SUMMARY REPORT

2010 JULY PROSPECTING AND MAPPING PROGRAM ON THE DOGPAW LAKE PROPERTY, KENORA MINING DIVISION, NORTHWESTERN ONTARIO

NTS MAP SHEET 52F/05SW

METALS CREEK RESOURCES

January, 2012 Jeff Myllyaho

TABLE OF CONTENTS

		PAGE
1.0	INTRODUCTION	1
2.0	TERMS OF REFERENCE	1
3.0	LOCATION AND ACCESS	1
4.0	CLAIM HOLDINGS AND PROPERTY DISPOSITION	2
5.0	REGIONAL GEOLOGY	5
6.0	PROPERTY GEOLOGY	6
7.0	EXPLORATION HISTORY	7
8.0	CURRENT PROGRAM STEPHENS LAKE STOCK FLINT LAKE AREA BAG LAKE AREA	11 11 12 13
9.0	CONCLUSIONS AND RECOMMENDATIONS RECOMMENDED EXPENDITURES	14 14
10.0	REFERENCES	16

List of Tables Table 1 – Dogpa	w Lake Land Tenure Data
	List of Figures
Figure 1 – Regio Figure 2 – Claim	nal Location Map Location Map
	List of Appendices
Appendix I Appendix II Appendix III Appendix IV Appendix V Appendix VI	List of Sample #'s, UTM Coordinates and Assay Values Personnel Involved with Prospecting Program Daily Work Log of Personnel Laboratory Certificates of Analysis Expenditures Attached Maps and Figures
	Sample Locations Map; 1:50000
	Stephens Lake Geology Map; 1:2000
	Flint Lake Geology Map; 1:5000
	Bag Lake South Trench Map; 1:150
	Figure 1; Regional Location Map
	Figure 2; Claim Location Map

1.0 INTRODUCTION

During the period of July 20th to July 28th, 2010, Metals Creek Resources (MEK) personnel conducted a prospecting/sampling and mapping program on the Dogpaw Property comprising 22 unpatented staked claims located within the Kenora Mining District, currently under the name of North American Uranium Corp. (NAUC), or optioned to NAUC by Endurance Gold Corporation. North American Uranium Corp. is a wholly owned subsidiary of Metals Creek Resources. The purpose of the prospecting program was to systematically cover different areas on the property by using the grid lines as well as mapping lithology and alteration over the grids.

2.0 TERMS OF REFERENCE

The historical portion of this report is an extract of a report titled "A Report to Evaluate and Recommend an Exploration Program on the Dogpaw Lake Property of Endurance Gold Corp." dated October, 2004, for Endurance Gold Corp. by Charles Blackburn ("Blackburn") and J. Garry Clark ("Clark").

Map projections are in UTM, North American Datum 83, Zone 15 and all referenced UTM coordinates are in this project unless stated otherwise. Contractions are "mm" = millimeter, "cm" = centimeter, "m" = meters, "km" = kilometers, "g" = gram, "kg" = kilogram, "in" = inch, "ft" = foot, "lb" = pound, "oz" = troy ounce, "oz/ton" = troy ounce per short ton, "g/T" is grams per metric tonne, and "ddh" = diamond drill hole.

3.0 LOCATION AND ACCESS

The Dogpaw Lake property is located within the Kenora Mining District in Northwestern Ontario, within both Tweedsmuir Township and Dogpaw Lake Area. The Dogpaw Lake Property is located within the NTS Map Sheet 52F/05SW as well as small portions of 52F/05SE and 52F/04NW. The Dogpaw property is located approximately 55 km southeast of the town of Kenora. (Figures 1 & 2).

The various claim blocks of the Dogpaw Lake Property can be accessed by either boat, ski-doo or road. Highway 71, a paved highway, transects the western portion of the property and runs mainly North-South.

The Cameron Lake road runs east from Highway 71 through the Southern portion of the Northern block on the Dogpaw Lake Property. This road continues on to the Cameron Lake Gold Project currently being evaluated by Coventry Resources.

Lake access can be gained via these roads to enable access to other portions of the property by boat or Ski-Doo.

4.0 CLAIM HOLDINGS AND PROPERTY DISPOSITION

The Dogpaw Lake property comprises 22 unpatented staked claims, with two different claim blocks, totaling 265 units and 4163 hectares (Table 1, and Figure 2). These claims are either licensed to North American Uranium Corp., or under an option agreement with Endurance Gold Corporation. The July 2010 field program focused on both the northern and southern claim blocks. A summary of the claim holdings from this report is provided below (Table 1).

Table 1: Dogpaw Lake Land Tenure Data

Claim #	Units	Recorded Owner	Recorded	Expiry
1221374	4	Endurance Gold Corporation	2001-Sep-26	2012-Sep-26
3001238	9	Endurance Gold Corporation	2002-Jul-02	2013-Jul-02
3001239	16	Endurance Gold Corporation	2002-Jul-02	2013-Jul-02
3001241	16	Endurance Gold Corporation	2002-Jul-02	2013-Jul-02
3003433	16	Endurance Gold Corporation	2002-Sep-03	2012-Sep-03
3003583	10	Endurance Gold Corporation	2003-Apr-22	2013-Apr-22
3003672	8	Endurance Gold Corporation	2002-Oct-15	2012-Oct-15
3010495	16	Endurance Gold Corporation	2002-Oct-15	2012-Oct-15
<u>3010496</u>	16	Endurance Gold Corporation	2002-Oct-15	2012-Oct-15
3011344	12	Endurance Gold Corporation	2002-Dec-19	2013-Dec-19
3011345	3	Endurance Gold Corporation	2002-Dec-19	2013-Dec-19
<u>3011346</u>	15	Endurance Gold Corporation	2002-Dec-19	2012-Dec-19
3011347	15	Endurance Gold Corporation	2002-Dec-19	2013-Dec-19
3012203	4	Endurance Gold Corporation	2003-Apr-22	2013-Apr-22
<u>4213374</u>	3	North American Uranium Corp.	2007-Mar-12	2012-Mar-12
<u>4213375</u>	16	North American Uranium Corp.	2007-Mar-12	2013-Mar-12
<u>4213376</u>	16	North American Uranium Corp.	2007-Mar-12	2013-Mar-12
<u>4213377</u>	16	North American Uranium Corp.	2007-Mar-12	2013-Mar-12
<u>4213378</u>	10	North American Uranium Corp.	2007-Mar-12	2013-Mar-12
4213379	16	North American Uranium Corp.	2007-Mar-12	2013-Mar-12
<u>4213380</u>	16	North American Uranium Corp.	2007-Mar-12	2013-Mar-12
<u>4213381</u>	12	North American Uranium Corp.	2007-Mar-12	2013-Mar-12

