REPORT ON THE SUMMER 2009 EXPLORATION PROGRAM on the

SUGAR ZONE PROJECT

Hambleton, Odlum, Strickland, Gourlay and Tedder Twps.

Sault Ste. Marie Mining Division, Ontario

NTS 43C/14 SE

of


CORONA GOLD CORPORATION

and

HARTE GOLD CORP.

VOLUME 1 – REPORT

Drawing SZ-99

RECEIVED

MOM 2 0 2009

GEOSCIENCE ASSESSMENT

by David S. Hunt, P. Geo., Sharpstone Geoservices Ltd. November 11, 2009

Report on the Summer 2009 Exploration Program on the Sugar Zone Project

VOLUME 1

TABLE OF CONTENTS

1.0	INTRODUCTION AND SUMMARY	
2.0	PROPERTY, DESCRIPTION AND LOCATION	
3.0	ACCESSBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	
	PHYSIOGRAPHY	
4.0	HISTORY	
5.0	GEOLOGICAL SETTING	7
6.0	DEPOSIT TYPES	
7.0	MINERALIZATION	
8.0	SUMMER 2009 FIELD PROGRAM	11
9.0	SAMPLING METHOD AND APPROACH	
10.0	SAMPLE PREPARATION, ANALYSES, SECURITY AND QA/QC	13
11.0	INTERPRETATION AND CONCLUSIONS	
12.0	RECOMMENDATIONS	
13.0	REFERENCES	
14.0	AUTHOR'S CERTIFICATES	

LIST OF TABLES

Table 1:	Outcrop Descriptions	APPENDIX B
Table 2	Glacial Boulder and Float Descriptions	APPENDIX C
Table 3:	Grab and Channel Sample Descriptions and Assays	APPENDIX D
Table 4:	Summary of Dighem Airborne Conductor Evaluation	page 15
Table 5:	Proposed Diamond Drill Holes	page 17

LIST OF FIGURES

Figure 1:	Location and Accessafte	er page 3
Figure 2:	Regional Geology	page 8

SHARPSTONE GEOSERVICES LTD.

i

APPENDICES

Appendix A	List of Claims and Land Tenure
Appendix B	Table 1: Outcrop Descriptions
Appendix C	Table 2: Glacial Boulder and Float Descriptions
Appendix D	Table 3: Grab and Channel Sample Descriptions and Assays
Appendix E	Assay Certificates
* *	-

VOLUMES 2 and 3

LIST OF DRAWINGS (in back pockets)

Drawing SZ-99	Claim Map. Scale 1:25,000
Drawing SZ-110-B	Geology and Prospecting 2009, Sheet B. Scale 1:5,000
Drawing SZ-110-C	Geology and Prospecting 2009, Sheet C. Scale 1:5,000
Drawing SZ-110-D	Geology and Prospecting 2009, Sheet D. Scale 1:5,000
Drawing SZ-110-E	Geology and Prospecting 2009, Sheet E. Scale 1:5,000
Drawing SZ-110-F	Geology and Prospecting 2009, Sheet F. Scale 1:5,000
Drawing SZ-110-G	Geology and Prospecting 2009, Sheet G. Scale 1:5,000
Drawing SZ-110-H	Geology and Prospecting 2009, Sheet H. Scale 1:5,000
Drawing SZ-110-I	Geology and Prospecting 2009, Sheet I. Scale 1:5,000
Drawing SZ-110-J	Geology and Prospecting 2009, Sheet J. Scale 1:5,000
Drawing SZ-111	Stripped Area D5A, Geology and Sampling. Scale 1:100*
Drawing SZ-112	Stripped Area D19, Geology and Sampling. Scale 1:100*
Drawing SZ-113-B	Geological Compilation and Proposed Work, Sheet B. Scale 1:5,000
Drawing SZ-113-C	Geological Compilation and Proposed Work, Sheet C. Scale 1:5,000
Drawing SZ-113-D	Geological Compilation and Proposed Work, Sheet D. Scale 1:5,000
Drawing SZ-113-E	Geological Compilation and Proposed Work, Sheet E. Scale 1:5,000
Drawing SZ-113-F	Geological Compilation and Proposed Work, Sheet F. Scale 1:5,000
Drawing SZ-113-G	Geological Compilation and Proposed Work, Sheet G. Scale 1:5,000

*Dwg. SZ-111 is after Page 12, Volume 1... *Dwg. SZ-112 is after Page 12, Volume 1...

SHARPSTONE GEOSERVICES LTD.

1.0 INTRODUCTION AND SUMMARY

The Sugar Zone property is situated approximately 25km northeast of White River and 60 km east of the Hemlo gold camp. It consists of 326 unpatented, unsurveyed, contiguous mining claims comprising 717 claim units within the Sault Ste. Marie Mining Division of Ontario. The claims are registered in the name of Corona Gold Corporation, and are subject to a Joint Venture Agreement between Corona (51%) and Harte Gold Corp. (49%). Corona Gold Corporation is the operator of the project.

Geologically, the property is located in the north-south trending Dayohessarah greenstone belt, and covers a gold occurrence referred to as the Sugar Zone, so named for the sugary texture of quartz which hosts the gold mineralization. The Sugar Zone is controlled by a major linear structure which strikes northwest and which has been traced by drilling and geological mapping over a strike-length of approximately 3.5 km. Within this structure, the gold-bearing Sugar Zone occupies a segment with a strike length of 1.1 km. The zone consists of two parallel mineralized zones separated by 10m to 15m of barren mafic volcanics. The zones range in thickness from 2m to 12m, strike northwest, and dip, on the average, 64° southwest. Both are defined by swarms of felsic porphyry sills within mafic volcanics. The sills are typically altered and are accompanied by quartz veins, stringers and zones of silicification.

The gold occurs within the quartz veins and stringers as free gold in small specks visible to the naked eye and is commonly associated with a variety of sulphides. The gold mineralization occurs mostly at the contacts of the porphyritic sills, to a lesser extent within the sills, and more rarely within the mafic volcanics.

A program of prospecting, reconnaissance geological mapping and channel sampling was undertaken on the property between late July and mid-September , 2009. The objectives of the program were to evaluate a series of bedrock-source Dighem airborne conductor axes lying west and north of Dayohessarah Lake, as identified by an airborne geophysical survey flown by Corona in 2008; to identify northerly and southerly extensions of known Sugar Zone mineralization lying east of Dayohessarah Lake; and to prospect other mineral occurrences and geochemical anomalies north, west and south of Dayohessarah Lake which were identified during exploration programs carried out in past years by other companies. Two well-exposed outcrop areas associated with conductor axes D5A and D19 were cleared by hand and channel sampled in order to obtain continuous sample cross-sections.

Prospecting and mapping conducted along the northerly extensions of the Sugar Zone east of Dayohessarah Lake located a heavily rusted angular glacial float cobble. Sampling of the float returned an assay of 87.80 grams per tonne (g/t) gold. This cobble may have been transported a short distance down-ice.

Quartz veining immediately southeast of Little Dayohessarah Lake confirmed elevated Noranda surface samples. Two surface outcrop grab samples collected during the current program assayed 30.40 g/t gold and 9.04 g/t gold from a thin quartz vein cutting mafic volcanics. This area is considered to increase the resource potential of the southern part of the Sugar Zone and it is felt that it area is worthy of additional exploration.

Other former Noranda trenched and sampled occurrences immediately northeast of Little Dayohessarah Lake were also sampled, with results that confirmed original values. There exists the potential for narrow high-grade shoots to be present and the area is worthy of additional exploration.

Twelve drill holes, totaling 3,275m, have been proposed to test exploration targets defined by the summer program. A fence of four diamond drill holes (proposed drill holes A through D on Dwg. SZ-113-E) is recommended in an effort to locate the northerly extension of the Sugar Zone in the area of the mineralized float. A series of eight drill holes (proposed drill holes E through M on Dwg. SZ-113-G) are proposed to test targets in these areas, with the main objective of identifying significant mineralized shoots in the area.

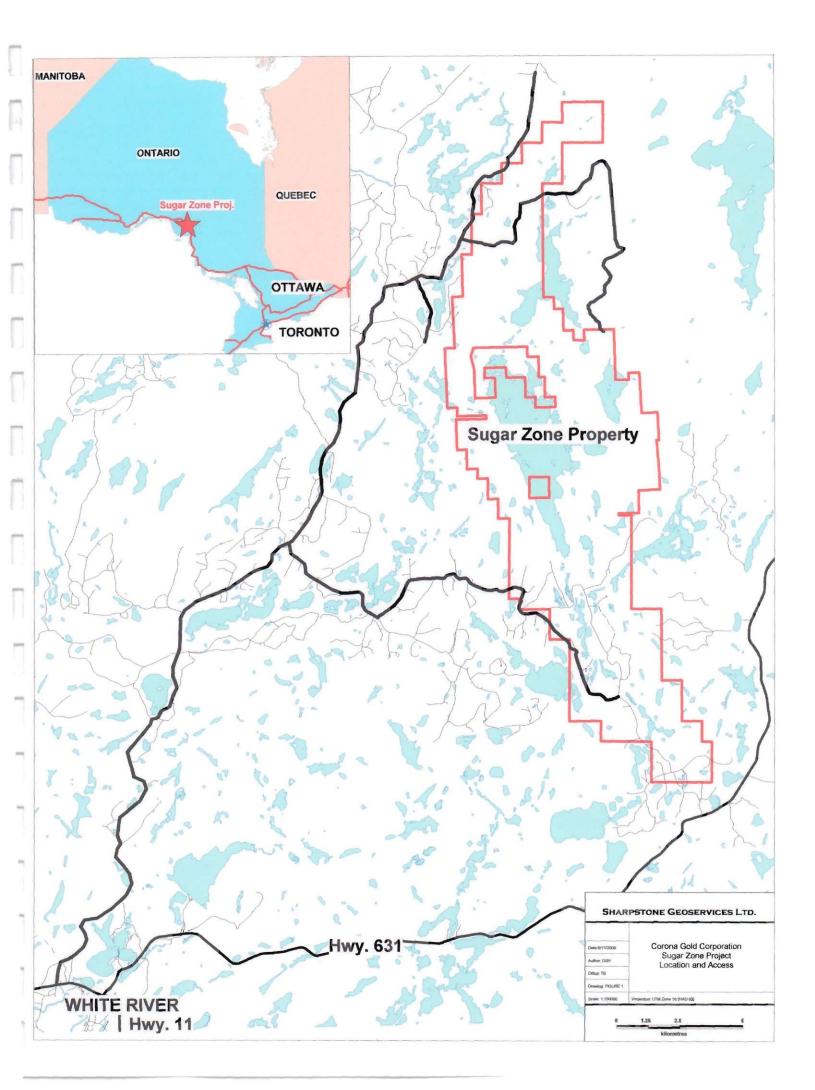
Two areas are proposed for 1:2500 scale grid mapping and prospecting in subsequent field seasons. An area west of Dayohessarah Lake, which hosts the reported Noranda showing, remains a candidate for grid mapping in the future. Current overgrown bush conditions make it unsuitable for GPS-guided reconnaissance mapping. An additional area north of White River Forest Products' Road 305 hosted several historic gold-in-soil anomalies (Pan Global), however the available assessment maps were too poorly georeferenced to properly identify locations during the past summer. This area may also be a candidate for grid mapping.

2.0 PROPERTY DESCRIPTION AND LOCATION

The Sugar Zone Property is situated approximately 25 km northeast of the Town of White River (Trans Canada Highway No. 17) and 60 km east of the Hemlo gold camp. The property is approximately equidistant from Sault Ste Marie to the east and Thunder Bay to the west (see inset location map on Figure 1). The overall property encompasses NTS zones 42C/ 10, 11, 14 and 15), and the gold occurrences are exposed at latitude 48° 48' north, longitude 85° 10' west. The property covers portions of Odlum, Strickland, Gourlay, Tedder and Hambleton Townships and falls within the Sault Ste. Marie Mining Division.

The property consists of 326 unpatented, unsurveyed, contiguous mining claims comprising 717 claim units, and covering approximately 11,370 hectares. All claims are held in the name of Corona Gold Corporation. Surface rights are held by the Crown and timber cutting rights are held by White River Forest Products Ltd. All claims are within the Sault Ste Marie Mining Division and are preceded by the prefix SSM. Details of land tenure at the time of writing this report are presented in Appendix A.

The mining claims are subject to a Joint Venture agreement between Corona Gold Corporation and Harte Gold Corp. Corona is the operator. The original 313 claims are subject to 3.5% net smelter royalty (NSR). The Joint Venture participants, namely Corona Gold Corporation (51%) and Harte Gold Corp. (49%) have the option of acquiring 1.5% of the 3.5% NSR for \$1.5 million, in proportion to their respective interest and have, in addition, the right of first refusal on the remaining 2.0% NSR.


No mine workings, waste rock piles, tailings ponds or other environmental liabilities are known to occur on the property.

3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The western and southern portions of the property are accessible via White River Forest Products logging roads No. 100 and No. 200, as well as numerous arteries off the main road system. Road No. 200 provides access to within 500m of the southwest shore of Dayohessarah Lake from where access can be gained by boat to the entire property grid located on the east shore of Dayohessarah Lake. The eastern and northern portions of the property are accessible by logging roads No. 300 and tributaries, which extend to within 3 km of the property.

Access is also available by way of floatplane via Dayohessarah Lake or Hambleton Lake and by helicopter.

During the 1998 exploration program a drill trail was established to allow access to the property grid via all-terrain and tracked vehicles. Distance from White River to the drill trail leading onto the property is approximately 55 km.

Areas surrounding Dayohessarah and Hambleton Lakes are designated by the Ontario Ministry of Natural Resources (MNR) as 'Restricted Access' in order to limit access to several remote tourism operations located within or close to the property. Locked gates on White River Forest Products roads Nos, 200 and 305 prevent unauthorized vehicular access. Permits are required to access portions of the property for mineral exploration purposes.

Topography varies from moderate to rugged, with lake levels generally at 275m above sea level, and occasional hills up to 480m elevation. Vegetation is boreal, with jack pine, fir, poplar and birch occupying dry uplands and cedar, tamarack and spruce growth on more poorly drained terrain.

Climate is northern boreal, with hot summers and cold, snowy winters. Field operations can be carried on year-round.

The central portion of the property, which contains the Sugar Zone itself, exhibits 10 - 15% bedrock exposure, while the entire property in general exhibits 5 - <10% exposure. Overburden ranges between 0 and 10 meters in thickness as observed in trenching and diamond drilling.

The entire area has been covered with varying amounts of glacial till and outwash material. The Laurentide ice sheet advanced from the northeast and deposited a thin discontinuous veneer of ground moraine over the bedrock surface. On the property numerous gold bearing boulders have been discovered that outline a weak boulder trend emanating from the northeast.

The nearest community is White River (population approximately 1000), 25km southwest of the property. Mining infrastructure and workers are present in the two communities serving the Hemlo mining camp, Marathon and Manitouwadge, situated about 65 km west of White River. The larger population and infrastructure centers of Thunder Bay and Sault Ste. Marie are situated 380 km west and 310 km east of White River, respectively.

4.0 HISTORY

Extensive historical research pertaining to the history of the property and exploration results was carried out during Corona's 1998 exploration program (Drost, Hunt and Roach, 1998; Hunt and Drost, 1998; Roach, Hunt and Drost, 1998 and Hunt and Drost, 1999). Portions of this material were used in the preparation of this report.

Historically, the names for this property, 'Dayohessarah Lake', Dayohessarah', 'Dayo' and 'Sugar Zone', have been used interchangeably. 'Dayohessarah' refers to Dayohessarah Lake, a large body of water occupying the centre of the property, while 'Sugar Zone' refers to the sugary nature of quartz veining hosting gold mineralization on the property. In this report 'Sugar Zone' will be used exclusively to describe the property and project.

Considerable exploration has been carried out on the Sugar Zone property and to a lesser extent, on the Dayohessarah greenstone belt, since 1969, according to assessment files in the Resident Geologist's Office in Sault Ste. Marie. Most of the exploration carried out to date has been in and around Dayohessarah Lake.

In 1969 Canex Aerial Exploration Ltd. drilled three diamond drill holes in the vicinity of the mafic/ultramafic intrusives and flows near the north end of Dayohessarah Lake. Their best intersection was 0.326% Ni and 0.08% Cu over 5 ft. in metagabbroic rocks.

After ten years of very little exploration in the area, regional interest was re-ignited in 1981 by the Hemlo Gold discoveries. Pezamerica Resources Ltd. conducted an exploration program between the years 1983-1986. An airborne Mag and EM survey outlined 31 geophysical anomalies in the area. Twenty-four of these anomalies were investigated by Teck Exploration on behalf of Pezamerica. In the winter of 1983/84 Teck Exploration drilled nine airborne geophysical targets based on a coincidental soil gold anomaly trend that had been outlined earlier that year. In all cases the geophysical targets tested were explained by pyrite- and pyrrhotite-rich horizons within felsic volcanics. Hole PZ-6 returned appreciable amounts of sphalerite mineralization (0.47% Zn over 2.8 feet). None of the assayed sections of core returned promising gold values.

In 1991 Hemlo Gold optioned the property from the prospecting syndicate that in 1990 staked the entire Dayohessarah greenstone belt. Initial prospecting by Hemlo Gold uncovered the gold-bearing Sugar Zone. Based on bedrock exposure and trenching the Sugar Zone was traced for 750m and I.P. data suggested that the structure extended for 1500m.

In 1993, Hemlo Gold conducted a preliminary diamond drill program testing the Sugar Zone for economic gold mineralization. The initial program returned favorable results and Hemlo Gold proceeded with its exploration program, initiating geological mapping, prospecting and follow up drilling programs. An I.P. survey was completed over the southern portion of the property and a Mag survey was completed over the entire grid. Hemlo Gold had delineated additional targets based on surface work and geophysics for the summer of 1984 but instead ended their option agreement.

In autumn 1998, Corona Gold Corporation carried out an extensive mineral exploration program, encompassing all work described below.

The existing grid was rehabilitated and new grid lines established east of Dayohessarah Lake. In total 96.1 line km were cut and chained at 100m spacing and at 25m stations, from a base line oriented at 320° azimuth.

The geology of the property was mapped on a scale of 1:1000 to outline new favourable exploration targets. A total of 96.1 line km of mapping and sampling was completed on the property between September 25 and October 30, 1998. Prospecting was limited to the Sugar Zone and extensions of the Sugar Zone to the south and to the north. I. P. anomalies to the north were carefully prospected along strike (Roach, Hunt and Drost, 1998). An orientation soil sampling program was carried out over the Sugar Zone between September 27 and October 1, 1998.

A surface power stripping and trenching program was completed to expose Sugar Zone mineralization during the period between September 30 and November 3, 1998. Six trenches were excavated, washed, channel sampled and mapped in detail (Drost, Hunt and Roach, 1998).

A detailed Mag-VLF and reconnaissance gradient I.P. survey was performed on the property between October 14 and 30, 1998 (Simoneau, 1998).

A diamond drilling program, consisting of 9,937m of NQ core drilled in 53 holes, was carried out between October 24 and December 8, 1998. The purpose of the program was to test the 'Resource Area' (12900N to 13100N) at pierce point spacings of 50m; to test a 3 km strike length of the Sugar Zone (10700N to 13700N) at shallow depth; to test the '124 Shoot' (12300N to 12600N); to follow up low grade mineralization encountered in previous drilling by Hemlo Gold; and to test previously untested, or poorly tested IP anomalies west of the Sugar Zone and east of Dayohessarah Lake. Details and results of this diamond drilling program are presented by Hunt and Drost, 1998.

Preliminary resource estimates of Sugar Zone mineralization in the 12000 N to 13100 N area were prepared, based on the results of the drill program noted above.

A revised resource estimate was made, using revised and refined criteria and polygonal methods, in spring 1999, following additional data evaluation (Hunt and Drost, 1999). The total inferred resource estimate for both mineralized zones was 429,996 tonnes, with an average grade of 11.19 g/t Au, using a 3 g/t Au cut-off grade (154,671 contained ounces gold).

A diamond drilling program, consisting of 26 holes totalling 7,100 metres, was carried out on the property by Corona Gold Corporation during fall and winter 2003-04 (Hunt, 2004). The purpose of the program was to increase the mineral resource estimated in 1999. The program was successful in expanding the strike and dip extent of the Sugar Zone, as well as in increasing the level of confidence in the continuity of mineralization by in-fill drilling. Consequently, the inferred resource, using a cut-off grade of 3.00 g/t Au, was increased from 429,996 tonnes grading 11.19 g/t Au (154,671 ounces of gold) to 904,400 tonnes grading 9.752 g/t Au (283,500 ounces of gold).

