63.4803

2F095W8297 63.4803 MELGUND

010

GEOLOGY AND SOIL GEOCHEMISTRY SURVEYS OF THE ROWAN LAKE PROPERTY DISTRICT OF KENORA 1985

for

Silver Lake Resources Inc. Suite 2550, P.O. Box 77 Toronto Dominion Centre Toronto, Ontario M5K 1E7

OH 85 - 3 - C - 69

December, 1985

Rowan Lake Area District of Kenora NTS: 52F/5

LORNE BURDEN

Table of

Ø10C

44444444

			rage
SUMMARY		,	i
INTRODUCTION			1
Location and Ac	Cess		1
Property			1
Topography and	Vegetation		Ĺ
zopography and	· cgccución		7
HISTORY AND PREVIOUS	S WORK		4
CURRENT EXPLORATION			5
GEOLOGY			6
Regional Geolog	<u>зу</u>		6
Property Geolog	ЗУ		6
Stratigraphy an	nd Lithology		8
Economic Geolog	5.y		9
SOIL GEOCHEMISTRY			10
STRIPPING AND DETAIL	LED SAMPLING		10
CONCLUSIONS AND RECO	OMMENDATIONS		10
ESTIMATE OF COSTS			12
REFERENCES			13
APPENDIX 1	Table #1	Rock Grab Samples	
- APPENDIX 2		Soil Geochemical Results	
APPENDIX 3	Table #2	Detailed Rock Sampling	
APPENDIX 4		Outcrop Geology Maps: Figures 4	-13
		List of Maps and Figures	
Fig. 1	LOCATION MAD		n
	CIATM INDEX		2 3
$\mathbf{F}_{\mathbf{F}}$	DECIONAL CEC		7
Fig 4		$\int \partial C \mathbf{Y} = 1 3 + 7 0 \mathbf{y} = 1 4 + 7 0 \mathbf{y} = 5 + 4 0 \mathbf{y} = 7 + 0 0 \mathbf{y}$	Annondix /
F10 5	OUTCROP GEOL	1001 13770W = 14770W, 0740N = 7700N	Appendix 4
Fig. 6	OUTCROP GEOI	1001 141000, 171500 101500	Appendix 4
Fig. 7	OUTCROP GEOL	1001 91000 914000 17400 17400 184400	Appendix 4
Fig. 8	OUTCROP GEOI	20001 + 0000 + 00000, 17 + 9000 + 10 + 4000 + 000000	Appendix 4
Fig. 9	OUTCROP GEOI	2001 + 200 - 2 + 000 + 31 + 700 + 200 +	Appendix 4
F1g. 10	OUTCROP GEOL	OGY 3+40E-4+20E 33+20N-33+60N	Appendix 4
Fig.11	OUTCROP GEOI	LOGY 6+25E, 34+00N	Appendix 4
Fig.12	OUTCROP GEOI	LOGY 6+00E, 35+00N-36+25N	Appendix 4
Fig.13	OUTCROP GEOI	LOGY 6+00E, 36+70N-37+00N	Appendix 4
Fig. 14	OUTCROP GEOL	LOGY 30+50E-32+50E. 21+25N-23+75N	Map Pouch
Map 1	PROPERTY GEO	DLOGY	Map Pouch
Map 2	SOIL GEOCHEM	1ISTRY	Map Pouch
Map 3	COMPILATION		Map Pouch

SUMMARY

The 25 claim Rowan Lake property in which Silver Lake Resources Inc. have earned a 50% interest from Del Norte Chrome Corporation is located on the southwestern end of Rowan Lake. The property is underlain by an Early Precambrian easterly trending sequence of metamorphosed mafic to felsic flows pyroclastic rocks intruded by mafic to intermediate dykes and sills, and the granitic Nolan Lake Stock.

The property is on strike with three significant, recently outlined gold deposits. Nuinsco Resources' Monte Cristo property, which adjoins the Rowan Lake Property on the east, is host to the recently drilled Monte Cristo, and Victor Island deposits. The Nuinsco-Lockwood Petroleum Cameron Lake property, located 5 miles to the west, is the site of the Cameron Lake deposit currently indicated to contain 2,000,000 tons of material grading in excess of 0.10 oz/ton gold. Shear zones containing the deposits have been traced onto the Rowan Lake property.

Echo Bay Mines Ltd. has recently negotiated an agreement whereby they can earn a 36% interest in Nuinsco Resources Ltd. by expending \$4,350,000 on exploration and development of the Cameron Lake and Rowan Lake properties. Echo Bay also has the right to increase its interest in Nuinsco Resources to 50.1% by purchasing Nuinsco treasury shares.

Recent work on the property includes airborne V.L.F.E.M. and magnetometer surveys, ground V.L.F.E.M., magnetometer, and I.P. Surveys, as well as 3867 feet of diamond drilling. During the early summer of 1984, prelminary geological and soil geochemical surveys were completed.

In the autumn of 1985, the property was subject to detailed geological and soil geochemical surveys over anomalous areas as outlined by previous surveys. Several of the zones are similar in appearance to the alteration zone hosting the Cameron Lake deposit. Eleven zones were manually stripped and sampled in detail. Seven zones were found to contain anomalous gold values. During the winter a 4 hole, 2000 foot drill programme at a cost of \$50,000 is recommended to test three of these targets.

The Monte Cristo shear zone within which both the Victor Island and Monte Cristo gold deposits occur has been traced west beneath Sullivan Bay onto the Rowan Lake property by diamond drilling. A \$77,000 programme of reverse circulation overburden drilling and basal till sampling has also been recommended over the extension of this gold bearing shear zone to assist in defining future diamond drill beneath Sullivan Bay. Table of Contents

			Page
SUMMARY			i
INTRODUCTION			1
Location and Ac	cess		1
Property			1
Topography and	Vegetation		4
HISTORY AND PREVIOUS	WORK		4
CURRENT EXPLORATION			5
GEOLOGY			6
Regional Geolog	у		6
Property Geolog	y 		6
Economic Geolog	y Lithology		8 9
SOIL GEOCHEMISTRY			10
STRIPPING AND DETAIL	ED SAMPLING		10
CONCLUSIONS AND RECO	MMENDATIONS		10
ESTIMATE OF COSTS			12
REFERENCES			13
APPENDIX 1	Table #1	Rock Grab Samples	
- APPENDIX 2		Soil Geochemical Results	
APPENDIX 3	Table #2	Detailed Rock Sampling	
APPENDIX 4		Outcrop Geology Maps: Figures 4-	13
		List of Maps and Figures	
Fig. 1	LOCATION MAP		2
Fig. 2	CLAIM INDEX		3
Fig. 3	REGIONAL GEO	LOGY	7
Fig. 4	OUTCROP GEOL	OGY 13+70W-14+70W, 6+40N-7+00N	Appendix 4
Fig. 5	OUTCROP GEOL	OGY = 14+00W, $1/+90N-18+30N$	Appendix 4
F1g. 6	OUTCROP GEOL	OGY 9+00W-9+40W, 31+50N-31+90N	Appendix 4
F1g. /	OUTCROP GEOL	0GY + 60W - 9 + 00W, 17 + 90N - 18 + 40N = 00W + 6 + 60W - 24 + 60W - 24 + 60W = 24 + 90N	Appendix 4
F1g 9	OUTCROP GEOL	OCY 1+20W-2+00W 31+70N	Appendix 4
F_{1g}	OUTCROP GEOL	OGY 3+40E-4+20E 33+20N-33+60N	Appendix 4
F10.11	OUTCROP GEOL	OGY 6+25E. 34+00N	Appendix 4
Fig.12	OUTCROP GEOL	OGY 6+00E, 35+00N-36+25N	Appendix 4
Fig.13	OUTCROP GEOL	OGY 6+00E, 36+70N-37+00N	Appendix 4
Fig.14	OUTCROP GEOL	OGY 30+50E-32+50E, 21+25N-23+75N	Map Pouch
Map l	PROPERTY GEO	LOGY	Map Pouch
Map 2	SOIL GEOCHEM	ISTRY	Map Pouch
Map 3	COMPILATION		Map Pouch

The Rowan Lake property is underlain by Early Precambrian metavolcanic rocks and actually straddles a major transition in the volcanic rock chemistry from tholeiitic to mixed calcalkaline and tholeiitic. This boundary between oceanic volcanics and an overlying stratovolcano is typically the locus of many Early Precambrian gold deposits.

Gold deposits recently explored on the nearby Cameron Lake and Monte Cristo properties are contained within altered shear zones which also appear to underlie the Rowan Lake property. Chances for the occurrance of similar gold mineralization on the Rowan Lake property are excellent.

Detailed geological mapping, stripping and both detailed rock and soil sampling were conducted from September 2 to October 23, 1985 for Silver Lake Resources Inc. The surveys emphasized the evaluation of suspected altered mineralized shear zones which had been outlined by previous surveys. Results of this work are presented in this report.

Location and Access

The property is located approximately 20 miles northeast of the town of Nestor Falls on Highway 71, and approximately 55 miles southeast of Kenora, Ontario (Figure 1). The property straddles Sullivan Bay on Rowan Lake, and several smaller bays and scattered islands (Figure 2).

Access is provided by float equipped fixed wing aircraft available in Nestor Falls. A winter ice road is maintained to Nuinsco's Cameron Lake and Monte Cristo camps as well as the tourist camps situated on Rowan Lake. Presently, Nuinsco Resources is constructing an all-weather road to the Cameron Lake camp, and it is expected to be completed in late 1985.

Rowan Lake Lodge, located approximately 1 1/4 miles north of the property, is equipped with a radio telephone.

Property

The Rowan Lake property was staked by a prospecting syndicate which recorded the claims on January 6, 1983. Subsequently, Del Norte Chrome Corporation purchased the property for 200,000 common shares of Del Norte and 3% net smelter royalty.

In early 1984, Silver Lake Resources Inc. acquired an option and has subsequently earned a 50% interest in the property. The group comprises twenty-five contiguous unpatented mining claims:

K 690678 - K 690681 inclusive, K 690692 - K 690695 inclusive, K 690699 - K 690701 inclusive, K 690790 - K 690800 inclusive, K 690757, K690783 and K 690788.

Over 200 days assessment has been applied to each claim prior to the present study to keep the claims in good standing until January 6, 1989.

LOCATION MAP

FIG. 1

•

the state of the s

ropography and Vegetation

Approximately half of the property is covered by portions of Rowan Lake. The half mile wide, east-west trending Sullivan Bay portion, is up to 100 feet deep with 20 to 40 feet of clay and silt deposits. The land portions of the property are approximately bisected by Sullivan Bay. Outcrop is most abundant on the northern peninsula where a series of northeasterly trending ridges of outcrop are separated by low cedar swamps with a local relief of approximately 60 feet. Ridge tops tend to be pine covered with spruce covering hillsides. Shoreline outcrop is well exposed on the northern peninsula.

The southern half of the property has a local relief of 110 feet. The surface rises gently from an alder and manitoba maple vegetated low on Sullivan Bay to a high spruce and pine covered ridge on the south boundary of the property. Several low outcrops are scattered throughout this area. Rock exposure is poor along the south shoreline of Sullivan Bay.

HISTORY AND PREVIOUS WORK

The Rowan Lake area was originally mapped by Burwash (1933) and Thompson (1935, 1938) at a scale of 1 inch to 1 mile. Mapping by Johnson (1960) at 1 inch to 1/2 mile, and Davies (1967), 1 inch to 1/2 mile includes part of the Rowan Lake area. Most recently, Kaye (1973), mapped the area at a scale of 1 inch to 1/2 mile.

Gold exploration has been carried out sporadically in the Kenora-Rowan Lake areas since the turn of the century, and for base metals since the 1950's. A number of small gold mines were opened up in the early 1900's, but no major deposits were outlined. In 1960, two prospectors working for Noranda Mines discovered gold near Cameron Lake. Noranda drilled the property in 1960-61 and again with a second drill programme in 1974 under an option agreement with Zahavy Mines Ltd. Nuinsco Resources acquired the property in 1980 and have since that time successfully outlined reserves of 2 million tons grading better than 0.10 oz Au per ton. This deposit lies approximately 5 miles southwest of, and along strike with the Rowan Lake property.

The Monte Cristo and Victor Island deposits occur respectively 4500 and 8400 feet east of the Rowan Lake property. Gold was first reported to occur in a strong shear zone on the Monte Cristo claim in 1899. In 1931, due to lower water levels, the gold bering shear zone was exposed over width of 20 feet and traced for over one mile. Nuinsco Resources acquired the claims surrounding the showings and have obtained encouraging results during their 1983, 1984, and 1985 drill programmes (i.e., drill hole NM 25 cut 42.6 feet of 0.27 oz per ton Au, [Northern Miner Press, April 12, 1984]).

During the 1985 programme, two small trenches were located on the property as well as a number of old claim posts. However, a search of the Toronto assessment files revealed that no assessment work had been filed on the property prior to its recent acquisition.

A baselines has been established on the property trending at N75°E with perpendicular compass lines cut at 400 foot intervals.

Preliminary geological mapping and soil sampling were conducted over an eleven day period in June 1984. A four hole 3080 foot drill programme was undertaken in early 1985. The results of the above mentioned programmes are summerized in Burden 1985a and 1985b.

CURRENT EXPLORATION

Aerodat airborne Magnetometer and V.L.F.E.M. surveys were conducted in late 1983 on behalf of Del Norte Chrome Corp. Upon acquisition of its option in 1984, Silver Lake Resources Inc., commissioned ground V.L.F.E.M., Magnetometer, and Induced Polarization surveys. In April 1984, Silver Lake Resources Inc. and Nuinsco Resources drilled a joint venture hole on their common boundary in Sullivan Bay in an effort to extend the known length of the Monte Cristo and Victor Island shear zones. Anomalous gold mineralization coincident with shearing was located in a similar stratigraphic setting. The above mentioned work was previously summarized in a report by Goodwin (1984).

A baseline has been established on the property trending at N75°E with perpendicular compass lines cut at 400 foot intervals.

Preliminary geological mapping and soil sampling were conducted over an eleven day period in June 1984. A four hole 3080 foot drill programme was undertaken in early 1985. The results of the above mentioned programmes are summarized in Burden 1985a and 1985b.

An additional 3.37 miles of grid line was cut in total on both the north and south shores of Sullivan Bay in the early fall of 1985. These lines were cut over anomalous areas as defined by previous surveys so that a better definition of these anomalies could be found.

