

Operations Report for TRUE CLAIM EXPLORATION INC.

Gradient-Magnetic, Radiometric and XDS VLF-EM Survey SCADDING TOWNSHIP PROPERTY Sudbury, Ontario

June 7, 2010

Report #: B-313

Prepared by: Charles Barrie, Managing Partner **Terraquest Ltd.**

Table of Contents

1. INT	FRODUCTION	4
1.1.	EXECUTIVE SUMMARY	4
1.2.	SURVEY LOCATION	5
2. SUI	RVEY SPECIFICATIONS	6
2.1.	LINE SPECIFICATIONS	
2.2.	NAVIGATION SPECIFICATIONS	
2.3.	FLIGHT PLAN	
2.4.	TOLERANCES - REFLIGHT	
<i>1</i> .	Traverse Line Interval	
2. 3.	Terrain Clearance:	
3. 1 .	GPS Data:	
5.	Radio Transmission:	
<i>6</i> .	Sample Density:	
2.5.	NAVIGATION AND RECOVERY	11
3. AIR	RBORNE GEOPHYSICAL EQUIPMENT	12
3.1.	EQUIPMENT SUMMARY	12
3.2.	SURVEY AIRCRAFT	
1.	Aircraft Specifications	13
2.	Aircraft Modifications	
3.3.	SURVEY EQUIPMENT AND SPECIFICATIONS:	
1.	Data Acquisition System	
2.	Magnetics:	
3.	Compensation Sensor	
4.	XDS VLF-EM System	
5.	Spectrometer System	
6.	Radar Altimeter	
<i>7</i> .	Barometric Altimeter	
8. 9.	Navigation System	
9. 10.	GPS Differential Receiver	
4. BAS	SE STATION EQUIPMENT	18
4.1.	BASE STATION MAGNETOMETER / GPS RECEIVER	18
5. TES	STS AND CALIBRATIONS	19
5.1.	MAGNETIC FIGURE OF MERIT	19
5.2.	RADAR ALTIMETER CALIBRATION	
5.3.	RADIOMETRIC SAMPLE CHECKS	
5.4.	RADIOMETRIC SENSITIVITY FACTORS	
5.5.	RADIOMETRIC ALTITUDE ATTENUATION	
5.6	RADIOMETRIC COMPTON COEFFICIENTS	

Operations Report for TRUE CLAIM EXPLORATION INC. Gradient-Magnetic, Radiometric and XDS VLF-EM Survey; SCADDING TOWNSHIP PROPERTY, Sudbury, ON

6. LC	OGISTICS	20
6.1.	PERSONNEL	20
6.2.	FIELD REPORTING	20
6.3.	BASE OF OPERATIONS	20
6.4.	ACCOMMODATION	20
7. D A	ATA PROCESSING	21
7.1.	DATA QUALITY CONTROL & PRELIMINARY PROCESSING	21
7.2.	FINAL MAGNETIC DATA PROCESSING.	
7.3.	FINAL ELECTROMAGNETC DATA PROCESSING	
7.4.	FINAL RADIOMETRIC DATA PROCESSING	24
7.5.	LIST OF FINAL PRODUCTS	29
8. SU	MMARY	30
9. AP	PPENDICES	31
9.1.	APPENDIX I - CERTIFICATE OF QUALIFICATION	31
9.2.	APPENDIX II – DAILY LOG	
9.3.	APPENDIX III- FIGURE OF MERIT	33
9.4.	APPENDIX IV - RADAR ALTIMETER CALIBRATION	
9.5.	APPENDIX V – RADIOMETRIC ALTITUDE ATTENUATION	
9.6.	APPENDIX VI – RADIOMETRIC COSMIC CALIBRATION	
9.7.	APPENDIX VII – PAD TESTS: COMPTON COEFFICIENTS	
9.8.	APPENDIX VIII – SENSITIVITIES BRECKENRIDGE	41
7.0,	APPENDIX VIII – SENSITI VITTES BRECKENRIDGE	

1. Introduction

1.1. Executive Summary

This report describes the specifications and parameters of an airborne geophysical survey carried out for:

TRUE CLAIM EXPLORATION INC.

96 Hagerman Cres., St. Thomas, ON Canada N5R 6K3

Attention: Mr. John Carter, President

Telephone: 519-851-9202 Email: cartera@sympatico.ca

The survey was performed by:

Terraquest Ltd.,

2 - 2800 John Street, Markham ON, Canada L3R 0E2

Phone: 905-477-2800 ext. 22 Email: hb@terraquest.ca

The purpose of the survey of this type is to collect geophysical data that can be used to interpret the subsurface geology for purposes of offshore exploration.

To obtain this data, the area was systematically traversed along parallel flight lines by aircraft, carrying geophysical sensors and recording equipment. The lines are spaced and oriented to intersect the geology and structure so as to provide optimum contour patterns of the geophysical data.

1.2. Survey Location

The survey is located in northern Ontario, approximately 30 kilometres northeast of Sudbury, immediately southeast of Lake Wanapitei. It covers primarily Scadding, Street and Davis Townships and to a minor degree extends slightly into Sudbury Regional Municipality and Loughrin Township. The survey area is accessible by an all season road leading north from Highway #17, the Trans Canada Highway, and numerous smaller roads throughout the survey area. The Canadian National Railway passes east-west through the southern part of the survey area. The survey outline is irregular in shape with 43 corners; the centre coordinates are approximately 46 degrees 39 minutes north and 80 degrees 31 minutes west.

2. SURVEY SPECIFICATIONS

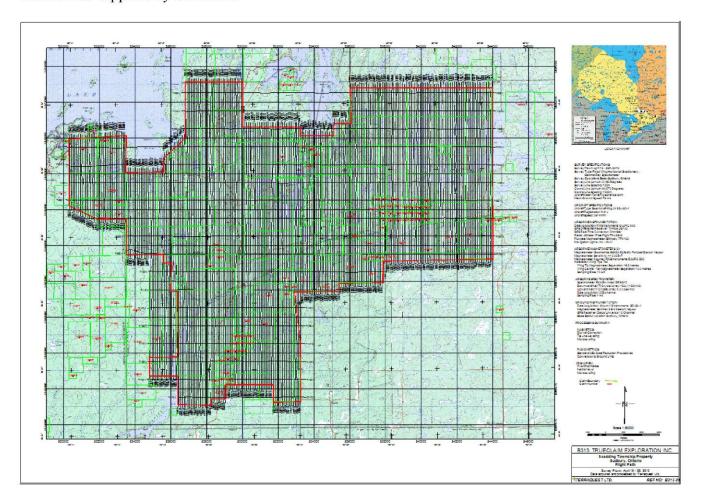
2.1. LINE SPECIFICATIONS

Parameter	Specification	Instrument Precision
Mean Aircraft Speed	78.0 m/sec 281 km/hr	
Sampling Interval	7-8m (10Hz)	
Aircraft MTC	80 metres	+/- 5m
Flight-line Interval	100 metres	+/- 3m
Flight-line Direction	000/180 degrees	
Control-line Interval	1000 metres	+/- 3m
Control-line Direction	090/270 degrees	

Lines Type	Number of Lines	Kilometres Contract	Kilometres Flown
Traverse Lines	237	2,632.1 km	
Tie Lines	18	287.3 km	
Total		2,919.4 km	2,943.9 km

2.2. NAVIGATION SPECIFICATIONS

The client provided poly files of the survey outlines. The following file shows the navigation parameters including the survey corner coordinates (in WGS84 projection zone 17), line spacing, line direction, master line and other navigational parameters.


0	b313 l				
1	U 279				
2	526379.0	5155122.0	AREA	CORNER	1
2	526390.0	5156710.0	AREA	CORNER	2
2	524790.0	5156710.0	AREA	CORNER	3
2	524790.0	5157777.0	AREA	CORNER	4
2	526390.0	5157790.0	AREA	CORNER	5
2	526360.0	5161465.0	AREA	CORNER	6
2	526000.0	5161465.0	AREA	CORNER	7
2	526040.0	5163040.0	AREA	CORNER	8
2	525580.0	5163040.0	AREA	CORNER	9
2	525580.0	5163514.0	AREA	CORNER	10
2	523536.0	5163500.0	AREA	CORNER	11
2	523513.0	5165480.0	AREA	CORNER	12
2	521880.0	5165480.0	AREA	CORNER	13
2	520307.0	5166234.0	AREA	CORNER	14
2	520300.0	5169980.0	AREA	CORNER	15
2	523490.0	5170150.0	AREA	CORNER	16
2	523480.0	5168100.0		CORNER	17
2	525580.0	5168120.0	AREA	CORNER	18
2	525580.0	5168940.0		CORNER	19
2	526810.0	5170005.0		CORNER	20
2	526810.0	5173155.0		CORNER	21
2	530019.0	5173155.0		CORNER	
2	530019.0	5170636.0	AREA	CORNER	23
2	533213.0	5170631.0		CORNER	24
2	533230.0	5170167.0		CORNER	25
2	535100.0	5170167.0	AREA	CORNER	
2	535100.0	5170820.0		CORNER	27
2	536040.0	5170820.0		CORNER	
2	536026.0	5172820.0		CORNER	
2	543948.0	5172820.0		CORNER	30
2	543989.0	5163270.0		CORNER	31
2	537858.0	5163148.0		CORNER	32
2	537858.0	5161935.0		CORNER	
2	535414.0	5161919.0		CORNER	34
2	535420.0	5161460.0		CORNER	35
2	532890.0	5161436.0		CORNER	36
2	533230.0	5158670.0		CORNER	37
2	533250.0	5155280.0		CORNER	38
2	531740.0	5155260.0		CORNER	
2	531740.0	5156240.0		CORNER	40
2	529060.0	5156240.0	AREA	CORNER	41