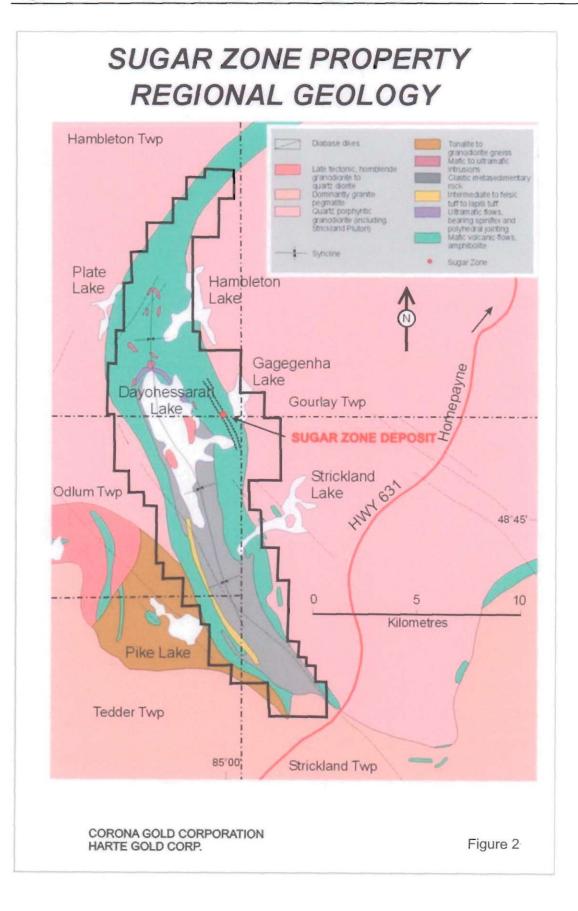
Further diamond drilling, consisting of 11 holes totaling 3,588 metres, was carried out during fall 2004 by Corona Gold Corporation (Hunt 2005). Purpose of the program was to improve the economics of the Sugar Zone deposit by increasing the tonnage per vertical foot to a depth of 300m. This was to be achieved by extending the strike length of the deposit to the north and by drilling between the known mineralized shoots in order to establish the continuity of mineralization. In addition, two holes were drilled to test the depth extension of the central and northern parts of the deposit. A resource estimate, recalculated to include the results of this drill program, resulted in a slight increase over the 2004 resource, to 953,600 tonnes grading 9.933 g/t gold (288,400) ounces of gold, using a cut-off grade of 3.00 g/t Au.

During February 2008 a helicopter-borne airborne geophysical survey was flown over the property by Fugro Airborne Surveys Corp. under contract to Corona Gold Corporation. The survey used a DIGHEM multi-coil, multi-frequency electromagnetic system along with a high sensitivity cesium magnetometer. Flight lines were spaced 100m apart and were flown in a northwestern orientation in the north half of the property and a northeastern orientation in the southern half. The EM sensor was flown at a height of 30m. A total of 1,917 line kilometers were flown. Results are reported in a report and maps (Fugro Airborne Surveys Corp., 2008) which are in the assessment files, Resident Geologist's Office, MNDM, Sault Ste. Marie, ON.

During March and April 2009 a diamond drilling program, consisting of 10 holes and totalling 2,020 metres, was carried out on the property. The purpose of the program was to test airborne electromagnetic conductors, magnetic anomalies, induced polarization chargeability anomalies

and geologically defined possible extensions to known Sugar Zone mineralization north and south of the main deposit. Results are described in a report by D. S. Hunt, which is available in the assessment files, Resident Geologist's Office, MNDMF, Sault Ste. Marie and Sudbury, Ontario. Following on the drill program it was recommended that compilation of historic exploration data on the remainder of the property be followed by a program of reconnaissance mapping and prospecting to evaluate the Fugro airborne conductor axes on the ground as well as to identify additional target areas extending both north and south of existing Sugar Zone mineralization and elsewhere on the property.

5.0 GEOLOGICAL SETTING


The Dayohessarah greenstone belt is situated between two larger greenstone belts: Hemlo to the west and Kabinakagami to the east. These greenstone belts are all part of the larger east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton. The Late Archean Dayohessarah greenstone belt trends northwest and forms a narrow, eastward – concave crescent. The belt is approximately 36 km in length and varies in width from 1.5 to 5.5 km. Principal lithologies in the belt are moderately to highly deformed metamorphosed volcanics, volcaniclastics and sediments that have been enclosed and intruded by tonalitic to granodioritic quartz porphyritic plutons, (see Figure 2).

Near Dayohessarah Lake the belt is dominated by a basal sequence of massive to pillowed mafic volcanics, commonly with ellipsoidal, bleached alteration pods, overlain by intermediate tuff and lapilli tuff. The tuffaceous units rapidly grade upward to a sedimentary sequence consisting of greywacke and conglomerates derived from volcanics, sediments, and felsic intrusive sources (G. M. Stott, 1996). Several thin, continuous cherty sulphide facies iron formations are found in the mafic volcanic sequence. Spinifex textured komatilitic flows stratigraphically underlie the main sedimentary sequence and can be traced around the north end of Dayohessarah Lake. Also at the north end of Dayohessarah Lake mafic to ultramafic sills and stocks underlie the komatilites.

Several fine to medium grained quartz and/or feldspar porphyry sills have been injected into and have swarmed the belt. Swarming of the felsic porphyry sills is more intense east of Dayohessarah Lake. Stott has interpreted the felsic porphyry sills and associated porphyry bodies to be related to the Strickland pluton. The Strickland pluton borders the greenstone belt to the east and is characterized by a granodiorite composition, quartz phenocrysts, fine grained titanite, and hematitic fractures. A smaller granitic quartz porphyry body containing some sulphide mineralization is located northwest of Dayohessarah Lake.

The Dayohessarah greenstone belt has been metamorphosed to upper greenshist to amphibolite facies. The Strickland pluton seems to have squeezed the greenstone belt and imposed upon it a thermal metamorphism (G.M. Stott, 1996). Most of the mafic volcanics are composed primarily of plagioclase and hornblende. Almandine garnets are widely observed in the clastic metasediments and locally in the mafic volcanics (G.M. Stott, 1996).

Alteration throughout the belt consists of albitization, weak biotization, weak carbonatization and moderate to strong silicification which accompanied the emplacement of the porphyry sills and quartz veining.

Foliations and numerous top indicators define a synclinal fold in the central portion of the belt. The synclinal fold has been strongly flattened and stands upright with the fold hinge open to the south and centered along Dayohessarah Lake.

The belt has been strongly foliated, flattened and strained. Deformation seen in the supracrustal rocks has been interpreted to be related to the emplacement of the Strickland pluton. Strongly developed metamorphic mineral lineations in the supracrustal rocks closely compare with the orientations of the quartz phenocryst lineations seen in the Strickland pluton. This probably reflects a contact strain aureole imposed by the pluton upon the belt (G.M. Stott, 1996). The strain fabric is best observed a few hundred meters from the Strickland pluton in the Sugar Zone, which has been characterized as the most severely strained part of the belt. The Sugar Zone is defined by sets of parallel mineralized quartz veining, quartz flooding of strongly altered wallrock, thin felsic porphyry lenses and sills parallel to stratigraphy and foliaton, and gold mineralization.

The major linear structure recognized on the property is the Sugar deformation Zone (SDZ) that trends northwest –southeast for approximately 3.5 km and dips southwest between 60° and 70°. It appears to be spatially related to the Strickland Lake pluton. The SDZ is a complex system with strain intensities varying from strongly deformed-pillowed mafic volcanics to undeformed massive mafic flows to anatomizing linear areas. Stratigraphically-conformable porphyritic felsic intrusions swarm through the SDZ. Some of these porphyritic felsic units may, in fact, be intermediate to felsic tuffaceous horizons. Both the mafic volcanic and the porphyries exhibit strong linear fabrics along with hydrothermal alteration (i.e. silicification +/- albite).

Numerous northeast to north trending lineaments and/or faults have been interpreted from ground geophysics, which indicate the intersection and discontinuity of lithostratigraphic bodies.

In general, the northeasterly striking, northwesterly dipping stratigraphy hosting the mineralized portion of the Sugar Zone can been subdivided into the following units:

Hanging wall Volcanics Upper Zone (Sugar Zone Mineralization) Interzone Volcanics Lower Zone (Sugar Zone Mineralization) Footwall Volcanics

The Hanging wall, Interzone and Footwall volcanic horizons consist predominantly of massive and pillowed basalt flows generally striking northwest and dipping moderately west at an average angle of 64°. Very coarse grained, locally gabbroic-textured phases form a significant component of the hanging wall mafic volcanic package. It is believed that these phases represent feeder sills or thick, slowly-cooled portions of massive flows, as they commonly grade into finer grained, more recognizable basaltic flows. In much of the area in which drilling was carried out (11950 N to 13100 N) a distinctive, very coarse grained massive mafic flow was observed consistently about 15m stratigraphically above the Upper Zone. Other than this unit, specific mafic flows, as well as intermediate to felsic porphyry units, were nearly impossible to interpret from hole to hole.

These rocks have been metamorphosed to upper greenschist to lower to middle amphibolite facies, the degree of metamorphism increasing to the east, toward the Sugar Zone and the

Strickland pluton. In most holes testing the Sugar Zone minor garnet development was common in mafic horizons and pillow selvages.

Mafic volcanics have been intruded by thin, intermediate to felsic porphyritic dykes or sills. These intrusions vary in abundance on the property, but increase in the vicinity of the SDZ.

A northerly striking, vertically dipping, dark green to black, porphyritic diabase dyke intrudes older rock types of the SDZ, cutting the zone from 12600 N to 13000 N. The porphyritic nature of the dyke is due to widely scattered pale yellowish green feldspar phenocrysts up to 2.5 cm across. The dyke is locally weakly magnetic. A small amount of lateral movement of the Zones is interpreted locally on either side of the dyke, suggesting that very minor dyke-related faulting has occurred.

The youngest intrusive rocks observed are white to pale gray, fine to medium grained, occasionally pegmatitic felsite dykes. These generally thin dykes strike northeast and, intersect older stratigraphy and veining. These dykes are fresh and undeformed and clearly postdate the mineralization and deformation

The Upper and Lower Zones range in thickness from 2 to 12m, strike 145° and dip 64°, with minor undulations. Between 12100N and 12200N the zones are interpreted to have been faulted, with right-lateral movement for a distance of about 40m, by a vertical fault striking 025°.

A geological legend illustrating rock types and codes is included with each Geology and Prospecting, and Geological Compilation and Proposed Work map sheet included with this report.

6.0 **DEPOSIT TYPES**

The SDZ is an area of high strain. Stretching and foliation of all rock types except later diabase and felsite dykes increases with proximity to the SDZ. Within and adjacent to the SDZ basalt flows are foliated and stretched to the point where features become nearly unrecognizable. Widespread "mafic agglomerate" noted in previous Hemlo Gold Mines Inc. diamond drilling (Calhoun, 1994) is, based on close observation of drill core and washed outcrop exposures, to be highly stretched pillowed flows. Within and proximal to mineralized zones boudinaging of quartz veins and other brittle features is commonly observed.

The auriferous Upper and Lower Zones of the Sugar Zone lie within the SDZ. They are defined as highly strained packages consisting of variously altered mafic volcanic flows, intermediate to felsic porphyritic intrusions and boudinaged auriferous quartz veins. The two zones range in thickness from 2 to 12 metres and are separated by 15 to 25 metres of barren mafic volcanics.

Each zone is made up of one or more porphyritic intrusions, flanked by altered basalt and hosting stratigraphically conformable quartz veins. Alteration consists predominantly of silicification, potassic alteration (biotization) and sulphidization (dominantly pyrrhotite). Auriferous porphyry is commonly biotitic and silicified, with elevated levels of pyrrhotite. Hydrothermally altered basalt is recognized as a key component of mineralized zones. Commonly in contact with

porphyries within mineralized zones, it is strongly silicified and biotitic basalt containing significant amounts of pyrrhotite.

The Upper and Lower zones are geologically consistent both down dip and along strike. The number and 'stratigraphic position' of porphyry systems, quartz vein zones and hydrothermally altered basalt zones can be traced between drill intersections for more than 200m. Zones are observed on surface to pinch and swell over distances of 50m or more. Quartz veining and gold mineralization are discussed in greater detail below.

Other mineralized zones have been observed between (interzone), above (hanging wall) and below (footwall) the Upper and Lower Zones. These additional mineralized zones are commonly defined by the presence of biotitic and/or silicified intermediate porphyry flanked by hydrothermally altered basalt and occasionally containing quartz stringer zones or veins. Such zones are often geochemically anomalous with respect to gold and occasionally host significant gold values. Drilling to date has failed to determine any such zones with significant continuity or gold mineralization

7.0 MINERALIZATION

Gold mineralization occurs in quartz veins, stringers and quartz-flooded zones predominantly associated with porphyry, porphyry contact zones, hydrothermally altered basalts and, rarely, weakly altered or unaltered basalt within Upper and Lower Zones.

Fine to coarse specks and blebs of visible gold are common in Sugar Vein-hosted quartz veins and floods, usually occurring within marginal, laminated and refractured portions of veins. Within veins gold is commonly observed concentrated in thin fractures (indicating some degree of remobilization) parallel to foliation. Quartz veins and floods also contain varying amounts of pyrrhotite, chalcopyrite, pyrite, galena, sphalerite, molybdenite and arsenopyrite. The presence of galena, sphalerite and arsenopyrite is a strong indicator of the presence of visible gold.

Pyrite, chalcopyrite and, rarely, molybdenite, form a minor component of total sulphides and do not appear to be directly associated with the presence of gold mineralization.

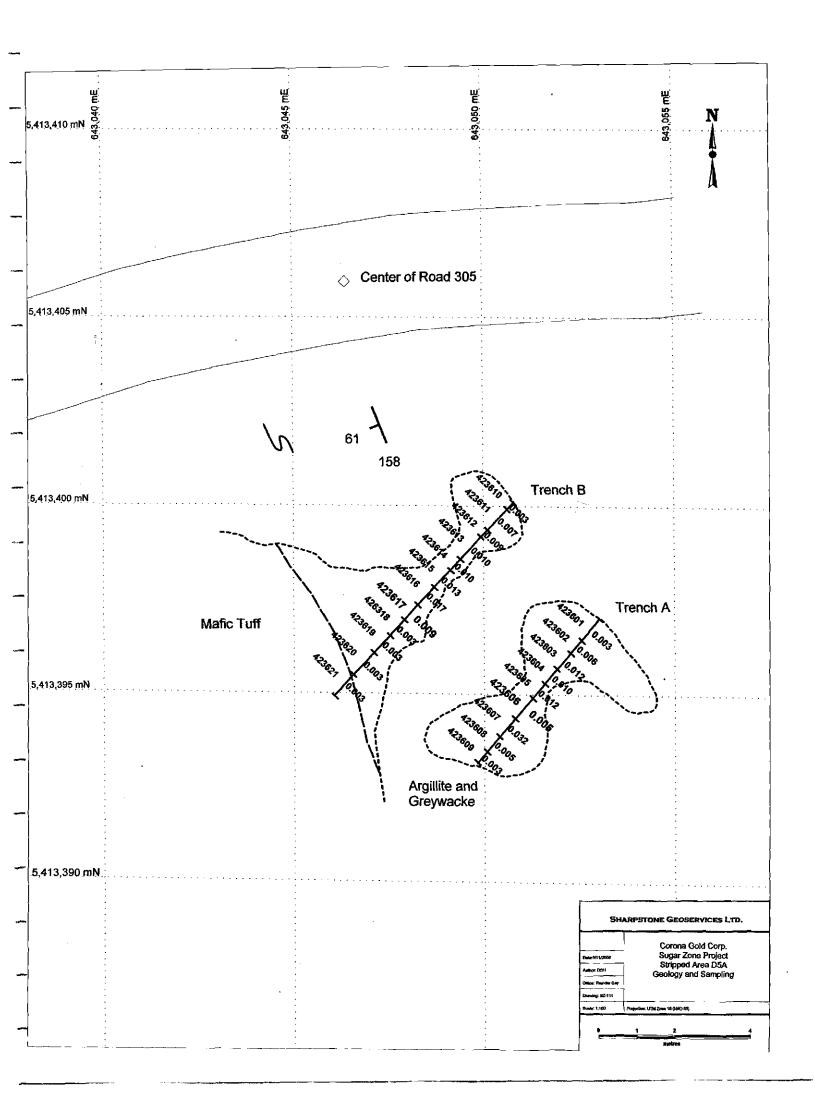
8.0 SUMMER 2009 FIELD PROGRAM

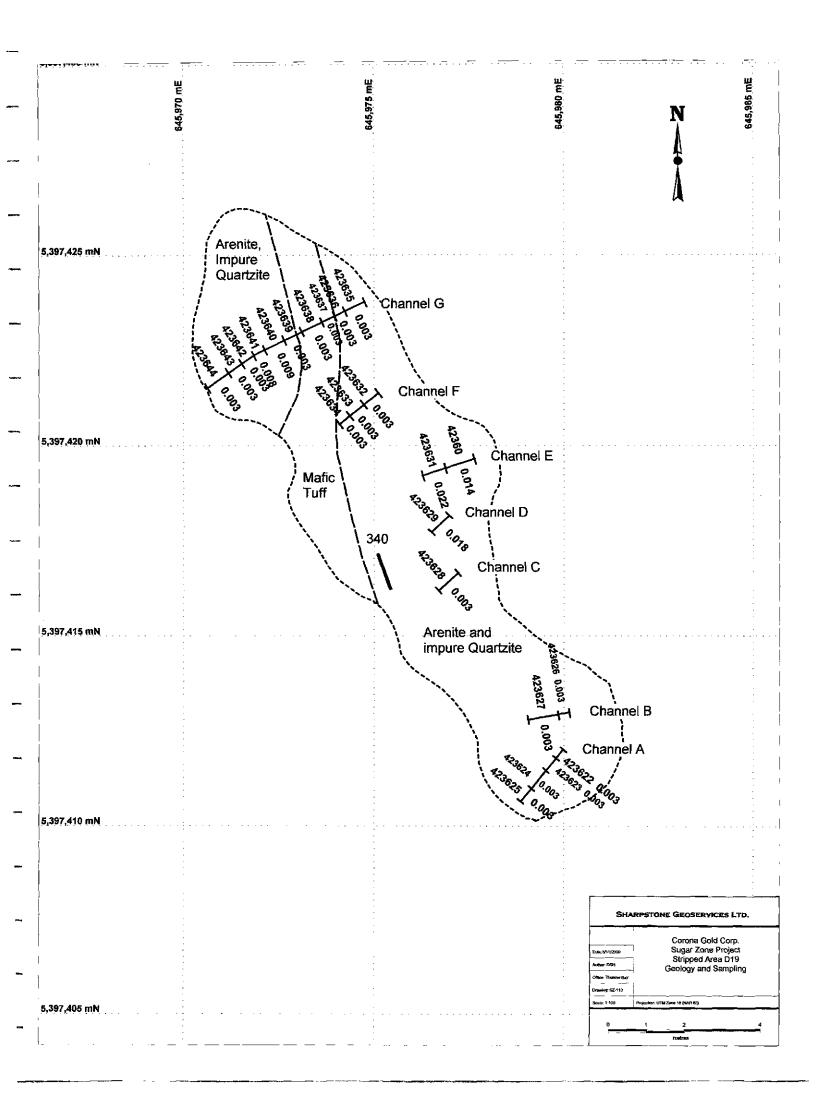
A program of prospecting, reconnaissance geological mapping and channel sampling was undertaken on the property from July 21, to September 14, 2009. Geological mapping was carried out by R. T. Chataway, P. Geo. and the author, both of Thunder Bay. Prospecting was carried out by Garry Peacock of G. Peacock Enterprises, Thunder Bay. Field assistance was provided by T. Greenwood, T. Sauriol and A. Strutzenberger, all of White River. Work was carried out from a base in White River, as well as a remote outpost fishing camp on Dayohessarah Lake operated by White River Air. The objectives of the program were to evaluate a series of bedrock-source Dighem airborne conductor axes lying west and north of Dayohessarah Lake, as identified by an airborne geophysical survey flown by Corona in 2008; to identify northerly and southerly extensions of known Sugar Zone mineralization lying east of Dayohessarah Lake; and to prospect other mineral occurrences and geochemical anomalies north, west and south of Dayohessarah Lake which were identified during exploration programs carried out in past years by other companies.

Prospecting and Reconnaissance Geological Mapping

Prospecting and geological traverses were selected to evaluate specific targets. The traverses were guided by GPS instruments, using Datum UTM NAD83, Zone 16. Where possible, conductor axes were located in the field by a VLF-EM instrument operated by G. Peacock. Traverse tracks, outcrops, sample locations, claim lines and posts and other topographic features were spatially identified by GPS and are plotted on a series of data maps at 1:5000 scale, Drawings SZ-110-B through SZ-110-J, which accompany this report. Traverse tracks are colour-coded by person on the data maps, and are dated. Outcrop, glacial boulder and float, and sample descriptions are detailed on Tables 1, 2 and 3, respectively, in Appendices B, C and D.

