Assessment Report On The

Mavis Lake Lithium Property Brownridge Township, Kenora Mining District Near Dryden, Northwestern Ontario

NTS Map Sheet 52F/15E

Prepared For:

TNR Gold Corp 620-650 West Georgia Street Vancouver, B.C. V6B 4N9

Prepared By:

J. Garry Clark, P.Geo. Clark Exploration Consulting Inc. 1000, Alloy Street Thunder Bay, Ontario P7B 6A5

I. A. Osmani, M.Sc., P.Geo. International Lithium Corporation Suite 620-650 West Georgia Street Vancouver, B.C. V6B 4N9 F.W. Breaks, Ph.D., P.Geo. Consulting Geologist 35 Kristi Court Sudbury, Ontario P3E 5R4

John Harrop, PGeo, FGS TNR Gold Corp Suite 620-650 West Georgia Street Vancouver, B.C. V6B 4N9

Table of Contents

1.0	Summary	5
2.0 2.1	Introduction and Terms of Reference	
2.2	Granitic Pegmatite Minerals	
3.0	Property Description and Location	10
4.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography	14
4.1	Access and Infrastructure	14
4.2	Climate	
4.3	Topography and Physiography	15
5.0	History	15
6.0	Geological Setting	21
6.1	Regional Geology	
6.2	Property Geology	
	2.1 Mafic Metavolcanic Rocks	
	2.2 Intermediate to Felsic Metavolcanic Rocks	
	2.3 Clastic Metasedimentary Rocks	
	2.4 Ultramafic to Mafic Intrusive Rocks	
	2.5 Granitoid Stocks	
6.	2.6 Granitic Pegmatite Dikes	
7.0	Deposit Types	
7.1	General	
7.2	Genesis of Peraluminous Granite-Rare Metal Pegmatite	
7.3	Regional Setting	
7.4	Local Setting	
7.5	Mavis Lake Deposit Model	3/
8.0	Mineralization	41
9.0	Exploration	43
9.1	2009 Summer Program	43
9.2	2009 Fall Program	
	2.1 Grid Construction	
	2.2 Lithogeochemical Survey	
	2.3 Mapping/prospecting and Sampling	
9.	2.4 Results	45
10.0	Sampling Method and Approach	50
10.1	J. Garry Clark Samples	60
11.0	the specific of the second sec	
11.1		
	1.1.1 ALS Chemex	
	1.1.2 Geoscience Laboratories - Ontario Geological Survey	
	1.1.3 Activation Laboratories	
1	1.1.4 Sample Security	63

12.0	Data Verification	63
13.0	Adjacent Properties	65
14.0	Interpretation and Conclusions	66
15.0	Recommendations	69
15.1	Budget	70
15.1	1.1 Phase I	70
15.1	1.2 Phase II	70
16.0	References	71
17.0	Appendix 1 – Sample Descriptions	77
18.0	Appendix 2 – Lab Certificates	85

List of Tables

Table 1 Abbreviations and SI Units used in this report	7
Table 2 Conversion Factors - ppm rare element to weight % rare element oxide	8
Table 3 List of common granitic pegmatite minerals found in Ontario	
Table 4 Mavis Lake Property Claim Information	
Table 5 Lun-Echo Drill Holes - Pegmatite Intercepts	
Table 6 Significant Li ₂ O Intersections in Lun-Echo Drilling	
Table 7 Selco's Drill Core Sample Results from Holes M-1 to M-4	
Table 8 Significant Grab Samples	
Table 9 Significant Channel Samples	
Table 10 Comparison of ALS and OGS assay values for lithium	
Table 11 Sample Analysis Comparison	64
List of Figures	
Figure 1 Location of Mavis Lake Lithium Project	
Figure 2 Mavis Lake Property	13
Figure 3 Historical lithium lithogeochemical anomalies in mafic metavolcanic rocks	19
Figure 4 Geological Setting of Mavis Lake Property Figure 5 Regional Geology - Dryden Area, Northwestern Ontario	22
Figure 5 Regional Geology - Dryden Area, Northwestern Ontario	23
Figure 6 Rare Metal Mineralization within Peraluminous Granites and Supracrustal Sequences of	
Sioux Lookout Domain	25
Figure 7 Internal Structure of the Ghost Lake Batholith	
Figure 8 & 8a Property Geology and Bedrock Mapping, Mavis Lake	
Figure 9 Rare Metal Pegmatites Groups, Fields and Individual Occurances within the Superior Pro	
Figure 10 Regional Zoning in Fertile Granites and Associated Pegmatite Dykes	
Figure 11 Regional Zonation of Pegmatite Types in the Mavis Lake Pegmatite Group	
Figure 12 Lithium Lithogeochemical Anomalous Area	
Figure 13 Lithogeochemical Sampling Grid	
Figure 14a & b Rock Sample Locations	
Figure 15 Channel Sample Locations	
Figure 16 Lithium in grid grab samples	
Figure 17 Tantalum in grid grab samples	
Figure 18 Rubidium in grid grab samples	
Figure 19 Caesium in grid grab samples	
Figure 20 Graphic comparison of lithium values obtained from the OGS and ALS laboratories	64
List of Photos	
Photo 1 Light green blades of spodumene crystals interlocked with light pink to grey feldsparPhoto 2 Mn-tantalite grain from Pegmatite 1g. Photomicrograph showing spectacular scillary zone between high Ta zones (bright white) and zone with higher niobium pentoxides (darker area). Av Ta_2O_5 content of grain 60.5%. (Tindle et al. 2002)	_

1.0 Summary

The Mavis Lake Lithium Property (the "Property"), which consists of 13 contiguous claims (160 units, totaling 2,544 ha) within Brownridge Township, is located approximately 19 km east-northeast of Dryden in northwestern Ontario.

This report was edited by John Harrop and is derived from a previous 43-101 Technical Report to a format suitable for assessment report filing. The original work is due to the other three authors.

This report documents the geology, mineralogy, lithogeochemistry, economic geology, historical exploration and a proposed exploration program of the Mavis Lake rare-element claim-group (Mavis Lake Property) near Dryden, Ontario. The 2009 exploration program was focused upon lithium and tantalum mineralization within a late Archaean (2665 million year old) swarm of granitic pegmatites and associated metasomatic alteration that comprises part of the Dryden pegmatite field.

In the regional context, the Mavis Lake Property lies within a 2733 to 2706 Ma collisional tectonic zone known as the Sioux Lookout Domain (SLD) in the western Wabigoon Subprovince (WS) that evolved during the Kenoran orogeny. The 150 by 900 km WS is a granite-greenstone terrain and comprises metavolcanic and subordinate metasedimentary rocks, ranging in age from 3.0 Ga to 2.71 Ga, and intruded by 3.0 to 2.69 Ga granitoid batholiths, gabbroic sills and stocks.

The mineralization is specifically contained within the 1.8-3 by 8 km Mavis Lake pegmatite group (MPG), that comprises a swarm of rare-element class granitic pegmatites and associated metasomatic zones genetically related to the 2685 Ma, S-type, peraluminous, fertile Ghost Lake batholith (GLB). Strong mineralogical zonation of pegmatite types has been documented with increasing eastward distance from this parental granite: beryl-bearing pegmatitic granite units in the GLB →external beryl-type pegmatite zone→albite-spodumene-type pegmatite zone→albite-type pegmatite zone. The rare-element granitic pegmatites of the area also belong to the LCT-geochemical family (Lithium-Caesium-Tantalum).

Eleven rare-element granitic pegmatites are known on the Mavis Lake Property and vary in strike length from 11 to >240m, and thicknesses in 0.3 to >2.4m range. These bodies are mainly hosted in the 2733 Ma Brownridge mixed felsic-mafic metavolcanic unit of the Neepawa group that is intensely deformed by at least 4 folding events that culminated

with development of a regional shear zone (Wabigoon fault) and metamorphism to middle amphibolite grade.

Historical exploration for rare-elements has focused upon the lithium potential of the albite-spodumene-type pegmatites and tantalum potential in the albite-type pegmatites situated on the Mavis Lake and adjacent Fairservice properties. The latter property contains a resource of 500,000 tons averaging 1.0 wt.% Li₂O (Storey 1990, p. 153). This is a historical resource not compliant to NI43-101 standards. The author did not review the methods of calculating this resource.

The initial discovery of rare-element mineralization occurred in the mid-1950's related to a boom in the lithium demand owing to the US atomic energy program. Most surface exposures of spodumene pegmatites were found during this period. Subsequent exploration focused upon tantalum spurred by high technology applications during the early 1980's and 1997-2001. In recent times there has been a surge in interest in lithium, due to advancement in lithium-ion technology and is the commodity of chief interest in the company's exploration program.

The rare-element pegmatites are associated with a significant lithium lithogeochemical anomaly at least 7km in strike length and widths of 100 to 700m according to historical record. Exploration during 2009 extended this anomaly a further 1.1 km to the northeast.

The highest lithium values on the Mavis Lake Property occur in albite-spodumene-type pegmatites with Li₂O values up to 1.22 wt.% over 5.3 meters from a composite channel sample across part of Pegmatite 18 documented in 2009 work by the Company. Numerous grab samples with elevated tantalum, cesium and rubidium were encountered in sodic aplite and albitite dykes within a 500 by 800 m area of the albite-type pegmatite zone. The highest values for Ta_2O_5 (1349 ppm), Rb_2O (1.0 wt.%) and Cs_2O (1537 ppm) were encountered in these high sodium units (6 to 10.5 wt.% Na_2O). The eastern and southeastern limits of the rare-element mineralization, associated with albite-type pegmatites on the Mavis Lake Property, remains open to the east and southeast.

A systematic exploration program for lithium, tantalum, cesium and rubidium in exposed and blind pegmatites is proposed for the claim-group that includes geological and structural mapping, lithogeochemical sampling, documentations of the economically important mineralogy through electron microprobe analysis and establishment of vectors of pegmatite evolution.

2.0 Introduction and Terms of Reference

This report presents the results of 2009 exploration programs conducted by Coast Mountain Geological Ltd. A BC registered mineral exploration consulting company in conjunction with the Company personnel. The report is written and by J. Garry Clark, Ike A. Osmani and Fred W. Breaks and edited by John Harrop utilizing sources of information from reports listed in Section 16.0 References. All four Authors edited the illustrations. The report and recommendations are based on:

- 1. Public data archived at the Ministry of Northern Development, Mines and Forestry, Kenora and Sudbury, Ontario.
- 2. Exploration records provided by TNR and ILC.
- 3. A personal site visit by the independent author J. Garry Clark to the Property on January 11th, 2010.

The co-author I.A. Osmani held the position of chief geologist with ILC and its parent company TNR when the 43-101 parent document was written, and is a practicing member of professional geoscientists/engineers associations in Ontario, Manitoba, British Columbia and Northwest Territory. He is also an internal Qualified Person (QP) on ILC's Canadian rare-metals/rare earth elements projects. The author F.W. Breaks is a special advisor on the Company's rare metal projects, and a practicing member of the professional geoscientists of Ontario. The 2009 exploration program by the Company was planned and executed under the supervision of I.A. Osmani and F.W. Breaks.

2.1 Abbreviations and Units

Confusion can result from the various ways that lithium and other rare metals quantities and concentrations have been reported in scientific and business publications. In this report, rare metals (lithium, tantalum, caesium, rubidium etc.) are reported as elemental metal quantities and converted to oxides by using their respective conversion factors (see Tables 1 and 2). All references to dollars are in Canadian dollars (CDN\$) unless otherwise indicated. Abbreviations and units used in this report are those commonly referred to in the scientific literature.

Table 1 Abbreviations and SI Units used in this report

Abbrev.	Long Form	Notes
Be	Beryllium	Alkaline earth
Cs	Cesium	Alkali metal
Cs ₂ O	Cesium Oxide	

Abbrev.	Long Form	Notes
K	Potassium	Alkali metal
Li	Lithium	Alkali metal
Li ₂ CO ₃	Lithium Carbonate	
Li ₂ O	Lithium Oxide	
Na ₂ O	Sodium Oxide	
Nb	Niobium	Transition metal
Nb_2O_5	Niobium pentoxide	
Rb	Rubidium	Alkali metal
Rb ₂ O	Rubidium Oxide	
Та	Tantalum	Transition metal
Ta_2O_5	Tantalum pentoxide	
REEs	Rare earth elements	Lanthanides Series: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Yttrium (Y) and Scandium (Sc) are not part of this series but generally included with the REEs due to geochemical similarity
Ga	Billion years	Widely used abbreviation in geochronology
Ма	Million years	Widely used abbreviation in geochronology
	,	
SI Units	2.1.1.1 Long Form	2.1.1.2 Notes
ppb	Parts per billion	
ppm	Parts per million	
T	Tonne (long)	1 long tonne equals to 1,016.046 kg
kg	Kilogram	1 kg equals to 2.204 lbs (pounds)
g	Gram	31.103 476 grams equal to 1 troy ounce
km	Kilometer	1 km equals to 0.621371 mile
m	Metre	1 m equals to 3.280 feet
cm	Centimeter	2.54 cm equal to 1 inch
mm	Millimeter	25.4 mm equal to 1 inch
ha	Hectare	1 ha equals to 2.471054 acres
16 ha		Typically an area of 1 claim unit
wt.%	Weight percent	

Table 2 Conversion Factors - ppm rare element to weight % rare element oxide

Weight % Rare	2.1.1.3 Conversion	Weight % Rare Element Oxide
Element	Factor	
Beryllium (e.g., 0.50% Be)	2.778	0.50% x 2.778 = 1.39% BeO
Lithium (e.g., 2.55% Li)	2.152	$2.55\% \times 2.152 = 5.49\% \text{ Li}_2\text{O}$
Niobium (e.g., 325	1.431	325 ppm = 0.0325% x 1.431 =

ppm Nb)		0.0465 wt% Nb ₂ O ₅
Tantalum (e.g., 755	1.221	755 ppm = 0.0755% x 1.221 =
ppm Ta)		0.092 wt% Ta ₂ O ₅
Cesium (e.g., 500 ppm	1.060	500 ppm = 0.05 x 1.060 = 0.053
Cs)		wt% Cs ₂ O
Rubidium (e.g., 15000	1.099	1.5% x 1.099 = 1.65 wt% Rb ₂ O
ppm = 1.5% Rb)		

2.2 Granitic Pegmatite Minerals

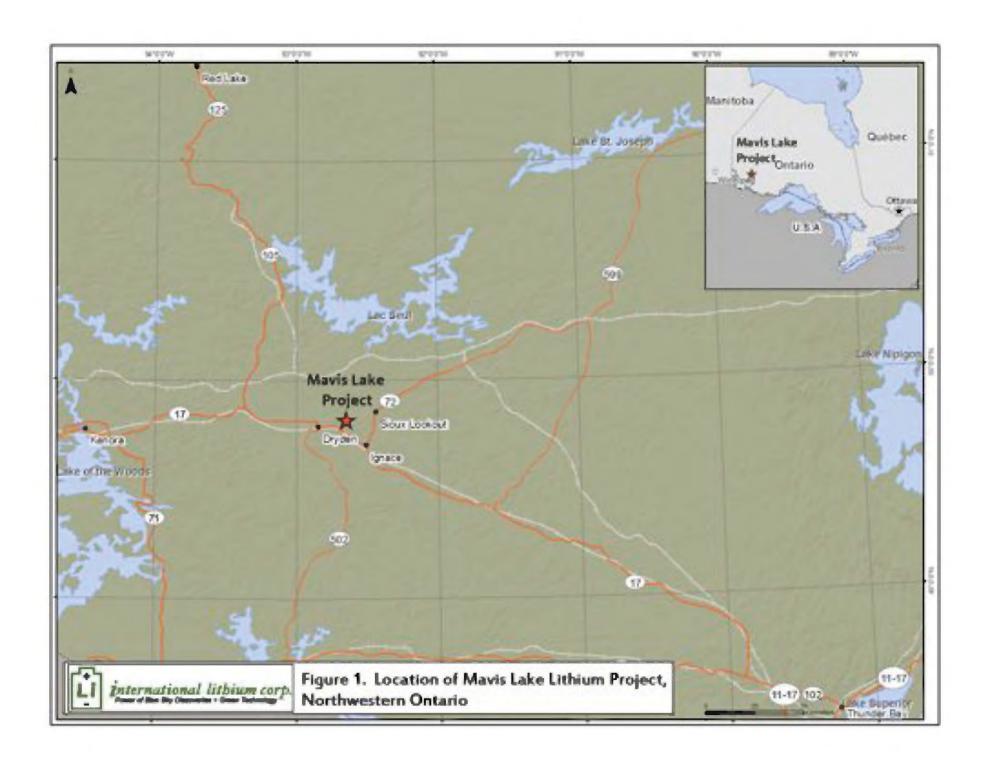
Pegmatite is a common igneous plutonic rock of variable texture having a crystal size from few centimeters to occasionally reaching a metre or so in length. The word pegmatite refers to a rock of granite composition consisting of common granite minerals such as *quartz*, *feldspar* (*both sodic and potassic*) and *micas* plus minerals containing *lithium*, *tantalum-niobium* and *rare earths* (Table 3). Pegmatites also commonly contain typical pneumatolitic and hydrothermal minerals, such as *tourmaline*, *cassiterite*, *fluorite*, *apatite* etc. They are economically important as a source of many rare elements, including *radioactive ones*, together with *tin* and *tungsten*.

Table 3 List of common granitic pegmatite minerals found in Ontario

Mineral	Simplified Composition	Chemical Formula
Amblygonite-	Li-phosphate	LiAlPO ₄ (F,OH)
montebrasite		
series		
Andalusite	Aluminosilicate	Al ₂ SiO ₅
(usually in		
sedimentary host		
rock)		
Apatite	F/Cl-apatite	$Ca_2(PO_4)_3(F,OH)/Ca_5(PO_4)_3Cl$
(Fluor/Chlor		
apatite)		
Beryl	Be-silicate	Be ₃ Al ₂ Si ₆ O ₁₈
Cassiterite	Sn-oxide	SnO ₂
Columbite-	(Fe/Mn, Nb)-oxide	FeNb ₂ O ₆ /MnNb ₂ O ₆
tantalite group	(Fe/Mn, Ta)-oxide	FeTa ₂ O ₆ /MnTa ₂ O ₆
Feldspars	Na-plagioclase (albite)	NaAlSi ₃ O ₈
	K-feldspar (potassium	KAlSi ₃ 30 ₈
	feldspar)	
Holmquistite	Li-amphibole	$Li_2(Mg,Fe^{2+})_3Al_2Si_8O_{22}(OH)$
(usually in mafic		

volcanic host rock)		
Garnet (many	Fe-garnet (almandine)	Fe ₃ Al ₂ (SiO ₄) ₃
species)	Other varieties such as	
	Mn/Ca/Mg-garnets	
Mica (many	Muscovite	$KAl_2(Si_3Al)O_{10}(OH,F)_2$
species)	Lepidolite (Li-mica)	$K(Li,Al)_3(Si,Al)_4O_{10}(F,OH)_2$
	Biotite	$K(Mg,Fe^{2+})_3(Al,Fe^{3+})Si_3O_{10}(OH,F)_2$
	Phlogopite (Mg-biotite)	$KMg_3(AlSi_3)O_{10}(F,OH)_2$
Molybdenite	Mo-sulphide	MoS ₂
Petalite	Li-aluminosilicate	LiAlSi ₄ O ₁₀
Pollucite	Cs-aluminosilicate	(Cs,Na)AlSi ₂ O ₆ .nH ₂ O
Quartz		SiO ₂
Spodumene	Li-aluminosilicate	LiAlSi ₂ O ₆
Tourmaline (many	Na,Fe/Na,Mg/Na,Li/Ca,Li	
species)	-tourmaline	
Wodginite group	(Mn,Fe,Sn,Ta)-oxide	(Mn, Fe)SnTa ₂ O ₈
Zircon	Zr-silicate	ZrSiO ₄

3.0 Property Description and Location

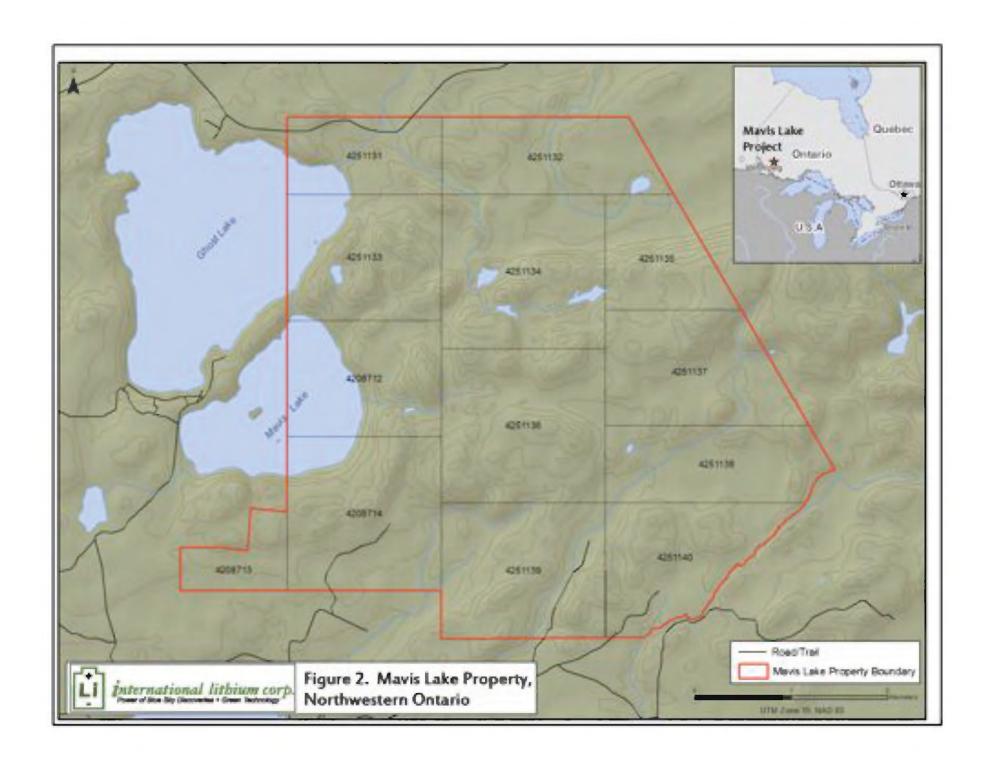

The Mavis Property is located south and east of Mavis Lake within Brownridge Township in northwestern Ontario. The claim group, which occurs within the Kenora Mining District, is approximately 19 km by road to the east-northeast of Dryden, and is shown on National Topographic System (NTS) map sheet 52F/15E (Figure 1). The property is centered approximately at 526 500mE/5 520 200mN UTM coordinates (Zone 15N, NAD83).

The property consists of 13 contiguous unpatented claims (160 units), totaling 2,544 hectares (Table 4 and Figure 2). TNR acquired 100% interest in the property by staking claims in two stages. The property is not subject to any underlying royalties, back-in rights, payments or other agreements and encumbrances.

The Property hosts known mineral occurrences but no developed prospects (Figure 8).

The eastern property boundary is bound by Lola Lake Provincial Reserve, which was regulated in 1985 from a Provincial Park to a nature reserve class park. The claims have not been legally surveyed. The Government of Ontario owns the surface rights.

The Government of Ontario requires expenditures of \$400 per year per unit, prior to expiry, to keep the claims in good standing for the following year. The report must be submitted by the assessment due date.



There are no known environmental liabilities associated with the property. For the proposed exploration program consisting of line-cutting and geophysics no permits are required. Permits are required if, during the course of exploration, waterways are affected.

Pertinent claim information is shown on Figure 2 and also given in Table 4 below.

Table 4 Mavis Lake Property Claim Information

Claim Number	No. of 16 ha	Area	Township	Map Sheet	Effective Date	Anniversary Date	Assessment
	Units in a	(ha)					Required
	Claim						(\$)
4208712	12	192	Brownridge	52F/15E	2009-04-09	2011-04-09	4800
4208713	4	64	Brownridge	52F/15E	2009-04-09	2011-04-09	1600
4208714	16	256	Brownridge	52F/15E	2009-04-09	2011-04-09	6400
4251131	8	128	Brownridge	52F/15E	2009-09-08	2011-09-08	3200
4251132	12	192	Brownridge	52F/15E	2009-09-08	2011-09-08	4800
4251133	12	192	Brownridge	52F/15E	2009-09-08	2011-09-08	4800
4251134	16	256	Brownridge	52F/15E	2009-09-08	2011-09-08	6400
4251135	10	160	Brownridge	52F/15E	2009-09-08	2011-09-08	4000
4251136	16	256	Brownridge	52F/15E	2009-09-08	2011-09-08	6400
4251137	16	256	Brownridge	52F/15E	2009-09-08	2011-09-08	6400
4251138	12	192	Brownridge	52F/15E	2009-09-08	2011-09-08	4800
4251139	14	224	Brownridge	52F/15E	2009-09-08	2011-09-08	5600
4251140	12	192	Brownridge	52F/15E	2009-09-08	2011-09-08	4800
TOTAL	160	2,544					64000

4.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

4.1 Access and Infrastructure

The Mavis Lake property has excellent road accessibility. It is approximately 19 km northeast by road from the city of Dryden and can be reached from the city by driving east on Trans-Canada Highway 17 for approximately 8 km to its junction with the Thunder Lake. On Thunder Lake Road travel is roughly 3 km to the intersection of Thunder Lake Road and Ghost Lake South Road. From this point, driving north on the Ghost Lake South Road for about 1 km and thence turn east along the Mine Road, a major gravel road, for approximately 4 km brings one to an intersection of a subsidiary gravel road heading north to the eastern claims of the property.

A general labour force and many goods and modern services are readily available in Dryden, which is the second largest city of 8,195 inhabitants (2006 Census) in the Kenora District of Northwestern Ontario and is located on Wabigoon Lake. Skilled labour, mining and specialized exploration services and equipments are available from larger cities such as Thunder Bay and Winnipeg (Manitoba), which are located respectively 356 km east and 350 km west of Dryden. Dryden has an airport with connecting flights to many major Canadian cities, including Thunder Bay and Winnipeg, which can also serve as points to many international flights.

Hydroelectric power is available only few kilometers southwest of the property, from a line, which also supplies power to the city of Dryden. Railway links to the eastern and western Canada and also south to the USA are readily available from Dryden.

4.2 Climate

The property lies near the northern boundary of the Lake of the Woods eco-region of the Southern Boreal Shield. The region is classified as having a sub-humid mid-boreal eco-climate (*cf.* Anthony 2004). Dryden and adjacent region is known to have temperatures ranging from a low of –27 deg. Celsius in the winter to high of +26 deg. Celsius in the summer. The climate is considered to be temperate. Annual rainfall is 0.6 to 0.8 metres and annual snowfall ranges between 1.3 to 2.3 metres.

4.3 Topography and Physiography

The topography varies from generally flat to slightly undulating south of the property, corresponding to a transition from a glaciolacustrine sand plain to a boulder till. The northern parts are relatively rugged with prominent hills, ravines and cliffs. Elevations range from around 400 metres along the shores of the lakes to about 460 metres on ridge crests located in the central part of the property.

The northern and west-central parts of the property have been recently logged leaving sparsely spaced trees and scattered underbrush. On the other parts of the property characteristic vegetation includes a succession from trembling aspen, paper birch, white and black spruce, and balsam fir. Cooler and wetter areas support black spruce and tamarack growth.

Characteristic wildlife includes moose, black bear, wolf, lynx, snowshoe hare and woodchuck. Bird species include ruffed grouse, woodpecker, bald eagle, herring gull and waterfowl. Forestry, recreation and hunting are the major land uses in this region.

5.0 History

The Wabigoon region, which includes the Property, was mapped in 1940s by Ontario Department of Mines (Moorhouse 1941, Satterly 1943). Later semi-detailed bedrock mapping was conducted by the government of Ontario in 1970s and 1980s (Breaks 1980, Breaks et al. 1976, 1978 and Breaks and Kuehner 1984) and more recently for the government by Beakhouse (2001, 2002). Breaks et al. (2003) also conducted more focused studies of the rare metal potential of the region. The Ontario Geological Survey has flown airborne magnetic and electromagnetic surveys both in the Dryden and Stormy Lake areas (Ontario Geological Survey 1997, 2001). The Dryden Lake area survey included the Property.

The Mavis Lake area, including the current Property, saw three main periods of mineral exploration:

- 1. **1955 to 1964:** in 1950s lithium was the main target while tungsten and tantalum dominated in 1960s.
- 2. **Late 1960s to late 1980s:** tungsten and tantalum were the focus of exploration.
- 3. **Early 2000 to present:** the focus of exploration has been quite diversified, ranging from volcanogenic massive sulphide (VMS)

copper-zinc-silver to shear-hosted lode-gold deposits, and currently exploration efforts once again focused on pegmatite-hosted rare metals.

In 1956, **Lun-Echo Gold Mines Ltd.** drilled the area immediately south of Mavis Lake. From August to September, ten NQ holes were drilled, totaling 873.32 ft (266.19 metres), 18 samples were assayed for Cu (0.09-1.31%), Ni (0.07-0.48%), Au (nil) and Ag (nil to trace). Pegmatite dikes were intercepted in the 8 of 10 holes drilled at this time but no assays for rare metal mineralization were reported (Table 5).

Table 5 Lun-Echo Drill Holes - Pegmatite Intercepts

	Depth of		
Hole	_		
No.	(feet)	From-To (feet)	Pegmatite interception
Hole N1	62.1'	0'-8.2'	Pegmatite, Tourmaline, slight lithium reaction with flame but no spodumene.
Hole N2	57.7'	39.7'-57.7'	Pegmatite, Tourmaline, slight lithium reaction with flame but no spodumene.
Hole N3	68.6'	30.5' - 32.6'; 40.6'-68.6'	Pegmatite.
Hole N3-A	103.0'	36.8'-46.3 '; 50.9'-51.2'	Pegmatite, Quartz, Pink Feldspar, Tourmaline; Pegmatite.
Hole N4	93.5'	27.7'-28.4'; 31.6'-31.8'; 52.6- 53.0'; 57.3'-57.6'; 63.8'-69.2'	Pegmatite
Hole N5	71.6'	N/A	Not pegmatite interception.
Hole N6	96.21'	30.4'-36.7'; 80.0'-83.0'	Pegmatite, Pink Feldspar, Tourmaline; Pegmatite.
Hole N7	92.31'	24.4'-26.3'; 31.4'-41.6; 43.4'- 43.8'	Pegmatite, Tourmaline; Pegmatite; Pegmatite, scattered sulphides, schist and breccia.
Hole N8	86.31'	N/A	Not pegmatite interception.
Hole N9	70.0'	69.0'-70.0	Pegmatite

After encountering the pegmatite interceptions in the previous drilling program, Lun-Echo Gold Mines Ltd. carried out trenching and another 40-hole diamond drilling program, totaling 1968 meters, for potential lithium mineralization on the property. The drilling program defined lithium mineralization over a strike length of 670 meters with lithia (Li₂O) percentage from as low as 0.37% to a high of 2.76% (Table 6). This drilling program was conducted west of current Property on the adjacent Fairservice claims.

Table 6 Significant Li₂O Intersections in Lun-Echo Drilling

Hole	From:	To:	True Width	Li₂O
noie	(m)	(m)	(m)	(Wt%)
B-11	2.74	8.08	4.88	1.46
E-11A	1.22	7.77	6.40	1.08
B-5	0.49	3.90	2.99	2.76
E-4	0.61	7.62	7.01	1.50
B-3	0.09	4.57	3.05	1.27
B-2	1.52	4.36	2.83	1.00
E-2	9.14	12.44	3.05	1.49
B-6	0.40	4.57	4.18	1.17
E-21	13.56	20.03	6.46	1.22
E-21	27.92	35.36	7.44	1.13
B-1A	57.45	60.50	2.74	1.37
E-20	20.24	29.29	9.05	1.52
E-18	4.27	8.38	4.11	1.17
E-16	0.00	5.85	5.85	1.51

In the same year 1956, **Milestone Mines Ltd**. completed a trenching work and very limited diamond drilling on some pegmatites immediately east and southeast of Mavis Lake on the current Mavis property (Vanstone 1983).

In 1978, **R.J. Fairservice** staked the property and subsequently optioned to **Selco Mining Corporation Limited ("Selco")**. Between 1979 and 1981, Selco carried out geological mapping, lithogeochemical surveys and diamond drilling over the area that extended from west, south and southeast of the Mavis Lake. During June 1979-September 1980, Selco drilled eight holes, totaling 1153 feet or 351.4 metres. This drilling delineated **South** and **Main** pegmatite zones (Figure 3). Pryslak (1980) described the results of 4 out of 8 holes as following:

South Zone: this pegmatite zone was intercepted by drill holes M-1 and M-2. The pegmatite intersected in each case was less than 10 feet thick and consisted essentially of wall-zone and mixed intermediate zone material. Minor aplitic material was encountered but this would appear to be of primary origin rather than a late replacement zone.

Main Zone: this pegmatite zone was intersected by drill holes M-3 and M-4. The pegmatites consisted of a wall zone and intermediate spodumene–bearing core zones. A total of 14 core samples were assayed for tantalum, niobium and lithium oxides (Ta₂O₅, Nb₂O₅ and Li₂O, respectively) at Swastika Laboratories Limited (Ontario) in November 1979 and the results are presented in the Table 7 below.

Table 7 Selco's Drill Core Sample Results from Holes M-1 to M-4

Hole	Sample	Ta ₂ O ₅	Nb_2O_5	Li ₂ O
No.	No.	(Wt%)	(Wt%)	(Wt%)
M-1	584	0.01	0.01	0.73
M-1	585	0.01	0.01	0.35
M-2	586	Trace	0.01	0.43
M-2	587	Trace	0.01	0.08
M-2	588	0.01	0.01	0.09
M-3	589	Trace	0.01	0.78
M-3	590	Trace	0.01	1.46
M-3	591	0.01	0.01	2.33
M-3	592	0.01	0.02	1.32
M-3	593	0.01	0.02	1.45
M-3	594	Trace	0.01	0.84
M-3	595	Trace	0.01	2.09
M-4	596	Trace	0.01	1.62
M-4	597	Trace	0.01	1.15

In the early 1980, Selco carried out a reconnaissance lithogeochemical survey. A total of 313 bedrock samples were collected and analyzed for lithium content. Samples returned results from a low of 7 ppm Li to a high of 4095 ppm lithium (Li). The survey was controlled by chaining along claim lines and by running intermediate lines by compass and chain. The Mavis Lake geochemical survey has shown good correlation between lithium halos with the known albite-spodumene pegmatite zone (Figure 3).

In 1982, **Tantalum Mining Corporation of Canada Limited ("Tanco")** optioned the Fairservice Property. In June 1982, a program of line cutting and geophysical survey was completed on a portion of the property. It was concluded that the Mavis Lake area is characterized by a higher (>1000 gammas) but irregular magnetic response over the mafic metavolcanic rocks. The sediments have a low, flat magnetic response, but this could be partially due to the masking effects of the overburden. It was thought that the contrasts in magnetic signatures could be used as an aid to identifying favorable zones for pegmatites since the rare metal pegmatites have an affinity for mafic metavolcanics in the Mavis Lake area (Vanstone, 1982).

In June 1982, **Tanco** also completed a detailed lithium litho-geochemical survey over a portion of the Property. The purpose of the lithogeochemical survey was to locate, by means of a systematic sampling of the bedrock, blind tantalum-bearing pegmatites. Samples were collected at 25 meters intervals along chained lines 50 metres apart. A total of 737

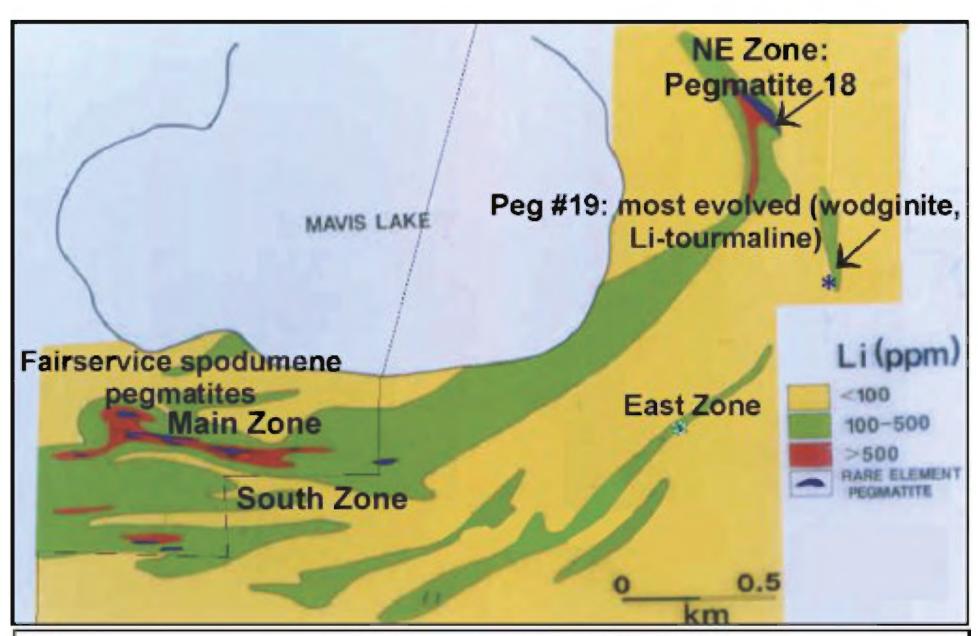


Figure 3. Historical lithium lithogeochemical anomalies in mafic metavolcanic host rocks, Mavis Lake area.

samples over approximately 37.2 line kilometers were collected. At each sample location roughly 0.5 kg of fresh sample was taken. Grid coordinates identified the samples with the rock type recorded and samples analyzed for ppm Lithia (Li₂O). The Li₂O values for the survey ranged from less than detection limit to a high of 8000 ppm with mean value being 203 ppm.

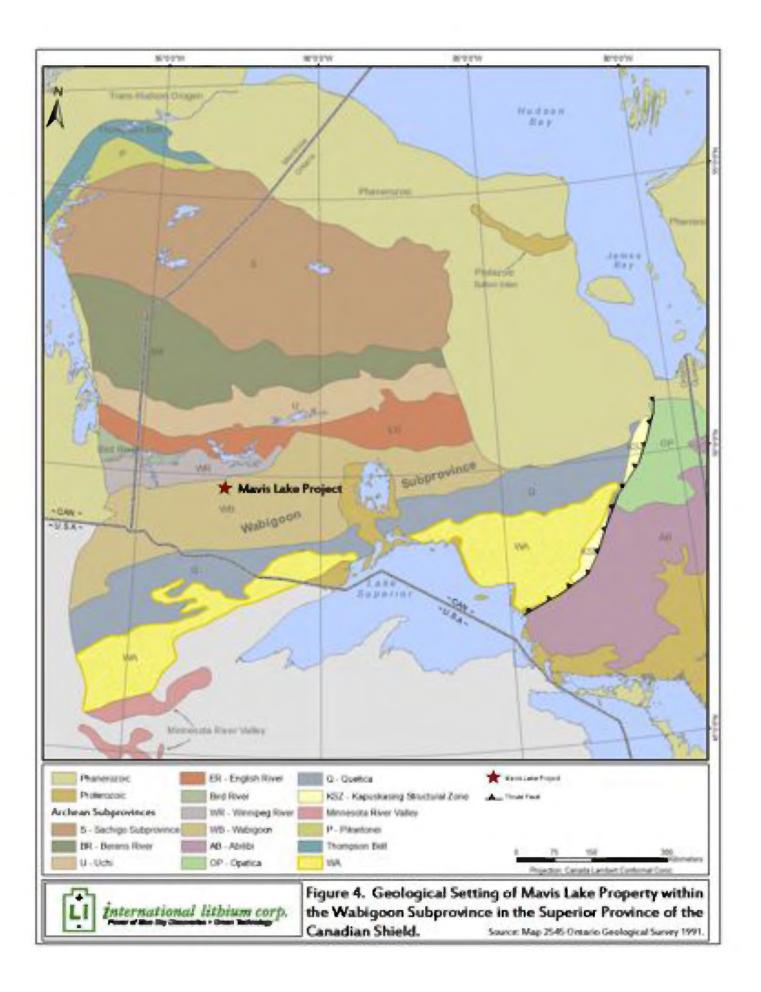
Two anomalous zones were defined by Tanco's lithium litho-geochemical survey: the **North or Northeast** and **East** zones (Figure 3). The North Zone is a very intense zone with values in excess of 1000 ppm Li₂O. The zone is characterized by broad, extensive anomalies, but also contains a number of small, tight isolated anomalies. The zone is generally confined to the more magnetically responsive mafic metavolcanics. The **East Zone** consists of small, generally elongated, and relatively tight anomalies. Such anomaly configurations are indicative of near vertical pegmatites. The eastern part of the anomalous zone tends to be broader reflecting the change to more shallow dipping pegmatites. The **East Zone** geochemical pattern is not as strong as the North Zone, with values rarely exceeding 1000 ppm Li₂O (Vanstone 1983).

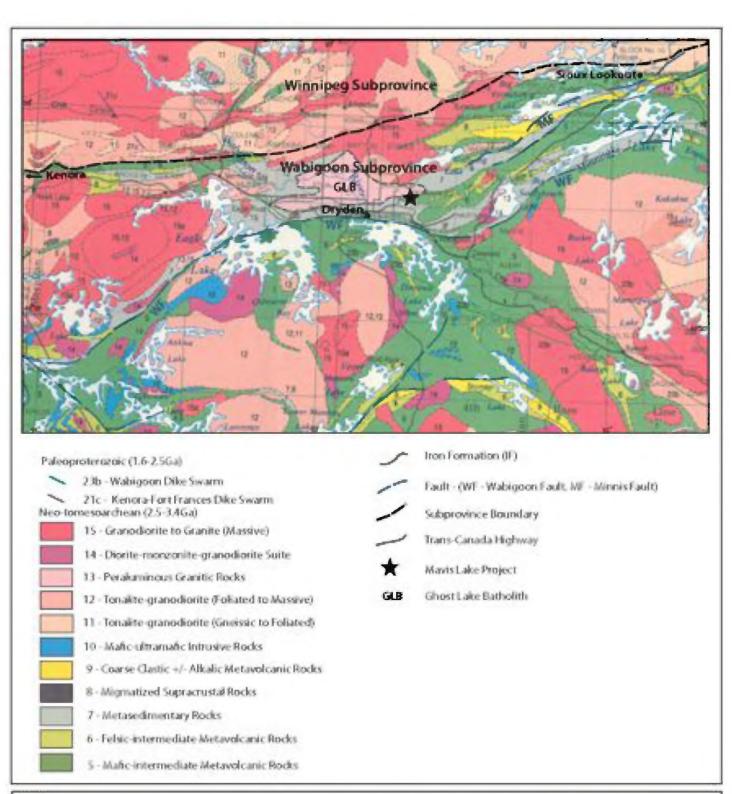
Tanco conducted no follow up exploration program after completing the litho-geochemical survey and all claims were returned to R.J. Fairservice in the same year.

During the late summer in 2002, **Emerald Field Resources** optioned the property from R.F. Fairservice for its rare metal (Ta, Cs and Be), VMS-type base metal (copper-zinc) and Hemlo-style gold mineralization potential. In 2003, Emerald Field Resources carried out prospecting, trenching, geological mapping programs and a 4-hole diamond drill program (Mowat, 2003).

In the summer of 2003, **True North Gems Inc.** undertook development work on a previously known emerald occurrence (Brand et al. 2009) on its optioned Taylor beryl pegmatite located on strike to the now lapsed property holdings of Emerald Field Resources.

Houston Lake Mining in 2004 carried out exploration for rare metals on the Brady property (Anthony 2004), situated immediately west of the Mavis Lake and Fairservice properties and which contains the various showings on the former Sanmine property.


6.0 Geological Setting


6.1 Regional Geology

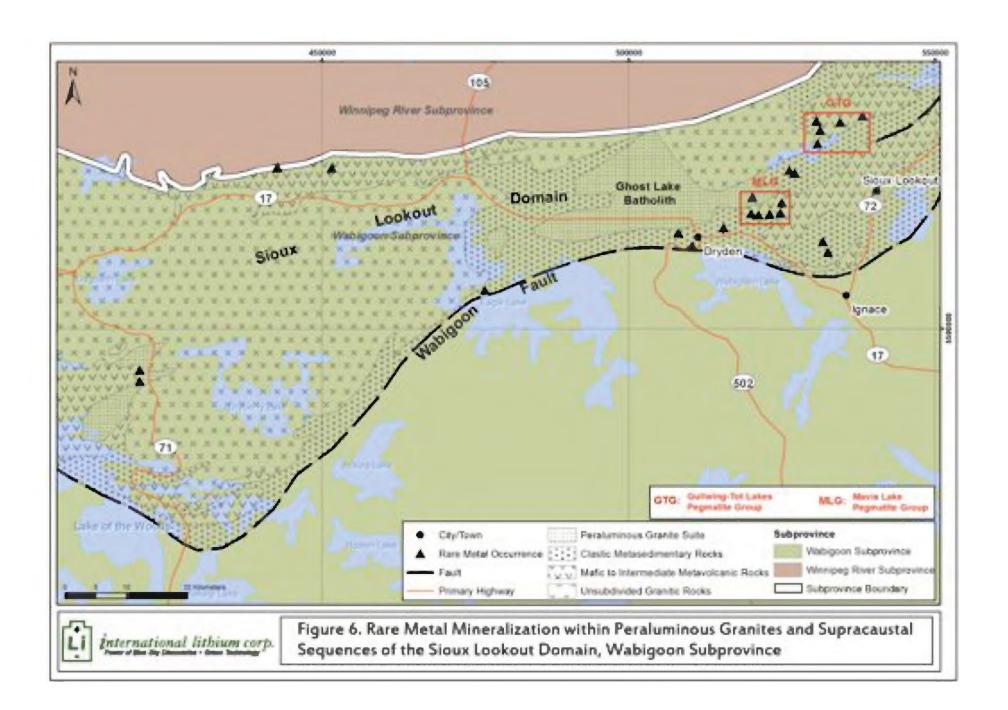
In the regional context, the Property lies within Sioux Lookout Domain (SLD) in the western Wabigoon Subprovince (WS) (Figures 4 and 5). The SLD is sandwiched between the granitoid-dominated Winnipeg River Subprovince (WRS) to the north and the greenstone-granite rich WS to the south. The eastern half of the WS shares border with the metasedimentary-dominated English River Subprovince (ERS) to the north and in the south by the metasedimentary Quetico Subprovince (QS). The WS is approximately 900 km long, 150 km wide granitegreenstone terrain and comprises metavolcanic and subordinate metasedimentary rocks, ranging in age from 3.0 Ga to 2.71 Ga, and intruded by a suite of 3.0 to 2.69 Ga granitoid batholiths, gabbroic sills and stocks.

The SLD is interpreted to have developed within a collisional tectonic setting during the Kenoran orogeny (Breaks 1989, Beakhouse 1989, 1991). Features of the SLD include:

- inverted stratigraphy and out-of-sequence thrust stacking of metavolcanic and clastic metasedimentary rocks (2733±1 Ma to 2706±2 Ma),
- Abukuma-type metamorphism,
- areas of higher-grade, migmatized clastic metasedimentary rocks adjacent to the western contact of the 2685 Ma Ghost Lake batholith (GLB), the main source for the 2665 Ma rare metal granitic pegmatites in the Dryden area,
- occurrences of peraluminous granite and pegmatitic granite plutons over 150 km strike length, and,
- widespread occurrences of rare metals (Li, Rb, Cs, Be, Nb, Ta and Ga) plus other lithophile elements such as Mo, W, Sn, U, Th etc contrasting with the adjacent WRS and WS.

International lithium corp. Figure 5. Regional Geology - Dryden Area, Northwestern Ontario

The 10 by 30 km area within the eastern SLD which is host to numerous rare metal pegmatites in the Dryden area, is known as the "Dryden Pegmatite Field" (DPF) of Mulligan (1965) (Figure 6). The DPF is populated by two distinct pegmatite clusters (Breaks and Janes 1991) occur roughly 10 km apart:


- 1. Mavis Lake Pegmatite group (MPG) in the Mavis Lake area, with a 2665±10 Ma age (Smith 2001), and,
- 2. Gullwing-Tot Pegmatite group (GPG) in the Gullwing and Tot Lakes areas of unknown mineralization age.

The Wabigoon Fault represents a major curvilinear, southwest- to east-northeast trending regional structure, located along the southern contact of the SLD, and lies about 4.5 to 5 km south of the Mavis Lake lithium property. Beakhouse (2001) has subdivided the supracrustal units of the SLD, from north to south, into an alternating series of southward facing metavolcanics and metasedimentary rocks. These supracrustal rocks in the Mavis Lake area comprised the following sequences:

- 1. Brownridge sediments and volcanics in the north,
- 2. Thunder Lake sediments and volcanics in the middle and,
- 3. Highly strained Zealand sediments adjacent to the Wabigoon Fault (WF) defining the southern most portion of the SLD.

The Minnitaki and Abram Lake greenstone belts (2745±1 to 2711 Ma) characterize the eastern SLD. Supracrustal rock sequences within this part of the domain comprise ultramafic (komatiitic) through mafic (tholeiitic, calc-alkaline, alkalic and komatiitic) and to calc-alkalic felsic volcanic rocks. Overlying metasediments are mostly clastic rocks of alluvial fan-fluvial, turbidite and platformal facies. Minor chemical sedimentary rocks are predominantly oxide-facies iron formation. All these rocks units are surrounded by external granitoid batholiths, and internally intruded by numerous variably sized sills, stocks and plutons of gabbroic and granitic compositions. Deformation and syntectonic to post-tectonic granitic plutonism occurred in the interval 2711 to 2685 Ma.

The underlying Brownridge metasediments within the Mavis Lake area are dominated by wacke with subordinate siltstone strata and have well-preserved primary structures. Structurally overlying metavolcanic rocks (Brownridge volcanics) consist of fine-grained pillowed, massive mafic lavas and medium- to coarse-grained flows and/or gabbroic sills. The upper portion of the metavolcanics tends to be variolitic, massive and pillowed mafic flows (Beakhouse, 2001).

The Thunder Lake sediments underlie the southeastern-most part of the property boundary and are similar in character to the Brownridge sediments. Quartz+/-plagioclase porphyritic felsic metavolcanic rocks (crystal tuffs?) are interlayered within sediments. The Thunder Lake metavolcanics consist of massive to pillowed mafic flows with minor mafic to ultramafic rocks of undetermined age.

Five plutonic rock suites occur in the region (Breaks and Janes 1991): a tonalitic gneiss suite (circa 3170 million-year old); tonalite-trondhjemite-granodiorite suite (2665+/- 20 million-year old); two mica, peraluminous granite –granodiorite suite (2681+/- 20 million-year old); biotite granite-granodiorite suite (2560+/- 40 million-year old); and a mafic-ultramafic plutonic suite.

The two-mica granites are the source for rare metal pegmatites in the region, for example, the 2685 Ma Ghost Lake batholith (GLB) in the Mavis Lake area (Figure 6). The GLB is the largest (80 square km) and most fractionated of any peraluminous granite in the SLD with eight internal, subsolvus granitic and pegmatitic granite units as shown in Figure 7 (Breaks and Janes 1991, Breaks et al. 2005).

Structural data between Dryden and Sioux Lookout indicates four stages of deformation. Berger (1990) and Chorlton (1991) identified flat-lying folds (D₁) within iron formation units and associated pre-metamorphic axial planar schistosity. A second stage deformation (D₂) associated with plutonic activity, produced contact strain and thermal aureoles adjacent to plutons and subsequently developed steeply dipping foliation and aureoles with amphibolite-facies metamorphic grade. The third (D₃) stage of regional deformation interfered with D1 folds to produce complex outcrop patterns of domes and basins. The resulting northeast striking shear zones are characterized by steep dips with a southwest plunging mineral lineation. The final stage (D₄) of deformation produced continued convergence and subsequently formed the Wabigoon shear zone and its associated splays. The resultant structural complexities within the Abram and Minnitaki Lake belts, along with strong evidence of layer-parallel shearing, suggests the belts have been tectonically stacked and subsequently form repetitive volcanic and sedimentary sequences (Drost and Hunt 1997).

Mineral deposits and prospects of the Wabigoon Subprovince include volcanogenic copper-gold and zinc-copper-silver deposits within volcanic units and iron formations (Blackburn et al. 1991). Mafic and ultramafic rocks contain mineralization associated with granitic pegmatite-related rare metals, uranium and platinum group elements deposits and prospects. Gold deposits are known to be associated with

shear zones, quartz-carbonate veins, and within contact strain aureoles developed around large plutons.

6.2 Property Geology

The Property is located on the north limb of a westerly plunging syncline that lies adjacent to the Thunder Lake anticline (Figures 8 and 8a - Beakhouse and Pidgeon 2003). Mafic metavolcanic and clastic metasedimentary rocks predominantly underlie the property. Intermediate to felsic volcanics occur as minor intercalations within the volcanic sequences. Intruded into these units are ultramafic dikes, small alkalic stocks and numerous granite pegmatite dikes.

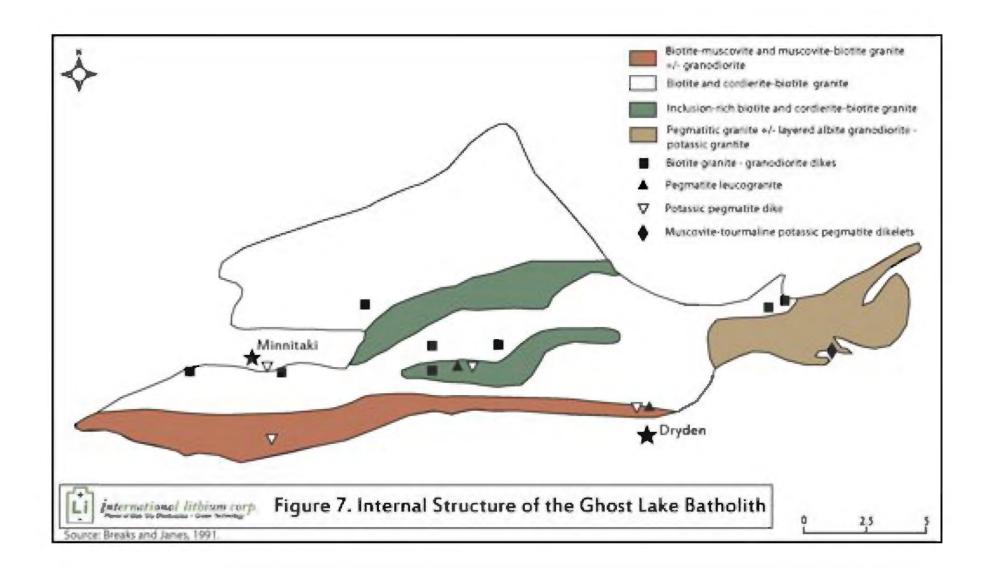
6.2.1 Mafic Metavolcanic Rocks

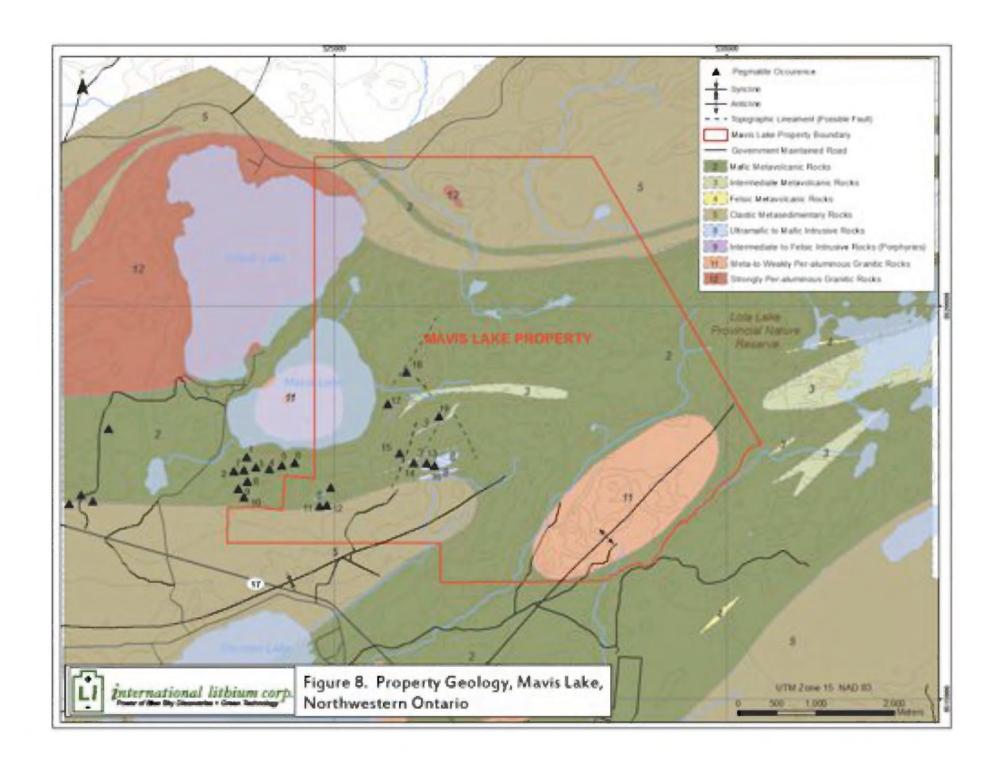
Mafic metavolcanics are the dominant rock type on the property and stratigraphically correspond to the Brownridge volcanics. The subunits include massive, pillowed, variolitic, plagioclase porphyritic and spherulitic flows, and volcanic conglomerates, tuffs and interflow sediments.

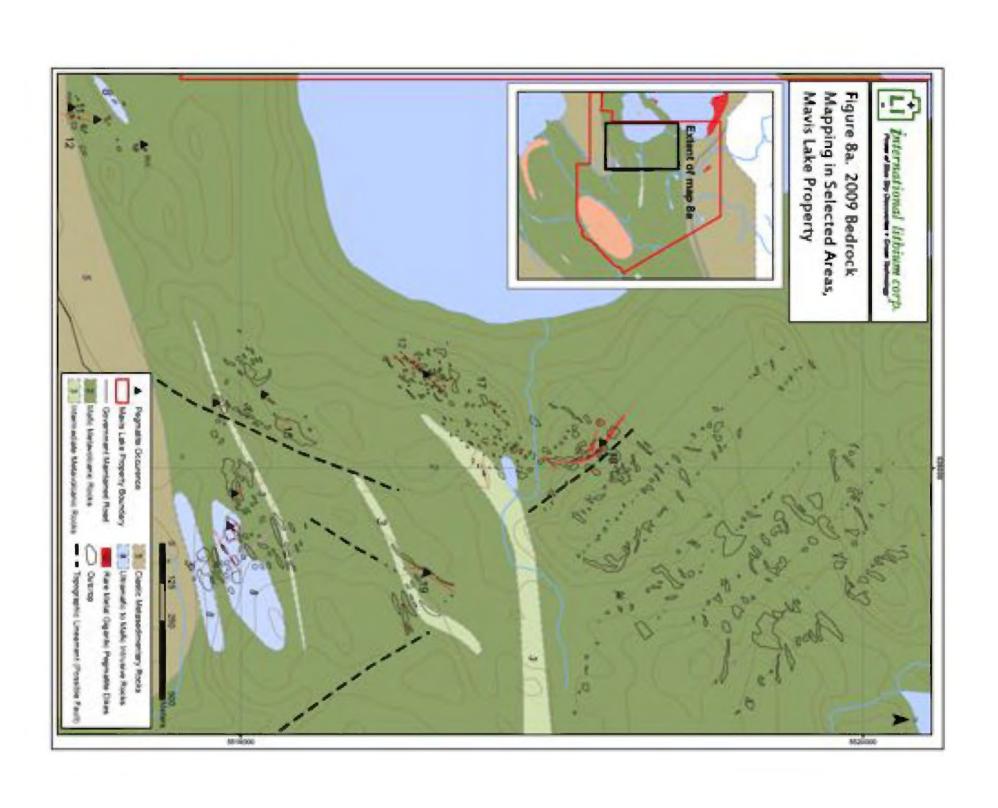
6.2.2 Intermediate to Felsic Metavolcanic Rocks

These rocks occur as narrow, tuffaceous interbeds of dacitic chemical composition within the mafic metavolcanic rocks.

6.2.3 Clastic Metasedimentary Rocks


A thick boulder till and proglacial sand cover generally masks clastic metasedimentary rocks underlying the extreme northern and southern portions of the property. The clastic metasediments are composed of mainly wacke with minor siltstone interbeds.


6.2.4 Ultramafic to Mafic Intrusive Rocks


Two small bodies of medium to coarse-grained gabbro are located on the south-central part of the property. These rocks are likely interfingered as shallow sills with mafic volcanics though contact relationships are unclear.

6.2.5 Granitoid Stocks

Two small, moderately to weakly peraluminous granodiorite stocks have intruded the supracrustal rocks on property. The larger of the two stocks is 3.0 km long by 1.1 km wide, oblong in shape and occurs in the extreme southeast corner of the property. The second and smaller Mavis Lake

stock is a round body approximately 1.0 km in diameter and largely covered by Mavis Lake. A much smaller, 100 by 300 m, strongly peraluminous intrusion, possibly associated with a beryl pegmatite (Beakhouse 2001), is located at the north-central end of the property and comprises granite to granodiorite with minor pegmatite and aplite.

6.2.6 Granitic Pegmatite Dikes

Numerous granitic pegmatite dikes, ranging from the primary spodumene-bearing to albite-rich, tantalum-enriched varieties occur on the property. The dikes are generally found within the mafic metavolcanic sequences. These pegmatites are linked to Ghost Lake batholith (GLB), and a part of the Mavis Lake Pegmatite Group (MPG) of Breaks and Janes (1991). The MPG is characterized by east-trending concentration of rare elements-bearing pegmatites and related metasomatic zones.

Eleven rare metal pegmatites of this group occur on the Mavis-property, denoted as Pegmatites 11 through 19, includes a new pegmatite, named RVL that was discovered by TNR during the fall 2009 exploration program (Figures 8 and 8a). These pegmatites fall into two zones according to the initial classification of Breaks (1989), based upon systematic variation in rare-element mineralogy and petrochemistry:

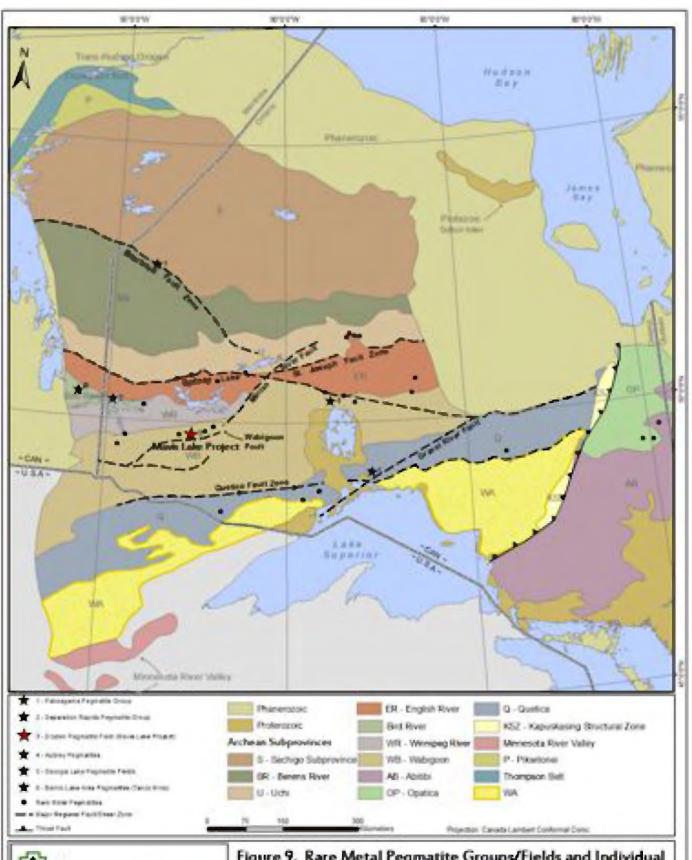
- Spodumene-beryl-tantalite zone (Li-Rb-Be-Ta>Nb-B)
- Albite-type pegmatite zone (Li>Rb-Be-Ta>Nb and Rb>Li-Be-Ta>Nb).

In the classification of Černý (1991) and recent revision (Černý and Ercit 2005), these pegmatites represent a mix of albite-spodumene-type, albite-type and complex-type pegmatite dikes. Pegmatites 11, 12, 17 and 18 have been classified as albite-spodumene-type (spodumene-beryltantalite zone) and Pegmatites 13, 14, 15, 16 and 19 as albite-type. Geochemically, all these types also belong to the LCT (Li-Cs-Ta)-geochemical-family of pegmatites (Černý 1991).

The granitic pegmatite bodies exhibit an arcuate east to northeast strike pattern around the southeast corner of Mavis Lake. Dips are generally steep to the north. Tops, determined from pillowed flows, are to the south, indicating that the north limb of the syncline has been overturned. Sets of both steep and shallow dipping joints occur throughout the property. In the western portion of the property the pegmatites appear to have an affinity for the steep dipping set, whereas in the eastern portion of the property the pegmatites tend to have shallow dips (Vanstone 1982).

7.0 Deposit Types

7.1 General


The Superior Geological Province contains more than 200 rare-element pegmatite (also termed rare metal pegmatite) occurrences that are hosted by metavolcanic (52%), clastic metasedimentary (23%), peraluminous granite plutons (20%) and tonalite to granodiorite (5%) rocks (Figure 9, Breaks et al. 2005). Genetically, these pegmatites have been linked to peraluminous, S-type, fertile parent granites and recognition of such parental granites is critical in the exploration for rare elements such as Li, Cs, Rb, Be, Ta, Nb, Ga, Tl and Ge (Breaks et al. 2005). One of the best examples of such parental granites is the Ghost Lake batholith (GLB) located adjacent to the Property area (Breaks and Moore 1992). A fertile granite is the parental granite to rare metal pegmatite dikes. Some granitic melts have the capability to initially evolve into a fertile granite pluton that subsequently produced episodes of residual melts available to migrate into the host rock via structural anisotropies and crystallize as rare-element pegmatite dikes (Breaks et al. 2003).

7.2 Genesis of Peraluminous Granite-Rare Metal Pegmatite

Pegmatite is a common plutonic rock of variable texture and coarseness that is composed of interlocking crystals of widely different sizes. They are formed by fractional crystallization of an incompatible element-enriched granitic melt. Several factors control whether or not barren granite will fractionate to produce a fertile granite melt (Figure 10, Černý 1991, Breaks 2003):

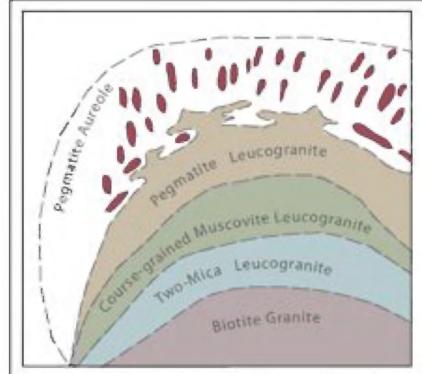
- presence of trapped volatiles: fertile granites crystallize from a volatile-rich melt.
- **composition of melt:** fertile granites are derived from an aluminum-rich melt.
- **source of magma:** barren granites are usually derived from the partial melting of a igneous source (I-type), whereas fertile granites are derived from partial melting of a peraluminous sedimentary source (S-type).
- **degree of partial melting:** fertile granites require a high degree of partial melting of the source rock that produced the magma.

Initially, fractional crystallization of a granitic melt will form barren granite consisting of common rock forming minerals such as quartz, potassium feldspar, plagioclase and mica. Because incompatible rare

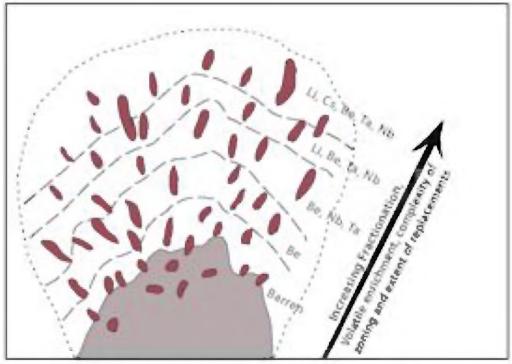
LI international lithium corp.

Figure 9. Rare Metal Pegmatite Groups/Fields and Individual Occurances within the Superior Province of Ontario

Source: Breaks & Cumani 1989; Breaks et al. 2003 & 2005.


elements, such as Be, Li, Nb, Ta, Cs, B, which do not easily fit into the crystal of these common rock-forming minerals, become increasingly concentrated in the granitic melt as common rock forming minerals continue to crystallize and separate from the melt (Breaks et al. 2003). At this point, if the granitic melt is of a volatile-rich modestly peraluminous composition, then further fractional crystallization will lead to *fertile granite* melt enriched in incompatible rare-elements/metals. The rare metals will remain in the melt until the last possible moment when they will crystallize as pegmatitic minerals such as spodumene, petalite, tantalite, columbite, etc.

After most of the fertile granite pluton has crystallized, the residual fractionated granitic melt that remains as concentrates at the roof of the pluton, can then intrude along rheological contacts, fractures and faults into the host rocks to form pegmatite dikes. The forms of rare metal granitic pegmatite are greatly variable, and are controlled mainly by the competency of the enclosing rocks, the depth of emplacement, and the tectonic and metamorphic regime at the time of emplacement.


7.3 Regional Setting

Following geological settings of the fertile granites and related pegmatite dikes have been observed within the Superior Province (Figure 9, Breaks and Osmani 1989, Breaks et al. 2005):

- peraluminous, S-type and pegmatite granites typically occurring along or near the boundaries of high-grade (amphibolite to granulite facies).
- metasedimentary-dominant subprovinces such as the English River, Quetico and Opatica.
- fertile S-type granites situated within medium-grade (greenschist to amphibolite facies) rocks hosted within the Wabigoon Subprovince (WS) adjacent to high-grade Winnipeg River (WR) and English River (ER) subprovinces (e.g., Dryden pegmatite field, Separation Rapids pegmatite group and Aubrey pegmatites in the Armstrong field).
- rare metal pegmatites and their parental granites occurring along faulted subprovinces boundaries (e.g., "Pakeagama pegmatite group" along Bearhead Fault Zone at the Sachigo-Berens River subprovinces boundary Osmani and Stott 1988, Osmani et al. 1989, Breaks and Osmani 1989, Breaks and Tindle 1998).

A. Schematic presentation of regional zoning in a fertile granite with an aureole of exterior lithium pegmatites.

B. Schematic regional zoning in a cogenetic parent granite & pergmatite. group: a model for the Mavis Lake Area. Fractionation of pegmatites increases with increasing distance from the parent granite.

Figure 10. Regional Zoning in Fertile Granites and Associated Pegmatite Dikes.

 lithium-bearing pegmatites located within greenstone belts but are not related to high-grade metamorphic rocks or major fault systems (e.g., Raleigh Lake lithium occurrences – Breaks et al. 2005).

The rare metal pegmatites are regionally scattered throughout the boundary zone between the granitoid-dominant WR to the north and the greenstone-granite WS to the south. This 15-40 km by 250 km zone is characterized by:

- 1. inverted stratigraphy and out-of-sequence thrust stacking of allochthonous metavolcanic and metasedimentary assemblages, ranging in age from 2733±1 to 2703±2 Ma.
- 2. wide range in metamorphic grade low to high grade.
- 3. zones of metasedimentary migmatite.
- 4. two-mica, peraluminous granite plutons distributed over 150 km.
- 5. a distinctive metallogeny relative the adjacent WS and WR featured by widespread lithophile metal enrichment which is in addition to rare-metal pegmatites.

7.4 Local Setting

Pegmatites of the Dryden area were initially described and named by Mulligan (1965) as the "Dryden Pegmatite Field" (DPF). The DPF has been subdivided into two distinct pegmatite populations (Figure 6 - Breaks 1989, Breaks and Janes 1991, Breaks et al. 2003, 2004):

- 1. Mavis Lake Pegmatite Group (MPG), and,
- 2. Gullwing -Tot Lakes Pegmatite Group (GTG)

These two groups are approximately 10 km apart. The MPG is linked genetically with the GLB, a late Achaean (2685 Ma), late to post-tectonic, fertile, S-type, peraluminous granite and pegmatitic granite body. According to Breaks and Janes (1991), although both MPG and GTG are hosted within amphibolitized mafic metavolcanic rocks, they differ in their respective structural settings and development processes. The GTG is a post-tectonic of no known genetic linkage with any exposed granite body in the area but contains one of the most highly evolved pegmatites in Ontario. Pollucite-bearing pegmatites occur within this group and, based on their fractionation indices, indicate extreme fractionation that compares with the Tanco pegmatite (Breaks 1989, Černý et al. 1998, Černý and Ercit 2005).

Since the pegmatites belonging to the MPG are the main objective of the current study, the dikes of this group are only discussed in this report. Detailed descriptions of GTG are contained in Breaks and Janes (1991) and Breaks et al. (2003, 2005) to which the reader is referred.

The majority of the rare metal pegmatites within the MPG strike parallel to the foliation of their host rocks and exhibit localized effects of late tectonic deformation such as weakly strained contacts, internal ductile shearing, pull-apart structures involving tourmaline and spodumene and buckling and boudinage of pegmatite granite dikes near the GLG contact (Breaks and Janes 1991). However, those pegmatites (albite-type) that are located in the outermost zone of the MPG are thought to postdate the tectonic deformation as evident by their discordant emplacement and lack of ductile deformational features.

7.5 Mavis Lake Deposit Model

Rare-element pegmatites of the MPG, as discussed in the preceding sections, are spatially and genetically linked with the peraluminous, Stype Ghost Lake batholith (GLB) (Breaks 1989, Breaks and Janes 1991, Breaks and Moore 1992, Breaks et al. 2003 and 2005), of which the extreme eastern end is located within the northwest corner of the Property (Figure 11). This late tectonic, multi-stage, co-magmatic, subsolvus, 280 square km complex was emplaced principally into the medium and high metamorphic grade clastic metasedimentary rocks within the SLD.

The pegmatitic granite units, which occupy the eastern lobe of the Ghost Lake batholith, form a small zone (10 square km) interpreted as a cupola zone. Bulk chemical characteristics and chemical indices of these units are comparable to fertile pegmatitic granite masses in other fields (Černý and Meintzer 1988). The rare element pegmatite dikes on the Property and adjacent areas are related both spatially and genetically to this pegmatitic eastern lobe of the GLB.