Operations Report for TRUE CLAIM EXPLORATION INC. Gradient-Magnetic, Radiometric and XDS VLF-EM Survey; SCADDING TOWNSHIP PROPERTY, Sudbury, ON

2	529065.0	515544	5.0		AREA CORNER 42
2	528275.0	515544	5.0		AREA CORNER 43
2	528260.0	515512	0.0		AREA CORNER 44
3	526379.0	515512	22.0	V	WAYPOINTS 1
4	23	7			NUMBER OF LINES
5	100.				SPACING, m.
6	543945	5172819			MASTER LINE BL
7	543952	5172534			MASTER LINE TL
8	7	5			MAX CROSS TRACK, m.
9	0	0 0			DELTA X/Y/Z
10		2			LOG FPR EVERY 2 SECS
11	0.99960000	00	0.0		0.0 KO, X/Y SHIFT
14	20	0			LINES EXTENDED BEYOND AREA
	1				FIRST LINE NUMBER
17	543945	5172819		180.0	0 MASTER POINT, HEADING
20	WGS-84	6378137	.0	298	.257223563 22 ELLIPSOID
21	0				NO EQUATORIAL CROSSING
30	20	9600	N	1 8	RS-232 PORT 2 INCOMING FORMAT
31	20	9600	N	1 8	RS-232 PORT 1 OUTGOING FORMAT
38	0				METRIC SYSTEM
39	5				RACE TRACK
41	0.00				SYSTEM LAG, Sec.
80	0.00				PLANNED ALTITUDE, units
83	0				GPS ALTITUDE FOR VERTICAL BAR
85	50				MAX VERTICAL BAR SCALE
102	? UTM				UTM X/Y SCALE

2.3. FLIGHT PLAN

The following flight plan is superimposed over the available topographic map and claim numbers as supplied by the client.

2.4. TOLERANCES - REFLIGHT

1. Traverse Line Interval

Re-flights would take place if the flight line separation of the final corrected flight path is greater than 25 metres from the intended flight path over a distance greater than 1 kilometre.

2. Terrain Clearance:

The aircraft mean terrain clearance was smoothly maintained at 80 metres MTC in a drape mode using a computer generated flight surface based on the aircraft climb and descent rates and available digital topographic data. Normally re-flights are done if the final differentially corrected altitude deviated from the specified flight altitude by +/-15m over a distance of 3 kilometres or more if, in the pilot's opinion, it was safe to do so.

3. Diurnal Variation:

Diurnal activity during the survey was limited to 10 nT deviation from a 5 minute chord.

4. GPS Data:

GPS data included at least four satellites for accurate navigation and flight path recovery. There were no significant gaps in any of the digital data including GPS and magnetic data.

5. Radio Transmission:

The pilot makes no radio transmission that interferes with the magnetic response.

6. Sample Density:

A reflight is required if the sample density along one or more of the survey lines exceeds 10 metres over a cumulative total of 1,000 metres for the magnetic survey.

2.5. NAVIGATION AND RECOVERY

The satellite navigation system was used to ferry to the survey sites and to survey along each line. The survey outline was supplied by the client and was used to establish the survey boundaries and the flight lines.

A computer generated flight surface was created from the available digital topographic data using the climb and descent rate of the specific aircraft as criteria to confine the altitude of the aircraft. The purpose of this technique is to ensure that the altitude of the aircraft is smooth and consistent over the entire survey area and especially that the differences in altitudes of the traverse and control lines at their intersections are minimized.

The flight path guidance accuracy is variable depending upon the number and condition (health) of the satellites employed. The accuracy was for the most part better than 10 metres. Real-time GPS correction service provided by Omnistar for North America improves the accuracy to less than 3 metres.

AIRBORNE GEOPHYSICAL EQUIPMENT 3.

The primary airborne geophysical equipment includes three high sensitivity cesium vapour magnetometers located in the tail and two wing tip pods, a proprietary VLF-EM system and a Spectrometer system. Ancillary support equipment includes a tri-axial fluxgate magnetometer, digital camera, CD recorder, radar altimeter, barometric altimeter, GPS receiver with a real-time correction service, and a navigation system. The navigation system comprises a left/right indicator for the pilot and a screen showing the survey area, planned flight lines, and the real time flight path. All data were collected and stored by the data acquisition system. The following provides summary and detailed equipment specifications:

3.1. EQUIPMENT SUMMARY

Aircraft	King Air 90
Equipment:	
Magnetometers (3)	Geometrics G822A Cesium Vapour
Counter & DAS	RMS DAARC500
VLF-EM System	Terraquest proprietary XDS
Spectrometer System	Pico Envirotec GRS510
3-axis Magnetometer	Billingsley Magnetics TFM100-LN
GPS Receiver	Trimble AG132
Radar Altimeter	Free Flight TRA 3500
Barometric Altimeter	Sensym Model LX18001AN
Navigation	AgNav Inc. P151 with real time GPS correction
H-1	
Magnetic Specifications:	
Mag Output Sample Rate	10 Hz
4 th difference noise envelope	0.10 from tail stinger
FOM index (Tail)	<1.5 nT
Sensitivity	0.001 nT

3.2. SURVEY AIRCRAFT

Stinger and Wing Tip Pod Equipped King Air 90

The Beech King Air 90 is an ideal platform for carrying out an airborne geophysical survey in these demanding environmental conditions. It is IFR equipped with twin PT6-20 turbines that will ensure reliability at both high ferry speed and slow survey speed. It is equipped with the long-range tanks capable of carrying approximately six hours of fuel.

1. Aircraft Specifications

. Anciare opecinications	
Manufacturer	Beechcraft
Model	King Air 90
Registration	N41J
Ownership	Dynamic Aviation.
Range	5.4 hours / 1100 n miles
Cruise Speed	200 Knots, 370 Km/hr
Survey Speed	288 Km/hr
Climb	1,220 ft/min
Climb sustained	~ 500 ft/min
Fuel	Jet A with cold weather additive
Fuel Consumption	60 us gal/hr 227 litres/hr
Oil Consumption	3 liter/hr

2. Aircraft Modifications

The aircraft has three seats to accommodate the pilot, co-pilot and operator, the rest have been removed. It is equipped with long-range tanks, heavy-duty tires, cargo door and full avionics.

The aircraft has been extensively modified to support a tail stinger. Considerable effort has been made to remove all ferruginous materials near the sensors and to ensure that the aircraft electrical system does not create any noise.

3.3. Survey Equipment and Specifications:

1. Data Acquisition System

	C 12 1 4 1 4 1 C 2 1 3 C 2 1 3 C 2 1
DAS & Compensation	Combined Analogue, Serial, Magnetic Processer and
DAS & Compensation	Compensation
Model	DAARC 500
Manufacturer	RMS Instruments
Operating System	QNX 6.3 or greater
Time	104 MHz temperature compensated crystal clock
Front End Magnetic	Resolution 0.32pT; system noise <0.1pT; sample rate 160,
Processing	640, 800m or 1280 Hz
Front End Eluvanta	I/F module; oversampling, self calibrating 16 bit A/D
Front End - Fluxgate	converter
Compensation	Improvement Ratio (total field) 10-20 typical
Input Serial	8 isolated RS232 channels; ASCII & Binary formats
Input Analog	16 bit, self calibrating A/D conv.
Input Events	Four latched event inputs
Raw Data Logging	At front end sampling rate, 1 MB buffer
Output/Decording	Rate 10 or 20 Hz; Serial up to 115.2 kbps; Recording media 1
Output/Recording	GB Flash; 80 GB Hard Drive; Flash disk via USB; Display
Front Panel Indicators	8 LEDs for mag input; 2 LEDs for Front End status

2. Magnetics:

Three high resolution cesium vapour magnetometers, mounted in a tail stinger and two wing tip pods. The magnetic system is fully compensated automatically in real time for aircraft manoeuvre noise

Sensor Type	Cesium Vapour
Model	G822A
Manufacturer	Geometrics Ltd.
Resolution	0.001 nT counting at 0.1 per second
Sensitivity	+/- 0.005 nT
Dynamic Range	20,000 to 100,000 nT
Fourth Difference	0.02 nT
Recorded Sample Rate	0.1 seconds
Noise Envelope	0.10 nT (Tail Mag)

3. Compensation Sensor

The fluxgate tri-axial magnetometer (which is used for compensation of aircraft motion) is mounted in midsection of the tail stinger and monitors manoeuvre and magnetic interference.