Mapping and prospecting was also carried out north of the northernmost defined end of theSugar Zone to locate its northern extension, immediately northeast and southeast of Little Dayohessarah Lake, to evaluate the southern continuation of the known Sugar Zone mineralization, for the purpose of extending the Sugar Zone to the south.


An area hosting historic gold-in-soil anomalies, situated south and east of Dayohessarah Lake in the southern part of the property, was also mapped and prospected. The area is underlain by mafic volcanic flows in the eastern part of the area and clastic sediments in the central portion. Many of the anomalies, however, were found to occur in low-lying, overburden-covered areas. No significant gold assays were returned from samples taken from this area.


Traverses were also made in an attempt to locate and sample a reported (Noranda) gold occurrence west of the central part of Dayohessarah lake. Some historic rock geochemical sample locations were identified, and sequences of mafic to intermediate volcanic rocks, clastic sediments and minor porphyry and gabbroic intrusions were mapped. No significant gold assays were returned from grab samples.

Channel Sampling

Two well-exposed outcrop areas associated with conductor axes D5A and D19 (see Drawings SZ-112-C and J, respectively) were cleared by hand and channel sampled in order to obtain continuous sample cross-sections. Maps of each area sampled, (Drawings SZ-111 and -112, at a scale of 1:100) including geology, sample locations, numbers and assays are included in this report. Sample descriptions and assay results are included in Table 3 in Appendix D.

Area D5A was underlain mainly by southeasterly striking, westerly dipping interbedded greywacke and argillite. Local drag folding was noted. The sediments were in contact with mafic tuff at the western edge of the area sampled. No significant gold assays were returned.

Area D19 was underlain by north northwesterly striking, occasionally contorted sediments consisting mainly of arenite and impure quartzite, separated by a thin band of mafic tuff. As with Area D5A, no significant gold assay results were obtained.

9.0 SAMPLING METHOD AND APPROACH

Grab samples of altered and/or mineralized bedrock and float were collected during the course of mapping and prospecting. Channel samples were laid out by the author in order to obtain a complete section of stratigraphy in each stripped area. Samples were cut by G. Peacock and assistants using a portable, gasoline-powered, rock saw with a diamond blade.

10.0 SAMPLE PREPARATION, ANALYSIS, SECURITY AND QA/QC

Samples were bagged in the field and described by the geologist or prospector. Samples were securely stored prior to shipment to to Actlabs in Thunder Bay for assay. Samples were either delivered directly to the lab by Sharpstone Geoservices Ltd. personnel or were shipped via Greyhound Bus from White River.

Sample locations, descriptions and assay results are shown on Table 3, in Appendix D. Assay certificates are in Appendix E. Sample locations, numbers and assay results are also shown on the data maps accompanying this report.

Sample preparation was Code RX1-T. Each sample (up to 5 kg) was dried, crushed to 80% -10 mesh, and riffle split. A 350 gram split was pulverized to 95% -150 mesh. Cleaner sand was used between every sample to avoid contamination. One in 40 samples had a second pulp prepared from the reject as a QC check. Pulp duplicates (1 in 20) were also routinely prepared. Quality of the rejects and pulps were routinely monitored to ensure proper preparation procedures were performed.

Samples were assayed using a fire assay technique with an atomic aborption finish (5ppb – 3000ppb), Actlabs Code 1A2-50. The standard flux had 54% litharge. On each tray of 42 samples there were two blanks, three sample duplicates and two certified reference materials, one high and one low (QC7 out of 42 samples). Generally, all samples over 3000 ppb were rerun to ensure accurate values.

Samples assaying greater than 3000 ppb Au were re-assayed using the fire assay with a gravimetric finish technique (Actlabs Code 1A3-30 gram).

Because the samples collected during this program were considered preliminary in nature, operator submitted standards and blanks were not inserted into sample batches. However, Actlabs carried out their normal QA/QC protocol during the assaying process, as noted above. Upon receipt of pulps and rejects from the assay laboratory it is planned to submit selected samples for check assaying at another assaying facility.

11.0 INTERPRETATIONS AND CONCLUSIONS

All but one of the twenty-one Dighem conductors defined as having a bedrock source were evaluated. Two-thirds of the conductors were exposed in outcrop, and conductivity was found to be generally associated with thin interflow sulphide-rich beds (including local iron formation) within mafic volcanic flow sequences, or with contacts between mafic volcanic and clastic sedimentary horizons. Stratigraphically, these conductive horizons occur toward the upper part of the mafic volcanic sequence, with some lying along the volcanic-sedimentary contact or in the lower portion of the sedimentary sequence. Two well-exposed conductive zones were channel sampled (see below), while grab samples were collected from mineralized areas of other conductors. No significant gold assays were returned from the sampling of the Dighem anomalies conducted during 2009. Table 4, below, summarizes the airborne conductor evaluations carried out during this program.

Prospecting and mapping conducted along the northerly extensions of the Sugar Zone east of Dayohessarah Lake located a heavily rusted angular float exposed, beneath the roots of an upturned tree, approximately 1.3 km northwest of the northernmost known Sugar Zone mineralization. Outcrop exposure in the area was poor. Sampling of the float returned an assay of 87.80 grams per tonne (g/t) gold. This cobble may have been transported a short distance down-ice (ice direction approximately southeast) from a northerly continuation of Sugar Zone mineralization.

In the Little Dayohessarah Lake area several areas historically trenched by Noranda Exploration were located and re-sampled. Quartz veining immediately southeast of Little Dayohessarah Lake confirmed elevated Noranda surface samples. Two surface outcrop grab samples collected during the current program assayed 30.40 g/t gold and 9.04 g/t gold from a thin quartz vein cutting mafic volcanics. Noranda drilled one hole to test this occurrence without significant gold values, however these significant grab samples occur approximately 400m south of the southernmost drilling conducted by Corona/Harte and are considered to increase the potential of the southern part of the Sugar Zone. It is felt that this area is worthy of additional exploration.

Other former Noranda trenched and sampled occurrences immediately northeast of Little Dayohessarah Lake were also sampled, with results that confirmed the original historic values. While drill holes by Noranda and Corona did not interstect extremely high values from this area, there exists the potential for narrow high-grade shoots to be present and the area is worthy of additional exploration.

The area west of the central portion of Dayohessarah Lake (Area B on Drawings SZ-113-D and -F), which hosts the reported Noranda showing, remains a candidate for grid mapping in the future. Current overgrown bush conditions make it unsuitable for GPS-guided reconnaissance mapping.

An additional area north of White River Forest Products' Road 305 (Area A on Drawings SZ-113-B and -C) hosted several historic gold-in-soil anomalies (Pan Global), however the available assessment maps were too poorly georeferenced to properly identify locations during the past summer. This area may also be a candidate for grid mapping.

Conductor	Geology and Mineralization	Sampling Results
D1	Gossanous mafic volcanic, with local rusty quartz veining.	No significant values
D2	Pillowed and massive mafic volcanic, some amphibolitic basalt; intermediate volcanics flanking to east.	No significant values
D3	Extension of D2. No outcrop over conductor	Not sampled
D4	Mafic volcanic with flanking intermediate flows or tuffs.	No significant values
D5	Gabbro, amphibolitic mafic volcanic, minor interflow sediments. Trace chalcopyrite and pyrite.	No significant values
D5A	Argillite, greywacke, minor mafic volcanic. Pyrite and pyrrhotite. Channel sampled.	No significant values
D6	Mafic volcanic. Rusty float to east.	No significant value
D7	Not evaluated.	
D8	No outcrop over conductor. Mafic volcanic with local thin quartz veining nearby.	No significant value
D9	No outcrop over conductor.	Not sampled
D10	Felsic volcanic.	No significant value
D11	Thin felsic volcanic unit within mafic volcanic.	No significant value
D12	No outcrop over conductor. Probable extension of D11	Not sampled
D13	Two conductors side-by-side. Mafic volcanic with interflow sediments (wacke).	No significant value
D14	Siliceous sediments, up to 10% pyrite.	No significant value
D15	Rusty interflow sediments, locally strongly magnetic iron formation, along contact between mafic and felsic volcanic.	No significant values
D16	Amphibolitic schist with rare quartz veining.	No significant value
D17	Mixture of mafic and felsic volcanic; 3% pyrite	No significant value
D18	No outcrop over conductor.	Not sampled
D19	Arkose, greywacke, impure sandstone, minor mafic tuff. Minor quartz veining, pyrite, pyrrhotite, rare molybdenite.	No significant value
D20	No outcrop over conductor.	Not sampled
D21	No outcrop over conductor.	Not sampled

Table 4: Summary of Dighem Airborne Conductor Evaluation

12.0 RECOMMENDATIONS

Areas of proposed further work are illustrated on a series of compilation map sheets (Drawings SZ-113-B through SZ-113-G) presented as part of this report.

A fence of four diamond drill holes (proposed drill holes A through D on Dwg. SZ-113-E) is recommended in an effort to locate the northerly extension of the Sugar Zone in the area of the mineralized float.

It is recommended that the first hole be drilled beneath the float and that subsequent holes be drilled to the northeast to cross-section stratigraphy, up to and including a significant hill (beneath Proposed Hole D). The main part of the Sugar Zone also underlies a hill and it is possible that the topographic high is caused by siliceous alteration associated with the Zone, as well as the presence of diabase dykes. Diabase dykes occur in both locations, however the association of Sugar Zone alteration with elevated topographic areas remains a valid proposition.

Should Sugar Zone mineralization be encountered in westerly holes of the proposed fence, subsequent fence holes to the northeast could be dropped.

A series of eight drill holes (proposed drill holes E through M on Dwg. SZ-113-G) are proposed to test targets in the Little Dayohessarah Lake area, with the main objective of identifying significant mineralized shoots in the area.

Details of proposed drill holes are presented in Table 5, below.

Two areas are proposed for 1:2500 scale grid mapping and prospecting in subsequent field seasons. Area B covers the possible location of the reported Noranda gold occurrence west of Dayohessarah Lake; while Area A covers an area with reported gold-in-soil anomalies north of White River Forest Products Ltd's Road 305. These areas are outlined on Drawings SZ-113-B, C, D and F which accompany this report.

DDH	Easting	Northing	Az.	Dip	Length	Purpose
Α	644900	5408685	040	-45	300	To test beneath pyrite-rich boulder assaying 87.80 g/t Au for Sugar Zone mineralization.
В	645055	5408875	040	-45	350	Fence hole in front of A.
С	645235	5409090	040	-45	350	Fence hole in front of B
D	645405	5409310	040	-45	350	Fence hole in front of C
Е	647200	5405030	063	-45	250	To test Sugar Zone quartz veins assaying 9.04 and 30.40 g/t Au at a depth of 120m.
F	647240	5404940	063	-45	335	Flank hole 100m SE of E, to test Sugar Zone at 165m depth.
G	647430	5405280	243	-45	340	Flank hole 100m NW of E, to test Sugar Zone at 160m depth.
Η	646825	5405812	068	-45	200	To test Sugar Zone 150m beneath quartz vein assaying 24.50 g/t Au.
1	646885	5405727	068	-45	200	Flank hole 100m SE of H to test continuity of Sugar Zone mineralization at 150m depth.
К	646920	5405635	068	-45	200	Flank hole 200m SE of H, to test beneath hole CH-43 (1.609 g/t Au over 0.5m, Sugar Zone type mineralization).
L	646795	5405895	068	-45	200	Flank hole 75m NW of H, to test beneath surface quartz vein assaying 1.28 g/t Au.
М	646665	5406200	067	-45	200	To test between holes CH-46 (1.667 g/t Au over 0.71m) and CH-50 (1.914 g/t Au over 0.73m) at depth of 150m.
	Tot	al Meterage			3275	

Table 5: Proposed Diamond Drill Holes

13.0 REFERENCES

- Agreement, 1998: Option and Joint Venture Agreement made between Corona Gold Corporation and Harte Resources Corporation, John E. Ternowesky, Lloyd Halverson, Ernie Beaven, Eino Ranta, The Estate of Omer L. Belisle, Broad Horizons Trust and Broad Horizons Inc., in respect of the Sugar Zone Property, Sault Ste Marie Mining Division, Province of Ontario, dated as of July 10th, 1998.
- Assessment Files: Ministry of Northern Development and Mines, Sault Ste. Marie Resident Geologists Office.
- Drost, A., P. D. Hunt and S. Roach, 1998: Report on Power Stripping for Corona Gold Corporation on the Dayohessarah Lake Project, Gourlay, Hambleton, Odlum and Strickland Townships, Sault Ste. Marie Mining Division, Ontario, NTS 42 C/14 SE. SDA Geological Services Ltd., December 31, 1998.
- **Fugro Airborne Surveys Corp., 2008:** Dighem Survey for Corona Gold Corporation, Sugar Zone Property, Ontario, NTS 42C/10, 11, 14, 15. April 21, 2008. Assessment Files, Sault Ste. Marie Resident Geologist's Office, Ontario Ministry of Northern Development and Mines.
- Hunt, D. S. and A. P. Drost, 1998: Report on Diamond Drilling Program for Corona Gold Corporation on the Dayohessarah Lake Property located in Hambleton, Odlum, Strickland and Gourlay Townships, Sault Ste. Marie Mining Division, Ontario, Canada, White River Area. NTS 43 C/14 SE. Assessment report, Sault Ste Marie Resident Geologist's Office.
- Hunt, D. S. and A. P. Drost, 1999: Report on a Revised Resource Estimate of the Sugar Zone Deposit for Corona Gold Corporation on the Dayohessarah Lake Property located in Hambleton, Odlum, Strickland and Gourlay Townships, Sault Ste. Marie Mining Division, Ontario, Canada, White River Area, NTS 43 C/14 SE. Assessment report, Sault Ste Marie Resident Geologist's Office.
- Hunt, D. S., 2004: 2003-04 Diamond Drilling Program and Resource Estimate of the Sugar Zone Project, Hambleton, Odlum, Strickland, Gourlay and Tedder Twps., Sault Ste. Marie Mining Division, Ontario, NTS 43C/14 SE, for Corona Gold Corporation and Harte Gold Corp. Assessment report, Sault Ste. Marie Resident Geologist's Office.
- Hunt, D. S., 2005: 2004 Diamond Drilling Program and Revised Resource Estimate of the Sugar Zone Project, Hambleton, Odlum, Strickland, Gourlay and Tedder Twps., Sault Ste. Marie Mining Division, Ontario, NTS 43C/14 SE, for Corona Gold Corporation and Harte Gold Corp. Assessment report, Sault Ste. Marie Resident Geologist's Office.
- Hunt, D. S., 2009: Spring 2009 Diamond Drilling Program on the Sugar Zone Project, Hambleton, Odlum, Strickland, Gourlay and Tedder Twps., Sault Ste Marie Mining Division, Ontario. NTS 43C/14 SE, of Corona Gold Corporation and Harte Gold Corp. Assessment Report, MNDMF, Sault Ste. Marie and Sudbury Resident Geologist's Offices.

- Roach, S., D. Hunt and A. Drost, 1998: Report on Geology for Corona Gold Corporation on the Dayohessarah Lake Project, Gourlay, Hambleton, Odlum and Strickland Townships, Sault Ste. Marie Mining Division, Ontario, NTS 42 C/14 SE. SDA Geological Services Ltd., December 31, 1998.
- Simoneau, Pierre, 1998: Corona Gold Corporation, Induced Polarization, Magnetometric and Electromagnetic VLF Surveys, by Grey Owl Resources on Dayohessarah Lake Property, Hambleton and Odlum Townships, 42 C/11 14. November 26, 1998.
- Stott, G. M., 1996a: Precambrian Geology of Dayohessarah Lake area (North half) Preliminary Map No. 3309. Ontario Geological Survey.
- Stott, G. M., 1996b: Precambrian Geology of Dayohessarah Lake area (Central area) Preliminary Map No. 3310. Ontario Geological Survey.
- Stott, G. M., 1996c: Preliminary Geology of Dayohessarah Lake area (Sough half) Preliminary May No. 3311. Ontario Geological Survey.
- **Zhang, G., 1998:** Report on field structural analysis on Dayo property (Sugar Zone gold mineralization), Dayohessarah Lake greenstone belt, White River, Ontario. Internal report for Corona Gold Corporation, December 5, 1998.

14.0 AUTHOR'S CERTIFICATE

David S. Hunt, P. Geo. Sharpstone Geoservices Ltd. 76 Crown Street Thunder Bay ON P7B 3J9 Tel.: 807-345-6285 Fax: 807-345-6285 e-mail: <u>d21hunt@shaw.ca</u>

I, David S. Hunt, P. Geo., do hereby certify that:

- 1. I am President of Sharpstone Geoservices Ltd., 76 Crown Street, Thunder Bay, Ontario, Canada, P7B 3J9
- 2. I graduated with a B Sc degree in Geology from Carleton University in 1969.
- 3. I am a Practicing Member of the Association of Professional Geoscientists of Ontario in accordance with the Professional Geosciences Act, 2000.
- 4. I have worked as a geologist for a total of 40 years since my graduation from university.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I managed and participated in the field program described in this report.
- 7. I have no beneficial interest in the property or the results of the program described herein.

Dated this 9th Day of Marthan VID S. HUNT CTIBING MEMBER D. S. Hunt 0113 (signed) David S. Hunt, P. G ARI

Certification:

R. T. Chataway, P.Geo. 139 Peter Street Thunder Bay, Ontario P7A 5H6 Tel (807) 344-8151

I, Robert T. Chataway, BSc., P.Geo. do hereby certify that;

1. I reside at the above listed address.

2. I was the Senior Geologist for Sharpstone Geoservices Ltd

76 Crown St Thunder Bay, Ontario Tel: (807) 345-6285/ Fax: (807) 345-9546

- 3. I graduated with a Bachelor of Science degree from University of B.C. in 1970 in Geology.
- 4.] am a member of the Association of Professional Geoscientists of Ontario
- 5. I have worked as a geologist for over 39 years since my graduation from university and have been involved in minerals exploration for precious metals, base metals, and uranium in all provinces of Canada and the NWT and Nunavut during which time I worked on, directed, managed and/or evaluated regional and detailed exploration programs.
- 6. I have read the definition of "qualified person" set out in the National Instrument 43-101 ("NI43-101") and certify that by reason of my education, affiliations with professional associations (as defined in NI43-101) and past relevant work experience, I fulfill the requirements to be a "qualified Person" for the purposes of NI43-101.
- 7. I was responsible for the day-to-day operation of the Sugar Zone Project exploration program in White River, Ontario during the period July 20 to Sept 3, 2009.
- 8. I acknowledge that as of the date of this certification, and to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make this report not misleading.
- 9. I am guided by the principles and practices exemplified by a professional geoscientist and the associations for which I stand and I am independent of the corporation with whom I completed the work for.