Detailed geological mapping and soil sampling were conducted from September 3 to October 23, 1985. Soil samples were taken of B horizon, where possible at 25 foot intervals over anomalous zones as defined by previous surveys. Approximately 441 samples have been analysed.

Geological mapping was conducted along picket lines and shorelines. Outcrop locations were recorded on field work sheets; foliations, textural and compositional variations, alteration and mineralization were noted in the field. The results of these observations are recorded on geological and geochemical maps in the back pocket of this report. In addition to geological mapping and soil sampling, ten outcrops were manually stripped and washed off with a Wajax Mark 3 fire pump. Local grids were established over each outcrop and outcrops were sampled in detail. The results of this work is presented on sketch maps located in the back pocket of this report.

GEOLOGY

Regional Geology

Rowan Lake is near the western extremity of the Early Precambrian, Savant Lake-Crow belt of metamorphosed volcanic and sedimentary rocks (Figure 3). This wide belt of metamorphosed mafic to felsic flows and associated pyroclastic rocks is intruded by near-comformable dykes and sills of gabbro and quartz-feldspar porphyry. The Nolan Lake Stock, dominantly composed of quartz monzonite, intrudes the volcanic sequence south of Rowan Lake. Metamorphism is dominantly lower to upper greenschist facies. An aureole of amphibolite grade metamorphism, encircles the granitic intrusion.

Property Geology

During the Early Precambrian a composite mafic to felsic volcanic sequence containing subvolcanic instrusions and minor cherty interflow sediments was deposited on the Rowan Lake property. Partially coincident with the intrusion of the Nolan Lake granitic body, to the south, the rocks were rotated on end and regionally metamorphosed to the greenschist facies. Rocks in close proximity to the Nolan Lake stock are metamorphosed to amphibolite facies and locally are hornfelsic.

At this time also, it is believed, shear zones chiefly along flow boundaries or within certain rock units were formed roughly comformable to the existing primary trend. These zones were carbonatized and mineralized and in some places injected with gold bearing solutions.

Stratigraphy and Lithology

The rocks on the property are dominated by massive and pillowed mafic flows. Facing determinations from pillow shapes and grain gradation suggest a south facing homoclinal sequence on the property dipping steeply south to steeply north.

Mafic metavolcanic flows are fine to medium grained, greyish green to dark green on the weathered surface and dark green on the fresh surface. Magnetic attraction is weak, but a faint foliation is evident trending at S80°W and dipping steeply north. Individual flows are characterized by phenocrysts, amygdules, pillows or massive textures and are traceable for thousands of feet.

Mafic tuff is dark green to black on the weathered surface and dark green on fress surfaces. The rock is fine grained with fissile foliation which readily cleaves. The rock generally consists of fine ash but this may locally grade a lapilli tuff and tuff breccia with the fragments being felsic in composition.

Mafic to intermediate flows, which appear to be of calcalkaline affinity, are greyish on the weathered surface and light green on the fresh surface, aphanitic to fine grained and occasionally porphyritic, massive to weakly foliated, and have no magnetic attraction. In the porphyritic variety white feldspar laths comprise up to 5% of the rock and are up to 0.1 inches long. Frequently, barren white quartz veins and veinlets occur within joints in this rock unit.

Intermediate pyroclastic rocks include tuff, lapilli tuff, and tuff breccia. Although these are frequently interbedded and/or occur with massive flow units, one significant tuff breccia forms a continuous unit underlying the property north of Sullivan Bay. The tuff and lapilli tuffs are grey and light greyish green to buff on weathered and fresh surfaces respectively. Lapilli are aphanitic and ash is fine grained. Locally graded bedding occurs in 2 inch to 4 foot beds and fines from a coarse sand bottom to a clay sized top. Tuff breccia is light greyish tan on the weathered surface with fresh surfaces having very light green fragments in a dark green matrix. Fragments are aphanitic comprising 30% of the rock. The matrix is aphanitic but contains a higher percentage of mafic minerals. Fragments are usually 3 to 4 inches long, and rarely are up to 1 foot long. Pyrite normally occurs in trace amounts.

Felsic pyroclastic rocks include lapilli tuff and tuff breccia. These units are interbedded with intermediate pyroclastic rocks. Lapilli tuffs and tuff breccia are light grey light greyish green on weathered and fresh surfaces respectively. Lapilli, breccia fragments and matrix material are aphanitic and appear cherty.

Fragments comprise up to 70% of the rock and are usually 3 to 4 inches long, rarely are they up to 2 feet long. Pyrite normally occurs in trace amounts and chalco pyrite has been identified in some locations.

Chert horizons form 2 to 10 foot thick units associated with tuffs throughout the strata underlying the property. The chert is light grey to light greyish green on weathered and fresh surfaces respectively, aphanitic, thinly laminated to very thinly bedded and unmineralized, with a conchoidal fracture. A large gabbro sill and several smaller lenticular gabbro bodies are scattered through the volcanic stratigraphy. The gabbros tend to be massive, medium to fine grained, equigranular, green on weathered surface, with subhedral to euhedral black amphibole and green-white plagioclase laths. Locally, the gabbro is magnetic and slightly foliated. Trace amounts of fine grained disseminated pyrite occur ubiquitously.

Quartz-feldspar porphyry dykes were found cross-cutting the regional trend in a north-south direction. One dyke was found intruding a gabbro indicating that emplacement was late in the geologic history of the area. The rock is light grey and buff on weathered and fresh surfaces respectively. The porphyry is medium grained, massive, lacking foliation and magnetic attraction. Phenocrysts of glassy quartz and white feldspar are generally 0.1 to 0.15 inches in size and found in a fine grained to aphanitic matrix. Dykes range in width from five to twenty feet and contain trace amounts of disseminated pyrite.

The Nolan Lake Stock, a large granitic body consisting primarily of quartz monzonite, intrudes the metavolcanic sequence near the southern boundary of the property. The rock is pinkish red and greyish pink on fresh and weathered surfaces respectively, massive, medium grained, and lacks foliation. Xenoliths of mafic volcanics up to 2 feet in diameter occur within the 100 foot border phase of the pluton. Trace amounts of disseminated pyrite occur in the quartz monzonite.

Economic Geology

A total of 151 rock grab samples were collected while mapping and assayed for gold. The results of the analyses including sample locations and descriptions are listed in Table 1 (Appendix 1).

Twenty-eight of the grab samples yeilded significant gold values i.e. greater than 70 ppb. All but eight sample locations having significant gold values have had substantial follow up work such as detailed sampling and stripping completed upon them. The result of this work is reported elsewhere within this report.

SOIL GEOCHEMISTRY

In conjunction with geological mapping, a detailed soil geochemical survey was conducted over selected portions of the Rowan Lake property. Samples were collected of the B soil horizon at 25 foot intervals along each line over anomalous zones as defined by previous surveys.

Organics and A horizon soils were scraped off the sample location using a grub hoe, and fist size samples of B hoizon soil were placed in to numbered paper sample bags. The samples were then dried, and sent for analysis to Swastika Laboratories Limited in Swastika, Ontario. A total of 441 samples were analysed.

Swastika Laboratories screened the samples to -80 mesh, selected 10 gram portions of this fraction and produced a dore bead. The dore beads were in turn redissolved into solution with aqua-regia and then tested for gold by atomic absorption.

It was determined by a previous survey that background soil gold values over the Rowan Lake property are 3.54 ppb and truly anomalous values are those above 17.7 ppb (Burden 1985a).

The analytical results are tabulated in Appendix 2, and presented on Map 2.

STRIPPING AND DETAILED ROCK SAMPLING

A programme of stripping and detailed rock sampling was conducted in conjunction with geological mapping during the fall of 1985. Eleven zones of interest were selected for stripping and sampling.

The results of the analyses including sample locations and descriptions are listed in Table 2 (Appendix 3), and presented on Maps 3 to 13 located in the back pouch of this report.

CONCLUSION AND RECOMMENDATION

A strong linear magnetic anomaly is continuous across Nuinsco Resources' Monte Cristo property and water covered portions (Sullivan Bay) of the Rowan Lake property. This magnetic anomaly correlates with several parallel gabbro sills which outcrop across the Monte Cristo property and on the south shore of Sullivan Bay, on the Rowan Lake property.

The magnetic anomaly on the Monte Cristo property trends parallel to and abuts the southern margin of the gold bearing Monte Cristo shear zone. Diamond drilling along the common boundary between the Rowan Lake and Monte Cristo properties confirms the extension of the Monte Cristo shear zone and parallel gabbroic intrusions onto the Rowan Lake property. However, there is some indication that the shear zone may veer away from the magnetic gabbro at an acute angle.

It is recommended that a systematic programme of reverse circulation overburden drilling and basal till sampling be complete over the entire projected extension of the Monte Cristo shear zone across the Rowan Lake property. Results obtained from this survey should assist in defining future drill targets beneath Sullivan Bay. On the northern land portion of the Rowan Lake property, a 500 foot wide zone of multipule subparallel ankerite altered shear zones trends easterly between lines 4+00W and 32+00W within massive and pillowed mafic flows, on the northern border of a gabbro sill.

At 34+50N on line 6+00W one mineralized shear zone 25 feet thick has been exposed. Bounded by chlorite alteration, the zone contains thin subhorizontal quartz-feldspar veins, 1-3% pyrite, rusty ankerite alteration and minor green mica. Anomalous gold soil geochemical values of 645 and 260 ppb respectively were obtained from samples on lines 6+00W at 34+50N. I.P. anomalies are located at 34+00N on line 12+00W and 33+00N on line 8+00W.

Additional stripping, rock and soil sampling at 34+50N on line 6+00W suggests that the possible source for this geochemical anomaly occurs in a low lying area immediately to the north. A drill hole collared at 35+50N on line 6+00W will be drilled grid south at 45° for a length of 425 feet would test the presumed source of the geochemical anomaly and intersect the extension of the I.P. anomaly from line 8+00W.

Easterly trending massive and pillowed mafic flows and mafic tuffs are intruded by gabbro and quartz feldspar porphyry between lines 2+00W and 36+00E between 24+00N and 28+00N. Between the intrusives an intensive ankerite altered zone up to 100 feet thick transects the various volcanic units and gabbro. Green mica, cubic pyrite, and minor quartz venlets occur within this zone. Boundaries on the unit are gradational.

A strong gold soil geochemical anomaly coincident with the intensive ankerite altered zone occurs between line 2+00W and 10+00E at approximately 28+00N. An I.P. anomaly runs parallel to this anomalous zone between lines 0+00 and 8+00E at approximately 30+00N. Neither the source for the soil geochemical anomaly or I.P. anomaly have been identified by prospecting methods. A drill hole to be collared at 30+50N on line 8+00E will be drilled grid south at 45° for a length of 565 feet to transect the source of both anomalies.

A third drill hole will be collared at 24+00N on line 32+00E and drilled grid south at 45° for a length of 425 feet will test the eastern portion of the intensely ankeritized alteration zone. This portion of the alteration zone has sparatic soil geochemical anomalies, geochemically anomalous rock, and an associated I.P. anomaly.

A fourth drill hole will be drilled from the ice to test any positive results obtained from the reverse circulation drilling programme.

A zone of quartz veining with minor pyrite mineralization occurs on a cliff face in intermediate lapilli tuff at 6+50N and 14+20W. A series of subparallel, subhorizontal quartz carbonate veinlets occur in the lapilli tuff which contains 1-5% pyrite and is greyish black and fine grained. The zone is within 20' of the south boundary of a large gabbro sill.

The outcrop has been sampled in detail with values of 0.30 oz Au/ton obtained. Although the rocks trend easterly, the zone diminishes rapidly to the west and disappears under rubble to the east. It is possible that the zone is a pipe approximately $50' \times 30'$.

It is recommended that a series of short drill holes be systematically drilled by a winkie drill through this mineralized zone to determine its dimensions and direction of dip. Estimate of Costs

Winter Programme

Reverse Circulation Overburden Dril 12 days @ \$6,000/day all inclusi	ling ve	72,000
Analyses (overburden) 100 samples @ \$50.00/sample		5,000
Diamond Drilling 2,000' @ \$25.00/ft. all inclusiv	e	50,000
	Total	\$127,000

Summer Programme

Winkie Diamond Drilli	ng			
500' @ \$20.00/ft.	all	inclusive		10,000
			Total	\$10,000

Total Estimated Expenditures \$137,000

Jan 7/86 P. And

REFERENCES

Burden, L.D. (1985a)	GEOLOGY AND SOIL GEOCHEMISTRY OF THE ROWAN LAKE PROPERTY DISTRICT OF KENORA; Private report for Silver Lake Resources Inc.
Burden, L.D. (1985b)	THE 1985 DIAMOND DRILLING PROGRAMME ON THE ROWAN LAKE PROPERTY, DISTRICT OF KENORA; Private report for Silver Lake Resources Inc.
Burwash, E.M. (1933)	GEOLOGY OF THE KAKAGI LAKE AREA; O.D.M., Vol. 42, pt. 4, p. 41-92 (published 1934). Accompanied by Map 425, 1 inch to 1 mile
Davies, J.C. (1967)	ATIKWA LAKE AREA (east half) DISTRICT OF KENORS; O.D.M., Prelim. Map P388, Geol. Ser., l inch to 1/4 miles
Goodwin, J.R. (1984)	GEOPHYSICAL REPORT ON THE ROWAN LAKE PROPERTY FOR SILVER LAKE RESOURCES; unpublished report for Silver Lake Resources Inc.
Johnston, W.G.Q. (1960)	ATIKWA-CAVIAR LAKES AREA, DISTRICT OF KENORA; O.D.M., Prelim. Map P84 Geol. Ser., 1 inch to 1/2 mile
Thomson, Jas. E. (1935)	GEOLOGY OF THE ROWAN-STRAW LAKES AREA; O.D.M., Vol. 44, pt. 4, p.1-28 (published 1946). Accompanied by map 44e, 1 inch to 1 mile.

