

REPORT

.

on the

PROPERTY INVESTIGATION

Trenching, Geological Mapping and Sampling

On The

BATCHAWANA COPPER PROPERTY (Ryan and Kincaid Townships, Ontario)

For

CENIT CORPORATION

the to al stank in the UMR 132211

Bruce Edgar (HBSc)

Brian Edgar (HBSc)

December 7, 2010

SUMMARY

The Batchawana Copper Property covers a vast area consisting of 324 units in 39 claim blocks in an historical copper mining area.

The focus of exploration on the property in recent years has been for Iron Oxide Copper-Gold (IOCG) mineralization of the Olympic Dam style. The Batchawana Copper Property has numerous characteristics of IOCG deposits, and a great deal of systematic and detailed exploration work will be required to prove the existence of an IOCG deposit.

The recent exploration program focused predominantly on an area 200 to 300 metres north-east of the historical Coppercorp mine site, which has been labelled the "51.8 Zone" by the author. It is possible that this surface showing corresponds to the historical Coppercorp "B" zone, which appears to never have been mined. A program of stripping/trenching and washing revealed copper mineralization in the form of malachite, malachite mud, and massive pinch and swell chalcocite veining within fractures/fault zones trending similarly, and parallel to, the historical mine trend. Assaying of grab samples revealed copper values as high as 71.31%. Two sections of the trench area demonstrated sufficient exposure to calculate weighted average grades over specific widths and lengths. The northern section returned a grade of 4.94% Cu over 3.0 metres for a length of 8.0 metres, and the southern exposed section returned a grade of 2.84% Cu over 3.0 metres.

A series of pits and cross-trenches located approximately 300 to 700 metres north of the 51.8 zone were excavated during this recent exploration program. Malachite stained host rocks (predominantly conglomerates) and some narrow chalcopyrite and chalcocite veinlets have been discovered. The veining trend is similar to the 51.8 zone and could possibly represent an important northern continuation, or faulted continuation, of this zone. Grab samples assayed as high as 15.8% Cu.

The potential continuation of the mine trend north is well documented, and trenching/stripping during this work program has uncovered more vein-type copper mineralization in the form of malachite and massive chalcocite. Grab samples returned assays as high as 18.7% Cu and a channel sample returned a weighted average grade of 2.17% Cu over 2.0 metres.

To the west of the property trenching has revealed chalcopyrite and chalcocite veinlets and areas of weathered malachite mud, within malachite stained host mafic volcanic rocks. The veining trends from 345° to 015°, similar to the mine trend. Grab samples as high as 6.55% Cu were returned.

The Batchawana Copper Property hosts significant vein-type, high grade copper mineralization along with values for silver, and in some instances, gold. The property also exhibits numerous characteristics of an IOCG deposit. A great deal of systematic work is warranted and necessary to prove economic viability. The author recommends reconnaissance geological mapping and sampling be completed across the entire property to locate more areas of potential high grade copper mineralization. A program of stripping/trenching could be performed concurrently with the mapping program as areas of interest are located. Estimated costs for the mapping program are \$120,000 to \$165,000, with an additional \$50,000 for the stripping/trenching program. The program could be completed in 80 to 110 days.

The author also recommends diamond drill testing of the 51.8 zone. A program consisting of twenty diamond drill holes on ten sections along the current exposure area would be completed at an all-in cost of approximately \$200,000. The drilling would be completed on 15 metre centres, with two holes (one 30 metres in length and one 50 metres) drilled from each set-up, for a total of 800 metres.

Summaryi
Introduction1
Location and Access1
History1
Geological Setting
Regional Geology4
Property Geology5
Work Performed
Results of Geological Mapping and Sampling
Geology6
Mineralization7
Sampling Results
Copper Analyses15.
Gold and Silver Analyses
Multi-element Analyses
Discussion and Conclusions
Recommendations
Qualifications
Reference
List of Figures
Location Map2
Regional Geology in the Area of the Batchawana Copper Property4

TABLE of CONTENTS

Geology and Mineralization in the Area of the Batchawana Copper Property	5
Work Program Area	16
51.8 zone Trench	17
Appendices	
Swastika Laboratories Assay Certificates	

.

Project Photographs

-

Batchawana Copper Property Claims Listing

INTRODUCTION

In October of 2010, the author was given the mandate by Mr. Michael Newbury (P. Eng.) and Mr. Birks Bovaird (Pres.) of Cenit Corporation, to complete a property investigation and sampling program on the Batchawana Copper Property in Ryan and Kincaid Townships, Ontario.

The Batchawana Copper Property consists of 39 claim blocks (324 units), and is held by First Minerals Exploration Limited (FMEL). Cenit Corporation has entered into an option and joint venture agreement with FMEL to obtain an undivided 50% right title and interest in the property.

A work program consisting of mechanical stripping and trenching, followed by washing, mapping and sampling, as well as traverses across select areas of the property, was completed between October 8 and 22, 2010.

This report contains the results of the exploration program.

LOCATION and ACCESS

The Batchawana Copper property is located 85 kilometres north-west of Sault Ste. Marie, and approximately 160 kilometres south of Wawa, Ontario. The Trans-Canada Highway (Highway 17) crosses the westernmost portion of the property.

A number of lumber roads provide access into the property from Highway 17. There are numerous bush roads and overgrown skidder and logging trails on the property which are inaccessible to vehicles, but provide easy access on foot.

The main route into the property is the historical Coppercorp Mine Road which passes through the original mine site.

HISTORY

The Batchawana Copper Property has a long history of prospecting, exploration and mining activity dating to the mid-1800's. The Montreal Mining Company held ownership of the property in 1856 and the location became known as the Montreal Mining Sand Bay Location. Numerous companies held the ground and performed prospecting and exploration on the property in the intervening years.

In 1948-49, Macassa Mines completed an examination and drilling of old copper showings, and later optioned the property to C. C. Huston and Associates who completed 33,400 feet of diamond drilling by 1952, outlining copper mineralized zones in the area of the Coppercorp Mine, including the C, D, SB, and Silver Creek Zones.

In 1954 a new company, Coppercorp Limited, was created and a shaft was sunk to 550 feet. By 1957, 14,000 feet of lateral development was completed and 60,000 tons of ore was stockpiled on surface (due to falling copper prices). Vauze Mines Ltd. (controlled by

1

Sheridan Geophysics) completed surface exploration comprised of geology, geophysics and geochemical sampling as well as additional drilling from 1962 to 1964.

In 1965, the Coppercorp deposit was brought into production, the workings dewatered and shaft deepened to 629 feet. A production rate of 500 tons per day produced copper concentrate with a recovery in excess of 90%. The historical (non 43-101 compliant) preproduction ore reserve estimate stood at 1.54 million tons @ 2.1% copper. The Coppercorp Mine ran until 1972, producing over 1,000,000 tons of milled ore for almost 24 million pounds of copper, 238,000 ounces of silver and 1,964 ounces of gold.

The majority of the property remained closed to staking until 2002, when local prospectors Terry Nicholson and William Gibbs staked the property, and proceeded to option the claim group to Amerigo Resources Limited. In 2003, Fugro Airborne Surveys completed an airborne magnetic survey over the Batchawana Copper Property (original Coppercorp Property) outlining several magnetic anomalies and a large 3 kilometre by 3 kilometre central magnetic high known as the "Regional Mag High". Amerigo completed mapping and sampling on a number of areas of the property and a detailed mapping of the Silver Creek area on 16 kilometres of cut lines.

In 2004, Nikos Explorations Ltd. obtained the property from Amerigo and proceeded to complete detailed mapping, sampling, and geophysics over the Beaver Pond grid (located southeast of the Silver Creek grid) and the Regional Mag High grid. A stage I drill program completed in 2005 was comprised of 1,005 metres in 6 holes, and a second stage program in 2007 was comprised of 2,728 metres in 17 holes. The drill programs predominantly outlined vein-type copper mineralization in a south-easterly direction following the historical mine trend.

In 2009, First Minerals Explorations Ltd. made a deal to procure the property from Nikos. The author completed a number of property visits to investigate historical mineralized showings and mineralization recently un-earthed in a number of pits. During one visit the author took a grab sample of chalcocite veining northeast of the historical mine site which ran 51.8% copper.

In 2010, Cenit Corporation made a deal with First Minerals to obtain a 50% right title and interest in the property. In October, 2010, the author completed a property investigation which included mechanized stripping/trenching over selected areas, and prospecting, mapping and grab, chip and channel sampling. This report details results of that work program.

* A more detailed history of the Batchawana Copper Property may be found in various reports by Nikos Explorations which are noted in the References section of this report.

GEOLOGICAL SETTING

Regional Geology

The Batchawana Copper Property is located within an area underlain by Neohelikian basalts and interflow conglomerates of the Mamainse Point Formation deposited within the Lake Superior Rift Basin approx. 1250 Ma BP. The flows unconformably overlie older Archean granites and a greenstone basement of the Batchawana Greenstone Belt, and all units dip about 30 degrees west towards Lake Superior.

Figure 2

Regional Geology in the area of the Batchawana Copper Property (Taken from "Geology and Exploration of the Coppercorp Project, Tortosa and Moss, 2004, after Giblin, 1973; Richards, 1995) The Flows and underlying basement are intruded by younger (approx. 1100 to 1030 Ma) felsic intrusives. It appears that all of the local copper, gold, silver and other metal mineralization is associated with the emplacement of the felsic intrusives.

Property Geology

The easternmost portion of the property consists of rocks of the Batchawana Greenstone Belt, dominated primarily by mafic to intermediate metavolcanics with minor felsic metavolcanic units. These Archean rocks have been metamorphosed up to amphibolite facies resulting in northeast trending isoclinal folds and a penetrative fabric with steep dips. The rocks have been intruded by felsic dikes, porphyry and breccias of Keweenwan age and are related to the felsic volcanic and intrusive rocks of the Mamainse Point Formation which occur in the western ³/₄ of the property.

Figure 3

Geology and Mineralization in the area of the Batchawana Copper Property (Taken from "Geology and Exploration of the Coppercorp Project, Tortosa and Moss, 2004, after Giblin, 1973; Richards, 1995) The Mamainse Point Formation consists of a 6 kilometre thick sequence of flood basalts and subordinate intervening conglomerates dipping westerly at 20 to 30°. These rocks are intruded by stocks and subvolcanic intrusions of felsic rocks of a slightly younger age.

Copper mineralization in the form of chalcocite, chalcopyrite, bornite and native copper, and other ore minerals (silver and gold) are found in veins or in fractured rock along faults which trend at 160° and 020° and dip moderately to the east. Mineralization appears to favour relatively competent basalts rather than conglomerate horizons.

WORK PERFORMED

The work on the Batchawana Copper Property was restricted to the western portion of the claim groups in general proximity to the old mine workings. The author has visited the property a number of times over the past year and read all the data provided by FMEL, but is by no means an expert on the property. The author has deferred to Mr. William Gibbs, who has lived and worked in the Batchawana area for most of his life. Mr. Gibbs has an intimate knowledge of the property area and history of exploration, and was responsible for staking the property after the closure to staking was lifted in 2002.

Whilst performing logging operations in the area Mr. Gibbs has located some areas of copper mineralization not previously reported by Amerigo or Nikos.

The author contacted Mr. Gibbs and asked him to begin stripping/trenching a number of these locations with an excavator beginning October 8, 2010. The author and assistant Mr. Brian Edgar (HBSc- Geologist) visited the property from October 12 through 22, 2010, to wash, map and sample the stripped areas (see Appendix II, Photographs 1-5), and to complete traverses to better understand the geology on the property.

A total of 69 samples were taken comprised of grab, chip and channel samples from veins and vein breccia displaying copper mineralization. Samples were assayed for copper, gold and silver, and a multi-element analysis was completed. Work focused predominantly on the "51.8 Zone" (first sampled by the author in 2009) and on the possible northern extension of this zone. Work was also completed on the possible extension of the Mine trend north, and on the trench showing to the far west of the property.

RESULTS OF GEOLOGICAL MAPPING & SAMPLING

Geology

Much of the geology was observed through work on the 51.8 zone, traverses north of this zone, north on the mine trend and west towards the property boundary. Outcrop on

the property is rare, but the outcrop witnessed along the traverses matched a pattern outlined in previous reports on the property. The author found that the area is dominated by mafic volcanics, with intermittent bands of conglomerate. No felsic intrusive units were witnessed during the traverses.