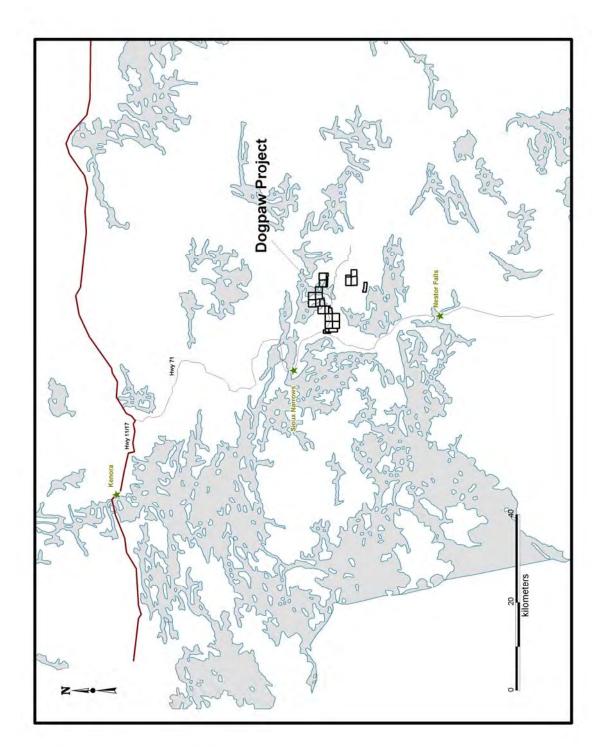


Figure 1 - Regional Location Map

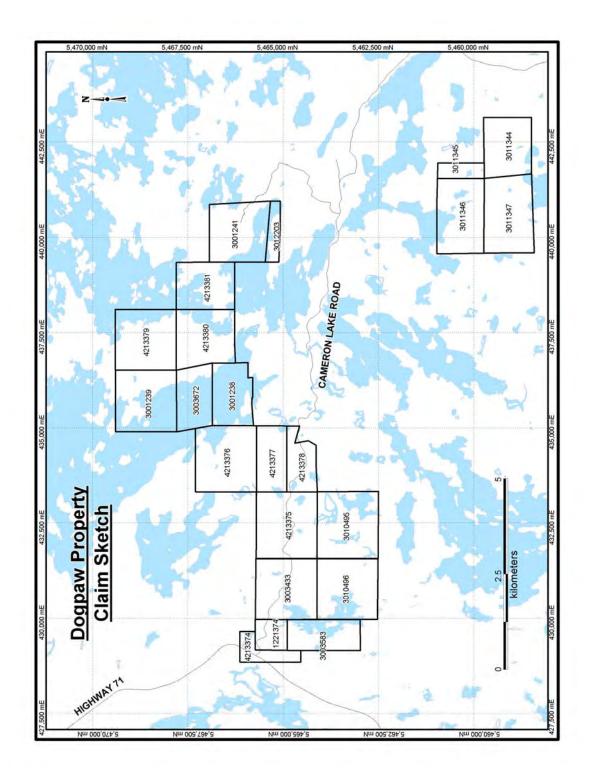


Figure 2 – Claim Location Map

5.0 REGIONAL GEOLOGY

The Dogpaw Lake Property lies within the Archean Superior Craton aged 2.6-2.9 billion years as well as within the central portion of the east-west trending Wabigoon Subprovince.

The Superior Province is subdivided into subprovinces characterized by four combinations of distinctive rock types: volcano-plutonic; metasedimentary; gneissic or plutonic; and high-grade gneiss. The Wabigoon Subprovince is characterized by greenschist facies metamorphic greenstone belts consisting of metavolcanic rocks as well as sedimentary rocks, surrounded and intruded by felsic plutonic rocks.

The Wabigoon Subprovince has been further broken down (informally) by Blackburn et al (1991), into three regions: a Western, a Central and an Eastern Region. The Dogpaw Lake Property lies within the Western Wabigoon region, "a series of interconnected greenstone belts surrounding large elliptical granitoid batholiths.....Volcanic sequences comprise ultramafic (komatiitic), through mafic (tholeiitic, calc-alkalic, and minor alkalic and komatiitic) types, to felsic (mostly calc-alkalic) rocks. Sedimentary sequences are mostly clastic rocks of alluvial fan-fluvial, resedimented (turbidite) and rare platformal facies. Minor chemical metasedimentary rocks are predominantly oxide iron formation." As well as granitoid batholiths, "Numerous smaller post-tectonic granitoid stocks intrude the greenstone belts. Mafic to ultramafic sills and stocks are marginal to batholiths or intrude the metavolcanic sequences." (Blackburn et al 1991, p. 305).

The Dogpaw Lake Property overlies a significant portion of the Kakagi-Rowan Lakes Greenstone Belt. The belt is divided in two by the northwest-trending Pipestone-Cameron Deformation Zone. Although rock types and sequences on either side are similar, no unequivocal stratigraphic correlations have been made across the fault zone.

Southeast of the deformation zone, the correlative Snake Bay and Katimiagamak Lake Groups are the lowermost units. They face towards the centre of the belt, and are composed of mafic volcanic flows intruded by mafic sills. They are overlain by a thick, predominantly pyroclastic, volcanic sequence of mixed chemical composition varying from mafic through felsic, but predominantly intermediate. At their southeastern end they pass into sedimentary rocks (Thompson Bay sediments). This Kakagi Lake Group is in turn intruded by differentiated ultramafic (peridotite and pyroxenite) to mafic (gabbro) sills, called the Kakagi Sills.

Northeast of the Pipestone-Cameron Fault, the correlative Rowan Lake Volcanics and Populus Lake Volcanics are the lowermost, mafic units. They are folded about a northeast-trending anticline at Rowan Lake, and overlain on their south limb by the Cameron Lake Volcanics. The latter sequence is of mixed chemical composition, similar to the Kakagi Lake Group, but not necessarily correlative across the Pipestone-Cameron Fault. The Cameron Lake Volcanics are in turn overlain by the Brooks Lake Volcanics - an upper mafic sequence.

A number of late, post-tectonic stocks intrude the greenstone belts on either side of the Pipestone-Cameron Fault. These include from north to south, the Flora Lake, Nolan Lake, Stephen Lake, Phinney, and Dash Lakes Stocks.

6.0 PROPERTY GEOLOGY

The Dogpaw Lake Property's outer boundary incorporates, to the northeast of the Pipestone-Cameron Fault, a portion of the Rowan Lake Volcanics. The Rowan Lake Volcanics consist predominantly of massive and pillowed basaltic flows, with coarser gabbroic portions.

Southwest of the fault zone, Snake Bay group mafic volcanic flow rocks in the northwest of the property are in contact with pyroclastic rocks of the Kakagi Lake Group along the northwest shore of Emm Bay. This contact has important implications for mineralization. Snake Bay Group volcanics are predominantly massive to pillowed basaltic flows, containing coarser gabbroic bodies that are lenticular to irregular in shape. The latter are generally interpreted to be intrusive (e.g. Davies and Morin 1976a) rather than of flow origin.

The southern portion of the property is entirely underlain by Kakagi Lake Group rocks and the differentiated Kakagi Sills that intrude them. The combined sequence of pyroclastic rocks and peridotite-to-gabbro sills has been folded about the major northeast-trending Emm Bay - Peninsula Bay Syncline.