APPENDIX 1

TABLE # 1

Rock Grab Samples

Sample #	Location	Rock Description	PPB	oz Au/ton
1001	13+00W 15+00N	Qtz-Carb Float, trace diss py	30	0.001
1002	13+00W 15+00N	Qtz-Carb Float, trace diss py.	30	0.001
1003	13+00W 15+00N	Qtz-Carb Float, trace diss py	30	0.001
1004	4+00W 20+00N	Qtz Float separated from soil samples	140	0.004
1005	32+00E 22+50N	Silicified Schist w Qtz veining	860 1030	0.025 0.030
1006	32+00E 22+50N	Silicified Schist w diss py.	70	0.002
1007	32+00E 21+75N	Altered Mafic M.V. diss euhedral py, minor QVS	Nil	N11
1008	32+00E 21+25N	Sericite Schist w diss euhedral py 5mm large.	100	0.003
1009	4+00E 33+50N	Qtz carb. material from stripped o/c tr green mica, diss py.	170	0.005
1010	4+00E 33+50N	Altered wall rock w diss py. stripped o/c	170	0.005
1011	2 0 +00W 10+00N	Rhyollitic Lapilli Tuff w diss py.	Nil	N11
1012	Western Boundary at North Shoreline of Sullivan Bay.	Qtz-Fld Porphyry w minor veining	30	0.001
1013	22+00W & North Shore of Sullivan Bay	Qtz-Carb vein material w diss euhedral py.	140	0.004
1014	14+00W 5+50N on top of Bluff	Altered wall rock from QV stockwork, diss py. second pulp	8570 8910 10290 9600	0.250 0.260 0.300 0.280

Sample #	Location	Rock Description	PPB	oz Au/ton
1015	14+00W 5+50N on top of Bluff	Less altered host rock, cherty lapilli tuff, carb rich, diss p	3090 9y.	0.090
1016	14+00W 5+50N	Vein & wall rock, py, rich, tr carb & tr magnetite.	1850 1780	0.054 0.052
1017	28+00E 1+00N	Altered mafic M.V. or fine gr. granite? w minor qtz-carb veins.	N11	Nil
1018	28+00E 1+50N	Breccia zone, flow breccia-fault breccia?	930	0.027
1019	34+00E tip of Boundary Island	Fld porphyry dykelet	30	0.001
1020	34+00E tip of Boundary Island	Qtz-carb veins & altered zone hosted by stretched pillows	30	0.001
1021	#9+00W 31+50N	QV w 2% diss py w lime green mineral (chlorite -fuchsite?)	60	0.002
. 1022	9+00W 31+50N	Sheared Gabbro w minor QVS 2-3% diss py, fuchsite.	70 130	0.002 0.004
1023	9+00W 31+00N	Sheared Gabbro 2-3% diss py.	N11	Nil
1024	9+00W 31+50N	Gabbro, unaltered massive, no carb, tr diss py	N11	Nil
1025	12+00W 34+75N	Massive MV, carb rich, grey Fine gr.	N11	Nil
1026	12+00W 37+50N	Altered Pillow basalt in Qtz-carb veining.	Nil	Nil
1027	10+50W 37+50N	Silicified Basalt tr py	N11	Nil
1028	10+50N 37+50N	Sericite Schist tr Qtz-carb veins, tr py	30	0.001

Sample #	Location	Rock Description	PPB	oz Au/ton
1029	10+50W 33+00N	Pillowed Mafic MV local 12" wide gossans no visible sulphides	N11	Nil
1030	32+75N 10+00W	Strongly foliated Mafic MV	N11	Nil
1031	10+00W 32+75N	Qz-Carb veins tr diss py	N11	Ni1
1032	10+00W 32+50N	Altered Gabbro, rusty spotted surface, diss py.	N11	N11
1033	10+00W 28+25N	Foliated MMV, aphanitic tr diss py	2 Nil	Nil
1034	27+75N 10+00W	Strongly altered MMV, diss py, carb rich.	N11	Nil
1035	6+00W 32+00N	Qtz-Carb w tourmaline, tr py, fuchsite.	80 30	0.002 0.001
1036	6+00W 32+00N	Sheared gabbro, adj to Qtz-Carb vein w fuchsite	N11	Ni 1
. 1037	6+00W 32+00N	Altered gabbro w diss py 1%	NI1	Nil
1038	6+00W 34+25N	Qtz-carb rubble of loca origin? tr py	al 50	0.001
1039	6+00W 34+40N	Altered MMV rich in carb, no Qtz, tr py.	N11	Nil
1040	2+00W 32+00N	Mafic MV, Slightly foliated, hematitic alternation, tr diss p	N11	Nil
1041	2+00W 31+5N	Qtz-carb vein, 1% diss py ass w wall rock inclusions	70 80	0.002 0.002
1042	2+00W 31+75N	Sericite Schist, Hematitic alteration tr carb, tr Fuchsite	N11	Nil

.

Sample #	Location	Rock Description	PPB	oz Au/ton
1043	2+00W	Silicified basalt	30	0.001
	31+75N	hematitic alteration		
		diss py tr.		
1044	31+75N	Qtz-carb vein 3-5% diss	100	0.003
	0 +7 5W	py ass. w wall rock		
		clasts.		
1045	2+00W	Altered MMV some QV's	70	0.002
	24+75N	buff brown colour		
1046	2+00W	Altered MMV rubble w	280	0.008
	27+50N	minor QV's	400	0.012
1047	2+00W	MMV strongly foliated	N11	Ni 1
	27+00N	rich in chl.		
1048	14+00W	Qtz-Carb vein py 2-3%	310	0.009
	5+50N	often magnetite 1%		
1049	1 2+ 00E	Otz diorite, felsic	10	Nil
	30+00N	intrusion 8-10% diss py.		
1050	12+00E	Otz diorite, 2-3% py	20	0.001
	30+00N			
1051	10+00E	Gossan zone between	20	0.001
	25+80N	pillows basalt, py rich		
1052	10+00F	Sericite Sobiet W	210	0.006
1052	27+50N	minor Otz-carb veiping	130	0.004
		minor (cb carb vorming	100	
1053	8+00E	Sericite Schist	N11	N11
	28+40N			
1054	8+00E	Foliated pillow? basalt	Nil	N11
	28+25N			
1055	6+00E	Silicified & Hematized	10	N11
	27+27N	basalt w Qtz-Carb		
		veining, tr diss py		
1056	6+25E	Silicified basaltic	Nil	Nil
	34+25N	schist, similar to		
		material in N wall zone		
		of o/c 4E 33+50N Qtz-Car	ъ	

vein from schist.

4

(

Sample #	Location	Rock Description	PPB	oz Au/ton
1057	6+25E 34+25N	Silicified basaltic ' schist. Minor sericite.	N11	Nil
1058	6+00E 35+40N	Silicified Pillowed basalt, cherty appearance, tr py.	N11	N11
1059	6+00E 36+75N	Silicified Basalt (pillowed?) w Qtz-carb veis, diss py.	N11	N11
1060	6+00 £ 36+75N	Silicified Pillowed basalt, tr diss py	450 300	0.013 0.009
1061	33+50N 1+25E	Qtz-carb veins 1-3% diss py in sheared pillow basalt	60	0.002
1062	33+50N 1+25E	Silicified Pillow basalt, rusty Qtz-carb veins.	N11	Nil
1063	33+00N 1+75E	Qtz-carb vein & silicified & hematized wall rock tr py.	100	0.003
1064	1+75E 28+25N	Silicified Pillow basalt w tr py & bleach patches	20	0.001
1065	2+00E 28+00N	Qtz-Carb vein in altered basalt diss py.	30	0.001
1066	2+00E 28+00N	Hematized & Silicified MMV	Nil	N11
1067	4+00E 28+75N	Qtz-Fld Porphyry carb rich.	N11	Nil
1068	6+25E 34+25N	Silicified & bleached basalt w Qtz-Carb veins 1% diss py.	70	0.002
1069	1+00W 20+50N	Hematitic & Silicified zone, rock resembles aplite granite	80	0.002
1070	1+00W 20+50N	Hematitic & Silicified altered material	N11	Ni1

Sample #	Location	Rock Description	PPB	oz Au/ton
1071	2+00W 17+25N	Mass Mafic Int MV	N11	N11
1072	2+00W 15+50N	Qtz-Carb veining in hematitic altered material, local float.	790 750	0.023 0.022
1073	16+00W 7+00N	Qtz rubble hosted by gabbro tr malachite stain	N11	Nil
1074	16+00W 7+00N	Gabbro, med. gr. dark green, carb rich.	N11	Nil
1075	18+00W 5+85N	Gabbro-Diabase, mag some carb	N11	Nil
1076	16+00W 19+50N	Strongly folited, chl stretched pillows w diss py.	N11	N11
1077	14+00W 18+00N	Sericite Schist	N11	Nil
1078	14+00W 18+20W	Assorted material from trench	30	0.001
- 1079	14+00W 18+20N	Pyritic cherty sediments. 75% diss py.	40	0.001
1080	14+00W 18+20N	Sugary Qtz vein material	N11	Nil
1081	14+00W 18+20N	Pyritic tuff, not cherty but contains 35% py.	N11	N11
1082	14+00W 18+20N	Pristine Qtz Vein	N11	N11
1083	8 +75W 22+75N	Qtz breccia w diss py.	270 310	0.008 0.009
1084	8 +75W 22+75N	Hematied & silicified wall rock w tr diss py.	200	0.006
1085	8+00W 13+50N	Mafic-Int MV, locally pillowed, tr diss py, possibly silicified.	10	N11

Sample #	Location	Rock Description	PPB	oz Au/ton
1086	9+00W 18+00N	Sheared contact zone zone, 20-25% py euhedral and crystaline masses.	N11	N11
1087	9+00W 18+00N	lapilli tuff w tr diss py.	N11	Nil
1088	9+00W 18+00N	Sheared pillows w diss py 15-20% as cubes & crystaline masses.	N11	N11
1089	9+00W 18+00N	Stretched pillows w diss euhedral py & crystaline masses, 15-20%	N11	N11
1090	9+00W 18+00N	Strongly gossaned and stretched pillows, 1-2% diss py.	N11	N11
1091	9+00W 18+45N	Sericite Schist	Ni1	Nil
1092	9+00W 18+45N	Sericite Schist	Nil	Nil
1093	9+00W 18+45N	Sericite Schist	Nil	Nil
1094	9+00W 18+45N	Cherty Sericite schist 20-25% py	Nil	Nil
1095	1+85E 21+00N	Gabbro coated w specular hematite.	Nil	N11
1096	2+00E 1 6+7 5N	Rhyolitic lapilli tuff diss py cpy & grey sulphide all <3%	100 100	0.003 0.003
1097	2+00E 16+75N	Rhyolitic clast w diss euhedral py 2-3%	N11	Nil
1098	2+00E 16+75N	Rhyolitic material w ankerite & diss py 8-10%	40	0.001
1099	0+00 6+75N	Sheared MMV Lapilli tuff tr py	Nil	N11

Sample #	Location	Rock Description	PPB	oz Au/ton
1100	0+00 7+25N	Sheared Lapilli MMV tr diss py, v rich in carb.	N11	Nil
1101	0+00 17+60N	Granite Porphyry dyke w Qtz-Carb veining & hematite alteration	N11	Ni 1
1102	6+00W 21+50N	Massive MMV (gabbro?) diss specular hematite	N11	N11
1103	1 2+00E 7+50N	Cherty Interflow seds. w <25% diss py.	Ni1	Ni1
1104	31+00E 8+00N	UM Dyke 80% amphiboles some carb.	Nil	Nil
1105	7+00E 24+00N	Silicified Pillows w glassy QVs	N11 N11	N11 N11
1106	7+00E 24+00N	Strongly gossaned pillow w diss po 3-5%	N11	N11
1107	7+00E 24+00N	Gossaned Pillow 1-2% diss po	Nil	Nil
1108	4+00E 21+00N	Sheared ash tuff w tr diss py	Nil	Nil
1109	22+00E 24+50S	Gossaned boulders 10% py-po, 5% mag.	Nil	N1 1
1110	22+00E 24+50S	Gossaned boulders 3-5% py-po	Nil	N11
1111	22+00E 24+50S	Gossaned boulders 5% py-po	N11	N1 1
1112	21+50E 24+50S	Aphanitic mafic-int. MV <1% py-po	Nil	Nil
1113	20+00E 25+00S	Porphyritic MV tr py	Nil	N11
1114	13+00E 28+00N	Sericitized Lapilli tuff, diss py	30 20	0.001 0.001

Sample #	Location	Rock Description	PPB	oz Au/ton	
1115	8+00E 29+00S	Silicified/ amphibolitized Fld porphyry.	N11	Nil	
1116	11+00E 28+00S	Amphibolitized & porphyritic pillowed basalt.	N11	N11	
1117	8+00E 29+00S	Amphibolitized & Silicified pillowed basalt w diss py & po 5-8%	20	0.001	
1118	6+50E 2 9 +00S	Sulphide boulder 30-50% py, Rhyolitic matrix.	N11	nil	
1119	4+50E 31+00S	Amphi Mafic tuff w <1% py, po & cpy.	N11	Nil	
1120	4+50E 31+00S	Amph Lapilli Tuff tr py-po lapilli have gossaned edges.	10 10	N11 N11	
1121	0+00 34+00S	Amph Tholeiitic pillow basalt-locally gossaned w diss py-po.	10	N11	
1122	10+25W 26+00S	Amph pillow basalt w py-po veinlets in salvages, 2-3%	N11	Nil	
1123	7+50W 27+00S	Blue Qtz eye porphyry, possibly tuffaceous origin, 3-5% diss py.	N11	Nil	
1124	5+50W 28+00S	QV w chloritic xenoliths of country rock. Country rock amphibolitized Massive MV	N11	N11	
1125	40+00E 22+50N	Mafic - Int. Lapilli Tuff, diss py 3-5%	N11	Nil	
1126	22+50E 25+00N	Altered MMV strong hematite staining, granitized gabbro, tr py.	10 20	N11 0.001	

