$$10$$42$$88.78$$89.23$$0.45$$0.6$$0.13$$0.25$$0.0025$$10$$16$$89.23$$89.79$$0.56$$1.2$$0.04$$1.2$$0.1184$$10$$2$$89.79$$90.25$$0.46$$4.1$$0.03$$0.25$$0.0062$$10$$16$$89.23$$89.79$$0.56$$1.2$$0.04$$1.2$$0.1184$$10$$2$$89.79$$90.25$$0.46$$4.1$$0.03$$0.25$$0.0068$$10$$5$$90.25$$91.40$$1.15$$0.05$$0.2$$0.25$$0.0013$$10$$40$$159.90$$160.31$$0.41$$0.3$$0.24$$0.6$$0.00025$$10$$39$$162.23$$162.52$$0.29$$0.1$$0.13$$1.5$$0.0344$$10$$23$$169.08$</td><td>From To Len. Ag ppm AI % As ppm Au ppm B ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm</br></br></br></br></br></td><td>FromToLen.Ag ppmAl $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppm37.4338.591.160.60.281.20.268310340.30.6373.5674.090.53120.177.51.3684102422.60.8274.0974.480.390.50.210.250.001210400.81.0974.4876.101.620.40.230.250.0002510420.61.6786.3488.782.440.30.211.10.01610420.31.4688.7889.230.450.60.130.250.006210160.50.1689.2389.790.561.20.041.20.11841020.050.2589.7990.250.464.10.030.250.00681050.60.0590.2591.401.150.050.20.250.011310400.31.33159.90160.310.410.30.240.60.002510390.051.96162.23162.520.290.10.131.50.034410230.17.84169.08169.300.220.20.160.250.01210130.30.25178.15178.570.4</td><td>FromToLen.Ag ppmAl $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppm37.4338.591.160.60.281.20.268310340.30.631.973.5674.090.53120.177.51.3684102422.60.8258.374.0974.480.390.50.210.250.001210400.81.09574.4876.101.620.40.230.250.002510420.61.672.586.3488.782.440.30.211.10.01610420.31.461.289.799.561.20.041.20.11841020.050.257.989.7990.250.464.10.030.250.002510390.051.960.05162.23162.520.290.10.131.50.034410230.17.840.6169.90160.310.410.30.250.001210130.30.258.3178.15178.570.420.050.130.250.001210230.17.840.6169.90160.310.410.30.250.001210230.50.520.05162.23162.520.290.10.13<t< td=""><td>FromToLen.Ag ppmAI $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppm37.4338.591.160.60.281.20.268310340.30.631.93.973.5674.090.53120.177.51.3684102422.60.8258.311.774.9974.480.390.50.210.250.001210400.81.0952.174.4876.101.620.40.230.250.002510420.61.672.53.186.3488.782.440.30.211.10.01610420.31.461.24.887.89.230.450.60.130.250.006210160.50.160.21.789.2389.790.561.20.041.20.11841020.050.257.93.689.7990.2591.401.150.050.20.250.001310400.31.330.21.8159.90160.310.410.30.240.60.002510390.051.960.053.9162.23162.520.290.10.131.50.34410230.17.840.64.6169.08169.300.220</td><td>FromToLen.Ag ppmAl $\frac{N_0}{N}$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCd ppmCo ppmCr ppm37.4338.591.160.60.281.20.268310340.30.631.93.930173.5674.090.53120.177.51.3684102422.60.8258.311.721874.0974.480.390.50.210.250.002510420.61.672.53.127886.3488.782.440.30.211.10.001610420.31.461.24.88288.7889.230.450.60.130.250.006210160.50.160.21.721389.7990.250.464.10.030.250.00621010400.31.330.21.867159.90160.310.410.30.250.00681050.60.052.71.522790.2591.401.150.050.20.250.001310400.31.330.21.867159.90160.310.410.30.240.60.002510390.051.960.053.975162.23162.520.290.10.131.5<</td><td>FromToLen.Ag ppmAI $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppmCr ppmCu ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.473.5674.090.53120.177.51.3684102422.60.8258.311.721837.474.0974.480.390.50.210.250.001210400.81.0952.11914.974.4876.101.620.40.230.250.0002510420.61.672.53.12787.786.3488.782.440.30.211.10.001610420.31.461.24.88218.788.7889.230.450.60.130.250.006210160.50.160.21.721321.189.2389.790.561.20.041.20.11841020.050.257.93.6238139.489.799.0250.464.10.030.250.0002510390.051.960.053.97516.7162.2316.290.110.131.50.34410230.17.840.64.66710.5</td><td>FromToLen.AgAlAsAuBBaBiCaCaCdCoCrCuFe37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.8173.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.674.9974.480.390.50.210.250.001210400.81.0952.11914.90.5174.4876.101.620.40.230.250.002510420.61.672.53.12787.70.8886.3488.782.440.30.211.10.01610420.31.461.24.88218.70.6889.790.561.20.041.20.11841020.050.257.93.6238139.40.9289.790.561.20.041.20.11841020.050.271.5227109.20.3790.2591.401.150.050.220.250.006210390.051.360.053.97516.70.81162.23162.520.290.10.131.50.34410230.17.840.64.66710.5</td><td>FromToLen.Ag ppmAI n_0^{*}As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCa ppmCa ppmCa ppmFe ppmGa ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.810.573.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.60.574.4970.101.620.40.230.250.001210400.81.0952.11914.90.510.574.4876.101.620.40.230.250.002510420.61.672.53.12787.70.880.586.3488.762.440.30.211.10.01610420.31.461.24.88218.70.680.589.230.450.660.130.250.006210160.50.160.21.721321.10.40.589.790.561.20.441.03.0250.0052.71.5227109.20.370.590.259.1401.150.050.220.250.0131.330.21.86713.20.60.5159.90160.31</td></t<></td></t<></td></td<>	From To Len. Ag ppm Al ppm As ppm Au ppm Au ppm 37.43 38.59 1.16 0.6 0.28 1.2 0.2683 73.56 74.09 0.53 12 0.17 7.5 1.3684 74.09 74.48 0.39 0.5 0.21 0.25 0.0012 74.48 76.10 1.62 0.4 0.23 0.25 0.00025 86.34 88.78 2.44 0.3 0.21 1.1 0.016 88.78 89.23 0.45 0.6 0.13 0.25 0.0062 89.23 89.79 0.56 1.2 0.04 1.2 0.1184 89.79 90.25 0.46 4.1 0.03 0.25 0.0062 90.25 91.40 1.15 0.05 0.2 0.25 0.0013 159.90 160.31 0.41 0.3 0.24 0.6 0.00025 162.23 162.52 0.29	FromToLen.Ag ppmAl $\%$ As ppmAu ppmB ppm 37.43 38.59 1.16 0.6 0.28 1.2 0.2683 10 73.56 74.09 0.53 12 0.17 7.5 1.3684 10 74.09 74.48 0.39 0.5 0.21 0.25 0.0012 10 74.48 76.10 1.62 0.4 0.23 0.25 0.00025 10 86.34 88.78 2.44 0.3 0.21 1.1 0.0016 10 88.78 89.23 0.45 0.6 0.13 0.25 0.0062 10 89.23 8.79 0.56 1.2 0.04 1.2 0.1184 10 89.79 90.25 0.46 4.1 0.03 0.25 0.0063 10 90.25 91.40 1.15 0.05 0.2 0.25 0.0013 10 162.23 162.52 0.29 0.1 0.13 1.5 0.0344 10 169.08 169.30 0.22 0.2 0.16 0.25 0.0012 10 178.47 180.27 1.80 0.05 0.16 0.25 0.0012 10 191.38 192.43 1.05 0.11 0.16 0.25 0.0025 10 191.38 194.80 0.95 0.05 0.19 0.25 0.0025 10 194.80 195.80 1.00 0.05 <t< td=""><td>FromToLen.Ag ppmAl $%$As ppmAu ppmB ppmBa ppm$37.43$$38.59$$1.16$$0.6$$0.28$$1.2$$0.2683$$10$$34$$73.56$$74.09$$0.53$$12$$0.17$$7.5$$1.3684$$10$$24$$74.09$$74.48$$0.39$$0.5$$0.21$$0.25$$0.0012$$10$$40$$74.48$$76.10$$1.62$$0.4$$0.23$$0.25$$0.0025$$10$$42$$86.34$$88.78$$2.44$$0.3$$0.21$$1.1$$0.016$$10$$42$$88.78$$89.23$$0.45$$0.6$$0.13$$0.25$$0.0025$$10$$16$$89.23$$89.79$$0.56$$1.2$$0.04$$1.2$$0.1184$$10$$2$$89.79$$90.25$$0.46$$4.1$$0.03$$0.25$$0.0062$$10$$16$$89.23$$89.79$$0.56$$1.2$$0.04$$1.2$$0.1184$$10$$2$$89.79$$90.25$$0.46$$4.1$$0.03$$0.25$$0.0068$$10$$5$$90.25$$91.40$$1.15$$0.05$$0.2$$0.25$$0.0013$$10$$40$$159.90$$160.31$$0.41$$0.3$$0.24$$0.6$$0.00025$$10$$39$$162.23$$162.52$$0.29$$0.1$$0.13$$1.5$$0.0344$$10$$23$$169.08$</td><td>From To Len. Ag ppm AI % As ppm Au ppm B ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm</br></br></br></br></br></td><td>FromToLen.Ag ppmAl $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppm37.4338.591.160.60.281.20.268310340.30.6373.5674.090.53120.177.51.3684102422.60.8274.0974.480.390.50.210.250.001210400.81.0974.4876.101.620.40.230.250.0002510420.61.6786.3488.782.440.30.211.10.01610420.31.4688.7889.230.450.60.130.250.006210160.50.1689.2389.790.561.20.041.20.11841020.050.2589.7990.250.464.10.030.250.00681050.60.0590.2591.401.150.050.20.250.011310400.31.33159.90160.310.410.30.240.60.002510390.051.96162.23162.520.290.10.131.50.034410230.17.84169.08169.300.220.20.160.250.01210130.30.25178.15178.570.4</td><td>FromToLen.Ag ppmAl $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppm37.4338.591.160.60.281.20.268310340.30.631.973.5674.090.53120.177.51.3684102422.60.8258.374.0974.480.390.50.210.250.001210400.81.09574.4876.101.620.40.230.250.002510420.61.672.586.3488.782.440.30.211.10.01610420.31.461.289.799.561.20.041.20.11841020.050.257.989.7990.250.464.10.030.250.002510390.051.960.05162.23162.520.290.10.131.50.034410230.17.840.6169.90160.310.410.30.250.001210130.30.258.3178.15178.570.420.050.130.250.001210230.17.840.6169.90160.310.410.30.250.001210230.50.520.05162.23162.520.290.10.13<t< td=""><td>FromToLen.Ag ppmAI $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppm37.4338.591.160.60.281.20.268310340.30.631.93.973.5674.090.53120.177.51.3684102422.60.8258.311.774.9974.480.390.50.210.250.001210400.81.0952.174.4876.101.620.40.230.250.002510420.61.672.53.186.3488.782.440.30.211.10.01610420.31.461.24.887.89.230.450.60.130.250.006210160.50.160.21.789.2389.790.561.20.041.20.11841020.050.257.93.689.7990.2591.401.150.050.20.250.001310400.31.330.21.8159.90160.310.410.30.240.60.002510390.051.960.053.9162.23162.520.290.10.131.50.34410230.17.840.64.6169.08169.300.220</td><td>FromToLen.Ag ppmAl $\frac{N_0}{N}$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCd ppmCo ppmCr ppm37.4338.591.160.60.281.20.268310340.30.631.93.930173.5674.090.53120.177.51.3684102422.60.8258.311.721874.0974.480.390.50.210.250.002510420.61.672.53.127886.3488.782.440.30.211.10.001610420.31.461.24.88288.7889.230.450.60.130.250.006210160.50.160.21.721389.7990.250.464.10.030.250.00621010400.31.330.21.867159.90160.310.410.30.250.00681050.60.052.71.522790.2591.401.150.050.20.250.001310400.31.330.21.867159.90160.310.410.30.240.60.002510390.051.960.053.975162.23162.520.290.10.131.5<</td><td>FromToLen.Ag ppmAI $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppmCr ppmCu ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.473.5674.090.53120.177.51.3684102422.60.8258.311.721837.474.0974.480.390.50.210.250.001210400.81.0952.11914.974.4876.101.620.40.230.250.0002510420.61.672.53.12787.786.3488.782.440.30.211.10.001610420.31.461.24.88218.788.7889.230.450.60.130.250.006210160.50.160.21.721321.189.2389.790.561.20.041.20.11841020.050.257.93.6238139.489.799.0250.464.10.030.250.0002510390.051.960.053.97516.7162.2316.290.110.131.50.34410230.17.840.64.66710.5</td><td>FromToLen.AgAlAsAuBBaBiCaCaCdCoCrCuFe37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.8173.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.674.9974.480.390.50.210.250.001210400.81.0952.11914.90.5174.4876.101.620.40.230.250.002510420.61.672.53.12787.70.8886.3488.782.440.30.211.10.01610420.31.461.24.88218.70.6889.790.561.20.041.20.11841020.050.257.93.6238139.40.9289.790.561.20.041.20.11841020.050.271.5227109.20.3790.2591.401.150.050.220.250.006210390.051.360.053.97516.70.81162.23162.520.290.10.131.50.34410230.17.840.64.66710.5</td><td>FromToLen.Ag ppmAI n_0^{*}As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCa ppmCa ppmCa ppmFe ppmGa ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.810.573.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.60.574.4970.101.620.40.230.250.001210400.81.0952.11914.90.510.574.4876.101.620.40.230.250.002510420.61.672.53.12787.70.880.586.3488.762.440.30.211.10.01610420.31.461.24.88218.70.680.589.230.450.660.130.250.006210160.50.160.21.721321.10.40.589.790.561.20.441.03.0250.0052.71.5227109.20.370.590.259.1401.150.050.220.250.0131.330.21.86713.20.60.5159.90160.31</td></t<></td></t<>	FromToLen.Ag ppmAl $%$ As ppmAu ppmB ppmBa ppm 37.43 38.59 1.16 0.6 0.28 1.2 0.2683 10 34 73.56 74.09 0.53 12 0.17 7.5 1.3684 10 24 74.09 74.48 0.39 0.5 0.21 0.25 0.0012 10 40 74.48 76.10 1.62 0.4 0.23 0.25 0.0025 10 42 86.34 88.78 2.44 0.3 0.21 1.1 0.016 10 42 88.78 89.23 0.45 0.6 0.13 0.25 0.0025 10 16 89.23 89.79 0.56 1.2 0.04 1.2 0.1184 10 2 89.79 90.25 0.46 4.1 0.03 0.25 0.0062 10 16 89.23 89.79 0.56 1.2 0.04 1.2 0.1184 10 2 89.79 90.25 0.46 4.1 0.03 0.25 0.0068 10 5 90.25 91.40 1.15 0.05 0.2 0.25 0.0013 10 40 159.90 160.31 0.41 0.3 0.24 0.6 0.00025 10 39 162.23 162.52 0.29 0.1 0.13 1.5 0.0344 10 23 169.08	From To Len. Ag ppm AI % As ppm Au ppm B ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba ppm Ba 	FromToLen.Ag ppmAl $\%$ As ppmAu ppmB ppmBa ppmBi ppmCa ppm37.4338.591.160.60.281.20.268310340.30.6373.5674.090.53120.177.51.3684102422.60.8274.0974.480.390.50.210.250.001210400.81.0974.4876.101.620.40.230.250.0002510420.61.6786.3488.782.440.30.211.10.01610420.31.4688.7889.230.450.60.130.250.006210160.50.1689.2389.790.561.20.041.20.11841020.050.2589.7990.250.464.10.030.250.00681050.60.0590.2591.401.150.050.20.250.011310400.31.33159.90160.310.410.30.240.60.002510390.051.96162.23162.520.290.10.131.50.034410230.17.84169.08169.300.220.20.160.250.01210130.30.25178.15178.570.4	FromToLen.Ag ppmAl $\%$ As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppm37.4338.591.160.60.281.20.268310340.30.631.973.5674.090.53120.177.51.3684102422.60.8258.374.0974.480.390.50.210.250.001210400.81.09574.4876.101.620.40.230.250.002510420.61.672.586.3488.782.440.30.211.10.01610420.31.461.289.799.561.20.041.20.11841020.050.257.989.7990.250.464.10.030.250.002510390.051.960.05162.23162.520.290.10.131.50.034410230.17.840.6169.90160.310.410.30.250.001210130.30.258.3178.15178.570.420.050.130.250.001210230.17.840.6169.90160.310.410.30.250.001210230.50.520.05162.23162.520.290.10.13 <t< td=""><td>FromToLen.Ag ppmAI $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppm37.4338.591.160.60.281.20.268310340.30.631.93.973.5674.090.53120.177.51.3684102422.60.8258.311.774.9974.480.390.50.210.250.001210400.81.0952.174.4876.101.620.40.230.250.002510420.61.672.53.186.3488.782.440.30.211.10.01610420.31.461.24.887.89.230.450.60.130.250.006210160.50.160.21.789.2389.790.561.20.041.20.11841020.050.257.93.689.7990.2591.401.150.050.20.250.001310400.31.330.21.8159.90160.310.410.30.240.60.002510390.051.960.053.9162.23162.520.290.10.131.50.34410230.17.840.64.6169.08169.300.220</td><td>FromToLen.Ag ppmAl $\frac{N_0}{N}$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCd ppmCo ppmCr ppm37.4338.591.160.60.281.20.268310340.30.631.93.930173.5674.090.53120.177.51.3684102422.60.8258.311.721874.0974.480.390.50.210.250.002510420.61.672.53.127886.3488.782.440.30.211.10.001610420.31.461.24.88288.7889.230.450.60.130.250.006210160.50.160.21.721389.7990.250.464.10.030.250.00621010400.31.330.21.867159.90160.310.410.30.250.00681050.60.052.71.522790.2591.401.150.050.20.250.001310400.31.330.21.867159.90160.310.410.30.240.60.002510390.051.960.053.975162.23162.520.290.10.131.5<</td><td>FromToLen.Ag ppmAI $\%$As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppmCr ppmCu ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.473.5674.090.53120.177.51.3684102422.60.8258.311.721837.474.0974.480.390.50.210.250.001210400.81.0952.11914.974.4876.101.620.40.230.250.0002510420.61.672.53.12787.786.3488.782.440.30.211.10.001610420.31.461.24.88218.788.7889.230.450.60.130.250.006210160.50.160.21.721321.189.2389.790.561.20.041.20.11841020.050.257.93.6238139.489.799.0250.464.10.030.250.0002510390.051.960.053.97516.7162.2316.290.110.131.50.34410230.17.840.64.66710.5</td><td>FromToLen.AgAlAsAuBBaBiCaCaCdCoCrCuFe37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.8173.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.674.9974.480.390.50.210.250.001210400.81.0952.11914.90.5174.4876.101.620.40.230.250.002510420.61.672.53.12787.70.8886.3488.782.440.30.211.10.01610420.31.461.24.88218.70.6889.790.561.20.041.20.11841020.050.257.93.6238139.40.9289.790.561.20.041.20.11841020.050.271.5227109.20.3790.2591.401.150.050.220.250.006210390.051.360.053.97516.70.81162.23162.520.290.10.131.50.34410230.17.840.64.66710.5</td><td>FromToLen.Ag ppmAI n_0^{*}As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCa ppmCa ppmCa ppmFe ppmGa ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.810.573.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.60.574.4970.101.620.40.230.250.001210400.81.0952.11914.90.510.574.4876.101.620.40.230.250.002510420.61.672.53.12787.70.880.586.3488.762.440.30.211.10.01610420.31.461.24.88218.70.680.589.230.450.660.130.250.006210160.50.160.21.721321.10.40.589.790.561.20.441.03.0250.0052.71.5227109.20.370.590.259.1401.150.050.220.250.0131.330.21.86713.20.60.5159.90160.31</td></t<>	FromToLen.Ag ppmAI $\%$ As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppm37.4338.591.160.60.281.20.268310340.30.631.93.973.5674.090.53120.177.51.3684102422.60.8258.311.774.9974.480.390.50.210.250.001210400.81.0952.174.4876.101.620.40.230.250.002510420.61.672.53.186.3488.782.440.30.211.10.01610420.31.461.24.887.89.230.450.60.130.250.006210160.50.160.21.789.2389.790.561.20.041.20.11841020.050.257.93.689.7990.2591.401.150.050.20.250.001310400.31.330.21.8159.90160.310.410.30.240.60.002510390.051.960.053.9162.23162.520.290.10.131.50.34410230.17.840.64.6169.08169.300.220	FromToLen.Ag ppmAl $\frac{N_0}{N}$ As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCd ppmCo ppmCr ppm37.4338.591.160.60.281.20.268310340.30.631.93.930173.5674.090.53120.177.51.3684102422.60.8258.311.721874.0974.480.390.50.210.250.002510420.61.672.53.127886.3488.782.440.30.211.10.001610420.31.461.24.88288.7889.230.450.60.130.250.006210160.50.160.21.721389.7990.250.464.10.030.250.00621010400.31.330.21.867159.90160.310.410.30.250.00681050.60.052.71.522790.2591.401.150.050.20.250.001310400.31.330.21.867159.90160.310.410.30.240.60.002510390.051.960.053.975162.23162.520.290.10.131.5<	FromToLen.Ag ppmAI $\%$ As ppmAu ppmB ppmBa ppmBi ppmCa ppmCd ppmCo ppmCr ppmCu ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.473.5674.090.53120.177.51.3684102422.60.8258.311.721837.474.0974.480.390.50.210.250.001210400.81.0952.11914.974.4876.101.620.40.230.250.0002510420.61.672.53.12787.786.3488.782.440.30.211.10.001610420.31.461.24.88218.788.7889.230.450.60.130.250.006210160.50.160.21.721321.189.2389.790.561.20.041.20.11841020.050.257.93.6238139.489.799.0250.464.10.030.250.0002510390.051.960.053.97516.7162.2316.290.110.131.50.34410230.17.840.64.66710.5	FromToLen.AgAlAsAuBBaBiCaCaCdCoCrCuFe37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.8173.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.674.9974.480.390.50.210.250.001210400.81.0952.11914.90.5174.4876.101.620.40.230.250.002510420.61.672.53.12787.70.8886.3488.782.440.30.211.10.01610420.31.461.24.88218.70.6889.790.561.20.041.20.11841020.050.257.93.6238139.40.9289.790.561.20.041.20.11841020.050.271.5227109.20.3790.2591.401.150.050.220.250.006210390.051.360.053.97516.70.81162.23162.520.290.10.131.50.34410230.17.840.64.66710.5	FromToLen.Ag ppmAI n_0^{*} As ppmAu ppmB ppmBa ppmBi ppmCa ppmCa ppmCa ppmCa ppmCa ppmFe ppmGa ppm37.4338.591.160.60.281.20.268310340.30.631.93.930138.40.810.573.5674.090.53120.177.51.3684102422.60.8258.311.721837.41.60.574.4970.101.620.40.230.250.001210400.81.0952.11914.90.510.574.4876.101.620.40.230.250.002510420.61.672.53.12787.70.880.586.3488.762.440.30.211.10.01610420.31.461.24.88218.70.680.589.230.450.660.130.250.006210160.50.160.21.721321.10.40.589.790.561.20.441.03.0250.0052.71.5227109.20.370.590.259.1401.150.050.220.250.0131.330.21.86713.20.60.5159.90160.31