Sensor Type	Fluxgate
Model	TFM100-LN or equivalent
Manufacturer	Billingsley Magnetics
Description	Low noise miniature triaxial fluxgate magnetometer
Axial Alignment	> Orthogonality > +/- 0.5 degree
Accuracy	< +/- 0.75% of full scale (0.5% typical)
Field Measurement	+/- 100,000 nanotesla
Linearity	<+/- 0.0035% of full scale
Sensitivity	100 microvolt/nanotesla
Noise	< 14 picotesla RMS/–Hz @ 1 Hz

4. XDS VLF-EM System

The XDS VLF-EM System is a recently developed proprietary VLF system by Terraquest Ltd. It uses 3 orthogonal coils mounted in the pod of the tail stinger, and coupled with a receiver-console, tuned to a half power bandwidth of 22-26 kHz which includes both Cutler Maine NAA frequency 24 kHz and Seattle, WA NLK frequency 24.8 kHz plus any other natural or man-made signals in that range. Recorded parameters are the separate X, Y and Z coils.

VLF - EM		
Model	XDS	
Manufacturer	Terraquest Ltd.	
Primary Source Magnetic field component radiated from government V radio transmitters		
Parameters Measured X, Y and Z components, absolute field		
Frequency Range Half power 22.0 - 26.0 kHz		
Gain	Gain Constant gain setting	
Filtering	No filtering	

5. Spectrometer System

Туре	Digital Gamma Ray Spectrometer
Model	GRS 510
Manufacturer	Pico Envirotec Inc.
Crystals	NaI
Downward Volume	16.8 litres (1024 cu in)

Upward Volume	4.2 litres (256 cu in)
Peak Detection	Digital peak detection
Software	Automatic tuning, system tracking, detector calibration
	Real time linearization and gain stabilization
Dead Time	Insignificant for counts less than 20,000 cps/detector
Collected Spectrum	256 channels

6. Radar Altimeter

Type	Radar						
Model	3500						
Manufacturer	Free Flight						
Accuracy	Plus or Minus 5% at 50 to 500 feet						
Radar Output	Digital for pilot and data acquisition						

7. Barometric Altimeter

Type	Barometric
Model	LX18001AN
Manufacturer	Sensym
Source	coupled to aircraft barometric system

8. Navigation System

Navigation System	
Model	P151
Manufacturer	AgNav Inc.
Operating System	Windows
Microprocessor	CPU Pentium based
Ports	RS232 for all devices
Graphic Display	Colour Screen
Pilot Display	P202: position, left/right, up/down navigational info

9. GPS Differential Receiver

GPS Differential Receiver	
Model	AG 132
Manufacturer	Trimble
Antenna	L1/L2
Channels	12
Position Update	0.2 second for navigation
Correction Service	Real time correction service subscription – Omnistar

Operations Report for TRUE CLAIM EXPLORATION INC. Gradient-Magnetic, Radiometric and XDS VLF-EM Survey; SCADDING TOWNSHIP PROPERTY, Sudbury, ON

Sample Rate	1 second
Accuracy	~ 3 meters

10. Camera

Туре	Digital camera
Model	DXW-SX910
Manufacturer	Sony
Lens	2.7 Fujinon
Correlation	GPS time and location overlay
Image	Video or still (jpeg)
Recording	Hard drive

4. Base Station Equipment

4.1. BASE STATION MAGNETOMETER / GPS RECEIVER

A high sensitivity magnetic base station data was provided by a cesium vapour sensor with time synchronization from an internal GPS base station receiver. The base station was provided as a package as follows:

Magnetometer Type	Cesium Vapour
Model	CS-2
Manufacturer	Scintrex Ltd.
Sensitivity	0.022 nT / vHz@1Hz
Resolution	0.001 nT
Dynamic Range	15,000 – 120,000 nT
GPS model	Universal 12 channel
GPS manufacturer	Deluo

18

5. TESTS AND CALIBRATIONS

5.1. MAGNETIC FIGURE OF MERIT

Compensation calibration tests were performed to determine the magnetic influence of aircraft maneuvers and the effectiveness of the aircraft compensation method. The aircraft flew a square pattern in the four survey directions at a high altitude over a magnetically quiet area and performed pitches (\pm 5°), rolls (\pm 10°) and yaws (\pm 5°). The sum of the maximum peak-to-peak residual noise amplitudes in the total compensated signal resulting from the twelve maneuvers is referred to as the Figure of Merit (FOM) index. The FOM for the left, right and tail magnetometers on this survey was 1.09, 1.87 and 0.71 nT respectively. It was flown on April 19, 2010 (see Appendix).

5.2. RADAR ALTIMETER CALIBRATION

A radar altimeter calibration was done over the runway at Sudbury airport on April 19, 2010 (see Appendix).

5.3. RADIOMETRIC SAMPLE CHECKS

The performance and consistency of gamma ray system was checked before and after each flight day using sample pucks to ensure that there was no change in the system.

5.4. RADIOMETRIC SENSITIVITY FACTORS

The radiometric system sensitivity was determined on April 28, 2010 from measurements acquired over the Breckenridge calibration test site monitored by a Terraquest ground crew using a spectrometer supplied by the Geological Survey of Canada.

5.5. RADIOMETRIC ALTITUDE ATTENUATION

The altitude attenuation was determined on Aril 19, 2010 from the results of flying over the Sudbury Airport.

5.6. RADIOMETRIC COMPTON COEFFICIENTS

A pad calibration was performed using the Pico Envirotec pads in Holland Landing prior to installation.

6. LOGISTICS

6.1. PERSONNEL

The contractor supplied the following properly qualified and experienced personnel to carry out the survey and to reduce, compile and report on the data:

Field: Pilots Dan Landis, Dwight Mionk

First Officer Tim Wescott, Jessica Jackson

Operator Mark Andrews
Geophysicists Carolyn Boone
Pronden Burchess

Brendan Purchase

Office: Geophysicists Al Duffy

John Charlton

Carolyn Boone

Manager Charles Barrie

6.2. FIELD REPORTING

The aircraft arrived in Sudbury on April 18, 2010; the base station was setup and tested. The calibration and testing flight was performed on flight N41J1 on April 19th. The survey was flown successfully in 8 flights N41J 2 to 9 over 7 days from April 20 to 26, 2010. (see Appendix).

6.3. BASE OF OPERATIONS

The main base of operations was at the Sudbury airport; the ferry distance from to the survey area is approximately 30 kilometres.

6.4. ACCOMMODATION

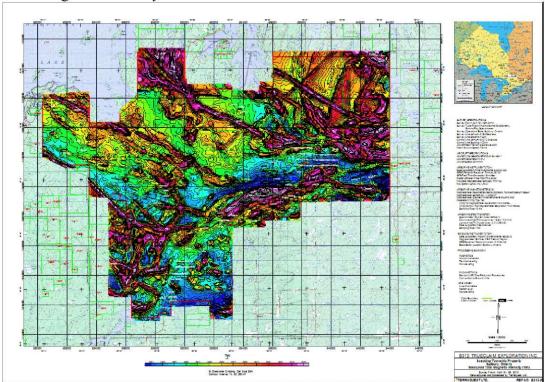
Accommodations for the crew were the responsibility and cost of Terraquest. The crew was housed at the Comfort Inn closest to the airport, 440 2nd Avenue North, Sudbury - (705) 560-4502. High speed internet was available.

7. Data Processing

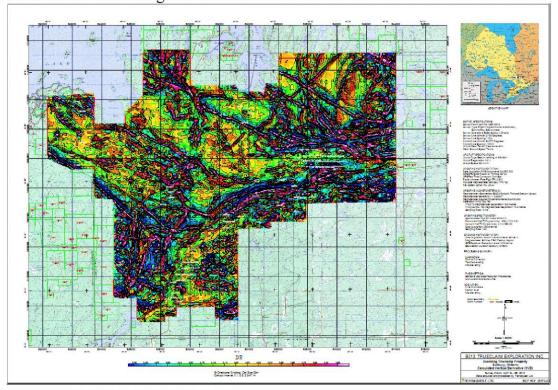
7.1. DATA QUALITY CONTROL & PRELIMINARY PROCESSING

Throughout the data acquisition period, the data were monitored and reviewed thoroughly for quality control and tolerances on all channels by an infield geophysicist. This included any corrections to the flight path, making flight path plots, importing the base station data, creating a database on a flight-by-flight basis, and posting the data. All data were checked for continuity and integrity. Any errors or omission or data beyond tolerances were flagged for re-flight and the crew was notified, ready for their flight in the morning. The raw magnetic data was compensated for aircraft motion effects using data from the fluxgate sensor automatically in real time by the DAARC500.

7.2. FINAL MAGNETIC DATA PROCESSING

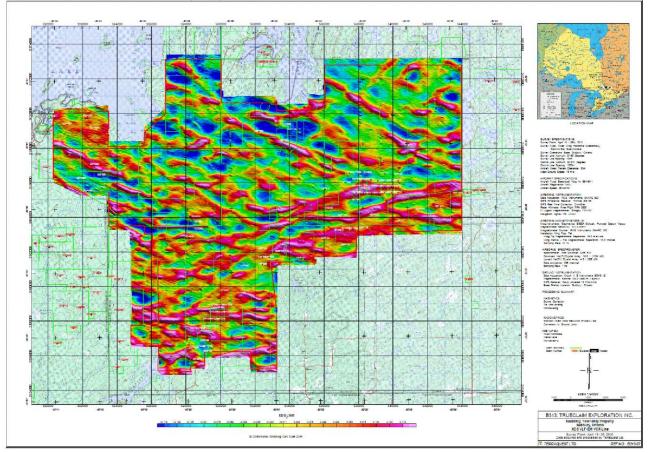

In the final correction process, the compensated tail sensor magnetic data were corrected by diurnal subtraction. This was followed by standard tie-line intersection leveling. The intersections of traverse and control lines were calculated and the difference in observed magnetic values was attributed to remnant diurnal variation. In some active areas, with steep magnetic gradients, the difference reflects not only diurnal, but also some error due to small inaccuracies in both horizontal and vertical position at the line intersection. If the implied diurnal correction at these intersections was inconsistent with adjacent diurnal indications, the indicated correction was ignored. The correction applied was a linear sloping datum connecting the interpreted diurnal value at each control line intersection.

