

Logistical Report on Spectral IP/Resistivity and Magnetic/VLF Surveys Huffman Lake Option, Gogama Area, Ontario Augen Gold Corp.

Ref. 9-60 September, 2010

Logistical Report on Spectral IP/Resistivity and Magnetic/VLF Surveys Huffman Lake Option, Gogama Area, Ontario

For : Augen Gold Corp.

100 King Street West, Suite 5700 Toronto, ON M5X 1C7 Tel : 416.915.4231 Fax : 416.915.3177 www.augengold.ca

By : JVX Ltd.

60 West Wilmot Street, Unit 22 Richmond Hill, Ontario L4B 1M6 Tel: 905.731.0972 Fax: 905.731.9312 www.jvx.ca

Ref. 9-60 September, 2010

Summary

Magnetic/VLF and spectral IP/resistivity surveys were done on the Huffman Lake Option grid, Gogama area, Ontario. The IP/resistivity survey was done from November 3 to 23, 2009. The magnetic/VLF survey was done from November 11 to 18, 2009. Total production was 12,175 m IP/resistivity and 14,150 m magnetics/VLF. The results have been presented on 5 plan maps at 1:5,000 and 15 stacked pseudosections at 1:2,500.

Cover page : total magnetic intensity contours, Huffman Lake Option grid

Table of Contents

- 1. Personnel
- 2. Instrumentation
- 3. Surveys
- 4. Presentation
- **5.** Conclusions

Figures

Figure 1 : Regional location map Figure 2 : Grid layout with claim fabric Figure 3 : Total magnetic intensity, Huffman Lake Option Figure 4 : n=2 Mx chargeability, Huffman Lake Option

Attachments

Certificate of Qualifications Appendix 1 : Production, GPS control points, Instrumentation and Data Processing Appendix 2 : Weekly field production reports Appendix 3 : Map Images Instrument specification sheets

Maps

The results of the surveys are presented in 5 plan maps at 1:5000 and 15 stacked pseudosections at 1:2500. All maps show the survey grid, claim numbers and claim boundaries, roads and drainage, a UTM grid (NAD83, Z17N) and latitude / longitude co-ordinates. Maps types are

- total magnetic intensity
- VLF offset profiles, vertical inphase and quadrature components, 24.0 kHz
- VLF offset profiles, vertical inphase and quadrature components, 25.2 kHz
- n=2 Mx chargeability
- n=2 apparent resistivity

The 15 stacked pseudosections (lines 4800E to 6400E) show colour / line contoured pseudosections of apparent resistivity, Mx chargeability and the spectral parameters MIP and tau.

Spectral IP/Resistivity and Magnetic/VLF Surveys Huffman Lake Option, Gogama Area, Ontario Augen Gold Corp.

Spectral IP/resistivity and magnetic/VLF surveys were done on the Huffman Lake Option grid, Gogama area, Ontario (figure 1). The work was done for Augen Gold Corp. by JVX Ltd. under JVX job number 9-60. The IP/resistivity survey was done from November 3 to 23, 2009. The magnetic/VLF survey was done from November 11 to 18, 2009. Total production was 12,175 m IP/resistivity and 14,150 m magnetics/VLF.

The Huffman Lake Option grid is largely within claims 1211326 and 3003313 (figure 2). Claim 1211326 is registered to Reginald J. Charron 50% and John G. Brady 50%. Claim 3003313 is registered to John G. Brady. These 2 claims are in Huffman Township. Gogama is 30 km east northeast of the grid. Timmins is 120 km to the northeast. The grid is made up of 16 lines at 25° east of north (4500E to 6400E) and a base line. The maximum station range is 800S to 1000N.

Figure 1. Regional location map

Production summaries, GPS control points, instrumentation, data processing and archives are described in appendix 1. Weekly field production reports are reproduced in appendix 2. Images of all plan maps are in appendix 3. Instrument specification sheets are attached. Paper maps and pseudosections are folded and bound with this report.

1. Personnel

Rob St. Michel, senior geophysical operator from JVX acted as party chief. He was responsible for all technical aspects of the field survey and operated the IP receiver. Assistants from JVX included Rob Raby, Dean McNichol, Brandon Martel, Ian Mazal, Andrew Umemura and Jim Corbiel. Rob Raby from JVX did the magnetic/VLF survey. Data processing was handled by Lily Manoukian at the JVX office in Richmond Hill, Ontario.

JVX

Figure 2. Grid layout with claim fabric

2. Instrumentation

Magnetometer/VLF

Gem Systems GSM-19WV, SN 7052356 (mobile) Gem Systems GSM-19, SN 6072060 (base)

The GSM19WV magnetometer/VLF receiver has a built in GPS receiver. The GSM-19 is an earlier version of the same magnetometer without a built in GPS receiver. The GSM-19WV measures total magnetic intensity, VLF total field, vertical inphase, vertical quadrature and two horizontal VLF components. Specification sheets are attached.

IP/resistivity

Scintrex IPR12 receiver, SN 9502048 GDD TXII – 1800W-2400V time domain transmitter, SN TX332 Huntec 2.5 kVA time domain transmitter, SN 272

The IPR12 is an eight channel time domain IP receiver that measures the primary voltage and decay voltages at 11 preset windows plus a user selected window (Mx). A 2 second current pulse was used. The IP receiver and transmitter are described in appendix 1. Specification sheets are attached.

3. Surveys

The UTM coordinates of at least two well separated points on each line were collected with a hand held GPS receiver. GPS control points at line ends, at the base line and every 100 m in between is ideal. These GPS derived UTM coordinates are used to draw an interpolated grid needed to register the geophysical results. The line/station, UTM coordinates and ellipsoidal elevation of GPS control points are listed in appendix 1. UTM coordinates are NAD83, Z17N.

Total magnetic intensity and VLF readings were taken every 12.5 m. Each reading record show line, station, total magnetic intensity, time, VLF frequency, VLF vertical inphase (ip) and quadrature (op) components, two VLF horizontal field components (h1 and h2) and VLF total field (pT). UTM coordinates were not recorded. VLF readings were taken at 24.0 kHz, 25.2 kHz when 24.0 kHz was unavailable.

24.0 kHz - NAA, Cutler, Maine at 44.7° n, 67.3° w, 1000 kW

25.2 kHz – NML, LaMoure, North Dakota at 46.4° n, 98.3° w, 500 kW

The base station magnetometer was set to record the total magnetic intensity every 10 seconds. IP/resistivity surveys were done with a pole-dipole array ('a' = 25 m, n=1,6) with the

moving current electrode grid north of the potential electrodes. Weekly field production reports are reproduced in appendix 2.

Figure 3. Total magnetic intensity, Huffman Lake Option

4. Presentation

The results of the surveys are presented on 5 plan maps at 1:5000 and 14 stacked pseudosections at 1:2500. All maps show the survey grid, claim numbers and claim boundaries, roads and drainage, a UTM grid (NAD83, Z17N) and latitude / longitude co-ordinates. Topography from MNDMF claimap3 shows little for the small map area and is not shown on final paper maps. Maps types are

- total magnetic intensity contours
- VLF offset profiles, vertical inphase and quadrature, 24.0 kHz
- VLF offset profiles, vertical inphase and quadrature, 25.2 kHz
- n=2 Mx chargeability contours
- n=2 apparent resistivity contours

Total magnetic intensity contours are shown in figure 3. n=2 Mx chargeability contours are shown in figure 4. Folded paper copies of all maps and pseudosections are bound with this report. Images of all maps are shown in appendix 3.