Dated this 10th day of November, 2009. (Signed & Sealed)

Ul Signatúre of Qualifie ROBERT T. CHATAWAY Person 1696 Robert T. Chata PRACTICING MEMBER Print name of Qualifie

"Seal" Professional Geoscientist of Ontario

APPENDIX A

List of Claims and Land Tenure, November 6, 2009

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> Option	<u>Work</u> <u>Required</u>	<u>Total</u> <u>Applied</u>		<u>Claim</u> <u>Bank</u>
GOURLAY	SSM 1232640	199 8-Л ЛN-04	2011-JUN-04	А	100.00 %	6000	66000	0	0
HAMBLETON	SSM 1055500	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055501	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055502	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055503	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055504	1988-MAR-11	2011-DEC-31	A	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055505	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055506	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055507	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055508	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055509	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055510	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055511	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055512	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055513	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055514	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055515	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055516	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055517	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055518	1988-MAR-11	2011-DEC-31	A	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055519	1988-MAR-11	2011-DEC-31	Λ	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055520	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	8400	19915	0
HAMBLETON	SSM 1055521	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055522	1988-MAR-11	2011 DEC-31	Λ	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055523	1988-MAR-11	2011-DEC-31	A	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055524	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055525	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	8000	32	0

<u>TOWNSHIP/AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> <u>Option</u>	<u>Work</u> <u>Required</u>	<u>Total</u> <u>Applied</u>		<u>Claim</u> Bank
HAMBLETON	SSM 1055526	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055527	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055528	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055529	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055530	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055531	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055532	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055533	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055534	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055535	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055536	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055537	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055538	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1055539	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055540	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055541	1988-MAR-11	2011-DEC-31	А	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055542	1988-MAR-11	2011-DEC-31	Α	100.00 %	400	8000	32	0
HAMBLETON	SSM 1055543	1988-MAR-11	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055576	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055577	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055578	1988-MAR-02	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055579	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055580	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055581	1988-MAR-02	2011 DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055582	1988-MAR-02	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055583	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055584	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> Option	<u>Work</u> <u>Required</u>	<u>Total</u> <u>Applied</u>		<u>Claim</u> <u>Bank</u>
HAMBLETON	SSM 1055585	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055586	1988-MAR-02	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055587	1988-MAR-02	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055588	1988-MAR-02	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1055589	1988-MAR-02	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069100	1988-JUN-16	2011-DEC-31	A	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069120	19 88- JUN-16	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069121	1988-JUN-16	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069186	1988-JUN-16	2011-DEC-31	A	100.00 %	400	7600	232	0
HAMBLETON	SSM 1069187	1988-JUN-16	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069188	1988-JUN-16	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069189	1988-JUN-16	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069190	1988-JUN-16	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069191	1988-JUN-16	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069192	1988-JUN-16	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069193	1988-JUN-16	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069194	1988-JUN-16	2011-DEC-31	А	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069196	1988-JUN-16	2011-DEC-31	Α	100.00 %	400	7600	32	0
HAMBLETON	SSM 1069197	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069198	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069199	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069300	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069301	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069302	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069303	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069304	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069305	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> <u>Option</u>	<u>Work</u> <u>Required</u>	<u>Total</u> <u>Applied</u>		<u>Claim</u> <u>Bank</u>
HAMBLETON	SSM 1069306	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069307	1988-JUN-16	2010-DEC-31	Λ	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069308	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069309	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069310	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069311	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069312	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069313	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069314	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	132	0
HAMBLETON	SSM 1069315	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	896	0
HAMBLETON	SSM 1069316	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069317	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069318	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	232	0
HAMBLETON	SSM 1069319	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069320	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069321	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069322	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069323	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069324	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	232	0
HAMBLETON	SSM 1069325	1988-JUN-16	2010-DEC-31	A	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069326	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	247	0
HAMBLETON	SSM 1069327	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
HAMBLETON	SSM 1069328	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	20736	0
HAMBLETON	SSM 1069329	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	924	0
HAMBLETON	SSM 1069330	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	382	0
HAMBLETON	SSM 1069331	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	182	0
HAMBLETON	SSM 1069332	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0

<u>TOWNSHIP/AREA</u> <u>Claim Number</u> <u>Date</u> <u>Date</u> <u>Status</u> <u>Detent</u> <u>Work</u> <u>Iota</u>	<u>d Reserve</u>	<u>Claim</u> <u>Bank</u>
HAMBLETON SSM 1069333 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069334 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069335 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	78	0
HAMBLETON SSM 1069336 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	21695	0
HAMBLETON SSM 1069337 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069338 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069339 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	28145	0
HAMBLETON SSM 1069340 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7600	28044	0
HAMBLETON SSM 1069341 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7600	939	0
HAMBLETON SSM 1069342 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069343 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	132	0
HAMBLETON SSM 1069344 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069345 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069346 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	32	0
HAMBLETON SSM 1069347 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	41707	0
HAMBLETON SSM 1069348 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	1032	0
HAMBLETON SSM 1069349 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	2946	0
HAMBLETON SSM 1069350 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	232	0
HAMBLETON SSM 1069352 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7600	2643	0
HAMBLETON SSM 1069353 1988-JUN-16 2010-DEC-31 A 100.00 % 400 7200	1032	0
HAMBLETON SSM 1135498 1990-NOV-15 2010-NOV-15 A 100.00 % 400 7200	30746	0
HAMBLETON SSM 1135499 1990-NOV-15 2010-NOV-15 A 100.00 % 400 7200	359361	0
HAMBLETON SSM 1182993 1992-JUL-20 2011-JUL-20 A 100.00 % 400 6800	953	0
HAMBLETON SSM 1182994 1992-JUL-20 2011-JUL-20 A 100.00 % 800 13600	428760	0
HAMBLETON SSM 1194337 1992-JUL-20 2011-JUL-20 A 100.00 % 400 6800	1695	0
HAMBLETON SSM 1194339 1993-APR-26 2011-APR-26 A 100.00 % 400 6400	282	0
HAMBLETON SSM 1235594 2003-NOV-20 2010-NOV-20 A 100.00 % 3600 18000	2288	0

TOWNSHIP / AREA	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> <u>Option</u>	<u>Work</u> <u>Required</u>	<u>Total</u> <u>Applied</u>	<u>Total</u> <u>Reserve</u>	<u>Claim</u> <u>Bank</u>
HAMBLETON	SSM 1235595	2003-NOV-20	2010-NOV-20	A	100.00 %	1600	8000	878	0
HAMBLETON	SSM 4201064	2006-APR-21	2011-APR-21	Α	100.00 %	6400	19200	0	0
HAMBLETON	SSM 4201065	2006-APR-21	2011-APR-21	Α	100.00 %	1600	4800	0	0
HAMBLETON	SSM 4201066	2006-APR-21	2011-APR-21	А	100.00 %	6400	19200	0	0
HAMBLETON	SSM 4201067	2006-APR-21	2011-APR-21	А	100.00 %	1600	4800	0	0
HAMBLETON	SSM 4201069	2006-APR-21	2011-APR-21	Α	100.00 %	4800	14400	0	0
HAMBLETON	SSM 4201070	2006-APR-21	2011-APR-21	Α	100.00 %	2400	7200	0	0
HAMBLETON	SSM 4201071	2006-APR-21	2011-APR-21	Α	100.00 %	6400	19200	0	0
HAMBLETON	SSM 4201074	2006-APR-21	2011-APR-21	Α	100.00 %	4800	14400	0	0
HAMBLETON	SSM 4201075	2006-APR-21	2011-APR-21	А	100.00 %	6400	19200	0	0
HAMBLETON	SSM 4201076	2006-APR-21	2011-APR-21	Α	100.00 %	6400	19200	0	0
DDLUM	SSM 1043698	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
DDLUM	SSM 1043701	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DDLUM	SSM 1043702	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DDLUM	SSM 1043703	1987-DEC-07	2010-DEC-31	A	100.00 %	400	7600	32	0
DDLUM	SSM 1043704	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DDLUM	SSM 1043705	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DDLUM	SSM 1043706	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
DLUM	SSM 1043707	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DLUM	SSM 1043708	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DLUM	SSM 1043709	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DLUM	SSM 1043710	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
DLUM	SSM 1043711	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
DLUM	SSM 1043712	1987-DEC-07	2011-JUL-02	А	100.00 %	400	8000	282	0
DLUM	SSM 1043715	1987-DEC-07	2011-JUL-02	A	100.00 %	400	8000	282	0
DDLUM	SSM 1043716	1987-DEC-07	2011-JUL-02	A	100.00 %	400	8000	406	0
DLUM	SSM 1043717	1987-DEC-07	2011-ЛЛL-02	А	100.00 %	400	8000	282	0

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> <u>Option</u>	<u>Work</u> Required	<u>Total</u> Applied	<u>Total</u> <u>Reserve</u>	<u>Claim</u> <u>Bank</u>
ODLUM	SSM 1043803	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 1043806	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
ODLUM	SSM 1043807	1987-DEC-07	2010-DEC-31	A	100.00 %	400	7600	32	0
ODLUM	SSM 1043808	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	232	0
ODLUM	SSM 1043809	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7200	33	0
ODLUM	SSM 1043810	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
ODLUM	SSM 1043811	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 1043812	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 1043814	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043815	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043816	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043817	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043818	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043819	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043820	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043821	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043822	1987-DEC-07	2011-JUL-02	А	100.00 %	400	8000	282	0
ODLUM	SSM 1043823	1987-DEC-07	2011 - JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043824	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043825	1987-DEC-07	2011-JUL-02	А	100.00 %	400	8000	282	0
ODLUM	SSM 1043826	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	282	0
ODLUM	SSM 1043827	1987-DEC-07	2011-JUL-02	Α	100.00 %	400	8000	2 8 2	0
ODLUM	SSM 1043828	1987-DEC-07	2011-JUL-02	А	100.00 %	400	8000	282	0
ODLUM	SSM 1044094	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 1044095	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 1044096	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
DDLUM	SSM 1044097	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0

	•	

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> Option	<u>Work</u> <u>Required</u>	<u>Total</u> Applied	<u>Total</u> <u>Reserve</u>	<u>Clain</u> <u>Bank</u>
ODLUM	SSM 1044100	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 1044101	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
ODLUM	SSM 1044102	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 1044103	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
ODLUM	SSM 1069354	1988-ЛUN-16	2010-DEC-31	А	100.00 %	400	7600	24815	0
ODLUM	SSM 1069355	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	70081	0
ODLUM	SSM 1069356	1988-ЛЛN-16	2010-DEC-31	А	100.00 %	400	7200	632	0
ODLUM	SSM 1069357	1988-JUN-16	2010-DEC-31	Δ	100.00 %	400	7200	632	0
ODLUM	SSM 1069358	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	632	0
ODLUM	SSM 1069359	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
ODLUM	SSM 1069360	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
ODLUM	SSM 1069361	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
ODLUM	SSM 1069362	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	32	0
ODLUM	SSM 1069363	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	118	0
ODLUM	SSM 1069364	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	282	0
NULDC	SSM 1069365	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	8000	200	0
ODLUM	SSM 1069366	1988-JUN-16	2010-DEC-31	A	100.00 %	400	8000	16817	0
ODLUM	SSM 1069367	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7600	110648	0
ODLUM	SSM 1069368	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	8000	521	0
ODLUM	SSM 1069369	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	8000	200	0
ODLUM	SSM 1069370	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1069371	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	8000	0	0
DDLUM	SSM 1069372	1988-JUN-16	2010-DEC-31	A	100.00 %	400	7600	0	0
ODLUM	SSM 1069373	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7200	282	0
ODLUM	SSM 1069374	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	282	0
ODLUM	SSM 1069375	1988-ЈИМ-16	2010-DEC-31	А	100.00 %	400	7200	282	0
DDLUM	SSM 1069376	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7200	282	0

ODLUMSSM 10693781988-JUN-162010-DEC-31A100.00ODLUMSSM 10693791988-JUN-162010-DEC-31A100.00ODLUMSSM 10693801988-JUN-162010-DEC-31A100.00ODLUMSSM 10693811988-JUN-162010-DEC-31A100.00ODLUMSSM 10693821988-JUN-162010-DEC-31A100.00ODLUMSSM 10693821988-JUN-162010-DEC-31A100.00ODLUMSSM 10693831988-JUN-162010-DEC-31A100.00ODLUMSSM 10693841988-JUN-162010-DEC-31A100.00ODLUMSSM 10693851988-JUN-162010-DEC-31A100.00ODLUMSSM 10693851988-JUN-162010-DEC-31A100.00ODLUMSSM 10693851988-JUN-162010-DEC-31A100.00)% 400)% 400)% 400)% 400)% 400)% 400)% 400)% 400)% 400)% 400)% 400)% 400	6400 6400 7200 7200 6400 6400 6400	282 282 282 282 282 282 282	0 0 0 0 0
ODLUMSSM 10693801988-JUN-162010-DEC-31A100.00ODLUMSSM 10693811988-JUN-162010-DEC-31A100.00ODLUMSSM 10693821988-JUN-162010-DEC-31A100.00ODLUMSSM 10693831988-JUN-162010-DEC-31A100.00ODLUMSSM 10693841988-JUN-162010-DEC-31A100.00ODLUMSSM 10693841988-JUN-162010-DEC-31A100.00ODLUMSSM 10693851988-JUN-162010-DEC-31A100.00)% 400)% 400)% 400)% 400)% 400)% 400)% 400)% 400	7200 7200 6400 6400 6400	282 282 282	0 0 0
ODLUM SSM 1069381 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069382 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069383 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069383 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069384 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069385 1988-JUN-16 2010-DEC-31 A 100.00)% 400)% 400)% 400)% 400)% 400)% 400	7200 6400 6400 6400	282 282	0 0
ODLUM SSM 1069382 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069383 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069384 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069385 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069385 1988-JUN-16 2010-DEC-31 A 100.00)% 400)% 400)% 400)% 400	6400 6400 6400	282	0
ODLUM SSM 1069383 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069384 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069385 1988-JUN-16 2010-DEC-31 A 100.00 ODLUM SSM 1069385 1988-JUN-16 2010-DEC-31 A 100.00)% 400)% 400)% 400	6400 6400		
ODLUMSSM 10693841988-JUN-162010-DEC-31A100.00ODLUMSSM 10693851988-JUN-162010-DEC-31A100.00)% 400)% 400	6400	282	
ODLUM SSM 1069385 1988-JUN-16 2010-DEC-31 A 100.00)% 400			0
			282	0
ODULIM SSM 1069386 1988-IUN-16 2010-DEC-31 & 100.00		6400	282	0
OBECHI 5554 100/560 1760-561-10 2010-562-51 A 100.00)% 400	7600	0	0
ODLUM SSM 1069387 1988-JUN-16 2010-DEC-31 A 100.00	0 % 400	7600	0	0
ODLUM SSM 1069388 1988-JUN-16 2010-DEC-31 A 100.00	0 % 400	6800	13	0
ODLUM SSM 1069389 1988-JUN-16 2010-DEC-31 A 100.00)%u 400	6800	0	0
ODLUM SSM 1069390 1988-JUN-16 2010-DEC-31 A 100.00	0 % 400	7600	0	0
ODLUM SSM 1069391 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078243 1988-JUN-16 2010-DEC-31 Λ 100.00)% 400	7600	0	0
ODLUM SSM 1078244 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078245 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078246 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078247 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078248 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078249 1988-JUN-16 2010-DEC-01 A 100.00) % 400	7600	0	0
ODLUM SSM 1078250 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078251 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078252 1988-JUN-16 2010-DEC-31 A 100.00)% 400	8400	0	0
ODLUM SSM 1078253 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
ODLUM SSM 1078254 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0
DDLUM SSM 1078255 1988-JUN-16 2010-DEC-31 A 100.00)% 400	7600	0	0

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	Percent Option	<u>Work</u> <u>Required</u>	<u>Total</u> <u>Applied</u>		<u>Claim</u> <u>Bank</u>
ODLUM	SSM 1078256	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078257	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078258	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7600	0	0
ODLUM	SSM 1078259	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078265	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7600	0	0
ODLUM	SSM 1078266	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078267	1988-JUN-16	2010-DEC-31	A	100.00 %	400	7600	0	0
ODLUM	SSM 1078268	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078269	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7600	0	0
ODLUM	SSM 1078270	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078271	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078272	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078273	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078274	1988-JUN-16	2010-DEC-31	A	100.00 %	400	7600	0	0
ODLUM	SSM 1078275	1988-JUN-16	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078276	1988-JUN-16	2010-DEC-31	Α	100.00 %	800	7600	0	0
ODLUM	SSM 1078277	1988-JUN-16	2010-DEC-31	Α	100.00 %	400	7600	0	0
ODLUM	SSM 1078314	1988-MAY-24	2010-DEC-31	А	100.00 %	400	7600	0	0
ODLUM	SSM 1078319	1988-MAY-24	2010-DEC-31	А	100.00 %	400	7200	282	0
ODLUM	SSM 1174765	1991-OCT-29	2011-OCT-29	Α	100.00 %	1200	21600	596	0
ODLUM	SSM 1174766	1991-OCT-29	2011-OCT-29	Α	100.00 %	800	14400	314	0
ODLUM	SSM 1194340	1993-APR-26	2011-APR-26	Α	100.00 %	400	6400	282	0
ODLUM	SSM 3012217	2008-MAR-27	2010-MAR-27	А	100.00 %	800	0	0	0
ODLUM	SSM 3012218	2008-MAR-27	2010-MAR-27	А	100.00 %	2400	0	0	0
ODLUM	SSM 4201077	2006-APR-21	2011-APR-21	А	100.00 %	6400	19200	0	0
ODLUM	SSM 4201078	2006-APR-21	2010-APR-21	A	100.00 %	6400	12800	0	0
ODLUM	SSM 4201080	2006-APR-21	2010-APR-21	А	100.00 %	6400	12800	0	0

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> Option	<u>Work</u> <u>Required</u>	<u>Total</u> <u>Applied</u>		<u>Claim</u> <u>Bank</u>
ODLUM	SSM 4201081	2006-APR-21	2010-APR-21	Λ	100.00 %	6400	12800	0	0
ODLUM	SSM 4201083	2006-APR-21	2010-APR-21	Α	100.00 %	1200	2400	0	0
ODLUM	SSM 4201084	2006-APR-21	2010-APR-21	Α	100.00 %	6400	12800	0	0
ODLUM	SSM 4201087	2006-APR-21	2010-APR-21	А	100.00 %	3200	6400	0	0
ODLUM	SSM 937765	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 937766	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 937767	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
ODLUM	SSM 937768	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
ODLUM	SSM 937770	1987-DEC-07	2010-DEC-31	А	100.00 %	400	7600	32	0
ODLUM	SSM 937771	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	232	0
ODLUM	SSM 937772	1987-DEC-07	2010-DEC-31	Α	100.00 %	400	7600	32	0
STRICKLAND	SSM 1078315	1988-MAY-24	2010-DEC-31	А	100.00 %	400	7200	282	0
STRICKLAND	SSM 1078316	1988-MAY-24	2010-DEC-31	Α	100.00 %	400	7200	282	0
STRICKLAND	SSM 1078317	1988-MAY-24	2010-DEC-31	А	100.00 %	400	7200	282	0
STRICKLAND	SSM 1078318	1988-MAY-24	2010-DEC-31	А	100.00 %	400	7200	282	0
STRICKLAND	SSM 1140638	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	282	0
STRICKLAND	SSM 1140639	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140640	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	382	0
STRICKLAND	SSM 1140641	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140642	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140643	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140644	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140645	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140646	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140647	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140648	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140649	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0

<u>TOWNSHIP/AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> <u>Option</u>	<u>Work</u> Required	<u>Total</u> <u>Applied</u>		<u>Claim</u> <u>Bank</u>
STRICKLAND	SSM 1140658	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRJCKLAND	SSM 1140659	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1140660	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183012	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183013	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	163	0
STRICKLAND	SSM 1183014	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183015	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183016	1991-APR-24	2011-APR-24	А	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183017	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183018	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183019	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1183020	1991-APR-24	2010-APR-24	Λ	100.00 %	400	6800	32	0
STRICKLAND	SSM 1183021	1991-APR-24	2011-APR-24	Α	100.00 %	400	7200	32	0
STRICKLAND	SSM 1232641	1998-JUN-04	2011-JUN-04	A	100.00 %	2400	26400	1442	0
STRICKLAND	SSM 3018389	2006-APR-21	2010-APR-21	Α	100.00 %	3200	6400	0	0
STRICKLAND	SSM 3018390	2006-APR-21	2010-APR-21	Α	100.00 %	3200	6400	0	0
STRICKLAND	SSM 3018391	2006-APR-21	2011-APR-21	Α	100.00 %	1600	4800	0	0
STRICKLAND	SSM 3018392	2006-APR-21	2010-APR-21	Α	100.00 %	4800	9600	0	0
STRICKLAND	SSM 3018393	2006-APR-21	2010-APR-21	А	100.00 %	4800	9600	0	0
STRICKLAND	SSM 4201079	2006-APR-21	2010-APR-21	A	100.00 %	6400	12800	0	0
STRICKLAND	SSM 4201082	2006-APR-21	2010-APR-21	Α	100,00 %	6400	12800	0	0
STRICKLAND	SSM 4201085	2006-APR-21	2010-APR-21	А	100.00 %	6400	12800	0	0
STRICKLAND	SSM 4201086	2006-APR-21	2010-APR-21	Α	100.00 %	3600	7200	0	0
STRICKLAND	SSM 4201088	2006-APR-21	2010-APR-21	Α	100.00 %	6400	12800	0	0
STRICKLAND	SSM 4201089	2006-APR-21	2010-APR-21	А	100.00 %	4800	9600	0	0
STRICKLAND	SSM 4201091	2006-APR-21	2010-APR-21	А	100.00 %	6400	12800	0	0
STRICKLAND	SSM 4201092	2006-APR-21	2010-APR-21	А	100.00 %	4800	9600	0	0

<u>TOWNSHIP / AREA</u>	<u>Claim Number</u>	<u>Recording</u> <u>Date</u>	<u>Claim Due</u> <u>Date</u>	<u>Status</u>	<u>Percent</u> Option		<u>Total</u> Applied		<u>Claim</u> Bank
STRICKLAND	SSM 4201093	2006-APR-21	2010-APR-21	А	100.00 %	3200	6400	0	0
TEDDER	SSM 4201090	2006-APR-21	2010-APR-21	Α	100.00 %	3200	6400	0	0

APPENDIX B

 TABLE 1: OUTCROP DESCRIPTIONS

UTME UTMN Elev Mapper Date Description Waypt Rk code 380 642174 5413379 399 m 16 BC 22-JUL-09 o/c, small 1m +/-, mafic flow, sh'd 381 642169 5413412 393 m 1b BC 22-JUL-09 o/c, mafic flow, sh'd, 's' sense fold, shcist-191/80W, minor biot, chlorite. "s"fold, 216 brg 55 plunge, siliceous, epidote alt'n, boudinaged qv o/c, large, bald, 10x5m, f. g'd mafic flow, weakly sh'd with 383 5413395 642218 402 m lb BC 22-JUL-09 q filling 's' sense folds, grey-green colour o/c, small, 3x2m, flattened pillows at 125 brg, 3:1 5413373 384 642157 392 m 1b BC 22-JUL-09 duplicate of 383 385 642214 5413395 400 m BC lb 22-JUL-09 642247 5413378 BC 386 o/c, 15x10m, mafic flow, pillow structures 410 m 1b 22-JUL-09 642365 5413322 o/c, vert. edge, fg'd basaltic flow, dip 75W, flow banding 387 405 m 16 BC 22-JUL-09 1-10cm It beige-dark grey. o/c, 10x5m, pillow basalts, It gy-gr colour, elongated 388 5413273 1b BC 642625 402 m 22-JUL-09 along 204 brg well flattened 4:1, minor mm q filled fractures, cast edge of galv culvert. o/c, large, 20x30m, x-cutting felsic dyke at 158/+/-v, 20-389 642671 5413257 401 m lg BC 23-JUL-09 30 cm wide pillows, amphibolite sch, weak, dark grey to black, f-mg'd, massive occ. Pyrite clots, rusty, 20x10 cm. minor epidote alt'n 390 642770 5413226 409 m BC 23-JUL-09 o/c, 30x5m, amphibolite, basalt, as 389. lg 5413276 o/c, 75x15m, amphibolite, some sil. clots, 10cm. F-mg'd 391 642776 409 m lg BC 23-JUL-09 fairly mass. dark gy-black, occ specks of py/cpy, trace biotite. Glaciat'n 220 swampy to east of o/c ridge. 392 642864 5413346 416 m 1b BC 23-JUL-09 o/c, east edge of swamp, Fg'd basalt. Fairly massive to pillowed. schistosity at 160, weak in places, o/c is 45x15m. o/c, large knob. 15x20m. Fg'd int volcanic, lt gy-gr 394 643045 5413397 418 m 2d BC 23-JUL-09 colour massive Mod. Hard, increase in fsp lath to 1mm. On east edge, contact with Fe-rich sed at 140 +/-, disrupted, 5-8 m wide zone exposed. 643169 o/c, 25x3m, int volc, lt gy-gr, massive to pillow structures. 395 5413382 499 m 2d BC 23-JUL-09 2nd o/c 30 m E. 10x15m, int flow, massive.