Sample #	Location	Rock Description	PPB	oz Au/ton
1127	18+50W 23+00S	Soapstone-sheared gabbro, strong mag attraction talcose.	N11	N11
1128	16+50W 28+50S	Blue Qtz eye Porphyry tr sulp, tr carb	N11	N11
1129	32+00S 13+50W	Amph Mafic tuff tr diss py.	N11	N11
1130	14+00W 29+50S	Blue Qtz eye Porphyry ≺1/2% diss po.	N11	N11
1131	12+00W 33+80S	Amph MMV, tr diss py	Nil	N11
1132	10+50W 26+00S	Black Fld Porphyry w cherty matrix. 1% py-po.	N11	N11
1133	9+50W 32+00S	Amph Mafic ash tuff l-2% py-po	N11	N11
1134	8+80W 32+00S	Amph MMV 1-3% py-po	N11	N11
- 1135	8+80W 32+00S	Amph MMV 1-3% py-po	N11	N11
1136	8+80W 32+00S	Amph Mafic tuff, воme sericitized laminae. l-3% ру-ро	N11	Nil
1137	31+80S 8+80W	Amph MMV 1-2% diss py-po	N11	N11
1138	31+80S 8+80W	Bleached MMV white mica tr diss py	N11	N11
1139	31+80S 8+80W	Amph MMV bleached white w some biotite, local float 8-10% py(po)	N11	N11
1140	8+00W 31+50S	Mafic Lapilli & ash tuffs amphibolitized 2-5% diss py.	N11	Nil
1141	7+50W 27+00S	Amph MMV (Hornfels?) tr diss	N11	Nil

py strong magnetic

attraction

10

Sample #	Location	Rock Description	PPB	oz Au/ton
1142	0+00 38.75S	Amph massive MMV w Framboidal py	30	0.001
1143	9+00E 32+00S	Fld Porphyry w rare blue Qtz eyes	Nil	Nil
1144	840ME, 200MN (Charger Resources grid)	70% py in sulphide boulders	N11	Nil
1145	5+00E 35+00S	Chlorite Schist w glass Qtz stockwork tr py.	10	N11
1146	4+00E 37+00S	Amph MMV w amygdules filled w white powder & py.	N11	Nil
1147	SL1 493.0'-495.0'	Moderately sheared MMV w Fe-carb alt tr py, tr sericite.	N11	N11
1148	27+00E 1+50N	Fault breccia w Qtz tourmaline veinlets carb rich.	100	0.003
-1149	7+00E 28+50N	Qtz-tourmaline Vein w tr diss py hosted by graphite schist	180 250	0.005 0.007
1150	7+25E 28+50N	Sericitized and sheared Qtz fld porphyry large Qtz crystals with hematized flds.	Nil	Nil
1151	8+00E 27+50N	Bleached & partially hematized massive MMV, tr carb & anker.	N11	N11

APPENDIX 2

-

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS . ASSAYERS . CONSULTANTS

Certificate of Analysis

Certificate No. 61135

Received Sept. 19, 1985 56 Samples of soil

Submitted by Silver Lake Resources Inc., Joronto, Ontario Att'n: J.R. Trusler

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
L10W-35N	Ni1	L6W-35+50N	80	L2E-18+50N	10
34+50N	Nil	36+00N	Nil	L4E-29+50N	Nil
32+50N	70	L4W-35+00N	Nil	29+00N	Nil
L8W-35+50N	Nil	34+50N	Nil	28+50N	60
35+00N	Nil	34+00N	Nil	27+00N	35
34+50N	260	33+50N	5	L6E-29+00N	5
	225	L2W-35+00N	15	L8E-29+00N	Nil
33+50N	85	34+50N	Nil	28+75N	5
33+00N	Nil	34+00N	Nil	28+50N	365
32+50N	Nil	33+50N	Nil		455 285
31+50N	Nil	33+00N	5	28+25N	205
30+50N	Nil	32+50N	Nil	20+220	10
30+00N	30	20+50N	35		10
L6W-31+00N	Nil		35		80
32+00N	80	19+50N	Ni1	29+5UN	2
33+00N	15	32+00N	25	L0-20+00N	no sample
33+50N	Nil	31+50N	15	19+50N	Nil
3/1+00N	10	31+00N	Nil	18+00N	10
3/1+50N	580	1 2F-27+00N	Nil	17+50N	10
24+20N	645	27+50N	Nil		
35+00N	85	28+00N	75		

Per. G. Lebel, Manager

Date: _____Sept. 30, 1985_____

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis .

Certificate No61482	Date: _	November 11 1985
Received Oct.15/85 63 Samples of	soil	
Submitted by Silver Lake Resources Inc., Toronto, Or	ntario A	Att'n: Mr. J. Trusler

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
L36E-21N	Nil	L34E-21 + 50N	Nil	L34E-29 + 25N	Nil
-21 + 25	Nil	-21 + 75	Nil	-29 + 50	Nil
-21 + 75	Nil	-22 + 25	Nil	L32E-24 + 25	Nil
-22 + 25	Nil		Nil	-24 + 50	Nil
-22 + 50	Nil	-22 + 50	Nil	-25 + ÜŰ	5
-22 + 75	5	-22 + 75	Nil	-25 + 25	10
-23 + 00	125	-23 + 00	Nil	-25 + 50	70
	135	-23 + 25	Nil		85
-23 - 25	Nil	-23 + 50	Nil	-26 + 50	Nil
-23 + 50	180	-23 + 75	Nil	-27 + 00	Nil
	145	-24 + 00	Nil	-27 + 25	Nil
-23 + 75	35	-24 + 25	Nil	-28 + 00	Nil
-24 + 00	20	-24 + 50	Nil	-28 + 25	Nil
-24 + 25	Nil	-24 - 75	Nil	-28 + 50	Nil
-24 + 50	Nil	-25 + 00	Nil	-28 + 75	Nil
-25 + 00	Nil	-25 + 25	Nil	-29 + 00	Nil
-25 + 25	Nil	-25 + 50	Nil	-29 + 25	Nil
-25 + 50	Nil	-26 + 00	Nil		Nil
-25 + 75	Nil	-26 + 25	Nil	-29 + 50	Nil
-26 + 00	Nil.	-26 + 75	Nil	L34E 22 + 00	Nil
-26 + 25	Nil	-20 4 72	5		
-27 + 25	Nil	-27 + 75	Nil		
-27 + 50	Nil	-28 + 50	Nil		
-28 + 00	Nil	-28 + 75	Nil		
		-29 + 00	Nil		
			1	Per	

ESTABLISHED 1928

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	61484	- <u> </u>		Date:	November 13 1985	
Received Oct	.15/85	63	Samples o	fsoi	1	
Submitted by	Silver Lake	Resources Inc.,	Toronto,	Ontario	Att'n: Mr. J. Trus	ler
		· · · · · · · · · · · · · · · · · · ·	"Rowan	Lake Proje	ect"	
SAMPLE NO.	GOLD PPB	SAMPLE	NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
L 32E-24N	Nil	L16E-7+	75N	Nil	L12E-27+50N	Nil
L24E-24N	Nil	-8+	75N	Nil	-28N	Nil
-24+50N	Nil	-32	+75N	Nil	-28+25N	Nil
-24+75N	Nil	-33	N	Nil	-29+25N	30
	Nil	-33	+50N	Nil	00.754	10
-25N	N11	-33	+75N	Nil	-29+/5N	N11
L28E-25+25N	Nil	-34	N	50	- 3UN	40 90
-25+5UN	Nil			10	-30+50N	30
-25+75N	Nil	- 34	+25N	Nil	-30+75N	Nil
-26N	Níl	- 34	+5UN	Nil	-31N	Nil
-26+25N	Nil	-34	I+75N	Nil	-31+50N	5
-26+50N	Nil	L12E-3	+50N	Nil	_3]+75N	Ni]
L20E-4+25N	Nil	-4N	1	Nil	-33N	Nil
-4+50N	Nil	-4+	-25N	Nil	33,250	Niji
-5+75N	10	-4+	-50N	Nil	-JJ+2JN 33,50N	Ni J
-6+25N	Nil	-5N	1	Nil	-JJ+JUN 33.75N	5
-6+75N	5	-5-	-50N	Nil	-334730	5
-7N	Nil	-5+	-75N	10	-241	5
-8+25N	Nil	-7-	+50N	5	-2011)
L16E-4+50N	Nil	-7-	⊧75N	5		
-5+25N	Nil	-26	6+00N	Nil		
-6+75N	Nil	-26	6+75N	5		
-7N	Nil	-27	7N	15	A	
-7+50N	Nil	-27	7+25N	Nil	h 1	1

Per ______ _µ G. Lebel -- Manager

• • •

SWASTIKA LABORATO. IES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS . ASSAYERS . CONSULTANTS

Certificate of Analysis

Certificate N	o. <u>61570</u>			Date:	November 15 1985
Received	Oct.24/85	32	Samples of	soil	
Submitted by	, <u>Silver Lake</u>	Resources Inc.,	Toronto,	Ontario	Att'n: Mr. J. Trusler

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
L10W-35+75N	10	L2W-34+75N	10
-29+50N	5	-34+25N	5
-29+25N	Nil	-33+75N	5
-28+75N	20	-33+25N	Nil
-28+50N	5	-32+75N	Níl
-25+50N	10	L2E-26+25N	Nil
-25+25N	30	-27+25N	Nil
	15	L4E-29+25N	10
-25+UUN	5	L6E-27+75N	290
24+75N	10	-28+75N	10
-24+50N	Níl	L 10F - 30+50N	30
-24+25N	Nil		50
L8W-35+75N	15	L16W-28+50N	15
-35+25N	15		
-32+75N	5		
-31+75N	20 Nil		

2417211	10
-24+50N	Nil
-24+25N	Nil
L8W-35+75N	15
-35+25N	15
-32+75N	5
-31+75N	20 Nil
L4W-35+50N	Nil
-35+25N	Nil
-34+75N	Nil
-34+25N	15 Nil
-33+75N	Nil

V

Per

G. Lebel -- Manager

ESTABLISHED 1928

SWASTIKA LABORATC. (IES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS

ASSAYERS

CONSULTANTS

Certificate of Analysis

Certificate No. 61571		Date: <u>November 1</u>	5 1985
Received <u>Oct.24/85</u> <u>26</u>	Samples of	soil	
Submitted by	Inc., Toronto, On	tario Att'n: Mr.	J. Trusler

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
L6W-31+25N	5	L10E-26+25N	15
-33+25N	Nil	26+75N	10
-34+25N	15	-27+75N	40
-34+75N	260		125
-35+75N	Nil	-28+25N	5
L8W-30+25N	Níl	-29+25N	10
-33+25N	Nil	L2W-20+25N	430 680
-34+75N	15	-21+50N	15
L10W-32+75N	440	-22N	10
-33+75N	5		
-34+75N	Nil		
L2E-27+75N	15		
-29N	Nil		
-29+50N	Nil		
L4E-26+25N	Nil		
-26+75N	5		
-28+25N	Nil		
-28+75N	5 ·		

Per_ G. Lebel Manager

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. 60572 Date: November 18 1985						
Received Oct	.24/85	<u>55</u> Sam	ples of _	soil		
Submitted by	Silver Lake R	esources Inc., Toro	<u>nto, Ont</u>	ario Att'n: Mr. J. Tr	usler	
Rowan Lake Project Samples per: Mr. L. Burden						
SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	
L10W-24+00N	Nil	L6W-20+50N	10	L18W-23+25N	Nil	
-23+75N	Nil	-21+00N	Nil	-23+50N	Nil	
-23+50N	Nil	-22+00N	Nil	-24+00N	Nil	
-23+25N	Nil	-22+50N	Nil	-24+50N	5	
-23+00N	10	-23+00N	5	-25+DON	5	
-36+50N	10	-23+50N	Nil	-25+25N	30	
	Nil	-24+00N	Nil		70	
-37+00N	10	-25+00N	Nil	-26+00N	Nil	
-38+00N	Nil	-25+50N	Nil	L2W-30+50N	15	
~- 38+50N	5	-26+0UN	10	-29+50N	Nil	
L6W -15+00N	Nil		Nil	-29+00N	5	
-15+50N	Nil	-26+50N	Nil	-28+50N	Nil	
-16+00N	Nil	-38+00N	. Nil	-28+00N	50	
-16+50N	Nil	-38+50N	5		40	
-17+00N	Nil	-39+00N	10	-27+50N	10	
-17+50N	Nil	L12W-23+00N	Nil	-26+50N	Nil	
-18+0UN	Nil	-23+25N	Nil	-25+50N	10	
-18+50N	5	-23+50N	Nil	L2E-30+50N	Nil	
-19+50N	Nil	-23+75N	Nil	-32+00N	Nil	
-20+00N	15	-24+00N	Nil			

Per G. Lebel -- Manager

ESTABLISHED 1928

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO

TELEPHONE: (705) 642-3244

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	61573		_	Date:	Nov. 21, 1985	·
Received Oct.	24, 1985	53	Samples of	soil		
Submitted by	Silver Lake I	Resources. Ton	onto. Ontario	At	t'n.J. Traisle	r

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
L2E-34+50N	Ni1/15	L18W-16+25N	Nil	L8E-29+75N	Nil
35+50N	5	17+00N	Nil	L10E-26+00N	Nil
L10E-35+50N	Nil	17+25N	Nil	29+75N	15
35+00N	Nil	17+50N	185	LO-12+50N	Nil
L6E-34+50N	10		120	13+50N	Nil
	Nil	18+00N	Nil	14+75N	Nil
35+00N	5	18+50N	Nil	17+75N	Nil
35+50N	30	19+50N	10	19+75N	Nil
364000	10 N; 1	21+50N	15	20+001	Nil
30700N	NII NII	22+00N	10	20+00N	10
TICH DOLDEN	20	22+50N	Nil	20+25N	15
PT04-53+52N	20 40	22+75N	Nil		Nil
29+00N	20	12W- 16+00N	Nil	28+00N	Nil
1.18W-10+00N	Nil	17+00N	Nil	28+25N	Nil
11+50N	5	19+25N	60	28+50N	Nil
12+50N	Nil		35	29+00N	Nil
12+300	20	22+50N	Nil		
TOTON	20	23+50N	Nil	1	
14+50N	Nil	L6E- 29+25N	Nil		
15+00N	Nil	29+50N	20		
15+25N	Nil		10		
15+50N	Nil	L8E- 30+00N	Nil 15		

Per G. Lebel, Manager

ESTABLISHED 1928

SI

 $\mathbf{\nabla}$

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. 61574	_ Date:	Nov. 21, 1985
Received Oct. 24, 1985 50	Samples of <u>soil</u>	
Submitted by Silver Lake Resources, Tor	conto, Ontario	