The MPG consists of a 0.8 to 1.5 by 8 km, east trending swarm of pegmatites and related metasomatic zones hosted mostly within the mafic rocks. Pegmatites of this group exhibit a classic regional zonation with increasing distance from the parent GLB, as defined by systematic changes in mineralogy, chemical association and extent of post magmatic replacement (Figure 11). With increasing distance east from the GLB, the group exhibits the following regional disposition of pegmatite zones and distinctive petrochemistry (Breaks 1989, Breaks and Janes 1991):

- 1. Interior beryl zone [(Be-B- (Cs) and Rb-Be-F-Sn- (Cs-Ga-Ta>Nb)],
- 2. Beryl-columbite zone [(Be-B-Nb>Ta-P- (Cs)]
- 3. Spodumene-beryl-tantalite zone (Li-Rb-Be-Ta>Nb-B)
- 4. Albite-type pegmatite zone (Li>Rb-Be-Ta>Nb and Rb>Li-Be-Ta>Nb) pegmatites.

The **interior beryl zone** is 1.5 by 3.5 km area of garnet-tourmaline-muscovite-enriched pegmatitic granites within the GLB (Figure 11). This zone resides within the eastern lobe of the GLB and is characterized by sporadic green primary beryl in potassic pegmatite dykes and masses.

The **beryl-columbite zone** occurs within mafic metavolcanic country rocks adjacent to contact of the batholith. The rare-metal mineralization occurs in muscovite-tourmaline potassic pegmatites (e.g., Taylor #1 and #2 pegmatites) or in locally albitized pegmatites (e.g., Contact Beryl Occurrence). The Taylor pegmatites contain localized "emeralds" that formed adjacent to phlogopite-rich metasomatic selvedges derived from fluid interaction with the ultramafic host (peridotite sill). Brand et al. (2009) recently published a detailed account on a petrographic-mineralogical study of the emerald mineralization of the Taylor emerald occurrences.

The **spodumene-beryl-tantalite zone** occurs 2.5 to 6 km from the GLB contact. Within this zone, a swarm of spodumene-enriched pegmatites 1 to 19, plus the newly discovered RVL pegmatite by TNR in the fall 2009, extend easterly from the adjacent Fairservice claims onto the Property (Figure 11). The property currently hosts 10 such pegmatites (#11 to 19 plus RVL). Pegmatite 1 on the Fairservice property reportedly contains a resource of 500,000 tons grading 1.0% Li₂O (Storey 1990, p. 153). **This historical resource estimate was calculated prior to the implementation of NI 43-101 standards therefore it is not current and should not be relied upon.** The QP is not able to verify the historical estimates of average grades and tonnage for the adjacent Fairservice property. As such, these historical data are not necessarily indicative of lithium mineralization exposed on the Mavis Lake Property.

Furthermore, it is cautioned that rare-metal pegmatites of the Dryden pegmatite field adjacent to the Mavis Lake Property individually vary in terms of pegmatite type, modal mineralogy, grain size, internal zonation of rock units and Li₂O content and therefore the lithium mineralization on the Mavis Lake Property may or may not compare with other lithium pegmatites of the area.

Besides lithium-rich spodumene pegmatites within this zone, this pegmatite also contains Ta-Nb-Sn oxide minerals such as mangano-columbite and tantalite, wodginite, tantalian rutile and cassiterite (Tindle et al. 2002). The pegmatites in the zone generally strike concordant to foliation in the host mafic metavolcanic rocks.

Albite-type pegmatite zone represents the distal zone, in which the pegmatites comprise less than 1.0m thick sheets composed of units rich in albite (sodic albite and albitite) contain fine-grained aggregates of green muscovite and albite formed after primary spodumene. Other minerals include mangano-tantalite, white beryl, fluorapatite and tourmaline of schorl and highly evolved elbaite compositions.

The rare metal pegmatites on the Property occur in a swarm of flat lying and near vertical dikes hosted within mafic metavolcanic rocks and contain some minerals identical to the Tanco deposit in southeastern Manitoba (Černý and Ercit 2005). For example, wodginite, the chief ore mineral at the Tanco deposit, also occurs in several pegmatites in the MPG (Tindle et al. 2002). On the basis of systematic changes in mineralogy, chemistry and metal association, these pegmatites are classified as **albite-spodumene-type** with beryl and tantalite, **albite-type**, and **complex-type** with lithium tourmaline, tantalite and wodginite group minerals.

The adjacent Fairservice property is dominated by east-trending albite-spodumene-type pegmatites, considered to be part of the same dike swarm as the Property pegmatites.

The pegmatites on both properties are historically correlated with a substantial lithium lithogeochemical anomaly, with a minimum length of 3.4 km and up to 700 metres wide. This anomaly was recently extended by TNR a further 1.1 km to the northeast beyond this known historical length. This lithium anomaly remains open to the east onto the Property and also is open to the west on the adjacent Brady property.

8.0 Mineralization

Rare-metal mineralization (e.g., lithium, tantalum, cesium, and rubidium) on the property occurs in granitic pegmatite and sodic aplite and albitite dikes, which are typically hosted in mafic metavolcanic rocks. These pegmatite dikes are genetically related to a parent peraluminous, S-type parent granite body (GLB), the northeastern part of which lies within the northwest corner of the Mavis Lake Property. The characteristic minerals associated with rare metal mineralization within the pegmatite and related aplite bodies are spodumene (Photo 1), tantalite, columbite and tourmaline. Holmquistite, a lithium amphibole characteristic of lithium pegmatites, occurs in altered mafic metavolcanic host rocks.

The project area covers the eastern extent of the MPG, which comprises an east trending concentration of rare metal pegmatites and related metasomatic zones. The nine known pegmatites and a newly discovered dike by TNR on the property are denoted as Pegmatite 11 through 19 and RVL, respectively (Figure 11). These pegmatites represent a mix of albite-spodumene-type, albite-type, and complex-type dikes (Breaks et al. 2003). Pegmatites 11, 12, 17 and 18 are classified as albite-spodumene-type (spodumene-beryl-tantalite zone) and from 13 to 16 plus 19 are classified as albite-type. Geochemically, these pegmatites can be classified the LCT-family of pegmatites (Černý 1991).

The spodumene-beryl-tantalite zone is defined by the initial appearance of spodumene in pegmatites of the albite-spodumene-type (Černý, 1991), which is located about 3.5 km from the GLB contact with the mafic (Brownridge) metavolcanics (Breaks and Janes 1991). Swarms of tabular pegmatites dikes, up to 10 m in thickness and 280 m in length, generally strike parallel to the foliation in the host rock. Internal zoning is indistinct to absent, for example the Pegmatite 1 on the adjacent Fairservice claims. This pegmatite contains three gradational zones of increasing content of quartz: a) potassic pegmatite with minor interstitial spodumene and quartz, b) spodumene-quartz-rich pegmatite, and c) a discontinuous quartz-rich core zone with minor spodumene, blocky microcline and beryl.

Pegmatite 14 is typical of the intensely albitized sheets and only ten percent of the dike contains recognizable spodumene relics. Most of Pegmatite 14 consists of 20-25% fine-grained white smoky quartz embedded in a mass of white-pink albite. Beryl occurs sporadically in Pegmatites 13, 14 and 15 as subhedral white to bluish-white crystals embedded with quartz and albite.

Photo 1 Light green blades of spodumene crystals interlocked with light pink to grey feldspar.

Pegmatite 14 is typical of the intensely albitized sheets and only ten percent of the dike contains recognizable spodumene relics. Most of Pegmatite 14 consists of 20-25% fine-grained white smoky quartz embedded in a mass of white-pink albite. Beryl occurs sporadically in Pegmatites 13, 14 and 15 as subhedral white to bluish-white crystals embedded with quartz and albite.

Intense tourmaline replacement of underlying massive mafic metavolcanics is especially conspicuous near the northwestern end of Pegmatite 16. Scheelite was identified by ultraviolet examination in vein system underlying Pegmatite 16 and in similar veins between Pegmatites 13 and 14, near the main dykes of the East Zone. In the case of Pegmatite 16, it is clear that the tungsten mineralization is genetically associated at least with the tourmaline-rich veins occurring with spodumene bearing rare element pegmatites of the East Zone (Breaks 1989).

Tantalum-, niobium- and tin-bearing minerals were confirmed in albitetype and albite-spodumene pegmatites on the Property by 106 electron microprobe analyses (Tindle et al. 2002). These minerals were verified as mangano-tantalite, mangano-columbite, ferro-columbite, cassiterite and wodginite group [Mn (Sn,Ta) Ta_2O_8].

The **North** or **Northeast Zone** comprises Pegmatites 17 and 18 that have minimum respective strike lengths of 240 m and 214 m. Pegmatite 18 consists of several *en-echelon*, stacked pegmatite sheets that strike 1350 with variable northeast dips of 15 to 43 degrees. This attitude is approximately normal to the regional foliation strike in the host massive to pillowed mafic volcanics.

The main primary assemblage in Pegmatite 18 consists of muscovite-tourmaline-K feldspar-albite-spodumene-quartz pegmatite, which is considerably less coarse than comparable primary assemblages from the South Zone and on the Fairservice property. Spodumene is usually light green and it ranges in abundance from 23 to 53 volume %. Beryl, columbite-tantalite, and holmquistite are sparse.

Small quantities of scheelite are disseminated within calc-silicate pods and layers in mafic metavolcanic rocks situated within up to one metre from the spodumene pegmatite contact. The occurrence of axinite $(Ca,Fe,Mn)_3Al_2BO_3Si_4O_{12}OH$ in these calc-silicate domains suggests that boron was introduced from nearby albitized spodumene pegmatites.

9.0 Exploration

The 2009 field program was conducted by TNR in two stages: **1)** a brief, summer 2009 reconnaissance program from July 25th to 26th, and **2)** a detailed month-long follow-up program in fall 2009 from September 25th to October 27th.

9.1 2009 Summer Program

The summer reconnaissance program consisted of only two field days with a four-man crew to evaluate rare metal potential by locating and sampling one or more of the known granite pegmatites on the property. Eight grab and five channel samples were collected from Pegmatite 18 for a total of 13 samples (Table 8). Assay results (as oxides) for lithium, tantalum, cesium and rubidium returned up to 3.14 wt % Li₂O, >122.1 ppm Ta_2O_5 (maximum upper detection limit), 243 ppm Cs_2O and 2500 ppm Rb_2O from grab samples. Five continuous channel samples were cut for a total length of 5.3 metres averaged 1.22 wt.% Li₂O, 34.1 ppm Ta_2O_5 , 92.2 ppm Cs_2O and 1965 ppm Rb_2O (Table 9). Samples with maximum upper detection limits for some of these metals were re-analyzed.

9.2 2009 Fall Program

The fall 2009 exploration program consisted of a grid construction, mapping/prospecting, sampling and litho-geochemical surveying in selected areas of the property (Figure 8, 8a 13 and 114a and 14b). The geological work, including mapping/prospecting, sampling (grab and channel) and litho-geochemical surveying were conducted from September 25th to October 27th.

9.2.1 Grid Construction

A total of 11 lines, including one baseline, totaling 11.25 line-kilometres were cut (Figure 12). The most westerly north-south line is located 200 m west of the Mavis Lake in the vicinity of the Pegmatite 18. The grid lines were spaced 100 metres apart and oriented at 130°-310°, approximately perpendicular to the dominant foliation on the property.

9.2.2 Lithogeochemical Survey

Lithium is the most mobile exomorphic element in most rare-element mineralized systems, and can form halos many times larger than the pegmatite bodies themselves (Černý 1989b, Breaks and Tindle 1997). Due to the superior mobility of the Li, it is used as primary element of choice in the current survey. According to Selway et al. (2005), the most extensive regional Li dispersion anomaly (100-750m x 7.0 km area) associated with rare metal pegmatites delineated to date in Ontario underlies the Mavis Lake area. Of this large historical anomaly, half of its strike length (\sim 3.4 km) underlies the Fairservice claims and Property.

The lithogeochemical survey utilized the newly cut gridlines. Samples were collected as close to the station pickets as outcrop would permit. Exact sample locations are marked with an aluminum tag embossed with

the unique sample number stapled to a 46 cm long lath. A total of 335 samples were collected and were analyzed for lithium (Li) and other trace elements such as tantalum (Ta), cesium (Cs), rubidium (Rb), tin (Sn), gallium (Ga), niobium (Nb) etc (see Appendix 1 for complete analytical package). Two samples were assayed for gold (Au).

Samples returned a range of values from 1.3 to 9780 ppm Li with 136 samples returning values greater than 50 ppm Li. Lithium values greater than 50 ppm are considered strongly anomalous as the average regional background for lithium in mafic metavolcanic rocks is 16 ppm (Breaks 1989). The 2009 fall sampling program extended the lithium dispersion anomaly approximately 1.1 kilometres northeast beyond the 3.4 kilometre long historical anomaly underlying the Fairservice claims and the Property (Figure 12). The lithium anomaly remains open to the east.

9.2.3 Mapping/prospecting and Sampling

Mapping/prospecting and sampling (grabs and channels – Photo 2) were carried out in the latter half of the fall program with the objective of locating and sampling known pegmatites. All of the known occurrences were located and an additional pegmatite, the RVL, was discovered. More so, the Pegmatite 17 was extended 187 metres from its previously known length of 33 metres to 220 metres.

9.2.4 Results

A total of 192 grab samples were collected during the course of mapping/prospecting mostly from outer boundary of the lithium lithogeochemical grid that included both pegmatites and metavolcanic country rocks. Expectedly, the granite pegmatites samples yielded the best rare metal values compared to their host country rocks (Appendix B).

Of all the pegmatites, grab samples of Pegmatites 17 and 18 returned the highest lithium oxide values at 1.86 and 2.11 wt% Li₂O (Table 8). Pegmatites 11 yielded the best lithium oxide results from channel samples. Twelve channel samples were cut with values ranging from 37.4 ppm to 1.7 % Li₂O. A composite sample 4.7 m long returned 1.4% Li₂O. Comparable channel sample results were also returned by Pegmatite 18 from 2009 summer field program ("Section 10.1" and Table 9).

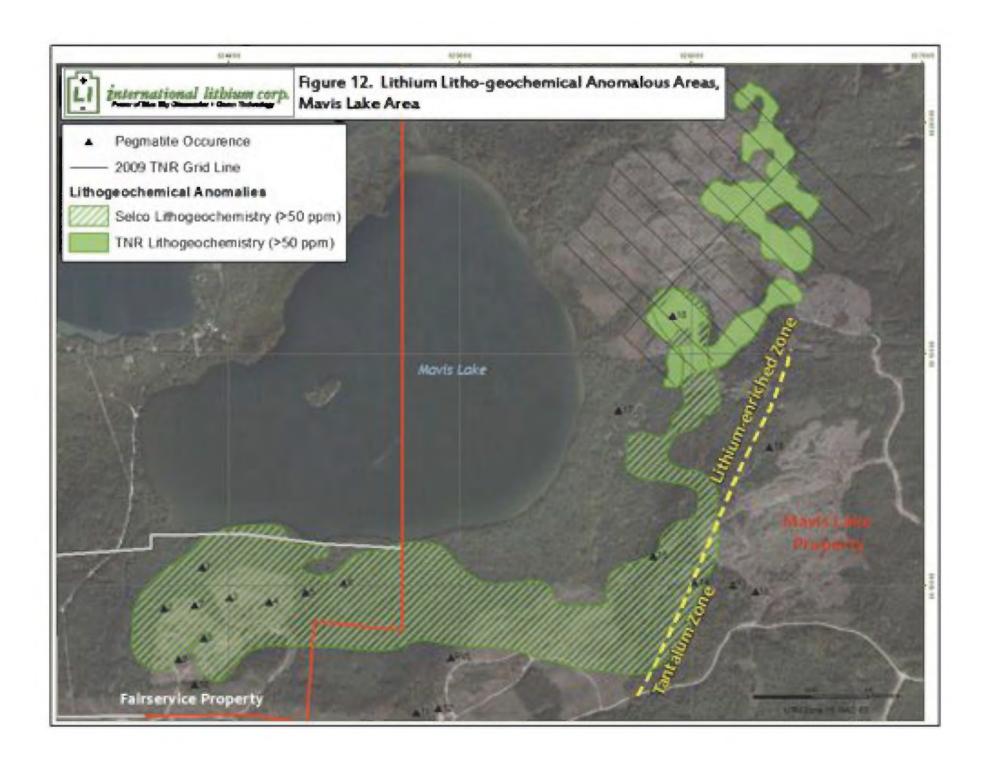


Photo 2. Channel sampling of pegmatite dikes. In addition to lithium, a number of pegmatites, particularly with associated sodic aplite and albitite, also returned highly anomalous tantalum, cesium and rubidium values. The most significant tantalum oxide (Ta_2O_5) results yielded by some of the samples of Pegmatites 14, 16 and 19 are 1246 ppm (0.12 wt.%), 1349 ppm (0.14 wt.%) and 593 ppm (0.06 wt.%), respectively. A sample of a sodic aplite vein with apatite-muscovite-rich selvedges situated near Pegmatite #19 returned the highest values of cesium (1537 ppm or 0.15 wt.% Cs_2O) and rubidium (10,021 ppm or 1.02 wt.% Rb_2O) (sample H373758 in Table 8).

Table 8 Significant Grab Samples

Sample Number	Area	Easting (mE)	North (mN)	Lithology	Li₂O (Wt%)	Ta₂O₅ (ppm)	Cs₂O (ppm)	Rb₂O (ppm)
H373047	14	526050	5517960	Pegmatite	0.007	1246	19.8	9.96
H373046	14	525975	5517949	Pegmatite	0.011	796	79.9	755
H373049	16	526249	5517951	Aplite	0.002	1349	4.20	7.33
H373050	16	526249	5517942	Aplite	0.014	757	7.50	30.5
H372633	17	525757	5518626	Pegmatite	1.72	163	206	2844
H372628	17	525714	5518607	Pegmatite	1.72	275	164	2166
H372626	17	525708	5518596	Pegmatite	1.86	74.7	155	3862
34717	18	525898	5519199	Pegmatite	2.56	57.2	77.4	970

Sample	Area	Easting	North (mN)	Lithology	Li₂O	Ta₂O₅	Cs₂O	Rb₂O
34718	18	525929	5519164	Pegmatite	3.14	36.9	65.6	1200
H372758	19	526339	5518602	Pegmatite-Aplite	0.16	782	1537	10021
H372761	19	526339	5518602	Pegmatite	2.01	223	583	3752

Table 9 Significant Channel Samples

Sample Number	Pegmatite	UTM Start (mE)	UTM Start (mN)	Width (m)	Li₂O (Wt%)	Ta₂O₅ (ppm)	Cs₂O (ppm)	Rb₂O (ppm)
H372723	11	524877	5517478	1	1.02	90.1	114	3370
H372724	11	524876	5517478	1	1.74	60.6	121	2472
H372725	11	524875	5517478	1	1.66	87.3	129	2297
H372726	11	524874	5517478	1	1.50	82.5	157	2932
H372727	11	524873	5517478	0.7	0.90	151.5	250	4223
		V	Veighted Average	4.7	1.39	90.8	148	2985
H372697	11	524871	5517455	1	0.24	84.1	59	1214
H372698	11	524870	5517455	1	0.98	99.3	123	1586
		V	Veighted Average	2	0.61	91.7	91	1400
H372700	11	524867	5517457	1	0.004	134.5	119	2779
34721	18	525965	5519122	1	1.59	53	98.4	1870
34722	18	525964	5519121	1	1.50	47.1	62.6	1140
34723	18	525964	5519120	1	0.90	21.2	100.5	2260
34724	18	525963	5519120	1	0.95	26.8	101.5	2170
34725	18	525963	5519119	1.3	1.15	24.9	96.5	2290
		V	Veighted Average	5.3	1.22	35.2	91.6	1924

All pegmatites, with exception of the RVL, produced Ta_2O_5 levels that exceeded the initial upper detection limit. The highest values came from Pegmatites 13, 14 and 16 which occur within an area of 500 by 800 m that represents the presently minimum southeastern limits for rare metal mineralization on the property. Samples from this area returned peak Ta_2O_5 values of 1349 ppm and 1246 ppm from the Pegmatites 16 and 14, respectively (Plate 1). This area of elevated Ta values is completely open to the east and southeast and warrants further field investigation to find additional mineralization.

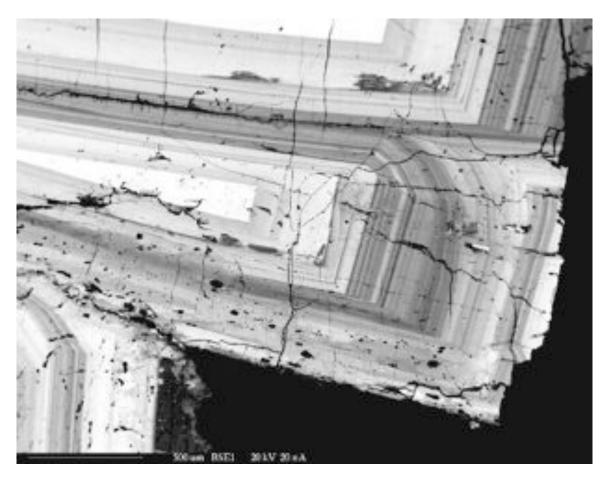
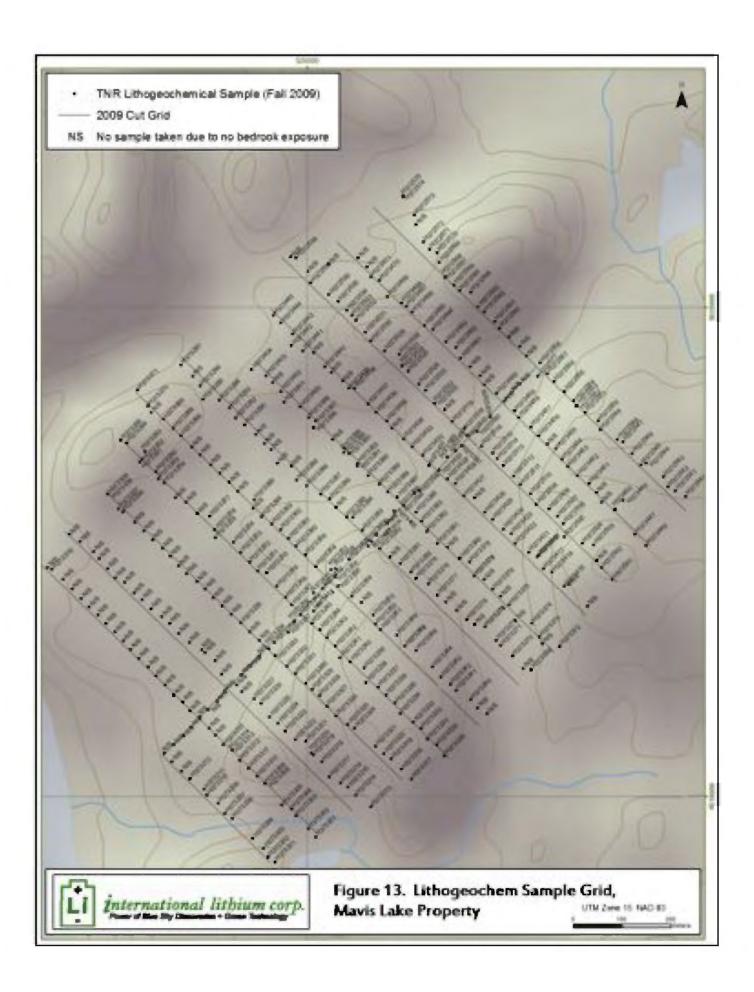


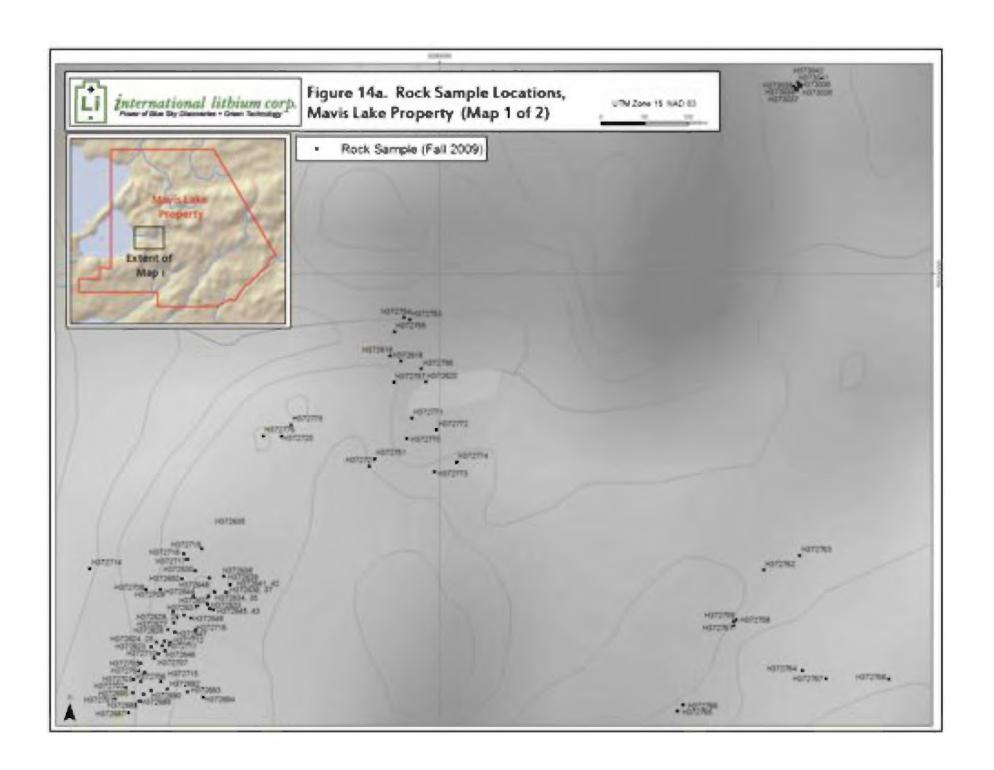
Photo 2 Mn-tantalite grain from Pegmatite 1g. Photomicrograph showing spectacular scillary zoning between high Ta zones (bright white) and zone with higher niobium pentoxides (darker area). Average Ta₂O₅ content of grain 60.5%. (Tindle et al. 2002)

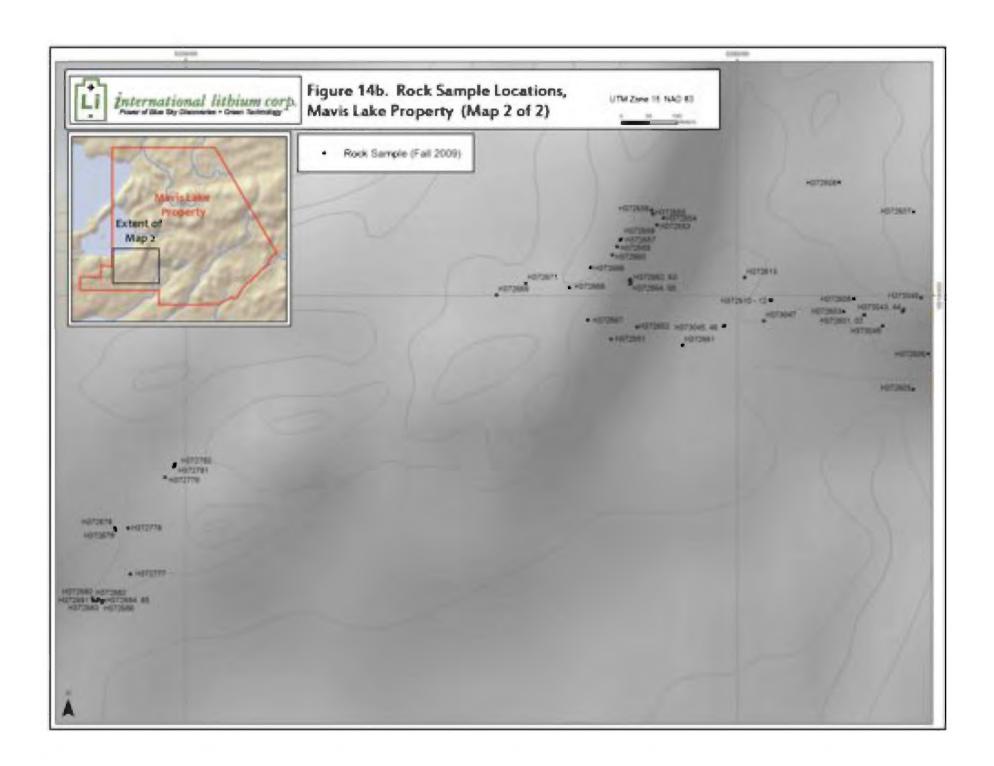
Other highlights include Ta_2O_5 values of 723 ppm, 614 ppm and 593 ppm from Pegmatites 13, 17 and 19, respectively. Sixty-nine of the 83 samples, which initially exceeded the upper detection limit of 122 ppm for Ta_2O_5 , resulted in values greater than 200 ppm Ta_2O_5 in the reanalyzed data set.

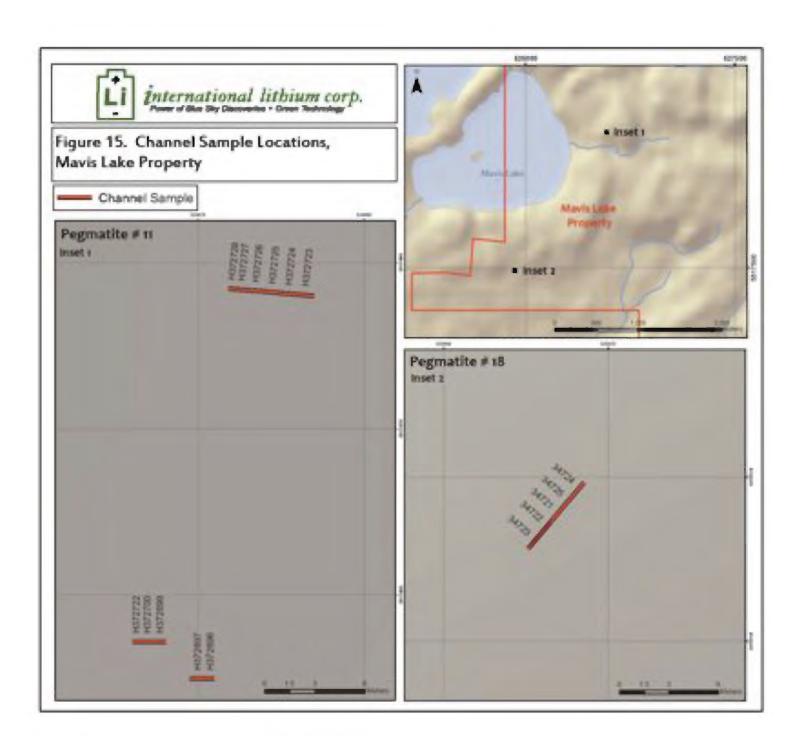
Samples with very high tantalum values tend to have low lithium values as is typical of sodic aplite and albitite-rock units that represent important host-rocks for tantalum mineralization as exemplified by the **Tanco Mine** in southeastern Manitoba (Černý et al. 1998; Černý and Ercit 2005) and the **Wodgina Mine** of Western Australia (Fetherston 2004). However, there are samples with very high lithium values that also carry strongly anomalous tantalum. Examples of this strong multielement signature can be found in both grab samples (Table 8) and channel samples (Table 9).

Tantalum mineralization occurs as fine-grained columbite-group minerals that are hosted primarily in sodic aplite and related albitite (>8 wt.% Na₂O). Other tantalum-rich minerals may also be present as previous work confirmed wodginite associated with tantalite, columbite, lithium tourmaline and amblygonite-montebrasite at Pegmatite 19 (Breaks 1989).

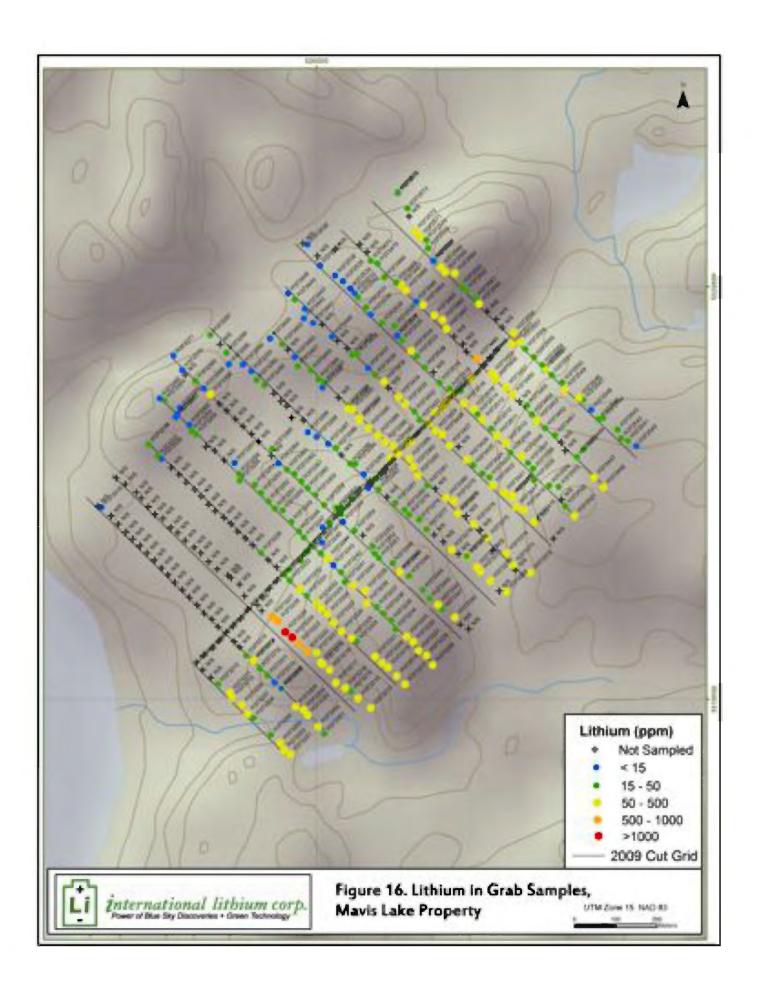

Wodginite is the chief ore mineral for tantalum at the Tanco and Wodgina mines. The Tanco Mine had a historical reserve estimate of 1,879,000 tons grading 2160 ppm Ta_2O_5 and has proven to be a world-class producer of tantalum, lithium, cesium and rubidium (Černý 2005). The QP is not able to verify the historical estimates of average grades and tonnage for the Tanco Pegmatite also situated within the Superior geological province. As such, these historical data are not necessarily indicative of lithium mineralization exposed on the Mavis Lake Property. Furthermore, it is cautioned that rare-metal pegmatites of the Dryden pegmatite field adjacent to the Mavis Lake Property individually vary in terms of pegmatite type, modal mineralogy, grain size, internal zonation of rock units and Li_2O content and therefore the lithium mineralization on the Mavis Lake Property may or may not compare with other lithium pegmatites of the area.

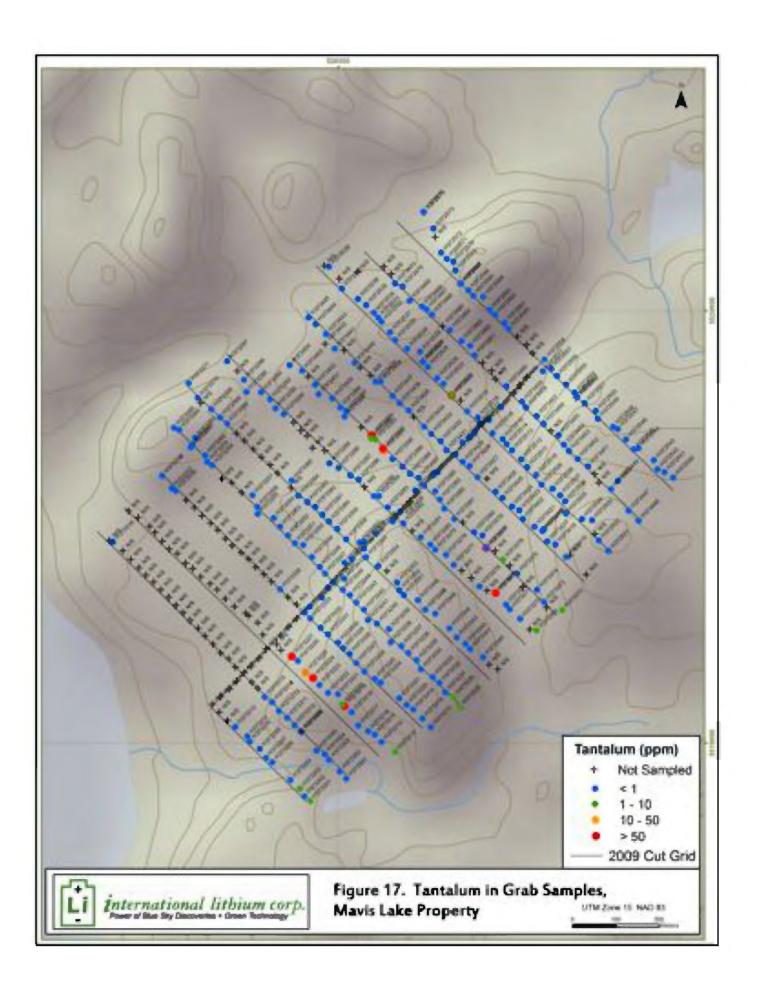

10.0 Sampling Method and Approach

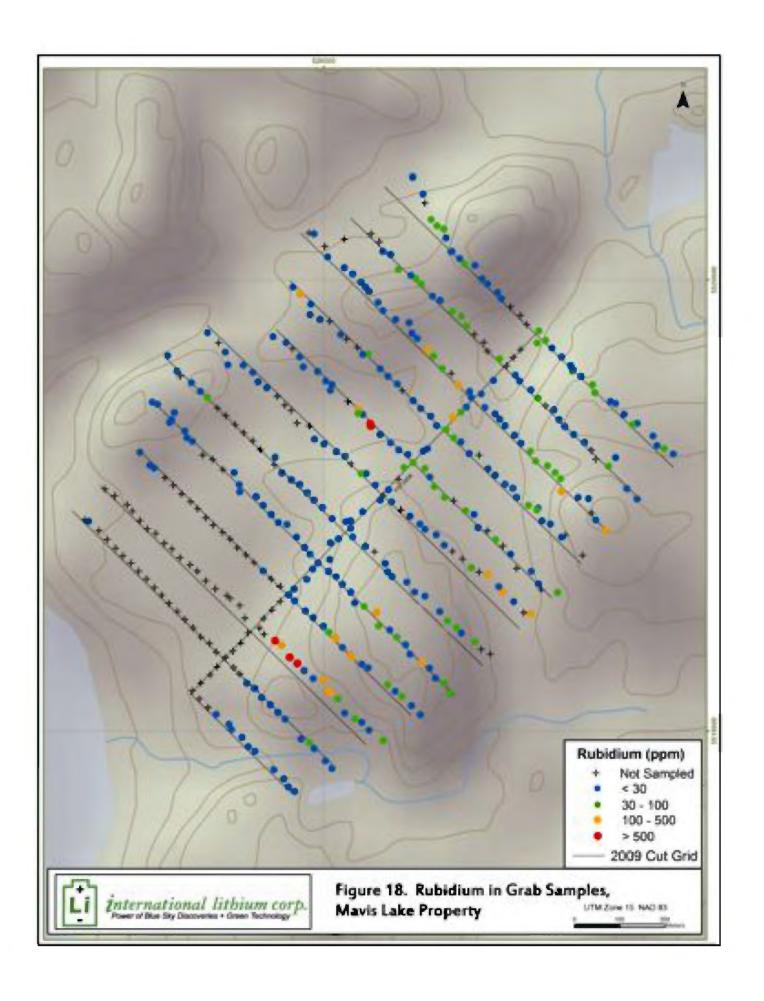

Two qualified persons (I.A. Osmani, P. Geo. and F.W. Breaks, P. Geo.) supervised the work program and sample collection during TNR's 2009 summer and fall field programs on the Mavis Lake property. A total of 527 grab and 17 channel samples were collected from the property (Figures 13, 14a, 14b and 15). Of the 527 grab samples, 335 samples were collected along the gridlines for lithogeochemical survey and 192 samples are from outside the grid area.

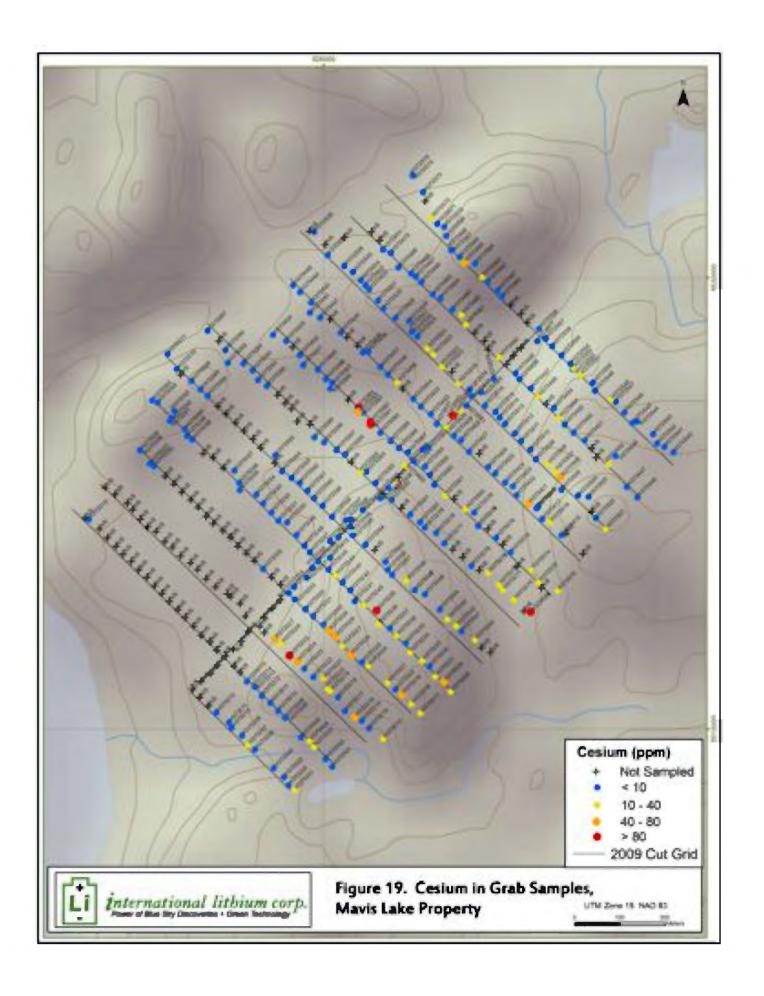

The grab samples collected from the grid and various localities elsewhere on the property consisted of fresh pieces of bedrock collected over representative and mineralogically homogeneous areas of a given outcrop. Between 0.5 and 2 kg of rock material was selected as fresh chips and the sample size was dependent upon grain size. The metavolcanic units sampled on the lithogeochemistry grid and sodic aplite units, prevalent in the south and southwest part of the property, are dominantly fine-grained and 0.5 kg was considered as an adequate sample weight. The spodumene units are coarser-grained, with grain diameters in the 1 to 3 cm range and thus larger sample sizes were collected and at least 1 kg in weight.

Lithogeochemical samples were collected from outcrop as close to grid stations as possible. The exact sample location was marked with an


aluminum tag embossed with the sample number and stapled to a 46 cm long lath. A GPS location and lithological description were collected at each station. Stations where outcrop was absent are indicated by lath labeled with "N/S" for "No Sample".


All samples selected for analysis were homogeneous with respect to grain size at the collection site. The authors are not aware of any sampling factors that could impact the accuracy and reliability of the chemical data. The QP cautions that grab samples are by nature selective and therefore may or may not represent average values.


The 17 channel samples focused upon representative spodumene pegmatite and sodic aplite units of Pegmatite dykes 11 and 18 and possibly related pegmatites situated within 25m of Pegmatite 11 (Figure 15). These samples were cut using a Stihl Cut-Quik rock saw. Channels were cut to a depth of approximately 5 cm and 1 metre long where possible. Samples were extracted using a hand sledge and a chisel or hatchet. Intervals were marked with an aluminum tag embossed with the sample number and hammered into the channel cross cut at the start of the sample. A GPS location was taken as a survey benchmark and then samples were located with a chain and compass from the benchmark. In addition to sample location, a brief lithologic description of the samples was also taken in the field.


Grab samples collected outside the grid area (Figures 14a and 14b) were located in the field with a handheld GPS unit. Samples sites were marked on the ground by a pink or orange flag with the sample number written in permanent marker. After taking notes of the sample material, the sampler then placed the sample material into a numbered (tagged) clean plastic sample bag in the field.

Each sample was placed in a plastic sample bag with a unique prenumbered tag either purchased from "Chaltrek Ostrom Outdoor" store in Thunder Bay (Ontario) or was provided by ALS Chemex. A smaller sample was kept in a separate bag labeled with the sample number for reference. Bags were sealed with plastic ties and grouped into larger tarpaulin (rice) bags for shipping. Samples were either shipped to ALS Chemex in Thunder Bay by Greyhound or driven to Thunder Bay by an employee. Reference samples were shipped via Greyhound to Dr. Frederick Breaks in Sudbury (Ontario) for storage and, if required, to conduct further study on these samples.

10.1 J. Garry Clark Samples

J. Garry Clark selected three channel sample pulps to be re-analyzed by Activation Laboratories. The samples were picked up by the author from ALS Chemex Thunder Bay and delivered to Activation Laboratories Thunder Bay. The samples utilized the same sample tag numbers but had differing laboratory numbers.

11.0 Sample Preparation, Analyses, and Security

Samples from the 2009 program were prepared and analyzed by ALS Chemex Laboratory Group with check assays for lithium undertaken on 12 pulp duplicates by the Geoscience Laboratory of the Ontario Geological Survey in Sudbury, Ontario. Both laboratories are considered by the authors as industry leaders and accordingly we have confidence of high industry standards with respect to handling, preparation, analysis and security methodology. Both labs employ a stringent system of quality control by insertion of blanks, pulp duplicates of samples collected and international reference standards in a given lot of submitted material.

The samples were submitted to ALS Chemex in Thunder Bay, Ontario, for preparation work that involved crushing and pulverization according to their Prep-31 procedure (Method codes LOG-22, CRU-32, SPL-21 and PUL-31). Samples were logged into the tracking system and a bar code applied to each and then weighed, dried at 110 to 120 degrees Celsius and finely crushed so that greater than 70% of the sample passes a 2mm screen (Tyler 9 mesh, US standard No.10). A split up to 250 grams was then taken and pulverized so that greater than 85% the material passes a 75 micron screen (Tyler 200 mesh, US standard No. 200). The resulting pulps were subsequently shipped to their Vancouver-based analytical lab where analysis for Li, Ta, Cs, Rb, Nb, Ga and other trace elements (Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, Ge, Hf, In, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Re, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr) was undertaken.

11.1 Analytical Methods

11.1.1 ALS Chemex

For geochemical analysis of rock samples, the lab's ME-MS61 package with a four acid digestion method was used. Samples were treated with hydrochloric, hydrofluoric, perchloric and nitric acids. This is a strong acid solvent capable of decomposing nearly all common rock forming minerals with the notable exception of resistate phases like barite, chromite, monazite, titanite or xenotime. Select samples were assayed for gold with the Au-ICP21 procedure, Ta and Rb and other REEs with

the ME-MS81 and ME-MS81h procedures and Cs with the ME-XRF05 procedure.

The ME-MS61 method was utilized for all samples except for those collected in the summer of 2009. This procedure uses a minimum 1 g split of the 30 g pulp. This procedure employs an Inductively Coupled Plasma Mass Spectrometer (ICP-MS), which is capable of determining the concentrations of 70 or more elements simultaneously by measuring the mass of ions generated by argon gas plasma heated to 8,000°C and passing through a magnetic quadruple detector. It is capable of ultra low detection limits (ppb to ppt) with very wide linear ranges (up to 7 orders of magnitude).

Select samples submitted for Au analysis were subjected to the Au-ICP21 procedure, which is comprised of fire assay and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). Fire assay samples are mixed with fluxing agents including lead oxide and fused at high temperature. As the reactants cool, molten lead exsolves and descends to the bottom of the vessel, collecting precious metals as it travels and leaving a borosilicate slag at the top of the vessel. To win the precious metals from the leftover lead "button," samples are subjected to temperatures of 960°-1000°C where the lead is volatilized and a bead of precious metals is left. The remaining bead is subject to strong acid digestion and then analyzed using ICP-AES. ICP-AES is similar to ICP-MS in that argon plasma is used to ionize and excite the samples. In this case, however, the characteristic frequencies of light emitted by excited ions are measured and compared against known calibrating standards.

Seventy-two samples were submitted for the rare element procedure ME-MS81 or ME-MS81h. ME-MS81 is a general procedure for Ag, Ba, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tl, U, V, W, Y, Yb, Zn and Zr and ME-MS81h is a specific procedure for assaying up to 5% Rb and Ta. The procedures are essentially the same and involve lithium borate fusion before digestion in strong acid. The procedure is finished with mass spectrometry for the various elements.

Eight samples were submitted for re-assay of Cs under the ME-XRF05 procedure. This procedure also utilizes a lithium borate fusion. However, rather than analysis by mass spectrometer or emission spectrometer, an x-ray fluorescence apparatus is used. The XRF irradiates the sample with primary x-rays. The excited sample emits characteristic x-rays, which are sorted and analyzed against calibrating standards.

11.1.2Geoscience Laboratories - Ontario Geological Survey

The twelve samples collected during the summer program were all submitted first to ALS Chemex for preparation and analysis. Pulps were then forwarded for check analysis to the Geoscience Laboratory of Ontario Geological Survey (OGS) in Sudbury, Ontario. Duplicate analysis served to confirm the accuracy of the ALS Chemex analyses (Table 10).

All samples submitted to the OGS Lab were and subjected two separate acid digestion and analysis procedures. Digestion techniques were specific to the assay technique used on the samples. Atomic absorption (code AAF-100) and the complementary open vessel multi-acid digestion and the ICP-MS (code IMC-100) with the complementary closed vessel multi-acid digestion techniques were used to analyze the samples. Open vessel multi-acid digestion is designed specifically to break down most silicate minerals in a four acid solvent and is used by the OGS Lab for their atomic absorption procedure. Closed vessel digestion is designed specifically for ICP-MS and AES analysis. Digestion is also with four acids but the beaker is closed to promote more complete digestion.

The ICP-MS procedure utilized by the OGS Lab is essentially the same as that of the ALS Chemex laboratory. The atomic absorption method is similar to the atomic emission spectroscopy procedure employed by ALS Chemex. Samples are atomized by a nebulizer then directed through a radiation source. The input energy of the instrument is set to a quantity characteristic of the absorption of a specific element. The intensity and the spectrum of the light are measured to quantify the concentration of the analyste.

11.1.3 Activation Laboratories

Activation Laboratories' Quality System is accredited to international quality standards through International Organization for Standardization /International Electrotechnical Commission (ISO/IEC) 17025 (ISO/IEC 17025 includes ISO 9001 and ISO 9002 specifications) with CAN-P-1758 (Forensics) and CAN-P-1579 (Mineral Analysis) for specific registered tests by the Standards Council of Canada.

The author's samples were analyzed utilizing inductively coupled plasma mass spectrometer. The digestion technique was total digestion that employs a lithium metaborate/tetraborate fusion. The resulting molten bead is rapidly digested in a weak nitric acid solution. The fusion ensures that the entire sample is dissolved. It is only with this attack that major oxides including SiO2, REE and other high field strength elements are put into solution. High sulphide-bearing rocks may require different treatment, but can still be adequately analyzed. For whole rock XRF

analysis, the molten bead is poured into platinum molds to form a glass disk.

11.1.4Sample Security

At the end of each day, samples were brought back to camp and stored in the secure crew cabin at the Bonny Bay Camp near Dryden, Ontario. All samples were packed and readied for shipping on site by the field crew under the supervision of one of two project geologists (Justin Mundhenk and Gabe Jutras, G.I.T.). Samples were delivered by a crewmember to the Greyhound depot in Dryden or directly to the ALS Chemex preparation facility in Thunder Bay, Ontario. To the authors' knowledge, laboratory sample pulps, rejects and assay certificates are kept in secure locations for future reference, security and legal requirements.

The author J. Garry Clark hand delivered the three selected check samples to the Activation Laboratory in Thunder Bay.

12.0 Data Verification

Historical data from Lun-Echo Gold Mines, Selco Mining Corporation, Tantalum Mining Company of Canada and Corona Gold Corporation has been incorporated into this report. The historical data reviewed and used are referenced and considered by the authors to represent the best standards and practices of the industry at the time.

Due to recent re-emergence of interest in lithium and other rare-metals, as on the current Property, there was a need for due diligence on analytical accuracy and reproducibility of these metals in commercial laboratories, such as at ALS Chemex. Thus, sample pulps were submitted to the well-regarded Geoscience Laboratory of Ontario Geological Survey in Sudbury, Ontario that has had long-term experience in dealing with the analysis of rare-metals. The results obtained from both laboratories are comparable although the OGS samples tend to be systematically higher which may possibly be due to incomplete digestion of spodumene and possibly tourmaline by the four-acid combination method. Table 10 and Figure 16 summarize this trend.

Table 10 Comparison of ALS and OGS assay values for lithium

Sample Number	ALS Chemex Li (ppm)	OGS Li (ppm)	Mean (ppm)	Difference (ppm)	Difference (%)
34714	394	414	404	10	5
34715	38.9	33	36	3	-16

ALS	OGS Li	Mean	Difference	Difference
287	276	282	6	-4
1500	1676	1588	88	11
4020	4402	4211	191	9
6520	7405	6963	443	13
5970	6976	6473	503	16
3620	4166	3893	273	14
3890	4416	4153	263	13
4670	5322	4996	326	13
6410	7898	7154	744	21
7790	8923	8357	567	14
	287 1500 4020 6520 5970 3620 3890 4670 6410	287 276 1500 1676 4020 4402 6520 7405 5970 6976 3620 4166 3890 4416 4670 5322 6410 7898	287 276 282 1500 1676 1588 4020 4402 4211 6520 7405 6963 5970 6976 6473 3620 4166 3893 3890 4416 4153 4670 5322 4996 6410 7898 7154	287 276 282 6 1500 1676 1588 88 4020 4402 4211 191 6520 7405 6963 443 5970 6976 6473 503 3620 4166 3893 273 3890 4416 4153 263 4670 5322 4996 326 6410 7898 7154 744

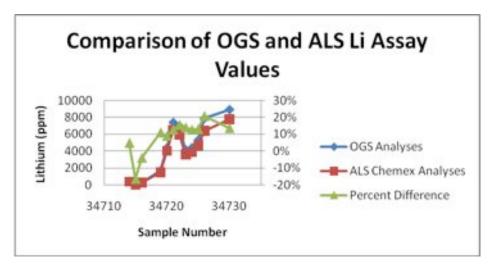


Figure 20 Graphic comparison of lithium values obtained from the OGS and ALS laboratories.

Table 11 Sample Analysis Comparison

	Activation	ALS	Activation	ALS	Activation	ALS
	Labs	Chemex	Labs	Chemex	Labs	Chemex
	Sample	Sample	Sample	Sample	Sample	Sample
	H372685	H372685	H372725	H372725	H372727	H372727
Li	36	46.2	7470	7700	4490	4200
(ppm)						
Та	399	446	75.4	71.5	157	151.5
(ppm)						

13.0 Adjacent Properties

There are no past or presently producing rare metal mines in the area, although there are several occurrences/showings of merit on mineral properties in the area held by other individuals and mining/exploration companies. A lithium deposit, containing a historical (non-NI 43-101 **compliant)** resource of 500,000 tons @ 1.0% Li₂O, occurs on the adjacent Fairservice claims (Storey 1990, p. 153). This historical resource estimate was calculated prior to the implementation of NI 43-101 standards therefore it is not current and should not be relied **upon**. The QP is not able to verify the historical estimates of average grades and tonnage for the adjacent Fairservice property and that on the Tanco Pegmatite also situated within the Superior geological province. As such, these historical data are not necessarily indicative of lithium mineralization exposed on the Mavis Lake Property. Furthermore, it is cautioned that rare-metal pegmatites of the Dryden pegmatite field adjacent to the Mavis Lake Property individually vary in terms of pegmatite type, modal mineralogy, grain size, internal zonation of rock units and Li₂O content and therefore the lithium mineralization on the Mavis Lake Property may or may not compare with other lithium pegmatites of the area.

The style and setting of the rare metal mineralization on the Property is almost identical to the Fairservice claims. On both properties, the raremetal mineralization, which is associated with albite-spodumene- and albite-type pegmatites with lithium, tantalum and beryllium, is genetically linked with the parent, peraluminous, S-type, Ghost Lake batholith (GLB). The pegmatites on both properties occur as swarm of flat-lying and near vertical dikes hosted mostly by the mafic metavolcanic country rocks.

Other granite pegmatite-associated mineralization, such as the 'emerald' and 'tungsten' occur 5-7 km west of the Property. These occurrences are hosted within the mafic metavolcanic host rocks near the GLB contact. The emerald/green beryl mineralization, popularly known as the "Taylor Emerald occurrence", occurs within intensely metasomatized pegmatites along the contact with a meta-ultramafic unit.

D. Petrunka discovered tungsten mineralization near Sharpe Lake in the late 1960s, which was later evaluated by Noranda Mines Limited. In 1982 Sanmine Exploration Inc. explored the Petrunka showing and adjacent area by extensive trenching and diamond drilling programs. The main showing revealed a historical value of $0.095 \text{ wt}\% \text{ WO}_3 \text{ over } 3.5 \text{ metres}$ (Breaks and Janes 1991).

Other significant rare metal mineralization occurs in the Gullwing and Tot lakes areas, located about 10-15 km northeast of the Property. The rare metal pegmatites, which occur as clusters in this area, have been named the "Gullwing-Tot lakes pegmatite group (GTG) by Breaks and Janes (1991). In addition to rare metal mineralization, such as Li, Ta, Cs and Rb, some of the pegmatites of this group are also mineralized with molybdenum (Mo), copper (Cu) and bismuth (Bi).

14.0 Interpretation and Conclusions

Rare-metal mineralization in the Superior Province is spatially associated with peraluminous, two-mica, granitic and pegmatitic plutonic complexes that were derived through partial melting of a clastic metasedimentary progenitor followed by substantial geochemical evolution of the derivative granitic melts (Breaks et al. 2005). The Mavis Lake pegmatite group in the Dryden field provides one of the best examples of a genetic linkage between peraluminous S-type granites and rare-metal mineralization in northwestern Ontario (Breaks and Moore 1992; Breaks et al. 2005).

The Mavis Lake pegmatite group, the eastern part of which is the focus of current exploration efforts of the company, additionally provides a good example of regional zonation amongst constituent members of pegmatite types and subtypes of the LCT-geochemical family of Černý (1991). A progressive evolution in degree of geochemical fractionation and mineral assemblages of these pegmatite types and subtypes with respect to increasing distance from the contact of the parent fertile granite is well documented (Breaks 1989; Breaks and Moore 1992):

Beryl-bearing pegmatitic granite units in the GLB \rightarrow external beryl-type pegmatite zone \rightarrow albite-spodumene-type pegmatite zone \rightarrow albite-type pegmatite zone.

The albite-spodumene-type pegmatites contain the highest concentration of lithium of any pegmatite type and these large tabular bodies can achieve dimensions up to 90 metres in thickness and 1 kilometre in strike length (Černý 1989a). Historical measured plus indicated reserves can total up to 26 million tonnes grading 0.7% wt Li $_2$ O as documented at the Kings Mountain deposit in the tin-spodumene belt of North Carolina that was formerly mined by Foote Minerals Company (Kunasz 1982). This deposit was mined for chemical and ceramic spodumene, and mixed feldspar, quartz and mica products.

Pegmatite 18 represents the largest example of this type on the property, and occurs as a system of stacked, flat-lying, en-echelon pegmatite sheets

with a minimum strike length of 240 m and thickness of least 2.5 m for the largest sheet. This pegmatite is open in all directions.

Albite-type pegmatites are considerably scarcer in the geologic record but represent extremely evolved systems (Černý 1989a) that may contain economically important tantalum concentrations. Examples include the Wodgina Main Lode and Mount Cassiterite deposits of Western Australia that respectively have historical proven and probable reserves of 0.402 Mt @ 0.128 wt.% Ta₂O₅ and 63.5 Mt @0.037 wt.% Ta₂O₅ (Fetherston 2004). The QP is not able to verify the historical estimates of average grades and tonnage for the Wodgina Main Lode and Mount Cassiterite deposits.. As such, these historical data are not necessarily indicative of tantalum mineralization exposed on the Mavis Lake Property. Furthermore, it is cautioned that rare-metal pegmatites of the albite-type situated elsewhere, as at the Wodgina Main Lode and Mount Cassiterite deposits, may individually vary in terms of modal mineralogy, grain size, internal zonation of rock units and Li₂O and Ta₂O₅ contents. Therefore mineralization on the Mavis Lake Property may or may not compare with deposits at the Wodgina Main Lode and Mount Cassiterite.

A swarm of these pegmatites occurs within a minimum area of 500 by 800 m on the Property and consist of sodic aplite and albitite mineralized with tantalite, columbite, wodginite, white beryl and local green lithium tourmaline and amblygonite-montebrasite series minerals. TNR has recently documented maximum levels of Ta_2O_5 (1349 ppm), Cs_2O (1537 ppm) and Rb_2O (1.0 wt.%) on the property to date in northwestern Ontario (TNR Gold Corp. News-Release - December 9, 2009). These rock types can also occur in highly fractionated, complex-type, petalite-subtype pegmatites as exemplified by the Tanco deposit in southeastern Manitoba where the tantalum mineralization is associated in part with layered to massive sodic aplite (Černý 1991; Černý 2005).

Intense alteration of the mafic metavolcanic host-rocks due to interaction with pegmatite-forming fluids led to pervasive tourmaline and anomalous bulk rock concentrations of Li, Rb, and Cs within an extensive geochemical anomaly. This anomaly can be traced at least 7 km through the entire regionally zone progression of pegmatite zones in the MLG and varies in 100-700 m in breadth extent. Within the beryl-type pegmatite zone situated to the west of the company's property, the lithium dispersion zones within the Brownridge metavolcanics are related to holmquistite-bearing, lithium-rich high strain zones with albitites and also to sheets of tourmalinite where Li and Cs values up to 1820 ppm and 332 ppm, respectively, were documented (Breaks and Janes 1991, Anthony 2004).

The Property, which contains a swarm of albite-spodumene- and albite-type pegmatites with potential for lithium and tantalum mineralization, requires further delineation for both surface and blind rare-metal pegmatite bodies.

The exploration program undertaken by TNR Gold Corporation featured variable

densities of bedrock grab and channel samples (Figures 13, 14a, 14b and 15). High density grab sampling was undertaken at a spacing of 25 m on a cut grid with the purpose of verifying and extending historical lithium lithogeochemical anomalies in mafic metavolcanic host-rocks to lithium mineralization by Selco Incorporation (Pryslak 1981) and Tanco Exploration (Vanstone 1982). As lithium lithochemical anomalies in peer-reviewed literature can be extensive (Černý 1989b), the 25 m sample spacing is considered by the authors to be very adequate in the delineation of previously unknown lithium bedrock anomalies and detection of new anomalies.

Grab samples collected outside the cut grid in the southern and southwestern parts of the claim-group were taken at generally lower densities and more variable spacing compared to those from the grid. This work was mainly of reconnaissance scale only and intended to obtain preliminary chemical data at and adjacent to known rare-element-bearing pegmatites and sodic aplites. The sampling was mainly confined to five clusters (Figures 14a and 14b) with sample spacing summarized below proximal to specific pegmatites:

- Pegmatite 14: 35 grab samples with 5 to 250 m spacing
- Pegmatite 17: grab samples with 10 to 60 m spacing
- Pegmatite 18: 10 to 50 m spacing
- Pegmatite 19: 35 grab samples with 5 to 250 m spacing
- RVL pegmatite: 14 grab samples with 2 to 100 m spacing
- Unnamed pegmatites centred around sample locality H37264: 10 grab samples with 2 to 170 m spacing.

Large parts of the claim-block, as in the northeast, east and southeast beyond the cut grid and in the southeast did not receive any sampling due to time and weather constraints.

It is concluded that a systematic approach of exploration, which comprises rare-metal lithochemistry (Li, Cs and Ta) in the host

Brownridge metavolcanic rocks coupled with geological and structural mapping and definitive mineralogical work in the rare-metal pegmatites bodies, be continued. This is particularly important with respect to the highly evolved albite-type pegmatites as the fine grain size has likely resulted in these pegmatites being completely overlooked in the historical exploration work.

15.0 Recommendations

Based upon the positive exploration results achieved by the company to date, an aggressive two phase \$560,450 exploration program is recommended in order to further evaluate the lithium and other rare metals (Ta, Cs, Rb) potential of the Property:

- 1. An exploration program, consisting of expansion of the existing grid so that litho-structural mapping, prospecting, and lithogeochemical sampling of pegmatites and country rocks to be continued to the east, south and north of the grid. This work would potentially increase the strike length of the lithium lithogeochemical anomaly from the currently known length of 4.7 km, and may also help in discovering more rare-metal bodies in underexplored areas in the east and southeast parts of the claim block.
- 2. Mineralogical evaluation work: verification and composition data for tantalum-bearing minerals and important exploration indicator minerals (beryl, K-feldspar and muscovite) from the albite-spodumene and albite-type pegmatites via electron microprobe analysis.
- 3. A small first phase of diamond drilling program, totaling 1500 metres, is recommended to be initiated, both in parallel, and subsequent to other field work, in the areas of known lithium and rare-metal pegmatites. This drilling program will potentially test the extent of the known rare-metal pegmatites (e.g., Pegmatites 11, 17 and 18), both laterally and at depth.
- 4. A second phase of diamond drilling program be planned and executed, depending upon the favourability of the results obtained from the Phase I exploration program.

15.1 Budget

In order to implement recommendations made in the preceding section, the following estimated budget in two phases is recommended for advancing the property to the next level. Some of the breakdowns of the exploration/development costs are listed below.

15.1.1Phase I

GRAND TOTAL (Phase I & II)	\$5560,450	
Total Phase II	\$354,750	
Contingency (10%)	\$32,250	
Subtotal	322,500	
Reports and Maps	\$10,000	
Assaying	20,000	
Transportation (Vehicles & Airfares), Fuel and Supplies	\$10,000	
Project Supervision	\$7,500	
1 Geologist and 2 geotechnicians	\$35,000	
Drilling – 1500 m @ \$160/m (all inclusive – rock coring, room and board, mob-demob, etc)	\$240,000	
15.1.2 Phase II		
Total Phase I	\$205,700	
Contingency (10%)	\$18,700	
Subtotal	187,000	
Report and Data Analysis	\$15,000 	
Petrography and Electron Microprobe	\$5,000	
Geochemical Analysis (assay/whole rock)	\$15,000	
Transportation (Vehicles & Airfares), Fuel and Supplies	\$15,000	
Meals and Accommodation	\$25,000	
Supervision	\$10,000	
2 geotechnicians)	, , , , , , ,	
Geological/structural Mapping (30 days – 2 geologists &	\$60,000	
Ground Magnetic Survey (selected areas)	\$12,000	
Grid Construction (selected areas)	\$20,000	
GIS data Compilation (15 days)	\$10,000	

16.0 References

Anthony, E.G.

2004: Report on geological mapping of the Ghost Lake rare metals property of Houston Lake Mining Inc.; Assessment File #2.27634, 28p. Accompanied with Appendices.

Brand, A., Groat, L.A, Linnen, R.L., Garland, M.I., Breaks, F.W. and Guiliani, G. 2009: Emerald mineralization associated with the Mavis Lake pegmatite group, near Dryden, Ontario; The Canadian Mineralogist, Vol. 47, 315-336.

Beakhouse, G.P.

1989: The Sioux Lookout Terrane: an imbricate thrust stack related to a 2.71 Ga arc-continent collision; Geological Association-Mineralogical Association of Canada, Program with Abstracts, vol. 14, p. A35-36.

1991: Winnipeg River Subprovince; Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.279-301.

2001: Precambrian Geology of the Thunder Lake Segment, Wabigoon Area; *in* Summer of Field Work and Other Activities, 2001, Ontario Geological Survey, Open File Report 6070, p.15-1 to 15-6.

2002: Precambrian geology of the Wabigoon area; *in* Summary of Field Work and Other Activities, 2002, Ontario Geological Survey, Open File Report 6100, p. 10-1 to 10-6.

Beakhouse, G.P. and Pigeon, L.

2003: Precambrian Geology of the Thunder Lake Area; Ontario Geological Survey, Preliminary Map P.3529, Scale 1:20, 000.

Berger, B.R.

1990: Precambrian geology of Laval and Hartman townships; Ontario Geological Survey, Report 272, 74p.

Blackburn, C.E., Johns, G.W., Ayer, J. and Davis, D.W. 1991. Wabigoon subprovince; *in* Geology of Ontario, Ontario Geological Survey Special Volume 4, Part 1, p. 303-381.

Breaks, F.W.

1980: Lithophile mineralization in northwestern Ontario: rare-element granitoid pegmatites; p. 5-9 *in* Summary of Field Work and other activities, 1980, by the Geological Branch, Ontario Geological Survey, Miscellaneous Paper 96.

Breaks, F.W.

1989: Origin and evolution of peraluminous granite and rare element pegmatite in the Dryden area of northwestern Ontario; Unpublished Ph.D. thesis, Carleton University, Ottawa, Ontario, 549p.

1991: The English River Subprovince; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, p. 230-278.

Breaks, F.W. and Janes, D.A.

1991: Granite-related mineralization of the Dryden area, Superior Province of northwestern Ontario; Geological Association-Mineralogical Association of Canada-Society of Economic Geologists, Joint Annual Meeting 1991, Field Trip B7-Guidebook, 71p.

Breaks, F.W. and Kuehner, S.

1984: Precambrian geology of the Eagle River-Ghost Lake area, Kenora District; Ontario Geological Survey, Map P.2623, Scale 1:31 680.

Breaks, F.W. and Moore, J.M., Jr.

1992. The Ghost Lake batholith, Superior Province of northwestern Ontario: a fertile, perluminous, granite-rare-element pegmatite system; The Canadian Mineralogist, Vol. 30, 835-876.

Breaks, F.W. and Osmani, I.A.

1989: The peraluminous granite-rare element pegmatite association in the northwestern Superior Province; presentation and Abstract, Ontario and Mines Minerals Symposium, Toronto, Ontario, December 1989.

Breaks, F.W. and Tindle, A.G.

1997: Rare element exploration potential of the Separation Lake area: An emerging target for Bikita-type mineralization in the Superior Province of northwest Ontario, Ontario; Ontario Geological Survey, Open File Report 5966, 27p.

Breaks, F.W., Bond, W.D., Westerman, C.J. and Harris, N.

1976: Operation Kenora-Ear Falls, Dryden-Vermillion Bay Sheet, District of Kenora, Ontario Division of Mines, Preliminary Map P.1023, Scale 1:63 360.

Breaks, F.W., Bond, W.D., and Stone, D.

1978: Preliminary geological synthesis of the English River Subprovince, Northwestern Ontario, and its bearing upon mineral exploration; Ontario Geological Survey, Misc. Paper 72, 54p.

Breaks, F.W., Tindle, A.G. and Smith, S.R.

1998: Rare-metal mineralization associated with the Berens River-Sachigo subprovincial boundary, northwestern Ontario: discovery of a new zone of complex-type, petalite-subtype pegmatite and implications for future exploration; p.162-182 *in* Ontario Geological Survey, Miscellaneous Paper 169.

Breaks, F. W., Selway, J.B., and Tindle, A.G.

2003: Fertile peralumionus granites and related rare-element mineralization in pegmatites, Superior Province, Northwest and Northeast Ontario: Operation Treasure Hunt; Ontario Geological Survey, Open File Report 6099, 179p.

Breaks, F. W., Selway, J.B., and Tindle, A.G.

2005: Fertile peraluminous granites and related rare-element mineralization in pegmatites, Superior Province of Ontario; *in* Linnen, R.L. and Samson, I.M., *editors*, Rare-element Geochemistry and Mineral Deposits, Geological Association of Canada, GAC Short Course Notes 17, p. 87-125.

Černý, P.

1989a: Characteristics of pegmatite deposits of tantalum; p. 195-239 *in* P. Moller, P. Černý and F. Saupe (editors), Lanthanides, Tantalum, and Niobium, Springer-Verlag, New York.

1989b: Exploration strategy and methods for pegmatite deposits of tantalum; p. 274-302 *in* P. Moller, P. Černý and F. Saupe (editors), Lanthanides, Tantalum, and Niobium, Springer-Verlag, New York.

1991: Rare-element granitic pegmatites: Part I, anatomy and internal evolution of pegmatite deposits; Geoscience Canada, V. 18, No. 2, p.49-67.

2005: The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons; *In* Linnen, R.L. and Samson, I.M., *editors*, Rare-element Geochemistry and Mineral Deposits, Geological Association of Canada, GAC Short Course Notes 17, p. 127-158..

Černý, P. and Ercit, T.S.

2005: Classification of granitic pegmatites revisited; The Canadian Mineralogist, vol. 43, no.6, 2005-2026.

Černý, P. and Meintzer, R.

1988: Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships; *in* R.P. Taylor and D.F. Strong (editors), Recent Advances in the

Geology of Granite-Related Mineral Deposits, The Canadian Institute of Mining and Metallurgy, Special Publication 39, p. 176-206.

Černý, P., Ercit, T.S. and Vanstone, P.J.

1998: Mineralogy and petrology of the Tanco rare-element pegmatite deposit, southeastern Manitoba, International Mineralogical Association, 17th General Meeting Toronto 1998, Field Trip Guidebook B6, 74p.

Chorlton, L.

1991: Geological history of the Sandybeach Lake area, Sioux Lookout-

Dinorwic

Belt, Wabigoon subprovince and its implications for gold exploration; Ontario Geological Survey, Open File Report 5752, 199p.

Drost, A.P. and Hunt, D.

1997: Geological Report on the Corona Gold Corporation on the Troutfly (Brownridge) Gold Property.

Fetherston, J.M.

2004. Tantalum in Western Australia; Western Australia Geological Survey, Mineral Resources Bulletin 22, 163 p.

Grant, I.C.

1997: Geophysical Report for Corona Gold Corporation on the Ghost Lake Property, Brownridge Township, Kenora Mining Division, Northwestern, Ontario.

Kunasz. I.

1982: Foote Mineral Company-Kings Mountain Operation, p. 505-511 *in* Černý, P. (editor), Granitic Pegmatites in Science and Industry, Mineral Association of Canada, Short Course Handbook, Volume 8, 545p.