1

1

i

-

1

1

i

1

ļ

Waypt UTM E UTM N Elev Description Rk code Mapper Date 396 643326 5413538 703 m lb BC 23-JUL-09 o/c, pillow basalts, tops? Next o/c is 25m E, flow top bx, grading into coarser gr'd flow. Then 30m E, pillows, long axis 180. Ratio 3:1. pics 397 643342 5413404 422 m 1b BC 23-JUL-09 o/c, pillow basalts, 40x15m, tops E? 5413344 lb BC 398 643440 420 m 23-JUL-09 o/c, mafic flow, sulphide-rich sed. 'Z' sense fold 5413469 399 643343 BC o/c, f-mg'd amphibolite, west egde of swamp, schistosity 416 m lg 23-JUL-09 is 184/70W 402 643242 5413315 425 m 1b BC 24-JUL-09 o/c, fg'd basalts, pillows. 5413201 422 m BC o/c, fg'd basalts, pillows. 30x8m 403 643243 1b 24-JUL-09 404 643407 5413031 433 m lg BC 24-JUL-09 o/c, fg'd gy-gr amphibolite sch. 174/58W. Low ground betwn 403-404 5413012 405 643435 429 m 1g BC 24-JUL-09 o/c, fg'd amphib. schist with rusty patches. Qv 1-3mm at 195. 25x25m grades to int flow, pillow? Conj. Shear set at 216 and 170. Swampy to W 406 643457 5413035 439 m QV BC 24-ЛЛ-09 o/c, 40-50 cm felsic vein, buff colour, tr of cpy/py, dissem. Sample 406-1 sil felsic rx with <1% sulph Grab 407 643260 5412908 472 m o/c, fg'd lt gy-gr int flow, some incl of felsic frags? 1-2d BC 24-JUL-09 5cm. o/c, 25 m north, fg massive mafic flow. Low ground, tag 409 5412952 450 m 643127 1a BC 24-JUL-09 alders, NE side of conductor BC o/c, f-mg'd mafic flow to fg'd int flow near conductor? 5413058 410 643057 424 m 1a 24-JUL-09 Fg'd hornblende xtals low ground on NE, Greenish amphiboles lb BC o/c, fg'd mafic flow, 5 mm qv. 411 642866 5413174 413 m 24-JUL-09 5413225 BC 412 642798 408 m 6b 24-JUL-09 o/c, mafic intrusive, f-mg'd magnetic rx, some biot xtals, some hornblende weathers dirty brown, fresh is med gygr. 5413259 413 642816 406 m 6b BC 24-JUL-09 o/c, mafic intrusion, same o/c, strike could be 316 or 192 5400904 447 m 16 BC 438 644083 28-JUL-09 o/c, mafic flow, sh'd, 196/50E, near granite contact,

28-JUL-09

Ì

Ì

i

o/c, granitic variable, granodior. Ppy, felsic dykes

ţ

١

Ĭ.

i

1

5400802

439

644057

466 m

5b

BC

1

ł

l

I

ł

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
440	644191	5400509	467 m	6с	BC	28-JUL-09	o/c, amphibolite schist, 170/50E
443	644196	5400508	466 m	6c	BC	28-JUL-09	o/c, sim to 440
444	644257	5400512	472 m	6c	BC	28-JUL-09	o/c ledge. Rusty, pyritic, <1%, near contact with granite. schistosity, 190/70E, Samples 444-1,2,3
445	644284	5400521	481 m	6c	\mathbf{BC}	28-JUL-09	o/c small, amph. Sch
446	644294	5400509	468 m	lb	BC	28-JUL-09	o/c small, mafic flow with felsic ppy. Specimen 446 other small o/c's of granite and mafics
447	644266	5400488	473 m	6c	BC	28-JUL-09	o/c, ledge, <1% pyrite, recrystallized qv. Contact area.
448	644288	5400461	463 m	6c	BC	2 8-JUL-0 9	o/c, amphib. Sch, 164/70E
450	644335	5400416	468 m	1b	BC	28-JUL-09	o/c, sh'd mafic flow, 172/60-70E
455	644974	5399050	448 m	1b	BC	29-JUL-09	o/c, mafic flow with purple Fe stain, sch at 150
456	645270	5399027	440 m	1b	BC	29-JUL-09	o/c, flow, rusty, sch at 146
457	645488	5399035	436 m	3	BC	29-JUL-09	o/c, felsic volcanic, sch at 150
467	644975	5399020	451 m	6с	BC	30-JUL-09	O/C, amphibolite schist, 160/85E, dk gy-bl, boud'g qv (5cm), banded
470	645686	5397638	443 m	1b	BC	30-JUL-09	O/C, patch, possible contact between mafic and int flows, $154/+/-v$
471	645978	5397416	442 m	3d	BC	30-JUL-09	O/C, D-19 Zone, gossanous recrystallized qv, pyritic to 5 %, spotty mag.
474	647124	5399442	444 m	2	BC	06-AUG-09	O/C, large area, 25x25, interm volc, tr py also in contact with mafic flow, 162/v, flattened pillow? x-cutting felsic dyke, bx'd, 275/? 30 cm wide
475	647175	5399480	447 m	lb	BC	06-AUG-09	O/C, large area, 10x40, flat'd pillows, mafic flow, selv'g wth'r high.
476	647240	5399610	445 m	6b	BC	06-AUG-09	O/C, gabbro intr, wkly mag, f-med gr'd,
477	647256	5399597	447 m	7a	BC	06-AUG-09	O/C, diabase dyke, no fol'n, massive, m gr'd, brownish wth'g.
479	647147	5399488	444 m	7a	BC	06-AUG-09	O/C, diabase dyke, no fol'n, massive, m gr'd, brownish wth'g.
480	647103	5399504	444 m	lb	BC	06-AUG-09	O/C, mafic flow, pillows?, 'Z'-sense fold in qv. 360/v to 85 E
481	646942	5399499	434 m	5b	BC	06-AUG-09	O/C, q-b schist, 174/v, qtz boudins

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
482	646955	5399445	438 m	5b	BC	06-AUG-09	O/C, q-b schist, 175/?
488	647266	5398722	448 m	3	BC	07-AUG-09	O/C, quartz-biotite schist, 172/v
489	647285	5398705	451 m	7a	BC	07-AUG-09	O/C, diabase, large area, magnetic, med gr'd, plag,pyrox, amph
490	647335	5398791	448 m	3	BC	07-AUG-09	O/C, seds, q-b sch, east edge of diabase
492	647344	5398912	451 m	7a	BC	07-AUG-09	O/C, diabase, small o/c, spruce/fir to 20'
493	647285	5398850	444 m	3	BC	07-AUG-09	O/C, seds, q-b sch, strong fol'n at 177/v, possible frags,
501	647133	5399428	441 m	7a	BC	08-AUG-09	O/C, diabase
3	648065	5399463	490 m	3	BC	11-AUG-09	O/C, seds with QF ppy, felsic and mafic sed bands at 154/v, pyritic
4	648059	5399455	489 m	3a	BC	11-AUG-09	O/C, Seds, Qtz rich wacke, 40 cm mafic band, contact at 161/v
5	648029	5399470	482 m	3a	BC	11-AUG-09	O/C, Q-f wacke with q phenos, 5 cm cg'd q-f ppy dyke at 155/85E
6	648033	5399490	495 m	3	BC	11-AUG-09	O/C, amph schist, f g'd, to int-mafic sed. 10 m from Gary's WPt#111
7	648012	5399497	484 m	lb	BC	11 -AUG-0 9	O/C, mafic frag?, flattened pillows? At 165/v
8	647954	5399548	493 m	3a	BC	11-AUG-09	O/C, q-biot wacke, sed. X-cut qtz vns, q-f ppy dykes.
9	647831	5399085	472 m	3	BC	11-AUG-09	O/C?, seds
12	647834	5398959	477 m	3	BC	11 -AUG-09	O/C, felsic sed with q-f ppy
16	647616	5398674	456 m	2b	BC	11-AUG-09	O/C? felsic tuff, siliceous, very hard, lt gr-gy colour
18	647253	5398553	455 m	7a	BC	11-AUG-09	O/C, diabase
22	647463	5400968	461 m	7a	BC	12-AUG-09	O/C, diabase
23	647442	5401005	469 m	3	BC	12-AUG-09	O/C, seds, variable beds, mafic to felsic, mm to cm scale. Claim Line
24	647425	5401031	481 m	7a, 3a	BC	12-AUG-09	O/C, diabase/seds, q-f wacke
25	647408	5401155	476 m	3	BC	12-AUG-09	O/C, biot rich seds at 155/v
26	647745	5401045	450 m	1b	BC	12-AUG-09	O/C, mafic flow, flattened pillows? Wth'd rinds
29	647636	5401326	458 m	1b	BC	12-AUG-09	O/C, mafic flow, flattened pillows? Wth'd rinds, very dk gr-bl

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
32	647569	5401529	459 m	1	BC	12-AUG-09	O/C, mafic flow, fol'd 168/v, x-cutting q-f ppy
33	646937	5400213	456 m	3a	BC	12-AUG-09	O/C, mainly felsic q-fsp wacke, mm to cm beds, 167/v.
34	646886	5400313	446 m	3a	BC	12-AUG-09	O/C, felsic q-wacke and banded seds, 174/v
35	646864	5400343	439 m	3a	BC	12-AUG-09	O/C, sil q wacke with biotite
36	646921	5400383	445 m	3	BC	12-AUG-09	O/C, finely laminated q-b schist, seds, 166/65W?
39	647081	5400232	466 m	3	BC	13-AUG-09	O/C, seds, laminated with sil bands. 171/v. "S"-sense folds
40	647221	5400251	469 m	1	BC	13-AUG-09	O/C, mafic volc or sed with hblde, plag musc.
41	647258	5400248	459 m	6b, d	BC	13-AUG-09	O/C, med gr'd massive dark gr-bl non-magn gabbro (peridotite)
42	647385	5400612	484 m	3a	BC	13-AUG-09	O/C, seds, q-rich wacke
43	647272	5400577	463 m	2a	BC	13-AUG-09	O/C, f g'd felsic volc, lt gy, siliceous
48	647897	5400664	448 m	7b	BC	13-AUG-09	O/C, gr diorite, pinkish
50	648055	5400871	451 m	lg	BC	13-AUG-09	O/C, amph mafic volc, 173/85W
56	647665	5395815	438 m	3	BC	14-AUG-09	O/C, pavement, banded seds with ppy unit (felsic)
60	648113	5396932	450 m	4c	BC	14-AUG-09	O/C, c g'd pegm granite
61	648192	5396948	444 m	5a	BC	14-AUG-09	O/C, granite
63	648649	5396876	453 m	6d	BC	14-AUG-09	O/C, dk gr-bl, med gr'd magn peridotite, old cut base line at 340
65	648777	5396870	464 m	6d	BC	14-AUG-09	O/C, peridotite, magnetic, plag and hornblende
66	648656	5396656	464 m	6d	BC	14-AUG-09	O/C, ultramafic-mafic volc,non-magnetic, garnets? Massive, no fol'n
67	648715	5396662	456 m	3	BC	14-AUG-09	O/C? mafic seds, 140/v
68	648740	5396666	450 m	3	BC	14-AUG-09	O/C, fol'd seds at 134/v
69	648766	5396689	465 m	6d	BC	14-AUG-09	O/C, magnetic dk gr-bl peridotite
84	643131	5405497	411 m	3	BC	22-AUG-09	O/C, mafic composition, banded, mm-cm, some int bands, seds at 160/40
85	643042	5405426	419 m	3	BC	22-AUG-09	O/C, small ledge, comp banding, mafic flow, dip of 45
86	642940	5405368	422 m	3	BC	22-AUG-09	O/C, lt gy-gr, discont banding, int mv, frags have fol'n O/C, 10m W, felsic ppy, qtz +fsp, width?

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
87	642908	5405351	465 m	3a	BC	22-AUG-09	O/C, qtz wacke, qtz + hblde+/- biot +/- fsp, flat lying; felsic dyke, lt beige
88	642880	5405346	457 m	3a	BC	22-AUG-09	O/C, qtz wacke, minor rusty fractures, qtz + hblde +/-bio +/- fsp
89	642867	5405354	411 m	1	BC	22-AUG-09	O/C, fg mafic mv, fsp + amph+/- qtz +/- bio, $164/42E$
90	642832	5405332	414 m	1	BC	22-AUG-09	O/C, 1.3 m ledge, strongly fol'd mafic mv, epidote, py to 5% , fsp + amph +ep
91	642808	5405393	449 m	1	BC	22-AUG-09	O/C, int mv, med gr'd flow, tr py
92	642748	5405382	422 m	lg	BC	22-AUG-09	O/C, amphibolite mv, x-cut dyke 036/85N, v f g'd, hard, sil, specks of py or po. 1m wide, wth's brown
93	642742	5405382	457 m	4d	BC	22-AUG-09	O/C, felsite dyke in mafic mv, near granite?
95	642838	5405460	427 m	3e	BC	23-AUG-09	O/C, m g'd int tuff, wth's brownish, fresh is greyish
96	642702	5405455	432 m	lg	BC	23-AUG-09	O/C, along trend from WPt#90, rusty fol'd mv fol'd mafic mv, f g'd amphibolite with felsic ppy band (fsp phenos) whitish beige, 168/45E, see pics 4&5.
97	642645	5405433	417 m	1g	BC	23-AUG-09	O/C, amphbolite with felsic ppy bands, several m wide. See pic 6
98	642624	5405452	421 m	1	BC	23-AUG-09	O/C, mafic mv, with granite, contact area? See pic 7&8
99	642732	5405694	415 m	2d	BC	23-AUG-09	O/C, int mv, 1% dissem py and rusty fract. Lt gy-gr, m g'd, fol'd.
100	642767	5405750	420 m	1	BC	23-AUG-09	O/C, int mv, rextal'z'd, q-fsp-biot, lt gy-gr, 164/42E. Comp band'g
101	642613	5406005	415 m	2	BC	23-AUG-09	O/C, int volc, lt gy-gr,minor q-ppy, 162/40E.
102	642934	5405694	414 m	1	BC	23-AUG-09	O/C, sheared mafic volc with narrow 1 cm q vn's with minor py-1/-cpy. Ptygmatic qtz vn. O/c at 50m along 110 brg is mafic mv with felsic dyke.
109	642304	5406873	447 m	lg	BC	24-AUG-09	O/C, flat pavement, v large area, open forest, fol'd, comp banding maficmv, amphibolite, lt and dk bands, 162/48E
110	642257	5406856	440 m	FZ	BC	24-AUG-09	Fault draw, east edge, 50-100 m wide, at 140 brg. O/C of mmv
111	642250	5406831	436 m	2	BC	24-AUG-09	West edge of draw, O/C, int volc with sliver of mafic & felsic dyke int volc, it gy-gr, f g'd, fol'd and comp banding

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
112	642239	5406764	447 m	2	BC	24-AUG-09	O/C, large area, int volc, felsic dykes, pinkish, x-cut, pegmatitic.
113	642154	5406751	433 m	2	BC	24-AUG-09	O/C, large area, int volc, felsic sills
114	642131	5406766	427 m	6b	BC	24-AUG-09	O/C, f g'd massive gabbro, weathers brownish, chilled margin
115	642031	5406737	440 m	1	BC	24-AUG-09	O/C, large area, mafic mv, fsp+/-qtz+/-hbde+/-biot, weak fol'n
116	641728	5406773	432 m	5b	BC	24-AUG-09	O/C, ledge, pink granodiorite, c g'd q-fsp xtals, f g'd diorite min
117	641714	5406916	450 m	1	BC	24-AUG-09	O/C, mmv, fol'd, comp banding, fsp+/-bio+/-hblde with felsic band 15 cm wide, conformable
118	641996	5406996	437 m	lb	BC	24-AUG-09	O/C,mafic flow with flattened pillows, fol'd,
119	642165	5407012	442 m	1	BC	24-AUG-09	O/C, mmv, weak fol'n, some felsic filled frac
120	642299	5407034	451 m	6b	BC	24-AUG-09	O/C, large, trend 120 brg, 75x10+m, dk gr gabbro, m g'd, typicał
121	642492	5407015	413 m	6b	BC	24-AUG-09	O/C, non-fol'd dioritic-gabbro intrusive.
126	646384	5404558	422 m	3b, h	BC	26-AUG-09	O/C, ledge, seds, bio-rich schist with granitic dykes (bio & ppy) 128/80SW, some wacke bands, q + fsp
127	646424	5404551	418 m	3b	BC	26-AUG-09	O/C, ledge 2m high, seds, strongly fol'd with ppy gr dykes, mafic composition (bio + hblde)
128	646459	5404565	442 m	3b	BC	26-AUG-09	O/C, ledge, seds, weakly banded cm scale, q+fsp+bio
129	646751	5404625	467 m	1b	BC	26-AUG-09	O/C, large area, 3m hi x30m, faces N, mafic mv flow, tops W, gas bubbles up, flattened, small, pinkish 1-3 cm felsic dykes X-cut, amphibolite 20m E. 140/50W. Lighter col rind is banded
130	646871	5404638	466 m	6a	BC	26-AUG-09	O/C, ledge, 3mx20m, (N-S), dioritic intrusive, bio + Q in a mafic mv (fsp+bio+hblde)
131	646951	5404636	472 m	6a, QV	BC	26-AUG-09	O/C, flat, "s"-sense folded qtz vn (5 cm) which is cut by c g'd granite dyke, in mafic flow, pillow structures, 1:8, 145 brg.
132	646946	5404614	476 m	lg	BC	26-AUG-09	O/C, small,mafic mv (amphib), narrow rusty qyz vn
133	646979	5404608	482 m	6b, a	BC	26-AUG-09	O/C, large bald area, gabbroic? to q-diorite, no fol'n