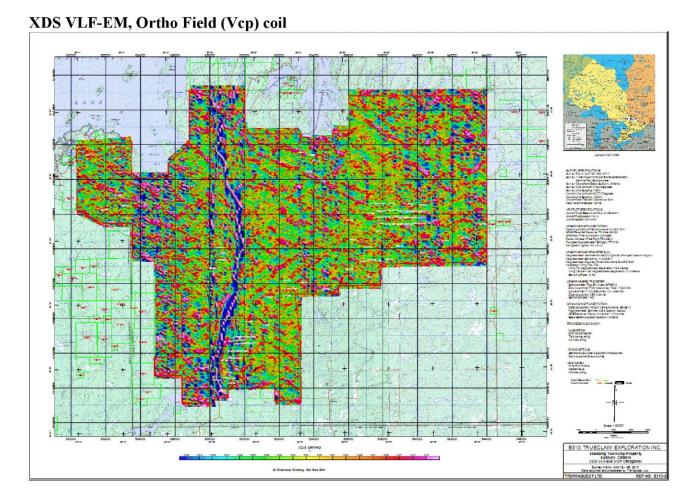
A mild micro-levelling procedure was performed to improve the down line data quality. The vertical magnetic gradient was subsequently calculated from the final processed total magnetic field data grid. The finalized datasets were gridded with bi-directional gridding technique with a grid cell size of 25 metres.


The measured lateral magnetic gradients for each flight direction were obtained by subtracting the left wing sensor reading from the right wing sensor reading and dividing the resulting value by the tip-to-tip separation (16.2 metres), yielding the measurement expressed as nT/m. The along line magnetic gradient was calculated by subtracting successive data points from the tail sensor measurement. It was then "DC shifted" by subtracting the median value on a line-by-line basis and converted from aircraft-centric to survey grid orientation by selectively inverting (multiplying by -1) in the south and westbound directions. The Reconstructed Total Field (RTF) has also been calculated from the individual measured horizontal gradients based on the Nelson method. Note that the RTF is a very good tool for high resolution, near surface features, but

because the horizontal gradient does not respond well to long to medium wavelength features, it should not be used for quantitative modeling.

Total Magnetic Intensity





7.3. FINAL ELECTROMAGNETC DATA PROCESSING

The Terraquest XDS VLF-EM system produced generally good results, however the variabilities in the primary fields create some line to line and flight to flight variations that could not be totally leveled in the Ortho and especially Vertical components. The x, y and z components of the XDS VLF-EM data in the half power range of 22.0 to 26.0 kHz (which include Cutler, North Dakota and Seattle transmitter signals and any other natural or man-made signals in that range), were rescaled (where required), low pass filtered, DC shift corrected and levelled. The data were presented as contour plots of the a) Line Field (Vcx) coil, b) Ortho Field (Vcp) coil and c) Vertical Field (Hcp) coil.

7.4. FINAL RADIOMETRIC DATA PROCESSING

The radiometric data were processed according to guidelines established in the definitive IAEA Technical Report "Airborne Gamma Ray Spectrometer Surveying" (IAEA Technical Reports Series No. 323, 1991). The following specifics were performed:

 Recorded as a 256 channel spectrum, the four raw integral (or "terrestrial") windows (Total Count, Potassium, Uranium and Thorium) were initially generated by summing the recorded counts between their appropriate channel limits – as specified below:

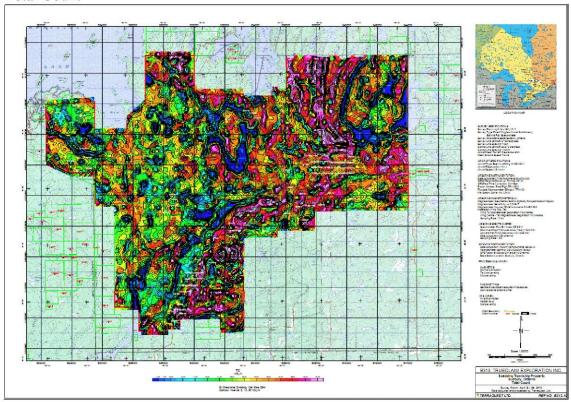
256 Channel ROI definitions (based on 0-255 channel indices):

Total Count: 30 - 233
Potassium: 115 - 131
Uranium: 139 - 156
Thorium: 201 - 233
Cosmic (>3 MeV): 255

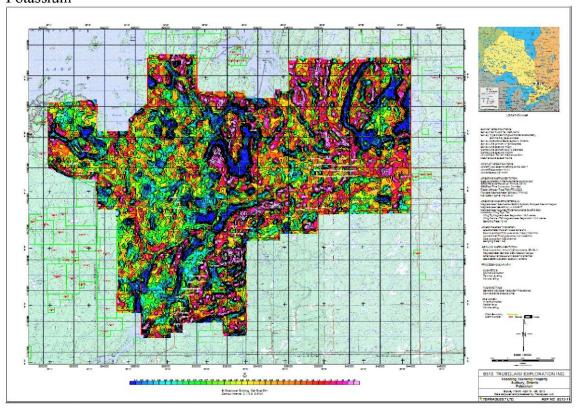
- Since the Pico Envirotec GSR-510 Spectrometer does not suffer from conventional measurement "dead time", no discrete correction for this effect need be applied.
- The raw count rates were corrected for static and ambient background sources (Aircraft, Cosmic and Radon) by using measurements from the frequent over-water crossings encountered during the survey and from pre- and post- flight over-water 'background' lines (where geologic radiation sources are suppressed).
- The background corrected measurements were corrected for Compton Scattering by application of "Stripping Coefficients" experimentally determined in a specific calibration exercise using standard large-scale radio-element sources (see Appendices).
- Count rates were further adjusted by correction to constant terrain clearance (altitude attenuation correction). This correction step includes the application of exponential attenuation coefficients, specific to each of the four integral windows, determined during a specific calibration procedure (see Appendices).
- As additionally recommended by the Geologic Survey of Canada, the final corrected count rates were passed through an optimized filter, sometimes referred to as a 'Savitsky-Golay' filter, designed to reduce sample overlap effects. This five-point convolution filter has the following (normalized) coefficients:

-.0857, 0.3429, 0.4857, 0.3429, -0.0857

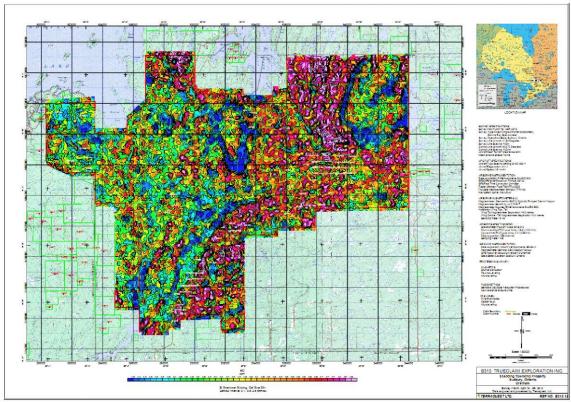
Corrected radiometric data are delivered both as count rates (counts-per-second) and as
effective ground units by application of sensitivity factors determined experimentally
over the Geologic Survey of Canada's test range (Breckenridge Calibration Range,
Ottawa - see Appendices). Applicable ground units for each of the four integral windows
are as follows:

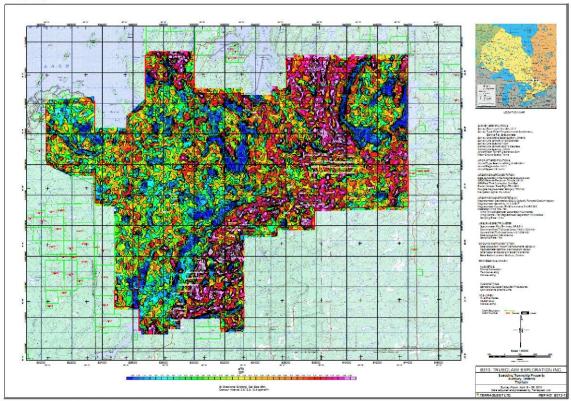

Total Count: Exposure Rate, nanoGray/hour

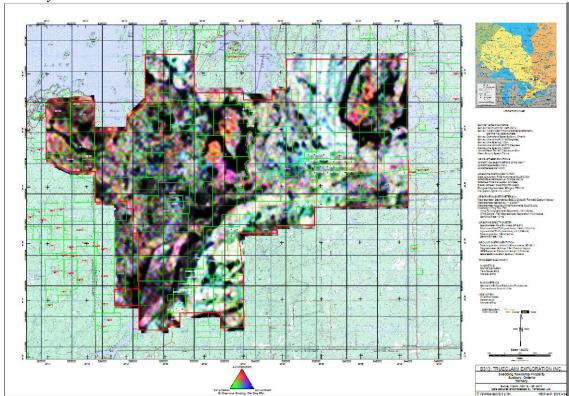
Potassium : Percent (%K)


Uranium: Parts per Million equivalent Uranium (ppm eU)
Thorium: Parts per Million equivalent Thorium (ppm eTh)

The radiometric data were gridded by minimum curvature method with a cell size of 25 metres and contoured.


