

TECHNICAL REPORT

2010/2011 DRILLING AND EXPLORATION PROGRAM MISEHKOW RIVER PROPERTY

Patricia Mining Division, Ontario, Canada

NTS 52P/04E Centred at: Latitude 51°08'00" North, Longitude 89°38'00" West UTM NAD 83, Zone 16, 314900 mE, 5669500 mN

Prepared For:

661 Grann Drive, RR#1 Shuniah, Ontario, Canada P0T 2M0

December 16, 2011

Prepared by:

Fladgate Exploration Consulting Corporation 195 Park Avenue Thunder Bay, Ontario, Canada P7B 1B9

Maura Kolb, MSc. Avery Henderson, HBSc.

Table of Contents

1	Sum	mary.		5		
2	Intro	Introduction				
	2.1 2.2	Introdu Terms	of Reference and Units	6		
-	2.3	Flauga				
3	Relia	ance o	n Other Experts	11		
4	Prop	Property Description and Location				
	4.1	I.1 Property Location 1				
	4.2	Ontario	o Mineral Policy	. 12		
	4.3 1 1	Enviro	II Land Tenure	. 16		
_	т .т			. 10		
5	ACC		ity, Physiography, Infrastructure	16		
	5.1 5.2	Access	SiDility	. 16		
	J.Z	5.2.1	Climate	. 17		
		5.2.2	Flora and Fauna	17		
6	Hist	History				
	6.1	5.1 Summary of recent work by Jiminex				
		6.1.1	VTEM EM and Magnetic Survey 2009-2010	19		
		6.1.2	Prospecting	19		
7	Geo	logical	Setting and Mineralization	19		
	7.1	Regior	nal Geology	. 19		
	7.2	Mishel	kow River Property Geology	. 20		
		7.2.1	Structure	22		
		7.2.2	Geophysics	22		
	7.3	Minera	lization	. 23		
8	Exp	oratio	n	23		
	8.1	8.1 Prospecting Program 2010 2				
	8.2	Mappir	ng and Prospecting Program 2011	. 26		

9	Drilli	ng	28	
	9.1	Drilling	28	
10	Sam	pling Method and Approach	30	
	10.1	Prospecting 2010	30	
	10.2	Prospecting 2011	30	
	10.5	10.3.1 Sample Preparation	31	
		10.3.2 Analysis	31	
		10.3.3 Security	31	
11	Othe	r Relevant Data and Information	31	
12	Inter	pretations and Conclusions	31	
	12.1	Mapping and Prospecting	31	
	12.2	Drill Program	33	
13	Reco	ommendations	37	
14	Refe	rences and Literature	38	
15	Date		39	
Арр	endix	I Statement of Qualifications	40	
Арр	endix	II Costs and Expenses	42	
Арр	endix	III Assay Certificates	43	
Арр	Appendix IV Drill Sections92			
Арр	endix	V Drill Logs	93	

List of Figures

Figure 1 – Misehkow River general location and regional geology map	. 13
Figure 2 – Mishekow River Property Contiguous Land Tenure	. 14
Figure 3 – Uchi subprovince within the Superior province.	.21
Figure 4 – Misehkow River Property in relation to major deposits within the Uchi subprovince	e.22
Figure 5 – Gold mineralization in MIS-11-03.	. 36

List of Tables

Table 1 – Glossary of Terms	7
Table 2 – Units of Measure	8
Table 3 – Common Conversion Factors	
Table 4 – Misehkow River Property Unpatented Mining Claims	
Table 5 – Summary of 2010 surface grab samples	24
Table 6 – Summary of 2011 surface grab samples	27
Table 7 – 2011 Drill Program collar summary.	
Table 8 – Significant intervals for 2011 drilling	

List of Plates

Plate 1 – Strongly foliated metasedimentary rock with folded boudinaged quartz vein	. 32
Plate 2 – Strongly foliated quartzofeldspathic schist.	.33
Plate 3 – Sulphide-rich, chert-iron formation.	. 34
Plate 4 - Example of white quartz with slips of wallrock from the mineralized zone of ho	le
MIS-11-03	. 35

List of Maps

Map 1 – 2010/2011 Prospecting	Map Pocket
Map 2 – 2011 Drill Program with Historical Drilling	Map Pocket

1 Summary

The Misehkow River Property is located in the Patricia Mining District, Ontario, Canada, approximately 500 kilometres (313 miles) northwest of Thunder Bay, Ontario and 50 kilometres (31 miles) southeast of Pickle Lake, Ontario. The area is covered by National Topographic System (NTS) map sheet 52P/04E. The centre of the property has approximate geographic coordinates of 51°08'00"N, 89°38'00"W (UTM NAD83 Zone 16N 314900mE, 5669500mN).

The Misehkow River Property consists of 30 unpatented mining claims, comprised of 258 units covering 4,177 hectares. The claims are 100% controlled by Jiminex.

The claim group is located within the Uchi Subprovince of the North Caribou terrane, the largest Mesoarchean domain in the Archean Superior Province. The Property is locally situated in the southeastern portion of the Pickle Lake greenstone belt, in the Pickle Crow Assemblage. The Pickle Lake greenstone belt (PLGB) is a 70 kilometre long belt of Archean supracrustal rocks, metamorphosed to greenschist and amphibolite facies. The property is underlain by the Pickle Crow Assemblage which is characterized by subaqueous basalt flows, dacite and rhyolitic pyroclastic rocks, quartz-feldspar porphyry, iron formation and graphitic schist.

The property has seen extensive historical exploration consisting of geological mapping, prospecting, airborne, ground magnetic and electromagnetic surveys, soil sampling and diamond drilling. Early work on the property was focused on iron ore exploration conducted by Sturdy Mines Limited and Algoma Steel Corporation. In the 1980's, geological, geophysical and geochemical work was undertaken by Ontario Gold Joint Venture ("OJIV") leading to a 12-hole drill program consisting of 2,235.4 metres in 1988. The best OJIV drill assay result was 12.5 g/t Au over 0.7m and the best grade/width result was 3.84 g/t Au over 6.2m (Ho, 1989). They delineated portions of a wide alteration zone and found gold mineralization associated with the intersection of the iron formation and this alteration zone (Ho, 1988). Similarly, geological, geophysical and geochemical work conducted by Utah Mines Ltd. during the late 1980's resulted in a drill program in 1990. This program by Utah Mines Ltd. included 8 drill holes totaling 1,189.3 metres, where drill core results yielded slightly anomalous Au values ranging up to 44 ppb Au (Waldie, 1991).

Jiminex Inc. acquired the Misehkow River property in 2007 and commenced work in 2010 with prospecting and geophysical surveys on the property. A VTEM EM and magnetic survey was conducted in 2009-2010. The survey was conducted by Geotech Ltd. and the data was independently analyzed and interpreted by Condor Consulting for Jiminex in May 2010.

Geotech calculated vertical magnetic derivatives and interpreted tectonic disruptions and two target zones. Condor did a complete assessment of the EM and magnetic data including modeling of the EM results, as well as plate and voxel modeling of the magnetic data. Historic drilling and surface assays along with property geology were examined in their assessment. Based on their assessment, five high priority targets were outlined out of the 30 target zones. These targets were prioritized based on local geology, geological structures, geophysical signatures, historic drill holes and anomalous gold assays. Condor designed drill holes to test these geophysical targets.

A 9-hole drill program was undertaken in April 2011, with eight holes targeting geophysical targets and one hole targeting historic IF-hosted gold mineralization totaling 2,869.08 metres. Drilling was conducted by Cartwright Drilling and the drill program was supervised by James Parres and Adewara Odewande. Core logging was completed later in August 2011 by Fladgate Exploration staff Maura Kolb, MSc., and Robert Scott. A new gold zone was discovered consisting of gold-bearing quartz veins hosted in metasediments just below the contact with a chlorite schist unit. The best weighted average assay result of 18.3 g/t over 2.39m gold was obtained within this zone from hole MIS-11-03.

Hole MIS-11-03 intersected several high grade intervals just below the contact between the chlorite schist and the metasedimentary unit. Holes MIS-11-07 and MIS-11-08 were targeting the same mineralization, but these holes did not reach the metasedimentary unit. It appears that these holes were stopped short of the target.

Mapping done in the summer of 2011 showed the majority of the quartz veins on the Misehkow River Property are oriented parallel to the foliation which strikes roughly east-west and dips steeply to the north. Because the gold mineralization in hole MIS-11-03 is hosted in quartz veins, it is assumed by the author (Maura Kolb) that the mineralized zone will follow a similar trend.

If the assumption about the mineralized zone following the same trend as the veins and foliation is true, hole MIS-11-06 should have intersected the mineralized zone, however no significant gold mineralization was intersected. Hole MIS-11-06 was drilled from the same collar location as MIS-11-03 with a steeper dip. The gold zone in hole MIS-11-03 is hosted in a zone with several small quartz veins and slightly increased pyrite mineralization. Areas with similar veining and mineralization were sampled in hole MIS-11-06 but results showed only slightly elevated gold values. It is possible that the gold mineralization may be nugget-like hosted in anastomosing veins or the ore shoots may have been missed.

The results from the 2010/2011 exploration program have been encouraging. Additional mapping, prospecting should be done to expand the vein-hosted and iron formation-hosted gold potential on the property. Further drilling is also recommended to follow up and define the newly discovered mineralization around MIS-11-03 as well as testing the other targets outlined by Condor.

2 Introduction

2.1 Introduction

Fladgate Exploration Consulting Company ("Fladgate") was engaged by Jiminex Inc. ("Jiminex") to complete a mapping/sampling program and complete drill core logging at their Misehkow River Property (the "Property"). Fladgate employees Maura Kolb, M.Sc. and Robert Scott were assigned to complete this work based out of the Jiminex field camp located on the Misehkow River.

This report includes all exploration activities conducted by Jiminex and Fladgate as of May, 2011.

The primary author, Maura Kolb, MSc., and co-author Avery Henderson, HBSc., completed all sections and reviewed previous reports, data and all relevant information that was judged adequate pertaining to the Misehkow River Property.

This report is intended for use by Jiminex to file for assessment purposes with the Ministry of Northern Development and Mines ("MNDM"), and is non-compliant with 43-101 regulations.

2.2 Terms of Reference and Units

The Metric System or SI System is the primary system of measure and length used in this report and is generally expressed in kilometres, metres and centimetres; volume is expressed as cubic metres, mass expressed as metric tonnes, area as hectares, and zinc, copper and lead grades as percent or parts per million. The precious metal grades are generally expressed as grams/tonne but may also be in parts per billion or parts per million. Conversions from the SI or Metric System to the Imperial System are provided below and quoted where practical. Many of the geologic publications and more recent work assessment files now use the SI system but older work assessment files almost exclusively refer to the Imperial System. Metals and minerals acronyms in this report conform to mineral industry accepted usage and the reader is directed to an online source at www.maden.hacettepe.edu.tr/dmmrt/index.html.

Table 1 – Glossary of Terms

Term	Meaning	Term	Meaning
AEM	Airborne Electromagnetic	Na	Sodium
Ag	Silver	Na ₂ O	sodium oxide
Al	Aluminum	NAD 83	North American Datum of 1983
AI_2O_3	aluminum oxide	NE	Northeast
AW	apparent width	NI	National Instrument
As	Arsenic	Ni	Nickel
Au	Gold	NSR	net smelter return
Ва	Barium	NTS	National Topographic System
Be	Beryllium	OGS	Ontario Geological Survey
Bi	Bismuth	Р	Phosphorous
С	Carbon	P_2O_5	phosphorous oxide
Са	Calcium	Pb	Lead
CaO	calcium oxide	Pd	Palladium
Cd	Cadmium	рН	Acidity
Co	Cobalt	Pt	Platinum
CO ₂	carbon dioxide	QA/QC	Quality Assurance/Quality Control
Cr	Chromium	S	South
Cr_2O_3	chromium oxide	S	Sulphur
Cu	Copper	Sb	Antimony
DDH	diamond drill hole	SE	Southeast
DW	drilled width	Se	Selenium
E	East	SiO ₂	silicon oxide
EM	electromagnetic	Sn	Tin

Term	Meaning	Term	Meaning
Fe	Iron	SO ₂	sulphur dioxide
Fe_2O_3	iron oxide (ferric oxide-hematite)	Sr	Strontium
Fe_3O_4	iron oxide (ferrous oxide-magnetite)	Sum	Summation
HLEM	horizontal loop electromagnetic	SW	Southwest
H ₂ O	hydrogen oxide (water)	Ti	Titanium
IP	induced polarization	TiO ₂	titanium dioxide
K	Potassium	TI	Thallium
K ₂ O	potassium oxide	TW	true width
Li	Lithium	U	Uranium
LOI	loss on ignition (total H ₂ O, CO ₂ and	U_3O_8	uranium oxide (yellowcake)
	SO ₂ content)		
Mg	Magnesium	UTM	Universal Transverse Mercator
MgO	magnesium oxide	V	Vanadium
Mn	Manganese	V_2O_5	vanadium oxide
MNDM	Ministry of Northern Development,	VLF	very low frequency
	Mines and Forestry		
MnO	manganese oxide	VLF-EM	very low frequency-electromagnetic
Мо	Molybdenum	W	West
Mt	millions of tonnes	Y	Yttrium
Ν	North	Zn	Zinc
NW	northwest		

Table 2 – Units of Measure

Units of Measure	Abbreviation	Units of Measure	Abbreviation
Above mean sea level	amsl	Litres per minute	L/m
Ampere	А	Megabytes per second	Mb/s
Annum (year)	а	Megapascal	MPa
Billion years ago	Ga	Megavolt-ampere	MVA
British thermal unit	Btu	Megawatt	MW
Candela	cd	Metre	m
Carat	ct	Metres above sea level	masl
Carats per hundred tonnes	cpht	Metres per minute	m/min
Carats per tonne	cpt	Metres per second	m/s
Centimetre	cm	Metric ton (tonne)	t
Cubic centimetre	cm ³	Micrometre (micron)	μm
Cubic feet per second	ft ³ /s or cfs	Microsiemens (electrical)	μs
Cubic foot	ft ³	Miles per hour	mph
Cubic inch	in ³	Milliamperes	mA
Cubic metre	m ³	Milligram	mg
Cubic yard	yd ³	Milligrams per litre	mg/L
Day	d	Millilitre	mL
Days per week	d/wk	Millimetre	mm
Days per year (annum)	d/a	Million	Μ

Units of Measure	Abbreviation	Units of Measure	Abbreviation
Dead weight tonnes	DWT	Million tonnes	Mt
Decibel adjusted	dBa	Minute (plane angle)	•
Decibel	dB	Minute (time)	min
Degree	0	Month	mo
Degrees Celcius	°C	Newton	Ν
Degrees Fahrenheit	°F	Newtons per metre	N/m
Diameter	Ø	Ohm (electrical)	Ω
Dry metric ton	dmt	Ounce	Oz
Foot	ft	Ounce per tonne	oz/t
Gallon	gal	Parts per billion	ppb
Gallons per minute (US)	gpm	Parts per million	ppm
Gigajoule	GJ	Pascal	Pa
Gram	g	Pascals per second	Pa/s
Grams per litre	g/L	Percent	%
Crame per tenno	a/t	Percent moisture (relative	0/ DU
Granis per tonne	y/t	humidity)	70 KH
Greater than	>	Phase (electrical)	Ph
Hectare (10,000 m2)	ha	Pound(s)	lb
Hertz	Hz	Pounds per square inch	psi
Litre	L	Horsepower	hp
Hour	h (not hr)	Quart	qt
Hours per day	h/d	Revolutions per minute	rpm
Hours per week	h/wk	Second (plane angle)	"
Hours per year	h/a	Second (time)	S
Inch	"(symbol, not ")	Short ton (2,000 lb)	st
Joule	J	Short ton (US)	t
Joules per kilowatt-hour	J/kWh	Short tons per day (US)	tpd
Kelvin	К	Short tons per hour (US)	tph
Kilo (thousand)	k	Short tons per year (US)	tpy
Kilocalorie	kcal	Specific gravity	SG
Kilogram	kg	Square centimetre	cm ²
Kilograms per cubic metre	kg/m ³	Square foot	ft ²
Kilograms per hour	kg/h	Square inch	in ²
Kilograms per square metre	kg/m²	Square kilometre	km ²
Kilojoule	kJ	Square metre	m ²
Kilometre	km	Thousand tonnes	kt
Kilometres per hour	km/h	Tonne (1,000kg)	t
Kilonewton	kN	Tonnes per day	t/d
Kilopascal	kPa	Tonnes per hour	t/h
Kilovolt	kV	Tonnes per year	t/a
Kilovolt-ampere	kVA	Total dissolved solids	TDS
Kilovolts	kV	Total suspended solids	TSS
Kilowatt	kW	Volt	V

Units of Measure	Abbreviation	Units of Measure	Abbreviation
Kilowatt hour	kWh	Week	wk
Kilowatt hours per short ton (US)	kWh/st	Weight/weight	w/w
Kilowatt hours per tonne (metric ton)	kWh/t	Wet metric ton	wmt
Kilowatt hours per year	kWh/a	Yard	yd
Kilowatts adjusted for motor efficiency	kWe	Year (annum)	а
Less than	<	Year	yr

The term gram/tonne or g/t is expressed as "gram per tonne" where 1 gram/tonne = 1 ppm (part per million) = 1000 ppb (part per billion). Other abbreviations include ppb = parts per billion; ppm = parts per million; oz/t = ounce per short ton; Moz = million ounces; Mt = million tonne; t = tonne (1000 kilograms); SG = specific gravity; Ib/t = pound/ton; and, st = short ton (2000 pounds).

Dollars are expressed in Canadian currency (CAD\$) unless otherwise noted. Base and certain industrial metal and mineral prices are stated as US\$ per tonne (US\$/t), precious metal prices are stated in US\$ per troy ounce (US\$/oz) and Uranium and certain industrial metal and mineral prices are stated in US\$ per pound (US\$/lb).

Unless otherwise noted, Universal Transverse Mercator ("UTM") coordinates are provided in the datum of NAD 83, Zone 15 North.

Table 3 – Common Conversion Factors

To Convert From	То	Multiply By
Feet	Metres	0.3048
Metres	Feet	3.2808
Miles	Kilometres	1.6093
Kilometres	Miles	0.6214
Acres	Hectares	0.4047
Hectares	Acres	2.4711
Grams	Ounce (troy)	0.03215
Ounce (troy)	Grams	31.1035
Tonnes	Short tons	1.10231
Short tons	Tonnes	0.90718
Long tons	Kilograms	1016.046
Tonnes	Long tons	0.98421
Long tons	Tonnes	1.016046
Grams per tonne	Ounces (troy) per ton	0.02917
Ounces (troy) per ton	Grams per tonne	34.2857

2.3 Fladgate Qualifications

Fladgate Exploration Consulting Corporation is an international consulting company based in Thunder Bay, Ontario, Canada. Fladgate provides a wide range of geological and exploration services to the mineral and energy industries. With offices in Canada (Thunder Bay, Ontario) and South America (Vallenar, Chile), Fladgate is well positioned to service its client base.

Fladgate's mandate is to provide professional geological and exploration services to the mineral and energy industries at competitive rates and without compromise. Fladgate's professionals have international experience in a variety of disciplines with services that include:

- Exploration Project Generation, Design, Implementation and Management
- Data Compilation and Exploration Target Generation
- Property Evaluation and Due Diligence Studies
- Independent, NI 43-101 Compliant, Technical Reports
- Mineral Resource Modeling and Estimation
- 3D Geological Modeling and Database Management

3 Reliance on Other Experts

Fladgate has reviewed and analyzed exploration and historical data for the Misehkow River Property provided by Jiminex, its consultants and previous explorers of the area, and has drawn its own conclusions there from, augmented by its direct field examination. While exercising all reasonable diligence in checking, confirming and testing it, Fladgate has relied upon Jiminex presentation of the project data from previous and recently completed exploration programs. Fladgate has not carried out any independent exploration work, drilled any holes or carried out any significant program of confirmatory sampling and assaying. However, mineralization style is visible at surface and/or in the drill core and was observed by Fladgate. While exercising all reasonable diligence in checking, confirming and testing it, Fladgate has relied upon the data presented by Jiminex, and any previous operators of the project, in formulating its opinion.

The various agreements under which Jiminex holds title to the mineral lands for this project have not been thoroughly investigated or confirmed by Fladgate and Fladgate offers no opinion as to the validity of the mineral title claimed. The description of the property has been presented here for general information purposes only. Fladgate is not qualified to provide professional opinion on issues related to mining and exploration title and land tenure, royalties, permitting and legal and environmental matters.

The conclusions and recommendations in this report reflect the author's best judgment in light of the information available at the time of writing. The author and Fladgate reserve the right, but will not be obliged, to revise this report and conclusions if additional information becomes known to them subsequent to the date of this report. Use of this report acknowledges acceptance of the foregoing conditions.

This report is intended to be used by Jiminex subject to the terms and conditions of its agreement with Fladgate. Except for the purposes legislated under provincial securities laws, any other use of this report, by any third party, is at that party's sole risk.

4 Property Description and Location

4.1 **Property Location**

The Misehkow River property is located in the Patricia Mining Division, northwestern Ontario, Canada, approximately 500 km north of Thunder Bay and 50 km southeast of the town of Pickle Lake, Ontario (Figure 1). It comprises 30 contiguous unpatented claims consisting of 319 claim units with an aggregate area of 5,104 hectares and is situated in the Achapi Lake, Atikokiwam Lake and Heather Lake areas (Table 4, Figure 2). These claims are 100% owned by Jiminex, subject to a varying 1 to 2% net smelter return royalty to the vendors. Continued ownership of the claims is dependent on meeting the work requirements as set forth by the Mines and Minerals Act of Ontario and its accompanying Regulations.

The area is covered by National Topographic System (NTS) map sheet 52P/04E. The centre of the property has approximate geographic coordinates of 51°08'00"N, 89°38'00"W, UTM NAD 83, Zone 16N, 314900mE, 5669500mN (Figure 2).

4.2 **Ontario Mineral Policy**

In Ontario, the ownership of surface rights and mining rights can vary from one property to another, particularly in regions where settlement and industry have a long history. The Canada Constitution Act, 1867 gave the then existing provinces, including Ontario, ownership of the public property in their boundaries (i.e. to the provincial Crown), which then issued grants of land known as "Crown Patents". In 1913, the province of Ontario amended its Public Lands Act so that any title granted by the Crown before the amendment was deemed to include mining rights ownership. Any parcels of land granted by the Crown after May 6, 1913, may or may not include the mining rights depending on how the title is worded. Ontario's current Public Lands Act authorizes the Minister of Natural Resources to sell or lease land. Today, the province's policy is to reserve mining rights to the Crown in the majority of land grants (MNDM website http://www.mndm.gov.on.ca).

At the time of writing the core portions of the long established mining areas in Ontario are dominated by long standing Patented Mining Claims which may or may not include other ownership titles such as surface and timber rights. On Crown lands, and private lands that do not include mining rights, mineral exploration rights may be acquired by claim staking.

A staked mining claim provides the owner the exclusive right to explore for minerals. Once a claim is staked, the owner must perform exploration work to maintain it in good standing. This is called assessment work. This work must amount to at least CAD\$400 per claim unit (1 unit = 16 ha) per year and be reported to the Mining Lands Section of the MNDM. Assessment work is not required in

Figure 1 – Misehkow River general location and regional geology map.

Figure 2 – Mishekow River Property Contiguous Land Tenure

Table 4 – Misehkow River Property Unpatented Mining Claims

Area	Claim Number	Number of Units	Date Recorded	Date Due	Owner	% Owned
Achapi Lake	4256292	9	2010-Aug-19	2012-Aug-19	Jiminex Inc.	100
Achapi Lake	3014284	16	2006-Feb-27	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	3014285	15	2006-Feb-27	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	3014286	2	2006-Feb-27	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4221453	15	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4221454	15	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4224258	15	2008-Jan-28	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4224259	15	2008-Jan-28	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4225921	12	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4225922	15	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4225923	15	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4225927	15	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4225929	15	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4225930	14	2007-Dec-14	2012-Feb-27	Jiminex Inc.	100
Achapi Lake	4245674	4	2009-Aug-24	2012-Aug-24	Jiminex Inc.	100
Achapi Lake	4245675	8	2009-Aug-24	2012-Aug-24	Jiminex Inc.	100
Achapi Lake	4252383	15	2010-Apr-23	2012-Apr-23	Jiminex Inc.	100
Achapi Lake	4252384	2	2010-Apr-23	2012-Apr-23	Jiminex Inc.	100
Achapi Lake	4252385	3	2010-Apr-23	2012-Apr-23	Jiminex Inc.	100
Achapi Lake	4252386	4	2010-Apr-23	2012-Apr-23	Jiminex Inc.	100
Achapi Lake	4258041	9	2010-Aug-19	2012-Aug-19	Jiminex Inc.	100
Achapi Lake	4258042	4	2010-Aug-19	2012-Aug-19	Jiminex Inc.	100
Achapi Lake	4262693	6	2011-May-27	2013-May-27	Jiminex Inc.	100
Achapi Lake	4262694	15	2011-May-27	2013-May-27	Jiminex Inc.	100
Achapi Lake	4262695	6	2011-May-27	2013-May-27	Jiminex Inc.	100
Achapi Lake	4262696	4	2011-May-27	2013-May-27	Jiminex Inc.	100
Atikokiwam L.	4252381	15	2010-Apr-23	2012-Apr-23	Jiminex Inc.	100
Atikokiwam L.	4252382	15	2010-Apr-23	2012-Apr-23	Jiminex Inc.	100
Heather Lake	4221455	15	2007-Dec-14	2012-Dec-14	Jiminex Inc.	100
Heather Lake	4262692	6	2011-May-27	2013-May-27	Jiminex Inc.	100

the first year after recording a mining claim. Assessment work credits can be banked and used in future years. Under the MNDM system, each claim comes due on the anniversary of the date the claim was recorded. Claims are forfeited if the assessment work is not done. The mining rights affected by the forfeiture then return to the Crown and may be staked by another party.

Patented claims do not have assessment work expenditure or reporting requirements. These claims remain in good standing as long as applicable taxes are paid to the local municipality. The claim holder's right is only to explore for minerals on mining claims. Mining (i.e. extraction of the minerals)

cannot take place until the claims are brought to lease. Mining leases are issued for the express purpose of undertaking mineral exploration, development or mining. The claim holder is entitled to a lease upon fulfilling the requirements of the Mining Act.

Currently mining leases are issued for 21-year terms and may be renewed for further 21-year periods. In the past however, lease terms for as long as 99 years were common. Leases can be issued for surface and mining rights, mining rights only or surface rights only. Once issued, the lessee pays an annual rent to the province. Further, prior to a mine coming into production, the lessee must comply with all applicable federal and provincial legislation.

Mining Licenses of Occupation ("MLO") were granted for portions of patented mining claims that lie beneath a water body, and in rare occasions for the land portion of the patent. Once issued, the MLO owner pays annual rent to the province of \$5/ha to maintain the MLO in perpetuity as they have no expiry date. In rare cases where the land and water portions of a patent are covered by an MLO they are no longer subject to annual property taxes and simply the annual rent of the MLO; in these cases if the MLO is not maintained in good standing the patented ground returns to the Crown. It should be noted that MLO's have been grandfathered into the new Mining Act and are no longer granted to mineral exploration companies in Ontario.

Ontario's Mining Act is the legislation which provides for acquiring land for mineral exploration and development. Ontario's MNDM administers the Mining Act, which sets out rules for all aspects of mineral exploration and development.

4.3 Mineral Land Tenure

As of December 16, 2011, the Misehkow River Property consists of 30 contiguous, unpatented mining claims comprised of 319 claim units covering 5,074 hectares (Figure 2, Table 3). The unpatented mining claims are recorded in the name of Jiminex Inc.

4.4 Environmental and Permitting

All phases of Misehkow River exploration activities are subject to environmental regulation in the jurisdictions in which it operates. These regulations mandate, among other things, the maintenance of air and water quality standards and land reclamation and provide for restrictions and prohibitions on spills, releases or emissions of various substances produced in association with certain exploration and mining industry activities and operations. They also set forth limitations on the generation, transportation, storage and disposal of hazardous waste. A breach of such regulations may result in the imposition of fines and penalties. In addition, certain types of exploration and mining activities require the submission and approval of environmental impact assessments.

5 Accessibility, Physiography, Infrastructure

5.1 Accessibility

The Property may be accessed from the city of Thunder Bay, Ontario by proceeding west on paved Trans-Canada Highway 11/17 and then north on paved Highway 599, a total distance of 535 km to

Pickle Lake, Ontario. Pickle Lake, Ontario can also be accessed by air on local small aircraft commuter service out of the International Airport in Thunder Bay. From Pickle Lake, Ontario, access to the Property is by float- or ski-equipped fixed wing aircraft or helicopter (Figure 2).