In the southeast portion of the property, the late tectonic Stephen Lake Stock is intruded into the uppermost or youngest sequences of the Kakagi Lake Group pyroclastic rocks. The stock is described as being mostly heterogeneous by Davies and Morin (1976a): the main internal portion was mapped as massive granodiorite, while dioritic phases appear to characterize the marginal portions. Large angular xenoliths of mafic volcanic rock and gabbro are reported (Davies and Morin 1976a) within the stock, mostly close to its margin. Only the northwest portion of the stock lies outside the current property. The stock is elliptical in shape, with its long axis oriented in a northwest direction. This direction is both parallel to the trend of the major Pipestone - Cameron deformation zone and at right angles to the axial plane of the Emm Bay - Peninsula Bay syncline. Both of these latter structures may have exerted control on the emplacement of the stock, and also have influenced mineralization within it. Small bodies of felsic rock that lie along this northwest trend at Cedartree Lake may be satellitic to the Stephen Lake Stock.

A variety of felsic intrusions occur within the volcanic sequence, both as dikes and sills. They have been described as quartz porphyry, feldspar porphyry and quartz-feldspar porphyry are interpreted to predate the Stephen Lake Stock (Davies and Morin 1976a).

7.0 EXPLORATION HISTORY

Property History

The following property history has been compiled largely by Des Cullen P. Geo 2007.

- **1944: E.M. Robertson and Company** Gold mineralization was reported and diamond drilling was done on one of these groups of claims.
- **1944:** Frobisher Exploration Company Ltd. Prospecting and drilling of 51 holes totaling (2344 ft total) on the discovery vein. Mostly trace amounts of gold over narrow widths were reported on assay: one high assay of 3.13 ounces gold per ton was reported over 1.8 feet.
- 1944-5: Harry Silverman and Albert Gauthier jointly held a group of claims at Dogpaw Lake, the major portions of which are included in parts of NAUC claims 3001239 and 4213379. Most of the work was done at two places, one on the west side of a small bay on the northeast shore of Dogpaw Lake (now known as the Gauthier Occurrence), and the other on the east side of the same bay. Sylvanite Gold Mines Ltd. optioned the property in 1944. Numerous carbonatized zones that were interpreted to strike in various directions were outlined, sampled and assayed, and values ranging from trace amounts to 2.40 ounces gold per ton from a grab sample were obtained.
- **1960-2:** Noranda Mines Ltd. Geological mapping and drilling as follow-up to airborne geophysical survey. Six holes were drilled (1594 ft total).
- **1961: Selco Exploration Company Ltd.** geologically mapped a group of claims north of Bag Lake, parts of which are included in NAUC claims 1221374 and 3003583. The claims were optioned from W.A. Johnston and associates and have come to be known as the Jenson-Johnston Prospect. Diamond drilling of 7 holes (1637 ft total). Grab samples taken prior to the drilling at the main occurrence assayed from trace to 0.50 ounces gold per ton, and the highest value obtained from drill core was 0.23 ounces gold per ton over a 2.5 ft core length.
- **1973-4:** Chester Kuryliw did geological mapping and ground magnetic surveys over each of two of his claim groups, one at Dogpaw Lake, the other at Caviar and Flint Lakes.
- **1975:** Hudson Bay Exploration and Development Company Ltd. conducted an airborne electromagnetic survey directed at base metals at Stephen Lake area.
- **1980:** Gulf Minerals Canada Ltd. diamond drilled 9 holes (1058m total) in exploration for gold at the Knapp Prospect at the north end of Bag Lake.
- **1980:** Noranda Mines Ltd. did ground magnetometer and IP surveys and geological mapping on their claim group between Flint and Corbett Lakes.

- **1981:** Noranda Mines Ltd. completed ground magnetometer and IP survey over the Martin option generating several targets. The targets were drilled in a 7 diamond drillhole program. All drill holes were very short, under 100 feet, and intersected several quartz veins and zones of intense silicification. No assay results are listed.
- **1983: Rio Canex Inc.** diamond drilled 3 holes at the north end of Weisner Lake on the same zone that had been previously tested for base metals by Noranda (1960-2) and Goldray (1971, 1975). However, these 3 holes were considerably longer (1849m or 6066 ft total).
- **1983:** Southwind Resources Explorations Ltd. (551970 Ontario Ltd.) conducted ground magnetic and electromagnetic surveys on a claim group east of Weisner Lake, all but the eastern portion of which encompasses parts of NAUC claim 3011344.
- **1983-4: FTM Resources Inc.** did magnetic and VLF electromagnetic surveys, a geological survey, stripping and trenching, sampling for assay and soil sampling, all over a claim group that straddled Dogpaw Lake and included the Gauthier Occurrence on the east shore. Assays of 1762ppb gold and 1913ppb gold were obtained from one of the new zones, and 0.686 and 0.275 ounces gold per ton from the older Gauthier Occurrence zone.
- **1983, 86: FGM Management and Gold Corporation** sampled for gold on a group of claims at Dogpaw Lake that include parts or all of NAUC claim 3001239. These incorporate the Gauthier Occurrence, previously investigated by FTM Resources Ltd. in 1983-1984. No sample location map is available in the Assessment Files; however, assays above 1 ounce gold per ton were obtained from 4 samples, including one of 3.95 ounce gold per ton from a quartz vein. Three holes were diamond drilled (699 ft total), all to intersect a northwest-trending shear at the Gauthier Occurrence: best assay reported was 0.062 ounce gold per ton for a 1.4 ft core length.
- **1983,84: Frances Resources Ltd.** stripping, preparation of portal and shaft sinking on the number 3 vein in the Wensley Occurrence previously held by Noranda and Roy A. Martin and called the Martin Option. The portal lies on NAUC claim 4210010.
- **1984:** Rolls Resources Ltd. (539258 Ontario Ltd.) ground magnetic and electromagnetic surveys over a claim group at and southeast of Little Stephen Lake that included parts of NAUC claims 3011344, 3011345 and 3011346.
- **1984:** Sault Meadows Energy Corporation flew airborne magnetic and electromagnetic surveys over three widely separated areas at the north end of Emm Bay, between Flint and Caviar Lakes, and between Cedartree and Wicks Lakes that covered a number of NAUC claims in those areas.