Total Count


Potassium


Uranium

Thorium

7.5. LIST OF FINAL PRODUCTS

Two copies of the following colour maps were produced at a scale of 1:50,000 with a grid cell size of 25 metres, and projection WGS84, UTM zone 18; the back ground is topography. Claim numbers have been supplied by the client.

- Map 1: Flight Path
- Map 2: Total Magnetic Intensity of Tail Sensor (nT)
- Map 3: Calculated Vertical Derivative of Tail Sensor (nT/m)
- Map 4: Measured Lateral Magnetic Gradient (nT/m)
- Map 5: Along Line Magnetic Gradient (nT/m)
- Map 6: Reconstructed Total Magnetic Field (pseudo nT)
- Map 7: XDS VLF-EM, Line Component
- Map 8: XDS VLF-EM, Ortho Component
- Map 9: XDS VLF-EM, Vertical Component
- Map 10: Total Count (nGy/hr)
- Map 11: Potassium (%K)
- Map 12: Uranium (ppm eU)
- Map 13: Thorium (ppm eTh)
- Map 14: Ternary
- Map 15: Digital Terrain Model (m)
- Digital grid archives on CD-ROM in GEOSOFT
- All GEOSOFT MAP files used to generate the above listed final maps
- High quality JPEGS and PDF format of all maps
- Digital Profile Archives on CD-ROM in GEOSOFT GDB format (compatible with 4.1 or higher)

8. SUMMARY

An airborne high sensitivity magnetic survey was performed at 80 metre mean terrain clearance, 100 metre line intervals, 1,000 metre tie line interval, and with data sample points at 7-8 metres along the flight lines.

The data were subjected to final processing to produce the following colour maps, with grid cell size of 25 metres, topographic underlay, projection NAD83 UTM zone 17 and scale of 1:50,000 a) total magnetic intensity and calculated first vertical derivative of tail sensor, b) measured transverse and along-line magnetic gradients and reconstructed total magnetic field, d) Line, Ortho and Vertical components of the XDS VLF-EM system, d) total count, potassium, uranium thorium, and ternary, and e) flight path.

All data have been archived as Geosoft database (GDB) plus all MAP and GRID files used to make the maps. These have also been converted to high quality JPEGS and PDF formats.

Respectfully Submitted,

Charles Barrie, M.Sc. Vice President

Terraquest Ltd.

30

9. APPENDICES

9.1. APPENDIX I - CERTIFICATE OF QUALIFICATION

I, Charles Barrie, certify that I:

- am registered as a Fellow with the Geological Association of Canada and work professionally as a geologist,
- 2) hold an Honours degree in Geology from McMaster University, Canada, obtained in 1977,
- 3) hold an M.Sc. in Geology from Dalhousie University, Canada, obtained in 1980,
- am a member of the Prospectors and Developers Association of Canada,
- 5) am a member of the Canadian Institute of Mining, Metallurgy and Petroleum,
- 6) have worked as a geologist for over thirty years,
- 7) am employed by and am an owner of Terraquest Ltd., specializing in high sensitivity airborne geophysical surveys, and
- 8) have prepared this operations and specifications report pertaining to airborne data collected by Terraquest Ltd..

Markham, Ontario, Canada

Signed

Charles Q. Barrie, M.Sc. Vice President, Terraquest Ltd.

9.2. APPENDIX II – DAILY LOG

April 18, 2010

Aircraft and ground crew arrive in Sudbury, set up base station

April 19, 2010

Flight N41J-1: FOM and radiometric calibrations, processed and approved

April 20, 2010

Flight N41J-2: 38 lines, 481.4 km Digital Camera slipped into video mode this flight

April 21, 2010

Flight N41J-3: aborted due to weather

April 22, 2010

Flight N41J-4: 64 lines, 661.7 km Flight N41J-5: 54 lines, 696.8 km

April 23, 2010

Flight N41J-6: 45 lines, 753.5 km Flight N41J-7: 20 lines, 147.5 km

April 24, 2010

Flight N41J-8: 33 lines, 169.4 km Spectrometer not record properly

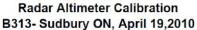
April 25, 2010

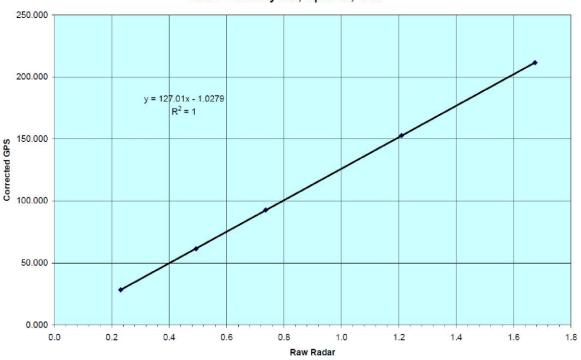
Standby: assessing data

April 26, 2010

Flight N41J-9: reflights139.3 km

9.3. APPENDIX III- FIGURE OF MERIT


	FOM INDEX :N41J - FLIGHT N41J001 19 APR 2010 / BASE:Sudbury, ON												
	FOM TEST #1 (MAT1.x)-50pt												
	MAG 1												
DIR	DIR TRAV LINE PITCH ROLL YAW P R Y SUI										SUM		
	FLG		MAX	MIN	MAX	MIN	MAX	MIN					
N	*	9000	0.05	-0.05	0.05	-0.04	0.06	-0.03		0.10	0.09	0.09	0.28
E		9090	0.04	-0.05	0.03	-0.04	0.05	-0.06		0.09	0.07	0.11	0.27
S	*	9180	0.03	-0.06	0.05	-0.03	0.05	-0.03		0.09	0.08	0.08	0.25
W		9270	0.05	-0.05	0.05	-0.04	0.05	-0.05		0.10	0.09	0.10	0.29
									SUM	0.38	0.33	0.38	1.09
						S			FOM	1.09			
·							FO	M TRAVE	RSE ONLY	0.53	(x2:	1.06)


	MAG 2												
DIR	TRAV	LINE	PIT	PITCH ROLL		YA	YAW		Р	R	Y	SUM	
	FLG		MAX	MIN	MAX	MIN	MAX	MIN					
N	*	9000	0.11	-0.05	0.08	-0.10	0.09	-0.09		0.16	0.18	0.18	0.52
E		9090	0.06	-0.09	0.05	-0.10	0.12	-0.12		0.15	0.15	0.24	0.54
S	*	9180	0.06	-0.10	0.05	-0.08	0.09	-0.07		0.16	0.13	0.16	0.45
W		9270	0.04	-0.09	0.04	-0.05	0.09	-0.05		0.13	0.09	0.14	0.36
									SUM	0.60	0.55	0.72	1.87
									FOM	1.87			
						FC	M TRAVE	RSE ONLY	0.97	(x2:	1.94)	

	MAG 3												
DIR	TRAV	LINE	PIT	CH	RO	LL	YAW			Р	R	Υ	SUM
	FLG		MAX	MIN	MAX	MIN	MAX	MIN					
N	*	9000	0.05	-0.03	0.02	-0.01	0.03	-0.02		0.08	0.03	0.05	0.16
E	31 a a	9090	0.04	-0.03	0.03	-0.04	0.03	-0.05		0.07	0.07	0.08	0.22
S	*	9180	0.01	-0.05	0.03	-0.05	0.05	-0.02		0.06	0.08	0.07	0.21
W		9270	0.04	-0.03	0.02	0.02	0.02	-0.03		0.07	0.00	0.05	0.12
							100		SUM	0.28	0.18	0.25	0.71
									FOM	0.71			
							FC	M TRAVE	RSE ONLY	0.37	(x2:	0.74)

9.4. APPENDIX IV - RADAR ALTIMETER CALIBRATION

Terraquest LTD Radar Altimeter Calibration 20/04/2010

Terraquest LTD Radar Altimeter Calibration 20/04/2010

		Account to the second s	R CALIBRATION DATA SU med 19 APR 2010, Sudbu			
					INTERCEPT -1.0279 SLOPE 127.008579	
LINE	RAW RADAR	GPGGA_ALT	CORRECTED GPS ALT	RAW RADAR	CALIBRATED RADAR	ERROR *
Hold		351.100	0.000			
100	0.231	379.400	28.300	0.231	28.298	-0.002
200	0.493	412.500	61.400	0.493	61.638	0.238
300	0.736	443.800	92.700	0.736	92.476	-0.224
500	1.210	503.900	152.800	1.210	152.652	-0.148
700	1.674	562.600	211.500	1.674	211.635	0.135
900	2.1	618.4				