The mafic volcanics are generally very fine to fine grained, though in some areas appear more medium grained, especially in proximity to the mineralized veining. They tend to be dark grey to a red-brown or maroon colour, depending on the hematite content of the rock. The mafic volcanics can be massive to vesicular or amygdaloidal. Pervasive hematite alteration is most common, with calcite and epidote alteration witnessed frequently. Fine disseminated pyrite is witnessed in amounts generally less than 1%. Most outcroppings exhibit blocky fracturing, and attempts to strip the overburden in some areas results in abundant broken and fractured pieces. The mafic volcanics trend in a north-north-westerly direction and dip gently west-south-west.

In the area north of the 51.8 Zone, on outcrop beside the main road in to the mine site, and on some of the hills along the western traverse, conglomerates are witnessed. These clastic sediments are composed of poorly sorted, rounded clasts from pebble to boulder size, and appear to be predominantly of granitic composition, with perhaps 10% of the clasts being of mafic volcanic or gneissic composition. The conglomerate is variably hematized and in some locations epidote alteration is witnessed. The conglomerates follow the same trend and dip as the mafic volcanics.

Mineralization

The mineralization of interest within the Batchawana Copper Property is predominantly copper-sulphide mineralization.

51.8 Zone

In the area of the 51.8 zone, calcite (+/- quartz) veins and veinlets are found within faults and fractures trending from 340° to 020°. The hematized host rocks are well fractured and veining often appears as a stockwork or a series of parallel veins and veinlets/stringers. In places a calcite vein breccia is witnessed. The veining dips eastward from 45° to 50° to the south of the exposure to 68° to 70° to the north of the exposure.

In places, malachite and fine specks and coarser grains of chalcocite may be found within the calcite veining. In other locations the chalcocite is massive and swells to over 40 centimetres in width. In other places, the copper mineralization has been oxidized and weathered to a malachite-green mud.

51.8 Zone North

In pits and trenches to the north of the 51.8 zone, the predominant rock type is a moderately hematized conglomerate with minor epidote alteration. Fine calcite stringers are often witnessed and the host rock exhibits malachite staining. In a few locations fine veinlets of chalcopyrite are witnessed, and in others 1 to 2 centimetre veinlets of chalcocite can be seen.

The veining and mineralization appears to be generally on strike with the trench exposure of the 51.8 zone to the south, or could possibly be the faulted-off continuation of the zone.

Mine Trend North

In various pits and trenches following the Mine Trend north, calcite veinlets/stringers and stockwork can be witnessed. Malachite staining is evident to various degrees within both the host mafic volcanics and conglomerates. In some locations narrow chalcocite veinlets can be seen and in others chalcopyrite blebs and veining is witnessed. In some pits where bedrock cannot be seen, rock debris including massive chalcocite blocks are witnessed. As with the 51.8 zone, the veining appears to be pinch and swell.

Property West

In a few locations malachite staining can be seen in the host rocks. In a trench to the far west of the property, host rocks trending from 345° to 015° exhibit malachite and magnetite staining, siliceous calcite veining and vein breccia as well as chalcopyrite veins to 3 centimeters in width and blotches and blebs of chalcocite. In a few locations oxidized and weathered malachite mud can be seen.

SAMPLING RESULTS

While performing traverses across the northern and western areas of the property, and while investigating the trenching along the 51.8 zone, a total of 69 samples were taken to be assayed for copper, gold, silver and a multi-element analysis. The sampling consisted of grab, chip and channel sampling where possible.

All samples were sent to Agat Laboratories of Mississauga, Ontario, an accredited laboratory.

A table of the sampling follows with sample location (UTM coordinates), sample number, area, type and a description of each.

Sample	Туре	Easting	Northing	Sample #	Area	Description
1	grab	670955	5210232	6601	51.8	calcite vein breccia with 1% malachite stain, hematite MV
2	grab	670960	5210232	6602	51.8	massive chalcocite with malachite
3	grab	670965	5210231	6603	51.8	host amygdaloidal MV with minor malachite stain
4	channel	670953	5210212		51.8	
	0-30 cm w			6604		malachite mud
	30-80 c			6605		chalcocite vein with calcite and malachite
	80-140 c			6606		massive hematized MV occ.fine malachite stained specks and fine calcite stringers
	140-200 c			6607		massive hem.MV, trace fine mal.stain
	200-260 c			6608		massive hem.MV, trace fine mal.stain
	260-310 c			6609		massive hem.MV, fine calcite stringers, 10 cm section malachite mud
5	channel	670951	5210206		51.8	
	0-40 cm w			6610		30 cm massive chalcocite with calcite and malachite
	40-100 c			6611		hem.MV, trace fine py and minor mal stain
	100-150 c			6612		hematized MV fine qtz. carbonate veinlets
	150-200 c			6613		hematized MV 12 cm section malchite mud

6	channel	670949	5210203		51.8	
	0-30 cm w			6614		hem.MV, calcite veinlets over 15 cm and minor mal stain
	30-90 c			6615		hem MV, fine calcite stringers minor mal stain, possible fine chalcocite grains

•

	90-150 c			6616		hem MV, minor epidote, few fine calcite stringers and trace malachite stain
	150-230 c			6617		hem MV minor epidote, few fine calcite stringers and trace mal stain
7	grab	670957	5210218	6618	51.8	hem MV, abundant mal stain, some mal mud
8	grab	670956	5210205	6619	51.8	predominantly mal mud, some hem MV with minor specular hematite
9	grab	670950	5210195	6620	51.8	hem MV, minor mal stain with tr.py
10	grab	670951	5210194	6621	51.8	hem MV with some small vesicles and amygdules, minor mal stain with tr.py
11	grab	670953	5210177	6622	51.8	amygdular hem MV and mal mud, fine grains chalcocite
12	grab	670956	5210176	6623	51.8	20 cm wide section mal mud and host hem MV, amygdular
13	grab	670955	5210173	6624	51.8	host amygdular hem MV, few siliceous calcite stringers, mal stain, tr.py
14	grab	670957	5210168	6625	51.8	hem amygdular MV, minor fracture fill hem, minor mal stain, minor fine chalcocite, poss bornite
15	grab	670956	5210166	6626	51.8	12 cm mal mud and hem amygdular MV
16	chip	670959	5210152		51.8	
	0-30 cm w			6627		hem amydaloidal MV, minor fine mal stain
	30-60 c			6628		predominantly malachite mud
	60-90 c			6629		hem calcite filled amygdular MV with minor mal stain
17	chip	670962	5210118		51.8	
	0-30 cm w			. 6630		stockwork calcite veining in hem amygdula MV, mal stain and chalcocite grains and blebs
	30-50 c			6631		hem amygdaloidal MV, trace mal stain
18	channel	670953	5210142		51.8	

0-60 cm w	6632	hem amygdaloidal MV, tr.mal stain
60-120 c	6633	hem calcite filled amygdular MV, fine calcite stringers
120-180 c	6634	hem calcite filled amygdular MV, fine calcite stringers
180-240 c	6635	hem calcite filled amygdular MV, fine calcite stringers, minor mal stain
240-300 c	6636	hem calcite filled amygdular MV, fine calcite stringers, minor mal stain
300-340 c	6637	30 cm malachite mud

19	channel	670954	5210132		51.8	
	0-60 cm w			6638		hematized vesicular amygdaloidal MV
	60-120 c			6639		hematized vesicular amygdaloidal MV
	120-180 c			6640		hem vesicular/amygdaloidal MV, fine calcite stringers and some mal staining
	180-240 c			6641		hem MV, fine calcite and chalcocite stringers, 1X 5cm chalcocite, minor mal vein
	240-300 c			6642		hem MV, calcite veins and veinlets with grains and agglomerations chalcocite and mal stain
	300-360 c			6643		hem MV, calcite veins and veinlets with grains and agglomerations chalcocite and mal stain
	360-420 c			6644		predominantly siliceous calcite veining with 2-3 cm chalcocite veinlet, mal stain and fine disseminated chalcocite
20	chip	670955	5210128		51.8	
	0-60 cm w			6645		hem amygdular MV, fine calcite stringers

.

	60-110 c			6646		hem amygdular MV, fine calcite stringers
	110-150 c			6647		hem amygdular MV, fine calcite stringers minor mal stain
	150-190 c			6648		hem MV, intermitent 15 cm calcite vein
						with minor malachite stain
21	grab	670689	5210770	6649	51.8 north	slightly hem conglomerate, calcite and lesser hematite veining, minor mal stain
22	grab	670694	5210763	6650	51.8 north	slightly hem conglomerate with minor mal stain, epidotized
23	grab	670776	5210644	6651	51.8 north	conglomerate, abundant mal stain and fine grains of chalcocite
24	grab	670785	5210634	6652	51.8 north	5 cm chalcopyrite and bornite vein with mal stain
25	grab	670800	5210620	6653	51.8 north	abundant mal stained soil, 2 cm veinlet
						chalcocite
26	grab	670950	5210146	6654	51.8	massive chalcocite and malachite
27	grab	670957	5210118	6655	51.8	amygdaloidal hem MV, fine stockwork calcite stringers with minor chalcocite and malachite
28	grab	669557	5210744	6656	property west tr.	host moderately hem MV, mal stain
29	grab	669557	5210744	6657	property west tr.	host moderately hem MV, mal stain
30	grab	669557	5210744	6658	property west tr.	host moderately hem MV, mal stain and mud
31	grab	669557	5210744	6659	property west tr.	host moderately hem MV, mal stain, qtz. carbonate veining with chalcopyrite, bornite and minor mal stain
32	grab	670429	5211233	6660	mine trend north	calcite vein to 40 cm and hem MV carrying chalcocite blebs and specs, mal stain and minor py
33	grab	670420	5211266	6661	mine trend	hem MV calcite veinlets carrying chalcocite

					north	blebs and specks mal stain and minor py
34	grab	670390	5210731	6662	mine trend	hem MV with siliceous calcite veinlets, mal
	-				north	stain
35	grab	670094	5212286	6663	mine trend	host hem amygdaloidal MV, fine calcite
					north	veinlets and malachite stain
36	grab	670101	5212274	6664	trend	massive chalcocite with malachite stain
					north	
37	channel	670105	5212267		mine trend	
	0-50 cm w			6665	north	hematized MV occasional calcite stringers
	50-80 c			6666		chalcopyrite minor bornite vein, mal stain
	80-140 c			6667		strongly hematized MV
	140-200 c			6668		strongly hematized MV
38	grab	670102	5212263	6669	mine trend north	calcite vein breccia with predominant bornite garins, chalcopyrite and py

•

.

Assay results for Copper, Gold and Silver are presented in the following table:

Assay Results Cu, Au, Ag

Sample #	Cu (%)	Au (ppm)	Ag (ppm)
6601	0.202	0.009	34.9
6602	71.311	0.402	77
6603	0.258	0.005	1.5
6604	7.41	0.114	18.3
6605	38.715	0.258	28.4
6606	0.419	0.004	2.4
6607	0.107	0.003	4.3
6608	0.193	<0.001	2.5
6609	2.2	0.059	8.8
6610	37.356	• 0.197	26.8
6611	0.249	0.005	5.1
6612	0.37	0.004	2
6613	3.32	0.22	17.2
6614	0.221	0.041	1.4
6615	0.068	0.003	0.3
6616	0.078	0.002	0.6
6617	0.119	<0.001	1
6618	2.14	0.019	13.1
6619	3.82	0.061	14.1
6620	0.117	0.003	1.9
6621	0.092	0.173	0.4
6622	1.59	0.012	8.3
6623	7.5	0.093	13.2
6624	0.273	0.005	8.4
6625	0.197	0.005	1.8
6626	1.69	0.047	4.8
6627	0.116	• 0.043	28.7
6628	19.8	0.335	33.3
6629	0.449	0.013	2.9
6630	0.375	0.204	7
6631	0.186	0.079	3.1
6632	0.282	0.008	3.7
6633	0.134	0.003	1.8
6634	0.102	0.003	1.8
6635	0.547	0.036	3.3
6636	0.144	0.039	2.6
6637	16.7	0.468	37.5
6638	0.25	0.004	3.6
6639	0.196	0.005	2.8
6640	0.297	0.011	2.5
0041	8.52	0.095	42.5
6642	0.433	0.012	13.3
6643	4.81	0.065	20.6

6644	9.54	0.042	16.3
6645	0.139	0.01	1.2
6646	0.12	0.005	0.8
6647	0.487	0.019	5.2
6648	0.232	0.336	3.2
6649	0.037	0.003	0.3
6650	0.047	0.002	0.2
6651	0.515	0.02	2
6652	12.7	0.647	50.2
6653	15.8	0.39	21.8
6654	49.654	0.489	26.9
6655	1.57	0.495	10.4
6656	5.75	0.106	91.1
6657	0.492	0.014	9
6658	1.23	0.035	74.9
6659	6.55	0.437	18.2
6660	2.6	0.236	14.9
6661	2.53	0.109	6.7
6662	1.65	0.045	7.3
6663	6.37	2.91	13.4
6664	18.7	0.312	39.2
6665	0.347	0.656	1
6666	13.7	0.331	19.8
6667	0.032	0.006	0.2
6668	0.051	0.004	2.1
6669	6.02	1.15	15.3

Copper Analyses

51.8 Zone

A total of six channel samples, three chip samples and fourteen grab samples were taken from veining exposed along the 145 metres of the 51.8 zone trenching. Grab sample assays ranged from 0.07% Cu to 71.31%. Average weighted grades from the chip and channel sampling ranged from 0.108% Cu over 2.3 metres to 7.46% Cu over 3.1 metres.