Lashbrook, R.

2002: A line cutting and geophysical Report for Houston Lake Mining Inc. on the "Ghost Lake Property" Dryden, Ontario, report prepared for Houston Lake Mining.

Mowat, A.J.

2003: Report on the Brownridge Property, Brownridge Township Kenora, Brownridge Township, Kenora Mining Division-10, Ontario (NTS 52F/15 SE); report prepared for Emerald Fields Resources Corporation, Assessment File #2.26209.

Moorhouse, W.W.

1941: Geology of the Eagle Lake area, Kenora District; Ontario Department of Mines, Annual Report for 1939, vol. 48, pt.4, p.1-31.

Mulligan, R.

1965: Geology of Canadian lithium deposits; Geological Survey of Canada, Economic Geology Report 21, 131p.

Ontario Geological Survey

1991a: Bedrock geology of Ontario, explanatory notes and legend; Ontario Geological Survey, Map 2545, scale 1:5 000 000.

1991b: Bedrock geology of Ontario, west-central sheet; Ontario Geological Survey, Map 2542, scale 1:1 000 000.

1997: Ontario airborne magnetic and electromagnetic surveys, processed data and derived products: Archean and Proterozoic greenstone belts – Dryden area; ERLIS DATA Set 1016.

2001: Ontario airborne geophysical surveys – magnetic and electromagnetic data – Stormy Lake area; ERLIS DATA Set 1017.

Osmani, I.O. and Stott, G.M.

1988: Regional scale shear zones in Sachigo Subprovince and their economic significance; p. 53-67 *in* Summary of Field Work and other Activities 1988, Ontario Geological Survey, Miscellaneous Paper 141.

Osmani, I.A., Stott, G.M., Sanborn-Barrie and Williams, H.R.

1989: Recognition of regional shear zones in south-central and northwestern Superior Province of Ontario and their economic significance; *In* Mineralization and Shear Zones, editor: Bursnall, J.T., Geological Association of Canada, Short Course Notes Volume 6, p. 199-218.

Pryslak, A. P. and Hutton, D.A.

1980: Exploration for the Tantalum potential of the Mavis Lake pegmatites: Lithium lithochemical survey on Fairservice Option; report prepared for Selco Mining Corporation Limited, Assessment File #2.3306, 5p. Accompanied with Appendices.

Pye, E.G.

1956: Lithium in northwest Ontario; Canadian Mining Journal, vol.77, 73-75.

Roy, D. and Trinder, I.D.

2008: Report on the Goliath Project, Kenora Mining Division, Northwestern Ontario, Canada; a NI43-101 report prepared by A.C.A. Howe International Limited for Treasury Metals Incorporated, 56p.

Satterly, J.

1943: Geology of the Dryden-Wabigoon area, District of Kenora; Ontario Department of Mines, Annual Report for 1941, v. 50, pt. 2, 57p.

Selway, J.B., Breaks, F.W. and Tindle, A.G.

2005: A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits; p. 1-30, *in* J. Selway and R. Linnen (editors), Rare-Element Mineralization in Granitic Pegmatites, Special Issue Exploration and Mining Geology, Vol. 14, Nos. 1-4.

Smith, S.R.

2001. Geochronology and geochemistry of rare-element pegmatites from the Superior Province of Canada; unpublished Ph.D thesis, The Open University, Milton Keynes, United Kingdom, 261 p.

Storey, C.C.

1990: An evaluation of the industrial mineral potential of parts of the districts of Kenora and Rainy River; Ontario Geological Survey, Open File Report 5718, 259p.

Tindle, A.G., Selway, J.B. and Breaks, F.W.

2002. Electron microprobe and bulk analyses from fertile peraluminous granites and related rare-element pegmatites, Superior Province of northwest and northeast Ontario; Ontario Geological Survey, Miscellaneous Release-Data 111. Available for free download at http://www.geologyontario.mndmf.gov.on.ca/

Vanstone, P.J.

1982: Mavis Lake Claim Group: Report on the Magnetometer Survey; Tantalum Mining Corporation of Canada, Assessment File #2.5478, accompanied with Appendices.

Vanstone, P.J.

1983: Mavis Lake Claim Group: Report on the Lithogeochemical Survey; Tantalum Mining Corporation of Canada, Assessment File #63.4148, 9 p. accompanied with Appendices.

17.0 Appendix 1 – Sample Descriptions

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
						White-vitreous Bull qtz with 15% radiating <1cm oval-round disseminated black
H372601	ROCK	Pegmatite 13,14,16 area	526230	5517965	Peg/Aplite dyke	tourmaline.Tourmaline also as selvages along contacts.
						White-pink aplite with 70% feldspars and 25% qtz; <5% disseminated black
H372602	ROCK	Pegmatite 13,14,16 area	526230	5517965	Peg/Aplite dyke	subhedral mm tourmaline<5% disseminated black subhedral mm tourmaline.
						Pink fine-coarse grained pegmatite with 60-70% feldspars and 30-40% qtzand <2%
H372603	ROCK	Pegmatite 13,14,16 area	526195	5517965	Peg/Aplite dyke	disseminated cyrtalline tourmaline <5mm
						Inter-laminated/bedded dark black-gray vfg mudy siltstoneweak-mod limonitic
						staining. Crystalline vitreous <0.5cm qtz blebs elongatedalong foliation also in
H372605	ROCK	Pegmatite 13,14,16 area	526310	5517823	Siltstone	fractures. With associated brassy py trace.
						Jet black aphanitic Tourmaline <2.5cm wide sheet in contact with Gabbro.Along
						contact is tr mm coxcomb crystal growth <0.5cm the remaining is massive
H372606	ROCK	Pegmatite 13,14,16 area	526359	5517899	Tourmaline selvage	Tour.Down slope are rare angular megacrystic Flds pegmatite boulders
		, ,				<1m wide black vfg meta sediment mudstone/argillite with 10% py and combined
1						PyrrLight green siliceous aphanitic rock appear along contactsbetween I-Mv (NW)
H372607	ROCK	Pegmatite 13,14,16 area	526321	5518160	Meta-Sed	and Mv(SE). strong Lim staining.5% pyrrotite and strongly magnetic.
		, ,				Irregular oreintation. Feldsparpheric dyke medium gray ground-massbimodal
H372608	ROCK	Pegmatite 13,14,16 area	526179	5518218	Feldspar Dyke	feldspars 1-2mm 25% pink Feldspars <0.5cm 2-3%.
				-	7.00	
ĺ						<20cm thick white-pink aphanitic aplite w/ rare <0.5cm gray local qtzand trace local
H372609	ROCK	Pegmatite 13,14,16 area	526212	5518000	Anlite	crystalline black tourmaline <5mm.Contains tourmaline selvages along contacts
1.572005		7 egac.tc 15/1 //10 area	320212	332000	ripinee	Pink-white Feldspar-qtz Pegmatite. with 5-10% spodumene light yellow
H372610	ROCK	Pegmatite 13,14,16 area	526049	5517970	Felds-qtz-peg. Dyke	greenappears to be altering to micas, 60% Flds, 30% qtz.
11372010	NOCK	r eginatice 13,14,10 area	320043	3317370	reids que peg. Dyke	Pink-off gray, Gray Flds qtz Pegmatite with 5% light green spodumene.60% Flds,
H372611	ROCK	Pegmatite 13,14,16 area	526048	5517990	Pegmatite	25% qtz with tourmaline selvages along contact.
11372011	ROCK	reginatice 13,14,10 area	320040	3317330	r eginatite	Pink-gray qtz Feldspar Pegmatite irregular qtz clusters <3cm with subhedral
						0.5cmgray Flds in aphantic pink matrix. Light green altered spod-mica 5-7%with 1-
						2% green micas. no visible spod crystals appears as white-light green<0.5cm wide
H372612	ROCK	Pegmatite 13,14,16 area	526068	5517002	Pegmatite	irregular length smears around qtz-flds. Qtz 25%, Flds 60-70%
11372012	NOCK	r eginatite 13,14,10 area	320000	3317332	reginatite	Pink-white aphanitic aplite with tourmaline selvagesand rare local cyrstalline
H372613	ROCK	Pegmatite 13,14,16 area	526021	5518033	Anlite	tourmaline grouping with mm crystals
11372013	NOCK	r eginatite 13,14,10 area	320021	3318033	Aprile	large pink/grey felds crystals up to 3cm longsub-eu tourmaline crystals up to 5% in
H372618	ROCK	MAVIS	525941	5519005	Pegmatite	placesgreen tinged muscovite comprises up to 5%
11372018	ROCK	IVIAVIS	323941	3318903	regiliatite	mica has green tinge; equigranular medium grained matrix w/ phenocrysts of kspar
						up to 1cm wideequigranular medium grained matrix w/ phenocrysts of kspar up to
H372619	ROCK	MAVIS	525949	5519002	Aplite Dyke	1cm wide
11372019	NOCK	IVIAVIS	323943	3318902	Aplite Dyke	linear black mineral comprises up to 10% of matrixup to 1cm long and 1mm
H372620	ROCK	MAVIS	525968	FE10007	Aplite Dyke	wideblebs and horizons of gtz are bullish and white
H372020	NOCK	IVIAVIS	323900	3310007	Aplite Dyke	crystals of grey/pink feldspar up to 2x3 cmmica has green-lime green huegrey felds
11272622	ROCK	Degmentite 17 area	525685	FF10FC1	 Pegmatite	
H372623	RUCK	Pegmatite 17 area	525083	2218201	Pegmatite	possibly amblygonite?? same dyke as last sample, but green hued mica much more prevalent herecrystals
11272624	DOCK	D	F25.00	5540560	D	, , , , , , , , , , , , , , , , , , , ,
H372624	ROCK	Pegmatite 17 area	525690		Pegmatite	of grey/pink feldspar up to 2x3 cmgrey felds possibly amblygonite??
H372625	ROCK	Pegmatite 17 area	525707		Pegmatite	both pink and grey felds (amblygonite??) up to 1x2 cmspod crystals up to 1x3cm
H372626	ROCK	Pegmatite 17 area	525708	5518596	Pegmatite	pink/grey felds up to 1x1 cm, exterior of dyke is pink/cream colored
11272627	DOCK	D			D	tourmaline horizon up to 10% of samplefine grained creamy white
H372627	ROCK	Pegmatite 17 area	525715	5518594	Pegmatite	matrixalbite?grey/pink felds up to 1x1 cm
					L	sub-eu tourm. Crystals up to 5% of samplespod crystals up to 5x10 cmfelds is
H372628	ROCK	Pegmatite 17 area	525714	5518607	Pegmatite	mostly pink
					l	subhedral apatite crystals up to 1% of samplesub-eu tourmaline crystals up to 5% in
H372629	ROCK	Pegmatite 17 area	525735		Aplite Dyke	placesfine grained matrix has 'sugary' appearence
H372630	ROCK	Pegmatite 17 area	525742	5518664	Pegmatite	sudhedral apatite crystals less than 1%large grey felds up to 2x3cm

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
						Bull qtz dyke with weak rusty hue, barren of sulphides, weak hematite
H372651	ROCK	Pegmatite 15 area	525780	5517907	Quartz	stainingMafic volcanic host rock
						Bull qtz dyke with weak rusty hue, barren of sulphides, mod. hematite stainingMafic
H372652	ROCK	Pegmatite 15 area	525814	5517950	Quartz	volcanic host rock
						Bull qtz dyke with weak rusty hue, barren of sulphides, weak hematite
H372653	ROCK	Pegmatite 15 area	525871	5518130	Quartz	stainingwhite to grey smokey qtz
H372654	ROCK	Pegmatite 15 area	525861	5518156	Aplite Dyke	1-3 cm wide aplite dyke, homogeneous, tantalite-columbite minerals @ 1-2%??
H372655	ROCK	Pegmatite 15 area	525846	5518146	Aplite Dyke	aplite dyke, homogeneous, 1-3mm crystals, anhedral smokey qtz.
H372656	ROCK	Pegmatite 15 area	525838	5518152	Aplite Dyke	aplite dyke, homogeneous, 1-3mm crystals, anhedral smokey qtz.
H372657	ROCK	Pegmatite 15 area	525780	5518088	Aplite Dyke	1-3 cm wide aplite dyke, homogeneous, tantalite-columbite minerals @ ~3%??
H372658	ROCK	Pegmatite 15 area	525785	5518092	Aplite Dyke	1-3 cm wide aplite dyke, homogeneous, tantalite-columbite minerals @ ~3%??
H372659	ROCK	Pegmatite 15 area	525782	5518084	Mafic Meta Volc	Beige to pink felsic bands, Infused fluids with felsic apperance
H372660	ROCK	Pegmatite 15 area	525775	5518076	Mafic Meta Volc	Beige to pink felsic bands, Infused fluids with felsic apperance
						trace unknown black mineral, tourmaline35 cm at widest point followed on strike
H372678	ROCK	Pegmatite 11 &12 area	524873	5517590	Aplite Dyke	for 35-40 meters
						trace unknown black mineral, tourmaline; taken from same dyke as previous
H372679	ROCK	Pegmatite 11 &12 area	524873	5517580	Aplite Dyke	samplesame dyke as last sample, taken further S
					, , ,	patches of deep oxidization up to 3mm scattered in sampleup to 35 cm wide,
H372680	ROCK	Pegmatite 11 &12 area	524828	5517451	Pegmatite	followed on strike for 20 meters
					-0	patches of deep oxidization up to 3mm scattered in sample~3% unknown black
H372681	ROCK	Pegmatite 11 &12 area	524827	5517449	Pegmatite	mineral, trace apatite in samplesame dyke as last, taken further south
					-0	deep weathered spots of Garnets? Trace apatite.up to 20 cm at widest, followed on
H372682	ROCK	Pegmatite 11 &12 area	524841	5517448	Aplite Dyke	strike for 25 meters
		8	-		1 10 10 10 10 10 10 10 10 10 10 10 10 10	pervasive green hue in core with iron stringers. Unknown trace black
H372683	ROCK	Pegmatite 11 &12 area	524840	5517442	Aplite Dyke	mineralssugary texturesame dyke as last, taken further south
			-		7	1 cm long spog crystals in sample, light greenish hue in core as patchessugary
H372684	ROCK	Pegmatite 11 &12 area	524848	5517450	Pegmatite	textureup to 15 cm at widest, followed on strike for less than 10 m
H372685	ROCK	Pegmatite 11 &12 area	524850		Aplite Dyke	weak greenish hue in samplesame dyke as last sample, taken further S
		8			1 10 10 10 10 10 10 10 10 10 10 10 10 10	vugs of crystal growth as light brown to brown colour 2-3mm vugsapatite trace
H372686	ROCK	Pegmatite 11 &12 area	514852	5517438	Pegmatite	amountsup to 15 cm at widest, followed on strike for less than 10 m
					-0	light cream in colour with sugary texturewidth of dyke sampled is 80 cmsampled
H372687	ROCK	Pegmatite 17 area	525667	5518484	Aplite Dyke	along aplite dyke where cropping on surface.
H372688	ROCK	Pegmatite 17 area	525668		Aplite Dyke	light cream in colour with sugary texturewidth of dyke sampled is ~2.0m
		8	-		1 10 10 10 10 10 10 10 10 10 10 10 10 10	light pink in colour with sugary texturewidth of dyke sampled is ~2.5m~1% of
H372689	ROCK	Pegmatite 17 area	525686	5518505	Aplite Dyke	unknown deep reddish mineral
					, , ,	light brown in colour with sugary texturewidth of dyke sampled is ~4.0m~1% of
H372690	ROCK	Pegmatite 17 area	525703	5518522	Aplite Dyke	unknown deep reddish mineral
			1 220.00			light brown in colour with sugary texturewidth of dyke sampled is ~4.0m~1% of
H372692	ROCK	Pegmatite 17 area	525721	5518517	Aplite Dyke	unknown deep reddish mineral
			-		7	increased grain size of feldspar up to 5mm with sugary texture of groundmass,
H372693	ROCK	Pegmatite 17 area	525732	5518489	Aplite Dyke	pinkish colourwidth of dyke sampled is ~5.0m
			1		7.10	Angular boulders at end of this dyke terminating at vertical face with no
						continuation to be foundAngular boulders up to 45cmmed to course gr. Feldspar, 1
H372694	ROCK	Pegmatite 17 area	525751	5518509	Peg boulders	cm, light pink
J	1		323,31	5525505	-3	course grained Peg dyke with feldspar up to 1cmwidth of dyke sampled is ~30
H372695	ROCK	Pegmatite 17 area	525658	5518521	 Pegmatite	cm~10% of unknown deep reddish mineral
	1.00		323330	5515521		sugary massive matrix in placesdyke has slivers of volcanics within it0.25 m wide,
H372701	ROCK	Pegmatite 17 area	525649	5518503	 Peg/aplite	exposed on strike for 1 m
	1.00		323043	3310303		anhedral apatite crystals < 1% up to 2mm clusters1 m wide and exposed along
H372702	ROCK	Pegmatite 17 area	525663		Pegmatite	strike for 2 m

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
						anhedral apatite crystals < 1% up to 2mm clusters1 m wide and exposed along
H372702	ROCK	Pegmatite 17 area	525663	5518515	Pegmatite	strike for 2 m
						anhedral apatite crystals < 1% up to 2mm clusters0.5 m wide, exposed for 1m along
H372703	ROCK	Pegmatite 17 area	525670	5518527	Pegmatite	strike
					_	fine - med grained crystals, very sugary in places0.5 m wide, exposed for 1m along
H372704	ROCK	Pegmatite 17 area	525672	5518544	Peg/aplite	strike
H372705	ROCK	Pegmatite 17 area	525687	5518531	Pegmatite	feldspars are grey and pink, up to 1x1cm1 m wide, exposed 1 m along strike
						tourmaline selvage up to 20 % of rockqtz most likely present, but very fine
H372706	ROCK	Pegmatite 17 area	525674	5518528	Peg/aplite	grainedcould not positively identify0.5 m wide, exposed for 1 m along strike
						wisps of tourmaline near contact of dykeup to 1 m wide and exposed for 5 m along
H372707	ROCK	Pegmatite 17 area	525685	5518553	Pegmatite	strike
H372708	ROCK	Pegmatite 17 area	525669	5518637	Pegmatite	tourmaline sub-eu up to 5%up to 1 m wide and exposed for 1 m along strike
H372709	ROCK	Pegmatite 17 area	525696	5518647	Pegmatite	tourmaline up to 10%exposed 1 m x 1m
H372710	ROCK	Pegmatite 17 area	525703	5518562	Pegmatite	pink and grey feldspars up to 2x2 cmexposed 1m wide and 5 m along strike
					_	pink and grey feldspars up to 1x1 cmqtz is blebbyexposed 3 m wide and 2 m along
H372711	ROCK	Pegmatite 17 area	525704	5518568	Pegmatite	strike
H372712	ROCK	Pegmatite 17 area	525721	5518586	Pegmatite	pink feldspar up to 1x1 cmup to 0.75 cm wide exposed 10m along strike
H372714	ROCK	Pegmatite 17 area	525604	5518659	Pegmatite	up to 70% tourmaline, sub-euhedralpeg is less than 2cm wide
						feldspar and some qtz epi-alteredepi makes up 5 % of samplepeg less than 5 cm
H372715	ROCK	Pegmatite 17 area	525698	5518538	Peg/qtz vein	wideqtz vein parallels peg dykein sample
H372716	ROCK	Pegmatite 17 area	525742		Pegmatite	tourmaline up to 15% of sample0.75 m wide and exposed 4 m along strike
						spod is sporadic, not consistent in sample1 m wide and exposed for 5 m along
H372717	ROCK	Pegmatite 17 area	525729	5518679	Pegmatite	atrike
					J	same dyke as last sample, but beginning to pinch out and no visible spod0.5 m
H372718	ROCK	Pegmatite 17 area	525721	5518688	Pegmatite	wide and exposed for 4 m along strike
H372721	ROCK	Pegmatite 17 area	525919	1	Pegmatite	0.75 m wide and exposed 2 m along strike
						Pink pegmatite with 10% green spodumene cyrtsals 1-2cm widewith grey k-spar
H373035	ROCK	SimonÆs Showing	526414	5519215	Peg/Aplite dyke	and green mica
						Pink aplite no large crystals visible 0.5% blue apatite local green mica with increased
H373036	ROCK	SimonÆs Showing	526412	5519215	Peg/Aplite dyke	qtz.
H373037	ROCK	SimonÆs Showing	526410		Peg/Aplite dyke	Pink to red peg 2% green mica 10-15% qtz 5-10% grey k-spar
H373038	ROCK	SimonÆs Showing	526409	5519212	Peg/Aplite dyke	Red and gray peg grey k-spar
H373039	ROCK	SimonÆs Showing	526406	5519215	Peg/Aplite dyke	Pink aplite trace blue apatite
H373041	ROCK	SimonÆs Showing	526412		Peg/Aplite dyke	Pink aplite and peg with green mica
H373042	ROCK	SimonÆs Showing	526410	5519220	Peg/Aplite dyke	Light Pink aplite with tourmaline selvages some larger qtz crystals 5% green Beryl??
H373043	ROCK	Pegmatite 13,14,16 area	526296	551799	Peg/Aplite dyke	Trace blue apatite coarser than sample H373044 aplitic to pegmatitic
					<u> </u>	Mostly aplitic with 10-15% coarse qtz up to 1cm some coarse K-sparrare tourmaline
H373044	ROCK	Pegmatite 13,14,16 area	526296	551799	Peg/Aplite dyke	crystals to 1cm long subtle light green hue
					, ,	Blades of spod locally abundant sampled spod replaced by fine white mineralsw/
						pink hue in places and qtz? (qtz replacement of spod peg?)blocky feldspars in
H373045	ROCK	Pegmatite 13,14,16 area	525975	5517949	Peg/Aplite dyke	places to a few cm wide
H373046	ROCK	Pegmatite 13,14,16 area	525975		Peg/Aplite dyke	Tourmaline along partings parallel to contact and selvages. Aplitic in places.
-		, , , , , , , , , , , , , , , , , , , ,			5, 1 - 7	51 51 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
						Pink Pegmatite with late qtz veining tourmaline with crystals to 1cm longtourmaline
H373047	ROCK	Pegmatite 13,14,16 area	526050	5517960	Peg/Aplite dyke	is located along parting s within pegmatite pegmatite trends 260/10
	1.5.5.1		1 2 3 3 3 3	1	-0,	White-pink aplite with 40-60% qtz and 40% weak-moderate crystal formed K-
						sparwith <2% irregular localized mm tourmaline and selvages along
	ROCK	Pegmatite 13,14,16 area	526325		Peg/Aplite dyke	contacts.Irregular orientation <30cm wide.

Rock Sample Descriptions

SAMPLE	SAMPLE_TYPE	AREA	<u>EAST</u>	<u>NORTH</u>	LITHOLOGY	DESCRIPTION
						White aplite with aphanitic feldspar matrix and coarse grained vitreous qtz.trace
H373049	ROCK	Pegmatite 13,14,16 area	526249	5517951	Peg/Aplite dyke	sky blue apatite. Tourmaline also as selvages along contacts.

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
						White-vitreous Bull qtz with 15% radiating <1cm oval-round disseminated black tourmaline. Tourmaline also as
H372601	GRAB	Pegmatite 13,14,16 area	526230	5517965	Peg/Aplite dyke	selvages along contacts.
H372602	GRAB	Pegmatite 13,14,16 area	526230	5517965	Peg/Aplite dyke	White-pink aplite with 70% feldspars and 25% qtz and <5% disseminated black subhedral mm tourmaline.
						Pink fine-coarse grained pegmatite with 60-70% feldspars and 30-40% qtz and <2% disseminated cyrtalline tourmaline
H372603	GRAB	Pegmatite 13,14,16 area	526195	5517965	Peg/Aplite dyke	<5mm
						Inter-laminated/bedded dark black-gray vfg mudy siltstone weak-mod limonitic staining. Crystalline vitreous <0.5cm
H372605	GRAB	Pegmatite 13,14,16 area	526310	5517823	Siltstone	qtz blebs elongated along foliation also in fractures. With associated brassy py trace.
						Jet black aphanitic Tourmaline <2.5cm wide sheet in contact with Gabbro. Along contact is tr mm coxcomb crystal
H372606	GRAB	Pegmatite 13,14,16 area	526359	5517899	Tourmaline selvage	growth <0.5cm the remaining is massive Tour.Down slope are rare angular megacrystic Flds pegmatite boulders
			F0.0004	==+0+50		<1m wide black vfg meta sediment mudstone/argillite with 10% py and combined PyrrLight green siliceous aphanitic
H372607	GRAB	Pegmatite 13,14,16 area	526321	5518160	Meta-Sed	rock appear along contacts between I-Mv (NW) and Mv(SE). strong Lim staining. 5% pyrrotite and strongly magnetic.
11272600	CDAD	Doomotite 13 14 16 even	F2C170	5510310	Faldanas Dula	Irregular oreintation. Feldsparpheric dyke medium gray ground-mass bimodal feldspars 1-2mm 25% pink Feldspars
H372608	GRAB	Pegmatite 13,14,16 area	526179	5518218	Feldspar Dyke	<0.5cm 2-3%.
H372609	GRAB	Pegmatite 13,14,16 area	526212	5518000	Anlita	<20cm thick white-pink aphanitic aplite w/ rare <0.5cm gray local qtzand trace local crystalline black tourmaline <5mm. Contains tourmaline selvages along contacts
H372009	UNAD	Pegniatite 15,14,16 area	320212	3316000	Aplite	Pink-white Feldspar-qtz Pegmatite. with 5-10% spodumene light yellow greenappears to be altering to micas, 60% Flds,
H372610	GRAB	Pegmatite 13,14,16 area	526049	5517070	Felds-qtz-peg. Dyke	30% qtz.
11372010	UIAB	r eginatice 13,14,10 area	320043	3317370	reids-qtz-peg. Dyke	Pink-off gray, Gray Flds qtz Pegmatite with 5% light green spodumene.60% Flds, 25% qtz with tourmaline selvages
H372611	GRAB	Pegmatite 13,14,16 area	526048	5517000	Pegmatite	along contact.
11372011	UIAD	reginance 13,14,10 area	320048	3317330	reginatite	Pink-gray qtz Feldspar Pegmatite irregular qtz clusters <3cm with subhedral 0.5cmgray Flds in aphantic pink matrix.
						Light green altered spod-mica 5-7% with 1-2% green micas. no visible spod crystals appears as white-light green
H372612	GRAB	Pegmatite 13,14,16 area	526068	5517992	Pegmatite	<0.5cm wide irregular length smears around gtz-flds. Qtz 25%, Flds 60-70%
H372613	GRAB	Pegmatite 13,14,16 area	526021	5518033		Pink-white aphanitic aplite with tourmaline selvages and rare local cyrstalline tourmaline grouping with mm crystals
		., ,				up to 5 % massive tourmaline; up to 1% an-subhedral apatiteqtz blebs up to 3cm diameterfine grained matrix has
H372614	GRAB	MAVIS	526125	5519036	Aplite Dyke	'sugary' appearence
					, ,	very fine grained sugary matrix, cannot differentiate qtz and feldsparan-sub apatite crystals comprisse up to 1% of
H372615	GRAB	MAVIS	526120	5519033	Aplite Dyke	samplesmall patches of iron staining
						very medium grained sugary matrix, cannot differentiate qtz and feldsparqtz percentage in sample is from bleb/veins
H372616	GRAB	MAVIS	525914	5518887	Aplite Dyke	of bullish white qtz cutting through outcroptourmaline horizons are blotchy
						very medium grained sugary matrix, distinct differences of qtz and feldsparbullish white qtz less prevalent, but still
H372617	GRAB	MAVIS	525926	5518885	aplite dyke	present
						large pink/grey felds crystals up to 3cm longsub-eu tourmaline crystals up to 5% in placesgreen tinged muscovite
H372618	GRAB	MAVIS	525941	5518905	Pegmatite	comprises up to 5%
H372619	GRAB	MAVIS	525949	5518902	aplite dyke	mica has green tingeequigranular medium grained matrix w/ phenocrysts of kspar up to 1cm wide
						linear black mineral comprises up to 10% of matrixup to 1cm long and 1mm wideblebs and horizons of qtz are bullish
H372620	GRAB	MAVIS	525968	5518887	aplite dyke	and white
						feldspar phenocrysts up to 1cm largecrystalline equigranular matrix up to 2mm large of qtz felds and black
H372621	GRAB	MAVIS	526270	5518815	Feldspar Dyke	mineralblack mineral appeares to be amphybolite, but not positive
			======			feldspar phenocrysts up to 1cm largecrystalline equigranular matrix up to 2mm large of qtz felds and black
H372622	GRAB	MAVIS	526365		Feldspar Dyke	mineralblack mineral appeares to be amphybolite, but not positive
H372623	GRAB	Pegmatite 17 area	525685	5518561	Pegmatite	crystals of grey/pink feldspar up to 2x3 cmmica has green-lime green huegrey felds possibly amblygonite??
11272624	CD4D	D	525690	FF40F60	D 1'h -	same dyke as last sample, but green hued mica much more prevalent herecrystals of grey/pink feldspar up to 2x3
H372624 H372625	GRAB GRAB	Pegmatite 17 area	525690		Pegmatite Pegmatite	cmgrey felds possibly amblygonite??
H372625	GRAB	Pegmatite 17 area Pegmatite 17 area	525707		Pegmatite	both pink and grey felds (amblygonite??) up to 1x2 cm spod crystals up to 1x3cm pink/grey felds up to 1x1 cmexterior of dyke is pink/cream colored
H372627	GRAB	Pegmatite 17 area	525708		Pegmatite	tourmaline horizon up to 10% of samplefine grained creamy white matrixalbite?grey/pink felds up to 1x1 cm
H372628	GRAB	Pegmatite 17 area	525713		Pegmatite	sub-eu tourm. Crystals up to 5% of samplespod crystals up to 5x10 cmfelds is mostly pink
11372028	UNAB	reginatite 17 alea	323714	3318007	regiliatite	subhedral apatite crystals up to 1% of samplesub-eu tourmaline crystals up to 5% in placesfine grained matrix has
H372629	GRAB	Pegmatite 17 area	525735	5518605	Aplite Dyke	'sugary' appearence
H372630	GRAB	Pegmatite 17 area	525742		Pegmatite	sudhedral apatite crystals less than 1%large grey felds up to 2x3cm
		- egdate 17 died	323,42	3310004		1-1.5m Pink-white megacrystic Pegmatite with aplite zonation on exterior <10cm with tourmaline selvages <1cm.
						(10%)-20% white subhedral-euhedral 2x1x4cm and larger spodumene. 10% vitreous qtz, <5% grey Fld, 2% light green
H372631	GRAB	Pegmatite 17 area	525758	5518624	Pegmatite	micas, All crystals are <2cm, with micas <0.5cm, trace sky blue mm apatite.
H372632	GRAB	Pegmatite 17 area	525745		Pegmatite	Same as Previous spod is 5% 1x1x3cm white-green. Gray Fld can be up to 5x4cm(Ambygonite?).
	1		323.43	3310323	-3	2m wide brownish-green to pink megacrystic Albite-Pegmatite. Large green-white 1x1x3cm lath spodumene cyrstals
						20%, <2% green-yellow micas, 10% 0.5cm qtz, 5% white-grey Fld <2cm and trace sky blue apatiteDisplays 3 main
	1	1			B	
H372633	GRAB	Pegmatite 17 area	525757	J 5518626	Pegmatite	(view notes).
H372633	GRAB	Pegmatite 17 area	525757	5518626	Pegmatite	zonations within Pegmatite (view notes). 20-30cm Pink-white Pegmatite-Aplite. equigranular < 0.5cm qtz 20% Feldspar 20% and 5% disseminated black mineral

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
						Same as previous with tourmaline selvages and no disseminated black minerals. Sits above previous 2 Peg-aplites.
H372635	GRAB	Pegmatite 17 area	525770	5518640	Peg-Aplite	20cm thick
H372636	GRAB	Pegmatite 17 area	525780	5518626		50cm wide Pink-white aphanitic-fine grained aplite with tourmaline selvages. Bull qtz on it SE side.
H372637	GRAB	Pegmatite 17 area	525780	5518626	Quartz	50cm Bull qtz vein parallel/intermixed with pink aplite on its NW side.
						20cm wide Pink-white coarse grained aplite-pegmatite dyke subhedral-euhedral <0.5cm Flds 30%, 5% fine grained mm
H372638	GRAB	Pegmatite 17 area	525782	5518663	Aplite-Peg	black minerals tantalite/comubite? <1% sky blue mm apatite near contact margins with tourmaline selvages.
						0.5m wide Pink-white-green equigranular Pegmatite dyke. subhedral crystals <0.5cm 30% qtz, 40% Fld, <2% lime green
H372639	GRAB	Pegmatite 17 area	525782	5518653	Pegmatite	mica and 0.5cmx1cm light green spodumene. Refer to diagram
						10-20cm Pink megacrystic Pegmatite. <2cm vitreous qtz 15%, 60% Flds4% black mineral tantalite/columbite? Refer to
H372641	GRAB	Pegmatite 17 area	525782	5518653	Pegmatite	diagram
						30-40cm Pink ground mass aplite-Pegmatite dyke with <3cm vitreous qtz 15% and 40% Flds, 2% black disseminated
H372642	GRAB	Pegmatite 17 area	525780	5518626	Aplite-Peg	mm mineral tantalite/columbite? Trace soft silvery metallic is malleable with finger nail. Refer to Diagram.
						Pink-white Aplite-Pegmatite coarse grained. <0.5cm qtz blebs 20%, <1% green-yellow mica trace possible spodumene.
H372643	GRAB	Pegmatite 17 area	525769	5518629	Aplite-Peg	Dyke is exposed for 6m of that 4m is <40cm. Last 2m splits into two smaller dyklets <30cm combined
						1.5m wide Pink megacrystic Pegmatite dyke. 15% vitreous qtz, 10% <2x3cmgray feldspar (amblygonite?) <0.5cm
H372644	GRAB	Pegmatite 17 area	525732		Pegmatite	booklets 7-10% green yellow micas trace <0.5cm white Beryl? spodumene? Dyke exposed for 4m
H372645	GRAB	Pegmatite 17 area	525766	5518617	Aplite	Thin <3cm Pink-white albite aplite sheet with tourmaline selvage <0.5cm and 5% mm crystalline tourmaline
			505700	==+0==0		1-1.5m Pink-white coarse-fine grained Pegmatite. <1cm 30% vitreous qtz<0.5cm gray subhedral Flds with trace
H372646	GRAB	Pegmatite 17 area	525708	5518568	Pegmatite	disseminated black mm minerals tantalite/columbite?
						1.5m wide Pink Aplitic-Pegmatite. Aphanitic matrix with variable crystalline texture5% <1cm vitreous qtz blebs, 1%
11272647	CDAD	D	525740	5540504	Author Don	subhedral 1x2cm light green spodumene, 3% localized/disseminated <1cm black minerals tantalite/columbite?Trace
H372647	GRAB	Pegmatite 17 area	525718	5518581	Aplite-Peg	<0.5cm clustered silvery soft metallic, molybdenite? O.5cm clustered silvery soft metallic, molybdenite?
H372648	GRAB	Dogmatita 17 area	525761	EE10673	Aplite-Peg	0.5m wide Pink aphanitic matrix aplite-pegmatite. <0.5cm equigranular qtz 15%grey Flds (Amblygonite?) 1%, 5% Light green spodumene, 20% Flds pink/white with <1% black mm crystals tantalite/columbite? exposed for 3m.
П3/2046	UNAD	Pegmatite 17 area	323761	3310072	Apiite-Peg	<0.5m Pink-white sugary texture albite aplite with 15% 2cm qtz blebs with <1% disseminated black minerals
H372649	GRAB	Pegmatite 17 area	525735	5518602	Anlita	tantalite/columbite? trace sky blue apatite.
H372650	GRAB	Pegmatite 17 area	525719	5518663		white-beige aplite sheet <4cm thick with subhedral <0.5cm 60% Fldsand tourmaline selvages.
H372651	GRAB	Pegmatite 15 area	525780	5517907		Bull qtz dyke with weak rusty hue, barren of sulphides, weak hematite stainingMafic volcanic host rock
H372652	GRAB	Pegmatite 15 area	525814	5517950		Bull qtz dyke with weak rusty hue, barren of sulphides, mod. hematite stainingMafic volcanic host rock
H372653	GRAB	Pegmatite 15 area	525871	5518130	-	Bull qtz dyke with weak rusty hue, barren of sulphides, weak hematite stainingwhite to grey smokey qtz
H372654	GRAB	Pegmatite 15 area	525861		Aplite Dyke	1-3 cm wide aplite dyke, homogeneous, tantalite-columbite minerals @ 1-2%??
H372655	GRAB	Pegmatite 15 area	525846		Aplite Dyke	aplite dyke, homogeneous, 1-3mm crystals, anhedral smokey qtz.
H372656	GRAB	Pegmatite 15 area	525838	5518152	Aplite Dyke	aplite dyke, homogeneous, 1-3mm crystals, anhedral smokey qtz.
H372657	GRAB	Pegmatite 15 area	525780	5518088	Aplite Dyke	1-3 cm wide aplite dyke, homogeneous, tantalite-columbite minerals @ ~3%??
H372658	GRAB	Pegmatite 15 area	525785	5518092	Aplite Dyke	1-3 cm wide aplite dyke, homogeneous, tantalite-columbite minerals @ ~3%??
H372659	GRAB	Pegmatite 15 area	525782	5518084	Mafic Meta Volc	Beige to pink felsic bands, Infused fluids with felsic apperance
H372660	GRAB	Pegmatite 15 area	525775	5518076	Mafic Meta Volc	Beige to pink felsic bands, Infused fluids with felsic apperance
						Epidote calcite altn with tourmaline sheets along selvage of aplitic dykesugary texture of sample, homogenous in
H372661	GRAB	Pegmatite 15 area	525902		Aplite Dyke	nature
H372662	GRAB	Pegmatite 15 area	525807		Pegmatite	Pegmatite with ~ 3% unknown black mineral(possible Colombite/tantalite
H372663	GRAB	Pegmatite 15 area	525807		Pegmatite	patches of iron staining, smokey qtz as anhedral upto 1 cm.
H372664	GRAB	Pegmatite 15 area	525814	5518015	Pegmatite	Pegmatite with possible 10 to 15% spod crystals up to 4 cm, feldspar altered to albitegreen muscovite in sample
						Pegmatite with possible 10 to 15% spod crystals up to 4 cm, feldspar altered to albitesame as H372664 green
H372665	GRAB	Pegmatite 15 area	525814		Pegmatite	muscovite in sample
H372666	GRAB	Pegmatite 15 area	525732	5518046		qtz veining with iron staining as patches in samplepatches of chlorite altn.
H372667	GRAB	Pegmatite 15 area	525721	5517977		qtz veining with red oxidized iron staining as patches in samplepatches of chlorite altn.
H372668	GRAB	Pegmatite 15 area	525689		Aplite Dyke	strongly epidotized alplite dyke epidote replaces ground masstrace Py, tourmaline within qtz fragment
H372669	GRAB	Pegmatite 15 area	525578		Aplite Dyke	aplite dyke with weak iron staining
H372671	GRAB	Pegmatite 15 area	525616		Aplite Dyke	aplite dyke with trace to 1% tourmaline blades up to 1cm scattered in sample
H372672	GRAB	Pegmatite 15 area	525526	5517764	Quartz	aplite dyke with smokey qtz course in nature with greenish mica up to 2%pink feldspars
U272C72	CDAD	Decemblish 11 012	535,00	FE43000	Amilian Dude	aplite dyke with smokey qtz course in nature with greenish mica up to 2%up to 10 cm wide, followed on strike for 15 m
H372673	GRAB	Pegmatite 11 &12 area	525487		Aplite Dyke	from this location
H372674	GRAB	Pegmatite 11 &12 area	525526	551//66	Aplite Dyke	aplite dyke with trace unknown black mineralup to 25cm wide, followed on strike for 25 from this location
H272675	GRAB	Dogmatite 11 812 area	E25547	EE17705	Anlita Duka	aplite dyke with trace unknown black mineral, tourmaline at 1%, trace aplite???up to 25 cm wide, followed on strike
H372675	UNAD	Pegmatite 11 &12 area	525517	3517/65	Aplite Dyke	for 10 m. parallel to last dyke aplite dyke with trace unknown black mineral, tourmaline at 1%5 cm at widest point, followed on strike for less than
H372676	GRAB	Pegmatite 11 &12 area	525564	EE170FF	Aplite Dyke	aplite dyke with trace unknown black mineral, tourmaline at 1%5 cm at widest point, followed on strike for less than
H372676	GRAB	Pegmatite 11 &12 area Pegmatite 11 &12 area	525504	5517955		Bull qtz with weak iron staining as patches
H372678	GRAB	Pegmatite 11 &12 area	524873		Aplite Dyke	trace unknown black mineral, tourmaline35 cm at widest point followed on strike for 35-40 meters
113/20/0	TOWAR	i eginanic 11 X12 alea	3240/3	1 3317390	Lybure Dive	prace unknown plack fillineral, tournamiess em at widest point followed on strike for 35-40 meters

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
						trace unknown black mineral, tourmaline; taken from same dyke as previous samplesame dyke as last sample, taken
H372679	GRAB	Pegmatite 11 &12 area	524873		Aplite Dyke	further S
H372680	GRAB	Pegmatite 11 &12 area	524828	5517451	Pegmatite	patches of deep oxidization up to 3mm scattered in sampleup to 35 cm wide, followed on strike for 20 meters
						patches of deep oxidization up to 3mm scattered in sample ~3% unknown black mineral, trace apatite in samplesame
H372681	GRAB	Pegmatite 11 &12 area	524827		Pegmatite	dyke as last, taken further south
H372682	GRAB	Pegmatite 11 &12 area	524841	5517448	Aplite Dyke	deep weathered spots of Garnets? Trace apatite.up to 20 cm at widest, folowed on strike for 25 meters
H372683	GRAB	Dogmatita 11 913 area	524840	FE17443	Aplite Dyke	pervasive green hue in core with iron stringers. Unknown trace black mineralssugary texturesame dyke as last, taken further south
П372063	UNAD	Pegmatite 11 &12 area	324640	3317442	Арите Буке	1 cm long spog crystals in sample, light greenish hue in core as patchessugary textureup to 15 cm at widest, followed
H372684	GRAB	Pegmatite 11 &12 area	524848	5517450	Pegmatite	on strike for less than 10 m
H372685	GRAB	Pegmatite 11 &12 area	524850		Aplite Dyke	weak greenish hue in samplesame dyke as last sample, taken further S
					7.00	vugs of crystal growth as light brown to brown colour 2-3mm vugsapatite trace amountsup to 15 cm at widest,
H372686	GRAB	Pegmatite 11 &12 area	514852	5517438	Pegmatite	followed on strike for less than 10 m
						light cream in colour with sugary texturewidth of dyke sampled is 80 cmsampled along aplite dyke where cropping on
H372687	GRAB	Pegmatite 17 area	525667	5518484	Aplite Dyke	surface.
H372688	GRAB	Pegmatite 17 area	525668	5518509	Aplite Dyke	light cream in colour with sugary texturewidth of dyke sampled is ~2.0m
H372689	GRAB	Pegmatite 17 area	525686		Aplite Dyke	light pink in colour with sugary texturewidth of dyke sampled is ~2.5m~1% of unknown deep reddish mineral
H372690	GRAB	Pegmatite 17 area	525703		Aplite Dyke	light brown in colour with sugary texturewidth of dyke sampled is ~4.0m~1% of unknown deep reddish mineral
H372692	GRAB	Pegmatite 17 area	525721	5518517	Aplite Dyke	light brown in colour with sugary texturewidth of dyke sampled is ~4.0m~1% of unknown deep reddish mineral
						increased grain size of feldspar up to 5mm with sugary texture of groundmass, pinkish colourwidth of dyke sampled is
H372693	GRAB	Pegmatite 17 area	525732	5518489	Aplite Dyke	~5.0m
11272604	CDAD	Dogwotite 17 ages	F2F7F4	FF10F00	Doggoodito bouldon	Angular boulders at end of this dyke terminating at vertical face with no continuation to be foundAngular boulders up
H372694	GRAB	Pegmatite 17 area	525751	5518509	Pegmatite boulders	to 45cmmed to course gr. Feldspar, 1 cm, light pink course grained Peg dyke with feldspar up to 1cmwidth of dyke sampled is ~30 cm~10% of unknown deep reddish
H372695	GRAB	Pegmatite 17 area	525658	5518521	Pegmatite	mineral
H372701	GRAB	Pegmatite 17 area	525649		Peg/Aplite dyke	sugary massive matrix in placesdyke has slivers of volcanics within it0.25 m wide, exposed on strike for 1 m
H372702	GRAB	Pegmatite 17 area	525663		Pegmatite	anhedral apatite crystals < 1% up to 2mm clusters1 m wide and exposed along strike for 2 m
H372703	GRAB	Pegmatite 17 area	525670		Pegmatite	anhedral apatite crystals < 1% up to 2mm clusters0.5 m wide, exposed for 1m along strike
H372704	GRAB	Pegmatite 17 area	525672		Peg/Aplite dyke	fine - med grained crystals, very sugary in places0.5 m wide, exposed for 1m along strike
H372705	GRAB	Pegmatite 17 area	525687	5518531	Pegmatite	feldspars are grey and pink, up to 1x1cm1 m wide, exposed 1 m along strike
						tourmaline selvage up to 20 % of rockqtz most likely present, but very fine grainedcould not positively identify0.5 m
H372706	GRAB	Pegmatite 17 area	525674	5518528	peg/aplite	wide, exposed for 1 m along strike
H372707	GRAB	Pegmatite 17 area	525685		Pegmatite	wisps of tourmaline near contact of dykeup to 1 m wide and exposed for 5 m along strike
H372708	GRAB	Pegmatite 17 area	525669		Pegmatite	tourmaline sub-eu up to 5%up to 1 m wide and exposed for 1 m along strike
H372709	GRAB	Pegmatite 17 area	525696	+	Pegmatite	tourmaline up to 10%exposed 1 m x 1m
H372710	GRAB	Pegmatite 17 area	525703		Pegmatite	pink and grey feldspars up to 2x2 cmexposed 1m wide and 5 m along strike
H372711	GRAB	Pegmatite 17 area	525704		Pegmatite	pink and grey feldspars up to 1x1 cmqtz is blebbyexposed 3 m wide and 2 m along strike
H372712 H372714	GRAB GRAB	Pegmatite 17 area Pegmatite 17 area	525721 525604		Pegmatite Pegmatite	pink feldspar up to 1x1 cmup to 0.75 cm wide exposed 10m along strike up to 70% tourmaline, sub-euhedralpeg is less than 2cm wide
11372714	UNAB	regiliatite 17 alea	323002	3318033	reginatite	feldspar and some qtz epi-alteredepi makes up 5 % of samplepeg less than 5 cm wideqtz vein parallels peg dykein
H372715	GRAB	Pegmatite 17 area	525698	5518538	Pegmatite/qtz vein	sample
H372716	GRAB	Pegmatite 17 area	525742		Pegmatite	tourmaline up to 15% of sample0.75 m wide and exposed 4 m along strike
H372717	GRAB	Pegmatite 17 area	525729		Pegmatite	spod is sporadic, not consistent in sample1 m wide and exposed for 5 m along atrike
H372718	GRAB	Pegmatite 17 area	525721		Pegmatite	same dyke as last sample, but beginning to pinch out and no visible spod 0.5 m wide and exposed for 4 m along strike
					_	<10cm thick equigranular aplite-pegmatite <0.5cm qtz 30%, 60% Fld, 7% green mica, Black disseminated mm minerals
H372719	GRAB	Pegmatite 17 area	525742	5518686	Aplite-Peg	tantalite/columbite? with tourmaline selvages
H372720	GRAB	Pegmatite 17 area	525816	5518814	Aplite	<1m Beige to white aplite small black mineral 5% tantalite/columbite?
H372721	GRAB	Pegmatite 17 area	525919	5518790	Pegmatite	0.75 m wide and exposed 2 m along strike
						Pink-white aplite-pegmatite with 40% <1cm pink subhedral Flds, 20% <1cm vitreous qtz blebs and 10% lime green
H372751	GRAB	Pegmatite 17-18 Trend	525930	5518780	Aplite-Peg	sugary textured semi mica Altered spodumen?
l				J		10-15% green brittle crystalline mineral replacement of spodumene pink and gray K-spar Pegmatite with yellow-green
H372752	GRAB	Pegmatite 17-18 Trend	525960		Pegmatite	mica <1cm and 20% vitreous qtz blebsNear L-31E/2+75S
H372753	GRAB	Pegmatite 17-18 Trend	525959			Bull qtz vein with trace py 10cm wide.
H372754	GRAB	Pegmatite 17-18 Trend	525958	5518948	Aplite	Orange aplitic dykelet <1cm wide with associated py which is concentrated along selvages and within dykelet.
H372755	GRAB	Bogmatite 17 19 Trand	525950	5518934	Aplita	<50cm 50% qtz, 50% pink-white fine grained aplite with 5% black disseminated mineral tantalite/columbite? Very irregular aplite/qtz blow out.
113/2/33	UNAD	Pegmatite 17-18 Trend	323930	3316934	Aprile	Pink Aphanitic Aplite with 10% <0.5cm groups of black crystalline mineralsoccasionally elongated along foliation
H372756	GRAB	Pegmatite 17-18 Trend	525983	5518894	Anlite	tantalite/columbite?
113/2/30	טואסט	li eginatite 17-10 Heliu	323903	7) 3310094	hybric	runtume/committe:

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
						Albite qtz-spodumene going to mica Pegmatite 0.5-1m. Has 5% gray Flds, <2% black disseminated mineral
H372757	GRAB	Pegmatite 17-18 Trend	525947	5518885	Pegmatite	tantalite/columbite.Displays a 20x10cm Glob of soft needle like black mineral holmquisite?
						Highly altered Pegmatite-Aplite. 40% light green-yellow spodumene altered to micas10% vitreous qtz, 2% sky blue apatite and trace black mm minerals tantalite/columbite? section sampled <10cm thick remnants of 1.5m wide dyke.
H372758	GRAB	Pegmatite area 19	526339	5518602	Aplite-Peg	view next sample
						Beige-green albite aplitic dyke 1.5m. 5% light green altered spodumene to micaand trace mm black mineral
H372759	GRAB	Pegmatite area 19	526339	5518602	Aplite	tantalite/columbite?
						Beige to gray megacrystic Pegmatite 1.5m. 15% vitreous qtz blebs, 20% Flds20% bladed/lath light green <2x0.5x4cm
H372761	GRAB	Pegmatite area 19	526339		Pegmatite	spodumene, trace sky blue mm apatiteand Black mm minerals tantalite/columbite?
H372762	GRAB	Pegmatite area 19	526357	5518653	Aplite-Peg	Pink Aplite-Pegmatite. 60% pink Flds and trace light green Beryl?<0.5cm crystalline tourmaline selvage. 10-20cm wide
			505070	==+0==		Mafic-Ultra Mafic meta-volcanics. Black aphanitic-fine grained with <1% disseminated py. Moderate limonitic
H372763	GRAB GRAB	Pegmatite area 19	526373		Mafic Meta Volc	weathering on fractured surfaces. Assay for Gold
H372764	GRAB	Pegmatite area 19	526405	5518501	Aplite	Pink Aplite <15cm dykelet with 25% qtz, 40% Flds. Thin tourmaline selvages.
H372765	GRAB	Pegmatite area 19	526240	5518501	Ouartz	0.75cm Qtz veining with minor aplitic material disseminated <0.5cm clusters black-dark green mineral 10%? Assay for gold
H372766	GRAB	Pegmatite area 19	526240		Intermediate Volc	Pink-light green Aphanitic-vfg Intermediate volcanic. Assay for goldNear L-16E/93S (old grid Lithogechem stake)
11372700	UNAB	reginatite area 15	320204	3318313	intermediate voic	30-40cm wide white-beige albite aplite-pegmatite with 20% <3cm grey Flds and 10% <2cm qtz blebs. Thin tourmaline
H372767	GRAB	Pegmatite area 19	526440	5518541	Aplite-Peg	selvages.
11372707	GIVID	reginance area 15	320440	3310341	Aprile Feg	20cm wide Pink-white Aphanitic-fine grained aplite dyke. 2% green-yellow sugary micas-altered spodumene?5% black
H372768	GRAB	Pegmatite area 19	526514	5518535	Δnlite	0.5cm crystalline tourmaline.
11372700	GIVID	r eginatite area 15	320314	3310333	присс	40cm qtz-aplite vein/dyke. Pink aphanitic dyke with 5% black tourmaline and 50% bull qtz, 30 aplite dyke and 10%
H372770	GRAB	Pegmatite 17-18 Trend	525959	5518814	Qtz-Aplite	remnant alt Mv
H372771	GRAB	Pegmatite 17-18 Trend	525962			5-10cm pink aphanitic aplite dykelet. Has 0.5cm tourmaline selvages and 1cm wide tourmaline crystalline centre
						Pink aphanitic aplite with 70% sub-parallel bull qtz veins. Thin tourmaline selvages interacting with qtz and aplite
H372772	GRAB	Pegmatite 17-18 Trend	525996	5518817	Aplite	contacts 5% crystalline toutmaline.50cm combined width
H372773	GRAB	Pegmatite 17-18 Trend	526008	5518799	Feldspar Dyke	2m Feldsparpheric dyke looks aplitic in some places beige to brown Coarse grained equigranular.
H372774	GRAB	Pegmatite 17-18 Trend	526014	5518799	Feldspar Dyke	2m Feldsparpheric dyke looks aplitic in some places beige to brown Coarse grained equigranular.
						White-beige fine-coarse grained albite aplite with 15% irregular clusters of a Dark green mineral amphibole? and
H372775	GRAB	Pegmatite 17-18 Trend	525835	5518831	Aplite	disseminated 5% vfg limonite specks.
H372776	GRAB	Pegmatite 17-18 Trend	525786	5518818	Aplite	Beige aphanitic-fine grained aplite with 5-10% Black-dark green mineral<0.5cm clusters Tantalite/columbite
H372777	GRAB	Pegmatite 11 &12 area	524890	5517491	Qtz-Aplite	20-50cm wide Bull qtz vein with 2% beige Aplite dyke materialAnd 2% remnant Mv. Assay for gold.
H372778	GRAB	Pegmatite 11 &12 area	524883		Qtz-Aplite	Dark-gray bull qtz vein with 5% aplite dykelets, 10% remnant Mv. 20cm wide.
H372779	GRAB	Roger Valley Liberal	524956	5517675	Pegmatite	20cm wide peg dyke. 15% crystalline altered spodumene-mica appearance still hard60% Flds, trace sky blue apatite.
						3m Pink-greenish brown Coarse grained Pegmatite. Subhedral 0.5x1cm green altered spodumene 20%2% green-yellow
H372781	GRAB	Roger Valley Liberal	524972	5517694	Pegmatite	micas, 40% Flds, trace apatite
l						Same as previous with 10% 1x4cm subhedral gray Flds and 20% <1cm qtz blebsand 5% spodumene. Just 3m on strike
H372782	GRAB	Roger Valley Liberal	524972	5517694	Pegmatite	to the north of H372782.
H373001	GRAB	MAVIS	526648	FF10470	MetaVolcanic	Pillows near by, heavily strained. Metamorphic coarsening of biotite.Py in diss assoc w/ dark clots of mafic minerals,
H373001	GRAB	MAVIS	526533		MetaVolcanic	also blebs along fx.Qtz-bi schist locally.Sample from boulder/subcrob adjacent to o/c (same rocks). Large (1-3m pillows) w/ adjacent pillow-top brx to N.Picture taken.
H373002	GRAB	MAVIS	526520		MetaVolcanic	Gy-bl. Aphanitic, up to 10% py in blebs locally. Weakly magnetic.
H373003	GRAB	MAVIS	526243		Pegmatite	Fine to coarse gn albite peg.1% combined blue apatite, black oxide minerals (Tantalite?), possible LiPO4.
H373004	FLOAT	MAVIS	526263	5518503		Metamorphic grain coarsening of bi, amp, chl to med gn.Amp in clusters.Lt bl may indicate holquistite.
11373003	ILOAI	IVIAVIS	320203	3318303	IVOIC	Albite-spodumene pegmatie, very coarse-gn to mega crystic.3 cobbles: 20x20x20cm, 30x20x25cm, 10x10x10cm.Trace
H373006	FLOAT	MAVIS	526234	5518360	Pegmatite	blue apatite, Trace black oxides (Tantalite?)
1.373000	120/11	100.000	52025 .	3310300	- cgacree	Intermediat to felsic tuff w/ barren qtz-vns that have lim staining.Py as diss. Fine-grained almandine gar. Chl is
H373008	GRAB	MAVIS	526634	5518466	I-Fvolc	diss.O/c is 5m wide.
						Intermediat to felsic tuff w/ barren qtz-vns that have lim staining.Py as diss. Fine-grained almandine gar. Chl is
H373009	GRAB	MAVIS	526401	5518356	I-Fvolc	diss.O/c is 5m wide. Same o/c as H373008.Possible trace cpy.
						0.5m width exposed. In contact with Ivolc. Grades into Pegmatite.Ksp-alb-qtz-tor peg, grading into aplite. Local minor
H373010	GRAB	MAVIS	525965	5518979	Sodic Ap	spodumene along strike.Brown phosphate; Fe-Mn PO4 called sicklerite.
H373011	GRAB	MAVIS	525965	5518979	Granite	Trace oxide minerals (Nb-Ta). Coarse grained, not pegmatitic.
H373012	GRAB	MAVIS	525928	5519081	MetaVolcanic	MMV, hornblende-porphyroblastic, fg-mg
H373013	GRAB	MAVIS	525938		MetaVolcanic	MMV, plagioclase-porphyritic, fg-mg. Approx 2 m above uppermost spodumene pegmatite (sheet #1)
H373014	GRAB	MAVIS	525955	5519106	MetaVolcanic	MMV, strongly lineated, fg-mg, near footwall of pegmatite sheet #1
H373015	GRAB	MAVIS	525959	5519115	MetaVolcanic	MMV, strongly lineated, fg-mg, approx 2 m above hangwall of pegmatite sheet #2.
H373016	GRAB	MAVIS	525978	5519118	MetaVolcanic	MMV, strongly lineated, fg. Immediately below pegmatite sheet #2, 0-10 cm interval from contact.
H373017	GRAB	MAVIS	525987		MetaVolcanic	MMV, strongly lineated, fg-mg.0-5 cm below erosional remnant of pegmatite sheet updip from prior sample.
H373018	GRAB	MAVIS	526020	5519143	MetaVolcanic	MMV, fg-mg, strongly lineated and foliated near edge of bush

SAMPLE	SAMPLE_TYPE	AREA	EAST	NORTH	LITHOLOGY	DESCRIPTION
H373019	GRAB	MAVIS	525998	5519231	Pegmatite	Tourmaline-quartz-plagioclase pegmatite sheet
H373020	GRAB	MAVIS	526172	5519474	MetaVolcanic	Altered MMV, schistose, fg, strongly kinked, bluish cast. Near sample 34714 with 414 ppm Li
H373021	GRAB	North Mavis	526459	5520652	Metasediment	Interbands of str sil/bi/musc dev along foln.Lim on joints and weathered surfaces.
						Dev of amp and leucosome gives almost gabbroic texture. Upto 30cm thick mzd horizon with upto 20% blebby
H373022	GRAB	North Mavis	526380	5520664	MetaVolcanic	py.Horizon shows str sil/bch.
H373023	GRAB	North Mavis	526297	5520646	Aplite Dyke	F-gn salt and pepper dykelet. Poss not apatite, wk bi.Occus as sheet along subhorizontal joint plane.
H373024	GRAB	MAVIS SOUTH	526793	5519076	MetaVolcanic	Mod foln. Bch in patches. F to m-gn w/ mod amp dev.
H373025	GRAB	MAVIS SOUTH	526725	5519087	MetaVolcanic	Dk bl-gn, mod foln. Possible felsic clasts up to 15 cm long.
H373026	FLOAT	MAVIS SOUTH	526543	5520698	Sulphides	Blebby to semi-massive py w/ lesser po in bands.Qtz banding w/ wk dk sulphide.Lim and pits and along banding.
H373027	GRAB	MAVIS SOUTH	526494	5520671	MetaVolcanic	30cm thick horizon of albitization (bch) and sil. Mod-str perv sil w/ thin assoc qtz bands. Py in diss.
H373028	GRAB	MAVIS SOUTH	526707	5519098	MetaVolcanic	Dk gn, vf-gn. Mod foln.Cut by qtz-fls-tour peg dklet, ~20cm wide sub-parallel to foln.
H373029	GRAB	MAVIS SOUTH	526658	5519109	MetaVolcanic	Dk gn, mod foln. Vc-gn amphibolite.
H373030	GRAB	MAVIS SOUTH	526641	5519111	MetaVolcanic	Lim surface stains. Sil as vts w/ py in blebs.Dyking along foln; fls-tour.
H373031	GRAB	MAVIS SOUTH	526611	5519114	MetaVolcanic	Dk bl-gn, str foln.
H373032	GRAB	MAVIS SOUTH	526554	5519154	MetaVolcanic	Dk gn, mod foln. Py in diss. Aph to vf-gn.
H373033	GRAB	MAVIS SOUTH	526496	5519153	MetaVolcanic	Dk bl-gn, wk foln, m to c-gn amphibolite.Lim stains on surface.
H373034	GRAB	MAVIS SOUTH	526463	5519177	MetaVolcanic	Dk bl-gn aph to vf-gn, wk to mod foln, qtz-fls sweats.
H373035	GRAB	Simon's Showing	526414	5519215	Peg/Aplite dyke	Pink pegmatite with 10% green spodumene cyrtsals 1-2cm wide with grey k-spar and green mica
H373036	GRAB	Simon's Showing	526412	5519215	Peg/Aplite dyke	Pink aplite no large crystals visible 0.5% blue apatite local green mica with increased qtz.
H373037	GRAB	Simon's Showing	526410	5519210	Peg/Aplite dyke	Pink to red peg 2% green mica 10-15% qtz 5-10% grey k-spar
H373038	GRAB	Simon's Showing	526409	5519212	Peg/Aplite dyke	Red and gray peg grey k-spar
H373039	GRAB	Simon's Showing	526406	5519215	Peg/Aplite dyke	Pink aplite trace blue apatite
H373041	GRAB	Simon's Showing	526412	5519218	Peg/Aplite dyke	Pink aplite and peg with green mica
H373042	GRAB	Simon's Showing	526410	5519220	Peg/Aplite dyke	Light Pink aplite with tourmaline selvages some larger qtz crystals 5% green Beryl??
H373043	GRAB	Pegmatite 13,14,16 area	526296	551799	Peg/Aplite dyke	Trace blue apatite coarser than sample H373044 aplitic to pegmatitic
						Mostly aplitic with 10-15% coarse qtz up to 1cm some coarse K-spar rare tourmaline crystals to 1cm long subtle light
H373044	GRAB	Pegmatite 13,14,16 area	526296	551799	Peg/Aplite dyke	green hue
						Blades of spod locally abundant sampled spod replaced by fine white minerals w/ pink hue in places and qtz? (qtz
H373045	GRAB	Pegmatite 13,14,16 area	525975	5517949	Peg/Aplite dyke	replacement of spod peg?) blocky feldspars in places to a few cm wide
H373046	GRAB	Pegmatite 13,14,16 area	525975	5517949	Peg/Aplite dyke	Tourmaline along partings parallel to contact and selvages. Aplitic in places.
						Pink Pegmatite with late qtz veining tourmaline with crystals to 1cm long tourmaline is located along parting s within
H373047	GRAB	Pegmatite 13,14,16 area	526050	5517960	Peg/Aplite dyke	pegmatite pegmatite trends 260/10
						White-pink aplite with 40-60% qtz and 40% weak-moderate crystal formed K-spar with <2% irregular localized mm
H373048	GRAB	Pegmatite 13,14,16 area	526325	5518000	Peg/Aplite dyke	tourmaline and selvages along contacts. Irregular orientation <30cm wide.
						White aplite with aphanitic feldspar matrix and coarse grained vitreous qtz. trace sky blue apatite. Tourmaline also as
H373049	GRAB	Pegmatite 13,14,16 area	526249	5517951	Peg/Aplite dyke	selvages along contacts.
						Light grey-pink aphanitic to fine grained aplite with trace fine grained tourmaline and sky blue apatite. Tourmaline
H373050	GRAB	Pegmatite 13,14,16 area	526249		Peg/Aplite dyke	also as selvages along contacts.
H373413	FLOAT	MAVIS	525930	5519350	MetaVolcanic	Py is semi-massive and blebby. Lim as pits and stains.Rare coarse qtz xts. Likely part of a st.
						Py is semi-massive and blebby. Some has peacock weathering. Py also replacing qtz in squished vesicles. Lim stains on
H373414	FLOAT	MAVIS	525930	5519350	MetaVolcanic	surface. Angular c-gn qtz fragments, possibly milled.
H373472	GRAB	MAVIS SOUTH	526454	5519221	Pegmatite	Ksp-spod(?) peg dyke sheet along horizontal joint plane.

Channel Sample Description

SAMPLE	SMPL_TYPE	<u>AREA</u>	<u>EAST</u>	<u>NORTH</u>	LITHOLOGY	NOTE1
H372696	Channel	Pegmatite 11	524871	5517455	MetaVolcanic	wall rock to pegmatite, sampled for leaching possibilities
H372696	Channel	Pegmatite 11	524871	5517455	MetaVolcanic	wall rock to pegmatite, sampled for leaching possibilities
H372697	Channel	Pegmatite 11	524871	5517455	Pegmatite	felds crystals up to 1x1 cm
H372697	Channel	Pegmatite 11	524870	5517455	Pegmatite	felds crystals up to 1x1 cm
H372697	Channel	Pegmatite 11	524871	5517455	Pegmatite	felds crystals up to 1x1 cm
H372697	Channel	Pegmatite 11	524870	5517455	Pegmatite	felds crystals up to 1x1 cm
H372699	Channel	Pegmatite 11	524868	5517457	Pegmatite	unknown massive green mineral makes up 5%
H372699	Channel	Pegmatite 11	524867	5517457	Pegmatite	unknown massive green mineral makes up 5%
H372700	Channel	Pegmatite 11	524867	5517457	Pegmatite	few feldspar crystalssugary texture to matrixaplite zoning?
H372700	Channel	Pegmatite 11	524867	5517457	Pegmatite	few feldspar crystalssugary texture to matrixaplite zoning?
H372722	Channel	Pegmatite 11	524867	5517457	MetaVolcanic	mafic volcanic wall rock
H372722	Channel	Pegmatite 11	524866	5517457	metalvol	mafic volcanic wall rock
H372723	Channel	Pegmatite 11	524877	5517478	Pegmatite	few feldspar crystalssugary texture to matrixaplite zoning?
H372723	Channel	Pegmatite 11	524876	5517478	Pegmatite	few feldspar crystalssugary texture to matrixaplite zoning?
H372724	Channel	Pegmatite 11	524876	5517478	Pegmatite	slight brecciated look to crystals
H372724	Channel	Pegmatite 11	524875	5517478	Pegmatite	slight brecciated look to crystals
H372725	Channel	Pegmatite 11	524875	5517478	Pegmatite	slight brecciated look to crystals
H372725	Channel	Pegmatite 11	524874	5517478	Pegmatite	slight brecciated look to crystals
H372726	Channel	Pegmatite 11	524874	5517478	Pegmatite	slight green hue to some spod crystals
H372726	Channel	Pegmatite 11	524873	5517478	Pegmatite	slight green hue to some spod crystals
H372727	Channel	Pegmatite 11	524873	5517478	Pegmatite	slight green hue to some spod crystals, mild potassic/iron alteration
H372727	Channel	Pegmatite 11	524872	5517478	Pegmatite	slight green hue to some spod crystals, mild potassic/iron alteration
H372728	Channel	Pegmatite 11	524872	5517478	MetaVolcanic	mafic volcanic wall rock
H372728	Channel	Pegmatite 11	524872	5517478	MetaVolcanic	mafic volcanic wall rock

18.0 Appendix 2 – Lab Certificates

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS COVADE DO.

2103 Dollarson Hay North Variouser BC in the GAP Phone 654 994 0221 Fee 604 984 5216 were also hemes comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V58 4N3

Finalized Care: 1-HOV-2666 This copy reported on 15-DEC-2009

Account COAMO

CERTIFICATE TB09115250

Project THR Mais

P.O. No.:

This report is for 66 Rock samples submitted to our lide in Thunder Bloy, CN, Canada on

9-OCT-2009:

The following have access to data associated with this certificate:

PRED SASANS at down

SAPP APPLA

HANG MUNCHERS.

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WE121	Received Sample Weight	
L00-22	Sample login - Rod win BarCode	
CRU-GC	Crushing GC Yest	
PUL-QC	Pulversing QC Test	
CRU-31	Fine cruiting + 70% <0 mm	
SPL-21	Split sample - riffle splitter	
PULSI	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES						
ALS CODE	DESCRIPTION	INSTRUMENT				
ME-68501	36 element fusion ICP-MS	ICP-M5				
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES				
ME-88501	46 element four soid ICP-MS					

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNCHERK PO BOX 11604 620 650 W GEORGIA ST VANCOUVER BC VSB JAN

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE Carterior Ltd.

2153 Dollartin Hey Burth Vancouser BC 97H SAZ

Phone: 604 594 0221 Fac: 604 584 5216 Issues attobeness com-

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 2 - A
Total # Pages: 3 (A - F)
Plus Appendix Pages
Final ced Date: 1-NOV-2009
Account: COAMO

Project: TNR-Marie

										CERTIF	ICATE	OF AMA	LYSIS	TB091	15250	
langto Description	Wattand Sandyles (Sanda) (Sanda)	WEI-ST Report RM RM RMS	MC-MAIT Ag part Ball	MEANUT A S.	40-4001 As 207 62	MCADE! No opti 10	56,6001 Te 001 201	90-4001 30 30m 30m	96.4601 Ge % 631	64 (4) (4)	04 69* 60*	AM AND I	Madel D am	ME antill Ci gan 105	Ger dam 1,2	345,4000 Pa % 3.01
H373601		0.96	0.71	6.29	5.1	126	1.60	8.50	4.07	0.04	78.4	16.8		9.04	12.1	14.05
H317000		1.61	40.01	5.84	1.2	90	2.56	0.04	2.68	9.20	57.2	9.5		5.96	19.2	0.12
HS73063		0.41	8.77	6.05	5.8	90	9.77	1.17	2.06	5.62	36.7	62.7	211	13.35	146.5	9.54
H073904		1.40	140.0V	F.24	6.3	30	102.8	0.10	0.52	504	3.56	2.0		2500	5.2	0.31
HO173006		0.58	10.01	8.56	8.4	80	1.59	8.15	8.10	0.30	32.6	25.2	581	10:70	45.8	3.49
×373006		3.72	10.61	8.59	40.5	30	901.6	1.30	616	5.09	5.69	1.0	10	1400	8.5	0.19
HOUSEP.		0.55	0.01	0.42	+5	30	1.19	40.01	31.9	ND.EZ	2.23	8.7	4	3.27	2.6	0.74
H373066		5.07	8.76	8.43	4.1	136	9.77	0.16	2.00	8.26	76.8	9.5	3	6.59	35.1	5.40
HS73668		0.84	0.74	6.26	1.6	360	2.01	0.34	1.99	234	49.3	4.0	8	9.36	73.6	3.26
N373016		1.07	10.01	747	6.5	30	106.5	0.45	0.31	0.08	3.45	0.5	4	14.10	1.0	0.30
×5756+1	_	1.08	10.01	6.23	6.4	20	176.0	36.65	8.51	0.15	1.50	6.5	-	144.5	15	0.30
HOTOUTE		0.59	0.23	7.23	1.5	40	1.12	0.26	107	6.10	9.60	38.3	46	5.70	29.6	11.86
M373615		0.31	0.08	8.85	10.	30	0.62	6.32	10.30	6.26	14.60	45.5	119	5.45	200	8.82
H373914		0.45	0.07	8.36	+6.2	20	0.35	10.01	7.77	0.10	9.93	51.5	147	3.43	905.5	6.47
HOCOSH'S		0.36	0.06	8.00	40.2	20	1.25	0.00	8.31	1.20	9.67	52.7	146	0.66	60.6	9.06
	_	0.50	133	0.42	+67	30	2.81	0.16	7.24	6.11	8 (9)	54.0	His	7.19	74.8	8.40
H373616 H373617		620	0.09	1.29	10.2	30	16.80	9.59	8.46	5.52	9.40	19.7	170	86.9	25.4	1.87
Control of the Contro		0.36	5.06	7.46	40.2	50.	5.45	6.42	9.44	6.12	10.35	47.6	135	218	28.4	10.68
H3/5016		5.87	10.05	9.80	3.6	96	122.5	8.90	0.94	40.02	2.53	16		6.06	3.3	0.32
H373019 H373020		0.14	0.09	5.65	462	80	1.40	1.06	7.61	0.19	196.0	51.9	265	5.75	30.6	8.50
			661	8.55	1.2				1.64	616	21.6	-		13.36	15.9	11.05
H373261		0.56				50)	1.67	5.01	5.70	0.20	11.65	20.7	90	5.39	30.7	11.05
H373Q02		0.41	594	2.54	40.2	40	9.70	10.91	5.67	8.13	X 28	40.4	91	5.55	26.6	70.60
H373209		6.45	8.06	7.50	4.8	30	0.56			0.09	4.08	63.8		2.01	30.1	10.60
H173204		E37 E34	6.02	1.45	+0.2	40	0.38	8.01	5.65	6.27	9.50	57.7	100	2.97	57.4	3.49
H373205			0.01											3.63	-	10.05
HSF3206		5.43	6.16	7.86	+6.2	50	0.23	40.01	1.00	0.51	6.00	51.5	147	17.80	90.0	6.38
H373207		0.47	5.04	8.00	+0.5	50	0.24	8.13	8.66	0.11	3.34	43.5	145			
H2700E		8.40	10.81	0.18	15	10	10.08	+0.81	32.4	+0.52	7.86	1.3		9.30	27	6.23
HSP320W		0.52	208	9.59	10.2	60	8.65	0.04	6.48	0.14	18.30	26.8	26	3.64	90.8	11.80
H373210		0.56	604	7.56	46.2	90	9.31	0.25	7.83	6.10	15.19	40.9	99	3.17		
H3/3211		0.36	6-07	1.40	+9.2	90	0.48	1.04	5.64	9.18	10.25	30.4	76	1.31	26.4	31.25
H375912		0.49	0.06	7.10	2.1	50	0.49	5.05	3.71	5.16	18.45	22.1	14	2.24	46.4	4.77
HSERSES.		0.55	8.01	4.05	-0.8	330	241	*D.E1	1.26	0.13	52.6	2.8	10	29.6	7.1	2.89
H3/3216		0.54	9.05	8.26	+9.2	40	1.17	8.01	4.35	0.24	27.5	16.6	1.0	4.55	19.2	10.40
H373218		0.63	804	6.09	40.2	40	0.49	8.08	4.70	0.56	54.60	28.9	10	4.51	29.1	11.35
H373216		671	607	1.00	40.3	320	0.47	1.75	8.57	1.09	15.49	63.6	99.	62.4	136.6	10.80
1073017		0.77	102	6.81	+0.3	90	547	501	8.08	0.21	16.55	29.8	12	7.22	56.7	11.40
H373218		0.50	0.04	7.00	15.2	100	9.49	0.06	6.63	6.16	6.37	47.8	101	5.67	36.2	91,38
H373218		0.62	+0.01	4.29	1.5	20	547.9	15.55	11.02	9.00	4.58	5.5	16	10.9	14.7	1.31
HS73230		9.56	0.09.	7.96	40.2	100	1.29	15.29	5.00	0.13	9.42	53.3	94	24.3	84.0	11.06

EXCELLENCE IN AMALYTICAL CHEMISTRY

JES Circels Uni.