5.2 **Physiography**

The Property has low relief with the average topographic relief within the Property rarely exceeding 25m. Elevation is approximately 360 m above sea level.

5.2.1 Climate

Annual average precipitation for the Pickle Lake area is 733 mm, including 499 mm of rainfall and 272 cm of snowfall. The mean daily temperature in July is 18° C, while January records average temperatures of -21° C. Temperatures of up to 40° C in July and -51° C in January have been recorded (Source: Meteorological Service of Canada).

5.2.2 Flora and Fauna

The Property is covered by a mixture of mature timber (poplar, black and white spruce, birch and cedar) with little shrub growth in the understory.

6 History

Historical exploration in the Misehkow River area has been extensive since the turn of the twentieth century. Many exploration companies and government surveys have completed grassroots exploration programs in the area, as outlined below:

Brief exploration history:

- 1968 Diamond Drilling was performed by Sturdy Mines Limited to test previously defined magnetic anomalies. This drill program included six holes, totaling 5,223 feet (Sullivan, 1968; Murphy, 1968).
- 1968 Magnetic and electromagnetic survey was completed by Sturdy Mines Limited. The electromagnetic survey discovered seven conductive zones and eight magnetic zones (Desson, 1972).
- 1977 Algoma Steel Corporation conducted an 817.1 ft drilling program consisting of ten drill holes testing for iron mineralization (Gray, 1977).
- 1978 Algoma Steel Corporation conducted a magnetometer survey which detected a large magnetic horizon measuring approximately 8,000ft in length and 300 ft in width (Gray, 1978).
- 1985 Geological, geophysical and geochemical work was undertaken by Ontario Gold Joint Venture, comprising Northern Dynasty Exploration Ltd., Westfield Minerals Ltd., and Newfields Minerals Inc. Geophysical work included ground magnetic and electromagnetic surveys. Geochemical analysis was completed on rock samples, soil samples and stream sediment samples (Tupper, Gorzynski and Youngman, 1985).

- 1986 An airborne VLF-EM and magnetometer survey was undertaken by Ontario Gold Joint Venture. (Barrie, 1986).
- 1987 The Ontario Gold Joint Venture completed a soil geochemical survey including 65 samples along with collecting one rock sample for analysis. Results for gold were low with only one anomalous result having a gold value of 43 ppb accompanied by 27 ppm arsenic. The work also included a minor trenching program, totaling 6 trenches. The best result from the trenching program came from a grab sample taken from a meter wide quartz vein in trench #6 (Lohman and Deevy, 1987; Ho, 1989).
- 1987 Utah Mines Ltd. conducted detailed geologic mapping at a scale of 1:5000 and collected 246 grab samples. All samples were analyzed for Au with select samples also analyzed for Cu, Ag and Zn. (Dyer, 1987).
- 1987 St. Joe Canada Inc. conducted airborne magnetic and VLF-EM surveys on the Webb Lake project (Barrie, 1987).
- 1988 Utah Mines Ltd. conducted a mapping program on the northern portion of their property starting in summer 1987 which was completed the following summer. In addition, rock and humus samples were taken during field season of 1988 (Allen, 1989).
- 1988 Utah Mines Ltd. conducted geophysical surveys including horizontal loop electromagnetic (HLEM/Max-Min), total field magnetometer and VLF-EM surveys during the winter of 1988 on the Misehkow River and Woodilee Lake properties (Treadwell, 1988a,b).
- 1988 Ontario Gold Joint Venture conducted a ground geophysical survey including magnetic and VLF-EM surveys discovering four magnetic zones and four conductive zones. Also from 1988 to 1989 they conducted a 2,235.4 metre drilling program consisting of twelve drill holes. The best drill assay was 12.5 g/t Au over 0.7m and the best grade/width result was 3.84 g/t Au over 6.2m (Gorzynski, 1988a,b,c; Ho, 1989).
- 1988 Placer Dome conducted a 1,234.2 metre drilling program consisting of ten drill holes (Morganti 1989).
- 1990 In the winter of 1990, Bond Gold Canada Inc. carried out a program consisting of line cutting, magnetic and HLEM surveying on the Vallas Lake Property. This program was followed up with a geological mapping program to investigate geophysical targets and anomalous gold assay results (Huxhold, 1990a,d).
- 1990 Bond Gold Canada Inc. conducted a geological mapping program on the Iron Falls Property and the August North property to investigate airborne geophysical anomalies (Huxhold, 1990b,c).
- 1990 Utah Mines Ltd. conducted a drilling program consisting of eight drill holes totaling 1,189.3 metres (Waldie, C.J. 1991).
- 1990 Prospecting, rock sampling, geological mapping and humus geochemistry was undertaken for Mr. Biczok by W.C. Hood and Associates in the Misehkow River area including Lowry Lake, Woodilee Lake and the Misehkow River (Hood, W.C.).

- 1997 Northern Dynasty Minerals Limited conducted geophysical surveys including: helicopterborne electromagnetic, magnetic and VLF-EM (Woolham, 1997).
- 1998 A re-assaying program was completed based on drill core sampled by Ontario Gold Joint Venture in the 1988 and 1989 drill program. This program was undertaken to assess the possibility of nugget effect in the original assays. The original assays were analyzed by conventional fire assay with atomic absorption finish on 10 gram samples. The re-assaying program used metallics or "screen" assaying of 73 drill core pulp samples (Youngman 1998).

6.1 Summary of recent work by Jiminex

Jiminex Inc. has completed prospecting and geophysical surveys on the Misehkow River property from 2009-2010.

6.1.1 VTEM EM and Magnetic Survey 2009-2010

Jiminex Inc. completed a VTEM 30 HZ EM and magnetic survey over the Misehkow River property in September 2009. The survey was conducted by Geotech Ltd., and the data was independently analyzed and interpreted by Condor Consulting for Jiminex in May 2010 (Steffler *et al.* 2010; Witherly and Cunion 2010).

Geotech calculated vertical magnetic derivatives and interpreted tectonic disruptions and two target zones. Condor did a complete assessment of the EM and magnetic data, including modeling of the EM results, as well as plate and voxel modeling of the magnetic data. Historic drilling and surface assays along with property geology were examined in their assessment. Based on their assessment, five high priority targets were outlined out of the 30 target zones. These targets were prioritized based on local geology, geological structures, geophysical signatures, historic drill holes and anomalous gold assays. Condor designed drill holes to test these geophysical targets. The current drill program tested geophysical anomalies described by Condor in holes MIS-11-01 through MIS-11-08.

6.1.2 Prospecting

Jiminex Inc. has carried out several prospecting programs including 116 rock samples in 2010 which will be addressed in Section 8 of this report.

7 Geological Setting and Mineralization

7.1 Regional Geology

The Misehkow River property lies within the Uchi subprovince of the North Caribou terrane which is the largest domain within the Superior Province of the Canadian Shield. The Uchi subprovince is host to several gold deposits including Red Lake, Rice Lake and the Pickle Crow mining camps. This area was mapped by Sage and Breaks (1982) and reevaluated by Young et al. (2006). The regional geology in this report is based on these two reports (Figures 3 and 4).

The Misehkow River property lies within the Pickle Lake greenstone belt. The Pickle Lake greenstone belt is a 70 x 25 kilometer long belt made up of Archean supracrustal rocks which have been intruded by granitic plutons, surrounded by larger granitic batholiths. Metamorphic grades typically range from greenschist to amphibolite facies throughout the belt. There have been three phases of deformation identified in the Pickle Lake greenstone belt.

The Pickle Lake greenstone belt has been broken into four Assemblages: the Northern Pickle Assemblage, the Pickle Crow Assemblage, the Woman Assemblage and the Confederation Assemblage. The Misehkow River property is hosted by the Pickle Crow Assemblage.

The Pickle Crow Assemblage is characterized by subaqueous basalt flows, dacites and rhyolitic pyroclastic rocks, synvolcanic quartz-feldspar porphyry, iron formation and graphitic schist. This assemblage is dominantly massive to pillowed basalt flows with interlayered iron formation and lenses of intermediate volcanic rocks.

7.2 Mishekow River Property Geology

The first detailed map of the property was done in 1985 by Tupper et al., though there is significant overburden on most of the property, most of the outcrop can be found along the river.

Lithologies on the property include a variety of metamorphosed volcanic and metamorphosed sedimentary rocks, cut by metamorphosed early and late intrusive rocks. Late intrusive rocks include diabase and quartz (+/- feldspar) porphyry. Early intrusive rocks include gabbro, quartz monzonite, trondhjemite, granodiorite and quartz diorite. The most significant metamorphosed sedimentary rock is the chert-magnetite iron formation inferred from geophysical surveys and exploration diamond drilling. The iron formation is thinly to coarsely banded, consisting of magnetite and chert-rich bands. Sulphides occur as blebs and stringers in this unit. A chert-rich iron formation also occurs on the property. This unit has a fine grained sugary texture on fresh surfaces and is often sulphide-rich with stringers and blebs of pyrite, pyrrhotite and chalcopyrite. Another variation of the iron formation includes a clastic iron formation with biotite and garnet bands in addition to the magnetite and chert-rich bands.

On the south side of the Misehkow river, the property is dominated by metasedimentary rocks, including metamorphosed greywacke, arkose, quartzite, siltstone and shale. These units are typically fine grained, grey in colour and moderately foliated with subtle differences. Work completed by previous companies, Ontario Gold Joint Venture and Utah Mines Ltd., tried to distinguish these units however Jiminex has grouped these units for consistency.

The predominant volcanic rock on the Misehkow River property is a texturally diverse mafic volcanic rock group. Massive mafic flows are most common with local carbonate-rich chlorite schists. The chlorite schist is strongly foliated and green in colour, rich with carbonate veining and with/or without magnetite. Magnetite appears in three distinct textures including small disseminated blebs or cubes, clusters of wisps and disseminated wisps and/or stringers.

Figure 3 – Uchi subprovince within the Superior province.

Figure 4 – Misehkow River Property in relation to major deposits within the Uchi subprovince.

7.2.1 Structure

The Misehkow River is mainly underlain by metamorphosed volcanic rocks interlayered with iron formation, gabbro and sedimentary rocks trending roughly east-west. The property has three distinct deformation events. Remnants of the first deformation event, D1, are preserved as cleavage in the chert-magnetite iron formation and occur at 210-225, steeply dipping to the north. The most pervasive structure on the property is the D2 foliation (or schistosity). The D2 foliation is orientated at 240-255, dipping steeply typically to the north.

The third deformation event in the area is less wide spread but is locally developed as widely spaced fractures orientated 005-015. D3 also manifests as kinks and open folds generally trending more north than either the D1 or D2 structures.

7.2.2 Geophysics

Due to the scarcity of outcrop on much of the Misehkow River property, geophysical surveys have played an essential role in the exploration of the Property. In 1968, Sturdy Mines Limited conducted magnetic and electromagnetic surveys to target the iron formation for exploration. Later in 1978, Algoma Steel Corporation furthered the geophysical understanding of the area with a magnetometer survey. In 1985, Ontario Gold Joint Venture conducted ground magnetic and electromagnetic surveys. In the late 1980s, several other airborne magnetic and VLF-EM surveys along with horizontal loop electromagnetic

(HLEM/Max-Min) and total field magnetometer were conducted in the area. In 1997, Northern Dynasty Minerals conducted helicopter-borne electromagnetic, magnetic and VLF-EM surveys over the property.

Jiminex completed a VTEM 30 HZ EM and magnetic survey over the property by Geotech in 2009. A complete assessment of the EM and magnetic data including modeling of the EM results, as well as plate and voxel modeling of the magnetic data was conducted by Condor Consulting for Jiminex. Historic drilling and surface assays along with property geology were examined in their assessment. Based on their assessment, five high priority targets were outlined.

7.3 Mineralization

The iron formation on the property has received the bulk of the attention in past mineral exploration programs. First, the iron formation under the river was targeted for its potential to be developed as an iron resource. This iron formation is hosted within clastic sedimentary rocks, typically thinly bedded greywacke. The iron formation is chert-magnetite layers with lesser hematite and iron sulphides.

In more recent years, the iron formation was targeted for gold mineralization. The iron formation north of the Misehkow River is sulphide-rich. This iron formation is pyrite-rich with lesser pyrrhotite and magnetite. Gold mineralization within the iron formation has not been geochemically linked to pyrite content. Instead, gold mineralization in the iron formation seems to be associated with the D2 shearing which cross cuts the iron formation at a very oblique angle. Additional characteristics of this iron formation hosted gold mineralization include association with arsenopryite mineralization.

The current drill program discovered gold mineralization hosted by quartz veining in the metasedimentary (greywacke) unit. Because of this discovery, the subsequent mapping and prospecting program focused on documenting quartz vein orientations in the metavolcanic and metasedimentary rocks in the surrounding area. Although several variations occur on the orientation of quartz veins, the majority of the veining documented in the 2011 mapping program aligns with the D2 (roughly east-west) trend or are slightly oblique to the trend.

8 Exploration

Since first acquiring the property, Jiminex has completed prospecting, line cutting, geological mapping and filing of a digital database of all historic data available in the claims area.

8.1 **Prospecting Program 2010**

In 2010, a prospecting program was completed to explore for gold potential over Misehkow River. Prospecting was conducted in the spring and summer of 2010 by Jiminex staff Matthew King from the Gull Bay and Ron Hunter from Osnaburgh. One hundred and sixteen samples were collected for gold and trace element geochemistry (Map 1). Samples were submitted to Accurassay Laboratories in Thunder Bay, Ontario for analysis. Samples were analyzed for trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, Tl, V, W, Y and Zn) using Aqua Regia Digestion with ICP-OES finish. In addition, samples were fire assayed for Au.

Table 5 – Summary of 2010 surface grab samples.

Sample ID	Easting (NAD83Z16)	Northing (NAD83Z16)	Comment		
MK-001	322825	5670635	chl schist		
MK-002	322274	5670106	metaseds		
MK-003	322954	5669990	mafic		
MK-004	322718	5670106	mafic		
MK-005	322723	5670480	mafic		
MK-006	322726	5670508			
MK-007	321598	5670707	very weathered		
MK-008	321592	5670770	chl-schist		
MK-009	322805	5670405	chl-schist		
MK-010	322803	5670413	mafic		
MK-011	322830	5670469			
MK-012	322838	5670994	chl schist with magnetite		
MK-013	322838	5670494	chl schist with magnetite		
MK-014	322823	5670545	chl schist with magnetite		
MK-015	322805	5670527	mafic		
MK-016	322866	5670496	mafic		
MK-017	322870	5670487	mafic		
MK-018	322820	5670421	mafic		
MK-019	322851	5670471	mafic		
MK-020	322853	5670475	mafic		
MK-021	322857	5670471	mafic		
MK-022	322891	5670488	mafic		
MK-023	322884	5670515	mafic		
MK-024	322629	5670587	QFS		
MK-025	322650	5670643			
MK-026	322658	5670642	mafic		
MK-027	323830	5670564	QFS		
MK-028	323848	5670840	QFS		
MK-029	323902	5670916	QFS		
MK-030	323937	5670617	mafic		
MK-031	323952	5670602	QFS		
MK-032	324146	5670903	mafic/metased?		
MK-033	324141	5670854	QFS		
MK-034	324133	5670734	QFS		
MK-035	324141	5670725	QFS		
MK-036	324141	5670695	QFS		
MK-037	324138	5670709	QFS		
MK-038	324333	5670817	QFS		
MK-039	320832	5670242	chl-garnet schist?		
MK-040	320535	5670279	mafic with sulphides		

Sample ID	Easting (NAD83Z16)	Northing (NAD83Z16)	Comment		
MK-041	320202	5670326	chert		
MK-042	320202	5670330	chert w/ sulphides		
MK-043	324332	5670776	QFS		
MK-044	324337	5670838	QFS w/ qtz		
MK-045	324118	5670778	QFS		
MK-046	324082	5670762	mafic		
MK-047	323950	5670742	mafic		
MK-048	323955	5670608	QFS		
MK-049	323978	5670595	mafic		
MK-050	324050	5670631	metaseds		
MK-051	324133	5676687	chert?		
MK-052	324161	5670722	QFS		
MK-053	324162	5670722	QFS		
MK-054	324268	5670781	Chl Schist- weathered		
MK-055	324332	5670824	qtz-rich with sulphides		
MK-056	324330	5670824	QFS		
MK-057	324333	5670821	chert/qtz-rich		
MK-058	324334	5670819	chert/qtz-rich		
MK-059	324330	5670800	chert- weathered		
MK-060	324339	5670837	QFS		
MK-061	324340	5670826	QFS		
MK-062	324342	5670823	QFS		
MK-063	324339	5670828	QFS?		
MK-064	324341	5670819	QFS		
MK-065	324339	5670825	QFS		
MK-066	324347	5670829	metaseds		
MK-067	324344	5670806	QFS		
MK-068	324342	5670813	sheared mafic		
MK-069	324349	5670838	QFS		
MK-070	324343	5670855	chert		
MK-071	324350	5670855	mafic		
MK-072	324361	5670871	chl schist		
MK-073	324336	5670888	chert		
MK-074	324429	5670880			
MK-075	324507	5670882	mafic		
MK-076	324338	5670822	QFS		
MK-077	324323	5670835	QFS		
MK-078	324330	5670814			
MK-079	324313	5670818	qtz with arsenopyrite and sulphides		
MK-080	324310	5670808			
MK-081	324310	5670808	QFS?		

Sample ID	Easting (NAD83Z16)	Northing (NAD83Z16)	Comment
MK-082	324311	5670809	QFS
MK-083	324294	5670806	QFS
MK-084	324289	5670804	QFS
MK-085	309147	5667358	metaseds
MK-086	320210	5670305	mafic
MK-087	320204	5670319	mafic
MK-088	320207	5670320	chl-garnet schist
MK-089	320211	5670320	mafic
MK-090	320208	5670333	very weathered
MK-091	320214	5670326	mafic
MK-092	320217	5670343	
MK-093	320201	5670310	chl schist?
MK-094	320209	5670337	chert?
MK-095	320208	5670338	chert
MK-096	320203	5670342	very weathered
MK-097	320237	5670427	chl-garnet schist
MK-098	320241	5670430	chl-garnet schist
MK-099	320253	5670450	mafic?
MK-100	320244	5670449	mafic
MK-101	321000	5668550	chert
MK-102	321748	5668069	metasedimentary w/ qtz vein
MK-103	321750	5668074	metasedimentary w/ qtz vein
MK-104	321771	5668169	metasedimentary
MK-105	321771	5668170	mafic
MK-106	321776	5668167	mafic
MK-107	321774	5668162	metased- minor garnets
MK-108	321821	5668446	metased
MK-109	321803	5668455	metased- strongly sheared
MK-110	321808	5668460	QFS
MK-111	321858	5668473	QFS
MK-112	321836	5668701	QFS
MK-113	321827	5668822	mafic
MK-114	321828	5668819	mafic
MK-115	321832	5668821	mafic
MK-116	321823	5668813	mafic

8.2 Mapping and Prospecting Program 2011

The 2011 mapping and prospecting program was completed to explore additional quartz vein hosted gold mineralization and to gather data on the structural trends of veins and D2 foliation.

Mapping and prospecting was conducted by Fladgate on August 13, 2011 and from August 23 to August 27, 2011. Maura Kolb and Robert Scott of Fladgate measured, mapped and sampled with Ken Koski as their assistant who stripped and washed outcrop. A total of 31 grab samples were collected for fire assay (Map 1). Samples were sent to Activation Labs in Thunder Bay, Ontario for analysis.

Sample ID	Easting (NAD83Z16)	Northing (NAD83Z16)	Comment
895939	323275	5670101	QFS: qtz
895940	319949	5670391	Sulphides
895941	319940	5670405	BIF and sulphides
895942	323275	5670103	Smokey Qtz
895943	319931	5670229	QFS-sericite Schist
895944	319931	5670229	Chlorite-Garnet Schist
895945	319914	5670234	QFS- sercite schist
895946	323275	5670101	QFS-FP
895947	324340	5670890	QFS
895948	324345	5670763	QFS
895949	320036	5670357	Quartz Vein
895950	323261	5670248	Quartz Vein
895668	323261	5670248	Character Sample
895669	319953	5670383	Garnet-Chlorite Schist w quartz stockwork
895670	320108	5669220	Kenny's quartz vein with wall rock
895671	320108	5669220	Kenny's quartz vein (all quartz)
895672	324330	5670772	Greywacke
895673	323274	5670145	Greywacke
895674	320809	5670286	Pyrite in basalt
895675	320197	5670328	Cherty sample from base of cliff
895676	320807	5670331	Quartz Vein
895677	320479	5670296	BIF
895678	320197	5670328	Fe stained quartz
895679	320197	5670328	Massive sulphides
895680	320197	5670328	sulphides w quartz
895681	320296	5670296	Quartz Vein
895682	320484	5670302	BIF - Mt rich
895683	320375	5670309	Bt-Chl-Gt
895684	320800	5670323	Cherty BIF
895685	320375	5670309	Bt-Chl-Gt and qtz
895686	320375	5670309	Bt-Chl-Gt and atz

Table 6 – Summary of 2011 surface grab samples.

9 Drilling

9.1 **Drilling**

The 2011 diamond drilling program included nine drill holes, which commenced on April 1, 2011 and continued until May 22 2011, with a break from April 26, 2011 to May 6, 2011. There were 9 BTW-sized diamond drill holes completed, totaling 2,869.08 metres (Table 7). Drilling was conducted by Cartwright Drilling, and to the knowledge of the author (M. Kolb), all casings were left in place and were not capped.

Jim Parres spotted collar locations using a Garmin GPS, while Jim and Adewara sampled core and partially logged holes MIS-11-01, MIS-11-03, MIS-11-07 and MIS-11-09 during April and May 2011. Results from the sampling done by Jim and Adewara are included in Appendix III.

Fladgate was hired by Jiminex to log and sample holes from the Spring 2011 drill program. Maura Kolb and assistant Robert Scott completed the core logging and sampling portion of the drill program in August 2011. Work completed by Fladgate included: digitizing all prior samples taken, measuring intervals for prior samples which had not been recorded, logging all holes, geoteching holes which had not previously been measured, photographing all the core and marking new samples.

Collar locations were provided by Jiminex to the author (Maura Kolb) except for the drill holes visited by Fladgate during the core logging and mapping program. The drill holes surveyed by Fladgate include holes MIS-11-01, MIS-11-03, MIS-11-04, MIS-11-06, MIS-11-07 and MIS-11-08. These collar locations were surveyed using an Etrex Garmin differential GPS.

	U	TM Coordinates				
Hole ID	Easting	Northing	Elevation	Azimuth (°)	Dip (°)	Depth (m)
	(NAD85Z16)	(NAD85Z16)	(m)			
MIS-11-01	324365	5670945	376	170	-45	259.08
MIS-11-02	324680	5670330	360	170	-60	276
MIS-11-03	323280	5670518	366	170	-60	368.0
MIS-11-04	323740	5671018	363	170	-60	252.6
MIS-11-05	322825	5670752	360	170	-70	503.85
MIS-11-06	323280	5670518	366	170	-70	448.3
MIS-11-07	323280	5670518	366	170	-45	253.15
MIS-11-08	323233	5670517	360	170	-45	250.1
MIS-11-09	MIS-11-09 321694 5670331 3		360	170	-60	258
				Total Mete	rs Drilled:	2,869.08

Table 7 – 2011 Drill Program collar summary.

Holes MIS-11-01 through MIS-11-08 targeted geophysical anomalies from the 2010 report by Condor Consulting (Witherly and Cunion, 2010). This report was based on 2009 data from VTEM 30 HZ EM and magnetic surveys done by GEOTECH LTD. in which they targeted two zones (Steffler *et al.*, 2010). Condor analyzed the EM and magnetic data with the available geology and drilling data,

resulting in 5 high priority target areas (Witherly and Cunion, 2010). Drill hole MIS-11-09 targeted the alteration zone described by Northern Dynasty (Ho, 1988).

Drill holes in this program intersected a variety of metavolcanic and metasedimentary units. Banded iron formation is present throughout the property and hole MIS-11-09 targeted mineralization associated with the iron formation. Drill holes MIS-11-03, 5, 6, 7, and 8 intersected magnetite-rich rocks of mafic composition. These magnetite-rich units include metagabbro and chlorite schist. The following lithological units occur in drill core and outcrop on the Misehkow River property and were observed by Fladgate staff.

MGb: The metagabbro is medium to coarse grained, moderately foliated and dark green in colour. Carbonate veining occurs scattered throughout this unit. Magnetite is disseminated and appears as blebs, broken cubes and stringers. Local coarse grained pyroxene/amphibole crystals occur; these are typically in chlorite-rich areas. Localized white to light blue plagioclase porphyroclasts occur in this unit as well.

ChIS: The chlorite schist is strongly foliated and green in colour. This unit is typically magnetite-rich. Magnetite appears in three distinct textures including small disseminated blebs or cubes, clusters of wisps and disseminated wisps and/or stringers. Sulphide mineralization occurs as blebs and stringers, typically parallel to foliation. Sulphides are predominately pyrite with some pyrrhotite and minor chalcopyrite and arsenopyrite Carbonate veins occur scattered throughout this unit, typically occurring parallel to the foliation.

ChIGarS: Chlorite garnet schist is moderately foliated, green in colour with dark red garnet crystals. This unit can also include magnetite.

MV-mafic: This metavolcanic mafic unit is grey to green in colour and very fine grained. It is weakly to moderately foliated, typically with minor carbonate veining.

QFS: The quartzofeldspathic schist is very fine grained and moderately foliated. Sericite alteration varies in this unit from strong to intense. Pyrite mineralization often occurs in this unit as blebs and stringers. Variations of this unit include the occurrence of quartz porphyroclasts (QFS-QP), feldspar porphyroclasts (QFS-FP) and both quartz and feldspar porphyroclasts (QFS-QFP).

MS: This unit is very fine grained, moderately foliated and grey coloured. Due to the fine grained nature of this unit, it has been described simply as metasedimentary. Previous descriptions by Northern Dynasty (OGJV) and BHP Utah describe several metasedimentary units such as greywacke, arkose, quartzite, siltstone and phyllite all with subtle differences. For consistency, these units were grouped together during logging.

MS-C: This metasedimentary unit contains larger clasts in a fine grained matrix. The matrix is similar to the metasedimentary unit (MS) being grey in color, moderately foliated and very fine grained.

IF: Iron formation is thinly to coarsely banded, consisting of magnetite and chert-rich bands. Sulphides occur as blebs and stringers in this unit.

IF-Ch: Metamorphosed chert-rich iron formation is very fine grained with sugary texture on broken surfaces. This can appear sulphide-rich with stringers and blebs of sulphides including: pyrite, pyrrhotite and chalcopyrite.

IF-Clastic: This iron formation is made up of thin bands of chert, magnetite and clastic bands. Clastic bands are typically chlorite-rich with garnets and biotite. Sulphides also occur and blebs and stringers in this unit.

10 Sampling Method and Approach

10.1 Prospecting 2010

The 2010 prospecting program collected 116 rock samples from outcrops on the north side of Misehkow River (Map 1). Samples were analysed for trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, Tl, V, W, Y and Zn) using Aqua Regia Digestion with ICP-OES finish. In addition samples were analysed for Au. Samples were submitted to Accurassay Laboratories ("Accurassay") in Thunder Bay, Ontario.

10.2 Prospecting 2011

The 2011 mapping and prospecting program included three target areas (Map 1). The first area, targeted by the mapping program, were outcrops south of holes MIS-11-03, MIS-11-06, MIS-11-07 and MIS-11-08. The second area was sampled in the 2010 prospecting program and is located near hole MIS-11-01 where a ridge exposes several outcrops. The last area mapped was on the west side of camp where a large quartz vein had been reported. This region was closest to previous drilling done by Ontario Gold Joint Venture and Utah Mines Ltd.

Outcrops mapped were typically small; rock type and structure (foliation and quartz veining orientations) were measured and recorded. Samples were taken at the discretion of the geologist and all samples were submitted to Activation Laboratores Ltd. ("Actlabs") in Thunder Bay, Ontario for 50g Au fire assay.

10.3 **Drilling Program**

Jiminex Inc. has not implemented any set Quality Assurance and Quality Control (QA/QC) protocols and procedures. BTW core was manually split on site, with half of the sample bagged and labelled, and the remaining half being placed in core boxes to serve as a permanent record and stored in an on-site facility. All samples are shipped from the site by plane then car with Jiminex employees to Actlabs for crushing, pulverization and pulp preparation.

Most samples sent for analyses were prepared using a jaw crusher, which is cleaned with a silica abrasive between samples, resulting in 90% of the sample passing through an 8-mesh screen. A 1000-gram split of the crushed sample is then pulverized with 90% passing through a 150-mesh screen. Fire assays are performed using 50 grams of sample with assays equal to or greater than 5 g/t calculated gravimetrically, and lower grade samples measured by atomic absorption (AA). Samples with visible gold or suspected of high gold values were instead sent for metallics analysis. This was decided at the discretion of the geological staff.