Each of the 15 sets of stacked pseudosections (lines 4800E to 6400E) shows colour/line pseudosections of the spectral IP time constant (tau), the spectral IP amplitude (MIP), the measured IP amplitude (Mx) and apparent resistivity.

Digital results (this report, raw and processed ASCII data files, Geosoft database and map files) are archived on CD.

Figure 4. n=2 Mx chargeability, Huffman Lake Option

5. Conclusions

Magnetic/VLF and spectral IP/resistivity surveys were done on the Huffman Lake Option grid, Gogama area, Ontario. The IP/resistivity survey was done from November 3 to 23, 2009. The magnetic/VLF survey was done from November 11 to 18, 2009. Total production was 12,175 m IP/resistivity and 14,150 m magnetics/VLF. The results have been presented on 5 plan maps at 1:5,000 and 15 stacked pseudosections at 1:2,500.

Blaine Webster, B.Sc., P. Geo. September 8, 2010

Certificate of Qualifications

Blaine Webster President - JVX Ltd., 60 West Wilmot Street, Unit 22 Richmond Hill, Ontario L4B 1M6 Tel : (905) 731-0972 Email : bwebster@jvx.ca

- I, Blaine Webster, B. Sc., P. Geo., do hereby certify that
 - 1. I graduated with a Bachelor of Science degree in Geophysics from the University of British Columbia in 1970.
 - 2. I am a member of the Association of Professional Geoscientists of Ontario.
 - 3. I have worked as a geophysicist for a total of 36 years since my graduation from university and have been involved in minerals exploration for base, precious and noble metals and uranium throughout much of the world.
 - 4. I am responsible for the overall preparation of this report. Most of the technical information in this report is derived from geophysical surveys conducted by JVX Ltd. for Augen Gold Corp. and information provided by Augen Gold Corp.

Blaine Webster, B. Sc., P. Geo.

APPENDIX 1

Spectral IP/resistivity and magnetic/VLF surveys were done on the Huffman Lake Option grid, Gogama area, Ontario. The work was done for Augen Gold Corp. by JVX Ltd. under JVX job number 9-60. The IP/resistivity survey was done from November 3 to 23, 2009. The magnetic/VLF survey was done from November 11 to 18, 2009. Total production was 12,175 m IP/resistivity (table 1) and 14,150 m magnetics/VLF (table 2).

Line	IP-From	IP-To	Separation	Date
4500E	500N	375N	125	November 19, 2009
4800E	250N	50S	300	November 8, 2009
4900E	250N	175S	425	November 8, 2009
5000E	200N	800S	1000	November 7, 2009
5100E	250N	200S	450	November 7, 2009
5200E	700N	475S	1175	November 6, 2009
5300E	625N	200S	825	November 5, 2009
5400E	550N	650S	1200	November 4/5, 2009
5500E	500N	175S	675	November 4, 2009
5600E	550N	625S	1175	November 3/4, 2009
5700E	600N	175S	775	November 3, 2009
5800E	575N	575S	1150	November 8, 2009
6000E	900N	200S	1100	November 21, 2009
6200E	1000N	00	1000	November 22, 2009
6400E	325N	00	325	November 22, 2009
	1000N	525N	475	November 23, 2009
		Total	12,175 m	

Table 1. Production summary, IP/resistivity survey, Huffman Lake Option grid

Line	Mag/VLF-From	Mag/VLF-To	VLF	Separation	Date
4500E	387.5N	500N	24	112.5	November 13, 2009
4800E	50S	250N	24	300	November 13, 2009
4900E	175S	250N	24	425	November 13, 2009
5000E	800S	200N	25.2	1000	November 12, 2009
5100E	200S	250N	25.2	450	November 12, 2009
5200E	450S	700N	25.2	1150	November 12, 2009
5300E	200S	625N	25.2	825	November 12, 2009
5400E	650S	550N	25.2	1200	November 12, 2009
5500E	200S	500N	25.2	700	November 12, 2009
5600E	625S	562.5N	24	1187.5	November 11, 2009
5700E	175S	37.5N	25.2	212.5	November 12, 2009
	50N	600N	24	550	November 11, 2009
5800E	575S	562.5N	24	1137.5	November 11, 2009
5900E	00	300N	24	300	November 18, 2009
6000E	200S	1000N	24	1200	November 17, 2009
6200E	00	1000N	24	1000	November 17, 2009
6400E	00	325N	24	325	November 18, 2009
	525N	1000N	24	475	November 17, 2009
B0N	4800E	6400E	24	1600	November 18, 2009
			Total	14,150 m	

Table 2. Production summary, magnetic/VLF survey, Huffman Lake Option grid

For the IP/resistivity survey, coverage is measured from the station of the first moving current electrode to the station of the last potential electrode (ideal grid). For the magnetic/VLF survey, coverage is measured from the first to last station (ideal grid).

Magnetic and VLF readings were taken every 12.5 m. IP/resistivity surveys were done in time domain with a pole-dipole array ('a' = 25 m, n=1,6). The moving current electrode was always grid north of the potential electrodes.

Grid

The Huffman Lake Option grid is largely within claims 1211326 and 3003313 (figure 1). Claim 1211326 is registered to Reginald J. Charron 50% and John G. Brady 50%. Claim 3003313 is registered to John G. Brady. These 2 claims are in Huffman Township. Gogama is 30 km east northeast of the grid. Timmins is 120 km to the northeast. The grid is made up of 15 lines at 25° east of north (4500E to 6400E) and a base line. The maximum station range is 800S to 1000N.

Grid registration is based on UTM coordinates from a hand held GPS receiver at 2 or more well separated points on each survey line (table 3). The geophysical survey results are registered with UTM coordinates interpolated or extrapolated from these GPS control points.

Figure 1. Huffman Lake Option grid with claim fabric from MNDM claimap3

Line	Station	UTM e	UTM n	elevation
4500E	500N	416029	5272819	421
	400N	415982	5272730	411
4800E	50S	416063	5272200	426
	00	416095	5272229	420
	75N	416129	5272299	422
	150N	416147	5272382	426
	250N	416187	5272466	405
4900E	250N	416279	5272428	401
	175N	416253	5272363	405
	75N	416216	5272272	411
	00	416177	5272205	419
	75S	416164	5272128	411

Augen Gold JVX 9-60 (Huffman Lake Option)