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	Тө	Len.	Hg ppm	К %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
55440																			
55450																			
55433	37.43	38.59	1.16	0.005	0.19	17	0.09	2.2	1.4	0.005	12.9	0.021	376.2	0.12	0.3	0.2	0.25		S39839-d
55434	73.56	74.09	0.53	0.18	0.13	7	0.13	1.5	1.2	0.005	6.9	0.011	632.8	1.22	0.1	0.1	0.7		S39839-d
55435	74.09	74.48	0.39	0.005	0.21	24	0.07	4.3	0.7	0.007	5.5	0.031	52.7	0.06	0.05	0.1	0.25		S39839-d
55436	74.48	76.10	1.62	0.005	0.22	22	0.18	3.9	1.2	0.017	10.6	0.027	168.5	0.025	0.1	0.2	0.25		S39839-d
55437	86.34	88.78	2.44	0.005	0.2	21	0.16	4.4	0.6	0.025	5.4	0.027	20.6	0.09	0.05	0.2	0.25		S39841-d
55438	88.78	89.23	0.45	0.005	0.08	7	0.02	1.5	0.9	0.004	5.9	0.005	61	0.025	0.1	0.05	0.25		S39839-d
55439	89.23	89.79	0.56	0.05	0.005	0.5	0.04	0.1	0.9	0.006	5.4	0.0005	15.1	0.47	0.4	0.05	0.25		S39839-d
55441	89.79	90.25	0.46	0.02	0.02	1	0.005	0.2	1	0.004	7.2	0.0005	74.2	0.025	0.1	0.05	0.25		S39839-d
55442	90.25	91.40	1.15	0.005	0.2	22	0.14	6	0.3	0.019	5.1	0.029	18.6	0.025	0.05	0.2	0.25		S39841-d
55443	159.90	160.31	0.41	0.005	0.22	16	0.18	3.5	3.1	0.007	6.3	0.028	7.3	0.06	0.1	0.2	0.25		S39844-d
55444	162.23	162.52	0.29	0.005	0.12	6	0.55	1.8	0.4	0.011	4.2	0.014	11.3	0.025	0.05	0.6	0.25		S39844-d
55445	169.08	169.30	0.22	0.05	0.09	7	0.03	2.5	3.1	0.006	4.2	0.004	33.2	0.12	0.05	0.05	0.25		S39842-d
54504	178.15	178.57	0.42	0.005	0.1	21	0.03	3.3	1.2	0.031	6.3	0.006	2.8	0.025	0.05	0.2	0.25		S39842-d
55446	178.47	180.27	1.80	0.005	0.11	16	0.02	3.4	1.2	0.04	2	0.005	7.6	0.08	0.05	0.05	0.25		S39844-d
55447	180.27	181.60	1.33	0.005	0.12	19	0.02	4.2	185.9	0.027	1.8	0.006	6.2	0.08	0.05	0.1	0.25		S39844-d
55448	191.00	191.38	0.38	0.005	0.18	17	0.01	3.3	5.7	0.01	2	0.02	3.5	0.025	0.05	0.1	0.25		S39844-d
55449	191.38	192.43	1.05	0.005	0.1	5	0.02	1.3	6.5	0.007	11.2	0.004	5.2	0.025	0.05	0.2	0.25		S39842-d
54501	192.43	193.85	1.42	0.005	0.17	27	0.01	5.7	1.4	0.007	2	0.012	7	0.025	0.05	0.05	0.25		S39844-d
54502	193.85	194.80	0.95	0.005	0.07	6	0.02	1.1	30.8	0.004	4.4	0.005	17.2	0.15	0.05	0.1	0.25		S39842-d
54503	194.80	195.80	1.00	0.005	0.19	28	0.02	5.4	0.6	0.01	2	0.014	6.5	0.025	0.05	0.1	0.25		S39844-d

Q-Gold (Ontario) Ltd

From	То	Len.	Tl	U	V	W	Zn		
			ррт	ррт	ррт	ррт	ppm		
37.43	38.59	1.16	0.05	0.4	2	0.1	328		
73.56	74.09	0.53	0.05	0.5	1	0.1	7264		
74.09	74.48	0.39	0.05	1	1	0.05	680		
74.48	76.10	1.62	0.05	1	2	0.1	368		
86.34	88.78	2.44	0.05	1.3	1	0.2	155		
88.78	89.23	0.45	0.05	0.4	1	0.05	48		
89.23	89.79	0.56	0.05	0.3	1	0.05	943		
89.79	90.25	0.46	0.05	0.05	1	0.05	344		
90.25	91.40	1.15	0.05	2.5	1	0.1	47		
159.90	160.31	0.41	0.05	1.8	1	0.2	26		
162.23	162.52	0.29	0.05	0.7	1	0.1	66		
169.08	169.30	0.22	0.05	0.8	1	0.05	1235		
178.15	178.57	0.42	0.05	0.8	1	0.2	7		
178.47	180.27	1.80	0.05	1.9	1	0.05	8		
180.27	181.60	1.33	0.05	3.1	1	0.05	14		
191.00	191.38	0.38	0.05	1.3	1	0.2	5		
191.38	192.43	1.05	0.05	0.2	2	0.1	10		
192.43	193.85	1.42	0.05	1.5	1	0.1	15		
193.85	194.80	0.95	0.05	1.8	1	0.2	109		
194.80	195.80	1.00	0.05	1.8	1	0.1	13		
	From 37.43 73.56 74.09 74.48 86.34 88.78 89.23 89.79 90.25 159.90 162.23 169.08 178.15 178.47 180.27 191.00 191.38 192.43 193.85 194.80	FromTo37.4338.5973.5674.0974.0974.4874.4876.1086.3488.7889.2389.2389.7990.2590.2591.40159.90160.31162.23162.52169.08169.30178.15178.57178.47180.27180.27181.60191.00191.38192.43193.85193.85194.80194.80195.80	FromToLen.37.4338.591.1673.5674.090.5374.0974.480.3974.4876.101.6286.3488.782.4488.7889.230.4589.2389.790.5689.7990.250.4690.2591.401.15159.90160.310.41162.23162.520.29169.08169.300.22178.15178.570.42178.47180.271.80180.27181.601.33191.00191.380.38191.38192.431.05192.43193.851.42193.85194.800.95194.80195.801.00	FromToLen.TI ppm37.4338.591.160.0573.5674.090.530.0574.0974.480.390.0574.4876.101.620.0586.3488.782.440.0588.7889.230.450.0589.2389.790.560.0589.7990.250.460.0590.2591.401.150.05162.23162.520.290.05169.08169.300.220.05178.15178.570.420.05180.27181.601.330.05191.00191.380.380.05191.38192.431.050.05192.43193.851.420.05194.80195.801.000.05	FromToLen.Tl ppmU ppm37.4338.591.160.050.473.5674.090.530.050.574.0974.480.390.05174.4876.101.620.05174.4876.101.620.05186.3488.782.440.051.388.7889.230.450.050.489.2389.790.560.050.389.7990.250.460.050.0590.2591.401.150.052.5159.90160.310.410.051.8162.23162.520.290.050.7169.08169.300.220.050.8178.15178.570.420.050.8178.47180.271.800.051.9180.27181.601.330.053.1191.00191.380.380.051.3191.38192.431.050.050.2192.43193.851.420.051.8194.80195.801.000.051.8	FromToLen.Tl ppmU ppmV ppm37.4338.591.160.050.4273.5674.090.530.050.5174.0974.480.390.051174.4876.101.620.051286.3488.782.440.051.3189.230.450.050.4189.7990.560.050.3190.2591.401.150.052.51169.08169.300.220.050.71178.15178.570.420.051.31178.47180.271.800.051.91180.27181.601.330.053.11191.00191.380.380.051.31193.85194.800.950.051.81194.80195.801.000.051.81	FromToLen.TlUVWppmppmppmppmppm37.4338.591.160.050.420.173.5674.090.530.050.510.174.0974.480.390.05110.0574.4876.101.620.05120.186.3488.782.440.051.310.288.7889.230.450.050.410.0589.2389.790.560.050.310.0589.7990.250.460.050.0510.0590.2591.401.150.052.510.1159.90160.310.410.051.810.2162.23162.520.290.050.710.1169.08169.300.220.050.810.2178.47180.271.800.051.910.05180.27181.601.330.053.110.05191.00191.380.380.051.310.2191.38192.431.050.051.510.1193.85194.800.950.051.810.2194.80195.801.000.051.810.1	FromToLen.TlUVWZnppmppmppmppmppmppm37.4338.591.160.050.420.132873.5674.090.530.050.510.1726474.0974.480.390.05110.0568074.4876.101.620.05120.136886.3488.782.440.051.310.215588.7889.230.450.050.410.054889.2389.790.560.050.310.0594389.7990.250.460.050.0510.0534490.2591.401.150.052.510.147159.90160.310.410.051.810.226162.23162.520.290.050.710.166169.08169.300.220.050.810.27178.47180.271.800.051.910.058180.27181.601.330.053.110.25191.38192.431.050.051.510.115193.851.420.051.510.115193.85194.800.950.051.810.2109194.80	FromToLen.TIUV ppm ppm ppm 37.4338.591.160.050.420.132873.5674.090.530.050.510.1726474.0974.480.390.05110.0568074.4876.101620.051.310.215588.782.440.050.310.054889.230.750.660.051.310.0590.250.460.051.310.0592.51.401.150.052.5190.250.460.050.051.4192.51.401.150.052.51163.90163.10.410.0534492.51.401.150.052.51178.91163.10.410.051.8178.921.220.050.710.1164.9310.221.810.27178.47180.721.800.051.31191.00191.380.380.051.31193.85194.800.950.051.81193.85194.800.950.051.81193.85194.800.950.051.81193.85194.800.950.051.81193.85194.80

Resources Ltd				Dri	llhole Lo)g					Units Meters
										Q-	Gold (Ontario) Ltd
Province/State	Co-ordi	nate System		G	rid/Propert	ty			Hole Type	Length	Date Started
Ontario	UTM NA	AD83 Canada	Zone 15	F	oley Mine G	Grid			Exploration hole	108.00	9/12/2010
District	UTM N	orth	UTM East	L	ocal Grid I	£	Loca	ıl Grid N	Collar Survey Meth	od	Date Completed
Kenora	5394290	0	525700	2	200.00		2225	.00	MNR DEM		9/18/2010
Project	UTM E	levation	Azimuth Astro). (°) A	zimuth Gri	'd (°)	Dip	(°)	Drill Contractor		Date Logged
Foley Mine	372.00		270.00				-45.0	00	C3 Drilling Company	/	
Area	Claim I	Vo.	NTS Sheet	S	upervised 1	3y			Logged By		Verified
Mine Center	K-47509	99							Richard Beard		
Zone/Prospect	Assessn	nent Rpt. No.	Core Storage					Plug Depth	Makes Water	Canned	Environmental
			Fort Frances C	Office						∠ ✓	
Core Size (1)NQ		Casing Pulle	d Casing (1)	1.50	Steel	Plugg	ged	Pulsed	Geophysics Contrac	tor	Date Pulsed
(2)			(2)								
Purpose			Results					Comments			
Intersect Bonanza Vein, Jumł Vein	oo Vein ar	nd Goldpanne	r Intersected p the Jumbo V	oossible ′ein.	Bonanza V	'ein an	d	GPS average	collar elevation 374 r	netres	

Survey Tests

Distance	Grid Azin Original	nuth (°) Final	Astro. Azir Original	nuth (°) Final	Dip (°) Original Final	Use Test	Survey Method	Mag. Field (nT)	Comments
108.00	N 25		273.5		-44.7	✓	Reflex EZ		

Lithology						Аи	Ag	Zn	Cu	Pb
From To		Sample #	# From	То	Len.	ррт	ррт	%0	%0	%
0.00 - 1.50	OVB <u>Overburden</u> Casing									
1.50 - 56.70	9c Trondhjemite (quartz porphyritic) TRONDHJEMITE Generally medium grained with occasional finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately to locally highly altered with sericite, chlorite, and some carbonate. Irregular patches and veinlets of quartz and qtz/carbonate locally. Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures. Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Scattered fractures at CA 30-60 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Rare to occassional chlorite-filled shears, occasionally with gractured w/ consistent CAs 20-20 degs. Occassional fracture at CA 50 deg. Minor dissem. py. Below 36.2, similarto 11.0 – 15.5. Ligher coloured and finer grained. More sericite & less prominent qtz., occassionally as thin qtz/carb veinlets; Only rare qtz. and qtz/carbonate veinlets above 25.5.									
11.00 - 1	5.50 9c Trondhjemite (quartz porphyritic)									
25.50 - 3	Lighter coloured & finer grained than above, w/ less prominent qtz. 6.20 9c Trondhjemite (quartz porphyritic) 25.5 – 36.2 Occasional thin (up to 1.2 cm wide) qtz. veinlets w/ some carbonate Variable CAs = 36-52 degs.									
35.83 - 3	6.18 QRZ Quartz Rich Zone Qtz. rich section w/ prominent qtz. eyes and one irregular qtz. veinlet 3 cm wide. Sheared w/ prominent chlorite and minor carbonate CA = 34 deg.									
46.00 - 4	6.04 QVLT Quartz Veinlets 46.0 – 46.04, a shear controlled 4 cm wide QV, somewhat irregular and distorted w/ chlorite along thin shears. CA=20 deg. Rare blebs py.									
47.34 - 4	17.38 QVLT Quartz Veinlets a 4 cm wide qtz. veinlet. Qtz. is dark and somewhat irregular & fractured. 10% Py as fine disseminations and concentrations. Adjacent wallrock is chloritic and thin shears are slickensided. Qtz. eyes in trondhjemite material are more prominent adjacent to QV below.									
56.70 - 58.77	QV Quartz Vein QUARTZ VEIN. 98% QUARTZ w/ one 10 cm wide section of trondhjemite at 96.90. Only minor carbonate. Upper contact is broken, CA=32 deg. Lower contact A=26 deg.	54535 54536	56.70 57.95	57.95 58.67	1.25 0.72	0.31 0.24	5.6 1	0.22 0.03		

Lithology From To	Sample #	From	То	Len.	Аи ррт	Ag ppm	Zn %	Си %	Pb %
	54537	58.67	58.77	0.10	0.31	3.6	0.07		
56.70 - 57.95 QV Quartz Vein Quartz containing prominent dark streaks and sections of chlorite and sericite. 5-6% py as thin seams, disseminations, and concentrations. <2% reddish brown mineral, either sphalerite or hematite as small spots.									
57.95 - 58.67 QV Quartz Vein Qtz. is massive and white w/ few inclusions. Minor py.									
58.67 - 58.77 QV Quartz Vein Similar to 56.70 – 57.95. 5% py.									
 58.77 - 108.00 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. Typical. Medium grey, medium grained, w/ scattered 1-3 cm wide qtz. and qtz/carb veinlets, mostly irregular. Slightly fractured w/ irregular CAs. Below 81.0, core is darker and more reddish in colour, w/ some finer grained lighter grey sections. 102.00 - 102.13 QVLT Quartz Veinlets two narrow qtz/carb veinlets, 2 cm and 4 cm wide, separated by a 13 cm wide section of trondhjemite. Sheared and very chloritic. CA = 50 deg. 									

😡 Re	source	es Ltd							MG .	DDH (Geoch	em						Q-Gold (Ontario) Ltd
Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Lab Report
54535	56.70	57.95	1.25	4.5	0.13	21.9	0.0853	10	15	7.2	0.61	15.9	5.8	134	278.4	1.05	0.5	S40656-d
54536	57.95	58.67	0.72	0.7	0.01	2.2	0.0717	10	2	1.1	0.04	1.3	1.1	202	58.6	0.33	0.5	S40656-d
54537	58.67	58.77	0.10	4.4	0.12	32.7	0.4784	10	9	14.8	0.48	3.9	5	53	260.7	1.03	0.5	S40656-d

PROJECT: Folev Mine

	sources	Lu							MGL	DDH G	eoche	em 🛛					Ç	2-Gola	l (Ontario) Ltd
Sample	From	Тө	Len.	Hg	K o/	La	Mg	Mn	Мо	Na o/	Ni	P ø⁄	Pb	S o/	Sb	Sc	Se	Th	Lab Report
-				ppm	/0	ppm	/0	ppm	ppm	/0	ppm	/0	ppm	/0	ppm	ppm	ppm	ppm	
54535	56.70	57.95	1.25	0.29	0.09	6	0.12	1	0.4	0.003	4.8	0.009	120.9	0.66	1.2	0.05	0.25		S40656-d
54536	57.95	58.67	0.72	0.07	0.005	0.5	0.005	0.05	0.6	0.003	4.8	0.0005	8.9	0.025	0.8	0.05	0.25		S40656-d
54537	58.67	58.77	0.10	0.13	0.06	5	0.07	0.9	0.2	0.002	4.8	0.02	58	0.72	8.4	0.05	0.6		S40656-d

MC DDH C....