- **1984-5:** Flint Rock Mines Ltd. completed geological mapping and airborne electromagnetic and magnetic surveys directed at gold exploration over a claim group between Little Stephen and Weisner Lakes.
- **1984, 86: Micham Exploration Inc.** completed an airborne electromagnetic and magnetic surveys, geological mapping and follow-up diamond drilling directed at gold exploration on a group of claims between Dogpaw, Caviar and Flint Lakes, that included the Flint Lake Mine Occurrence. The claims are included in all or parts of NAUC claims 4213379, 3003672, 3001238, 4213380, 4213381 and 3001241. A new gold showing north of the mine assayed 263 ppb gold; while a 902 ppb assay was obtained from an outcrop adjacent to a regionally extensive Proterozoic age diabase dike located close to the south end of Dogpaw Lake. The drilling consisted of four holes (543 ft total) all drilled to test the zone that hosts the Flint Lake Mine Occurrence: trace amounts of gold were typically assayed, the best assay being 0.014 ounce gold per ton over a 2 ft core length. Eighteen samples of "cobbed ore" taken from the old stockpile at the mine assayed from trace to 8.36 ounces gold per ton, for an average of 2.70 ounces per ton.
- **1985-9: Dunfrazier Gold Corporation Inc.** acquired by staking a large claim holding now included in portions or all of NAUC claims 1221374, 3003433, 3010496, 4213375, 4213377, 3010495 and 3003583. Over a 5-year period, geological, magnetic and biogeochemical surveys were conducted over all or portions of the ground, and follow-up diamond drilling, trenching and sampling for assay done, all directed at gold exploration. Ogden (1985a) identified numerous targets and was of the opinion that strong north trending zones had not been recognized in previous work including drilling by Gulf Minerals Canada Ltd. in 1980. In 1985, 10 holes (3920 ft total) were drilled on various targets (Ogden 1985b). Four holes were drilled on the Knapp prospect, previously drilled by Gulf: Ogden targeted two of these holes to test one of the northerly lineaments. Anomalous gold values were obtained on assay, the highest being 1200 ppb over a 2.7 ft core length and 6795 ppb over a 2.5 ft length.
- **1987-8: Granges Exploration Ltd.** opened up a trench on present NAUC claim 1221374, from which 6 samples were taken for assay, the highest returning 14.30 grams per tonne across 1m. Subsequently the company did electromagnetic and magnetic surveys across a claim group that included NAUC claims 1221374 and 3003583. Diamond drilling of 12 holes (1390m total) was done to test northerly-trending geophysical targets. Seven of the holes were drilled in the vicinity of the Jenson-Johnston Prospect, which was previously examined and drilled by Selco in 1961, south of, but close to the Cameron Lake Road. The rest were located to the south, on the west side of Bag Lake: two of the holes lay just outside and to the west of the NAUC claim group. The drilling confirmed gold at the original occurrence, with a best assay of 34.90 grams per tonne for a core length of 0.25 m.
- **1988: Joe Hinzer and John Ternowesky** conducted an airborne magnetic and electromagnetic survey over a claim group that extended from the north end of Mongus Lake north-northwestward to Little Stephen Lake and included Weisner Lake.

- **1988 Teeshin Resources** completed a large exploration program including diamond drilling and 350 feet of drifting on the number 3 vein on the Wensley Occurrence, now NAUC claim 4210010. Conclusions of the program were that the gold is in the vein only and so limited to narrow, uneconomic widths. Further exploration was recommended to further investigate the potential of the vein down dip and along strike.
- **1997-8: Avalon Ventures Ltd.**, conducted: a ground magnetometer survey, an induced polarization/resistivity survey, geological mapping, rock geochemistry and soil sampling (mobile metal ion technology), on a claim group that covers part or all of NAUC claims 4213381 and 3001241.
- **1997-9: Starcore Resources Ltd.** conducted a ground magnetometer survey, an induced polarization/resistivity survey, geological mapping, rock geochemistry and soil sampling (mobile metal ion technology) on a claim group that covers parts or all of NAUC claims 3001238, 3001239, 4213379, 4213380 and 3003672.
- **1997-8, 2000: Hornby Bay Exploration Ltd.** conducted an airborne electromagnetic and magnetic survey over a large claim group that encompassed most of Kakagi Lake, eastward to Cameron Lake and northwestward to Cedartree Lake. A prospecting reconnaissance of the entire area was done in 1997-1998. However, no gold values were obtained on assay of samples taken on present NAUC ground. Detailed geological mapping was done in small selected areas in 2000, including west of Wicks Lake on leased claim CLM368.
- **1998: Ken Fenwick**, as part of a prospecting program on his claims in the vicinity of Highway 71 that included NAUC claims 1221374 and 3003583, obtained gold assays of 1100 ppb and 1500 ppb from shear zones close to the Cameron Lake road in proximity to the Jenson-Johnston Prospect.
- **2000: Hornby Bay Exploration Limited** completed a short, four day, geological mapping program over the Wensley Occurrence covering NAUC claim 4210010. High grade gold assays were returned from grab samples in the area as well as elevated PGM values.
- **2003: 6172342 Canada Ltd.**, as part of a prospecting program on their claims in the vicinity of northeast Bag Lake, (that currently include NAUC claims 1221374 and 3003433), grab sampling obtained gold assays ranging between 123 ppb and 47746 ppb, from twenty-two samples.
- **2004: 6172342 Canada Ltd.,** as part of a short reconnaissance mapping program on their claim 3001275 (now NAUC's claim 4215379) in the vicinity of central Cedartree Lake and the historical Robertson Occurrence grab sampling obtained no significant gold or PGE assays, from thirty samples.
- **2003-2004: Endurance Gold Corp.** completed a series of exploration programs on the Dogpaw Lake Property between the summer of 2003 and the fall of 2004 (following

compilation work by Cunniah Lake Inc.). The work comprised prospecting, geological mapping, sampling, diamond drilling, line cutting, humus sampling, and airborne geophysics. Two new showings were discovered during this work, the Starlyght and the New Dogpaw Showings. Exploration completed by Endurance Gold Corp. on the Starlyght Showing has fifteen grab samples taken in the area returned assayed gold values ranging from 3,189 ppb to 47,290 ppb. During the period February 28 through March 19, 2004, a seven hole, 850.4 metre diamond drilling program was completed on the Starlyght Showing and returned results up to 4.71 g/t Au over 0.3 metres.

2007: North American Uranium Corp. completed a 3 hole diamond drilling program during March 2007, in the vicinity of the Starlyght and Weisner Lake North Showings for a total of 765.0 meters. Two of the holes were laid out to test the Starlyght Occurrence while the third tested the Weisner Lake North Showing. The holes were oriented to test and intersect gold mineralization related to a strong, complex fracture-alteration system trending roughly north-south within the granodioritic Stephen Lake Stock. All three holes intersected zones of variably altered and mineralized granitic rocks, with altered-mineralized zones exhibiting variable silicification, iron-carbonate, potassium feldspar, sericite, epidote, chlorite and variable pyrite. Highlighted assays included 1.178g/t Au over 7.7m in hole DP-07-08, 1.4g/t Au over 5.0m in hole DP-07-09, and 0.564g/t Au over 3.8m in hole DP-07-10.

2008-Present: Metals Creek Resources has completed a range of geological and geophysical surveys over the entire claim holdings in the area.

8.0 CURRENT PROGRAM

From July 20th to July 28th, Metals Creek Resources personnel conducted a prospecting/sampling and mapping program on 2 separate claim blocks over 3 cut, geophysical grids near Bag Lake, Stephen's Lake and Flint Lake. A total of 160 grab samples were collected on the entire property, as well as 10 channel samples from the Bag Lake Area, with detailed mapping taking place on the Stephen's and Flint Lake grids. A location map of all samples taken is attached at the back of this report in Appendix VI.