Line	Station	UTM e	UTM n	elevation
	175S	416115	5272029	418
5000E	200N	416357	5272338	404
	100N	416322	5272255	416
	00	416280	5272160	417
	75S	416251	5272093	426
	175S	416212	5271995	429
	275S	416178	5271923	428
	375S	416140	5271834	435
	475S	416105	5271737	419
	575S	416058	5271627	396
	675S	416026	5271546	425
	800S	415969	5271428	413
5100E	200S	416290	5271950	433
	75S	416349	5272054	419
	00	416373	5272122	412
	75N	416399	5272188	412
	150N	416416	5272256	413
	175N	416437	5272280	405
	250N	416455	5272341	413
5200E	700N	416733	5272708	403
	575N	416685	5272606	410
	475N	416651	5272518	408
	375N	416609	5272434	402
	275N	416588	5272337	411
	175N	416532	5272243	418
	75N	416497	5272164	424
	00	416454	5272081	418
	75S	416437	5272009	426
	175S	416402	5271928	444
	275S	416355	5271831	427
	375S	416318	5271740	428
	475S	416277	5271649	423
5300E	635N	416767	5272590	416
	625N	416767	5272590	416
	500N	416730	5272474	425
	400N	416698	5272393	429
	300N	416665	5272291	434
	200N	416654	5272198	430
	100N	416587	5272151	405
	00	416558	5272048	422
	100S	416525	5271964	430
	200S	416485	5271862	434
5400E	550N	416865	5272517	401
	375N	416798	5272355	421
	275N	416763	5272263	413
	175N	416719	5272169	407
	75N	416679	5272080	409
	25N	416659	5272032	408
	50S	416623	5271963	410
	225S	416561	5271804	413
	325S	416521	5271713	410
	425S	416483	5271619	413
	525S	416453	5271523	435
	625S	416408	5271432	422
	650S	416403	5271410	413
5500E	500N	416931	5272431	399
	375N	416878	5272316	418
	275N	416846	5272223	406
	175N	416805	5272132	407
	75N	416768	5272038	410

Line	Station	UTM e	UTM n	elevation
	00	416737	5271969	412
	75S	416707	5271901	414
	175S	416670	5271809	409
5600E	550N	417023	5272431	41
	375N	416973	5272260	415
	275N	416931	5272181	406
	175N	416896	5272090	409
	75N	416859	5271996	408
	00	416834	5271936	404
	75S	416805	5271861	412
	175S	416768	5271770	404
	275S	416727	5271687	412
	375S	416692	5271597	416
	475S	416670	5271505	438
	575S	416623	5271424	409
	625S	416606	5271373	395
5700E	600N	417151	5272419	409
	500N	417116	5272326	414
	400N	417078	5272244	414
	300N	417038	5272154	410
	200N	417001	5272069	402
	100N	416965	5271982	407
	00	416923	5271895	411
	75S	416895	5271823	417
	125S	416878	5271780	412
	175S	416864	5271727	422
5800E	575N	417232	5272388	396
	500N	417201	5272320	402
	400N	417166	5272227	415
	300N	417134	5272132	409
	200N	417093	5272044	400
	100N	417053	5271946	409
	00	417019	5271853	409
	100S	416970	5271753	422
	200S	416941	5271662	419
	300S	416902	5271581	408
	400S	416868	5271486	417
	500S	416823	5271402	414
	575S	416807	5271340	414
6000E	900N	417554	5272604	410
	800N	417515	5272510	408
	700N	417476	5272419	405
	600N	417436	5272322	413
	500N	417394	5272235	419
	400N	417361	5272139	412
	300N	417321	5272052	403
	200N	417278	5271962	414
	175N	417269	5271937	406
	100N	417240	5271871	416
	00	417199	5271781	420
	100S	417159	5271688	409
	200S	417119	5271596	413
6200E	1000N	417799	5272606	408
	900N	417756	5272517	407
	800N	417714	5272430	408
	700N	417674	5272340	407
	600N	417632	5272245	413
	<u>5</u> 00N	417589	5272154	413
	400N	417552	5272064	403
	300N	417510	5271974	400

Line	Station	UTM e	UTM n	elevation
	200N	417466	5271882	411
	100N	417425	5271789	403
	00	417384	5271701	417
6400E	1000N	417960	5272523	426
	900N	417919	5272433	413
	800N	417881	5272346	411
	725N	417849	5272275	411
	625N	417811	5272184	406
	525N	417768	5272092	410
	325N	417699	5271921	414
	300N	417685	5271904	408
	200N	417647	5271807	408
	100N	417602	5271716	390
	00	417565	5271622	414

Table 3. GPS control points (NAD83, Z17N), Huffman Lake Option grid

Instrumentation

Magnetometer/VLF

Gem Systems GSM-19WV, SN 7052356 (mobile) Gem Systems GSM-19, SN 6072060 (base)

The GSM19WV magnetometer/VLF receiver has a built in GPS receiver and data may be recorded with line/station and UTM coordinates. GSM-19WV stands for walking Overhauser magnetometer with VLF option. The GSM-19 is an earlier version of the same magnetometer without a built in GPS receiver. Both receivers measure total magnetic intensity to 0.01 nT. The GSM-19WV measures total magnetic intensity, VLF total field, vertical inphase, vertical quadrature and two horizontal components. Specification sheets are attached.

IP/resistivity

Scintrex IPR12 receiver, SN 9502048 GDD TXII – 1800W-2400V time domain transmitter, SN TX332 Huntec 2.5 kVA time domain transmitter, SN 272

For each potential electrode pair, the IPR12 measures the primary voltage (Vp) and the ratio of secondary to primary voltages (Vs/Vp) at 11 points on the IP decay (2 second current pulse). These 11 points are labeled M4 to M14. There is the option for an additional user defined slice (Mx). Units are millivolts for Vp and milliVolts/Volt for M4 to M14 and Mx. Settings are

Vp: 200 to 1600	msec
M4 centered at	60 msec (50 to 70)
M5 centered at	90 msec (70 to 110)
M6 centered at	130 msec (110 to 150)
M7 centered at	190 msec (150 to 230)
M8 centered at	270 msec (230 to 310)
M9 centered at	380 msec (310 to 450)
M10 centered at	520 msec (450 to 590)
M11 centered at	705 msec (590 to 820)
M12 centered at	935 msec (820 to 1050)
M13 centered at	1230 msec (1050 to 1410)
M14 centered at	1590 msec (1410 to 1770)
Mx centered at	870 msec (690 to 1050)

The apparent resistivity is calculated from Vp, the transmitted current and the appropriate geometric or K factors. M4 to M14 define the IP decay curve. The M12 or Mx slice is commonly presented in contoured pseudosections.

JVX has chosen the above settings for Mx in order to better reflect an IP measurement from the older Scintrex IPR11 time domain receiver. In IPR11 surveys from the 1980s, this chargeability window was most often plotted and experience gained is based in part on this measurement.

The IPR12 also calculates the theoretical decay that best fits the measured decay. The theoretical decay is based on the Cole-Cole impedance model applied in the 1970s. The fit is based on a set of theoretical master curves with restrictions that limit the value of the calculation. JVX uses a different method to calculate impedance parameters (see below).

The Instrumentation GDD Inc. GDD TXII 1800 watt time domain IP transmitter operates off 120V output from a 2000 watt motor generator. Output is current stabilized from 150 to 2400 volt taps. The maximum current is 10 amps. Current and circuit resistance are displayed in digital form.

Data Processing and Presentation

<u>Grid</u>

UTM coordinates at two or more well separated stations for each line were recorded with a hand held GPS receiver. These UTM coordinate – line/station pairs are loaded into a Geosoft database (gps.gdb). The rest of the grid is registered by interpolation or extrapolation from these GPS control points. UTM coordinates from the GPS receiver built into the mobile magnetometer were not recorded.

Base Map

Claim fabric has been downloaded as *.shp files from the MNDMF claimap3 website (Copyright Queen's Printer for Ontario). A topographic base map and claim fabric are available as a *.png image from the same source. Lakes, rivers and roads, downloaded as 1:50,000 *.shp files from GeoGratis (Earth Sciences Sector of Natural Resources Canada), are also available in all maps. There are minor differences in these elements from federal and provincial sources.