Exposure in the 51.8 zone trench is insufficient to calculate an average weighted grade for the entire length of the trench. However, calculations can be made for two sections of the trench. The northern section containing channel samples 4, 5 and 6 returned a weighted average grade of 4.94% Cu over 3.0 metres for 8.0 metres. A southern section of the trench containing channel samples 18, 19 and 20, returned a weighted average grade of 2.84% Cu over 3.0 metres.

51.8 North

A total of five grab samples were taken from pits and trenches from 300 to 700 metres north of, and on trend with, the 51.8 zone. Values ranged from 0.037% Cu to 15.8%, with an arithmetic average grade of 5.82% Cu.

Mine Trend North

Six grab samples and one channel sample were taken from various pits and trenches north of the mine trend. Values ranged from 2.17% Cu to 18.7%, with an arithmetic average grade of 6.31% Cu for the grab samples. The channel sample returned a weighted average grade of 2.167% Cu over 2.0 metres.

Western trench

A total of four grab samples were taken from the trench to the western side of the property. Values ranged from 0.492% Cu to 6.55%, with an arithmetic average grade of 3.51%.

Gold and Silver Analyses

All samples were assayed for gold and silver. Three gold assays returned values higher than 0.50 ppm (0.50 gpt equivalent). All three were located to the north of the work area, one (0.656 ppm) in the 51.8 zone north trend and two (2.91 and 1.15 ppm) to the north of the mine trend. The three elevated levels for gold appear to be related to samples where chalcopyrite and bornite were the predominant copper minerals.

Assays for silver ranged from 1.0 to 91.1 ppm, with an arithmetic average of 13.9 ppm (13.9 gpt equivalent). Elevated silver values appear to be related to both chalcocite mineralization and bornite/chalcopyrite. The elevated silver values were also found in all sampling areas (51.8 zone, 51.8 north, mine trend north, and property west trench).

Multi-element Analyses

All samples were submitted for multi-element analysis. While copper, gold and iron are the metals characteristic of Iron-Oxide Copper-Gold deposits (IOCG), elevated values of other elements can be useful indicators of alteration. Barium, rare earth elements (REE) and potassium over sodium enrichment are also indicators for IOCG deposits.

Though the population of samples is insufficient to make comments concerning the possibility of the existence of an IOCG deposit at the present time, it is anticipated that completing multi-element analyses for all future programs on the property will provide enough data to determine trends.

DISCUSSION and CONCLUSIONS

The Batchawana Copper Property covers a vast area consisting of 324 units in 39 claim blocks in an historical copper mining area.

Historical exploration prior to the late 1940's is not well documented. The majority of exploration since that time has focused on the western portion of the property in general proximity to the historical Coppercorp Mine, and on the mine trend to the north and south.

After the closure of the Coppercorp Mine in 1972, the property remained closed to staking until 2002. Nikos Exploration, and predecessor Amerigo began the process of systematic exploration in 2003 using mapping of select areas, geochemistry and geophysics to provide targets for diamond drill programs completed in 2005 and 2007. The drill programs were successful in delineating copper mineralization in fault and fracture filled veins south of the Coppercorp Mine following the mine trend.

The focus of exploration on the property was to be for Iron Oxide Copper-Gold (IOCG) mineralization of the Olympic Dam style. The Batchawana Copper Property has numerous characteristics of IOCG deposits which are documented in the various Amerigo and Nikos Exploration reports.

A great deal of systematic and detailed exploration work will be required to prove the existence of an IOCG deposit.

The recent exploration program focused predominantly on an area 200 to 300 metres north-east of the historical Coppercorp mine site, which has been labelled the "51.8 Zone" by the author. It is possible that this surface showing corresponds to the historical Coppercorp "B" zone, which appears to never have been mined. A program of stripping/trenching and washing revealed copper mineralization in the form of malachite, malachite mud, and massive pinch and swell chalcocite veining within fractures/fault zones trending similarly, and parallel to, the historical mine trend. Assaying of grab samples revealed copper values as high as 71.31%. Two sections of the trench area demonstrated sufficient exposure to calculate weighted average grades over specific widths and lengths. The northern section returned a grade of 4.94% Cu over 3.0 metres for a length of 8.0 metres, and the southern exposed section returned a grade of 2.84% Cu over 3.0 metres.

A series of pits and cross-trenches located approximately 300 to 700 metres north of the 51.8 zone were excavated during this recent exploration program. Malachite stained host rocks (predominantly conglomerates) and some narrow chalcopyrite and chalcocite veinlets have been discovered. The veining trend is similar to the 51.8 zone and could possibly represent an important northern continuation, or faulted continuation, of this zone. Grab samples assayed as high as 15.8% Cu.

The potential continuation of the mine trend north is well documented, and trenching/stripping during this work program has uncovered more vein-type copper mineralization in the form of malachite and massive chalcocite. A number of areas were grab sampled and one channel sample was completed in historical areas known as the "Ubetchuwanit" and "L" zone showings. Grab samples returned assays as high as 18.7%

Cu and a channel sample returned a weighted average grade of 2.17% Cu over 2.0 metres.

To the west of the property trenching has revealed chalcopyrite and chalcocite veinlets up to a few centimetres in width, and areas of weathered malachite mud, within malachite stained host mafic volcanic rocks. The veining trends from 345° to 015°, similar to the mine trend. Grab samples as high as 6.55% Cu were returned.

The Batchawana Copper Property hosts significant vein-type, high grade copper mineralization along with values for silver, and in some instances, gold. The property also exhibits numerous characteristics of an IOCG deposit. A great deal of systematic work is warranted and necessary to prove economic viability.

RECOMMENDATIONS

The Batchawana Copper Property is a large property consisting of 39 claim blocks comprised of 324 units. Exploration should be systematic and thorough given the potential for vein-type, high grade copper zones and the possibility of proving the existence of an IOCG type deposit. The author recommends a number of possible work programs.

1). Reconnaissance Geological Mapping and Sampling

It is recommended that reconnaissance geological mapping and sampling be completed across the entire property on GPS lines with approximate 100 metre spacing. It is estimated that 3 to 4 claim units could be covered per day, suggesting the program would take 80 to 110 days to complete. Costs per day (Geologist, assistant, vehicle, fuel, food, lodging, assaying) for such a work program would amount to approximately \$1,500. Total cost for this program would be approximately \$120,000 to \$165,000.

The majority of copper occurrences appear to exist in the western portion of the claim group, which accounts for approximately 1/6 of the total area. A reconnaissance geological mapping and sampling program in this section of the property alone would take approximately 21 days to complete at a cost of \$31,500. This shorter program could be considered as part of a systematic exploration of the property should funds not be available for mapping of the entire property in one program.

2). Trenching/Stripping/Washing/Sampling Program

It is anticipated that copper occurrences will be encountered during the mapping program that will require work to expose the showing. Trenching/stripping could occur concurrently on these showings while the mapping program is being completed. An excavator and operator would cost approximately \$100 per hour (all-in cost including mob and demob). Estimating work required to be 200 hours at \$100 per hour would be

\$20,000 for this work. Washing, mapping and chip/channel sampling would incur additional costs of approximately \$1,500 per day for perhaps 20 days, for \$30,000. Total cost for this program approximately \$50,000.

3) Diamond Drill Program 51.8 Zone

The high grade nature of the copper assays and apparent continuity of structure dictates that the 51.8 zone be drill tested. It is recommended that a drill program be completed to test the zone on 15 meter centres for 10 sections along the existing exposure of the zone for 150 meters. Two holes (lengths of 30 and 50 metres) would be drilled from each section set-up to intercept the veining at 20 and 40 metre depths (vertical). The drill program (drilling, logging, assaying, reporting) consisting of 800 metres would be drilled at an all in cost of \$130 per metre for a total of approximately \$200,000 with contingencies.

Respectfully Submitted,

Bruce Edgar (HBSc)

December 7, 2010

QUALIFICATIONS

I, Bruce Alexander Edgar, resident at 5782 Highland Avenue, Niagara Falls, Ontario hereby certify that:

- 1) I am a graduate of Brock University, St. Catharines, Ontario, with a Bachelor of Science Degree (Honours) in Geology in 1981.
- 2) I have practiced this profession for 29 years, developing and supervising many surface and underground exploration programs on numerous properties.
- 3) I have visited the property to perform geological mapping and sampling from October 12 through 22, 2010.
- 4) I have received no compensation for this report other than normal consulting fees.

Bruce Edgar (HBSc) Consulting Geologist December 7, 2010

؛

QUALIFICATIONS

I, Brian Arthur Edgar, resident at 5782 Highland Avenue, Niagara Falls, Ontario hereby certify that:

- 1) I am a graduate of Brock University, St. Catharines, Ontario, with a Bachelor of Science Degree (Honours) in Geology in 2009.
- 2) I have practiced this profession during summer months since 2007, gaining experience by working on programs for a number of exploration companies.
- 3) I have visited the property to perform geological mapping and sampling from October 12 through 22, 2010.
- 4) I have received no compensation for this report other than normal consulting fees.

Brian Edgar (HBSc) Consulting Geologist December 7, 2010

REFERENCES

Edgar, B., A.	Report on the Property Investigation, Geological Mapping and Sampling on Claim 3015686, Ryan Township, On. for First Minerals Exploration Ltd. June 7, 2010
Giblin, P.	Batchawana Area: Geological map 2251, Ontario Department of Mines
Moss, Roger Ph.D., P.Geo +Tortosa, Delio M. Sc., P. Eng.	Geology and Exploration of the Coppercorp Property Sault Ste. Marie Mining Division, Ontario, March 23, 2004
Moss, Roger Ph.D., P.Geo +Peshkepia, Ardian M. Sc.	Report of First Phase Drilling Program, Coppercorp Property, Sault Ste. Marie Mining Division, Ontario 23 June, 2005
Moss, Roger Ph.D., P.Geo +Peshkepia, Ardian M. Sc.	Report of Second Phase Drilling Program, Coppercorp Property, Sault Ste. Marie Mining Division, Ontario 5 July, 2007
Rupert, Roy J. P. Eng.	Summary Report, Mamainse Mine Property, McDonell Mining Location, Batchawana, Ontario, April 10, 1991
Rupert, Roy J. P. Eng.	Report, Self Potential Survey, Mamainse Mine Property, McDonell Mining Location, Batchawana, Ontario, February 1, 1993

.

inclusion (L. D) GEOSCIENCE ASSESSMENT OFFICE

Appendix I

_

Agat Laboratories Assay Certificates

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION 2 TORONTO ST, 5TH FLOOR TORONTO, ON M5C2B6

ATTENTION TO:

PROJECT NO:

AGAT WORK ORDER: 10T448055

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, General Manager

DATE REPORTED: Nov 05, 2010

PAGES (INCLUDING COVER): 25

Should you require any information regarding this analysis please contact your client services representative at (905) 501 9998, or at 1-800-856-6261

*NOTES

VERSION 1:Updated version: Cu overlimit results for samples 6602, 6605, 6610 and 6654