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
134	647013	5404621	468 m	lb	BC	26-AUG-09	O/C, mafic flows, pillows, rinds wth reddish-br, flattened. Minor rusty fractures, 0.5 cm qtz vn with tr of py
135	647071	5404666	453 m	5a	BC	26-AUG-09	O/C, cliff edge 10m down, hornblende granite
136	647108	5404683	439 m	5a	BC	26-AUG-09	O/C, 20 m cliff up, granite, fsp phenos,
137	647079	5404730	450 m	5a	BC	26-AUG-09	O/C, ledge, granite with mafic mv inclusion, contact area?
138	64706 8	5404760	443 m	5a	BC	26-AUG-09	O/C, cliff up, mafic mv/granite contact area
139	646835	5404877	451 m	5a	BC	26-AUG-09	O/C, small, ppy granite
140	646775	5404875	431 m	1	BC	26-AUG-09	O/C, 30m cliff down, mafic mv with felsic dykes, fol'd
141	646552	5404875	423 m	3	BC	26-AUG-09	O/C, seds, fol'd, 150/v
145	642221	5408163	417 m	lb	BC	30-AUG-09	O/C, f gr'd dk gr non-magnetic, fol'd mafic flow
146	642190	5408133	413 m	1g	BC	30-AUG-09	O/C, amphibolite, f-med gr'd, 164/48
147	642167	5408120	414 m	1b	BC	30-AUG-09	O/C, f gr'd mafic flow, 170/40E
148	641993	5407952	421 m	la, u	BC	30-AUG-09	O/C, f-med gr'd mafic to ultramafic, dk gr-bl with fsp xtals, schistose
150	641863	5407797	425 m	1b	BC	30-AUG-09	O/C, f gr'd mafic flow 170/54E
151	641784	5407759	431 m	1	BC	30-AUG-09	O/C, small ledge, f gr'd matic flow, fol'd, some rextal'z of hornblende, blades at random orientation.
152	641759	5407782	432 m	1	BC	30-AUG-09	O/C, small, f gr'd mafic flow, dk gr-bl
153	641732	5407783	432 m	2, QV	BC	30-AUG-09	O/C, felsic volc, minor biot, gossanous, boud, qtz veins, 153-a. 1530b, qtz vein material.
155	641495	5407908	433 m	1b, 3	BC	30-AUG-09	O/C, Mafic flow with interflow seds. See pic. Well fol'd, could be flat pillows, 140/50E. O/C, 10m W, small qtzite-wacke, sugary.
157	641548	5407977	426 m	3h	BC	30-AUG-09	O/C, seds, wacke, banded and layered, q-fsp-bio
158	641681	5408019	431 m	3	BC	30-AUG-09	O/C, seds, layered, 352/70E
161	641711	5408162	438 m	6b	BC	30-AUG-09	O/C, f gr'd-med gr'd gabro, massive, rep sample taken
165	647309	5405183	397 m	1	BC	31-AUG-09	O/C, large face, \sim E-W, mafic volc, with boud qtz, 158/5W

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
166	647307	5405165	420 m	1, QV, 5a	BC	31-AUG-09	O/C, sample of q v material, mafic volc, granitic plug, Picket line at 225 brg
168	647322	5405101	427 m	QV	BC	31-AUG-09	O/C, continuation of vein to SE but offset to W, Q v, gossanous
169	647334	5405079	430 m	1, QV	BC	31-AUG-09	Corona sample site, 32225, 0.5m qv, gossanous
170	647409	5404985	433 m	1b	BC	31-AUG-09	O/C, mafic volc, PL, 225 brg,
178	647509	5404717	424 m	7a	BC	31-AUG-09	O/C, up from creek, diabase dyke, magnetic, dk gr-bl
180	647549	5404624	455 m	5a	BC	31-AUG-09	O/C, flat, reddish-beige, biot granite
181	647583	5404558	468 m	3	BC	31-AUG-09	O/C, small, flat, probable sed, fol'd, fsp-q-bio, gritty
182	647557	5404519	476 m	1	BC	31-AUG-09	O/C, mafic volc
184	647232	5405079	440 m	5a, 1, QV	BC	31-AUG-09	O/C, felsic intrusive/mafic volc, with qv, 2 pics
189	641724	5408553	435 m	1, QV	BC	01-SEP-09	O/C, Mafic volc, fol'd with q vns, 360/53E, low ground to west past D-12
190	641618	5408551	435 m	1b	BC	01-SEP-09	O/C, mafic volc with some felsic banding, 360/53E, poss pillows, flat'd
191	641618	5408590	429 m	1	BC	01-SEP-09	O/C, mafic volc, fol'd, sil banding, 360/58 E
192	641735	5408748	429 m	1, 2	BC	01-SEP-09	O/C, D-11 conductor, mafic volc to west and felsic volc to east, pic.
193	641792	5408800	426 m	1g	BC	01-SEP-09	O/C, mafic volc, amphibolite, 360/68E
196	641795	5409099	434 m	2	BC	01-SEP-09	O/C, felsic volc, sample taken
201	641874	5409416	419 m	1	BC	01-SEP-09	O/C, very small, mafic volc
203	641986	5409421	419 m	7a	BC	01-SEP-09	O/C, Diabase dyke, magnetic trending SE
DH47	646944	5405857		QV	BC	2-Sep-09	old # is 32529, Line 111N/93+75E, Gflach. (see Dave Hunt)
205	646949	5405922	417 m	QV	BC	02-SEP-09	old # is 32532, qtz vein
206	646942	5405927	417 m	3b, QV	BC	02-SEP-09	206-1, DH, Qtz Vn. 206-2, GF, Qtz Vein in a sil host, 5% py in sil, tr py in qv.
20	643367	5413177	431 m	1	GP	23-JUL-09	OUTCROP/MAFIC VOLCANICS 010/90
22	643397	5413161	427 m	1	GP	23-JUL-09	MAFIC VOLCANICS
23	643440	5413165	426 m	1	GP	23-JUL-09	MAFIC VOL.RUSTY/SHEARED@ 348/70W MINOR PY

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
24	643468	5413240	419 m	1	GP	23-JUL-09	MAFIC VOL.MINOR PY 350/70W SAMPLE TAKEN
27	643408	5413345	425 m	1	GP	23-JUL-09	SHEARED MAFIC VOL.MINOR PY WITH GOSSAN, Sample
31	643185	5413962	405 m	la	GP	24-JUL-09	OUTCROP/MASSIVE BASALT
35	643313	5415939	394 m	QV	GP	24-JUL-09	ROCK SAMPLE/RUSTY QUARTS
36	643568	5415733	397 m	1	GP	24-JUL-09	SHEARED BASALT/GOSSAN ZONE
37	643578	5415739	408 m	1	GP	24-JUL-09	SAME AS ABOVE
49	644081	5401169	447 m	1	GP	28-JUL-09	O/C FELSIC-MAFIC CONTACT RUSTY ZONE HIGH MAG UP TO 3% PY 3%MAGNETITE 328/60 EAST
53	644394	5400224	460 m	1	GP	28-JUL-09	O/C FELSIC TO EAST/MAFIC TO WEST/ 360/85EAST
73	647176	5395405	447 m	5b	GP	03-AUG-09	RUSTY BIOTITE SCHIST 320/90 SOUTH END OF D- 21 SAMPLE TAKEN
77	646451	5396691	446 m	1	GP	05-AUG-09	O.C. MAFIC VOLCANIC, MINOR RUST(PY) 150/90 SAMPLED
79	646488	5396707	430 m	1, 3, QV	GP	05-AUG-09	MAFIC/FELSIC CONTACT 4METERS WIDE MINOR QTS VEINING 148/90
85	647136	5399525	437 m	QV	GP	06-AUG-09	SMALL QTS BOUDIN MINOR PY 360/90 SAMPLED
86	647201	5399542	441 m	1	GP	06-AUG-09	SHEARED BASALT 160/80 EAST SAMPLED
93	647680	5399330	439 m	5b	GP	07-AUG-09	O.C. GRANODIORITE CREEK BED ALDER/BIRCH SAMPLED
94	647716	5399284	449 m	7a	GP	07-AUG-09	DIABASE MINOR PY SAMPLED
95	647759	5399404	428 m	1	GP	07-AUG-09	MAFIC VOLCANIC
99	647850	5399461	477 m	7a	GP	07-AUG-09	DIABASE CLIFF MAGNETIC MINOR PY SAMPLED
100	647897	5399484	488 m	7a	GP	07-AUG-09	O.C. DIABASE/GABBRO MINOR PY
108	648061	5399426	481	1	GP	10-AUG-09	O.C. MAFIC VOL. WITH FESIC BANDS 334/90
109	648071	5399467	486	1	GP	10-AUG-09	O.C. MAFIC VOL. TO WEST FELSIC TO EAST 330/90 3% PY
110	648028	5399496	481	1, py	GP	10-AUG-09	MAFIC VOL. PY GOSSAN SAMPLED
111	648015	5399503	479	2, 1, QV	GP	10-AUG-09	FESIC & MAFIC VOL. QTS VEINING POSS. SEDS.
112	647954	5399547	492	7a	GP	10-AUG-09	DIABASE

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
116	648215	5400084	482	6b, 7a	GP	11-AUG-09	O.C. CLIFF GABBRO/DIABASE MINOR PY SAMPLED
117	648209	5399253	492	1	GP	11-AUG-09	SHEARED MAFIC VOL. 320/65WEST SPRUCE BOG TO WEST
118	648207	5399244	490	ł	GP	11-AUG-09	MAFIC VOL. RUSTY MINOR PY QTS LENSES SAMPLED
119	648215	5399149	490	1	GP	11 - AUG-09	SHEARED VOL. 160/90 QTS ALONG SHEAR
122	647011	5401379	477	1b	GP	12-AUG-09	O/C, 1400M FROM " J " PILLOWED BASALT
124	646947	5401412	471	1	GP	12-AUG-09	O/C, MAFIC VOL. RUSTY KNOTS PY SAMPLED
125	646999	5401202	481	1, 2	GP	12-AUG-09	O/C, MAFIC VOL.? WITH FELSIC BEDS (SEDS)RUSTY 010/90
127	646851	5401070	464	3	GP	12-AUG-09	O.C. BIOTITE SCHIST (SEDS) 155/80 WEST
134	645613	5409213	434 m	1, QV	GP	23-AUG-09	SHEARED BASALT / QTS VEIN WITH GOSSAN 325/70WEST
137	645783	5407958		1	GP	24-AUG-09	BASALT O.C. ON OLD GRID LINE 315/80 WEST
139	645878	5408042		1b	GP	24-AUG-09	O.C. BANDED BASALT POSS PILLOWS 330/70WEST
140	645899	5408070		1	GP	24-AUG-09	RUSTY QTS SHEAR IN BANDED BASALT 330/80WEST SAMPLED
143	646003	5408404		1	GP	24-AUG-09	BANDED MAFIC VOL./ PORPH BED .25M WIDE/RUSTY QTS/PY MAGNETITE 310/85W
144	646032	5408417		1	GP	24-AUG-09	BANDED MAFIC VOL. WITH PORPH BEDS .25M WIDE 150/85 W
146	645835	5408267		1	GP	24-AUG-09	O.C. MAFIC VOL.
147	645825	5408255		1,4c	GP	24-AUG-09	1METER WIDE BAND PORPHORY WITHIN MAFIC VOL DIP -85WEST
148	645774	5408212		1, 4c	GP	24-AUG-09	BANDED BASALT WITH PORPHORY/QTS BLOW- OUT .75METER COURSE BIOTITE/PY
151	645584	5408185	415 m	1	GP	26-AUG-09	O.C. MAFIC VOL.
152	645598	5408212	415	1	GP	26-Aug-09	O/C: Migmatititic style beddded mafic volcanic. Banded coarse biotite, qtz and py. Dip and strike 286/90. Much like Sugar Zone. Chalcopyrite hue. SAMPLED
153	645632	5408248	424 m	1	GP	26-AUG-09	O.C. MAFIC VOL.

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description					
154	645654	5408262	424 m	4c	GP	26-AUG-09	O.C. FELSIC PORPHORY WITH RUSTY QTS SAMPLED 152/-80W					
156	645908	54 08 478	399 m	1	GP	26-AUG-09	BEDDED MAFIC VOL. 330/-85W					
157	645768	5408494	412 m	1, 2	GP	26-AUG-09	O.C. BEDDED MAFIC VOL.MINOR FELSIC BEDS/LENSES 385/-85W					
159	645629	5408350	420 m	1, QV	GP	26-AUG-09	O.C. MAFIC VOL. WITH QTS VEIN SAMPLED					
162	643350	5412800	373	1	GP	8/30/2009	O/C: Mafic volc. Strike 344 deg.					
163	643386	5412350	411	2, 1	GP	8/30/2009	O/C: Intermed / Mafic volc. 360/80W					
164	643308	5412566	433	1	GP	8/30/2009	O/C: Mafic volcanic. Dip 85W					
166	643315	5412708	413	1	GP	8/30/2009	O/C: Mafic volc, 360/75W					
167	643439	5412864	425	3d, QV, py	GP	8/30/2009	167A: O/C: Sheared IF, 344/85W, Highly magnetic. Major gossan w/py, qtz. SAMPLED. 167B: Sheared IF with rusty qtz vein. 010/85, hematite stain. SAMPLED. 167C: East contact with massive (30%) py with trout skin hue on qtz., possible Cp (smoky qtz). Showing is 6 to 7m wide.					
171	643454	5412414	416	la	GP	8/30/2009	O/C: Massive mafic volc					
184	643410	5411219	407	1	GP	8/31/2009	O/C: Mafic volc., 360 strike, no dip					
186	643418	5411039	394	1	GP	8/31/2009	O/C: Mafic volc, bedded. 362/85W					
193	641849	5411881	389	1	GP	9/14/2009	O/C: Sheared basalt, 360/85W, minor rust. SAMPLED					
196	641684	5410057	394	1	GP	9/14/2009	O/C: Sheared basalt, no strike or dip					
197	641719	5410028	415	1	GP	9/14/2009	O/C: Sheared volcanic, possibly seds, 190/90. Narrow QV, some rust. SAMPLED					
198	641699	5410027	405	1	GP	9/14/2009 2:	O/C: Sheared volc, small cliff, minor rust. SAMPLED					
82301	644808	5408645	421	1	DH	Aug 23 2009	Dark green foliated basalt on drill road. Foliation 338/90					
823092	644881	5408688	439	ł	DH	23-Aug-09	Mafic volcanic, moss-covered, along NE facing ridge					
DH10	645593	5409459	464	1g	DH	23-Aug-09	Fine grained amphibolitic basalt. Foliation at 130/80. Rare thin (2 cm) quartz-feldspar veins					
DH11	645587	5409493	472	lg	DH	23-Aug-09	Large outcrop of fine grained amphibolitic basalt					
DH12	645503	5409560	475	1	DH	23-Aug-09	Outcrop, moss-covered. Fine grained mafic volanic					

Waypt	UTM E	UTM N	Elev	Rk code	Mapper	Date	Description
DH13	645387	5409435	476	1	DH	23-Aug-09	Outcrop on SW slope of hill. Fine grained mafic volcanic. Local minor felsic knots and quartz lenses parallel to
DH14	645337	5409384		1	DH	23-Aug-09	foliation at '030 deg. Mafic volcanic. Fine grained. Foliation at 140/80. Sample of sugary quartz vein taken by Gary Peacock.
DH15	645258	5409290	447	lb	DH	23-Aug-09	Fine grained mafic volcanic. Likely pillowed. Foliation at 134/85
DH16	645253	5409267	446	1	DH	23-Aug-09	Basalt, similar as DH15
DH17	645220	5409224	447	1	DH	23-Aug-09	Basalt
DH18	645147	5409152	453	1	DH	23-Aug-09	Basalt, as before
DH19	645090	5409047	439	1	DH	23-Aug-09	Outcrop on west side of hill. Fine grained basalt. Foliation at 136/75
DH20	645080	5409024	432	1	DH	23-Aug-09	Fine grained basalt. Weakly garnetiferous
DH3	644963	5408768	419	lg	DH	23-Aug-09	Large o/c. Amphibolitic basalt. Dark grey to black. Foliation at 140/70
DH4	645263	5408988		lg	DH	23-Aug-09	O/C of amphibolitic basalt on east side of slope
DH5	645584	5409194	430	lg	DH	23-Aug-09	Small outcrop of amphibolitic basalt, fine grained
DH6	645639	5409218	432	1	DH	23-Aug-09	O/C on south side of hill. Fine grained basalt. UTM marks east side of outcrop
DH7	645671	5409358	464	7a	DH	23-Aug-09	Porphyritic diabase
DH8	645644	5409356	467	1	DH	23-Aug-09	Dark green fine grained mafic volcanic
DH9	645653	5409378	459	1	DH	23-Aug-09	Fine grained mafic volcanic
DH24	647326	5405135	430	1, QV	DH	31-Aug-09	20cm QV cutting maf volc. Vein rusty, rexlized, 1% po. Former Noranda 4555
DH25	647326	5405135	430	1	DH	31-Aug-09	Wallrk adjacent to QV on hangingwall (W). Weak po
DH28	647430	5404913	432	5b	DH	31-Aug-09	Foliated siliceous CG granodioritic float on edge on trench. 5% diss py
DH30	647551	5404520	463	1	DH	31-Aug-09	Basalt on beginning of shallow slope.

DH3264405654033044115aDH1-Sep-09FG granitic material. 2 large o/c on west side of stread striking SSWDH3364402054032894101aDH1-Sep-09MG massive basalt on W side of streamDH3464385354030494271DH1-Sep-09Laminated, foliated maf volc. Foliation 345/75DH3564384954029924231gDH1-Sep-09FG foliated amphibolitic basalt. Low o/cDH3664380054029344271, 5aDH1-Sep-09Foliated maf volc w/pink granitic lenses. Lenses stri 060/56. Foliation 347/52DH4064372154029354283, 5a, pyDH1-Sep-09Silicified thinly laminated sed cut by FG granitic material 10% py in seds. 3% diss py in granite. Rusty o/c expos by uprooted tree. Likely conductorDH4164381354032624411gDH1-Sep-09FG basalt. Wkly amphibolitic. Thinly banded parallel	
DH3464385354030494271DH1-Sep-09Laminated, foliated maf volc. Foliation 345/75DH3564384954029924231gDH1-Sep-09FG foliated amphibolitic basalt. Low o/cDH3664380054029344271, 5aDH1-Sep-09Foliated maf volc w/pink granitic lenses. Lenses stri 060/56. Foliation 347/52DH4064372154029354283, 5a, pyDH1-Sep-09Silicified thinly laminated sed cut by FG granitic materia 10% py in seds. 3% diss py in granite. Rusty o/c expos by uprooted tree. Likely conductor	m
DH3564384954029924231gDH1-Sep-09FG foliated amphibolitic basalt. Low o/cDH3664380054029344271, 5aDH1-Sep-09Foliated maf volc w/pink granitic lenses. Lenses stri 060/56. Foliation 347/52DH4064372154029354283, 5a, pyDH1-Sep-09Silicified thinly laminated sed cut by FG granitic materia 10% py in seds. 3% diss py in granite. Rusty o/c expos by uprooted tree. Likely conductor	
DH3664380054029344271, 5aDH1-Sep-09Foliated maf volc w/pink granitic lenses. Lenses stri 060/56. Foliation 347/52DH4064372154029354283, 5a, pyDH1-Sep-09Silicified thinly laminated sed cut by FG granitic materia 10% py in seds. 3% diss py in granite. Rusty o/c expos by uprooted tree. Likely conductor	
DH40 643721 5402935 428 3, 5a, py DH 1-Sep-09 Silicified thinly laminated sed cut by FG granitic materia 10% py in seds. 3% diss py in granite. Rusty o/c expos by uprooted tree. Likely conductor	
10% py in seds. 3% diss py in granite. Rusty o/c expos by uprooted tree. Likely conductor	<u>ke</u>
DH41 643813 5403262 441 1g DH 1-Sep-09 FG basalt. Wkly amphibolitic. Thinly banded parallel	
foliation	to
DH42 643855 5403269 434 1 DH 1-Sep-09 Maf volc. Moss covered and poorly exposed	
DH43 643901 5403322 437 1 DH 1-Sep-09 Maf volc. Moss covered and poorly exposed	
DH44 643910 5403347 433 I DH 1-Sep-09 Maf volc. Moss covered and poorly exposed	
DH45 644005 5403374 424 1 DH 1-Sep-09 Maf volc. Moss covered and poorly exposed	
DH46 644120 5403465 415 1 DH 1-Sep-09 Maf volc. Moss covered and poorly exposed	
DH47 646944 5405857 QV DH 2-Sep-09 QV on north cliff face. Old sample 32529	