10.3.1 Sample Preparation

Drill core was sampled after the core was logged, and consists of descriptions of lithologic units, contact measurements taken downhole and potential ferrous zones outlined. Faulted sections of ground or broken core are also noted. Sample intervals were selected based on the rock type, deformation, alteration intensity, texture and mineralogy of the core.

Core was split using a manual core splitter. Split core samples sent for analysis were labeled with a sample identifier and shipped to lab in sealed rice bags. The samples were prepared by Jiminex employees Ken Koski and Lawrence Muckuck at site of the Misehkow River Property.

No QA/QC program was implemented for the 2011 drill program.

10.3.2 Analysis

All core samples from the 2011 drill program were submitted to Actlabs in Ancaster, Ontario, Canada. Actlabs uses industry standard methods and ISO/IEC 17025 quality assurance and quality control practices.

The sample preparation process includes preparation steps for reduction up to the point where the sample has been reduced to a form suitable for geochemical analysis. The sample is prepared using a jaw crusher, which is cleaned with a silica abrasive between samples, resulting in 90% of the sample passing through an 8-mesh screen. A 1000-gram split of the crushed sample is then pulverized with 90% passing through a 150-mesh screen. Fire assays are performed using 50 grams of sample with assays equal to or greater than 5 g/t calculated gravimetrically, and lower grade samples measured by atomic absorption (AA). Samples with visible gold or suspected of high gold values were instead sent for a metallics analysis. This was decided at the discretion of the geological staff.

10.3.3 Security

No special security steps were taken.

11 Other Relevant Data and Information

Fladgate is not aware of any other relevant data or information that is pertinent to this report and which is not disclosed within this report. All available and relevant technical reports and data relating to the Misehkow River Property have been included in this report. The author is not aware of any information not used for this report the omission of which could make this report erroneous or misleading.

12 Interpretations and Conclusions

12.1 Mapping and Prospecting

The 2010 prospecting and 2011 mapping and prospecting programs were successful in verifying the structures and orientations of veining on the Property, as well as extending the geochemical knowledge of the rocks at surface. The 2010 prospecting program located new outcrops and covered known high ground of the property.

The mapping and prospecting program included three areas determined by the previous year's prospecting program. The first area (Area 1, Map 1) was located south of holes MIS-11-03, MIS-11-06, MIS-11-07 and MIS-11-08. This area was targeted due to the visible gold occurrence in hole MIS-11-03. Outcrops in this area where strongly foliated and strike of approximately 240°. The lithologies mapped include quartzofeldspathic schist, mafic metavolcanic and metasedimentary (metagreywacke) rocks. Also several quartz veins were mapped in this region. Plate 1 is an example of strongly foliated metasedimentary rocks from this area with a folded and boudinaged quartz vein.

Plate 1 – Strongly foliated metasedimentary rock with folded boudinaged quartz vein.

The second area (Area 2, Map 1) prospected in the 2011 mapping and prospecting program is located off base line 10, near hole MIS-11-01 where a ridge exposes several small outcrops. Outcrops in this region were strongly foliated strike approximately 240°. Plate 2 is an example of strongly foliated quartzofeldspathic schist with strike of 240° and steeply dipping to the north. Lithologies in this region include: quartzofeldspathic schist, quartzofeldspathic schist with quartz porphyroclasts and chlorite schist.

The last area prospected (Area 3, Map 1) in the 2011 mapping and prospecting program was on the west side of camp where a large quartz vein had been reported. This region extended from the shores of the Misehkow River north to a ridge where the iron formation outcrops to surface. Many different lithologies were located on the ridge including chlorite schist, chlorite garnet schist, metasedimentary greywacke, chert-rich and banded iron formation. This region hosted the most

significant sulphide mineralization, seen in Plate 3. Also, a large quartz vein was discovered hosted in the chlorite schist.

Plate 2 – Strongly foliated quartzofeldspathic schist.

12.2 Drill Program

The 2011 drill program was successful in discovering a significant gold occurrence in one of the target areas suggested by Condor Consulting. In July of 2010, Condor Consulting, out of Lakewood, Colorado, USA, interpreted the results of the September 2009 Geotech VTEM Airborne EM/MAG survey conducted on the Property for Jiminex. Interpretation done by Condor indentified 30 target zones of which 5 priority areas were detailed using available data (local geology, geological structures, geophysical signatures and gold assays).

In the spring of 2011, Jiminex began a drill program based on the holes recommended by Condor. These target zones were chosen due to proximity to previously discovered gold mineralization, proximity to camp and proximity to the Misehkow River as it is the major source of water needed for drilling.

Plate 3 – Sulphide-rich, chert-iron formation.

Using all available data, Condor was able to interpret a trend in the known alteration zone described by the drilling of Ontario Joint Gold Venture and Utah Mines Limited. In the alteration zone, the EM response appears to drop out. Typically, the diagnostic EM response over the alteration is of moderate EM response amplitude and appears "washed out" compared to the usually more conductive ironstones (Witherly and Cunion, 2010). This EM dropout was found in several of the target zones detailed by Condor. Target zones 3 and 4 described by Condor interpreted this EM dropout to reflect alteration and known gold occurrences proximal to the zone. This gold occurrence occurs on east-west strike of the wide alteration zone discovered by Ontario Joint Gold Venture. This alteration zone is interpreted to be a conduit for gold carrying fluids.

Drill holes MIS-11-01 and MIS-11-02 were drilled in Condor's target zone 4, and holes MIS-11-03, 04, 06, 07 and 08 were drilled in Condor's target zone 3. The target zone 4 drill holes tested the mafic volcanic and metasedimentary contact which was intersected with low to moderate geochemically-anomalous gold values obtained.

Target zone 3, hole MIS-11-03 intersected a new zone approximately 20 m wide with narrow (centimeter to one meter wide) visible gold bearing, smokey-grey quartz veins typically with one percent pyrite (Plate 4). A significant weighted average intercept of 18.3 g/t Au over 2.4 metres width was obtained, including a single sample with visible gold returning 116 g/t over 0.3 m width (Table 8).

Plate 4 – Example of white quartz with slips of wallrock from the mineralized zone of hole MIS-11-03.

Drillhole	From (m)	To (m)	Width (m)	Gold (g/t)	Width (feet)	Gold (oz/ton)
MIS-11-03	275.26	277.65	2.39	18.3	7.8	0.53
including	275.26	275.79	0.53	0.73	1.7	0.02
"	275.79	275.91	0.12	56.90	0.4	1.66
"	275.91	276.26	0.35	0.12	1.1	0.003
"	276.25	276.55	0.30	116.00	1.0	3.38
"	276.55	276.83	0.28	2.75	0.9	0.08
"	276.83	276.90	0.07	0.20	0.2	0.01
"	276.90	277.00	0.10	2.73	0.3	0.08
"	277.00	277.06	0.06	10.50	0.2	0.31
"	277.06	277.65	0.59	0.12	1.0	0.003

Table 8 – Significant intervals for 2011 drilling.

In September 2011, a digital database of all historic drillhole data was created by Fladgate. The digital database was imported into a 3D modeling program in order to interpret geology and mineralized zones and to aid in targeting. This tool was used to analyze the results of the 2011 drill program. Hole MIS-11-03 intersected several high grade intervals within the metasedimentary unit. Holes MIS-11-07 and MIS-11-08 were targeting the same mineralization, but these holes did not reach the metasedimentary unit. It seems that these holes were stopped short of the target (Figure 5).

Mapping completed in the summer of 2011 showed the majority of the quartz veins on the Misehkow River Property are oriented parallel to the foliation which strikes roughly east-west and dips steeply to the north. Because the gold mineralization in hole MIS-11-03 is hosted in quartz veins, it is assumed by the author that the mineralized zone will follow a similar trend.

If the assumption about the mineralized zone following the same trend as the veins and foliation is true, hole MIS-11-06 should have intersected the mineralized zone, however no significant gold mineralization was intersected. Hole MIS-11-06 was drilled from the same collar location as MIS-11-03 with a steeper dip. The gold zone in hole MIS-11-03 is hosted in a zone with several small quartz veins and slightly increased pyrite mineralization. Areas with similar veining and mineralization were sampled in hole MIS-11-06, but results showed only slightly elevated gold values. It is possible that the gold mineralization may be nugget-like, hosted in anastomosing veins or the ore shoots may have been missed.

Holes MIS-11-07 and MIS-11-08 were designed to target mineralization in the same area. MIS-11-07 was again collared from the same collar location at MIS-11-03 but with a more shallow dip. Hole MIS-11-08 was a step out 25m to the west with the same dip as hole MIS-11-07. These holes were stopped short of reaching the metasedimentary unit. Gold mineralization in hole MIS-11-03 occurred at the contact between the chlorite schist and the metasedimentary unit. Another indicator that hole

Figure 5 – Gold mineralization in MIS-11-03.

MIS-11-07 may have been cut short of this target is the zone of sulphide mineralization (including arsenopyrite) which occurred at the very bottom of the hole which showed elevated Au.

As previously mentioned, the mineralization zone in hole MIS-11-03 was hosted in the metasedimentary unit. There is a gradational contact between the upper chlorite schist and the metasedimentary unit. This gradational contact shows a shift from the magnetite-rich chlorite schist to the magnetite-poor metasediments, with a gradual decrease in chlorite content as well. The bottom of hole MIS-11-08 seems to be the beginning of a gradational change with a decrease in magnetite content from approximately 240m to EOH.

Condor interpreted ironstone in the area with a fold hinge or fault causing a stacking or repetition of the ironstone. No ironstone was intersected in this area, but the chlorite schist was magnetite-rich. Magnetite occurred as three distinct textures progressing downhole in the 4 holes drilled in this target area. The first texture was wisp or stringer-like magnetite occurring at the top of the holes, next the magnetite appeared as clusters of magnetite wisps, and lastly the magnetite occurred as blebs or cubes of magnetite. The chlorite schist was magnetite-rich with 5-10% magnetite.

This style of magnetite mineralization may be caused by alteration or metamorphism and must account for the magnetic signature in target zone 3. Ground magnetic surveys parallel to the surface expression of holes MIS-11-03, MIS-11-06 and MIS-11-07 showed increased magnetic intensity, which correlates well with the magnetite-rich chlorite schist seen in drill core.

13 Recommendations

The first phase of this mapping, prospecting and drilling program have been encouraging. Additional mapping and prospecting should be done to explore for vein-hosted and iron formation-hosted potential on the property. Further stripping and washing of outcrops on line L-0 should be completed as well as channel sampling. Numerous outcrops were found within the burned areas to the west of the Smoking Jacket Creek (along the baseline) and stripping was begun in the Fall of 2011 (September and October) exposing numerous quartz vein systems. Sampling of these newly exposed areas should be carried out in the Spring of 2012.

Further drilling is recommended to define the mineralization around MIS-11-03, as well as to test define mineralization in the iron formation discovered by Ontario Joint Gold Venture in the late 1980's. Hole MIS-11-07 and MIS-11-08 should be revisited and deepened at least 50-75m to reach the metasedimentary unit. Several holes should be planned to test the extent of gold mineralization found in MIS-11-03. A 25-metre step out to the east and a hole underneath MIS-11-08 (a 25-metre step out to the west of MIS-11-03) should be drilled. Condor suggested 10 other holes to test their high priority target zones 1, 2 and 5, these should also be tested. Maura Kolb recommends continuing the compilation of digital data to aid in visualizing the mineralization and targeting for drilling.

Grid lines should be extended for ground magnetic surveys to identify the surface expressions of the geologic contacts.

14 References and Literature

Allen, I.A., "Misehkow River Geology Report North Grid, Project 1449", 1989.

- Barrie, C.Q., "Report on an airborne magnetic and VLF-EM survey Dempster Lake Claim Block, Misehkow River Claim Block, Arseno Lake Claim Block Patricia Mining Division, Ontario", 1986
- Barrie, C, Q., "Report on an airborne magnetic and VLF-EM survey Webb Lake Project, Patricia Mining Division, Ontario" 1987
- Biczok, J.L. "Report on Lowry Creek, Misehkow River and Woodilee Lake Claim groups, Misehkow River Property, area of Achapi Lake, Patricia Mining division Ontario", 1991
- Desson, C.F., "Sturdy Mine Limited Electromagnetic and Magnetometric survey Misehkow River Property, Area of Achapi Lake, Patricia Mining Division Ontario", 1972
- Dyer, R., "Misehkow River Property Assessment Report Northwestern Ontario", 1987

Dyer, W.S., "Pashkokogan-Misehkow Area Geologic Map No. 42e", 1933

- Frankin, J.M., Schieders, B.R. And Koopman, E.R., "Geological Survey of Canada Open File 2164-Mineral deposits in the western Superior Province, Ontario" 1991
- Gorzynski, G., "Diamond Drilling, Achapi Lake, Report 16, Northern Dynasty Explorations" 1988a

Gorzynski, G., "Diamond Drilling, Achapi Lake, Report 19, Northern Dynasty Explorations" 1988b

- Gorzynski, G., "Diamond Drilling, Achapi Lake, Report 18, Northern Dynasty Explorations" 1988c
- Gray, J.E., "Diamond Drilling, Achapi Lake, Report 12, Algoma Steel Corporation", 1977
- Gray, J.E., "Geophysical Report Misehkow River (Achapi Lake Area) Patricia Mining Division" 1978
- Ho, J.W., "Ontario Gold Joint Venture Misehkow River Property 1988 Field Report" 1989
- Huxhold, P., "Report on the geological survey on Vallas Lake Property Heather Lake Area, Patrica Mining Division of the Webb Lake Project by Bond Gold Canada Inc." 1990a
- Huxhold, P., "Report on the geological survey on the Iron Falls Property Achapi Lake Area, Patricia Mining Division of the Webb Lake Project by Bond Gold Canada Inc." 1990b
- Huxhold, P., "Report on the Geological survey on the August North Property August Lake Area, Patricia Mining Division of the Webb Lake Project by Bond Gold Canada Inc." 1990c
- Huxhold, P., "Magnetic and HLEM Surveys Assessment Work Report on part of the Vallas Lake Property of the Webb Lake Project", 1990d
- Lewis, M.P., "Kerr Addison Mines Limited Report on Geophysical Surveys (Magnetometer and VLF-EM) and Lake bottom geochemical Survey, Pashkokgan Lake Property, Patricia Mining Division Northwestern Ontario", 1988
- Lohman, G. & Deevy, A.J., "1987 Field Exploration; Dempster Lake Property, Northwestern Ontario", 1987.

Murphy, W.B., "Diamond Drilling, Achapi Lake, Sturdy Mines Limited" 1968.

MNDM, "Bedrock Geology of Ontario, West-Central Sheet, Map 2542" 1991.

Morganti, J., "Diamond Drilling, Heather Lake, Report 10, Placer Dome Inc.", 1988.

- Puumala, M.A., "Project Unit 06-006. Far North Geological Mapping Initiative. Mineral Occurrences of the Central and Eastern Uchi Domain and the North Spirit Lake Greenstone Belt (OFR6213)", 2007.
- Pye, E.G., "Ontario Division of Mines Geological Branch Open File Report 5152-Geology of Crow River Area, District of Kenora (Patricia Portion)", 1976.
- Sage, R.P. And Breaks, F.W., "Ontario Geological Survey Report 207, Geology of the Cat Lake-Pickle Lake Area, Districts of Kenora and Thunder Bay" 1982.
- Scott, J.S., "Report on the linecutting program on the Webb Lake Property Thunder Bay District Ontario for Inlet Resources LTD.", 1987a.
- Scott, J.S., "Report on Diamond Drilling Program on the Webb Lake Property District of Thunder Bay Ontario for Inlet Resources LTD." 1987b.
- Simpson, J.G., "Diamond Drilling, Achapi Lake, Report 20, Northern Dynasty Explorations", 1989.
- Steffler, E., Fiset, N., Legault, J. and Smith, G., "Report on a Helicopter-borne Versatile time domain electromagnetic (VTEM) and Areomagnetic Geophysical Survey" 2010
- Sullivan, D.W., "Progress Report on Iron Property of Sturdy Mines Limited Lake St. Joseph Area, Patricia Mining Division Northwestern Ontario", 1968.
- Treadwell, G.L., "Assessment Report on Mag and EM surveys on the Misehkow River Property", 1988a.
- Treadwell, G.L., "Assessment Report on Mag and EM surveys on the Woodilee Lake Property", 1988b.
- Tupper, D.W., Gorzynski, G. And Youngman, B.A., "Ontario Gold Joint Venture Misehkow River Property 1985 Assessment Report" 1985.
- Unknown, "Mineral Occurrences of the Central and Eastern Uchi Domain (OFR6228)", 2009.
- Waldie, C.J., "Misehkow River Property-Report on Diamond Drilling Work", 1991.
- Witherly, K. and Cunion, E., " Report on Processing and Analysis of VTEM 30 HZ and Magnetics data Misehkow Project Ontario for Jiminex Inc.: 2010.
- Woolham, R.W., "On a combined Helicopter-borne electromagnetic, magnetic and VLF-EM survey Misehkow River Property Northern Ontario" 1997.
- Young, M. and Helmstaedt, H., "Tectonic evolution of the northern Pickle Lake greenstone belt, northwestern Superior Province, Ontario" 2001.

Youngman, B.A., "Report on Metallic re-assaying of diamond drill core", 1998.

15 Date

This report was completed on December 16, 2011.

Appendix I Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Maura Joy Kolb, of the CITY of THUNDER BAY, in the PROVINCE of ONTARIO, hereby certify:

I am employed with the geological consulting firm Fladgate Exploration Consulting Corporation.

I am a graduate of Buffalo State College, Buffalo New York, with a Bachelor of Science degree, majoring in Earth Science as of August 2008.

I am a graduate of Lakehead University, Thunder Bay, Ontario with a Master of Science degree in Geology.

I have been employed as a Project Manager with Fladgate Exploration Consulting Corporation since the completion of my Masters degree in January, 2011.

I am, through Fladgate Exploration Consulting Corporation, currently providing consulting services to Jiminex Inc.

I have no interest, either directly or indirectly, in the subject property.

This report is based on a study of all information made available to me, both published and unpublished, and on information collected in the field by myself and by Fladgate Exploration Consulting Corporation personnel, or provided to me during the period of August 2011 to December 16th, 2011.

Dated in Thunder Bay, Ontario, this 16th day of December, 2011.

Maura J. Kolb

STATEMENT OF QUALIFICATIONS

I, Avery David Henderson, of the CITY of THUNDER BAY, in the PROVINCE of ONTARIO, hereby certify:

I am employed with the geological consulting firm Fladgate Exploration Consulting Corporation.

I am a graduate of Lakehead University, Thunder Bay, Ontario, with an Honours Bachelor of Science degree, majoring in Geology.

I have been employed as a Project Manager with Fladgate Exploration Consulting Company since my graduation in May, 2008.

I am, through Fladgate Exploration Consulting Corporation, currently providing consulting services to Jiminex Inc.

I have no interest, either directly or indirectly, in the subject property.

This report is based on a study of all information made available to me, both published and unpublished, and on information collected in the field by myself and by Fladgate Exploration Consulting Corporation personnel, or provided to me during the period of August 2011 to December 16th, 2011.

Dated in Thunder Bay, Ontario, this 16th day of December, 2011.

ing 10.

Avery D. Henderson

Appendix II Costs and Expenses

	Work Perform	ned (Field Mapping/Prospecting/Report	ing)
Date From	Date To	Description	Cost
Aug. 9, 2011	Sept. 20, 2011	Project Manager Professional Fees	\$30,509.37
Aug. 9, 2011	Sept. 20, 2011	Geotechnician Fees	\$800.00
Aug. 9, 2011	Sept. 20, 2011	5% Communication Fee	\$1,565.47
	·	Total	\$32,874.84

Date From	Date To	Description	Cost
Aug. 12, 2011	Sept. 30, 2011	Project Manager Professional Fees	\$13,325.00
Aug. 12, 2011	Sept. 30, 2011	5% Communication Fee	\$666.25
Aug. 12, 2011	Sept. 30, 2011	Drilling (Cartwright Drilling)	*
	·	Total	\$13,991.25

* Drilling expenses/costs not provided at time of writing report.

		Travel	Cost . Bay – Pickle Lake \$925.00 \$75.00 \$75.00 \$219.48 \$92.50 Total \$1210	
Date From	Date To	Description	Cost	
Aug. 9, 2011	Sept. 30, 2011	Flights to/from T. Bay – Pickle Lake	\$925.00	
Aug. 9, 2011	Sept. 30, 2011	Truck Rental	\$75.00	
Aug. 9, 2011	Sept. 30, 2011	Extra km's	\$219.48	
Aug. 9, 2011	Sept. 30, 2011	10% Administration Fee	\$92.50	
		Total	\$1,311.98	

		Equipment & Supplies	
Date From	Date To	Description	Cost
Aug. 9, 2011	Sept. 30, 2011	Fuel	\$377.00
Aug. 9, 2011	Sept. 30, 2011	10% Administration Fee	\$37.70
		Total	\$414.70

		Other	
Date From	Date To	Description	Cost
Aug. 9, 2011	Sept. 30, 2011	Out-of-pocket expenses	\$371.33
Aug. 9, 2011	Sept. 30, 2011	10% Administration Fee	\$37.13
		Total	\$408.46

		Food & Lodging	
Date From	Date To	Description	Cost
Aug. 9, 2011	Sept. 30, 2011	Accommodations	\$374.00
Aug. 9, 2011	Sept. 30, 2011	10% Administration Fee	\$37.40
		Total	\$411.4

GRAND TOTAL	\$49,412.63

Appendix III Assay Certificates

Quality Analysis ...

Innovative Technologies

Date Submitted:	24-Aug-11
Invoice No.:	A11-9323
Invoice Date:	27-Sep-11
Your Reference:	Misehkow River

Jiminex Inc. RR#1 Pass Lake Ontario P0T2M0 Canada

ATTN: Jim Parres

CERTIFICATE OF ANALYSIS

25 Rock samples were submitted for analysis.

The following analytical package was requested: Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A11-9323

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Report: A11-9323 Activation Laboratories Ltd. Au ppb 5 FA.AA 40 1<u>0</u> 1<u>0</u> 8 Analyte Symbol Unit Symbol Detection Limit Analysis Method 896716 896717 896718 896719 896721 896722 896726 896726 896726 67/03 95713 6702 6704 6709 95711 5712 6706

Page 2 of 3

Report: A11-9323 Activation Laboratories Ltd. 931 922,000 2390 2391,000 2331,000 2331,000 23 24 7 7 nv dd 5 FA.AA Quality Control nalyte Symbol ection Limit alysis Metho Cert ert

Page 3 of 3

Innovative Technologies

Date Submitted:	06-Jun-11
Invoice No.:	A11-5024
Invoice Date:	27-Jun-11
Your Reference:	Misehkow River

Jiminex Inc. RR#1 Pass Lake Ontario P0T2M0 Canada

ATTN: Jim Parres

CERTIFICATE OF ANALYSIS

69 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT A11-5024

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

			Activation Laboratories Ltd.	Report:	A11-5024	1
Analyte Symbol	NA	The state				
Unit Symbol Detection Limit	odd 9	970mme 0.03				
Analysis Method	FA-AA	FA-GRA				
896699	7					
896600	v v					
895601 896602	44					
896603	86					
895604	15					
896605	9					
895606	40					
895607	т					
896608	09					
895609	80					
896610	1450					
805617	25 4					
896613	662					
896614	59					
895615	47					
896616	2962					
896617	2					
895618	51					
896619	36					
895620	09					
895621	90					
2790625	11200					
895624	2080					
896625	> 3000	6.25				
896626	43					
895627	88					
896628	125					
896629	22					
895630	437					
030001	D 7					
895633	164					
896634	380					
895635	634					
896636	2250					
895637	2					
895638	10					
895639	106					
895640	27					
10000	0 00					
805643	25					
895644	30					
896645	09					
895646	36					
895647	22					
896648	176					
895649	203					
896650	16					
			Page 2 of 4			

It Symbol pto ptome testion Limit 5 0.03 testion Limit 5 0.03 still related FAA. FAGRA 61 FAA. FAGRA 63 0.03 64 FAA. FAGRA 64 FAA. FAGRA 65 0.03 64 23 65 23 66 11 67 5 68 5 69 24 64 24 65 24 66 24 67 24 68 24 66 24 66 24 66 24 66 24 66 24 66 24 67 24 68 24 64 24 65 24 66 24 67 24
tectionLimit 5 0.03 abysis Method FAAA FA.08A abysis Method FAAA FA.08A abysis Method FAAA FA.08A 650 2 2 651 2 2 652 2 2 653 1 2 654 1 2 655 5 2 656 5 2 657 24 2 658 2 2 659 24 2 651 2 2 652 2 2 653 2 2 654 2 2 655 2 2 656 5 5 657 5 5 658 5 5 658 5 5 658 5 5 659 5 5 650 </td
Jyriki Method FAA FA Gial 601 20 2 601 21 2 602 22 2 603 10 2 604 01 2 605 11 2 605 12 2 605 14 2 606 141 2 601 141 2 602 24 2 603 141 2 604 24 2 605 141 2 606 24 2 607 24 2 608 74 6 609 54 6 601 54 6 602 54 5 603 54 5 604 54 5 605 54 5 606 54 5 607 54
681 90 682 22 683 11 684 20 685 11 686 51 687 51 688 51 689 51 680 51 681 24 682 54 683 54 684 24 685 54 681 147 683 74 684 20 685 74 686 74 687 70 688 74 689 74 681 76 683 74 684 76 685 74 686 74 687 75 688 74 688 75 688 75 688 75 64 65<
862 22 863 11 864 21 864 21 865 51 866 53 867 54 863 24 864 24 865 24 866 24 867 24 868 74 868 74 868 74 868 74 868 74 868 75 868 75 868 75 868 75 868 75
663 11 664 90 665 51 666 51 667 58 668 24 669 147 661 131 662 24 663 147 663 74 664 20 665 74 666 73 667 73 668 74 669 74 660 73 661 74 663 74 664 73 665 74 666 74
60 50 615 51 616 51 617 51 618 51 619 51 610 141 611 131 612 24 613 131 614 131 615 51 616 131 617 32 618 53 619 54 610 54 611 54 612 54 613 54 614 54 615 54 616 54 617 54
605 <1
666 51 667 26 668 24 669 24 661 131 662 147 663 147 664 202 665 74 666 73 666 73 666 73 666 73 666 73 666 73 666 73 666 73 666 73 667 75
001 00 002 24 003 147 003 147 004 123 005 20 005 23 005 45 005 45 005 45 005 45 005 45 005 45 005 45 005 45 005 10 005
65 64 661 131 662 131 663 131 665 74 666 74 667 59 668 45 669 46 660 54 666 45 666 45 666 45
680 147 681 131 682 202 683 74 684 23 685 <5
661 191 662 202 663 74 664 29 665 <5
962 202 963 74 964 29 965 <5
063 14 1004 29 1666 < 5 1666 < 5 1666 < 5
064 29 065 < 5 066 < 5 067 < 5
1665 < 5 1665 < 5 1667 < 5
066 < 5 1007 < 5
5 > 1390

Page 3 of 4

-5024																																
oort: A11																																
d. Rej																																
Activation Laboratories L																																
		Aut.	gtorme	0.03	A-GRA						1.09	1.00																				
	-	NA	5 gdd	Ŷ	FA-AA FA	2410	2342.000	2380	2342.000	2342.000	1020	1000	1030	1040	1000	60	61	52	20	271	14	129	24	26	176	137	8	= 2	3 2	74	74	
	Quality Contro	Analyte Symbol	Unit Symbol	Detection Limit	Analysis Method	OKJ68 Meas	DKJ68 Cert	OKJ68 Meas	OXJ68 Cert	OXJ68 Cert	OxG83 Meas	OxG33 Cert	OxG83 Meas	DxG83 Meas	OxG83 Cert	896608 Orig	895608 Dup	896618 Orig	896618 Dup	BUD 974048	Tilde 52.6050	896628 Dun	895643 Orig	895643 Dup	895648 Orig	895648 Split.	896653 Orig	896653 Dup	896658 Split	895663 Orig	896663 Dup	

Jiminex Inc. – Misehkow River Property Technical Report

Innovative Technologies

Date Submitted:	06-May-11
Invoice No.:	A11-3691
Invoice Date:	31-May-11
Your Reference:	Misehkow River

Jiminex Inc. RR#1 Pass Lake Ontario P0T2M0 Canada

ATTN: Jim Parres

CERTIFICATE OF ANALYSIS

56 Rock samples were submitted for analysis.

The following analytical packages were requested: REPORT A11-3691 Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1A4 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-500g

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 500 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

							Ac	tivatio	ו Laboratories Ltd.	Report:	A11-3691	
Analyte Symbol	Ψ	A UM	ut + 100 h	Au - 100 J	Nu - 100 hesh (B)	Total Au	+ 100 - 10 mesh	0 mesh	Total Weight			
Unit Symbol	qdd	granne	g/mt	g/mt	gʻmt	g/mt	œ	8	8			
Detection Limit Analysis Method	5 FA.AA	PA-GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT F	A-MeT F.	AMET			
896501			< 0.07	< 0.07	< 0.07	< 0.07	15.78	767.20	782.98			
895502	v v											
895503	in a											
895505	o ko V											
895506	42											
895507	26											
895508	42											
896509	24											
895510	19											
895511	25											
896512 896513	0 10 V V											
895514	> 3000	10.5										
895515	203											
895516			5.53	6.27	6.92	6.54	21.90	378.30	400.20			
895517			317	112	116	116	6.660	529.00	535.66			
895518	10											
895519	> 3000	56.9										
896620	38											
896521	on o											
770068	5											
020000	1081											
896625	227											
896526	\$9 V											
895527			18.2	18.6	19.3	18.9	16.99	526.60	543.59			
896528	> 3000	42.2										
896629	on i											
896630	2											
895531	52											
200050	510											
878538	5											
878529	9 V											
878530	30											
878531	70											
878532			0.13	0.17	0.17	0.16	22.27	467.30	189.57			
878533	58											
100000 B	10 10											
878536	130											
878537	8		6.37	5.87	5.49	5.69	9.730	670.60	580.33			
878538			< 0.07	< 0.07	< 0.07	< 0.07	10.50	472.50	183.00			
878539	15											
878540	2											
878541	9											
878542	v V											
878543	v											
878544	o v V											
C+C0/D	n											
									Page 2 of 4			

A11-3691										
Report:										
tories Ltd.										
n Labora	Total Weight	6		FAMET						
Activatio	1 - 100 mesh	8		FA-MeT						
	u + 100 mes	ti i	10	ET FA-Me						
	10 Total / B)	mt g/r	07 0.0	eT FA-Me						
	0 Au-10	nt gh	10 21	FA-Me						
	0 Au - 10	at gA	10 20	T FA-M						
	u Au+10 mes	e gh	20 OC	A FAME						
	~	nnote d	5 0.0	A FAGR	10	2	~	10	10	
	A.	įdd	41	FA.AA	V	E.	112	V	V	
	Analyte Symbol	Unit Symbol	Detection Limit	Analysis Method	878546	878547	878548	878549	878550	

Page 3 of 4

				Activation Laboratories Ltd.	Report:	A11-3691
Quality Control						
Analyte Symbol	AU	Au Total A	Au Tata Weight			
Unit Symbol	ppb gton	ne g/n	mt g			
Detection Limit	5 0. 'A.AA FA.G	2A FA-Me	07 ST FA-MeT			
OxJ64 Meas	2570					
OxJ64 Cert	66.00					
CDN-GS-7A Meas		6.9	26			
CDN-GS-7A Cert		7.2	02			
CDN-GS-20A Meas	21	9.6				
CDN-GS-20A Cert	21.	12				
CDN-GS-20A Meas	N 7	14				
CDN-GS-5F Mase	4	13				
CDN-GS-6E Cert	4	52				
CDN-GS-5E Meas	5	20				
CDN-GS-6E Cert	4	8				
OxG83 Meas	1020					
OxG83 Cert	1000					
OxG83 Meas	996					
OxG83 Cert	1000					
896511 Orig	28					
895511 Dup	21					
896523 Orig	12					
896623 Dup	14					
895530 Orig	15					
896530 Split	13					
878528 Orig	40 V					
878528 Dup	v v					
878544 Orig	\$ v					
878544 Split	9					
878546 Orig	so v					
878546 Dup	10 v					
Method Blank Method			0.000.000			
DIGTIN						

Page 4 of 4

Innovative Technologies

Date Submitted:	04-Oct-11
Invoice No.:	A11-11460
Invoice Date:	02-Nov-11
Your Reference:	Misehkow River

Jiminex Inc. RR#1 Pass Lake Ontario P0T2M0 Canada

ATTN: Jim Parres

CERTIFICATE OF ANALYSIS

220 Rock samples were submitted for analysis.

The following analytical packages were requested: REPORT A11-11460 Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Only half of samples are received. Advised to put all samples into one work order.