Magnetics/VLF

At the end of every survey day, data from the mobile and base station magnetometers are dumped to a PC. Output from both magnetometers are text files labelled by date and 'MAG' or 'mobile' and 'base'. Data dumps from the mobile unit show line, station, total magnetic intensity (nT), time (decimal hours), the VLF frequency, total field (pT), vertical inphase and quadrature components (ip and op) and two horizontal components (h1 and h2). Data dumps for the base unit contain time and total magnetic intensity. Subsequent processing steps are

- 1. Apply base station corrections to the mobile data. Corrected total magnetic intensity values are appended to the mobile files and renamed as '*_cor' files. Bad data or repeat values are removed.
- 2. Move the contents of the files containing the corrected total magnetic intensity and VLF values into a Geosoft database (*.gdb).
- 3. In the database, assign UTM coordinates to each line/station using a look up procedure from gps.gdb.

Colour + line contour maps of the corrected total magnetic intensity are generated from the database using Geosoft Montaj. Random gridding with a 6.25 m grid cell is used.

IP/Resistivity

At the end of every survey day, the IP/resistivity data are dumped from the IPR12 to a PC. Output is an ASCII *.dmp file with the date as the file name. Raw data from each survey line are

collected in ASCII *.i12 files with the line number as the file name. The data are checked for quality and quantity. The data are archived for transfer to JVX Ltd. in Toronto.

Office data processing is based largely on Geosoft Oasis Montaj v6.3 (www.geosoft.com). Impedance modelling software (below) is based on a suite of programs developed by JVX for the IPR11 and IPR12.

The *.i12 files are taken into a Geosoft database and merged with the position data in gps.gdb. The IP decays are analyzed for spectral content (see below).

The results are presented as plan maps of the n=2 Mx chargeability and apparent resistivity and stacked pseudosections. Stacked pseudosections show the Mx chargeability, apparent resistivity, spectral IP time constant (tau) and spectral IP amplitude (MIP). All are prepared with Geosoft Oasis Montaj. Random gridding is used in all cases. The pseudosections assume an ideal survey line. Plan maps show the interpolated grid, station numbers, posted values and line + colour contours.

Impedance Modelling

The Cole-Cole impedance model was developed in the 1970s after it became clear that chargeability is a complex property that includes amplitude (volume percent electronic conductors), grain size and grain size uniformity. In this model, the low frequency electrical impedance $Z(\omega)$ of rocks and soils is defined by 4 parameters. They are

- m: true chargeability amplitude in V/V (also called MIP)
- τ : tau time constant in seconds
- c: exponent

The form of the model is

 $Z(\omega) = r_0 \{1 - m [1 - (1+(i\omega\tau)^c)^{-1}]\}$ ohm.m

where ω is the angular frequency (2 π f).

The true chargeability (m or MIP) is a better measure of the volume percent electronic conductors - primarily pyrrhotite and graphite. The time constant is a measure of the square of the average grain size. The exponent is a measure of the uniformity of the grain size. Common or possible ranges are 0 to 1 V/V (m), .01 to 100 seconds (tau) and .1 to .5 (c).

In time domain IP surveys, impedance model parameters may be estimated using a best fit between theoretical and measured decays. The simplest approach is to use a set of master decay curves, pre-calculated for selected values of time constant and exponent. For a 2 second current pulse, the master curve set used here is for time constant values of .01, .03, .1, .3, 1, 3, 10, 30 and 100 seconds and exponent values of 0.1, 0.2, 0.3, 0.4 and 0.5. This gives a total of 45 master curves.

All decays that give an RMS fit between measured and master decay of less than 5% are judged to be of sufficient quality to yield spectral IP parameters.

Under ideal conditions, more than 90 % of the IP decays in any survey are of sufficient amplitude and quality to yield spectral parameters. 80 % is probably average for most surveys. The most common reason for the lack of spectral parameters is very low decay amplitudes – often seen in areas of thick and/or conductive overburden. Instrumentation and/or noise problems can occur over long sections of outcrop or at an abrupt boundary between outcrop and conductive ground. For this survey, 89.4% of the IP decays were of sufficient amplitude and quality to generate spectral parameters.

Pseudosections

The pseudosections are plotted using standard depth and position conventions. The plot point for any measured quantity for the nth potential dipole pair is $(n+\frac{1}{2})a/2$ m forward of and below the current electrode. Pole-dipole anomaly shapes depend on array orientation. The array sketch shown with each pseudosection shows the correct array orientation.

These plot forms have been found to give a reasonable image of target-top location, width and depth where 1) the anomalously chargeable and/or resistive body is an isolated, tabular body with a dip that is within \pm 45° of vertical), 2) where background chargeabilities and resistivities (overburden and host rock) are uniform and 3) where the terrain is relatively flat. They are more difficult to interpret for irregular or nearby chargeable bodies and where there is any amount of conductive cover or topographic relief. Forward or inverse modelling may be useful in such cases.

For Mx, MIP and apparent resistivity, colour contour intervals in the pseudosections are taken from equal area distribution for the whole grid. Colour assignments for the spectral 'tau' and 'c' are fixed.

Archives

The results of the survey are archived on CD. Included on the CD is the Oasis Montaj viewer. File types include

ASCII *.txt or *.dmp or *.xyz – text files, including instrument data dumps ASCII *.i12 – IPR12 collated raw data dumps *.gdb - Geosoft databases (gps, magnetics/VLF, IP/resistivity) *.map – Geosoft format pseudosections and maps included with this report MS WORD *.doc and Adobe Acrobat *.pdf – this report,

APPENDIX 2

Appendix 2 Weekly Field Production Reports

JVX Ltd. Weekly Field Production Report – IP/Resistivity

ject No 9-60 Client: Augen Gold				Area	: Gogama (NC	Week Ending: Nov.7/2009			
Day	Day Description		Gr	id	Line	From P1	To P1	Length (m)		
Sun Nov 1										
Mon Nov 2	Rob St., locate gu wires. So put out s spools. I Denis &	Rob R., & Brandon out & id. Lay out infinity & access cout out some of the lines & nake. Check & fix rods & Ready to read tomorrow. Dean gone for supplies.	Huff La Opt	man ke ion						
Tue Nov 3	Out to g lines 570 525N to lan Trav	rid, train Dennis on Tx. Read DOE 600N to 175S. 5600E 25S. el.	Huff La Opt	man ke ion	5700E 5600E	600N 550N	175S 25S	775 575		
Wed Nov4	Finish lir complete swamp. around t lan on T	ne 5600E, Read line 5500E e. Read line 5400E to Have to break line & go o finish. Have Dennis train x. Andrew Travel.	Huff La Opt	man ke ion	5600E 5500E 5400E	25S 500N 550N	625S 175S 25N	600 675 525		
Thu Nov 5	Go arou 5400E, f complete Dennis o Dean ou for acces tracking	nd swamp & reset on line inish line. Read line 5300E e. Setup on line 5200E. checking roads & Mags. t checking trails around grid ss & taking GPS points &	Huff La Opt	man ke ion	5400E 5300E	50S 625N	650S 200S	600 825		
Fri Nov 6	Read lin short, st 800S. M line is or Info said reroute a 5200E to	e 5200E complete. Line is cut ops @ 490S, should go to ove & setup on line 5100E, aly to 250N because of lake. it went to 600N. Had to access wire back down line o continue.	Huff La Opt	man ke ion	5200E	700N	475S	1175		
Sat Nov 7	Read lin complete are prett	es 5100E, & 5000E e. Setup on line 4900E. Lines y rough, line-cutters not yery good job	Huff La Opt	man ke ion	5100E 5000E	250N 200N	200S 800S	450 1000		