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

AGAT Laboratories

DATE SAMPLE	ED: Oct 29	, 2010	•	DA	TE RECEIV	ED: Nov 05,	2010		DATE REPO	RTED: Nov 0	5, 2010	SA	MPLE TYPE	E: Rock	
	Analyte:	Ag	A	As	В	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Descript	ion RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.5
6601		34.9	0.58	96	23	209	0.9	<1	4.00	1.8	15	3.9	189	<0.5	1010
6602		77.0	0.07	1	13	18	<0.5	<1	0.03	<0.5	<1	2.1	<0.5	<0.5	>10000
6603		1.5	3.76	2	54	90	1.9	<1	1.84	<0.5	11	43.0	126	<0.5	2530
6604		18.3	0.23	5	34	128	<0.5	<1	0.19	<0.5	.11	1.5	5.7	<0.5	>10000
6605		28.4	0.17	41	<5	41	<0.5	<1	0.05	<0.5	7	1.9	61.9	<0.5	>10000
6606		2.4	0.48	50	18	307	0.9	<1	0.90	0.7	45	2.3	280	<0.5	3590
6607		4.3	0.59	59	30	99	1.1	<1	0.27	0.7	33	1.8	223	<0.5	693
6608		2.5	0.66	58	29	76	1.3	<1	0.35	0.7	47	1.8	179	<0.5	1630
6609		8.8	0.57	95	29	105	1.6	<1	0.15	1.4	30	2.7	236	<0.5	>10000
6610		26.8	0.18	14	8	103	<0.5	<1	0.06	<0.5	2	2.0	206	<0.5	>10000
6611		5.1	0.47	75	20	. 158	1.1	<1	0.09	0.9	. 26	2.2	266	<0.5	2190
6612		2.0	0.52	46	13	473	0.9	<1	0.09	0.6	26	2.0	346	<0.5	3210
6613		17.2	0.57	46	11	3050	1.2	<1	0.19	0.8	17	4.2	227	<0.5	>10000
6614		1.4	0.31	26	10	3990	0.6	<1	0.15	<0.5	6	5.7	350	<0.5	2040
6615		0.3	0.42	47	17	338	0.8	<1	0.19	0.6	30	1.6	267	<0.5	509
6616		0.6	0.44	31	13	122	0.8	<1	0.55	<0.5	15	1.4	242	<0.5	688
6617		1.0	0.61	57	16	116	1.1	<1	0.78	0.9	48	1.7	143	<0.5	1030
6618		13.1	4.07	3	60	127	0.8	<1	0.53	<0.5	12	52.9	124	<0.5	>10000
6619		14.1	1.93	4	57	120	1.0	<1	0.57	<0.5	21	49.0	109	<0.5	>10000
6620		1.9	2.68	6	62	122	1.3	<1	0.40	<0.5	20	64.7	135	<0.5	926
6621		0.4	2.82	5	61	136	1.3	<1	0.41	<0.5	18	58.5	143	<0.5	717
6622		8.3	2.17	6	56	172	1.3	<1	0.46	<0.5	21	53.2	115	<0.5	>10000
6623		13.2	1.34	7	57	90	0.6	<1	0.30	<0.5	5	48.9	23.6	<0.5	>10000
6624		8.4	2.21	6	58	175	1.3	<1	0.46	<0.5	22	54.5	117	<0.5	>10000
6625		1.8	1.73	10	51	583	1.2	<1	1.27	<0.5	19	51.9	186	<0.5	2060
6626		4.8	1.85	9	64	148	1.2	<1	0.39	<0.5	29	60.7	104	<0.5	>10000
6627		28.7	0.69	53	36	101	1.6	<1	2.68	1.3	30	3.4	138	<0.5	981
6628		33.3	0.56	61	42	132	0.5	<1	0.28	1.2	11	13.5	3.0	<0.5	>10000
6629		2.9	3.59	6	59	289	1.0	<1	2.89	<0.5	18	64.8	58.2	<0.5	4830
6630		7.0	0.65	. 11	41	70	0.8	<1	2.59	0.7	9	8.8	363	<0.5	3330
6631		3.1	2.15	4	65	217	1.8	<1	0.93	0.7	27	61.3	133	<0.5	1370
6632		3.7	0.60	22	23	180	1.4	<1	0.27	<0.5	11	4.8	182	<0.5	1970

Certified By:

Roy Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

G

Laboratories

DATE SAMPLED	: Oct 29,	2010		D		ED: Nov 05	, 2010		DATE REPO	RTED: Nov	05, 2010		SAMPLE TYP	E: Rock	
_	Analyte:	A	g A	As	В	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Unit:	pp	m %	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	0	.2 0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.5
6633	_	1	.8 2.49	4	56	150	1.9	<1	4.38	<0.5	22	47.4	101	<0.5	1110
6634		1	.8 2.79	3	57	150	1.3	<1	5.72	<0.5	20	64.1	91.5	<0.5	755
6635		3	.3 0.79	10	51	1210	1.0	<1	12.5	1.4	27	11.4	98.6	<0.5	5720
6636		2	.6 1.12	2 17	66	162	1.8	<1	5.81	0.9	25	21.6	125	<0.5	1060
6637		37	.5 0.34	13	54	84	0.6	<1	0.34	<0.5	15	3.7	6.8	<0.5	>10000
6638		3	.6 1.72	12	51	164	1.3	<1	2.40	0.9	16	42.9	128	<0.5	1890
6639		2	.8 1.51	1	57	639	1.6	<1	3.63	0.9	24	28.6	91.5	<0.5	1480
6640		2	.5 2.50) ^{ti} 1	59	183	1.0	<1	3.31	0.9	12	49.5	139	<0.5	2910
6641		42	.5 1.30) 9	35	177	<0.5	<1	7.03	0.8	15	19.6	120	<0.5	>10000
6642		13	.3 1.03	12	38	. 98	0.6	<1	13.6	1.3	21	23.4	87.0	<0.5	4260
6643		20	.6 1.25	5 11	33	234	<0.5	<1	10.7	3.5	16	40.6	134	. <0.5	>10000
6644		16	.3 0.21	11	14	230	<0.5	<1	16.7	1.5	- 17	2.3	105	<0.5	>10000
6645		1	.2 2.97	2	61	164	1.1	<1	5.31	<0.5	12	41.0	88.7	<0.5	1260
6646		0	.8 2.83	3	64	142	1.1	<1	5.25	<0.5	12	37.8	118	<0.5	1100
6647		5	.2 0.92	2 3	44	111	0.9	<1	8.69	1.2	21	23.6	140	<0.5	4450
6648		3	.2 0.31	20	26	97	<0.5	<1	16:3	3.1	18	4.4	199	<0.5	2210
6649		0	.3 1.13	3 5	19	37	0.5	<1	0.73	<0.5	9	17.5	514	<0.5	301
6650		0	.2 1.30) 3	15	35	0.6	<1	0.11	<0.5	11	21.5	357	<0.5	277
6651		2	.0 3.47	' 1	68	65	0.9	<1	0.41	<0.5	16	74.7	108	<0.5	4760
6652		50	.2 1.02	2 <1	78	57	<0.5	<1	0.11	<0.5	~<1	16.9	254	<0.5	>10000
6653		21	.8 1.31	<1	16	61	<0.5	<1	0.36	1.9	13	26.5	172	<0.5	>10000
6654		26	.9 0.08	3 <1	<5	385	<0.5	<1	0.10	<0.5	5	0.8	<0.5	<0.5	>10000
6655		10	.4 0.69) 13	39	78	0.7	<1	3.03	0.5	10	8.3	412	<0.5	>10000
6656		91	.1 2.00) <1	36	70	<0.5	<1	0.49	21.5	11	40.8	168	<0.5	>10000
6657		9	.0 2.42	2 <1	42	57	0.8	<1	0.66	1.0	12	41.9	153	<0.5	5190
6658		74	.9 2.46	s _<1	30	35	<0.5	<1	0.29	<0.5	<1	43.7	320	<0.5	>10000
6659		18	.2 2.08	3 <1	56	45	<0.5	<1	0.22	<0.5	<1	26.6	245	<0.5	>10000
6660		14	.9 0.94	<1 <1	81	320	<0.5	< <1	0.12	<0.5	<1	30.0	327	<0.5	>10000
6661		6	.7 2.60) <1	65	46	<0.5	<1	5.62	<0.5	<1	83.3	219	<0.5	>10000
6662		7	.3 4.56	s <1	60	45	<0.5	· · · · <1	0.43	<0.5	2	75.3	148	<0.5	>10000
6663		13	.4 1.67	4	63	60	<0.5	<1	2.27	5.1	<1	22.6	199	<0.5	>10000
6664		39	.2 0.92	2 19	37	24	<0.5	., / <1	0.62	8.6	<1	32.3	295	<0.5	>10000

Certified By:

Ron Cardinall

Page 3 of 25

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

• •

CLIENT NAME: CENIT CORPORATION

AGA

Laboratories

DATE SAMPLED: Oct	29, 2010		DA	TE RECEIV	ED: Nov 05	, 2010		ATE REPO	RTED: Nov (05, 2010	S	AMPLE TYP	E: Rock	
Analyt	e: Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
Uni	t: ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description RD	.: 0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.5
6665	1.0	4.55	<1	64	51	0.7	<1	2.31	2.7	3	75.9	145	<0.5	3640
6666	19.8	1.39	5	92	46	<0.5	<1	0.27	9.6	<1	44.6	267	<0.5	>10000
6667	0.2	0.67	6	24	94	1.1	<1	0.23	<0.5	42	2.2	308	<0.5	288
6668	2.1	1.37	19	32	43	1.0	<1	0.30	<0.5	8	21.8	190	<0.5	517
6669	15.3	2.37	6	39	31	<0.5	<1	0.22	0.6	<1	61.8	212	<0.5	>10000

Certified By:

Roy Cardinall

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

agat

Laboratories

DATE SAMPLED:	Oct 29,	2010	· · ·	DAT	E RECEIVE	D: Nov 05, 2	2010	D	ATE REPO	RTED: Nov 0	5, 2010	S	AMPLE TYP	E: Rock	
A	nalyte:	Fe	Ga	Hg	In	к	La	Li	Mg	Mn	Mo	Na	Ni	P	Pb
	Unit:	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description	RDL:	0.01	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5
6601		1.64	<5	<1	3	0.36	10	. 9	0.05	266	<0.5	<0.01	5.1	330	7.0
6602		2.18	<5	<1	19	<0.01	1	<1	0.02	77	<0.5	<0.01	3.5	>10000	806
6603		7.16	<5	<1	15	0.13	14	46	3.50	3550	<0.5	<0.01	39.9	1120	9.1
6604		5.52	9	<1	15	0.18	11	<1	0.03	30	<0.5	<0.01	13.7	5230	186
6605	2.1	0.52	<5	<1	8	0.07	12	<1	0.02	51	<0.5	<0.01	13.8	>10000	583
6606		1.48	<5	<1	4	0.28	24	1	0.05	158	<0.5	<0.01	7.8	243	13.8
6607		2.31	6	<1	8	0.34	17	13	0.04	182	<0.5	<0.01	5.4	50	9.7
6608		2.35	6	<1	6	0.38	27	22	0.04	184	<0.5	<0.01	5.6	120	11.6
6609		2.79	<5	<1	6	0.32	20	11	0.05	423	<0.5	<0.01	8.4	1640	50.9
6610		0.87	<5	<1	.10	0.11	2	<1	0.02	93	<0.5	<0.01	6.8	>10000	541
6611		1.47	<5	<1	3.	0.27	14	5	0.04	169	<0.5	<0.01	6.2	155	12.6
6612		0.88	<5	<1	4	0.27	16	13	0.05	220	<0.5	<0.01	7.9	269	12.5
6613		0.71	<5	. <1	2	0.33	13	3	0.07	455	<0.5	<0.01	16.7	2340	75.8
6614		0.71	<5	<1	2	0.19	4	2	0.03	145	<0.5	<0.01	8.6	161	8.3
6615		1.29	<5	<1	7	0.26	16	·. 1	0.03	183	<0.5	<0.01	5.8	36	6.9
6616		0.91	<5	<1	1	0.26	7	11	0.03	324	<0.5	<0.01	6.4	53	6.0
6617		1.07	<5	<1	2	0.33	17	11	0.05	362	<0.5	<0.01	5.0	99	7.6
6618		8.44	<5	<1	21	0.16	15	60	3.28	3220	<0.5	<0.01	52.5	1990	34.9
6619		8.44	<5	<1	18	0.31	18	21	1.24	2200	<0.5	<0.01	57.9	3050	81.4
6620		9.55	<5	<1	20	0.28	17	34	2.17	2460	<0.5	<0.01	76.5	1260	15.9
6621		9.27	<5	<1	19	0.24	17	37	2.79	2000	<0.5	<0.01	80.3	1220	10.8
6622		8.33	<5	<1	17	0.31	19	20	1.46	2900	<0.5	<0.01	110	1920	42.9
6623		8.84	<5	<1	22	0.14	12	17	0.90	1600	<0.5	<0.01	82.9	4710	165
6624		8.26	<5	<1	19	0.31	19	20	1.48	2880	<0.5	<0.01	112	1940	42.7
6625		6.76	<5	<1	14	0.30	19	20	0.86	2320	<0.5	<0.01	66.9	1160	20.3
6626		9.73	<5	<1	24	0.34	22	18	0.78	2190	<0.5	<0.01	64.3	2020	48.0
6627		3.06	<5	<1	. 8	0.38	13	3	0.07	685	<0.5	<0.01	4.1	94	15.5
6628		7.22	5	<1	21	0.16	16	4	0.23	835	<0.5	<0.01	28.5	9050	350
6629		8.70	<5	<1	22	0.19	20	50	2.56	3730	<0.5	<0.01	64.0	1360	13.5
6630		5.31	<5	<1	14	0.26	9	12	0.28	962	<0.5	<0.01	21.4	661	18.1
6631		7.92	<5	<1	18	0.29	24	84	1.21	2940	<0.5	<0.01	64.4	1260	17.4
6632		2.95	<5	<1	8	0.36	8	4	0.10	382	<0.5	<0.01	8.8	373	12.1