2103 Dallarton Hwy Assets Varonseer BC V7H SA7

Phone: 854 964 5021 Fax: 604 584 0216 Invest alsoftensis com-

Fo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 636-650 W GEORGIA ST VANCOUVER BC VVA 4N9

Page: 2 - 8 Total # Pages: 3 (A - F) Phys Appendix Pages Finalized Date: 1-NOV-2000 Account: COAMO

Project: TNR-Mayie

CERTIFIC	ATE OF	ANALYSIS	TB09115250

										VENTIF	PERILE!	UF ANA	UL 1 DID	1003	15250	
Sample Beatription	Manufacture Security Security Local	GA. GA. GA. GAR	Ger Ger Som Side	est estate set sec	MP-MISE!	MC select	10 10 10 11	ME MEAN Som 3.1	90-4601 505 5-611	ME ARTE !	ME MEST! Min ppm byth	MEASURE No. No. Carl	NE MINET NO SUM E1	ME MOST ME ME 9.2	ME MOST	70. 20. 20.
HGF3001 HGF3052 HGF3003		34.2 23.2 21.5	0.25 0.25 0.25	13.1 10.1 6.2	0.270 0.118 0.260	0.68 0.50 0.58	50.8 23.6 55.8	94.5 13.6 57.6	1.79 0.59 0.86	2680- 1180 561	5.40 0.53	2.85 2.20	22.7 16.3	11.0	97E 970	33 24
H373064 H373065		100.0	0.13	9.2	5.006	1,57 9,25	6.F 19.3	91.3	9.03	313	0.06 0.07	3.36	97 803 112	24	9000 1740	18 18 24
H373006 H373007		56.7 1.61	0.15	9.2	+0.005 +0.005	216	19	34.70	9.02	1(%)	0.15	9.91 0.18	87.5 1.4	0.4	860 100	12.6 0.8
HS73008 HS73009 HS73010		26.7 30.1 66.1	0.12 0.09 <0.05	9.2	8.177 6.647 9.867	0.52 1.75 0.08	29.1 23.7 1.5	97.1 17.8 72.3	0.69	950 1460 825	0.21 1.80 0.11	2.90 1.44 6.79	24.9 154.0	52 41 09	790 680 2390	15.5 15.5
HORSON H		73.5 26.7	+9-00 0.11	4.5	6.506 5.118	1.46	8.7 3.6	368	9.01	515 1940	0.81	X 58 2.62	1154	0.9 27.6	1150	A.0.
H373013. H373014 H373018		27.6 98.60 96.75	0.10 0.05 0.07	87 88 88	5.5KP 5.575 5.0KW	0.13 0.13 0.12	5.9 3.7 3.8	299 376 196.5	2.49 4.04 3.92	16/10 15/60 1570	0.33	5.89 1.76 1.74	5.0 3.2 3.0	81.9 76.5 76.2	590 360 320	13 03 13
HOTSONS HOTSON		17.36	0.40	14	1.007	0.18	2.1	2940	347	(Pag.	2.15 0.64	1.41	2.4	80.0 56.6	330 770	17 12
HG73018 HG73018 HS73020		64.6 64.6	0.06 -0.06 0.18	5.1	5.085 10.005 5.076	0.02 0.13 0.22	5.7 10 618	214 713 45.0	323 306 736	2460 88 1960	0.46 0.67 0.37	0.81 7.22	135.5	50.7	300 950	10
H072201 H172207		27.2	0.10	5.4	8.150 0.136	0.15	8.2	124.5	1.20	164	0.71 0.89	2.55	13.9 13.1 7.5	234 29.0	2190 5640 736	1.9
H373203 H373204 H373200		25.3 16.26 18.20	0.11	16	0.000 0.002	0.20	1.8	37.1	3.60 2.68	1940 1950	0.95 9.21	7.86 2.19	58 23	58.5 30.6	200 200	3.0
HG73208 HG73207		17.95 17.35	0.08 0.06 0.07	10	8.079	0.18	25	81.1	4.60 3.62	2860	0.25	1.86	3.0	40.6 47.6	300	1.5
H373208 H373208 H373210		0.61 23.3 17.76	49.00 6.11 0.00	2.6 0.1 1.6	0.009 0.005 0.121 0.076	0.21 0.03 0.30 0.37	32 18 76 38	52.4 1.7 51.4 50.1	3.12 2.67 2.73 3.39	138 1940 1940	0.46 0.06 0.60 0.32	0.00 0.00 0.00 0.00 0.00	03 87	1.0 20.0 12.0	86 87 871 870	12 18 18
+079211 +079210		20.8 13.75	0.09	2.0	5.102 5.034	0.12	4.1	94.5 24.5	233	171	0.34	2.59	5.0	17.2	860 390	25
H073213 H073214 H073215		26.0 26.6 26.6	0.12	3.9	8 135 9 150 8 130	0.58 0.29 0.29	11.2	153.5 166.5 30.6	0.29 1.35 2.59	1790 1790	2.49 0.66 0.60	2.34 1.80 2.30	20.1 12.7 8.2	2.4 4.7 20.6	1680 1680 270	2.3 1.0 2.6
H373216 H373217		74.5	0,11	14	8.598	0.50	13	1	9.27 2.00	1900 2130	0.25 6.48	2.58 1.86	5.3 8.4	89.2 9.3	175 1990	3.2
HOTOURS HOTOURS HOTOURS		67.5 20.8	43.05 43.05 0.12	82	6.007 6.007 8.000	0.27 0.22 0.44	76	129.5	3.62 0.36 3.40	1946 921 1776	0.98 24.0 0.90	5.25 5.73 5.91	32 97.0 5.5	9.2	350 2560 672	5.7 5.7

EXCELLENCE IN AMALYTICAL CHEMISTRY

ACS Correct Lin

2403 Dollarton Hay North Yarossver BC V7H EAT

Phone: 604 981 5221 Fax: 654 954 0216 Invest alsohemex.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC W68 4N9

CENTIFICATE OF ANALYSIS TORALISMA

Page: 2 - G Total # Pages: 3 (A - F) Plus Agrondix Pages Finalized Date: 1-HOV-2209

Account: COAMO

Project: TNR-Mayis

										CERTIF	CATE	OF ANA	LYSIS	1809.	15250	
Lampir Doveription	Method Santyra Units 1,500	Miletal As part E1	96 mist 94 30* 3-92	80,4001 8 % 501	100 MIN 100 P	60 action du part 0.1	ME-MOST (by part) 1	98.9081 51 51	90 A001 50 61	19 29 200 133	10 ACC	MEANICE TO SET S.2	16E-4007	0 mm 10 100	ed eday of part of	MEANS V No.
HGF2001 HGF2002 HGF2004 HGF2004 HGF2000		179 103 503 5140 143	9.003 +0.002 0.000 +0.002 +0.002	1.45 8.03 3.62 5.61 8.05	0.15 0.09 0.05 0.08 0.10	29.5 18.8 16.4 9.7 30.2	5 5 8 1 2	4.0 2.2 5.7 85.5 3.8	91.9 91.9 703.5 87.0 169.5	1.67 1.17 0.67 +100 2.97	0.26 +0.05 0.40 +0.65 0.06	4.3 2.8 1.0 1.0 2.1	0.400 0.530 0.573 9.917 9.862	0.16 0.09 6.37 38.4 6.21	1.0 0.7 0.4 3.6 4.5	53 45 158 4 168
H373008 H373007 H373008 H373009 H373010		8040 36.8 43.7 56.6 1.3	+0.002 +0.002 +0.002 +0.002 +0.002	+0.91 +0.51 0.68 0.36 0.01	0.57 0.08 0.14 0.27 0.56	5.7 10.6 12.6 17.4 0.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.4 1.6 6.6 5.7	98.0 195.5 195.5 195.7	+160 1.61 2.61 1.62 +100	0.29 +0.05 0.10 0.19 +0.05	12 03 45 28 28	0.946 0.513 0.409 0.492 0.000	463 626 632 639 636	37 52 10 67 63	21 21 21
HGF3011 HGF3010 HGF3015 HGF3016 HGF3015		1940 23.1 34.0 12.0 8.9	+0.002 +0.002 +0.002	46.01 6.01 6.22 6.01 9.61	0.19 0.19 0.19 0.18	957 367 367 427 414	2 2 2 2	13 13 13 11 17 14	968 1248 613 732 865	+100 236 138 0.71 0.47	0.06 <0.05 <0.09 <0.05 <0.05	3.3 -0.7 -0.8 -0.3 -0.3	8:008 1:170 8:721 6:536 6:527	14.50 0.16 0.26 0.11 0.06	10 03 12 41	91 344 273 273 273 270
H3790% H379017 H3790% H3790% H37900		473 176.0 52.6 72.5 53.5	40.002 40.002 40.002	8.01 9.03 9.03 9.031 9.031	0.28 9.26 0.11 0.37 0.30	96.7 96.7 1.3 96.8	W = 36 to a	2.6 16.8 0.6 1.1	96.8 46.8 122.5 110.0 140.0	9.76 6.45 9.36 986 2.77	0.06 40.05 40.05 10.05 40.05	0.4 0.4 0.6 4.9 4.3	8.562 8.630 8.529 8.613 8.442	0.41 1.45 0.23 0.21 5.08	13 03 01 82 08	286 259 248 6 178
H373001 H373202 H373203 H373204 H373208		16.2 14.4 17.5 3.2 13.3	40.002 45.002 45.002 45.002	8.01 9.01 8.00 6.01 8.13	0.00 0.10 0.19 0.37 0.17	26.7 38.8 33.7 59.3 46.4	2 2 2	1.6 1.3 10 5.5 5.6	142.6 122.0 146.5 61.8 103.0	2:19 0:73 1:13 0:21 0:32	40.05 40.05 40.05 40.05 40.05	0.9 0.6 0.3 0.3	8.927 1.025 8.909 9.496 8.539	0.10 0.00 0.11 0.00 0.00	0.4 0.2 0.2 0.1	28 545 306 289 289
H073266 H073207 H073266 H073266 H073250		6.4 20.8 17 26.3 18.8	49,062 49,062 49,062 46,062 40,062	9.01 9.00 +0.01 6.04 9.01	0.09 0.06 0.06 0.15 0.15	41.7 41.5 8.6 42.1 39.6	2 2 2 2 2	65 67 62 11 18	190.5 130.1 64.2 145.0 196.0	0.36 0.25 -0.05 0.47 0.38	40.05 40.05 40.05 40.05 40.05	0.4 0.3 -0.2 0.7	0.504 9.536 9.513 1.180 5.636	6.04 6.15 -0.65 0.12 0.08	6.1 6.1 6.2 6.2 6.3	265 267 216 216 226
HIPRON HIPRON HIPRON HIPRON HIPRON		6.8 3.8 36.6 5.5 6.7	40.002 0.002 0.002 40.002	8.01 9.01 9.02 9.01	0.19 0.50 0.00 0.13 0.13	40.1 18.1 3.2 29.0 36.4	2 2	8.9 8.7 1.7 2.1 1.2	157.5 301 157.5 127.0 152.6	0.33 0.37 1.33 0.63 0.62	40.08 40.08 40.00 40.00 40.00	0.6 0.8 2.8 1.5 0.9	8-819 1,005 8-178 8-912 1,165	636 630 616 623 634	53 12 18 18 13 12	295 132 8 29 266
HQF9278 HQF9277 HQF9278 HQF9278 HQF9278		96.3 12.9 46.0 229 155.0	40 003 0 008 40 003 40 003 40 003	8.00 8.08 9.00 45.01 +6.01	0.36 0.13 0.17 0.21 0.96	36.8 37.4 46.3 3.3 32.8	2 2 2 2	0.7 15 6.6 13.3 2.6	393 101.0 136.5 92.4 156.5	0.35 0.53 0.22 -190 1.89	+0.08 +0.08 +0.08 0.34 +0.00	0.6 1.1 0.3 4.3 0.8	0.940 0.745 0.504 0.996 0.872	6.66 8.10 8.23 1.12 1.10	9.2 9.3 9.1 16.7 9.2	316 163 267 29 288

EXCELLENCE IN ANALYTICAL CHEMISTRY

Mid-Carreta Ltd

2103 Distance Hwy Morth Vancouver BC V7H: SAT

Phone 804 884 5221. For 654 964 (218. www.alachamax.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-650 W GEORGIA ST VANCOUVER BC W68 4ND

CERTIFICATE OF AMAI VOID TRANSPA

Page: 2 : D Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 1-HOV-2009

Account COAMO

Project: THR Mave

										CERTIF	CATE	OF ANA	ILYSIS	TB091	15250	
Lampto Downtplica	Marked Analyse Speks LOS	and contact in parts	Minday per pr	ANT, MODE T DO DO DO DO T	30 30 30 31	Miletier Ag ppm (66 4637 54 347 5-5	SE MERT Ca ppr 1.1	ME-MERT Ch SETT EST	60 part 12	(0) (0) (0) (0) (0)	SE AGE	160 44501 Dy sper 3.00	90.46()1 51 30 300 510	66- 56- 56- 5015	Go. Ser. Ser. Ser.
+GF2007 +GF2002 +GF2002 +GF2004 +GF2006		25 65 65 23 29	176.8 66.7 97.2 1.7 26.2	215 163 802 90 88	471 347 199.5 16.1 150.5											
H373008 H373007 H373008 H373008 H373010		68 61 18 67	954 763 1.1	70 4 70 11,00 68	15.8 5.3 463 406 36.6	-11	10.0	28	1.5	20	15.80	4	0.79	0.14	0.04	46.0
H073011 H073012 H073013 H073014 H075015		13 07 08 68 68	57 526 255 215 215	40 100 110 100 111	31.3 75.6 12.6 11.6 7.3											
#13790781 #13730717 #1373078 #1373078 #1373078		18 18 29 18	21.2 23.7 22.3 1.9 21.8	123 366 357 14 126	10.K 13.0 14.2 26.0 112.5											
HSF9001 HSF9200 HSF9200 HSF9204 HSF9206		63 63 63 68 54	98.8 36.7 26.8 30.3 24.7	171 104 104 100 162	201 79.9 96.3 37.0 38.0						A					
+07208 +07207 +07208 +07208 +07208		92 93 81 45 88	22.3 21.2 2.0 36.1 24.6	197 148 5 142 141	37.3 15.5 2.1 80.1 34.9											
HOTSINI HOTSINI HOTSINI HOTSINI HOTSINI		63 23 83 64 66	30.1 16.0 60.7 60.4 40.4	184 66 521 569 184	67.7 68.3 369 156.0 126.6											
HOTOTE HOTOTO HOTOTE HOTOTE HOTOTE		69 84 67 17 13	96.7 96.7 5.4 26.7	106 105 131 15 15	94.5 139.0 20.2 87.0 44.8											

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Constructs
2103 Dollarton Hwy
Sorth Garcouver BC 97H GAZ
Phone BC4 884 0271 Fee 604 884 0216 were affectiveness com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOLVER BC V68 4N9 Page 2 - E Total # Pages 3 (A - F) Plus Appendix Pages Finalized Date 1-NOV-2009 Account COAMO

Project: TNR Mass.

										CERTIF	ICATE	OF ANA	LY515	T8091	115250	
hampin Doseription	Starthaud Securytes Grades (Sell	GH GH Jan 100	MEASON Me Me Me Me Me Me Me Me Me Me Me Me Me	Miller Mill Mill Mill Mill Mill Mill Mill Mil	Modelani La pare E.B	MEASON SA SAN SAN	Mariana T	NE MAIN No. Ne Ne Ne Ne Ne	No. Allow No. Sant 3.7	ME AND	MEASOT Pt- ppm 1	ME AND ME MAT THE	MI-AREN MI- SIZ	ME-MERI Ser sem sem	MEMBER SIN SIN'	20 MIN
HST1001 HST1003 HST1004 HST1004																
HST9008 HST9007 HST9008 HST9008 HST9008		034	15.	9.54	1.3	0.60	4	100.0				131	**	522		12.6
HOTSEN HOTSENS HOTSENS HOTSENS HOTSENS																
HUTSEN HUTSEN HUTSEN HUTSEN HUTSEN HUTSEN																
H070001 H070003 H070004 H070008																
HOTIGOR HOTIGOT HITIGOS HOTIGOS HOTIGOS																
#1873272 #1873272 #1873273 #1873274 #1873275																
H07)016 H030017 H07016 H07016 H07026																

EXCELLENCE IN AMALYTICAL CHEWISTRY

Rub Cometa Ltm 2100 Dickerton May North Ventpower BC, V7H SAT

Prove 804 884 0221 Fax: 654 884 0216 I www.afschemex.com

To CGAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 820-650 W GEORGIA ST VANCOUVER BC V68 4ND Page 2 - F Total # Pages 3 (A - F) Plus Append x Pages Finalized Date: 1-NOV-2009 Account: COAMO

Project TNR-Mayie

										CERTIF	CATE	OF ANA	LYSIS	TB09115250
lample Description	Merchant Stratigue Spelle Long	estator Na port d 1	681-95301 - To - 3511 - 3,511	ME MODEL For Form Both	ME MARKET TO THE PERSON NAMED IN THE PERSON NAMED IN	Mit Address dos porti 1971	MEARING SOFT EDV	Adjusted Party 1	milianist in part 1	(90, mild) 7 (60*) 2.5	98. MSET 75. 50% 100%	NE MENT De April 1	MEMBER A terr	Au-KIPET Au gam 3 (80)
HO73087 HO73088 HO73088 HO73088														6.009 6.002 8.003
H3F3006 H3F300F H3F3008 H3F3000 H3F3000		185.0	6.01	14m	411	9.49	1.00	-			11.12	162	28	
H373071 H373073 H373073 H373074 H373076														
H3730/III H3730/II H3730/III H3730/III H373030														
HSF2281 HSF2282 HSF2283 HSF2288 HSF2288														
H073286 H173287 H073288 H073278														
HO/SET HOFSES HOFSES HOFSES HOFSES														
HOTOLOG HOTOLOG HOTOLOG HOTOLOG HOTOLOG											-	-		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE-Carredor (M.

2103 Dellarton Hwy North Vancouver BC V7H GA7 Proces 604 554 0221 Fax 804 654 9216 www.wischemes.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-650 W GEORGIA ST VANCOLVER BC V6B 4N9

CENTRICATE OF AUGUSTON TOROLLESSES

Page: J - A Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 1-NOV-2009 Account: CDAMO

Project: TNR Mavis

										CERTIF	ICATE	OF ANA	LY345	TB091	115250	
Lampia Description	Restruct Amongsto (amongs (amongs (amongs)	9901-01 Resid 01 PG 0:00	MI ARET Ag Spit SSI	MEABLE A S	All asset All some 52	MO MODEL No SOFT TS	Self-Arteri Self- port cost	90 4607 8 947 117	GA SEPT	MEMBER Se sen cor	MEARST Ga 39% GGT	ME-4581 Ca spe 9 f	ME-MRET CO June 1	Mineser On pare 405	Se amer de sem 93	74 % 527
H373031 H373032 H373034 H373034 H373035		0.55 0.86 0.71 0.84 0.52	0.09 0.05 0.02 +0.07 +0.07	7.80 7.80 7.82 8.95 8.77	+0.2 +0.2 +0.3 +0.2	90 30 20 70 90	8.36 2.94 0.36 208 185.3	8.58 9.50 6.07 27.6 19.00	7.94 8.60 6.00 6.00 6.77	8.10 9.11 9.04 40.12	9.81 10.60 3.76 1.60 0.53	654 662 662 17 18	1/15 129 139 8	24.2 1.48 6.90 63.1 101.5	45.0 85.6 29.5 2.5 1.2	10.26 8.40 8.87 0.57 0.37
H373236 H373227 H373228 H373238 H373238		0.47 0.81 0.59 0.52 0.45	0.03 +0.05 0.04 0.04	8.04 8.79 8.71 8.71	13 13 18 14 15	113 20 90 138 10	1 IIII 172.6 1.70 1.87 6.19	8.50 8.76 8.00 8.00	5.80 0.11 6.95 3.80 92.6	6.16 6.03 6.27 8.21 6.02	5.45 9.85 19.20 17.35 1.44	90.4 5.4 20.4 20.1 1.0	* * * * * * * * * * * * * * * * * * * *	59.5 59.5 52.79 42.9 0.48	31.1 1.5 45.1 26.4 2.2	9.18 0.29 11.75 19.85 0.30
HS75230 HS75252 HS75233 HS75234 HS75236		0.47 0.59 0.69 0.62 0.62	004 004 004 006 006	7.65 7.65 7.65 7.27 7.25	5.5 5.5 5.6 40.2 40.2	30 30 160 140 40	0.02 0.77 0.57 0.86 0.46	6.07 6.07 6.22 6.14 6.11	5.64 6.04 6.92 4.69 6.28	6.14 8.09 9.13 9.15 6.17	7.03 15.40 11.15 11.45	43.5 42.7 57.5 39.5 64.9	62 98 63 12 63	16 60 6.34 20.3 14.30 2.92	25.0 45.0 34.9 86.1 27.3	10.80 9.29 9.56 10.20 9.16
H373238 H373237 H373238 H373238 H373246		6.60 6.56 6.56 6.66 6.67	606 601 603 609 8,47	7.40 7.34 8.10 7.40 7.37	0.8 7,0 0.3 0.3 0.5	50 210 250 60	6.61 5.26 5.72 5.33	8.31 8.29 8.10 8.11 8.07	6.63 6.65 7.21 9.74 5.49	0.13 0.49 0.12 0.17 0.10	9.97 15.40 9.04 11.00 9.41	40.5 81.6 82.1 85.8 87.0	50 128 190 24 134	25:3 1:41 16:50 222 10:10	77.3 43.2 36.7 76.5 122.6	7 94 7 26 8 42 12 20 9 36
H373241 H373242 H373243 H373248 H373248		0.66 0.67 0.66 0.58 0.57	5.04 5.05 5.05 5.06 6.03	5.27 5.74 5.74 5.74 5.49	01 0.4 45 0.3 40.2	50 60 50 110 30	0.00 11.21 0.37 0.36 0.33	5.11 5.11 8.05 9.13 6.16	7.72 10.15 6.19 7.77	0.23 5.11 0.12 0.09 0.23	12.80 8.72 15.95 11.80 12.00	90.8 40.6 40.4 30.0 50.1	127 247 32 124 58	6.36 6.84 7.91 22.2 1.30	86.4 66.7 67.1 57.1 62.8	5.46 5.23 7.26 5.04 7.77
1073246		142	4.07	8.79	45	30	9.57	1.40	16.90	8.13	10.95	46.3	41	A 12	249	4.15

EXCELLENCE IN AMALYTICAL CHEMISTRY

ALS Constal US.

2103 Dollarton Hwy North Vancouver BC V7H SAT

Phone 804 164 (221 Fax 604 164 (216 www.alsohemex.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-650 W GEORGIA ST VANCOUVER BC WAS 4NS

CERTIFICATE OF ANALYSIS

Page: 3 - B Total # Pages: 3 (A - F) Plus Appendix Pages. Finalized Date: 1-NOV-2005

Account CDAMD

Project TNR-Mavie

										CERTIF	CATE	UF ANA	T.1919	1 8091	15250	
Sample Description	Stemas Snotyle Snoty Link	Ge again Ge again Eight	Gor Gor Solid Solid	WE MINT AN SAME SAME	Milder or or or	100 MINUTES	MENUNI LA ppm 1.3	96.4601 0 000 5.2	96 ARRET 94 5 5.11	ME oter Mr Jan 1	Min	MCAMET To To	MC-MHP No. SATE BT	Mi-Mair N	Mindel per per lo	Mi Min
HOTEON HOTEON HOTEON HOTEON HOTEON		19:55 17:30 16:40 48:3 66.8	0.10 0.13 0.12 1.12 1.36	87 87 18 48 13	0.071 0.063 0.075 0.075 0.006	0.19 0.13 0.13 0.15 1.07	18 59 12 19 40.5	381 790 950 8760 5860	3.90 3.13 4.20 3.06 9.00	2160- 1670 1420- 297 236	0.28 0.46 0.16 0.28 0.30	1.38 1.62 1.62 2.54 2.74	3.4 3.0 179.0 100.0	70.4 70.4 86.9 1.6	365 326 340 206 600	52 52 10 118 148
POPERSON POPERSON POPERSON POPERSON		20.8 50.8 27.8 26.2 6.67	0.38 0.34 0.31 0.25 0.32	2.5 3.6 5.2 6.1	6.072 0.005 0.138 6.140 40.005	0.54 1.60 0.29 0.29 0.03	15 45.5 8.7 8.0 16	870 820 72.2 57.9 35	0.00 1.71 1.50	1460 145 2236 1800 114	0.32 0.12 0.43 0.37 0.05	1.97 4.49 1.87 2.99 0.95	5.4 157.0 9.6 11.2 0.4	25.4 0.5 11.4 3.8 0.7	980 1520 1530 1390 80	21.8 23.8 29 40.5
HOTAGOS HOTAGOS HOTAGOS HOTAGOS HOTAGOS HOTAGOS		24.5 22.9 25.4 19.65 21.5	0.10 0.16 0.15 0.15 0.15	11 12 10 32 14	0.060 0.077 0.068 0.089 0.076	0.17 0.22 0.78 0.50 0.19	2.1 2.2 4.9 4.3 4.7	98.1 79.9 175.5 36.1 25.2	3.25 3.32 4.01 2.54 3.42	1640 1300 1620 1750 1660	0.45 0.45 0.23 0.38 0.87	1.80 2.81 1.85 3.18 2.14	6.7 8.1 4.0 5.6 3.6	90.1 70.0 155.0 16.1	606 400 600 540 840	18 18 18 40 18
HIFI200 HIFI200 HIFI200 HIFI200		25.5 25.4 26.8 26.3	0.16 0.13 0.17 0.17 0.19	68 58 57 17	6.062 6.062 6.068 6.068	0.27 0.09 0.45 1.09 0.34	3.F 7.0 3.0 3.6 3.1	#8.2 27.2 53.5 74.3 87.8	2.01 2.48 3.02 2.83 8.76	1960 1990 1990 1790 1790	0.33 0.21 0.17 6.16 0.67	2-17 1-34 1-85 2-16 2-25	3.6 2.5 3.1 8.7 3.6	67.1 52.4 96.3 46.6 19.3	360 360 350 410 810	28 28 10 38 28
HOTSENI HOTSENI HOTSENI HOTSENI HOTSENI HOTSENI		14.50 14.50 14.55 17.56 17.20	0.19 0.09 0.09 0.12 0.10	0.4 0.5 19 67	0.058 0.058 0.062 0.066 0.064	0.18 0.18 0.09 0.09 0.14	1.5 2.7 2.2 1.3 8.6	963 118 861 163	3.47 4.79 2.36 3.67 2.66	1400 1410 1410 1000 1400	0.73 0.84 0.81 5.98 0.39	1.40 1.84 0.44 2.46 1.57	3.6 1.5 5.7 8.5 3.7	64.5 108.5 72.2 62.9 120.5	345 345 455 475 495	18 23 22 45 23
M31254E		18.76	0.10	14	1 18-9	0.53	4.7	17.6	3.30	1790	5.30	1.27	3.8	ma f	936	1.5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS CHIMBRUSH

2160 Dotterton Hay North Vancounter BC VTH DAT

Phone 604 MA 6021 Fax 404 MA 6218 were alachemes com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC WIR 4NO Page: 3 - C Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 1-NOV-2509 Account: COAMO

Project TNR-Mavis

								-	CERTIF	CATE	OF ANA	LYSIS	TB091	15250		
Damaio Desarytton	Method Sandylo Dolla Link	Minhit No port (1)	ME WAST	MCARE!	ME-MILET Six part 8 SE	ME MEAN So. ppm. 327	SE MINT Se pen 1	Mi ettiri Sr pre-	62.4001 51 51 62	MEMBER Fa SETS ESS	NE anati To som 108	Mileter Th ppm EZ	96.6581 7 5 1.00	100 Apper 100 100	Mindel of ages 11	MC MIN
H073201 H073237 H073239 H073238 H073238		517.0 53.7 53.4 540 1710	48.062 9.062 9.063 48.062 9.004	49.21 8.02 8.01 40.01 40.01	0.30 0.30 0.10 0.15 0.16	623 651 658 33 23	2 2 2	8.9 1.4 9.0 32.6 26.1	149.5 63.1 97.6 58.4 131.0	0.42 0.30 0.23 76.5 41.7	+0.04 +0.05 +0.05 0.08 +0.05	6.5 6.6 9.5 3.1 2.0	0.965 0.969 0.953 0.913 0.909	0.79 0.27 0.13 4.13 13.70	6.4 6.5 6.1 10.8 7.5	277 260 273 3 2
HSP3238 HSP3237 HSP3238 HSP3239 HSP3236		136.6 1160 45.7 32.4 2.1	3,063 6,062 6,062 5,062 9,062	6.01 +0.61 8.03 +0.01 10.01	0.15 0.06 0.16 0.11 +0.08	34.6 0.8 37.6 32.6 0.4	2 8 9 9	9.2 1.5 1.6 +0.2	191.0 167.0 95.0 109.5 83.2	0.86 100.0 1.59 1.12 0.14	40.05 40.05 40.05 40.05 40.05	8.4 3.1 1.0 1.2 40.2	0.451 0.919 0.872 1.090 0.814	0.84 8.50 0.32 0.25 0.83	61 627 63 62 63	3 139 147 2
H3F3231 H3F323E H3F3235 H3F3236 H3F3236		20 8 6.8 299 79.5 13.3	6.062 0.003 9.002 0.003 0.003	6.01 6.03 6.03 1.04 8.01	0.12 0.11 0.40 0.15 0.15	36.3 33.4 28.5 53.6 40.2	2 2 2 2 2	1.4 5.0 1.0 0.0 0.0	716.5 264 173.0 290 172.5	0.48 9.39 6.31 0.36 0.36	40.05 40.05 40.05 40.05 40.05	0.6 0.4 0.4 0.9 0.0	0.915 6.752 6.718 0.609 6.634	0.14 0.11 1.54 0.10 0.07	46.1 46.1 12 46.1	308 272 342 315 282
H373236 H373237 H373238 H373230 H373240		33.2 63 34.5 106.0 36.6	96.062 0.062 0.062 0.062 0.064	10.21 10.01 5.01 5.01 5.01	0.08 0.39 0.90 0.11 0.11	97.8 94.7 46.7 41.8 51.4	2 2 3	1.8 1.8 1.6 2.6 1.7	143.8 181.5 127.0 186.5 175.0	0.36 0.35 0.33 0.33 0.36	+0.05 +0.05 +0.05 +0.05 +0.05	0.4 0.3 0.4 0.4	0.584 0.438 0.554 1.210 0.300	0.21 5.94 5.35 0.67 0.20	401 401 401 401 401	242 221 288 516 282
H073041 H072042 H072043 H072046 H072046		83 11.2 37 28.8 3.1	0.003 +6.002 +6.003	5.04 5.02 5.01 8.00 5.01	0.13 0.17 0.29 0.19 0.00	40.5 50.0 37.2 36.8	200	0.6 0.7 0.9 0.0	40°2 -285 53.4 -278 196.0	0.36 8.13 6.27 8.31 6.25	0 (X) +0 05 +0 05 +0 05 +0 05	0.8 0.7 0.8 0.8	0.414 0.414 0.416 0.536 0.536	0.07 0.09 0.02 0.02 0.09	46.1 6.1 6.2 6.2	298 249 187 240 239
H373246		34	0.003	1.26	5.18	86.3	- 2	1.6	84.1	0.25	0.12	9.5	1:400	0.03	8.5	323

EXCELLENCE IN AMALYTICAL CHEMISTRY

MLS Convento LIST

2103 Substantial Hwy North Vancouver BC V7H SAT

Phone 604 964 9201 Fac: 604 954 9216 Invest attachemes com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4ND

CERTIFICATE OF ANALYSIS

Page: 3 - D Total # Pages: 3 (A - F) Plus Appendix Pages Finalized Date: 1-MOV-2009

TRACTICA

Account COAMO

Project TNR-Mavis

22.8 20.1 22.8 20.1 22.8 8.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	96 address 25 and 26 address 26 a	MI ARRIT JI JUNE 15.9 15.9 15.2 15.5 16.5 112.0 166.9 4.3 68.3	Mit-Applier Ag ppm 1	militari Bu Igani 613	servation to part 11	sab sedant Cor jamin E B	sale larger Grant Span 19	ME MEET SEE SEE SEE	Service Service 1	September 1997	M(MH) S1 MT 0.00	66 (650) 64 557 553	MI MOR
24.1 22.8 8.3 22.6 8.3 86.8 85.6 3.3 22.1 23.5 21.3	100 36 38 28 193 27 184 198 3 198	11.2 31.9 35.2 8.2 21.5 16.0 112.0 16.0 4.3											
23 63 533 33 721 235 213	27 188 158 3 134 101	163 1120 160 43 43											
23.5	101												
27.9	170	51.9 25.4 26.6 45.1											
23.8 24.3 23.3 26.1 25.8	102 1127 109 137 90	317 17.5 11.3 55.6 47.6											
958 953 213 214 215	141 92 96 98 98 125	16.8 7.6 10.5 67.4 20.9											
363	10.1	15.0											
	79.5 21.3 21.8 21.8	79.5 82 21.7 96 21.6 708 23.6 125	79.5 62 7.6 21.7 96 50.5 29.8 508 67.4 20.6 175 20.9	79.5 62 7.6 21.7 96 10.5 22.6 108 67.4 23.6 175 26.9	79.9 62 7.8 21.7 96 10.5 21.8 108 67.4 23.6 175 26.9	79.9 82 7.8 21.7 96 10.5 22.8 108 67.4 23.6 105 20.9	79.9 82 7.8 21.7 96 10.5 22.8 108 67.4 23.6 105 20.9	19.9 82 7.8 21.7 96 10.5 21.8 108 67.4 23.6 175 20.9	19.9 92 7.6 21.7 96 10.5 21.6 108 67.4 23.6 175 20.9	19.9 A2 7.8 21.7 96 45.9 21.8 108 67.4 23.6 175 26.8	19.9 A2 7.8 21.7 96 10.5 21.8 108 67.4 23.6 175 26.8	19.9 A2 7.8 21.7 96 10.5 21.8 108 67.4 23.6 105 26.8	19.9 A2 7.8 21.7 96 14.5 21.8 108 67.4 23.6 195 26.9

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Collector Hwy

North variouser BC VNs SAT Process BSV SIGN SIGN Fac 604 MH 0275 I www attachemes comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-650 W GEORGIA ST VANCOUVER BC VEB 4N9

CERTIFICATE OF ANALYSIS TOROLLESSE

Page: 3 - E. Total # Pages: 3 (A - F) Phys Appendix Pages Finalized Date: 1 NOV-2019 Account: CDAMO

Project: TNR Mavre

-										CERTIF	ICATE	of ana	LYSIS	TB09	115250	
Sancra Description	Statement Statem	ME MISST Gar Same 6 IIII	95 MILES	100 MINOR	La La mm 5.5	100 Miles 244 247 247	Mileston Miles Spin	ME AND ME SHOT R.P.	NO MONT No sym 0.7	NE MEN'	DE MOST PA SOTT	MI AND	No conti	Mil-Mobile Sen som: 0.00	ME AND T	MARKET NAME OF THE PARTY NAME
#073074 #073022 #073020 #073024 #073025																
*(17)238 *(17)227 *(17)228 *(17)238 *(17)238														_		
#01320 #01320 #01320 #01324 #01320)-*-											
HST1228 HST1228 HST1228 HST1228 HST1248									_		-					
H373247 H073242 H073243 H073248 H373248																
HJ/1246																

ENCELLENCE IN ANALYTICAL CHEMISTRY

2153 Dolarius Hay North Vancouver SC V7H SK7

Phone 804 864 0027. Fac 854 964 5219. Were also barrier com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11934 670-650 W GEORGIA 81 VANCOUVER BC VIB 649

CERTIFICATE OF ANALYSIS TRO9115250

Page: 3 - F Total # Pages: 3 (A - F) Plus Appendix Pages Financed Date: 1 HOV 2009 Account: COAMO

Project TNR-Mayer

HIPTORS	A-COST AN ENT ENT ENT ENT ENT ENT ENT ENT ENT EN
HOPSON HO	
H073298 H073298 H073290 H073201 H073201 H073204 H073204 H073206 H073207	
H073230 H073236 H073236 H073236 H073236	
HITTELDS	
FGP3246	
#072041 #072040 #072040 #072040	
HSF294E	181

EXCELLENCE IN ANALYTICAL CHEMISTRY

Vol. Genetic III
2100 Distance New
North Ventioner EC VINCE/
Phone 604 664 0221 Fee 604 904 0210 were allochemen com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11504 620-650 W GEORGIA 57 VANCOUVER BC V68 489 Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 1-HOV-2009
Account: CQAMO

Project TNR-Mayor

CERTIF	CATE OF ANALYSIS	TB09115250

	CERTIFICATE OF ANALTSIS TENSTISES
letted	CERTIFICATE COMMENTS
NE-M501	Interference: Can10% on ICP-MS AsJCP-AES results shown.
UE-MS61	REE's may not be totally soluble in this method.

Auth Consets Lite 2103 Chillathair Hey

2103 Cultarior Hey North Vancouver BC 1/74 DA7 Phone 504 984 9271 Fair 604 984 5216 when alsohermes comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 629-450 W GEORGIA ST VANCOLIVER BC V68 4N9 Page: 1
Finalized Date: 27-OCT-2009
This copy reported on 15-DEC-2009
Account: COANO

CERTIFICATE TB09115251

Project TNR-Mavis

P.O. No.:

This report is for 72 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 9-OCT-2009.

The following have access to data associated with this certificate:

ALCONOM

GABE AUTRAS

HAND MARCHENI

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Ruit wis BarCode	
CRU-OC	Crushing GC Test	
PUL-QC	Pulverlang GC Test	
CRU-31	Fine crushing - 70% < 2nm	
SPL-21	Spit sample - riffe spitter	
PLIL-31	Publisher split to 86% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	As 30g FA ICP-AES FINISh	ICPAES
ME-MSET	48 element four and ICPAIS	

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11604 629-452 W GEORGIA ST VANCOUVER BC VEB 4NS

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ACS Carnels UR

2103 Dollarton Hay

North Vancouver 6G VTH SRF

Phone: 604 984 0221 Fax: 604 984 0218 I wave also hereix com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11634 620-650 W GEORGIA ST VANCOUVER BC VSB 4N3 Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009

Account: COAMO

Project TNR-Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15251	
lample Description	Marinasi Analytis Units 1,000	995-27 Harris Rij Na 5-60	All address Ag agen (c)**	MCADE!	MEMBER As Mem 52	96 MS1 64 507 70	100 adds) Dv 1004 0.05	ME4801 Sh 100 E-01	66.4601 Gr % 10*	ME MONT Gar gare 8-66	SE MINET Ga gare Extr	SM MOST Go More S.S	ME MENT O DEPT 1	STILL CO MEMORY	ACADET Cu son C2	160 MOR Fil. 15, 1001
HSF324F HSF3248 HSF3248 HSF3250 HSF3281		0.64 0.66 0.82 0.52 0.57	606 603 604 602 800	8.57 7.06 8.03 8.57 8.58	6.7 -6.3 6.4 5.4 -6.2	70 80 80 90 70	5.50 5.69 5.50 5.40 5.36	0.10 9.26 0.11 9.06 9.09	5.81 5.64 5.34 7.09 5.34	0.12 0.08 0.08 0.00 0.19	18.79 8.89 11.65 12.25 5.15	51.6 47.6 47.6 50.6 43.6	138 93 95 63 6	6.81 2.97 2.18 4.72 2-30	99.7 38.3 37.4 9.5 28.8	8.61 8.91 10.80 8.74 10.75
H373252 H373253 H373258 H373266 H373266		8.50 8.52 8.46 8.30 8.51	5.03 5.02 5.04 5.06 5.03	8.14 6.09 6.11 7.19 7.36	+0.2 0.0 0.0 0.0	130 30 60 100 50	0.29 0.24 0.26 0.36 0.37	0.63 0.67 0.67 0.29 0.06	5.62 5.63 5.19 5.17	0.15 0.10 0.10 0.20 0.10	6.00 6.00 6.96 9.76 6.50	50.8 50.3 46.0 16.7 47.0	80 80 1ME 8 9	1.60 1.47 8.26 7.27 1.36	81.8 39.2 37.6 57.3 28.0	50.40 6:36 5:96 5:91 10.75
H3P3397 H3P3258 H3P3259 H3P3260 H3P3261		5.45 5.42 5.63 5.60 5.00	8.16 9.02 8.05 0.01 5.08	2.10 7.69 7.64 0.51 7.61	46.2 6.5 1.0 15 6.5	40 10 20 40	8.72 0.72 0.84 0.34 0.53	0.04 0.04 0.01 0.01	7.24 6.36 6.74 21.6 7.66	0.15 0.11 0.16 -0.03 0.19	9.60 19.90 15.96 1,24 9.35	51.0 61.5 40.0 1.0 51.8	82 931 86 2 46	0.46 6.87 1.37 0.67 1.20	56.4 24.8 49.2 2.4 46.3	10.80 8.55 8.63 5.10 8.36
H073082 H073085 H073086 H073286 H373288		0.61 0.54 0.54 0.59 0.74	5.04 5.06 5.06 5.06	7.60 7.60 7.65 7.67	1.0 +0.2 0.7 0.2 1.3	60 160 60 50	9.34 9.34 9.83 9.34 9.34	9.69 6.11 9.11 9.11	1.00 1.65 6.97 1.66 5.81	0.15 0.19 0.19 0.12 0.19	8.42 6.73 91.80 7.80 6.16	51.0 49.2 66.7 48.4	200 127 47 47	3.41 2.62 1.68	60.9 61.5 82.2 46.8 28.8	9.57 7.84 9.52 9.46 8.81
H373067 H373488 H373298 H373270 H373271		1.69 1.45 1.62 1.65 1.55	6.05 6.03 3.00 9.00 9.00	7.51 7.80 7.36 7.36 7.36 7.32	6.7 6.4 -6.3	90 90 90 90 90 150	0.38 0.30 33.6 0.76 0.40	5.00 5.08 5.64 5.07 6.30	8.06 6.06 4.66 5.65	0.13 0.13 0.11 0.22 0.28	1130 9,64 8.58 7,73 4.39	50.4 51.9 43.7 63.0 24.7	40 40 20 20 10	5.11 5.69 140.0 16.80 25.9	77.9 37.5 31.3 e1.8 30.0	7,64 6,74 6,46 13,60 10,40
H070/72 H070275 H070274 H070276 H070276		0.46 0.43 0.64 0.67 0.67	9.05 9.05 9.17 9.01 9.08	7.84 8.05 7.33 5.41 8.14	1.3 0.8 1.8 45 1.3	50 100 46 20 00	0.06 0.04 206 0.56 1.02	6.12 5.15 1.27 9.03 2.60	5.94 5.92 0.42 32.4 7.52	0.19 0.19 0.89 =0.00 0.40	15.39 5.39 4.53 2.34 15.75	46.8 60.2 1,7 2,1 43.1	115 115 2 10	25.9 11.30 19.00 6.12 7.23	84.7 40.1 10.4 116.5 68.1	9,21 11,50 6,47 6,37 7,90
H373275 H373276 H373276 H373280 H373281		0.56 0.45 0.63 0.46 0.46	9.04 9.00 9.05 9.05 9.03	8.08 8.38 9.70 6.71 7.54	01 -02 05 -52 -02	80 90 160 110 50	0.36 0.37 0.67 0.37 0.34	0.00 0.04 0.00 0.04 0.04	7.79 8.23 5.11 7.75 7.83	0.14 6.67 0.13 6.13 6.13	10.40 7.32 17.90 13.25 12.65	52.5 52.3 38.1 45.8 56.4	119 245 42 149 101	3.59 3.59 5.31 2.90 4.30	83.6 31.0 85.2 71.5 32.7	5.96 7.62 6.52 7.36 11.46
H373357 H373353 H373354 H373366 H373366		0.49 0.53 0.63 0.65 0.66	0.06 0.04 0.08 0.08	7.7% 7.45 7.40 7.40 7.46	12 0.9 1.0 1.3	45 190 46 300 46	0.59 0.79 0.41 0.79	0.12 0.30 0.38 0.19 0.07	7.85 8.96 5.61 5.94 8.54	0.10 0.10 0.14 0.56 0.10	6,51 13,70 6,55 12,10	54.8 51.0 49.8 50.9 49.0	431 43 25 67 73	1.43 6.52 3.74 11.90 1.46	26.0 28.1 21.1 54.9 19.2	7.93 9.95 10.79 9.50 11.30

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carada IM.

2103 Dollarton Hey hours Vancouver BC 5TH 0A7.

Phone: 604 564 0201 - Fax: 604 964 6216 - www.altichemex.com

To: COAST NOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-450 W GEORGIA ST VANCOUVER BC V6B 4N9 Page: 2 - 6 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009 Account: COAMO

Project TNR Mavs

CERTIFICATE	OF A	ANAL	YSIS	TB09115251

										CERTIF	IGNIC.	OF HIND	LL T JOIG	1000	19231	
Lampia Dascription	Annyte Annyte Ante	MCARST dis sign.	SHE ARREST SIN ARREST SINE	100 MOST 100 MIN 100 M	MEANN? St. Sen. Sen.	MEMBER K N	HEADST US SHIP TO	1/ part 1/2	MCARSO Mg	MI ARET	MC MOST MC SUPE TOTAL	MEADO!	MEASON Me Me	M(450) 76 500 52	MEADO!	95 add 75 500 13
earlost		17.45	0.06	ΔF	0.065	0.19	9.3	32.1	3.24	1490	0.67	0.91	2.8	190.0	400	1.0
=070246		16.30	0.10	1.0	5.066	0.19	3.3	23.9	2.56	1560	0.31	7.114	3.5	47.6	400	5.5
WST3249		24.2	0.12	1.0	0.088	0.28	0.0	29.9	3.95	1640	0.31	2.67	5.3	40.0	630	3.5
#075gtg		30.2	0.11	2.5	0.069	5.39	4.5	25.1	2.67	1610	0.46	2.81	8.7	102.7	479	2.0
H073251		19.05	0.11	1.7	0.084	0.25	1.5	25.9	2.0	1960	0.16	2.65	2.2	16.4	600.	3.5
x675353	-	17.75	0.12	2.0	0.076	0.36	5.1	28.5	3.36	1726	0.78	2.56	4.1	49.4	410	1.5
HSTSSSS		14 90	0.91	8.7	2.066	0.12	2.7	17.3	236	1760	0.31	145	2.3	56.0	320	1.1
W373294		16.65	0.71	5.6.	0.065	0.30	2.6	43.0	3.34	1060	2.70	1.23	2.5	40.8	316	27
HOTSZSS		17.46	0.16	18	2.061	0.38	2.5	15.0	2.49	1000	0.38	1.74	3.3	6.6	360	2.3
HGF3056		10.45	0.13	2.2	5.089	0.16	1.3	15.7	2.67	1620	0.37	2.36	4.0	17.0	430	6.0
×975337	-	19.05	0.17	0.9	0.085	0.16	3.8	15.5	3.12	2000	0.35	2.66	3.5	82.4	230	5.9
H373258		24.2	0.13	1.6	0.070	0.09	7.5	10.1	231	1340	0.33	1.32	4.6	103.8	879	3.4
H075258		22.8	0.16	1.6	0.095	0.22	3.6	12.2	3.47	1500	0.30	1.67	4.5	21.5	410	21
HOTIGEE		1.00	0.20	42	0.005	0.20	14	0.9	187	106	40.06	0.22	1.4	0.6	70	9.7
HG75091		16.45	0.11	0.8	0.091	0.15	36	4.0	3.56	HARD	0.36	1.84	12	21.0	380	2.0
+OTSSE2		25.4	0.00	0.6	0.072	2.09	30	11.7	1.00	1.700	5.74	1.00	11	H1	179	7.2
PO12053		15.36	0.10	0.6	0.053	0.25	2.5	14.0	4.45	1420	0.17	1.45	1.0	101.6	190	17.
H073264		19.40	0.13	26	0.067	0.88	12.5	24.5	4.15	1680	0.28	1.65	2.6	63.7	302	45
HS7526E		29.0	0.15	0.8	0.074	0.18	3.6	16.0	3.65	1890	0.21	1.79	3.1	85.4	290	2.4
NO.TOURN		17.15	0.16	16	3.009	0.11	2.0	39.1	3.36	2130	9.23	2.67	2.6	45.6	340	4.0
earser		20.7	0.11	0.8	1.066	0.13	6.6	26.9	2.80	1220	6.38	1.36	13	91.9	330	1.5
#37306E		15:30	0.13	1.0	0.087	0.73	3.9	12.1	2.14	1720	0.21	1.90	3.3	52.7	340	18
H275368		24.8	0.12	1.0	3.014	0.24	31	230	2.81	1210	0.40	1.32	8.3	77.8	1090	2.2
HEFTS/FE		25.8	0.10	2.7	2.157	0.25	2.4	198.6	3:12	1830	0.31	1.66	6.7	40.2	840	2.3
*070271		10.11	0.12	1.5	-0.101	0.46	2.0	162.0	3.47	1640	0.28	2.47	2.6	16.0	280	13
														44.1	_	_
F073272 F073273		24.6	0.15 E.M	2.0	5.076	0.35	15	92.4 196.0	3.53	1900	0.46	1.73	4.5	27.5	530	30
HORIGIN		T9.0	0.14	40	H0-005	0.66	1.7	23.2	0.10	125	19.80	5.07	91.4	2.2	1110	2.2
#G79275		1.79	0.46	0.2	2.000	0.05	1.6	1.5	1.00	133	0.15	5.20	0.8	2.9	130	40.8
HSTSSTE		19.25	0.15	0.6	0.074	0.36	4.7	316.5	2.05	2136	0.44	LAT	4.0	49.7	450	2.6
		18.80	0.16	9.6	4.070	0.29	-	48.7	4.01	1500	0.24	1.45	3.4	72.0	379	3.1
H313077 H313078		16.50	0.09	0.4	0.004	0.36	2.9	30.6	3.86	1090	0.74	1.71	2.0	112.5	220	13
#073079		73.5	0.36	0.1	0.006	0.65	5.6	A5.9	2.13	1610	5.44	1.00	8.8	37.7	210	2.3
#G75098		18.85	0.17	0.7	5.067	0.35	5.4	15.4	2.85	1170	0.30	0.07	3.5	93.5	310	1.3
H070081		24.5	0.16	0.5	0.068	0.17	4.6	19.0	3.65	1720	0.20	1.16	4.5	86.7	490	6.7
	-	19.20	0.19	2.0	-			15.7	4.76	1350	5.29	2.08	11	140.0	625	3.6
WIETSTRE WIETSTRE I		11777		1.1	8,060	0.39	33	163	349	2575	0.20	1.00	2.3	40.6	292	4.0
HOTOSA.		19.05	0.11	2.6	0.099	0.29	43	23.2	2.83	1966	9.73	2.68	6.2	40.0	520	4.0
		75.77	0.15	1.0	0.009	0.72		63	3.58	2379	1.53	2.68	3.5	62.2	320	2.6
HISTORIS HISTORIO		16.95	0.16	1.7	0.045	0.72	53	28.7	3.00	1690	5.24	1.72	5.7	35.8	530	13
- April 100 mg		24.5	0.76	1,8	4.040	0.44	8.0	26.2		1000	0.25	1.74	5.7	36.0	2000	1.0

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE Canada U.S.

2103 Collector Hey North Vancouver BC VTH GAZ

Phone 804 884 5221 Fee: 804 984 5216 www.afschemex.com

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-650 W GEORGIA ST VANCOUVER BC VEB 4N9 Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2099 Account: COAMO

Project TNR Mays

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15251	
Langia Description	Startand Accepts Smith LEG	MCMOST Rep parts 8.7	160 ASSET 70 2011 2,652	100 MIST 5 5.01	54 54 59 1-91	NE MET Se per § 1	SE-MILT Se per)	MEMBER Sir Sprin E.J	90 (00% 3.2	NO MINE Ta sem si so	MCASH! Na dom 0.00	MI-MINT 75. 207 22	MIMO(1 1) 1/2 0.000	MEASS!	NO. SOLET SOLET SOLET SOLET	No.
HSTIGET HSTIGHE HSTIGHE HSTIGHE HSTIGHE		7.6 32.5 6.4 67.5 6.3	+0.002 +0.002 +0.002 +0.003 +0.003	0.54 0.51 40.01 60.01 40.01	8.25 8.27 8.20 8.74 8.76	30.9 40.5 37.7 37.3 42.5	1 X 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8 0.7 0.7 0.7	122.0 96.7 86.8 187.6 112.0	0.27 0.36 0.56 0.40 0.24	+0.85 +0.89 +0.85 +0.85 +0.85	0.7 0.6 0.8 0.6	0.452 0.509 0.058 0.964 0.657	8.05 9.33 9.05 8.08 9.03	0.7 0.7 0.2 0.2 0.1	194 217 345 396 298
H075050 H075053 H075054 H075056 H075056		7.3 2.6 12.2 19.3 2.2	0.003 +0.002 +0.003 0.002 0.003	0.15 49.64 0.69 0.22 45.61	5.13 6.12 6.25 6.07 5.06	38.3 51.6 46.6 46.0 44.3	3 1 1 4 2	0.5 0.5 0.5 0.5 0.7	184.0 129.5 86.2 87.3 126.5	0.76 0.76 0.76 0.74 6.26	0.07 40.05 40.05 40.05 40.05	63 63 63 65	0.546 0.466 0.425 0.512 0.606	0.04 0.02 0.07 0.73 0.73	01 01 01 01	263 262 249 296
H075267 H075258 H075258 H075261 H075261		1.6 1.5 4.9 5.4 4.0	+0.503 6.505 6.502 6.502 6.503	0.02 0.01 0.02 40.01 0.08	8.07 8.19 6.18 8.10 8.50	47.9 26.9 30.4 0.3 40.0	20000	07 08 06 02 03	190.1 206 176.5 70.2 124.0	0.26 0.32 0.31 0.13 0.22	40.05 40.05 8.06 40.86 E.06	0.5 1.2 5.8 0.3 0.8	0.575 0.698 0.763 0.007 0.007	0.00 0.00 0.04 0.06 0.05	40.1 0.2 40.1 0.3 0.1	250 200 267 2 266
H07060 H07060 H07064 H07066 H07066		7.1 3.9 22.8 8.7 8.6	0.362 0.362 0.362 0.363	0.01 0.01 0.13 0.03 0.03	5.12 5.11 534 5.12 506	40,6 40,5 40,5 53,5 51,6	2 2 2 2	0.6 0.4 0.6 0.6 0.7	224 122.0 471 133.5 85.0	0.19 0.19 0.19 0.20 0.21	-0.06 -0.05 -0.05 -0.05 -0.06	63 63 63 63 64	3.562 3.561 3.536 0.660 0.451	0.03 0.03 0.19 0.06 0.03	42.1 43.1 43.1 43.1 43.1	296 279 279 266 264
#373861 #373368 #373370 #37370 #37371		2.6 8.5 177.5 22.8 136.0	0.202 0.002 0.003 0.004 0.004	0.01 0.01 0.02 0.12	8.16 8.10 8.36 8.21 8.74	30.6 40.4 26.1 45.1 62.6	2 2 2	0.6 17.2 1.6 1.3	130.5 137.5 197.6 193.0 75.3	0,00 0,00 1,16 0.60 0.17	<0.04 <0.05 <0.05 <0.05 <0.05 5.06	0.5 0.4 0.6 0.4	0.605 0.607 0.607 1.135 0.402	0.00 0.06 1.45 0.14 0.90	41	246 210 300 200
HOTOTO HOTOTO HOTOTO HOTOTO HOTOTO HOTOTO HOTOTO		27 6 62.7 366 20 32.5	0.004 0.008 0.000 0.002	0.06 0.01 +0.01 0.08 0.03	1.16 1.46 1.30 1.06 1.29	41.5 30.5 5,7 1.3 47.4	2 1 2 2	0.8 19.5 0.3 1.0	218 198.5 46.7 79.6 178.0	0.40 0.29 +100 0.26 0.65	40.86 40.85 6.67 40.86 40.86	1.5 1.8 40.2 0.5	9.762 9.868 0.006 0.003 0.571	8.25 8.44 1.75 8.60 9.31	0.3 +0.1 2.7 +0.1 +0.1	294 331 9 8 294
907079 907076 907076 907086 907086		92 147 19.1 6.9 6.5	0.964 6.965 0.962 0.962 0.962	90.0 10.0 10.0 10.0 10.0	0.15 0.15 0.06 0.06 0.12	40.3 46.0 30.6 36.4 35.1	2 2 2	0.F 1.4 0.8 1.0	148.5 67.5 118.8 105.0 112.0	0.33 0.78 0.52 0.30 0.31	+0.05 +0.05 +0.06 +0.05	63 63 13 68 64	0.579 0.400 0.501 0.402 0.609	0.06 0.06 0.16 0.09 9.00	+0.1 +0.1 0.2 0.1 +0.5	363 246 149 214 325
#07090 #07090 #07090 #07098 #07098		6.0 54.3 6.3 58.2 5.3	6.963 6.963 6.963 6.963	40.01 40.01 40.01 0.01 0.03	8.17 8.19 0.19 6.23 8.16	36.9 52.2 36.0 42.5 38.4	2 2 3	0.9 0.8 0.9 0.9	96.5 111.6 78.3 119.5	6.31 9.32 0.46 6.23 0.37	40.00 40.00 40.00 40.00 40.00	3.4 0.4 0.7 0.3 0.6	0.434 0.486 0.906 0.451 0.906	5.00 5.00 5.05 5.18 9.03	0.4 40.1 0.1 40.1	996 202 200 218 289

EXCELLENCE IN ANALYTICAL CHEMISTRY

MUS Conside UN

2103 District Hey North Variouver BC V7H DAT

Phone 804 984 9221 Fair 934 964 (218 Internal alsohermer com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2509 Account: COAMO

Project: TNR-Mavis

CERTIFICATE OF ANALYSIS TB09115251

		ME NEW Y	ME NEED	96,0001	NE MINT	8-1091	
	Bootets		-	Di.		Ac	
	1003	pp.	1900	ppe	4411	pare.	
lampis Dasaription	1.00	8.1	81	-	11	2.001	
- Carrier			-	.11	16.3		
HIPIDAT		5.5	21.1	122			
H073248		2.8	25.9	104	30.4		
H273246		5.4	28.1	109	65.1		
HITSISI		2.4	20.4	69	44.3		
HETSEN		5.2	31.6	163	55.7		
HITHER		2.2	26.5	130	71.3		
HOTOUSA:	- 1	2.2	27.0	110	19.2		
1075254	- 1	5.9	24.6	108	12.5		
HSTSUSM		5.2	27.5	163	26.4		
H075256		5.1	33.0	121	12.9		
H07)257		1.2	30.3	245	22.8		
HXT3258		0.2	23.4	104	12.0		
N373259		8.5	23.0	110	50.4		
H373296	- 1	0.1	5.6	3	5.1		
FOT3261		9.6	19.0	110	18.2	0.007	
+OTIGES		0.3	78.4	708	10.5		
H37:Q53	ı	0.2	16.4	77	12.9		
HOT)294	- 1	0.3	17.5	95	9.3		
HOTIONS		6.3	19.5	107	13.3		
H373366	- 1	0.3	30.7	92	54.8		
A CANADA CONTRACTOR OF THE CON							
F073067		0.2	74.6	81	15.7		
H375268		2.4	29.5	110	30.1		
HOTIQUE	- 1	1.6	19.6	117	30.2		
HISTOPH .	- 1	0.6	30.3	.156	98.5		
*ST3275		0.5	28.7	167	49.2		
4313272		0.4	10.7	7.79	mb 7		
H073273		0.6	24.5	126	45.31		
HISTIGHT		1.2	1.8	19	25.2		
H071075	- 1	0.1	5.4	2	5.0		
H075076		0.6	25.1	219	72.6	6.002	
43/3217		0.2	29.2	102	12.2		
H073279		0.3	18.0	100	0.1	9.105	
HOTSUTE		0.2	37.3	127	211.0		
H373280		0.2	21.3	94	22.7		
HOTSPAT		0.7	210	201	26.9		
H3/1080		0.6	35.4	115	36.4		
H071083		1.0	32.8	110	10.8		
H373284		0.5	32.3	142	83.5		
H1073295		0.4	267	65	34.5		
H373286		0.4	22.7	142	62.3		

EXCELLENCE IN ANALYTICAL CHEMISTRY

NOS-Career Ltd.

2103 Dollarton Hay North Variobuser BC 1/74 0A7

Phone 604 564 5221 Yay 604 964 5216 www.afschernex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-456 W GEORGIA ST VANCOUVER BC VER 4H9

CERTIFICATE OF AUGUSTAL

Page: 3 - A Total & Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-QCT-2929

Account COAMO

Project: TNR-Mavis.

										CERTIF	ICATE	OF ANA	LYSIS	TB09	115251	
Lampia Danieryman	destant destyre sees 150	WENCE Record WI Ap 9.00	Ap Ap april 0.01	96 ASSET 9 9 8,01	MI ASET Al sore EJ	MEAGET For jum 10	\$10 MSS1 (N (N) (SS1)	98 697 927	MEARLY Co To EDI	MEMBER CA MEM ED	Mi Mini Ca aum 001	Co part 8.5	ME MOST SP ARTH	AR MART CX parts 2.05	We went Cor pare E.E.	46 1400 54 54 1201
H3/1087 H3/1088 H3/1088 H3/1386 H3/1384		0.46 0.50 0.50 0.69 0.69	0.08 0.53 0.04 0.05 -0.01	7.89 6.29 7.80 6.50 0.24	62 63 40,7 313 46	60 50 70 130 30	0.44 0.34 0.39 0.32 0.17	0.11 0.16 0.01 0.04 0.01	5.86 7.76 8.70 7.25 20.8	5.10 9.39 5.07 5.09 1.09	19.45 19.45 19.40 1.60 1.65	65.1 56.9 46.1 54.2 1.3	136 136 177 81 2	1.06 3.39 0.09 5.66 0.07	82.4 37.2 46.3 30.1 2.1	8.21 6.65 7.35 7.50 0.17
+37590 +37390 +37399 +37399 +37398		0.80 0.83 0.63 0.63	0.02 0.05 0.00 0.14 0.02	0.46 7.69 7.49 7.10 7.49	09 14 05 54	100 110 110 80 80	0.98 0.75 0.39 0.30	0.71 5.06 5.01 5.03 5.07	8.87 7.74 8.50 6.35 1.86	5.07 5.09 5.03 5.03	5.90 5.70 8.93 8.42 12.88	49.3 40.3 50.8 94.8 40.8	106 218 93 45 88	3.09 0.67 1.18 1.90 3.12	96.3 96.3 66.8 224 18.3	7.3F 7.86 9.49 9.82
HS75097 HS75001 HS75002 HS75003 HS75004		0.65 0.69 0.54 0.34 0.46	0.04 0.01 0.03 0.04 0.02	7.41 6.43 7.14 6.47 1.70	8.4 6.8 -0.2 6.7 6.3	80 100 20 210 210	2.96 5.60 1.27 0.43	0.02 0.77 0.01 0.10 0.10	8.45 6.56 5.62 3.70 5.68	5.08 5.19 5.08 5.20 5.18	5.84 67.65 15.45 41.3	55.6 37.1 53.9 16.7	74.7 12: 85. 4	2.02 4.07 7.46 11.60 31.0	68.6 6.4 38.1 25.8 28.1	5.16 5.16 10.05 10.00 11.50 9.36
4373308 4373308 4373307 4373308 4373308		0.71 0.62 0.76 0.45 1.37	0.05 0.53 40.81 0.05 40.01	7.63 0.09 7.63 0.00 7.63 0.30	46.2 1.2 45 83 83	30 80 50 40 418	0.32 0.36 +0.06 0.71 0.07	0.05 0.01 40.01 0.00 0.01	4.45 8.65 31.6 7.23	**	8.10 10.80 1.06 10.10 0.11	31.8 51.8 11 96.8 68	18 (m. 2 78 20	2.58 2.58 0.05 3.64 1.30	36.3 90.7 1.2 70.9	10.40 6.90 0.13 9.13
+0730+0 +073311 +0730+0 +073013 +073014		5.34 0.48 0.29 2.68 5.97	0-33 0-4 0-94 0-94 0-94 0-94	7.01 8.00 7.53 7.80 7.27	+0.3 +0.2 11.2 0.6 1.3	20 20 20 30 30	9.21 0.40 0.55 0.30 1.34	0.08 0.67 0.09 40.21	6.77 6.75 1.81 6.21 1.24	8.10 2.18 8.10 8.12 9.00	9.25 9.34 9.66 10.65	66.2 56.7 69.3 69.8	126 126 126 100 41	0.36 2.16 4.67 0.66 2.07	28.4 36.9 46.3 56.4 47.6	7.32 8.51 8.94 10.10 10.30
4575315 4573316 4573317 4372316 4373319		540 534 541 541 546	5-08 0.75 0.07 5-04 6.08	7.56 7.19 6.74 6.35 6.77	5.0 5.0 5.2 5.2 5.2 5.2	50 60 80 70 30	3.24 3:43 1.08 5.73 5.61	1 15. 0.16. 0.04 0.01	7,21 5,61 5,10 4,50 3,00	0.15 0.12 0.26 0.29	5.67 22.9 13.15 6.78	49.2 45.5 29.3 31.1 29.2	80 2 3 4	0.88 1.32 13.35 13.35 13.30 77.3	95.3 74.7 32.8 8-4 66.7	8.64 11.25 12.25 10.30 11.20
H07330 H073321		8.37 8.36	8,00	£16 621	0.5	140	114	5.46 6.05	4.06	0.25	23.6	.4	17	7-45 16-55	31.9 31.7	11.45

EXCELLENCE IN ANALYTICAL CHEMISTRY

NUS Carrecte Ltd.

2103 Delarton Hay North Vancouser BC V7H (AA7

Phone 804 984 9221. Fax: 604 954 5218. Invest alsohernes com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 623-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2008

Account: COAMO

Project: TNR Mavis

										CERTIF	CATE	OF ANA	TARIR	TB091	15251	
ample Descriptor	Burnay Jacops Seeks LEB	Gir Gir ppm. g 133	66 MM	100 accord	NE MORT N Open -0.008	WE AGE!	ME MARK Same State	10 (000) 10 (000) 11 (100)	ME MEAT Mg %	Min same	MEARINE Me pare 1125	(40 MOH)	ME-MOST Mis gare g. r	N MA	96 4661 9 161 15	PE AND PERSON OF THE PERSON OF
1973287 1973258 1973256 1973256 1973261		17.65 20.4 19.29 16.75 0.97	0.57 0.19 0.16 0.18 0.29	18 13 15 88 81	2.059 5.045 5.046 5.045 5.005	0.15 0.22 0.16 0.54 0.05	5.9 5.0 5.0 2.5	13.2 15.6 11.1 16.0 1.8	3.57 4.15 3.25 8.52 1.80	1470 1460 1260 1220 121	0.00 5.18 5.35 5.90 -6.00	2:16 1.36 1.82 1.54 0.06	4.2 3.4 3.1 2.2 0.4	193.6 172.5 138.5 182.0	400 280 325 219	25 35 15 56
HOTORO HOTORO HOTORO HOTORO HOTORO HOTORO		15.00 13.15 19.26 18.65 22.6	0.11 0.11 0.10 0.09	0.4 0.6 0.9 0.6 1.4	0.057 0.057 0.066 0.092 0.092	0.38 0.29 0.22 0.25 0.30	22 22 23 33 57	21.8 10.2 12.0 13.3 16.5	4.88 4.35 4.13 3.82 3.14	1176 1270 1580 1880 1860	0.16 1.17 0.28 0.39	1.35 1.86 2.01 2.24 2.09	21 25 33 27	1.8 148.5 92.0 99.5 52.8 47.4	70 185 209 129 400 665	10 11 13 21 23
KG/T2597 KG/T3001 KG/T3002 KG/T3003 KG/T3004		95.56 27.8 22.3 28.5 23.7	0.11 0.10 0.13 0.16 0.11	0.9 1.6 1.6 8.2 1.6	0.053 0.100 0.079 0.180 0.086	0.34 0.29 0.12 0.32 0.48	28 6.9 6.5 17.6 21	17,7 41,7 62,9 58.5 185.5	5.15 1.35 3.50 1.38 2.78	1600 2150 1600 1780 1540	1,36 0,37 0,17 0,00 1,40	2.12 1.24 2.65 2.56 2.56	1.7 6.8 6.4 12.1	109.5 25.8 86.0 3.0 80.2	410 1200 400 1600 520	20 3.1 1.4 3.8 4.1
197300 107300 107300 107300 107300 107300		14.60 16.45 0.32 17.36 0.85	0.13 0.10 +0.65 0.10 -0.08	11 11 -0.1 -0.1	9.079 9.073 +0.005 9.006 +0.005	0.11 0.21 0.02 0.25 40.01	2.0 4.5 1.3 3.7	324 42.4 1.4 08.7 5.1	3.80 3.19 2.12 3.69 0.35	1889 5779 109 1866 18	8.21 8.22 +0.66 8.21	1,95 1,63 0,95 1,72 0,93	15 33 02 30 01	14.2 19.3 10.3 101.5 1.6	260 600 70 380 610	23 18 5.7 2.6 0.6
107(018) 107(017) 107(012) 107(012) 107(013)		19.55 18.60 18.30 19.30 19.30	0,08 0.10 0.13 0.12 0.11	0.8 1.1 0.5 0.8 1.3	5.063 6.062 6.063 5.070 0.065	0.87 9.11 9.12 9.19 9.89	58 22 36 58	12.8 30.1 20.6 46.7 115.5	5.55 4.50 2.86 5.15 8.23	1525 1525 1580 1860 1625	0.14 6.44 6.36 6.21 8.15	1.86 2.50 1.40 1.60 1.60	24 24 38 38	94.5 92.3 94.3 29.1	260 260 200 400 510	12 18 18 13 10
(072015 (072016 (072017 (072018 (072018		22.6 17.65 36.2 23.6 34.1	0.11 0.11 0.13 0.13 0.13	0.8 1.4 2.3 3.0 3.0	0.064 9.004 0.151 0.121 0.006	0.19 0.26 0.39 0.26 0.27	7.3 1.8 9.4 9.6 9.8	21.7 12.6 63.1 92.5 680	372 134 180 180 180	1635 2050 2090 2090 2090 1630	0.76 1.36 0.51 0.56 0.66	1.72 1.86 2.21 2.07 2.68	15 43 84 77 63	77 8 11.7 16.0 11.2 19.2	910 560 1800 1920 No	21 6.6 3.7 4.7 2.5
HSTSSE HSTSSE		33.4 35.0	0.54 0.54	28	0.074	8:15 5:42	0.2	PO.1 21:8	1.4)	1660	8.36 8.34	2 Ma 5 75	11	19.9	500 Unic	31

EXCELLENCE IN ANALYTICAL CHEMISTRY

4ich Carnela Ott

2103 Dollarton Intelly North Vencouver BC V7H BA7

Phone: 804 984 5221 Fav: 604 984 5216 I www.alschemax.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-650 W GEORGIA ST VANCOUVER BC V68 4ND

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009 Account: COAMO

Project THR Mayis

)	CERTIF	CATE	OF ANA	LYSIS	TB091	15251	
Bampia Coscription	Market Analysis Visits Last	ME AREA Services	96 MGC1 Ry 1011 1.002	\$6,6001 \$ % 1,01	MEASURE SA SAM SAM	NE ASST Su pare S-1	de services	BAL MASSET BAL PROFES BLJ	MEMBER SI SITE SIZ	90,9001 15 ppm 1101	MEANUE No part 1.05	ME MIST To MIN EJ	96.400* 0 0 0.000	90 Mile* 71 900 9.00	Mileter U ppm E1	NO AGE
H373287 H373288 H373280 H373290 H373291		6.8 6.2 5.6 22.1 1.5	0.002 0.002 0.002 +0.002	0.01 5.03 0.01 +6.01 +0.01	0.11 0.56 0.56 0.12 49.09	35.1 26.9 29.7 52.0 6.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.6 8.6 8.7 6.5 10.2	196.5 151.5 136.5 229 77.8	0.39 0.35 0.34 0.18 49.05	+0.05 0.05 +0.05 +0.05 +0.05	0.0 0.7 0.6 9.3 0.2	0.440 0.369 0.375 0.347 0.000	-0.02 6.62 6.62 5.11 -0.02	40.1 40.1 40.1 40.1	186 187 169 166 1
HOFORE HOFORE HOFORE HOFORE HOFORE		13.7 2.0 7.4 4.3 4.3	0.003 0.004 =0.002 0.019 =0.003	40.31 9.02 40.01 9.25 9.01	0.35 0.17 0.28 0.30 0.30	57.7 52.3 62.6 60.2 60.2	3 2 2 2 2	12 65 56 10 69	129.0 149.5 93.5 162.6	0.14 0.14 0.29 0.20 0.34	40.05 40.05 40.05 0.17 40.05	0.4 0.3 0.3 0.4 0.6	6,237 0,298 0,618 6,554 0,963	0.08 0.02 0.04 8.03 0.06	+0.1 +0.5 0.1 0.5 0.1	100 227 200 386 308
H373097 H073004 H673103 H073303 H073364		11.2 26.2 4.2 21.6 39.7	0.003 <0.003 <0.003 <0.003 0.003	49.01 9.01 49.01 8.10 6.62	0.30 0.17 0.36 0.12 0.89	95.7 37.2 37.0 37.3 38.6	2 2 3	18 18 88 20	1908 1908 1908 1700 239	0.12 0.48 0.31 0.86 0.82	40.05 40.05 40.05 40.05 40.05	0.3 0.8 0.4 1.7 0.8	6.458 6.955 9.838 1.635 8.915	0.06 0.24 0.03 0.15 0.31	0.1 0.2 0.1 0.6 0.1	290 160 293 43 316
H373305 H373306 H373307 H373086 H373008		40 57 64 168 13	49.062 49.063 49.062 49.062	0.67 +0.01 0.01 0.02 +0.01	0.59 0.59 0.35 0.15 40.05	96.9 66.1 86.1 1.1		6.5 5.7 +6.2 1.0	67.7 186.6 75.0 157.6 6.1	0.15 0.24 +0.05 0.21 +0.05	+0.06 +0.06 +0.06 +0.05	0.3 0.4 40.2 0.3 40.3	0.420 0.520 0.500 0.538 0.000	1.01 1.02 -0.02 1.09 0.07	0.1 0.1 0.9 0.7 +0.1	256 15 11 299 10
H0723-10 H0720-11 H0720-10 H0720-10 H0720-14		20 17 32 30 38	+0.003 0.002 0.002 0.002 =0.003	10:01 0:00 0:07 10:01 10:01	0.12 0.58 0.18 40.05 40.05	61.5 40.5 40.9 40.8 40.0	2 2 2 2 2 2 2 2	1.7 1.6 1.6 1.6	76.3 92.4 121.5 343 150.5	0.17 9.30 0.21 0.25 0.26	-0.05 -0.05 -0.05 -0.05 -0.05	0.2 0.3 0.3 0.8 0.8	6.675 6.621 6.527 6.627 6.628	102 40.02 5.02 0.02	0.1 0.1 0.1 0.1	293 270 273 288 301
H373315 H373316 H373316 H373318 H373319		2.K 10.2 16.1 12.4 50.1	0.002 0.002 0.002	0.04 0.62 10.01	0,30 0.90 6.91 0.10 0.15	96.8 69.3 61.3 38.1 62.6		1.5 0.6 1.6 1.5 1.0	94.8 196.5 963.5 219 68.2	0.36 0.30 0.80 0.31 0.48	40.05 40.05 40.05 40.05 40.05	0.6 1.0 0.9	8.51N 8.890 8.990 1.085 1.090	40.62 6.08 6.11 8.58 6.39	01 61 02 62 62	236 313 133 239 367
H37338 H373371		46.5	+0.002	6.00	8.13	34.3	2	1.7	161.0	0.50	-0.05 -0.05	1.0	6.802 6.802	8.51	0.1	123

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Consolidate

2102 Outlieter Hay North Yellocoler SC V/N SA7

Phone 404 984 5221 Fair 614 984 5218 I www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11884 626-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 1 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2909

Account COAMO

Project TNR Mavis

							CERTIFICATE OF ANALYSIS TB09115251
	Martine	MI MIN.	105,4651	16 467	MILMORT.	A-OPC	
	Beatyle		9	DV	45	At .	
Compa Description	100	Marin.	1865	Dien	4600	April	
		0.1	3-1	-	8.8	101	
H373287		1.2	22.6	162	63.4		
HUPOWN		0.3	19.5	107	41.3		
H073269		5.1	18.2	87	62.3		
H07329E H073291		2.5	16.1	44	24.3		
		2.5	3.3	3	4.3		
HUSSEL		1.7	16.3	1/2	0.8		
HO/SQRII		2.2	21.0	431	4.7		
H07)294		9.2	10.4	9.1	33.1		
HITIUM:		8.2	15.4	48	12.1		
H073296		2.3	36.3	126	43.9		
1672/34		1.1	16.0	63	25.3		
H373301		4.6	37.8	160	40.3		
HG/2002		5.3	24.6	167	99.3		
HEPSES		1.4	42.3	181			
HITIBR		3.0	24.8	130	51.6		
H373300		9.2	29.1	138	34.1		
HOTSON		9.2	35.5	106	36.8		
HITTOHT		4.1	2.4	+2	1.7		
H373308		3.5	22.9	10%	15.6		
HITTON		0.8	2.5	+2	40.5		
HORDE		4.3	36.3	19	1.6		
HERSELL		2.2	21.6	193	32.6		
MOLIZEG.		64	72.4	76.	8.6		
HOPERO		3.2	26.1	176	27.7		
H2733/14		0.7	16.2	119	41.0		
NOTESTINE.		25.4	22.7	97	22.5		
H0730%		9.2	36.1	159	45.2		
HETIONT		3.5	50.5	198	104.0		
HEPESON.		5.4	41.7	191	106.0		
HO POUTS		9.3	40.4	112	1315		
MICHAE		5.4	21.6	76	45.1		
H073021		0.0	66.9	122	97.2	0.003	

EXCELLENCE IN ANALYTICAL CHEMISTRY

W.S Carriert Lett.
2103 Destartor (Imp.)
North Varcouser BC V7H SA?
Phone 804 MM 5221 Fac 604 MM 5216 avere afectivenes, com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 636-630 W GEORGIA ST VANCOUVER BC VIII 4NO Fage: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 27-OCT-2909 Account: COAMO

Project: TNR-Mavis

CERTIFICATE OF ANALYSIS TB09115251

Depthord .	CERTIFICATE COMMENTS
UE-USG1	Interference: Car10% on ICP-MS As, ICP-AES results shown. REE's may not be totally soluble in this method.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Consteror

2403 Deliarton Hay North Vancourer BC VTH DKF Phone: 804 Stin 0221 Fau: 804 S84 S216 I make alterference spen To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11684 629-659 W GEORGIA ST VANCOUVER BC V58 4N9 Page: 1
Finalized Date: 25-OCT-2909
This copy reported on 15-DEC-2909
Account: COAMO

CERTIFICATE TB09115252

Project TNR-Mavis

P.O. No.:

This report is for 90 flock samples submitted to our lab in Thursder Bay, ON, Canada on 9-OCT-2009.