APPENDIX C

TABLE 2: GLACIAL BOULDER AND FLOAT DESCRIPTIONS

Waypoint	Easting	Northing	El. (m)	Rk. Code	Date	Mapper	Description
486	647110	5398757	437 m	3	07-AUG-09	BC	no o/c, jack pine & fir, float is seds
487	647180	5398742	438 m	3	07-AUG-09	BC	no o/c, jack pine & fir, float is seds
500	647218	5399157	442 m	5b	08-AUG-09	BC	No o/c, float is gr dior, mixed forest
11	647868	5398962	480 m	1 g	11-AUG-09	BC	float, angular, amph mafic volc.
13	647690	5398951	468 m	3	11-AUG-09	BC	float, banded seds
47	647864	5400638	454 m	3	13-AUG-09	BC	seds, float
64	648733	5396819	458 m	3	14-AUG-09	BC	float, mafic seds
149	645598	5408030		1	24-AUG-09	GP	RUSTY BOULDER
DH28	647430	5404913	432	5b	31-Aug-09	DH	Foliated siliceous CG granodioritic float on edge on trench. 5% diss py
125	646298	5404552	411 m	5a	26-AUG-09	BC	Float, biot granite
154	641622	5407826	439 m	3b	30-AUG-09	BC	Float, angular, 20 ft high, qtzite. Bedded. See pics
187	643625	5411239	386	1	8/31/2009	GP	FLOAT: Rusty float, angular, SAMPLED
133	644952	5408751	414 m	1	23-AUG-09	GP	RUSTY BOULDER UNDER TREE ROOT MINOR PY SAMPLED

APPENDIX D

TABLE 3: GRAB AND CHANNEL SAMPLE DESCRIPTIONS AND ASSAYS

Waypoint	Easting	Northing	Elev.	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo %	Description
394	643045	5413397	418 m	23-JUL-09	423551	BC	6	0.006		o/c, seds, pyrite rich.
406	643457	5413035	439 m	24-JUL-09	423552	BC	< 5	0.003		o/c, large knob. 15x20m. Fg'd int volcanic, lt gy-gr colour.massive Mod. Hard, increase in fsp lath to 1mm. On east edge, contact with Fe-rich sed at 140 +/-, disrupted, 5-8 m wide zone exposed. Sample 394-1, grab with some pyrite. Pics 3,
412	642798	5413225	408 m	24-JUL-09	423553	BC	< 5	0.003		o/c, 40-50 cm felsic vein, buff colour, tr of cpy/py, dissem. Sample 406-1 sil felsic rx with $<1\%$ sulph Grab
444	644257	5400512	472 m	28-JUL-09	423554	BC	< 5	0.003		o/c, mafic intrusive, f-mg'd magnetic rx, some biot xtals, some hornblende weathers dirty brown, fresh is med gy-gr.
444	644257	5400512	472 m	28-JUL-09	423555	BC	< 5	0.003		o/c ledge. Rusty, pyritic, <1%, near contact with granite. schistosity, 190/70E, Samples 444-1,2,3
447	644266	5400488	473 m	28-JUL-09	423556	BC	< 5	0.003		o/c ledge. Rusty, pyritic, <1%, near contact with granite. schistosity, 190/70E, Samples 444-1,2,3
471	645978	5397416	442 m	30 - ЛUL-09	423557	BC	< 5	0.003		o/c, ledge, <1% pyrite, recrystallized qv. Contact area.
471	645978	5397416	442 m	30-JUL-09	423558	BC	< 5	0.003		O/C, D-19 Zone, gossanous recrystallized qv, pyritic to 5 %, spotty mag. all grabs
471	645978	5397416	442 m	30-JUL-09	423559	BC	< 5	0.003		O/C, D-19 Zone, gossanous recrystallized qv, pyritic to 5 %, spotty mag. all grabs
471	645978	5397416	442 m	30-JUL-09	423560	BC	< 5	0.003		O/C, D-19 Zone, gossanous recrystallized qv, pyritic to 5 %, spotty mag. all grabs
23	643440	5413165	426 m	23-JUL-09	423561	GP	< 5	0.003		O/C, D-19 Zone, gossanous recrystallized qv, pyritic to 5 %, spotty mag. all grabs
24	643468	5413240	419 m	23-JUL-09	423562	GP	< 5	0.003		MAFIC VOL.RUSTY/SHEARED@ 348/70W MINOR PY
27	643408	5413345	425 m	23 - JUL-09	423563	GP	< 5	0.003		MAFIC VOL.MINOR PY 350/70W SAMPLE TAKEN

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo%	Description
35	643313	5415939	394 m	24 - JUL-09	423564	GP	< 5	0.003		SHEARED MAFIC VOL.MINOR PY WITH GOSSAN, Sample
36	643568	5415733	397 m	24-JUL-09	423565	GP	< 5	0.003		ROCK SAMPLE/RUSTY QUARTS
37	643578	5415739	408 m	24-JUL-09	423566	GP	< 5	0.003		SHEARED BASALT/GOSSAN ZONE
49	644081	5401169	447 m	28-JUL-09	423567	GP	< 5	0.003		SAME AS ABOVE
49	644081	5401169	44 7 m	28-JUL-09	423568	GP	< 5	0.003		O/C FELSIC-MAFIC CONTACT RUSTY ZONE HIGH MAG
53	644394	5400224	460 m	28-JUL-09	423569	GP	< 5	0.003		UP TO 3% PY 3%MAGNETITE 328/60 EAST SAMPLES TAKEN
64	645931	5397494		31-JUL-09	423570	GP	< 5	0.003		O/C FELSIC TO EAST/MAFIC TO WEST/ 360/85EAST X-OVER: BUT NO SOURCE OF CONDUCTOR MINOR RUST
73	647176	5395405	447	03-AUG-09	423571	GP	< 5	0.003		O/C, sheared mafic volc with narrow 1 cm q vn's with minor py+/-cpy. Ptygmatic qtz vn. O/c at 50m along 110 brg is mafic mv with felsic dyke.
77	646451	5396691	446	05-AUG-09	423572	GP	< 5	0.003		O.C. MAFIC VOLCANIC, MINOR RUST, PY, 150/90 SAMPLED
85	647136	5399525	437	06-AUG-09	423573	GP	< 5	0.003		SMALL QTS BOUDIN MINOR PY 360/90 SAMPLED
86	647201	5399542	441	06-AUG-09	423574	GP	7	0.007		SHEARED BASALT 160/80 EAST SAMPLED
93	647 68 0	5399330	439	07-AUG-09	423575	GP	13	0.013		O.C. GRANODIORITE CREEK BED ALDER/BIRCH SAMPLED
9 4	647716	5399284	449	07-AUG-09	423576	GP	< 5	0.003		DIABASE MINOR PY SAMPLED
99	647850	5399461	477	07-AUG-09	423577	GP	< 5	0.003		DIABASE CLIFF MAGNETIC MINOR PY SAMPLED
100	647897	5399484	488	07-AUG-09	423578	GP	< 5	0.003		O.C. DIABASE/GABBRO MINOR PY
109	648071	5399467	486	10-AUG-09	423579	GP	< 5	0.003		O.C. MAFIC VOL. TO WEST FELSIC TO EAST 330/90 3% PY
110	648028	5399496	481	10-AUG-09	423580	GP	< 5	0.003		MAFIC VOL. PY GOSSAN SAMPLED

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo%	Description
111	648015	5399503	479	10-AUG-09	423581	GP	< 5	0.003		FESIC & MAFIC VOL. QTS VEINING POSS. SEDS.
116	648215	5400084	482	11 - AUG-09	423582	GP	< 5	0.003		O.C. CLIFF GABBRO/DIABASE MINOR PY SAMPLED
118	648207	5399244	490	11-AUG-09	423583	GP	5	0.005		MAFIC VOL. RUSTY MINOR PY QTS LENSES SAMPLED
119	648215	5399149	490	11 -AUG-09	423584	GP	< 5	0.003		SHEARED VOL. 160/90 QTS ALONG SHEAR
124	646947	5401412	471	12-AUG-09	423585	GP	< 5	0.003		O/C, MAFIC VOL. RUSTY KNOTS PY SAMPLED
8	647954	5399548	493 m	11-AUG-09	423588	BC	< 5	0.003		O/C, Q-f wacke with q phenos, 5 cm cg'd q-f ppy dyke at 155/85E
12	647834	5398959	477 m	11-AUG-09	423589	BC	< 5	0.003		O/C, q-biot wacke, sed. X-cut qtz vns, q-f ppy dykes.
40	647221	5400251	469 m	13-AUG-09	423590	BC	< 5	0.003		O/C, felsic sed with q-f ppy
41	647258	5400248	459 m	13-AUG-09	423591	BC	< 5	0.003		O/C, mafic volc or sed with hblde, plag musc.
43	647272	5400577	463 m	13-AUG-09	423592	BC	< 5	0.003		O/C, f g'd felsic volc, lt gy, siliceous
89	642867	5405354	411 m	22-AUG-09	423593	BC	5	0.005		O/C, fg mafic mv, fsp + amph+/- qtz +/- bio, 164/42E
90	642832	5405332	414 m	22-AUG-09	423594	BC	7	0.007		O/C, 1.3 m ledge, strongly fol'd mafic mv,epidote, py to 5%, fsp + amph +ep
91	642808	5405393	449 m	22-AUG-09	423595	BC	5	0.005		O/C, int my, med gr'd flow, tr py
92	642748	5405382	422 m	22-AUG-09	423596	BC	14	0.014		O/C, amphibolite mv, x-cut dyke 036/85N, v f g'd, hard, sil, specks of py or po. 1m wide, wth's brown
96	642702	5405455	432 m	23-AUG-09	423597	BC	< 5	0.003		O/C, med gr'd massive dark gr-bl non- magn gabbro (peridotite)
99	642732	5405694	415 m	23-AUG-09	423598	BC	7	0.007		O/C, along trend from WPt#90, rusty fol'd mv fol'd mafic mv, f g'd amphibolite with felsic ppy band (fsp phenos) whitish beige, 168/45E, see pics 4&5.

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Мо_ %	Description
102	642934	5405694	414 m	23-AUG-09	423599	BC	< 5	0.003		O/C, int mv, 1% dissem py and rusty fract. Lt gy-gr, m g'd, fol'd.
DH14	645337	5409384		23-Aug-09	423600	DH	< 5	0.003		Mafic volcanic. Fine grained. Foliation at 140/80. Sample of sugary quartz vein taken by Gary Peacock.
133	644952	5408751	414 m	23-AUG-09	423501	GP	>3000	87.8		RUSTY BOULDER UNDER TREE ROOT MINOR PY SAMPLED
134	645613	5409213	434 m	23-AUG-09	423502	GP	39	0.039		SHEARED BASALT / QTS VEIN WITH GOSSAN 325/70WEST
140	645899	5408070		24-AUG-09	423503	GP	< 5	0.003		RUSTY QTS SHEAR IN BANDED BASALT 330/80WEST SAMPLED
143	646003	5408404		24-AUG-09	423504	GP	< 5	0.003		BANDED MAFIC VOL./ PORPH BED .25M WIDE/RUSTY QTS/PY MAGNETITE 310/85W
148	645774	5408212		24-AUG-09	423505	GP	< 5	0.003		BANDED BASALT WITH PORPHORY/QTS BLOW-OUT .75METER COURSE BIOTITE/PY
149	645598	5408030		24-AUG-09	423506	GP	< 5	0.003		RUSTY BOULDER
DH24	647326	5405135	430	31-Aug-09	423507	DH	10400	9.04		20cm QV cutting maf volc. Vein rusty, rexlized, 1% po. Former Noranda 4555
DH25	647326	5405135	430	31-Aug-09	423508	DH	25800	30.4		Wallrk adjacent to QV on hangingwall (W). Weak po
DH40	643721	5402935	428	l-Sep-09	423509	DH	49	0.049		Silicified thinly laminated sed cut by FG granitic material. 10% py in seds. 3% diss py in granite. Rusty o/c exposed by uprooted tree. Likely conductor
143	642979	5408936	407 m	30-AUG-09	423510	BC	9	0.009		Float. Felsic volcanic with 5% diss py.
DH28	647430	5404913	432	31-Aug-09	423511	DH	< 5	0.003		Foliated siliceous CG granodioritic float on edge on trench. 5% diss py
152	645598	5408212	415	26-Aug-09	423512	GP	10	0.01		QV
	645598	5408212	415	26-Aug-09	423513	GP	10	0.01		Sugar Zone, minor breecia with felsic fragments

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo_ %	Description
152	645598	5408212	415	26-Aug-09	423514	GP	8	0.008		Sugar Zone, minor breccia with felsic fragments
154	645654	5408262	424 m	26-AUG-09	423515	GP	< 5	0.003		O.C. FELSIC PORPHORY WITH RUSTY QTS SAMPLED 152/-80W
159	645629	5408350	420 m	26-AUG-09	423516	GP	< 5	0.003		O.C. MAFIC VOL.WITH QTS VEIN SAMPLED
167	643439	5412864	425	8/30/2009	423517	GP	< 5	0.003		167A: O/C: Sheared IF, 344/85W, Highly magnetic. Major gossan w/py, qtz. SAMPLED.
167	643439	5412864	425	8/30/2009	423518	GP	< 5	0.003		167B: Sheared IF with rusty qtz vein. 010/85, hematite stain. SAMPLED.
167	643439	5412864	425	8/30/2009	423519	GP	< 5	0.003		167C: East contact with massive (30%) py with trout skin hue on qtz., possible Cp (smoky qtz). Showing is 6 to 7m wide.
167	643439	5412864	425	8/30/2009	423520	GP	< 5	0.003		167C: East contact with massive (30%) py with trout skin hue on qtz., possible Cp (smoky qtz). Showing is 6 to 7m wide.
187	643625	5411239	386	8/31/2009	423521	GP	< 5	0.003		FLOAT: Rusty float, angular, SAMPLED
132	646946	5404614	476 m	26-AUG-09	423522	BC	< 5	0.003		O/C, small,mafic mv (amphib), narrow rusty qyz vn
134	647013	5404621	468 m	26-AUG-09	423523	BC	< 5	0.003		O/C, mafic flows, pillows, rinds wth reddish-br, flattened. Minor rusty fractures, 0.5 cm qtz vn with tr of py
151	641784	5407759	431 m	30-AUG-09	423524	BC	< 5	0.003		O/C, small ledge, f gr'd mafic flow, fol'd, some rextal'z of hornblende, blades at random orientation.
152	641759	5407782	432 m	30-AUG-09	423525	BC	< 5	0.003		O/C, small, f gr'd mafic flow, dk gr-bl
153	641732	5407783	432 m	30-AUG-09	423526	BC	< 5	0.003		O/C, felsic volc, minor biot, gossanous, boud, qtz veins, 153-a.
153	641732	5407783	432 m	30-AUG-09	423527	BC	< 5	0.003		1530b, qtz vein material.
196	641795	5409099	434 m	01-SEP-09	423528	BC	< 5	0.003		O/C, felsic volc, sample taken
DH47	646944	5405857		2-Sep-09	423529	DH	24400	24.5		QV on north cliff face. Old sample 32529

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo_ %	Description
205	646949	5405922	41 7 m	02-SEP-09	423530	BC	86	0.086		old # is 32532, qtz vein
206	646942	5405927	417 m	02-SEP-09	423531	BC	1280	1.28		206-1, DH, Qtz Vn.
206	646942	5405927	417 m	02-SEP-09	423532	BC	994	0.994		206-2, GF, Qtz Vein in a sil host, 5% py in sil, tr py in qv.
193	641849	5411881	389	9/14/2009	423533	GP	< 5	0.003		O/C: Sheared basalt, 360/85W, minor rust. SAMPLED
1 97	641719	5410028	415	9/14/2009	423534	GP	< 5	0.003		O/C: Sheared volcanic, possibly seds, 190/90. Narrow QV, some rust. SAMPLED
198	641699	5410027	405	9/14/2009	423535	GP	< 5	0.003		O/C: Sheared volc, small cliff, minor rust. SAMPLED
D5A	643053	5413397	418	9-Sep-09	423601	DH	< 5	0.003		Gwke with minor argillite and arenite beds. Bedding I to 10cm thick. Pale to dark grey to brownish grey. Very fine to fine grained, soft to moderately hard, non- magnetic. 3% irregular clear glassy QVs. 3% po, 2% py, mainly as fine to very fine disseminated cubes and blebs. Rare coarse grained py blebs associated with veining.
D5A	643053	5413397	418	9-Sep-09	423602	DH	6	0.006		Thinly bedded greywacke with minor argillite. Bedding <1cm and weakly undulating. Pale to medium greyish green, very fine grained, moderately soft to moderately hard, non-magnetic. 3% py, 2% po, mainly as scattered small cubes and blebs concentrated along mafic beds.

1	}		1	***	ł	i i	!	ţ	Ì	1	Try da	i	Viran	*****	Ì	•
	Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo_ %	Description	1				
	D5A	643053	5413397	418	9-Sep-09	423603	DH	12	0.012		Thinly bedd Bedding <1 undulating < Pale to med very fine to moderately foliation pa sericitic. 3-	cm, often or contort lium grey fine grain hard, non rallel to b -5% py as	laminated red on a mi to brownis ned, soft to -magnetic edding, lo finely dis	, nor scalc. sh grey, . Moderate cally seminated		
	D5A	643053	5413397	418	9-Sep-09	423604	DH	10	0.01		cubes and b Thinly bedd argillite. B and drag-fo Moderate fo occasional s medium great to fine grain py, 1-5%po	led greyw edding <1 Ided on a pliation pasericite al sericite al ey to brow ned, soft,	vacke with lcm, often small scal arallel to b teration. F whish grey, non-magn	minor contorted e. edding wit Pale to very fine etic. 3-5%		
	D5A	643053	5413397	418	9-Sep-09	423605	DH	12	0.012		stringeres c Gwke. Poo Medium gra nedium gra 1-2% py as concentrate	oncentrat orly define ey to gree ained, sof cubes an	ed in selec ed, contort mish grey, t, weakly r d specks, c	ted beds. ed bedding fine to nagnetic. often		

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo_ %	Description
D5A	643053	5413397	418	9-Sep-09	423606	DH	5	0.005		Gwke. Thin bedding, locally undulating and possibly folded. Pale to medium grey, very fine to fine grained, soft, non- magnetic. 1% py and 2% po as specks and small cubes or blebs, mainly concentrated
D5A	643053	5413397	418	9-Sep-09	423607	DH	32	0.032		in chloritic mafic laminations. Thinly but poorly bedded argillite/wacke. Beds weakly undulating. Medium grey, very fine to fine grained, soft to moderately hard, some mafic beds are locally very weakly magnetic. 3% py, 1- 2% po, as scattered cubes and blebs.
D5A	643053	5413397	418	9-Sep-09	423608	DH	5	0.005		Thinly bedded argillite/gwke. Bedding is locally contorted and drag-folded. Medium grey, very fine to fine grained, soft to moderately soft, non-magnetic. 3% py, 3% po as scattered cubes and blebs mainly concentrated along bedding planes.
D5A	643053	5413397	418	9-Sep-09	423609	DH	< 5	0.003		Thinly bedded argillite with minor gwke. Bedding is m-folded and drag-folded on a small scale. Pale to medium grey, very fine grained, modereately soft to hard, non- magnetic. 2% py, 1% po as scattered blebs, mainly concentrated in mafic bcds.
D5B	643053	5413397	418	9-Sep-09	423610	DH	< 5	0.003		Thinly bedded argillite. Bedding up to 1cm thick, graded, locally contorted. Pale to dark grey, very fine to fine grained, non- magnetic, moderately hard. 1% py and 1% po, finely scattered parallel to bedding.

I

ł	a ta sa		i	ļ	ł		- All Andrews)	I	1	ł		5	an a	Î	ŝ
	Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo%	Description	1				
	D5B	643053	5413397	418	9-Sep-09	423611	DH	7	0.007		Graded bed and argillite beds 0.25 - fine to fine moderately locally cont to be more	e. Gwke l 1 cm. Pa grained, 1 hard, nor orted. 1-	beds 1 - 1. le to dark moderately moderately moderately fine di	5cm, arg grey, very soft to . Bedding ss py, tends		
	D5B	643053	5413397	418	9-Sep-09	423612	DH	9	0.009		argillaceous Argillite. F bedding/ban 1cm, moder locally wea diss py cub	G, mediu iding froi rately soft kly magn es. Tr-2%	m thin lam t to modera etic due to 6 scattered	ately hard, po. 1-3% po as blebs		
	D5B	643053	5413397	418	9-Sep-09	423613	DH	10	0.01		and small w Wacke. Mo foliation pla but thinly b grained, sof magnetic. 2 disseminate	ediuim gr anes para edded. V it to mode 3% py an	ey, sericiti llel to bedo Yery fine to erately soft d tr - 1% p	c along ling. Poorly fine , non- o,	,	
	D5B	643053	5413397	418	9-Sep-09	423614	DH	10	0.01		bedding. Banded gw thick. Bedd Pale to dk g hard, non-n concentrate	ke and arg ling local gry, VF-F nagnetic.	g. Bands (ly mildly o G, soft to 1 5% py ter).;5 to 3 cm contorted. noderately ids to be		

ŧ	1	1	1	i	ł	ì			1		1	1	1	4. 1	1
,	P	,	1	i	,	5	,	•		,	,		•	•	

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Мо_ %	Description
D5B	643053	5413397	418	9-Sep-09	423615	DH	13	0.013		Interbedded gwke and arg. Bedding 0.25- 5cm, with wacke beds being thicker. Bedding irregular and locally weakly contorted. Pale to dark grey. Local sericitic wacke beds are pale yellowish grey. Very fine to medium grained, soft to moderately hard, non-magnetic. 3% py
D5B	643053	5413397	418	9-Sep-09	423616	DH	17	0.017		and 2% po as scattered cubes and blebs, concentrated in argillitic bands. Bedded argillite and gwke. Bedding 0.5 to 1.5 cm thick. Pale to dark grey to brownish grey, very fine to fine grained, soft to moderately hard, non-magnetic. 2- 5% py, trace - 2% po, as scattered cubes and blebs concentrated in argilitic beds. Occasional thin (0.5cm) semi-massive
D5B	643053	5413397	418	9-Sep-09	423617	DH	9	0.009		sulphide beds. Banded greywacke and argillite. Bedding 0.5 to 5cm thick, locally folded (PHOTOS). Pale to dark grey to brownish grey, very fine to fine grained, non- magnetic. Foliation parallel to bedding, occasionally sericitic. Sulfides tend to be smeared along foliation planes. Py 3-5%, po-tr, possible trace asp. Scattered and concentrated in mafic, argillitic beds.