O Call (Outania) Idd

🤓 Re	esource	es Ltd							MG DDH Geochem	Q-Gold (Ontario) Ltd
Sample	From	Тө	Len.	Tl	U	V	W	Zn		Lab Report
				ppm	ррт	ррт	ppm	ppm		
54535	56.70	57.95	1.25	0.05	0.3	1	0.1	1828		S40656-d
54536	57.95	58.67	0.72	0.05	0.05	1	0.05	186		S40656-d
54537	58.67	58.77	0.10	0.05	0.4	1	0.05	643		S40656-d

0

Resources Ltd		Di	rillhole L	og				Units Meters
							<i>Q</i> -	Gold (Ontario) Ltd
Province/State	Co-ordinate System		Grid/Proper	ty		Hole Type	Length	Date Started
Ontario	UTM NAD83 Canada	Zone 15	Foley Mine C	Grid		Exploration hole	180.00	9/19/2010
District	UTM North	UTM East	Local Grid	E L	ocal Grid N	Collar Survey Meth	od	Date Completed
Kenora	5394290	525700	2200.00	22	25.00	MNR DEM		9/22/2010
Project	UTM Elevation	Azimuth Astro. (°)	Azimuth Gr	id (°) D	ip (°)	Drill Contractor		Date Logged
Foley Mine	372.00	270.00		-6	0.00	C3 Drilling Company	ý	
Area	Claim No.	NTS Sheet	Supervised I	By		Logged By		Verified
Mine Center	K-475099					Richard Beard		
Zone/Prospect	Assessment Rpt. No.	Core Storage			Plug Depth	Makes Water	Canned	Environmental
		Fort Frances Office					<i>⊂uppeu</i>	
Core Size (1)NQ	Casing Pull	ed Casing (1) 2.15	Steel	Pluggee	l Pulsed	Geophysics Contrac	ctor	Date Pulsed
(2)		(2)						
Purpose		Results			Comments			
Intersect Bonanza Vein, Jun Vein	nbo Vein, and Goldpann	er Intersected possib the Jumbo Vein, a 400 Level (125 m	ole Bonanza \ and Quartz Ri etre depth).	/ein and ch Zone	Drill hole dee at GPS average	oend to 180 collar elevation 374 n	netres	

Survey Tests

Distance	Grid Azin Original	uth (°) Final	Astro. Azir Original	nuth (°) Final	Dip (°) Original Final	Use Test	Survey Method	Mag. Field (nT)	Comments
162.00			275.6		-61.9	~	Reflex EZ		

Lithology			Æ	Ŧ	Au	Ag	Zn %	Cu %	Pb %
0.00 - 2.15 OVB <u>Overburden</u> Casing	Sample	<u># From</u>	10	Len.	<u> </u>	<u> </u>	/0	/0	/0
 2.15 - 59.83 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE Generally medium grained with occasional finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately to locally highly altered with sericite, chlorite, and some carbonate. Irregular patches and veinlets of quartz and qtz/carbonate locally. Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures. Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-60 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. At 24.40, a fracture filled w/ qtz/carb/chlorite. CA=20 deg. Medium grey, medium grained, w/ occasional mottled sections. Lightly fractured w/ varying CAs. One fracture set at 20 deg. and 31 deg. 18.46 - 18.64 9c Trondhjemite (quartz porphyritic) Chloritic section w/ a 4 cm wide qtz/carb/chlorite veinlet. Chlorite also occurs as irregular dark green to black patches up to 2-3 cm in size. 21.15 - 21.76 9c Trondhjemite (quartz porphyritic) Chlorite rich w/ thin qtz/carb/chlorite seams sub parallel to core. 36.60 - 37.50 9c Trondhjemite (quartz porphyritic) Finer grained, lighter grey. Fid. sericitized. 54.34 - 59.83 9c Trondhjemite (quartz porphyritic) similar to 36.6 - 37.5 above. Less prominent qtz eyes. 									
59.83 - 60.22 QV Quartz Vein QUARTZ VEIN 80 % quartz. Quartz is streaky w/ chlorite sericite and pyrite. Occasional irregular spots and inclusions of altered trondhjemite 5% Py as thin seams and coarse xls. Somes pots & seams of carbonate (<2%) Ct CA=35 deg.	54538	59.83	60.22	0.39	0.93	2.2	0.02		
60.22 - 60.82 QRZ Quartz Rich Zone QUARTZ RICH SECTION Consists of two 8-10 cm wide quartz veins separated by altered trondhjemite. Upper quartz vein is streaky w/ prominent spots of carbonate (5-8%) and chlorite. 2% Py, 0.5-1.0% sphalerite as irreg spots. Upper contact CA=86 deg. Lower contact CA=36-39 deg.	54539	60.22	60.82	0.60	0.015	0.5	0.11		

Lithology From To	Sample #	# From	То	Len.	Аи ррт	Ag ppm	Zn %	Си %	Pb %
60.82 - 77.89 9c Trondhjemite (quartz porphyritic)									
TRONDHJEMITE Typical. Medium grey, medium grained becoming finer grained and more sericitic towards lower contact w/ QV below. Rare thin quartz/carbonate veinlets, increasing downward. Slightly to moderately fractured. Below 75.5, moderate shearing at variable CAs (24-45 deg). Tr py throughout.									
77.89 - 84.00 QRZ Quartz Rich Zone									
QUARTZ RICH SECTION. Quartz = 10-15%. Quartz veins are inter-layered with sections	54541	77.89	80.97	3.08	0.015	0.3	0.005		
of trondhjemite. Quartz is grevish to greenish to pinkish, locally streaky w/ sericite. Slight carbonate. Tr Pv as xis largely concentrated along sheared contacts with trondhiemite.	54542	80.97	83.07	2.10	0.12	0.6	0.01		
	54543	83.07	83.50	0.43	0.015	0.5	0.04		
	54544	83.50	84.00	0.50	0.04	0.8	0.02		
77.89 - 77.93 QVLT Quartz Veinlets a 4 cm wide qtz. veinlet, streaky w/ sheared contacts. CA=59-65 degs.									
80.97 - 81.09 QV Quartz Vein									
a 12 cm wide sections of quartz veining, consisting of one 10 cm wide vein and one 2 cm wide vein. CA=48-53 deg.									
83.07 - 83.09 QVLT Quartz Veinlets									
a 2 cm wide quartz veinlet. Sharp but irregular contacts w/ chlorite and prominent xls of py along shears planes. CA=43 deg.									
83.50 - 84.00 QV Quartz Vein									
Two 7-10 cm wide quartz veins, streaky w/ chlorite & sericite. Trondhjemite in between is altered and chloritic.									
84.00 - 87.32 QRZ Quartz Rich Zone									
QUARTZ RICH SECTION Intermixed sections of quartz veining and trondhjemite, as	54545	84.00	84.27	0.27	0.03	0.3	0.03		
above but quartz = 30–35%. Veins vary from regular to irregular to vague, streaky with chlorite and sericite. Tr. Py, mainly along sheared vein contacts. Contact CAs=30-40 deg.	54546	84.27	87.32	3.05	0.015	0.6	0.07		
87.32 - 89.54 QV Quartz Vein									
QUARTZ VEIN Massive, white to greenish, moderately streaky w/ irregular patches of	54547	87.32	88.70	1.38	0.015	0.7	0.005		
sericite. Minor carbonate <1% Py. Upper contact CA=45 deg. Lower sheared contact CA= 22 deg.	54548	88.70	89.54	0.84	0.015	0.1	0.005		

Lithology From To	Summer H. France To	T	Аи ррт	Ag nnm	Zn %	Cu %	Pb %
Prom 10 89.54 - 123.00 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE.Typical. Medium grey. Locally prominent quartz eyes. Rare thin qtz/carb veinlets. Occasional sections are lighter coloured with more sericite. Generally lightly fractured, but with local heavy shearing. 92.0 – 93.0, several irregular quartz patches. Thin qtz. and qtz/carb filled shears at 105.4 and 108.6. Sub-parallel CAs.	Sample # From 10	Len.		<u></u>			
92.84 - 92.90 SZ Shear Zone a chloritic shear zone 6 cm wide, w/ mod. qtz/carbonate veining. CA=30 deg.							
112.50 - 117.50 9c Trondhjemite (quartz porphyritic) lighter coloured with more sericite							
116.93 - 116.99 QVLT Quartz Veinlets a 6 cm wide irregular quartz stringer. Quartz is grey w/ reddish alteration. Becomes darker and more chloritic approaching shear zone below.							
123.00 - 124.20 SZ <u>Shear Zone</u> SHEAR ZONE Highly chloritized and slickensided along sub-parallel fractures. Some quartz/carbonate stringers along shear planes.							
124.20 - 128.50 9 c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Typical. Med to dark grey, chloritic w/ prominent foliation, CA=20-30 deg. Streaky and irregular in appearance. Vague quartz concentrations locally. Tr. Py only.							
128.50 - 131.69 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Lighter grey than above & less altered. Minor streaky chlorite alteration. Lightly fractured.							
131.69 - 132.02 F <u>Felsite</u> FELSITE DIKE Pinkish to tan, very fine grained, slightly fractured w/ thin chlorite fillings. Becomes more siliceous towards lower contact. Contact CA=39-40 deg.							
132.02 - 145.36 9c Trondhjemite (quartz porphvritic) TRONDHJEMITE Massive and light coloured, medium grained, little alteration. Qtz eyes more prominent than above. Little fracturing. No quartz rich sections or veinlets. Tr. Py only.							

Lithology					Аи	Ag	Zn	Cu ø⁄	Ph Ø/
From 10	<u>Sample</u>	<u> From</u>	<u>To</u>	Len.	ppm	ppm	/0	/0	/0
145.36 - 146.25 QRZ Quartz Rich Zone QUARTZ RICH SECTION 20-25% Quartz. Sections consist of two quartz veins separated by 30 cm of trondhjemite. Quartz is white w/ mod. sericite streaking & irregular spotting. Sheared contacts, CA=6 deg. Tr. Py only.									
146.25 - 151.95 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITEMassive and light coloured, medium grained, little alteration. Qtz eyes prominent. Light coloured and relatively unaltered.									
149.62 - 149.70 QVLT Quartz Veinlets A 8 cm wide section containing two quartz veinlets consisting of 85-90% quartz. CA=28-38 degs. 1% Py as irregular spots & xls.									
151.95 - 152.25 F <u>Felsite</u> FELSITE DIKE Similar to 131.69-132.02 above. Tan coloured, very fine grained, streaky w/ chlorite. Irregular contacts. CA=29 deg.									
152.25 - 154.00 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Similar to 146.25-151.95 above. Massive and light coloured, medium grained, little alteration. Qtz eyes prominent. Light coloured and relatively unaltered.									
154.00 - 154.46 QRZ Quartz Rich Zone QUARTZ RICH SECTION 80% quartz as two veins, 3 cm wide and 16 cm wide, separated by trondhjemite. Quartz is white & streaky. Prominent carbonate in upper vein. One large and several small spots of pyrrhotite+minor py up to 2-3 cm in size in the quartz. 1-3% pyrrhotite., <1% py. CA=30-50 degs	54551	154.00	154.46	0.46	0.015	0.3	0.005		
154.46 - 155.00 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Similar to 146.25-151.95 above. Massive and light coloured, medium grained, little alteration. Qtz eyes prominent. Light coloured and relatively unaltered.									

Lithology From To	Sample #	# From	То	Len.	Аи ррт	Ag ppm	Zn %	Си %	Pb %
155.00 - 156.40 F <u>Felsite</u> FELSITE DIKE Similar to above. Tan, very fine grained, streaky w/ chlorite & sericite. Slightly fractured appearance locally, fractures filled w/ sericite/chlorite. Occasional thin veinlets of qtz/carbonate. At 156.0, several irregular patches of white quartz.									
 156.40 - 161.42 9c <u>Trondhiemite (quartz porphyritic)</u> TRONDHJEMITE As above. Pinkish to tan in colour. Little fracturing. 160.70 - 160.80 F Felsite a 10 cm wide section of FELSITE, similar to above. Prominent chloritic alteration near contact w/ quartz section below. 									
161.42 - 161.89 QV <u>Quartz Vein</u> QUARTZ VEIN 75% quartz. Quartz is streaky & altered w/ prominent chlorite & sericite. Minor carbonate. Contact CAs irregular (24-39 degs.) < 1% sulphides (Py + pyrrhotite)	54553	161.42	161.89	0.47	0.015	0.7	0.005		
 161.89 - 164.12 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Quartz rich. 35 % quartz as coarse (up to 6.5-0.7 mm) eyes and occasional veinlets, 0.5 - 2.0 cm wide. Moderate carbonate. Trace sulphide only. 163.50 - 163.70 F Felsite a 20 cm wide FELSITE DIKE, tan & very fine grained. 									
164.12 - 168.88 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Similar to above, but less quartz. Fresher appearing & more fine grained.									
168.88 - 169.70 QRZ Quartz Rich Zone QUARTZ RICH ZONE + FELSITE DIKE Intermixed white & streaky quartz (70%) and tan felsite. Minor carbonate. Prominent irreg. streaks of sericite. 2-4 % sulphides. (Py+sphalerite+ unidentified black malleable mineral. Irregular CAs +/- 33 deg.	54555	168.88	169.70	0.82	0.73	9.5	0.05		

Litholog	<u>r</u> y						Аи	Ag	Zn	Cu	Pb
From	То		Sample #	From	То	Len.	ррт	ррт	%	%	<u>%</u>
169.70 -	172.00	F <u>Felsite</u>									
		FELSITE DIKE Tan & very fine grained. Slightly to moderately fractured w/ hairline fractures filled mainly with sericite. Scattered irregular qtz. veinlets up to 2 cm wide. Tr. Py.									
172.00 -	180.00	9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITETypical, as above. Medium grey to greenish.									

Resources 1	Ltd
-------------	-----

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Си ррт	Fe %	Ga ppm	Lab Report
54540																		
54550																		
54538	59.83	60.22	0.39	1.7	0.28	38.7	0.5984	10	13	5.7	1.54	2.2	15.1	85	34.9	2.01	0.5	S40656-d
54539	60.22	60.82	0.60	0.2	0.76	9.2	0.0095	10	20	0.8	1.07	5.7	7	123	56.5	1.7	2	S40656-d
54541	77.89	80.97	3.08	0.05	0.15	1.4	0.0014	10	30	0.05	1.5	0.3	2.8	85	3.6	0.93	0.5	S40656-d
54542	80.97	83.07	2.10	0.3	0.15	1.7	0.003	10	25	0.6	1.56	1.5	5.3	67	9.1	0.85	0.5	S40656-d
54543	83.07	83.50	0.43	0.4	0.14	1.2	0.0408	10	17	0.4	1.25	2.3	2.9	109	4.6	0.77	0.5	S40656-d
54544	83.50	84.00	0.50	0.7	0.18	1.3	0.0091	10	19	0.4	1.2	1.1	4.9	122	6.8	0.93	0.5	S40656-d
54545	84.00	84.27	0.27	0.3	0.18	0.9	0.0991	10	25	0.2	1.46	1.7	2.8	113	5.4	0.72	0.5	S40656-d
54546	84.27	87.32	3.05	0.4	0.15	6.7	0.1204	10	19	0.2	0.87	4.2	3.9	114	11.1	0.74	0.5	S40656-d
54547	87.32	88.70	1.38	0.05	0.02	1.5	0.0065	10	3	0.05	0.1	0.05	1.2	178	2.9	0.27	0.5	S40656-d
54548	88.70	89.54	0.84	0.05	0.02	1.7	0.0023	10	3	0.05	0.04	0.1	1.4	155	5.3	0.25	0.5	S40656-d
54549	145.36	146.25	0.89	0.05	0.18	0.25	0.0008	10	36	0.05	1.69	0.05	0.6	80	2.4	0.32	0.5	S40658-d
54552	149.62	149.81	0.19	0.05	0.13	0.25	0.001	10	29	0.05	0.97	0.05	0.8	98	5.3	0.3	0.5	S40659-d
54551	154.00	154.46	0.46	0.3	0.14	0.7	0.0012	10	29	0.05	1.7	0.5	7.3	139	123.1	1.8	0.5	S40659-d
54553	161.42	161.89	0.47	0.6	0.12	0.7	0.0049	10	25	1	0.3	0.05	7.3	159	35.1	1.08	0.5	S40659-d
54554	161.89	164.12	2.23	0.05	0.15	0.25	0.0007	10	31	0.05	1.02	0.05	1	103	7.4	0.29	0.5	S40659-d
54555	168.88	169.70	0.82	7.8	0.13	1.2	0.0261	10	19	20.3	0.42	4.1	2.6	147	8.3	0.47	0.5	S40659-d

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
54540																			
54550																			
54538	59.83	60.22	0.39	0.02	0.07	4	0.18	0.8	0.4	0.002	5.8	0.025	54.5	1.49	0.3	0.1	0.25		S40656-d
54539	60.22	60.82	0.60	0.05	0.13	12	0.83	2.7	0.5	0.009	12.2	0.029	22.5	0.13	0.1	0.3	0.25		S40656-d
54541	77.89	80.97	3.08	0.005	0.15	18	0.24	4.4	0.2	0.025	4	0.027	5	0.025	0.05	0.2	0.25		S40656-d
54542	80.97	83.07	2.10	0.005	0.14	11	0.16	3	0.4	0.011	7.9	0.028	28.7	0.24	0.1	0.2	0.25		S40656-d
54543	83.07	83.50	0.43	0.01	0.12	11	0.16	2.4	0.4	0.006	5.6	0.028	34.8	0.13	0.2	0.1	0.25		S40656-d
54544	83.50	84.00	0.50	0.005	0.13	11	0.19	2.1	0.5	0.004	8.4	0.022	27	0.19	0.2	0.2	0.25		S40656-d
54545	84.00	84.27	0.27	0.005	0.17	14	0.18	3	0.3	0.006	4.9	0.027	12.8	0.07	0.2	0.1	0.25		S40656-d
54546	84.27	87.32	3.05	0.03	0.14	7	0.1	1.5	0.5	0.003	6.1	0.022	39.3	0.33	0.4	0.1	0.25		S40656-d
54547	87.32	88.70	1.38	0.005	0.02	0.5	0.005	0.05	0.5	0.004	2.7	0.0005	0.8	0.025	0.1	0.05	0.25		S40656-d
54548	88.70	89.54	0.84	0.005	0.02	1	0.005	0.2	0.5	0.003	3.1	0.0005	1.5	0.025	0.05	0.05	0.25		S40656-d
54549	145.36	146.25	0.89	0.005	0.18	28	0.03	4.4	0.4	0.028	1.8	0.019	4.2	0.025	0.05	0.2	0.25		S40658-d
54552	149.62	149.81	0.19	0.005	0.13	17	0.02	3.6	0.3	0.009	2.8	0.019	2.8	0.05	0.05	0.2	0.25		S40659-d
54551	154.00	154.46	0.46	0.005	0.15	5	0.29	1.2	0.5	0.004	5.7	0.004	4.1	0.5	0.05	0.2	0.25		S40659-d
54553	161.42	161.89	0.47	0.005	0.12	11	0.01	2.4	4.6	0.005	3.6	0.009	27.2	0.55	0.05	0.1	0.25		S40659-d
54554	161.89	164.12	2.23	0.005	0.14	19	0.03	4.1	5.4	0.025	2.8	0.01	5.1	0.025	0.05	0.2	0.25		S40659-d
54555	168.88	169.70	0.82	0.03	0.09	3	0.02	4.6	1345.6	0.026	3	0.014	206.5	0.27	0.05	0.2	0.7		S40659-d