Name	Position	S	М	Т	W	Т	F	S
Dennis Palos	Geophysicist		Х	Х	Х	х		
Rob St. Michel	Operator		Х	Х	х	х	Х	Х
Rob Raby	Operator		Х	Х	х	х	Х	Х
Dean McNichol	Assistant		х	Х	х	х	х	Х
Brandon Martel	Assistant		Х	Х	Х	х	Х	Х
lan Mazal	Assistant			Х	х	х	Х	Х
Andrew Umemura	Assistant					х	Х	Х

ect No 9-	-60 Client: Augen Gold Area: Gogama ON Week Ending: N		ng: Nov.14/200				
Day	Descri	otion	Grid	Line	From P1	To P1	Length (m)
Sun Nov 8	Line 490 4800E c lake. Ha	00E. Complete and line complete. Line 4700E is in the to move to other side.	Huffman Lake Option	4900E 4800E	250N 250N	175S 50S	425 300
Mon Nov 9	Line 590 grid finis	00E complete. First part of shed.	Huffman Lake Option	5800E	575N	575S	1150
Tue Nov 10							
Wed Nov 11							
Thu Nov 12							
Fri Nov 13							
Sat Nov 14							

JVX Ltd. Weekly Field Production Report – IP/Resistivity

Name	Position	S	Μ	Т	W	Τ	F	S
Rob. St. Michel	Operator	х	х					
Rob Raby	Operator	х	х					
Dean McNichol	Assistant	х	х					
Brandon Martel	Assistant	х	х					
Andrew Umemura	Assistant	х	х					
lan Mazal	Assistant	х	х					

JVX Ltd.	
Weekly Field Production Report – IP/Resistiv	ity

Project No 9-	-60	Client: Augen Gold	Area	: Gogama (ON	Week Endi	ng: Nov.21/2	009
				-			_	_
Day	Descrij	otion	Grid	Line	From P1	To P1	Length (m)	
Sun Nov 15								
Mon Nov 16								
Tue Nov 17								
Wed Nov 18								
Thu Nov 19	Read lin Andrew	e 4500E complete. stand by for Dennis.	Huffman Lake Option	4500E	500N	375N	125	
Fri Nov 20								
Sat Nov 21	Lay out 6000E c up onlin tomorro	new access and read line complete. Move and set e 6200E. Ready for w am.	Huffman Lake Option	6000E	900N	2008	1100N	

Name	Position	S	Μ	Т	W	Т	F	S
Rob St. Michel	Operator					Х		Х
Rob Raby	Operator					х		Х
Dean McNichol	Operator					Х		Х
Andrew Umemura	Assistant					Х		
Brandon Martel	Assistant					Х		Х
lan Mazal	Assistant					Х		Х
Jim Corbiel	Assistant							Х

JVX Ltd. Weekly Field Production Report – IP/Resistivity

Project No 9-	-60 Client: Augen Gold		Area	Area: Gogama ON			ng: Nov.28/20	009
						_		
Day	Descrip	otion	Grid	Line	From	То	Length	
					P1	P1	(m)	
Sun	Line IP 6	200E complete. Bush	Huffman	6200E	1000N	00	1000	
Nov	crash an	d set up on south end of	Lake	6400E	325N	00	325	
22	6400E. H	Have to break because of	Option					
	lake. Rea	ad south and go around						
	and set u	up on north.						
Mon	Finish lin	e 6400E complete.	Huffman	6400E	1000N	I 525N	475	
Nov	Huffman	grid complete. Pick all	Lake					
23	wire and	gear and move off grid.	Option					
	Trip to T	immins for supplies.						
Tue								
Nov								
24								
Wed								
Nov								
25								
Thu								
Nov								
26								
Fri								
Nov								
27								
Sat								
Nov								
28								ĺ

Name	Position	S	Μ	Т	W	Τ	F	S
Rob St. Michael	Operator	х	х					
Rob Raby	Operator	х	х					
Dean McNichol	Operator	х	х					
Brandon Martel	Assistant	Х	Х					
lan Mazal	Assistant	х	Х					
Jim Corbiel	Assistant	х	Х					

ject No 9-6	0 Client: Augen Gold	Area	: Gogama (ON	Week Endin	g: Nov. 14/2
Day	Description	Grid	Line	From P1	To P1	Length (m)
Sun Nov 8						
Mon Nov 9						
Tue Nov 10						
Wed Nov	Mag VLF 24.0khz	Huffman Lake	5800E 5700E	575N 600N	562.5S 200N	1137.5 400
11	Total coverage: 2.725km Joined IP crew in afternoon	Option	5600E	562.5N	625S	1187.5
Thu Nov	Mag VLF 25.2khz	Huffman Lake	5700E 5500E	200N 500N	175S 200S	375 700
12	Total coverage:5.6km	Option	5400E 5300E	550N 625N	650S 200S	1100 825
			5200E 5100E 5000E	700N 250N 200N	450S 200S 800S	1150 450 1000
Fri Nov 13	Mag VLF 24.0 kHz Total coverage 837.5 m	Huffman Lake Option	4500E 4800E 4900E	500N 250N 250N	387.5N 50S 175S	112.5 300 425
Sat Nov 14						

JVX Ltd. Weekly Field Production Report – Magnetics/VLF

Personnel	Name	S	Μ	Τ	W	Τ	F	S
Geophysicist								
Operator	Rob Raby				Х	Х	Х	
Operator								
Assistant								

Project No 9-6	0 Client: Augen Gold	Area	Gogama ON	1 V	Veek Endin	g: Nov. 21/2009
Davis	Description	Ordel	1	F	T -	L a ra méla
Day	Description	Grid	Line	P1	10 P1	Length (m)
Sun Nov 15						(,
Mon Nov 16						
Tue Nov 17	Mag VLF 24.0khz Total coverage:2.675km Big lake on line 6400E at 525N Was thick bush to go around so I went to the road at 725N and headed towards 6800E. Did not find so I kept going and hit an even bigger lake. According to the map line 7200E should have been there.	Huffman Lake Option	6000E 6200E 6400E	1000N 1000N 1000N	200S 00 525N	1200 1000 475
Wed Nov 18	Mag VLF 24.0khz Total coverage:1.925km Base line ended at 6400E Line 5900E was not suppose to be there so I read it and its cut to 300N from BL0N	Huffman Lake Option	6400E 5900E B0N	325N 300N 6400E	00 00 4800E	325 300 1600
Thu Nov 19						
Fri Nov 20						
Sat Nov 21						

JVX Ltd. Weekly Field Production Report – Magnetics/VLF

Personnel	Name	S	Μ	Τ	W	Τ	F	S
Geophysicist								
Operator	Rob Raby			Х	Х			
Operator								
Assistant								

APPENDIX 3

Appendix 3 Map Images

The results of the surveys are presented on 5 plan maps at 1:5000 and 15 stacked pseudosections at 1:2500. Colour/line contours, posted values, claim fabric and the survey grid of the 5 plan maps are shown below. Map surrounds and coordinates are not shown here. The 5 plan maps are

- total magnetic intensity contours
- VLF offset profiles, vertical inphase and quadrature, 24.0 kHz
- VLF offset profiles, vertical inphase and quadrature, 25.2 kHz
- n=2 Mx chargeability contours
- n=2 apparent resistivity contours

Figure 1. Total magnetic intensity

Figure 2. VLF offset profiles, 24.0 kHz

Figure 3. VLF offset profiles, 25.2 kHz

Figure 4. n=2 Mx chargeability

Figure 5. n=2 apparent resistivity

INSTRUMENT SPECIFICATION SHEETS

Overhauser

Magnetometer / Gradiometer / VLF (GSM-19 v7.0)

GEM's unique Overhauser system combines data quality, survey efficiency and options into an instrument that matches costlier optically pumped Caesium devices.