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
LO-29+50N	Nil	12E-19+25N	20	L16W-27+25N	Nil
29+75N	5		Nil	27+75N	Nil
30+75N	Nil	20+50N	Nil	29+50N	Nil
31+00N	Nil	21+00N	Nil	29+00N	Nil
34+25N	Nil	21+50N	15 Nil	28+00N	15 Ni 1
34+50N	5	22+00N	Nil	201251	NII NII
34+75N	Nil	22+50N	Nil	Z0723N	NII
35+00N	30 Nil	L6W-15+00N	Nil	10+50N	15 Nil
36+75N	Nil	15+25N	Nil	11+00N	Nil
37+00N	Nil	15+50N	Nil	11+50N	Nil
1.12W-24+25N	10	15+75N	Nil		20
24+50N	Nil	16+50N	Nil	12+00N	10
24+35N	5	16+75N	Nil	12+50N	Nil
25+00N	Nil	17+75N	15	13+00N	Nil
25+001	5		40	1.3+50N	Nil
25+25N	5	18+00N	15		
25+50N	Nil	25+00N	5		
26+00N	Nil	24+25N	Nil		
28+25N	Nil	24+00N	5		
29+00N	Nil		-		

Per G. Lebel, Manager

ESTABLISHED 1928

v

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. 61575	Date:Nov. 22, 1985
Received Oct. 24, 1985 49 Samples of	soil
Submitted by <u>Silver Lake Resources</u> , Toronto, Ontario	

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLF PPB
L14W-14+00N	5	L14W-25+50N	Nil	L14W-38+00N	Nil
16+75N	Nil	27+00N	Nil	L10W-15+50N	Nil
18+50N	5	27+25N	Nil	17+00N	40
19+00N	5	27+50N	10		35
19+50N	5		10	17+50N	Nil
20±50N	5	27+75N	Nil	18+00N	Nil
20+301	Nil	28+00N	Nil	18+50N	Nil
21+00N	Nil	28+25N	Nil	19+50N	Nil
21+50N	Nil	28+50N	Nil	20+00N	Nil
22+50N	Nil	28+75N	5	20+50N	5
22+75N	Nil	29+00N	5	21+00N	Nil
23+00N	Nil	29+25N	10	21+50N	Nil
23+25N	Nil	29+50N	20	22+00N	Nil
23+50N	Nil	31+00N	Nil	22+50N	Ni]
	Nil	34N	40		
23+75N	Nil		50		
24+00N	Nil	34+50N	15		
24+50N	Nil	35+00N	5		
24+75N	5	35+50N	Nil		
25+25N	5	36+50N	Nil		

Per ______G. Lebel, Manager

ESTABLISHED 1928

APPENDIX 3

TABLE # 2

Detailed Rock Sampling

Sample #	Location	Description	PPb Au	oz Au/ton
1201	3+44E over 3.5' width	Aphanitic carb. Alt sericitized mafic pillow basalt or pillow breccia. py < 2%	N11	Nil
1202	3+55E over 3 ft.	Shear Zone, sericitized rusty.	N11	Nil
1203	3+55E 33+46N -33+41N	Aphanitic carb altered mafic volcanic up to 5% py tending to occur in layers	Ni1	N11
1204	3+55E over 7.5 ft.	Altered MMV with Qtz-fld veins. Py in rust 3%.	130 210	0.004 0.006
1205	3.55E over 2.5 ft.	Shear zone adjacent to gabbro. Carbonate altered.	30	0.001
1206	3+60E over 4.25 ft	Chloritic gabbro, chlorite elongated & aligned	N11	Nil
1207	3+58E 3+30N	Shear adjacent to gabbr Fuchsite 1%, Qtz veinlets w euhedral py <3%.	O NII	Nil
1208	4+00E 3+58N	Strongly Aphanitic Carbonate altered rock with sugary Qtz lenses, py <3%	Nil	Nil
1209	4+00E 3+57n-3+51n	Partly sheared, Aphanitic Carb altered w 1-2% fuchsite rusty, 10% chlorite.	Nil	N11
1210	4+15E 33+58N	Aphanitic Carb Alt. mafic volcanic w 30% chlorite, 1% diss py.	Ni1	N11
1211	4+05E 33+40N 33+46N	Qtz-breccia, 20% coarse fld crystals 2-5% py in rusty clasts	40 8	0.001

- N		

Sample #	Location	Description	PPb Au	oz Au/ton
1212	3+65E 33+45N	Shear zone, rusty chloritized, sericitized. Fld 5-10%	Nil	Nil
1213	4+05E 33+46N 33+52N	Qtz breccia. Rusty clasts w < 5% py in Qtz-Plag veins	70	0.002
1214	3+80e 33+40n	Aphanitic Carb altered rock, 2cm wide QV w py 5%. py 15% in host	480 550	0.014 0.016
1215	3+80E 33+50N	Qtz breccia, 20% fld-qtz w 1% py. Host & clasts rusty w 5% py.	120	0.004
1216	3+90E 33+40N	Aphanitic Carb alt. MMV 2cm wide QV, 1% py.	30	0.001
1217	4+08E 33+46N 33+52N	Shear zone, and massive wall rock, Aphanitic Carb altered rusty with 2cm Qtz veins, <2% py, tr fuchsite.	210	0.006
1218	3+75E 33+30N	Aphanitic Carb altered w QV 5cm. Fuchsite 1% py 2-3% diss	100	0.003
1219	6+21E 34+08N	Aphanitic Carb altered rusty pillow basalt + l.5cm QV, py <2% diss	250	0.007
1220	6+32E 34+10N 34+15N	Aphanitic Carb altered pillow basalt. 1% py, QV 72cm wide.	N11	Nil
1221	6+22E 34+08N	Aphanitic Carb altered basalt, Qtz-fld vein 3cm wide, py 1% in basalt.	NII	N11
1222	6+32E 34+10N	Caronatized MMV with lmm wide qtz veinlets diss py l%	Nil	Nil

Sample #	Location	Description	PPb Au	oz Au/ton
1223	6+26E 34+13N	Carbonatized rusty MMV with qtz-feld veinlets py in strongly silicified zones up to 2%.	10	N1.1
1224	6+32E 34+07-09N	Rusty carbonatized sheared MMV with lcm wide qtz veinlets tr py	N11	N11
1225	6+32E 34+05N	Partially carbonatized MMV, tr py	N11	Nil
1226	6+00E 35+58-62N	Strongly carbonatized sheared MMV, up to 5% veinlets lmm, up to 2% py in chloritic areas	N11	N11
1227	6+00E	Carbonatized rusty pillowed MMV 1% diss py	N11	Nil
1228	6+00E 36+80N	Carbonatized MMV with up to 15% diss py	2170 1990	0.063 0.058
1229	6+00E 36+77-79.5N	Carbonatized pillowed MMV with 5-10% qtz veinlets and 1% diss p	30 y	0.001
1230	5+94E 36+80N	Carbonatized MMV 5-10mm wide qtz veinlets. Enhedral py x/s dissemated, 1% py.	N11	N11
1231	6+02E 36+85N	Qtz-feld veins in carbonatized MMV. Veins make up 20% of rock, sericitized, tr py.	N11	Nil
1232	6+02E 36+89-94N	Weak to moderately foliated carbonatized pillow MMV, rusty with <1% diss py.	N11	N11
1233	6+00E 36+86.5-89N	Rusty shear zone strongly carbonatized, 2mm qtz veinlets at low angles to strong foliation tr pv.	N11	N11

Sample #	Location	Description	PPb Au	oz Au/ton
1234	6+00E 36+81.5-84N	Rusty carbonatized pillowed MMV with some qtz veinlets	30	0.001
1235	6+00E 36+79.5-81.5N	Carbonatized rusty MMV wity rusty qtz veinlets	3 0	0.001
1236	6+00E 35+66N	Rusty carbonatized pillowed MMV, 1% diss p	N11 y	N11
1237	6+00E 34+15-16.5N	Sheared carbonatized pillowed MMV with qtz-feld veins comprising 10-15% of rock, 1% diss py	70	0.002
1238	1+23W 31+70N chip across 3'	Moderately foliated rusty gabbro and subhorizontal qtz veins (50% of sample)	40	0.001
1239	1+30W 31+72N chip across 2'	Strongly foliated rusty gabbro 1-3% diss py	N11	Nil
1240	1+30W 31+71N chip across 1.5'	Carbonatized gabbro with qtz veins (20% of sample) py up to 15% in altered areas	750 1100	0.022 0.032
1241	1+32W 31+73N chip across 1.5'	Silicified and carbonatized gabbro with qtz veins (10% of sample) py up to 15% in altered areas	140	0.004
1242	1+85W 31+69N chip across 1.5'	Altered gabbro & qtz veins (10% of sample) locally strongly silicified, 2-3% diss p	70 y	0.002
1243	1+98W 31+69N chip across 4.0'	Silicified and sericitized gabbro moderately to strong foliated with qtz veinlets. < 5% diss py	180	0.005
1244	1+98W 31+67N chip across 3.5'	Altered gabbro with qtz veins (5% of sample) weakly to moderately silicified & carbonatize with up to 5% diss py in sericitized zones	30 ed	0.001

\bullet	
Sample #	Location
1245	6+37W 34+72.5-77N

5

Sample #	Location	Description	PPb Au	oz Au/ton
1245	6+37W 34+72.5-77N	Carbonatized MMV with qtz-feld veins (20% of sample) 1% py in veinlets	60	0.002
1246	6+20W 34+59-62.5N	Rusty carbonatized pillowed MMV with 1% diss py	N11	Nil
1247	6+20W 34+55-59N	Carbonatized rusty MMV with <1% py	N11	Nil
1248	6+20W 34+52-55N	Carbonatized MMV with qtz-feld veinlets, 1% diss py	N11	Nil
1249	6+20W 34+47.5-52N	Carbonatized MMV with abundant qtz-feld veinlets 1% diss py	Nil	Nil
1250	6+02W 34+59-65N	Carbonatized MMV with abundant cross cutting feld veinlets <2% diss	40 РУ	0.001
1251	6+08W 34+49.5-50N	Sheared MMV carbonatized sericitize Up to 15% py in veins parallel to foliation	N11 ed	N11
1252	6+08W 34+50-52N	Moderate to strongly foliated MMV with qtz- feld veinlets, diss enhedral py < 2%	140 170	0.004 0.005
1253	5+98W 34+60.5-65N	Carbonatized MMV with some cross cutting qtz veinlets py 1%	50	0.001
1254	6+04.5W 34+57.5-59N	Carbonatized and sericitized MMV with 15% py	170	0.005
1255	5+99W 34+63N	Coarse feld veins with 1% py, minor qtz	Nil	Nil
1256	6+05W 34+56-57.5N	Carbonatized pillowed MMV with 1% py	180	0.005
1257	6+11W 34+52N	Silicified MMV with 10-15% py	260	0.008
1258	6+14.5W 34+54N	Carbonatized rusty MMV ∠2% diss py	30	0.001

. .

-		
Sample #	Location	
1259	6+11W 34+55N	
1260	6+11.5W	

Sample #	Location	Description	PPb Au	oz Au/ton
1259	6+11W 34+55N	Rusty carbonatized MMV enhedral py 1-5%	130	0.004
1260	6+11.5W 34+49-50N	Sheared MMV 10% diss py	10	Nil
1261	9+03W 31+72-73N	Strongly altered gabbro 30-40% qtz-feld veins	110	0.003
1262	9+03W 31+73-74N	Sheared gabbro with green mica (fuchsite) < 2% finely diss py	50	0.001
1263	9+04W 31+68-72N	Rusty carbonatized gabbro	780	0.023
1264	9+19.5W 31+76-82N	Altered gabbro with up to 30% qtz-feld veins <2% diss py	860 820	0.025 0.024
1265	9+20.5W 31+82-83N	Sheared gabbro, carbonate, sericite く1% diss py	30	0.001
1266	9+16.5W 31+77-81N	Altered gabbro, weakly to moderately foliated locally up to 5% diss p	30 >y	0.001
1267	9+17W 31+79.5N	Rusty quartz vein with with carbonatized host rock 10% diss py	40	0.001
1268	6+09.5W 34+50N	Foliated & sericitized MMV up to 50% qtz veins 1% diss py	10 3	N11
1269	6+05W 34+52N	Sheared MMV sericitized and carbonatized with u to 50% qtz veins	l Nil Ip	Nil
1270	6+21W 34+47N	Qtz-feld vein, 1% py	30	0.001
1271	9+21.5W 31+75N	Rusty carbonatized gabbro with glassy qtz veins 1% py	10	N11
1272	9+31.5W 31+71N	Carbonatized shear in gabbro, no visible pv	Nil	N11

Sample #	Location	Description	PPb Au	oz Au/ton
1273	6+41W 31+81N	Weakly foliated carbonatized gabbro finely diss py up to 15	150 %	0.004
1274	9+27W 31+83N	Qtz-feld vein within carbonatized gabbro no visible py	60	0.002
1275	9+28W 31+84-85N	Sheared carbonatized & silicified gabbro, 1-2% py, 5-10% sugary qtz veinlets	30	0.001
1276	30+66E 23+55-60N	Carbonatized sericite schist, up to 5% py	N11	Nil
1277	30+66E 23+45-50N	Rusty, carbonatized silicified MMV schist 1-3% diss py	N11	N11
1278	30+80E 23+33N	Rusty carbonatized silicified sericite schist 1% py	20	0.001
1279	30+84E 23+33-38N	Rusty carbonatized, silicified sericite schist 1% py	99 0 1100	0.029 0.032
1280	30+78E 23+43-48N	Rusty carbonatized silicified sericite schist 1% py	10	Nil
1281	30+85E 23+22N	Rusty carbonatized silicified sericite schist 1% py	Nil	N11
1282	31+02E 23+18N	Silicified, sericitized MMV with 2% py	70	0.002
1283	31+28E 23+31N	Feld-qtz vein 1% py	560	0.016
1284	31+18E 23+31N	Strongly silicified MMV <1% py	Ni 1	Nil
1285	31+33E 23+25.5N	Strongly silicified MMV ∠1% py	620	0.018
1286	NO SAMPLE TAKEN			

۰.