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Tl	U	V	W	Zn	Lab Report
-				ррт	ррт	ррт	ppm	ррт	
54540									
54550									
54538	59.83	60.22	0.39	0.05	0.6	1	0.05	265	S40656-d
54539	60.22	60.82	0.60	0.05	0.7	1	0.05	686	S40656-d
54541	77.89	80.97	3.08	0.05	0.9	1	0.05	50	S40656-d
54542	80.97	83.07	2.10	0.05	1	1	0.1	118	S40656-d
54543	83.07	83.50	0.43	0.05	1.3	1	0.05	313	S40656-d
54544	83.50	84.00	0.50	0.05	1.7	1	0.05	134	S40656-d
54545	84.00	84.27	0.27	0.05	2.4	1	0.05	226	S40656-d
54546	84.27	87.32	3.05	0.05	1.6	1	0.1	587	S40656-d
54547	87.32	88.70	1.38	0.05	0.05	1	0.05	2	S40656-d
54548	88.70	89.54	0.84	0.05	0.05	1	0.05	16	S40656-d
54549	145.36	146.25	0.89	0.05	1.7	1	0.1	5	S40658-d
54552	149.62	149.81	0.19	0.05	1	1	0.1	5	S40659-d
54551	154.00	154.46	0.46	0.05	3.4	1	0.1	71	S40659-d
54553	161.42	161.89	0.47	0.05	2.3	1	0.05	3	S40659-d
54554	161.89	164.12	2.23	0.05	2.7	1	0.05	14	S40659-d
54555	168.88	169.70	0.82	0.05	5.7	1	0.2	552	S40659-d

Resources Ltd				Dr	rillhole L	og					Units Meters	
										<i>Q</i> -	Gold (Ontario) Ltd	
Province/State	Co-ord	inate System			Grid/Proper	ty			Hole Type	Length	Date Started	
Ontario	UTM N/	AD83 Canada	Zone 15		Foley Mine C	Grid			Exploration hole	195.00	9/22/2010	
District	UTM N	orth	UTM East		Local Grid I	E	Loca	ıl Grid N	Collar Survey Met	hod	Date Completed	
Kenora	539429	0	525700		2200.00		2225	5.00	MNR DEM		10/3/2010	
Project	UTM E	levation	Azimuth As	tro. (°)	Azimuth Gri	id (°)	Dip	(?)	Drill Contractor		Date Logged	
Foley Mine	372.00		270.00				-70.0	00	C3 Drilling Compar	ny		
Area	Claim I	V <i>o</i> .	NTS Sheet		Supervised 1	By			Logged By		Verified	
Mine Center	K-4750	99							Richard Beard			
Zone/Prospect	Assessn	nent Rpt. No.	Core Storag	e				Plug Depth	Makes Water	Cannad	Environmental	
		2 	Fort Frances	Office						Cappea ✓	Inspection	
Core Size (1) NQ		Casing Pulle	d Casing ((1)2.30	Steel	Plugg	ged	Pulsed	Geophysics Contro	actor	Date Pulsed	
(2)			((2)								
Purpose	-		Results			,		Comments				
Intersect Jumbo Vein		Intersecte than expe	d Jumbo cted.	Vein further	down-	hole	hole GPS average collar elevation 374 metres					

Survey Tests

Lithology From To		Samula #	From	To	Ган	Au ppm	Ag ppm	Zn %	Си %	Pb %
0.00 - 2.30 OVE Casir	B <u>Overburden</u> ing	Sumple #	<u>110m</u>	10	Lcn.					
2.30 - 94.45 9c TRO medii 0.4 ci the q serici and c assor mm) smea Dark thin c fractu 5.55 - 6.46	Trondhjemite (quartz porphyritic)DNDHJEMITE Generally medium grained with occasional finer grained section,ium to dark grey in colour, composed of plagioclase & quartz grains and eyes up toor in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due toquartz eyes. Generally only weakly foliated. Moderately to locally highly altered withotic, chlorite, and some carbonate. Scattered irregular patches and veinlets of quartzqtz/carbonateCarbonate is finely and irregularly disseminated throughout, usuallyoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+1 to 3)and thin stringers of pyrite scattered throughout. Scattered fractures. Fractures oftenaregive to grey-green, medium to coarse grained. Moderate quartz eyes and very rareqtz/carbonate veinlets. Slightly to moderately fractured. Below 30.0, slightly moreturing and slightly thinner qtz/carb stringers. CA=30-40 deg.9Tondhjemite, alteredTondhjemite, alteredLight tan coloured. Texture is the same as above & below.									
72.00 - 72.48	QCVLT Quartz Carbonate Veinlet A 4 cm wide qtz/carbonate veinlet, very irregular. Qtz is locally pinkish. Layered to spotty appearance.									
72.94 - 72.99	QCVLT Quartz Carbonate Veinlet a 5 cm wide sheared qtz/carbonate veinlet, similar to above. Sheared contacts. CA=50 deg.									
92.52 - 94.45	CLV Chlorite Vein chlorite rich zone. Prominent irregular streaks & fracture fillings of chlorite. Variable CAs.									
94.45 - 152.34 9c TRO prom sectio	Trondhjemite (quartz porphyritic) ONDHEMITE Similar to above but more finer grained and altered. Qtz eyes not ninent. Rare qtz. & qtz/carb veinlets. Moderately fractured with more fractured ions locally. Fractures CA irregular, 20-30 deg. Some low angle fractures									
128.98 - 129.98	QRZ Quartz Rich Zone 129.98 – 129.98 Quartz rich section. Dark w/ prominent qtz eyes & one 3 cm wide qtz. veinlet. Qtz. eyes enlarged along contacts.									
129.98 - 138.00	9c Trondhjemite (quartz porphyritic) Trondhjemite, darker than above.									

Lithology					Аи	Ag	Zn ø/	Cu øz	Ph 0/
From To	<u>Sample</u>	# From	То	Len.	ppm	ppm	70	/0	70
138.00 - 144.45 9c Frondhjemite (quartz porphyritic) Trondhjemite, lighter grey w/ occasional qtz. veinlets & concentrations containing < 1% Py as coarse xls, forming thin seams.									
152.34 - 158.36 QV Quartz Vein									
QUARTZ VEIN w/ intermixed trondhjemite.Massive white to greenish quartz (80%) w/ occasional sections of dark altered trondhjemite. Minor carbonate Contact CA 50-52 deg.	54556 54557 54558 54559 54561 54562 54562 54563	152.34 153.00 154.24 154.90 155.17 155.71 157.70	153.00 154.24 154.90 155.17 155.71 157.70 158.36	0.66 1.24 0.66 0.27 0.54 1.99 0.66	0.05 0.015 0.015 0.015 0.23 0.05 0.015	0.7 0.1 0.2 0.1 1.7 0.1 0.7	0.04 0.05 0.02 0.01 0.02 0.005 0.005		
152.34 - 153.00 QV Quartz Vein 70% quartz w/ very irregular & distorted chlorite and sericite stringers.									
153.00 - 154.24 9i Trondhjemite, altered TRONDHJEMITE. Dark grey & altered w/ prominent qtz. eyes. Trace disseminated Py.									
154.24 - 154.50 QV Quartz Vein 90% quartz. Dark grey & altered w/ prominent qtz. eyes. Trace disseminated Py.									
154.50 - 155.17 9c Trondhjemite (quartz porphyritic) TRONDHJEMITE. Quartz rich w/ prominent qtz eyes. Occasional irregular qtz. veinlets.									
155.17 - 155.71 QV Quartz Vein Massive quartz vein. 90% quartz. Quartz is white and streaky w/ chlorite & sericite. Streaks very irregular. 4-5% Py as spots & thin seams. Several large spots of pyrrhotite.									
155.71 - 157.70 QV Quartz Vein Massive, mottled to streaky quartz (97%) w/ greenish tint. <1% very fine grained Py as thin seams and along fractures.									
157.70 - 158.36 QV Quartz Vein QV parallel to core axis. 2.5 cm wide. Qtz contains some iron oxide and pyrrhotite.									
158.36 - 164.60 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE Typical. Light grey-green, medium grained. Minor qtz/carb stringers. Fractured with CA variable. (~ 53 deg.). Trace py.									

Litholog	gy					Аи	Ag	Zn	Cu	Pb
From	То	Sample #	From	То	Len.	ррт	ррт	%	%	%
164.60 -	 165.34 F <u>Felsite</u> FELSITE DIKE Typical. Very fine grained, tan coloured. Contact CA= 20-30 deg. 									
165.34 -	 181.92 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITETypical, as above. Light grey-green, medium grained. Minor qtz/carb stringers 									
181.92 -	 185.69 F <u>Felsite</u> FELSITE DIKE Similar to above, but more altered & streaky. Prominent sericite. Gradational contacts. 									
185.69 - 187.	 195.00 9c <u>Trondhiemite (quartz porphyritic)</u> TRONDHJEMITE Typical, as above. Rare quartz veinlets. Minor fracturing. 7.00 - 189.00 9c Trondhjemite (quartz porphyritic) Trondhjemite is finer grained than above. 									

R	esource	es Ltd							MG	DDH	Geoch	em					
Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm
54560																	
54556	152.34	153.00	0.66	0.8	0.14	4.6	0.0945	10	22	0.8	1.28	3.4	11.8	144	42.3	1.24	0.5
54557	153.00	154.24	1.24	0.2	0.2	0.25	0.0014	10	33	0.2	0.51	4.3	2.2	111	17.5	0.36	0.5
54558	154.24	154.90	0.66	0.3	0.06	6.7	0.0083	10	9	0.9	0.08	1.6	2.5	110	20.5	0.61	0.5
54559	154.90	155.17	0.27	0.1	0.17	0.25	0.0006	10	29	0.05	0.23	0.7	0.8	132	5.4	0.31	0.5
54561	155.17	155.71	0.54	2	0.05	7.3	0.7038	10	6	2.8	0.03	1.2	25.5	96	48.8	1.58	0.5
54562	155.71	157.70	1.99	0.1	0.05	0.7	0.0068	10	10	0.2	0.07	0.2	1.9	163	17.8	0.39	0.5

10

32

0.05

0.41

0.3

2.4

126

8.3

0.28

0.5

54563

157.70 158.36 0.66

0.2

0.16

0.25

0.0008

Q-Gold (Ontario) Ltd

S40659-d

S40659-d S40659-d

S40659-d

S40659-d S40659-d

S40659-d

Lab Report

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
54560																			
54556	152.34	153.00	0.66	0.01	0.13	5	0.07	1.3	3.1	0.005	3.6	0.007	46	0.82	0.05	0.2	0.5		S40659-d
54557	153.00	154.24	1.24	0.02	0.2	19	0.02	3.7	0.7	0.007	3.5	0.016	12.9	0.14	0.05	0.2	0.25		S40659-d
54558	154.24	154.90	0.66	0.01	0.06	6	0.01	1.1	1.5	0.0005	2.9	0.002	21.3	0.48	0.1	0.05	0.25		S40659-d
54559	154.90	155.17	0.27	0.005	0.18	22	0.02	2.7	0.6	0.003	3.6	0.011	3.2	0.025	0.05	0.2	0.25		S40659-d
54561	155.17	155.71	0.54	0.02	0.03	1	0.01	0.3	0.5	0.0005	3.1	0.0005	100.4	1.17	0.05	0.05	0.25		S40659-d
54562	155.71	157.70	1.99	0.005	0.05	3	0.005	0.4	2	0.003	3.5	0.0005	7.7	0.05	0.05	0.05	0.25		S40659-d
54563	157.70	158.36	0.66	0.005	0.17	13	0.02	1.9	1.3	0.006	2.8	0.006	4.9	0.025	0.05	0.2	0.25		S40659-d

Real Real	esource	es Ltd							MG DDH Geochem
Sample	From	Тө	Len.	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
54560									
54556	152.34	153.00	0.66	0.1	4.3	1	0.1	357	
54557	153.00	154.24	1.24	0.05	1.9	1	0.1	566	
54558	154.24	154.90	0.66	0.05	2.8	1	0.05	227	
54559	154.90	155.17	0.27	0.05	1.4	1	0.05	86	
54561	155.17	155.71	0.54	0.05	3.2	1	0.05	175	

28

28

0.3

0.7

1

1

0.05

0.05

0.05

0.05

PROJECT: Folev Mine

54562

54563

155.71 157.70 1.99

157.70 158.36 0.66

Q-Gold (Ontario) Ltd

Lab Report

S 40659-d S 40659-d S 40659-d S 40659-d S 40659-d

S40659-d S40659-d

廮 Resources Ltd			Dri	llhole Lo)g						Units Meters
										Q-	Gold (Ontario) Lt
ovince/State	Co-ordinate Sy.	stem	G	Grid/Propert	v			Hole Type		Length	Date Started
ntario	UTM NAD83 Ca	nada Zone 1	5 F	oley Grid				Exploration	hole	98.00	7/13/2010
istrict	UTM North	UTM I	East L	ocal Grid E	E L	ocal	Grid N	Collar Sur	vey Method	1	Date Completed
enora	5394454	525587	7 2	320.00	23	380.0	00	MNR DEM			7/14/2010
roject	UTM Elevation	Azimu	th Astro. (°) A	zimuth Gri	d (°) D)ip (°	?)	Drill Contr	actor		Date Logged
ley Mine	369.00	270.00	2	70.00	-4	45.00)	C3 Drilling	Company		
rea	Claim No.	NTS S	heet S	upervised E	l I Bv			Logged By			Varified
ine Center	K-475099	10000-000						Richard Be	ard		
one/Prospect	Assessment Rpt	Assessment Rpt. No. Core Storage					Plug Depth	Makes	Water (Capped	Environmental Inspection
		Fort Fr	ance Office							✓	
Core Size (1) NQ	Casing	Pulled Ca	sing (1) 3.00	Steel	Plugge	d	Pulsed	Geophysics	s Contracto	or	Date Pulsed
(2)			(2)								
urpose		Rest	ults			0	Comments				
tersect Jumbo Vein Extens	sion and West Vein	North Inter Vein Gold 4.26	sected Jumbo \ Splay and Wes values5.88 g/T g/T over 0.32 n	Vein Extensi st Vein North over 0.47 r netres.	on, Wes ı; netres a	st G and	GPS average	collar elevat	ion 364 me	etres	
Survey Tests											
Distance Grid Az Original	imuth (°) Astro. I Final Origin	Azimuth (°) al Final	Dip (°) Original Fin	Use al Test	Surv	vey M	Iethod N	Aag. Field (nT)	Comment	5	
98.00	269.3	3	-42	\checkmark	F	Reflex	EZ	an const An			

Lithology		0 1		75	.	Аи	Ag	Zn %	Cu %	Pb %
0.00 - 3.00	OVB <u>Overburden</u> Casing	<u>Sample †</u>	<u>† From</u>	10	Len.	<u>ppm</u>	<u>ppm</u>	70	/0	/0
3.00 - 10.90	9c Trondhjemite (quartz porphyritic) TRONDHJEMITE: Medium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Carbonate is finely disseminated, concentrated along hairline fractures, and often associated with narrow qtz stringers. Minor irregular patches and stringers of quartz. Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Some fine to coarse grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-45 deg. Fractures smeared with chlorite and occassional fine pyrite.									
3.00 -	8.00 9c Trondhjemite (quartz porphyritic) Darker and more altered than typical,w/ scattered sections of lighter, feldspar rich trondhjemite. Poorly foliated, occasional thin reddish veins, occasional fractures at CA 10-25 deg.									
8.00 -	10.04 9c Trondhjemite (quartz porphyritic) Lighter and more fine grained and altered (sericite) than above.									
10.04 -	10.90 9c Trondhjemite (quartz porphyritic) More highly altered & distorted w/ seams of chlorite and thin stringers of qtz.									
10.90 - 13.00	9cTrondhjemite (quartz porphyritic)TRONDHJEMITE w/ scattered 1-4 cm wide QVs.Trond is dark and altered w/ chlorite & sericite. Scattered thin irreg. veinlets of carb.At 10.9, a 1-2 cm wide QV w/ blebs & thin seams of carbonate, largely concentrated at margins. Rare fine galena <1 mm in size. Tr Py along contacts. At 11.07, a 2.5 cm wide QV, layered appearance w/ seams sericite & chlorite. Occassional small xls & spots of Py adjacent to veins. CA 30 deg. At 12.0, a 3-4 cm wide QV, massive, white to translucent, occcass. carb, tr PY. CA 30 deg. At 12.05, a 1 cm wide QV w/ some hematite staining, Irreg. contacts, rare spot (<1 mm) galena. CA 38 deg	55352	10.90	13.00	2.10	0.015	1.3	0.02		
13.00 - 13.20	QVQuartz Vein15 cm wide w/ several 1-2 cm wide bands of altered trondhjemite. Some thin(1/2 – 5 mm)seams of sericite within QV. 1-2 % galena as fine spots. Scattered small spots & str. ofcarb. CA 50 deg. Jumbo Vein Extension	55353	13.00	13.20	0.20	0.015	6.4	0.11		

Lithology From To	Sample	# From	То	Ган	Аи ррт	Ag ppm	Zn %	Си %	Pb %
	Sumple	<u>π 110m</u>	10	Len.					
13.20 - 79.14 9c Trondhjemite (quartz porphyritic)									
Typical trondhjemite but with variable colour and grain size									
13.20 - 27.50 9c Trondhjemite (quartz porphyritic) Dark grey, moderately altered, poorly foliated. CA 35-60 deg.									
27.50 - 29.82 9i Trondhjemite, altered Section of altered, feldspar-rich trond. having mottled appearance. Contains more quartz than above. At 28.45, a 1 cm wide QV w/ CA 40 deg. Moderate hematite alteration.									
29.82 - 48.55 9c Trondhjemite (quartz porphyritic) Typical trondhjemite. At 23.9, several 5 mm to 1 cm wide carb-qt z stringers									
48.55 - 52.75 9c Trondhjemite (quartz porphyritic) Finer grained than above, less qtz. Poorly foliated & moderate alteration. Prominent small spots of mafic mineral.									
52.75 - 70.36 9c Trondhjemite (quartz porphyritic) Typical Trondhjemite. At 59.52, narrow section rich in qtz & feldspar. At 67.23, a 2 cm wide QV w/ several 1-4 mm spots of galena & <1% Py at contacts of vein.									
70.36 - 70.70 9c Trondhjemite (quartz porphyritic) Cream coloured, feldspar-rich section w/ mottled appearance.									
70.70 - 77.00 9c Trondhjemite (quartz porphyritic) Typical. Occassional low angle fractures.									
77.00 - 79.14 9c Trondhjemite (quartz porphyritic) Qtz eyes larger and more prominent. Occassional narrow QVs. At 78.53, a 2 cm wide QV. At 77.49, a 3 cm wide QV. Dark qtz, moderately fractured w/ seams of carbonate. Irregular contacts.									
 79.14 - 79.61 QV Quartz Vein QUARTZ VEIN: Locally banded w/ sericite and pyrite. Fractured w/ occas. inclusions of trond. 2-3% Py as small blebs, xls and stringers. <1% sphalerite blebs. Trace galena as tiny blebs. One 4 cm wide band showing prominent hematite alteration. West Vein Splay. 	55356	79.14	79.61	0.47	5.88	1.4	0.04		0.04
79.61 - 85.56 9c <u>Trondhjemite (quartz porphyritic)</u> Typical trondhjemite as noted at start. At 82.02, a 4 cm wide QV w/ seams & blebs of Py.									

Lithology					Аи	Ag	Zn	Си	Pb
From To	Sample #	From	То	Len.	ррт	ррт	%	%	<u>%</u>
85.56 - 85.88 QV <u>Quartz Vein</u> QUARTZ VEIN: 2-4% Py, 2% galena, tr Cpy. Moderate sericite alteration. West Vein North	55360	85.56	85.88	0.32	4.26	14.7	0.75		0.37
85.88 - 86.23 QV <u>Quartz Vein</u> QUARTX VEIN: More massive than above and less sulphides. <1% Py. 4 cm carbonate seam at lower contact. Ct CA 50 deg. West Vein North	55361	85.88	86.23	0.35	0.07	0.5	0.01		
 86.23 - 98.00 9c <u>Trondhjemite (quartz porphyritic)</u> Typical trondhjemite as noted at start. Trace pyrite 96.50 - 97.20 F Felsite Fine grained felsite dike, vague contacts. 97.50 - 98.00 9c Trondhjemite (quartz porphyritic) Below 97.75, several 2-5 cm wide bands of brownish alteration. May result from drilling. At 97.75, narrow, irregular, low-angle QV with vague contacts. 									