And the latest v7.0 technology upgrades provide even more value:

Data export in standard XYZ (i.e. line-oriented) format for easy use in standard commercial software programs

Programmable export format for full control over output

GPS elevation values provide input for geophysical modeling

Enhanced GPS positioning resolution <1.5m standard GPS for high resolution surveying <1.0m OmniStar GPS <0.7m for newly introduced CDGPS

Multi-sensor capability for advanced surveys to resolve target geometry

Picket and line marking / annotation for capturing related surveying information on-the-go

And all of these technologies come complete with the most attractive savings and warranty in the business!

Overhauser (GSM-19) console with sensor and cable. Can also be configured with additional sensor for gradiometer (simultaneous) readings.

The GSM-19 v7.0 Overhauser instrument is the total field magnetometer / gradiometer of choice in today's earth science environment -- representing a unique blend of physics, data quality, operational efficiency, system design and options that clearly differentiate it from other quantum magnetometers.

With data quality exceeding standard proton precession and comparable to costlier optically pumped cesium units, the GSM-19 is a standard (or emerging standard) in many fields, including:

- o Mineral exploration (ground and airborne base station)
- o Environmental and engineering
- o Pipeline mapping
- o Unexploded Ordnance Detection
- o Archeology
- o Magnetic observatory measurements
- o Volcanology and earthquake prediction

Taking Advantage of the Overhauser Effect

Overhauser effect magnetometers are essentially proton precession devices -except that they produce an order-ofmagnitude greater sensitivity. These "supercharged" quantum magnetometers also deliver high absolute accuracy, rapid cycling (up to 5 readings / second), and exceptionally low power consumption.

The Overhauser effect occurs when a special liquid (with unpaired electrons) is combined with hydrogen atoms and then exposed to secondary polarization from a radio frequency (RF) magnetic field.

The unpaired electrons transfer their stronger polarization to hydrogen atoms, thereby generating a strong precession signal -- that is ideal for very highsensitivity total field measurements.

In comparison with proton precession methods, RF signal generation also keeps power consumption to an absolute minimum and eliminates noise (i.e. generating RF frequencies are well out of the bandwidth of the precession signal).

In addition, polarization and signal measurement can occur simultaneously -which enables faster, sequential measurements. This, in turn, facilitates advanced statistical averaging over the sampling period and/or increased cycling rates (i.e. sampling speeds).

Other advantages are described in the section called, "GEM's Commercial Overhauser System" that appears later in this brochure.

Key System Components

Key components that differentiate the GSM-19 from other systems on the market include the sensor and data acquisition console. Specifications for components are provided on the right side of this page.

Sensor Technology

GEM's sensors represent a proprietary innovation that combines advances in electronics design and quantum magnetometer chemistry.

Electronically, the detection assembly includes dual pick-up coils connected in series opposition to suppress far-source electrical interference, such as atmospheric noise. Chemically, the sensor head houses a proprietary hydrogen-rich

About GEM Advanced Magnetometers

GEM Systems, Inc. delivers the world's only magnetometers and gradiometers with built-in GPS for accuratelypositioned ground, airborne and stationary data acquisition. The company serves customers in many fields including mineral exploration, hydrocarbon exploration, environmental and engineering, Unexploded Ordnance Detection, archeology, earthquake hazard prediction and observatory research.

Key products include the QuickTrackerTM Proton Precession, Overhauser and SuperSenserTM Optically-Pumped Potassium instruments. Each system offers unique benefits in terms of sensitivity, sampling, and acquisition of high-quality data. These core benefits are complemented by GPS technologies that provide metre to sub-metre positioning.

With customers in more than 50 countries globally and more than 25 years of continuous technology R&D, GEM is known as the only geophysical instrument manufacturer that focuses exclusively on magnetic technology advancement.

"Our World is Magnetic"

liquid solvent with free electrons (free radicals) added to increase the signal intensity under RF polarization.

From a physical perspective, the sensor is a small size, light-weight assembly that houses the Overhauser detection system and fluid. A rugged plastic housing protects the internal components during operation and transport.

All sensor components are designed from carefully screened non-magnetic materials to assist in maximization of signal-tonoise. Heading errors are also minimized by ensuring that there are no magnetic inclusions or other defects that could result in variable readings for different orientations of the sensor.

Optional omni-directional sensors are available for operating in regions where the magnetic field is near-horizontal (i.e. equatorial regions). These sensors maximize signal strength regardless of field direction.

Data Acquisition Console Technology

Console technology comprises an external keypad / display interface with internal firmware for frequency counting, system control and data storage / retrieval. For operator convenience, the display provides both monochrome text as well as real-time profile data with an easyto-use interactive menu for performing all survey functions.

The firmware provides the convenience of upgrades over the Internet via the GEMLinkW software. The benefit is that instrumentation can be enhanced with the latest technology without returning the system to GEM -- resulting in both timely implementation of updates and reduced shipping / servicing costs.

GEM Systems, Inc. 52 West Beaver Creek Rd., 14 Richmond Hill, ON Canada L4B 1L9 Phone: 905-764-8008 Fax: 905-764-2949 Email: info@gemsys.ca Web: www.gemsys.ca

Specifications

Performance

Sensitivity:	0.022 nT / √Hz
Resolution:	0.01 nT
Absolute Accuracy:	+/- 0.1 nT
Range:	15,000 to 120,000 nT
Gradient Tolerance:	< 10,000 nT/m
Samples at: 60+, 5	5, 3, 2, 1, 0.5, 0.2 sec
Operating Temperatu	re: -40C to +50C

Operating Modes

Manual: Coordinates, time, date and reading stored automatically at minimum 3 second interval.

Base Station: Time, date and reading stored at 1 to 60 second intervals.

Remote Control: Optional remote control using RS-232 interface.

Input / Output: RS-232 or analog (optional) output using 6-pin weatherproof connector.

Storage - 32 MB (# of Readings)

1,465,623
5,373,951
1,240,142
2,686,975
223 x 69 x 240 mm

Sensor: 175 x 75mm diameter cylinder

Weights

Console with Belt:	2.1 kg
Sensor and Staff Assembly:	1.0 kg

Standard Components

GSM-19 console, GEMLinkW software, batteries, harness, charger, sensor with cable, RS-232 cable, staff, instruction manual and shipping case.