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

			Activation Laboratories Ltd.	Report:	A11-11460	
Analyte Symbol	Ϋ́	The state of the s				_
Unit Symbol Detection Limit	add 5	gitome 0.03				
Analysis Method	FA.AA	FA-GRA				
896733	27					
896794	269					
895796	v					
16/068	o v					
895738	v v					
896800	e va					
895801	v					
896802	er,					
896803	so v					
895804	40					
896806	14					
896807	v v					
896809	o vo					
896811	v v					
895812	v					
896813	io v					
895814	ND V					
895816	v v					
896817	9 V					
895818	v V					
896819	v					
896821	so v					
895822	v					
52.906.9	0 .					
0.006.04 8.06.876						
368262						
896827	ND V					
836828	v V					
836829	10 V					
896831	۹۵ V					
895832	v v					
896833	v v					
0.06034	N N					
895837						
896838	v					
836839	v					
896841	\$9 V					
895842	v					
896843	152					
895844 806846	787					
896847	0					
896848	12					
895849	v					
896850	v v					
895851	32					
895852	840					
896853	> 3000	5.02				
			Page 3 of 8			

Report: A11-11460 Activation Laboratories Ltd. Au gronne 0.03 FA-GRA Au ppb 5 FA.AA < 5
< 5
< 5
< 421
421
94
94
233
243
61
61
< 5 Unit Symbol Detection Limit Analyte Symbol Analysis 36936 36939 36939 36939 96933 6994

Page 6 of 8

Report: A11-11460 Activation Laboratories Ltd. Page 7 of 8 Au gronne 0.03 FA-GRA 7.73 n v M ю FA-AA 2350 2331.000 2430 2400 2331.000 2330 2331.000 2331.000 2331.000 2331.000 2331.000 2390 2380 2390 Quality Control Analyte Symbol Unit Symbol Detection Limit Analysis Method Cuulato Meais Cuulato Centr Cuulato Centr Cuulato Centr Cuulato Centr Cuulato Centr Cuulato Meais Cuulato Meais Cuulato Meais Cuulato Meais Cuulato Meais Cuulato Centr Cuulato Centr Cuulato Centr Cuulato Meais Cuulato Centr Cuulato Meais Cuulato Centr Cuulato Meais Cuulato Meais Cuulato Meais Cuulato Meais Cuulato Meais Cuitato Meais Cu

y Control			ACTIVATION LADOTATOLIES LIN.	Kepul.	A11-11400	
Symbol	Au	AU				
lodi	qdd	gtome				
an Limit	9	0.03				
Method	LA-AA	T-A-UKA				
9	v					
0.0	4					
<i>4</i> 0	t v					
	10					
	v					
	so v					
	iQ V					
	v					
	5					
	53					
	v					
	e v					
	v					
	s v					
-	142					
	69					
	38					
	44					
-	v					
	v					
	v v					
	v					
	v					
	en v					
	v					
	v v					
	NO V					
	v					

Page 8 of 8

Innovative Technologies

Date Submitted:	20-May-11
Invoice No.:	A11-4334
Invoice Date:	05-Jun-11
Your Reference:	Misehkow River

Jiminex Inc. RR#1 Pass Lake Ontario P0T2M0 Canada

ATTN: Jim Parres

CERTIFICATE OF ANALYSIS

66 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT A11-4334

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Eric Hoffman, Ph.D. President/General Managerness SCC Accredited LAB 266

ACTIVATION LABORATORIES LTD.

		Activation Laboratories Ltd.	Report:	A11-4334 rev 1
Analyte Symbol	rγ			
Unit Symbol	ppb 2			
Detection Limit Analysis Method				
595598	8			
895534	< 5			
895535				
000000	<0 × × × × × × × × × × × × × × × × × × ×			
000001	6 ×			
895539	2 P			
895540	< 5			
895541	39			
895542	19			
895543	67			
895544	15			
895545	49			
895546 006547				
895548	228			
895549	3			
092260				
195551	9			
896552	7			
895553	17			
895554	< 5			
096555	< 5			
895556	11			
895557	ø			
895558	< 5			
895559	18			
895560	- j			
190060	10			
000002	0 W			
895564	13			
895565	: 8			
895566	730			
895567	118			
895568	2750			
695569	2730			
895570	116			
8955/1 000000	< 5 ***			
2/0060	20			
AUDIO	5 w			
895575	2 -			
895576	< 5			
2/2968	< 5			
895578				
895579	576			
895580	< 5			
895581	6			
895582	969			
895583	362			
895584	263			
		Page 2 of 4		

4 rev 1																			
A11-433																			
Report:																			
Activation Laboratories Ltd.																			
	ΓIV	ppb	Ω	FAAA	7	18	21	89	3600	161	19	2400	1370	5	9	7	< 5	9	
	Analyte Symbol	Unit Symbol	Detection Limit	Analysis Method	695585	895586	895587	896,968	895589	895590	895591	895592	895593	895594	895595	895596	189568	895598	

Page 3 of 4

|--|

Page 4 of 4

Innovative Technologies

Date Submitted:	26-Apr-11
Invoice No.:	A11-3340
Invoice Date:	06-May-11
Your Reference:	Misehkow River

Jiminex Inc. RR#1 Pass Lake Ontario P0T2M0 Canada

ATTN: Jim Parres

CERTIFICATE OF ANALYSIS

19 Rock samples were submitted for analysis.

The following analytical package was requested: Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A11-3340

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

ACTIVATION LABORATORIES LTD.

Page 2 of 3

	Υn	qdd	0	1200	1282.00	1360	1282.00	773	16	19	5							
Quality Control	Analyte Symbol	Unit Symbol	Detection Limit	Analysis memou	axH55 Cert	oxH55 Meas	DXH55 Cert	878517 Orig	878525 Orig	878525 Split								

Page 3 of 3

Innovative Technologies

Date Submitted:	06-Sep-11
Invoice No.:	A11-9868
Invoice Date:	28-Sep-11
Your Reference:	Misehkow River

Jiminex Inc. RR#1 Pass Lake Ontario P0T2M0 Canada

ATTN: Jim Parres

CERTIFICATE OF ANALYSIS

31 Rock samples were submitted for analysis.

The following analytical package was requested: Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A11-9868

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control _________

ACTIVATION LABORATORIES LTD.

Page 2 of 3

9868																							
nt: A11-																							
Repo																							
atories Ltd.																							
ation Labor																							
Activ																							
	0	TIV	qdd	ŝ	FA-AA	306	922.000	2350	2331.000	8	21	409	452	< 5	5 × 5	< 5 ×	< 5						
	Quality Contri	Analyte Symbol	Unit Symbol	Detection Limit	Analysis Method	OxG84 Meas	OxG84 Cert	OxJ80 Meas	OXJB0 Cert	895677 Orig	896677 Dup	895939 Orig	896939 Dup	895949 Orig	895949 Split	896949 Orig	895949 Dup						

Innovative Technologies

 Date Submitted:
 05-Apr-11

 Invoice No.:
 A11-2627

 Invoice Date:
 19-Apr-11

 Your Reference:
 Misehkow River

Jiminex Inc. 661 Grann Drive Pass Lake Ontario P0T2M0 Canada

ATTN: Jim [Invoices]Parres

CERTIFICATE OF ANALYSIS

1 Core sample was submitted for analysis.

The following analytical packages were requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1H INAA(INAAGEO)/Total Digestion ICP(TOTAL)

REPORT A11-2627

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Elements which exceed the upper limits should be analyzed by assay techniques. Some elements are reported by multiple techniques. These are indicated by MULT. If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.
							Ac	tivatio	n Labo	oratorie	es Ltd.	-	Report	A1	1-2627									
Analyte Symbol	Ψ	P4G	5	S	Mo	6d	ž	νZ	s	M	As	Ba	Be	18	Br	Ca	Co	δ	S	Eu	Fe	Ŧ	Вн	r.
Unit Symbol	qdd	undd	udd	bpm	udd	mqq	mpp	bpm	*	*	mod	mqq	mqq	bpm	bpm	*	bpm	ppm	mdd	mod	×2	bpm	mpq	ppp
Detection Limit	64	0.3	-	0.3	-	62	-	-	0.01	0.01	0.5	50	Ŧ	ы	0.5	0.01	-	64	-	0.2	0.01	Ţ	Ŧ	NO.
Analysis Method	INAA	MULT IAA / TD-	TDHCP	TDICP	TD-ICP	TD-ICP IN4	MULT VA/TD-INJ	MULT MA/TD-	TD-ICP	TD-ICP	NAA	T AAN T	DHCP TC	DICP	NAA TC	PICP	AAN	IN AA	NAA	AAN	INAA	AANI	MAA	INAA
W878501	56	< 0.3	8	1.4	• 1	m	264	88	18.7	2.63	222	390	12	< 2	< 0.5	3.16	67	684	2	0.4	23.0	5	5	NO.

Page 2 of 7

Jiminex Inc.	 Misehkow Rive 	r Property 7	Fechnical Report

							Act	ivation	Labo	ratorie	s Ltd.	Ľ	Report:	A1	1-2627									
Analyte Symbol	×	BW	Mn	Na	d.	8	SB	Sc	Se	ŝ	Та	F	H	D	>	M	×	г	e	PN	Sm	S	10	Q,
Unit Symbol	8	*	udd	8	*	mqq	mpp	ppen	mqq	bpm	mod	*	bpm	ppm	ppen	mqq	mqq	ppen	mqq	mqq	mqq	36	bpm	mqq
Detection Limit	0.01	0.01	-	0.01	0.001	5	0.1	0.1	0	-	0.5	0.01	0.2	0.5	64	-	-	0.5	0	40	0.1	10.01	0.5	0.2
Analysis Method	TD-ICP	TD-ICP	TDHCP	INAA	TD-ICP	MAA	AAN	NAA	INAA T	D-ICP	INAA TI	DHCP	INAA I	NAA TI	DHCP	NAA T	DHCP	INAA	NAA	INAA	INAA	INAA	INAA I	NAA
W878501	0.67	2.48	2360	1.13	0.010	< 15	0.4	14.0	< 3	33	< 0.5	0.14	< 0.2	0.5	96	- 1	4	2.3	ø	< 5	0.8	< 0.01	< 0.5	0.8

Page 3 of 7

Report: A11-2627 Activation Laboratories Ltd. or an FA-AA 0 Mass NAA Lu 0.05 0.10 0.10

38.6 Ĩ

Analyte Symbol

8

Page 4 of 7

							Act	ivation	Labo	ratorie	s Ltd.	œ	eport:	A11-	2627								
Quality Control																							
Analyte Symbol	MA	49	Ag	S	Cd	Mo	Po	EN.	2	Zn	νZ	ŝ	4	AS E	3a Be	8	Br	8	Co	5	S	Eu	ę,
Unit Symbol	qdd	undd	uidd	bpm	udd	uidd	uudd	bpm	udd	bpm	Ludd	*	dd %	dd	udd uu	mqq	bpm	*	mod	mdd	uudd	uudd	\$
Detection Limit	~	0.3	40	-	0.3	-	69	-	20	-	8	0.01	0.01 0	9	50	61	0.5	0.01	-	2	Ŧ	0.2	0.01
Analysis Method	INAA	TD-ICP	NAA TI	D-ICP T	D-ICP T	D-ICP	TDHCP	TDHCP	INAA.	TD-ICP	INAA TL	HCP TC	HCP INA	AN INP	A TD-ICP	TDHCP	NAA	TD-ICP	INAA	INAA	NAA	INAA I	AAN
GKR-1 Meas		31.1		1170	3.3	15	705	66		713		0.23	1.56		-	1370		0.95					
GKR-1 Cert		31.0		1110	3.30	18.0	730	41.0		160	-	0.257	3.52		1.22	1380		0.960					
DNC-1 Meas				8				225		63													
DNC-1 Cert				100.0				247		0.07													
GXR-4 Meas		3.6		5930	9.6	311	45	49		02		1.72	2.60		2	2		1.0.1					
GXR-4 Cert		4.00		6520	0.960	310	52.0	42.0		73.0		1.77	7.20		1,90	19.0		1.0.1					
SDC-1 Meas		< 0.3		53	0.4	< 1	20	34		66		90'0	5.86		67	< 2		1.20					
SDC-1 Cert		0.0410		30.0	00800	0.250	25.0	38.0		103	0	0650	8.34		3.00	2.60		1.00					
SCO-1 Meas		0.7		27	0.4	<pre>v 1</pre>	25	92		67			5.13		5	< 2		2.12					
SCO-1 Cert		0.134		28.7	0.140	1.37	31.0	27.0		103			7.24		1.84	0.370		1.87					
GKR-6 Meas		9.0		8	9.0	÷	91	8		130		0.02	7.35		-	< 2		0.21					
GKR-6 Cert		1.30		66.0	1.00	2.40	101	27.0		118	0	0160	17.7		1.40	0.290		0.180					
CDN-GS-20A Meas																							
CDN-GS-20A Cert																							
OREAS 13b (4-Acid) Meas		1.0		2400		m		2050		124		1.10											
OREAS 13b (4-Acid) Cert		9610		2327		9.0		2247		133		1.20											
DIMMAS 112 Meas	1760												1961	30 121	0				46	74			3.55
DMMAS 112 Cert	1721												18	52 126	8				43	08			3.34
W878501 Orig																							
W/878501 Dup																							
Method Blank Method Blank	< 2		n v						< 20		< 50 <		0 Y	5 ¢	20		< 0.5		< 1	<2	r v	< 0.2 <	0.01
Method Blank Method Blank		< 0.3		÷	< 0.3	t v	on V	ç.		Ş	×.	10.0	0.01		v	< 2		< 0.01					

Page 5 of 7

							Act	ivation	Labo	ratorie	s Ltd.	R	eport:	A11-	2627								
Quality Control																							
Analyte Symbol	Ħ	5H	1	х	BW	Mn	Na	a.	Rb	Sb	Sc	Se	Sr	n	F	Þ	>	w	7	La	Ce	PN	ES S
Unit Symbol	udd	uidd	qdd	8	*	uidd	*	*	udd	bpm	mod	udd	udd uudo		wdd 9	udd	bpm	udd	mqq	mdd	udd	uudd	mod
Detection Limit	-	÷	40	0.01	0.01	-	0.01	0.001	15	0.1	0.1	63	-	5 0.0	1 0.2	0.5	64	-	-	9.0	63	9	0.1
Analysis Method	INAA	MAA	INAA TI	DICP 1	D-ICP	TD-ICP	INAA 1	DHCP	INAA.	NAA.	INAA I	NAA TD	ICP INA	A TD-IC	D INAA	NAA	TD-ICP	NAA	TDHCP	INAA	INAA	NAA	NAA
GKR-1 Meas				0.08	0.21	855		0.061					291				8		28				
GKR-1 Cert			0	00200	0.217	852		0.0650					275				80.0		32.0				
DNC-1 Meas													128				142		14				
DNC-1 Cert												+	11.0				148.0		18.0				
GKR-4 Meas				2.97	1.36	153		0.134					170				56		1				
GXR-4 Cert				4.01	1.66	165		0.120					221				87.0		14.0				
SDC-1 Meas				2.44	1.03	868		0.058					175	0.2	24		55		8				
SDC-1 Cert				2.72	1.02	883		0.0690					183	0.60	10		102		40.0				
SCO-1 Meas				2.92	1.63	394		0.090					163	0.3	60		137		19				
SCO-1 Cert				2.30	1.64	410		0.0900					174	0.38			131		26.0				
GKR-6 Meas				2.08	0.44	1120		0.034					37				212		-				
GKR-6 Cert				1.87	0.609	1010		0.0350					35.0				186		14.0				
CDN-GS-20A Meas																							
CDN-GS-20A Cert																							
OREAS 13b (4-Aold) Meas																							
OREAS 13b (4.Acid) Cert																							
DMMAS 112 Meas							2.26				7.3					17.8				17.8	25		2.7
DMMAS 112 Cert							2.05				21.7					17.84				15.92	26.56		2.34
W878501 Orig																							
W/878501 Dup																							
Method Blank Method Blank	v	< 1	ND V				< 0.01		< 15 <	< 0.1	< 0.1	\$3	~ 0 ×	10	< 0.2	< 0.5		-		< 0.5	< 3 <	\$ 2	< 0.1
Method Blank Method Blank				< 0.01	< 0.01	ch.	~	: 0.001					13	< 0.0	-		< 2		12				

Page 6 of 7

A11-2627																																
Report:																																
tories Ltd.																																
ation Laborat																																
Activ																																
		M	odd	40	FA-AA													> 3000	00.02112					62	56							
		Mass	6		INAA																					30.0						
		3	bpm	0.05	INAA																					< 0.05						
		ę,	uidd	0.2	INAA																					< 0.2						
		ę,	uidd	9.0	INAA																					< 0.5						
		Sn	8	0.01	INAA																					< 0.01						
2	uality Control	alyte Symbol	hit Symbol	htection Limit	nalysis Method	R-1 Meas	R-1 Cett	C-1 Meas	C-1 Cert	R-4 Meas	R-4 Cert	C-1 Meas	C-1 Cert	O-1 Meas	0-1 CBI	R-6 Meas	K-6 Cet	N-65-20A Meas	N-100-MA Cett	IEAS 130 (4-Acid) 36	EAS 130 (4.Acid)	MAS 112 Meas	IMAS 112 Cert	178501 Orig	178501 Dup	thod Blank Method nk	thod Blank Method nk					

Page | 78

Page 7 of 7

Quality Analysis ...

Innovative Technologies

Date Submitted:	19-Apr-11
Invoice No.:	A11-3174
Invoice Date:	27-Apr-11
Your Reference:	

Jiminex Inc. 661 Grann Drive Pass Lake Ontario P0T2M0 Canada

ATTN: Jim [Invoices]Parres

CERTIFICATE OF ANALYSIS

6 Core samples were submitted for analysis.

The following analytical package was requested: Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A11-3174

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Report: A11-3174 Activation Laboratories Ltd. Au ppb 5 FA.AA 20 < 5 < 5 < 5 < 5 < 5 < 5 < 5 Unit Symbol Detection Limit Analyte Symbol nalveis 878504 878506 878506 878506 8503

Page 2 of 3

Control Au abol Au imit 5 thod FAAA 1380 36 45			
Au ppb 5 1390 1282.00 1282.00 1282.00			
ppb 5 FA.AA 1390 1282.00 1282.00 * 5 * 5			
5 FA.AA 1390 1282.00 < 5 < 5			
FA-AA 1390 1282.00 < 5 < 5			
1390 1282.00 < 5			
1282.00 < 5 < 5			
in in v v			
10 V			

Jiminex Inc. – Misehkow River Property Technical Report

Page 3 of 3

취 는 양
7
S.
S
2:
Ŭ °
<:
0

1046 Gorham Street hunder Bay, ON Sanada P78 5X5

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

ŝ
8
a.
Canada

Monday, October 3, 2011

Certificate of Analysis

Date Received: 05/13/2010 Date Completed: 05/18/2010 Job #: 201041838

Reference: Sample #:1

Jiminex Inc. Rt #1 661 Grann Drive Pass Lake, ON, CAN POT 2M0	Рн#: (807) 977-1679 Faa#: (807) 977-1769 Email: jiminex@xplornet.com, ahviliy@jiminex.com	

Zr ppm	TBA	TBA
hpm Z	69	11
, ×	35	38
A mdd	<10	<10
> mqq	374	415
L mdd	239	484
1 mdd	1704	2587
HT mdd	TBA	TBA
Ppm Te	TBA	TBA
Ta	TBA	TBA
rs mdd	57	76
ng mqq	<10	<10
Bpm	<5	<5
So	TBA	TBA
8 mdd	<5	\$
Ppm ppm	TBA	TBA
a mdd	23	1 23
d	1961	208
N mdd	28	30
an ng	TBA	TBA
M M	v C	V
Mudd	112	126
0.%	1.67	1.84
J ngg r	1	13
y pp	4 TB/	4 TB/
- e-	A 1.5	A 1.7
I bbr	A TB	A TB
e r	A TB	A TB
e Pp	A TB	A TB
9 dd	1B	18
	9.6	10.6
D mdd	139	149
o bbu	9 16	16
o ud	4	e v
Odd	0 TB/	1 TB
a ppr	3	5
ο e-	6 3.7	8 4.1
eg m	0	69
3a E m	15	72
As E	3	Q.
N S	01	23
Ag	<1 6.	<1 7.
ng mg	110	107
d	0.0	0.0
Client	MK001	D MK00
00 #	28935	28937

PROCEDURE CODES: ALP1, ALFA1, ALMA2

there Certified By: Key

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-0847-10/03/2011 9:49 AM

Page 1 of 1

10	₽ΰ
>	
\leq	
5	40
5	-
-	-
<	ec.
~	0
	-
	*
	80
0	0
0	-
<	5
	-
6	1.
S -	1
~	2

 L046 Gorham Street
 Tel:
 (807) 626-1630

 Thunder Bay, ON
 Fax:
 (807) 622-7571

 Canada P78 5X5
 Fax:
 (807) 622-7571

Certificate of Analysis

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com Date Received: 05/28/2010 Date Completed: 06/04/2010 Job #: 201042051

Reference: Sample #:8

2011
é
October
Monday,

Jiminex Inc. RR #1 661 Grann Drive Pass Lake, ON, CAN POT 2M0 Ph#: (807) 977-1679 Fax#: (807) 977-1769 Email: jiminex@xplornet.com, alwilly@jiminex.com

uZ bpm	127	122	188	81	111	76	85	113	15	
≻ mqq	13	14	27	18	26	12	13	17	60	
A mqq	<10	<10	<10	<10	<10	<10	<10	<10	<10	
> mqq	139	162	333	334	583	132	137	405	221	
IL mdd	9	ŝ	4	9	9	12	ŝ	ŝ	\$	
i mdd	469	846	2397	1475	1998	1393	1493	1638	1604	
Sr	210	163	64	83	74	39	43	99	55	
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Be Mod	<5	<5	€	<5	\$	9	<5	\$	\$5	
90 mdd	\$	\$5	\$	\$5	\$	\$	\$	2	\$	
d M m d d	15	12	12	11	5	2	7	12	2	
d mdd	2195	3330	402	1873	1919	2044	2520	2459	146	
ī mdd	167	67	30	28	38	130	139	59	46	
oW	2		V	<1>	2	V	<1	3	5	
Mn	14.90	783	10.26	915	1181	101	752	789	319	
6W %	1.54	1.16	1.85	1.90	2.14	2.84	3.01	2.42	0.95	
D mdd	31	37	18	22	27	25	26	36	54	
7 %	1.50	1.52	1.11	1.60	1,45	1.4.1	1.47	1.78	1.84	
e %	7.91	7.54	8.35	6.67	9.29	4.86	5.13	7.84	2.66	
DDm	50	36	74	49	141	46	48	106	40	
D mdd	420	178	73	119	128	202	212	254	554	
Dpm C	42	37	37	34	20	31	25	44	20	
Cd	4	42	2	44	4	2	44	2	2	
9 %	1.89	1.50	4.16	4.73	4.39	3.17	3.35	2.89	1.31	
B	26	38	23	14	34	16	<1>	28	16	
Be				~		2	v v	2	2	
S E	11 11	2 10	2 4	2	1 5	2 4	2 4	4 7	5	
A A	9 10	9	~	0	4	5	× 0	6	> 1	
9 F	1 6.7	1 74	1 5.5	1 7.4	1 73	1 5.8	1 6.1	1 7.2	1 5.9	
m Ppr	14	33	15	> 60	> 60	91	12 <	12 <	22	
A	0.01	0.03	0.01	0.00	0.00	0.01	0.01	0.01	0.00	
D ti	-002	-003	+00+	-005	900-	No1	No1	No1	No2	
Clie	MIL	MIL	MIL	MIL	MIL	E	-mj	Phil	μ	
Acc #	143118	143119	143120	143121	143122	143123	143124D	143125	143126	

PROCEDURE CODES: ALP1, ALFA1, ALMA1

floor Certified By: Hay

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory Page 1 of 1

7 ≓ 0
≽
· ·
S =
S a
55
22
Ŭ 🕯
<:
6

Tel: (807) 626 Fax: (807) 622-1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Certificate of Analysis

Date Received: 05/31/2010 Date Completed: 06/08/2010 Job #: 201042076

Reference: Sample #:2

www.accurassay.com	assay@accurassay.com
26-1630	22-7571

-
-
20
ŝ
ē
9
2
ю
0
1.00
2
ĕ
ö
5

Jiminex Inc. RR #1 661 Grann Drive Pass Lake, ON, CAN POT 2M0 Ph#: (807) 977-1679 Fax#: (807) 977-1769 Email: jiminex@xplornet.com, alwilly@jiminex.com