Stephen Lake Stock

Detailed mapping of the previously established geophysical grid over the western side of the Stephen's Lake claim block was performed with outcrops, vegetation and sample locations sited. Mapping was performed at a 1:2000 scale and the map for the area is located in Appendix VI at the back this report. The mapping was successful in identifying alteration features and weak lithological changes in the mostly massive felsic intrusive, Stephen Lake Stock. The mapping highlighted the northwest corner of the claim block as hosting granodiorite changing to more massive granite to the south and southeast. This granodiorite has seemed to be the location of elevated gold values discovered from previous prospecting and shows possible expansion of zones such as D-Zone and areas to the northwest (see Metals Creek's 2008-2010 prospecting/sampling

reports). The 2010 prospecting on the Stephen's Lake claims was very successful in expanding known gold zones as well as uncovering new anomalous to highly anomalous zones within the Stephen's Lake Stock. A key area of interest which sampling expanded was Metals Creek's D-Zone uncovered from 2008 prospecting. 2008 prospecting uncovered a 10x10m area where five grab samples were taken. These dispersed samples assayed 4.697, 5.357, 2.096, 6.664, and 18.56 g/t Au. The altered and mineralized, gold bearing zone was highly encouraging and was hand stripped as much as possible. 2010 prospecting in proximity to D-zone, expanding the 10x10m zone to an interpreted 50x80m zone with 11 more grab samples taken. Assays for these 11 samples returned gold values of 2.05, 2.472, 2.984, 3.506, 8.257, 6.541, 9.082, 0.522, 0.306, 29.471 and 0.164 g/t. D-zone (UTM: 440039E 5460447N) is a variably altered and mineralized granodiorite exhibiting strong silicification and carbonatization with a sulphide content from trace to 7% locally. The majority of the 2010 sampling was taken approximately 40-45m east of the initial D-Zone sampling from 2008, with minor sampling extending mineralization to the north. Approximately 230m NW of D-Zone, a newly uncovered area of interest and elevated gold values was located ("Busch Zone"). This area is positioned on the edge of a downward slope, grading into a low lying (and dry), alder and grass covered strip of land. The Busch Zone (UTM: 439828E 5460545N) is an altered and carbonatized granodiorite displaying quartz veining and minor stockworking with pyrite content up to 5% and trace amounts of molybdenite. Assay values for this 25x15m area were 0.425, 2.625, 3.234, 3.306, 3.424, 3.872, 5.740, 8.313, and 11.038 g/t Au. These were preliminary samples during a first pass of the area and further follow-up is definitely required. Another area displaying elevated gold values discovered during the 2010 prospecting is the "Blue Zone" (UTM: 439787E 5460465N). This area is a 20x10m zone of sampling positioned 70-80m SW of the Busch Zone, with assays reporting 0.759, 1.742, 4.457, 4.991 and 10.681 g/t Au. This area shows limited sampling of a quartzrich, altered and carbonatized granodiorite with up to 5% disseminated pyrite and trace and local hematite. Lithology is similar to the Busch Zone and due to the close proximity, could be a continuation of the auriferous zone. Additional follow-up of this area, as well as the area between the Busch and Blue Zones, is definitely warranted. The final main area of interest located during the 2010 prospecting was the "Bud Zone" and was due to 9 grab samples taken 1.5km SSE of D-Zone. Out of the 9 samples, 8 returned anomalous gold values above 150ppb. Assays on the Bud Zone (UTM: ranged from 35 ppb up to 3.124 g/t Au with 3 out of the 9 samples over 1.0 g/t Au. This area is south of the mapping performed on the geophysical grid and more south than the furthest extent of the Induced Polarization performed in 2010 for Metals Creek. A total of 86 grab samples were taken on the Stephens Lake claim block in 2010. MEK personnel have never prospected this far south on the claim block and further investigation is definitely recommended as well as areas in close proximity to D-zone.

A map of sample locations is present at the back of this report contained within Appendix VI, as well as a table of sample coordinates, descriptions, and assay values within Appendix I.

Flint Lake Area

Detailed mapping of the previously established geophysical grid on the north shore of Flint Lake was performed, with outcrops, vegetation and sample locations sited.

Mapping was performed at a 1:5000 scale and the map for the area is located in Appendix VI at the back this report. The mapping was successful in identifying alteration features that were mostly related to structure, as well as local lithological changes throughout the mostly massive and homogeneous mafic volcanics. The mapping highlighted shear zones running east-west to NW-SE throughout the property. On surface, most of these shear zones appear discontinuous with local shears displaying kilometer-scale strike length. These are visible on the accompanying map of the Flint Lake Area. prospecting in the Flint Lake Area was very successful as 28 grab samples were taken and a high grade trench was located which had been previously uncovered by very historical work. This area is of key interest as 2010 prospecting uncovered a 15 x 4m trench consisting of quartz veining and stockworking with significant sericite and chlorite alteration contained within a brittle shear zone. Most of Metals Creek's 2010 sampling was taken from historic rubble blasted or chipped out and piled on the edges of the trench. This is due in part because of the bedrock material is mostly covered and inaccessible due to overburden slumping and water filling the trench. Quartz-rich material along the edges of the trench was sampled and returned the highest gold values with 7 samples of quartz dominant material assaying 10.663g/t, 18.233g/t, 32.505g/t, 59.350g/t, 60.639g/t, 68.865g/t and 112.467g/t Au. These samples contained >60% quartz with the majority hosted flakes of visible gold. More quartz-poor samples returned values slightly lower than the quartz-rich material with three grab samples assaying 77ppb, 222ppb and 29.683g/t Au from the exposed chlorite-carbonate schist containing 10-40% quartz content. This historic area of interest is significant due to the fact that there is underexplored portions of the claim block between the main Flint Showing, this freshly uncovered, Flint Central and the Flint North trenches sampled in 2009 (Myllyaho, 2009). Further work is highly recommended for this area of Metals Creek's claim block.

Bag Lake Area

Prospecting was performed on the Bag Lake Area with 40 grab samples taken near the east and north shores of Bag Lake, 10 channel samples taken on the Road Zone from sheared volcanics and 5 samples taken in the central portion of the Northern Claim block nearing the property border. The majority of the 40 grab samples were taken near the northwest edge of Bag Lake (see attached Sample Location Map at the back of this report), where a weakly mineralized quartz-feldspar porphyry unit outcrops at surface. This unit is described as an altered quartz-feldspar porphyry unit with approximately 10% mm-sized quartz eyes and having pervasive potassium feldspar content. Local and patchy carbonate alteration is also visible and is usually associated with up to 5% finegrained pyrite. Gold values ranged from nil to anomalous with assays from <5ppb up to 4672ppb from the 32 samples taken from this area. Values were consistently less than 656ppb with only four grab samples returning Au assays over 1.0g/t. The four slightly higher grade samples assayed 1.044g/t, 1.334g/t, 1.677g/t and 4.672g/t Au. This area was sampled along strike for ~200m and, where visible, was up to 25m in width. Although a portion of the sampling returned low gold values, the 2010 prospecting was the first time anything of significance was found around this area as no known historical showings are Due to this being an initial discovery, follow-up work is definitely recommended on and around this area. Another area of moderate interest is an outcrop

toward the southeast tip of Bag Lake. This area showed geologically interesting lithologies and sulphide content and is labeled 'Road Zone'. 10 channel samples were taken with limited results in relation to gold values. Assays were low with values from <5ppb from the barren mafic volcanics, up to 564ppb from the chlorite/sericite schist hosting the visible sulphide. This shear zone displays local quartz stringers and a strong Fe-carbonate content throughout. Due to the limited extent of the outcrop, as well as the low gold values, no further work is recommended on this specific portion of the claim block. The outcrop was mapped at a 1:150 scale with the attached map contained within appendix VI at the back of this report.