Optional VLF

Frequency Range: Up to 3 stations between 15 to 30.0 kHz

Parameters: Vertical in-phase and out-of-phase components as % of total field. 2 components of horizontal field amplitude and total field strength in pT.

Resolution:

0.1% of total field

IPR-12 SPECIFICATIONS

Inputs 1 to 8 dipoles are measured simultaneously.

Input Impedance 16 Megohms

SP Bucking

± 10 volt range. Automatic linear correction operating on a cycle by cycle basis.

Input Voltage (Vp) Range 50 µvolt to 14 volt.

Chargeability (M) Range 0 to 300 millivolt/volt.

Tau Range60 microseconds to 2000 seconds.

Reading Resolution of Vp, SP and M

Vp, 10 microvolt; SP, 1 millivolt; M, 0.01 millivolt/volt.

Absolute Accuracy of Vp, Sp and M Better than 1% .

Common Mode Rejection At input more than 100db.

Vp Integration Time 10% to 80% of the current on time.

IP Transient Program

Total measuring time keyboard selectable at 1,2,4,8,16 or 32 seconds. Normally 14 windows except that the first four are not measured on the 1 second timing, the first three are not measured on the 2 second timing and the first is not measured on the 4 second timing. An additional transient slice of minimum 10 ms width, and 10 ms steps, with delay of at least 40 ms is keyboard selectable. Programmable windows also available.

Transmitter Timing

Equal on and off times with polarity change each half cycle. On/off times of 1,2,4,8,16 or 32 seconds. Timing accuracy of ±100 ppm or better is required.

External Circuit Test

All dipoles are measured individually in sequence, using a 10 Hz square wave. The range is 0 to 2 Mohm with 0.1 kohm resolution. Circuit resistances are displayed and recorded.

Filtering

RF filter, 10 Hz 6 pole low pass filter, statistical noise spike removal.

Internal Test Generator

1200 mV of SP; 807 mV of Vp and 30.28 mV/V of M.

Analog Meter

For monitoring input signals; switchable to any dipole via keyboard.

Keyboard

17 key keypad with direct one key access to the most frequently used functions.

Display

16 lines by 40 characters, 128 x 240 dots, Backlit SuperTwist Liquid Crystal Display. Displays instrument status and data during and after reading. Alphanumeric and graphic displays.

Display Heater

Available for below -15°C operation.

Memory Capacity

Stores approximately 400 dipoles of information when 8 dipoles are measured simultaneously.

Real Time Clock

Data is recorded with year, month, day, hour, minute and second.

Digital Data Output

Formattted serial data output for printer and PC, etc. Data output in 7 or 8 bit ASCII, one start, one stop bit, no parity format. Baud rate is keyboard selectable for standard rates between 300 baud and 57.6 kBaud. Selectable carriage return delay to accommodate slow peripherals. Hand-shaking is done by X-on/X-off.

Standard Rechargeable Batteries

Eight rechargeable Ni-Cad D cells. Supplied with a charger, suitable for 100/230V, 50 to 60 Hz, 10W. More than 20 hours service at +25°C, more than 8 hours at -30°C.

Ancillary Rechargeable Batteries

An additional eight rechargeable Ni-Cad D cells may be installed in the console along with the Standard Rechargeable Batteries. Used to power the Display Heater or as backup power. Supplied with a second charger. More than 6 hours service at -30°C.

Use of Non-Rechargeable Batteries

Can be powered by D size Alkaline batteries, but rechargeable batteries are recommended for lower cost over time.

Operating Temperature Range -30°C to +50°C.

Storage Temperature Range -30°C to +50°C.

Dimensions

Console: 355 x 270 x 165 mm Charger: 120 x 95 x 55 mm

Weights

Console: 5.8 kg Batteries: 1.3 kg Charger: 1.1 kg

Transmitters Available

GGT-3 GGT-10

An ISO 9001:2000 registered company

* All specifications are subject to change without notice.

CANADA Scintrex 222 Snidercroft Road Concord, Ontario, Canada L4K 2K1 Telephone: +1 905 669 2280 Fax: +1 905 669 6403 e-mail: <u>scintrex@scintrexttd.com</u> Website: <u>www.scintrexttd.com</u>

USA

Micro-g LaCoste 1401 Horizon Avenue Lafayette, CO 80026 Telephone: +1 303 828 3499 Fax: +1 303 828 3288 e-mail: info@microglacoste.com website: www.microglacoste.com

SPECIFICATIONS

TxII-1800 W

- Size: 21 x 34 x 39 cm.
- · Weight: approximately 20 kg.
- · Operating temperature: -40° C to 65° C.

ELECTRICAL CHARACTERISTICS

TxII-1800 W and TxII-3600 W

- · Standard time base of 2 seconds for time-domain: 2 seconds ON, 2 seconds OFF.
- Optional time base: DC, 0.5, 1, 2, 4 or DC, 1, 2, 4, 8 seconds.
- Output current range: 0.030 to 10 A (normal operation).
 0.000 to 10 A (cancel open loop).
- · Output voltage range: 150 to 2400 V / 14 steps.
- · Ability to link 2 GDD transmitters to double power (Master / Slave).

CONTROLS

TxII-1800 W and TxII-3600 W

- · Power ON/OFF.
- Output voltage range switch: 150 V, 180 V, 350 V, 420 V, 500 V, 600 V, 700 V, 840 V, 1000 V, 1200 V, 1400 V, 1680 V, 2000 V, 2400 V.

DISPLAYS

TxII-1800 W and TxII-3600 W

- Output current LCD: reads to ± 0.001 A.
- · Electrode contact displayed when not transmitting.
- · Output power displayed when transmitting.
- · Automatic thermostat controlled LCD heater for readout.
- · Total protection against short circuits even at zero (0) ohm.
- Indicator lamps in case of overload:
 High voltage ON/OFF
 Output overcurrent
- Generator over or undervoltage Overheating
 - Open Loop Protection

POWER

- Logic fail

TxII-1800 W

Recommended generator:

- Standard 120 V / 60 Hz backpackable Honda generator.
- Suggested Models: EU1000iC, 1000 W, 13.5 kg or EU2000iC, 2000 W, 21.0 kg.

DESCRIPTION

TxII-1800 W

- · Includes shipping box, instruction manual and 110 V plug.
- · Optional backpackable frame for transmitter or generator.

SERVICE

Any instrument manufactured by GDD that breaks down while under warranty or service contract is replaced free of charge upon request, subject to instrument availability.

WARRANTY

- Standard three-year warranty on parts and labour.
- · Repairs done at GDD's office in Sainte-Foy, QC, Canada.

Instrumentation GDD inc. 3700, boul. de la Chaudière, suite 200 Sainte-Foy (Québec) Canada G1X 4B7

Tel. : (418) 877-4249 Toll Free : 1-877-977-4249 Fax : (418) 877-4054

Web Site: www.gddinstrumentation.com E-Mail: gdd@gddinstrumentation.com

TxII-3600 W

- 51 X 41.5 X 21.5 cm built-in transportation box from Pelican.
- · Weight: approximately 32 kg.
- Operating temperature: -40° C to 65° C.

TxII-3600 W

Recommended generator:

Standard 220 V, 50/ 60 Hz Honda generator.

or EM5000XK1C, 5000 kw, 77 kg.