The following have access to data associated with this certificate:

PRED BASAKS NE OSMAN SABS JUTRAS

HING SEACHENK

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
100-22	Sample login - Rod wto BarCode	
CRU-QC	Crushing QC Testi	
PUL-QC	Pulvenzing QC Tirel.	
CRUST	Fine dushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL:31	Pulvetize split to 85% 475 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	EPASS.
ME-M597	48 element four acid ICP-MS	

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNOHENK PO BOX 11654 620-450 W GEORGIA ST VANCOUVER BC V68-4NF

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Dellarton Hay North Vancouser BC V7H EK7

Phone: 604 564 0221 Fax: 604 564 0216 I www.alsofemes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11684 620-650 W GEORGIA ST VANCOUVER BC VSB 4N9

Page 2+A Total # Pages: 4 (A - D) Plus Appendix Pages Final ged Date: 26-OCT-2009

Account: COANO

Project TNR-Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15252	
Sample Description	Marined American United Links	WELST Record INC NO.	MC4691 Ap spin box	MCARKET A To Toler	intratter As para 52	Me Acut No eare 10	MCARS! No. non- non-	MEMBER SE SET	(4 5) 5 341	\$6.4591 CH 201 102	ME-entire Cu pon 101	ME-MINET Cor spirit 0.1	SE MOST SO park 1	de apart Co ppin 1-16	MEASST Sum 63	540,4000 74 75 631
H1/1922		1.44	10.01	3.16	45	40	+0.06	10.31	32.2	4675	1.66	111	2	0.70	1.0	0.17
H3/73529		9.30	0.06	7.52	8.4	40	0.86	0.25	1.46	0.13	8.29	36.6	66	54.15	46.2	9:16
H07303H		5.43	0.06	6.45	5.8	130	11.92	0.34	8.27	0.09	21.3	19.5		15.10	10.0	11.70
H575325		0.36	0.00	7.26	4.3	90	0.46	0.03	5.63	8.21	7.74	55.4	FW.	2.64	83.3	15.70
H375326		0.41	5.06	7.63	0.5	.50	2.76	2.96	8.24	0.26	6.06	36.2	197	74.0	50.3	8.20
H373027		5.36	1.35	732	14	120	5.86	5.09	1.53	5.10	11.15	48-1	43	11:36	25.6	15,15
H573328		6.37	0.05	7.62	8.7	160	0.91	0.13	5.56	0.15	4:85	43:5	77	72.0	11.2	11.35
H373029		0.32	6.09	7.46	0.3	50	5.53	5.46	T 84	0.13	8.11	51.1	120	54.6	47.0	9.37
H373050		9.25	5-07	7.45	1.2	80	0.34	5.26	1.52	0.12	10.55	94.3	102	9.46	55.5	0.22
H073091		9.32	0.04	7.62	6.2	86	5.54	10.01	6.48	0.12	0.46	52.2	46	0.00	50.4	9.66
HOTESTS:		0.41	0.52	7.67	4.5	76	140	10.01	8.36	0.09	8.81	61.2	- 65	3.35	19.7	813
HS75000		0.32	4-01	8.52	3.3	30	5.68	0.08	7.84	0.11	111.5	39.4	66	5.03	49.3	5.73
HSP303H		0.27	0.04	6.51	9.2	50	9.39	0.52	7.10	0.08	9.65	45.8	65	4.52	42.9	121
H373335		0.42	9.04	2.64	40.2	60	5.29	0.06	4.01	8.02	12.40	39.3		2.33	88.4	9.87
HS75036		5.30	607	171	10.2	40	6.26	0.02	8.61	9.20	10.95	61.7	90	1.36	24.6	10.15
HSP3SSF		0.44	0.04	157	+6.3	100	0.24	40.21	128	2.06	7.90	81.6	45.	3.76	22.6	8.73
H373358		0.40	601	5.64	5.6	50	3.21	+0.21	0.43	10.00	1.52	0.4	2	0.61	1.0	p.36
H073038		0.40	0.07	7.52	10.2	60	2.71	0.46	7.74	0.15	7.87	50.4	45	1.54	99.1	9.85
1073340		0.46	0.07	7.82	+6.2	100	0.46	0.16	4.29	6.23	16.65	26.9	94	22.3	43.8	9.30
H373349		0.56	0.06	7.53	10.2	40	0.52	6.03	4.01	9.07	16.25	37.9	26	X.56	49.1	11.05
HS71340	_	1.36	0.05	1.73	-63	7.31	1.73	I fee	4.33	100	10.0	35.8	10	17.45	65.6	11.15
10(2310)		0.36	6.03	7.36	+9.2	130	5.27	5.03	6.12	0.10	9.08	86.5	12	19.05	24.9	10.30
HETSHA		2.55	0.08	8.58	40.2	140	0.76	5.14	8.01	0.16	16.75	22.9	42	2.94	80.5	16.65
H373346	- 1	9.38	0.04	4.00	49.2	150	9.22	40.01	6.23	11.50	0.43	84.7	150	10.25	160.5	10.25
H373346		5.30	0.01	8.16	+0.2	40	6.30	10.01	6.70	0.12	7.76	65.5	90	3.07	22.3	10.00
N373347		2.49	6.56	8.76	+6.2	60	178	8.03	3.90	1.25	6.74	42.5	153	9.12	63.6	8.75
HS73346		6.37	0.03	4.57	×0.2	25	11.67	4D.21	6.29	5.13	30.4	46.6	559	3.60	8.1	7.00
1073249		631	6.0%	7.20	8.5	100	5.66	6.10	5.94	0.13	7.95	36.3	7.7	21.8	29.4	12.65
H373390		2.41	10.01	0.51	*5	10	10.05	-40.61	32.6	+0.02	9.31	0.9	2	0.14	1.0	0.50
HO/S095		9.41	0.06	8.16	+0.2	40	0.27	2.16	X.96	5.32	13.79	60.3	130	1.56	45.8	6.36
HSFSSSE		0.53	600	8.30	16	60	5.24	101	10.45	0.15	13.20	107.4	363	3.41	81.4	8.35
H379383		0.33	0.05	6.50	+0.3	40	9.27	201	8.56	0.48	13.65	45.4	46	2.96	51.6	8.35
H373054		0.40	0.05	6.58	+0.2	96	9.59	5.04	7.68	0.14	13.55	81.7	700	2.18	26.9	9.54
H375365		6.39	106	9.02	2.9	86	11.24	0.54	8.27	6.07	11.29	46.5	54	4.24	517.6	6.50
H373398		0.49	9.05	2.76	+0.2	76	0.27	0.13	7.36	0.12	6.51	46.5	126	0.17	65.7	9.02
H072967		0.41	0.06	6.34	+6.5	60	6.32	813	1.01	-0.04	6.36	52.5	138	4.99	19.3	8.74
H375388		0.45	5.05	8.47	8.2	100	633	10.51	2.38	5.09	9.28	47.5	163	2.44	49.3	9.21
H37208H		2.41	804	790	+0.2	1.75	5.18	-0.01	7.20	0.00	7.67	84.5	36	3.16	26.6	8.41
H373366		11-42	6.07	6.05	0.6	50	2.69	5.89	6.99	0.13	12.85	32.2	994	0.85	25.0	10.05
H573901		5.28	0.06	7.60	+0.5	140	0.25	8.01	8.10	0.22	7.62	45.5		2.28	AT N	71.00

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Canada LN

2103 Dollaton Hwy North Vancouver BC V/H 6A7

Phone 604 964 5221. Fax 604 961 5216. Were attachemous com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-456 W GEORGIA ST VANCOUVER BC V68 4NP

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2009 Account: COAMO

Project TNR Mayer

								77.00	M.E. Triangles							
										CERTIF	ICATE	OF ANA	LYSIS	TB091	115252	
Lampia Description	Marked Secretor South 1.000	事の主意	(ac acc) (ac (ac (c))	set separi spin \$11	NEMBY N. SPP 1005	M Miles	DE MESSET Lo Agen- S.S.	MEMBER U ppn 8.0	Mg % S. EH	MI MI	300 300 300 301	MEMBER No. No. No. No.	ME MOST No. Sem S.7	MC-MS(1 NS 2010 12	ad settri or open 10	NC 460
+073123 +073123 +073124 +073125 +073126		0.47 17.18 24.3 21.6 19.95	49.08 0.12 0.14 0.14 0.18	0.1 1.5 3.6 1.4 0.9	+0.005 8.089 8.121 8.072 8.072	0.64 0.17 0.30 0.18 0.27	1.7 3.2 8.4 2.7 2.7	51.7 45.6 98.3 491	1.00 3.00 4.31 3.40 2.67	965 2010 2010 1960 1766	10.00 0.43 1.04 0.32 0.44	0.07 2.34 2.67 1.62 1.60	0.3 2.8 6.3 6.2 2.6	40.2 35.3 3.1 76.8 46.5	86 250 1000 Alc 360	8.7 3.4 3.7 1.7 2.7
H073027 H073128 H073029 H073001		26-3 23-6 18-30 18-20 18-40	0.13 0.13 0.13 0.13	2.F 2.t 3.8 9.9	8.185 8.086 8.077 8.070 8.088	0.30 0.51 0.23 0.16 0.31	3.6 2.4 3.6 4.3 3.3	53.F 63.F 62.1 36.2	2.85 3.07 3.84 2.81 3.09	1730 1730 1790 1990 1990	6.52 6.43 6.43 6.26 6.27	274 2.95 1.85 1.63 1.92	5.4 3.3 3.5 3.5	46.7 60.5 72.0 60.5 71.8	620 600 630 630 630 985	3.0 2.1 13- 18- 14
#073332 #073333 #073334 #073336		18.25 19.45 19.75 16.65 26.3	0.12 0.09 0.08 0.08 0.08	0.F 2.3 1.1 1.8 8.7	0.060 0.054 0.069 0.069 0.076	0.34 0.15 0.37 0.37 0.37	3.5 84.1 3.1 4.8 5.3	50.9 15.4 25.8 16.7 10.3	3.44 2.22 2.47 2.39 3.86	1679 1790 1740 1940 1940	0.75 0.25 0.54 2.30 0.40	1,76 2,58 2,16 2,20 1,62	35 52 38 38 33	75.6 95.5 75.5 19.9 82.0	390 1460 850 390 310	1.6 1.5 1.9 8.5
HQT5337 HQT5338 HQT5338 HQT5340 HQT5341		18.90 23.7 26.6 22.3 22.8	0.56 +0.05 0.11 0.86 0.08	0.8 1.5 0.8 2.4 2.3	0.000 0.002 0.002 0.000 0.102	0.49 9.37 0.22 0.36 0.98	2.6 2.6 6.6 8.3	7.5 7.5 34.2 300 15.6	6.29 0.63 6.45 3.27 2.53	1708 37 1648 1579 1756	0.24 0.05 1.81 1.23 0.27	196 330 1,72 293 2,67	28 42 38 58 61	76.3 6.7 71.6 63.8 24.9	380 30 250 640 620	7.0 7.2 3.1
H373342 H373343 H373344 H373346 H373346		17.60 15.48 27.6 18.50 19.25	0.28 0.87 5.13 0.28 0.38	2.6 5.1 5.0 1.0 1.1	0.076 0.111 0.063 0.081	0.66 0.30 0.30 0.30 0.33	4.3 2.2 6.8 1.6 2.6	18.4 40.0 55.0 21.4	2.49 2.76 2.54 4.30 1.99	2005 1900 2010 2100 1260	0.40 0.29 0.27 0.21 0.32	2.86 1.63 2.22 2.54 2.00	8.5 2.1 10.5 2.5 4.1	043 20.4 0.5 54.5	280 280 840 379 410	3.6 1.7 2.4 1.7 1.2
#3739#7 #3739#8 #3733#8 #373380 #373381		18.10 14.50 27.2 0.36 17.15	5.38 6.12 6.10 49.05 0.06	15 30 24 0.1 08	0.077 0.001 0.132 -6.005 0.075	0.32 0.11 0.38 0.39 0.15	2.4 0.8 2.6 1.8	45.1 75.0 22.0 1.2 16.0	110 11.60 2.40 2.39 150	2143 1466 2000 154 1636	2.96 5.76 6.25 6.19	1.60 1.60 1.60 0.04 2.60	35 33 74 63	52.5 839 57.6 1.7 75.1	900 900 No 90 410	15 08 20 +01
H373353 H373353 H373356 H373356 H373368		16.10 1536 20.1 1526 14.70	0.08 0.08 0.08 0.08 0.00	0.0 0.0 1.0 0.0	0.066 0.072 0.073 0.071 0.085	5.16 8.12 6.17 6.29 8.24	5.4	19.6 19.6 19.6 19.6 19.3	3.02 2.05 1.60 2.68 4.07	1800 1460 1540 1560	0.16 0.16 0.06 0.27 0.56	1.43 1.76 1.64 1.14	15 41 41 29 27	57.7 90.1 45.0 50.3	370 880 440 300 210	17 28 18 19 17
H5/73/67 H5/73/68 H5/73/68 H5/73/68 H5/73/68		17.75 19.00 95.85 25.1 17.35	0.06 0.06 0.06 0.10 0.08	1.8 1.4 0.8 1.1 1.2	0.064 0.064 0.065 0.085	6.30 6.32 6.60 6.23 5.60	3.1 4.1 2.3 5.3 2.5	24.4 20.8 21.2 24.8 24.6	3.62 3.73 3.01 3.16 2.76	1439 1439 1540 1506 2130	8.29 8.30 8.21 1.21 1.39	2.06 1.55 1.40 1.25 1.86	38 38 38 48	147 8 195 5 64 4 34 0	400 379 330 460 450	5.6 1.6 1.0 4.5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS: Carrette D.E.

2103 Dolarton Hwy North Transpower BC V7H BAT

Phone 604 984 9221. Fax: 604 984 9218. www.afschamex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11864 529-650 W GEORGIA ST VANCOUVER BC V68 4N5

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2009 Account: COAMO

Project TNR-Mayes

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15252	
Lampin Description	Barryta State (CR	80 MIN T	ME Adopt for joint 6 NO	90,45001 5 1,1	Mi-Mpet 50 507 526	SE AREN SE APR S,1	MEASON Six part r	NE MORT No gain 113	ME MOST N N N N	Self-Appell To digit 1970	MEASAT No. (No. (No.) (No.)	MEASOF In. III.	MEASON N. N. N.	ME MIGHT 11 (80%) 21(8)	MATERIAL STATES	ME 1000
H073323 H073323		12	10.063	*8.01 0.01	+0.05 0.11	0.4	2	49.2	109.0	-0.05 0.21	40.05 40.05	0.2	6.009 E.540	46.60	0.1	91 291
HOPDON HOPDON HOTOON		15.1 3.4 109.3	+0.002 0.002 +0.002	0.15 0.06 0.02	0.11 0.25 0.70	39.2 30.5 33.4	1	1.3 0.8 2.5	161.0 134.5 131.0	0.57 0.31 0.20	0.06 40.06 40.05	0.4	1.226 3.828 5.423	0.09 5.02 5.86	0.5 0.1	159 270 294
H173027 H173128		101.0	+0.002	0.61	0.75	36.9	2 2	10	203	0.40	=0.08 +0.05	0.6	5.977	8.16 1.22	0.7	329 297
HI(T)(20) HI(T)(20)		74.1	+0.002	0.01 0.01	8.14 5.13	46.0 46.0	1	3.2 5.8	101.0	0.26	-0.05 -0.05	0.3	5.580 5.668	0.56 0.10	0.1	280 252
H073001 H07300		12.6	40,000	46.61	607	63.0	- 1	0.8	119.5	0.25	#0.0A	6.3	1587	8.08	0.1	205
*07000 +07004 +07004		6.5 10.1 11.0	49.802 49.802 6.802	0.62	0.24 0.19 0.09	26-0 37-4 42-9	2	1.0	117.0 41.1	0.31 0.26 0.25	40.05 40.05 0.05	0.0	5.446 5.457 5.552	8.67 6.12 9.05	0.2	168 310 281
H373306 H373337		35	0.002	0.01	0.35	36.6	2	0.7	84.6	0.21	0.57	0.4	188.0	0.03	0.1	216
#073038 #073039 #073040		203 11.2 00.9	0.002 0.003 0.000	49.01 0.66 0.15	9.97 9.35 9.18	657 6.6 65.7 32.6	2 3	0.0 0.0 1.0	79.4 191.5 192.5	0.30 0.30 0.36	40.05 40.05 60.07	0.3 3:1 0.7 1.6	0.000 0.017 0.000 0.004	5.15 5.11 5.34	2.0 0.5 0.4	291 4 293 299
H31720H1 H31730H)		33	0.002	0.00	2.08	42.5 52.4	2	1.1	191.5	0.32	<0.00	0.7	2,911	5.21	0.3	345
H072045 H072044 H073045 H073046		319 268 263 26	+0.002 +0.002 +0.003 +0.003	0.01 0.16 0.00 45.07	0.09 0.15 0.15	98.0 26.2 47.4 47.3	2 2 2	0.9 0.8 0.8	158.6 309 96.8 85.7	0.15 0.62 0.16 0.26	10.05 10.0 00.0 00.0	0.6 0.9 0.7	8.802 1.675 8.675 8.625	0.11 0.12 0.09 0.09	0.1 0.2 0.1	279 106 303 307
NS73347 HS73348 HS73349		16.9 4.9 22.7	0.802 +0.003 6.802	9.04 49.01 93.01	0.13 0.09 0.26	44.3 19.4 43.7	9	0.8 1.0 5.4	194.5 38.9 214	6.83 9.21 9.41	40.86 40.85 40.85	0.4 2.7 0.8	5.591 5.279 1.279	8.16 9.69 8.13	0.1 0.7 0.2	293 119 455
HST5350 HST5351		34	+0.002	19.01 19.01	5.19	44.9	5	11.0	76.5 80.1	9.21	40.06 40.86	61	E-368	5.04	0.1	279
H37353 H37353 H37354 H37358		48 95 25 83	+0.803 +0.803 0.803 +0.803	9.62 +0.61 +0.01 90.09	0.16 0.14 0.11 0.41	42.2 36.6 36.0 46.2	200	0.0 0.0 0.0	177.9 99.6 143.0 176.5	0.30 0.35 0.36 0.19	40.05 40.05 40.05 8.07	0.4 0.5 0.5	4.578 4.579 4.576	8.00 9.00 9.00	0.1 0.1 0.1	254 269 260
W3.73366		12.5	40.002	0.01	5.52	49.7		-0.6	171.5	0.17	+0.08	0.0	0,462	0.05	0.1	251
#07(057 #07(058 #07(058 #07(08) #07(08)		5.5 7.5 26.2 4.0 13.6	40,862 40,862 40,862 40,860 40,860	65,04 -63,01 -63,01 -6,13 -6,01	0.14 822 9.16 9.73 9.67	30.7 47.6 31.9 46.7	2 2 2 2 2	0.8 1.3 0.6 0.8	142.6 126.0 40.4 240 230	0.27 0.26 0.19 0.27 0.20	0.05 -0.05 -0.05 -0.05 -0.05	0.8 0.8 0.4 0.5	5.45F 6.45H 0.476 0.849 0.849	0.04 0.05 0.09 0.07 0.06	03 03 01 02 03	110 188 250 310 311

EXCELLENCE IN AMALYTICAL CHEMISTRY

With Carolia UK.

215) Deliation May North Vencouver BC V7H DAT Phone 804 IIII4 2221 Fac: 654 384 0216 - seans affectionists, comTo COAST MOUNTAIN GEOLOGICAL LTD. PO SOX 11604 625-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 2 - D Total 8 Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2009 Account: COAMO

Project TNR-Mayle

CERTIFICATE	OF ANALYSIS	TB09115252

		ME MINET	46.9001	96.4601	ME AND	A4001	
	Market			Br.	. 10	Au	
	Name of Street	Ser.	100	400	pp.	1000	
ampie Description	1.00	9.5	97	1	13	1.00%	
HATSION		0.1	29	10	3.3		
H373023		0.9	25.0	110	47.5		
		13	28.3	124	127.5		
H373524			243	197			
H37339		0.3			61		
1072038		3.6	16.2	190	29.3		
H173127		0.4	32.9	123	94.5		
HOTSKIN		8.7	27.4	106	97.7		
H373029		5.8	36.1	100	19.6		
H375038		0.3	24.5	190	21-6		
H373034		1.0	26.3	174	33.3		
H373532		9.3	22.8	157	13.9		
HQ(5303)		0.3	79.3	90	90.0		
H073094		0.9	25.7	39	36.8		
H07008		6.5	28.8	99	90.8		
H3733W		8.8	20.1	9.2	94.0		
H272337	_	0.2	18.2	34	11.2		
HSTSSSS		0.1	1.6	5.	25.2		
H373039		2.6	17.1	111	21.6		
H373340		86.7	24.5	128	82.8		
		0.4		114	80.1		
H373041		0.1	31.8				
HSESSAS		0.3	36.7	125	96.6		
H973045		0.3	28.1	11.831	32.7		
HORSON		0.7	21.9	176	103.5		
HS/35H5		0.3	24.0	208	35.3		
H373346		0.9	36.1	128	36.0		
16573347		6.2	34.4	642	46.1		
H373048		0.2	17.8	161	150.5		
HISTORIA		0.6	36.2	140	93.3		
H373096		0.5	2.8	3	2.3		
HS73951		0.6	33.1	342	13.1		
HOFJONE		6.3	20.8	115	16.3		
H373355		0.8	25.0	135	20.3		
HODOS		6.3	25.2	133	30.9		
H373050		0.5	25.6	140	13.7		
H375350		0.5	25.3	198	20.7		
the product of the same of the				195	52.0		
H373387		0.8	31.0		52.0		
H373558		0.0	20.1	631	50.6		
H3/15269		0.7	25.0	45	17.0		
H373365		8.5	22.1	194	57.8		
H373583		9.3	33.6	127	57.8		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carpole (%)

2153 Dollarton Hea North Vancouver BC VTH GAT

Phone 854 964 (021) Fax. 654 984 5218 I www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11644 620-650 W GEORGIA ST VANCOUVER BC VSB 4ND

CERTIFICATE OF ANALYSIS TRANS114242

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2009

Account COAMO

Project ThR Mails

									CERTIF	CATE	OF ANA	LYSES	18081	TB09115252	
Langie (teocrytius	 WELDY Metal St. Ag 0-00	ME-MINT Ag part sign	MATERIAL TO SERVICE STATE OF SERVICE STATE STATE OF SERVICE STATE OF SERVICE STATE ST	SE SEST AL SEM ES	MC MOST Dom To	MEASE! Sw som cox	M(M)01 B. April 012	66 4501 CH % 801	MC-6001 - 54 - 30% - 500	64 30% 131	ME MINET CA DATE SET	ME-MINET D part 1	MI ASST Co part 3.05	WASH Sa 93	No. Meso Pa Su Sur
H973062 H073063 H073064 H073065 H072066	5.36 5.75 5.30 6.31 5.44	807 805 815 815	8.46 8.51 8.91 8.60 8.00	102 102 102 102 102	100 110 10 10 130 300	0:03 0:51 0:43 0:39 0:83	6.01 6.21 40.01 5.16 0.10	6.42 7.56 7.60 6.15 6.15	0.09 0.09 0.07 0.16 0.08	5.94 10.16 17.85 13.35 30.2	40.8 84.8 41.9 40.9	72 201 189 284 216	2.02 1.29 2.01 5.89 6.35	23.8 144.0 42.6 150.0 52.8	6,86 8,56 6,76 8,44 5,90
HS750EF HG750EB HS750EB HS750EB HS750EB	5.46 5.39 5.84 6.30 9.60	601 804 603 500 806	6.4G 7.59 7.00 6.80 6.73	+8 +62 67 67 67	20 70 90 130 50	5.10 5.30 5.43 6.71 8.45	40.01 40.01 8.64 8.61 8.01	28.8 7.56 6.65 7.62 5.91	-6.02 0.12 0.13 0.15 0.15	1.25 8.30 5.59 8.17 5.34	57.3 53.4 45.6 56.4	221	0.10 1.17 5.80 2.84 1.60	2.8 36.8 37.6 22.4 28.5	0.78 8.75 9.66 8.57 10.18
H073072 H072073 H073074 H073075 H072076	0.01 0.60 0.01 0.01 0.01	8.04 8.12 9.03 9.09 9.04	6.66 6.46 6.45 7.21 7.64	0.8 0.9 0.4 0.7	20 20 200 50 150	0.66 1.91 1.12 13.75	6.14 6.02 6.07 6.28 8.25	5.35 4.86 4.16 7.00 8.50	0.10 0.17 0.10 0.17 0.15	1.20 6.89 19.40 12.00 11.25	32.7 28.2 17.9 48,1 33.3	42 30 1 68 113	19.65 12.10 18.35 5.50 6.44	92.7 99.1 96.8 96.0	91.00 91.25 10.00 8.65 7.27
H373577 H373578 H373579 H373380 H373381	0.57 0.61 0.54 0.62 0.56	49.01 0.07 0.02 0.06 0.02	4.62 7.01 7.55 7.37 7.56	0.6 0.8 0.3 0.6	90 40 10 200 100	0.69 0.60 0.61 0.62	5.16 6.16 0.02 0.02 6.12	9.37 7.66 5.48 4.94 8.29	0.02 0.08 0.13 0.17 0.08	9.35 9.35 7.34 5.69 9.06	46.6 46.5 45.3 45.5 46.7	111 128 116 66	3.71 5.62 5.65 13.55 32.5	3.2 98.2 21.3 42.7 26.5	8.21 8.32 98.38 8.05 8.05
H073383 H073383 H073384 H073388	0.51 0.51 0.27 0.46 0.08	0.04 0.04 -0.01 0.04 0.03	7.46 6.38 6.13 8.06 7.61	0.4 0.5 45 1.5 0.7	180 60 20 60 40	0.87 0.38 0.27 1.86 0.61	9.64 40.01 40.01 0.22 0.35	8.03 7.65 34.3 8.95 7.63	0.14 0.10 0.60 0.60 0.14	6.40 7.53 4.30 6.66 16.25	44.0 6.9 49.7 49.7	75 87 2 40 104	8.05 1.15 8.28 5.14 8.00	25.6 38.9 3.4 47.0 23.2	11.40 8.60 6.21 7.99 8.16
+0.7338.7 +0.73388 +0.73088 +0.73381 +0.73381	0.84 0.82 0.86 0.86 0.86	9.69 9.69 9.63 9.64 9.85	7.73 7.07 8.00 7.86 7.38	0.6 0.5 1.3 0.3 2.3	50 50 70 50 75	0.62 0.44 0.39 0.41 6.43	49.01 49.01 6.94 6.06 6.73	8.87 8.25 8.12 8.54 4.50	0.56 0.11 0.09 0.06 0.33	12.30 4.44 7.36 7.73 8.73	52.4 50.7 46.9 40.6 44.2	138 45 7 86 80	8.92 8.76 9.71 2.93 469	31.1 29.0 62.1 60.2 39.0	8.22 9.60 16.26 8.20 16.08
*(17330) *(17330) *(17330) *(17330) *(17330)	0.96 0.36 1.11 0.45 0.42	49.01 0.84 42.01 0.84 0.89	7.76 7.06 7.06 7.04	1,2 0,7 1,7 0,9 0,9	40 80 25 60 110	176-9 0 98 126-3 1.60 5.26	6.34 0.11 4.61 0.30 0.30	0.70 634 9.73 6.41 4.39	0.00 0.90 0.02 0.90 0.90	5.62 8.61 6.67 6.46 15.08	5E 45.6 3.7 46.3 21.7	15	81.7 4.77 192.9 81.0 2.53	40 666 557 567 878	9.10 9.13 9.66 9.66 16.66
HOTSIST HOTSISS HOTSISS HOTSISS HOTSISS HOTSISS	0.30 0.54 0.64 0.62 0.48	0.89 +0.01 0.62 0.84 0.84	7.82 0.54 7.80 7.81 7.89	452 45 0.5 0.5 40.2	75 25 30 45 75	0.50 0.58 0.53 0.57 0.37	0.06 -0.05 0.05 0.05	7.32 27.6 5.36 6.36 6.30	0.19 -0.00 10.0 10.0 10.0	7.76 130 5.97 5.94 6.35	90.7 0.9 46.2 45.7 49.2	2 75 67 87	5.34 0.34 1.52 2.56 3.05	3.0 2.2 11.0 37.0 41.6	6.49 0.16 0.57 19.00 7.75

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS CATAMO LY

2103 Dollarton Hwy North Vancouver SC 1/7H SA7

Phone 604 984 5021 Fee 604 564 5016 www.stochemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-656 W GEORGIA ST VANCOUVER BC VEB 4NS

Page: 3 - 5 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2029

Account CGAMO

Project: TNR-Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15252	
lampie Description	Buchud Bearing 2003 LGA	SELECT Garage Ann. B10	Secured Secure	ME MISST OF James 3-1	MEMBET IN 304 106	ME MOST	10 100 70 10	MEMBER U pps E3	MD MOST Mg % 3.87	ME MOOT MA Spin	ME.4081 Do 101 101	MEAGE! No. % +21	MEADE!	MCMSH N Mm 57	est order p pen pen	ME-MEE Ph part 1.0
#075063 #075063 #075064 #075066		19.20 18.80 19.50 17.10 18.75	0.06 0.06 0.05 0.06 +0.00	13 03 18 88 20	E069 E094 E044 E066 E060	0.29 0.25 0.20 0.40	2/0 4.1 7/6 6.3	29.2 15.1 11.0 20.0	5.08 2.93 5.50 5.78	1360 1460 1100 1760	0.41 10.56 0.37 1.82	2.00 2.61 1.69 1.81	38 38 38 33	68.4 134.0 166.0 173.6	345 340 436 329	23 23 23 33
HOTORT HOTORE HOTORE HOTOPE HOTOPE HOTOPE		1.47 19.05 18.60 15.85 17.79	0.00 0.00 0.02 0.13 6.16	0.2 9.5 8.7 9.7 1.3	45.005 5.071 5.086 5.076 5.076	0.14 0.24 0.14 0.39 0.18	11.9 2.7 2.1 3.0 1.9	93.6 13.7 29.3 11.3 12.5	4.35 5.46 6.20 4.05 6.83 4.21	192 1920 1930 1930 1930	0.43 0.22 6.16 0.72 6.27	1.74 1.74 1.21 1.44 2.03	5.5 6.8 3.0 2.8 2.5 2.6 2.8	207 96-4 96-8 72-8 Na.5	90 200 200 200 500 500	46.1 8.8 1.8 5.0 1.6
907070 907070 907071 907071 907075		20.7 21.7 31.1 19.60 27.6	0.14 6.13 6.13 6.13 6.12 6.11	5.7 2.7 4.5 0.8 0.8	5.096 6.167 6.1% 5.076 5.099	0.31 0.32 0.39 0.33 0.23	28 21 57 47 48	76.5 52.5 145.5 86.9	2.47 2.66 0.84 2.85 2.36	1960 1900 1460 1860 1860	0.76 0.37 0.39 0.51 0.81	2.46 2.57 2.50 1.30 1.46	68 5.5 19.2 48	27.6 27.8 3.0 80.4 49.7	700 740 1800 440 7140	15 23 23 23 65
HG71077 HG71079 HG71078 HG71080 HG71081		63.3 18.85 17.55 17.60 23.6	0.00 0.10 0.15 0.13 0.14	2.7 0.5 1.3 1.8 1.8	-0.005 0.062 0.061 0.076 0.089	0.32 0.14 0.19 1.19 0.56	1,8 3,6 2,6 2,0 1,3	12.9 135.6 199.6 194.5 44.6	939 436 349 329 276	40 1990 1308 1696 1479	0.56 0.25 0.98 0.57 0.24	6.81 1.76 3.21 2.24 2.20	96.6 3.7 3.9 4.8	18 67.5 70.2 52.2 77.5	949 300 370 470 490	50 15 15 22 23
9(37)382 9(37)383 9(37)384 9(37)386 9(37)386		23.6 19.00 G.46 18.20 34.7	0.16 0.11 40.00 0.11 0.14	6.5 +0.1 0.7 1.3	0.095 0.015 0.014 0.016 0.055	0.55 0.37 0.62 0.26 0.17	2.8 5.8 4.3 8.9	57.4 75.8 1.3 50.6 67.7	2.M 3.15 0.84 281 230	1765 1450 253 1440 5340	0.35 +0.05 5.20 0.90	1.81 2.02 0.05 1.62 0.79	63 28 03 33	#2.2 #3.0 +0.2 106.0 91.3	510 300 30 30 460 460	17 18 58 17 28
H075080 H075088 H075080 H075090		16.95 15.15 16.30 16.00 19.40	0.15 0.16 6.12 0.28 0.12	1.5 0.9 1.7 0.6 2.7	0.001 0.009 0.001 0.001	0.31 0.33 0.75 0.30 1.68	57 1.6 22 32 21	99.6 111.0 163.5 79.6 230	2.81 2.60 2.40 2.60 5.36	1400 1800 1900 1900 1900 2400	5.32 5.15 5.15 6.17 5.46	1.53 1.51 2.21 1.77 1.79	AE 28 23 33 84	146.8 59.7 26.6 52.7 53.2	340 279 460 379 480	2.7 13. 22 18 44
H375090 H375090 H375094 H375096 H375096		79.5 17.35 71.1 16.10 17.70	0.06 0.13 0.17 0.17 0.17	7.4 0.6 2.9 1.4 2.0	0.005 0.062 0.005 0.007 0.124	0,45 0,90 0,90 0,90 0,31	12 33 33 18 18	706.0 54.8 29.7 106.0 5.8	0.15 2.75 0.22 3.76 1.82	964 1449 235 1705 1950	6.54 6.22 6.07 8.27 9.48	4.40 1.24 8.00 1.74 3.23	105.5 3.7 106.5 3.2	4.6 86.1 5.7 93.3 5.7	16A0 919 1530 210 420	7.0 2.0 8.1 2.4 4.8
H373387 H373388 H373389 H373409 H373401		17:30 2:01 18:30 29:3 15:45	0.14 0.68 0.13 0.13 0.12	0.7 0.8 2.1 1.3	870.0 9.007 970.0 080.0 0.000	0.50 0.58 0.54 0.21 0.37	28 13 28 36 24	20.6 1.2 17.3 15.2 19.7	3362 130 337 339 387	1135 138 1530 1586 1429	5.15 5.06 5.36 5.26 5.19	0.72 0.20 2.73 1.77 2.19	33 22 41 39 28	90.1 +0.2 51.4 67.2 157.0	290 90 380 630 980	18 18 18 17 20

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Caredy Lit

2103 Dollarton Hwy North Vancouver SC 1/71 (A7

Flure 501 Std 0221 Fax 504 Std 0216 www.slbchamex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 623-456 W GEORGIA ST VANCOUVER BC V68 4N9

CERTIFICATE OF ANALYSIS TRANSPORT

Page: 3 - C Total 8 Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2928

Account COAMO

Project TNR Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15252	
Lampin Description	bushed busydes weeks 1.64	W. ACC	No. AMERICAN CONT. CONT.	MEMBER 5 5	50- 50- 50- 500 5-00	90 MS1 50 50 51	ME MOST Ser pro-	MEMBER So son 52	MC MSET de serv ST	MEARIN Na April 200	MEASON To port side	ME ASSET 25 25 27 27	ME-MOST TX TS (1995)	MI-MS(1) T) Selfe 0.00	MC-MINT. U Sprint. E-1	ME WILL part
H073363 H073364 H073366 H073366 H073366		29 1,7 2,2 21,5 54,1	+0.002 +0.002 +0.002 +0.002 +0.002	49.01 0.02 49.01 0.09 8.81	0.57 0.18 0.13 0.10 0.10	34.9 30.0 23.6 31.3 23.9	M No the File Ad	0.8 0.7 0.7 0.7	166.5 153.5 266 182.5 346	6.36 6.35 6.32 6.30 6.19	+0.06 0.05 +0.05 0.06 0.06	0.8 0.8 1.3 0.6 1.8	0.473 0.449 0.375 0.390 0.500	0.04 0.05 0.02 0.12 0.20	01 03 03 03 02 03	218 192 181 190 173
#0736F #0736F #0737F #0737F #0737F		4.2 3.1 5.6 M.0 4.0	+0.002 +0.003 +0.003 0.003	0.64 48.01 0.69 0.01	0.06 0.12 0.30 0.36 0.19	0.6 42.7 61.5 48.3 41.6	7 2 - 1 2	9.2 9.7 9.6 9.6 0.6	79.4 105.5 129.5 136.0 151.5	0.31 5.19 0.20 0.15 0.16	=0.05 +0.05 +0.05 +0.08	03 03 03 03 03	5.010 5.634 8.579 5.473 5.564	100 -0.02 0.03 0.03	0.1 0.1 0.1	309 290 262 261
X373072 X373073 X373274 X373076 X373076		38.1 25.1 27.1 26.1 36.2	+0.002 +0.002 +0.002 +0.002 +0.002	0.02 +0.01 +0.01 0.04 0.01	0.30 0.16 6.50 0.11 0.50	44.2 42.0 29.9 40.5 34.8	2 2 2	1.1 1.7 1.0	90.3 79.0 95.0 187.0 401	0.3F 0.86 0.20 5.76	-0.05 -0.05 -0.06 -0.06 -0.06	0.5 0.7 1.4 0.5 0.8	1.900 1.106 5.798 6.663 6.398	6.76 6.18 6.17 6.24 6.22	0.2 0.4 0.1	361 12 376 237
HOTOTT HOTOTS HOTOTS HOTOTS HOTOTS HOTOTS HOTOTS		63 16.6 33 190.0 53.3	+0.502 +0.602 +0.602 +0.603	45.07 0.85 0.85 45.07 45.07	0.29 0.13 0.07 0.06 0.20	6.7 42.3 42.8 38.8 38.0		31 12 0.0 1.1	31.6 111.5 107.6 118.5 202	1198 0.54 0.37 0.40	+0.05 +0.05 +0.05 +0.05 +0.05	1.5 0.3 0.4 0.5 0.8	8.007 9.507 9.508 9.508 9.505 9.794	8.10 8.10 9.02 9.80 6.34	61 01 01 01	3 268 284 234 251
H075380 H075383 H075384 H075385 H075386		30.1 7.7 1.6 41.6 36.6	0.002 40.002 40.002 40.002	0.01 40.01 40.01 9.81 0.01	5.76 5.23 10.35 5.27 1.03	36.8 37.1 0.0 34.1 32.7	<i>x</i>	0.0 0.0 0.2 1.3 1.0	245 M1.6 M5.3 127.5	0.23 0.23 0.10 0.20 0.33	-0.26 -0.26 -0.26 -0.29 -0.29	0.5 0.4 40.2 0.5 1.0	0.000 0.477 0.000 0.476 0.533	0.14 0.07 0.00 0.30 0.30	0.1 0.1 0.1 0.1	297 203 11 216 197
HQ75387 HQ75388 HQ75388 HQ75380 HQ75391		13.6 6.4 8.4 4.0 PMG	+0.892 +0.862 +0.862 +0.862 +0.862	40.01 40.01 6.01 40.01	0.10 +0.00 0.16 0.11 0.31	53.1 52.6 49.3 30.1 42.3	- 22 22 24	0.8 0.8 0.7 0.7	111.5 195.5 117.6 165.0 95.0	0.27 0.21 0.24 0.26 13.65	40.05 40.05 40.05 40.05 20.05	0.8 0.5 0.5 0.3	0.402 0.469 0.676 0.496 0.496	0.06 0.04 0.08 0.07	0.8 0.1 0.1 0.1	185 253 279 208 236
#075392 *073393 #073394 #073395 #073396		675 16.7 450 99.2 6.9	40.802 40.803 40.803 40.803 40.803	-0.01 0.58 -0.01 0.88 0.26	0.21 0.26 0.26 0.17 0.11	3.5 40.1 4.2 45.0 54.0	2 1 1 1	32.8 0.8 17.3 1.3	76.7 126.5 16.5 50.7 235	108.0 1.04 +100 1.23 0.60	0.00 -0.00 0.00 -0.05 -0.05	4.8 0.6 2.4 0.8 0.7	0.075 0.445 0.001 0.406 0.655	2.74 9.32 3.01 1.58 9.00	61 03 65 07 03	278 218 16 226 327
H073387 H073388 H073389 H073406 H073401		12.5 48 20 4.6 7.2	+0.002 +0.002 +0.002 +0.002 +0.002	0.52 -0.07 -0.07	8.18 2.08 5.23 5.18 8.13	48.4 0.7 41.9 36.9 39.4	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2,7 +0,2 1,2 1,2 0,5	83.0 76.6 95.4 125.0 79.1	0.34 0.29 0.30 0.29 0.26	+0.18 +0.08 +0.15 +0.85 +0.85	0.3 0.4 0.6 0.4	0.507 0.538 0.758 0.300	5.06 5.04 +0.03 9.02 0.08	0.1 0.6 0.3 0.1	294 41 295 280 167

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Ostarbus Hay North Vancouner SC VVH GAZ Phones SD4 SS4 SS21 Fax: SS4 SS4 S216 were also hemics comTo COAST MOUNTAIN GEOLOGICAL LTD PO BOX 11884 629-455 W GEORGIA ST VANCOUVER BC VEB 4N9 Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2009 Account: COAMO

Project: TNR-Mavm.

CERTIFICATE	OF ANALYSIS	TB09115252
-------------	-------------	------------

							CENTIFICATE OF APACITORS TOUSTISESE
	Refred	495-WSS11	MEARIN	MI WHIT	MI-ARREST	Autorol	
	Section 1	W	*	2h		All	
	Barby	\$400	are.	dam	pper	dami	
Lample Description	688	30	-0.0	2	0.9	0.001	
H075062		9.2	23.0	1.4	40.8		
HS12363		0.1	32.6	417	26.5		
H373364		0.7	15.7	89	35.6		
HSDMS		0.2	18.5	89	24.9	0.003	
HOTOME.		9.6	14.5	16	N.S.		
HS/5067		9.2	3.6	1	53.		
HSTSSEE		0.4	16.3	108	4.0		
HUCOM		4.6	16.0	811	143		
H073079		0.4	29.5	218	13.0		
MINTER TO		0.5	17.6	41	45.2		
PO(SHY)		9.7	21.9	127	13.5		
H07337)		0.0	30.5	100	94.9		
HOTON		0.8	68.9	197	210		
H373075		-0.8	25.1	124	16.8		
HOTOSTE		2.8	18.7	95	26.7		
×0.0077		1.0	0.8	7	12.2		
90733W		9.3	253	12	95.8		
HOUSEA		0.5	53.6	10	-0.6		
W373380		0.2	27.1	90	10.5		
ногож!		.0.4	28.8	- 81	10.3		
HED MA		0.2	29.9	145	56.8		
HOTOGRA		0.2	30.2	99	7.2		
H373384		40.1	3.9	42	1.5		
14373385		1.0	25.7	107	15.8		
HSTSSM		0.4	- 25.8	10	36.1		
H07(067		9,1	20.6	38	40.3		
H375388		9.5	27.3	115	72.5		
H37308H		0.1	32.1	132	36.7		
H373390		0.3	24.8	101	10.4		
H373091		0.3	29.3	156	74.5		
H373080		2.3	2.8	395	41 4		
H075060		8.2	28.8	425	14.1		
H373994		5.8	1.9	23	15.4		
H373386		0.2	32.6	935	42.7	4.000	
H3/5396		0.6	35.4	99	43.2	5.002	
H375367		0.3	28.8	119	16.4		
HETSINE		0.1	4.8	+2	5.0		
H375999		0.3	26.6	46	51.5		
H373400		0.3	25.3	102	40.9		
HOPSelds		9.3	18.9	63	40.3		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Covered III.

2103 Dotaton Hey North Vancouver BC V7H DILT

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11654 629-659 W GEORGIA ST VANCOUVER BC V6B 4N9

CERTIFICATE OF AMALYSIS TB09115252

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2009

Account COAMO

Project: TNR-Marin

									-			- 4 . 4 . 4 . 4				
Sample Description	Bertest Bestyle Seds 188	MOLES Resident Ing ESS	MC-MSH1 As part 3.37	165 MIST 5 5 991	ME-select All part. Ed	MILMORT for part 10	MEASUR Se SE SE	MEMORI B SER SER	MI-MSIT CH S S S S	MC4581 Ca ayri 0:00	MADE! Ca spn (3)	Graner Go ppn 31	MI MARKET	Miletari Gr ppn 609	MEANN Co ppm 92	96.900 50 50
HISTSHID HISTSHID HISTSHID HISTSHID HISTSHID		0.38 0.65 0.67 0.60 0.62	0.02 0.05 0.00 0.05 0.05	7.31 7.95 7.33 8.00 8.30	6.7 6.7 6.5 1.0 6.5	50 50 50 50 50 50 50	0.38 0.50 0.28 0.44 0.81	6.58 0.06 0.01 0.67 0.32	8.11 7.37 7:06 7:27 4.34	0.19 0.10 0.11 0.11 0.11	12.05 6.76 12.65 28.6	36.9 47.2 30.1 52.9 37.6	81 81 151 152	1.68 3.55 3.47 19.60 5.87	29.8 112.0 25.1 60.0 80.1	6.34 11.35 6.71 6.30 7.10
H015400 H015400 H075400 H075810 H075411		0.63 0.87 0.87 0.86 0.68	0.91 0.08 0.00 0.00 0.00	8.33 8.50 7.60 7.40 7.80	1.6 1.5 1.2 2.6 v6-	40 50 80 80 10	121 5.45 5.47 5.46 5.51	2.67 0.05 0.13 0.40 2.66	4.67 6.85 7.35 7.38 10.60	6.70 6.76 8.71 8.71	75.60 15.50 7.26 7.35	90.5 90.7 90.2 90.2 97.8	45 140 103 116 119	1.38 2.40 6.40 9.34 1.97	132.0 95.2 37.6 60.0 961.0	67.10 6.76 6.05 7.66 6.89

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carate Ltd. 2100 Dollarton Hay

North Vancouser (IC VYH GA7 Phone 854 864 9221 Fax 604 954 9219 were alsoframes comTo COAST NOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-650 W GEORGIA ST VANCOUVER BC V68 4ND

CERTIFICATE OF ANALYSIS TB09115252

Page: 4 - 8 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2009 Account: COAMO

Project: TNR Many

								_			197112		1010			
Bampin Doseription	Started Analysis Sant LDS	SAC MOST Car Spire 0 cm	50 MO MO P C C C C C C C C C C C C C C C C C C	MOMENT ME NATIONAL SERVICES	Mil-andri pare 1-000	60,4601 5 5	MEASUT SA SPE B.S	ME AREA M SPR SL2	MEASET My % Ext	MIAMIT Mi John S	MI ASST Mr ayrs 1299	ME and I for the part	ME-MOET ME MOY MY	Minori N W W	MEARST A ppm 10	20 mm
H073403		16:30	0.10	0.8	0.073	9.71	3.8	10.2	4,20	1000	1.10	1.09	2.3	74.1	290	2.0
W373403		29.7	9.76	1.0	0.066	0.38	4.8	15.7	241	1945	6.00	2:30	2.9	483	479	3.0
H373404		15.96	0.11	0.5	0.063	0.36	2.5	16.6	4.45	1589	2.74	1.39	2.2	76.7	290	1.2
H379495		25 6	DAY	0.8	0.063	0.40	5.7	82.9	3.22	1679	8.37	1.76	3.8	748.0	460	3.9
H373403 H373404 H373405 H373406		19.00	0.71	5.0	0.050	0.27	12.2	17.3	3.55	1100	3.08	4.26	4.5	92.7	700	.7.9
H375407		20.4	0.46	2.1	0.076	0.30	11.6	18.4	1.52	3916	1.77	6.9	2.5	263	840	9.7
HOYDHOE		26.4	5.72	1.8	0.058	0.25	4.5	32.4	3.70	1429	5.27	1.60	6.1	165.0	420	2.0
H373409		97.86	0.27	1.1	2.648	0.28	7.6	18.0	3.35	1545	0.45	1.69	3.6	KEEL	296	3.1
H313116		17.00	0.10	0.6	0.061	5.76	2.8	21.6	236	N450	6.30	1.45	24	57.6	340	2.8
H073407 H073408 H073409 H073410 H073411		35.6	0.12	5.8	0.110	0.16	2.8	11.6	2.61	1920	2.47	0.96	2.2	36.4	386	4.2

EXCELLENCE IN AMALYTICAL CHEMISTRY

Wid Cornets Ltd. 2193 Deliveron Heap North Vencouver BC VTH SAT

Phone 804 965 0221 Fax 604 964 0216 www.afschames.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68-4N9

CERTIFICATE OF ANALYSIS TRO9115252

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2019 Account: COAMO

Project TNR Maves

															OROR	
Longio Drus-spison	Montes Analysi Spens Last	An arter An part 61	de mont	MEMBER 2 10 107	ME MEST SIX SIX SIX	ME AND TO SERVICE SERV	All origin	NE esset So- jum 0.5	est, estati to pare 1,3	10 ACC	MEASURE Se per 1.00	WE ARREST Form (E.E.	-	ME MENT TO TOTAL TOTAL	M AND	MCMST V spin
HSF3HSS HSF3HSS HSF3HSH HSF3HSH HSF3HSH		23 73 78 92.5 78	+6.003 +6.002 +6.002 +6.003 +6.003	8.02 2.04 8.01 8.04 8.06	0.98 0.95 0.17 0.29 0.38	46.5 46.4 49.1 31.4 25.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 12 12 12 12	909 142.5 130.0 138.6 362	0.36 0.29 0.18 0.30 0.20	-0.06 0.05 -0.05 -1.05 0.08	8,3 9,5 9,2 8,9 2,1	0.425 0.878 0.495 0.412 0.342	-0.62 0.05 0.04 0.65 0.06	81 81 91 92 97	246 280 270 192 154
HSF340F HSF540B HSF341B HSF3410 HSF3411		8.6 4.5 86.7 50.1 3.3	+0.002 +0.002 +0.002 +0.002 +0.002	5.65 6.01 6.01 5.01	0.6F 0.18 0.39 0.32 0.52	25.8 26.8 36.8 48.7 46.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 63 88 63 13	190 197.0 190.8 223 71.1	9.29 9.32 9.27 9.17 9.17	0.40 +0.05 +0.05 +0.05 9.06	2.9 1.1 2.0 0.2 0.3	0.236 0.467 0.417 0.367 0.372	0,11 0,50 0,57 0,56 0,03	89 82 82 83 85	191 198 162 223 267

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carried USE

2109 Distance Flee North Valories BC VTH DKT

Phone: 604 MA (Q21) Fax: 604 MA (214) www.alschamas.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VSB 4N0

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2009

Account COAMO

Project TNR-Mays

Lampia (hayerydian La		ME-MEET	MI-MINT	-				
	2	per Et	9 2000 57	20- 20- 20- 21- 21- 21- 21- 21- 21- 21- 21- 21- 21	per- per-	Au-KSP01 Au Sales G-SEC		
H373403 H373403 H373404 H373406 H373406		03 03 03 02 05	30.7 27.4 20.9 19.6 18.6	90 121 89 88 708	20.6 23.8 10.5 27.8 73.8			
H3/3407 H3/3408 H3/3409 H3/3410 H3/3411		0.3 0.2 0.5 2.8	7.8 23.4 19.8 22.4 26.4	108 108 15a 100 82	74.4 92.5 38.5 96.0 17.6	1016		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Constacts

2103 Delianne Hay
North Incompre BC VTH DAY
Places 604 984 9221 Fac 804 984 9215 when placement (pm)

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-650 W GEORGIA ST VANCOUVER BC V68 4ND Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 26-OCT-2009 Account: COAMO

Project TNR-Mayo

CERTIFICATE OF ANALYSIS TB09115252

Berthod	CERTIFICATE COMMENTS	
WE-MIS61	Interference: Car-10% on ICP-MS As,ICP-AES results shown.	
ME-MS61	REE's may not be totally soluble in this method.	

EXCELLENCE IN ANALYTICAL CHEMISTRY

MLS CHIMAN LINE

2103 Delianton Hwy North Vancouver BC VTV SAT-Phone 804 984 5221 Fee 654 964 9216 www.afschemes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4NS

Page: 1 Finalized Date: 27-OCT-2009 This copy reported on 15-DEC-2009.

Account COAMO

CERTIFICATE TB09115253

Project: TNR-Mayis

P.O. No.:

This report is for 34 Rock samples submitted to our lab in Thunder Bay, CN, Canada on

9-OCT-2009.

The following have access to data associated with this certificate:

PRED INICAKS W.E. CISANAMI

GARE JUTRAS

HANS MUNCHERK

	SAMPLE PREPARATION	
ALS CODE.	DESCRIPTION	
WEI-21	Raceived Sample Weight	
1.00-22	- Sample togin - Rot wio-BarCode	
DRY-21	High Temperature Drying	
CRU-QC	Crushing GC 7em	
PUL-QC	Pulverizing OC Test	
CRU-31	Fine crushing - 70% ×2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulliwrian split to 85% 475 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
AuriCP21	Av 30g FA ICP-AES Firesh	ICP-AES
ME-MSET	48 element four acid ICP-MS	

16 COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11664 529-450 W GEORGIA ST VANCOUVER BC V68 4H9

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carees US.

2100 Dollaton Hwy Nottl Vancouver BC V7H SAT

Promi 854 984 5221 Fax: 604 984 5219 - svery alsohemex com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-650 W GEORGIA ST VANCOUVER BC V68-6N5 Page: 2 - A Total & Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2029

Account COAMO

Project: TNR-Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15253	
Lympia Caseription	States States LOS	WEIGH SECRETARY	MEADE! As per 101	MEMBER A So Est	MC MSS1 Ac 3010 0.2	MEASON So ppm 19	est recoin file part 1.00	the states	MEMBE GA N B.DT	DE ARRET Col com 1100	DE MEATE CON CONTRACT	Die Miles Die Die Die Bil	MI-MINT DIST	DE ANDET CA JUNE 11.09	de ateri Co perc 12	Mt 400 Fa 15 15 201
KOPANI KOPANI KOPANI KOPANI KOPANI KOPANI		0.45 0.96 6.30 0.72 0.71	0.06 0.64 0.53 0.08 0.14	7:38 4:90 5:72 9:03 7:66	0.9 5.1 1.1 0.6 0.5	110 180 90 80 80	0.33 1.28 1.17 0.40 0.56	0.75 2.84 1.59 0.08 9.16	8.17 1.73 1.07 7.46 6.62	0.59 5.85 0.81 0.40 0.56	16.25 41.6 26.2 9.94 13.00	48.1 57.6 33.2 54.2 53.6	26 26 28 198 113	230 286 596 384 1270	64.5: 327 371 70.1 90.1	6.36 16.35 15.35 9.59 11.45
HOPACE HOPACE HOPACE HOPACE		0.61 0.79 0.50 0.48 0.06	0.04 0.05 0.00 -0.01 0.00	7.44 7.42 8.08 6.15 6.63	0.6 1.0 0.4 45 0.4	40 760 56 20 550	0.55 0.99 0.45 0.10 0.94	0.15 0.47 0.04 -0.01 0.17	6.13 8.38 6.82 30.6 5.13	0.37 0.11 0.08 -0.02 0.31	5.24 9.84 9.40 1.25 12.00	45.2 45.6 47.6 1.0 42.0	109 127 239 3 12	0.69 3.96 4.25 0.07 65.9	56.8 68.7 2.5 2.1 32.8	8.00 8.76 0.76 0.16 13.45
H075401 H075401 H075408 H075408 H075408		0.70 0.67 0.67 0.96 0.74	0.03 0.03 0.01 0.02 0.02	8.01 7.64 7.60 7.60 A.05	0.3 0.3 0.6 1.2 2.3	60 110 20 46 36	0.56 0.40 0.30 0.66 0.57	0.13 0.01 0.01 -0.01 0.01	6.66 6.32 2.11 5.60 8.79	0.10 0.04 0.08 0.14 0.09	9.26 10.55 5.83 6.79 9.96	45.1 46.7 46.6 55.6 85.9	180 129 199 81 81	1.86 7.47 0.50 2.65 2.65 5.56	67.4 59.4 27.0 27.0 109.0	8.39 7.00 7.00 11.15 8.49
HUTHET HUTHER HUTHER HUTHER HUTHER		0.83 0.74 0.72 0.61 0.69	0.04 0.00 0.04 0.04 0.03	8.23 8.62 7.43 1.83 8.82	0.0 0.7 1.0 0.0 0.0	6.6.2.3	9.71 9.88 9.61 2.69 9.29	0.12 0.02 0.04 0.18 0.04	7.35 7.35 5.64 4.67 8.00	0.12 0.09 0.10 0.09 0.10	12.65 14.80 6.29 4.50 9.80	973 973 979 913 38.4	136 161 43 43 81	1.62 4.37 45.76 3.28	97.0 97.0 97.7 90.4 26.1	9-01 8-88 9-01 12-40 7-84
HOFMAD POTSASS ROFMAN HOFMAN HOFMAN		0.53 0.72 0.71 0.72 0.69	0.00 0.00 0.00 0.00	7,74 7,71 8,08 9,96 7,25	0.7 0.7 0.7 0.5	40 50 50 50 50 50 50 50 50 50 50 50 50 50	0.46 0.54 0.54 0.50 1.61	+0.01 -0.02 +0.01 +0.01 0.89	7.67 7.56 6.44 7.71 7.25	0.10 0.13 0.07 0.08 0.12	10.40 6.17 7.35 15.15 8.36	51.3 55.3 55.8 51.2 51.0	50 344 346 981 41	8.76 3.06 4.23 15.70 3.02	32.1 73.1 16.8 91.7 46.5	9.15 9.79 8.36 7.74 3.45
707340F 1073408 8073408 8073440 8073440		0.68 0.60 0.60 0.73 0.75	9.08 9.01 3.08 9.01 9.60	7.93 6.67 7.62 8.58 7.34	0.7 0.8 0.3 0.3 -0.2	70 290 80 63 79	0.47 7.14 0.30 0.66 0.56	0.02 0.02 0.01 0.04 0.46	6.58 5.80 7.87 5.62 6.13	0.08 0.16 0.13 0.15 0.15	11.60 36.3 7.67 16.65 6.54	47.3 45.3 56.1 41.0 48.1	877 378 201 73 18	1,54 9,65 7,84 3,27 2,61	80.4 15.3 130.6 25.2 30.2	8.61 6.49 8.63 5.77 8.61
H1734G H1734G H1734G H1734G		0.83 0.60 3.60 1.06	0.08 0.00 0.00 0.08	0.17 7.60 6.69 7.06	45 45 45 45	90 40 40 71	0,07 0,17 1,22 0,21	0.02 0.14 0.19 0.04	30.2 9.10 6.65 9.84	+0.02 0.05 0.13 0.14	1,39 12,55 8,19 10,40	45.0 45.0 47.5	20 60 55	0.05 0.65 7.50 2.44	3.0 191.0 44.2 124.0	8.10 9.09 9.09

EXCELLENCE IN ANALYTICAL CHEMISTRY

Much Convolence

2103 Duterton Hwy North Varcouver BC V7H SAT

Phone 604 984 3221 Fee 634 884 0218 Invest afschartex com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC V68 4ND

CERTIFICATE OF ANALYSIS TROOTISSES

Page: 2 - 8 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009

Account: COAMO

Project TNR Mavis

										CERTI	PORTS.	OF ANA	E 1 313	1003	15253	
Lampin Conscription	Burkey Bendyn Dwills LDB	MEMORY On part 200	MEARINE GA ANTE E SE	HE MEN	ME ASSET SA 2007 0.000	96 arter) 8 5, 6 01	est asiatri La Sam 8-8	DE MOST G ppm 1.5	MC MAC No No 1,01	ME AND T	ME ARREST Ma. Spini S. 672	ME ANSET	MEASET No. SET ET	66 MM1 64 gare 0.2	Millioneri P parti 10	10 AND 10
HOFSHIS HOTSHIS HOTSHIS HOTSHIS HOTSHIS		18.85 14.50 13.56 19.76 25.5	0.11 0.99 0.18 9.12 0.15	18 13 19 88	0.676 0.900 0.105 0.078 0.006	0.41 0.68 2.54 0.28 0.29	4.7 20.4 11.9 3.9 8.8	9.8 14.6 10.0 77.5	1,82 0,81 0,38 3,77 3,12	1710 363 571 1580 1670	0.27 4.50 2.33 0.26 0.38	1.42 0.35 1.82 1.25 1.47	8.7 3.5 3.0 2.9 5.4	45 % 71.6 79.4 91.0 06.9	590 510 340 540 850	24 26.6 42.5 3.2 4.3
#GF3#15 #GF3#16 #GF3#18 #GF3#20 #GF3#G1		18.66 18.66 16.06 0.47 27.3	0.11 0.13 0.11 +0.05 0.16	9.7 9.5 9.6 9.7 2.4	0.076 0.009 6.073 -0.006 0.119	0.15 0.40 0.29 0.00 1.06	1.6 3.7 3.4 1.4 4.1	50.1 51.2 96.5 12 136.6	8.42 3.76 3.86 1.60 2.43	1900 1900 261 127 2200	0.34 0.37 0.46 40.06 0.47	2.12 1.67 2.34 0.00 1.67	3.4 3.1 3.1 0.3 6.9	59.2 80.5 184.0 0.3 19.0	340 430 300 70 1000	3.8 3.3 4.2 0.9 2.6
H173423 H173423 H173423 H173428 H173428		21.3 16.40 12.60 24.7 20.7	0.12 0.09 0.09 0.12 0.12	5.8 0.7 0.4 1.5 0.5	5.063 5.060 5.047 5.067 5.056	0.28 0.47 0.08 0.23 0.17	2.6 2.6 2.4 4.5	59.9 37.6 42.6 44.3 59.2	3.19 2.86 3.62 3.29 2.50	1490 1180 1080 1780 1960	0.32 0.56 0.15 0.31 0.36	2.10 2.14 1.87 1.75	38 34 17 47 24	71.2 98.4 80.7 73.0 81.9	270 270 270 200 300	1.5 1.6 1.6 1.8
#073428 #073428 #073429 #073430 #073431		2013 2013 17.65 16.60 16.80	0.12 0.13 0.14 0.15 0.15	1.9 1.9 1.3 1.5 1.5	8.050 8.050 8.079 8.079 8.044	0.25 0.29 0.29 0.22 0.19	4.9 6.0 2.0 1.3 4.3	97.5 124.9 97.0 208 20.3	3.86 3.82 3.72 3.38 2.37	1960 1920 1940 2130 1960	0.49 0.33 0.30 6.12 0.23	1.84 189 2.36 2.11 0.30	83 38 30 35 33	193.0 84.1 45.6 45.9	300 300 110 170 170	33 24 17 32 22
H(17)432 H(17)433 H(17)434 H(17)436 H(17)436		14.35 14.75 19.10 20:2 18.65	0.16 0.13 0.12 0.12 0.14	1.6 1.6 1.6 1.7	5,079 5,066 5,062 2,046 1,078	0.18 0.29 0.30 0.14	4,1 30 2.4 7.3 3.2	96.1 69.5 73.1 97.0 17.7	2.56 4.38 3.72 3.35 3.09	1900 1900 1400 1006 1910	0.30 0.41 0.18 0.43 0.75	1.86 1.32 2.13 1.06 1.60	3.4 2.7 3.8 3.9 8.1	163 71.7 169.0 150.5 50.6	316 316 380 379 370	18 22 20 21 10
HOTSASE HOTSASE HOTSASE HOTSASE HOTSASE		18.05 18.55 16.40 30.0 20.4	0.15 0.15 0.12 0.10 0.18	5.7 1.9 0.5 2.6 1.8	5.060 5.063 5.065 5.064 1.080	0.25 0.68 0.10 0.14 0.21	5.1 14.1 3.0 8.3 2.5	11.0 15.0 12.4 8.5	2.17 6.29 6.84 2.57 3.64	1140 1140 1780 1070 1690	0.1F 0.0F 0.15 0.36 0.31	1.89 2.10 1.13 2.53 1.30	4.0 6.4 2.6 4.0 3.1	87.9 200 106.5 80.2 37.4	406 1450 308 475 286	1.5 1.5 1.2
HOTSAKE HOTSAKE HOTSAKE HOTSAKE		0.46 18.45 15.30 18.80	-0.59 0.15 0.17 0.19	10 10 11 11	5-006 8-076 9-075 8-077	0.00 0.17 1.40 0.29	5.6 2.8 4.8	1.0 7.4 43.7 8.8	1 ha 2 12 4 24	15A 1415 1616 1526	45.58 0.51 0.13 0.28	0.07 1.51 1.06 0.07	63 37 25 36	+0.2 87.2 81.3 90.8	75 286 290 340	90.5 8.9 2.2 8.7

EXCELLENCE IN ANALYTICAL CHEMISTRY

#6-8 Cameta (/el

2103 Dollarton Hwy North Vancouser BC V7H EA7

Phone 804 IM4 2027 Fax 854 I64 0216 I www.afschamex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PD BOX 11604 626-650 W GEORGIA ST VANCOUVER BC V68 4ND

CERTIFICATE OF AMAI VOID TRACLICATE

Page: 2 - G Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2669

Account COANO

Project: TNR-Mavis

										CERTIF	LAIL	OF ANA	TT 1212	IBUN	15253	
Sample Description	Martine Resigns Smith Line	ed with the party of the party	60 M(4) For 160 1-00	90.4001 5 % 2.01	100 MIN 1 200 2012	MARKET So spen E1	Minder Se Se	AND MARKET Gas pages 5.0	61 5- 80 6001	NO ASSET TO Part S. SE	ME MET To dom 1.01	96(M)41 75 ppn 63	MEAGET S S TIME	MEMBER TV MIN REF	Security of party Securi	ME AND
HITIATO HITIATO HITIATO HITIATO HITIATO		64 625 863 168 142	0.000 0.014 0.008 +0.000 +0.000	8.01 6.23 9.08 6.14 8.66	0.23 2.16 1.17 0.22 0.15	363 11.4 7.4 613 36.6		1.0 2.3 2.5 5.7 1.2	112.8 60.4 162.9 135.5 277	0.34 0.30 0.23 0.20 0.30	45.05 1.57 0.74 16.05 40.05	0.0 3.0 5.8 6.4 0.5	0.630 6.765 0.760 0.518 0.955	0.06 0.52 1.67 0.00 0.11	83 89 86 91	247 46 - 26 271 219
HOTSATE HOTSATE HOTSATE HOTSAGE HOTSAGE		3.4 14.5 45.8 1.0 65.9	+0.002 +0.002 +0.003 +0.003	9.00 9.02 9.01 46.01 9.61	0.15 0.18 0.34 40.05 0.10	46.5 61.5 40.2 5.6 47.3	2 2 2 2 2	1.6 1.2 2.6 +0.3 1.2	156.5 160.5 136.8 81.3 84.3	0.29 0.21 0.30 -0.65 0.46	<0.05 <0.05 <0.05 <2.05 <0.05	0.3 0.3 0.3 0.3 0.8	0.567 0.490 0.490 0.000 1.400	6.03 8.11 6.19 -0.02 0.60	6.1 6.1 6.1 6.1 8.2	280 241 24 27 27
H173423 H173423 H173424 H173425 H173426		7.2 17.3 10 8.4 8.8	+0.002 +0.002 +0.002 +0.002 +0.002	9.61 9.61 46.01 9.61 46.01	0.09 0.11 0.11 0.19 0.66	58.7 82.8 47.5 36.2 53.7	2000	5.9 1.5 5.4 5.6	160.5 162.6 75.7 153.6 106.5	0.30 0.25 0.12 0.32 0.17	40.05 40.05 40.05 40.05 40.05	0.5 0.6 0.5 0.5 0.5	0.490 0.411 5.292 9.895 9.450	303 813 200- 303 703	0.7 0.1 0.1 0.1	245 254 217 371 218
H17342F H17342B H17342B H17343D H17343T		21 82 755 845 44	+0,002 +0,002 +0,002 +0,002	48.07 48.01 0.02 0.01 48.01	0.15 0.68 0.36 0.15 0.16	30-2 30-5 50-8 53-8 33.7	A to a to to	0.8 0.6 0.7 0.7	126.5 122.0 96.3 104.5 692	0.31 0.38 0.30 0.35 0.34	+0.05 +0.05 +0.05 +0.05 +0.05 +0.05	0.8 0.4 0.5 0.5	1,40 1,40 1,60 1,53 1,00	0.00 0.40 0.40 0.22 0.00	0.7 0.7 0.1 0.1	193 193 298 299 188
HITHOU HITHOU HITHOU HITHOU HITHOU HITHOU HITHOU		8,1 45 46 262 8,1	+0.002 +0.002 +0.002 +0.002 +0.002	10.01 11.02 10.01 0.04 0.01	0.45 0.45 0.16 0.15	46.7 55.2 33.4 29.5 48.3	20 20 20 20	0.5 0.8 0.8 0.8	98.1 63.2 94.5 154.5 145.3	0.34 0.20 0.29 0.20	=0.05 =0.05 =0.05 =0.05 =0.05	0.5 0.8 0.7 0.8 0.8	8.471 8.407 8.409 8.403 8.403	5.04 0.03 5.05 5.21 5.01	0.1 0.1 0.2 0.1	298 257 191 174 218
9079437 9073438 9073438 9073448 9073441		8.5 39.6 18.1 9.6 11.6	+0.002 +0.002 +0.002 6.002	+0.01 +0.01 0.01 0.01	0.04 0.12 0.29 6.15 8.70	40.4 25.4 83.0 31.7 41.8	2 2 2 2 1	1.6 1.1 1.4 2.6 1.6	116.5 301 80.4 364.3 319	6.24 6.34 6.17 6.29 6.21	*0.05 *0.05 *0.05 *0.05 *0.05	0.7 5.1 0.4 0.4	0.445 0.512 0.346 0.460 0.547	5.06 E.19 5.08 5.03 5.05	0.1 0.0 0.1 0.1 0.2	210 176 201 231 296
HOTSHO HOTSHO HOTSHAN HOTSHAN		1.1 26 147.5 20.0	+0.802 +0.802 +0.802 +0.803	0.82 0.84 0.81	0.10 0.18 0.20 0.50	0.8- 35.9 40.3 37.0	49	1.0 0.1 0.8	92.5 186.5 95.7 116.5	626 626 616 621	40.05 0.06 40.05 40.05	10× 60 60 63	9,012 0,668 5,441 9,558	46.52 6.02 5.86 5.07	0.1 6.1 6.7 6.1	3 290 276 281

EXCELLENCE IN ANALYTICAL CHEMISTRY

RLS Cornels LAL 2103 Districtor Havy North Variousee BC VMH SAT

Phone: 604 964 9221 Fisc 654 984 0210 www.alsohemas.com.