Certified By:

Roy Cardinall

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

AGAT Laboratories

DATE SAMPLED:	Oct 29, 2	2010		DATE	RECEIVED	: Nov 05, 20)10		ATE REPOR	TED: Nov 05	i, 2010	SA	MPLE TYP	E: Rock	
A	nalyte:	Fe	Ga	Hg	In	к	La	Li	Mg	Mn	Mo	Na	Ni	P	Pb
	Unit:	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description	RDL:	0.01	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5
6633		8.04	<5	<1	16	0.31	20	104	1.64	3140	<0.5	<0.01	57.6	1030	13.0
6634		8.34	<5	<1	16	0.24	18	71	1.74	2850	<0.5	<0.01	63.3	1040	11.1
6635		5.26	<5	<1	12	0.26	19	9	0.25	1810	<0.5	<0.01	15.0	1110	25.6
6636		7.23	<5	<1	15	0.29	19	29	0.43	1190	<0.5	<0.01	27.9	949	22.5
6637		7.99	10	<1	21	0.15	16	2	0.08	573	<0.5	<0.01	16.3	8610	337
6638		7.27	<5	<1	15	0.32	16	39	0.93	2360	<0.5	<0.01	54.5	996	15.5
6639		7.94	<5	<1	18	0.39	22	22	0.63	2260	<0.5	<0.01	50.3	1160	23.0
6640		8.45	<5	<1	19	0.28	16	48	1.37	3180	<0.5	<0.01	47.3	1080	18.7
6641		4.53	<5	<1	13	0.37	13	16	0.57	2450	<0.5	<0.01	23.7	5190	178
6642		5.00	<5	<1	12	0.32	15	9	0.38	3200	<0.5	<0.01	25.8	1000	25.2
6643		4.51	<5	. <1	12	0.18	11	18	. 0.61	2000	<0.5	<0.01	42.0	3180	85.8
6644		1.50	<5	<1	4	0.13	8	1	0.04	1120	<0.5	<0.01	5.0	5010	169
6645		8.59	<5	<1	17	0.21	16	65	2.21	3270	<0.5	<0.01	38.6	1000	12.4
6646		8.42	<5	<1	21	0.25	15	54	2.03	2960	<0.5	0.01	40.5	1160	12.8
6647		5.25	<5	<1	13	0.34	16	9	0.35	2130	<0.5	<0.01	26.6	1240	23.9
6648		2.33	<5	<1	6	0.14	9	4	0.11	975	0.6	<0.01	8.7	432	11.0
6649		2.36	<5	<1	7	0.22	10	21	0.79	1230	<0.5	<0.01	64.6	285	<0.5
6650		2.15	<5	<1	6	0.28	3	22	0.76	1090	<0.5	<0.01	66.0	368	<0.5
6651		10.1	<5	<1	21	0.15	17	41	2.66	3790	<0.5	<0.01	34.1	1600	19.0
6652		11.9	15	<1	46	0.10	4	9	0.59	1100	<0.5	<0.01	15.5	5740	290
6653		2.83	<5	<1	12	0.10	12	13	0.91	1420	<0.5	<0.01	19.6	7680	305
6654		0.11	<5	<1	6	0.04	7	<1	0.02	32	<0.5	<0.01	3.0	>10000	672
6655		5.20	<5	<1	16	0.17	10	13	0.35	1940	<0.5	<0.01	23.9	1080	36.9
6656		5.83	<5	<1	19	0.22	15	31	0.83	1830	<0.5	<0.01	42.1	4020	137
6657		6.50	<5	<1	18	0.26	17	36	0.93	2280	<0.5	<0.01	46.9	2000	22.7
6658		5.94	<5	<1	16	0.14	8	40	1.15	1980	31.9	<0.01	39.6	1840	31.7
6659		9.34	8	<1	32	0.13	8	37	0.78	1760	<0.5	<0.01	30.9	4120	160
6660		10.5	10	<1	37	0.03	<1	9	0.66	1140	<0.5	<0.01	26.6	1510	100
6661		9.18	<5	<1	27	0.11	7	33	1.78	3990	<0.5	<0.01	54.7	1800	70.2
6662		9.14	<5	<1	32	0.14	15	58	2.73	4840	<0.5	<0.01	39.0	2280	25.4
6663		9.96	<5	<1	34	0.10	6	27	0.86	1460	<0.5	<0.01	13.7	3760	145
6664		6.41	<5	<1	27	0.02	2	16	0.53	1010	<0.5	<0.01	25.2	7980	404

Certified By:

Roy Cardinall

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: CENIT CORPORATION

G

A

Laboratories

DATE SAMPLED: O	t 29, 2	010		DATE	RECEIVED	: Nov 05, 20	010	DA	TE REPORT	ED: Nov 05	, 2010	SA		: Rock	
Anai	yte:	Fe	Ga	Hg	In	ĸ	La	Li	Mg	Mn	Mo	Na	Ni	P	Pb
ι ι	Jnit:	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description R	DL:	0.01	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5
6665		9.53	<5	<1	29	0.11	16	100	2.86	4560	<0.5	<0.01	73.9	1240	43.9
6666		13.1	21	<1	51	0.03	5	18	0.76	1690	<0.5	<0.01	29.1	6290	1390
6667		2.72	<5	<1	9	0.30	19	5	0.09	536	<0.5	<0.01	8.5	21	16.1
6668		4.12	<5	<1	12	0.26	10	15	0.48	926	<0.5	<0.01	19.3	303	14.1
6669		7.08	<5	<1	24	0.08	10	37	1.21	2600	<0.5	<0.01	34.0	3570	220

Certified By:

Roy Cardinall

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

Laboratories

DATE SAMPLED:	Oct 29,	2010		DA	TE RECEIVE	ED: Nov 05,	2010		DATE REPO	RTED: Nov	05, 2010	S	AMPLE TYPE	E: Rock	
A	nalyte:	Rb	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description	RDL:	10	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5
6601		77	0.050	<1	1.9	<10	<5	15.4	<10	<10	<5	<0.01	5	<5	35.7
6602		<10	4.16	<1	7.9	<10	<5	3.4	<10	<10	<5	<0.01	<5	<5	37.6
6603		19	0.021	<1	17.3	<10	<5	77.3	<10	<10	<5	0.25	<5	<5	183
6604		28	0.879	<1	3.8	<10	<5	7.3	<10	<10	<5	0.01	<5	<5	72.5
6605		16	2.79	<1	5.7	<10	<5	17.7	<10	<10	<5	<0.01	<5	<5	18.1
6606		34	0.059	<1	<0.5	<10	<5	7.3	<10	<10	<5	<0.01	<5	<5	5.7
6607		66	<0.005	<1	<0.5	<10	<5	4.9	<10	<10	<5	<0.01	<5	<5	5.8
6608		99	<0.005	<1	<0.5	<10	<5	4.3	<10	<10	<5	<0.01	<5	<5	6.1
6609		76	0.051	<1	4.1	<10	<5	3.8	<10	<10	<5	<0.01	<5	<5	48.4
6610		20	2.98	<1	3.9	<10	<5	3.2	<10	<10	<5	<0.01	<5	<5	19.7
6611 .		44	0.029	<1	<0.5	<10	<5	5.2	<10	≮10	<5	<0.01	<5	<5	. 4.6
6612		56	0.028	<1	0.9	<10	<5	7.0	<10	<10	<5	<0.01	<5	<5	5.3
6613		69	0.121	<1	4.6	<10	11	55.8	<10	<10	<5	<0.01	<5	<5	37.1
6614	÷.	22	0.085	1 in 1	<0.5	<10	<5	93.2	<10	<10	<5	<0.01	<5	<5	16.0
6615		27	0.009	<1	<0.5	<10	<5	8.1	<10	<10	<5	<0.01	<5	<5	5.4
6616		56	0.008	<1	0.6	<10	<5	3.8	<10	<10	<5.	<0.01	<5	<5	6.6
6617		74	0.010	<1	0.5	<10	<5	6.4	<10	<10	<5	<0.01	<5	<5	10.7
6618		23	<0.005	<1	14.9	<10	<5	10.8	<10	<10	<5	0.02	<5	<5	160
6619		49	0.007	<1	11.9	<10	<5	9.3	<10	<10	<5	0.05	<5	<5	172
6620		41	<0.005	<1	10.1	<10	<5	10.3	<10	<10	<5	0.08	<5	<5	179
6621		34	<0.005	<1	11.2	<10	<5	11.9	<10	<10	<5	0.06	<5	<5	164
6622		41	<0.005	<1	11.6	<10	<5	16.5	<10	<10	<5	0.06	<5	<5	157
6623		22	0.029	<1	7.8	<10	<5	8.6	<10	<10	<5	0.02	<5	<5	122
6624		42	<0.005	<1	12.0	<10	<5	16.3	<10	<10	<5	0.06	<5	<5	161
6625		41	0.014	<1	16.2	<10	<5	18.0	<10	<10	<5	0.04	<5	<5	157
6626		47	0.011	<1	10.5	<10	<5	8.7	<10	<10	<5	0.04	<5	<5	166
6627		68	0.029	<1	1.0	<10	<5	7.6	<10	<10	<5	<0.01	<5	<5	16.1
6628		30	0.353	<1	9.3	<10	<5	7.7	<10	<10	<5	0.02	<5	<5	103
6629		33	0.025	<1	14.6	<10	<5	21.5	<10	<10	<5	0.02	6	<5	156
6630		39	0.036	<1	5.1	<10	<5	9.8	<10	<10	<5	0.02	5	<5	95.7
6631		39	<0.005	<1	14.4	<10	<5	14.4	<10	<10	<5	0.06	<5	<5	154
6632		49	0.007	<1	2.1	<10	<5	4.8	<10	<10	<5	0.01	<5	<5	34.1

Certified By:

Roy Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

agat

Laboratories

Aqua Regia Digest - Metals Package, ICP-OES finish (201073)

ATTENTION TO:

DATE	SAMPLED:	Oct 29,	2010			D	ATE RECEIV	ED: Nov 05,	2010		DATE REPO	RTED: Nov	05, 2010		SAMPLE TY	PE: Rock	
	A	nalyte:		Rb	s	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V
		Unit:	р	pm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample	Description	RDL:		10	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5
6633				45	0.029	<1	13.7	<10	<5	20.4	<10	<10	<5	0.10	<5	<5	133
6634				39	0.046	<1	13.7	<10	<5	24.4	<10	<10	<5	0.06	<5	<5	139
6635				41	0.173	<1	8.7	<10	<5	61.3	<10	<10	<5	0.02	6	<5	90.9
6636				44	0.050	<1	10.3	<10	<5	20.1	<10	<10	<5	0.07	<5	<5	139
6637				24	0.316	<1	7.0	<10	<5	5.3	<10	<10	<5	0.03	<5	<5	81.2
6638				48	0.019	<1	10.2	<10	<5	12.7	<10	<10	<5	0.07	<5	<5	132
6639				60	0.037	<1	10.5	<10	<5	29.9	<10	<10	<5	0.10	<5	<5	148
6640				45	0.045	<1	13.5	<10	<5	17.2	<10	<10	<5	0.06	<5	<5	161
6641				67	1.08	<1	7.8	<10	<5	27.4	<10	<10	<5	0.04	<5	<5	80.5
6642				53	0.203	<1	8.0	<10	<5	36.1	<10	<10	<5	0.05	6	<5	96.6
6643	1.00			28	0.901	. <1	7.6	<10	<5	76.0.	<10	<10	<5	0.01	.8	<5	82.1
6644	an a			19	1.22	<1	4.2	<10	<5	65.0	<10	<10	<5	0.01	8	<5	34.3
6645			,	33	0.047	<1	13.2	<10	<5	25.9	<10	<10	<5	0.07	<5	<5	167
6646				39	0.046	<1	17.3	<10	<5	25.0	<10	<10	<5	0.08	<5	<5	206
6647				54	0.169	<1	9.4	<10	<5	29.2	<10	<10	<5	0.05	<5	<5	97.7
6648				19	0.187	<1	3.3	<10	<5	43.9	<10	<10	<5	0.01	8	<5	56.4
6649				32 <	0.005	<1	2.8	<10	<5	5.7	<10	<10	<5	<0.01	<5	<5	35.1
6650				44 <	0.005	<1	2.5	<10	<5	3.3	<10	<10	<5	<0.01	<5	<5	43.6
6651				26 <	0.005	<1	14.2	<10	<5	8.7	<10	<10	<5	0.05	<5	<5	191
6652				17	4.63	<1	6.9	<10	<5	14.6	<10	<10	<5	0.05	<5	<5	205
6653				19	1.70	<1	9.0	<10	<5	5.4	<10	<10	<5	<0.01	<5	<5	100
6654				11	1.24	<1	8.2	<10	<5	3.9	<10	<10	<5	<0.01	<5	<5	18.3
6655				27	0.252	<1	5.7	<10	<5	9.3	<10	<10	<5	0.03	6	<5	95.4
6656				31	1.05	<1	11.9	<10	<5	5.8	<10	<10	<5	0.02	<5	<5	195
6657				34	0.005	<1	15.4	<10	<5	9.0	<10	<10	<5	0.08	<5	<5	210
6658				18	0.044	<1	9.4	<10	<5	3.1	<10	<10	<5	0.01	<5	<5	167
6659				18	3.94	<1	10.0	<10	<5	7.0	<10	<10	<5	0.02	<5	<5	129
6660			. <	10	0.778	<1	4.8	<10	<5	8.8	<10	<10	<5	0.01	<5	<5	235
6661				18	0.367	<1	12.2	<10	<5	25.7	<10	<10	<5	0.10	<5	<5	126
6662				21	0.015	<1	20.2	<10	<5	12.0	<10	<10	<5	0.03	6	<5	219
6663				14 (0.808	<1	8.5	<10	<5	15.5	<10	<10	<5	0.03	9	<5	951
6664			<	10	4.25	<1	6.0	<10	<5	6.2	<10	<10	<5	0.02	<5	<5	266

Certified By:

Roy Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: CENIT CORPORATION

AG

Laboratories

Aqua Regia Digest - Metals Package, ICP-OES finish (201073)

ATTENTION TO:

DATE SAMPLED:	Oct 29, 2	010		DATE	RECEIVED:	Nov 05, 20)10	D	ATE REPOR	TED: Nov 0	5, 2010	SA	MPLE TYPE	: Rock	
A	nalyte:	Rb	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	v
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description	RDL:	10	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5_	0.5
6665		17	0.209	<1	21.1	<10	<5	16.6	<10	<10	<5	0.05	7	<5	221
6666		<10	7.42	<1	7.8	<10	<5	7.9	<10	<10	<5	0.01	6	<5	80.3
6667		33	0.013	<1	<0.5	<10	<5	5.4	<10	<10	<5	<0.01	<5	<5	8.0
6668		34	< 0.005	<1	3.9	<10	<5	7.7	<10	<10	< 5	0.01	<5	<5	53.1
6669		12	1.80	<1	10.5	<10	<5	7.3	<10	<10	<5	0.04	<5	<5	181

Certified By:

Roy Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

Laboratories

G

ATTENTION TO: Aqua Regia Digest - Metals Package JCP-OES finish (201073)

				Aqua N	cyla Dię	Jest - Mictals	Fachaye,			073)				
DATE SAMPLED:	Oct 29, 2	010		DATE	RECEIVE	ED: Nov 05, 2010		DATE R	EPORTED: No	05, 2010	SA	MPLE TYPE:	Rock	
A	nalyte:	w	Y	Zn	Zr									
	Unit:	ppm	ppm	ppm	ppm									
Sample Description	RDL:	1	1	0.5	5									
6601		<1	32	13.9	23									
6602		<1	1	<0.5	<5									
6603		1	21	317	14									
6604		<1	16	<0.5	6									
6605	· ^	<1	23	<0.5	<5		1							
6606		<1	38	12.2	12									
6607		<1	43	11.9	27	en en la			*					
6608		<1	50	17.0	42									
6609		<1	37	14.4	22									
6610		<1	12	<0.5	6									
6611		<1	40	13.1	. 20					×				
6612		<1	37	12.1	24									
6613		<1	32	17.1	8									
6614		<1	19	11. 4	7									
6615		<1	33	9.6	13					·				1
6616		<1	31	9.8	23									
6617	÷ 1	<1	64	15.8	35									
6618		<1	26	425	7									
6619		· <1	30	233	8									
6620		4	27	326	8									
6621		3	26	180	8									
6622		<1	25	248	7									
6623		<1	20	201	5									
6624		<1	26	248	7									
6625		<1	31	173	7									
6626		<1	39	270	7									
6627		<1	33	21.4	19									
6628		<1	26	36.0	7									
6629		<1	36	404	6									
6630		<1	13	28.2	7									
6631		1	28	213	9									
6632		<1	20	15.3	13									

Certified By:

Roy Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agattabs.com

CLIENT NAME: CENIT CORPORATION

Laboratories

G

ATTENTION TO:

Aqua Regia Digest - Metals Package, ICP-OES finish (201073) DATE REPORTED: Nov 05, 2010 SAMPLE TYPE: Rock DATE RECEIVED: Nov 05, 2010 DATE SAMPLED: Oct 29, 2010 Y Zn Zr w Analyte: Unit: ppm ppm ppm ppm Sample Description RDL: 0.5 43.9 <1 66.7 <1 2.5 <1 <1 <1 <1 <1 <1 <1 <0.5 <5 <1 <1 <1 10.4 <5 <5 <1 <1 <1 < 0.5 <5 <1 26.8 <1 <1 <1 <1 <1 <1 <1 <1

Certified By:

Roy Cardinall

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agattabs.com

CLIENT NAME: CENIT CORPORATION

S

Aqua Regia Digest - Metals Package, ICP-OES finish (201073)

DATE SAMPLED:	Oct 29, 20	010		DATE	RECEIVED	D: Nov 05, 2010		DATE REPORTED: Nov 05, 2010	SAMPLE TYPE: Rock
A	nalyte:	w	Y	Zn	Źr				
	Unit:	ppm	ppm	ppm	ppm				
Sample Description	RDL:	1	1	0.5	5				
6665		6	26	709	11		,		
6666		<1	12	229	9				
6667		<1	31	26.1	15				
6668		2	22	92.7	15				
6669		<1	18	412	. 11				

Comments: RDL - Reported Detection Limit

Updated version: Cu overlimit results for samples 6602, 6605, 6610 and 6654

Laboratories

Certified By:

Roy Cardinall

	S (A)	aboratories
A A		auoratories

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: CENIT CORPORATION

ATTENTION TO:

Fire Assay - Trace Au, ICP-OES finish (202552) (50g charge) SAMPLE TYPE: Rock DATE SAMPLED: Oct 29, 2010 DATE RECEIVED: Nov 05, 2010 DATE REPORTED: Nov 05, 2010 Sample Analyte: Login Weight Au Unit: kg ppm Sample Description RDL: 0.001 0.01 6601 0.90 0.009 6602 0.402 1.81 6603 0.72 0.005 6604 1.26 0.114 6605 1.65 0.258 6606 1.53 0.004 6607 1.75 0.003 6608 <0.001 1.38 6609 0.97 0.059 6610 1.03 0.197 6611 1.41 0.005 6612 1.68 0.004 6613 1.30 0.220 6614 1.28 0.041 6615 1.69 0.003 6616 1.08 0.002 6617 1.90 < 0.001 6618 1.49 0.019 6619 1.25 0.061 6620 1.32 0.003 6621 1.47 0.173 6622 1.71 0.012 6623 1.59 0.093 6624 1.27 0.005 6625 1.36 0.005 6626 1.06 0.047 6627 1.43 0.043 6628 0.335 1.12 6629 1.48 0.013 6630 0.94 0.204 6631 1.18 0.079 6632 1.82 0.008

Certified By:

hon Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO:

Fire Assay - Trace Au, ICP-OES finish (202552) (50g charge)

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: CENIT CORPORATION

ATTENTION TO:

DATE REPORTED: Nov 05, 2010 SAMPLE TYPE: Rock DATE SAMPLED: Oct 29, 2010 DATE RECEIVED: Nov 05, 2010 Sample Analyte: Login Weight Au kg Unit: ppm Sample Description RDL: 0.01 0.001 6633 1.89 0.003 6634 1.28 0.003 6635 1.37 0.036 6636 1.13 0.039 6637 0.96 0.468 6638 1.72 0.004 0.70 6639 0.005 6640 0.96 0.011 6641 1.21 0.095 6642 1.57 0.012 6643 2.02 0.065 6644 0.83 0.042 6645 1.44 0.010 6646 0.80 0.005 6647 1.32 0.019 6648 0.80 0.336 6649 1.22 0.003 6650 0.90 0.002 1.09 6651 0.020 6652 1.33 0.647 6653 0.99 0.390 6654 2.01 0.489 6655 0.98 0.495 6656 1.08 0.106 0.014 6657 1.14 6658 1.52 0.035 0.96 6659 0.437 6660 1.51 0.236 6661 1.47 0.109 6662 0.81 0.045 6663 0.75 2.91 2.53 6664 0.312

Certified By:

Los Cardinall

1	A		Laboratories
---	---	--	--------------

ATTENTION TO:

AGAT WORK ORDER: 10T448055 **PROJECT NO:**

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

Fire Assay - Trace Au, ICP-OES finish (202552) (50g charge)

				,			
DATE SAMPLED: Oct 29, 2010		·	DATE RECEIVED: Nov 05, 2010	DATE REPORTED: Nov 05, 2010	SAMPLE TYPE: Rock		
	Analyte: L	Sample ogin Weight	Au				
	Unit:	kg	ppm				
Sample Description	on RDL:	0.01	0.001				
6665		1.12	0.656				
6666		1.06	0.331				
6667		0.86	0.006				
6668		1.11	0.004				
6669		1.30	1.15				
Comments: F	RDL - Repor	ted Detection L	imit				

Updated version: Cu overlimit results for samples 6602, 6605, 6610 and 6654

Certified By:

Roy Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

Г

ATTENTION TO:

	Sodium Peroxide Fusion, ICP-OES finish (201079)									
DATE SAMPLED: Oct 29,	2010		DATE RECEIVED: Nov 05	, 2010	DATE REP	ORTED: Nov 05, 2010	SAMPLE	TYPE: Rock		
Analyte:	Cu	Cu-OL	i							
Unit:	%	%								
Sample Description RDL:	0.001	0.002								
6601	0.202				a the second second		and the second second	and the second second		
6602	>30	71.311								
6603	0.258									
6604	7.41									
6605	>30	38.715								
6606	0.419									
6607	0.107									
6608	0.193									
6609	2.20									
6610	>30	37.356								
6611 .	0.249					•				
6612	0.370									
6613	3.32									
6614	0.221									
6615	0.068									
6616	0.078									
6617	0.119									
6618	2.14									
6619	3.82									
6620	0.117									
6621	0.092									
6622	1.59									
6623	7.50									
6624	0.273									
6625	0.197									
6626	1.69									
6627	0.116									
6628	19.8									
6629	0.449									
6630	0.375									
6631	0.186			ς.						
6632	0.282									