Suggested Models: EM3500XK1C, 3500 W, 62 kg

- TxII-3600 W
- · Includes built-in shipping box, instruction manual and 220 V plug.
- Optional 220 V extension.

Specifications subject to change without notice. Taxes, transportation and duties are extra if applicable.

Instruments available for rental or sale.

Copyright 2005 Instrumentation GDD inc.

M-4 SERIES Induced Polarization/ Resistivity 2.5 kW Transmitter

DESCRIPTION

The HUNTEC M-4 2.5 kW Induced Polarization transmitter is designed for time domain, frequency domain (PFE) and complex resistivity applications. The unit converts primary 400 Hz ac power from an engine-alternator set to a regulated dc output current, set by the operator. Current regulation eliminates output waveform distortion due to electrode polarization effects. It is achieved in the transmitter by varying the alternator field currents. The transmitter is equipped with dummy loads to smooth out generator load variations.

FEATURES

- Solid-state switching for long life and precise timing.
- Open circuit during the "off" time ensures no counter current flow.
- Resistance measurement for load matching.
- Precision crystal controlled timing.
- Failsafe operation protects against short-circuit and overvoltage.
- Automatic regulation of output current eliminates errors due to changing polarization potential and load resistance.

SPECIFICATIONS M-4 2.5 kW Transmitter

Power input:	96 — 144 V line to line 3 phase, 400 Hz (from Huntec generator set)			
Output:	Voltage: 150 — 2200 V dc in 8 steps Current: 0.2 — 7 A regulated**			
Current regulation:	Less than ±0.1% change for ±10% load change			
Output frequency:	0.0625 Hz to 1 Hz (time domain, complex resistivity) 0.0625 Hz to 4 Hz (frequency domain) selectable from front panel An additional range of frequencies between 0.78 and 5.0 Hz is avail- able and can be selected by an internal switch.			
Frequency				
accuracy:	±50 ppm - 30°C to +60°C			
Output duty cycle:	0.5 to 0.9375 in increments of			
Ion/(Ion + Ioff)	0.0025 (time domain) 0.9375 (complex resistivity)			
	0.75 (frequency domain)			
Output current meter:	Two ranges: 0-5 A and 0-10 A			
Ground resistance	Multiplication of the - 12 Standon and Manager and Strands and Strands and All and A			
meter:	Two ranges: 0-10 kΩ, 0-100 kΩ			
Input voltage meter:	0-150 V			
Dummy load:	Two levels: 500 kW and 1.75 kW			
Temperature range:	-34°C to +50°C			
Size:	53 cm x 43 cm x 29 cm			
Weight:	26 kg			

**Smaller currents are obtainable, but outside the current regulation range the transmitter voltage is regulated, not the current.

SPECIFICATIONS M-4 2.5 kW Engine Driven Alternator

Output:	120V ac 400 Hz 3.5 kVA maximum				
Engine	Honda 5.5 HP air cooled,				
	Single cylinder four cycle piston				
	Engine with manual start.				
Fuel:	Regular grade gasoline, tank capacity				
	3.8L to give 4 h duration				
Alternator:	Delta connected heavy duty automobile				
	Type, belt driven, air cooled				
Construction:	Backpack style carrying frame				
	with mounted engine and alternator				
Size:	35 cm x 31 cm x 61 cm				
Weight(dry):	40 kg				

MAPS

		5+00 \$	4+00 S	3+00 \$	2+00 S	1+00 S	0+00 N
JVX_Spectral_Tau (s)	n=1 n=2 n=3 n≈4 n=5 0 n=6	0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0	0.0 0.0 0.0 0.1 0.0 0.0 0.0 0 0 0.0 0.1 0.0 0.0 0 0.0 0.1 0.0 0.1 0 0.0 0.0 0.1 0 0 0.0 0.0 0.1 0.0 0	0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
JVX_Spectral_MIP	n=1	5+00 S	4+00 S 66 -47 69 88	- 3+00 S	2+00 S	45 73 54	0+00 N 67 76 81 35 35 6
(mV/V)	n≂2 n=3 n≃4 n=5 1	65 54 92 120 114 99 3 128 126 85 63 12 130 142 86	105 111 37 66 179 106 122 64 100 103 72 62 110 60 62 70	67 103 58 7 108 64 73 53 53 75 97 58 5 80 74 66 98	4 77 79 75 55 135 82 67 64 63 69 80 65 64 65 70 66	59 74 72 56 50 74 73 57 51 75 65 55 51 76	78 58 80 84 77 74 69 82 103 72 69 72 75 82 72 84 76 74 79 62 87 74 83 85
Chargeshility	n=6	114 141	66 - 104-	70 80	66 71	66 74	58 88 90
(mV/V)	n=1 n=2 n=3 n=4	3.2 2.3 4.0 3.4 3.5 5.1 4.4 3.8 5.5 5.4 4.4 3.9	3.4 2.3 2.8 3.6 4.0 4.2 1.8 4.1 4.8 4.1 5.8 3.2 3.8 3.9 3.6 3.1	3.8 2.6 2.3 1.9 3.4 3.9 2.4 3 4.2 4.0 3.7 2.7 3.9 4.2 3.6 2	3.9 3.0 2.6 2.6 .1 3.1 3.2 3.1 2.8 3.5 3.4 3.4 3.2 .7 2.6 3.5 3.3 3.3	2.3 2.9 2.8 2.5 2.4 3.0 2.9 2.9 2.5 2.9 3.0 2.9 2.5 3.0	2.8 1.9 2.8 2.5 2.5 2.4 3.2 2.9 3.3 3.4 3.1 3.0 3.5 3.3 3.9 3.6 3.5 3.3 3.0 3.4 3.7 3.4 3.9 3.7
	n=5 4 n=6	.8 5.6 5.5 4.3 4.9 5.5	4.2 3.7 3.8 3.6 4.1 3.9	3.3 3.8 4.0 3.7 3.6 4.1	3.3 2.7 3.6 3.4 3.3 3.6	3.4 2.6 2.6 3.1 3.2 2.8	3.3 3.1 3.6 3.8 4.3 4.3 3.6 3.6 4.7
Calculated Resistivity Ohm*m	n=1 n=2	2582 4241 10 6323 4523 7159	4+00 S 1457 13560 9822 14428 13887 17670 11178 10414	3+00 S 8552 8126 6330 6647 11066 10155 6036 74	2+00 S 9434 5440 1773 1747 33 7502 1879 3416 334	1+00 S 293 446 589 752 3 577 855 1189 1	0+00 N 1035 1012 1047 2779 1840 24: 738 2266 1881 2468 6863 4796
	n=3 n=4 n=5 13 n=6	7075 9029 6749 8 10805 9209 12300 7543 117 13371 11967 13119 7 15460 12444 15444 15444	667 15284 19326 10136 1 9093 15579 16944 12714 778 9550 13339 20619 1 8146 15935	2727 14124 10098 6190 14942 14517 10502 51 5020 14909 15269 9766 15286 15065	5610 4257 3162 5730 17 3939 6550 5009 896 4558 5644 8931 7310 6240 12353	5718 880 1309 2021 2 8267 1202 1927 2 12215 11075 1637 2514 15697 2028	2934 3385 3323 4373 12280 697 883 3889 5094 4981 6659 15581 3500 5316 6921 6874 7940 160 4505 8941 7951 7951