	Resources	Ltd
--	-----------	-----

Q-Gold (Ontario) Ltd

7.0																		
Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Lab Report
55363																		
55351	9.50	10.90	1.40	0.05	0.24	0.8	0.0023	10	28	0.1	1.46	0.05	3.3	63	6.3	0.87	0.5	S39832-d
55352	10.90	13.00	2.10	0.3	0.24	0.6	0.0028	10	37	0.2	1.28	0.5	2.9	146	13.5	0.77	0.5	S39830-d
55353	13.00	13.20	0.20	6.5	0.14	1.4	0.0168	10	19	10.9	1	8.8	3.8	154	89.9	0.75	0.5	S39830-d
55354	13.20	14.60	1.40	0.2	0.24	1	0.0007	10	38	0.05	1.9	0.2	3.5	63	9.7	1.01	0.5	S39832-d
55355	67.23	67.43	0.20	0.4	0.33	1.9	0.0015	10	40	0.5	1.78	0.2	3.9	74	11.4	0.71	0.5	S39832-d
55364	77.00	79.14	2.14	0.1	0.3	0.8	0.0698	10	40	0.05	1.2	1.1	3.2	72	9.3	0.57	0.5	S39832-d
55356	79.14	79.61	0.47	0.9	0.17	8.1	1.0004	10	18	1.4	1.33	2.7	5.7	273	21.9	1.33	0.5	S39830-d
55357	79.61	81.60	1.99	0.05	0.26	0.6	0.0034	10	34	0.05	1.4	0.5	3.2	74	9.7	0.75	0.5	S39832-d
55358	81.60	83.60	2.00	0.05	0.24	1.5	0.0038	10	38	0.05	1.59	0.05	3.5	66	7.6	0.84	0.5	S39832-d
55359	83.60	85.56	1.96	0.05	0.24	0.6	0.0039	10	41	0.05	1.57	0.2	3.4	67	11.6	0.81	0.5	S39832-d
55360	85.56	85.88	0.32	9.8	0.08	64	0.8435	10	11	14.7	0.11	47.4	25	114	409.1	2.3	0.5	S39830-d
55361	85.88	86.23	0.35	0.4	0.04	0.25	0.0067	10	3	0.7	0.26	0.6	1.5	122	23.6	0.34	0.5	S39830-d
55362	86.23	87.75	1.52	0.05	0.26	1.2	0.002	10	47	0.05	1.46	0.05	3.2	68	9.2	0.73	0.5	S39832-d

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
55363																			
55351	9.50	10.90	1.40	0.005	0.15	17	0.27	3.5	0.3	0.03	6.2	0.028	5.4	0.025	0.05	0.4	0.25		S39832-d
55352	10.90	13.00	2.10	0.02	0.23	22	0.16	4.2	0.7	0.011	8.5	0.036	12.9	0.025	0.05	0.3	0.25		S39830-d
55353	13.00	13.20	0.20	0.04	0.13	10	0.17	1.8	0.8	0.005	7.1	0.02	372.7	0.08	0.05	0.3	0.25		S39830-d
55354	13.20	14.60	1.40	0.005	0.2	22	0.34	4.9	0.5	0.027	6.5	0.04	10.1	0.025	0.05	0.4	0.25		S39832-d
55355	67.23	67.43	0.20	0.005	0.22	22	0.11	5.3	0.2	0.016	7.2	0.027	148.4	0.1	0.2	0.4	0.25		S39832-d
55364	77.00	79.14	2.14	0.005	0.25	22	0.1	3.8	0.5	0.013	5.9	0.034	39	0.08	0.05	0.2	0.25		S39832-d
55356	79.14	79.61	0.47	0.01	0.11	7	0.2	1.2	1.7	0.005	11.5	0.007	290.7	0.45	0.2	0.3	0.25		S39830-d
55357	79.61	81.60	1.99	0.005	0.21	27	0.15	5.1	0.7	0.016	6.6	0.031	18.6	0.07	0.05	0.3	0.25		S39832-d
55358	81.60	83.60	2.00	0.005	0.2	28	0.22	5	0.3	0.028	5.1	0.031	11	0.025	0.05	0.4	0.25		S39832-d
55359	83.60	85.56	1.96	0.005	0.2	25	0.2	4.9	0.4	0.025	5.7	0.03	8.7	0.08	0.05	0.3	0.25		S39832-d
55360	85.56	85.88	0.32	0.09	0.06	3	0.03	0.8	1	0.003	5.7	0.004	2743.4	2.2	0.8	0.05	0.6		S39830-d
55361	85.88	86.23	0.35	0.01	0.02	2	0.02	0.2	1.2	0.003	4.8	0.001	36.3	0.08	0.2	0.05	0.25		S39830-d
55362	86.23	87.75	1.52	0.005	0.22	24	0.18	4.3	0.4	0.028	4.9	0.033	5.4	0.06	0.1	0.3	0.25		S39832-d

Reso	urces Ltd
------	-----------

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Tl	U	V	W	Zn	Lab Report
(ррт	ppm	ppm	ррт	ррт	
55363									
55351	9.50	10.90	1.40	0.05	1.2	1	0.05	30	S39832-d
55352	10.90	13.00	2.10	0.05	1.3	1	0.1	66	S39830-d
55353	13.00	13.20	0.20	0.05	0.5	1	0.05	1120	S39830-d
55354	13.20	14.60	1.40	0.05	1.8	1	0.05	39	S39832-d
55355	67.23	67.43	0.20	0.05	2	1	0.1	59	S39832-d
55364	77.00	79.14	2.14	0.05	2.2	1	0.05	136	S39832-d
55356	79.14	79.61	0.47	0.05	3.8	2	0.2	324	S39830-d
55357	79.61	81.60	1.99	0.05	1.3	1	0.1	42	S39832-d
55358	81.60	83.60	2.00	0.05	1.4	1	0.05	18	S39832-d
55359	83.60	85.56	1.96	0.05	1.2	1	0.1	30	S39832-d
55360	85.56	85.88	0.32	0.05	0.6	1	0.05	5611	S39830-d
55361	85.88	86.23	0.35	0.05	0.4	1	0.05	90	S39830-d
55362	86.23	87.75	1.52	0.05	1.2	1	0.05	16	S39832-d

Units Meter	0			g	llhole Log	Dr				Ltd	Resources			
Date Started	Length	Hole Type		,	Grid/Property		1	inate System	Co-ord		wince/State			
7/15/2010	136.30	Exploration hole 136.30			oley Grid	Zone 15		AD83 Canada	UTM N		tario			
Date Completed	od	Collar Survey Meth	l Grid N	Loca	ocal Grid E	UTM East		Vorth	UTM N	District				
7/16/2010		MNR DEM	.00	2380	320.00	525587		4	539445	Kenora				
Date Logged		Drill Contractor	(°)	l (°) Dip (zimuth Grid (Azimuth Astro. (°)		Elevation	UTM E	Project				
per depositor en t	t	C3 Drilling Compan	0	-60.0	70.00)	270.		364.00	Foley Mine				
Verified		Logged By		v	Supervised By	Sheet	NTS	No.	Claim .		ea			
		Richard Beard						99	K-4750		ie Center			
Environmental	Cannad	Makes Water	Plug Depth			Storage	. Core	nent Rpt. No.	Assessi		ne/Prospect			
Inspection			3			Fort Frances Office								
Date Pulsed	tor	Geophysics Contractor		Plugged	Steel P	sing (1) 2.00	ed (Casing Pull)	ore Size (1) NG			
		Geophysics contra			·	(2)				(2)				
			Comments			ults	Re	Purpose						
				n; 8 g/T Au tersect of 9% Zn.	est Vein North; ersect of 6.48 West Vein inte Ag, and 0.49	Splay, and W t Vein Splay ir ss 1.7 metres; g/T Au, 7.8 g/	We Wac 0.0			sts	Survey Tes			
	nts	Mag. Field Comme (nT)	Method N	Survey 1	Use al Test	Dip (°) Original Fi	uth (Fina	Astro. Azim Original	imuth (°) I Final	Grid Azi Original	Distance			
			ex EZ	Refle	~	-58.6		266.4			134.00			
	nts	Mag. Field Comme	Method A	sir, vest 8 g/T Au tersect of 9% Zn. Survey I Refle	Use Use Use Use Use Use	Dip (°) Original Fi -58.6	W ac 0.0	Astro. Azim Original 266.4	imuth (°) I Final	sts Grid Azi Original	Survey Tes Distance			

Lithology			T	T	Au	Ag	Zn %	Cu %	Pb %			
0.00 - 2.00 OVB <u>Overburden</u> Casing	Sample	<u> From</u>	10	Len.								
2.00 - 17.87 9 c Trondhjemite (quartz porphyritic) TRONDHJEMITE: Medium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and qtz/carb. locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures. Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-60 deg. Fractures often smeared with chlorite and occasionally with fine pyrite.												
2.00 - 13.80 9c Trondhjemite (quartz porphyritic) Typical trondhjemite. 2.0-2.3 Broken core. At 11.36, a low angle (+/-2 deg) fracture.												
Pale reddish coloured section (hematite) with vague contacts. At 14.36, a 3 cm. wide quartz veinlet. SI. fractured w/ <1% vuggy py.												
14.76 - 17.87 9c Trondhjemite (quartz porphyritic) Typical trondhjemite, w/ occasional 5 cm. wide reddish bands.												
 17.87 - 19.22 QRZ Quartz Rich Zone QUARTZ RICH ZONEw/ several 2-3 cm wide veins of white quartz separated by trondhjemite (60% quartz, 40% trondhjemite). Quartz is slightly fractured. Contains 1-1.5% sphalerite as irregegular spots & seams, and < 1% py as disseminations & xls. Occasional patches containing cream coloured carbonate alteration. CA 25 deg. Jumbo Vein Extension. 	55367	17.87	19.22	1.35	0.015	1	0.14					
 19.22 - 41.43 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. Typical. Dark to medium grey in colour. Scattered quartz rich sections (<5% of total). Slightly more porphyritic appearing than above. Scattered 1-2 cm. wide quartz and quartz-carbonate stringers with creamy carbonate along contacts. Scattered fractures @ variable CAs. At 32.57, a quartz rich section 35 cm. wide. At 40.70 – 41.43 Ground core. 												
Litholo	y gj	, T-			T	T	T	Au	Ag	Zn %	Cu %	Pb %
---------	-------------	---------	---	----------	-------	-------	----------	-------	------	---------	---------	---------
From		10		Sample #	From	10	Len.	PPm.	ppm	70	/0	/0
41.43	-	43.37	QV <u>Quartz Vein</u> QUARTZ VEIN.White quartz, mod fractured, highly altered w/ sericite & carbonate.	55370	41.43	43.37	1.94	0.015	0.1	0.005		
			Several irregular spots of soft, very fine grained black mineral (chlorite?) up to 2 cm. wide. Unclassified Vein.									
43.37	-	45.38	9c <u>Trondhjemite (quartz porphyritic)</u> Coarse grained appearance, highly altered w/ moderately foliated. Coarse quartz eyes. Prominent iron carbonate. Fracturing parallel to CA.									
45.38	-	46.44	QV <u>Quartz Vein</u> QUARTZ VEIN: 60-70 % quartz w/ trondhjemite Inclusions. Sericite alteration w/ some iron carbonate. Unclassified Vein	55372	45.38	46.64	1.26	0.015	0.4	0.005		
46.44	-	47.79	9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical. Same as 43.34-45.38. Some irregular quartz concentrations.									
47.79	-	49.40	FRZ Fracture Zone FRACTURE ZONE.Trondhjemite w/ one 2-3 cm. wide qtz stringer parallel to CA. Trondhjemite is altered and foliated as at 43.37 – 45.38.									
49.40	-	50.37	QV Quartz Vein QUARTZ VEIN.Two 2-5 cm. wide QVs separated by trondhjemite Quartz = 70%. Highly fractured & altered w/ low angle (5-10 deg) fracturing. Unclassified Vein.	55376	49.40	50.37	0.97	0.015	0.1	0.005		
50.37	-	105.30	9c Trondhjemite (quartz porphyritic) Dark grey and altered w/ mottled appearance, similar to 43.37-45.38. Moderate fracturing, CAs 10-60 deg. 51.50 - 51.83 Ground core. Trond. Low angle fractures; At 63.86, 1 cm. wide qtz. stringer. 65.30 - 67.85 Low angle fractures. 66.40 - 67.85 Ground core. At 67.62, a 2 cm. wide quartz veinlet, CA 23 deg.	55377	73.26	73.40	0.14	0.015	47.5	0.79		0.26
73	3.26	6 - 7	3.40 QVLT Quartz Veinlets									
			A 5 cm. wide quartz veinlet. Qtz. is white and irregular, some fracturing. Prominent iron carbonate. Occasional small spot of sphalerite.									

Lithology From To	Sample.#	From	То	Len.	Au ppm	Ag ppm	Zn %	Си %	Ph %
82.81 - 84.65 9c Trondhjemite (quartz porphyritic) Light grey, fine-grained phase of trondhjemite									
91.75 - 95.00 9i Trondhjemite, altered Yellowish brown w/ sericite-carbonate alteration.									
101.20 - 105.30 9c Trondhjemite (quartz porphyritic) Fine grained trondhjemite w/ prominent qtz. eyes. Quartz increases toward lower contact.									
105.30 - 107.00 QRZ Quartz Rich Zone QUARTZ RICH ZONE.80 % quartz as eyes, irreg. concentrations and veins. Veins range from 6-20 cm. wide w/ irregular contacts. Trace py, trace cpy. Upper contact CA=45 deg., lower contact CA =35 deg. At 105.0, some VG ?? West Vein Splay.	55379	105.30	107.00	1.70	6.48	0.7	0.005	0.005	
107.00 - 109.10 9c <u>Trondhjemite (quartz porphyritic)</u> THRONDHJEMITE.Similar too 50.37-105.3. Quartz rich, dark and porphyritic w/ prominent qtz. eyes, sericite alteration, occasional qtz veinlets.									
109.10 - 110.00 QV Quartz Vein QUARTZ VEIN.100% white massive quartz w/ occasional streaks & spots of sericite/chlorite. Little carbonate. 3% py as disseminations & concentrations throughout. Tr sphalerite, tr cp, possible VG. Lower contact CA=35 deg. West Vein North.	55381	109.10	110.00	0.90	0.05	7.8	0.49		
110.00 - 136.30 9c Trondhjemite (quartz porphyritic) TROHDHJEMITE:.Dark grey, moderately altered, coarse to medium qtz eyes. More quartz rich at contact with vein above.									
113.00 - 113.90 9c Trondhjemite (quartz porphyritic) A low angle fracture parallel to core axis.									
116.36 - 116.95 9c Trondhjemite (quartz porphyritic) 2 narrow irregular qtz stringer/concentrations.									
129.50 - 135.20 9i Trondhjemite, altered Cream coloured altered trondhjemite, mottled appearance.									

Q-Gold (Ontario) Ltd

2.2																		
Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Lab Report
55374																		
55365	13.80	14.76	0.96	0.1	0.22	1.1	0.0025	10	22	0.05	0.95	0.2	1.7	72	6.3	0.56	0.5	S39832-d
55366	14.76	17.87	3.11	0.2	0.24	1.4	0.001	10	37	0.05	1.69	0.2	2.6	63	5.2	0.82	0.5	S39832-d
55367	17.87	19.22	1.35	0.8	0.2	1	0.0033	10	33	1.6	0.73	14.6	3	182	33.6	0.53	0.5	S39830-d
55368	19.22	20.06	0.84	0.05	0.24	1.3	0.0021	10	36	0.05	1.33	0.1	2.6	73	5.3	0.84	0.5	S39832-d
55369	40.70	41.43	0.73	0.05	0.47	1.5	0.0234	10	43	0.05	0.52	0.05	7.4	72	61.2	1.03	1	S39832-d
55370	41.43	43.37	1.94	0.05	0.21	0.6	0.0036	10	31	0.05	1.58	0.05	3.5	370	21.8	0.8	0.5	S39830-d
55371	43.37	45.38	2.01	0.05	0.27	1.7	0.0043	10	51	0.05	2.18	0.05	2.3	72	11.2	0.69	0.5	S39832-d
55372	45.38	46.44	1.06	0.05	0.25	0.9	0.0035	10	44	0.05	2.23	0.05	2.3	232	8.3	0.71	0.5	S39830-d
55373	46.44	47.79	1.35	0.2	0.23	1.1	0.00025	10	37	0.05	1.56	0.05	1.5	69	8.5	0.48	0.5	S39835-d
55375	47.19	49.40	2.21	0.1	0.21	0.25	0.0012	10	33	0.05	0.71	0.05	2.3	84	9.4	0.48	0.5	S39835-d
55376	49.40	50.37	0.97	0.05	0.2	0.8	0.0142	10	30	0.05	0.79	0.05	2.5	201	19.3	0.68	0.5	S39835-d
55377	73.26	73.40	0.14	43	0.15	0.25	0.0387	10	25	99.1	2.3	54.4	6.8	82	73.2	0.54	0.5	S39835-d
55378	104.40	105.30	0.90	0.05	0.24	2.8	0.00025	10	32	0.1	1.19	0.1	3.2	72	7.1	0.71	0.5	S39835-d
55379	105.30	107.00	1.70	0.5	0.14	5.7	0.4446	10	19	0.6	0.81	0.2	3.9	180	11	0.82	0.5	S39833-d
55380	107.00	109.10	2.10	0.2	0.23	0.5	0.00025	10	37	0.2	0.66	0.2	4.4	73	26	0.6	0.5	S39835-d
55381	109.10	110.00	0.90	6.5	0.05	1.3	0.4303	10	6	7.4	0.25	29.1	22.3	259	687.3	1.75	0.5	S39833-d
55382	110.00	111.50	1.50	0.2	0.21	0.25	0.00025	10	36	0.05	1.1	0.3	4.1	64	16.3	0.73	0.5	S39835-d

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
55374																			
55365	13.80	14.76	0.96	0.005	0.12	9	0.13	3.3	0.3	0.037	3.8	0.014	7	0.025	0.05	0.4	0.25		S39832-d
55366	14.76	17.87	3.11	0.005	0.2	22	0.27	4.5	0.4	0.029	5.1	0.034	7.4	0.025	0.05	0.4	0.25		S39832-d
55367	17.87	19.22	1.35	0.05	0.2	16	0.09	3.4	0.6	0.009	6.1	0.023	32	0.15	0.05	0.2	0.25		S39830-d
55368	19.22	20.06	0.84	0.005	0.19	21	0.2	4.1	0.3	0.029	5.4	0.03	6.8	0.08	0.05	0.3	0.25		S39832-d
55369	40.70	41.43	0.73	0.005	0.21	32	0.2	4.8	0.6	0.013	11.4	0.034	21.4	0.025	0.05	0.2	0.25		S39832-d
55370	41.43	43.37	1.94	0.005	0.13	13	0.07	1.6	1.4	0.015	15	0.011	11	0.025	0.05	0.2	0.25		S39830-d
55371	43.37	45.38	2.01	0.005	0.24	33	0.04	4.3	0.4	0.012	4.4	0.035	13.8	0.025	0.05	0.3	0.25		S39832-d
55372	45.38	46.44	1.06	0.005	0.21	26	0.04	3.8	0.9	0.013	6.9	0.029	7.6	0.025	0.05	0.3	0.25		S39830-d
55373	46.44	47.79	1.35	0.005	0.21	27	0.03	3.9	0.4	0.011	3.5	0.034	10.5	0.025	0.05	0.2	0.25		S39835-d
55375	47.19	49.40	2.21	0.005	0.17	20	0.04	2.8	0.4	0.012	5.6	0.023	8.4	0.025	0.05	0.1	0.25		S39835-d
55376	49.40	50.37	0.97	0.005	0.15	22	0.05	3.4	0.8	0.016	7.4	0.013	16.7	0.025	0.05	0.2	0.25		S39835-d
55377	73.26	73.40	0.14	0.44	0.14	10	0.04	1.8	0.6	0.004	6.8	0.015	2179.2	0.49	0.7	0.1	0.5		S39835-d
55378	104.40	105.30	0.90	0.005	0.19	20	0.1	3.5	0.5	0.013	5	0.028	13.8	0.18	0.3	0.1	0.25		S39835-d
55379	105.30	107.00	1.70	0.005	0.11	9	0.04	1.6	1.8	0.004	9.6	0.013	26.1	0.28	0.3	0.1	0.25		S39833-d
55380	107.00	109.10	2.10	0.005	0.2	19	0.07	3.3	0.4	0.01	7.2	0.029	14.4	0.14	0.1	0.1	0.25		S39835-d
55381	109.10	110.00	0.90	0.1	0.02	0.5	0.06	2.1	1.1	0.005	9.1	0.0005	101.6	1.12	0.4	0.05	0.25		S39833-d
55382	110.00	111.50	1.50	0.005	0.2	17	0.11	3.6	1.1	0.018	6.8	0.03	9.9	0.16	0.05	0.2	0.25		S39835-d