		1		8											3									1	1	3	2)	3	3	1
Acc #	Client ID	Au	Po	4 9	As	Ba	Be	Ē	e s	0	8	D un	no on	9	X 3	3 80	6W a	uw	Mo mo	Z	d 4	03	ds and	es a	US and	2S	II word	E moo	A	M	Y
		ind d		P	in the second	in the second seco	n da	- hh	Ŗ	in a	i da	ind.		D.C	2		R	-	di li	2		5		dd.	n h	ind d	d'A	d d	d d	ind d	
144660	MK 007	0.347	41	7.32	231	68	5	<1	0.81	23	47	121	255	20.93	1.47	24 0	78 72	405	*	39 16	8	3.03	\$	\$5	<10	90	612	2	32	<10	13
144661	MK 008	0.019	4	>10.00	60	139	\$	1>	5.92	16	67	196	51	14.34	1.65	37 2	52 1	927	e3	13	10	6 0.33	\$	<5	<10	115	7643	9	629	<10	43
144662D	MK008	0.018	<1	>10.00	40	148	42	5	5.98	16	02	191	43	4.26	1.67	39 2	53 1	228	~	12	18	5 0.33	Ş	\$	<10	121	8397	13	635	<10	43
PROCED	URE CODES:	ALP1, AL	.FA1, AL	MA1, ALI	MA2																										

Certified By: Ason Moore, General Manager Allow

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Zn ppm 122 175 172

-0847-10/03/2011 9:50 AM

Page 1 of 1

							6	<:	0	S	VS:	S.	HE O	046 Go tunder anada	Ray, ON P7B 5X	5 - 5	Tel: Fax:	(807)	626-1 622-7	571	www. assay	accura @acc	ssay.c	iy.com									
Monday, October 3,	2011												0	ertific	cate of	fAn	alysis																
Jiminex Inc. RR #1 661 Grann Dr Pass Lake, ON, CAN P0T 2M0 Ph#. (807) 977-1676 Fax#: (807) 977-176 Email: Jiminex@xplo	rive 4 9 met.com, a	twilly@	ıjiminex.	E SS																		0	late Rei te Com Refe Sar	ceived: Job #: srence: mple #:	06/24/2 07/08/2 201042 30	010 010 413							
Acc # Client ID	тч ты	A	28	As	B	Ba	99 bpm	iii iidd	0 % 0	bpm D	Co Dpm	D un	0n Dpm	ę s	× %	⊐e	0 W	M MM M	2 - 2 -	N N M	udd	1d o	Sbm	Se ppm	17 F	us mdd	Sr ppm	F Edd	FE	A mdd	A mdd	µdd ک	Zn ppm
170317 MM-009	<0 00	V IS	2.77	\$2	41	ø	2	1	2.14	4	28	180	28	4.63	0.05	15	103	70 ×	1 0.1	14 55	30		45	\$	0.14	<10	11	1617	4	124	<10 <10	ø	63
170318 MK-010	<0.00	V	237	Ŷ	40	4	0		1.96	4	32	153	69	4,18	0.04	ę.	12	> 16	1 0.1	35	51		4	\$	0.13	<10	ti ti	1117	63	103	<10	10	25
170319 MK-011	<0.005	V.	0.40	2	36	5	\$	12	0.21	42	3	342	4	1.14	<0.01	3	25	26	1 0.0	13	<10	×.	11	9	0.03	<10	<3	173	<2	60	<10	0	20
170320 MK-012	<0.005	v	2.75	4	47	131	Ċ,	18	2 29	in	5	124	136	10.71	0.27	5	53. 8	39	1 0.1	0	52	¥	105	8	0.14	<10	20	2415	40	502	<10	ñ	136
170321 MK-013	0.007	V	3.11	2	43	308	2	13	2.55	4	48	62	185	9.11	99.0	11	5 11	33	1 0.1	11 23	39	*	88	\$	0.15	<10	20	2716	5	527	<10	13	151
170322 MK-014	0.006	v	221	19	24	13	V	Ċ1	2.86	45	33	105	13	7.47	20.02	40	07 8	289	1 0.1	19	40	*	72	19	0.12	<10	22	2412	2	271	<10	10	81
170323 MK-015	0.006	v	2.44	4	19	Ð	Q	16	2.65	<4	44	99	42	8.19	0.03	2	32 8	147	1 0.1	10	34		8	\$	0.11	<10	<u>6</u>	2299	2	377	×10	13	107
170324 MK-016	<0.005	V.	2.13	\$	4	14	Ø	\$	1.89	<4	37	126	120	6.79	90.08	6	4	46	1 0.1	7	26	-	68	8	0.07	<10	53 40	2996	64	385	<10	12	76
170325 MK-017	0.006	V	2.33	5	46	35	0*	4	2.91	44	28	55	84	5.43	0 13	5	11	35	1 0.2	14	25		52	5	0.09	<10	16	2449	Ŷ	273	<10	10	65
170326 MK-018	<0.005	5	3 83	Ŷ	20	14	Ŷ	25	3,55	Ð	53	131	11	11.95	90.06	9	96 11	33	1 0.1	1	58	Ĩ	115	\$	0.15	<10	1	4166	7	393	<10	13	104
170327D MK-018	<0.005	4	3.10	24	4	00	Q.	2	2.84	10	4	601	28	6 90	10.04	12	62	101	1 0.0	60	48		35	8	0.14	<10	۵)	3177	Q	306	c10	10	83
170328 MK-019	<0.005	V	2.51	\$	45	0	\$	3	2.43	\$v	26	85	86	4,43	90.0	12	72 7	13	1 0.1	13 23	14		42	55	0.12	<10	19	1691	<2	111	<10	9	99
170329 MK-020	100.0	V	2.65	4	48	137	Q.	01	3.37	2	35	28	80	5.98	0.29	\$	04	00	1 0.1	15 15	15		28	\$	0.08	<10	40 10	3586	Q	446	<10	00	74
170330 MK-021	0.005	~	3.63	10	41	2	¢,	10	2.87	42	40	61	242	6.41	0.04	23	62	25	1 0.0	90	24	×	63	\$	0.09	<10	16	1397	2	181	<10	1	16
170331 MK-022	<0.005	V	2.26	0	49	18	Ŷ	10	2.67	44	37	108	30	7.80	90.0	00	13 8	144	1 0.1	16 12	30		76	8	0.09	<10	16	2581	4	376	<10	13	90
170332 MK-023	0.005	N N	2.16	0	44	68	\$	E.	2.57	44	35	84	67	6.81	0.14	00	01 8	89	1 0.1	6	53	ें 	68	\$	0.01	<10	14	2114	<2	232	<10	35	316
170333 MK-024	0.005	v	118	41	33	19	Q	5	1 68	42	27	117	12	5.17	80.08	9	45 5		1 01	4	44	~	20	5	0.08	<10	÷.	1938	V	68	<10	19	56
170334 MK-025	<0.005	V	2.08	60	35	E)	ø	0	1.66	42	11	32	7	1.90	<0.01	1	1.55 9	69	1 0.0	2	287		62	19	0.08	<10	2	1077	<2	64	<10	27	52
170335 MK-026	0.006	4	2.90	10	45	19	2	50	2.14	ю	34	132	18	10.71	90.0	1	182 7	73	1 0.1		488		105	35	0.12	<10	15	1523	80	14	<10	47	116
170336 MK-027	00:00	v	3.01	4	42	F	0	2	331	4	14	81	81	3.27	1 02	2	82 10	163	1 0.0	5 46	88		30	\$	0.03	<10	2	1371	0	46	<10	10	29
PROCEDURE COD	ES: ALP1,	ALFA1	ALAR1																														
Certified Bu: May New	a, General Manu) à					The ret The Ce without	sults inc rtificate the writ	t of Ana	on this r alysis sh proval o	eport re ould no f the lat	late onl t be rep poratory	y to the roduce	items ter 1 except	in full,																		
2															Page	1 of 2														-0847-	10/03/	2011 9	:50 AM

11	= ö
$\mathbf{\Sigma}$	
S	*
S	-
5	8
5	5
5	æ
ŏ	0
<	۲.
	-
2	
Č	

1046 Gorham Street Thunder Bay, ON Sanada P78 5X5

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Date Received: 06/24/2010 Date Completed: 07/08/2010 Job #: 201042413

Sample #: 30

Reference:

Monday, October 3, 2011

Certificate of Analysis

Jiminex Inc. RR #1 661 Grann Drive Pass Lake, ON, CAN POT 2M0 Ph#: (807) 977-1659 Fax#: (807) 977-1769 Email: Jiminex@xplornet.com, altvilly@jiminex.com

# 00	Client ID	Au	6A mod	Z %	As	B	Ba	Be	iB mod	S &	Do Cd	° Co	Cr	Cu	e %	× %	Dom L	6W	nM	0 M o	en %	N RO	d ma	Pb S	9 GG	9 F	No o	Sr Dom	1 mgg	LT mod	^ mod	M mod	≻ maa	Zn
70337	MK-028	0.005	<1	0.61	\$	38	9	Q	v	0.03	\$	v	335	io I	0.61	0.12	0	0.04	116	2	0.02	0	100	2	9	5 0.0	2 <1(18	<100	2	4	<10	4	18
70338D	MK-028	0.007	<1>	0.60	CN.	38	9	Q	V	0.02	4	Ŷ	329	\$	0.59	0.12	3	0.04	113	2	9.02	2	100	69	9	5 0.0	2 <10	18	<100	5	Q	<10	69	16
70339	MK-029	0.006	<	1.81	15	42	11	2	v	0.12	4	2	154	24	2.44	60.0	9	0.47	881	ţ	0.02	12	446	20	\$ 92	(C 0.0)	7 <1(14	<100	<2	26	<10	2	28
70340	MK-030	0.007	<1	2.89	20	47	\$	Q	6	1.62	4	35	186	151	4.52	0.02	13	2.22	620	4	0.06	63	177	6	16	5 0.1	1 <10	17	1312	4	90	<10	4	22
70341	MK-031	0.011	<1	0.57	234	33	12	ç	V	0.03	4	\$	225	32	1.39	0.05	4	0.13	<100	ţ,	90.06	10	100	~	15	5 0.0	3 <1(4	<100	<2	12	<10	2	27
70342	MK-032	0.006	1	3.50	5	36	11	0	V	0.74	4	50	02	3	3.21	90.06	28	1.23	365	<1>	0.04	6	537	4	33	(5 0.0	8 <1(24	<100	<2	36	<10	2	89
70343	MK-033	0.006	<1	0.75	3	32	13	\$	1	0.09	42	1>	170	ц	0.69	80.08	10	0.14	101	<1>	0.02	3	235	<1	00	5 0.0	3 <1(2 0	<100	<2	40	<10	2	17
70344	MK-034	0.008	<1	4.12	19	37	60	ç	20	3.59	4	51	283	4	8.36	<0.01	31	3.85	1563	1	0.02	188	232	6	31 *	(2 0.0)	5 <1(13	257	<2	222	<10	9	127
70345	MK-035	0.022	5	2.16	233	38	3	0	V	0.10	4	21	269	11	3.26	<0.01	2	0.46	399	3	0.02	59	183	5	ž.	5 0.0	6 <1(3	<100	<2	49	<10	69	22
70346	MK-036	0.017	<1>	1.49	34	42	20	\$	²	0.36	4	19	372	58	4.06	0.10	÷	0.76	541	<1>	0.03	43	156	4	11	5 0.0	7 <1(1 0	<100	<2	29	<10	6	111
70347	MK-037	0.018	<1	0.20	32	49	27	Q	Ŷ	<0.01	4	^V	622	ŝ	0.75	60.0	5	<0.01	<100	₹	0.04	0	100	6	4	(2 0.0	2 <1t	9	<100	<2	\$	<10	<2	20
70348	MK-038	0.061	<1>	1.25	213	41	29	ç	ţ,	<0.01	42	4	262	54	4.19	0.14	12	0.68	410	3	0.04	ę	100	14	13	5 0.0	5 <11	10	163	<2	30	<10	<2	92

PROCEDURE CODES: ALP1, ALFA1, ALAR1

Certified By: Juy

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-0847-10/03/2011 9:50 AM

Page 2 of 2

								6	<:		2.	SS	2	Car Car	46 Gorhai nder Bay hada P7E	n Stree ON t 5X5	at Er	il: (80 ax: (80	7) 626 7) 622	-7571	www asse	uaccui sy@ac	assay	.com ay.co	E									
Monday, Octobe	er 3, 2011	-												ő	ertificat	e of A	naly	sis																
Jiminex Inc. RR #1 661 Gra Pass Lake, ON, POT 2M0 Ph#. (807) 977- Fax#: (807) 977- Ernall: jiminex@	nn Drive CAN 1679 -1769 xplomet.	com, ah	villy@ji	minex.	E 8																	L	Date R bate Col Re Si	eceived Job # ference	1:08/04 1:08/16 #:20104	2010 2010 2969								
Acc # Clien	tip	nA ppm	9 Ag	5 %	As	8 mdd	Ba Ppm	Be	B mdd	e S B	8 E	S E	0 đ 5 g	RE	.e. %	⊐wd	б.% М	nn ppm	ow	Na 85 Pr	ž E	α g	g dd E	9 E	σF	s sid	c c	L dd	F udd	A mad	W	Y A	Zn ppm	
205945 MK00	39	<0.005	4	5.64	42	12	23	0	38	1.94	~	32	83	8	23 0.33	36	2.41	940	1>	0.14 5	6	28	5	9	0	02 <1	0	4 94	18	105	<10	2	99	
205946 MKG	0.0	0.018	4	0.10	0	Ŧ	63	Ŷ	39	0.07	10	41	15	1 90	04 <0.01	64	0.07	182	₽	<0.01	5	48	17	r-	5 00	01 <1	0	5 <10	6	17	<10	Ŷ	22	
205947 MK0-	11	0.018	1>	0.02	4	14	î,	42	22	0.04	2		19	4 20	5 <0.01	V	0.04	111	m	¢0.03	1	00	*	9 10	5 40.	01 <1	0	4 <10	0	ŝ	<10	\$2	6	
205948 MK04	62	0.058	Ŷ	0.04	4	ĩ	v	Q	11	0.02	3	-0	75	7 13	00 <0.01	v	0.02	219	0	<0.01	19	8	5	50	5 <0	01 <1	0	4 <101	0		<10	Q	4	
205949 MK0-	43	<0.005	1×	2 08	4	i.	283	Ø	8	1.14	5	19	43	8 30	00 0.87	20	1.68	483	ţ,	0.08	25 3	35	10	42	0	02 <1	4	0 236	7 10	28	<10	4	74	
205950 MK0-	44	0.022	ş	0.16	11	<10	24	Ø	51	<0.01	3	5	45	3 06	34 0.08	~	<0.01	<100	ei.	0.03	5	00	14	6	0	01 <1	0	7 <10	-	14	<10	8	Ş	
205951 MK0-	65	<0.005	V	1 29	0	<10	o,	Ŷ	8	0.34	3		8	0.0	77 0.04	18	0.37	<100	V	0.07	5	87	5	50	8	01 <1	0	8 <101	13	\$2	<10	9	6	
205952 MK0-	10	<0.005	ţ	1.15	<2	10	16	Ċ,	35	1.67	4	17	67	3	(8 0.14	18	1.04	582	Ţ	0.04	16	88	4	9	20	01 <1	0	3 48	5	38	<10	90	01	
205953 MK0-	13	<0.005	ş	1.50	4	2	121	0	36	0.65	4	14	88	4 24	35 0.65	大	1,20	300	ç	0.08	5	52	'n	42	9	1 <1	0	121	12	15	<10	10	09	
205954 MK04	88	<0.005	1>	3.47	es.	Ŧ	9	\$	20	1.95	ø	30	88	6 54	10.01	3	2.36	687	^v	0.02	61	45	24	60	5	01 <1	0	54	9	147	×10	4	69	
205955D MK0-	18	<0.005	5	3,55	Ŷ	10	ø	¢.	5	1.95	9	30	68	6 56	50 <0.01	33	2.36	681	ţ,	0.02	21 2	38	4	e e	5 0	01 <1	0	3 50	1 12	149	<10	4	02	
205956 MKG	67	<0.005	4	2.87	ç	12	10	0	54	>10.00	ø	22	31	8 5	34 0.06	36	3.01	1968	41	0.02	51 16	*	63	7	0 5	01 <1	0.11	7 281	21	67	<10	12	73	
205957 MK0.	8	<0.005	÷	1.28	34	10	23	0	23	0.13	3	ī,	58	12 12	28 0.03	60	0.06	264	4	0.04	5	10	e.	92	5 <0	01 <1	0	8 13.	en 	23	<10	64	9	
205958 MK0.	21	<0.005	24	0.86	14	ř	6	5	29	0.08	3	φ	88	2	5 0.08	đ	0.35	143	v	0.03	2	ŝ	2	ŝ	20	01 <1	5	0 17	2	5	<10	Ci.	4	
205959 MK0.	52	0.125	44	0.10	12	12	10	Q	5	0.05	3	6	28	8	35 0.03	0	<0.01	<100	61	0.02	41 41	8	~	42	8	01 <1	0	6 <10	0	Ç4	<10 <	Q	50	
205960 MK0	23	<0.005	V	0.13	10	1	52	6	2	0.04	3		0/	8	2 0.04	N	<0.01	212	v	0.02	9 7	8	5	0	8	10	0	6 <10		Q.	<18	8	1	
205961 MK0	2	<0.005	5	1.57	69	11	30	¢,	ñ	0.16	4	6	28	0 0	2 0.11	15	0.72	448	63	0.03	5	02	10	¥	0	01 <1	0	2 27	0	2	<10	10	601	
205962 MK0	10	0.014	4	0.18	106	Ξ	34	Q	31	0.27	3	36	8	12	37 0.10	N	0.11	154	60	0.02	36	8	œ	8	9	10	0	2 <10	5	φ,	<10	9	1	
205963 MK0	8	0.005	ş	0.28	74	5	8	Q.	R.	<0.01	3	а.) а.)	8	2	00 0.11	N	0.03	<100	m i	50	5	00	w m	6	8	01 41		4	3 12	40	<10	9	1	
200954 MK0	2	0.008	5	0.74	8	2	6	Ç	2	21.0	3	0	42	B	57 0.12	2	0.42	347	N	500		2	×	9	5	10		4	-	2		N.	8	
PROCEDURE	CODES:	ALP1, A	LFA1.	ALAR1								10 TO 10 TO 10	0.1	100 C																				
Certified By: 6	Allow Car	Annual Manag						The C withou	sults incl ertificate t the writ	uded on t of Analys ten appro	his rep is shou val of th	ort relat Id not b Ne labo	e only te e reproc atory	o the it	ems tested except in ful	2																		
															ď	age 1 of	4													-084	17-10/0	3/2011	9:50 A	all sea

MAG

Monday.	October 3, 201	5													Certi	ficate	e of A	naly	sis															
Jiminex II RR #1 66 Pass Lak POT 2M0 Ph#: (807	nc. 1 Grann Drive e, ON, CAN) 977-1679																							Date	e Rece Lomple Refere Samp	ved: 08 sted: 08 bb #: 20 nce: le #: 63	/04/201 /16/201 104296	000						
Email: jim	inex@xplomet	t.com, al	willy@	iminex.	E 00																													
Acc #	Client ID	Au	6A Dpm	2 %	As	B	Ba	eg möd	di uda	5 %	Cd	Co	C D m	Co Bo	ë s	⊻ \$	⊐ Edd	6W	nM	0 M o	8 8	N Mdd	d Edd	q a udd	4S Edd	Se	ல் க	Sn	Sr DDm	tt mod	F Edd	> #dd	A mgd	≻ udd
205965	MH0058	<0.005	Ÿ	0.76	86	410	27	Ø	22	0.02	2	4	166	21	1.93	0.15	1	0.26	124	8	0.04	Þ	149	φ	Ø	\$	<0.01	<10	16	266	12	13	<10	6
2059660	MK058	<0.005	÷	0.83	96	5	29	0	19	0.02	44	10	177	21	2.11	0.16	~	0.29	134	10	0.04	ç	164	~	Ş	10	<0.01	<10	21	282	ю	#	01>	*3
205967	MK059	<0.005	1>	2.12	263	10	25	5	31	0.19	9	20	125	32	5.18	0.08	11	0.61	808	\$	90.0	63	870	8	io.	8	<0.01	<10	15	<100	8	64	<10	8
205968	MK060	<0.005	v	0.85	42	<10	27	Q	22	<0.01	4	ei.	62	20	<u>1</u>	0.15	00	0.33	120	3	0.04	5	<100	e	Ŷ	Ŷ	<0.01	<10	16	<100	4	<u>(1)</u>	<10	.04
205969	MK0.61	<0.065	1>	0.99	42	<10	22	Ø	11	<0.01	44	2	20	26	2.24	0.12	Ø)	0.46	139	4	0.03	ţ,	<100	4	Ŷ	10	<0.01	<10	14	<100	\$	22	<10	Ŷ
205970	MK062	0.013	v	0.26	44	c10	4	Q.	10	10.05	2	4	209	23	1.14	0.12	ŝ	0.04	<100	19	0.04	ŗ.	<100	4	Ŷ	10	<0.01	<10	16	<100	6	ю	<10	194
205971	MK063	0.016	12	0.10	65	<10	19	Ø	74	10.05	44	9	203	8	0.82	90.0	0	<0.01	<100	3	0.02	V	<100	n	N2	Ş	<0.03	<10	10	<100	00	10	<10	Ŷ
205972	MK064	0.038	V	1.67	197	s10	4	Ø	75	0.07	N.	9	14.4	46	4.08	0.14	10	0.42	253	80	0.08	20	468	0	9	Ş	<0.01	<10	36	213	1	33	<10	6
205973	MK065	<0.005	V	0.69	25	<10	53	04	52	10.0>	4	in .	15	38	1.29	0.15	1	0.31	<100	÷	0.03	V	<100	~	\$	ΰ	<0.01	<10	5	<100	10	<i>0</i>)	<10	~
205974	MK066	<00002	l>	2.11	11	<10	30	Q	10	0.72	\$	18	96	-	4.72	0.10	18	98.0	639	-	0.04	82	2773	2	w	€	<0.01	<10	23	144	10	39	01>	9
205975	MH067	<0.005	Ÿ	173	80	c10	30	Q,	23	0.52	4	5	36	S.	3.96	0.11	<u>80</u>	1 03	337	6.5	0.04	29	643	œ	ω.	ų	<0.01	<10	18	245	10	80	¢10	49
205976	MK068	0.025	v	4.19	63	<10	30	¢,	50	0.98	12	51	176	65	10.18	0.08	21	1.18	1286	80	0.03	235	728	13	ø	\$	<0.01	<10	16	710	10	137	<10	11
205977D	MK068	0.029	÷,	4.31	92	:	32	Q,	94	1.02	21	63	182	15	10.53	0.08	21	1.22	\$375	cn.	0.03	241	159	13	-00	3	<0.01	<10	20	806	13	140	<10	ŗ.
205978	MK069	<0.005	Ÿ	0.20	35	<10	22	0	20	<0.01	4	ÿ	162	Ð	0.49	0.09	5	<0.01	<100	3	0.04	<u>v</u>	<100	Ci	9	40	<0.01	<10	13	<100	00	4	<10	Ŷ
205979	MK070	0.016	v	0.12	4	10	14	Q	29	40.01	2	1>	212	4	0.49	0.06	2	<0.01	<100	5	0.02	Ÿ	<100	8	8	Ş	<0.01	<10	w	<100	6	Q	<10	Ŷ
205980	NK074	<0.005	l>	4.49	10	12	12	<2	46	2.37	80	43	175	189	71.17	<0.01	8	3.41	385	12	0.02	168	197	ß	P.	-22	0.62	<10	12	109	11	174	<10	4
205981	MK072	<0.005	iv.	3.77	Ċ,	<10	22	Q,	32	3,99	10	36	144	12	5,50	<0.01	2	0.81 100 100	1357	5	0.02	221	140	শ	ø	ť	<0.01	<10	18	<100	ę.	122	<10	-10
206982	MK073	<0.005	1>	0.25	6)	:	9	Ø	61	0.14	42	v	134	i>	0.27	0.05	6	\$0.05	<100	ţ,	0.02	V	285	Ş	Ŷ	40	<0.01	< 10	10	<100	00	io.	c10	9
205983	MK074	<0.005 ×	÷	1.78	Ø	ţ,	213	Ø	23	16.0	45	11	106	5	3.51	0.98	82	1.67	588	v	0.10	00	151	(0	Ŷ	8	<0.01	<10	53	1378	ø	1.8	<10	\$
205984	MR075	\$00.02	$\overline{\nabla}$	2.97	3	c10	30	Q,	33	0.05	-	1	193	29	6.53	0.11	1	1.83	539	2	0.03	\$	220	4	ø	Ð	0.02	<10	6	422	\$	66	<10	20
PROCED	URE CODES:	ALP1, A	LFA1.	ALAR1																														
	Allow	2	1					The r	esults ir ertificat	ncluded te of An	on this alysis s	report hould r	relate d	mly to the product	he items bed exce	tested pt in full																		
Certified	3y: find woon G	eneral Manag	ł.					withou	ut the w	ritten a	pproval	of the	aborati	L'u																				

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

1046 Gorham Street Thunder Bay, ON Canada P78 5X5

OF ACCURASSAY

-0847-10/03/2011 9:50 AM

Page 2 of 4

							0	e	2:	S	2	SSA SSA	>	1046 Thund Canad	Gorhar er Bay, la P76	n Stree ON I 5X5	st Te Fa	I: (807 x: (807	1) 626 1) 622	-7571	ass	v.accul ay@ac	assay. Jurass	ay.con	c								
Monday, Octobe	3, 2011													Cert	ificat	e of A	nalys	S															
Jiminex Inc. RR #1 661 Gran Pass Lake, ON, POT 2M0 Ph#: (807) 977-' Fax#: (807) 977-' Ernall: jiminex@	n Drive CAN 679 1769 tplomet.com	n, alwill)	y@jim	inex.com	-54:0-																		Date Re ate Con Rei Sa	sceived Job # ference tmple #	08/04/2 08/16/2 201042 63	010 010 969							
Acc # Clent	9	ny m	6A mc	× ×	ag m	a E	a mo	a dd eg m	m F	S C	d O(Ppm Ppm	n0 Cu	£ \$	×£	L mgd	6W %	uM ppm	oW	81 192	2 U.	4 G	dS c	eS ppm	0 8	Sn	ус bpm	r mag	F udd	۸ ۸	W mdd	λ bpm	uz uz
205985 MK07	5 <0.0	305	<1	0.20	× 01	10	16	0	0> 61	01	4	177	12	0.84	0.08	64	0.06	<100	61	0.02	<1 <1	0	\$2	<5	<0.01	<10	9	<100	10	4	<10	Ŷ	ę
205986 MK07	0.0 2	202	4	3,16	E	10	29	0	12 <0.	01 <		217	ю	0.67	0.08	^N	<0.01	<100	61	0.03	ct <1	8	\$	\$	<0.01	<10	00	<100	00	2	<10	~	0
205987 MK07	8 <0.0	105	12	3.66 1.	36	4	21	c2 3	37 0.	30. 14	0 31	148	168	8.85	0.06	22	1.02	10.69	g,	0.03 1	10 9	80	8	<2	<0.01	<10	14	152	11	199	<10	8	156
205988D MK07	8 <0.0	305	t,	3 56 1.	38	10	21	0	38 0.	2	9	145	163	8.61	0.06	22	0.99	1049	99	0.03 1	64 9	8		\$	<0.01	<10	14	155	40	8	<10	8	151
205989 MK07	9 0.3	381	<t c<="" td=""><td>0.08 54</td><td>48</td><td>12</td><td>12</td><td>5</td><td>0> 12</td><td>01</td><td>4</td><td>7 222</td><td>90</td><td>0.85</td><td>0.04</td><td>C4</td><td><0.01</td><td><100</td><td>5</td><td>0.02</td><td>1</td><td>8</td><td>2</td><td>Ŷ</td><td><0.01</td><td><10</td><td>10</td><td><100</td><td>7</td><td>0</td><td><10</td><td>Ŷ</td><td>t,</td></t>	0.08 54	48	12	12	5	0> 12	01	4	7 222	90	0.85	0.04	C4	<0.01	<100	5	0.02	1	8	2	Ŷ	<0.01	<10	10	<100	7	0	<10	Ŷ	t,
205990 MK08	0.0 0.0	212	4	1.37	92	12	12	0	2	02 4	*	214	6.	1.25	0.11	ন	20.0	<100	19	0.03	30 <1	8	5	\$	40.01	<10	1	<100	7	10	<10	19	53
205991 MK08	1 0.0	014	1>	1.43 3	> 90	10	24	2	0 00	03	4	3 112	12	3.23	0.14	9	0.66	181	m	0.03	4	53	5	₹	<0.01	<10	17	127	E	26	<10	6	36
205992. MK08	2 0.0	015	4	1.15	> 06	10	33	5	20 0.	03 4	*	141	37	2.68	0.15	12	0.50	163	173	100	<1 2	35	\$	8	<0.01	<10	21	269	6	22	<10	9	61
205933 MK08	3 <0.0	205	5	2.13	> 16	10	41	2	0 9	90	÷ s	88	63	4.42	0.13	22	1.04	112	69	0.03	41 2	25		\$	0.03	<10	16	295	σı	48	<10	4	132
205994 MK08	1 <0.0	500	1>	3.58	en.	12	86	2 2	22 0	15 4	а ж	3 92	1>	0.81	0.35	12	0.26	119	5	20.02	<1 2	8	\$	\$	<0.01	<10	19	543	10	9	<10	Ŷ	32
205995 MK08	2 <0.0	500	Ţ.	1 59	Q	12	80	8	21 0	8	Ŧ	180	24	2.63	0.58	9	0.65	250	v.	0.10	1	20	÷.	Ŷ	0.01	<10	21	1356	6	88	c10	10	9
205996 MK08	0.0	012.	<1	5.36	2	12 1	116	52 3	38 1.	28	1 44	34	82	89.6	0.78	38	3,16	966	2	0.09	59 7	73	9	\$	<0.01	<10	51	1684	10	356	<10	L	297
205997 MK08	2 0.0	020	÷	2.96	Q	12 1	201	0	2	20	m *	2 87	88	3.68	0.77	32	2.64	488	ţ.	0.23 1	17 3	ž	\$	2	0.0	<10	88	1440	15	\$2	<10	ч	22
205998 MK08	0 0 × 0 0	202	5	2.75	9	=	10	0	2	13	й 8	185	21	7.32	0.17	12	1.56	261	10	0.02	65 6	92	10 10	Ŷ	<0.01	<10	5	713	4	232	<10	9	13
205998D MK08	8 <0.0	505	V 1	2.69	9 1	8	12	0	18	13	8	187 5	20	71.7	0.16	1	1.54	260	4	0.02	55	8	2 1	12	10.02	410	10 4	734	2	230	<10 210	4	2 3
206000 MK06	2002	9		5.70	7	2	2	2	0	2	2	243	0	6.10	12.0	9	191	200	¢.	50 0	8	2	2	8	<0.02	015	16	1196	ø	148	410	-	2
206001 MK09	0.0	023	Ţ	1.33	in in	10	15	0	0 62	8	4	216	22	4.04	0.07	1	0.79	440	ю	90.0	2	τ.	47 10	2	<0.01	<10	1	398	7	15	<10	6	6
206002 MK06	1 <0.0	50	Ū.	3.51	Q	2	m	0	5	8	1	194	20	9.68	0.05	21	211	499	¢	0.02	85			Ø	0.02	\$ \$	40	494	2	152	¢10	2	4
206003 MK06	2 < <0.0	305	5	1.52	0	22	0	0	11	2	4	375	20	2.34	0.30	12	0.50	195	14	8	88	8	2	400 201	8	¢10	10	927	10	25	<10	<u>4</u>	ii)
206004 MK09	3 0.0	906	2	4 93	Ŷ	12	125	0	13	16 1	e 1	295	11	11.46	0.97	26	234	561	90	90 0	39	8	10	¥.	<0.0>	<10	10	1522	0	165	<10	4	46
PROCEDURE C	ODES: ALP	P1, ALF	A1. AL	AR1																													
~	Allow						ĔĔ	e results • Certific	s include cate of /	ed on thi Analysis	s report	not be r	eproduc	he items bed exce	tested ept in ful	2																	
Certified By: 🕙	Moore, General	Manager					wit	hout the	e written	approva	al of the	laborat	L'IO																				0
															ų,	age 3 of	4													-0847-	-10/03	2011 5	:51 AN