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Мо_ %	Description
D5B	643053	5413397	418	9-Sep-09	423618	DH	< 5	0.003		Banded wacke and argillite. Pale to dark grey to brownish grey, banding generally <1cm and weakly contorted. Very fine to fine grained, moderately soft to hard, non- magnetic. Foliation planes locally
D5B	643053	5413397	418	9-Sep-09	423619	DH	< 5	0.003		sericitic. 1-3% fine diss py. Banded argillite with minor gwke. Pale to dark grey to brownish grey. Banding 0.25 - 3cm thick, locally weakly undulating. Very fine to fine grained, moderately soft to hard, non-magnetic. 2-3% py, tr-1% po as scattered cubes and blebs, often
D5B	643053	5413397	418	9-Sep-09	423620	DH	< 5	0.003		concentrated along bedding planes. Bedded argillite and minor greywacke. Argillite beds up to 10cm, gwke beds <1cm. Dark to pale grey to brownish grey, very fine to fine grained, non-magnetic. 2% py and 1% po as scattered cubes and blebs, occasionally concentrated along
D5B	643053	5413397	418	9-Sep-09	423621	DH	< 5	0.003		bedding planes. Mafic volcanic with minor interbedded gwke and argillite. Medium greyish green, fine to very fine grained, soft to moderately soft, non-magnetic. Tr - 5% py, concentrated in seds as scattered cubes and blebs.

Waypoint	utm_e	utm_p	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo%	Description
D19A	645980	5397412	445	9-Sep-09	423622	DH	< 5	0.003		Arenite or sandstone. Pale to medium grey, very fine to fine grained, soft to hard, non-magnetic. Possibly locally re-xllized chert. Thinly bedded, locally undulating. 8% py, 1-2% po, possibly trace asp. Gerencrally occurs as concentrations of cubes and/or blebs along bedding planes. One 0.5 cm bed of semi-massive to
D19A	645980	5397412	445	9-Sep-09	423623	DH	< 5	0.003		massive py which is likely conductive. Sandstone or arenite. Well banded. Banding thin to 1.5 cm, weakly undulating. Local dark, chloritic alteration along selected more mafic beds. Pale to dark grey, very fine to medium grained, soft to hard, non-magnetic. 5% py, 2% po, as tiny to large cubes, blebs, specks, generally
D19A	645980	5397412	445	9-Sep-09	423624	DH	< 5	0.003		concentrated along bedding planes. Thinly bedded impure sst. Pale grey with thin medium brown (rusty) laminations. Fine to medium grained, hard, non- magnetic. 8% py, 2% po, possibly trace asp. As cubes and blebs concentrated along bedding planes.

									,				4	,	
			-		1	ź	í		(•	•	1	3	1	1
•	1	1	1	1	1	i	1)	J	1	1	ş	1	1	; i

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo%	Description
D19A	645980	5397412	445	9-Sep-09	423625	DH	< 5	0.003		Impure sst as described above, with occasional mafic tuff or gwke beds. Description as above. Mafic tuff beds are fine grained, soft, non-magnetic. 3% py, 1% po as small scattered cubes, blebs,
D19B	645980	5397412	445	9-Sep-09	423626	DH	< 5	0.003		weakly concentrated along bedding planes. Weakly bedded impure sandstone. Pale to medium grey, very fine to fine grained, moderately hard to hard, locally weakly magnetic. 10% py, 3% po as cubes and blcbs, scattered and concentrated along bedding planes. Occasional thin semi-
D19B	645980	5397412	445	9-Sep-09	423627	DH	< 5	0.003		massive concentrations. Thinly bedded impure sandstone as above, cut by some clear, glassy re-crystallized QVs. Rock and sulfide description is as per 423626. QV contains 3-5% py as fine to coarse blebs in fractures.
D19C	645980	5397412	445	9-Sep-09	423628	DH	< 5	0.003		Bedded impure quartzite / sandstone (as above), interbedded with 15% thin mafic beds. Beds are undulating. Pale to dark grey to greenish grey, very fine to fine grained, soft to hard, some beds are locally weakly magnetic (possibly magnetite-rich). 5% py, 3% po as scattered cubes and blebs,

t

• E	;	ì	3	1	1	})	ļ	Ì	Ì	al.				į
Waypoint	utm_e	utm_a	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Мо%	Description	1				
D19D	645980	5397412	445	9-Sep-09	423629	DH	< 5	0.003	0.01 8	Thinly bedd Occasianal as before. I with sulphid Sample is c medium gra equigranula small scatte	blebby cl Descriptic des. 7% p ut by a 15 ained, gra ur, with 5% cred cubes	ear re-crys on as befor by and 3% of cm pale g nodiorite of % py and 3	stalized QV re along po. grey, fine to lyke, 3% moly as	's D	
D19E	645980	5397412	445	9-Sep-09	423630	DH	< 5	0.003	0.01 4	respectively Thinly bedd above. Bed py as cubes along beddi Phlog pegn moly flakes bedding pla	led impur lding is w and bleb ing planes natitic dyk . Mainly	eakly cont s mainly c . Minor (te material	torted. 3% oncentrate Qtz-Fsp-Gt- l with 3%	1	
D19E	645980	5397412	445	9-Sep-09	423631	DH	< 5	0.003	0.02 2	Thinly bedd above. Bed py, 3% mo. minor cube planes. Mo scattered in	led impur lding wea Py as sc s concent as small	kly undula attered ble rated alon to large fl	ating 3% bs and g bedding		

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo_ %	Description
D19F	645980	5397412	445	9-Sep-09	423632	DH	< 5	0.003		Impure qtzite. Beds up to 1.5 cm, separated by thin sulfide-rich horizons. Pale grey, very fine to fine grained, hard, locally very weakly magnetic due to po content. 8% po, 7% py, as scattered blebs
D19F	645980	5397412	445	9-Sep-09	423633	DH	< 5	0.003		and cubes, but especially concentrated in thin bands parallel to bedding. Bedded impure quartzite. Bedding is locally contorted. Locally bleached. Pale to medium grey, very fine to fine grained, hard, locally weakly magnetic due to po content. 6% py, 6% po as cubes and blebs scattered throughout and also concentrated
D19F	645980	5397412	445	9-Sep-09	423634	DH	< 5	0.003		along bedding planes. Thinly bedded impure quartzite, as described above. 12 -15% sulfides as described above. Bedding weakly undulating. Cut by dyke of fine to medium grained, pale grey granodiorite with 3%
D19G	645980	5397412	445	9-Sep-09	423635	DH	< 5	0.003		fine disseminated py. Bedded impure quartzite. Pale to medium grey to greenish grey, very fine to fine grained, hard, non-magnetic. Possible minor local epitote alteration. 4% py, 3% po, as cubes and blebs, largely concentrated along bedding planes.

Ì

1

ļ

Bedding is locally contorted.

																,
1	;	1)	1	40 miles	ł	ţ	1)	1	}	1	1	ļ	ł	ł

Waypoint	utm_e	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo%	Description
D19G	645980	5397412	445	9-Sep-09	423636	DH	< 5	0.003		Thinly bedded impure quartzite. Pale grey to brownish grey, fine to medium grained, hard, non-magnetic. 5% py, 5% po as cubes and blebs and small nodules scattered throughout and concentrated in
D19G	645980	5397412	445	9-Sep-09	423637	DH	< 5	0.003		thin rusty beds. Thinly laminated matic tuff. Recrystallized. Medium greyish green, fine to medium grained, soft, non- magnetic. 1% py, 1% po, as finely disseminated cubes and small blebs.
D19G	645980	5397412	445	9-Sep-09	423638	DH	< 5	0.003		Mafic tuff, as described above. Weakly undulating beds/bands. 1% py, 1% po as above.
D19G	645980	5397412	445	9-Sep-09	423639	DH	< 5	0.003		Mafic tuff at east end of sample. Drag- folded and boudinaged, banded impure quartzite. Pale to medium grey to brownish grey, fine to medium grained, hard to moderately soft, non-magnetic. Photos taken of drag-folding. 5% py, 2% po, as cubes and blebs (fine to coarse grained) mainly concentrated along bedding planes.
D19G	645980	5397412	445	9-Sep-09	423640	DH	9	0.009		Thinly bedded impure quartzite. Bedding wildly undulating. Pale grey to yellowish greenish grey, fine to very fine grained, hard, locally strongly magnetic due to po and occasional thin magnetite beds. 7%

and occasional thin magnetite beds. 7% py, 8% po as cubes and blebs concentrated along bedding planes.

1))	}	ţ.	1	ł	1	J	Ì	1	1	1	- Handler	1	

Waypoint	utm_c	utm_n	El. (m)	Date	Samp. No	Sampler	Au ppb	Au gpt	Mo%	Description
D19G	645980	5397412	445	9-Sep-09	423641	DH	8	0.008		Arenite/impure quartzite. Pale greenish yellowish brownish grey, very fine to fine grained, hard, non-magnetic. Locally altered and bleached. Bedding is thin, sometimes laminated and undulating. Locally boudinaged. Local epidote alteration. 5% py, 3% po as cubes and blebs scattered throughout and concentrated along bedding planes.
D19G	645980	5397412	445	9-Sep-09	423642	DH	< 5	0.003		Altered, carbonatized arenite. Pale brown, very fine to fine grained, moderately soft to hard, non-magnetic. Bedding poorly defined, undulating. Trace to 1% py as scattered blebs.
D19G	645980	5397412	445	9-Sep-09	423643	DH	< 5	0.003		Arenite, as per description above. 2% po, 1% py, as scatterd blebs and cubes.
D19G	645980	5397412	445	9-Sep-09	423644	DH	< 5	0.003		Impure quartzite/arenite. Pale grey, very fine to fine grained, hard, non-magnetic. Occasional 1-2 cm mafic "muddy" beds. 1% py scattered throughout. In "muddy" beds 5% py and 5% po as coarse blebs.

APPENDIX E

ASSAY CERTIFICATES

Innovative Technologies

Date Submitted:05-Aug-09Invoice No.:A09-4178Invoice Date:13-Aug-09Your Reference:Sugar Zone

Corona Gold Corporation 76 Crown St. Thunder Bay ON P7B 3J9 Canada

ATTN: Sharpstone Geoservices Ltd. D.S. Hu

CERTIFICATE OF ANALYSIS

20 Rock samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-50-Tbay Au - Fire Assay AA

REPORT **A09-4178**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com

		Activation Laboratories Ltd.	Report:	A09-4178	
Analyte Symbol	Au				
Unit Symbol	ррр				
Detection Limit	5				
Analysis Method	FA-AA				
123551	6				
423552	< 5				
123553	< 5				
423554	< 5				
423555	< 5				
423556	< 5				
423557	< 5				
423558	< 5				
423559	<5				
423560	<5				
123561	< 5				
423562	< 5				
123563	< 5				
123564	< 5				
123565	< 5				
123566	< 5				
23567	< 5				
23568	×5				
23569	< 5				
23570	< 5				

			Ac	tivation Lab	oratories	Ltd.	Report:	A09-4 17	78		
Quality Contro	1						-			 	
Analyte Symbol	Au										
Unit Symbol	ppb										
Detection Limit	5										
Analysis Method	FA-AA										
CDN-GS-7A Meas	6630										
CDN-GS-7A Cert	7200.00										
423560 Orig	< 5										
423560 Dup	< 5										

Innovative Technologies

 Date Submitted:
 17-Aug-09

 Invoice No.:
 A09-4460

 Invoice Date:
 25-Aug-09

 Your Reference:
 Sugar Zone

Corona Gold Corporation 372 Bay Street - Suite 800 Toronto ON M5H 2W9 Canada

ATTN: Orest Zajcew

CERTIFICATE OF ANALYSIS

Code 1A2-50-Tbay Au - Fire Assay AA

22 Rock samples were submitted for analysis.

The following analytical package was requested:

REPORT A09-4460

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhili Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actiabsint.com ACTLABS GROUP WEBSITE http://www.actiabsint.com

		Activation Laboratories Ltd. Report: A09-4460	
Analyte Symbol	Au		
Unit Symbol	ppb		
Detection Limit	5		
Analysis Method	FA-AA		
423571	< 5		
423572	< 5		
423573	< 5		
423574	7		
423575	13		
423576	< 5		
423577	< 5		
423578	<5		
423579	< 5		
423580	≺5		
423581	< 5		
423582	< 5		
423583	5		
423584	< 5		
423585	< 5		
423586	< 5		
423587	< 5		
423588	< 5		
423589	< 5		
423590	< 5		
423591	< 5		
423592	< 5		

.

,

.

		Acti	vation Laboratories Ltd.	Report:	A09-4460
Quality Control					
Analyte Symbol	AU				
Unit Symbol	рþ				
Detection Limit	5				
Analysis Method	FA-AA				
CDN-GS-P8 Meas	843				
CON-GS-P8 Cert	780.00				
423580 Orig	< 5				
423580 Dup	< 5				
423590 Orig	< 6				
423590 Dup	< 5				

Innovative Technologies

Date Submitted:31-Aug-09Invoice No.:A09-4787 (i)Invoice Date:09-Sep-09Your Reference:Sugar Zone

Corona Gold Corporation 76 Crown St. Thunder Bay ON P7B 3J9 Canada

ATTN: Sharpstone Geoservices Ltd. D.S. Hu

CERTIFICATE OF ANALYSIS

14 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT A09-4787 (i)

Code 1A2-50-Tbay Au - Fire Assay AA Code 1A2-Tbay Au - Fire Assay AA Code 1A3-Tbay Au - Fire Assay Gravimetric

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme, Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actiabsint.com ACTLABS GROUP WEBSITE http://www.actiabsint.com

			Activation Laboratories Ltd.	Report:	A09-4787 (i) rev 2	
Analyte Symbol	Au	Ац				
Unit Symbol	dad	g/tonne				
Detection Limit	5	0.03				
Analysis Method	FA-AA	FA-GRA				
423593	5					
423594	7					
423595	5					
423596	14					
423597	< 5					
423598	7					
423599	< 5					
423600	≺ 5					
423501	> 3000	87.8				
423502	39					
423503	< 5					
423504	< 5					
423505	< 5					
423506	< 5					

					,	1		č.			1					ļ	•	1
ſ	1		;	4	<u>,</u>	à	ţ	¥	1		1	1	5	i		1	1	
;	,	•)	5	,	,	3	,	1	3		1	j j	÷	1	,	•	3

Quality Control		
- nalyte Symbol	Au	Au
nit Symbol	6bp	g/tonne
Detection Limit	5	0.03
Analysis Nethod	FA-AA	FA-GRA
DN-GS-7A Meas		7,74
DN-GS-7A Cert		7.20
DN-GS-P8 Meas	808	
DN-GS-P8 Cent	780.00	
23501 Orig		92.2
23501 Dup		83.3
23502 Orig	37	
23502 Dup	42	
Method Blank Method	< 5	
Blank		

Activation Laboratories Ltd. Report: A09-4787 (i) rev 2

Innovative Technologies

Date Submitted:08-Sep-09Invoice No.:A09-4976Invoice Date:22-Sep-09Your Reference:Sugar Zone

Corona Gold Corporation 76 Crown St. Thunder Bay ON P7B 3J9 Canada

ATTN: Sharpstone Geoservices Ltd. D.S. Hu

CERTIFICATE OF ANALYSIS

26 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT A09-4976

Code 1A2-50-Tbay Au - Fire Assay AA Code 1A2-Tbay Au - Fire Assay AA Code 1A3-Tbay Au - Fire Assay Gravimetric

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1335 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0,03
Analysis Method	FA-AA	FA-GRA
423507	10400	9.04
423508	25800	30.4
423509	49	
23510	9	
23511	< 5	
123512	10	
23513	10	
423514	8	
423515	< 5	
123516	< 5	
123517	< 5	
23518	< 5	
23519	< 5	
23520	< 5	
23521	< 5	
123522	< 5	
23523	< 5	
23524	< 5	
23525	< 5	
23526	< 5	
23527	< 5	
23528	< 5	
23529	24400	24,5
23530	86	
23531	1260	
23532	994	

			Activation Laboratories Ltd. Report: A09-4976	
Quality Control				
Analyte Symbol	Au	Au		
Unit Symbol	ppb	g/tonne		
Detection Limit	5	0.03		
Analysis Method	FA-AA	FA-GRA		
CDN-GS-1D Meas	1080			
CON-GS-1D Cert	1050.00			
CDN-GS-7A Meas		7.16		
CDN-GS-7A Cert		7.20		
CDN-GS-7A Meas		7,56		
CDN-GS-7A Cert		7.20		
CDN-GS-P8 Meas	870			
CDN-GS-P8 Cert	780.00			
CDN-GS-P8 Meas	850			
CDN-GS-P8 Cert	780.00			
423507 Orig		8.82		
423507 Dup		9.27		
423508 Orig		32.8		
423508 Dup		28.0		
\$23516 Orig	< 5			
123516 Dup	< 5			
423526 Orig	< 5			
123526 Dup	< 5			
123529 Orig		25.3		
23529 Dup		23.6		
23530 Orig	111			
23530 Dup	61			
123532 Orig	960			
423532 Dup	1030			
Nethod Blank Method Blank	< 5			
Nethod Blank Method Slank	< 5			

Innovative Technologies

Date Submitted:21-Sep-09Invoice No.:A09-5275Invoice Date:30-Sep-09Your Reference:Sugar Zone

Corona Gold Corporation 76 Crown St. Thunder Bay ON P7B 3J9 Canada

ATTN: Sharpstone Geoservices Ltd. D.S. Hu

CERTIFICATE OF ANALYSIS

47 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT A09-5275

Code 1A2-50-Tbay Au - Fire Assay AA Code 8-4 Acid-Tbay Total Digestion Code 8-4 Acid Total Digestion Assays

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sanchill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actiabsint.com ACTLABS GROUP WEBSITE http://www.actiabsint.com

			Activation Laboratories Ltd	. Report:	A09-5275	
Analyte Symbol	Au	Мо				
Unit Symbol	ppb	%				
Detection Limit	5	0.003				
Analysis Method	FA-AA ICP	-OES				
423601	< 5		•			
423602	6					
423603	12					
423604	10					
423605	12					
423606	5					
423607	32					
423608	5					
123609	< 5					
123610	< 5					
123611	7					
123612	9					
423613	10					
423614	10					
123615	13					
23616	17					
23617	9					
23618	< 5					
23619	< 5					
23620	< 5					
23621	< 5					
23622 23623	< 5 < 5					
23624	<5					
23625	< 5					
23626	< 5					
23627	< 5					
23628	< 5					
23629		.018				
23630		.014				
23631		.022				
23532	< 5					
23633	< 5					
23634	< 5					
23635	< 5					
23636	< 5					
23637	< 5					
23638	< 5					
23639	< 5					
23640	9					
23641	8					
23642	< 5					
23643	< 5					
23644	< 5					
23533	< 5					
3534	< 5					
3535	< 5					

Quality Control		
Analyte Symbol	A⊔	Мо
Unit Symbol	ppb	%
Detection Limit	5	0.003
Analysis Method	FA-AA	ICP-OES
CDN-GS-1D Meas	1200	
CDN-GS-1D Cert	1050.00	
CDN-GS-P8 Meas	642	
CDN-GS-P8 Cart	780.00	
CDN-GS-P8 Meas	621	
CDN-GS-P8 Cert	780.00	
23610 Orig	< 5	
23610 Dup	< 5	
123620 Orlg	< 5	
123620 Dup	< 5	
123630 Orig	< 5	
423630 Split	< 5	
123630 Orig	< 5	
123630 Dup	< 5	
123533 Orig	< 5	
423533 Dup	< 5	
Method Blank Method Blank	< 5	
Melhod Blank Melhod Blank	< 5	
Method Blank Method Slank	< 5	
Method Blank Method Blank		0.003