76: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-450 W GEORGIA ST VANCOUVER BC V68-4N9

Page: 2 - D Total 6 Pages: 2 (A - D) Plus Appendix Pages Finalized Oute: 27-OCT-2015 Account: CDAMO

Project: TNR-Mayer

							CERTIFICATE OF ANALTSIS 1809115253
	Series	ME-MISS!	Michelle.	met Aeduln	MEASON!	N/OFF	
	Baselpha :	W	. 4	.Die	At .	Acc	
	MARK.	Steen.	2677	per	200	4400	
Lampia dispersion	1.04	61	5.1		6.6	6.004	
#11734°2		10	313	77	45.7		
H075413		0.4	16.7	1990	116.5		
HISTBATIA		2.5	6.5	236	88.2		
HSTS415		6.2	22.0	155	12.3		
HOTSHIS.		0.5	29.4	133	31.9		
HST2417		43	23.7	1,1	18.6		
RETAINS		11.2	21.7	95	11.3		
W373419		0.6	19.6	23	166		
H075420		6.0	2.6	42	1.8		
1019421		0.6	37.5	160	79.3		
#375422		9.3	-29.8	101	15.7		
H373423		0.3	19.2	33	30.1		
H373424		0.2	18.6	17	8.5		
H375425		0.0	20.0	126	88.3		
K010408		0.6	16.9	34	9.2	0.501	
m3/5427		0.3	25.6	115	26.6		
H373428		0.2	25.4	116	21.0		
PG79429		2.4	27.3	108	41.6		
H073436		1.3	27.9	113	16.3		
H079421		9.2	25.6	30	26.4		
×3/5402		0.2	26.6	122	13.9		
H079430		9.2	25.6	715	79.4		
HORSON		0.3	21.9	94	26.3		
HS73436		0.1	19.1	101	18.7		
9075408		7.6	27.6	117	19.3		
H373431		62	36.4		19.1		
W373436	1	0.3	33.1	96	144.0		
H075438		0.3	22.7	104	9.6	H0.001	
1973446		0.4	16.8	70	15.4		
HETSAN		0.6	27.1	101	16.6	8.001	
×375462		0.5	3.2	3	22		
107340		0.9	24.9	10	25.7	40.06H	
H373484		0.6	25.5	104	26.7	40.00%	
110/1946		0.6	28.6	360	17.5	5.001	

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Collection Height STH CAZ Provided BC 97H CAZ Provided BC 97H

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11684 629 659 W GEORGIA ST VANCOUVER BC V68 4N9 Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 27-OCT-2009
Account: COAMO

Project: TNR-Mavis

CERTIFICATE OF ANALYSIS TB09115253

Wethod	CERTIFICATE COMMENTS
ME-MS61	Interference: Car-10% on ICP-MS As ICP-AES results shown
ME-MS61	REE's may not be totally soluble in this method.

EXCELLENCE IN ANALYTICAL CHEMISTRY M.S-Carriette CSL

2103 Onlarton Hay North Vancount BC 1/74 DA7 Phone: 604 964 5221. Fax: 604 984 5216. www.alschemes.com To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC VAR 4NS

Page: 1 Finalized Date: 27-OCT-3000 This copy reported on 15-DEC-2009

Account COAMO

CERTIFICATE TB09115254

Project TNR-Mayra

P.O. No.:

This report is for 24 flock samples submitted to our lab in Thunder Bay, ON, Canada on 9-OCT-2009

The following have access to data associated with this certificate:

PRINCIPALITY DE ORNANG

GABIE JUTEAS

HANG MURCHERS.

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
L0G-22	Sample togin - Rod w/o BlarCode	
CRU-QC	Crushing GC Test	
PUL-OC	Pulverizing OC Test	
CRU-31	Fine crushing - 70% <2mm	
571-21	Split sample - riffe splitter	
PUL-31	Pulverize split to 85% <75 um-	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	MISTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11604 439 450 W GEORGIA ST VANCOUVER BC VIII 4NN

Signature:

Colin Ramshaw. Vancouver Laboratory Manager

EXCELLENCE IN AMALYTICAL CHEMISTRY

Auth Convolution

2103 Dollaton Hely North Vancouver BC V7H SAT

Phone: 604 life 5221 Fax: 604 life 0216 www.alsofemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 630-650 W GEORGIA ST VANCOUVER BC V68 4N9

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009 Account: COAMO

Project THR Mavis

										CERTIF	CATE	OF ANA	LYSIS	TB091	15254	
Sample Disseription	Manhay Annaly Small Last	WELDS Recorded Ag 8.00	Miletan Ag part part	MEASING AL N EST	MR-MORT As part Edi	Strater Strater Strater TS	94 94 95* 200	MC-MSST Bo AST EST	ME MORE Ca 5.1	DE MOST CA SAPA STOS	Ga Ga Serri EST	Ste.	ME MINI Or Spin	Ve Meri Sh part SH	distant Cor ppn 52	NE AND
H073445 H073445 H073446 H073450 H073450		9.72 9.67 9.89 9.89 9.84	0.03 0.06 0.03 0.08 0.02	7.61 7.61 7.63 8.04 6.90	49.2 49.2 49.2 49.2 49.2	50 40 40 100 80	0.26 0.29 0.95 0.22 0.71	0.04 0.18 0.18 0.10 0.10	5.09 7.23 7.06 7.04 4.85	0.09 0.13 0.11 0.11 0.12	5.10 6.29 6.80 6.81 15.00	86.3 50.9 48.5 49.8 36.9	130 167 194 180 13	4,51 1,50 3,23 1,22 20,6	00.8 90.9 25.7 47.1 14.2	8.85 9.86 9.86 8.48 92.70
PGF3451 HGF3452 HGF3453 HGF3454 HGF3456		0.79 0.74 0.67 0.95 0.72	0.00 0.00 0.00 0.00 0.00	7.67 8.29 7.36 7.90 8.41	40.2 40.2 40.3 40.3	50 50 50 40 60	0.27 0.38 0.23 0.21 0.21	0.00 0.07 0.01 0.02 0.11	8.40 7.58 3.44 5.35 8.25	0.12 0.10 0.10 0.00 0.00	5.66 11.30 4.95 7.81 16.15	55.0 53.2 47.5 46.5	87 919 917 919	5.54 3.52 1.59 12.65 4.23	19.9 87.9 90.0 57.6 56.4	8.18 9.39 9.30 9.30 4.36
FCF7456 +CF7457 FCF7456 FCF7458 FCF7458		0.64 0.77 0.74 0.60 0.60	0.06 9.09 9.03 0.05 0.02	7.95 8.19 8.54 8.48 7.67	40.2 40.2 40.2 40.2 40.2	140 50 40 50 50	0.94 0.40 0.00 0.34 0.79	0.14 0.06 0.35 0.04 0.04	6.95 7.29 8.06 7.36 7.38	0.95 0.11 0.90 0.09	\$.04 13.79 12.90 11.80 7.86	45.0 24.1 48.4 10.2 50.1	67 61 67 86 129	32.4 0.31 1.50 0.70 30.2	61.3 53.0 28.7 46.1 10.7	8-63 8-43 8-36 8-36 8-29
+1173407 +(17340) +(17340) +(173404 +(173400		0.83 0.75 0.67 0.75 0.64	0.04 0.04 0.04 0.08 46.01	8.04 7.05 8.51 7.67 9.08	402	10 40 180 45 10	0.1F 0.1F 0.2Z 0.26 0.06	0.65 0.13 0.02 0.02 0.01	7.86 7.52 7.11 7.57 19.80	0.31 0.08 0.08 0.29 0.05	5.96 5.95 5.35 6.92 0.99	5A.7 55.6 51.3 50.8	206 167 87 80	12.80 37.6 6.12 6.86 6.19	36.2 25.7 66.0	8.83 8.60 7.43 9.86 0.47
MITTARIO HISTARI HISTARIO MITTARIO		0.81 0.76 0.61 0.80	0.08 0.08 0.01	7.36 7.50 7.68 4.87	403 402 403 402	290 90 120	1.44 1.44 1.30 0.41	0.30 0.30 0.15 0.11	6.95 6.61 5.55 6.00	0.18 0.15 0.09 0.53	85.8 65.8 6.75 11.75	40.4 47.4 90.9 44.0	87 82 62 124	6.16 6.16 4.03 5.45	54.6 53.2 31.8 218	19.29 19.25 9.69 9.62

EXCELLENCE IN AMALYTICAL CHEMISTRY

ALS Coreda Ltd.

2100 Didleton Hey North Harcocker BC V7H SAT

Phone 604 994 5221. Fax: 604 984 0218. www.alschemex.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC V68 4NS

CERTIFICATE OF ANALYSIS TB09115254

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009

Account COAMO

Project TNR Mavie

Complete Complete	WE ME	68,7 583 17.8 69.0	ME MEN 19 19 19 19 19 19 19 19 19 19 19 19 19	00 AU 80 B 10 B 10 B 10 B
HOTSANT M6.65 0.16 0.8 0.070 0.16 0.3 89.2 4.22 1526 0.22 1. HOTSANT 20.1 0.16 0.8 0.070 0.30 3.0 89.3 3.82 1580 1.34 1. HOTSANT 12.90 0.14 0.8 0.080 0.25 2.0 10.8 3.75 1900 0.23 2. HOTSANT 12.90 0.14 0.8 0.100 0.00 4.0 0.12 2.07 2110 0.43 2. HOTSANT 13.00 0.16 1.7 0.070 0.16 2.0 10.5 3.05 1580 0.38 2. HOTSANT 13.00 0.17 0.8 0.088 0.21 4.4 37.7 2.08 1630 0.25 1. HOTSANT 13.00 0.15 1.7 0.080 0.09 1.7 72.4 4.60 13.00 0.05 2. HOTSANT 13.00 0.15 1.7 0.080 0.18 2.7 38.4 4.28 10.20 0.13 2. HOTSANT 13.00 0.15 1.7 0.080 0.18 2.7 38.4 4.28 10.20 0.13 2.	45 28 82 41 59 22 41 73	197.6 197.6	500 360	1.0
HIPSHID 19.50 0.17 S.B 0.368 0.21 4.4 37.7 2.98 9630 0.23 1; HIPSHID 14.65 0.17 1.2 0.089 0.09 1.7 72.4 4.68 1326 -0.05 2; HIPSHID 13.46 0.18 1.7 5.068 0.18 2.7 38.4 4.28 9620 0.13 2;	74 3.6	20,1	280 1910	1.6
70/2000 17/00 0.70 0.71 0.000 0.70 0.0 0.0 0.0 0.00 0.70 0.7	96 53 67 52 80 26 46 36	55.4 89.6 62.0 42.5 142.6	390 360 360 660 465	18 18 14 11
HUTCHST 16.40 0.16 0.8 0.80 0.16 0.8 58 51.3 2.78 1240 0.20 22 HUTCHSS 17.10 0.15 0.7 0.059 0.19 8.0 61.5 2.55 1420 0.13 2. HUTCHSS 16.10 0.16 0.8 0.009 0.16 0.2 64.7 2.85 1500 0.13 2.	47 3.2 17 3.6 25 3.7 49 3.0 36 3.3	95.5 95.6 95.6	360 376 470 400 350	21 25 14 12 14
HOTSHED 10.20 0.15 0.8 0.005 0.22 1.3 114.0 4.44 1040 0.23 1. HOTSHED 12.00 0.15 0.5 0.042 0.38 2.2 107.5 4.46 1300 0.10 1. HOTSHER 17.00 0.17 0.8 0.278 0.78 2.8 04.7 3.60 1020 0.19 2.	84 20 84 20 86 21 89 28 81 02	94.6 98.9 160.5 98.5 2.6	250 250 200 400 100	12 18 10 28 03
HISTORY 20.0 0.22 2.4 0.007 0.00 70.1 70.0 4.00 1640 5.76 5. HISTORIO 75.00 0.17 1.5 0.060 0.27 3.2 40.1 3.73 1790 0.30 2.	38 5.2 80 5.4 84 3.2 55 4.2	79.6 94.7 57.4 91.0	1040 1100 390 400	13 13 13 12

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Censorum 2103 Dollarton Help

North Vancauser BC VTM DAJ Phone 604 964 0221 Fax: 654 984 9218 I waste abschammer comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11694 620-659 W GEORGIA ST VANCOUVER BC V68 4NO

CERTIFICATE OF AMAILYDIS TRANSLESSA

Page: 2 - C Total # Pages: 2 (A - O) Plus Appendix Pages Finalized Date: 27-OCT-2019 Account: COANO

Project TNR-Marie

-									-	CERTIF	ICATE	UF ANA	LTSIS	I BOB.	15254	
lampie Description	Barthard Barata Ann Valle U.S.	Ro- tom 6.1	No. Annie 1 Section 1 Contract 1	100	in in	MC-Mont St comi 0.1	Se peri	MI MS(1 6x spm 1/2	Mi-Midt Dr spm 53	Mindel Ta em ent	MELASSIT To pare C.65	ME WEST 20 ppm 53	96,4681 5 5	ME MEAN TO MATE	MCARRIET ST	Self-Addition
H373646 H373446 H373446 H373469 H373460		94,0 13,1 37,3 5,7 33,1	+0.002 +0.003 0.003 +0.002 0.003	8.01 6.03 8.03 8.07 8.03	5.24 0.24 0.28 0.17 0.14	99.2 39.2 30.6 38.8 30.1	**	08 11 27 68 13	95.0 66.3 271 83.8 94.4	6.21 6.21 6.29 6.16	40.05 40.05 40.05 40.00	0.5 0.4 0.5	0.556 0.539 0.623 0.400	0.56 0.14 0.36 0.66	2.5 2.5 0.1 0.1	269 265 265 236 236
HSPSHET HSPSHES HSPSHES HSPSHES HSPSHES		23 528 53 213 82	+6.002 +6.002 +6.003 +6.002 +6.002	+0.31 1.01 +0.31 1.04 1.03	0.14 0.21 0.18 0.13 0.14	41.4 31.5 42.0 47.6 29.1		68 68 68 65 24	86.7 136.0 136.0 47.1 162.0	0.50 0.24 0.25 0.19 0.38	40.05 40.05 40.05 40.05 40.05	83 94 64 84 10	0.403 0.639 0.577 0.460 0.656	0.31 0.52 0.56 0.52 0.66 0.50	8.1 8.1 8.1 8.1 8.1	262 268 269 259 259 150
HSF3466 HSF34657 HSF3468 HSF3468		65.5 28 11.6 7.5 60.0	0.002 +0.002 +5.002 0.002 +0.002	8.07 8.27 8.01 40.01 46.01	0.13 0.21 0.17 0.25 0.27	42.8 32.1 30.0 33.2 26.5	41	1.0 1.0 1.0	107.0 195.0 152.0 145.5 145.5	0.32 0.38 0.39 0.31 0.37	0.06 0.06 +0.05 +0.05 +0.05	66 67 67 66 67	0.454 0.547 0.404 0.538 0.413	0.57 0.84 0.13 0.86 0.40	81 82 82 82	246 207 230 246 182
HSF3465 HSF3465 HSF3465 HSF3464 HSF3468		01.4 40.8 30.8 2.4 1.8	+5 063 +1 062 +3 062 +5 062 +1 062	45.01 +5.01 +5.01 +6.01	0.19 0.32 0.12 0.16 0.09	41.9 42.2 31.6 36.9 5.0	41 41 41 5	87 85 54 67 462	78.2 109.0 195.0 190.2 36.9	0.18 0.15 0.16 0.20 40.00	+0.05 +0.05 +0.05 +0.05 +0.05	0.4 0.0 0.3 0.3	0.367 0.368 0.277 0.560 -0.108	0.38 0.45 0.33 8.02 40.02	11 11 11 11	238 218 180 303 2
H373465 H373467 H373468 H373468		57.7 57.1 19.8 71.8	40 003 40 003 9 003 9 003	6.02 8.02 46.01 8.88	0.19 0.19 0.11 0.16	35.8 34.0 36.1 31.8	1 11 2	11 11 10 10	619 629 128.0 105.5	0.32 0.33 0.22 0.30	42.00 40.05 40.05 8.11	25 25 08 05	0.834 0.834 0.819 0.787	0.41 0.40 0.11 0.49	65 66 61 61	216 213 254 296

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE CHIMINIST

2103 Duterton Hay North Vancouver BC VTH DKZ

Phone 604 MH 0221. For 800 MH 1016, were afterween com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 629-659 W GEORGIA ST VANCOUVER BC VSB 4N9 Page: 2 - 0 Total # Pages: 2 (A - 0) Plus Appendix Pages Finalized Date: 27-OCT-2009

Account COAMO

Project: TNR Mais

CERT	TEICATE	OF	ANALYSIS	TB09115254

							CERTIFICATE OF ARALTSIS TBUSTISES
	Marthael	Mil-Market	Set Amor)	MEMBEL	ME MEET	Au-6201	
	Anayes	-		D	26	Au	
	(follos	dem	Spine.	gam.	Steen.	dam	
lampia Description	184	62	.0.1	3	5.6	0.801	
K073480		0.4	25.7	86	25.8		
1075407		0.4	32.1	102	19.4		
H375448		0.7	29.5	132	25.3		
H373489		0.4	30.4	10	74.2		
HSP3455		0.6	A0.0	546	198.5	+0.001	
H)73451		0.4	29,5	115	33.4		
HOTHER		0.4	23.7	912	23:9	2.001	
1073453		9.2	27.2	98	36.4		
HODINSE		62	37.3	100	35.6	+6,001	
H373455		0.4	22.6	10	9.7		
HS13466		0.4	37.0	97	76.4		
HOTHER		0.3	39.1	132	11.8		
H073458		5.4	22.9	713	17.5		
H373459		0.2	25.4	119	21.1		
14073460		63	20.7	100	26.3		
H375461		0.2	29.2	703	78.6		
HST5463		0.2	22.0	165	76.5		
H373463		0.1	17.1	82	15.5		
HS75464		0.2	26.7	123	79.0		
HS7S465		0.1	0.7	137	+0.5		
KSTS468		0.4	36.5	131	90.3		
H375467		0.4	37.6	136	954		
HSTSHIS		0.3	26.6	105	10.4		
H073468		9.3	23.9	248	19.4	1007	

EXCELLENCE IN ANALYTICAL CHEMISTRY

2100 Goldense Hay North Vancouse BC 97H SK7 Phone 604 884 5021 Fax 614 Mile 5216 were afschames comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 27-OCT-2009
Account: COAMO

Project TNR Maris

CERTIFICATE OF ANALYSIS TB09115254

Welhad	CERTIFICATE COMMENTS
ME-MS61	Interference: Cai+10% on ICP-MS As ICP-AES results shown.
ME-MS61	REE's may not be totally soluble in this method.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Corosto Ltd.

2700 Disflation Hay North Vancouver BC V7H GAT

Thosa: 654 564 5221 Fax: 654 564 5218 www.atschemes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC VEB 4H9

Pinanzed Date: 27-OCT-2009 This copy reported so 15-04C-2009

Account COAMO

CERTIFICATE TB09115255

Project: TNR-Mains

P.O. No.:

This report is for 88 Rock samples submitted to our late in Thunder Bay, CN, Canada on 9-DCT-2009.

The following have access to data associated with this certificate:

PRICO BREAKS INE CEMAN

GASE JUTHAS

HAVE WATERWAY

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
L00-22	Sample login - Rod w/s BarCode	
DRY-25	High Temperature Drying	
CMI-QC	Crushing QC Test	1
PUL-QC	Pulverizing OC Test	
CRU-31	Fine crushing - 70% +2mm	
SFL-21	Split sample - HTMe splitter	
PUL-31	Pulverize split to 85% 475 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	As 30g FA ICP-AES Final.	KOP-AES
ME-MSET	46 element four acid ICP-MS	

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HAMS MUNDHENK PO BOX 11864 670-650 WIGEORGIA ST VANCOUVER BC VSB 4NS

Signature:

Colin Romshow, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE Carradic Ltd.

2103 Dollarun Hey Swith Vancouer BC V7H GK7

Phone: 654 954 (021 Fac 604 964 5216 were abshrines open

To COAST NOUNTAIN GEOLOGICAL LTD. PO BOX 11684 629-659 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009 Account: COAMO

Project: This Mains

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15255	
lampiu Description	Marriad Analysis (Josephan)	WEI-ET Recol MI FQ 0.00	Ag part of the control of the contro	MARKET A %	M(4601 A) peri 02	MEASSET Bu gott 10	MC AND T	90-A607 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8-	ME MORT	ANI ARSET EXP IDM 1 20	ME-MINIT Ch SIGN SIGN	ME AREI Co som all	ME-MERT D MICH.	ME-accer Co part 100	Mindser Go park 6.5	140 AUTO
HS72501		8:36	8.12	7.86	6.4	190	2.87	0.00	1.02	0.10	14.60	36.6	43	21.1	166.0	9.28
HSP2502		0.36	5.06	7.89	40.2	40	5.70	6-55	5.62	0.10	91.50	63-8	16	4.50	33.7	12.36
H3/72500		5.25	0.09	7.60	+0.3	40	6.32	20.00	5.67	0.15	10.40	17.9	120	9.92	25.2	0.96
H372504		9.36	0.04	6.60	10.2	170	9.31	11.50	7.40	2.20	9.67	36.5	116	0.75	22.5	8.76
H3/2505		0.40	0.06	7.33	102	160	0.78	5.76	8.73	0.12	1.70	40.4	29	6.13	52.6	12.60
NS/2506		0.52	6-56	136	+63	1(31)	1.19	5.25	1.0	1113	30.7	32.5	42	50.4	12.3	11.75
H372507		6.39	0.04	8.08	40.2	300	0.66	0.51	1.0	6.13	9.31	66.0	158	12.16	33.1	9.06
H1/72508		5.40	2.04	8.29	+0.2	300	1.23	0.23	7.21	0.10	57.8	40.6	150	14.05	43.0	6.53
HS72509		9.86	0.07	8.00	3.3	50	5.54	8.16	6.76		5.61	45.2	19	9.27	79.6	9.30
HO/SENS		0.44	9.12	7.76	=6.2	100	2.45	40.01	6.35	5.13	8.10	50.3	79	8,61	61.0	11.35
HSP2511		5.46	6.04	8.59	40.2	60	5.51	40.21	6.50				90			
HOPPING		0.44	0.00	8.32	2.0	50	1.22	9.25		1.03	4.71	AL P		9.52	40.4	8.41
4972519		10.0	6.07	7.64	14	50	533	10.01	8.70	0.13	3.00	56.2	**	5.47	38.7	19.30
H373514		5.97	504	5.59	0.4	70	1.26	-0.15	5.70 5.36	0.11	6.58	317	32	3.42	81.9	31,40
H072515		134	0.05	8.32	46.2	60	2.49	1.8	7.63	0.13	9.20	91.2	453	4.72	31.6	7.45
					10000						9.20	68.2	46	2.00	39.3	39,20
H372516 H372517		0.67	0.71	8.78	10.2	50	1.71	5.46	0.51	0.10	8.38	64.8		2.04	69.8	13.10
H172516		0.84	604	7.50	+6.2	50	8.55	8.57	8.10	6.15	10.55	40.8	124	9.65	40.3	8.51
H372518		1.16	0.01	5.83	3.5	80	0.96	8.03	2.82	5.06	40.4	12.1	66.	5.56	4.0	136
H372520		1.20	1001	7.35	40.2	190	8.33	0.05	0.00	0.07	13.30	26.0	88.	13.66	56.7	6.60
				1,00	0.9	110	94.55	9.87	2.09	40.02	3.13	33	15	17.80	17.3	6.70
H1073521		0.30	10/01	0.12	+8	16	4.06	=0.81	25.4	en 13	1.61	0.7		0.47	1.0	6.13
H372522		2.49	2.06	7.52	+0.2	140	1.01	0.00	7.30	0.41	58.5	28.3	751	19.35	50.8	8:39
H972525		0.32	0.05	8.56	49.3	590	0.49	0.79	4.37	0.11	10.15	38.6	10	10.80	75.4	91.05
H372524		5.78	9.01	7.60	-9.2	260	1.40	2.16	3.28	0.11	37.2	16.6	92	16.65	22.5	3.49
1072525		0.36	0.04	7.80	49.2	70	5.71	-6.01	8.20	0.12	4.97	10.6	15	9.55	47.5	10.86
H372526		0.48	9.01	2.79	0.8	4.90	0.04	0.64	0.14	0.00	0.30	1.5	15	1.24	3.6	6.22
H172527		0.05	9.0%	5.41	-6.2	40	2.60	0.13	8.35	0.15	7.66	48.8	963	3.36	47.6	6.80
KSTSTOR		0.27	6.04	9.07	9.0	40	0.26	0.00	8.58	0.12	7.34	47.0	64	5.36	57.6	6.63
H373529		0.40	0.00	7.26	0.4	170	9.20	3.63	7.07	0.11	5.28	52.6	66	0.42	33.6	8.94
H372530		0.38	0.00	1.14	3.6	90	0.41	0.36	7.13	9.35	14.66	34.5	87	2.54	20.4	7.90
Uratot.		0.57	0.03	7.54	-5.2	N	9.86	9.00	1.34	0.12	13.10	46.0	64	4.86	21.0	11.76
H072532		0.36	0.05	7.34	+6.2	40	9.39	0.13	E.12	0.08	6.53	47.0	46	5.56	30.1	9.51
HEF2505		0.49	9.03	7.33	10.3	90	0.24	0.01	7.07	0.10	4.04	45.2	65	1.76	57.5	1.59
H072504		0.88	9.06	7.58	+0.2	170	9.25	0.05	8.30	0.09	10.06	52.4	80	8.00	60.3	10.00
H072538		0.32	0.06	7.81	+0.2	290	0.38	0.02	6.70	0.11	6.05	47.2	65	6.19	54.6	10.60
GF2636		0.71	9.09	7.40	45.5	120	0.38	0.02	5.66		11.65	46.2				-
1.0507.04		0.66	0.00	7.41	+0.2	60	0.51	0.06	8.03	0.10	9.49	57.7	72	240	63.7	8.99
H372538		0.39	0.04	7.7%	40.2	90	0.53	0.00	6.42	0.34	12.10	48.8	45	2.58	111.0	9.21
HO/260W		0.24	+0.01	0.13	5	20	-0.08	10.01	14.3	10.00	1.25	0.0	-	10.06	28	5.95
H072540		0.46	0.08	7.68	40.2	10	0.48	0.09	6.16	0.12	1.30	49.6	44	1.81	26.9	2.15
							-	-		- C	A 1870	40.0	-	1.00		16.70

EXCELLENCE IN ANALYTICAL CHEMISTRY

Act Careta Util

2155 Dolume Hay North Vancouver BC VTH DAT

Phone 604 964 0021 Fair 904 984 0216 www.afschemes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4ND

Page: 2 - 8 Total # Pages: 4 (A - D) Plus Appendix Pages Final god Date: 27-OCT-2009

Account: COANO

Project TNR-Mayis

Bangia Gaseription									-	CERTIF	ICATE	OF ANA	LYSIS	TB091	15255	
	Martined Managem Union U.S.A.	MC-MOST Day DOTE DOSE	MC4001 Ge SET SOI	140 MS81 147 307 0.7	96.400° 34 90% 5.000	86-6601 6 601	MCADIT La gas 6.5	MEMBET 51 8875 9.2	MEASE) Ms. Si EST	MCASS!	MEARING Services 109	ME-MERT No. 5 FET	96.9501 Re 300. 0.1	M MARKET M MARKET M M M M M M M M M M M M M M M M M M M	60-4001 p gps. 12	ME AREA FILE E.S
Hardson		19.80	8.17	11	0.104	1.63	1.1	96.9	2.59	1840	8.93	1.74	5.1:	34.8	675	1.7
H3/2562	- 1	29.7	0.19	2.0	0.114	1.25	4.6	37.4	2.56	1920	9.45	1.95	6.4	29.8	700	1.5
H372509		18:90	0.19	1.3	0.077	5.20	4.3	23.4	4.36	1460	1.19	2.60	3.5	16.0	810	3.7
H352504	- 1	19.00	0.16	0.8	0.064	0.30	4.5	29.1	3.49	1650	9.32	2.66	2.0	51.5	330	2.2
H172508		23.3	2.76	1.8	0.100	1.00	2.9	39.6	3.26	1740	0.25	1.81	4.0	31.8	380	10.9
H372508		23.6	6.21	3.4	0.120	2.68	11.0	31.7	2.62	1851	0.47	4.74	7.6	49.5	1330	3.6
H3F250P		17.40	2.17	1.2	0.074	1.22	3.5	49.5	3.75	1640	0.45	2.09	4.1	74.5	400	5.7
HOTOSON		16.26	9.21	1.3	0.679	2.67	16.6	94.2	3.42	1940	0.52	1.95	4.0	176.6	790	4.5
H572509		16.20	0.14	0.8	0.574	5.54	2.7	40.5	3.23	1925	3.50	1.75	35	SET	300	2.0
H372510		23.4	9.26	1.3.	0.096	5.39	2.5	11.5	3.73	1760	5.45	1.98	4.6	72.1	400	1.5
HORSELL		17.26	5.14	6.3	0.666	1.75	1.7	62.3	1.45	1.000	114	2.27	2.7	Filip	300	1.1
H372512		16.30	6.16	0.8	0.064	9.23	4.0	45.9	6.16	1760	9.54	1.82	3.0	75.6	350	12
H372513		19.65	0.19	1.8	0.106	5.79	2.5	535.6	3.69	1790	6.16	2.55	4.2	13.8	470	1.0
HSISSNE		15.85	0.14	12	0.645	5.23	4.7	49.7	2.80	1210	0.45	1.87	3.1	96.9	290	2.0
NICISTS		18.50	0.16	1.5	0.086	1.20	3.6	56.1	2.98	1900	631	3.13	3.6	50.5	410	1.1
H172516	_	22.8	5.19	7.0	0.134	9.27		72.6	157	2770		1.67	1.0	14.8	236	1.6
H07251F		16.60	0.15	1.1	0.676	5.13	14	71.0	3.90	1500	0.25	0.80	3.6	91.9	-00	5.1
HSP2518		13-25	0.13	13	0.336	0.12	16.0	361	1.64	426	0.17	2.99	4.5	65.5	740	4.9
H372519		16.25	0.16	12	0.061	1.01	1.1	40.7	2.66	1240	0.62	5.54	3.6	10.0	400	1.0
HIDSON		19.85	-0.06	4.2	49.000	5.54	13	13.1	0.16	90	0.27	2.54	27.6	7.6	1010	8.0
			EN	6.1	6.210											
M372521		5.36				0.03	1.7	8.8	1.75	137	-0.05	1.65	9.4	0.0	79	10.5
H372522		16.45	6.16	1.2	0.271	5.47	25.3	36.7	3.93	1190	0.19	1.57	5.0	107.0	1640	5.8
H372523 H372524		26.4	0.14	43	0.089	5.30 5.50	9.5	26.7	2.11	1990	0.32	3.65	4.0	21.7	100	2.3
HIPTOTOR		07.66	5.16	1.6	0.007	5.26	1.5	76.2	3.03	1940	9.21	2.61	3.7	27.4	400	1.2
													_			
H372526		1.30	10.85	40.1	~0.006	603	×0.5	1.4	11.03	24	6.51	0.04	8.5	2.4	56	1.8
H072527		14.90	6.16	9.5	0.063	9,19	3.9	13.8	4.22	1680	9.24	1.23	2.0	82.9	250	1.0
H3/2529		16.80	0.10	8.4	0.047	0.16	2.6	16.7	1.82	1160	9.29	1.63	2.1	168.5	550	1.5
H\$72525		18.80	6.13	0.8	6.871	5.50	17	24.7	1.64	1560	0.15	2.08	2.6	111.0	340	2.4
1072300				_		9,10	5.9		2.81							-
HOP2501		25.4	0.14	1.5	0.103	2.30	4.9	11 F 16	2.75	3 790	0.20	1 44	5.4	30.0	636	1.4
H172530		15.65	0.14	8.8	0.875	8.21	2.4	16.7	3.52	1630	0.30	1,95	2.9	94.0	340	5.6
H072533		17.30	0.14	0.4	5.009	6.27	2.0	12.2	1.99	1640	0.22	1.69	2.7	58.5	290	0.8
H372534		19.30	6.16	6.6	0.067	5.24	3.9	16.8	2.63	1780	0.18	1.12	3.4	63.0	870	0.8
H372536		19.55	0.15	21	0.084	5.40	1.9	54.7	3.13.	1760	0.59	2.40	5.5	49.2	400	2.1
H372536		19.25	0.18	14	0.594	9.72	4.3	13.5	100	1500	0.15	2.50	5.3	62.9	380	1.4
HOPOSOT		19.90	2.0	5.6	0.874	6.20	3.7	12	3.77	1780	9.21	1.45	2.6	93.6	270	0.9
H373538		22.7	9.15	1.8	0.043	0.19	4.0	5.7	2.93	1540	0.58	2.72	8.6	36.6	160	1.7
Hofoton		0.35	1.05	+0.1	+0.005	5.02	3.6	10	1.64	110	+0.00	9.06	9.3	5.3	80	49.5
H372546		16.15	0.16	1.7	0.286	3.96	2.0	16.1	3.33	7660	0.06	2.46	6.3	27.7	400	1.4

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE Camerie LM

2103 Dotterton Hay 1904h Yamsonier BC V7H GAZ

Phone: 604 964 9221 Fax: 604 964 5215 were also hernex core

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11684 629-659 W GEORGIA ST VANCOLIVER BC VER 4N9 Page: 2 - C Total # Pages: 4 (A - D) Phis Appendix Pages Finalized Date: 27-OCT-2029 Account: COAMO

Project: TNR-Mavis

Sample Description									CERTIFICATE OF ANALYSIS TB09115							5255
	Bathed Analysis Sales 1888	NE MILE Po join 61	MEARST As pert \$100	MEABLE S S, 121	MEARST Sh pen 200	MEAREN SK SOP 6.7	Six. Six. Serv 1	MEADER Se seri S2	60 MOST 60 80** 1.3	36 A007 36 849 930	WEAGHT 14	MEMBE 19. 197 122	MI-MMI 1 1, 2000	ME-MSH TI ME TILL	MEMBER M pare 8.1	10°C
KOTISE1		198.0	40,002	0.06	6.24	42.0)	2.1	114.0	0.30	40.26	0.6	9.795	0.82	0.1	121
H372902	1	10.2	40.802	28.0	5.13	33.9	2	1.3	248	0.41	40.85	0.6	1.120	5.07	0.1	309
H372503		9.9	8.002	9.33	0.17	43.6		0.5	017	6.22	0.05	0.3	0.594	0.06	6.1	302
m3.72504		20.6	40.802	9.62	0.18	36.9	2	0.7	194.5	6.19	40.05	6.3	0.490	2.14	0.1	298
H372508		104.6	6.002	0.61	6.16	90.2	2	1.0	137.8	0.29	+0.05	0.5	1.365	9.65	0.1	60%
901U906		62.9	+0.802	0.12	8.13	29.6	- 3	21	175.0	5.49	<0.16	1.3	6.190	1.46	.0.4	246
HST2967		90.7	*0:000	0.01	0.14	35.3	2	1.2	Y09.0	0.26	10.05	167	9.505	0.85	0.2	251
H312006		65.7	10.902	0.89	0.14	32.3	2	2.7	538	0.30	+6.86	2.1	3.505	0.41	0.5	224
HST250B		36.1	40.002	0.02	9.21	42.0	2	0.8	90.5	9120	49.56	0.8	2.482	0.33	0.3	241
HS72516		45.7	+0.902	0.0+	9.15	35.1	2	1.0	146.0	10.01	<0.05	6.5	5.973	9.22	0.1	589
HORDS NY		126	40.002	~0.2A	0.14	30.5	- 2	.0.8	754.5	0.14	+0.55	0.3	0.479	0.16	0.1	202
H072510		25.2	<0.002	0.62	9.2%	612	2	5.4	20.0	6.19	19.55	0.4	0.476	0.17	0.7	316
HOTOSTO	- 1	42.7	40.1002	0.02	8.20	48.5		5.9	152.0	1.26	10.85	0.5	0.094	0.14	0.1	355
W072514	- 1	29.9	<0.002	0.62	5.25	25.5	- 7	0.7	138.0	5.23	<0.05	0.8	0.377	0.11	9.1	157
H372515		10.5	40 802	0.02	9.15	52.6	2	1.3	125.5	1.50	10.05	0.5	0.064	0.06	0.1	294
H072516		6.3	6.002	0.88	1.19	MA	-	1.7	142	0.34	+616	6.6	0.808	0.13	6.1	363
HEIGHT	1	20.0	+0.302	0.01	824	45.2	- 1	2.8	108.0	5.21	9.09	0.8	0.462	0.14	0.3	226
HS72516		9.5	40.00Z	-4231	5.10	7.5	2	0.8	361	0.29	40.05	4.6	0.352	0.07	1.0	38
H372978		215	+0.802	0.88	9.55	21.3	-	0.8	127.6	1.27	10.05	1.7	0.353	1.40	0.1	163
H072525		15.9	40.000	49.05	0.26	1.0		3.2	107.0	H108	40.05	1.4	0.608	0.13	5.6	15
H37382H	-	1.5	10.80	+5.65	10.00	0.3	-	-5.2	65.6	1.11	40.88	40.2	0.006	0.00	0.1	- 3
martenza		39.6	+0.002	10.01	2.18	28.5	-	1.8	386	2.89	10.35	4.4	0.463	0.29	1.0	797
×072520		38.2	×6.000	0.10	0.20	49.1		1.4	122.5	6.77	40.06	5.5	0.626	0.25	0.1	296
H312524		104.0	+6.902	0.01	8.07	10.7		1.0	404	0.64	+0.56	4.3	0.379	9.60	13	54
P072525		9.0	H0.002	40.01	6.03	57.0	2	0.8	151.0	0.36	*D.18	0.4	0.003	0.05	0.1	304
H372526	_	0.4	40.502	0.51	5.12	0.3	-	0.1	33.	-0.16	10.10	100	0.006	0.04	40.1	-
H372527		4.7	+6.002	0.53	0.19	52.5		7.7	118.0	6.32	40.05	0.3	6.392	5.04	6.1	254
H372528		1.3	+6.362	0.52	0.24	31.2	- 2	0.5	126.0	5.17	40.35	63	9.207	0.07	63	181
H372529		24.9	+0.002	9.02	6.16	63.3		0.5	116.5	5.16	+0.16	0.2	0.434	0.18	0.1	275
H072536		5.3	+0.562	40.00	6.22	34.0	3	0.6	206	1.78	40.35	0.4	0.607	0.63	0.1	365
H37[531		15.7	40.502	+0.61	0.19	35.4	1	1.2	149.5	1.40	40.05	65	1.060	9.08	0.1	300
H072630		16.6	+6:002	0.01	0.13	44.0	3	0.5	237	0.20	+0.05	0.2	0.562	0.07	6.1	312
N372533		9.6	<0.002	0.01	0.09	45.2	2	0.5	122.5	2.17	10.05	6.2	0.491	0.04	9.1	284
H372534		14.3	+0.002	0.02	6.15	45.5		0.8	100.0	0.20	+0.65	6.0	0.600	0.05	6.1	324
H0/1558		20.0	40.502	0.54	6.29	41.2	1	0.8	191.0	5.33	+0.05	13	0.621	0.10	0.1	262
HOUSE		10.4	+E-002	11.05	8.07	35.0	-	6,7	224	0.33	10.35	14	0.783	0.08	6.1	286
HST283F		63	+0.902	6.01	2.08	40.0	2	0.8	206	1.19	-0.05	12	0.589	0.04	9.3	304
140/2536		8.6	10.002	0.01	1.26	38.0	-	1.1	115.5	0.41	10.05	6.5	0.871	0.03	0.1	336
HS7263W		0.3	+0.052	0.62	40.05	0.5	- 5	+0.3	845	+0.05	10.55	16.7	0.010	40.02	8.1	3
H2/254E		2.7	10.002	10.01	1.08	45.4	- 1	5.8	219.5	1.25	10.00	0.6	0.629	+0.02	8.7	309

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada LN.

2103 Dellarter Hey North Vancouver BC V7H SAT

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 628-456 W GEORGIA ST VANCOUVER BC V68-4H9

CERTIFICATE DE ANALYSIS TRO0115255

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009

Account COAMO

Project: TNR Mayes

							CERTIFICATE OF ANALYSIS TB09115255
	To bed	W0.4001	met. Amon't	tell server	MI 9561	AHERT	
	American	- 14	*	En.	B	Au	
	2001	Japan.	pipe.	ppm.	2015	100	
Lengt Couripton	1.00	81	87	- 1	11	8,687	
KS72501		5.5	318	107	36.5	0.004	
*(37290)		- 6.6	24.4	140	85.0	0.001	
#1720X		5.6	24.8	140	38.7		
H072504		0.4	25.7	122	123		
HOTSNIS		1.3	27.8	296	56.9		
F131725CR		12	43.7	1.18	114.0		
8077507		65	26.6	108	36.7		
H372608		3.4	96.2	194	45.3		
H072509		0.5	29.7	109	39,1		
F072616		5.5	26.5	132	36.6		
AUT PER T		0.2	25.4	19	29.7		
PO725/07		0.6	30.1	120	71.8		
#QCB/O		2.4	36.0	127	32.5		
HOTZSINE		5.3	25.7	124	31.6		
H0725/IS		0.5	218	126	34.7		
H372876		0.5	40.8	203	20.7		
M3125/17	1	5.4	27.0	106	29.8		
HO 72519	i	0.5	9.4	45	90.2		
KST2518	- 1	0.6	18.0	56	34.1	0.004	
=S7252V		0.8	128	22	11.6		
HSTPh21		10.5	19	43	1.6		
HOTZSSI .	1	0.2	34.7	84	62.2		
*072523	- 1	0.6	33.8	129	26.6		
HISTORY .	- 1	9.2	12.9	81	540.6		
H072525		0.2	15.0	151	46.5		
H072526		196	0.6	.5	40.1		
*S12521		0.5	24.6	105	0.7		
H372528		0.4	13.6	81	367		
KS72529		0.1	29.8	341	15.6		
H072130		0.3	22.8	90	26.2		
P372531		9.3	33.7	133	AT R		
HOTESON .		9.3	25.5	704	30.7		
*377933		0.1	20.2	99	0.0		
HS72534		9.3	29.8	118	13.2		
катран.		0.5	34.6	122	77.5		
-1733		0.3	24.6	104	17.3		
W372537		0.4	10.0	104	12.8		
HORISON .		0.5	30.6	115	64.2		
H072538		40.5	5.2	42	1.8		
HORDSHIP		6.3	29.0	122	26.0		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Cample Lie

2103 Dataston Hwy North Transcover BC V7H SAT

Phone 604 964 5201. Fac 604 964 0218. Invest also herrors com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11804 625-456 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Oate: 27-OCT-2008

Account: COAMO

Project TNR-Mayor

Bangia Descriptus										CERTIF	CATE	OF ANA	LYSIS	TB091	15255	
	Marriad Sensiphe Senso 1,600	WEIGH Receive N Edit	An Antari An Anni Anni Anni	ME MOST No. No.	ME MOST As part 5.2	Sta Springer Tig	ME ABOUT Sta SOTE	80, 46601 80 8071 8371	ME-order GA 5 (3)	ME order Gr ppm 1155	SELECT CH SET	Sin Artist Sin part 2.1	WE ASSET Gr gain	MCMOIT So sen 130	AN-MOST Or part 63	74 5.
H312541		0.61	6.06	7.12	45.5	190	0.44	0.00	634	632	11.65	40.4	54	8.45	NX.T	1-01
H172542*		0.64	0.06	7.07	10.2	TO	0.50	0.05	6.24	9.12	39.1	37.0	24	3.41	47.2	16.50
XX12543		0.90	0.04	8.40	162	40	0.42	5.07	9.54	0.16	14.79	81.2	81	1.405	45.3	8.38
H)72544		0.61	0.16	0.71	49.7	565	0.37	0.02	9.06	0.11	9.06	49.5	1(24)	1.00	52.9	8.74
H37254th		5.40	0.08	7.85	40.2	86	0.88	9.01	7.37	0.11	T.30	50.5	127	6.00	36.0	9.09
HITZSHII		0.37	0.03	7.56	46.2	36	0.26	9,03	5,04	0.15	9.53	44.6	60	1.27	19.2	7.65
HOTZSAT		9.47	0.06	7.62	+5.2	- 10	0.27	0.06	7.62	0.14	10.86	92.9	154	2.91	121.0	5.68
HS272549		0.46	9.04	7.79	10.7	50	0.30	0.00	9.00	0.15	5.86	54.8	1666	11.85	28.4	15.00
H372549		0.57	0.06	8:54	19.2	110	0.62	0.01	7,57	0.08	12.95	49.3	156	8.65	45.4	7.91
H372650		0.43	5.07	8.60	+0.2	90	0.54	0.01	7.12	0.07	15.63	45.4	180	5.43	96.5	7 60
HUPSENT.		4.50	0.08	7.66	15.2	50	9.31	1.06	5.97	0.29	8.50	47.0	50	19.05	91.6	10.79
H372502		0.43	0.00	4.87	0.2	220	0.26	181	8.63	0.16	2.15	4		5.24	40.0	2.97
HU72M3		0.45	0.12	8.00	0.2	190	0.56	0.18	8.07	0.11	75.75	43.9	89	14.75	75.1	8.25
HG1255H		9.57	0.06	8.24	49.2	30	0.45	5.05	7.61	0.12	14.00	45.6	60	5.95	59.5	8.23
H572595		0.24	0.04	7.76	49.2	60	6.32	9.02	6.71	0.15	6.21	86.6	90	1.01	24.8	8:92
H172556		0.51	0.00	7.96	46.3	70	0.37	3.04	7,87	0.09	19.65	45.6	436	4.12	74.2	7.80
H37256F		6.52	0.03	8.51	0.2	120	0.53	6.02	9.90	0.09	16.20	R3.0	126	0.06	32.h	E.30
H379558		0.53	0.04	9.15	10.2	120	0.41	0.06	7.88	0.11	14.15	46.5	100.00	9.70	04.0	7:54
HIP250III		0.56	+0.01	1.07	7	10	0.06	5.02	19.76	0.09	1.22	3.7		0.13	9.6	11.64
H372500		0.46	6.02	8.34	4.0	60	0.26	0.01	6.17	0.17	6.61	50.1	62	5.40	24.0	7.81
H172561		0.37	0.04	111	4 2	50	2.76	0.60	7.79	0.11	4.14	414	144	1.71	41.7	T.Att
HXT2062		0.39	467	7.40	+0.2	40	9.22	0.25	7.46	0.39	9.51	48.5	09	2.02	66.1	6.31
HS72583		5.46	9.04	7.35	15.2	50	8.25	5.36	27,168	0.14	15.60	46.5	100	16.95	56.3	9.70
H372564		0.80	9.09	7.62	0.9	40	0.68	9.25	9.46	0.34	13.65	47.0	43	0.89	97.6	33.86
H072565		0.58	0.06	1.73	0.2	40	2.46	2.08	9.34	0.54	15.40	47.0	39	541	67.2	91.10
H072566		0.94	9.67	7.74	0.4	80	2.49	0.00	5.18	0.16	11.45	40.5	8.6	2.28	56.6	10.80
HIP25KF		0.46	3.04	7.90	16.2	80	0.23	8.03	6.34	0.15	9.71	48.9	80	2.66	31.9	K-00
H372568		5.30	0.19	1.92	0.2	70	0.11	0.10	9.79	0.13	3.47	7.6	38	2.45	40.0	6.30
11272569		6.79	0.07	7.15	+0.2	170	13.42	0.04	5.69	5.11	6.05	40.1	15.77	4.23	39-3	8.12
H372570		0.56	9.06	5.95	0.9	160	9.86	0.16	4.39	0.51	16.75	34.5	80	4.14	102.8	5.90
HISTORY		0.52	9.69	2.16	41.7	130	5.40	5.04	4.64	0.12	6.77	10.2	60	4.6	45.5	5.06
H372572		9.07	9.62	4.06	0.6	130	5.29	0.02	1.67	0.15	3.95	41.2	166	10.20	36.7	3.81
H072573		100	2.04	7.08	0.3	40	0.20	8.00	3.46	0.15	9.01	52.3	40	1.37	164.5	8.86
H37257A		0.67	+5.01	2.07	6.3	+30	45.05	+5.01	9.06	-YE/02	0.85	0.6		2.99	2.6	2.58
H072575		18.81	0.06	7.49	48.2	90	(0.44)	9.66	9.58	0.10	11.45	610	- 10	2.10	36.0	10.10
H072576		6.64	4521	8.07	46.	16	+0.3%	E-02	16.30	9.07	0.93	4.7	3	6.50	1.6	0.43
HEIZBOY		4.60	0.06	6.13	0.6	90	0.54	2.01	7.00	0.11	1.82	52.4	16	3.65	59.5	91.75
H372576		0.61	0.08	2.79	49.2	130	0.32	0.02	5.79	0.11	5.57	36.1	67	23.4	41.0	12.25
H372579		0.46	6.00	7.69	49.2	26	0.19	0.02	5.01	6.19	3.24	81.7	46	0.36	5.6	8.01
H272580		0.09	0.03	8.06	9.3	90	9.56	11.20	5.79	0.10	5.83	613	45	2.06	16.4	6.74

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Clarable Ltd.

2103 Dollarton Hay North Vancouver BC VVH GAP

Phone: 604 964 0221 Pay: 604 984 6216 Invest alsohermes com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOUVER SC VEB 4N9 Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2009 Account: COAMO

Project: TNR-Marie

CERTIFICATE	OF	AMAL YSIS	TB09115255

	1		-						200 2000	Lecanal	Line and a	And America			And Assess	
	Baltod	ME MINT	MEMBE	MEASE	All House	MC MINT	MEMBE	MEMBE	NO MOST	MEMBE	ME MISSE	MEANIT	ME-ARET	NE HOLE	ME MILL	16, 161
	Bearight	Size .	Die	*	-		4.0	М	Mg.	Mn	My	2	No.	76		100
ampia Description	159	2644	55m	1011	ppm.		347	100	120	9911	638	841	7.	11	100	11
	100	100	1.04	41	1.00%	8.61	111	3.2	4.01	-			- "			
H3372547		20.4	0.17	1.0	-0.167	5.44	4.8	21.1	3.00	K700	0.21	2.15	6.3	36-3	380	1.8
K072547		29.6	0.16	2.0	0.162	9.34	0.1	17.5	2.34	1000	1:22	2.04	7.5	26.8	750	4.6
R072540		78.95	0.54	1.5	0.074	0.12	4.2	17.6	3.21	1420	5.18	2.46	5.2	853	490	2.0
H373544		17.98	0.26	1.2	0.070	0.21	31.4	17.5	327	19.70	0.33	2.36	3.6	72.7	339	1.6
HS1254S		54.40	0.13	9.7	0.074	0.31	2.7	12.9	3.85	1990	6.13	1.66	3.2	57.7	590	4.1
4371546		16.00	6.91	6.7	0.071	0.11	3.4	9.6	3.74	144	6.9	2.09	3.3	51.3	123	1.0
K072640	- 1	16.65	0.16	0.7	0.084	0.19	4.5	27.3	3.76	1685	0.32	3.40	3.5	67.5	400	1.0
H372546		16.10	0.15	1.0	3.586	0.24	1.9	166.0	4.26	2936	3.10	1.60	3.7	75.0	310	12
H372549		18.0%	0.13	0.7	0.050	0.37	6.1	59.0	3.50	1330	2.18	3.65	3.7	162.0	350	1.5
H372500		18.40	0.13	0.8	0.049	6.38	5.8	35.3	3.24	1048	3.24	1.61	3.6	184.8	360	1.6
4372981		16.85	6.15	1.8	0.094	5.26	3.0	10.2	1.50	(1)	0.22	2.32	4.2	652	200	2.7
H372552		30.4	5.06	0.2	0.063	4.10	1.4	3.4	8.04	365	0.38	1.54	9.7	2.9	380	4.1
HOTORIO		97.75	0.72	2.1	0.060	0.36	4.7	79.5	2.67	1430	6.67	7.96	4.8	100.5	535	4.6
H372554		17.95	0.87	0.7	0.060	6.30	6.1	25.6	3.56	1400	0.34	5.56	4.0	90.5	380	1.0
HS72568		13.25	8.76	0.5	0.068	0.91	2.2	21.2	3.27	1166	E.18	2.25	3.2	54.2	200	4.5
072506	_	19.40	6.12	0.8	0.059	6.34	6.6	30.5	1.94	1101	6.32	0.95	4.5	130.5	61	1.7
HSZ156F		20.1	8.54	1.2	0.872	0.56	6.8	80.0	3.46	1200	0.19	2.11	4.1	141.0	450	R.P.
H372558		19.30	5.53	0.5	0.062	0.60	6.6	76.8	3.10	1383	6.30	1.65	3.7	153.5	200	7.2
H372558		0.23	0.00	46.1	43.50%	6.62	0.6	1.0	152.86	196	40.05	9.01	9.2	2.6	170	1.1
H3/72586		16.90	0.10	0.8	0.063	5.19	2.5	86.8	4.18	1900 .	0.25	3.55	2.5	168.0	250	0.8
H172561		19.20	6.13	0.7	0.665	8.55	3.4	34.7	171	1.600	6.94	1,67	3.2	112.6	316	1.8
HSF2962		16.55	0.54	67	0.069	0.21	2.6	15.3	3.60	1000	6.23	1.05	2.7	414	310	2.3
H372565		191.45	8.16	0.8	0.068	5.16	5.8	46.4	3.57	1890	6.30	1.62	4.0	53.7	520	1.5
HS72564		25.7	6.15	5.8	0.099	0.31	5.6	61.4	2.66	1700	0.00	2.99	6.5	45.3	460	4.2
H372965		25.9	9.59	1.6	0.121	0.22	5.6	96.2	2.62	1780	6.32	1,87	5.3	41.9	670	21
1072506		25.5	8.68	1.5	0.056	6.27	41	(6) 8	2.71	1500	0.66	2.31	5.4	36.1	550	EA
HODBE		16.50	8.12	0.9	0.081	0.23	2.3	16.7	3.98	1526	0.16	2.28	2.0	118.6	300	2.3
KO72968		12.90	6.10	1.5	0.367	8.10	1.8	7.6	1.56	964	5.06	1.42	3.3	5.9	190	3.1
H372569		19.30	0.10	1.6	0.080	2.44	17	30.3	3.09	1670	0.46	2.27	5.3	56.2	400	1.8
H072570		16.65	0.11	1.5	0.058	9.40	8.5	35.8	188	891	0.96	230	6.7	616	490	8.5
H172571		19.85	6.12	1.9	6317	0.37	3.5	165.0	1.50	1550	0.28	2.20	5.4	79.1	560	13
H372572		10.40	0.06	2.4	0.029	0.47	1.5	166.5	110	8.00	0.08	0.49	1.5	149.5	110	1.2
H172571		18.26	3.10	0.4	0.060	0.13	3.2	42.7	2.61	1580	6.21	1.86	2.0	92.6	290	1.0
H072578		0.76	+0.55	16.1	+0.005	10.01	40.5	1.0	9.02	21	5.06	0.00	6.1	0.3	20	10.5
H072575		20.5	0.13	1.5	0.067	0.72	4.3	15.1	3.14	1650	0.37	2.00	5.6	M.0	400	1.6
H372576		0.26	0.08	10.1	<0.006	8.03	15	1.5	10.45	1.95	9.67	9,61	6.1	1.5	160	1.2
HS79577		23.1	5.16	8.7	0.900	9.29	2.6	73.8	3.66	1620	0.64	1.53	3.6	76.6	400	5.8
H3F2576		21.7	0.14	1.3	0.101	0.40	2.1	145.5	3.00	1900	0.15	2.06	4.0	29.0	860	1.0
H3/2579		13.60	0.12	1.1	0.068	0.09	1.0	106.0	4.00	HEND	0.15	2.11	3.6	40.5	250	1.9
HITZSHI		13.60	0.08	2.6	0.062	0.59	2.1	49.1	2.90	1490	0.27	2.86	2.9	55.4	360	12

EXCELLENCE IN ANALYTICAL CHEMISTRY

Alt, S. Carrette 1,55

2103 Deliarton Hwy North Hancouver BC V7H SAT

From: 604 984 0221 Fax: 604 984 0219 Invest alsohemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4N9

CERTIFICATE OF ANALYSIS TROOTIS255

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2989

Account: COAMD

Project: TNR-Mayis

								_	CERTIFICATE OF ANALYSIS			LT515	TB09115255			
Sample Description	Burbar Bushala Salta LOS	ME AND THE SECOND SECON	ME later No gare 5 ME	90 W001 E % 531	96.4501 50 00* 00* 0.00	SEC SECOND Sec Park E.1	SE MENT So part 1	ME MEDI Ser EST	ME MSET 5/ 2011 5.2	ME-MORT To part 4.28	WE Arbin To some 6 (to	Sitt Apple To Early E.J.	MC4001 5 5 5.00	MEADE!	SE MINI SE SE	Minds
K072541 K072542 K072543 K072544 K072546		32.1 14.5 2.4 5.9 34.2	+0.003 +0.002 +0.002 +0.002 +0.002	0.01 0.00 0.00 40.01	0.12 1.67 0.83 0.14 0.10	36.3 33.9 40.5 45.7 56.8	20.00	1.8 1.5 1.0 9.7 8.6	156-0 236 236 123-0 62.5	0.29 0.47 0.36 0.26 0.21	40.05 40.05 40.05 40.05 40.05	0.5 0.8 0.8 0.4 0.3	5 900 1,030 1,652 8,534 3,504	0.06 +0.05 0.03 0.03	0.1 0.2 0.2 0.1	204 204 254 270 282
H172548 90372547 H172548 H172548 H172550		2.8 5.4 20.3 46.9 36.3	40.002 40.002 40.002 40.002	49.01 9.13 9.61 46.01 8.60	0.06 0.50 0.50 0.51 0.07	46.6 40.7 29.2 27.7	200000	1.7 1.7 1.9 1.8 1.8	96.6 146.6 60.6 141.0 166.5	0.30 0.35 0.32 0.35 0.36	10.05 10.05 10.05 10.05 10.00 10.00	0.1 0.4 0.8 0.8	E-811 E-565 E-523 E-405 E-304	-6.53 6.67 0.18 6.36 6.20	01 01 01 01	345 316 310 181 175
HOT2861 HOT2862 HOT2863 HOT2864 HOT2866		76.3 26.5 35.5 5.8	+0.002 +0.062 +0.002 +0.003 +0.003	0.05 0.07 0.10 0.01 0.01	0.22 0.32 0.10 0.38 0.86	56.9 1.9 30.9 30.1 51.8	No. of Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	0.9 2.1 2.8 0.8	81.6 263 193.5 155.5 116.6	0.27 -0.66 0.31 0.28 0.19	49.05 49.05 49.05 49.05 49.05	6.5 -6.2 6.7 6.7 9.3	1.667 1.500 1.536 3.473 1.436	0.16 0.70 0.33 0.11 0.05	0.1 0.2 0.2 0.3	206 146 211 211 217 217
#072508 W072557 #072508 W072508 W072508		10.0 46.5 74.3 1.5 10.1	+0.862 +0.862 +0.863 +0.863 +0.863	0.00 0.00 0.00 0.00 0.00	10 SS 9.18 0.21 10.05 9.20	27.5 27.8 27.4 0.5 32.8	2000	1,0 1,0 4,7 =0,2 0,8	948.5 154.0 236 42.8 116.0	0.30 0.27 0.25 -0.66 0.76	40.05 40.05 40.05 40.05 40.05	0.7 0.7 <0.2 0.3	5.40 0.51 6.46 10.00 0.276	6.07 9.31 6.66 -0.67 9.13	0.1 0.1 0.5 0.5	179 203 194 4 186
#072561 #072562 #072563 #072564		2.0 4.2 17.6 18.8 58.3	+0.002 +0.002 +0.003 +0.003	6.04 +0.07 +0.07 0.02 0.02	611 617 642 642 813	93.4 44.3 40.4 42.0 46.3	2000	0.8 0.5 13.6 1.0 1.7	124.6 135.0 146.0 160.5	0.35 0.35 0.37 0.30 0.30	40.00 40.00 40.00 40.00 40.00	0.3 0.5 0.5	9.500 8.507 8.795 1.190	9.06 9.00 9.21 9.21 9.51	0.1 0.1 0.3 0.3	196 289 310 409 153
H372548 H372567 H372548 H372548 H372570		9.2 9.3 5.2 12.1 30.1	+0.002 +0.002 0.003 +0.002	0.63 0.69 0.11 0.63 0.05	6.11 6.11 6.00 5.27 6.86	34.1 40.0 19.3 36.0 23.3	2 0 11 2	0.6 0.5 2.2 0.8 0.6	190.5 193.0 42.7 173.5 100	0.32 0.30 0.24 0.33 0.29	40.55 40.55 0.50 40.05 40.05	0.7 0.4 1.5 0.5 1.6	1.402 1.429 1.298 1.609 1.464	5.00 5.05 6.00 5.10 5.20	0.1 0.1 0.3 0.1 0.6	301 236 106 362 183
#0173571 #0172573 #0172573 #0172574 #0172575		60.5 75.8 5.5 0.6 4.6	40.802 40.002 40.002 40.002 40.002	0.02 0.01 0.04 +0.01 0.02	0.16 0.16 0.35 -0.56 0.11	36.8 27.5 36.2 0.2 34.8	2 = 2 = 2	9.5 9.5 9.5 9.2 1.9	151.5 191.5 94.5 2.8 955.0	6,32 6,10 6,19 -0,09 0,35	40.55 40.55 40.55 40.55 40.55	0.5 6.2 0.2 -0.3 0.5	5.211 5.556 -0.006 5.797	5.50 6.56 6.23 -0.52 5.03	9.1 -0.1 -0.1 -0.1	258 163 274 2 294
HS72976 HS72977 HS72978 HS72978 HS72980		0.8 30.6 46.6 11 24.2	+0.002 +0.002 +0.002 +0.002	0.85 0.87 0.10 0.82 0.62	90.50 0.14 0.11 0.04 0.05	0.2 40.3 38.7 46.0 45.5	- 16 to 20	0.6 0.6 0.6 0.6 0.6	36.6 164.5 169.5 32.4 262	-0.05 0.24 0.28 0.16 0.16	+0.05 +0.05 +0.05 +0.05 +0.05	03 03 03 03 04	1,100 1,100 1,000 0,404 0,410	46-93 0-17 9-32 +0-52 0-13	0.7 0.1 0.1 0.1	5 446 375 252 238

EXCELLENCE IN ANALYTICAL CHEMISTRY

Act Ceres us 2150 Deletor-Hey North Versover BC VPH SA7

Phone 604 864 0021 Fax 604 664 0216 were alsohemes com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4NO Page: 3 - 0 Total # Pages: 4 (A - 0) Plus Appendix Pages Finalized Date: 27-OCT-2009 Account: COANO

Project: TNR-Mavin.

		A. Barrersen
PEDTIEIPA	TE ME AMAINE	IS TB09115255

							CERTIFICATE OF ANALTSIS TBO9115255
	Better	ME-M001	ME MIN!	M mini	100 opin	AL-EPET	
	Sant Par		*	.20	20-	Ag	
	Melite	part.	2011	300	ppre -	ppe	
Bampie Desemption	LOR	0.5	9.1	1	53	100	
HORSER		0.4	24.7	105	31.8		
H372542		0.6	36.7	1935	10.9		
HOTOMA		0.6	26.5	119	95.4		
H072544		8.3	27.7	136	38.0		
H372548		9.3	20.0	719	21.1		
H372546		6.2	27.4	10	21.5		
H37254F		6.3	50.7	120	374		
H372548		6.5	34.1	130	39.2		
1072549		0.2	20.8	96	23.2		
H372550		0.1	19.3	10	27.5		
H272584		0.3	34.7	1 76	54.1		
1072512		6.7	3.3		5.7		
H072553		0.4	22.1	168	30.7		
HGP2556		0.3	25.3	154	22.4		
H379586		83	26.8	FOR.	117		
H372556		6.2	22.7	N.	25.2		
HZP258F		83	72.6	45	44.3		
H372568		6.2	18.2	76.	10.0		
HISTORIN		0.1	0.9	14	10.5		
H372500		0.2	16.9	82	26.5		
H172561		6.7	17.8	85	21.8		
HOTZNEE		0.3	24.1	9.7	29.1		
HITCHER		E+	29.9	1117	20.6		
H072584		5.4	27.0	127	32.6		
HSF258III		0.3	32.8	133	42.7		
H)72506		0.2	20.4	136	19.4		
H3725K7		9.4	16.5	98	29.2	0.001	
H072568		6.1	15.6	241	43.3		
HITZNIE		63	23.3	102	56.9		
KGF25/FG		6.9	163	66	61.3		
H372571		0.3	72.5	16	Na		
H072573		6.1	10.5	90	7.9		
1072073		63	15.8	49	7.9		
1072574		10.1	4.2	+2	45.5		
H072575		9.2	76.0	134	28.7		
H977576		6.5	16	- 17	95.5		
1072577		9.2	23.6	134	19.0		
H372576		6.3	25.6	167	49.0		
1072579		8.1	20.0	136	48.7		
HG72580 .		62	29.4	114	32.0		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE Correlation
2103 Goldanium Hay
Rooffi Visnoquier BC s/7H DAY

Phone: 604 984 0221 Fax: 604 994 0216 www.afschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 529-450 W GEORGIA ST VANCOLVER BC VEB 4N9 Page: 4 - A
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 27-OCT-2009
Account: COAMO

Project: TNR Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	115255	
Lampie Doserigian	Sections Secretaries Section 160	94()-()1 Ascot 96. 4g 210	MEANET As sort \$21	MEMBE! 8: 5: 127	ME-MSET As sem 0.2	MEASON No. 100 100	SHI ASSET She short \$100	00,44647 84 64** 5.07	ME-MM1 Co T ₁ 381	MEARST 68 691 3.00	Co com com	56-4681 56- 694 61	MEASH!	MCARRET CA parts 0.00	SEASON Co SATE EST	No.
HOTOSET HOTOSEG HOTOSEG HOTOSEG HOTOSEG HOTOSEG HOTOSEG HOTOSEG		0.00 9.55 9.56 9.47 0.72 0.60 0.17 0.76	0.08 0.08 0.08 0.09 0.19 -0.04 0.04 0.24	8.19 8.30 8.57 8.57 6.29 7.47 7.34	65 05 08 04 04 04	66 230 120 40 40 43 26 70 60	0.37 0.38 0.85 0.39 0.39 0.57 0.48 0.49	0.51 0.10 0.10 0.10 0.14 0.52 0.51 0.61	6.76 7.16 6.32 7.31 7.31 16.95 7.40 5.47	0, 10 0, 10 0,00 0,00 0,00 0,07 0,00 0,17 0,19	12.45 8.81 3.19 17.20 17.20 1.83 2.08 23.3	98.9 31.7 34.3 49.3 50.7 1.4 56.0 54.9	81 91 35 198 192 8 81 85	198 90.90 296 5,21 2,35 5,70 5,60 1,50	62.5 36.5 37.9 52.8 117.5 51 27.6 114.0	7 91 7 82 8 77 7 99 8 28 0.45 10.00 9.05

EXCELLENCE IN AMALYTICAL CHEMISTRY

MUS Corrects Coll.

2103 Deliator-Hay North Varcouver BC V7H SAT

Phone: 604 964 6221 Fax: 614 964 6216 I were alsohemes com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC V68 4NO Page: 4 - 8. Total 8 Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2005

Account: COAMO

Project TNR-Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	15255	
Lampin Danscription	Market Basket Seeks LOS	de sentiment de se	MEMBER Se per Eggs	10	ME AREST. Jr. Jens J. 1006.	Minday A 5 531	emater (a part (i)	ME MARK TO THE TAIL	ME MARY No.	ME MADE!	MC MOC MC MC MC MC MC MC MC	MCMMIT No. 1,01	ME AND T	MARKET M MT E2	MEMBET P SERV TE	No. Artist Fig. Spring Tri
H372581 H372582 H372583 H372584 H372586 H372586		18.30 17.65 14.20 16.65 19.16 6.80 18.70	6.11 0.15 0.13 0.12 0.13 0.13 0.13	9.7 9.8 13 8.7 9.7 9.7	0.062 0.056 5.072 0.005 0.061 -0.006 0.072	6.26 6.61 6.38 6.29 6.22 6.16 8.16	5.1 3.7 1.0 7.8 6.2 6.6 2.4	18.8 52.5 123.6 112.5 96.6 11 23.3	246 262 267 247 313 1235 163	1600 1500 1640 1160 1640 321 1740	8.75 0.52 0.25 0.35 0.33 0.23	2.45 1.67 1.44 1.38 1.38 0.02 2.06	4,2 9.6 3.0 3.9 4.3 0.5 2.7	92.4 41.1 91.6 161.5 152.0 4.0 103.0	400 400 500 500 410 200 200 200	1,7 1,8 1,3 1,8 3,7 1,9 0,9
налып		16,00	15.04	til.	1.079	421	112	154	3.94	1740	0.25	2.61	4.6	263	1000	21

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada (M.

\$100 Dollatten Hay fronts Vancouver BC 47H GAZ

Phone 604 964 0221. Fax 604 964 5216. www.afscherhox.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-459 W GEORGIA ST VANCOUVER BC V68 4N9

CERTIFICATE OF ANALYSIS TB09115255

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Final and Date: 27-OCT-2009

Account COANO

Project: TNR-Maira

								-		Arrest con	IVAIL	OI 1010	IL TOTO	1000	14444	
Sample Description	Marked Analysis (Jude (J.B.)	MI-MORT Ply part 6:1	MEAND! Fig. Serv. E-SEE	MEASUR S. S. S.S.	M(40)01 50 500 200	MEASE! Sc 30** 17	Se dom	SE MINE Se sper 8.7	0 mm 1)	Mi April Ta oper 0.93	NEADOT No. NO.	MEMBET SH SH SJ	MEMBE Si Simp	Arrester Total	Million St.	96 400 7 100 1
HGT2MT HGT2MG HGT2MG HGT2MA HGT2MM		9.9 39.1 199.0 19.2 12.9	+0.802 +0.802 +0.862 +0.862	0.07 0.00 0.00 0.00 0.00 0.00	9.06 9.16 9.25 9.30 9.36	39.3 33.7 42.3 31.6 32.5	20 0 20 0 20	0.7 0.8 1.4 0.7 0.8	116.5 111.5 29.1 36.1 127.0	6.28 9.26 9.19 9.24 0.28	40.08 40.05 40.05 40.05 40.05	0.5 0.6 0.4 1.0 1.0	0.465 0.465 0.467 0.400 0.400	639 198 111 9.08	03 63 63 63 63	208 208 243 186 187
H072586 H073475 H073471		3.5 5.6 6.0	40.002 40.002	0.52 0.32 0.35	9.14 9.14 9.19	0.8 42.3 30.6	2 2	45.2 0.8 0.8	90.0 907.5 390	0.10 0.10 0.26	40.05 40.05 6.06	63 68	0.658 0.658	5.04 5.06	0.7	121 201

EXCELLENCE IN ANALYTICAL CHEMISTRY

#UK Carnels US

2103 Selfation Hasp North Vancanner BC VTH DKT

Phone 104 link (021 Fisc 804 864 0218 I www.alsofames.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 676-650 W GEORGIA ST VANCOUVER BC WIB 4N9 Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 27-OCT-2005 Account: COAMO

Project THR-Mavis

	CERTIFIC	ATE	OF AN	AL YSIS	TB091	15255
--	----------	-----	-------	---------	-------	-------

							the same of the sa	 	1849116865
	Merked Restyre Stelle	ME-MERT W part	46.9651	SE AND I	ME MEST D MET	Au-CPC1 Au Au-			
omple Dess. plan	Low	0.1	2.1	- 1	4.1	100			
GF258Y		6.1	25.4	1105	25.8			 	
(172N/2	- 1	2.5	23.2	100	20.7				
1372583 1372584		67 62	25.6	152 97	48.5 27.0				
127258S		12	28.7	10.0	25.9				
075m		83	5.9	14.	0.7				
H373475		12 12	18.5	107	10.1				
		-	-	-	-				

EXCELLENCE IN ANALYTICAL CHEMISTRY

WLS Carnels Ltd.

2105 Dollaron Hwy Nexts Vencouver BC VTH DAT

Phose 604 961 0227 Fac 654 961 0219 I www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 27-OCT-2979 Account: COANO

Project: TNR Mavis

CERTIFICA	TE OF	ANALYSIS	TB09115255

Belled	CERTIFICATE COMMENTS	
ME-MS61	Interference: Cai-10% on ICP-MS As,ICP-AES results shows.	
ME-MSG1	REE's may not be totally soluble in this method.	