AM

Cal 10
7
S.
S
e ²
2:
2:
6

046 Gorham Street hunder Bay, ON anada P78 5X5

Certificate of Analysis

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Date Received: 08/04/2010 Date Completed: 08/16/2010 Job #: 201042969

Sample #: 63

Reference:

Ξ
2
ć
October
Monday,

Jiminex Inc. RR #1 661 Grann Drive Pass Lake, ON, CAN POT 2M0 Ph#: (807) 977-1679 Fax#: (807) 977-1769 Email: jiminex@xplornet.com, alwilly@jiminex.com

uZ mdd	60	4	60	51	120	105	47	32	171
≻ udd	5	<2	<2	√2	60	4	9	4	8
∧ ud	<10	<10	<10	<10	<10	<10	<10	<10	<10
> mdd	9	ŝ	9	22	281	274	169	12	164
F mdd	7	9	6	7	16	1	15	23	9
i mdd	<100	<100	<100	<100	1004	1000	2236	1301	1509
y mq	\$0	ŝ	ŝ	4	9	4	34	30	52
NS Mdd	<10	<10	<10	<10	<10	<10	<10	<10	<10
10 ¥	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.02	<0.01
es mod	\$2	<5	5	\$	\$5	\$	φ	2	\$
ds mqq	9	<5	\$	9	2	ø	€	<5	9
d d d	CI	00	26	4	10	11	<1	<1	15
d udd	<100	123	<100	<100	274	274	291	<100	403
N mdd	ω	18	4	<1>	112	101	9	4	164
s S	0.03	0.02	0.02	0.02	0.02	0.02	0.63	0.37	0.09
oW	3	ŝ	60	1-	7	9	<1	4	9
uM mqq	<100	<100	<100	382	882	882	612	531	2026
6W %	0.10	0.07	0.03	0.10	3.25	3.22	2.16	1.17	1.08
⊐ udd	3	ოპ	ŝ	5	32	31	32	1	21
⊻ %	0.17	0.02	0.09	<0.01	0.30	0.31	1.40	0.14	0.63
e %	1.31	1.46	3.86	3.55	12.09	11.89	3.36	2.25	7.45
D md	11	18	24	36	179	162	74	1	124
ppm Cr	492	638	336	664	290	290	274	144	216
b C	5	6	~	3	65	63	35	15	43
pD mdd	4	54	4	4	14	4	4	4	6
8 S	<0.01	0.02	0.03	0.13	0.11	0.10	2.20	3.31	3.75
iB mdd	23	23	25	21	59	29	19	35	30
Be	<2	<2	<2	<2	<2	<2	<2	<2	\$
Ba	00	4	36	6	25	27	14.4	Ę.	122
B mdd	£	30	5	12	5	13	16	14	13
As	0	14	179	25	2	0	0	60	2
¥ %	0.46	0.14	0.23	0.21	6.71	6.59	5.27	4.26	3.33
PPm ppm	<1	<1	<1	~	5	<1	<1	4	5
Au ppm	<0.005	0.010	0.319	0.009	0.009	0.009	0.008	<0.005	<0.005
Client ID	MK094	MK095	MK096	MK097	MK098	MK098	MK099	MK0100	MK0101
A.OC #	206005	206006	206007	206008	206009	206010R	206011	206012	206013

PROCEDURE CODES: ALP1, ALFA1, ALAR1

Moor Certified By: Hay

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-0847-10/03/2011 9:51 AM

Page 4 of 4

~	
<	
5	-
•	-
<	ac.
~	0
	-
	*
	80
9	0
U	-
~	
	-
Q.	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
S	

Tel: (807) 626-1 Fax: (807) 622-7 1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Certificate of Analysis

mo.

w.accurassay.com	say@accurassay.com
Ŵ	as
5 - 1630	2-7571

Date Received: 09/09/2010 Date Completed: 09/23/2010 Job #: 201043696

Reference: Sample #: 16

2011
é
October
Monday,

Jiminex Inc. RR #1 661 Grann Drive Pass Lake, ON, CAN POT 2M0 Ph#: (807) 977-1679 Fax#: (807) 977-1679 Email: jiminex@xolornet.co Email:

	Rypion let.eu.		8	1100.VD																														
Acc# Cli	ent ID	a mqq	Pm bm	द ४	As	8 mdd	Ba ppm	Be Dpm p	in m	S S	D m	m Db	D dd	2 5	- 6 9,9	e ppm	6W	nMn	Mo	Na %	in mqd	d mdd	DD D	dS mqq	Se	ភ ន	Sn mg	Sr bpm	≓ udd	E mdd	> mq	M mo	Υ Z	SE
255681 MK	-102	0.006	Ÿ	2.56	<2	5	163	2	1	151	<4	26 2.	48 4	1.4.1	1 0.5(	8 12	1.80	628	<1	0.05	39	532	00	<5	\$	20.0	<10	26	1437	5	81	10	4	-
255682 MK	-103	0.005	ī	2.40	\$	36	149	7	5	2.33	<4	24 4	91 4	3 4.1	0 0.5	2 10	1.71	583	4	0.06	31	471	7	\$5	\$	0.05	<10	5	1304	69	73 <	10	4	17
255683 MK	-104	<0.005	Ÿ	3.55	<2	29	34	2	5	1.57	44	27 24	46 1	0 5.4	5 0.2	3 16	1.45	466	10	0.15	02	509	10	\$	6	20.0	<10	33	1465	4	> 68	10	9	-
255684 MK	-104A	<0.005																																
255685 MK	-105	0.006	Ÿ	4.81	<2	27	106	2	<1 2	2.60	4	38 2	77 4	3 4.9	13 0.7	11	1.21	449	÷	0.35	93	545	00	\$5	40	60.0	<10	65	1912	<2	103 <	10	7 10	0
255686 MK	-106	0.006	Ÿ	1.55	<2	30	4	<2	5	1.01	44	17 2	12 2	0 2.5	0.0	9 14	1.15	393	3	0.13	22	738	00	\$	9	0.11	<10	2	1806	<2	56	10	6	4
255687 MK	-107	0.005	4	3.07	<2	33	191	<2	1	1.84	<4	26 1:	59 2	4.8	5 0.84	4 22	2.39	814	<1>	0.06	34	544	11	<5	\$	0.10	<10	15	1511	4	146 <	10	0	4
255688 MK	-108	0.006	Ÿ	2.19	5	37	169	2	4	545	44	19 23	96	6 3.7	0.0	8 23	1.62	1159	-	0.06	62	643	10	\$	40	90.06	<10	39	1186	69	> 12	10	9	*
255689 MK	-109	0.007	Ÿ	4.15	69	26	892	2	5	1.73	44	31 1.	23	4 6.2	2 3.14	4 63	2.54	735	6	0.15	60	1478	12	\$	\$	0.11	<10	33 4	4195	9	> 8/1	10	3 13	CN.
255690 MK	-110	0.006	Ŷ	2.90	<2	49	360	<2	1	1.08	44	26 4	71 2	5 4.6	1.0	5 28	2.05	585	0	0.13	74	815	11	<5	\$2	0.11	<10	30	2186	42	113 <	10	6	Ø
255691D MK	-110	0.006	Ÿ	2.79	5	40	352	7	5	1.05	44	26 4	71 2	5 4.5	11 1.02	2 26	2.00	575	4	0.12	75	794	10	\$	5	0.11	<10	29	2192	2	110 <	10	0,	00
255692 MK	-111	0.006	Ŷ	2.72	<2	45	317	<2	1	2.61	44	21 2	15 8	1 4.0	17 1.4(	0 26	1.83	619	ςΩ,	0.13	69	565	11	\$2	\$	0.10	<10	3	1956	4	88	10	2	3
255693 MK	-112	0.019	1, V	1.12	6	31	220	<2	<1 6	0.14	44	7 1	17 1	1 2.6	11 0.6(	6	0.57	190	9	0.08	7	475	00	\$2	\$	0.04	<10	11	1099	2	57 <	10	63	0
255694 MK	-113	0.006	Ÿ	2.49	<2	37	281	2	1	1.84	<4	22 3	86 3	0 5.2	1.0	4 31	1.44	1286	1	0.09	69	333	12	\$	\$	0.13	<10	21	1780	40	× 66	10	80	m
255695 MK	-114A	0.006																																
255696 MK	-115	0.009	Ÿ	1.60	<2	42	165	~2	1	1.78	44	28 5.	24 3	5 3.8	11 0.6	1 25	1.17	1196	2	0.14	91	623	10	\$	\$2	0.10	<10	24	1517	4	119	10	8	3
255697 MK	(-116	600.0	V	2.06	Ŷ	38	272	0	5	1.49	44	25 4	61 2	0 3.6	1.1	5 22	1,14	1191	9	0.12	75	530	9	\$	\$	0.12	<10	25	1886	2	66	10	7	60
PROCEDURE	CODES: ALF	P1, ALFA	, ALA	81																														
Certified Bv: 🤞	Allon Conner	Manager					The with	Certification out the v	include ate of A vritten	d on this inalysis approval	s report should I of the	not be r laborate	only to th reproduc ory	he item sed exc	s tested	- Ŧ																		

Jiminex Inc. - Misehkow River Property Technical Report



Page 1 of 1

Certified By: Asph Moore, General Manager Morre



# Appendix IV Drill Sections

















# Appendix V Drill Logs



### DRILL HOLE REPORT

Hole Number MIS	-11-01				Projec	t: <b>JIMIN</b>	EX					Project Number:	3
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	ACHAPI L	AK	Logged by:	Maura Kolb
Dip:	-45	Pulled:	no		Storage:	Core Shed	I		Claim No.:	4221454		Relog by:	
Length:	259.08	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	01-Apr-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	04-Apr-11											Surveyed:	
Logged:	13-Aug-11											Surveyed by:	
Comment:							Coordinate - G	iemcom	Coordinate - U	тм		Geophysics:	
							East:	324365	East:	32436	5	Geophysic Contractor:	
							North:	5670945	North:	567094	5	Left in hole:	
							Elev.:	376	Elev.:	376	6	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surv	ey: no

#### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -45.00
 C
 ✓



## LITHOLOGY REPORT - Detailed -

Hole Number	MIS-11-01			Project: JIMINEX					Project Number: 3
<b>From</b> (m)	<b>То</b> (т)		Lithol	рду	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
0.00	3.70	15	Overburden (Unsubdivided)						
3.70	14.10	QFS-QFP	Quartzofeldspathic Schist		895707	13.00	14.10	1.10	0.00 0.01
		"This unit is greater alteration defined	ey to tan in color, strongly foliated v les the foliation. Foliation is ~50 de	vith quartz and feldspar porphyroclasts. Strong sericite grees TCA. Minor py blebs scattered throughout locally	895701	8.00	9.00	1.00	0.00 0.01
		from 8.65-14.1	m 0.5% py."		895702	9.00	10.00	1.00	0.00 0.01
		Alteration Maj	: Type/Style/Intensity	Comment	895703	10.00	11.00	1.00	0.00 0.01
		3.70 - 14.10	Ser P S		895704	11.00	12.00	1.00	0.00 0.01
		Mineralization	Mai : Type/Style/% Minera	Comment	895706	12.00	13.00	1.00	0.00 0.01
		3.70 - 8.65	PY BL 0	minor					
		8.65 - 14.10	PY BL 0.5						
		Structure Mai	. Type/Core Angle	Comment					
		3.70 - 14.10	FOL 50	Strong					
14.10	16.25	QFS	Quartzofeldspathic Schist		895708	14.10	15.00	0.90	0.00 0.01
		Rock is very fir the rock at tan py stringers an	ne grained and strongly foliation. In color. Foliation is ~50 degrees TC deless associated with them. Py r	tense sericite alteration defines the foliation and gives A. Small quartz veinlets occur throughout the unit with nineralization is about 1%.	895709	15.00	16.25	1.25	0.00 0.01
		Alteration Maj	: Type/Style/Intensity	Comment					
		14.10 - 16.25	Ser P I						
		Mineralization	Maj.: Type/Style/%Minera	Comment					
		14.10 - 16.25	PY BL 1	blebs and stringers					
		Structure Mai.	: Type/Core Anale	Comment					
		14.10 - 16.25	FOL 50	strong					



# LITHOLOGY REPORT

- Detailed -

Hole Number	MIS-11-01			Project: JIMINEX					Project Number: 3
<b>From</b> (m)	<b>To</b> (m)		Litholog	y.	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
16.25	54.95	QFS-FPQuartzThis unit varies from ligi strongly foliated and ver some of these bands. L47.2m and 1% from 49. gradation.Alteration Maj:16.25 - 51.90Mineralization Maj. :16.25 - 40.9040.90 - 47.2047.20 - 40.50	ofeldspathic schist ht grey to dark grey with loc: y fine grained. Locally the ro ocal stringers of Py are scal 5-50.1m. Strong sericite alte Type/Style/Intensity Ser PCH S Type/Style/%Mineral PY BL 0 PY STR 1 DX BL 0	al bands-areas of feldspar porphyroclasts. It is ock appears banded with and iron straining occurs on ttered throughout the unit with 1-2% py from 40.9- eration is patchy or localized in this unit. LC is <b>Comment</b> minor-trace	895599 895504 895503 895505 895711 895600 895712 895601 895713 895602	35.70 41.00 42.00 43.50 43.95 45.22 46.55 46.95 47.19	35.88 42.00 42.80 43.50 43.95 44.26 46.55 46.95 47.19 47.38	0.18 1.00 0.80 0.70 0.45 0.31 1.33 0.40 0.24 0.19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		47.20 - 49.50 49.50 - 50.10	PY BL 0 PY STR 1	minor-trace	895714 895716 895717	47.38 48.00 49.15	48.00 49.15 50.20	0.62 1.15 1.05	0.00 0.01 0.00 0.01 0.01 11.00
54.95	77.85	ChIS Chlorid "This chlorite schist com garnets are about 1mm 50 de3greees TCA. Sca Carbonate veining occu gradational with qtz veir blebs, feldspar porphyro	te Schist tains porphyroclasts of felds in width with the matrix beir attered magnetite blebs and rs throughout this unit 5-10 ns/bands occurring from 77- oclasts and Qtz blebs/veinle	spar and porphyroclasts of garnet. The feldspar and ng very fine grained. This unit is strongly foliated at ~ cubs occur through out this unit less than 1 %. % with veins parallel to the foliation. The LC is 77.85m. At the LC from 77-77.85m py frequency of py ts increases. The LC is somewhat gradational."	895506	77.05	77.73	0.68	0.04 42.00
		Alteration Maj:	Type/Style/Intensity	Comment					
		54.95 - 77.85	Carb SP MS	5-10%					
		54.95 - 77.85	CHL P S						
		<i>Mineralization Maj. :</i> 54.95 - 77.85 54.95 - 77.85	<b>Type/Style/%Mineral</b> PY DIS 0 MAG DIS 0	<i>Comment</i> trace minor					
		Structure Maj.:	Type/Core Angle	Comment					



# LITHOLOGY REPORT

- Detailed -

Hole Number	MIS-11-01			Project: JIMINEX					Project Number:	3
<b>From</b> (m)	<b>To</b> (m)		Litholog	IY	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Аи50</b> (ppb)
		54.95 - 77.85	FOL 50	Strong						
77.85	79.37	QFS-QFP Quartz	ofeldspathic Schist		895718	77.73	78.53	0.80	0.01	10.00
		Unit is tan in color with i	intense sericite alteration de	fining the foliation. The sericite anastomoses around	895603	78.53	79.00	0.47	0.09	86.00
		The LC is marked by a quartz vein.		sumgers 1-5% locally. Pollation is 50 degrees TCA.	895719	79.00	79.37	0.37	0.00	0.01
		Alteration Maj:	Type/Style/Intensity	Comment						
		77.85 - 79.50	Ser P I							
		Mineralization Maj. :	Type/Style/%Mineral	Comment						
		77.85 - 79.50	PY BL 1	locally higher						
		Structure Maj.:	Type/Core Angle	Comment						
		77.85 - 79.50	FOL 50	Strong						
79.37	115.10	MS Metasedimentary unsubdivided			895721	79.37	79.91	0.54	0.02	17.00
		Metasedimentary unit is	very fine grained and well	foliated ~50 degrees TCA. The unit is grey in color. It	895604	79.91	80.25	0.34	0.08	75.00
		contains quartz veins a	nd stringers of py. Local ble	I as chlorite ad sericite rich bands. Locally this unit bs of Asp occur from 80.7-85.2m and at 105m. From	895722	80.25	81.00	0.75	0.01	10.00
		80.7-85.2m Asp blebs a	are scattered through with st	ringers of py. At 105m chlorite and qtz flooding occur	895509	81.00	81.19	0.19	0.02	24.00
		Alteration Mair	Turne (Stude Interneity	Comment	895510	81.30	81.46	0.16	0.02	19.00
			Type/Style/Intensity	Comment	895723	81.46	82.20	0.74	0.01	9.00
		79.50 - 115.10	CHL B M		895724	82.20	83.00	0.80	0.02	23.00
		79.50 - 115.10	Ser B M		895725	83.40	84.77	1.37	0.01	7.00
		Mineralization Maj. :	Type/Style/%Mineral	Comment	895511	84.77	84.86	0.09	0.03	25.00
		79.50 - 80.70	PY BL U	minor	895726	84.86	85.80	0.94	0.01	7.00
		80.70 - 85.20	ASP BL 0.5	local	895727	85.80	87.00	1.20	0.01	5.00
		00.70 - 00.20 85 20 - 105 00		l ocal-minor	895605	104.00	104.41	0.41	0.01	6.00
		105.00 - 105.10	CP STR 1		895606	104.41	104.87	0.46	0.04	40.00
		100.00 100.10	5. On 1		895728	104.87	105.10	0.23	0.02	18.00



## LITHOLOGY REPORT - Detailed -

Hole Number	MIS-11-01		Project: JIMINEX					Project Number: 3						
<b>From</b> (m)	<b>То</b> (т)		Litholog	y .	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Au50</b> (ppb)				
		105.00 - 105.10	ASP BL 1		895507	107.60	107.87	0.27	0.03	26.00				
		105.10 - 115.10	PY BL 0	Minor	895508	108.25	109.24	0.99	0.04	42.00				
115.10	239.83	ChIS Chlorit	e Schist		895608	196.41	196.95	0.54	0.06	60.00				
		"Chlorite schist, strongly	foliated with carbonate veil	ning orientated nearly parallel with the foliation.	895732	199.39	199.72	0.33	0.00	0.01				
		Scattered magnetite cube and blebs and local py/p 133m, 136.75-136.83m, 192.35-192.6, 199.6-199.6		o stringers occur. Quartz veins occur from 132.7- 4m and 215.05-215.16m."	895733	209.00	209.50	0.50	0.01	12.00				
		Alteration Mai:	Type/Style/Intensity	Comment	895734	214.95	215.30	0.35	0.00	0.01				
		115.10 - 239.83	Carb VN M		895736	230.83	231.30	0.47	0.01	13.00				
		Mineralization Mai	Type/Style/%Mineral	Comment	895729	132.65	133.00	0.35	0.02	15.00				
		115.10 - 239.83 POPY STR 0	POPY STR 0	Local	895731	136.70	137.00	0.30	0.01	6.00				
		<b>Structure Maj.:</b> 115.10 - 239.83	<i>Type/Core Angle</i> FOL 50	Comment	895607	167.64	167.70	0.06	0.01	9.00				
239.83	259.08	MS Metase	dimentary unsubdivided	d with local Do atringers apattered throughout I apal	895737	246.00	246.55	0.55	0.00	0.01				
EOH		quartz flooding 246.2-24	6.3m and 254.65-254.75m.	. EOH 259.08"	895512	250.30	250.90	0.60	0.00	0.01				
		Alteration Maj:	Type/Style/Intensity	Comment	895609	251.63	252.23	0.60	0.01	8.00				
		246.30 - 246.40	Qtz VN		895738	254.50	255.00	0.50	0.01	5.00				
		254.65 - 254.75	Qtz VN											
		Structure Maj.:	Type/Core Angle	Comment										
		239.83 - 259.08	FOL 50											



### DRILL HOLE REPORT

Hole Number MIS-11-02				Projec	Project: JIMINEX					Project Number: 3					
Drilling		Casing			Core				Location			Other			
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	HEATHER	L	Logged by:	Maura Kolb		
Dip:	-60	Pulled:	no		Storage:	Core Shee			Claim No.:	4262692		Relog by:			
Length:	276	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling		
Started:	05-Apr-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:			
Completed:	07-Apr-11											Surveyed:			
Logged:	13-Aug-11											Surveyed by:			
Comment:							Coordinate - Gem	com	Coordinate - LITM			Geophysics:			
							East:	324680	East:	324680		Geophysic Contractor:			
							North:	5670330	North:	5670330		Left in hole:			
							Elev.:	360	Elev.:	360		Making water:			
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surve	ey: no		

#### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -60.00
 C
 ✓



## LITHOLOGY REPORT - Detailed -

Hole Number	Hole Number MIS-11-02		Project: JIMINEX					Project Number: 3					
<b>From</b> (m)	<b>То</b> (т)		Lithology	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)					
0.00	141.00	MS	Metasedimentary unsubdivided	895739	28.75	29.05	0.30	0.00 0.01					
	"Metasedimentary unit, very fine grained with strong foliation. Fine grained biotite appears throughout with		895741	58.65	59.45	0.80	0.00 0.01						
	patches of more coarse grained biotite. The matrix in the coarse grained biotite patches appears slightly bleached. Po stringers are scattered throughout (~1%) and are orientated parallel to the foliation. Several			895742	63.30	63.70	0.40	0.00 0.01					
		5-10cm	milky qtz veins with sulfides and slips of wall rock occur in this unit. Quartz veins appear from	895743	67.80	69.00	1.20	0.00 0.01					
		63.55m (very broken up seems to be missing pieces, LC is followed by very schistose broken up pieces)		895744	72.80	73.15	0.35	0.00 0.01					
		67.9-68. parallel t	7m, 90.04-90.15m (UC irregular, LC 45 TCA with irregular folding below), 101.2-101.25m (nearly to foliation)."	895746	89.90	90.40	0.50	0.00 0.01					

Structure Maj.:	Type/Core Angle	Comment
129.80 - 129.82	FOL 55	
139.62 - 139.64	FOL 24	

#### 141.00 146.67 MS-Grph Graphitic Metasedimentary

Alternating bands of chert and graphite. Bands vary in width from 1mm to 10cm. Mineralization is 1-2% pyrrhotite with minor pyrite. Mineralization occurs as stringers and blebs. Contact at the bottom of the litho is gradational.

#### 146.67 168.00 MS Metasedimentary unsubdivided

"Metasedimentary unit, very fine-medium grained with strong foliation. Moderate quartz-carbonate veining."

 Structure Maj.:
 Type/Core Angle
 Comment

 149.90 - 149.93
 FOL 43
 43





## LITHOLOGY REPORT - Detailed -

Hole Number MIS-11-02			Project: JIMINEX					Project Number: 3
From (m)	<b>То</b> (т)	Lithology		Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)

168.00 169.85 Lamp Lamprophyric Dyke

"Mafic, medium grain, biotite rich, very weak foliation"

#### 169.85 178.65 **QFS-QFP**

"Fine grain matrix, grey to green in colour with feldspar and quartz porphyroclasts. Feldspars are more euhedral and the quartz porphyroclasts that resemble augens and can be as large as 2 cm."

Structure Maj.:	Type/Core Angle	Comment
172.89 - 172.90	FOL 37	

178.65	276.00	MS Met	asedimentary unsubdivided		895751	194.19	194.56	0.37	(	0.00	0.01
EOH		"Metasedimentary ur veining. Near EOH i	nit, very fine-medium grained v s a brecciated quartz vein with	with strong foliation. Moderate quartz-carbonate a fine grain black rim."	895752	208.51	209.06	0.55	(	0.00	0.01
		Alteration Maj:	Type/Style/Intensity	Comment							
		210.44 - 210.55	BIO								
		Structure Maj.:	Type/Core Angle	Comment							
		198.50 - 198.60	FD 0								
		208.80 - 208.82	FOL 33								


Hole Number MIS-11-03			Projec	Project: JIMINEX						Project Number: 3			
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	ACHAPI L	AK	Logged by:	Bobby Scott
Dip:	-60	Pulled:	yes		Storage:	Core Shee	1		Claim No.:	3014285		Relog by:	
Length:	368.0	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	08-Apr-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	11-Apr-11											Surveyed:	
Logged:	13-Aug-11											Surveyed by:	
Comment:							Coordinate - Ge	mcom	Coordinate - U	тм		Geophysics:	
							East:	323288	East:	32328	0	Geophysic Contractor:	
							North:	5670518	North:	567051	8	Left in hole:	
							Elev.:	366	Elev.:	36	6	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surve	ey: no

### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -60.00
 C
 ✓



mineralization occurs as blebs and stringers in the matrix parallel to the foliation."