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Tl ppm	U ppm	V ppm	W DDM	Zn ppm	Lab Report
55374				FF ***	Tr	III	II	II	
55365	13.80	14.76	0.96	0.05	1.4	1	0.05	32	S39832-d
55366	14.76	17.87	3.11	0.05	1.6	1	0.05	38	S39832-d
55367	17.87	19.22	1.35	0.05	0.8	1	0.1	1971	S39830-d
55368	19.22	20.06	0.84	0.05	1.2	1	0.2	45	S39832-d
55369	40.70	41.43	0.73	0.05	0.6	5	0.2	148	S39832-d
55370	41.43	43.37	1.94	0.05	0.2	3	0.2	31	S39830-d
55371	43.37	45.38	2.01	0.05	0.6	2	0.4	20	S39832-d
55372	45.38	46.44	1.06	0.05	0.4	1	0.3	19	S39830-d
55373	46.44	47.79	1.35	0.05	0.3	1	0.2	14	S39835-d
55375	47.19	49.40	2.21	0.05	0.3	1	0.2	30	S39835-d
55376	49.40	50.37	0.97	0.05	0.4	2	0.3	33	S39835-d
55377	73.26	73.40	0.14	0.05	0.9	1	0.1	7032	S39835-d
55378	104.40	105.30	0.90	0.05	1	1	0.2	26	S39835-d
55379	105.30	107.00	1.70	0.05	1.6	1	0.1	29	S39833-d
55380	107.00	109.10	2.10	0.05	0.9	1	0.2	42	S39835-d
55381	109.10	110.00	0.90	0.05	1.3	1	0.2	4010	S39833-d
55382	110.00	111.50	1.50	0.05	1.5	1	0.1	41	S39835-d

Resources Ltd			D	rillhole 1	.0g					Units Meters
									<i>Q</i> -	Gold (Ontario) Ltd
Province/State	Co-ordi	inate System		Grid/Prope	erty			Hole Type	Length	Date Started
Ontario	UTM N/	AD83 Canada	Zone 15	Foley Mine	Grid			Exploration hole	99.13	7/16/2010
District	UTM N	orth	UTM East	Local Grid	E	Loca	ıl Grid N	Collar Survey Met	hod	Date Completed
Kenora	539442	4	525603	2325.00		2350	0.00	MNR DEM		7/17/2010
Project	UTM E	levation	Azimuth Astro. (°)	Azimuth G	rid (°)	Dip	(°)	Drill Contractor		Date Logged
Foley Mine	369.00		270.00			-45.0	00	C3 Drilling Compar	iy	
Area	Claim 1	V <i>o</i> .	NTS Sheet	Supervised	By			Logged By		Verified
Mine Center	K-47509	99						Richard Beard		
Zone/Prospect	Assessn	nent Rpt. No.	Core Storage				Plug Depth	Makas Watan	Cannad	Environmental
		3	Fort Frances Office	15					Cappea ✓	Inspection
Core Size (1) NQ	2	Casing Pulle	d Casing (1) 2.00	Steel	Plug	ged	Pulsed	Geophysics Contra	ctor	Date Pulsed
(2)			(2)							
Purpose			Results		,		Comments			
Intersect Jumbo Vein Exten	sion and W	est Vein Nortl	Intersected Jumb Vein Splay, West	o Vein Exten Vein North	sion, W	/est	Rods Broken; GPS average	drill hole discontinue collar elevation 368	ed. metres	

Survey Tests

Lithology						Аи	Ag	Zn	Cu %	Ph 0/
From To		<u>Sample</u> †	# From	То	Len.	ppm	ppm	/0	/0	/0
0.00 - 2.00	OVB <u>Overburden</u> Casing									
2.00 - 17.99 2.00 - 15.00 -	 9c Trondhjemite (quartz porphyritic) TRONDHJEMITEMedium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and qtz/carb. locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 26-46 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Med. gray. medium grained, mod. qtz eyes. Occasional more quartz rich sections, rare quartz veinlets 5-9 cm. wide. Slight fracturing CA 35-38 deg. 6.20 9c Trondhjemite (quartz porphyritic) Core moderately broken, slightly to moderately carbonatized 17.10 9i Trondhjemite, altered 									
	Pale grey, moderately altered, slightly more quartz rich than above w/ rare thin (2-10 mm.) carb./qtz. quartz veinlets. At 16.0 – 17.10, more qtz. rich (+/- 10%).									
17.99 - 18.16	QV Quartz Vein Quartz vein 8 cm. wide. White, slightly fractured quartz w/ one 2.5 cm. wide band of py (8%) at upper contact. Moderate cream coloured carbonate. CA=36 deg. Jumbo Vein Extension.	55384	17.99	18.16	0.17	0.91	1.8	0.01		
18.16 - 81.75	9c Trondhjemite (quartz porphyritic) TRONDHJEMITEMedium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and qtz/carb. locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 26-46 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Med. gray, medium grained, mod. qtz eyes. Occasional more quartz rich sections, rare quartz veinlets 5-9 cm. wide. Slight fracturing CA 35-38 deg.									

Lithology					Аи	Ag	Zn	Си	Pb
From To	Sample	# From	To	Len.	ррт	ррт	%	%	%
18.16 - 19.70 9i Trondhjemite, altered									
 19.70 - 33.98 9c Trondhjemite (quartz porphyritic) Trondhjemite as at 2.0 – 15.5; At 32.73, a 2 cm. wide quartz veinlet w/ tr sphalerite + unidentified black metallic mineral (galena?). Contact CA=28 deg. 									
33.98 - 35.00 9i Trondhjemite, altered Trondhjemite, bleached and altered, w/ occasional qtz. stringers (+/- 1 cm) and concentrations. Some cream coloured carbonate in the qtz. stringers. < 1% py as co. grains/xls. Some fine specks of unidentified dark mineral. CA=30 deg.									
35.00 - 46.30 9c Trondhjemite (quartz porphyritic) Trondhjemite varies from pale to dark grey. Slightly altered.									
46.30 - 46.88 9i Trondhjemite, altered Trondhjemite light coloured & mottled, w/ feldspar alteration.									
46.88 - 59.63 9c Trondhjemite (quartz porphyritic) Trondhjemite. Typical. Occasional thin (<1 cm.) qtz-carbonate stringer & occasional quartz veinlets up to 2 cm. At 47.76, a 1.5 cm. wide quartz veinlets, cream coloured iron carbonate. At 53.87, a 2 cm. wide quartz veinlets, white w/ cream coloured iron carbonate concentrations along contacts.									
59.63 - 61.36 9c Trondhjemite (quartz porphyritic) Trondhjemite typical. Slightly more qtz. & larger qtz. eyes towards the QV below. Some finely disseminated. Py near contact w/ Quartz vein below.									
81.75 - 83.16 QV <u>Quartz Vein</u>									
QUARTZ VEIN next to a QUARTZ RICH ZONE. West Vein Splay.	55387 55388	81.75 81.96	81.96 83.16	0.21 1.20	0.015 0.015	1.5 0.4	0.04 0.01		
81.75 - 81.96 QV Quartz Vein QUARTZ VEIN.White quartz, moderately banded w/ seams of py/chlorite. 2-3 % py, t sphalerite. CA 50 deg.	r								
81.96 - 83.16 QRZ Quartz Rich Zone Qtz. rich section w/ 2 cm. wide quartz veinlets at 83.5. Barren looking.									
83.16 - 99.13 9c <u>Trondhjemite (quartz porphyritic)</u> Typical. Widely scattered quartz veinlets 1-6 cm. wide and irregular concentrations of qtz. 1-2% py as coarsen spots & fine disseminations, largely along contacts with quartz veins and veinlets.									

Lithology From To	Samula #	From	То	Ган	Аи ррт	Ag ppm	Zn %	Cu %	Pb %
85.06 - 89.46 9c Trondhjemite (quartz porphyritic) At 85.06, a 2-3 cm wide quartz veinlets w/ minor py. CA=58 deg At 87.05, a 1 cm wide quartz veinlet. Tr py + sphalerite. At 89.0, qtz. concentration (10% qtz.) w/ one 1 cm wide veinlet, <1% py. At 89.46, a 2 cm. wide quartz veinlet w/ 1% py, tr sphalerite. CA=32 deg.	Sumple #	<u>110m</u>	10	LCH,					
91.24 - 94.73 9c Trondhjemite (quartz porphyritic) At 91.24, a 5 cm. wide quartz veinlets, Barren. CA=46 deg. At 93.64, a 13 cm. wide zone of irreg. qtz. stringers in Trondhjemite Tr py. At 94.73, a 2.5 cm. wide quartz veinlet, irregegular contacts. CA=+/- 43 deg.									
95.42 - 98.87 9c Trondhjemite (quartz porphyritic) At 95.42, a 2 cm. wide irregular quartz veinlet. Medium to co-grained py in adjacent Trondhjemite. At 95.66, an irregular section of criss-crossing, 2-3 cm. wide qtz. veinlets. At 96.10, several 1-1.5 cm. wide quartz veinlets. At 98.87, a 3 cm. wide quartz veinlet. Tr py.									

🤓 Re	esource	s Ltd							MG.	DDH	Geoch	em						Q-Gold (Ontario) Ltd
Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Си ррт	Fe %	Ga ppm	Lab Report
55385																		<u>k</u>
55383	16.00	17.10	1.10	0.05	0.18	0.8	0.00025	10	30	0.05	1.29	0.1	2.5	64	3.9	0.72	0.5	S39835-d
55384	17.99	18.16	0.17	1	0.2	175	0.8207	10	13	1.8	2.02	1.2	31.3	47	13.4	5.05	0.5	S39833-d
55386	33.98	35.00	1.02	0.1	0.17	0.25	0.0027	10	18	0.05	0.82	0.05	1.4	61	20.8	0.49	0.5	S39835-d
55387	81.75	81.96	0.21	0.8	0.07	9.2	0.0313	10	10	1.9	0.18	2.5	7.3	111	17.6	0.66	0.5	S39833-d
55388	81.96	83.16	1.20	0.2	0.2	0.25	0.0404	10	33	0.2	0.99	0.6	3.3	66	9.1	0.47	0.5	S39835-d

0

Sample	From	Тө	Len.	Hg	K	La	Mg	Mn	Мо	Na	Ni	P	Pb	S	Sb	Sc	Se	Th	Lab Report
				ppm	%	ррт	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	
55385																			
55383	16.00	17.10	1.10	0.005	0.14	19	0.18	3.1	0.4	0.025	4.2	0.024	4.7	0.025	0.05	0.2	0.25		S39835-d
55384	17.99	18.16	0.17	0.005	0.08	3	0.63	1.3	0.3	0.004	13.1	0.022	21.4	5.39	0.1	0.2	0.25		S39833-d
55386	33.98	35.00	1.02	0.005	0.1	9	0.11	5.3	0.3	0.034	2.8	0.011	7.7	0.025	0.05	0.3	0.25		S39835-d
55387	81.75	81.96	0.21	0.005	0.06	4	0.02	0.9	0.6	0.003	5.3	0.004	46.5	0.54	0.3	0.05	0.25		S39833-d
55388	81.96	83.16	1.20	0.005	0.19	18	0.06	3.8	0.4	0.012	6.2	0.028	11.1	0.15	0.05	0.2	0.25		S39835-d

Re Re	esource	s Ltd							MG DDH Geochem	Q-Gold (Ontario) Ltd
Sample	From	Тө	Len.	Tl	U	V	W	Zn		Lab Report
<u>.</u>				ppm	ppm	ррт	ppm	ppm		
55385										
55383	16.00	17.10	1.10	0.05	1.1	1	0.05	17		S39835-d
55384	17.99	18.16	0.17	0.05	0.7	1	0.1	96		S39833-d
55386	33.98	35.00	1.02	0.05	4.2	1	0.05	10		S39835-d
55387	81.75	81.96	0.21	0.05	0.6	1	0.05	326		S39833-d
55388	81.96	83.16	1.20	0.05	0.9	1	0.1	81		S39835-d

0

Resources Ltd				Dri	llhole L	0g					Units Meters
										<i>Q</i> -	Gold (Ontario) Ltd
Province/State	Co-ordi	nate System		G	Grid/Proper	ty			Hole Type	Length	Date Started
Ontario	UTM NA	D83 Canada	Zone 15	F	oley Mine (Grid			Exploration hole	107.00	7/21/2010
District	UTM N	orth	UTM East	L	ocal Grid	E	Loca	ıl Grid N	Collar Survey Meth	od	Date Completed
Kenora	5394424	1	525603	2	325.00		2350	.00	MNR DEM		7/22/2010
Project	UTM E	levation	Azimuth Astro. (°) A	zimuth Gr	id (°)	Dip	(°)	Drill Contractor		Date Logged
Foley Mine	370.00		270.00	2	70.00		-40.0	00	C3 Drilling Company	y	
Area	Claim N	Vo.	NTS Sheet	S	upervised	By			Logged By		Verified
Mine Center									Richard Beard		
Zone/Prospect	Assessn	nent Rpt. No.	Core Storage					Plug Depth	Makes Water	Canned	Environmental
			Fort Frances Offi	се						Cuppeu ✓	
Core Size (1) NQ		Casing Pulle	d Casing (1)		Steel	Plugg	ged	Pulsed	Geophysics Contrac	ctor	Date Pulsed
(2)			(2)								
Purpose			Results			_		Comments			
Intersect the Jumbo Vein Exte North	Intersected the Jumbo Vein Extension, West Vein Spaly, and West Vein North.					GPS average	collar elevation 368 r	netres			

Survey Tests

Distance	Grid Azin	nuth (°)	Astro. Azin	nuth (°)	Dip (°)	Use	Survey Method	Mag. Field	Comments
	Original	Final	Original	Final	Original Final	Test		(n T)	
107.00			268.4		-38.6	✓	Reflex EZ		

Lithology					Au	Ag	Zn	Cu	Pb
From To	Sample	# From	То	Len.	ррт	ррт	%	%	<u>%</u>
0.00 - 4.00 OVB <u>Overburden</u> Casing									
 4.00 - 16.15 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Medium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and qtz/carb. locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 27-55 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Upper 0.5 m. fractured and ground core. At 14.03, a 3.5 cm wide quartz veinlet, streaky & fractured along foliation. 1% Py. CA=40 degrees. 4.00 - 10.00 9i Trondhjemite, altered Moderately fractured w/ variable core angles. At 8.4, low angle fracturing, highly altered & vuggy. 									
16.15 - 16.70 QV Quartz Vein QUARTZ VEIN: White, massive and slightly streaked w/ chlorite. +/- 1% Py. CA=34 degrees. Jumbo Vein Extension.	55405	16.46	16.70	0.24	0.015	0.1	0.005		
16.70 - 33.20 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE: Typical w/ rare veinlets of qtz. Mod. fractured w/ variable CAs.									
16.70 - 17.30 9c Trondhjemite (quartz porphyritic) Slightly more qtz. rich w/ several 1-3 cm wide veinlets & concentrations.									
19.60 - 20.30 9c Trondhjemite (quartz porphyritic) Reddish iron staining.									
21.13 - 21.60 9c Trondhjemite (quartz porphyritic) Creamy coloured, feldspar-rich section w/ mottled appearance.									
33.20 - 34.09 F <u>Felsite</u>									

Litholog	у						Аи	Ag	Zn	Cu	Pb
From	То		Sample #	From	То	Len.	ррт	ррт	%	%	%
		ALTERED TRONDHJEMITE OR FELSITE DIKE: Creamy coloured, very fine grained. Very thin chlorite stringers at variable CAs. Contacts vague.									
34.09 -	65.90	9c Trondhiemite (guartz porphyritic) TRONDHJEMITE.Typical, as from 4 - 16.15. At 46.63, a 5 cm wide quartz veinlet w/ creamy coloured carbonate spots along contact. CA=27 deg. At 47.10, Two 1-2 cm wide qtz-carbonate veinlets. At 51.6, an irregular 1-3 cm spot/band of qtz. Fracturing at low CAs. Tr. Py.									
65.90 -	68.54	QV <u>Quartz Vein</u> QUARTZ VEIN: 60% quartz w/ scattered sections of trondhjemite 10-20 cm wide. Veins are very irregular and moderately streaky w/ chlorite. (CA=36 deg.). 1% Py., 3-5 % Sphalerite as small blebs, thin streaks and spots up to 2-4 cm. West Vein Splay.	55408 55409	65.90 67.30	67.30 68.54	1.40 1.24	0.07 0.015	0.6 0.3	0.09 0.06		
68.54 - 76.5	100.36 54 - 86	 9c Trondhjemite (quartz porphyritic) TRONDHJEMITETypical. Slight fracturing only. .20 9c Trondhjemite (quartz porphyritic) 55 widely scattered quartz veinlet, 2-7 cm wide. Tr. Py & Sphalerite. 									
100.36 -	102.15	QV Quartz Vein 3 Quartz veins/veinlets, 5-23 cm wide separated by trondhjemite. Qtz is streaky (chlorite) w/ occasional reddish streaks. Tr. Py. Tr. Sphalerite. At 100.16, prominent band of iron carbonate Contact CA= 50-55 deg. West Vein North.	55413 55414	100.36 101.42	101.42 102.15	1.06 0.73	0.015 0.29	0.5 0.9	0.01 0.02		
102.15 -	107.00	9c <u>Trondhjemite (guartz porphyritic)</u> TRONDHJEMITE.Typical, as from 4 - 16.15									

Resources	Ltd
-----------	-----

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Си ррт	Fe %	Ga ppm	Lab Report
55407																		
55405	16.46	16.70	0.24	0.05	0.07	0.25	0.00025	10	4	0.05	0.34	0.05	0.9	101	5.4	0.31	0.5	S39838-d
55406	64.50	65.90	1.40	0.1	0.18	0.25	0.00025	10	35	0.1	1.47	0.7	3.3	58	6.6	0.75	0.5	S39838-d
55408	65.90	67.30	1.40	0.4	0.19	0.6	0.0041	10	31	0.2	0.6	5.5	2.2	187	75.4	0.61	0.5	S39836-d
55409	67.30	68.54	1.24	0.2	0.2	0.7	0.0013	10	33	0.4	0.95	3.4	3.1	292	13.1	0.76	0.5	S39836-d
55410	68.54	70.00	1.46	0.2	0.2	0.7	0.00025	10	42	0.2	1.49	0.9	3.8	68	6.2	0.83	0.5	S39838-d
55411	76.54	79.50	2.96	0.05	0.22	0.7	0.00025	10	43	0.05	1.31	0.8	3.1	66	3.9	0.7	0.5	S39838-d
55412	79.50	82.66	3.16	0.1	0.2	0.6	0.00025	10	40	0.2	1.48	0.1	3.5	59	6.3	0.76	0.5	S39838-d
55413	100.36	101.42	1.06	0.3	0.21	1.2	0.00025	10	34	0.05	1.51	0.4	3.2	65	26	0.78	0.5	S39838-d
55414	101.42	102.15	0.73	0.4	0.17	1.6	0.0212	10	21	0.6	1.61	1.1	3.2	142	36.6	0.72	0.5	S39836-d