9.0 CONCLUSION AND RECOMMENDATIONS

The mapping and prospecting program in the summer of 2010 was successful in identifying similar lithologies to known showings as well as uncovering new, and previously unsampled, zones. On the Stephens Lake claim block, expansion of the Dzone was a significant highlight as well as the discovery of several new, grassroots showings on the entire Stephens Lake Stock area. Recommendations for D-zone include a mechanical trenching and stripping program aimed at confirming strike and dip orientations, as well as uncovering bedrock between the original D-zone surface showing and the newly discovered area 40-50m east. This trenching should be followed by a short, initial drill program to greater understand orientation, strike length and grade of the surface expression. All other new discoveries on D-zone should have follow-up prospecting done on them with possible trenching to follow.

The Flint Lake mapping and prospecting uncovered quartz and carbonate-rich shear zones that are interpreted as continuous over one kilometer in length. Known surface showings with visible gold are contained within these shears which make these prime targets for additional mineralized areas. Trenching the area along strike from Flint Central towards the Flint North is highly recommended with a drill program dependant on results. This area is a significant target for auriferous quartz veining similar to that found at Flint Central as well as the main Flint Showing.

Due to the nature of the anomalous and moderately mineralized quartz-feldspar porphyry encountered during the Bag Lake prospecting, additional sampling is highly recommended towards the northeast shore of Bag Lake. This area has seen little to no known and documented exploration in the past and could provide a near-surface, bulk tonnage deposit. This area should be evaluated after results are back from additional sampling. Due to the sporadic nature of assays returned on the rest of the Bag Lake Area, no further work is recommended at this time.

Approximate Recommended Expenditures:

Additional 20 days of prospecting	:	\$40,000
Trenching:		

800m @ 100m/12hr day @ \$120/hr Mobilization:

\$11,520 \$9,000 Total Trenching Cost: \$20,520

Drilling:

1500m @ \$150/m (all in cost of drilling, accommodations, assays, etc): \$225,000

TOTAL \$285,520

10.0 REFERENCES

- Cullen, D. D. 2007. Technical Report on the Dogpaw Property, Kenora Mining Division; *report for* North American Uranium Corp., 50p.
- Jeffs, C. 2007. Geological Mapping Program, Dogpaw Lake Program, Kenora District; *report for* North American Uranium Corp., 16p.
- Johnston, M.J. 2010. Report of Induced Polarization and Total Field Magnetic Surveys at the Dogpaw Project, Bag Lake and Flint Lake Grids, Dogpaw Lake Area, Ontario; *report for* Metals Creek Resources., 5-9p.
- MacIsaac, M. 2007. March 2007 Diamond Drill Program, Dogpaw Lake Property, Kenora Mining Division; *report for* North American Uranium., 1, 5-7p.
- Myllyaho, J. 2008. 2008 Summer Prospecting Program on the Dogpaw Lake Property, Kenora Mining Division, Northwestern Ontario; *report for Metals Creek Resources*.
- Myllyaho, J. 2009. 2009 September Prospecting and Mapping Program on the Northern Portion of the Dogpaw Lake Property, Kenora Mining Division, Northwestern Ontario; *report for* Metals Creek Resources.
- Ravnaas, C., Raoul, A. and Wilson, S. 2003. Kenora District; *in* Report of Activities 2002, Resident Geologist Program, Red Lake Regional Geologist, Ontario Geological Survey, Open File Report 6110, 51p.

APPENDIX I

Sample Numbers/Descriptions, UTM Coordinates and Assay Values

Waypoint	Date	Zone	Easting	Northing	Elevation	Au (ppb)	Description
DHJ-10-005				5465954	352		mv; sheared and chloritic; qtz carb porphyroblasts forming discontinuous stringers; trace py+/-po
DHJ-10-006				5466653	348		carb/chl schist; rusty coloured; thin qtz stringers 1-2mm; friable
DHJ-10-007	21-Jul-10	15	439613	5466610	348		carb/chl schist w qtz; 30% qtz; 55% carb; 15% chl; trace pyr; old trench @ L12E 0+50N
DHJ-10-008				5466610	348		thin 3cm qtz vein in carb/chl schist; 60% qtz; 35% carb; 5% chl; tr pyr in qtz; old trench @ L12E 0+50N
DHJ-10-009				5466610	348		carb/chl schist; rusty coloured w minor sericite; very friable
DHJ-10-010	21-Jul-10	15	439613	5466610	348		qtz vein in chl/sericite schist; 40% qtz (white) ; 55% chl (black); 5% ser; minor - 0.5% pyr; trace cpy
DHJ-10-011	22-Jul-10	15	438538	5466694	347		chl/ser schist; sheared @ 242-79; minor silicification; trace carbonate
DHJ-10-012	22-Jul-10	15	438532	5466685	350	18	chl/ser schist; sheared @ 242-79; minor silicification; trace carbonate
DHJ-10-013	23-Jul-10	15	440564	5459278	384	6	qtz vein; 8cm wide in massive granite; semi-transparent qtz; oriented 342°-86°
DHJ-10-014	23-Jul-10	15	440610	5459299	382	51	qtz vein; semi-transparent qtz with granite clasts; 10cm wide in a zone of numerous qtz veins; red hematite staining; vugs w pyr
DHJ-10-015	23-Jul-10	15	440610	5459299	382	89	qtz vein; vein oriented 340°/90°; up to 30cm wide; semi-transparent qtz
DHJ-10-016	23-Jul-10	15	440587	5459293	386	<5	qtz stockwork; qtz stockwork within granite approx 0.6m wide; trace hbl/galena/sphalerite?
DHJ-10-017	24-Jul-10	15	440169	5460282	359	465	altered granodiorite bld; strong k-spar alt; minor carb; thin qtz stringers; 2% pyr (diss cubes); in creek
DHJ-10-018	24-Jul-10	15	440528	5460271	356	11	carb altered granodiorite; 20% carb; trace pyr
DHJ-10-019	24-Jul-10	15	440439	5460534	344	149	weakly altered granodiorite; massive; grey with chlorite and minor rust on fractures
DHJ-10-020	24-Jul-10	15	439641	5460969	369	26	granodiorite; rusty and moderately bleached; green/grey colouration; trace pyr
DHJ-10-021	24-Jul-10	15	439713	5460972	364	11	granodiorite; rusty and moderately bleached; green/grey smokey appearance; minor carb as thin stringers; 0.5% diss cubic pyr
DHJ-10-022	25-Jul-10	15	440043	5460447	370	29471	D-Zone; granodiorite; f-med gr; bleached with minor carb alteration; 1.5-2.0% pyr forming loose stringers
DHJ-10-023	25-Jul-10	15	439924	5460415	392	1189	qv; qtz/carb (10% carb); trace to 0.25% pyrite; oriented 074°
DHJ-10-024	25-Jul-10	15	439928	5460421	393	1691	silicified granodiorite; hard and very siliceous; tremendous carb alteration (40%); diss cubic pyrite @ 2%
DHJ-10-025	25-Jul-10	15		5460436	376		granodiorite; weakly silicified; moderately carb alteration; trace pyr
DHJ-10-026	26-Jul-10	15	430567	5464399	365	18	altered porphyry (qfp?) minor qtz eyes (~6%); f.gr pink alkali feldspar; minor carbonate alteration; trace pyr
DHJ-10-027	26-Jul-10	15	430568	5464408	360	<5	qtz/carb vein; from a porphyry unit approx. 25m true width; 80% qtz; 15% carb; 5% porphyry; trace pyr
MAM-10-026	22-Jul-10		439256	5467008	351	<5	L7E/ 255N; strong foliated mafic vol; strong carb alt; weak ser; tr diss py; 111-69N; near old DDH; 215°/-45° on AQ sized casing
MAM-10-027				5467043	351	14	L7E/ 2+65N; strong alt (carbonate) mv; rusty brown; str fol; tr pyr; local silicification; magnetic; dips north at 74°; 140° azi
MAM-10-028	22-Jul-10	15	439192	5467133	349	<5	sheared mv; str carb-sericite; tr py; str foliated
MAM-10-029	23-Jul-10	15	439697	5459770	371	25	qtz vein; rusty; trace pyr/Mo
MAM-10-030				5459764	375		mineralized granodiorite; 1% pyrite; rusty; qtz veinlets
MAM-10-031				5460170	379		40cm wide rusty qtz vein; within unaltered granite
MAM-10-032				5464469	368		altered qfp; carbonated; trace pyr; 1-5cm qtz veins; rusty; dipping 80°
MAM-10-033				5464116	369		carbonatized shear zone within pillowed mafic volcanics; 5-10% qtz veins; trace diss pyr; intense carbonate
MAM-10-034				5466605	352		trench; flint central; sheared mafic volcanic; mod ser; strong carb alteration; 15% qtz; rusty; trace diss pyr; 1m from main qtz vein
MAM-10-035				5466607	350		sheared mafic vol; strong carb; no mineralization; no qtz; N side of qtz veins
JMM-10-048				5459594	397		fairly massive granite/granodiorite; trace to 0.25% f.gr pyr;
JMM-10-049				5459578	397		qtz-rich granite; semi-transparent qtz; pink k-spar throughout; trace pyr
JMM-10-050	23-Jul-10	15	439680	5459490	373	<5	siliceous pods within f.gr granodiorite; trace to 1% sulphide (pyr) strongly carbonatized
JMM-10-051				5459489	395		gossanous zone of intensly altered and carbonatized granodiorite; edge of 1.5m high ridge face; within massive granodiorite
JMM-10-052					395	5	gossanous zone of intensly altered and carbonatized granodiorite; edge of 1.5m high ridge face; within massive granodiorite
JMM-10-053	24-Jul-10	15	439798	5459489	395	7	gossanous zone of intensly altered and carbonatized granodiorite; edge of 1.5m high ridge face; within massive granodiorite