Certified By:

hon Cardinall

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agattabs.com

CLIENT NAME: CENIT CORPORATION

ATTENTION TO:

Sodium Peroxide Fusion, ICP-OES finish (201079) DATE RECEIVED: Nov 05, 2010 DATE REPORTED: Nov 05, 2010 SAMPLE TYPE: Rock DATE SAMPLED: Oct 29, 2010 Analyte: Cu Cu-OL % % Unit: Sample Description RDL: 0.001 0.002 6633 0.134 6634 0.102 6635 0.547 6636 0.144 6637 16.7 6638 0.250 6639 0.196 6640 0.297 6641 8.52 6642 0.433 6643 4.81 6644 9.54 6645 0.139 6646 0.120 6647 0.487 6648 0.232 6649 0.037 6650 0.047 6651 0.515 6652 12.7 6653 15.8 6654 >30 49.654 6655 1.57 6656 5.75 6657 0.492 6658 1.23 6659 6.55 6660 2.60 6661 2.53 6662 1.65 6663 6:37 6664 18.7

Roy Cardinall

Certified By:

Page 18 of 25

ALL OF		G		Laboratories
Sector A sector	~-		V	

ATTENTION TO:

AGAT WORK ORDER: 10T448055 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CENIT CORPORATION

Sodium Peroxide Fusion, ICP-OES finish (201079)

DATE SAMPLED: Oct 29, 2	010		DATE RECEIVED: Nov 05, 2010	DATE REPORTED: Nov 05, 2010 SAMPLE TYPE: Rock
Analyte:	Cu	Cu-OL		
Unit:	%	%		
Sample Description RDL:	0.001	0.002		
6665	0.347			
6666	13.7			
6667	0.032			
6668	0.051			
6669	6.02			

Comments: RDL - Reported Detection Limit

Updated version: Cu overlimit results for samples 6602, 6605, 6610 and 6654

Certified By:

Roy Cardinall

AGAT Laboratories

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

. . .

_

1. 1 4

CLIENT NAME: CENIT CORPORATION

AGAT WORK ORDER: 10T448055

PROJECT NO:

ATTENTION TO:

Solid Analysis											
RPT Date: Nov 05, 2010			REPLIC	CATE				REFER		RIAL	
DADAMETED	Batch	Sample id	Original	Ren #1	PPD	Method Blank	Result	Expect	Recovery	Acceptable Limits	
	Daten	Campiona	Oliginal	Nop #1	1410		Value	Value		Lower	Upper
Fire Assay - Trace Au, ICP-OES finis	h (202552) (5	Og charge)									
Au	1	2099147	1.15	1.22	5.9%	< 0.001	2.156	2.342	92%	90%	110%
Fire Assay - Trace Au, ICP-OES finis	h (202552) (5	0g charge)									
Au	1	2095230	0.005	0.003		< 0.001	0.201	0.205	98%	90%	110%
Fire Assay - Trace Au, ICP-OES finis	h (202552) (5	0g charge)									
Au	1	2095255	0.002	0.005		< 0.001				70%	130%
Fire Assay - Trace Au, ICP-OES finis	h (202552) (5	0g charge)		•							
Au	1	2099140	0.0447	0.0343	26.3%	< 0.001				70%	130%
Aqua Regia Digest - Metals Package	, ICP-OES fin	ish (201073)									
Ag	1	2095205	34.9	21.4		< 0.2	9	7	122%	70%	130%
Al	1	2095205	0.58	0.58	0.0%	< 0.01				80%	120%
As	1	2095205	96	95	1.0%	< 1				80%	120%
В	1	2095205	23	23	0.0%	< 5				80%	120%
Ва	1	2095205	209	205	1.9%	< 1				80%	120%
Be	1	2095205	0.9	0.9	0.0%	< 0.5				80%	120%
Bi	1	2095205	< 1	< 1	0.0%	< 1				80%	120%
Са	1	2095205	4.00	3.88	3.0%	< 0.01	0.6	0.55	110%	90%	110%
Cd	1	2095205	1.8	1.8	0.0%	< 0.5				80%	120%
Се	1	2095205	15	15	0.0%	< 1				80%	120%
Co	1	2095205	3.9	3.9	0.0%	< 0.5	5.2	5.0	104%	90%	110%
Cr	1	2095205	189	187	1.1%	< 0.5				80%	120%
Cs	1	2095205	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Cu	1	2095205	1010	1000	1.0%	1.1	4446	4700	95%	90%	110%
Fe	1	2095205	1.64	. 1.60	2.5%	< 0.01	1.23	1.55	80%	80%	120%
Ga	1	2095205	< 5	< 5	0.0%	< 5				80%	120%
Hg	1	2095205	< 1	< 1	0.0%	< 1				80%	120%
In	1	2095205	3	5		< 1				80%	120%
к	1	2095205	0.36	0.36	0.0%	< 0.01				80%	120%
La	1	2095205	10	10	0.0%	< 1				80%	120%
Li	1	2095205	9	9	0.0%	< 1				80%	120%
Mg	1	2095205	0.05	0.05	0.0%	< 0.01				80%	120%
Mn	1	2095205	266	262	1.5%	< 1				80%	120%
Мо	1	2095205	< 0.5	< 0.5	0.0%	< 0.5	308	280	110%	90%	110%
Na	1	2095205	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Ni	1	2095205	5.06	4.63	8.9%	< 0.5	5	7	74%	70%	130%
P	1	2095205	330	326	1.2%	< 10				80%	120%
Pb	1	2095205	6.97	6.09	13.5%	< 0.5	33	30	111%	80%	120%
Rb	1	2095205	77	78	1.3%	< 10				80%	120%
S	1	2095205	0.050	0.046	8.3%	< 0.005				80%	120%
Sb	1	2095205	< 1	< 1	0.0%	< 1				80%	120%
Sc	1	2095205	1.9	1.9	0.0%	< 0.5				80%	120%
Se	1	2095205	< 10	· < 10	0.0%	< 10				80%	120%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CENIT CORPORATION

PROJECT NO:

AGAT WORK ORDER: 10T448055

ATTENTION TO:

Solid Analysis (Continued)

RPT Date: Nov 05, 2010		REPLICATE				REFERENCE MATERIAL					
	Batch	Sample Id	Original	Ben #1	PPD	Method Blank	Result	Expect	Becovery	Accepta	ble Limits
	Batch	Sample Id	Unginal	Rep#1	RPD		Value	Value	Recovery	Lower	Upper
Sn	1	2095205	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	2095205	15.4	17.4	12.2%	0.8				80%	120%
Та	1	2095205	< 10	< 10	0.0%	< 10				80%	120%
Те	1	2095205	< 10	< 10	0.0%	< 10				80%	120%
Th	1	2095205	< 5	< 5	0.0%	< 5				80%	120%
Ті	1	2095205	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
п	1	2095205	5	6	18.2%	< 5				80%	120%
υ	1	2095205	< 5	< 5	0.0%	< 5				80%	120%
V	1	2095205	35.7	35.5	0.6%	< 0.5				80%	120%
w	1	2095205	< 1	< 1	0.0%	< 1				80%	120%
Y	1	2095205	32	31	3.2%	< 1				80%	120%
Zn	1	2095205	13.9	13.8	0.7%	< 0.5	23	32	73%	70%	130%
Zr	1	2095205	23	22	4.4%	< 5				80%	120%
Aqua Regia Digest - Metals Package, I	CP-OES fir	nish (201073)									
Ag	1	2095230	1.85	1.87	1.1%	< 0.2				80%	120%
Al	1	2095230	1.73	1.71	1.2%	< 0.01				80%	120%
As	1	2095230	10	10	0.0%	< 1				80%	120%
В	1	2095230	51	47	8.2%	< 5				80%	120%
Ва	1	2095230	583	581	0.3%	< 1				80%	120%
Ве	1	2095230	1.16	1.14	1.7%	< 0.5				80%	120%
Bi	1	2095230	< 1	< 1	0.0%	< 1				80%	120%
Са	1	2095230	1.27	1.26	0.8%	< 0.01				80%	120%
Cd	1	2095230	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	2095230	19	20	5.1%	< 1				80%	120%
Co	1	2095230	51.9	52.3	0.8%	< 0.5				80%	120%
Cr	1	2095230	186	185	0.5%	< 0.5				80%	120%
Cs	1	2095230	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Cu	1	2095230	2060	2220	7.5%	0.5				80%	120%
Fe	1	2095230	6.76	6.69	1.0%	< 0.01				80%	120%
Ga	1	2095230	< 5	< 5	0.0%	< 5				80%	120%
Hg	1	2095230	< 1	· <1	0.0%	< 1				80%	120%
lo	1	2095230	14	12	15.4%	< 1				80%	120%
к	1	2095230	0.30	0.30	0.0%	< 0.01				80%	120%
La	1	2095230	19	19	0.0%	< 1				80%	120%
Li	1	2095230	20	21	4.9%	< 1				80%	120%
Mg	1	2095230	0.86	0.86	0.0%	< 0.01				80%	120%
Mn	1	2095230	2320	2350	1.3%	< 1				80%	120%
Мо	1	2095230	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Na	1	2095230	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Ni	1	2095230	66.9	67.0	0.1%	< 0.5				80%	120%
P	1	2095230	1160	1160	0.0%	< 10				80%	120%
Pb	1	2095230	20.3	20.6	1.5%	< 0.5				80%	120%
Rb	1	2095230	41	41	0.0%	< 10				80%	120%

AGAT Laboratories

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CENIT CORPORATION

PROJECT NO:

AGAT WORK ORDER: 10T448055

ATTENTION TO:

Solid Analysis (Continued)

RPT Date: Nov 05, 2010			REPLIC	CATE		REF		REFER	FERENCE MATERIAL		
						Method Blank	Result	Expect		Accepta	ble Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
S	1	2095230	0.014	0.013	7.4%	< 0.005				80%	120%
Sb	1	2095230	< 1	[.] <1	0.0%	< 1				80%	120%
Sc	1	2095230	16.2	16.2	0.0%	< 0.5				80%	120%
Se	1	2095230	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	2095230	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	2095230	18.0	20.8	14.4%	1.6				80%	120%
Та	1	2095230	< 10	< 10	0.0%	< 10				80%	120%
Те	1	2095230	< 10	< 10	0.0%	< 10				80%	120%
Th	1	2095230	< 5	< 5	0.0%	< 5				80%	120%
Ti	1	2095230	0.04	0.04	0.0%	< 0.01				80%	120%
ТІ	1	2095230	< 5	< 5	0.0%	< 5				80%	120%
U	1	2095230	< 5	< 5	0.0%	< 5				80%	120%
V	1	2095230	157	157	0.0%	< 0.5				80%	120%
W	1	2095230	< 1	< 1	0.0%	< 1				80%	120%
Y	1	2095230	31	32	3.2%	< 1				80%	120%
Zn	1	2095230	173	174	0.6%	< 0.5				80%	120%
Zr	1	2095230	7	7	0.0%	< 5				80%	120%
Aqua Regia Digest - Metals Package,	ICP-OES fir	nish (201073)	•								
Ag	1	2095255	0.23	. 0.25	8.3%	< 0.2				80%	120%
AI	1	2095255	1.30	1.30	0.0%	< 0.01				80%	120%
As	1	2095255	3	3	0.0%	< 1				80%	120%
В	1	2095255	15	14	6.9%	< 5				80%	120%
Ва	1	2095255	35	34	2.9%	< 1				80%	120%
Ве	1	2095255	0.6	0.6	0.0%	< 0.5				80%	120%
Bi	1	2095255	< 1	< 1	0.0%	< 1				80%	120%
Са	1	2095255	0.11	0.11	0.0%	< 0.01				80%	120%
Cd	1	2095255	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Се	1	2095255	11	11	0.0%	< 1				80%	120%
Co	1	2095255	21.5	21 .1	1.9%	< 0.5				80%	120%
Cr	1	2095255	357	353	1.1%	< 0.5				80%	120%
Cs	1	2095255	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Cu	1	2095255	277	269	2.9%	< 0.5				80%	120%
Fe	1	2095255	2.15	2.17	0.9%	< 0.01				80%	120%
Ga	1	2095255	< 5	< 5	0.0%	< 5				80%	120%
Hg	1	2095255	< 1	< 1	0.0%	< 1				80%	120%
In	1	2095255	6	6	0.0%	< 1				80%	120%
к	1	2095255	0.284	0.287	1.1%	< 0.01				80%	120%
La	1	2095255	3	3	0.0%	< 1				80%	120%
Li	1	2095255	22	22	0.0%	< 1				80%	120%
Mg	1	2095255	0.764	0.773	1.2%	< 0.01				80%	120%
Mn	1	2095255	1090	1080	0.9%	< 1				80%	120%
Мо	1	2095255	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Na	1	2095255	< 0.01	< 0.01	0.0%	< 0.01				80%	120%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CENIT CORPORATION