# LITHOLOGY REPORT

- Detailed -

Hole Number	MIS-11-03	Project: JIMINEX	Project: JIMINEX				Project Number: 3				
From (m)	<b>То</b> (т)	Lithology	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Au50</b> (ppb)			
6.75	28.42	ChISChlorite Schist"The chlorite schist is fine grain, medium to light green in color and strongly foliated 50° TCA. It is composed of chlorite, magnetite, carbonate and quartz with minor quartz-carbonate veining throughout the unit. Some of the calcite has been altered to ankerite. The unit contains magnetite as wisps and stringer with lesser as blebs (5-10%). Veining occurs from 11.22-11.37m (qtz-carb with Py) and 18.90- 19.02m (qtz-ank 20° TCA). Foliation changes at 18.85-18.87m to 71 degrees TCA and at LC to 20 degrees TCA. Sulfide mineralization is trace to 1%, consisting of pyrite and pyrrhotite. Sulfide mineralization occurs as blebs and stringers in the matrix parallel to the foliation."									
28.42	117.45	ChIS Chlorite Schist "Chlorite schist is green in color and strongly foliated at 50 degrees TCA. It contains clusters of wispy magnetite and stringers of magnetite (5-10%). Foliation is 20 degrees TCA at LC but returns to 50 degrees TCA after 28.75m. Folding occurs from 28.56-30.15m, 33.75-33.81 and 77.16-77.57m. Minor quartz-carbonate veining is present throughout the unit; it is generally not well mineralized. Some of the calcite has been altered to ankerite. Additional veins occur from 42.14-42.17m (qtz w/ py), 42.06-42.5m (qtz w/ py blebs 45 degrees TCA), 43.86-43.91m (folded and x-cutting calcite vein), 54.15-54.16m (qtz w/ py), 57.08-57.09m (qtz vein with Py stringer on boundary), 78.07-78.12 (qtz vein) and 84.27-84.32m (qtz/carb blebs of py, 45 degrees TCA). Pink to red alteration bands and veinlets appear locally throughout this unit. Sulfide mineralization is trace to 1%, consisting of pyrite and pyrrhotite. Sulfide	895753 895754 895756 895758 895665 895757	28.36 42.26 43.29 56.68 63.36 83.23	29.86 43.29 44.29 57.32 63.52 84.83	1.50 1.03 1.00 0.64 0.16 1.60	0.00 0.00 0.22 0.00 0.00	0 0.01 6 63.00 2 17.00 3 232.00 0 0.01 0 0.01			



Hole Number	MIS-11-03						Project Number: 3		
From (m)	<b>To</b> (m)		Litholog	y	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
117.45	256.25	ChIS Chlorite	e Schist		895666	117.57	117.70	0.13	0.00 0.01
		"Chlorite schist is green	in color and strongly foliated	d at 55 degrees TCA. Foliation varies slightly to ~45	895759	140 82	141 82	1 00	0.00 0.01
		degrees TCA from 142-	148m. The unit contains ma	ignetite as small blebs (cubes) with local wisps (5-	895761	141 82	143.32	1 50	0.00 0.01
		Some of the calcite has	been altered to ankerite. Ve	eins occur from 110.56-110.75m (qtz/carb w/ py),	895762	143.32	144.82	1.50	0.00 0.01
		123.74-123.78m( two qt	z veins 56 degrees TCA), 12	24.84-124-87m (qtz/carb), 131.06-131.09m (qtz/carb	895763	144.82	145.35	0.53	0.00 0.01
		179.96m (carb/qtz w/ py	-po), 182.72-182.74m (carb	/qtz w/ py-po), 187.07-187.08 (qtz/carb w/ py), 189.3-	895667	145.36	145.45	0.09	0.00 0.01
		190.5 (qtz/carb vein), 19 mineralization is trace to	9.45-199.55m (irregular vei 1% consisting of pyrite an	n with 3% py) and 243.85-244.30m (qtz vein). Sulfide	895764	145.45	146.30	0.85	0.00 0.01
		and stringers in the matr	rix parallel to the foliation. L	C is gradational."	895766	179.83	180.13	0.30	0.00 0.01
					895767	189.30	190.57	1.27	0.00 0.01
		Mineralization Maj. :	Type/Style/%Mineral	Comment	895768	197.00	197.46	0.46	0.00 0.01
		6.75 - 256.25	CP BL 1	Rare	895769	197.46	198.50	1.04	0.00 0.01
		6.75 - 256.25	PO BL 2	Subordinate to Py	895771	198.50	199.34	0.84	0.00 0.01
		6.75 - 256.25	PY BL 3	Is also disseminated and stringer-like	895772	199.34	199.70	0.36	0.02 16.00
					895773	210.82	212.32	1.50	0.01 7.00
					895774	212.32	213.82	1.50	0.01 6.00
					895775	213.82	215.22	1.40	0.00 0.01
					895776	215.22	215.60	0.38	0.00 0.01
					895777	218.54	219.98	1.44	0.00 0.01
					895778	224.14	224.84	0.70	0.01 6.00
					895779	232.02	233.52	1.50	0.01 12.00
					895781	242.82	244.32	1.50	0.09 87.00
					895533	250.15	250.65	0.50	0.01 8.00
					895534	250.65	251.15	0.50	0.00 0.01
					895535	251.15	251.60	0.45	0.01 7.00
					878535	251.60	252.60	1.00	1.01 1010.0C
					895536	252.60	253.05	0.45	0.00 0.01
					895537	253.05	253.53	0.48	0.00 0.01
					895538	253.53	254.13	0.60	0.01 6.00



Hole Number	MIS-11-03			Project: JIMINEX					Project Number: 3
<b>From</b> (m)	<b>To</b> (m)		Litholog	y	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
					895539	254.13	254.50	0.37	0.00 0.01
					895540	254.50	255.00	0.50	0.00 0.01
					895541	255.00	255.51	0.51	0.04 39.00
					895542	255.51	256.12	0.61	0.02 19.00
256.25	368.0	MS Metase	dimentary-Greywacke		878532	256.12	256.75	0.63	0.16 160.00
EOH		"Fine grain light grey and	d green bands. It is made u	up of chlorite and siliceous banding and there is much	895543	256.75	257.24	0.49	0.07 67.00
		varies but is generally 50	) degrees TCA. Asymmetri	ic folding occurs locally and some veins have been	895544	257.24	257.62	0.38	0.02 15.00
		boudinaged. Sulfide mir	neralization is trace to 1% a	nd consists of pyrite and pyrrhotite occurring as blebs	895545	257.62	258.19	0.57	0.05 49.00
		the frequency of veining	and mineralization is less th	han that of the overlying chlorite schist."	895546	258.19	258.70	0.51	0.04 44.00
					895547	258.70	259.08	0.38	0.01 14.00
		Mineralization Maj. :	Type/Style/%Mineral	Comment	878536	259.08	260.20	1.12	0.13 130.00
		256.25 - 363.78	CP BL 1	rare	895548	260.20	260.70	0.50	0.23 228.00
		256.25 - 363.78	PY BL 2	Subordinate to Po	895524	260.70	260.75	0.05	1.89 1890.0C
		256.25 - 363.78	PO BL 3	Also occurs as stringers	895549	260.75	260.92	0.17	0.06 63.00
		363.78 - 363.80	ASP STR 1	First appearance of ASP and occurs with less than	895532	260.92	261.05	0.13	0.02 16.00
					895550	261.05	261.35	0.30	0.03 31.00
					878537	261.35	261.72	0.37	5.69 5690.0C
					895551	261.72	262.82	1.10	0.01 6.00
					878538	262.82	263.80	0.98	0.07 70.00
					895552	263.80	264.08	0.28	0.01 7.00
					895523	264.08	264.14	0.06	0.01 13.00
					895553	264.14	264.76	0.62	0.02 17.00
					895526	264.76	264.85	0.09	0.00 0.01
					895554	264.85	265.55	0.70	0.00 0.01
					895555	265.55	266.25	0.70	0.00 0.01
					895525	266.25	266.31	0.06	0.23 227.00
					895556	266.31	266.80	0.49	0.01 11.00



Hole Number	m MIS-11-03		Project: JIMINEX				Project Number: 3
From (m)	<b>To</b> (m)	Lithology	Sample	# From	То	Length	<b>Au Au50</b> (g/t) (ppb)
			89552	7 266.80	267.00	0.20	18.90 8900.0
			89555	7 267.00	267.45	0.45	0.01 6.00
			89555	8 267.45	268.37	0.92	0.00 0.01
			89552	8 268.37	268.57	0.20	42.20 2200.0
			89555	9 268.57	269.25	0.68	0.02 18.00
			87853	4 269.25	270.75	1.50	0.01 8.00
			87853	3 270.75	272.15	1.40	0.04 35.00
			89556	0 272.15	272.26	0.11	0.01 9.00
			89551	6 272.26	272.70	0.44	6.54 3540.0C
			89556	1 272.70	273.00	0.30	0.08 76.00
			87853	9 273.00	273.17	0.17	0.02 15.00
			89553	0 273.17	273.24	0.07	0.02 15.00
			89556	2 273.24	273.60	0.36	0.01 6.00
			89552	9 273.60	273.66	0.06	0.01 9.00
			89556	3 273.66	273.85	0.19	0.01 6.00
			89556	4 273.85	274.45	0.60	0.01 13.00
			89552	2 274.45	274.75	0.30	0.01 8.00
			89551	8 274.75	274.90	0.15	0.01 5.00
			89556	5 274.90	275.26	0.36	0.04 38.00
			89556	6 275.26	275.79	0.53	0.73 730.00
			89551	9 275.79	275.91	0.12	56.90 6900.0
			89556	7 275.91	276.25	0.34	0.12 118.00
			89551	7 276.25	276.55	0.30	116.0016000.C
			89556	8 276.55	276.83	0.28	2.75 2750.0C
			89551	5 276.83	276.90	0.07	0.20 203.00
			89556	9 276.90	277.00	0.10	2.73 2730.0C
			89551	4 277.00	277.06	0.06	10.50 0500.0
			89557	0 277.06	277.60	0.54	0.12 116.00



Hole Number	Hole Number MIS-11-03			JIMINEX					Project Number:	3	
From (m)	<b>To</b> (m)	Lithology			Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Аи50</b> (ppb)	
					895571	277.60	278.05	0.45	0.00	0.01	
					895572	278.05	278.45	0.40	0.02	20.00	
					895573	278.45	279.00	0.55	0.00	0.01	
					895531	279.00	279.05	0.05	0.03	25.00	
					895574	279.05	279.60	0.55	0.01	6.00	
					895575	279.60	279.76	0.16	0.01	7.00	
					895576	279.76	280.30	0.54	0.00	0.01	
					895577	280.30	280.75	0.45	0.00	0.01	
					895782	290.00	291.00	1.00	0.01	6.00	
					895783	295.70	297.20	1.50	0.00	0.01	
					895784	298.00	299.36	1.36	0.01	6.00	
					895786	299.36	300.67	1.31	0.03	25.00	
					895787	300.67	301.55	0.88	0.08	77.00	
					895788	357.80	358.20	0.40	0.01	10.00	
					895789	363.37	364.37	1.00	0.04	39.00	



Hole Number MIS-11-04			Projec	Project: JIMINEX						Project Number:	003		
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	ACHAPI L	٩K	Logged by:	Maura Kolb
Dip:	-60	Pulled:	no		Storage:	Core Shed	I		Claim No.:	4221454		Relog by:	
Length:	252.6	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	13-Apr-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	15-Apr-11											Surveyed:	
Logged:	13-Aug-11											Surveyed by:	
Comment:							Coordinate	- Gemcom	Coordinate - U	тм		Geophysics:	
							East:	323740	East:	323740	)	Geophysic Contractor:	
							North:	5671018	North:	5671018	3	Left in hole:	
							Elev.:	363	Elev.:	363	3	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surve	ey: no

### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -60.00
 C
 ✓



Hole Number MIS-11-04				Project:	JIMINEX					Project Number:	3	
From (m)	<b>To</b> (m)		Lithology			Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Au50</b> (ppb)	
0.00	5.90	15	Overburden (Unsubdivided)									

#### 5.90 68.92 MV-mafic Metavolcanic- mafic

Light to Dark grey to slightly green colored very fine grained unit with green specks. Weak to moderate foliation at 50 degrees TCA. Minor carbonate veining (less than 1%) and trace to nil sulfides. Qtz veining occurs from 15.75-15.95m (with Po blebs) and 45.45-45.55m (qtz-carb with black bands).

Mineralization Maj. :	Type/Style/%Mineral	Comment
5.90 - 68.92	POPY CU 0	trace-nil
Structure Maj.:	Type/Core Angle	Comment
5.90 - 68.92	FOL 50	

68.92	71.90	QFS-FP Qua	rtzofeldspathic Schist w/ fel	d por	895801	71.45	71.90	0.45	0.00	0.01
		This unit is tan to ligh from 71.8-71.9m at th	t grey in color with feldspar po ne LC. This unit is foliated 50 o	orphyroclasts about 1mm wide. Quartz flooding occurs degrees TCA.						
		<i>Mineralization Maj. :</i> 68.92 - 71.90	<i>Type/Style/%Mineral</i> POPY DIS 0	<i>Comment</i> trace-nil						
		<i>Structure Maj.:</i> 68.92 - 71.90	<i>Type/Core Angle</i> FOL 50	Comment						

895802

71.90

72.70

0.80

#### 71.90 138.91 MV-mafic Metavolcanic- mafic

"Light to Dark grey to slightly green colored very fine grained unit with green specks. Weak to moderate

0.01 9.00



Hole Numbe	Number MIS-11-04			Project: JIMINEX	Project: JIMINEX					3	
<b>From</b> (m)	<b>То</b> (т)		Litholog	ly.	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Аи50</b> (ррb)	
		foliation averaging 50 d foliation becomes 35 de than 1%) and trace to ni 117.16m and 122.65-12	egrees TCA although there grees TCA then returns to s I sulfides. Qtz veining from 2.8m (irregular contacts)."								
		<i>Mineralization Maj. :</i> 71.90 - 138.91	<b>Type/Style/%Mineral</b> POPN DIS 0	Comment trace-nil							
		Structure Maj.:	Type/Core Angle	Comment							
		71.90 - 80.00	FOL 50								
		80.00 - 100.00	FOL 35								
		100.00 - 138.91	FOL 50								

### 138.91 154.75 QFS-QP Quartzofeldspathic Schist w/ qtz porp

This unit is tan to light grey in color with quartz porphyroclasts about 1mm wide. Foliation is strong about 50 degrees TCA.

154.75	181.41	MV-mafic	Metavolcanic- mafic	895803	178.60	179.20	0.60	0.0	00	0.01
		"This unit is a n fine grained O	nix of mafic and QFS-QP. The mafic unit is grey to green in color, well foliated and very	895804	179.20	180.18	0.98	0.0	)4 ·	40.00
		py stringers occ	cur in the mafic unit from 182.45-182.55m (~5%). The LC is gradational with patchy QFS-	895806	180.18	181.41	1.23	0.0	)1 ·	14.00
		181.41-182.45r	n, 182.55-182.88m and 183.28-183.82m."							



Hole Number	MIS-11-04	Project: JIMINEX					Project Number: 3
<b>From</b> (m)	<b>To</b> (m)	Lithology	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
181.41	208.00	QFS-QP Quartzofeldspathic Schist w/ qtz porp	895807	181.41	182.38	0.97	0.00 0.01
		This unit is tan to light grey in color with quartz porphyroclasts about 1mm wide. Foliation is strong about	895808	182.38	182.88	0.50	0.00 0.01
		50 degrees TCA. LC has irregular quartz veining with Py and Cpy.	895809	182.88	183.82	0.94	0.00 0.01
			895811	183.82	184.60	0.78	0.00 0.01
		Structure Maj.:         Type/Core Angle         Comment           181.41 - 208.00         FOL         50	895812	206.85	207.85	1.00	0.00 0.01
208.00	219.70	MS Metasedimentary unsubdivided	895813	207.85	208.25	0.40	0.00 0.01
		This unit is grey with green and black bands. It is thinly banded and well foliated with sericite altered	895814	208.25	209.25	1.00	0.00 0.01
		patches with local Py and Cpy. Sericite altered areas occur from 212.3-213.74m and 219.15-219.7m.	895816	209.25	210.25	1.00	0.00 0.01
			895817	210.25	211.20	0.95	0.00 0.01
			895818	211.20	212.30	1.10	0.00 0.01
			895819	212.30	213.74	1.44	0.00 0.01
			895821	213.74	214.64	0.90	0.00 0.01
			895822	214.64	215.60	0.96	0.00 0.01
			895823	215.60	217.00	1.40	0.00 0.01
			895824	217.00	218.40	1.40	0.00 0.01
			895825	218.40	219.70	1.30	0.00 0.01
219.70	252.60	MV-mafic Metavolcanic- mafic	895826	219.70	221.30	1.60	0.00 0.01
EOH		Mafic unit is grey to green in color with qtz-carb veining scattered throughout (3%). The unit is strongly	895827	221.30	221.75	0.45	0.00 0.01
		intermediate with some chlorite patches as well as the typical QFS-QP patches from 241.82-246.89m.	895828	221.75	223.00	1.25	0.00 0.01
			895829	249.64	249.94	0.30	0.00 0.01

 Structure Maj.:
 Type/Core Angle
 Comment

 219.70 - 252.60
 FOL 50
 50



Hole Number MIS	Hole Number MIS-11-05				Projec	Project: JIMINEX						Project Number:	003
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	ACHAPI L	٨K	Logged by:	Maura Kolb
Dip:	-70	Pulled:	no		Storage:	Core Shed	I		Claim No.:	3014285		Relog by:	
Length:	503.85	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	15-Apr-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	08-May-11											Surveyed:	
Logged:	17-Aug-11											Surveyed by:	
Comment:							Coordinate -	Gemcom	Coordinate - U	тм		Geophysics:	
							East:	322825	East:	322825	5	Geophysic Contractor:	
							North:	5670752	North:	5670752	2	Left in hole:	
							Elev.:	360	Elev.:	360	)	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surve	ey: no

### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -70.00
 C
 ✓



Hole Number MIS-11-05				Project: JIMINEX	Project: JIMINEX					Project Number: 3		
From (m)	<b>To</b> (m)		Lithology		Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Au50</b> (ppb)		
0.00	5.60	15	Overburden (Unsubdivided)		· · ·							

#### 5.60 22.00 ChIS Chlorite Schist

Chlorite schist is green in color and strongly foliated with 5-10% carbonate veining. This unit is magnetiterich (~10%) with magnetite as small blebs disseminated in the rock.

Alteration Maj:	Type/Style/Intensity	Comment
5.60 - 22.00	BL SP M	
<i>Mineralization Maj. :</i> 5.60 - 22.00	<b>Type/Style/%Mineral</b> MAG BL 10	Comment
Structure Maj.:	Type/Core Angle	Comment
5.60 - 22.00	FOL 55	

22.00	161.60	MGb Metaga	abbro		878515	28.75	28.88	0.13	0.01	13.00
		"Although this unit appe	ears similar in composition to	the previous unit the texture differs. This unit is	895831	40.80	41.50	0.70	0.00	0.01
		scattered throughout thi	is unit as well as disseminated	ed in patches throughout the rock. Magnetite appears	895832	44.30	45.00	0.70	0.00	0.01
s g 4 1	stringer-like and becom	nes more local instead of dis	seminated like in the previous unit. Locally coarse	895833	45.00	46.10	1.10	0.00	0.01	
	44.5-44.75m, 48.43-48.	67m, 48.8-48.91m, 49.28-49	9.32m,49.6-49.7m).Additional quartz veins occur from	895834	46.10	47.00	0.90	0.00	0.01	
	102.5-102.6m, 113-113.77m, 113.73-113.77m		.4-125.9m, 128.2-128.85m."	895836	47.00	48.25	1.25	0.00	0.01	
		Alteration Maj:	Type/Style/Intensity	Comment	895837	48.25	48.75	0.50	0.00	0.01
		22.00 - 161.60	Carb VN MS		895838	48.75	49.45	0.70	0.00	0.01
		Mineralization Maj. :	Type/Style/%Mineral	Comment	895839	49.45	49.95	0.50	0.00	0.01
		22.00 - 161.60	CPPO BL 0.5		895841	49.95	50.35	0.40	0.00	0.01
		22.00 - 161.60	MAG BL 10							



Hole Number	MIS-11-05	Project: JIMINEX					Project Number: 3
<b>From</b> (m)	<b>To</b> (m)	Lithology	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
		Structure Mai · Type/Core Angle Comment	895842	50.35	51.13	0.78	0.00 0.01
		22.00 - 161.60 FOL 55	878509	102.00	102.42	0.42	0.82 824.00
			895843	102.75	103.45	0.70	0.15 152.00
			895844	103.45	104.43	0.98	0.79 787.00
			895846	125.50	125.90	0.40	0.03 26.00
			895847	125.90	127.40	1.50	0.00 0.01
			895848	127.40	128.20	0.80	0.01 12.00
			895849	128.20	128.85	0.65	0.00 0.01
			895850	135.05	136.25	1.20	0.00 0.01
161.60	250.00	MGb Metagabbro	895851	173.00	174.00	1.00	0.03 32.00
		"This unit is medium to coarse grained, moderately foliated (~55 TCA) and dark green in color. Carbonate	895852	174.00	174.85	0.85	0.84 840.00
		10%). Magnetite appears stringer-like and as blebs or broken cubes throughout the rock (5-	895853	174.85	175.75	0.90	5.02 5020.0C
		Magnetite varies from medium to coarse grained (as larger as 5mm blebs). Coarse grained pyroxene	895854	175.75	176.75	1.00	0.00 0.01
		stringers and blebs are disseminated throughout (~0.5-1%). Coarse grained plagioclase crystals occur throughout the unit and appear pearly. Quartz-carbonate veins 217.65-217.75m, 230.4-230.55m and	895856	192.50	193.20	0.70	0.00 0.01

Alteration Maj:	Type/Style/Intensity	Comment
161.60 - 250.00	Carb VN MS	
Mineralization Maj. :	Type/Style/%Mineral	Comment
161.60 - 250.00	MAG BL 5	
161.60 - 250.00	CPPO BL 0.5	
Structure Maj.:	Type/Core Angle	Comment
161.60 - 250.00	FOL 55	

245.55-245.85m (irregular contacts)."



Hole Number	MIS-11-05			Project: JIMINEX					Project Number: 3
From (m)	<b>To</b> (m)		Litholog	у	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
250.00	401.72	MGb Metaga	abbro		895857	326.42	327.45	1.03	0.00 0.01
		"This unit is medium to	coarse grained, moderately	foliated (~50-55 TCA) and dark green in color.	895858	327.45	328.20	0.75	0.00 0.01
		the rock (5-10%). Magn	netite appears stringer-like a	a unit as well as disseminated in patches throughout and as blebs or broken cubes throughout the rock edium to coarse grained. Coarse grained pyroxene attered through local chlorite-rich zones. Po and Cpy -0.5-1%). Medium grained plagioclase crystals occur s appear from 271.15-271.5m and 307.4-307.65. LC is	895859	328.20	329.00	0.80	0.00 0.01
		lesser than above (~5%	b). Magnetite varies from me		895861	329.00	330.50	1.50	0.00 0.01
		stringers and blebs are	disseminated throughout (~		895862	330.50	332.05	1.55	0.00 0.01
		throughout the unit and	appear pearly. Quartz veins		895863	332.05	333.30	1.25	0.00 0.01
			Tuno/Stulo/Intensity	Commont	895864	333.30	334.30	1.00	0.00 0.01
			Type/Style/Intensity	Comment					
		250.00 - 401.72	Carb VN MS						
		<i>Mineralization Maj. :</i> 250.00 - 401.72 250.00 - 401.72	<i>Type/Style/%Mineral</i> MAG BL 5 CPPO BL 0.5	Comment					
		<i>Structure Maj.:</i> 250.00 - 401.72	<b>Type/Core Angle</b> FOL 50	Comment					

#### 401.72 481.80 MV-mafic Metavolcanic- mafic

"The unit is very fine grained, strongly foliated and grey-green in color. Patches of chlorite occur with large green pyroxene crystals. Quartz-carbonate and plagioclase veining occurs scattered throughout unit. Pegmatitic plagioclase-rich veins occur from 407.45-407.85m, 410.83-411.3m and 412.35-412.45m with qtz-carb veins from 408.9-409m, 409.6-409.65m and 409.8-409.85m. A silicified/bleached zone occurs from 419.2-420.5m"

 Structure Maj.:
 Type/Core Angle
 Comment

 401.72 - 481.80
 FOL 50
 50



Hole Number MIS-11-05		Project: JIMINEX	Project Number: 3					
From	То						Au	Au50
(m)	(m)	Lithology	Sample #	From	То	Length	(g/t)	(ppb)
		This quartzofeldspathic schist is very sericite-rich and has scattered quartz porph much less than other examples of this unit. This unit is highly sheared and altered. The rock is broken up and much of it has been later altered to clays.						

Structure Maj.:	Type/Core Angle	Comment
481.80 - 493.35	BC 0	due to intense foliation
481.80 - 493.35	FOL 50	

#### 493.35 503.85 **MV-mafic** *Metavolcanic- mafic* EOH "The LIC of this unit is highly altered to

"The UC of this unit is highly altered to sericite and has iron staining (ankerite or illmenite) this alteration appears banded. This alteration zone occurs from 493.35-497.45m after which the rock still has some banding and alteration. The unit is very fine grained, strongly foliated and grey-green in color. Quartz and plagioclase veining occurs scattered throughout unit with sulfides occurring adjacent to some of the veins."