				1 1		_	
JMM-10-054					392		qtz blowout just south of Moly Showing; trace to 1% local molybdenum; trace pyrite and sericite
JMM-10-055		15		5460366	381		~3m wide qtz vein; oriented 60°; dipping ~64° N; massive Mo along local fracture planes; 0.5% pyr; Historic Molybdenum Showing
JMM-10-056				5460366	381		~3m wide qtz vein; oriented 60°; dipping ~64° N; massive Mo along local fracture planes; 0.5% pyr; Historic Molybdenum Showing
JMM-10-057				5460366	381		~3m wide qtz vein; oriented 60°; dipping ~64° N; massive Mo along local fracture planes; 0.5% pyr; Historic Molybdenum Showing
JMM-10-058				5460473	375		granodiorite; 1% pyr (f.gr); intense carb alteration
JMM-10-059				5463910	345		sheared and carbonatized qfp; minor pyr; sericite-rich; 0.5m wide within qfp
JMM-10-060				5463806	356	153	similar to Bag South sampling; contact w volcanics; barren
	26-Jul-10	15		5463910	345	<5	massive; moderately altered qfp; slightly N of Bag South
JMM-10-062	26-Jul-10	15	430598	5464824	340	2508	just west of main Bag Lake Showing; v.f.gr massive basalt (possibly mafic dyke); up to 10% pyr
JMM-10-063	26-Jul-10	15	430598	5464824	340	1016	just west of main Bag Lake Showing; v.f.gr massive basalt (possibly mafic dyke); up to 10% pyr
JRC-10-053	20-Jul-10	15	440278	5465999	367	33	qtz through mafic; trace pyr; carb alt; subcrop
JRC-10-054	20-Jul-10	15	440275	5466009	340	144	qtz through mafic; trace pyr; carb alt; subcrop
JRC-10-055	20-Jul-10	15	440272	5465995	360	11	qtz through mafic; trace pyr; carb alt; subcrop
JRC-10-056	20-Jul-10	15	440469	5466043	347	<5	qtz vein through mafics; trace cpy; o/c; old trench
JRC-10-057	21-Jul-10	15	440907	5465761	342	130	qtz through alt mafic; carb; trace pyr; sericite; o/c
JRC-10-058	21-Jul-10	15	440898	5465778	353	7	qtz through alt mafic; carb; trace pyr; sericite; o/c
JRC-10-059	21-Jul-10	15	440905	5465774	367	69	qtz through alt mafic; carb; trace pyr; sericite; o/c
JRC-10-060	22-Jul-10	15	439603	5466599	378	68865	qtz vein through alt mafic; sericite; trace py/cpy; old trench
	22-Jul-10		439606	5466602	357		qtz vein through alt mafic; sericite; trace py/cpy; old trench
JRC-10-062	22-Jul-10	15			362		qtz vein through alt mafic; sericite; trace py/cpy; old trench
JRC-10-063	23-Jul-10	15	440067	5460461	367	306	alt granite; 5% pyr; carb and qtz rich; o/c
JRC-10-064	23-Jul-10	15	440071	5460455	364	2472	alt granite; 5% pyr; carb and qtz rich; o/c
JRC-10-065	23-Jul-10	15	440488	5459014	346		altered granite; carb altered; 2-5% pyr; o/c
JRC-10-066	23-Jul-10	15	440499	5459006	385		altered granite; carb altered; 2-5% pyr; o/c
JRC-10-067	23-Jul-10	15	440495	5459012	357		altered granite; carb altered; 2-5% pyr; o/c
JRC-10-068	23-Jul-10	15			387		altered granite; carb altered; 2-5% pyr; o/c
JRC-10-069	23-Jul-10	15		5459012	394		altered granite; carb altered; 2-5% pyr; o/c
JRC-10-070	24-Jul-10	15	440069	5460444	331		altered granite; carb rich; 5% pyr; o/c
	24-Jul-10			5460435	321		altered granite; carb rich; 5% pyr; o/c
JRC-10-072		15		5460479	387		altered carbonatized granite; tr pyr; o/c
JRC-10-073					363		altered carbonatized granite; tr-2% pyr; o/c
JRC-10-074		15			359		altered carbonatized granite; tr-2% pyr; o/c
JRC-10-075		15			357		altered carbonatized granite; tr-2% pyr; o/c
JRC-10-076		15		5460525	357		qtz-rich altered granite; trace-2% pyr; o/c
JRC-10-077		15			359		qtz-rich altered granite; trace-2% pyr; o/c
JRC-10-078				5460520	359		qtz-rich altered granite; trace-2% pyr; o/c
JRC-10-079				5460519	377		altered carbonatized granite; trace pyr; o/c
JRC-10-080				5460532	368		qtz-rich carbonatized granite; trace pyr, moly, cpy
	24-Jul-10			5460535	380		qtz-rich carbonatized granite; 5% pyr; o/c
JRC-10-082		15		5460532	354		qtz-rich carbonatized granite; 5% pyr; o/c
55 10 00Z	531 15	. •	.55555	J.0000E	55.	J !	17