PREV INT	-0.5648
PREV SLP	0.0219
	DIFF
-0.56	-28.9
-0.55	-62.2
-0.55	-93.0
-0.54	-153.2
-0.53	-212.2

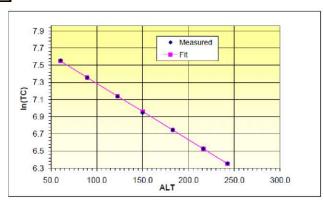
^{*} Error estimated as (Calibrated Radar) - (Corrected GPS Alt)

	Imperial Units							
LINE	GPS_ALT	CAL_RAD						
100.0	92.8	92.8						
200.0	201.4	202.2						
300.0	304.1	303.4						
500.0	501.3	500.8						

9.5. APPENDIX V - RADIOMETRIC ALTITUDE ATTENUATION

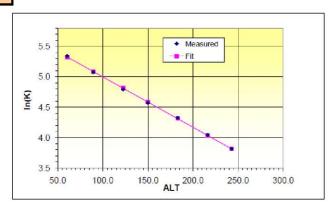
TERRAQUEST LTD

Radiometric Procedures and Calibrations

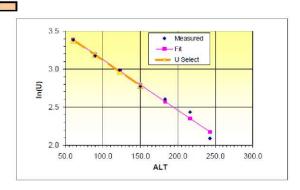

15,550	DIOMETRIC A	ALTITUDE A		CALIBRAT	5.50
LINE	Average Clearance (metres)	TC (cor. CPS)	K (cor. CPS)	U (cor. CPS)	TH (cor. CPS)
L200:10	60.5	1991.7	209.4	29.5	45.
L300:10	89.6	1629.5	160.4	24.0	38.
L400:10	122.6	1310.9	120.7	19.9	30.
L500:10	149.9	1081.8	96.7	16.0	25.
L600:10	182.9	888.5	75.7	13.6	20.
L700:10	216.2	712.1	56.9	11.4	17.
L800:10	242.7	599.8	45.4	8.1	14.

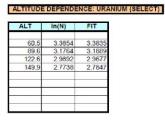
	ALTITUE	E ATTENUA	TION COEFF	ICIENTS	
Ca	iculated by L	SQ fit to : In	$(N) = ALT^*\mu +$	In(N ₀) rela	ition
	TC	µ _{TC} =	-0.006562	$In(N_0)_{TC} =$	7.9853
	K	μ _κ =	-0.008286	$ln(N_0)_K =$	5.8269
	U	μυ=	-0.006665	$ln(N_0)_U =$	3.7934
	Th	μ _{Th} =	-0.006333	$In(N_0)_{Th} =$	4.1953

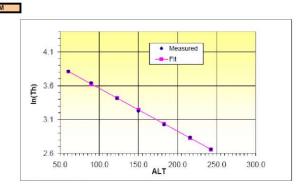
U (Select) μ_U = -0.006697 In(N₀)_U = 3.7889


ALTITUDE DEPENDENCE: TOTAL COUNT

ALT	In(N)	FIT
60.5	7.5968	7.5881
89.6	7.3960	7.3974
122.6	7.1785	7.1807
149.9	6.9863	7.0013
182.9	6.7895	6.7853
216.2	6.5683	6.5668
242.7	6.3966	6.3924

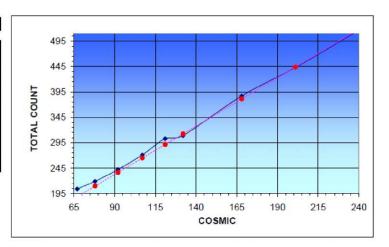

ALTITUDE DEPENDENCE: POTASSIUM


ALT	In(N)	FIT
60.5	5.3440	5.3254
89.6	5.0774	5.0846
122.6	4.7936	4.8110
149.9	4.5713	4.5845
182.9	4.3265	4.3118
216.2	4.0411	4.0358
242.7	3.8146	3.8156


Operations Report for TRUE CLAIM EXPLORATION INC. Gradient-Magnetic, Radiometric and XDS VLF-EM Survey; SCADDING TOWNSHIP PROPERTY, Sudbury, ON

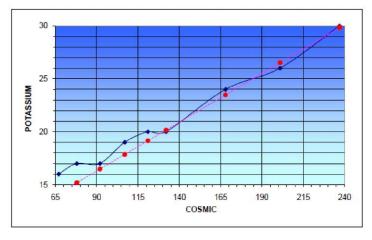
FIT	In(N)	ALT
3.390	3.3854	60.5
3.196	3.1764	89.6
2.976	2.9892	122.6
2.794	2.7738	149.9
2.574	2.6079	182.9
2.352	2.4362	216.2
2.175	2.0906	242.7

ALT	In(N)	FIT
60.5	3.8135	3.812
89.6	3.6434	3.628
122.6	3.4144	3.418
149.9	3.2257	3.245
182.9	3.0272	3.0373
216.2	2.8397	2.8264
242.7	2.6624	2.658

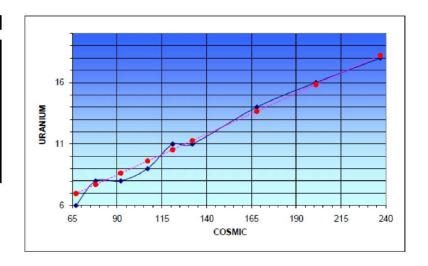

9.6. APPENDIX VI - RADIOMETRIC COSMIC CALIBRATION

					1949		
LINE	GPS ALT metres	TC cps	K cps	U	TH cps	U UP	COSMIC cps
S2000:1	606.3	204.0	16.0	6.0	6.0	1.0	67.0
S3000:1	908.2	219.0	17.0	8.0	7.0	1.0	78.0
\$4000:1	1218.9	242.0	17.0	8.0	8.0	1.0	92.0
S5000:1	1528.3	271.0	19.0	9.0	9.0	1.0	107.0
\$6000:1	1815.6	303.0	20.0	11.0	11.0	1.0	121.0
S7000:1	2139.1	309.0	20.0	11.0	11.0	1.0	132.0
S8000:1	2436.6	387.0	24.0	14.0	14.0	2.0	168.0
\$9000:1	2743.5	443.0	26.0	16.0	17.0	2.0	201.0
\$10000:1	3042.0	511.0	30.0	18.0	20.0	3.0	237.0

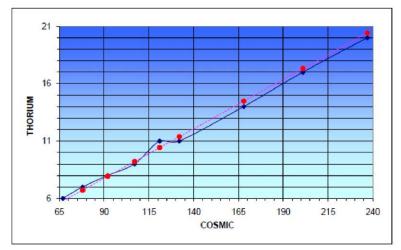
	COSMIC COEFFICIENTS COS COMPONENT, = a, COSMIC + b						
Cos_con	Slope (a _n)	Intercept (b _n)					
Total Count	1.9034	61.3195					
Potassium	0.0921	8.0030					
Uranium	0.0661	2.5505					
Thorium	0.0862	0.0000					
Uranium UP	0.0116	-0.1082					


TOTAL COUNT COSMIC DEPENDENCE

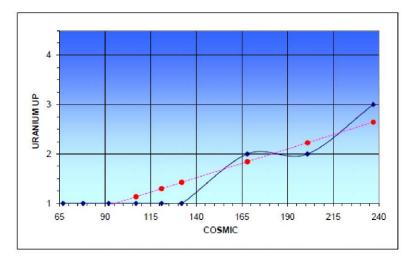
COSMIC	TC	TC FIT
67.0	204.0	188.8
78.0	219.0	209.8
92.0	242.0	236.4
107.0	271.0	265.0
121.0	303.0	291.6
132.0	309.0	312.6
168.0	387.0	381.1
201.0	443.0	443.9
237.0	511.0	512.4


POTASSIUM COSMIC DEPENDENCE

COSMIC	K	K FIT
67.0	16.0	14.2
78.0	17.0	15.2
92.0	17.0	16.5
107.0	19.0	17.9
121.0	20.0	19.2
132.0	20.0	20.2
168.0	24.0	23.5
201.0	26.0	26.5
237.0	30.0	29.8


URANIUM COSMIC DEPENDENCE

COSMIC	U	U FIT
67.0	6.0	7.0
78.0	8.0	7.7
92.0	8.0	8.6
107.0	9.0	9.6
121.0	11.0	10.6
132.0	11.0	11.3
168.0	14.0	13.7
201.0	16.0	15.8
237.0	18.0	18.2


THORIUM COSMIC DEPENDENCE

COSMIC	TH	TH FIT
67.0	6.0	5.8
78.0	7.0	6.7
92.0	8.0	7.9
107.0	9.0	9.2
121.0	11.0	10.4
132.0	11.0	11.4
168.0	14.0	14.5
201.0	17.0	17.3
237.0	20.0	20.4

URANIUM UP COSMIC DEPENDENCE

COSMIC	UUP	UUP FIT
67.0	1.0	0.7
78.0	1.0	0.8
92.0	1.0	1.0
107.0	1.0	1.1
121.0	1.0	1.3
132.0	1.0	1.4
168.0	2.0	1.8
201.0	2.0	2.2
237.0	3.0	2.6
20110		

9.7. APPENDIX VII - PAD TESTS: COMPTON COEFFICIENTS

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PROGRAM PADWIN

Concentrations of Transportable Pads - Holland Landing - PEI Pads (Kieth

PAD CONCENTRATIONS:

NUMBER OF PADS = 4

		F	CT	K	PPM	1 EU	!	PPN	1 TI	H
ВЕ	Pad	1.410	(.010)	.97	(.03)	2.26	(.10)
KI	Pad	8.710	(.090)	.32	(.02)	.74	(.10)
UE	Pad	1.340	(.020)	52.90	(.10)	3.40	(.14)
TE	Pad	1.340	(.020)	2.96	(.06)	136.00	(2.10)

GEOMETRIC CORRECTION FACTORS:

POTASSIUM	URANIUM	THORIUM
1.17	1.17	1.19

"B313 C-GGLS 13APR2010 Holland Landing"

WINDOW COUNTS:

	TIM	IE (M)	K COUNTS	U COUNTS	TH COUNTS
ВР	ad 6	60.0	216480.	25740.	23760.
KP	ad 6	47.0	991851.	19410.	19410.
UP	ad 6	56.0	542512.	455920.	56416.
TP	ad 5	27.0	344131.	180761.	519622.