PROJECT NO:

AGAT WORK ORDER: 10T448055

ATTENTION TO:

Solid Analysis (Continued)

RPT Date: Nov 05, 2010	REPLICATE					REFERENCE MATERIAL					
						Method Blank	Result	Expect		Accepta	ble Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Ni	1	2095255	66.0	64.8	1.8%	< 0.5				80%	120%
P	1	2095255	368	351	4.7%	< 10				80%	120%
Pb	1	2095255	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Rb	1	2095255	44	42	4.7%	< 10				80%	120%
S	1	2095255	< 0.005	< 0.005	0.0%	< 0.005				80%	120%
Sb	1	2095255	< 1	< 1	0.0%	< 1				80%	120%
Sc	1	2095255	2.5	2.4	4.1%	< 0.5				80%	120%
Se	1	2095255	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	2095255	< 5	. < 5	0.0%	< 5				80%	120%
Sr	1	2095255	3.34	3.24	3.0%	< 0.5				80%	120%
Та	1	2095255	< 10	< 10	0.0%	< 10				80%	120%
Те	1	2095255	< 10	< 10	0.0%	< 10				80%	120%
Th	1	2095255	< 5	< 5	0.0%	< 5				80%	120%
Ti	1	2095255	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
ті	1	2095255	< 5	< 5	0.0%	< 5				80%	120%
U	1	2095255	< 5	< 5	0.0%	< 5				80%	120%
V	1	2095255	43.6	42.4	2.8%	< 0.5				80%	120%
w	1	2095255	2	2	0.0%	< 1				80%	120%
Y	1	2095255	5	5	0.0%	< 1				80%	120%
Zn	1	2095255	157	152	3.2%	< 0.5				80%	120%
Zr	1	2095255	6	6	0.0%	< 5				80%	120%
Sodium Peroxide Fusion, ICP-OES fini	sh (201079)									
Cu	1	2095255	0.0468	0.0442	5.7%	< 0.001		1.185		70%	130%
Sodium Peroxide Fusion, ICP-OES fini	sh (201079)									
Cu	1	2095205	0.202	0.123		< 0.001	1.27	1.185	107%	70%	130%
Sodium Peroxide Fusion. ICP-OES fini	sh (201079)									
Cu	1	2095230	0.197	0.230	15.5%	< 0.001	1.032	1.185	87%	70%	130%

Certified By:

Roy Cardinall

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: CENIT CORPORATION

PROJECT NO-

AGAT WORK ORDER: 10T448055

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag	MIN-200-12020		ICP/OES
AI	MIN-200-12020		ICP/OES
As	MIN-200-12020		ICP/OES
В	MIN-200-12020		ICP/OES
Ва	MIN-200-12020		ICP/OES
Ве	MIN-200-12020		ICP/OES
Bi	MIN-200-12020		ICP/OES
Са	MIN-200-12020		ICP/OES
Cd	MIN-200-12020		ICP/OES
Ce	MIN-200-12020		ICP/OES
Co	MIN-200-12020		ICP/OES
Cr	MIN-200-12020		ICP/OES
Cs	MIN-200-12020		ICP/OES
Cu	MIN-200-12020		ICP/OES
Fe	MIN-200-12020		ICP/OES
Ga	MIN-200-12020		ICP/OES
Hg	MIN-200-12020		ICP/OES
In	MIN-200-12020		ICP/OES
к	MIN-200-12020		ICP/OES
La	MIN-200-12020		ICP/OES
Li	MIN-200-12020		ICP/OES
Mg	MIN-200-12020		ICP/OES
Mn	MIN-200-12020		ICP/OES
Мо	MIN-200-12020		ICP/OES
Na	MIN-200-12020		ICP/OES
Ni	MIN-200-12020		ICP/OES
P	MIN-200-12020		ICP/OES
Pb	MIN-200-12020		ICP/OES
Rb	MIN-200-12020		ICP/OES
s	MIN-200-12020		ICP/OES
Sb	MIN-200-12020		ICP/OES
Sc	MIN-200-12020		ICP/OES
Se	MIN-200-12020		ICP/OES
Sn	MIN-200-12020		ICP/OES
Sr	MIN-200-12020		ICP/OES
Та	MIN-200-12020		ICP/OES
Те	MIN-200-12020		ICP/OES
Th	MIN-200-12020		ICP/OES
Ti	MIN-200-12020		ICP/OES
ITI	MIN-200-12020		ICP/OES
U	MIN-200-12020		ICP/OES
V	MIN-200-12020		ICP/OES
lw.	MIN-200-12020		ICP/OES
Y	MIN-200-12020		ICP/OES
Zn	MIN-200-12020		ICP/OES
Zr	MIN-200-12020		ICP/OES
Sample Login Weight			BALANCE
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES

Method Summary

•

CLIENT NAME: CENIT CORPORATIO	DN	AGAT WORK ORDER: 10T448055					
PROJECT NO:		ATTENTION TO:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	TURE REFERENCE ANALYTICAL TECHNIQUE				
Cu	MIN-200-12001	ICP/OES					
Cu-OL	MIN-200-12001	ICP/OES					

Appendix II

.

.

.

.

Project Photographs

Photograph 1:

51.8 zone trench, looking north. Geologist Brian Edgar taking samples.

*Note: maroon colour of the hematized mafic volcanics and the blocky fracturing of the rock.

Photograph 2

51.8 zone trench, looking east.

*Note siliceous calcite veining and stringers with intermittent hematite and malachite/chalcocite veining.

Figure 3

Geologist Bruce Edgar preparing to take a channel sample at the north end of the 51.8 Zone trench.

* Note section of weathered malachite mud and 30 to 40 centimetre vein of massive chalcocite in front of saw.

Photograph 4:

Sample area 19, 51.8 zone

*Note: Preparing to remove channel sample cut across stockwork calcite/quartz veining and chalcocite/malachite rich veins.

Photograph 5

Geologist Bruce Edgar washing 51.8 zone trench, looking south towards historical Coppercorp Mine tailings area.

Photograph 6

Outcrop beside Mine road showing interflow conglomerate of the Mamainse Point Formation.

Appendix III

.

Batchawana Copper Property Claims Listing

.

SAULT STE. MARIE Mining Division - 407931 - FIRST MINERALS EXPLORATION LIMITED

KINCAID	3015689	2009-Dec-03	2011-Dec- 03	A	100 %	\$ 6,400	\$ 0	\$ 0	\$0
KINCAID	3019475	2004-Jul-09	2011-Jul-09	A	100 %	\$ 1,200	\$ 6,000	\$ 0	\$ 0
KINCAID	3019477	2004-Jul-09	2011-Jul-09	A	100 %	\$ 1,200	\$ 6,000	\$ 0	\$0
KINCAID	3019478	2004-Jul-09	2011-Jul-09	A	100 %	\$ 6,000	\$ 30,000	\$ 0	\$ 0
KINCAID	3019479	2004-Jul-09	2011-Jul-09	A	100 %	\$ 6,400	\$ 32,000	\$ 0	\$ 0
KINCAID	3019480	2004-Jul-09	2011-Jul-09	A	100 %	\$ 3,600	\$ 18,000	\$ 0	\$ 0
KINCAID	3019481	2004-Jul-09	2011-Jul-09	A	100 %	\$ 3,616	\$ 20,384	\$ 0	\$ 0
KINCAID	3019482	2004-Jul-09	2011-Jul-09	A	100 %	\$ 20	\$ 33,580	\$ 0	\$ 0
RYAN	1098722	2005-Aug- 05	2011-Aug- 05	A	100 %	\$ 3,200	\$ 12,800	\$ 0	\$0
RYAN	1192281	2009-Jul-21	2011-Jul-21	Α	100 %	\$ 1,200	\$ 0	\$ 0	\$0
RYAN	1192284	2003-Jun-25	2011-Jun-25	А	100 %	\$ 1,200	\$ 7,200	\$ 0	\$ 0
RYAN	1192287	2007-Oct-02	2011-Jan-05	A	100 %	\$ 2,542	\$ 3,058	\$ 0	\$ 0
RYAN	1199911	2002-Jun-26	2011-Jun-26	A	100 %	\$ 6,000	\$ 42,000	\$ 0	\$0
RYAN	1199912	2002-Jun-26	2011-Jun-26	A	100 %	\$ 1,600	\$ 11,200	\$ 0	\$ 0
RYAN	1199984	2002-Jun-26	2011-Jun-26	A	100 %	\$ 5,600	\$ 39,200	\$ 0	\$0
RYAN	1235019	2001-Feb-26	2011-Feb-26	A	100 %	\$ 231	\$ 10,569	\$ 0	\$0
RYAN	3000666	2002-Jun-26	2011-Jun-26	A	100 %	\$ 1,600	\$ 11,200	\$ 0	\$ 0
RYAN	3000714	2002-Jun-26	2011-Jun-26	A	100 %	\$ 4,400	\$ 30,800	\$ 0	\$0
RYAN	3000715	2002-Jun-26	2011-Jun-26	A	100 %	\$ 6,000	\$ 42,000	\$ 28,226	\$ 0
RYAN	3000716	2002-Jun-26	2011-Jun-26	A	100 %	\$ 5,200	\$ 36,400	\$ 5,047	\$0
RYAN	3000717	2002-Jun-26	2011-Jun-26	A	100 %	\$ 6,400	\$ 44,800	\$0	\$0
RYAN	3000718	2002-Jun-26	2011-Jun-26	A	100 %	\$ 400	\$ 2,800	\$ 0	\$ 0
RYAN	3000720	2002-Jun-26	2011-Jun-26	A	100 %	\$ 6,000	\$ 42,000	\$ 0	\$0
RYAN	3002310	2002-Jun-26	2011-Jun-26	A	100 %	\$ 6,000	\$ 42,000	\$ 0	\$0
RYAN	3002319	2002-Jun-26	2011-Jun-26	A	100 %	\$ 800	\$ 5,600	\$ 0	\$0
RYAN	3002320	2002-Jun-10	2011-Jun-10	A	100 %	\$ 1,200	\$ 8,400	\$ 0	\$0
RYAN	3002341	2002-Jun-26	2011-Jun-26	A	100 %	\$ 4,400	\$ 30,800	\$ 0	\$0
RYAN	3002342	2002-Jun-10	2011-Jun-10	A	100 %	\$ 44	\$ 3,156	\$ 0	\$ 0
RYAN	<u>3002392</u>	2002-Jun-26	2011-Jun-26	A	100 %	\$ 3,200	\$ 22,400	\$ 0	\$ 0
RYAN	3002398	2002-Jun-26	2011-Jun-26	A	100 %	\$ 6,400	\$ 44,800	\$ 0	\$ 0
RYAN	3002570	2002-Dec-05	2011-Dec- 05	A	100 %	\$ 1,200	\$ 8,400	\$ 0	\$0
RYAN	3002571	2002-Dec-05	2011-Dec- 05	A	100 %	\$ 2,400	\$ 16,800	\$ 0	\$ 0
RYAN	3002577	2002-Jul-19	2011-Jul-19	A	100 %	\$ 400	\$ 2,800	\$ 0	\$0
RYAN	3002616	2002-Dec-05	2011-Dec- 05	A	100 %	\$ 800	\$ 5,600	\$ 0	\$ 0
RYAN	3002697	2002-Jun-26	2011-Jun-26	A	100 %	\$ 5,200	\$ 36,400	\$ 0	\$0
RYAN	3002698	2002-Jun-10	2011-Jun-10	A	100 %	\$ 2,400	\$ 16,800	\$ 0	\$ 0
RYAN	3015684	2009-Jul-21	2011-Jul-21	A	100 %	\$ 4,000	\$ 0	\$ 0	\$0
RYAN	3015686	2008-Jun-11	2011-Jun-11	A	100 %	\$ 2,800	\$ 2,800	\$ 1,129	\$0
RYAN	3015687	2009-Aug- 28	2011-Aug- 28	A	100 %	\$ 800	\$ 0	\$ 0	\$0