7

Sample #	Location	Description	PPb Au	oz Au/ton
1287	30+92E 23+22-28N	Rusty silicified sericitized carbonatize schist 1% py	40 d	0.001
1288	31+00E 3+18-22N	Silicified sericitized slightly carbonatized schist 2% py	520	0.015
1289	32+45-50E 23+08N	Rusty silicified sericițized schist l% py up to 20% qtz-feld veins	50	0.001
1290	32+50-53E 23+08N	Rusty silicified sericite schist with 10 qtz-feld veins 1% py	60 %	0.002
1291	31+31E 23+35.5-38N	Rusty silicified, carbonatized sericite schist 2% py	30	0.001
1292	31+31E 23+31.5-35.5N	Rusty silicified, carbonatized sericite schist 2% py	Nil	N11
1293	30+78E 23+38-43N	Rusty silicified carbonatized sericite schist 2% py	70	0.002
1294	30+66W 23+50-55N	Rusty silicified carbonatized sericite schist 2% py	N11	Nil
1295	32+36E 21+74N	Rusty silicified sericitized MMV 1% py	10	Nil
1296	31+96E 21+11-15.5N	Strongly foliated sericitized and silicified MMV with up to 10% py	210	0.006
1 2 9 7	31+98E 21+22N	Silicified and carbonatized MMV 1% py	N11	Nil
1298	31+96.5E 21+25.5N	Rusty, Sericitized and silicified MMV, 2-3% py	30	0.001
1299	31+94.5E 21+27.5N	Silicified MMV with qtz veins 2-5% py	N11	Nil
1300	31+98E 21+28.5-32N	Rusty sericitized MMV no visible py	30	0.001

Sample #	Location	Description	PPb Au	oz Au/ton
1301	32+00E 21+32N	Sericitized and carbonatized schist 1% py	130	0.004
1302	31+99E 21+32-36N	Rusty silicified and carbonatized MMV 1% py	60	0.002
1303	31+96E 21+36N	Silicified and carbonatized sericitize schist 5% py	90 d	0.003
1304	32+03E 21+35.5N	Carbonatized and silicified MMV with 5-8% py	550 550	0.016 0.016
1305	32+06E 21+39-44N	Carbonatized and sericitized MMV 1% py	30	0.001
1306	32+06E 21+40-42.5N	Rusty sericitized schist 1% py	N11	Nil
1307	32+09.5E 21+44.5-47.5N	Carbonatized rusty MMV with 1% py	40	0.001
1308	32+08.5E 21+47.5N	Rusty carbonatized and silicified MMV with 5-10% qtz-feld veins 1% py	30	0.001
1309	32+08.5E 21+47.5-50.5N	Rusty carbonatized and silicified MMV no py	N11	Nil
1310	32+10E 21+52N	Rusty carbonatized sericite schist 1% py	N11	Nil
1311	32+15E 21+75N	Rusty carbonatized sericitic schist no visible py	N11	Nil
1312	31+99E 21+28N	Carbonatized and silicified sericite schist 1% py	N11	Nil
1313	32+19.5E 21+62N	Carbonatized and silicified sericite schist 1% py	N11	N11
1314	32+19.5E 21+66N	Carbonatized and silicified MMV No visible py	10	N11
1315	32+20E 21+67N	Carbonatized silicified sericite schist 1-2% py minor gtz veins	N11	Nil

Sample #	Location	Description	PPb Au	oz Au/ton
1316	30+91E 23+28-33N	Carbonatized and silicified sericite schist 1% py	100	0.003
1317	19+00E 26+90-93N	Silicified and slightly carbonatized MMV, 1% py	N11	Nil
1318	19+00E 26+98-27+00N	Rusty carbonated MMV 1% py	N11	N11
1319	19+00E 26+93-26+98N	Rusty carbonated MMV ∠1% py	10	N11
1320	19+00E 26+85-88N	Rusty carbonated MMV <1% py	N11	N i 1
1321	19+00E 26+78-83N	Rusty carbonated MMV ∠1% py	N11	Nil
1322	19+00E 26+83-85N	Rusty carbonated MMV $\lesssim 1\%$ py	Nil	N11
1323	13+97W 17+98-18+03N	Strongly sheared rusty chert with QV parallel to foliation, 5-10% py	10	Nil
1324	14+00W 18+03-08N	Carbonatized MMV local sericite schist py 5%	Nil	N11
1325	14+03W 18+08-13N	Cherty carbonatized locally sheared MMV <10% py	Nil	N11
1326	14+06W 18+13-18N	Cherty carbonatized sheared MMV 10-15% py	100 140	0.003 0.004
1327	14+09W 18+18-23N	Cherty carbonatized MMV with qtz vein <10% py	10	Nil
1328	14+28W 18+23-28N	Rusty cherty carbonatized MMV with 10% feld veins <10% py	30	0.001
1329	14+15W 18+28-31N	Cherty carbonatized MMV with qtz-feld veinlets 15-20% diss py	40	0.001
1330	13+93W 18+00N	Carbonatized foliated MMV finely diss py∠5%	N11	Nil
1331	13+91W 18+04N	Rusty, cherty, carbonatized MMV, finel diss py 10-15%	N11 y	N11

Sample #	Location	Description PPb A	u oz Au/ton
1332	13+88W 18+05N	Silicified sheared MMV Nil 5-10% diss py	N11
1333	13+89W 18+06N	Sheared, rusty, cherty Nil rock with <10% finely diss py	Nil
1334	8+87W 18+07-08N	Sheared, sericitized Nil carbonatized MMV 1% py	Nil
1335	8+82W 18+05-07N	Carbonatized rusty Nil shear, no visible py	N11
1336	8+79W 18+00N	Sheared carbonatized Nil MMV, chlorite l% diss py	Nil
1337	8+75W 17+95-98N	Carbonatized friable 30 sheared MMV up to 40% py strongly sericitized and silicified	0.001
1338	8+75W 17+96N	Carbonatized tuff 30 strongly sheared with up to 40% finely diss py, rusty and friable	0.001
1339	8+7 5W 17+9 3N	2 cm wide rusty glass 4110 qtz vein in a intermediate tuff, total py 3%	0.120
1340	8+74W 18+11-14N	Sheared, carbonatized Nil rusty MMV with up to 50% diss py	Nil
1341	8+70W 18+23-27N	Sheared, carbonatized 110 and silicified MMV with up to 3% diss py	0.003
1342	8+69W 18+27-30N	Sheared silicified & Nil carbonatized MMV with up to 2% diss py	Nil
1343.	8+67W 18+30-33N	Sheared, silicified and Nil carbonatized MMV with <5% diss py	Nil
1345	8+74W 18+13N	Sheared MMV 50% finely Nil diss py	Ni1
1346	13+75W 7+00N	Gabbro, medium grained Nil weakly foliated	Nil

Sample #	Location	Description	PPb Au	oz Au/ton
1347	14+32-35W 6+38N	Int. carbonatized MV with qtz veinlets 2% py	2000 1920	0.058
1348	14+30W 6+80N	Carbonatized MMV with minor qtz veinlets <1% py	60	0.002
1349	14+55W 6+80N	Int. lapilli tuff, carbonate	N11	Nil
1350	13+80W 6+80N	Gabbro, carbonatized with minor qtz veinlets <1% py	N11	N11
1351	14+55W 6+40N	Foliated, sericitized MMV	N11	Nil
1352	14+05W 6+70N	Foliated intermediate tuff	N11	Nil
1353	14+10W 6+70N	Foliated int. tuff <1% py	930	0.027
1354	14+75W 6+70N	Int. lapilli tuff	Nil	Nil
1355	13+80W 7+00N	Weakly foliated gabbro	Nil	Nil
1356	13+85W 7+00N	Gabbro	Nil	Nil
1357	14+25W 6+75N	Int. to felsic tuff minor sericite	Nil	N11
1358	13+95W 6+80N	Mafic metavolcanic	N11	Nil
1359	14+50W 6+50N	Int, lapilli tuff	Nil	Nil
1360	14+45W 6+50N	Int. to mafic MV	Nil	. Nil
1361	14+30W 6+50N	Altered tuff, qtz rich sericitized	510	0.015
1362	14+10W 18+20N	Rubble from old trench strongly gossaned	10	Nil
1363	14+25W 6+65N	Int. tuff	10	Nil

Sample #	Location	Description	PPb Au	oz Au/ton
1364	14+20-25W 6+40N	Silicified tuff with glassy qtz vein 5% py	2540	0.074
1365	14+10W 6+55N	Gossaned silicified MV with glassy qtz veinlets 10-15% py	3420 3430 3090 3290	0.100 0.100 0.090 0.096
1366	14+00W 6+70N	Int. lapilli tuff	270	0.008
1367	14+15W 6+60N	Int. lapilli tuff, py in small veinlets or as enhedral cubes 3-5% py	1750	0.051
1368	14+25W 6+85N	Magic MV sericitized and slightly foliated	Nil	Nil
1369	14+25W 6+55N	Int. MV with pods of granular chlorite (10%) granitic appearence 5% py	880	0.026
1370	14+30W 6+70N	Int. to felsic tuff, gossan, 10% qtz veins, 5-10% py	750	0.022
1371	14+10-16W 6+45N	Rusty MV, highly altered, minor glassy qtz veins, 5-10% py	2740	0.080
1372	14+00W 6+65N	Int. tuff, fine grained	70	0.002
1373	14+35W	Int. tuff. fine grained	N11	Nil

Nil 6+60N 1374 14+38-42W Silicified MV, < 5% 1090 0.032 chlorite pods, <10% py 6+38N as large cubes 1375 14+16-20W Silicified MV with 2260 0.066 6+40N glassy qtz veinlets, < 5% py as large cubes 14+35-38W 0.044 1376 Rusty MV with 5% py 1510 6+38N 1377 Int. tuff, fine grained Nil N11 13+95W 6+60N

Sample #	Location	Description	PPb Au	oz Au/ton
1378	14+25W 6+70N	Int. tuff, fine grained	N11	Nil
1379	14+25W 6+60N	Int. tuff, 5% py tr qtz veinlet	40	0.001
1380	14+00W 6+55N	Int. tuff, slight sericitization tr enhedral py	10	Nil
1381	14+35W 6+70N	Int - felsic tuff with sugary to glassy qtz veinlets 2-3% py	550	0.016
1382	14+25-29W 6+40N	Int — mafic MV, gossaned 10% py	3220 3770	0.094 0.110
1383	14+14-21W 6+55N	Altered Int. tuff, gossan patches qtz veinlets, <5% diss py	1480	0.043
1384	14+35W 6+40N	Altered Int. MV, 10% py, qtz veins	1140	0.033
1385	14+25W 6+50N	Strongly altered MV, hematitic staining 10% py as large cubes	140	0.004
1386	13+95W 6+70N	Silicified lapilli tuff with minor glassy qtz veinlets	Nil	Nil
1387	14+00W 6+60N	Int. tuff, slightly sericitized with minor qtz veinlets, tr py	270	0.008
1388	14+65W 6+50N	Int. lapilli tuff	Nil	Ni1
1389	14+75W 6+35N	Int. lapilli tuff, < 1% py	Nil	Ni 1
1390	14+65W 6+90N	Silicified gabbro	10	N11
1391	14+55W 7+00N	Carbonatized gabbro	N11	Nil

Int. tuff, fine grained 2540 0.074

•

1392

13+85W 6+80N

Sample #	Location	Description	PPb Au	oz Au/ton
1393	14+15W 6+55N	Bleached, silicified tuff glassy qtz veinlets 10% diss py as large enhedral x/s	2540 3	0.074
1 394	14+05W 6+55N	Strongly altered tuff gossaned, qtz-feld veinlets, 2-3% py	1710	0.050
1395	14+60W 6+80N	Silicified lapilli tuff minor glassy qtz veins tr py	N11	Nil
1396	14+25-31W 6+50N	Strongly altered tuff stained orange-pink, sample contains up to 20% glassy qtz, 10% dia py as large enhedral x/s	690 58 5	0.020
1 397	14+29-32W 6+40N	Stronly altered tuff, stained orange-pink, minor glassy qtz, 10% diss py	6240 6450 5620 5210	0.182 0.188 0.152 0.164
1 398	14+12-14W 6+55N	Altered int. tuff orange-pink staining, <10% diss py	230	0.007
1399	14+15W 6+70N	Int. tuff fine grained	N11	N11
1400	14+55W 6+70N	Silicified int. tuff, tr rusty patches	N11	N11
1401	14+45W 6+80N	Silicified tuff with minor qtz sweats 1% py	N11	Nil
1402	14+50W 6+60N	Int. lapilli tuff, ∠l% py	N11	N11
1403	13+80W 6+90N	Gabbro, fine grained, minor qtz veining, ∠1% py	30	0.001
1404	14+20W 6+55N	Silicified tuff with minor glassy qtz vein, $< 15\%$ py	3570 4940	0.104 0.144
1405	14+25W 6+80N	Silicified lapilli tuff	30	0.001
1406	14+40W 6+50N	Strongly silicified tuff up to 5% py	1510	0.044

Sample #	Location	Description	PPb Au	oz Au/ton
1407	14+40W 6+60N	Int. lapilli tuff .	10	Nil
1408	14+31-36W 6+48N	Strongly silicified tuff 30-40% of sample consists of qtz sweats < 15% py	580	0.017
1409	14+00W 6+85N	Mafic to int. tuff	Nil	Nil
1410	14+00W 6+85N	Gabbro, med. grained	N11	Nil
1411	14+25W 7+00N	Gabbro, fine grained minor carbonate	Nil	Nil
1412	14+40W 6+80N	Int. tuff with milky white qtz veinlet 1%	Nil Py	Ni1
1413	14+75W 6+50N	Int. lapilli tuff ≺1% py	N11	Nil
1414	14+45W 6+90	Int - felsic lapilli tuff	N11	Nil
1415	14+35W 6+50N	Strongly altered tuff <15% py as large enhedral cubes, minor milky white qtz	840	0.025
1416	14+60W 6+90N	Gabbro, chloritized	N11	Nil
1417	14+10W 6+60N	Int, tuff < 5% py as enhedral cubes	2740 3220	0.080 0.094
1418	14+70W 6+80N	Int felsic tuff	N11	Nil
1419	14+75W 6+75N	Cherty lapilli tuff with pitted weathered surface	10	Ni1
1420	14+75W 6+90N	Int. tuff, aphanitic	N11	N11
1421	14+60W 7+00N	Gabbro, fine grained carbonatized	Nil	Nil
1422	14+22-25W 6+50N	Altered felsic tuff < 10% py with minor rusty qtz veins	210	0.006