A-MATRIX FROM NONLINEAR REGRESSION:

1.664E+02	(2.080E+00)	9.781E+00	(7.908E-02)	2.372E+00	(4.774E-02)
3.222E-01	(8.815E-02)	1.259E+01	(3.324E-02)	2.086E+00	(3.399E-02)
7.267E-01	(1.480E-01)	8.081E-01	(2.511E-02)	7.092E+00	(1.120E-01)

INVERSE A-MATRIX:

6.020E-03	(7.519E-05)	-4.637E-03	(6.619E-05)	-6.495E-04	(2.717E-05)
-5.288E-05	(3.777E-05)	8.102E-02	(2.062E-04)	-2.381E-02	(1.224E-04)
-6.108E-04	(1.241E-04)	-8.757E-03	(3.149E-04)	1.438E-01	(2.277E-03)

WINDOW SENSITIVITIES FOR SMALL SOURCES:

```
K SENSITIVITY (A11) = 1.664E+02 (2.080E+00) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 1.259E+01 (3.324E-02) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 7.092E+00 (1.120E-01) COUNTS/ M PER PPM TH
```

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

```
K SENSITIVITY (A11) = 1.947E+02 (2.433E+00) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 1.473E+01 (3.889E-02) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 8.439E+00 (1.333E-01) COUNTS/ M PER PPM TH
```

STRIPPING RATIOS:

```
TH INTO U (ALPHA = A23/A33): .2941 ( .0013)
TH INTO K (BETA = A13/A33): .3344 ( .0042)
U INTO K (GAMMA = A12/A22): .7771 ( .0062)
U INTO TH (A = A32/A22): .0642 ( .0020)
K INTO TH (B = A31/A11): .0044 ( .0009)
K INTO U (G = A21/A11): .0019 ( .0005)
```

BACKGROUND COUNT RATES:

```
K WINDOW: 7.848E+01 (3.701E+00) COUNTS/M
U WINDOW: 2.162E+01 (6.220E-01) COUNTS/M
TH WINDOW: 1.816E+01 (9.745E-01) COUNTS/M
```

NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS Stop - Program terminated.

9.8. APPENDIX VIII - SENSITIVITIES BRECKENRIDGE

Measured Ground	Values:
Dose Rate (TC) : nGy/hr	51.730
%K	1.935
ppm U	1.001
ppm Th	7.804

N41J: Ottawa Calibration, Breckendridge Test Line 28 April 2010

Line	Clearance (metres)	TC (cps)	K (cps)	(cps)	Th (cps)	STC (cps/unit)	SK (cps/unit)	SU (cps/unit)	STH (cps/unit
L200:10	60.5	1991.72	209.35	29.53	45.31	38.50	108.22	29.51	5.8
L300:10	89.6	1629.52	160.36	23.96	38.22	31.50	82.89	23.95	4.90
L400:10	122.6	1310.88	120.74	19.87	30.40	25.34	62.41	19.86	3.90
L500:10	149.9	1081.76	96.67	16.02	25.17	20.91	49.97	16.01	3.23
L600:10	182.9	888.49	75.68	13.57	20.64	17.18	39.12	13.56	2.64
L700:10	216.2	712.13	56.89	11.43	17.11	13.77	29.41	11.42	2.19
L800:10	242.7	599.83	45.36	8.09	14.33	11.60	23.45	8.09	1.84

		"m"	"b"
Exponential Fit Parameters:	TC	0.9935	56.7818
	K	0.9917	175.4029
	U	0.9934	44.3812
	TH	0.9937	8.5044

Calculated S	ensitivities	7
	CLEARANCE:	80
	TC K	33.59 90.40
	U	26.04
	TH	5.12

9.9. APPENDIX IX – README FILES

Terraquest Ltd. Aeromagnetic/Radiometrics/XDS-VLF Survey Project B-313 June 10th, 2010

for TRUE CLAIM EXPLORATION

DATA ARCHIVE

CONTENTS >>>>

- 1. GEOSOFT OASIS MONTAJ (.GDB) AND BINARY (.GBN) DATABASE CONTENTS
- 2. DATA GRIDS
- 4. MAPS
- 5. JPEGS
- 6. PDFS
- 7. README
- 8. Report

1. GEOSOFT OASIS MONTAJ DATABASE (.GDB) AND BINARY ARCHIVE (.GBN) CONTENTS

Data files for the TRUE CLAIM EXPLORATION project contain the following channels:

UTMX UTM Easting Zone 17N [WGS 84] World / [NAD83] Canada; Central America;

Mexico; USA (ex Hawaii Aleutian Islands) (m)

UTMY UTM Northing Zone 17N [WGS 84] World / [NAD83] Canada; Central America;

Mexico; USA (ex Hawaii Aleutian Islands) (m)

TIME Time (GPS day-sec)

RADALT Aircraft Radar Terrain Clearance (m)

GPGGA ALT Aircraft Elevation [WGS 84] World (m)

FNLDTM Digital Terrain Model Zone 17N [WGS 84] World / [NAD83] Canada; Central

America; Mexico; USA (ex Hawaii Aleutian Islands) (m)

GPGGA LAT Latitude [WGS 84] World (decimal degrees)

GPGGA LON Longitude [WGS 84] World (decimal degrees)

DIURNAL Base Station Diurnal TMI (nT)

VMX X-component of Fluxgate Magnetometer

VMY Y-component of Fluxgate Magnetometer

VMZ Z-component of Fluxgate Magnetometer

TF1UNC Raw Left Wingtip Sensor Total Magnetic Intensity (nT)

TF2UNC Raw Right Wingtip Sensor Total Magnetic Intensity (nT)

TF3UNC Raw Tail Sensor Total Magnetic Intensity (nT)

TF1CMP Compensated Left Wingtip Sensor Total Magnetic Intensity (nT)

TF2CMP Compensated Right Wingtip Sensor Total Magnetic Intensity (nT)

TF3CMP Compensated Tail Sensor Total Magnetic Intensity (nT)

HGXLAG Measured Lateral Component of Horizontal Magnetic Gradient (nT/m)

HGYLAG Measured Longitudinal Component of Horizontal Magnetic Gradient (nT/m)

TF3FNL Levelled, Compensated Tail Sensor Total Magnetic Intensity (nT)

RTF Reconstructed Total Field (calculated using the measured horizontal gradients) Downward Looking Crystal Array 256 channel Radiometric Spectrum SPC DOWN

SPC UP Upward Looking Crystal 256 channel Radiometric Spectrum

RAWTC Raw Total Count integral window Raw Potassium integral window (cps) **RAWK** Raw Uranium integral window (cps) RAWU Raw Thorium integral window (cps) **RAWTH**

Raw Cosmic channel (cps) RAWCOS

Raw Upward Looking Uranium channel (cps) **RAWUUP**

FTC Corrected Total Count in ground units (cps) Corrected Potassium in ground units (cps) FΚ FU Corrected Uranium in ground units (cps) FTH Corrected Thorium in ground units (cps)

STC Corrected Total Count in ground units (nGy/hr) Corrected Potassium in ground units (%K) SK SU Corrected Uranium in ground units (ppm eU) Corrected Thorium in ground units (ppm eTh) STH

XDS/VLF LINE Component LINE FNL ORTHO FNL XDS/VLF ORTHO Component

3. DATA GRIDS

The following Geosoft grids have been supplied for the TRUE CLAIM EXPLORATION project:

B313MeasuredTotalMagneticIntensity.grd 25-m cell Final, Levelled Tail TMI (nT)

B313ReconstructedTotalField.grd 25-m cell Reconstructed Total Magnetic Field (using

horizontal gradients)

B313MeasuredLateralGradient.grd 25-m cell Lateral Component of Measured

Horizontal Gradient (nT/m)

B313MeasuredLongitudinalGradient.grd 25-m cell Longitudinal Component of Measured

Horizontal Gradient (nT/m)

B313CalculatedVerticalDerivative.grd 25-m cell Calculated Vertical Derivative of

Levelled TMI (nT/m)

25-m cell Reconstructed Total Magnetic Field B313ReconstructedTotalField

(calculated from Horizontal Gradients using "Nelson Method") (pseudo nT)

B313XDS LineComponent.grd 25-m cell XDS/VLF Line Component (V) 25-m cell XDS/VLF Ortho Component (V) B313XDS OrthoComponent.grd

B313TotalCount.grd 25-m cell Total Count (nGy/h) B313Potassium.grd 25-m cell Potassium (%K) B313Uranium.grd 25-m cell Uranium (ppm eU) 25-m cell Thorium (ppm eTh) B313Thorium.grd

B313DigitalTerrainModel.grd 25-m cell Digital Terrain Model (metres)

43

4. MAPS

The following map products at 1:50,000 scale have been supplied for the TRUE CLAIM EXPLORATION project.