EXCELLENCE IN AMALYTICAL CHEMISTRY

ALS Cornets Ltd.

2103 Dullahor Hwy North Vancouver BC 1/74 DAT

Proces 804 984 9221 Fee: 954 994 9218 Income abscharters.com

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 520-650 W GEORGIA ST VANCOUVER BC Y68 4NS

Page: 1 Financial Date: 11-NOV-2009 This copy reported on 15-DEC-2909.

Account: COAMO

CERTIFICATE TB09121052

Project: TNR Mavis

P.O. No.:

This report is for 58 Rock samples submitted to our lab in Thunder Bay, ON, Canada on

28-OCT-2009.

The following have access to data associated with this certificate:

PRES BREAKS INC. DISNIANI

GASE JUTHAS

HANS MUNCHEMIC

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
100-22	Sample login - Rod w/o BarCode	
CRU-QC	Drusting GC Test	
PUL-OC	Pulserloing GC Test	
CRU-31	Fine srushing = 70% <2rem	
SPL-25	Spit sample - riffle spitter	
PUL-35	Pulserior apit to 85% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	CPAES
ME-MS61	48 element four add ICPARS	

To COAST MOUNTAIN GEOLOGICAL LTD ATTN: HANS MUNDHENK PO BOX 11604 820-850 W GEORGIA ST VANCOUVER BC V68 4ND

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS GIPWINGS OR

2153 Dollaton Hay North Vancouser BC V7H BAZ

Phone 804 984 0221 Fax 604 984 0218 www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTO. PO BOX 11804 629-650 W GEORGIA ST VANCOUVER BC V68 4N9

Page: 2 - A Total # Pages: 3 (A - 0) Plus Appendix Pages Finalized Cute: 11-HOV-2008 Account: COAMO

Project TNR Mavis

									1	CERTIF	CATE	OF ANA	LYSIS	TB091	21052	
Emple Description	Marriad Analysis Line Line	Second Miles	ME MADE! Ag part 0.01	MC MEET AL AL AL COPY	AL Spen 3.5	86,4601 54 551 10	56 H0501 54 2011 0-05	M: MED! 2011	ME-MART CA SA	90,400) (c) (c) (c)	SHE MEDIT SHIP SHIP SHIP	ME WINT Co perio E7	ME WEEL	ME MOST Ch SPT EIR	MC-MSC1 Cor ppin 53	16 460 7s 7s 2d
H373861		132	6.01	1.61	0.5	10	1.90	4.11	1.87	3.14	30.4	2.1	40	0.81	24	6.79
H373602		1.50	40.81	120	1.9	1010	8.88	3.14	0.69	0.02	20.1	1.6		92.0	9.2	0.00
HS/Section -		1.25	45.01	8.12	2.6	20	14.20	0.58	9.35	+8.00	0.61	1.0	- 7	15.60	4.8	6.39
H373604		3.66	H0.51	607	48	10	0.11	0.00	19.70	0.00	0.86	0.6		0.36	15	9.40
H373605		1.46	0.08	507	14.2	620	0.62	0.44	8.71	0.00	45.5	2.7	29	28.0	24.6	2.54
H3/73656		1.19	101	9.75	1.9	(4)	10.64	0.40	3.14	*8.02	1.15	26.0	121	4.55	10.2	3.77
HS7360F		1.27	0.54	6.40	3.2	790	1.08	0.61	1.23	5.50	27.6	28.6	34	29.3	133.5	7.40
HS/SEGR		1.16	+0.31	F 196	3.2	1080	4.00	3.09	5.69	0.04	49.9	2.4		8.16	14	1.09
H372609		1.62	10.01	8.36	9.7	40	25.7	0.13	0.00	40.02	2.68	2.0		2.97	5.2	0.65
H373616		4.27	+0.01	6.12	0.7	10	287	0.04	0.10	=0.02	3.54	0.3		87.8	3.0	8.31
HSVSH1:		1.26	4531	9.91	0.8	70	19.5	0.38	0.25	+0.00	1.36	9.5	- 6	1500	1.3	5.27
H373610		1.76	40.01	6.64	0.3	16	188.0	0.07	9.56	+0.00	3.45	9.9		74.3	14	6.67
HO/SETS		0.13	+0.01	7.04	0.2	10	70.00	9.04	0.11	¥0.00	1.06	0.3	- 1	6.37	0.8	0.16
H3/53614		1.64	40.01	5.24	0.0	50	5.99	2.65	0.38	0.04	1.75	1.6		210	3.0	1.15
HITSER		1.00	+0.01	7.26	46.2	10	13.69	6.29	0.00	0.12	5.80	0.2	- 7	3.19	2.6	0.14
H3738 Ni		1.14	-6.24	1.26	0.7	b75	131	0.07	0.52	+0.02	13 (8)	2.0		7.15	10	0.56
HSFMHF		8.92	19.04	4.66	0.7	190	2.47	9.69	0.63	=E.63	17.55	1.7		12.15	2.6	2.60
HISTORIA		1.75	10.01	7.52	0.4	40	136.0	9.82	0.63	=0.00	1.42	15		315	3.7	0.46
H3/2616		0.74	10.01	7.52	0.6	10	1155	6.61	8.13	+5.00	2 109	0.2	- 1	260	1.3	0.17
H072626		1.29	+6-01	6.25	10	300	4.79	0.26	0.99	+0.00	11.68	1.5	10	47.0	4.1	0.63
H3F3621		(5)	46.31	8.61	0.7	764	7.13	112	1.60	9.69	25.6	11		5.31	15.8	0.06
H3F3632		1.22	40.01	8.47	0.9	70	12.00	0.12	3.65	40.02	6.75	0.3		2.79	10.0	0.45
H373625		1.46	+0.01	4.77	0.5	46	101.0	3.67	6.67	+3.02	1.45	0.2		68.7	0.6	0.20
1072628		9.92	+0.01	2.08	0.4	160	199.0	1.66	0.09	0.03	1.36	0.3	- 1	79.4	0.0	9.31
H372625		1,79	+0.01	7.86	0.3	270	140.5	20.2	6.13	+0.02	0.16	0.4		957.5	12	0.06
H173636		1.40	40.21	-7.48	0.6	30	136.6	6.32	0.05	=5.02	0.30	0.7	-	146.6	0.6	9.50
HIPSOT.		1.10	+0.01	2.10	1.2	10	155.0	613	0.68	+6.62	E.38	1.6		227	1.5	0.69
H372H2R		2.36	46.01	7.68	-0.7	330	263	30.2	0.10	+5.02	0.50	0.4		104.0	6.6	0.47
1072629		0.90	46.01	531	5.6	10	291	20.6	0.07	40.02	0.30	0.8	- 7	248	0.7	1.26
H372630		1,67	1001	8.00	1.4	10	46.9	1.61	0.13	+6.62	0.56	0.5	- 1	165.0	1.0	0.30
H373831		1.01	4531	1.45	2.7	N5	250	19.46	0.67	=162	0.60	0.3	-	246	0.9	0.44
H3F2635		1.66	10.01	8.67	0.4	16	190.0	4.02	0.06	49.62	1.61	0.2		84.3	0.0	0.26
H372632		5.50	+5.01	441	3.1	75	146.5	3.61	0.00	=0.02	0.30	0.2		194.0	0.7	0.38
H372634		1.79	10.01	5.96	2.0	10	586	19.30	0.38	40.02	1.38	0.6	-	141.0	1.6	0.38
H373638		1.59	0.04	7.57	2.3	20	221	2.52	5.45	0.04	1.02	1.9		146.0	56.	6.54
H372636		9.69	1001	6.91	1.2		37.4	0.78	1144	Tares	3.20	1.8		31.9	33	0.72
HSPMSF		6.07	5.01	1.07	0.4	29	5.00	0.19	0.50	9.00	3.95	1.0	10	96.2	3.1	1.26
HE73636		1.67	45.01	5.90	1.5	10	140.0	3.12	0.29	+9.68	3.51	0.4	72	93.3	13	0.29
H372639		1.34	+5.51	4.60	0.8	16	134.5	18.00	0.45	+0.00	1.102	0.0		50.9	3.6	9.57
H372640		1.05	0.01	0.10	42	10.	0.60	0.16	18.85	10.0	1.29	1.0		2.81	13	0.36

Community 193 SAMPLES SPLIT INTO 5 WORKOPCERS OF SIL 57, 32, 43, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

2153 Dollarion Has North Vancouser BC VTH DAT

Phone 804 988 5221 - Fax 854 984 5218 - www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA 51 VANCOUVER DC VAR 4NR

Page: 2 - II Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2009

Account: CDAMD

Project: TNR Mayin

										CERTIF	CATE	OF ANA	LYSIS	TB091	21052	
Lampin Description	Markad Sautigras Unión LOS	Mt wilet Ge gent E-RI	Mileson Ge gare CIR	MEMBET 18 50% 51	96.4691 In 2011 5.001	M-4661 1 1 1 1 1 1	Miletari Sa part Edi	Minister Ir In Ed	Mineral Mg % cor	MERCHT SIT SIT	ME MENT MA (DP) ED)	ME ASSET No. 1. 1.21	ME Argen No. ppm. g.1	MC4501 N SH SH 1,2	Mindell P perm 19	06 A04 Pt- 1977 0.5
натиет		4.69	0.06	3.1	×9.000	651	16.8	98.6	0.18	195	990	0.23	2.4	8.0	8610	4.7
H3/3802		21.1	2.06	3.6	0.006	0.23	7.6	123.5	9.25	100	0.90	A.78	6.1	2.7	410	15.2
H373605		32.3	40.00	6.2	45,005	8.04	10.5	13.1	0.54	67	0.09	7.92	180.0	6.9	640	7.2
H3/7390W		9.36	0.14	140.1	=9.005	4.02	40.5	2.6	12.60	305	9.06	0.03	0.5	1.0	150	1.1
H373605		17.95	8.51	4.5	0.877	1.59	21.7	22.3	0.55	37/0	3.87	137	5.2	6.8	260	11.2
H372606		30.8	100	0.4	9.014	4.54	6.6	11.15	247	977	0.39	1.12	6.6	26.9	6630	6.7
HSF280F		24.3	6.16	9.9	0.362	2.45	12.2	98.9	0.88	631	3.49	1.26	11.0	38.4	580	32.5
H372868		20.0	8.07	3.6	0.009	5.67	23.3	30.8	1.25	174	6.15	Apr	4.1	5.4	390	12.4
H373606		37.6	40.05	4.5	~0.005	9.09	1.7	10.8	3.08	159	0.15	7.38	15.4	2.5	1590	10.6
HS72616		55.9	10.05	3.9	+0.005	6.76	1.3	56.3	0.01	88	0.12	5.66	129.8	1.4	500	8.5
HSP2611		12.4	(0.15)	3.2	<0.000	2.07	6.8	402	5.04	123	0.06	4.83	40.5	0.9	2830	9.5
H373612		10.6	10.06	4.6	=0.00%	6.71	1.0	259	8.06	1.66	0.14	4.73	100.0	1.4	2370	9.5
H373913		36.0	HD 89	1.0	45,006	9.21	5.5	4.9	0.01	21	9.07	7.06	14.6	0.6	370	2.5
HORSEN		37.0	0.06	2.9	0.007	2.34	6.7	330	5.13	399	0.11	3.76	55.3	0.9	790	2.6
H3/72815		46.6	*0.86	2.6	H0.008	9.16	3.1	660	16.61	109	0.00	7.75	212	0.9	4970	2.6
H373616	_	13.65	+6.25	11	11 000	5.21	1.7	31.6	1000	- 11	2.45	3.35	2.8	4.6	210	6.5
H3/5917		19:30	6.06	3.3	0.807	9.34	9.9	30.4	8.19	107	0.11	4.00	3.2	4.5	260	12.5
H372818		63.5	40.00	1.9	40.006	2.49	2.6	51.9	5.06	195	2.37	5.17	79.5	3.2	3480	95.1
HISTORITAL		66.4	+0.95	2.8	=6.00s	1.47	1.0	231.0	9.01	125	8.77	5.32	99.0	0.9	1630	4.6
HS75H20		16.50	40.29	2.8	+0.005	6.26	4.3	68.1	2.13	102	10.29	4.56	2.9	24	250	5.2
H5/3421	_	23.0	5.09	4.0	0.006	5.16	121	25.8	6.22	226	0.19	7.28	21		140	_
H373622		35.0	8.09	3.6	49.00s	1.16	3.2	14	0.04	55	0.17	7.42	15	26	390	5.2
H372523		45.8	10.06	12	<0.005	1.79	6.6	47.1	6.01	110	0.25	8.07	109.0			2.8
H373634	- 1	44.2	10.00	2.4	40.006	1.19	24	87.3	8.07	100	7.000	100.00	110.0	1.0	590	9.4
H372625		61.7	10.08	2.1	=0.005	3.10	10.5	3040	0.05	199	1.25	3.62	117.5	1.6	870 870	8.9
H173636		53.9	10.05	0.8	+0.005	2.54	10.5	8640	9.01		0.29	245	104.0			_
HBFSRST		42.4	10.05	1.4	40.00s	2.99	6.7	186.0	8.17	183	15.95	3.57		0.6	2500	6.0
H3/3696		99.5	15.25	1.0	+0.005	1.53	10.5	F990	9.65	280	0.33	3.11	100	2.0	400	1.7
HERMEN	- 1	52.8	+0.05	2.1	40.00S	1.66	40.5	146.6	9.01	166	100.5	2.65	87.6	0.6		37
H579436		16.7	46.05	12	=0.005	1.31	10.5	2100	45.01	352	0.50	5.40	66.4	0.8	100	13
H373637	_	62.7	15.00	2.5	- 13	2.12	-61	2560		267						_
H1/2020		71.6	10.00	1.0	+6.006	0.71	3.6	4030	9.02	201	0.12	3.81	95.2	0.8	110	6.3
H372630		80.5	10.05	2.8	40.003	1.72	10.5	7980	0.00	519	77.74	4.37	117.0	0.5	2730	3.7
H072534		40.1	+0.05	3.4	×0.005	0.15	6.7	74.6	0.60	687	0.34 13.55	4.60	72.3	0.3	860	4.7
H073606		10.7	0.06	4.0	40.005	0.23	2.6	49.7	0.06	1117	0.67	6.47	161.0	2.1	1050	8.3
HEZMIN .		46.5	8.08	6.2	0.315	1.13	12	N.	0.00	363						
NUTSBUT		5.54	0.07	1.2	0.018	0.08	**	81.2	0.10		0.25	6.38	105.0	2.3	1690	3.0
H373636		60.4	0.07	2.5	45.005	0.00	17	33.7		229	6.24	0.84	5.2	1.7	379	1.1
H372638		79.5	0.07	1.5	=0.005				0.01	121	0.20	5.80	30.4	2.7	1200	8.0
H372640		3.65	6.29			3.68	1.0	104.5	0.00	9080	0.56	4.35	66.8	1.0	860	2.6
TOTAL PROPERTY.		4,600	9-25	+0.4	49.005	0.03	-0.7	2.6	12.45	194	0.50	0.53	2.7	0.9	210	1.3

Communic 193 SAMPLES SPUT INTO 5 WORKDROERS OF 56, 57, 33, 46, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALR Calebrate 185

PICS Collection Flags North Vancouver SIC 1/TH GAZ

Phone 604 964 0221 Fax 604 964 6716 Were alsohemes con-

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 670-650 W GEORGIA ST VANCOUVER BC VED 4N9

Fage: 2 - C Total F Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2009

Account: COAMO

Project: TNR Mayis

CERTIFICATE OF ANALYSIS TB09121052

								_	Α.							
	The state of	Mr. Marr	MCARKY.	and anier	RE-BRIDT	101.67171	DE ARREST	MI-6593	MEMBE	MEMBE	ME-MIST	ME MARI	ME AGE!	net intoin	MEASET	ME AND
	Analysis	Pin.	Pip	. 6	10	Ac	Se	Sec	20	194	The .	196	Yo -	2	M	W
	4994	Stim.	sem.	-	Spm-	2910	daire	200	100	200	200	gp#	*	jam	agent.	4911
artgia Baserignos	LEA	8.7	5.00	841	9.66	9.4	+	12	10.2	2.86	596	9.5	100	1.05	6.5	1
KOTZBOY		3.0	=0.002	+0.61	3.04	12	2	15.9	947.0	5.40	+0.06	6.7	0.037	40.63	1.6	+
H372602		906.5	40.602	9.91	6.07	1.7	4	6.0	840	5.70	40.06	3.9	0.100	1.00	3.3	+3
HI372803		12.0	-0.002	~0.61	0.53	0.7	4	5.0	101.5	H100	+0.05	1.6	0.010	0.05	8.3	
H072804		1.0-	+0.662	0.91	40.05	0.1	2	49.2	40.4	0.92	+0.08	10.2	+0.006	+6.02	0.9	45
H372605		79.0	+0.002	0.38	2.14	6.4	3	1.9	277	1.03	0.54	5.6	0.116	1.71	1.2	28
437966		51	=0.000	0.31	2.01	11.4	1	MA A	124.5	377	8.07	17	0.202	0.19	0.7	149
H012807		138.0	1005	1.34	0.15	13.6	4	15.4	129.5	0.62	2.06	3.3	0.331	5.30	0.3	40
×9.72608		62.6	+0.002	0.81	+0.08	1.0		1.0	777	5.45	H0.25	8.5	0:126	0.30	2.0	18
H312009		29.2	+0.002	+0.01	9.07	1.2	4	5.1	10.0	26.7	<0.05	2.1	0.044	0.08	9.2	1.6
H012648		1065	+0.562	45.01	2.14	0.1	1	40.9	12.6	12.2	+0.05	3.6	+0.005	8.16	8.1	1
POTRITI		5960	*0.002	49.61	1.71	0,2	+	27.8	80.0	290	436	6.8	0.006	45.7	3.6	- 4
H372813.		1230	40.802	40.01	40.55	0.6	7	42.8	46.4	H100	<0.26	1.6	6.632	8.51	5.6	
H072613		18.2	=0.962	19.61	40.05	0.3	7	3.7	23.7	70.7	+0.55	0.7	0.006	0.14	9.00	
H072814		630	40.002	40.01	8.51	2.6	- 1	8.3	39.0	87.5	40.06	0.0	0.080	3.90	4.5	7
HS72645		12.5	+0.062	40.01	6.05	0.1	1	2.6	34.9	=100	10.05	5.6	40.005	80.0	3.9	+1
KOLTZB DE		26.3	+0.002	92.01	6.08	1.3	1	0.3	9.77	1/04		3.5	0.572	0.16	1.8	11
H072617		79.4	40.002	+0.04	6.19	1.6		0.3	927	140	40.08	5.2	0.088	0.90	2.4	15
H072618		3410	6.000	40.01	3.00	0.7		91.6	99.6	45.4	5.08	2.7	0.004	25-5	4.8	
HISTORYS		3440	0.004	45.64	8.05	0.3	1	30.9	15.7	+100	0.77	3.2	+9.005	26.5	3.0	3
H072620		84.8	0.005	40.81	2 (4	1.3	4	1.5	564	1.25	0.06	3.7	0.079	0.71	2.6	
m(3/72821)		23.7	40,000	9.23	5.08	2.4		13	865	5.64	40.09	2.9	0.061	0.13	2.0	
H372822		15.6	<0.002	5.62	0.09	1.0	2	2.5	591	0.07	+0.00	2.6	0.046	0.58	1.0	2
H072620		1645	+0.002	45.67	×6.55	0.3		17.3	12.0	70.6	6.05	2.6	45 005	10.15	12	4
H072624		1.4 (1)	+0.502	45.61	45.00	0.2		36.6	11.3	+100	+0.04	2.2	0.000	8.89	0.4	2
<372625		3660	+0.002	+0.59	6.07	0.1	1	80.6	75.0	H100	0.29	1.5	+0.006	27.2	14	- 1
m3/2628		3650	40,802	40.01	19-08	0.1	1	37.5	4,67	81.3	0.06	2.6	40.000	26.2	33.	+)
H072627		4540	9:024	40.01	9.12	1.2	.1	17.1	87.0	+100	9.45	5.6	0.952	50.9	2.1	16
H072628		1960	<0.00Z	+0.01	0.16	0.3	4	82.1	81.2	1100	2.23	2.2	+0.005	10.96	4.8	1
H072628		2550-	9.202	0.01	0.48	0.3		18.6	63	+100	5.34	4.6	+0.005	19.65	3.7	2
H072836		2020	40.002	10.01	9.31	0,1	1	35.0	F#	70.8	40.05	9.5	40.005	16.00	2.8	48
KS73631		3575	0.300	40.01	1.39	0.3	1	Mil	12.4	+100	6.13	2.4	49.000	26.6	0.2	1
H0/1983/2		1340	<0.002	+0.01	0.14	0,1	4	56.9	6.0	H100	10.06	2.0	+9.005	8.10	5.5	10
H0.72630		2808	40.000	45.61	2.51	0.1	1	36.0	22.6	>100	40.09	3.8	0.005	18:39	3.8	41
H07265H		160.0	5.006	+0.01	1.02	0.6	1	29.3	46.1	×100	0.30	4.5	0.814	9.98	5.6	4
H072636		421	40.900	40.01	9.58	1,4	. 1	24.5	27.6	9100	0.07	2.2	0.045	2.70	7.0	10
H072636		65.8	+0.003	+0.41	1.75	5.7	1	21.1	30.1	+100	45.01	2.1	0.063	0.48	5.5	33
H072537		80.5	+0.002	9.91	5.07	2.4	2	8.4	TEA	1.70	49.00	0.4	0.010	0.46	0.2	11
1072638		1010	<0.002	40.01	9.26	0.5	*	24.7	47.8	1100	9.05	2.5	0.006	7.66	6.3	1
H072638		15.40	+9.862	40.51	6.00	1.3	7	87.5	26.6	64.0	6.09	4.	0.622	6.42	3.0	7
NO72640		0.6	46-005	8-91	-0.06	0.3	2	0.3	41.6	0.56	+0.08	10.2	40.005	0.04	0.9	. 2

Comments 193 SAMPLES SPLIT INTO 5 WORKORDERS OF 58, 57, 33, 45, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS CHARLES.

2100 Dollaton Hay North Vancouner BC VYH 04.7

Priorie 854 864 5021 Fair 604 504 0216 www.atschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-610 W GEORGIA ST VANCOUVER BC VIB 4N2 Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-HOV-2509

Account: COAMO

Project TNR Mavis

CERTIFICATE OF ANALYSIS TB09121052

	_						
	(Inches)	MOMBET	MO-APRIL	ME-MINT	ME-8581	A-6701	
	Approprie	W	*	26	20	Mari .	
	Mates	agen.	300	4400	inte	494	
Sample Description	100	3.7	43.		1.5	0.001	
HOLDER		0.3	4.5	35	62.3		
H372602		1.5	3.5	25	120.5		
H372600		1.8	0.3	19	76.8		
H372804		0.6	0.6	15	8.5		
HISTORION		2.5	7.1	37	154.0	0.002	
H372608		1.8	3.8	101	13.8		
HOTOROT		1.3	42.0	501	579	2.001	
HO72808		0.6	4.3	35	1218		
HOUSE		0.7	3.9	2.6	26.8		
9G72616		0.9	0.4	33	26.1		
H072811		0.6	0.4	47	9.9		
MORTOR TO		0.9	1.1	36	33.5		
9072910		0.3	0.6	3	5.9		
HS12614		1.7	4.2	37	31.4		
H0/2615		1.2	1.4	3	10.0		
H0726 H6		21	21	13	73.9		
H3/0617		1.3	3.4	19	167.5		
H072618		1.1	1.3	411	55.9		
H072819		0.7	0.8	19	10.1		
H017820		1.0	4.2		59.4		
H312621		1.6	0.8	1	126.8		
H072622		1.4	3.5	7	123.0		
H0/72623		1.0	0.1		8.7		
H372824		5.2	0.3	17	74.0		
W073628		1.6	0.1	10	10		
H0/2626		0.6	46.1	- 99	5.5		
H373927		0.7	1.9	30	75.4		
H579638		1.8	0.6	31	20.8		
H373629		0.8	9.2	52	8.2		
H373630		0.8	63	15	8.1		
H373631		0.8	0.2	13	19.4		
H375812		9.7	0.3	30	14.0		
H072E30		0.9	49.1	160	13.6		
H072934		1.5	0.4	17	13.5		
H573636		1.8	1,1	30	22.0		
H3/2636		1.5	10.8	16	54.3		
H272937		0.3	15.1	15	45.3	40.001	
H072638		6.0	7.5	18	94.9		
H373639		-2.2	1.6	36	9.9		
H073640		7.2	0.8	- 16	0.7		

Comments 197 SAMPLES SPLIT ALTO S WIGHT CHICK AS DRIVES ST. ST. 45 AND RISAMPLES FAIRH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada CIII.

2153 Dolaron Hay Noth Vancouse BC V7H SAZ

Phone 804 984 0221 Fax 604 984 0218 were alsofrence com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC V68 4N9

CERTIFICATE OF ANALYSIS TR09121052

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2009

Account COAMO

Project TNR Mavis

										CENTIL	PUPIL !	OI MIN	1010	1000	FIODE	
lample Data-tylian	Marrison Acadyriu Unites 1,560	SMIT-27 Placed Will Fig. 6105	MEASON Ag year 501	MUMBEL A b 507	AL SET	ME-IPER1 84 ppn 18	65 actir Se ain 1 de	ME MODEL (N (part) (2.21)	16,4501 Ga - % - 651	MEASON OR SET	MEARING Co. Spr. Spr.	MEARING Co. periodical Elit	ME MIST OF DIST	DE-MOST DA Julie B III	BE MISST Di ISS ES	90 MIN % %
H3/72641 H3/72642 H3/72643 H3/72648 H3/72648		1.46 1.60 0.96 1.51 1.22	0.14 8.13 +0.01 +6.01 +6.01	8.76 6.08 5.79 6.17 7.52	1.6 0.4 46.2 46.2 1.0	30 10 10 10 10	294 213 307 16.50	14.36 26.4 5.90 2.64 8.35	0.00 0.00 0.16 0.17 0.62	0.05 +0.03 0.02 0.04 +0.03	0.82 1.80 1.51 0.87 7.32	0.3 0.3 0.3 0.2 3.0		107.0 26.0 45.8 127.0 5.27	6.2 1.9 2.0 0.4 5.6	0.64 0.27 0.29 0.22 0.08
11372646 H37364T H373646 H373646 H373660		1.86 1.26 1.28 1.39 1.27	40.01 40.01 40.01 40.01	101 101 423 634 736	0.2 0.7 0.7 4.0 0.4	10 10 10 31 10	345 119.5 16.65 10.50	7.17 4.32 22.7 6.85	0.21 0.22 0.07 0.00 0.00	-0.00 -0.00 -0.00 -0.00	130 1.17 220 1.41 234	02 03 03 18 13	*	96.2 54.1 250 6.77 3.86	1.6 1.2 6.7 5.0 9.3	0.18 6.21 6.38 6.63 6.50
H375837 H373852 H373858 H373854 H372856		9.40 1.12 9.87 9.96 9.67	0.01 0.01 0.01 +0.01 +0.01	1.55 0.06 1.08 5.79 7.80	0.5 0.4 +0.2 0.2 0.8	10 -(10) 40 20 20	0.98 0.97 0.47 10.30 Ni-40	0.05 0.06 0.04 0.30 1.08	0.15 0.07 0.78 0.78 1.47	+0.02 +0.03 0.03 0.02 +0.00	2.90 0.90 11.60 4.65 8.81	0.9 0.3 1.6 3.4 7.6	13 13 16 13 21	1.36 0.58 7.80 2.91 27.2	26 50 1.7 7.8 154	1.28 0.66 1.85 1.23 2.41
H3/2658 H3/2657 H3/2658		1.43 1.66 1.09	+0:01 +0:01 +0:01	5.60 6.66	40.2 1.1	120 16 46	96.3 76.1 65-3	7,28 9,26 9,16	0.24 0.24 0.99	40.03 40.03	2.12 2.48 2.46	2.9 1.7 0.9	*	50.2 5.19 14.60	97 913	0.08 0.68

Comments: HID SAMPLES SPLIT INTO 5 WORKDROKERS OF SA. 57, 33, 40, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Cenedy Ltd.

2100 Deleton Hay North Vancouver BC VVH DAZ

Phone 804 584 0221 Fax 804 984 0218 I www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-450 W GEORGIA SY VANCOUVER BC VIIB 4N9

CERTIFICATE OF ANALYSIS TRO9121052

Page: 3 - 8 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2009

Account: COAMO

Project TNR Mayis

										GENTH	CAIL	OF MINA	E i oto	1000	21002	
lample Description	Statistical Annalysis Unables 15 MB	ME-MOST Gar part E/R	Min.Attory Cor. spert 11 (19)	160 MOST 167 267 27	ME MIST 34 5017 1-005	MEASON # 15 15 15 15 15 15 15 15 15 15 15 15 15	ME-ADET (at ages (c.)	MARKET U MIN Rd	MEMBER NO NO	ME MOST SAT SATE SATE	MC-4001 St. St. St. St.	RE-ASSET No. 15 EST	ME MEET No. No. No.	WE ASSET	Milater P som To	ME MISS PA- part 111
HS72641 HS72643 HS72643 HS72644 HS72648		81.3 52.4 59.2 81.8 57.6	0.15 0.17 0.13 0.10 0.10	28 43 3.4 1.1 55	+0.005 +0.005 +0.005 +0.000 0.000	6.12 5.14 5.81 1.40 6.36	-0.6 0.8 0.8 -0.5 3.5	91.5 36.6 17.3 186.0 32.7	608 601 601 603 6.18	280 587 605 56 79	94.2 94.2 9.85 9.62 9.19	6.12 6.58 5.58 3.88 6.24	69-2 75-9 45-1 91-7 96-7	2.0 0.5 0.7 0.8 2.5	2360 1130 560 940 1960	24 7.1 4.8 2.9 3.0
H072648 H072647 H072648 H072648 H072688		37.2 46.5 74.3 39.0 50.5	0.07 0.06 0.06 0.06 0.06	38 37 43 65 45	+0.005 +0.005 +0.006 +0.008 +0.008	1.65 1.66 1.64 0.15 0.06	0.5 1.0 5.5 1.6	10.5 47.4 700 47.5 23.4	5.01 5.01 6.01 0.12 5.09	52 83 846 125 56	2.75 69.0 0.46 0.25 0.64	4.75 7.65 5.30 5.96 7.40	136.8 113.0 166.0 136.0 24.9	0.5 13 0.3 2.6 1.5	F30 F30 670 1360 1960	83 23 83 38 31
H072801 H072802 H072803 H072804 H072806		7.84 0.45 5.55 22.6 44.7	606 605 607 607 616	0.7 0.1 2.3 5.2 7.6	0.000 40.005 0.000 0.007 0.012	10H 10H 0.H 0.H 0.H	40 40 20 44	7.4 2.9 27.3 16.6 56.2	5.16 5.01 0.26 5.25 5.64	61 61 784 168 288	0.18 0.24 0.64 0.40 2.23	0.39 0.60 0.54 4.05 5.19	0.5 40 24.6 00.8	0.9 0.6 1.8 2.9 6.7	240 30 150 1130 3530	0.9 +0.5 0.8 4.4 4.8
H073858 H073657 H073658		85.7 85.0	108 108 107	3.9	*9.009 *9.008 *0.005	9.13 9.13 5.64	1.0 1.0 1.3	16.8 (0.1	0.10 0.00 0.04	108 124 116	0.29 0.09 0.10	6.30 6.35	25.0 110.5 116.5	25 28 28	4790 1160 3610	6.2 2.1 1.9

Commercis 193 SAMPLES SPEIT INTO 5 WORKOHOERS OF SE. ST. 33, 43, AND 5 SAMPLES EACH.

RECELLENCE IN AMALYTICAL CHEMISTRY

ALS Carried Lt.

2103 Collector Heav North Verscouver BC 17H GAT

Phone 854 984 5221. Fax 854 988 5216. www.atschemes.com

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC V6B 4N0

CERTIFICATE OF ANALYSIS TRO0121052

Page: 3 - C Total # Pages: 3 (A - O) Plus Appendix Pages Finalized Date: 11-NOV-2009

Account COAMO

Project: TNR Mavis

										0E311H	IONIC.	UI AAA	E 1 363	1000	21032	
Langie Description	Method Jessipie Body (JER	MCASST Re. Sen. S.T	500 MISST 600 500 5000	Miles	MCA607 58 604 525	56 30% 31	96 MSV1 94 497 1	ME MEET Ser Anni 8,7	SE MINE SE SE SE SE SE	10 ADD 1	ME MOST 74 2077 0.00	ME4001 70. 00** 6.7	145 40001 71 74 8 000	96 etel 5 pm 110	MEMBET V mm 0.1	1000 1000 1000 1000
#072641 #072642 #072640 #072646 #072646		141.5 141.5 1070 2360 36.5	6.004 6.004 40.002 40.003	9.01 9.01 40.01 40.01 40.01	8.74 6.19 6.06 6.00 8.15	1.6 0.4 0.3 0.3 1.8	1	64 952 252 663 923	12.0 14.9 10.3 7.8 10.2	+100 +100 +100 85.3 +100	6.39 6.49 6.13 6.27 46.36	12 29 30 21 21	0.042 0.005 -0.005 -0.005 0.048	0.29 0.78 7.79 15.79 0.34	3.6 4.8 6.3 6.6 7.4	11 2 10
H275645 H275647 H272648 H272648 H272645		2436 34.2 2386 80.0 28.4	6.563 6.566 +0.052 +0.002 +0.002	0.01 0.01 10.01 10.01 10.01	8.06 8.51 8.13 3.77 3.08	92 94 93 26 98	9	3.6 86.6 10.2 3.5	17.2 26.9 9.8 36.1 77.1	+100 +100 +100 +100 87.7	5.8 6.0 5.6 6.67 +0.06	18 21 26 17 63	~8.005 +8.005 0.006 0.001 0.001	18.60 9.33 17.30 9.52 9.17	6.1 37 6.4 6.1	71 27 9
#1372651 #1372662 #1372653 #1372654 #1372656		5.5 2.2 21.8 12.1 31.6	+0.500 +0.500 +0.502 +0.500 +0.500	40,67 40,67 40,67 40,67 40,67	0.06 +0.05 -0.05 -0.11 -0.14	3.4 0.3 2.5 3.2 6.1	1	0.0 +0.2 1.0 2.2 9.1	40.4 4.8 10.1 17.5 190.0	5.91 5.15 5.40 HIDS +100	-0.00 -0.00 -0.00 -0.00 -0.00	63 62 67 24	0.004 +0.008 0.078 0.113 0.216	0.00 0.00 0.00 0.07 0.07	6.1 -0.7 -0.2 -6.6 -7.1	35 41 8 31 75
H072656 H072657 H072656		81.6 39.2 266	+0.002 +0.002	40 CH 40 CH	8.05 5.13	2.2 0.4 1.1	-	21.4 41.0	97.8 17.8 19.3	+100 +100 +100	0.05 0.05 +0.05	13 13 18	0.000 800.0 800.0	0.86 0.30 1.86	43 43 52	19

Community 193 SAMPLES SPLIT INTO S AKONEKONTERS OF SE ST. 33. ALL AND S SAMPLES FACIL

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Collabor Hey. North Vancouver BC VTH GAT

Phone 604 564 50201. Pay 604 504 5016. Were also between com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11684 620-450 W GEORGIA ST VANCOUVER BC VSB 4N9 Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2009 Account: COAMO

Project TNR Mavis

CERTIFICATE OF ANALYSIS TB09121052

							CERTIFICATE OF ARALTSIS TBUSTZTUSZ
	Balled	MEANEY.	MEMBER	1604.00	MIARRI	Autorit	
	America	16	*	ān.	2	Au	
	Boths	4400	46/00	Spin.	pert.	gare.	
ARGIN Southbook	1.00	9.5	4.1	. 1	6.5	9.891	
072641		0.8	6.8	15	13.8		
H372642		0.9	2.0	19	21.1		
HUT2643		2.6	0.3	16	14.8		
HST2644		0.6	16 f	29	2.1		
10.72640		1.3	3.3	-65	26.0		
H379848		1.3	0.3	3	17.8		
H072647		12	0.3	. 4	14.8		
HITTING.		1.2	1,0	31	16.2		
H3.72848		5,81	4.1	29.	23.8		
KSTRISE		9.5	13.	39	19.0		
H372651	1	0.3	4.0	22	23.8	+0.001	
9072653		4.1	0.4	17	3.5	HD.2001	
H012653		0.1	9.8	15	79.8	5.011	
H372654		1.0	5.2	17	29.2		
1072615			7,6	35	43.4		
H372656		8.9	3.0	33	47.8		
1072057		5.5	2.1		16.8		
H272858		4.1	33	4	10.4		

Comments 193 SAMPLES SPLIT INTO 5 WORKORDERS OF SE ST, 31 40, AND 5 SAMPLES FACH

ACCEPTED THE DISTRIBUTED THEY

(2005 Document Rev)
North Vancouver Sic VTH GAZ
Prove SIA Sits 0001 Fac SIN Sits 5218 www.alschemes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VIIB 4N0 Page: Appendix 1 Total 6 Appendix Pages: 1 Finalized Date: 11-NOV-2009 Account: COANO

Present: TNR Mayes

CERTIFICATE OF ANALYSIS TB09121052

lemai	CERTIFICATE COMMENTS	
ME MS61	Interference: Car-10% on ICP-MS As ICP-AES results shown.	
ME MS61	REE's may not be totally soluble in this method.	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carrells LM.

2103 Dollarum Hey North Viancouver BC 1/TH 0A3 Prove 904 964 5331. Tax 604 964 5316. Www.afschorres.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 623-652 W GEORGIA ST VANCOUVER BC VEB 4N9

Page: 1 Final used Date: 14-NOV-2909 This depy reported on 15-DEC-2009 DMAGG INVOIGE

CERTIFICATE TB09121053

Project: TNR Mayor

P.O. No.:

This report is for 57 Rock samples submitted to our lab in Thunder Blay, CN, Canada on

28-OCT-2009

The following have access to data associated with this certificate:

FRED BALLACT WE COMMY

GARL ATTIME

HANG HENDHERN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
L0G-22	Sample login - Rod w/o BarCodo	
CRU-QC	Crushing QC Test	
PUL-QC	Pulvetizing QC Test	
CRU-31	Fine crushing - 70% <0mm	
SPL-21	Spit sample - rithe spitter	
POL-31	Pulvetice split to 35% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-NES Firest	ICP-AES
ME-MSS1	48 stement four and ICP-MS	

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN HARS MUNCHERIK PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC V68 4N1

Signature:

Colin Ramehaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada LS

2103 Dollarlon Hey North Venouver BC VTH 0A7

Phone 804 904 9221. Fax 804 987 5216. Were alsofteness core.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC VSB 4N0

Page: 2 - A Total # Pages: 3 (A - 0) Plus Appendix Pages Finalized Date: 14-NOV-2009 Account: COAMO

Project: TNR Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	21053	
Langle Description	Westund Analysis Sorty 188	MED-CT Percel Mil. No.	Self-Adder) Ag gare 5.01	Minimal P	AL som	ME MART San 19	90 M(47 No 20* 2 H)	ME MEET An Ann Ant	GH NOT N	UE ASSET CB SPR 2-95	MC-MGHT CH CH COT	MEAGE!	ME-4001 () () ()	et etel Ca per Eco	00 MM 1 00 MM 1 00 MM 1 00 MM 1	100 A000 100 100 100 100
POT2659		1.24	0.13	5.30	6.7	100	0.86	0.17	3.81	0.05	21.7	4.3		19.11	5.4	4.51
HOT2668		0.82	0.85	2.22	6.5	79	0.63	5.04	0.55	0.03	21.2	1.6	14	8.55	6.7	1.47
H072661		1.12	0.07	5.90	0.8	40	0.40	12.0	7.22	0.26	25.8	27.6	- 146	2.06	46.4	7.96
H072682	1	2.19	0.16	631	0.3	90	N00.0	4.34	0.50	2.05	7.63	1.2		63.3	3.4	0.90
FG72663		1.49	0.05	6.42	2.2	118	10.0	0.09	0.97	10.52	2.10	0.4	4	35.2	13	0.30
F012684		0.66	=0.01	6.26	0.7	50	130.0	0.30	6.20	-0.61	1.45	113		44.5	17	9.24
HO/284/E		2.79	45.01	6.57	0.8	20	103.6	1.84	0.12	40.82	2.49	0.2		72.5	1.7	0.23
HO/72866	- 1	0.66	0.04	2 48	=0.2	60	0.70	0.29	1.79	0.02	3.04	1.7	in.	3.12	5.9	1.39
HITTORY		0.90	0.67	2.44	0.0	20	0.42	0.52	0.26	+0.02	1.21	2.9	04	215	45.6	3.54
HO72668		0.94	0.07	5.42	0.5	30	0.66	0.01	3.31	0.06	36.0	3.1	2	3.07	12.8	3.19
40172689		0.45	0.05	7.65	1.5	126	118.0	5.27	0.85	0.02	8.70	1.2		44.5	16.3	1.10
HOTOKITE		1.36	0.01	0.06	-15	10	0.79	0.04	19.50	6-05	1.23	1.0		0.31	1.2	0.45
H072671		1.35	0.16	5.67	0.3	10	38.9	13.65	0.66	0.03	1.32	10	- 1	5.85		
H972673		0.94	0.09	6.17	0.8	35	156.0	2.43	0.39	+0.82	2.22	6.5	- 1		2.8	0.39
HOTOLITO.		0.77	0.01	6.44	10.2	15	261	3.80	0.50	10.02	1.46	0.5		9.57	11	0.23
HOTSELY.	-	0.34	+0.01	6.10	-									_		
HS72675		2.68	42.01	6.10	8.5	10	135.0	2.54	0.26	6.07	3.00	10.0		F:50	2.1	0.31
HETZEZE.		0.29	+3.01	6.32	40.7	10	244	4.31	0.27	+0.62	4.06	0.3		941	2.5	0.30
HG12677		1.15	10.01	0.50		45	16.50	0.40	0.80	0.93	2.36	3.8		5.35	2.6	1.38
H372678		1.38	-0.01	4.29	1.0	415	161.0	0.04 7.06	6.67	+0.62	8.67	0.2	15	1.97	1.3	0.23
									0.95	+0.52	0.59	0.2	4.	39.1	0.7	0.28
H372479	- 1	1.12	40.01	8.30	9.8	60	118.5	8.90	-0.35	=0.00	0.84	5.2	3	20.0	0.7	0.27
HO Fasie		1,46	40.01	4.27	0.6	39	79.7	1.65	9.29	40.00	4.26	0.4	5	77.6	7.6	0.18
H372681	- 1	2.19	+6.01	5.84	0.7	30	60.9	11-96	0.24	10.62	2.79	1.2		82.7	5.2	6.31
HISTORIAL TOTAL		0.73	-10,011	7.61	0.7	19	79.3	9.74	0.56	-0.87	2.82	3.6		15:35	11.7	0.59
HGT2682		1.00	0.40	19.05.	41.	30	90.0	0.10	15,95	-0.02	2.59	3.2	91	9.36	10.4	0.60
HETDEN.		0.82	=0.01	6.39	8.5	20	Tin a	2.79	0.25	19.52	6.64	8.3	4	46.1	0.9	6.25
H072686		1.54	-42.01	8.58	+9.2	80	155.5	0.54	0.50	+0.52	3.53	0.4	. 4	75.3	1.8	D.19
H372688		1.06	HS 01	4.64	9.7	50	3.54	1.43	10.198	+0.82	8.07	6.2	2	138.0	3.5	0.14
HS72687		1.71	0.08	6.13	9.2	36	2.66	0.09	9.75	9:53	29.5	5.4	10	7.94	11.2	7.58
H072688		1:39	0.81	7.69	1.0+	199	381	0.17	1.26	0.29	50.4	8.5	1	6.70	32	0.36
NOT THE		0.42	6.21	5.57	84	190	2.36	1.00	0,66	1.02	27.2	1.9	14	- 28.5	11.9	0.78
HQ7269E		1.70	0.00	7.56	-6.8	1220	2.25	0.38	9.77	9.97	40.7	2.2		24.8	5.4	1.22
W372691		9.96	9.61	0.95	48	100	0.13	0.00	22.6	0.97	9.64	2.0	5	0.65	1.3	0.91
H072690		1.60	0.00	6.66	0.6	279	19.70	0.05	0.97	0.03	36.1	1.5		53.0	8.8	0.69
HGT2880		0.94	0.01	6.56	10	690	1.22	0.09	1.25	6.07	46.1	4.6		35.4	5.0	0.87
HITTHEN .		1.10	0.05	7.51	11	W	1.40	0.51	136	2.54	21.1	11	1	4.13	2.6	6.76
HOTZONS.		0.84	10.01	0.00	0.7	20	T.56	4.40	0.76	8-93	1.99	8.2	3	15.75	1.8	9.27
H072696		1.21	0.65	7.89	0.7	230	2.81	0.21	5.96	0.09	8.79	45.1	267	22.4	36.7	7.38
HS72697		3.63	+0.01	7.58	1.1	715	58.8	1.45	0.56	+0.02	4.52	0.6	64	88.2	47.6	1.20
H372638		2.41	0.52	7.28	2.0	1345	85.0	1.00	0.19	0.19	1.77	5.9		116.5	27.8	0.58

Comments: 193 SAMPLES SPLIT INTO 5 WORKORDERS OF 54 ST. 33, 46 AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ACS Canada US.

2183 Dollarton Hee North Vancouser BC VTH SAT.

Phone: 804 984 0021 Fax: 604 984 0218 I www.afachemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 630 650 W GEORGIA ST VANCOUVER BC V68 4ND

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 14-NOV-2009

Account COAMO

Project. TNR Mavis.

										CERTIF	CATE	OF ANA	LYSIS	TB091	21053	
lampia (teopription	Hardward Franklyte United 1 Sept.	to one	40 mm	MI OFFI MI MI MI	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MINNET LA APP DO	MEMBER SI SIEM 63	ME 4001 My % CO1	Minds In In	Min Miles Silve page 1 (1)	Missir No. 1 1 1 1	90,400° 90 90° 81	M MILT	88,4661 F 647 15	MEARIN Ph. ppm 111
H373660		31.7	0.15	53.8	6.981	1.09	01.7	19.4	1.4.	877	1.89	1.90	29.2	161	100	3.1
H573660		9.36	0.10	4.7	0.066	6.22	3.2	17.9	0.17	293	0.75	1.07	3.6	16.3	310	1.0
HS79661		18.70	0.18	1.2	6.079	0.14	71.5	38.9	0.04	1360	5.12	0.72	9.0	31.6	880	3.5
H5/5882		10.0	1.08	4.5	0.006	5.63	3.3	100.5	9.05	306.	0.46	4.87	101.0	1.5	2060	4.0
H373963		10.6	9.06	8.7	10.005	1.26	1.0	13.2	9.01	296	0.63	5.42	101.8	14	1040	4.1
H373864		17.1	1.04	2.4	40 DOS	11.43	1.4	41	9.60	303	0.46	5.05	130.8	5.8	600	2.6
H072665		75.5	3.07	3.5	=0.005	0.90	11	21.1	8.01	276	1.04	4.85	134.0	3.2	120	2.4
H3/2806		7.42	9.06	6.6	0.027	1.40	1.2	81	4.85	180	9.35	1.05	2.8			
H3/3667		749	0.10	0.3	0.025	8.04	6.0	5.4	0.33	147	0.41	0.37		5.0	110	97
H073668		29.1	2.17	10.7	0.258	5.48	98.4	10.0	0.15	367	0.00	2.46	1.0	3.8	110	12
HO/DREA	-	55.8	8.51	13	ल्या प्राप्त		4.1	11.4				- 31				
HSF2670		2.43	1.30	10.1	0.305	1.0) (d)	141	0.53	5.34	54.8	2.6	1210	10.9
H373671		39.9				6.03	1.0	1.3	12:90	203	0.30	0.00	0.8	28	210	1.7
			9.16	2.6	40.000	0.06	8.2	34.7	0.06	1240	1.54	4.48	66.6	2.8	790	6.5
HS75872		45.0	8.40	4.0	=0.005	0.10	3.5	23.0	0.05	722	0.43	5.87	105.5	2.3	600	11.0
H3/5673		35.5	9.10	3.5	+0.005	6.16	8.8	10.2	9.02	2070	2.30	5.25	76.3	2.9	450	5.2
H\$73678		46.2	3.09	3.5	<0.008	1.06	1.2	18.6	0.01	469	0.18	6.16	80.6	1.9	510	79.1
H072675		11.2	9.10	2.7	+0.005	0.08	1.0	35.5	9.01	382	6.30	6.15	62.7	1.0	990	7.2
H3/5876		.58.2	15.57	2.3	0.010	6.26	59	12.4	0.16	1200	0.19	4.75	45.6	3.3	406	4.5
HS72877	- 1	8.28	6.06	40.1	49.000	with dis-	10.8	8.0	*E-01	36	0.14	0.09	0.4	2.0	10	+0.5
H373979		85.4	9.06	2.6	+0.006	9.83	40.5	29.5	45.01	901	0.17	6.01	818	1.2	840	7.5
H127575		16.2	1.06	2.5	<0.006	4.33	8.7	19.6	+6.01	962	0.75	15.76	79.6		166	4.5
H372680	- 1	40.1	0.07	5.2	×0.005	1.12	1.0	12.6	0.01	259		5.56		1.8		
H3/3681	- 1	36.6	1.06	2.0	-G 105	1.49	1.6	750	0.07	317	0.12	3.85	67.8	1.9	110	11.6
H373882	- 1	13.6	8.08	3.1	<0.005	2.39	1.0	4.2	0.60	94	0.30	-	44.7	2.6	1100	10.7
H272683		0.1	3.10	1.8	0.397	0.25	1.0	41.5	0.40	1620	0.17	7.50 0.06	87.2	22	810	7.6
H373664	_										-					
H172665		59.0	0.16	5.7	*0.005	1.27	3.5	19.0	0.02	417	0.15	4.54	84.6	2.8	1010	0.9
HO75686	- 1	0.1	8.08	27	<0.005	0.63	12	46.2	9.00	96	0.50	7.87	430.0	2.2	1320	7.0
H073687	- 1	15.16			0.005	2.07	2.5	2.0	+0.01	46	5.10	B.R.F.	87.3	2.8	960	8.5
H373668		31.3	0.14	10	0.010	0.10	11.9	71,6	9.37	958	0.29	4.71	2.5	19.2	910	3.8
		_			<0.008	0.14	24.2	11.5	0.84	997	0.30	T/16	10.8	24	4010	5.7
H373689		17.00	0.11	2,8	0.010	2.16	14.1	40.7	0.18	105	0.32	4.15	4.5	6.5	300	6.0
1072690		22.4	5.14	3.6	8:012	11.17	23.4	79.3	0.29	177	0.12	4.47	4.7	5.4	410	19.5
H3726H		0.49	-0.11	40.1	5-006	9.06	6.7	1.5	15:00	298	0.30	0.03	0.5	4.2	210	1.8
H012885		22.1	9.29	3.5	0.006	0.35	19.2	38.2	6.19	144	1.97	5.12	7.8	3.8	675	6.0
H372683		14,95	9.10	3.4	6.005	0.76	22.6	36.3	0.21	218	0.43	4.80	4.5	5.7	379	8.3
H372694		26.1	3.06	2.5	6.912	7.30	16.4	29.4	0.18	128	0.71	525	43	4.5	200	87
H372686		49.3	0.05	3.0	<0.005	8.79	9.7	4.5	0.01	64	0.69	5.60	13.5	1.4	700	5.1
H373686		18.70	0.16	5.9	0.075	0.97	5.9	149.5	3.89	1900	0.38	2.17	3.1	72.7	309	1.6
H37366F		45.4	0.16	2.3	+0.009	2.04	2.5	7100	0.55	420	6.11	4.93	72.0	17.1	810	12.5
1072899		41.6	5.12	2.6	×0.905	2.02	0.9	4540	0.18	800	₹0.66	2.36	79.5	13.5	tent	4.7

Community, 193 SAMPLE'S SPUT INTO 5 WORKDROERS OF SR, SJ, 33, 40, AND 5 SAMPLE'S EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Dollaton Hwy North Vancouver BC VRe SAP

Phone 804 984 5201 Fax: 804 584 0016 www.alschemex.com.

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 \$20-850 W GEORGIA ST VANCOUVER BC V68 4NS

Page: 2 - G Total # Pages 3 (A - D) Plus Appendix Pages Final god Date: 14-NOV-2005

Account COAMO

Project: TNR Mavis

										CERTIF	CATE	OF ANA	LYSIS	TB091	21053	
Lampto Dans Sption	Markad Assiryon Umda Light	ME MOST An part 51	SR-WEST Fig. 1005	MEANNT 1 1 1 1 1	MEMBER SA SPE E.III	96.4501 Sc pp. 5.7	NE-mbarr do- port 1	ME-MEDT 64 949 6.2	ME MINT SITE BUT	NEASO: 16 50 2.05	56 MOST 16 35% 2.55	ME.MINIT 19. 1911 12.	MI MICT TO Se DOME	MEMBER N SET DIS	mit enteri U ppm 6,1	MC-editi V ppm 1
H372638 H372680 H372601 H372601		167.6 35.5 4.4 990	0.052 +5.052 0.062 +2.053	9.01 9.01 9.03 9.01	0.42 0.13 0.34 0.98	129 35 315 22	2 2	63 89 51 365	8216 87.5 1130 90.6	5.31 0.66 0.67 81.0	0.26 +0.05 +0.05 0.38	3.1 1.3 0.8 2.4	6.331 6.116 6.632 5.068	1.00 0.20 0.03	0.6 0.3 0.7 7.4	6 2 271 17
HQ728KB		1080	45 002	40.01	10.05	-9.2	1	35.4	16.5	912	=0.05	3.6	10.005	5.70	3.4	
H172668 H172668 H172668 H172667 H172668		1090 1590 39-9 6-2 36-7	45.002 45.002 45.002 45.002 45.002	+0.01 +0.01 +0.01 0.08 0.02	0.05 0.05 0.18 0.06 0.30	52 52 23 55	a de de de	61.9 1.2 0.6 4.2	18.3 8.2 815 37.6 960	96.9 1100 0.86 0.25	0.56 0.10 +0.08 0.11	9.3 2.5 0.4 -9.2 2.6	+0.505 +0.505 0.045 0.060	5.39 11.80 6.37 6.04	3.7 8.6 0.1 10.1 0.7	41 26 84
H3/2868 H3/2675 H3/2675 H3/2675 H3/2675		225 24 22.2 46.8 228	+0.002 +0.002 +0.002 +0.002 +0.002	0.06 0.01 +0.01 +0.01 +0.01	0.56 -0.00 0.56 0.57 0.58	10 33 35 54 58	-	9.7 +0.2 1.2 20.3 20.0	98.8 43.9 141.5 73.9 28.2	>100 0.23 >100 *100 =100	0.15 +0.05 0.15 0.28 0.58	35 403 41 41 27	0.060 +0.005 0.006 0.006	0.16 1.86 -0.12 0.12 0.24 1.36	5.4 0.8 7.5 6.9 5.4	8 2 3 1
H3/26/9 H3/26/9 H3/26/9 H3/26/7 H3/26/7		27.6 129.6 39.8 1.0 800	+0.003 +0.003 +0.002 +0.003 +0.003	-0.01 -0.01 -0.01 -0.01	0.6F 0.11 0.58 +0.05 +0.05	83 83 33 63 83		16.7 16.6 6.7 -0.2 20.4	96.0 40.0 56.5 2.6 16.7	+100 +100 45.4 0.17 63.0	0.0F 0.06 =0.05 =0.05 0.0F	3.6 2.4 +0.2 2.9	1005 1094 1094 1095 0.005	5.13 5.60 5.16 5.02 5.20	5.9 6.1 3.1 -0.7 7.6	27
H075679 H072680 H072681 H072682 H072683		19030 1930 1930 562 4.6	+0.002 +0.002 +0.002 +0.002 +0.002	40.01 40.01 40.01 0.01	-0.05 -0.05 -0.05 0.09 0.09	53 52 54 54 53	N 20 N 10 N	15.7 30.7 24.4 46.6 167.6	90.0 13.5 9.1 10.0 16.7	ME7 +100 91.5 +100 +100	0.1F 0.07 +0.06 0.06 0.06	2.8 6.6 6.0 4.0 4.3	5,006 -0,005 -0,005 0,005 0,005	134 13.50 18.55 2.96 3.12	5.6 11.5 2.0 4.6 3.0	1 1 2 17
H073684 H373685 H073687 H073687		1460 930 295 24.3 43.8	40.002 40.002 40.002 40.002	+6-01 +6-01 +6-01 0.01 +6-01	40.56 0.56 0.56 0.56 0.56	9.3 5.8 9.3 2.5 9.9	7. N.	56 1 13.6 9.1	36.7 30.0 308 633	90.7 +100 +100 2.66 12.75	0.57 0.56 0.56 -0.06 -0.05	3.4 2.7 3.4 7.7 10.5	0.50F 9.006 •0.006 0.105 5.035	13.36 1.45 34.1 6.18 6.28	3.2 8.4 2.5 1.5	2 1 31 1
H372688 H372690 H372691 H372693		55.5 65.5 6.1 70.5 62.6	-0.002 -0.002 -0.002 -0.002 -0.002	9.01 9.01 9.01 9.01 9.02	0.57 0.57 -0.06 0.50 0.37	10 24 15 17	-	453 453 47 47	366 812 55.4 694 615	0.64 0.55 0.46 0.76 0.30	0.35 0.26 40.06 40.06 40.06	7,1 9.7 -0.2 7.8 7.9	0.040 6.100 0.000 0.102 6.112	6.47 8.60 8.04 8.60 8.51	1.3 2.7 1.3 2.4 2.7	18 13 4 11
N372696 H372696 H372696 H372697 H372698		75.8 363 195.5 1110 1450	+2.002 +2.002 +0.002 +0.002 +1.002	46/81 46/81 9/01 9/01 45/01	0.17 0.57 0.30 6.27 0.13	15 86 53.3 11.9 3.0	2 41	E.F 3.9 12.4 41.3 86.0	102 16.2 139-3 25.8 24.7	0.49 100:0 0.89 84.9 81.3	+0.00 +0.00 0.00 +0.00 +0.00 +0.05	1.2 0.8 4.7	0.000 0.000 0.011 0.000 0.000	1.5 2.46 1.27 9.06 11.05	5.0 5.0 6.2 3.2 5.0	1 269 37 2

Commercia: 183 SAMPLES SPLIT INTO 5 WICHKISHSHIRS OF SR 57, 23, 65, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

AUS Carriers US.

2105 Dollarton Hwy North Vincouner BC V/he DAT

Phone 604 664 5221 - Paic 604 584 5256 - www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 622-650 W GEORGIA ST VANCOUVER DC VED 4N9 Page: 2 - D
Total # Pages: 3 (A - D)
Plus Appendix Pages
Finalized Date: 14-NOV-2003
Account: COAMO

Project: TNR Mayrs

CERTIFICATE OF ANALYSIS T809121053

	-	ME GRET	ME NEED	sel-weign	MI-MEET	4-1001	
	bestule			29	D	Au	
Carde Boundaline	MANA	Diam.	Minch	Man.	Man	Street, Co.	
Leopis Daumptur	1.00	8.1	8.9	1.	. 6.0	3.007	
HITZKON		2.3	110.0	28	463	<0.061 →0.061	
H11736601		0.4	29.0	17	154.5	~0.00Y	
H079681		9.4	52.3	53	35.3		
HORMUR		5.6	9.3	47	37.4		
K072660		12	4.1	24	20.4		
MERCHEN.		1.0	.18	17	14.3		
N372686 ·		1.0	2.2	22	19.6		
HCC2668		-0.4	16.0		8.71	-0.001	
H372607		0.8	2.2	32	9.3	<5.061	
HOT2668		1.6	131.0	18	329		
H37266W		2.3	5.3	26	17.7		
1072670		9.3	1.0	13	1.2		
HEP2671		5.6	16	10.	15.6		
HSF2MF2		1.2	0.6		21.8	3:361	
HUDSETS		0.8	4.3	*	17.7		
H172674		11	0.4	-	18.0		
HIPMPS		0.7	1.0	19.	14.3		
HITMS:		2.0	4.0	23	21.8		
X072677		+0.1	+6.1	+2	40.5	-0.001	
HOTOGOS.		3.3	0.9	18	29.7		
H072678	-	1.1	8.7		16.0		
H372680		3.8	1.9	. 8	42.4		
H372681		13	1.5	15	18.2		
HSF7MIG		1.7	12	12	19.7		
H37(683		2.9	9.5	12	12.6		
KITHIN		1.7	1.4	21	16.5		
H072685		2.7	1.0	10	29.7		
HOTZMIN		1.4	23	3	15.5		
HOTZMRT:		1.1	5.3	16	402.5		
HOT288B		0.7	5.6		127 (6		
10726m		5.0	3.7	13	91.8		
H)T2690		36.5	43	36	119.5		
H3T2691		0.2	0.0	17	0.8		
H072693		0.7	6.1	16	104.0		
X072690		0.8	4.5	18	129.0		
×372004	-	- 61	3.0	33	85.4		
H072696-		0.7	4.3		36.1		
H072086		8.5	15.8	82	27.9		
HOTZER!		2.1	2.9	12"	18.5		
ADTWIRE		1.7	5.5	86	78.9		

Comments, 192 SAMPLES SPLIT INTO IL WORKOHOMES OF SA. 57, 33, 40, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carada List

2103 Dularton Hay North Vancouse BC VIN GAT

Phone 604 564 0001. Fax 404 564 5216. www.afschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VEB 4N9

CERTIFICATE OF ANALYSIS TRO9121053

Fage: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 14-NOV-2669

Account: COAMO

Project: TNR Mavis

										CENTR	IONIE .	OL WIN	L 1 313	1000	11000	
Lampia Description	Dyahad baryta paka 180	WEIGH WIS Record WIS Ag ID SEE	MEARING AL SET	MEMBEY A S.	ME-estant As yard (c)	Unideal for ages 10	MEASA! Se Spri 2.51	MEMBER Services DOT	ME MEET	ML4681 G4 699 898	MC-MSet Co parts (1)4	ME-MEET Co- pure 6.1	MC-MS(1) () (amin	ME MIDE! Date: Date:	SEMBIT SI 1974 52	MEANA Fe S
HGT2898 HGT2709 HGT2701 HGT2703 HGT2703		2.79 2.86 9.74 1.56 1.50	40.00 40.00 40.00 40.00 40.00	7,62 7,66 6,47 6,38 6,63	0.6 0.7 0.7 0.5 0.5	340 160 10 10 10 20	3.36 5.29 22.3 96.2 194.8	1,53 1,21 0,95 0,07 0,29	0.26 0.24 0.25 0.08 0.34	*0.52 *0.52 6.03 6.52 8.03	2:07 2:71 164 1.88 3:14	40 67 63 63		810 1123 5.86 7.76 10.25	162 19.3 6.0 1.9 6.2	6.88 0.35 0.35 0.35 0.31
#372704 #372705 #372788 #372708 #372708		0.85 0.81 1.34 0.75 0.86	40.61 40.01 40.01 0.35 40.01	5.59 5.36 8.32 6.72 7.86	14 10.2 0.7 0.6 1.8	10 10 103 30 30	3.76 64.3 46.8 26.0 25.1	25.0 0.17 0.98 25.0 0.26	0.04 0.00 0.00 0.00	6:02 6:07 6:08 6:02 40:32	2.49 6.61 11.76 3.96 1.62	62 62 63 64 64	7 100	5.45 57.7 15.28 26.1 6.36	19 12 88 15 51	0.16 2.35 0.33 0.38
H312708 H312710 H312711 H312712 H312713		1,30 1,30 0,81 1,61 0,65	40.01 60.01 40.01 40.01 9.81	9.73 7.51 5.77 5.41 0.10	17 10 55 65 49	50 628 10 10 10	227 85.6 125.0 3.07	5.81 25.8 5.78 14.10 0.13	5.74 0.23 5.67 5.71 19.95	106 106 106 106 106	2.50 6.76 9.64 6.62 1.00	27 82 62 62	4 4 5 2	181.5 151.5 57.9 15.00 0.68	7.2 2.6 1.6 0.6 1.2	0.76 1.22 0.47 0.46 6.42
#572714 #372718		1.55	0.73	8.81 T30	9.4	120	0.60 9.01	1.40	2.17 3.29	3.00	2.36	4.8	15.	9.37	436.6 21.0	5.85 4.25

Commercs, 193 SAMPLE'S SPLIT INTO 5 WORKONDERS OF 58, 57, 33, 40, AND 5 SAMPLE'S EACH

H272716

14072715

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

0.3

63

0.577

0.246

211

1.68

8.6

MLS-Corners Ltd.

35.4

0.11

2103 Collector Hay North Vancouver SC VTH DA7 Thorw 604 984 0221 Fax 604 984 6218 Innex allectromex com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-659 W GEORGIA ST VANCOUVER BC VER 4N9

CERTIFICATE OF ANALYSIS TRANSPORT

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 14 NOV-2009 Account: COAMO

Project: TNR Mayor

100

2.40

654

8.17

0.33

1:40

90.0

14.0

35.9

1.0

210

3.1

										CERTIF	IGATE	UF ARA	LT 363	IDUN	151000	
lampia Description	Shart and American Control (SSS)	MO MOLT Ga Serie EST	No. Morr Ov spin 5 pt	ME MORT AN AN AN A.1	MEMBER A Spin E-OTE	ME MOST E S S	MEABET GA 907 0.2	MEMBER U SHY 52	MI MI N	ME MOST	MEADET MI SUR. ESS	MEASURE No. % 401	ME MANUT MA MATERIAL BIT	ME-MENT N peri- Ed	MEMBET P. SOTE TE	90 MOST PR 507 515
+012698 +012708 +012709 +012709 +012703		17.6 42.6 49.2 63.0 61.2	0.37 0.27 0.25 0.26 0.37	1.8 2.8 2.3 4.8 2.3	45.005 46.005 45.005 45.005 45.005	8.36 3.59 0.07 0.08 6.10	1.0 1.1 0.7 0.8 1.4	38.8 15.4 2.9 6.2 10.4	834 810 805 601 601	2017 128 73 78 1417	8.12 8.08 8.08 9.14 9.09	4.30 5.53 6.86 7.48 7.16	96.5 95.7 92.5 190.5 194.5	63 7.6 1.5 1.2 1.6	1325 1260 530 500 910	22 23 28 22 28 22
HQ7270H HQ7270B HQ7270B HQ72707 HQ7270B		48.3 48.0 37.6 82.9 50.2	-0.06 0.09 0.07 0.06 0.06	2.9 1.8 4.3 1.6 2.3	0.013 0.026 0.046 0.020 40.005	0.00 0.63 0.49 1.95 0.09	0.7 +0.5 8.4 1.2 0.8	2.8 4400 25.7 6.3 35.4	0.31 0.01 0.64 0.02 0.06	110 103 104 93 50	5.14 5.16 9.28 6.13 6.11	6.84 2.46 9.36 5.40 7.55	180.3 111.5 75.8 40.5 107.0	15 218 13 43	270 860 1765 1373 2175	3.3 4.1 9.3 4.4 3.8
9372708 9372719 9372711 9372712 9372713		103.0 56.7 39.5 33.6 9.45	0.56 0.69 0.06 0.06 0.68	0.3 0.3 0.3 0.3 0.3	=0.005 =0.006 =0.005 =0.005 =0.005	1.04 2.06 1.04 1.06 8.02	40.5 40.5 40.5 40.5 8.5	162.0 4010 30.8 20.4 1.4	0.17 0.18 0.01 40.01 10.00	108 365 47 56 319	0.21 +0.05 0.22 5.94 0.08	6.17 3.14 9.28 5.62 0.65	192.0 114.0 56.2 67.2 6.9	23 12 13 13	3060 1200 890 810 200	10.0 12.9 7.6 3.0 1.2

6.3

Commercia: 189 SAMPLES SPLIT INTO 5 WORKDROKES OF SA. 57, 30, 40, AND 5 SAMPLES EACH.

EXCELLENCE IN AMALYTICAL CHEMISTRY

ALS Carealy 170

2101 Oxfortim Hey North Viencouver SC V7H GA7

Phone 804 954 9221. Fac 804 984 0219. www.atscharmex.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 623-656 W GEORGIA ST VANCOUVER BC VEB 485

CERTIFICATE OF AMAILYSIS

Page: 3 · C Tetal # Pages: 3 (A · D) Plus Appendix Pages Finalized Date: 14-NOV-2009 Account: COAMO

Project: TNR Mavis

			_							CENTIL	MAIL	UT ALL	IL T 313	LEGA	21003	
Long to Date of See	Marriado Bradeto Senio 1,00	RE-MODEL Fig.	MA ADDIT Poli SPRE STREET	9E-9601 5 5- 5-27	\$40,0000 56 5000 5500	St pan 6.1	DES MESTE Services 1	Set Artist Sin Jum 8.2	MEASON See BUT	NE AGE!	WEAGHT No. OPT. COS.	MEARNI 76 2075 6.2	50 ASSET 15 16 16 16105	M) whell to gan till	00 MM1 Sen E1	ME-MEE April
+070696 HUTZ795 HUTZ751 HUTZ752 HUTZ753		2150 2540 16.8 15.0 20.8	+0.003 +0.003 +0.003 +0.003 +0.003	+9.01 +9.01 +8.01 +8.01 +8.01	606 606 606 606 606	0.6 0.4 0.2 0.2	41 41 41	16.1 28.0 6.1 5.2 6.0	60.0 62.0 73.1 14.3 28.4	75.0 +100 +100 +100 +100	5.11 6.07 45.26 45.65 40.65	8.4 9.7 1.5 9.2 1.5	0.006 0.006 0.011 +0.005 =0.005	19.05 22.7 5.11 5.08 9.12	3.7 3.2 3.5 7.3 5.8	8 4 2 40
H072794 H072798 H072796 H072797 H072798		16.0 740- 101.6 850- 96.5	+0.002 0.003 +0.002 +0.003 +0.002	+E.01 +E.01 +E.01 +E.01 +E.01	6.39 6.71 6.36 6.36 6.36	0.8 0.5 7.2 0.4 0.6	45 45 45 45	45 46.1 7,6 17,5 5.3	115 65 1720 410 761	+500 +100 +100 94.2 +100	10.06 0.06 0.06 0.34 40.05	23 1.4 23 0.7 1.0	0.000 +0.000 0.173 0.013 0.012	9.00 5.86 9.91 5.94 9.27	2.6 2.5 6.8 1.9 2.1	30
HUTZTON HUTZTON HUTZTON HUTZTON HUTZTON		2200 2300 1400 26.4 2.9	+0.002 +0.003 +0.002 0.008 +0.002	+0.01 +0.01 +0.01 +0.01 0.01	0.10 0.06 0.07 0.15 40.85	1.8 2.3 0.2 0.4 0.1	41 41 41 41	1110 70.4 9.2 4.9 0.7	98.6 992.5 39.0 14.2 62.7	+500 +900 82.4 +900 1.41	0.05 0.47 0.05 0.20 -0.66	3.8 1.2 6.7 2.6 -0.3	0.067 +0.005 +0.005 +0.005 +5.005	11.10 13.90 11.05 0.16 0.03	94.9 94 17 20 84	2 - 2 -
HUTZPIA HUTZPIS		27.0 134.5	0.002 0.004	0.02 0.05	1.12	43	47	1.3	33.1 7155	1.48 6.41	10 M 10 M	403	0.306 0.00T	9.80	9.1 10.1	535 177

Commercia: 193 SAMPLES SPLIT INTO 5 WORKDROKERS OF SIL ST. 32 40 AND 5 NAMPLES FACH.

EXCELLENCE IN ANALYTICAL CHEMISTRY

MUS Cartach Life.

3103 Dollarton Hay North Vancouser BC VIN+ SAT

Plane 804 984 5201. Fair 604 984 6218. Were alluchemex.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11804 625-450 W GEORGIA ST VANCOUVER BC V68 4ND Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 14-NOV-2029 Account: CGAMO

Project: TNR Mavis

CERTIFICAT	TE C	F ANALYSIS	TB09121053
The second second		THE RESIDENCE OF THE PARTY OF T	

Lampia Bassingtoin	Manhor Manhor brade 1,000	M MANUAL STATE OF THE STATE OF	MEANING N	MEMBER SH SHY E	MEMBE 25 25 63	A.OV	
H373688 H373760 H373761 H373763 H373763		3.5 22 5.6 1.1 1.2	18 20 22 38 28	54 5 3 3 3	8.8 14.5 12.5 28.2 10.1		
H072754 H072755 H072766 H072767 H072768		12 15 15 17	13 18 184 3.0 12	4 86 2 15	8.3 73.1 21.9 14.2		
H372709 H372740 H372711 H372712 H372712		1A 16 35 39 81	10 51 52 52 57	75 25 5 7 17	79.4 11.8 4.3 19.8 0.8		
H072718 H072776		18.	1.0		4.0	49.001	

COMMISS. TRI SAMPLE'S SPLIT INTO 5 WORKORDERS OF SIL 57, 33, 40, AND 5 SAMPLE'S EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

JKCS Convetta Ltd.

2103 Delame may North Vancouse BC V7H DAT Phone: 804 965 9221 Fax: 804 984 9218 www.ahuthernex.com. To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VEB 4N5 Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 14-NOV-2009
Account: COAMO

Project: TNR Mavis

CERTIFICATE OF ANALYSIS TB09121053

Nethod	CERTIFICATE COMMENTS	
ME-MS61	Interference: Car-10% on ICP-MS As,ICP-AES results shown.	
ME-MS61	REE's may not be totally soluble in this method.	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS CHINA LIE

2103 Dulleton Hwy North Vancouver BC V7H DAT Phone 804 Min 5201 Flor 604 Min 5219 I www.alschertex.com To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 629-650 W GEORGIA ST VANCOUVER BC V68 4ND

Page: 1 Final cod Date: 9-NOV-2009 This copy reported on 15-DEC-2989.

Account: COAMO

CERTIFICATE TB09121054

Project: TNR Mavis

P.O. No.:

This report is for 33 Rock elemptes submitted to our lab in Thunder Bay, ON, Canada on 28-OCT-2009.