Sample #	Location	Description	PPb Au	oz Au/ton
1423	14+65W 7+00N	Gabbro, carb alteration	10	Nil
1424	14+7 5W 6+8 5N	Aphanitic mafic tuff with small white qtz vein	20	0.001
1425	14+75N 6+80N	Felsic tuff with weathered out fragments	N11	N11
1426	13+80W 6+70N	Silicified lapilli tuff	10	N11
1427	14+05W 6+90N	Gabbro, minor carbonate	Nil	Nil
1428	14+75W 6+95N	Gabbro, rusty surface	N11	N11
1429	14+75W 6+45N	Lapilli tuff silicified < 2% py cubes	100	0.003
1430	14+35W 7+00N	Gabbro, 10% py rusty weathered surface	N11	Nil
1431	14+40W 7+00N	Gabbro, < 10% py rusty weathered surface	Nil	Nil
1432	14+00W	Lapilli tuff	10	Nil
1433	14+70W 6+50N	Int. lapilli tuff	N11	N11
1434	13+90W 6+80N	Int. tuff, weakly foliated	Nil	Nil
1435	14+40W 6+40N	Int. tuff, sericite with minor qtz veinlets 2% py	2810 2610	0.082 0.076
1436	14+70W 6+90N	Int. tuff, aphanitic	10	Nil
1437	13+85W 6+70N	Int. tuff, silicified	N11	N11
1438	14+30W 6+60N	Int. tuff	N11	Nil
1439	14+55W 6+90N	Int. tuff, minor siliceous veinlets and qtz veinlets py $< 1\%$ as small cubes	N11	N11

bample #	Location	Description	PPb Au	oz Au/ton
1440	14+35W 6+80N	Int. tuff, silicified	N11	Nil
1441	14+50W 6+70N	Massive qtz hosted in silicified lapilli tuff <1% py	20	0.001
1442	14+25W 6+90N	Gabbro	10	N11
1443	13 +9 0W 7+00N	Gabbro	Nil	Nil
1444	14+20W 6+80N	Lapilli tuff silicified	Nil	Ni1
1445	14+20W 7+00N	Gabbro	Ni 1	N11
1446	14+50W 6+90N	Chertz tuff	10	Nil
1447	14+36-39W 6+47N	Massive qtz with silicified altered country rock 15% py	2430	0.071
1448	14+65W 6+60N	Int. lapilli tuff	N11	Nil
. 1449	14+75W 6+40N	Int. lapilli tuff with minor silica veinlet	N11	Nil
1450	14+45W 6+50N	Tuff, strongly silicified 5% py	1220	0.036
1451	14+39-43W 6+45N	Tuff, strongly altered and stained pink-orange	1920 2260	0.056 0.066
1452	14+75W 6+30N	Int. lapilli tuff 1% py	Nil	Ni1
1453	8+71W 18+19N	Strongly sheared, sericitized mafic MV <15% py in pods parallel to foliation	Nil	N11
1454	6+30E 34+15-16N	Sericitized, carbonatized pillowed mafic MV	150	0.005

18

.

APPENDIX 4

.

•

.

_	
	P with minor shearing $ \frac{LEGEND}{QFP} \qquad N \\ \frac{VS}{M} \qquad \frac{VS}{M} \qquad$
	Silver Lake Resources Inc.
`[Rowan Lake Project
	District of Kenora, Ontario N.T.S. 52F/5
1	DIAMOND DRILL HOLE LOCATIONS
	and GEOLOGY MAP
	f eet 500 0 500 1000 feet
	CHECKED BY: DATE: PLAN No.
	L Burden April / 1985
NOTE TO FILE : 63.4803

Report on the 1985 Drill Program and DDH's RL-85-01, RL-85-02 and RL-85-04 were culled from this report. These were previously submitted for assessment credits under Report of Work # 104 for 1985 (Toronto file ROWAN LAKE DDR # 34).

3

ŝ

DIAMOND DRILLING LOG

SILVER LAKE RESOURCES INC.

DDH: RL-85-03 Joint Venture Roundary Hole

PROPERTY:	Rowan Lake							
CLAIM:	K690680			CONTRACTOR:	N. Morissette	DATE COMMENCED:	March 13, 1985	
COORDINATES:	30+25E 4+5 (83+00W 12	OS +20N Nuinsco Grid)	CORE SIZE:	B.Q. wire line	DATE COMPLETED:	March 16, 1985	
BEARING:	\$25°E			TOTAL DEPTH:	737 Feet	LOGGED BY:	L. Burden	•
INCLINATION:	-50°			OVERBURDEN:	181 Feet			
		ACID TESTS:	DEPTH 200' 400' 600'	11	ICLINATION -58° -51° -42°			

SUMMARY LOG:

•

0.0 - 181.0'	Overburden	534.4 - 585.2	Metasediment
181.0 - 477.2'	Mafic Metavolcanic	585.2 - 591.8	Mafic Metavolcanic
477.2 - 483.4'	Quartz Feldspar Porphyry	591.8 - 612.7	Mafic Metavolcanic - Gabbro
483.4 - 500.1'	Metasediment	612.7 - 622.8	Mafic Metavolcanic
500.1 - 523.3'	Mafic Metavolcanic	622.8 - 634.6	Metasediment
523.3 - 526.6'	Metasediment	634.6 - 678.7	Sheared Ultramafic
526.6 - 534.4'	Mafic Metavolcanic	678.7 - 737.0	Ultramafic

DEPTH	ROCK_TYPE DESCRI	PTION
0 - 100.0	WATER	
100.0 - 181.0	OVERBURDEN; clay, sand and boulders	
181.0 - 205.7	MAFIC METAVOLCANIC; Variegated white to greyish gre aphanatic carbonate, 3-5% carbonate lamina foliated mafic flow or a tuffaceous unit.	en, aphanatic to fine grained, very thinly laminated, very rich in e, no magnetic attraction, trace pyrite, relict textures suggest either a
205.7 - 221.5	MAFIC METAVOLCANIC WITH BLEACHED PATCHES; Similar to occurs in areas of quartz and quartz-carbo disseminated pyrite, no magnetic attractio	above with some laminated and thinly bedded areas bleached, bleaching nate veinlets, bleached areas are tan to greyish tan with trace amounts of n, extremely rich in aphanatic carbonate (ankerite?) and sericite.
	210.0 - 211.0 Very Blocky Core; drillers 1	ost water return.
	Sample Interval Sample # Assay oz	Au/ton Description .
	209.0 - 212.0 30828 trac	2 < 0.5% py
221.5 - 264.8	MAFIC METAVOLCANIC; Same as 181.0 - 205.7	
	256.8 - 258.7 Bleached Patch; centred on 3 same as 205.7 - 221.5.	inch quartz vein which contains tourmaline and trace pyrite bleaching

2 of 9

Sample Interval	Sample #	Assay oz Au/ton	Description
256.8 - 258.7	30829	trace	0.5% finely disseminated pyrite

DEPTH	ROCK TYPE	DES	CRIPTION	·
264.8 - 285.8	MAFIC METAVOLCANIC; Variegate attraction, quartz, appear convoluted ar silicic alteration, trace to 1% finely o	ed greyish green to carbonate, sericite nd brecciated, rock contact at 264.8 is disseminated pyrite,	buff yellow to dark green, and chlorite were recognize is extremely rich in carbon sharp and easily recognize relict textures suggest a	aphanatic, finely laminated, no magnetic ed, many sericitized laminae, locally laminae ate, contains some quartz veinlets and minor d by yellow coloured sericitic laminae, unit h mafic tuff.
	Sample Interval	Sample #	Assay oz Au/ton	Description
	264.8 - 270.0	30830	trace	0.5% py
	270.0 - 275.0	30831	trace	0.5% py
	275.0 - 280.0	30832	0.002	0.5 – 1% py
	280.0 - 285.0	30833	0.002	0.5 - 1% py
285.5 - 296.4	SERICITIZED MAFIC METAVOLCANIC disseminated pyrite.	<u>C</u> : Similar to above	, yellow-buff colour, entire	e unit contains sericitic alteration, 1 - 2%
	290.6 - 290.9 Quartz side of vein, vein &	z Vein; white milky & halo resembles Nui	quartz with tourmaline and nsco Resources Monte Cristo	trace pyrite sericitized alteration halo on ea material.
·	Sample Interval	Sample #	Assay oz Au/ton	Description
	285.8 - 290.2	30834	0.002	< 0.5% py
	290,2 - 293.0	30835	trace	1% py
	293.0 - 296.4	30836	trace	< 0.5% pv

Sample	Sample #	Assay oz Au/ton	Description
296.4 - 302.0	30837	trace	< 0.5% py
302.0 - 307.0	30838	trace	< 0.5% py
307.0 - 312.0	30839	trace	trace to 0.5% py
312.0 - 317.0	30840	trace	< 0.5% py

of an inch and filled with calcite, trace amounts of pyrite, textures suggest mafic flow rocks with some minor amounts of tuff.

4 of 9

Sumple incertai	Sumpre #	hasay az hayton	beset spero
338.0 - 343.0	30846	trace	tr py

					5 of 9
NEPTH	ROCK TYPE	DESCRIF	TION		
361.0 - 416.5	MAFIC METAVOLCANIC; Varieg aphanatic, possib pyritic laminae i textures suggest	ated white to grey, almost ly amphibolitized, 3 - 5% .e. 5 - 8% py over 8 inche intercalated tuffs and flo	massive but appears to be th carbonate laminae and very ri s, core blocky, rarely lamina ws.	inly laminated, no magnetic ch in aphanatic carbonate, l e are convoluted over 4 inch	attraction, ocal areas of lengths, relict
	Sample Interval	Sample #	Assay oz Au/ton	Description	
	381.0 - 386.0	30847	trace	3 – 5% py	
416.5 - 437.0	MAFIC METAVOLCANIC; Simila rich in aphanatic trace pyrite.	r to above, bleached to a carbonate, no pyritic lam	buff green colour, no magneti iinae, several small quartz ve	c attraction, aphanatic, ser inlets are possible source c	icitized, very f alteration,
	Sample Interval	Sample #	Assay oz Au/ton	Description	
	416.5 - 422.0	30848	trace	1 - 2% py	
437.0 - 477.2	MAFIC METACOLCANIC; Interc green to greyish parallel to the c laminated, locall crystaline masses carbonate with tr	alated massive and tufface green, moderately magnetic ore axis with small altera y folding occurs between l of quartz & feldspar occu ace amounts of sulphides.	eous textures recognized, apha and locally contain micro qu tion halos, tuffaceous sectio aminae, trace amounts of seri r pinched between laminae pla	natic to fine grained, massi artz-carbonate veinlets whic ns are variegated grey to gr citic alteration, locally sm nes, unit extremely rich in	ve sections are h run almost een, thinhy all augen shaped aphanatic
477.2 - 483.4	QUARTZ FELDSPAR PORPHYRY; aphanatic green g quartz-carbonate and tourmaline in	Green, fine grained sub to round mass rich in carbona veinlets which parallel th quartz veinlets, upper co	anhedral crystals of feldspa ite, strongly foliated at 064° we core axis some having stron ontact at 045°t.c.a., lower co	r and quartz less than 1/20 t.c.a., contains quartz and g alteration halos, trace an ntact at 055°t.c.a.	of an inch in an l ounts of pyrite
	Sample Interval	Sample #	Assay oz Au/ton	Description	
	Sumpre Theervar		-		

,

والمعالية والمرابع المرابع

2.64

					6 of 9
DEPTH	ROCK TYPE	DESCRIPTIO	<u>N</u>		
		,			
483.4 - 500.1	METASEDIMENT; Variegated black carbonate, black lam disseminated pyrite,	to grey to white, thinly inae appear graphitic, roc many micro quartz-carbona	laminated aphanatic, extremel k locally bleached, no magneti te veinlets parallel t.c.a. wi	y rich in carbonate, 35% o c attraction, l - 2% very th small alteration halos.	laminae are finely
	Sample Interval	Sample #	Assay oz Au/ton	Description	
	483.4 - 487.0 487.0 - 492.0 492.0 - 497.0	30850 30851 30852	trace trace trace	1 - 2% ру 1 - 2% ру 1 - 2% ру	
	497.0 - 500.1	30853	trace	< 1% py	
500.1 - 523.3 523.3 - 526.6	MAFIC METAVOLCANIC; Variegated laminae, locally fair METASEDIMENT; Variegated dark convoluted possibly of magnetic attraction.	d white to grey to dark gr htly magnetic, amphiboliti grey to green to white, th dewatering features, appea	een, thinly laminated, fine gr zed?, trace pyrite. hinly to thickly laminated, lo rs amphibolitized?, 20 - 30% c	ained, locally some bedded cally laminae appear conto arbonate laminae, trace py	pyrite within rted and rite, no
526.6 - 534.4	MAFIC METAVOLCANIC; Massive to amphibolitized, 0, mafic flow.	o slightly foliated, dark , 5% carbonate veinlets, no	green, aphanatic to fine grain aphanatic carbonate, no visib	ed, strong magnetic attrac le suphides, textures sugg	ion, est massive
534.4 - 585.2	METASEDIMENT; Variegated white convoluted due to dee magnetic attraction slightly graphitic, o	to grey to dark green, to watering?, 50% of laminae but locally very atrong in priginally may have been a	hinly to thickly laminated, lo are white and composed primari certain laminae, trace visibl lime mud.	cally laminae are contorted ly of carbonate with quart: e suphides, black laminae	l and z, faint appear
	Sample Interval	Sample #	Assay oz Au/ton	Description	
	554.0 - 559.0 569.0 - 574.0	30854 30855	trace trace	tr py tr py	

,

ROCK TYPE DESCRIPTION DEPTH 585.2 - 591.8 MAFIC METAVOLCANIC; Massive to faintly foliated, dark green, aphanatic, no magnetic attraction, contains aphanatic carbonate and 1 - 2% carbonate veinlets 1/10 of an inch wide, no visible sulphides, textures suggest mafic flows. 591.8 - 612.7 MAFIC METAVOLCANIC - GABBRO; Massive to very faintly foliated, dark green, fine grained, very strong magnetic attraction, no carbonate, amphibolitized?, amphibole, plagioclase & epidote are recognized minerals, epidote occurs near areas of micro quartz veining i.e. veinlets < 1/20 of an inch in width, rock resembles amphibolitized basalt, trace pyrite. 612.7 - 622.8 MAFIC METAVOLCANIC; Similar to 585.2 to 591.3 but contains much less carbonate and is strongly magnetic note; 585.2 to 622.8 could be a gabbroic intrusive with chilled margins. 622.8 - 634.6 METASEDIMENT; Similar to 534.4 to 585.2, 1 to 3% pyrite as euhedral crystal disseminations and as laminae. 632.0 - 634.6 Sheared Metasediments; chloritic shear planes with finely disseminated pyrite, contains a cubic yellow-gold mineral lacking metalic lustre appearing to be sprayed into the core it is $\sim 1/40$ th of an inch it could possibly be a sericitic alteration. Sample Interval Sample # Assay oz Au/ton Description 622.8 - 627.0 30856 2 - 3% py trace 627.0 - 631.0 30857 0.004 2 - 3% DY 631.0 - 634.6 30858 trace trace py