Structure Maj.:	Type/Core Angle	Comment
493.35 - 503.85	FOL 50	



Hole Number MIS-11-06				Projec	Project: JIMINEX						Project Number: 003		
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	NQ			Township:	ACHAPI L	AK	Logged by:	Bobby Scott
Dip:	-70	Pulled:	no		Storage:	Core Shee	1		Claim No.:	3014285		Relog by:	
Length:	448.3	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	09-May-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	13-May-11											Surveyed:	
Logged:	13-Aug-11											Surveyed by:	
Comment:							Coordinate - Ger	ncom	Coordinate - U	тм		Geophysics:	
							East:	323288	East:	323280	0	Geophysic Contractor:	
							North:	5670518	North:	5670518	8	Left in hole:	
							Elev.:	366	Elev.:	36	6	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surve	ey: no

### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -70.00
 C
 ✓



Hole Number	MIS-11-06	Project: JIMINEX	Project Number:	Project Number: 3				
From (m)	<b>To</b> (m)	Lithology	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Au50</b> (ppb)
0.00	3.68	15 Overburden (Unsubdivided)						
3.68	42.72	ChIS Chlorite Schist	895791	7.00	7.60	0.60	0.00	0.01
		"Chlorite schist is green in color and strongly foliated (~45 degrees TCA). It contained magnetite wisps and stringers (5-10%) with carbonate veining (typically parallel with the foliation ~5%). Pink to red alteration bands and veinlets appear locally throughout beginning at 22m. Quartz veining occurs from 7.26-7.30m, 18.97-19.00m and 20.33-20.34m. Irregular folding occurs from ~21-35m. Sulfide mineralization is trace to 1%, consisting of pyrite and pyrrhotite and minor chalcopyrite. Sulfide mineralization occurs as blebs and stringers within the chloritic matrix, closely following the foliation. Larger concentrations of sulfides occur in the matrix located near the boundaries of some quartz/calcite veining."	895792 895793	18.30 19.80	19.80 21.12	1.50 1.32	0.00 0.03	0.01 27.00
42.72	142.92	ChIS       Chlorite Schist         "Chlorite schist is fine grain, medium to light green in color, composed of chlorite, magnetite, carbonate and quartz. The unit is moderately to strongly foliated (~45-50 degrees TCA) and folded in sections. It contained magnetite as clusters of wisps (5-10%) with carbonate veining (typically parallel with the foliation ~5%). Unit is very carbonate-rich from 75.06-90.66m, from 86.08-87.54m the carbonate alteration make the unit appear lighter in color. Pink to red alteration bands and veinlets appear locally throughout ending at 125m. Folding occurs at 55.3-55.78m and from ~60-70m. Sulfide mineralization is sulfides occur in the matrix located near the boundaries of some quartz/calcite veining."         Alteration Maj:       Type/Style/Intensity Comment         85.00 - 108.00       Carb P S	895794 895795 895797 895798 895799 895800 895901 895902 895903	47.11 48.61 50.11 51.61 53.11 54.61 56.11 57.61 59.11	48.61 50.11 51.61 53.11 54.61 56.11 57.61 59.11 60.61	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00	269.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01



Hole Number	MIS-11-06			Project: JIMINEX					Project Number: 3	
From (m)	<b>To</b> (m)		Litholog	y	Sample #	From	То	Length	Au Aut (g/t) (ppl	50 b)
		Mineralization Maj. :	Type/Style/%Mineral	Comment	895904	60.61	62.11	1.50	0.02 19	.00
		125.25 - 125.30	MAG BL 0		895906	62.11	63.09	0.98	0.02 20	.00
142.92	301.74	ChIS Chlorit	e Schist		895907	147.42	148.99	1.57	0.00 0.	01
		"Chlorite schist is green blebs (cubes) with local	thin wisps (5-10%) with carb	d 40-50 degrees I CA. It contained magnetite as small ponate veining (typically parallel with the foliation	895908	171.00	172.37	1.37	0.03 26	.00
		~5%). Sulfide mineraliza	ation is trace to 1%, consisting	ng of pyrite and pyrrhotite and minor chalcopyrite.	895909	172.37	173.20	0.83	0.01 11	.00
		foliation. Larger concen	ccurs as blebs and stringers trations of sulfides occur in	the matrix located near the boundaries of some	895911	178.66	179.21	0.55	0.00 0.	01
	quartz/calcite veining. Sulfides appear as blebs and stringers (3%) from 170.9-173.2m an				895912	179.21	179.95	0.74	0.00 0.	01
		degrees. Plagioclase po	orphyroclasts (light blue in co	blor) appear in this unit from 255.86- 289.06m.	895913	179.95	180.81	0.86	0.01 11	.00
		Foliation varies from 42	-60 degrees from 283.33 to	LC. Gradational contact, the unit begins to be less	895914	180.81	182.41	1.60	0.00 0.	01
		magnetite-rich from 284	.06m to LC."		895916	182.41	183.67	1.26	0.00 0.	01
				•	895917	192.68	193.40	0.72	0.00 0.	01
		Mineralization Maj. :	Type/Style/%Mineral	Comment	895918	218.82	219.60	0.78	0.00 0.	01
		3.68 - 301.74		minor occurances	895919	219.60	220.73	1.13	0.00 0.	01
		3 68 - 301 74	PO BL 2	usually subordinate to Py_Occurs as stringers as	895921	230.26	231.26	1.00	0.00 0.	01
				well.	895922	252.13	252.78	0.65	0.00 0.	01
		3.68 - 301.74	PY BL 3	Dominiant form of sulfide. Also occurs as	895923	252.78	253.80	1.02	0.00 0.	01
	dissemir		disseminated and stringers	895924	266.38	267.87	1.49	0.02 17	.00	
					895925	267.87	268.98	1.11	0.04 37	.00
					895926	273.68	275.12	1.44	0.00 0.	01
					895927	285.93	287.43	1.50	0.02 22	.00
					895928	287.43	288.93	1.50	0.00 0.	01



Hole Number	MIS-11-06	Project: JIMINEX					Project Number: 3
From (m)	<b>To</b> (m)	Lithology	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
301.74	448.30	MS Metasedimentary-Greywacke	895936	387.59	388.56	0.97	0.06 64.00
EOH		"This unit is fine grain, light green and grey and is moderately to strongly foliated (40-50 degrees TCA).	895929	308.88	310.38	1.50	0.00 0.01
		I his unit is less chlorite-rich than the chlorite schist with about 30 % chlorite. This metasedimentary unit also has blebs and/or veinlets of guartz and carbonate which are interpreted as being fragments of	895931	335.50	336.12	0.62	0.01 6.00
		boudinaged veins. They are orientated towards the foliation and can have tails on either side; these	895932	341.49	342.13	0.64	0.15 148.00
		pyrite occurring in the matrix as stringers and blebs. Localized units of chlorite and magnetite with sulfide	895933	347.52	348.10	0.58	0.03 33.00
		mineralization occur sparingly throughout the unit. Minor quartz-carbonate veining (1%) is present and	895934	377.42	378.51	1.09	0.00 0.01
		(Po/Py), 377.52-278.30m (qtz vein) and 387.69-388.46m (qtz vein). Carbonate alteration occurs from 407.25-408.7m. Biotite appears as wisps beginning at ~400m and continues to EOH."	895937	386.25	387.59	1.34	0.03 30.00

Mineralization Maj. :	Тур	e/Sty	le/%Mineral	Comment
301.74 - 424.40	CP	BL	1	Rare
301.74 - 424.40	PY	BL	2	Also occurs as stringers
301.74 - 424.40	PO	BL	3	Dominate sulfide mineralization. Also occurs as stringers in matrix



Hole Number MIS-	-11-07				Projec	t: <b>JIMIN</b>	EX					Project Number:	003
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	ACHAPI L	AK	Logged by:	Maura Kolb
Dip:	-45	Pulled:	no		Storage:	Core Shee	I		Claim No.:	3014285		Relog by:	
Length:	253.15	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	14-May-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	16-May-11											Surveyed:	
Logged:	13-Aug-11											Surveyed by:	
Comment:							Coordinate - Ge	mcom	Coordinate - U	тм		Geophysics:	
							East:	323288	East:	323280	)	Geophysic Contractor:	
							North:	5670518	North:	5670518	3	Left in hole:	
							Elev.:	366	Elev.:	366	6	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surv	ey: no

### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -45.00
 C
 ✓



Hole Number	MIS-11-07			Project: JIMINEX					Project Number: 3
<b>From</b> (m)	<b>To</b> (m)		Litholo	a <i>y</i>	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
0.00	6.10	15 Ov	rerburden (Unsubdivided)						
6.10	110.45	ChIS Ch Chlorite schist is gr with carbonate vein mineralization from where irregular fold	<b>Horite Schist</b> een in color and strongly foliati ing (typically parallel with the f 40.85-41.75m with iron stainir ing and s-folds occur. The s-fo	ed. It contained magnetite wisps and stringers (5-10%) oliation ~5%). There is a series of quartz veins with Py g in the matrix sections. There are scattered areas Ids axis is 50 degrees TCA (same as foliation).	895875	40.75	41.90	1.15	0.19 188.00
		<i>Structure Maj.:</i> 6.10 - 110.45	<b>Type/Core Angle</b> FOL 50	Comment					
110.45	114.25	ChIS Ch Chlorite schist is gr with carbonate vein sometimes appear	nlorite Schist een in color and strongly foliati ing (typically parallel with the f with qtz-carb-plag veins are so	ed. It contained magnetite as clusters of wisps (5-10%) oliation ~5%). Pink alteration bands and veinlets which attered throughout the unit from 85-112m.					
		<b>Structure Maj.:</b> 110.45 - 114.25	<b>Type/Core Angle</b> FOL 45	Comment					



Hole Number	MIS-11-07			Project: JIMINEX			Project Number: 3		
From (m)	<b>To</b> (m)		Litholo	gy	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
114.25	253.15	ChIS Chlo	rite Schist		895876	128.70	129.00	0.30	0.00 0.01
		"Chlorite schist is gree	en in color and strongly foliat	ed 45 degrees TCA. It contained magnetite as small	895877	150.00	150.54	0.54	0.00 0.01
		blebs (cubes) with loca	al thin wisps (5-10%) with ca m 150 15-150 3m 194 3-19	rbonate veining (typically parallel with the foliation	895578	174.80	174.90	0.10	0.01 11.00
		205m (qtz with sulfide	s), 212.4-212.65m(qtz-carb	with sulfides, irregular contacts and nearly parallel with	895579	175.66	175.74	0.08	0.58 576.00
		core axis), 213.25-213 and silicification occur	3.32m (qtz with sulfides), 213 from 229.5-236m with Po/p	3.7-213.8m (qtz-carb minor sulfides). Quartz veining v and local Asp mineralization (1-2%). Carbonate	895878	193.45	194.15	0.70	0.00 0.01
		veining increases sligh	ntly from ~236-EOH with chl	and iron staining alteration appearing as thin bands.	895879	194.15	194.75	0.60	0.00 0.01
		252.75m."	appear throughout this area	~0.5% with local bands of Asp blebs from 252.55-	895881	204.35	205.05	0.70	0.01 12.00
					895882	212.20	212.80	0.60	0.00 0.01
					895883	212.80	213.90	1.10	0.00 0.01
		Structure Mai.:	Type/Core Angle	Comment	895884	213.90	215.40	1.50	0.00 0.01
		114.25 - 253.15	FOL 45		895580	229.29	229.81	0.52	0.00 0.01
					895581	229.81	230.46	0.65	0.01 9.00
					895582	230.46	231.95	1.49	0.97 969.00
					895583	231.95	232.24	0.29	0.36 362.00
					895584	232.24	232.72	0.48	0.26 263.00
					895585	232.72	233.52	0.80	0.01 7.00
					895586	233.52	234.00	0.48	0.02 18.00
					895587	234.00	234.25	0.25	0.02 21.00
					895588	234.25	234.51	0.26	0.07 68.00
					895589	234.51	234.85	0.34	3.60 3600.0C
					895590	234.85	235.26	0.41	0.16 161.00
					895591	235.26	235.45	0.19	0.02 19.00
					895592	235.45	235.75	0.30	2.40 2400.0C
					895593	235.75	236.35	0.60	1.37 1370.00
					895594	236.35	236.86	0.51	0.01 5.00
			895595	236.86	237.51	0.65	0.01 6.00		
				895596	237.51	237.90	0.39	0.01 7.00	
					895597	237.90	238.41	0.51	0.00 0.01



Hole Numbe	er MIS-11-07		Project: JIMINEX						Project Number: 3						
From	То								Au	Au50					
(m)	(m)	Lithology			Sample #	From	То	Length	(g/t)	(ppb)					
					895598	238.41	238.97	0.56	0.01	6.00					
					895886	238.97	240.15	1.18	0.00	0.01					
					895887	240.15	240.65	0.50	0.01	10.00					
					895888	240.65	241.85	1.20	0.00	0.01					
					895889	241.85	243.35	1.50	0.00	0.01					
					895891	243.35	244.70	1.35	0.00	0.01					
					895892	244.70	245.10	0.40	0.04	35.00					
					895893	245.10	246.50	1.40	0.00	0.01					
					895894	246.50	248.00	1.50	0.00	0.01					
					895896	248.00	249.00	1.00	0.01	10.00					
					895897	249.00	250.00	1.00	0.00	0.01					
					895898	250.00	250.95	0.95	0.00	0.01					
					895899	250.95	251.70	0.75	0.00	0.01					
					895900	251.70	252.35	0.65	0.00	0.01					
					895951	252.35	253.15	0.80	0.16	155.00					



Hole Number MIS-1	1-08				Projec	t: <b>JIMIN</b>	EX					Project Number:	003
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	ACHAPI L	AK	Logged by:	Maura Kolb
Dip:	-45	Pulled:	no		Storage:	Core Shed	I		Claim No.:	3014285		Relog by:	
Length:	250.1	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	16-May-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	17-May-11											Surveyed:	
Logged:	13-Aug-11											Surveyed by:	
Comment:							Coordinate - Ge	mcom	Coordinate - U	тм		Geophysics:	
							East:	323233	East:	32323	3	Geophysic Contractor:	
							North:	5670517	North:	567051	7	Left in hole:	
							Elev.:	360	Elev.:	36	D	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surve	ey: no

### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -45.00
 C
 ✓



Hole Number MIS-11-08				Project: JIMINEX					Project Number: 3
From	То								Au Au50
(m)	(m)		Lithology		Sample #	From	То	Length	(g/t) (ppb)
0.00	10.85	15	Overburden (Unsubdivided)						

#### 10.85 61.00 ChIS Chlorite Schist

"Chlorite schist with ~3% carbonate veining. Well foliated ~45 degrees TCA. Magnetite occurs as clusters of wisps (5-10%). Pink alteration occur in this unit, it appears as patches, veinlets and bands. Minor blebs and stringers of sulfides are disseminated through this unit. A quartz vein occur from 51.55-51.6m with other smaller qtz-carb veins typically parallel to the foliated."

Alteration Maj:	Type/	Style/	Comment	
10.85 - 61.00	Carb	VN	MS	

Structure Maj.:	Type/Core Angle	Comment
10.85 - 61.00	FOL 45	

#### 61.00 67.21 ChIS Chlorite Schist

Well foliated chlorite schist with ~3% carbonate veining. Magnetite as small blebs (or cubes) disseminated through the unit. Minor sulfides as blebs and stringers scattered through unit. A quartz veins occur from 62.5-62.65m with other smaller qtz-carb veins typically parallel to the foliated.

Alteration Maj:	Type/Style/Intensity	Comment	
61.00 - 67.21	Carb VN MS		
Structure Maj.:	Type/Core Angle	Comment	
61.00 - 67.21	FOL 45		



Hole Number	MIS-11-08	Project: JIMINEX	INEX					3
From (m)	<b>To</b> (m)	Lithology	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Аи50</b> (ррb)
67.21	69.35	ChIS Chlorite Schist						
		"Chlorite schist with ~3% carbonate veining. Well foliated ~45 degrees TCA. Magnetite occurs as clusters of wisps (5-10%). Pink alteration occur in this unit, it appears as patches, veinlets and bands. Minor blebs and stringers of sulfides are disseminated through this unit"						
		Structure Maj.:Type/Core AngleComment67.21 - 69.35FOL45						
69.35	250.10	ChIS Chlorite Schist	895959	173.85	175.45	1.60	0.0	1 6.00
EOH		"Well foliated chlorite schist with ~3% carbonate veining. Magnetite as small blebs (or cubes)	895961	175.45	176.05	0.60	0.00	0.01
	disseminated through the unit with the exception of one magnetite poor area from 87.3-90.4m. Minor sulfides as blebs and stringers scattered through unit. Quartz veins occur from 86.8-86.89m, 94.9-95m		895962	207.60	208.50	0.90	0.00	0.01
		(qtz-carb), 109.65-109.73m, 110.02-110.12m, 111.25-111.45m (contact 35 degrees TCA), scattered qtz	895963	211.50	211.90	0.40	0.00	0.01
		207.75m (vein cross cuts the foliated), 211.6-211.7m (with sulfides). In addition a bleached/silicified zone	895964	211.90	213.40	1.50	0.00	0.01
		occurs from 154.5-155.75m (no sulfides) and quartz carbonate veins with coarse grained biotite occur from 232 3-232 5m and 235 35-235 4m. Foliation is ~45 degree TCA. Starting from about 240m-FOH	895966	213.40	214.65	1.25	0.00	0.01
		magnetite content decreases and carbonate increases."	895967	214.65	215.10	0.45	0.12	2 121.00

Structure Maj.:	Type/Core Angle	Comment
69.35 - 250.10	FOL 45	



Hole Number MIS-11-0	09				Projec	t: <b>JIMIN</b>	EX					Project Number:	003
Drilling		Casing			Core				Location			Other	
Azimuth:	170	Length:		0	Dimension:	BTW			Township:	ACHAPI L	AK	Logged by:	Maura Kolb
Dip:	-60	Pulled:	no		Storage:	Core Shed			Claim No.:	3014285		Relog by:	
Length:	258	Capped:	no		Section:				NTS:	52P/04		Contractor:	Cartwright Drilling
Started:	19-May-11	Cemented:	no		Hole Type	DD			Hole:	SURFACE		Spotted by:	
Completed:	22-May-11											Surveyed:	
Logged:	13-Aug-11											Surveyed by:	
Comment:							Coordinate - Gem	ncom	Coordinate - U	гм		Geophysics:	
							East:	321694	East:	321694	1	Geophysic Contractor:	
							North:	5670331	North:	5670331	1	Left in hole:	
							Elev.:	360	Elev.:	360	)	Making water:	
									<b>Zone:</b> 16	NAD:	NAD83	Multi shot surve	ey: no

### **Deviation Tests**

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 0.00
 170.00
 -60.00
 C
 ✓



Hole Number	MIS-11-09	Project: JIMINEX	Project Number:	Project Number: 3				
From (m)	<b>To</b> (m)	Lithology	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Au50</b> (ppb)
0.00	7.85	15 Overburden (Unsubdivided)						
7.85	14.53	QFS Quartzofeldspathic Schist "Metasedimentary unit, overall light grey in color with thin bands of sericite, biotite, quartz and feldspar. This unit is well foliated at 55 degrees TCA. With many ductilely deformed quartz veins or quartz floods areas."	895968 895969 ∋d 895971	12.40 13.40 14.10	13.40 14.10 14.53	1.00 0.70 0.43	0.00 0.00 0.00	0.01 0.01 0.01
14.53	21.30	<b>ChIGarS</b> <i>Chlorite Garnet Schist</i> Chlorite-garnet schist well foliated 55 degrees TCA. Garnet-rich from 16.7-20m with 15-20% garnet wit less than 5% in the rest of the unit. This unit is magnetic from 17.5-17.75m.	895972 h 895610 895611 895612 895613	14.53 15.37 18.20 19.55 21.00	15.37 15.64 18.87 19.80 21.26	0.84 0.27 0.67 0.25 0.26	0.06 1.45 0.02 0.01 0.30	60.00 <b>1450.0C</b> 19.00 5.00 299.00
21.30	23.20	MS Metasedimentary-Greywacke "Dark grey colored, fine grained metasedimentary unit with major quartz flooding at UC from 21-21.35 and again from 22.46-23.15m."	895973 m 895974	21.26 22.30	22.30 23.20	1.04 0.90	0.00 0.00	0.01 0.01



# LITHOLOGY REPORT

- Detailed -

Hole Number	MIS-11-09	Project: JIMINEX					Project Number: 3				
From (m)	<b>To</b> (m)	Lithology	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Аи50</b> (ppb)			
23.20	27.10	QFS Quartzofeldspathic Schist "Metasedimentary unit, light grey overall color. Thinly banded with pink, black and green colored bands. This unit is well foliated at 50 degrees TCA."									
27.10	33.70	<b>QFS-QP</b> Quartzofeldspathic schist w/ qtz porp This unit is light grey in color with quartz porphyroclasts. It is strongly foliated at 55 degrees TCA. Sericite alteration is pervasive moderate intensity.	895975 895976 895977 895978	29.33 30.00 31.60 33.00	30.00 31.60 33.00 34.00	0.67 1.60 1.40 1.00	0.00 0.00 0.00 0.00	0.01 0.01 0.01 0.01			

### 33.70 34.00 VN-QC Quartz-carbonate vein

Massive quartz-feldspar-carbonate vein. UC 55 degrees TCA and LC 50 Degrees TCA. The vein is white to pinkish tan in color.

### 34.00 34.28 QFS Quartzofeldspathic Schist

"Metasedimentary unit, light grey overall color. Thinly banded with pink, black and green colored bands. This unit is well foliated at 50 degrees TCA."



Hole Number MIS-11-09				Project: JIMINEX					Project Number: 3
From (m)	<b>To</b> (m)		Lithology		Sample #	From	То	Lenath	<b>Au Au50</b> (g/t) (ppb)
(11)	(III)		2.0.0039		Campie #			Longar	
34.28	34.61	VN-QC	Quartz-carbonate vein		895979	34.00	35.00	1.00	0.00 0.01
		Massive qua	rtz-feldspar-carbonate vein. The vein is white to pinkish t	tan in color.					

### 34.61 35.00 MS Metasedimentary unsubdivided

"Quartz flooded dark grey fine grained metasedimentary unit, irregularly folded up with black biotite."

35.00	54.20	MS Metase	dimentary unsubdivided	895981	35.00	36.55	1.55	0.00	0.01
		Dark grey color with pink	and green bands. The unit is very fine grained and well foliated.	895614	45.05	45.20	0.15	0.06	59.00
				895615	48.67	49.06	0.39	0.05	47.00
				895616	51.45	51.85	0.40	0.30	295.00
				895982	51.85	53.00	1.15	0.01	12.00
				895983	53.00	54.20	1.20	0.00	0.01
54.20	73.20	QFS Quartzo	ofeldspathic Schist	895984	54.20	55.20	1.00	0.00	0.01
		"Quartzofeldspathic schi	st with intense sericite alteration and moderate biotite alteration. Irregular folding	895986	55.20	56.00	0.80	0.00	0.01
		very pink to tan in color.	Quartz flooding occurs from 54.55-55.15m, 55.55-59m, 61.7-61.75m, 63.5-63.7m	895987	56.00	57.00	1.00	0.00	0.01
		and 65.7-65.8m."		895988	57.00	58.00	1.00	0.00	0.01
		Alteration Maj:	Type/Style/Intensity Comment	895989	58.00	58.90	0.90	0.00	0.01
		54.20 - 73.20	Ser P I	895617	71.75	72.16	0.41	0.01	7.00



Hole Number	MIS-11-09		Project: JIMINEX					Project Number: 3					
<b>From</b> (m)	<b>To</b> (m)		Litholog	у	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)				
73.20	76.35	IF-Ch IF-Chei	t		895618	73.88	74.25	0.37	0.05 51.00				
		"Metachert? Sulfide-rich	, very fine grained grey to	green color rock. Sulfides occur as stringers Py/Po	895619	74.25	74.74	0.49	0.04 36.00				
		~10%.			895620	74.74	75.26	0.52	0.06 60.00				
		Minoralization Mai	Tupo/Stulo/%/Minoral	Commont	895621	75.26	75.57	0.31	0.03 30.00				
		73.20 - 76.35	POPY STR 10	Comment	895622	75.57	76.25	0.68	0.02 17.00				
76.35	84.20	QFS Quartz	ofeldspathic Schist		895991	79.00	80.10	1.10	0.00 0.01				
		"This unit is thinly bande flooding 79-80.7 and 84.	d pink, tan and dark grey ir 12-84.2m."	color. It is strongly foliated 50 degrees TCA. Quartz	895992	80.10	81.00	0.90	0.00 0.01				
		Alteration Maj:	Type/Style/Intensity	Comment									
		76.35 - 84.20	Ser P M										
84.20	94.30	<b>QFS-QP</b> Quartze "This unit is thinly bander strongly foliated 50 degr 85.95m."	ofeldspathic schist w/ qtz d pink, tan and dark grey ir ees TCA. Quartz flooding c	<i>porp</i> a color with quartz porphyroclasts ~1mm wide. It is ccurs from 93.1-93.8m, 92.05-92.10m and 85.85-	895993	93.25	94.46	1.21	0.00 0.01				
		Alteration Maj:	Type/Style/Intensity	Comment									
		84.20 - 94.30	Ser P M										
		Structure Maj.:	Type/Core Angle	Comment									



# LITHOLOGY REPORT

- Detailed -

Hole Number	MIS-11-09			Project: JIMINEX					Project Number: 3
<b>From</b> (m)	<b>To</b> (m)		Litholog	у	Sample #	From	То	Length	<b>Au Au50</b> (g/t) (ppb)
94.30	96.75	IF-Clastic IF-Inte	rbedded w/ clastic		895623	94.46	94.75	0.29	1.52 1520.00
		"This banded iron forma typically chlorite-rich bu bands (5%)."	ation is made up of thin che t also contain garnets and b	rt, magnetite and clastic bands. The clastic bands are iotite. This unit contained Po stringers and/or thin	895624 895625	95.35 95.89	95.89 96.20	0.54 0.31	2.03 2030.0C 6.25 3250.0C
		<i>Mineralization Maj. :</i> 94.30 - 96.75	<b>Type/Style/%Mineral</b> PO STR 5	Comment	895626	96.20	96.73	0.53	0.04 43.00
96.75	98.56	QFS-QP Quartz	ofeldsparthic w/ qtz porph	15					
		strongly foliated 50 deg	rees TCA."	i color with quartz porphyroclasts ~ imm wide. It is					
		Alteration Maj:	Type/Style/Intensity	Comment					
		96.75 - 98.56	Ser P M						
		<b>Structure Maj.:</b> 96.75 - 98.56	<b>Type/Core Angle</b> FOL 55	Comment					
98.56	99.55	IF-Clastic IF-Inte	rbedded w/ clastic		895627	98.57	98.95	0.38	0.09 88.00
		"This banded iron forma typically chlorite-rich bu bands (5%). Asp blebs is a Z-fold at the LC."	ation is made up of thin che t also contain garnets and b appear in this unit ~1%. This	rt, magnetite and clastic bands. The clastic bands are iotite. This unit contained Po stringers and/or thin s unit also has thin light green grunerite bands. There	895628	98.95	99.47	0.52	0.13 125.00
		Mineralization Maj. :	Type/Style/%Mineral	Comment					
		98.56 - 99.55 98.56 - 99.55	ASP BL 1 PO STR 5						



Hole Number MIS-11-09			Project:	Project: JIMINEX Project Number:						3			
<b>From</b> (m)	<b>To</b> (m)		Litholo	рду			Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Au50</b> (ppb)	
		<b>Structure Maj.:</b> 98.56 - 99.55	<i>Type/Core Angle</i> FOL 50	Comment									

#### 99.55 103.86 MS Metasedimentary-Greywacke

"Green-grey to pinkish in color, very fine grained. This unit is weakly foliated, appears more massive."

103.86	105.41	IF-Clastic	IF-Interbedded w/ clastic	895629	103.89	104.35	0.46	0.03	27.00
		"This banded iron formation is made up of thin chert, magnetite and clastic bands. The clastic bands are twicely chlorite rich but also contain minor garacts and highly chlorite unit contained Po stringers and/or		895994	104.35	104.86	0.51	0.42	421.00
		thin bands (5%)	This BIF is more chert-rich than previous units. Quartz vein from 105.15-105.25m."	895630	104.86	105.41	0.55	0.44	437.00

#### 105.41 181.52 QFS-QP Quartzofeldspathic Schist w/ qtz porp

"This unit is light grey in color with bands of pink, light green and grey. It is strongly foliated 55 degrees TCA. There is a breccia zone from 106.85-107.2m."



Hole Number MIS-11-09		Project: JIMINEX					Project Number: 3				
From (m)	<b>To</b> (m)	Lithology	Sample #	From	Το	Lenath	<b>Au Au50</b> (q/t) (ppb)				
191 50	241.40		005621	107.05	107.45	0.40	0.05 45.00				
101.52	241.40	"This unit is light arey color it is lighter than the typical meta-greywacke unit from 181 52-108 9m. The unit	095031	107.00	107.43	0.40	0.01 7.00				
		then becomes more typical grey-green color. It is very fine grained with a sugary texture. The unit is	895632	202.50	202.77	0.27	0.16 164.00				
		banded with local Py-rich areas. Py occurs as blebs and stringers. This unit contains patches which are more pelitic and appear as chlorite-gamet schist. These pelitic intervals occur from 213 55-213 75m, 217-	895033	210.50	210.75	0.25					
		215.5m, 228.8-230m and 231.35-231.85m. Quartz veining occurs from 183.8-184.1m, 210.5-210.9m,	895634	222.70	223.20	0.50	0.63 634.00				
		215-215.2m, 216.3-217.1m, 221-221.25m, 222.7-222.9m and 225.1-225.2m."	095035	223.20	223.13	0.00	2.25.2250.00				
			090000	223.73	224.00	0.00					
			090007	234.33	234.03	0.32	0.01 10.00				
			090000	230.00	230.42	0.42	0.11 106.00				
			805640	230.42	230.03	0.43	0.03 27.00				
			805641	230.03	237.13	0.34	0.01 5.00				
			805642	237.13	237.51	0.34	0.03 28.00				
			805642	237.51	237.03	0.34	0.03 25.00				
			895644	237.03	230.31	0.40	0.03 30.00				
			895645	238.01	230.31	0.00	0.06 60.00				
			895646	230.31	233.30	0.43	0.04 36.00				
			895647	233.30	240.20	0.65	0.02 22.00				
			895648	240.20	240.00	0.05	0.18 176.00				
			033040	241.17	241.52	0.15	0.10 110.00				
241.40	248.50	MS-C Metaconglomerate	895996	241.40	241.70	0.30	0.09 94.00				
		This unit is banded with large clasts and a fine grained matrix (similar to the previous unit). It is rich with Pv as blebs and stringers ~1% locally higher.	895997	241.70	242.25	0.55	0.02 23.00				
			895649	242.25	242.67	0.42	0.51 507.00				
			895650	242.67	243.12	0.45	0.02 16.00				
			895651	243.12	243.74	0.62	0.09 93.00				
			895652	243.74	244.05	0.31	0.02 22.00				
			895653	244.05	244.50	0.45	0.01 11.00				
			895654	244.50	245.17	0.67	0.05 50.00				
			895655	245.17	245.51	0.34	0.00 0.01				



Hole Number MIS-11-09			Project: JIMINEX					Project Number: 3			
<b>From</b> (m)	<b>To</b> (m)		Litholog	y	Sample #	From	То	Length	<b>Au</b> (g/t)	<b>Аи50</b> (ppb)	
					895656	245.51	246.02	0.51	0.05	51.00	
					895998	246.02	247.50	1.48	0.24	243.00	
					895999	247.50	248.50	1.00	0.06	61.00	
248.50 EOH	258.00	MS Metasedimentary-Greywacke This unit is grey-green in color. It is banded with local Py stringers. Quartz veining occurs from 254.9-		896000 895657	248.50 249.75	249.75 250.15	1.25 0.40	0.00 0.06	0.01 58.00		
		255.05m and 254.35-254.42m.			895658	250.15	250.40	0.25	0.02	24.00	
					895659	250.60	250.70	0.10	0.06	64.00	
					895660	253.55	254.13	0.58	0.15	147.00	
		Structure Maj.:	Type/Core Angle	Comment	895661	254.87	255.03	0.16	0.19	191.00	
		248.50 - 258.00	FOL 55		895662	257.59	258.00	0.41	0.20	202.00	