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report	
55407													and getting		A 4 4 8 9					_
55405	16.46	16.70	0.24	0.005	0.02	2	0.06	0.3	0.6	0.01	3.3	0.002	1.3	0.025	0.05	0.05	0.25		S39838-d	
55406	64.50	65.90	1.40	0.005	0.17	18	0.21	4.3	0.3	0.02	6.4	0.031	15.4	0.05	0.05	0.2	0.25		S39838-d	
55408	65.90	67.30	1.40	0.01	0.18	11	0.07	2.5	0.7	0.005	6.9	0.013	9.3	0.18	0.05	0.2	0.25		S39836-d	
55409	67.30	68.54	1.24	0.005	0.2	13	0.09	3	1.2	0.005	12.4	0.024	20.6	0.12	0.05	0.2	0.25		S39836-d	
55410	68.54	70.00	1.46	0.005	0.2	18	0.21	3.8	0.4	0.018	7.2	0.032	15.8	0.09	0.05	0.2	0.25		S39838-d	
55411	76.54	79.50	2.96	0.005	0.19	21	0.14	4.5	0.4	0.022	5.6	0.029	8.9	0.06	0.05	0.2	0.25		S39838-d	
55412	79.50	82.66	3.16	0.005	0.18	20	0.16	4.5	0.4	0.026	5.6	0.028	21	0.07	0.05	0.2	0.25		S39838-d	
55413	100.36	101.42	1.06	0.005	0.19	22	0.18	4.3	0.4	0.011	5.5	0.029	11.1	0.08	0.05	0.2	0.25		S39838-d	
55414	101.42	102.15	0.73	0.005	0.13	9	0.11	1.4	0.8	0.005	5.5	0.015	19.9	0.14	0.05	0.2	0.25		S39836-d	

Resources	Ltd
-----------	-----

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	τl	U	V	W	Zn	Lab Report
				ppm	ррт	ррт	ppm	ppm	
55407									
55405	16.46	16.70	0.24	0.05	0.05	1	0.05	8	S39838-d
55406	64.50	65.90	1.40	0.05	1.1	1	0.1	96	S39838-d
55408	65.90	67.30	1.40	0.05	0.8	1	0.1	727	S39836-d
55409	67.30	68.54	1.24	0.05	1	2	0.3	470	S39836-d
55410	68.54	70.00	1.46	0.05	1.1	1	0.2	133	S39838-d
55411	76.54	79.50	2.96	0.05	1.3	1	0.2	113	S39838-d
55412	79.50	82.66	3.16	0.05	1.2	1	0.1	37	S39838-d
55413	100.36	101.42	1.06	0.05	0.9	1	0.2	56	S39838-d
55414	101.42	102.15	0.73	0.05	0.7	1	0.1	178	S39836-d

Resources Lto	1				Di	rill	lhole L	og						Units Mete
													<i>Q</i> -	Gold (Ontario) L
Province/State	C	'o-ordi	inate System			Gr	id/Proper	ty			Hole Type		Length	Date Started
Intario	U	TM N/	AD83 Canada	a Zo	one 15	Fo	ley Mine G	Grid			Exploration ho	ole	161.00	7/17/2010
District	U	TM N	lorth	U	TM East	Lo	cal Grid I	£	Loca	l Grid N	Collar Survey	Meth	od	Date Completed
enora	53	39442	4	52	5603	23	25.00		2350	.00	MNR DEM			7/19/2010
Project	U	TM E	Elevation	Az	imuth Astro. (°)	Az,	imuth Gri	d (°)	Dip ((*)	Drill Contract	tor		Date Logged
oley Mine	3	70.00		27	0.00	27	0.00		-55.0	0	C3 Drilling Co	mpan	у	
rea	C	laim I	No.	N	TS Sheet	Su	pervised 1	3y			Logged By			Verified
line Center	K	-4750	99								Richard Beard	ĺ.		
one/Prospect	A	ssessn	nent Rpt. No	. Ca	ore Storage					Plug Depth	Mat an IV-		Const	Environmental
				Fo	rt Frances Office						- Makes Wa	ter	Cappea ✓	Inspection
Core Size (1) NQ			Casing Pull	ed	Casing (1) 2.95		Steel	Plugg	ged	Pulsed	Geophysics C	ontra	ctor	Date Pulsed
(2)				Ì	(2)									
Purpose			-1		Results		3			Comments	1			
ntersect Jumbo Vein E	xtension a	and W	/est Vein Nor	th	Intersected Jumbo Vein Splay, and W	o Ve Ves	ein Extens t Vein Nor	ion, W th	′est	GPS average	collar elevation	368 r	netres	
Survey Tests														
Distance Gri Ori	id Azimuti ginal Fi	h (°) inal	Astro. Azin Original	nutl Fi	h (°) Dip (°) nal Original F	ïna	Use I Test	Su	rvey I	Method 1	Mag. Field Co (nT)	omme	nts	
155.00			264.3		-53.8		✓		Refle	ex EZ				

					Аи	Ag	Zn %	Cu	Pb %
From 10 0.00 - 2.95 OVB Overburden Casing Casing	Sample. †	<u> </u>	<u> </u>	Len.	ppm	ppm	/0	70	/0
2.95 - 24.44 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE: Medium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Quartz eyes vary from prominent to insignificant, and generally giving a vaguely porphyritic appearance to the rock. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Carbonate is finely disseminated throughout, also concentrated along hairline fractures, and typically associated with narrow qtz stringers. Some irregular patches and stringers of quartz. Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite common locally. Rare fine-grained sphalerite spots and trace galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-35 deg. Fractures smeared with chlorite and occasional fine pyrite.									
 9.51 - 11.80 9c Trondhjemite (quartz porphyritic) Pale grey and finer grained than typical. 19.53 - 19.56 QVLT Quartz Veinlets a 3 cm. wide quartz veinlet w/ reddish streaks. Trace py. Tr VG??. 									
24.44 - 24.63 QV <u>Quartz Vein</u> 5 cm. wide, reddish grey and streaky. At lower contact, a 2 cm. wide band of disseminated py (40-50% py) in the 2 cm. wide band. Contact CA=35 deg. Jumbo Vein Extension.	55389	24.44	24.63	0.19	0.015	0.7	0.005		
24.63 - 24.84 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. With a 2 cm. wide quartz veinlet at bottom.									
24.84 - 42.79 9c <u>Trondhjemite (guartz porphyritic)</u> TRONDHJEMITE.Typical. Moderately fractured @ 30-35-deg. Scattered qtz. rich sections up to 2 cm. wide. At 32.7 Intersecting fractures, CAs 18 deg & 24 deg. At 30.62, a qtz. rich section w/ a 2 cm. wide quartz veinlet, contact CA+30 deg. At 74.18, a 2 cm. wide qtz./carb veinlet.									

Lithology	T				Аи	Ag	Zn	Cu	Pb
From To	Sample	# From	То	Len.	ррт	ррт	%	%	<u>%</u>
42.79 - 43.48 F <u>Felsite</u> FELSITE DIKE w/ inclusions of trondhjemite; Pale cream coloured, very fine grained, feldspar rich, moderately fractured.									
43.48 - 61.12 9c <u>Trondhiemite (auartz porphyritic)</u> TRONDHJEMITE.Slightly more qtz. rich than typical w/ scattered narrow concentrations and narrow veinlets of qtz. Quartz-rich sections at 47.79, 50.76, 52.75-55.45. Carbonate common in the qtz. veinlets. Becomes more fine grained as the contact with the quartz rich zone below is approached. At 49.54, a fracture parallel to core axis, w/ iron carbonate seams.									
61.12 - 64.07 QRZ Quartz Rich Zone QUARTZ RICH ZONE.Irregular concentrations of qtz. in trondhjemite matrix. Distorted appearance. Mod. carb. Tr py as occasional 1 mm. crystals. Tr. sphalerite. Contacts irregular and distorted. Unclassified Vein.	55391 55392	61.12 62.23	62.23 64.07	1.11 1.84	0.05 0.015	1.2 0.6	0.13 0.04		
64.07 - 100.73 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical, ranging from light grey to dark grey, containing moderate qtz. Moderately fractured w/ CAs ranging from low to high angle. At 76.65, a low angle fracture. 100.3 a 1 cm. wide quartz veinlet. NB. Error in core footage tags found. Tags from top indicate 97.80 while tags below indicate 99.22, a 1.4 m. discrepancy.									
77.70 - 77.90 QVLT Quartz Veinlets a 2 cm. wide qtz. veinlet, massive, white, and barren looking.									
92.75 - 92.78 QVLT Quartz Veinlets a 3 cm. wide quartz veinlet. Carbonate common. <1% py as coarse xls.									
98.48 - 98.51 QVLT Quartz Veinlets a 2-3 cm. wide quartz veinlet w/ prominent carbonate along margins. Locally reddish in colour. <1% py.									
100.73 - 101.42 QV Quartz Vein									
QUARTZ VEIN. 75% qtz. w/ layers of trondhjemite. Qtz is white to pinkish and vaguely streaked with chlorite and fine py. <1% cp, <1% sphalerite. CA=33 deg. West Vein Splay.	55394 55395	100.73 101.15	101.15 101.42	0.42 0.27	0.015 0.31	1.6 16.5	0.07 0.13		
100.73 - 100.79 QV Quartz Vein a 6 cm. wide white QV w/ tr py. CA=33deg.									

Lithology					Аи	Ag	Zn	Cu	Pb
From To	<u>Sample</u> ‡	From	То	Len.	ррт	ppm	70	70	%
101.42 - 119.78 9c Trondhjemite (quartz porphyritic)									
TRONDHJEMITE.Typical. At 103.53, a <1cm. wide quartz veinlet.	55397	101.42	103.50	2.08					
110.53 - 110.56 QVLT Quartz Veinlets a 3 cm. wide quartz veinlet. Reddish streaks. Barren looking. CA=30 deg.									
113.12 - 113.17 QVLT Quartz Veinlets a 4.5 cm. wide quartz veinlet w/ slight reddish streaks. Tr py. CA=40 deg.									
113.92 - 113.94 QVLT Quartz Veinlets a 2 cm. wide white quartz veinlet. Barren,w/ some iron carbonate. CA=30 deg.									
119.78 - 120.63 QRZ Quartz Rich Zone									
QUARTZ RICH ZONE. Qtz. occurs as concentrations of qtz eyes and occasional veins in trondhjemite Quartz=40%. West Vein North	55398	119.78	120.63	0.85					
119.97 - 120.02 QVLT Quartz Veinlets									
a 5-cm. wide quartz veinlet, white and massive. <1% py as fine stringers along fine fractures. CA=50 deg.									
120.63 - 123.46 9c Trondhiemite (quartz porphyritic)									
TRONDHJEMITE. Typical, w/ prominent qtz. eyes.									
123.46 - 123.68 F <u>Felsite</u> FELSITE DIKE. Reddish and very fine grained									
123.68 - 124.12 9c Trondhjemite (quartz porphyritic)									
Trondhjemite. Typical as found 2.95 - 24.44									
12412 12426 E Esiste									
FELSITE DIKE. Reddish and very fine grained									

Lithology From To	0	E	T	T	Аи ррт	Ag	Zn %	Cu %	Pb %
from 10	Sample # 1	<u>From</u>	10	Len.	PP	pp	70	70	
 124.26 - 161.00 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. Typical w/ rare very thin qtz./carbonate veinlets. Scattered reddish sections. Little fracturing, variable CAs. 131.00 - 134.00 9c Trondhjemite (quartz porphyritic) Trondhjemite is more reddish than typical w/ larger qtz. eyes. 									
131.67 - 131.71 QVLT Quartz Veinlets a 4 cm. wide quart z veinlet. Dark grey, streaky w/ prominent iron carbonate. Barren. CA=60 deg.									

Resources	Ltd
-----------	-----

Sample From	То	Lau	22														
<u> </u>		Len.	Ag ppm	Al %	As ppm	Аи ррт	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Lab Report
55396																	
55389 24.44	24.63	0.19	0.3	0.22	7	0.0405	10	12	0.7	0.64	0.2	16.4	52	20.3	1.09	0.5	S39833-d
55390 24.63	24.84	0.21	0.05	0.28	1	0.0082	10	34	0.05	1.46	0.05	2.8	61	10	0.52	0.5	S39835-d
55391 61.12 (62.23	1.11	1.1	0.2	0.25	0.0444	10	27	2.4	1.6	12.9	3.4	191	22.3	0.99	0.5	S39833-d
55392 62.23	64.07	1.84	0.3	0.21	0.8	0.0038	10	29	0.4	1.8	1.7	4.2	279	15.3	1.33	0.5	S39833-d
55393 99.86 10	100.73	0.87	0.3	0.18	1	0.0011	10	35	0.4	1.34	1.9	2.7	65	5.3	0.61	0.5	S39835-d
55394 100.73 10	101.15	0.42	1.4	0.21	0.25	0.0254	10	32	0.5	0.6	4.8	2.7	169	154.9	0.55	0.5	S39833-d
55395 101.15 10	101.42	0.27	16.6	0.14	14.3	0.1666	10	19	3.5	0.25	10.8	12.6	124	2608.5	1.25	0.5	S39833-d
55397 101.42 10	103.50	2.08	0.1	0.17	0.9	0.0015	10	35	0.05	1.42	0.3	2.9	58	9.4	0.66	0.5	S39838-d
55398 119.78 12	120.63	0.85	0.6	0.23	1.8	0.0095	10	27	0.3	0.89	0.2	4.8	77	8.8	0.8	0.5	S39838-d

Sample	From	Тө	Len.	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Th ppm	Lab Report
55396																			
55389	24.44	24.63	0.19	0.005	0.07	8	0.31	1.7	0.5	0.005	6.8	0.018	27.2	0.63	0.05	0.1	0.25		S39833-d
55390	24.63	24.84	0.21	0.005	0.18	16	0.17	2.6	0.2	0.01	5.1	0.026	4.4	0.1	0.05	0.2	0.25		S39835-d
55391	61.12	62.23	1.11	0.05	0.19	17	0.22	3.2	0.9	0.005	7.6	0.028	118.2	0.16	0.05	0.3	0.25		S39833-d
55392	62.23	64.07	1.84	0.005	0.19	17	0.29	3.2	1.4	0.006	12.5	0.024	22.3	0.07	0.05	0.3	0.25		S39833-d
55393	99.86	100.73	0.87	0.005	0.17	18	0.18	2.9	0.4	0.012	4.6	0.026	33	0.025	0.2	0.2	0.25		S39835-d
55394	100.73	101.15	0.42	0.005	0.2	16	0.06	3.1	0.7	0.003	7.5	0.022	28.2	0.12	0.1	0.2	0.25		S39833-d
55395	101.15	101.42	0.27	0.02	0.11	7	0.04	1.6	0.6	0.002	5.9	0.008	97.2	1.05	0.2	0.1	0.25		S39833-d
55397	101.42	103.50	2.08	0.005	0.16	20	0.17	3.5	0.3	0.022	4.9	0.028	5.3	0.025	0.05	0.2	0.25		S39838-d
55398	119.78	120.63	0.85	0.005	0.15	11	0.2	1.9	0.6	0.007	5.2	0.018	34.3	0.18	0.1	0.2	0.25		S39838-d

Resources	Ltd
-----------	-----

Q-Gold (Ontario) Ltd

Sample	From	Тө	Len.	Tl	U	V	W	Zn	Lab Report
				ррт	ppm	ppm	ppm	ppm	
55396									
55389	24.44	24.63	0.19	0.05	0.9	1	0.2	37	S39833-d
55390	24.63	24.84	0.21	0.05	1	1	0.1	17	S39835-d
55391	61.12	62.23	1.11	0.05	1.2	1	0.2	1693	S39833-d
55392	62.23	64.07	1.84	0.05	1	3	0.3	246	S39833-d
55393	99.86	100.73	0.87	0.05	2.4	1	0.05	224	S39835-d
55394	100.73	101.15	0.42	0.05	2.6	1	0.1	595	S39833-d
55395	101.15	101.42	0.27	0.05	0.7	1	0.2	1263	S39833-d
55397	101.42	103.50	2.08	0.05	1.2	1	0.1	24	S39838-d
55398	119.78	120.63	0.85	0.05	1.2	1	0.1	50	S39838-d

Resources Ltd			1	Dril	llhole Lo)g				_	Units Meters
Province/State	Co-ordi	inate System		G	arid/Propert	v			Hole Type	Q- Length	-Gold (Ontario) Ltd Date Started
Ontario		AD83 Canada	Zone 15	F	oley Mine G	rid			Exploration hole	125.00	7/20/2010
District	UTM N	orth	UTM East	L	ocal Grid E	7	Loca	al Grid N	Collar Survey Met	hod	Date Completed
Kenora	539442	4	525603	2:	325.00		2350	0.00	MNR DEM		7/21/2010
Project	UTM E	levation	Azimuth Astro. (°,) A	zimuth Grid	d (?)	Dip	(?)	Drill Contractor		Date Logged
Foley Mine	370.00		270.00	2	70.00		-65.0	00	C3 Drilling Compa	ny	20052678
Area	Claim I	Vo.	NTS Sheet	S	upervised B	ly .			Logged By		Verified
Mine Center	K-47509	99							Richard Beard		
Zone/Prospect	Assessn	nent Rpt. No.	Core Storage					Plug Depth	Makes Water	Canned	Environmental
		5	Fort Frances Offic	е						∠.	
Core Size (1) NQ		Casing Pulle	d Casing (1) 2.5	D	Steel	Plugg	ged	Pulsed	Geophysics Contro	actor	Date Pulsed
(2)			(2)								
Purpose			Results					Comments			
Intersect the Jumbo Vein Exte North	ension and	d West Vein	Intersected Jum Vein Splay	bo V	/ein Extensi	on, W	'est	Drill hole inter underground o drift.	sected underground opening is likely a st	opening. H ope on the 4	ole abandoned; 400 Level Goldpanner
								GPS average	collar elevation 368	metres	
Survey Tests						~				15	

Distance	Grid Azin	nuth (°)	Astro. Aziı	muth (°)	Dip (°)	Use	Survey Method	Mag. Field	Comments
	Original	Final	Original	Final	Original Final	Test		(n T)	
119.00			266.8		-63.8	\checkmark	Reflex EZ		

Lithology					Аи	Ag	Zn	Си	Pb
From To	Sample:	# From	То	Len.	ррт	ррт	%	%	<u>%</u>
0.00 - 2.50 OVB <u>Overburden</u> Casing									
2.50 - 37.02 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITEMedium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and qtz/carb. locally.Carbonate is finely and irregularly disseminated throughout, usually associated with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 10-40 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Upper 3 m., moderate fracturing.									
 2.50 - 23.00 9c Trondhjemite (quartz porphyritic) Numerous low angle fractures, CA=10-20 deg. 33.50 - 33.74 FZ Fault Zone FAULT ZONE. Broken core. Dark & chlorite rich. 									
37.02 - 37.27 QV <u>Quartz Vein</u> QUARTZ VEIN. 10-12 cm. wide QV. Some reddish streaks. Tr py, tr sphalerite, mostly along contacts. Contact CA= 30-40 deg. Jumbo Vein Extension.	55399	37.02	37.27	0.25	0.015	3.4	0.07		
 37.27 - 51.28 9c <u>Trondhjemite (guartz porphyritic)</u> TRONDHJEMITE.37.27 – 38.44 Darker coloured than above w/ 35% qtz. eyes up to 5-6 mm. in size. Matrix more chloritic. Some widely spaced qtz. stringers. At 38.0, a 1 cm. wide qtz stringer, tr py. 38.44 - 51.28 9c Trondhjemite (quartz porphyritic) Typical trondhjemite, w/ occasional 1-3 cm. qtz. veinlets & concentrations. Quartz rich 									
sections at 41.44 – 41.62, 42.23, 44.33, 46.30. At 47.80, a low angle, qtz. filled fracture. 51.28 - 51.63 F <u>Felsite</u> FELSITE DIKE.Pale grey, very fine grained									