The following have access to data associated with this certificate:

FRED BREAKS INE CENSARE

GAME AUTHAS

HANS MUNCHENK

	SAMPLE PREPARATION	
ALS COOK	DESCRIPTION	
WEI-21	Received Sample Weight	
100-22	Sample togin - Rod w/o BarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SF121	Split sample - riffle splitter	
PUL-21	Pulverior split to 85% 475 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	As 30g FA ICP-AES Firesh	CPAES
ME-MS61	48 element four acid ICP-MS	

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO 80X 11604 628-650 W GEORGIA ST VANCOUVER BC V48 4NS

Signature

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALL CHARLES

2165 Dolarton Hwy North Vancouver RC VTH DAT

Phone: 604 964 0031 Fex: 604 964 5216 I were afschames com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4N9

CERTIFICATE OF ANALYSIS TROOTSTOKE

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-HDV-2905

Account: CDAMD

Project TNR Mavis

								_	_	SERVIN	IONIE	OF ANA	21010	1000	21054	
lampio Dose spison	Shortest Analysis Martin 1,000	NEW ME.	\$6.6581 Ap port 9.01	NE-MEET No. No.	95.4501 At 604 63	de appr de por rii	Mit Addition She provided 0.000	MEMPET B- SUR DOT	MI MSH Co % SSH	ext-adiri Cir ism 657	est asjer Car pure. E.Et	SALARSET Co pare 81	intraction (i) (i)	MICAGO Ca ppm cm	Ministra Ga part 13	MEANS Fa
H072716 H072717 H072718 H072718 H072718		1,57 6.48 1.31 1.55 6.94	10.00 10.00 10.01 10.01	7.64 6.96 7.31 7.51	15 17 14 53 53	100 20 100 10 10 178	29.4 222 120.5 74.4 2.41	8.79 9.16 6.70 9.62 9.04	1,02 5,24 5,25 5,60 5,46	5 04 45 00 9 00 45 00 45 00	4.00 5.10 2.34 2.47 7.17	2.5 0.3 0.3 1.0 1.1	13 0 0 7	19.66 116.5 64.1 97.4 5.66	9.8 2.9 1.6 3.7 1.6	1.26 5.29 5.29 5.84 6.96
HS72721 HS73722 HS72723 HS72724 HS72728		1.85 1.87 1.07 3.75 1.27	10 21 10 21 10 21 10 21	5.51 7.43 6.76 8.61 6.73	8.3 -0.2 8.3 9.5 8.3	90 290 10 20 20	3.46 19.8 19.5 192.5	25.E 6.33 1.80 2.24 2.91	5.26 5.36 5.12 5.00 5.10	+0.00 0.08 +0.00 0.10 0.00	5.19 0.82 5.17 0.19	52 52 95 105	6 191 5 6	181.0 18.80 108.0 114.0 121.5	2.2 24.6 26.2 26.1 11.8	0.34 7.20 0.36 0.29 6.31
H372738 H372727 H372738 H372761 H372762		1.00 1.34 1.20 1.37 1.47	40.91 10.91 809 40.91 40.81	6.93 6.87 7.86 6.57 6.53	0.8 0.8 +0.2 +0.2 +0.2	90 90 90 10	91.0 147.5 8.30 396 136.5	2.46 2.61 5.17 11.10 15.60	6.06 6.10 6.79 6.04 9.06	-0.00 0.04 0.07 -0.00 0.04	0.06 0.31 0.48 0.57 0.60	42 13 614 65 62	5 5 5	1463 236 8.46 389 111,6	16.4 11.5 49.6 1.5 0.9	0.26 0.26 7.77 0.26 9.30
H3/17/53 M3/12/154 H3/12/56 H3/12/66 H3/12/67		1.41 136 1.29 1.60 1.40	601 808 40.01 40.01	2.04 7.02 4.67 8.37 2.16	+0.2 0.8 7.2 0.0 0.7	10 280 10 130 130	5.85 8.56 8.59 2.59 955.5	6.14 6.90 6.66 5.20 2.10	0.65 8.22 0.19 8.86 0.74	0.03 0.19 +0.02 0.00 0.00	2.06 8.32 0.72 52.5 3.60	7.8 32.0 9.6 1.6 9.0	25 80 6 13 13	5.32 29.3 5.51 5.39 200	10.2 72.5 1.9 2.6 36.4	9.22 9.22 9.35 6.66 2.11
HSZZZER HSZZZER HSZZZER HSZZZER HSZZZER		1.67 1.87 8.36 1,74 1.42	+0.81 +0.81 +0.81 +0.81	736 556 831 874	6.8 40.3 45 8.8 1.0	10 10 10 50 30	361 30.7 9.52 181.5 364	3.52 0.07 0.03 1.08 8.16	1 A3 8.07 78.16 5.18 8.69	+0.00 +0.00 0.06 -0.61 +0.00	1.36 1.36 0.30 2.97	3.0 0.5 0.9 0.4 2.0	3 1	234 234 234 906 80.4	20 18 18 18 66 142	6.25 6.25 6.41 6.31 6.36
H072760 H072764 H072760 H072760 H072767		1.60 1.46 1.66 2.00 1.17	6.03 10.01 10.01 2.01 40.01	1.12 4.61 1.69 5.40 5.63	0.8 0.8 0.3 -0.2 -0.2	30 10 60 100 10	1,33 53.0 1,73 9.40 99.8	5.04 5.04 5.40 5.64 5.04	4.86 6.24 2.05 8.61 6.11	0.95 0.07 0.08 -0.03 -0.03	14.15 1.65 18.65 57.4 0.81	54.8 0.6 5.9 23.0 0.4	912 9 16 324 6	6.22 25.6 5.57 29.2 364	514 2.0 4.1 140.5	8.25 0.41 2.52 3.51 6.25
H372768 H372768 H372778		5.83 6.84	40.01 10.01 5.08	7.75 7.54 8.76	9.5 40.2	30 60 30	47 8 75 3 5.57	6.72 3.00	1.46 1.17 1.79	+0.60 +0.00 +0.00	2.09 2.60 4.99	5.6 5.6 2.6	3 8	41.6 100.0 80.9	5.3 2.4 7.0	5.46 6.29 1.10

Committee 192 SAMPLES SPECIFICIAL WORKSON'S KIS DV SE ST. 33 AS AND S SAMPLES LADIE

EXCELLENCE IN ANALYTICAL CHEMISTRY

W.S. Carnets Un

2103 Deltarion Hay. North Varcouver BC V7H DAT

Phone 804 984 3221 Fax: 604 364 0216 www.alschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 \$25-650 W GEORGIA ST VANCOUVER BC V68 4N5 Page: 2 - 8.
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 2-NOV-2005
Account: COAMO

Project: TNR Mavis

										CERTIF	ICATE (OF ANA	LYSIS	TB091	21054	
Banqua Dess/spises	Market Acadyra Srees LOR	MEADET Ga Gan, EVE	et eign de son 300	96.0661 16 16** 27	MEARST A Spe Sills	10 ACC 1	SHEADOT SA SAIN SH	00 MOST (000) (000) (0.0)	100,0001 Mg % 0.01	MEAGET Mic SETT E	ME MOST Me Jum S 24	160,4601 No. 15 631	Mil. Milet No. No. No.	W 4001 N 107 0.7	ME-MINET p part 15	49. A60 69. 160 63
H3F22*8 H3F27*17 H3F27*8 H3F27*8 H3F2798		368 648 642 863 261	+0.08 0.06 +0.06 0.09 0.05	31 32 46 36 32	0.022 +0.005 +0.005 +0.005 0.005	0.06 1.96 0.04 0.95 0.15	16 05 12 12 12 32	62.7 740 28.6 152.6 51.0	0.17 0.02 0.01 0.07 0.12	364 364 860 125 125	0.56 0.39 0.37 0.18 0.32	5.45 3.66 6.10 4.65 6.17	#4.6 12.8 86.1 86.0 1.9	68 26 13 21 32	2090 1000 1150 2220 230	81 10.1 5.6 5.5 4.6
HOTZPH HOTZTZZ HOTZTZZ HOTZTZA HOTZTZA		44.7 15.80 41.8 70.0	45-05 0.06 0.06 0.05 0.05	1.0 1.0 1.0 1.0 2.1	+0.005 5.649 +0.005 +0.005 +0.005	1.23 1.04 2.06 1.53 1.50	2.7 2.5 5.5 +0.5 +0.5	52.5 216 4720 8070 2790	5.53 6.63 6.62 6.61	316 1800 363 616 758	0.20 0.20 0.10 0.15 0.42	3.04 1.86 1.73 2.30 2.40	96.1 6.7 79.3 79.6	23 87.0 10.1 19.8 6.7	240 240 766 778 796	13 13 12 18 18 18
H072728 H072727 H072728 H072731 H072758		75.8 62.3 33.6 83.0 64.3	0.07 0.06 0.07 0.05 0.08	15 31 13 49 28	+0.505 +0.508 ±0.49 +0.505 +0.605	1.79 2.22 0.44 2.28 1.50	46.5 46.5 41. 46.5 46.5	4000 4000 340 136.5 350	0.02 0.02 2.55 0.02 0.01	561 2210 162 218	0.15 0.81 0.23 0.66 0.21	2.81 2.81 1.80 3.31 4.30	90.1 76.4 3.7 900.6 76.3	8.1 8.3 86.0 9.3 9.6	900 915 329 360 819	87 85 86 21
HITZTES HITZTES HITZTES HITZTES HITZTES		3.32 19.38 28.5 32.0 46.9	95:35 9.11 45:35 9.85 9.98	8.2 2.1 2.2 3.6 2.3	0.018 0.079 40.008 0.011 0.015	0.04 1.72 0.06 0.21 1.24	3.1 45.5 13.6 1.7	96.6 9.7 96.1 257	0.17 2.86 0.00 0.29 0.41	1900 1900 193 197 536	0.36 0.29 0.13 0.80	6.76 1.86 4.26 6.77 4.87	4.7 38.7 1.9 65.6	127 322 1.1 7.3 4.9	140 540 250 540 1036	37 26 66 64
H072758 H072766 H072766 H072761 H072763		121 6 66.5 0.42 90.1 56.7	0.05 =0.05 =0.08 =0.08	56 -0.7 27 56	+0.505 +0.505 +0.505 +0.505 +0.505	0.58 0.50 1.19 0.14	40.5 0.7 40.5 1.1	596.2 2.4 93401 61.5	0.16 0.60 12.55 0.67 0.69	706 181 200 753 62	6.10 6.12 6.22 6.39 6.64	2.81 6.10 6.03 2.67 7.68	136.5 13.5 13.5 13.5	53 15 53 11 113	5340 400 190 400 1620	16.7 6.4 1.2 3.9 3.8
H072760 H072764 H072766 H072766 H072767		16.05 32.3 12.65 25.8 47.0	9.10 -0.00 0.00 0.11 0.00	2,0 3,4 2,7 3,5	8.010 8.011 8.082 9.085 -0.105	0.11 0.11 0.33 1.00 1.47	4.5 5.7 4.9 23.7 40.5	123.5 4.0 23.1 36.6 345	2.76 9.66 9.44 1.76 9.82	105 105 418 245 76	0.75 0.79 0.36 1.80 0.09	2.01 1.03 2.26 5.12	45 85.1 11.5 13.5 91.2	38 137 138 138 138 138	525 520 520 1615 2815	17 20 11 11 11
H072768 H072758 H072770		51.7 70.3 34.7	-9.06 0.05 -0.06	6.8 5.7 1.6	+0.005 +0.006 9.008	0.22 0.66 0.36	0.9 2.1	212 25.9 56.0	0.87 0.82 0.98	109 97 162	30.0 5.16 10.80	8.86 6.67 2.86	192.5 12.3	2,4 1,1 2,4	2130 820 1980	43 18

Comments HIJ SAMPLES SPLIT WITH S WORKDROOMS OF SA ST 31 AN AND 5 SAMPLES [ACH

EXCELLENCE IN ANALYTICAL EMEMISTRY

ALS Construct. 2100 Delanton Hay

North Vancouver BC VTH DAZ Phone 804 984 0221 Fax 804 984 0218 wine alsotwenes point To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11634 620-659 W GEORGIA ST VANCGUVER BC VSB 4N9

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-NOV-2009 Account: COAMO

Project: TNR Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	21054	
lample Description	Godford Brodyna Urathy URS	MC-Mort Ms dam ET	MEAGE Fia 2011 0-202	MARKET	96.4501 50 50 50 50 50	NS 4991 Sc peri ±1	Mit Artist Se perci	MEASE! SH SHT SE	MEANS! 91 991 23	ME 9581 200 836	MEMBET To year. Edit	16. 16. 50* 63	100 ASSET	900 AASE1 16 16 16 10	Mindel F	MC-MER April
H372718 H372717 H372718 H372718 H372718		86.8 2770 900 1670 17.3	+0.003 +0.003 +0.003 +0.003 +0.003	10.0 40.01 40.01 40.01 40.01	0.18 0.12 0.06 0.06 0.06	0.5 0.1 0.8 1.3	9	9.4 99.0 20.0 88.2 6.4	85.8 16.2 32.0 60.3 325	71.9 166.9 +160 +160 1.63	10.05 14.05 16.05 16.05 16.05	20 31 20 38	0.867 0.010 0.005 0.020 0.020	0.40 19.06 13.27 9.61	53 47 78 57	100 2 111 5 7
MST2723 MST2723 MST2723 MST2726 MST2725		1060 140.5 3080 2360 2100	+0.002 +0.002 +0.002 +0.002	40.85 40.85 40.85 40.85 40.85	0.06 0.06 0.32 0.28 0.29	0.6 03.1 0.3 0.4 0.8	1	7.5 68.1 106.5 162.0	8.7 128.6 8.5 8.3 10.2	71.6 71.6 71.6	0.87 +0.00 -0.06 -1.00 0.06	23 58 3.9 41 3.5	0.500 0.361 0.008 0.007 0.007	10.00 1.02 23.7 16.19 19.00	3.6 6.2 4.8 5.1 5.2	4 284 2 41
M3/72/28 M3/72/27 M3/72/28 W3/72/68 M3/72/62		2680 3866 121.5 4960 2660	+6.002 +6.002 +6.002 +6.002	18.60 10.00 10.01 10.01 15.00	0.55 0.14 0.30 +0.05 9.14	0.2 0.4 90.0 0.4 9.3		82.4 82.3 28.0 23.8 33.8	17.3 10.5 100.5 1.3 36.2	#150 2:22 +150 83.9	+0.05 +0.05 -0.16 -0.16	40 37 51 34 24	6.000 0.007 0.479 0.014 0.000	323 323 5.76 363 14.75	2.6 6.7 5.3 1.8	2 288 8 1
HS72758 HS72758 HS72768 HS72758 HS72757		31.1 500 30.8 38.9 1930	9.062 9.062 +0.062 +0.062 +0.062	0.52 0.46 0.01 10.01 0.02	0.18 0.29 0.12 0.07 0.18	33.1 0.4 2.4 5.8		15 13 17 14 163	16.8 361 20.6 345 56.2	8.50 2.60 29.5 5.68 81.5	+0.05 5.08 +0.05 0.07 0.05	46.2 0.6 1.2 6.6 2.1	0.107 0.898 0.011 0.090 0.198	3,09 3,02 0,10 0,25 14,60	0.1 0.2 3.6 4.5	30 309 4 54 44
HISTOTIA HISTOTIA HISTOTIA HISTOTIA HISTOTIA		2575 17.5 3430 83.5	+0.002 +0.002 +0.002 +0.002 +0.002	10.81 10.81 1.02 0.01 8.10	0.18 0.07 -8.05 0.08 0.35	6.4 6.2 6.3	-	298 413 54 1993 53	214 13.6 16.8 16.8	9140 9150 9150 9150	+0.05 +0.05 +0.05 +0.05 +0.05	21 21 42 14	0.969 0.913 40.005 0.968 0.967	77.9 17.30 0.11 28.6 0.31	3.7 4.6 2.8 1.7 2.1	38 5 41 3
H372763 H572764 H372765 H372766 H372767		58.9 140.0 34.8 196.5 5000	0.002 0.004 +6.002 0.002 +6.002	8.18 0.02 0.03 0.04 0.01	0.47 0.27 0.08 0.16 0.28	21.8 6.4 8.7 39.7 6.3	-	18 10.1 19 27.4 12.3	380 34.6 97.1 350 10.6	2.01 +130 2.01 2.07 +130	-0.06 0.06 -0.05 -0.05 -0.05	03 1.0 1.2 2.4 0.8	6.941 6.915 6.217 6.630 5.002	0:07 0:77 0:15 1:86 46.0	0.2 2.0 0.3 0.6 2.6	193 3 29 184 6
H372768 H372788 H372778		362 1400 138.5	0.004 0.004 0.001	5.01 5.01	0.13 0.13 0.06	0.8 0.3 2.7	1	20.7 40.7 3.0	85.0 37.2 61.0	+100 +100 43.9	-0.06 6.17 0.96	1.8 2.0 0.6	6:053 6:012 6:067	1.84 8.71 2.97	7.1 7.0 7.8	10

Community, 193 SAMPLES SPLIT INTO 5 WORKORCERS OF M. ST. 33 45 AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Cenade LIS.

210 Soleton Hey North Vancouver BC VTH GAT

Phone 854 664 5221. Fax 654 664 2216. Invest also beneated to the

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11684 620-650 W GEORGIA ST VANCOUVER BC V68 449

Page 2 - D Total # Pages: 2 (A - O) Plus Appendix Pages Pinanged Date: 9-NOV-2009

Account COAMO

Project: TNR Mayis

CERTIFICATE OF ANALYSIS TB09121054

Lampia Georription	Surface Anadyles Saids LEG	ME MICE M parts E 1	ME ANTON	25 age: 2	20 AND 1	Au 6000 Au april 6,600	
HOTZTE HOTZTE HOTZTE HOTZTE HOTZTE		9.6 12 0.8 1.6 0.7	11.8 0.0 0.5 1.3 3.7	10 15 21 12 9	84.A 15.3 16.4 17.8 67.0		
H372727 H372723 H372723 H372724 H372728		13 17 13 12 14	3.6 160 02 01 02	13 71 90 44 41	29.7 29.3 10.8 7.9 11.3		
HST2728 HOZZIZT HOZZIZE HSTZTSI HSTZTSI		13 12 39 16 16	0.1 0.2 19.7 1.0 0.3	38 49 67 34 73	19.9 10.8 20.0 16.8		
HOTZTSS HOTZTSA HOTZTSS HOTZTSS HOTZTSS		1.8 1.2 0.7 1.3 1.7	2.1 22.2 2.7 9.9 6.4	24. 905. 6 14. 41	13 821 223 190 211	40,001 0,001	
H072758 H072758 H072760 H072761 H072762		5.7 1.9 2.1 2.0 1.0	2.0 2.4 0.7 0.4 3.2	196 22 16 179 15	22.3 +0.5 10.1 23.7		
H072763 H072764 H072765 H072766 H072767		55 59 16,7 55 58	784 44 463 730 51	276 29 36 36 36	91.3 11.3 108.8 86.5 10.3	<0.001 <0.001	
H372768 H372769 H372776		1.8 2.5	2.7 2.6 8.7	21 23 18	20.0 20.0 20.0	1.504	

Comments 193 SAMPLES SPLIT INTO S WORKDOOF HS OF SB 57 33 40 AND 5 SAMPLES (ACH

EXCELLENCE IN AMALYTICAL CHEMISTRY

ALS Construct
2103 Dollarton Hwy
North Vancouser BC V79-SA7
Plurie: 804 988 5221 Fax: 854 988 5238 www.aischemis.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 520-650 W GEORGIA ST VANCOUVER BC VEB 4ND Page Appendix 1
Total # Appendix Pages 1
Finalized Date: 9-NOV-2009
Account: COAMO

Project TNR Mass

CERTIFICATE OF ANALYSIS TB09121054

Berhad	CERTIFICATE COMMENTS										
ME-MS61	Interference: Car-16% on ICP-MS As ICP-AES results shown.										
ME-MS61	REE's may not be totally soluble in this method.										

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE CHIMINISE

2100 Outlaton Hay North Vancouver BC 1/TH GA7 Those 504 564 5021. Fax 504 564 0210. www.alschemes.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11624 629-653 W GEORGIA ST VANCOUVER &C VEB 4N9

Page: 1 Finalized Date: 16-NOV-2009 This copy reported on 15-DEC-2009

Account COAMO

CERTIFICATE TB09121056

Project THR Marin

P.O. No.:

This report is for 40 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 28-DCT-2009.

The following have access to data associated with this certificate:

FRED BREAKS INIC CEMANI

GARLAJTRAS

HANS MUNICHERAL

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LDG-22	Sample togin - Rod win BarCode								
CRU-GC	Crushing GC Test								
PUL-QC	Pulverizing OC Test								
CRU-31	Fine crushing - 70% +2mm.								
SPL-21	Split sumple - riffle splitter								
PUL-31	Pulverize split to 85% 475 um.								

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Firms	ICP-AES
ME-MS01	48 element four sold ICP-MS	

THE COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11884 620-453 W GEORGIA ST VANCOUVER BC VSB 4N3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colo Ramitiaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

#US Carried US.

2103 Distance May North Vancouver BC VZH DAZ

Phone: 804 984 5001 Fee: 804 584 5018 www.alschartex.com.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11804 625-450 W GEORGIA ST VANCOUVER BC V68 4N9

CERTIFICATE OF AMAI VOID TRANSMAN

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16 NOV-2009 Account: COAMO

Project: TNR Mavis.

									- 1	CERTIF	CATE	OF ANA	LYSIS	TB091	21055	
Lample Description	Marthad Seatyre Union 1,000	WES-21 Packer REI Mg 676	96 (40) 100 501	ACMENT A. S. S.C.	MEANIN' As sem E.J.	ME MEST Su port 10	96 9531 8v 30*- 0-06	60 MSD1 6- 20-0 6-01	MEMBET Sa Sa Ball	ME-MEDIT Cir. Spirit Elif	Set Added Cor spire 5 Set	MEMBER SIX SIX SIX	DE-WHITE CO	M(A00) CA ppm 2-30	Milesel Co pm 13	60.600 Fe %
H3F2F75 H3F2F75 H3F2F75 H3F2F76 H3F2F76		1.16 1.68 1.96 3.46 1.26	9.00 +9.54 9.01 +9.01 5.03	7.45 5.45 6.07 6.07 7.54	0.4 0.6 0.6 0.6	90 80 120 1470 76	76.8 10.46 1.09 3.13 2.68	2.49 9.22 6.12 0.09 0.04	0.85 0.44 0.86 0.42 0.72	03.0 00.0 03.0 03.0 03.0	2.27 4.66 20.2 9.56 21.3	2.6 0.8 1.1 1.4 2.6	13 10 0 5	56.5 +600 11.25 83.7 5.47	46 54 29 22 0.8	1.06- 2.31 6.94 6.76 8.63
H372776 H372777 H372778 H372778 H372780		5.06 1.60 1.51 1.40 Listed, NA	6,02 6,01 +0.01 +0.01	130 129 175 448	0.5 0.8 0.4	40 10 30 30	2.82 0.14 0.32 196.0	0.13 +0.01 0.02 0.51	9.50 9.34 1.14 6.31	40.00 40.00 9.00 9.00	253 532 554 130	1.0 1.6 5.4 0.3	22 14 6	2.77 1.07 2.90 19.A	1.0 1.0 1.0	9.78 0.37 1.66 9.27
H375021 H375022 H375025 H373028 H373025		0.46 1.46 9.33 9.70 9.56	636 634 634 609 609	7.57 7.91 6.77 6.12 7.36	0.3 0.3 1.9 0.2 0.4	300 300 1630 90 140	2.00 1.16 1.57 2.86 5.91	0.79 0.09 0.09 0.09	8.52 0.53 6.53 5.47	0.20 0.66 0.64 0.09	40.5 20.2 13.60 45.5 79.90	3.3 45.3 1.7 31.6 28.6	15 163 6 99 113	12.75 14.00 1.80 1.30 1.42	46.6 309 4.6 64.5 28.0	6.50 9.66 0.66 6.95 5.14
H3/7036 H3/73037 H3/73038 H3/73036		2.23 0.53 0.69 0.61 0.61	0.18 0.07 0.09 0.13	2.66 6.01 6.08 7.61 6.38	26 492 82 462 63	190 660 120 160 216	0.94 0.94 0.69 0.44	0.40 0.04 0.04 0.00	1.86 2.15 3.94 8.50 2.31	5.60 6.13 6.13 6.19	40.5 20.7 20.3 26.3	90.4 18.0 36.4 30.6 22.5	34 58 58 58 318 6	5.63 8.61 5.67 7.12 19.7	402 120.5 42.6 37.5 23.4	16.50 3.67 5.66 5.62 10.86
H3/73031 H3/73032 H3/73035 H3/73036 H3/73036		9.58 1.05 0.63 0.62 1.2H	0.15 0.08 0.08 0.08 0.08	5.86 7.00 7.53 6.65 6.92	0.0 0.2 -0.2 -0.2 2.0	310 30 40 20 80	0.67 0.61 1.19	0.00 0.00 0.02 0.05 26.5	1 84 2 64 5 63 2 85 6 12	0.14 0.14 0.17 0.17 0.03	40.6 14.00 12.50 23.3 0.56	8.8 99.7 81.6 31.8 0.4	30 30 1 4	95.10 9.81 5.16 5.04 216	41.6 113.0 52.7 51.9 1.8	6.31 10.80 11.75 12.60 8.32
H373038 H373037 H373038 H373038 H373040		1.46 1.49 1.12 1.44 0.61	6.81 6.19 6.04 45.01 6.01	6.11 5.06 7.57 5.94 6.19	1.2 1.4 0.6 45	40 20 80 10 10	431 136.5 43.9 31.8 0.49	787.6 51.9 16.45 41.6 9.56	0.35 0.19 0.12 0.13 19.15	0.54 0.55 =0.02 0.03 0.86	0.46 1.75 0.26 0.79 1.29	0.2 0.3 0.3 0.1 1.6	8 8 5 3	225 155.0 +500 42.3 1.24	0.7 0.8 0.7 0.4 1.6	9.23 9.34 9.23 8.15 9.46
H375641 H373642 H373649 H373646 H373646		1,41 1,81 1,21 1,38 1,64	0.07 0.07 10.01 10.01 10.01	1.00 4.25 4.15 6.65 3.17	0.8 0.8 -0.2 +0.2 0.4	20 10 20 20 20 20	296 921 295 3.67 24.8	816 129 0.63 0.72 0.85	0.37 0.70 0.82 0.32 0.06	+9.62 +9.62 0.14 +9.03 0.02	2.79 531 0.50 0.41 0.36	0.3 3.4 0.6 0.3 0.3	5 6 8 6 17	99.7 142.0 29.7 3.11 9.79	0.7 0.6 1.0 0.9 1.1	0.04 0.04 0.29 0.15 0.29
H37304E H37304F H37304E H37304E H37308C		1.53 1.21 1.06 1.64 1.02	40.01 40.01 40.01 40.01 40.01	5.47 4.74 4.63 4.64 7.64	0.6 -0.2 0.5 0.5	30 20 20 20 20 20	26.7 240 7.37 9.08 9.43	0.20 0.22 0.08 4.47 4.36	0.16 0.16 0.14 0.25 0.29	+0.52 +0.03 -0.03 0.03	1.37 1.36 0.60 1.17 73.0	0.4 0.6 0.7 0.3 0.6	0.000	75.4 16.65 4.65 3.96 7.06	1.5 3.6 1.0 1.0 2.2	9.36 6.37 9.31 4.27 8.37

Comments: 193 SAMPLES SPUT INTO 5 WORKORDERS OF M. ST. 33 45 AND 5 SAMPLES EACH.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALD Canada Lin.

2103 Outlanton Hely North Variouser BC V7H 0A7

Prone 604 564 5221 Fax 804 988 5216 Www.alsofremes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 620-650 W GEORGIA ST VANCOUVER SC VSB 4N2 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16-NOV-2009

Account: COANO

Project: TNR Mayis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	21055	
Sample Description	Buttond Accepted plants 1,040	MEARS! Sk Spri 0.39	Mounter Ge Son Son	ME Amer Mr pare - 6.1	MC-MIST IN SETT E-SET	MC-MOST 6, 6,	96(A66) (a aem 63	66.4601 U son 52	ME-MILT My Sh	Mi Anici	90 90 100	MCMR1 % % 807	ME ARREST ME ME ST	MEMBER ME ME ES	M:4081 P gom (q)	PS June 11
H032771 H032772 H032773 H032774 H332775		87.9 23.0 25.8 25.2 24.0	809 809 800 800	3.9 4.6 2.2 3.3 3.3	+5.000 0.519 +0.005 +1.005 +0.005	629 642 624 172 8.95	55 16 55 14	39.2 71.3- 19.6 37.6 15.8	0.10 106 0.14 0.14 0.25	263 264 125 66 170	0.10 0.25 0.29 0.18 1.70	5.50 3.61 5.70 4.08 4.18	72.4 72.7 3.9 4.3	62 0.7 2.6 2.6 5.9	2400 1400 240 150 360	16.7 2.6 3.8 13.6 4.8
H5/12/18 H5/12/17 H5/12/78 H5/12/78 H5/12/18		30.8 0.73 2.26 63.3	0.06 0.05 0.06 0.06	3.7 =0.1 =0.1 1.1	+0.006 +0.005 +0.006 +0.006	536 531 534 1.16	9.6 +0.6 +0.6 0.7	65.1 8.4 20.8 45.4	0.15 0.18 0.40 0.01	778 74 410 383	0.00 0.08 0.14 0.18	7.54 0.13 0.17 6.99	17 17 18 50.2	1.9 4.1 8.1 9.7	490 110 100 1140	9.5 0.5 0.7 5.7
H073021 H073022 H373023 H373024 H073025		25.4 16.35 21.4 17.65 31.0	5.19 5.19 5.01 6.21 5.16	13 0.9 0.7 1.7 1.8	0.016 0.016 0.016 0.016	5.50 5.50 5.10 5.00	23.3 8.8 2.8 36.6 7.8	26.8 26.5 26.8 13.5 30.5	5.85 6.69 3.19 2.41	2700 120 120 1410 1250	2.04 1.62 0.21 0.18 0.67	0.86 0.47 3:38 2.79 1.29	3.6 4.6 8.1 8.6	4.0 86.3 5.2 79.1 102.5	340 390 310 1340 790	15.6 12.3 27.2 2.6 5.5
H373038 H373037 H373038 H373038 H373030		7.26 21.5 25.2 17.06 35.1	6.31 9.17 6.18 9.16 9.38	13 13 21 11	0.381 6.227 0.061 0.047 0.136	0.60 2.71 0.41 0.48 0.78	45 173 83 94 143	90.1 81.6 21.4 32.7	6.70 6.73 1.56 3.36 1.75	1740 876 752 937 960	6.74 2.37 0.28 0.23 0.23	0.46 0.60 4.86 2.49 4.05	23 113 41 85 923	125.0 87.0 63.2 136.0 6.9	190 220 610 500 1790	21.1 83 48 47 2.1
H873031 H973032 H373033 H373038 H373038		26.3 23.5 26.2 26.2 34.5	8.24 9.20 9.22 9.23 6.10	2.3 1.8 3.7 1.7	0.318 0.399 0.106 0.348 0.338	5,07 6,11 9,23 6,12 2,85	148 52 42 83 403	427 342 518 508 267 2670	6.33 2.76 2.48 2.31 6.02	1510 1510 1510 2150 348	1.36 0.36 1.20 0.80 0.38	2.25 2.22 2.27 2.61 1.96	9.5 9.5 9.4 46.3	36.7 29.6 12.5 0.8	906 626 766 8630 1150	7,2 1,2 2,0 2,2 8,3
H373036 H373037 H373036 H373039 H373040		91.8 80.2 63.5 69.5 0.61	0.05 0.06 0.06 40.06 0.31	2.3 2.7 5.8 3.4 +0.1	+0.005 +0.005 +0.005 +0.005 0.005	2.29 3.50 0.60 0.00	0.5 0.5 10.5 10.5 10.5 10.5	25.7 25.7 26.7 269 2.1	9.01 -0.01 -0.01 -0.01	236 135 62 131 214	0.34 0.55 0.10 0.19 0.07	4.64 4.85 2.28 6.57 0.04	172.5 125.0 66.8 162.5 0.9	1.0 1.3 1.1 0.5 2.6	2840 1576 1575 2530 179	6.5 (1.7 (1.7 5.3 1.2
H070647 H073042 H073040 H073048 H073048		66.2 65.9 15.40 29.4 13.16	0.05 +0.06 0.14 0.15 0.10	4.6 11.4 2.9 0.6 1.6	+0.565 +0.305 +0.506 +0.805 +0.205	0.01 0.01 0.04 0.19	0.8 1.4 <0.5 +0.5 +0.5	120.5 91.5 4.1 22.6	0.06 0.15 0.06 0.06	215 100 48 90	0.19 0.19 0.30 0.12 0.10	552 693 324 732 237	92.9 95.6 36.2 61.4 36.2	53 13 13 16 13	1900 2110 3800 120 100	43 35 36 36 21
H373046 H373047 H373046 H373046 H373056		30.4 24.5 22.9 17.70 30.9	0.14 0.11 0.06 0.09 0.11	2.6 6.8 2.5 9.5 3.2	+0.306 5.011 +0.306 +0.308 +0.305	0.45 0.52 0.00 0.03 0.85	1.0 0.6 +0.5 0.0 0.5	50.8 34.2 8.5 10.9 98.5	18.0 18.0 10.0 10.0 10.0	256 117 31 23 23	0.12 6.56 0.56 1.33 2.69	4.00 4.00 4.00 4.04 2.17	129.0 388 47.8 31.8 164.0	1.3 1.2 0.9 0.8	500 400 530 870 1150	4.6 9.3 2.2 4.6 5.5

Commerce 193 SAMPLES SPLIT INTO 5 WORKDRIDERS OF SIL 57, 33, 40, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

2103 Dislator Hwy North Vancouver SC V7H DA7 Phone: 804 984 0221 Paic 804 984 9219 www.allschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 623-653 W GEORGIA ST VANCOUVER BC VEB 4N9

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 16-NOV-2009

Account: COAMO

Project: TNR Mavis

										CERTIF	ICATE	OF ANA	LYSIS	TB091	21055	
Sample Generapion	Systems Amorphic States (ASS	MILAGET PE PET AT	No. Action No. 4917 9.002	90 4661 5 % 5.31	MIASE! SR SPT SSE	MI MIST Sk sym fit	ME MOST Se spri 1	NE MIET Be ANT B 2	Mileson Sr sere 8.0	To spen to the	MEARINE Services 1946	MI MINI In part 8.5	MEMBER 10 10 10 10 10 10	ME MORT III IOM	WEAGHT D part ET	tipes V
H972771 H972772 H972773 H972774		340 636 25.2 3440	+0.002 +0.002 +0.002 +0.002	400 400 400 400 400	8.18 9.23 5.10 8.10	1,8 1,6 2,1 1,5	45	143 426 20 17	62.3 37.7 429 841	>100 >100 2.72 8.86	0.34 -0.05 1.09	21 17 52 37	0.060 0.058 0.067 0.085	1.90 8.96 6.17 1.21 0.09	43 24 22 17	19 2 15 10 8
H072775 H072776 H072777 H072776 H072779 H072786		7.6 2.7 3.6 1550	+0.003 +0.003 +0.003 +0.002	45.01 45.01 45.01 45.01	0.08 0.00 0.00 1.00 40.00	2.4 1.3 5.9 0.4	45 45 46 46 46	0.4 0.4 0.5 44.7	198.5 63- 39.2 24.6	5.54 5.57 5.76 5.96 50.6	-0.00 -0.00 -0.00 -0.00 -0.00	6.8 +0.3 +0.3 +0.3	0.093 +0.005 0.118 0.040	0.04 0.02 0.02 8.64	1.3 +0.1 +0.1 3.5	12 7 86 2
9079021 9079022 9079023 9379024 9379026		627.5 63.6 97.4 5.9 27.1	0.002 +0.002 +0.002 +0.002	0.50 2.56 0.62 0.51 +0.01	8.10 8.46 8.20 8.37 8.26	95.7 20 25.9 16.7	2 1 2	12.0 1.1 1.1	75.1 151.5 954 260 996	0.31 0.34 0.56 0.45	0.56 0.67 10.05 10.05 10.05	7.2 1.2 2.1 1.7 1.6	0.391 0.399 0.132 0.695 0.476	0.57 0.75 0.00 0.00 0.20	1,7 0,3 2,8 0,4 0,3	990 16 179 193
H073036 H073027 H073026 H073029		17.0 100.5 7.2 25.7 83.7	5.012 5.965 +0.962 +0.962 +0.962	9.50 9.62 9.61 9.61	0.12 0.19 0.19 0.11 0.00	9:8 16:5 22:6 27:4 43:6	3 2 1 3	2.8 3.4 1.5 0.7 1.8	94.3 60.3 601 246 246	5.76 5.57 5.30 6.63	1.60 1.40 -0.05 -0.05 1.00	28 52 59 10 15	0.114 0.338 0.727 0.437 1.190	0.98 0.86 0.10 0.15 0.49	0.8 0.3 0.3 0.9	57 82 576 157 87
9079031 9079033 9079033 9079034		61.4 29.0 7.1 4.7 4400	+0.802 6-062 8-062 8-062 +0.802	6.12 6.16 6.52 6.55 40.01	8.12 8.16 8.11 8.12 8.21	0.5 37.9 41.5 41.0 1.5	2 2 2 2	3.3 0.9 1.3 1.5	128.5 50.9 196.0 87.6 36.7	1.22 0.42 5.46 8.62 96.1	11 H +0.05 +0.05 +0.00 8 H	0.0 0.0 0.0 1.3 1.2	0.348 0.978 1.170 1.090 0.645	0.45 0.14 0.05 0.04 15.4	68 62 62 63 23	31 301 288 134 2
HOF9098 HOF9097 HOF9098 HOF9098 HOF9040		2250 3626 9440 213 25,4	+0.002 +0.002 +0.002	0.51 +0.01 +0.01 +0.01 0.01	9.07 9.06 9.06 +0.05 +0.05	0.4 0.5 0.4 0.4	2	163 47 107 102	24.8 29.7 25.6 14.2 42.6	+100 +100 62.2 +100 1.04	0.14 0.14 0.10 0.12 +6.55	2.4 1.7 1.8 2.5 40.2	0.005 0.006 40.005 40.005 40.005	18.15 27.5 10.0 5.81 6.19	78 58 27 17 19	44.3
P073647 P073640 P073640 P073644 P073648		862 80.2 8.8 11.8 126.0	+0.502 +0.502 +0.902 +0.902 +0.902	40.65 40.65 40.65 40.65 40.65	*2.05 6.53 8.12 *8.05 0.00	0.5 1.6 0.5 0.3		10.0 11.8 4.3 2.7 6.4	164 187 298 167 167 82	96.8 9100 9100 9100 76.8	-0.23 -0.08 -0.17 -0.08 -0.08	2.0 2.8 1.0 0.9	49.005 6.544 40.005 40.005 40.005	4.54 0.37 0.86 0.89 0.73	30 8.2 30 13 6.7	17
H073046 H073047 H073048 H073048 H073090		890 81 8.8 8.7 27.8	40,002 40,002 40,002 40,002	13.00 12.00 13.00 13.00 13.00	0.09 0.09 0.38 0.38	0.8 1.5 0.3 0.5 0.5		30.8 5.3 0.7 6.6 10.4	30.8 34.9 21.7 20.5 52.4	+100 +100 100.0 +100 +100	+0.05 9.06 +0.06 9.21 9.29	3.0 3.6 0.3 2.6 4.0	0.007 0.012 +0.005 +0.006 0.011	0.00 0.00 0.00 0.00	2.7 5.7 1.5 19.5 1.e	2 41 2 8

Commercia: 193 SAMPLE'S SPLIT INTO S HORKORDERS OF SR. 57, 33, 46, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALX Caredo No.

2103 Collector Hwy North Vancouver SC VTH GAZ

Phone 804 964 0221. Fax 904 904 0216. Were alsohermed com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11654 620-450 W GEORGIA ST VANCOUVER BC VEB 4N9 Page: 2 - D Total # Pages: 2 (A - 0) Plus Appendix Pages Finalized Date: 16-NOV-2009

Account: COANO

Project. TNR Mavis

CERTIFICATE OF ANALYSIS TB09121055

Lengte Desiription	Statead Amorphs States 1.500	Mail Addition We page	MCARRY THE SAME	26 26 26 2	20 MART 20 MATT 20 MATT 20 MATT 20 MATT 20 MATT 20 MATT 20 MAT	Aur Spirit	
HQ72771		1.0	2.3	107	20.4		
H0372772		1.7	12.5	3.9	88.6		
H072773		2.6	5.0		811.5		
H372174		158	3.6	18	113.3		
H0.72775		12	3.9	11	119.5		
H072776		1.6	7.9	- 1	125.0		
0072777		3.1	0.8	3	13	H0.001	
H372778		0.3	26	33	6.7	45.201	
H372779		4.9	0.0	29	14		
H072786				-			
H373021		1.8	10.5	256	. 4	4 C CC	
H373022		3.2	31.2	361	38.8	+0.001	
H075623		0.7	3.3	33	105.0		
H079024		0.9	24.1	111	85.2	40.301	
H073025		0.3	12.6	.79	56.8	40.001	
+OTIGOE		1.6	7.0	1660	21.8	<0.001	
H079527		1.2	15.4	60	176.0	10.001	
H373028		0.4	38.5	96	76.1	7.00	
HST9029		0.2	16.1	63	36.9		
H373000		0.0	91.6	179	171.0		
HOTSES1		0.8	61.5	154	198.0		
H379032		0.5	34.0	118	79.7	+0.001	
HQ73035		0.3	37.9	150	81.9	×0.001	
F07004		0.5	014	167	133.5	-9-001	
H373036		0.9	0.4	27	10.4		
43.73636		1.7	63	79	13.2		
WEF2027		1.4	62	24	17.2		
HETSEON		1.0	6.1		4.0		
HATTICES .		1.9	0.1	5	98.0		
1073040		0.1	0.7	14	10.5		
HOTSENS		1.7	0.4		0.0		
H073040		1.4		107			
			3.7		86.7		
+075645		9.7	0.4	3			
H073044		0.5	0.1	1	2.1		
1075045		0.3	0.2	1	1.4		
HOTSONE		9.9	0.1				
V073047		3.6	0.9	-0	26.4		
HX7504E		0.5	0.2	+2	10.7		
HS75049		0.8	0.3		91.0		
HOTSON		0.9	0.4	Ψ.			

Comments: 193 SAMPLES SPLIT INTO 5 WORKORDERS OF SR. ST. 33. 40. AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

Act Gerons Col.

3103 Collettor viag North Vanoscour BC VTH 667

Phone 604 984 0021 - Pair 604 984 0016 - www.alschornex.com

To COAST MOUNTAIN GEDLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V6B 4ND Page: Appendix 1 Total & Appendix Pages: 1 Final and Date: 16 HCV 2908 Account: COAMO

Project TNR Mayer

ACCUMULATE.	OF AMALWEIG	TRACADIACE
CERTIFICATE	OF ANALYSIS	1809121055

Mermani	CERTIFICATE COMMENTS	
ME-MS61 ME-MS61	Interference: Car-10% on ICP MS As ICP AES results shown. REE's may not be totally soluble in this method.	

EXCELLENCE IN AMALYTICAL CHEMISTRY

ALS Canally Life.

2103 Dutarius Hay North Vercouver BC 1/74 DAT

Phone: 804 984 9221 Fair 904 984 (218 www.alschemex.com

To: COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 425-450 W GEORGIA ST VANCOUVER BC VEB 4NS

Page: 1 Finalized Date: 5-HOV-2009 This copy reported on 15-DEC-2009.

Account COAMO

CERTIFICATE TB09121056

Project: TNR Mayra

P.O. No.:

This report is for 5 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 28-OCT-2009.

The following have access to data associated with this certificate:

PRED BREAKS INE COMMIN

SAME JUTRAS

HANS IS NOTHERN.

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
1.00-22	Sample login - Flod wio BarCode	
CRU-31	Fine crushing ~ 70% < 2mm	
SPL21	Spit sample - riffle spitter	
PUL-31	Pulveriox split to 85% 475 um	

	ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION
ME-MSET	48 element four and ICP-MS

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11804 425-450 W GEORGIA ST VANCOUVER BC V68 4NR

Signature:

Code Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carada Lob

2103 Oxfortox Hey North Vencover BC V7H SAT

Phone 804 MA 0221 Fair 104 SN 0216 Invest alsohermus com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 629-650 W GEORGIA ST VANCOUVER BC V68-6H9 Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 9-NOV-2009 Account: COAMO

Project: TNR Mays.

				Michigan Al- ages 3.3	WE ARREST THE TOTAL TOTA			1	CERTIF	ICATE	OF ANA	LYSIS	18091	121056	
Manhad Bealgle trade	15 167	ne anni Ag age 101	ME AND THE PERSON NAMED IN			00 4001 0n 501 110	96 M301 8 241 351	MEASON Su Su Sort	Mic Mplor Cor Sent. 3-55	045,00001 CM 307 337	MEMBET Six sixt SIX	Wi-Mail G	ME-MORT CH GATE TOTAL	Go. Spr. SJ.	49 50 50 51
	0.63 1.67 1.69 Laket NR Linkst NR	45.01 45.01	5.97 7.06 7.16	0.8	30 30 15	63.9 162.5 111.0	2.97 0.67 1.89	0.09 0.15 0.05	-0.00 0.15 -0.02	5.85 5.86 6.23	63 68 62		1973 94.4 108.5	32	0.31 0.35 0.37
	Seedales Seeda	964 16 16 16 16 16 16 16 16 16 16 16 16 16 1	### Name 100 Ag #### 46 Apr ### 464 Apr ### 455 Apr ### 455 Apr 1.00 Ap	Name	19 tom 5 tom 5 tom 64 to	### ### ### ### ### ### #### #########	### 19 April 10 April	### 19 Apr 5 Apr 20 Apr	Married Million Mill	Married Million Mill	Married Million Mill	Married MEDICAT MEDICATE MEDICATE	Married Million Mill	Married Miles Mi	Name

Commands: 193 SAMPLES SPLIT INTO 5 WORKCHILD RS OF MEST, 33 40 AND 5 SAMPLES FACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE CHIMINGS

3763 Distartion Hely North Vancouser BC v7H DA7

Physic 604 Mts (021. Fax 654 564 5216. www.alschemes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 630-650 W GEORGIA ST VANCOUVER BC WIB 4N9 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 9-NOV-2009

Account: COAMO

Project. TNR Mavis.

					No. of Contract											CERTIF	ICATE	OF ANA	LYSIS	TB091	21056	
ample Doscription	Marriad Assayin Units Units		McAtori Ser para 6/9	. 19	100 100 100 100 100	MC MSET	\$4(-460) L4 30**- 3.4	MB 5* *	Mintel My S S	MC 4001	96.9651 Wo 957 218	66,6621 56 5 221	se more se em st	M MAN	MEASE!	16 April 12						
H3734T2 H352T81 H372742 H373413 H373414		46,6 68.0 38.3	6.07 +0.06 1.06	28 22 12	40.000 40.000 40.000	1.60 1.97 2.61	0.5 -0.5 -0.5	25.4 1925 2710	8.81 8.60 8.01	367	217	4.76 4.08 1.20	98.5 78.0 56.3	7.6 27.5 28.	900 1000 580	9.6 9.8 5.9						

Commercia 193 SAMPLES SPLIT INTO 5 WORKCROSKS OF SE. ST. 31 45 AND 5 SAMPLE CACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

WLS Console Ltd.

2153 Dollarton Hay North Verroover BC V/N SAP

Phone 804 little 5221. Fac 604 life 5219. Invest also herman com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 625-650 W GEORGIA ST VANCOUVER BC V68 4N9 Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 3-NOV-2009 Account: COAMO

Project: TNR Mavis

Meritori Secripio South 1,668	98.4660 98.61 6.1 2600 2700 2380	90 into for 0 m 5 ftsl 45 003 45 003 45 003	9 % 641 4001 601 4001	00 40001 00 00 00 0.07 0.05 0.07	80 Marie 80 61 61 63 6.5 6.5	ME MILES	86 AREST 69 AREST 87 28.7 29.3 56.3	12 12 14.6 19 7.9	100 ASSET For part 0.00 =100 T3.0 31.2	0.07 -0.00 -0.00 -0.00 -0.00	13 51 52 53 53 54 24	10 March 10	70 80 9.00 20.0 47.70 24.3	90 Metal 9 Met	ME MINE P
	2700	~d.003:	0.01	0.08	0.5		38.3	8.0	73.8	<0.05	5.6	5.009	17.76	6.4	
								,							

Comments, 180 SAMPLES SPLIT INTO 5 WORKDROERS OF SA. SJ., 33, 40, AND 5 SAMPLES EACH

ENGELLENCE IN ANALYTICAL CHEMISTRY

ACS Carrieds US

JHS Delator may Noth Varcouse BC V74 SAT

Proces 604 984 9221. Fac 654 931 9218. www.alscherres.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VGB 4N9 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-NOV-2008

Account: COAMO

Project THR Mayis

CERTIFICATE OF ANALYSIS	TB09121056
-------------------------	------------

Number N	
12	
072707 1.3 0.2 41 13.8 072702 6.8 6.7 34 8.3 073e18	

Community 183 SAMPLES GPLIT INTO S WORKEREN RN OF SK 57, 33, 45, AND 5 SAMPLES EACH

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS COUNTY DE

2103 Collector Hay North Vancouver BC 107H GK7 Phone 814 MA 0221 Fee 814 MB 6216 were allochemes com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11904 620-450 W GEORGIA ST VANCOUVER BC VIIB 4N9 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 9-HOV-2009 Account: COAMO

Project The Mayis

CERTIFICATE OF ANALYSIS TB09121056

Method	CERTIFICATE COMMENTS	
ME-M561	REE's may not be totally soluble in this method.	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS-Carriers LTC.

2103 Onliaron Hay North Vencouver BC VTH 647. Phone 804 864 5221. Fair 804 961 5216. Werk also harmer comTo: COAST NOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-659 W GEORGIA ST VANCOUVER BC VEB AND

Page: 1 Final used Date: 18-HOV-2969

Account: CDAMO

CERTIFICATE TB09127276

Project TNR Mayor

P.O. No.:

This report is for 13 Rock samples submitted to our lab in Thunder Bay, CN, Canada on 12-NOV-2009

The following have access to data associated with this certificate:

TRED BREAKS. WE OSMIAM

GASE JUTHAS

HAVESULACHENK

SAMPLE PREPARATION					
ALS CODE.	DESCRIPTION				
F94D-02	Find Sample for Adds Analysis				

	ANALYTICAL PROCEDURES		
ALS CODE.	DESCRIPTION	INSTRUMENT	
ME-XRF05	Trace Level XRF Analysis	XRSF	
ME-MSETS	High-grade REE by fusion/CFNIS	ICP-MS	

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO 8/3X 11604 629-650 W GEORGIA ST VANCOUVER BC V68 4ND

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Careco LIR.

2103 Distance Has North Vancouser BC V7H SA? Phone 804 984 0231 Fee 804 984 5218 were allochemes comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11684 620-650 W GEORGIA ST VANCOUVER BC V6B 4N9 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 16-NOV-2909 Account: COANO

Project TNR Mayin

	ARREST MARKET	 THE PARTY NAMED IN	
CERTIFICATE	F-3-E-	 V 62 1 62	TB09127276

Lample Description	Marked Analysis Units 1.05	MC-MEETIN Fig.	MARION SA DET S.E.	ME-MINIS Ca Spirit Sti			
HS72748 HS72748 HS72757 HS72757 HS72757			191.0 291 223 191.3 114.0				
H373758 H373758 H373767 H373763 H373768		9160	640 406 182.5 278 248	1460			
43/276F 43/276E 43/276E			253 424 596				

EXCELLENCE IN ARALYTICAL CHEMISTRY

ALS CITY/OF CITY

3100 Dollarton Hay from Vancourer BC VTH DK7 Private 804 860 0221 - Fax: 604 984 5216 - www.alschames.com To COAST MOUNTAIN GEOLOGICAL LTO. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4NR Page: 1 Finalized Date: 18-NOV-2009

Account: COAMO

CERTIFICATE TB09127277

Project TNR Move

P.O. No.

This report is for 1 Rock sample submitted to our lab in Thunder Bay, CN, Canada on 12 NOV-2009.

The following have access to data associated with this certificate:

FRED BREAKS INE COMANI GABE JUTTAN

HARS MUNCHENK

SAMPLE PREPARATION				
ALS CODE.	DESCRIPTION			
FNO-02	Find Sample for Addin Analysis			

	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT	
ME-MISSIN	High grade FEE by fusion/ICPMS	ICP48	

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNCHENK PO BOX 11604 620 650 W GEORGIA ST VANCOUVER BC VIB 4NR

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

NUS Considerate

2103 Deliator may North Versouver BC V7n SA2

Provisition 1001 Fac 614 MM 0018 were also hereign port.

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC W/8 4NS

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 18-NOV-2009 Account: CDAMO

Project TNR Mays

CERTIFICA		TB09127277

Sample Desir option	Market Analysis Sheke 1,00	To part 100		
10373473		301		

EXCELLENCE IN ANALYTICAL CHEMISTRY

Mid Carried Life

2103 Distance Hay North Vancauser BC V7H SAT

Phone: 604 984 1021 Fax: 604 964 0218. Invest blochemes com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC VIIII 4N9

Page: 1 Finalized Date: 19-NOV-2001

Account: COAVO

CERTIFICATE TB09129582

Project: TNR-Mavis.

P.O. No.:

This report is for 2 Rock samples submitted to our tab in Thursder Bay, CN, Canada on 13 NOV-2009.

The following have access to data associated with this certificate:

FRED BREAKS

DAME A/TRAIL

HANS MUNCHEMIC

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
FND-02	Find Sample for Addn Analysis				

	ANALYTICAL PROCEDU	RES
AUS CODE	INSTRUMENT	
Au-ICP21	Au Stig FA TOP AES From	EP-AES

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11804 626-656 W GEORGIA ST VANCOUVER BC V63 4N3

Signature:

Colin Romation. Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Caredo Like

2100 Dollatton Hey North Vancouser (IC VTH GAZ Phone (ISA ISA 0221 Fax SEA 1994 SYTE www.alschemes.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11624 620-650 W GEORGIA ST VANCOUVER BC V68 4N3 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 19-HOV-2009 Account: COAMO

Project TNR-Maria

CERTIFI	CATE	OF	ANAL	YSIS	TR09129582

lampia Desertphan	System Analytic Sales 1.54	A-10701 A- 10** 8.801	
KOZNETA KOZNETA		8010 40300	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALE Consts-DE

2193 Dollarum Play North Variouser BC VTH DKT

Phone 604 MA 0231 Fax 604 564 5218 I www.afschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11834 620-650 W GCORGIA ST VANCOUVER BC VEB 4N9

Page: 1 Finalized Date: 28-MOV-2009

Account: COAMO

CERTIFICATE TB00132103

Project TNR Mavis

P.O. No.

This report is for 13 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 19-NOV-2009.

The following have access to data associated with this certificate:

FRED BREAKS ME COMMING

GASS APPAR

HANS MUNCHERN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
FNO-CZ	Find Sample for Addn Analysis	

	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT	
ME-XRF05	Trace Level XRF Analysis	XRF	
ME-MS815-	High grade REE by fusion/CPMS	ICP-MS	

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNCHENK PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VSB 4NH

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

MUS CHRISKN LOD.

2153 Onlactor Hay North Vancouver BC VTH DAT

Phone 804 004 0021. Fax 654 664 0216. were affectioned com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11804 629-650 W GEORGIA ST VANCOUVER BC V68 4ND

Page: 2 - A Total # Pages: 2: (A) Final and Date: 28 NOV-2009 Account COAMO

Project TNR Mavs.

CEDTIENCATE	OF ANALYSIS	TRACES SACT
CERTIFICATE	UP ARIAL TOIS	TR09132103

Lampia Daverigiion	Menhad Santylu Irsms 1,00	Mileson Dis- Dis- Till	To part 8.5	
H3/2772 H3/2772 H3/2008 H3/2008		#01 601	348 1722 1323	
H373049 H373042 H373043 H373044 H373046			278 179 003 271 652	
H373047 H373049 H373080			1000 1105 420	

EXCELLENCE IN AMALYTICAL CHEMISTRY

WLS Correct Ltd.

2103 Delartor Hay Sorth Vancouver BC V7H DAT Phone 604 6M S201 Fac 604 6M 6216 when allocherway comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 \$21-650 W GEORGIA ST VANCOUVER BC V68 4HB Page: 1 Finalized Date: 25-NOV-2009

Account: COAMO

CERTIFICATE TB09132104

Project: TNR Mavis

P.O. No.:

This report is for 30 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 19-NOV-2009.

The following have access to data associated with this certificate:

WE OSHAMS

SAME JUTRAS

HANS MUNCHESK

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
FMD-02	Find Sample for Addit Analysis		

	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT	
ME-XPROS	Trace Level XRF Analysis	XRF	
ME-MS81h	High grade REE by fusion/CPMS	ICP-MS	

To COAST MOUNTAIN GEOLOGICAL LTO. ATTN: HANS MUNDHENK PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC V66 4N9

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

MCE Canada Lin

2103 Delartor Hey North Vendouver SC 1/7H 0A7

Phone 804 984 0221 Fax 804 855 0216 I were affectioned, com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-450 W GEORGIA ST VANCOUVER BC VEB 4ND Page: 2 - A Total # Pages: 2 (A) Finalized Date: 28-NOV-2009

Account COANO

Project TNR Mayis

Langiu Descriptor	Marked Analysis Sorte 1.00	MARKET OF	No Asserts To Sem. 1.0	
#07260 #072611 #072812 #072618 #072818		000	99.4 493 297	
H17(9024 H17(9029 H17(9029 H17(9029 H17(9029			223 130.6 100.6 225 154.5	
#072607 #072602 #072603 #072604 #072608			968.8 130.5 130.5 312 318	
#0.0796.08 #0.0796.08 #0.079641 #0.079642 #0.079643			200 198,6 171.5 152.5 108.0	
HST2646 HST2646 HST2647 HST2646 HST2646			902 987.0 296 280 573	
H073954 H073955 H073956 H073657 H073666			264 215 261 208 390	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carette 180

310) Dollaton Hay York Vancouver SC 17H DAT Thome SDA SNA 02(1 - Fax SDA SNA 0216 - www.alsothermes.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-450 W GEORGIA ST VANCOUVER BC V5B 4N9 Page: 1 Finalized Date: 26-NOV-2009

Account: COAMO

CERTIFICATE TB09132105

Project TNR Movie

P.O. No.

This report is for 22 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 19-NOV-2009.

The following have access to data associated with this certificate:

PRED BREAKS HE CEMAN GAME AUTRIAS

WAS MUNCHERAL

SAMPLE PREPARATION			
DESCRIPTION			
Find Sangle for Addn Analysis			
	SAMPLE PREPARATION DESCRIPTION Find Sample for Addin Analysis		

	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT	
ME-845819:	High grade REE by fusion/CIFMS	ICP-MS	

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNOHENK PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC V68-4N9

Signature:

Cole Remshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

Wild Cornells Ltd.

2153 Delates Hay

North Versioner BC VP4 SAZ

Phone 804 984 9221 Fair 654 954 0216 I www.pluchemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC VEB 4ND Page: 2 - A Total # Pages: 2 (A) Finalized Date: 28-MOV-2009 Account: COAMO

Project TNR Mave

OCCUPIED A	TE AL	A A I A II LAMINE	THE RESERVE
CHARLEST A		ANALYSIS	TB09132105

Bampin Dusa spinon	Statement Statement Streets 1,000	WE MILEY: Ye spring 1.5	
HS7566 HS2668 HS2667 HS7673 HS7673		135.0 143.0 127.0 280 156.3	
H172674 H172675 H172665 H172662 H172662		216 112.0 181.0 131.5 134.5	
NUT/2005 HU3/2006 PUS/27/10 HU3/27/10 HU3/27/10		486. 193.5 163.6 186.5 272	
HOTZTHA HITZTHA HOTZTHA HOTZTHA HOTZTHA		175.0 136.0 293 114.2 188.5	
#072110 #072110		369 362	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALI Careta Lin

J163 Dolaton Rey North Vancouver BC V7H DR7

Phone: 604 904 0021. Fax: 604 984 0210. wnew alsohemes com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11634 639-650 W GEORGIA ST VANCOUVER BC V68 4NO

Page: 1 Final and Date 28 NOV 2009

Account: COAMO

CERTIFICATE TB09133486

Project: TNR Li Forgan

P.O. No.:

This report is for 3 Rock samples submitted to our liab in Thunder Bay, ON, Canada on 20-NOV-2009.

The following have access to data associated with this certificate:

FREED BRIEFARCS ME COMMY

DAME ATTENS

HAND MUNCHERS.

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION					
FHD-02	Find Sample for Addn Analysis					

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MISSTH	High grade RDS by fusion/CPMS	ICP-MS

TO COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNCHERK PO BOX 11634 829-850 W GEORGIA ST VANCOUVER BC VSB 4NS

Signature:

Coin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carredo coli.

2105 Dollaron Hey North Venosseer BC VTH DK7

Provide 604 984 0001. First 604 984 6219. Warre attachemies com-

To COAST MOUNTAIN GEOLOGICAL LTO. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC WEB 4NO

Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 26-HOV-2929

Account COAMO

Project. ThR Li Forgan

										CERTIF	ICATE	OF ANA	LYSIS	TB091	33486	
ampia Description	Market of the same	59 301 1	MEASON Dy dam ch	Ar some	ant metarry day days d f	Meadann Ser Ser 13	ME AREST	16 362% 76 77 201	ME MEETING	Microphy Va pare 2.09	ME MANUFAL PARTY NAMED IN COLUMN TWO IN COLU	W. Miles No. Special St.	98.4000 h Pr Pr 9.3	MEASON -	ME ARESTS. 54 55 57	ME-MERY Sor- part-
H374919 H374939 H374952		2 40 2	43 43	40.2 40.2 40.2	+6.3 +6.2 +6.2	0.4 0.2 0.3	4 2 4	6.8 6.8 6.8	0.00	45.65 40.05 40.65	107 81 130	12	84 93 62	219 234 275	6.4 -0.2	59 30 17

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carpora LNI

2103 Dellator Hay North Vercouver SC V7H GAT

Phone 804 984 5321 Fax 804 964 5219 I were also before com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-450 W GEORGIA ST VANCOUVER BC VEB 4N3

Page: 2 - 6 Total # Pages: 2 (A - B) Finalized Date: 26 NOV 2009

Account COAMO

Project: TNR Li Forgani

CERTIFICATE O	FANA	LYSIS	TB09133486
---------------	------	-------	------------

Lampin Sinscription	D-1-1 2-1-1 1-2-2	NEMBER Fa SEP ES	MEMBER Th apr 6.00	SEASON To part 6.1	ME MILETO Tay gare 8-66	MI MIEN III III	MEMBERS W Serv 2	MEMBER SPE	MEMBER No.	ME-MOTIVE 27 APR 10	
H07H070 H07H03E H07H053		200 136.9 254	40 05 40 05 40 05	63 67 53	40.86 40.88 40.88	32 23 70	-1	9	40.2	99	

EXCELLENCE IN ANALYTICAL CHEMISTRY

MIS Canada Ico.

2101 Dollarkon Hay Noth Vancouse BC V7H SAT

Priorie 804 984 5021 Fail 654 584 0018 www.alsofierrex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VEB 4NS

Final and Date 3-DEC-2009

Account: COANO

CERTIFICATE TB09136571

Project: TNR Mavis.

P.O. No.:

This report is for 1 Rock sample submitted to our lab in Thunder Bay. ON, Canada on 30-NOV-2009.

The following have access to data associated with this certificate:

PRID BREAKS. WE CONSISSION

DAME JUTRAS

HANG MUNCHENK

	ANALYTICAL PROCEDURES					
ALS CODE	DESCRIPTION	ENSTRUMENT				
UT APSA S	Administration of the second o	ICP-MS				

To: COAST WOUNTAIN GEOLOGICAL L'ED. ATTN: HANS MUNDHENK PO BOX 11664 629-650 W GEORGIA ST VANCOUVER BC VEB 4NS

Signature:

Cosis Ramphaw, Vancouver Laboratory Manager.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carrets CIE.

2103 Delartim Hws North Vancouver BC VTH DAZ Phone 804 MS (221 Few 804 MH ID16 I www.allschemics.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 639-650 W GEORGIA ST VANCOUVER BC V6B 4N9 Page: 2 - A Total FPages: 2 (A) Finalized Date: 3-DEC-2009 Account: COAMO

Project, TNR Mayin

CERTIFIC	ATE	OF AN	AL YSIS	TB09136571

Lampin Description	Marriad daships Units USA	MCARDYN To men 3.1			
HORSETT		732			

EXCELLENCE AN ANALYTICAL CANDULTRY

ALE CITATIVES.

2103 Outsetsin Hay North Vancouver BC VTH GAZ Phone: 604 564 5201 - Fax: 604 564 5216 - www.atschemes.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-650 W GEORGIA ST VANCOUVER BC VSB 4N9

Page: 1 Financed Date: 3-DEC-2000

Account COAMO

CERTIFICATE TB09136572

Project TNR Mavis

P.O. No.

This report is for 1 Rock sample submitted to our lab in Thunder Bay, ON, Canada on 30-NOV-2009.

The following have access to data associated with this certificate:

FRICE BRICHIS HE CEMAN

CAME ATTEMS

HAND MUNCHERS.

SAMPLE PREPARATION						
DESCRIPTION						
Find Sample for Addn Analysis						
,	SAMPLE PREPARATION DESCRIPTION Find Sample for Addo Analysis					

	ANALYTICAL PROCEDURES						
ALS CODE	DESCRIPTION	INSTRUMENT					
ME MARTIN	High grade REE by fusion/CPMS	ICP-MS					

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC V68 4N9

Signature:

Cosin Hamshave, Vancouver Laboratory Manager.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Coverage LSS

2109 Dollarow Hey North Vancouver BC 17H DAZ

North Variouses RC V7H DL7 Phone 614 861 5231 Fax 651 664 5216 www.anschemes.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11804 630-650 W GEORGIA 81 VANCOUVER BC V68 4N9 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 3-DEC-2509 Account COAMO

Project TNR Mayin

		and while	A LABOR LONGON	The second second second
CERTIE	IC A TH	OF	ANALYSIS	TB09136572
CARL PL LIP	Physical Property of the Party	1.35	AMALION	I DOMINONIA

lample Description	Madhad Analytic Under LDS	NE AND THE TEN			
HGP2/PE		AU .			

EXCELLENCE IN AMALYTICAL CHEMISTRY

AUS Carnets UK

2101 Delivition Play North Vancouver SC V7H DAT

Phone: 604 Stic 5221 Flor Site Stic 5218 I Was allockerses com-

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 620-450 W GEORGIA ST VANCOUVER BC V66 4N9 Page: 1. Finalized Date: 3-DEC-3009

Account: COANO

CERTIFICATE TB09137048

Project: TNR Mavis

P.O. No.

This report is far 1 Rock sample submitted to our lab in Thunder Bay, CN, Canada on 1.0EC-2009.

The following have access to data associated with this certificate:

PRED BREAKS HE COMMAN GAME AUTHAS

HANS MUNEHERN.

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
FNO-62	Find Sample for Addit Analysis	

ANALYTICAL PROCEDURES				
ALS-000E	DESCRIPTION	PASTRUMENT		
ME-MS81h	High grade REE by fusion/ICPMS	ICP/48		

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNCHENK PO BOX 11664 620-650 W GEORGIA ST VANCOUVER BC VAR 4N4

Signature:

Coln Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

Will Comets total

2103 Dulanton Hay North Visionium RC VTH DAT

Phone 804 969 0001 Fee: 604 994 0018 Invest also better com-

To COAST MOUNTAIN GEOLOGICAL CTO. PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC WIB 4NS Page: 2 - A
Total 6 Pages: 2 (A)
Finalized Date: 3-DEC-2009
Account COAMO

Project TNR Mayor

	CERTIF	CATE OF	ANALYSIS	TB09137048
--	--------	---------	----------	------------

Rempto Duna riplian	Manager Manager Manager Manager Light	Fig. 100 mm and 100 mm	
H372790		TOKE	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Caredo LNL

2103 Outlation Hay North Varroover SC 97H DAT

Proper 874 964 5221 - Fax 904 964 5215 - www.alschemes.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11664 629-650 W GEORGIA ST VANCOUVER BC VEB 4N3 Page: 1 silized Date: 3-DEC-2989

P na zed Date: 3-DEC-2999 Account: COAMO

CERTIFICATE TB09137049

Project TNR-Mavis

P.O. No.:

This report is for 1 Rock sample submitted to our lab in Thunder Bay, QN, Canada on 1-DEC-2009.

The following have access to data associated with this certificate:

PRECIONALIS

SAME AUTRAS

HAME INCHESION

	SAMPLE PREPARATION	
ALB CODE	DESCRIPTION	
FND-60	First Sample for Addin Analysis	
		_

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
SAL-MASSIN	High-grade REE by fusion/CPMS	ICP-MS

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11604 626-650 W GEORGIA ST VANCOUVER BC VIIII 4N9

Signature:

Coln Ranshaw, Vanciouer Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

WUS CHIMB DIE

2150 Delanton Hay North Vancouver BC V7H DK2 Phone 804 Mild 0221 Fee 604 Mild 0210 www.altechemics.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 629-650 W GEORGIA ST VANCOUVER BC WIB 4N9 Page: 2 - A
Total # Pages: 2 (A)
Finalized Date: 3-DEC-2009
Account: COAMO

Project TNR Mayor

CERTIFICATE	OF ANALY	SIS TR	09137049

Bample Dosemption	Married Sandym Vonta Link	MANAGETY. In the same of the
H571219		107.0

EXCELLENCE IN ANALYTICAL CHEMISTRY

MLS Canada Ltd.

2103 Dollarion Hay North Vancouver &C 1/74 dA7

Phone: 804 684 5221 Fair 804 964 0218 I www.afscherrex.com

THE COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 **\$22-450 W GEORGIA ST** VANCOUVER BC VEB 4N1

Page: 1 Finalized Date: 3-DEC-2009

Account: COAMD

CERTIFICATE TB09137132

Project: TNR-Mavis

P.O. No.:

This report is for 2 flock samples submitted to our lab in Thunder Bay, ON, Canada on

1-DEC-2009.

The following have access to data associated with this certificate:

HIRED BRICANS ME COMMIN

SAME JUTRAS

HAVE MAINTHENK

SAMPLE PREPARATION	
DESCRIPTION	
Find Sample for Adds Analysis	
	DESCRIPTION

	ANALYTICAL PROCEDUR	ES
ALS-CODE	DESCRIPTION	INSTRUMENT
ME-MS8/h	High grade REE by fusion/CPMB	ICP-MS

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS WUNDHENK PO BOX 11804 620-650 W GEDRGIA ST VANCOUVER BC VEB 4N3

Signature:

Colin Ramshaw, Vancouver Laboratory Manager.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ACE Careda Ltd.

2103 Distinction Heavy North Hamscower BC V7H SAZ Phones 804 904 9221 Fam 904 904 0216 Invests allochambes come To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 625-450 W GEORGIA ST VANCOUVER BC V68 4NP Page: 2 - A Total # Pages: 2 (A) Finalized Date: 3-DEC-2009 Account COAMO

Project: TNR-Mayer

CERTIFICATE OF ANALYSIS	TB09137132
-------------------------	------------

		MEMBER				
	Bertes	The second secon				
	Barryke	Tie				
mate Management	made	164				
man garunatus	1.60	.13				
073077		134.5				
27094		1563				
AT MARKET		100.0				
	- 1					

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carrety 130:

2103 Dolarkov Hwy North Yamosower BC 1794 0A7 Phone 804 984 0321. Yair 604 984 0218. Week affections comTo COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11864 620-650 W GEORGIA ST VANCOUVER BC VEB 4N9

Page: 1 Finance Date: 3-DFC 3000

Account: CDANO

CERTIFICATE TB09137133

Prince TNR-Marin

P.O. No.:

This report is for 1 Rock sample submitted to our lab in Thurder Bay, OK, Canada on 1-DEC-2009.

The following have access to data associated with this certificate:

PRILID BREAKS HE CENAM

GABE AJTRAS

HAMES MUNICIPAL

SAMPLE PREPARATION
DESCRIPTION
Find Sangle for Addn Analysis

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
NE-MERTIN	High grade REE by Nation/CPMS	ICP-MS

To COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS WUNDHENK PO BOX 11864 620-650 W GEORGIA ST VANCOUVER BO VEB 4ND

Signature:

Colin Ramshaw: Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

N.S-Carriery Ltd.

2100 Dollarton Hay North Vancouver BC VTH 0A7 Phone 804 988 9221 Fax 804 884 6216 www.alfachemex.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11864 629-450 W GEORGIA ST VANCOUVER BC VEB 4N9 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 3-DEC-2009 Account: COAMO

Project TNR Mavis

CERTIFICATE	OF	AMAI VS	TI PE	B0913	7133
	1	CONTRACTOR OF THE			1 1 2 2

Sample Policylan	Standard Smoothin Smoothin Links	No. Marie To parts D-S			
#G17928		505			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALK COMMITTEE

215) Dollaron Hey North Vancouver BC VTH GKF

Prove 804 964 0221 Fac 604 964 6216 www.afschemex.com

To COAST MOUNTAIN GEOLOGICAL LTD. PO 60X 11604 620-650 W GEORGIA ST VANCOUVER BC V68 4NO

Page: 1 Final gold Date: 3-DEC-2009

Account COAMO

CERTIFICATE TB09137134

Project TNR-Mavis

P.O. No.

This report is for 1 Rock sample submitted to our lab in Thunder Bay, ON, Canada on 1-DEC-2009.

The following have access to data associated with this certificate:

FRED BREAKS HE COMMIT

GAME JUTAKS

HANS MUNDHOW.

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
FND-02	Find Sample for Addin Analysis	

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MERTS	High grade REE by fusion/CPMS	ICP-MS

To: COAST MOUNTAIN GEOLOGICAL LTD. ATTN: HANS MUNDHENK PO BOX 11884 620-650 W GEORGIA ST VANCOUVER BC VEB 4N3

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

WLS Correct Ltd.

210) Distance May North Vancouver SC VTH DAT Phone 804 984 5221 Fee: 504 964 0216 www.alsohertex.com To COAST MOUNTAIN GEOLOGICAL LTD. PO BOX 11604 626-450 W GEORGIA ST VANCOUVER BC V60 4ND Page: 2 - A Total 4 Pages: 2 (A) Finalized Date: 3-DEC-2009 Account: COAMO

Project: TNR-Mavia

CERTIFICATE OF ANALYSIS TB091371	34	ā

Gampia Bassription	Market Street	Tis parts 2.3		
HUTU*		165.5		