Map images are submitted in Geosoft 'Packed' Map (viewable with the Oasis montaj viewer available as

a free download from Geosoft):

B313FlightPath Flight Path on Topo Base

B313GradientTotalMagneticIntensity TMI Contoured Colour Image, Flight Path on Topo Base

B313CalculatedVerticalDerivative Calculated Vertical Magnetic Derivative Contoured Colour

Image, Flight Path on Topo Base

B313MeasuredLateralGradient Lateral Horizontal Magnetic Gradient Contoured Colour

Image, Flight Path on Topo Base

B313MeasuredLongitudinalGradient longitudinal Horizontal Magnetic Gradient Contoured

Colour Image, Flight Path on Topo Base

B313ReconstructedTotalField Reconstructed Total Field Contoured Colour Image, Flight

Path on Topo Base

B313XDSLine Line component Colour Shaded Image, Flight Path on Topo Base

B313XDSOrthogonal Orthogonal Component Colour Shaded Image, Flight Path on

Topo Base

B313TotalCount Total Count Contoured Colour Image, Flight Path on Topo Base
B313Potassium Potassium Contoured Colour Image, Flight Path on Topo Base
B313Uranium Uranium Contoured Colour Image, Flight Path on Topo Base
Thorium Contoured Colour Image, Flight Path on Topo Base

B313Ternary Ternary Colour Image, Flight Path on Topo Base

B313DigitalTerrainModel Digital Terrain Model Contoured Colour Image, Flight Path on

Topo Base

5 JPEGS

The following map products at 1:50,000 scale have been supplied for the TRUE CLAIM EXPLORATION Project.

Map images are submitted High Quality JPEG compressed image (150 dpi):

B313FlightPath Flight Path on Topo Base

B313GradientTotalMagneticIntensity TMI Contoured Colour Image, Flight Path on Topo Base

B313Calculated Vertical Derivative Calculated Vertical Magnetic Derivative Contoured Colour

Image, Flight Path on Topo Base

B313MeasuredLateralGradient Lateral Horizontal Magnetic Gradient Contoured Colour

Image, Flight Path on Topo Base

B313MeasuredLongitudinalGradient longitudinal Horizontal Magnetic Gradient Contoured

Colour Image, Flight Path on Topo Base

B313ReconstructedTotalField Reconstructed Total Field Contoured Colour Image, Flight

Path on Topo Base

B313XDSLine	Line component Colour Shaded Image, Flight Path on Topo Base
B313XDSOrthogonal	Orthogonal Component Colour Shaded Image, Flight Path on
Topo Base	
B313TotalCount	Total Count Contoured Colour Image, Flight Path on Topo Base
B313Potassium	Potassium Contoured Colour Image, Flight Path on Topo Base
B313Uranium	Uranium Contoured Colour Image, Flight Path on Topo Base
B313Thorium	Thorium Contoured Colour Image, Flight Path on Topo Base
B313Ternary	Ternary Colour Image, Flight Path on Topo Base
B313DigitalTerrainModel	Digital Terrain Model Contoured Colour Image, Flight Path on
Topo Base	

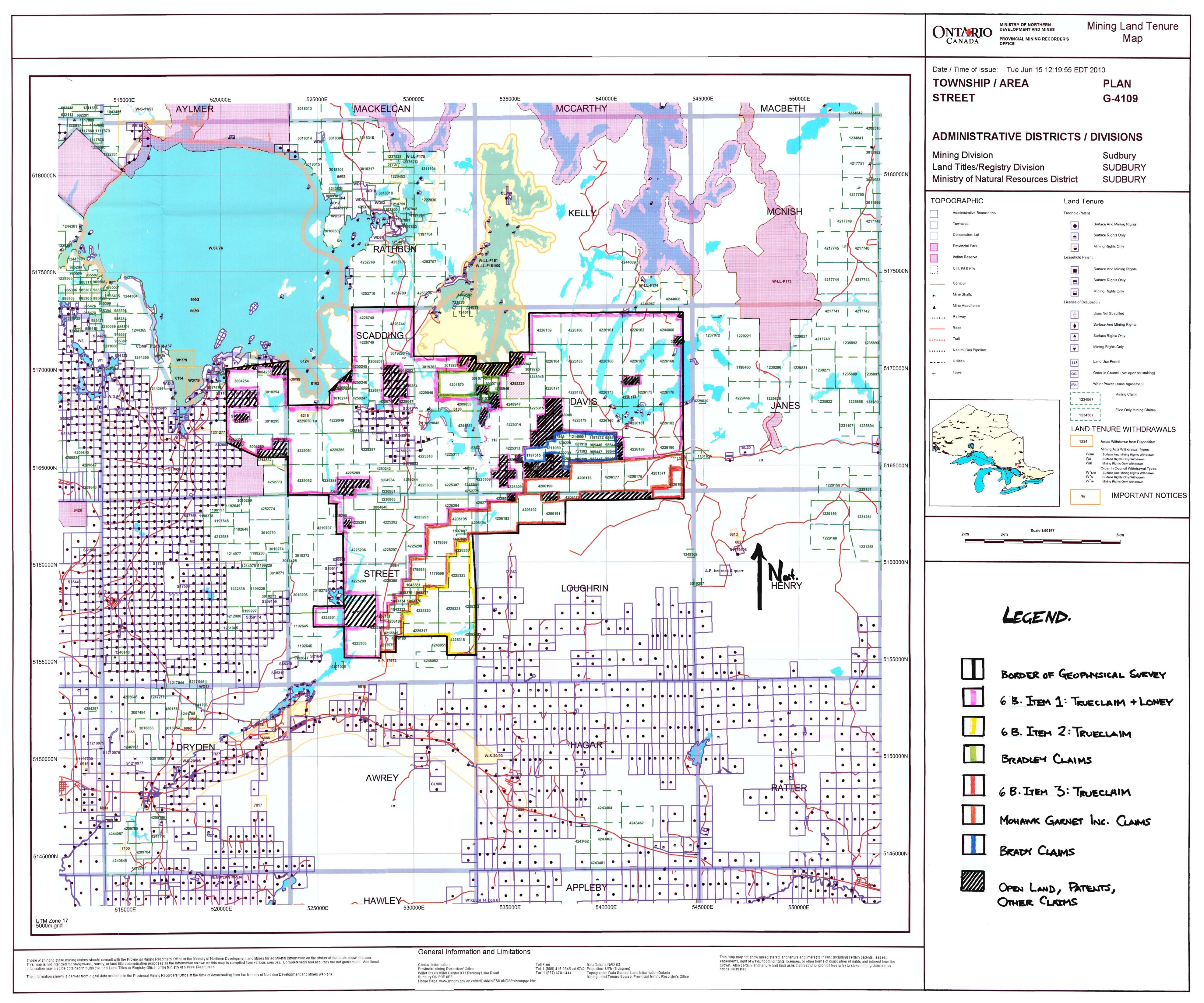
6. PDFS

The following map products at 1:50,000 scale have been supplied for the TRUE CLAIM EXPLORATION Project.

B313FlightPath B313GradientTotalMagnetic	Flight Path on Topo Base Intensity TMI Contoured Colour Image, Flight Path on Topo Base		
B313CalculatedVerticalDerivative Calculated Vertical Magnetic Derivative Contoured Colour			
Image, Flight Path on Topo Base			
B313MeasuredLateralGradient Lateral Horizontal Magnetic Gradient Contoured Colour			
Image,Flight Path on Topo Base			
B313MeasuredLongitudinalGradient longitudinal Horizontal Magnetic Gradient Contoured			
Colour Image, Flight Path on Topo Base			
B313ReconstructedTotalFiel	d Reconstructed Total Field Contoured Colour Image, Flight		
Path on Topo Base			
B313XDSLine	Line component Colour Shaded Image, Flight Path on Topo Base		
B313XDSOrthogonal	Orthogonal Component Colour Shaded Image, Flight Path on		
Topo Base			
B313TotalCount	Total Count Contoured Colour Image, Flight Path on Topo Base		
B313Potassium	Potassium Contoured Colour Image, Flight Path on Topo Base		
B313Uranium	Uranium Contoured Colour Image, Flight Path on Topo Base		
B313Thorium	Thorium Contoured Colour Image, Flight Path on Topo Base		
B313Ternary	Ternary Colour Image, Flight Path on Topo Base		
B313DigitalTerrainModel	Digital Terrain Model Contoured Colour Image, Flight Path on		
Topo Base			

7. README

README.TXT Data Archive delivery documentation (this text file).


8. Report

Report\B-313-N41J-Report.pdf

---- Submitted By:----

Terraquest LTD 2-2800 John Street, Markham, Ontario, Canada L3R 0E2

tel. (905) 477-2800 fax. (905) 477-2820 eml. info@terraquest.ca web. www.terraquest.ca