Lithology					Аи	Ag	Zn	Cu 0/	Ph
From To	<u>Sample</u>	# From	То	Len.	ррт	ррт	<i>7</i> 0	%	/0
51.63 - 122.10 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE. Typical. As from 2.5 to 37.02. At 54.50, Numerous low angle (10-15 deg.) fractures.									
65.78 - 68.85 9c Trondhjemite (quartz porphyritic) Paler coloured than typical.									
73.50 - 74.70 9c Trondhjemite (quartz porphyritic) Several low angle fractures. At 76.0, a lighter coloured, spotted section.									
89.65 - 89.67 QVLT Quartz Veinlets a 2 cm. wide quartz veinlet w/ chlorite streaks. Tr py. CA=36 deg. The trondhjemite adjacent to the vein has more prominent qtz. eyes.									
96.20 - 97.27 9c Trondhjemite (quartz porphyritic) darker grey in colour due to more chlorite in matrix.									
96.80 - 96.93 QVLT Quartz Veinlets a 15 cm. wide section of irregular quartz, spotty & streaky w/ chlorite & sericite. Tr py.									
121.00 - 122.10 QVLT Quartz Veinlets Widely scattered narrow qtz./carb. stringers up to 1 cm. wide.									
122.10 - 124.00 QV Quartz Vein 95% quartz. White w/ prominent dark dark chloritic streaks containing sulphides. Moderate alteration. 2-3% Py, 3% Sphalerite, <1% Chalcopyrite. CA 28-34 deg. At 123.58, a 17 cm wide section of trondhiemite. At 124.0, ground core w/ trondhiemite.	55402 55403	122.10 122.70	122.70 123.58	0.60 0.88	0.015 0.015	0.5 1.6	0.14 0.39		
NB. DRILL HOLE INTERSECTED AN UNDERGROUND OPENING. HOLE ABANDONED.	55404	123.58	124.00	0.42	0.015	1	0.02		

Reso	urces Ltd
------	-----------

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Си ррт	Fe %	Ga ppm	Lab Report
55399	37.02	37.27	0.25	3.1	0.11	2.1	0.0129	10	14	7.1	1.64	4	3.8	126	9.6	0.85	0.5	S39836-d
55400	37.27	38.44	1.17	0.1	0.19	0.25	0.00025	10	32	0.05	1.56	0.2	3	59	7	0.68	0.5	S39838-d
55401	121.00	122.10	1.10	0.1	0.2	0.8	0.0007	10	35	0.05	1.24	0.3	1.5	66	7	0.65	0.5	S39838-d
55402	122.10	122.70	0.60	0.5	0.19	1.4	0.0112	10	20	0.2	1.31	9.7	3.5	201	88.8	0.61	0.5	S39836-d
55403	122.70	123.58	0.88	1	0.17	1.7	0.0033	10	9	0.2	0.73	17.2	8.4	294	234.9	2.65	0.5	S39836-d
55404	123.58	124.00	0.42	1	0.19	0.8	0.0017	10	32	0.8	0.44	1	2.6	82	33	0.57	0.5	S39838-d

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Se	Th	Lab Report
				ppm	%	ррт	%	ррт	ррт	%	ррт	%	ррт	%	ррт	ppm	ррт	ppm	
55399	37.02	37.27	0.25	0.01	0.08	5	0.14	1.2	0.6	0.004	7.4	0.012	242.1	0.36	0.1	0.2	0.25		S39836-d
55400	37.27	38.44	1.17	0.005	0.16	18	0.15	3.7	0.3	0.016	4.8	0.026	13.8	0.08	0.05	0.2	0.25		S39838-d
55401	121.00	122.10	1.10	0.005	0.18	21	0.17	2.9	0.3	0.012	3.7	0.03	11.8	0.025	0.1	0.2	0.25		S39838-d
55402	122.10	122.70	0.60	0.06	0.12	7	0.06	0.9	0.8	0.004	5.6	0.014	26.4	0.11	0.1	0.2	0.25		S39836-d
55403	122.70	123.58	0.88	0.1	0.05	2	0.15	0.5	1.7	0.005	12.4	0.0005	18.9	0.43	0.3	0.05	0.25		S39836-d
55404	123.58	124.00	0.42	0.005	0.16	9	0.09	1.5	0.5	0.009	4.2	0.014	30.2	0.06	0.05	0.1	0.25		S39838-d

👰 R	esource	es Ltd							MG DDH Geochem	Q-Gold (Ontario) Ltd
Sample	From	То	Len.	Tl ppm	U DDM	V DDM	W DDM	Zn ppm		Lab Report
55399	37.02	37.27	0.25	0.05	10.8	1	0.1	539		S39836-d
55400	37.27	38.44	1.17	0.05	0.9	1	0.05	33		S39838-d
55401	121.00	122.10	1.10	0.05	1	1	0.05	41		S39838-d
55402	122.10	122.70	0.60	0.05	2.2	1	0.1	1340		S39836-d
55403	122.70	123.58	0.88	0.05	2.2	3	0.1	2260		S39836-d
55404	123.58	124.00	0.42	0.05	0.4	1	0.2	133		S39838-d

Resources	Ltd				D	rill	hole L	og						Units Meters
													<i>Q</i> -	Gold (Ontario) Ltd
Province/State		Co-ord	inate System			Grid/Property					Hole Typ	e	Length	Date Started
Ontario		UTM N	AD83 Canada	Zone	15	Fole	Foley Mine Grid				Exploratio	on hole	7/23/2010	
District		UTM N	orth	UTM East			Local Grid E 1			al Grid N	Collar Su	rvey Met	hod	Date Completed
Kenora	Kenora 5394391						25.00		2325	5.00	MNR DEM	N	7/23/2010	
Project	levation	Azim	uth Astro. (°)	Azi	muth Gri	d (°)	Dip	(?)	Drill Con	tractor	Date Logged			
Foley Mine	Foley Mine 371.00					270	0.00	200865	-45.0	00	C3 Drillin	g Compar		
Area		Claim .	No.	NTS	Sheet	Sup	Supervised By				Logged E	By	Verified	
Mine Center		K-4750	99								Richard E	Beard		
Zone/Prospect		Assessi	nent Rpt. No.	Core	Storage					Plug Depth				Environmental
	•	Fort F	Frances Office	6					Makes	- Makes Water		Inspection		
Core Size (1) NG		Casing Pulle	ed C	d Casing (1) 2.00		Steel Pl		ed	Pulsed	Geophysi	cs Contra	ictor	Date Pulsed	
(2)					(2)]					
Purpose				Re	sults					Comments				
Intersect West Vei	n North			Inte Vei	ersected West n Splay	Vein North and West			t	GPS averag	e collar elev	ation 367	metres	
Survey Tes	sts													
Distance	Grid Aziı Original	nuth (°) Final	Astro. Azim Original	uth (^e Final	?) Dip (°) Original F	Final	Use Test	Su	rvey	Method	Mag. Fiela (nT)	Commo	ents	
84.00			272.7		-44.8		\checkmark		Refl	ex EZ				

Lithology				-	Au	Ag	Zn %	Cu %	Pb %
	Sample	2 # From	10	Len.	ppm	ppm	70	/0	
Casing									
2.00 - 43.92 9c <u>Trondhjemite (guartz porphyritic)</u>									
TRONDHJEMITEMedium grained with finer grained section, medium to dark grey to greenish in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Quartz eyes vary from prominent to insignificant, and generally giving a vaguely porphyritic appearance to the rock.Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Carbonate is finely disseminated throughout, also concentrated along hairline fractures, and typically assoc with narrow qtz stringers. Some irregular patches and stringers of quartz.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite common locally. Rare fine-grained sphalerite spots and trace galena associated with some of the more prominent quartz veins. Scattered fractures at CA 32-60 deg. Fractures often smeared with chlorite and occasional fine pyrite. At 11.0, an irregular, 1-2 cm wide qtz veinlets. At 23.60, rusty section 20 cm wide. Moderate qtz. eyes. Moderate fracturing w/ variable CAs, especially the upper 3.5 m. Occasional thin qtz/carb, veinlets along the contact.	55415	32.07	32.30	0.23	0.015	0.9	0.04		
2.00 - 3.00 9c Trondhjemite (quartz porphyritic) Bleached section, creamy coloured & mottled appearance.									
30.00 - 30.40 9c Trondhjemite (quartz porphyritic) rusty section. Low CAs.									
32.07 - 32.30 QV Quartz Vein a 5 cm wide QV. 1% Sphalerite as specks. Tr. Galena.									
35.66 - 36.24 9i Trondhjemite, altered Mottled and altered feldspar-rich section.									
39.70 - 39.73 QCV Quartz Carbonate Vein a 3 cm wide qtz/carb vein, w/ carbonate concentrated along contacts. Tr. Sphalerite.									
43.92 - 44.98 QRZ Quartz Rich Zone QUARTZ RICH ZONE. Highly altered w/ 30% qtz eyes, concentrations, and occasional veinlets 2-4 cm wide. 3-5 % Py throughout as fine disseminations, concentrations. Layered appearance locally, w/ disseminated Py concentrations in chloritic bands. West Vein Splay.	55416	43.92	44.98	1.06	0.35	1.2	0.005		
44.98 - 74.22 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical. More chloritic near contact w/ QV below. At 46.30, Rusty w/	55417	57.50	57.80	0.30	0.015	6	0.03		

Lithology From To	Sample #	From	То	Len.	Аи ррт	Ag ppm	Zn %	Си %	Pb %
low angle fractures. 49.39 – 57.84 More qtz. rich section w/ 30-40% quartz as "eyes", concentrations, and occasional thin stringers. Tr. Py throughout.									
56.70 - 56.75 QCV Quartz Carbonate Vein a 5 cm wide section of quartz & carb. w/ 5% Py as bands & seams. CA=38-43 deg.									
57.50 - 57.80 9i Trondhjemite, altered Highly altered & chloritized.									
74.00 - 74.22 9i Trondhjemite, altered Qtz & chlorite-rich section w. 5-8% PY as tiny xls.									
74.22 - 75.19 QV <u>Quartz Vein</u> QUARTZ VEIN.White & massive w/ little streaking. Only minor alteration. CA=49-53 deg. Barren looking. West Vein North	55420	74.22	75.19	0.97	0.015	0.9	0.005		
75.19 - 84.00 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical									

	Resources	Ltd
--	-----------	-----

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Ag	Al	As	Au	В	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Lab Report
				ррт	%	ррт	ррт	ррт	ppm	ppm	%	ррт	ppm	ррт	ррт	%	ррт	
55418																		
55415	32.07	32.30	0.23	0.2	0.13	0.7	0.0007	10	22	0.1	3.51	2.3	1.4	121	3.3	0.76	0.5	S39836-d
55416	43.92	44.98	1.06	0.5	0.24	25	0.2257	10	40	1.4	1.44	0.1	10.1	254	13.7	1.63	0.5	S39836-d
55417	57.50	57.80	0.30	5.1	0.34	0.7	0.0221	10	31	10.8	1.69	1.2	11.3	57	32.9	2.37	0.5	S39838-d
55419	74.00	74.22	0.22	0.2	0.21	0.6	0.0131	10	34	0.3	1.22	0.2	4.3	61	18	0.8	0.5	S39838-d
55420	74.22	75.19	0.97	0.6	0.03	0.25	0.0027	10	4	0.9	0.09	0.2	0.5	120	3.9	0.22	0.5	S39841-d
55421	75.19	75.60	0.41	0.1	0.24	0.25	0.003	10	38	0.1	1.38	0.2	4.6	67	19.7	0.62	0.5	S39841-d

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	То	Len.	Hg	K	La	Mg	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Se	Th	Lab Report
				ppm	%	ррт	%	ppm	ррт	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	
55418																			
55415	32.07	32.30	0.23	0.005	0.13	15	0.16	2.9	0.5	0.008	3.1	0.022	158.7	0.025	0.1	0.3	0.25		S39836-d
55416	43.92	44.98	1.06	0.005	0.24	11	0.21	3.1	1.1	0.006	10.8	0.021	14.3	1	0.05	0.3	0.25		S39836-d
55417	57.50	57.80	0.30	0.005	0.16	12	0.09	5.1	1.1	0.008	12.2	0.028	177.7	1.58	0.05	0.2	0.25		S39838-d
55419	74.00	74.22	0.22	0.005	0.17	12	0.14	2.6	1.2	0.007	6.1	0.019	27.1	0.19	0.2	0.2	0.25		S39838-d
55420	74.22	75.19	0.97	0.005	0.01	1	0.005	0.1	1.9	0.004	2.9	0.0005	34.2	0.025	0.05	0.05	0.25		S39841-d
55421	75.19	75.60	0.41	0.005	0.22	24	0.08	4.1	0.6	0.009	7.6	0.029	11.7	0.2	0.2	0.2	0.25		S39841-d

Re Re	sources	Ltd				
Sample	From	То	Len.	Tl	U	V

MG DDH Geochem

Q-Gold (Ontario) Ltd

Sample	From	Тө	Len.	Tl DDM	U	V	W	Zn	Lab Report
55418				Ppm	PPm	PPm	Ppm	ppm	
00110									
55415	32.07	32.30	0.23	0.05	1.2	1	0.05	314	S39836-d
55416	43 92	44 98	1.06	0.05	15	2	03	23	S39836-d
00110	10.01		1.00	0.00		-	0.0		
55417	57.50	57.80	0.30	0.05	2.1	1	0.3	284	S39838-d
55419	74.00	74 22	0.22	0.05	12	1	0.2	36	538892 S
55415	74.00	14.22	0.22	0.00	1.2		0.2	50	50500-4
55420	74.22	75.19	0.97	0.05	0.05	1	0.05	24	S39841-d
	18 18-18-19-19-19-19-19-19-19-19-19-19-19-19-19-		1.1.1.1.1.1	64.6.5		63		10000	
55421	75.19	75.60	0.41	0.05	1.1	1	0.2	26	S39841-d

Resources	Ltd					Dri	llhole L	og					Units Meter	
											_	Q	-Gold (Ontario) L	
Province/State		Co-ord	inate System	į.		0	Grid/Proper	ty			Hole Type	Length	Date Started	
Ontario		UTM N	AD83 Canada	a Zo	one 15	F	oley Mine	Grid			Exploration hole	119.00	7/24/2010	
District		UTM N	lorth	U	TM East	L	Local Grid E Loca			l Grid N	Collar Survey M	lethod	Date Completed	
Kenora		539439	1	52	5577	2	325.00		2325	.00	MNR DEM		7/25/2010	
Project		UTM E	Elevation	Az	imuth Astro	o. (°) A	Azimuth Grid (?) L			~)	Drill Contracto	Date Logged		
oley Mine		371.00		27	0.00	2	70.00		-60.0	0	C3 Drilling Com			
1rea		Claim 1	No.	N	TS Sheet	S	upervised	By			Logged By		Verified	
line Center		K-4750								Richard Beard				
Zone/Prospect		Assessr	nent Rpt. No	. <i>Ca</i>	ore Storage					Plug Depth	Makes Wate	r Capped	Environmental Inspection	
				Fo	ort Frances (Office								
Core Size (1) NQ			Casing Pull	ed	Casing (1)	2.00	Steel	Plugged		Pulsed	Geophysics Con	tractor	Date Pulsed	
(2)				Ì	(2)									
Purpose					Results	1				Comments				
ntersect West Veir	n North			,	Intersected Vein Splay	West Ve	ein North ai	nd Wes	st	GPS average	collar elevation 3	67 metres		
Survey Tes	ts													
Distance	Grid Azin Original	nuth (°) Final	Astro. Azin Original	nuth Fi	h (°) D nal Origi	hip (°) nal Fin	Use al Test	Su	rvey l	Method	Mag. Field Con (nT)	iments		
119.00	(V2)-		277.2		-58.	9	\checkmark		Refle	ex EZ				

Lithology						Аи	Ag	Zn	Cu	Pb
From To		Sample	# From	То	Len.	ррт	ррт	%	%	%
0.00 - 2.00	OVB <u>Overburden</u> Casing									
2.00 - 37.94	9c Trondhjemite (quartz porphyritic) TRONDHJEMITE Medium grained with finer grained section, medium to dark grey in colour, composed of plagioclase & quartz grains and eyes up to 0.4 cm, in a fine grained, dark grey matrix. Vaguely prophyritic appearance largely due to the quartz eyes. Generally only weakly foliated. Moderately altered with sericite, chlorite, and slight carbonate. Irregular patches and veinlets of quartz and qtz/carb. locally.Carbonate is finely and irregularly disseminated throughout, usually assoc. with quartz veinlets and along hairline fractures.Scattered blebs & xls (+ 1 to 3 mm) and thin stringers of pyrite scattered throughout. Rare fine to coarse-grained sphalerite and galena associated with some of the more prominent quartz veins. Scattered fractures at CA 30-50 deg. Fractures often smeared with chlorite and occasionally with fine pyrite. Rare thin qtz, and qtz/carb veinlets. Slightly to moderately fractured, often w/ low core angles. Above 5.0, scattered sections of broken core. Above 8.0 and from 26.0 to 30.0, several mottled appearing, light creamy coloured sections, coarse grained and feldspar rich.									
37.94 - 39.20	F <u>Felsite</u> FELSITE DIKE.Cream coloured to pinkish, very fine grained and altered. Numerous chlorite-filled hairline fractures.									
39.20 - 71.18	9c Trondhiemite (quartz porphyritic) TRONDHJEMITE.Typical, as above. Slight fracturing, CA=50-60 deg. Between 47.0 – 54.5 widely scattered thin qtz. & qtz/carb. stringers up to 1 cm wide. Also stringers of chlorite. CA=58 deg. Tr. fine Py. Tr. fine sphalerite.									
71.18 - 71.49	QV Quartz Vein QUARTZ VEIN.White to creamy coloured w/ moderate carbonate as spots & segregations in the vein. Bands and inclusions of trondhjemite make up about 20% of the section. Contact CA=20 deg. Tr. Py. Tr. sphalerite (?). West Vein Splay.	55422	71.18	71.49	0.31	0.015	1.3	0.01		
71.49 - 98.98	9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical. Minor qtz./carb. veinlets. Tr. Py throughout. Below 77.0, blue qtz. eyes more prominent.									

Lithology From To	Sample #	From	То	Len.	Аи ррт	Ag ppm	Zn %	Cu %	Pb %
94.20 - 94.55 QVLT Quartz Veinlets Two narrow (2-5 cm wide) quartz veinlets. Streaky with chlorite. Trace fine Py, mostly in the trondhjernite at contacts with qtz									
98.98 - 99.46 QV <u>Quartz Vein</u> QUARTZ VEIN. Massive, white & vitreous w/ only minor alterations & streaking. Tr. Py.	55423	98.98	99.46	0.48	0.015	0.1	0.005		
99.46 - 114.22 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical, as from 2 – 37.94									
114.22 - 114.55 F <u>Felsite</u> FELSITE DIKE.Red & very fine grained; CA=46 deg.									
114.55 - 119.00 9c <u>Trondhjemite (quartz porphyritic)</u> TRONDHJEMITE.Typical, as from 2 – 37.94									

Re Re	esource	es Ltd	Ĺ						MG.	DDH		Q-Gold (Ontario) Ltd						
Sample	From	То	Len.	Ag ppm	Al %	As ppm	Au ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Lab Report
55422	71.18	71.49	0.31	0.4	0.16	0.6	0.00025	10	21	0.7	5.37	0.2	5.3	103	16	1.39	0.5	S39839-d
55423	98.98	99.46	0.48	0.05	0.07	0.25	0.0026	10	11	0.05	0.21	0.1	0.7	114	3.5	0.24	0.5	S39841-d

Res	ources	Ltd							MG DDH Geochem								Q	Q-Gold (Ontario) Ltd		
Sample	From	То	Len.	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Se	Th	Lab Report	
				ppm	%	ррт	%	ррт	ррт	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm		
55422	71.18	71.49	0.31	0.005	0.11	8	0.34	2.1	0.4	0.01	6.2	0.019	24.7	0.12	0.05	0.5	0.25		S39839-d	
55423	98.98	99.46	0.48	0.005	0.05	4	0.005	0.3	0.6	0.006	3.4	0.004	1.9	0.025	0.05	0.05	0.25		S39841-d	

🗶 Re	esource	es Ltd							MG DDH Geochem	Q-Gold (Ontario) Ltd
Sample	From	То	Len.	Tl	U	V	W	Zn		Lab Report
				ррт	ррт	ррт	ppm	ppm		
55422	71.18	71.49	0.31	0.05	1.1	1	0.3	42		S39839-d
55423	98.98	99.46	0.48	0.05	1.4	1	0.05	30		S39841-d