7 of 9

DEPTH	ROCK TYPE	DESCRIPTION			
634.6 - 678.7	SHEARED ULTRAMAFIC; Dark green aphanatic to fine gram pyrite, shear planes	to black, locally variega ined, chlorite and talc re tend to be talcose, some c	ted white to black, thinly lam cognized minerals, nil to weak arbonate veinlets i.e. < 1%.	inated appearance due to ly magnetic, trace carbo	o shearing, onate, trace
	634.8 - 635.5 Highly 645.8 - 646.8 Highly 647.2 - 647.9 Highly 643.8 - 644.2 Quartz- 644.2 - 644.9 Fault g 650.6 - 651.5 Highly 673.9 - 674.5 Quartz- 677.9 - 678.4 Quartz-	sheared zone with fault go sheared zone with fault go sheared zone with fault go carbonate vein with trace ouge in highly sheared zon sheared and convoluted zon carbonate vein with trace carbonate vein with trace	uge uge and 2" quartz vein uge pyrite e e with 1" quartz vein pyrite pyrite		
	Sample Interval	Sample #	Assay oz Au/ton	Description	
	634.6 - 637.0 637.0 - 641.0	30859 30860	0.002 trace	tr py tr py	•
	641.0 - 647.0	30861	trace	tr py	
	647.0 - 652.0 673.5 - 678.7	30862 30863	0.002 0.010	tr py 1% py	
678.0 - 737.0	ULTRAMAFIC; Massive, fine grain some aphanatic carbon euhedral disseminated	ned, equigranular, chlorit ate but no veinlets, very crystals up to 1/10 of an	e & talc are recognized minera soft with soapy feel, very dar inch.	ls, nil to strong magnet k gree to black, trace j	tic attraction, pyrite as

8 of 9

daadka eriitiinii uunaaa

1.1

737.0 END OF HOLE RL 85 03

Angles to Core Axis

Depth	Foliation or laminae	Fratures
187	45°	
197	45°	
207	45°	
217	45°	
227	45°	
237	45°	
247	43°	
257	53°	
267	45°	
277	43°	
287	50°	
297	50 °	
307	15°	
317	45°	
327	30°	
337	50°	
347	450	
357	40°	
367	45*	
3//	55*	
384	30 °	
394	45°	
404	45	
410	45	
420	50°	
437	50	
460	50°	
472	57 °	
482	64°	10° veinlets
487	55°	0° veinlets
497	60°	
507	50 °	
517	55°	
526	45°	
536	45°	
545	50°	
550	55°	
5 59	60° bedding	
569	60° bedding	
577	63° bedding	
587	65°	
597	60° very faint	
607	60° very faint	
617	60° very faint	
627	60° bedding	
63/	60° shearing	
64/ (57	bu" shearing	
03/ 667	ou snearing	
00/ 477	DU Snearing	
0// 697	/U snearing 62° atmong foliction	
607	65° work foldetten	
07/	UJ WEAK LUITALION	

9 of 9

			r	RILL LOG	
Property: R	owan Lake		NUT	NSCO/LOCKWOOD	D DDH: SL-1
Co Ordinates	: BLO, 32E Silver Lake Gr L80W, 16N Nuinsco Grid	id Claim:			Date Hole Commenced: April 1, 1984
Neclination:	-59° Azimuth: 150°	Core Size Total Dep	: BQ th: 787'		Nate Completed: April 4, 1984 Logged By: Marcus J. Buck
	ACID TEST			TROPARI	RI TEST
Nepth	Inclination	Depth	Inclination	Nepth	Inclination Azimuth Depth Inclination Azim
42' (casing) 140' 240' 340'	58° 57° 57° 57°	440' 540' 640' 740'	56.5° 56° 54.5° 52.5°		
Drill Log Su	mmary			Assay	Comments
Mineralizati Almost no py Sediment uni carb + ser a In mafic flo alteration:	on: mineralization. ts (particularly 322'-390' lteration but py is more l ws there are two sections 187'-215' and 630'-773' (p) typically hav ikely primary. of very weak ca robably not sig	e weak rb + ser nificant)		The core of the Monte Cristo Shear Zone is at 497'-527' and is marked by strong banding (bands of chl., chl. + ser, and carb.) primary textures and structures are destroyed. The banding and shearing decrease gradually outward from this central core; the limits of the shear zone are therefore arbitra
	ABBREVIATIONS USED I	N LOGGING:			
Rock Type:	MV metavolcanic: Tu tuff; A altered zone; Aw weak; A CSZ chloritic shear zone.	QFP quartz feld m moderate; As	spar porphyry. strong	Veining:	QCV quartz-carbonate vein; CV/QV carbonate vein/quartz vein; %/5' - Estimate over 5' interval; estimate attitude; indicate colour.
<u>Texture</u> :	ms massive; gb gabbroid; v am amygdaloidal; Rc rhomb-	s vesicular; sp carbonated.	spotted;	Alteration:	Carb carbonatization; Sil silicification; Ser sericitization; chlorite; Hem hematite; F fuchsite; T tournaline. <u>Modifier</u> : Dervasive; Df diffuse; Aw, Am, As, Rc rhomb-carbonated; Of qu
Structure:	Fol foliated; Sh shear; My	mylonite.			flooding (grey).
<u>Grain Size</u> :	fgr fine <1 mm; agr medium	12- mm; cgr co	arse> 2mm.	Mineralizatio	ion: Py pyrite; Cpy chalcopyrite; Au gold; Ag silver. <u>Modifier</u> : Dis disseminted; Pp pyrite porphyroblasts; Ps pressure shadows; cl clusters; sv selvage; V vein

.

DRILL LOG

Depth	Rock Type	Grain size Colour	Secondary Structure	Texture and Structure	Alteration	Mineralization	Comments
0 - 44'	Casing						
39 - 64.3	Felsic dyke	fgr. medium grey with pinkish tint.	weak foliation (5-10% irregular chl.grains slightly aligned fol c.n.62'45°	massive, homogenous quartz (+ feldspar?) + ser - rich rock (fgr matrix) with 5% irregular chlorite grains.	<pre>trace of chl. + quartz + carb. veinlets with pink quartz-rich A. envellopes - a few veins with A. envellopes similar to those above.</pre>)	gradational could be contact? different phases of the same
64.3 - 114.0 71.4 - 92.0 92.3 - 93.0 94.8 - 96.1 98.2 - 100.2 101.0 - 104.	Feldspar porphyry dyke sections of sheared flow-same as below	fgr porphyritic dark grey	generally weakly foliated but becoming well foliated near included and adjacent sheared mafic flow, fol. defined by fine ser lamellae and to a lessor extent by irregular chl. lamellae, fol c.a. 88' 43° 99' 30° 90' 42° 103' 35° 92' 33° 105' 36°	10-20% anhedral to subhedral feldspar phenoorysts (1-3 mm long) in a quartz (+ feldspa - rich matrix with ≤ 5% ser ≤ 8% chl.	r?) and		

1

DRILL LOG

Nepth	Rock Type	Grain size Colour	Secondary Structure	Texture and Structure	Alteration	Mineralization	Comments
114.0 -	322.0 Mafic flow; initially pillowed, then massive	aphanatic; dark green-grey	well developed cleavage from alignment of chl. grains, initially unit is only slightly sheared but becomes increasingly sheared downhole. cleavage is often kinked at cross- cutting veins, and occasionally displaced on	initially pillowed; distinct dark green chloritic pillow rims with interflow hyaloclastite slightly altered to carb + ser and sheared. Trace $\rightarrow 2\%$ small carb & amygdules. further down the hole, primary features become more difficult to recognize (because of shearing) but occasionally carb a.m. and perhaps some pillow selvages	generally very weak trace of thin A (carb + ser) envelopes on small carb. QCV, and a few ser-rich bands (foliated) in slightly bleached sections. 187-215 (5-15% carb + ser) variable zone of slight bleaching (carb) with numerous ser-rich		probably within Monte Cristo shear zone.
			fractures. fol. c.a. 124' 31° 230' 35° 131' 28° 234' 30° 139' 26° 239' 35° 150' 29° 244' 34° 158' 32° 255' 36° 167' 35° 264' 34° 178' 35° 272' 37° 186' 33° 277' 35° 196' 31° 288' 35° 201' 29° 296' 35° 212' 38° 307' 37° 221' 38° 315' 38° 226' 39°	can be recognized ⇒y most of this unit is probalb massive	alteration bands // fol.		

> . .

DRILL LOG

Depth	Rock Type	Grain size Colour	Secondary Structure	Texture and Structure	Alteration	Mineralization	Comments
322 - 390	Aw (carb + ser) infinely bedded sediment	generally very fgr; some mgr.	somewhat sheared and locally brecciated. fol defined by relatively large chl and ser lamellae which disrupt primary structures; also a very fine cleavage in ser -rich beds. fol. 321' 41° 331' 32°	predominantly finely bedded chloritic sediment, some ser rich sediments, some beds of finely laminated chert, occasionally some thin pyritic lamellae. perhaps some mafic flow breccia near the top bedding c.a. 338' 36° 369' 37° 347' 36° 379' 40° 352' 43° 390' 37° 359' 38°	alteration is difficult to distinguish from primary compositional variations - but there is probably 5-15% carb + ser alteration throughout much of the sediment. locally \leq 3% QCV in slightly bc. host rock.	trace to locally 2% py→much of this is probably recrystall primary py.	ized
390 - 587.6	Sheared mafic flow	aphanitic; dark green	very well developed foliation, defined by chl-rich bands alternating with discentinuous thin carb veins or bands, also there is a fine chl	probably mafic flow (massive?), possibly some carb. am. but these are difficult to distinguish from bondinaged carb. bands.			•
467.1 - 468. 472.7 - 475. 494.7 - 496. 503.7 - 502.	9 interflow) 2 sediment 5 9		commonly fol. is a kinked at cross- cutting veins, and offset on crosscutting joints. 497'-527' particularly fol or banded; fol defined by relatively coarse chl-rich bands.	finely bedded sediment; chl -rich beds, carb + ser-rich beds, and some minor silicous beds.	≤20% carb (some ser) restricted to some of the sediment beds.		467.1 - 496.5 much of this section could possibly be chloritic fgr sediment rather than mafic flow (too sheared to determine).

DRILL LOG

Nepth	Rock Type	Grain size Colour	Secondary Structure	Texture and Structure	Alteration	Mineralization	Comments
			5% chl + ser bands, and 25% carb bands (bandin .5 - 1.5mm), 510 a spectacular set of conjugate chevron kink folds (hinge planging 60°E), kink folds are common in this unit wherever banding is well developed., fol c.a. 504' 30° 549' 37° 518' 35° 558' 33° 523' 41° 567' 40° 529' 37° 572' 37° 534' 38° 586' 39° 544' 41°	9			
587.6 - 601.3	3 feldspar porphyry	porphyritic yellowish grey	weak foliation both contacts are very deformed (ie folded)	15-20% (0.5-2.0mm) feldspar phenocrysts in a fgr. matri 5% chl. massive, homogenous.	x		
601.3 - 605.9	5 sheared mafic flow	aphanitic; dark green	well fol. fol. c.a. 604' 44°	massive flow?			
605.5 - 606.4	feldspar porphyry			same as above FP			

1.18

DRILL LOG

Depth	Rock Type	Grain size Colour	Secondary Structure	Texture and Structure	Alteration	Mineralization	Comments
606.4 - 787	sheared mafic flow	aphanitic to fgr dark green; yellowish green where altered	initially well fol but fol decreases considerably towards the bottom of the hole, fol. defined by chl and ser orientation (cleavage) but also by discontinuous carb bands, small thin ser lamellae and chl lamellae, and by alignment of flattened mafic fragments, there are some kink fold and some tight fol with AP main fol fol c.a. 611' 40° 640' 40° 619' 37° 653' 47° 630' 38° 660' 42° 673' 43° 730' 41° 678' 41° 740' 45° 686' 42° 754' 45° 698' 42° 769' 45° 702' 45° 779' 47° 710' 41° 782' 44° 722' 46° 784' 47°	606.4 - 634 massive, some pillowed (some pillow selvages can be recognized) 634-787 predominantly "pillow breccia": flattened sericitized mafic flow fragments and small pillows in a fgr to mgr chloritic hyalotuff(?) and massive flow. Some larger pillows and short sections of massive flow. S ds	generally some very weak carb + ser alter 630 - 773 2-10% carb + ser alteration restricted to bands (usually with sharp contacts and [[fol) pillows rims and pillow fragments are selectively sericitized and often very bleached (carb?) 635-642 10% A 697-702.5 20% A 730.6-731.4 50%, 769-773 20% A locally some QCV with thin A evelopes	there is rarely up to 1% mgr dis py associated with carb + ser alteration	•
787	End of Hole						

BELL-WHITE ANALYTICAL LABORATORIES LTD. P.O. BOX 187. HAILEYBURY. ONTARIO TEL: 672-3107 Urrtificate of Analysis NO. B395-84 SAMPLE(S) OF: Sludge (50) DATE: May 30, 1984 RECEIVED: May, 1984

G. F. Archibald

Silver Lake Resources

HOLE	#SL-	1
------	------	---

Footage	Gold/ppb	Footage	Gold/ppb
76 - 86	103**	317-327	12
- 92	68**	347-357	7
- 99	137**	-367	3
-107	41	-377	8
-122	23	-387	7
-127	20	-397	4
-137	22	-407	7
-146	26	-417	5
-156	19	-427	7
-165	7	-437	7
-175	14	-447	4
-184	23	-457	12
-193	115	-467	3
196-206	23	-477	10
-216	23	-487	5
-227	33	-497	11
-237	15	-507	8
-247	11	-517	8
-257	18	-527	26
-267	4	-537	12
-277	12	-547	20
-287	10	-557	18
-297	5	-567	10
-307	. 4	-577	19
-317	4	597-637	11

** Checked

BELL-WHITE ANALYTICAL LABORATORIES LTD.

A ACCORDANCE WITH LONG ESTABLISHED NORTH MERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED THERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND CAINS INHERENT IN THE FIRE ASSAY PROCESS.

SAMPLE(S) FROM:

Scale : 1 inch = 100 feet

April, 1985