IDO 40 000	04 1 140	4.5	100700	5400400	070	400	
JRC-10-083		15		5460463	373		altered qtz-rich granite; 5% pyr; o/c
	24-Jul-10	15		5460464	365		altered qtz-rich granite; 5% pyr; o/c
JRC-10-085				5460466	364		altered qtz-rich granite; 5% pyr; o/c
JRC-10-086				5460465	360		altered qtz-rich granite; 5% pyr; o/c
	24-Jul-10			5460478	386		qtz through altered granite; trace pyr; float
JRC-10-088				5460478	388		altered granite; qtz-rich; trace pyr; o/c
JRC-10-089				5460551	364		altered granite; 5-10% pyr; o/c; carb altered
	25-Jul-10	15		5460545	362		qtz-rich; carb altered granite; 5% pyr; o/c
	25-Jul-10			5460551	376		qtz-rich; carb altered granite; 5% pyr; o/c
JRC-10-092		15		5460550	369		qtz-rich; carb altered granite; 5% pyr; o/c
JRC-10-093		15		5460545	360		qtz-rich; carb altered granite; 5% pyr; o/c
	25-Jul-10	15		5460571	358		alt carb granite; qtz-rich; trace-2% pyr; o/c
	25-Jul-10	15		5460558	375		alt carb granite; qtz-rich; trace-2% pyr; o/c
JRC-10-096				5460554	376		alt carb granite; qtz-rich; trace-2% pyr; o/c
JRC-10-097	25-Jul-10			5460565	354	14937	altered granite; carb; tr pyr; float
JRC-10-098	25-Jul-10	15	439930	5460570	359		altered granite; carb; tr pyr; float
JRC-10-099	25-Jul-10	15	439960	5460631	330	265	qtz vein through altered granite; 5% pyr; large float; historic sample 902039
JRC-10-100	25-Jul-10	15		5460631	330		qtz vein through altered granite; 5% pyr; large float; historic sample 902040
JRC-10-101	25-Jul-10	15	439961	5460622	326	93	huge qtz float; 5% moly/cpy/pyr
JRC-10-102	26-Jul-10	15	429763	5465369	321	10	qtz stringers through carbed mafic; trace pyrite; o/c
JRC-10-103	26-Jul-10	15	429903	5465355	362	53	altered carb altered granite; trace pyr/moly; qtz-rich; float
JRC-10-104	27-Jul-10	15	430543	5464427	367	121	altered qfp; qtz rich; 5% pyr; o/c
JRC-10-105	27-Jul-10	15	430542	5464423	365	23	altered qfp; qtz rich; 5% pyr; o/c
JRC-10-106	27-Jul-10	15	430542	5464424	366	71	altered qfp; qtz rich; 5% pyr; o/c
JRC-10-107	27-Jul-10	15	430543	5464423	365		altered qfp; qtz rich; 5% pyr; o/c
JRC-10-108	27-Jul-10	15	430543	5464424	366	27	altered qfp; qtz rich; 5% pyr; o/c
JRC-10-109	27-Jul-10	15	430544	5464424	366	18	altered qfp; qtz rich; 5% pyr; o/c
JRC-10-110	27-Jul-10	15	430542	5464426	360	36	huge altered qfp float; qtz rich; 5% pyr
JRC-10-111	27-Jul-10	15	430511	5464484	358		altered qfp; trace pyr; o/c
JRC-10-112		15		5464500	364		qtz rich altered qfp; trace-2% pyr; o/c
JRC-10-113				5464498	369		qtz rich altered qfp; trace-2% pyr; o/c
JRC-10-114		15		5464496	356		qtz rich altered qfp; trace-2% pyr; o/c
JRC-10-115		15			361		qtz rich altered qfp; trace-2% pyr; o/c
JRC-10-116		15		5464496	362		qtz rich altered qfp; trace-2% pyr; o/c
JRC-10-117		15		5464497	364		qtz rich altered qfp; trace-2% pyr; o/c
JRC-10-118				5464497	364		qtz rich altered qfp; trace-2% pyr; o/c
JRC-10-120				5464365	366		qtz rich altered qfp; 2% pyr; o/c
	27-Jul-10			5464371	366		qtz rich altered qfp; 2% pyr; o/c
JRC-10-122		15		5464372	366		qtz rich altered qfp; 2% pyr; o/c
JRC-10-123		15		5464371	360		qtz stringers through carbed mafic; trace pyrite; o/c
21.0 .0 .20		. •	.00000			551	1gg,,,

T	T			T		_	
JRC-10-124		15		5464326	381		qfp dyke through mafics; trace pyrite; o/c
	28-Jul-10	15	434521	5464337	394		qfp dyke through mafics; trace pyrite; o/c
JRC-10-126				5464266	371		qtz-rich altered mafic; o/c
SAS-10-016		15		5466041	364		carb qtz vein through mafic; trace pyr
SAS-10-017		15	440461	5466048	363		qtz calcite vein with mafic; trace cpy
SAS-10-018	22-Jul-10	15	439607	5466610	352	32505	qtz with sericite; carb with VG
SAS-10-019		15		5466611	357		qtz with sericite; carb with VG
	22-Jul-10	15	439607	5466612	357	18233	qtz with sericite; carb with VG
	23-Jul-10			5460511	355	1696	rusty carb altered granite with pyr
SAS-10-022		15	440073	5460450	373		rusty carb altered granite with pyr
SAS-10-023	23-Jul-10	15	440490	5458999	377	1252	rusty carb altered granite with qtz stringers; stringers of pyr on contact with mafic material
SAS-10-024	23-Jul-10	15	440488	5459025	357	179	rusty carb altered granite with pyr
SAS-10-025	23-Jul-10	15	440488	5459025	357	236	rusty carb altered granite with pyr
SAS-10-026	23-Jul-10	15	440487	5459024	357	35	qtz vein through altered granite with pyr
SAS-10-027	24-Jul-10	15	440070	5460470	344	8257	rusty carb altered granite with cpy py and malachite
SAS-10-028	24-Jul-10	15	440074	5460450	367	2705	rusty carb qtz vein through altered granite with pyr
SAS-10-029	24-Jul-10	15	440071	5460447	367	1580	rusty carb altered granite with qtz and pyr
SAS-10-030	24-Jul-10	15	439862	5460513	367	46	rusty qtz veins through granite with pyr
SAS-10-031	24-Jul-10	15	439856	5460526	366	47	rusty carb altered granite with qtz, pyr and molybdenum
SAS-10-032	24-Jul-10	15	439856	5460526	371	106	rusty carb altered granite with pyr
SAS-10-033	24-Jul-10	15	439827	5460494	362		rusty carb altered granite with pyr
SAS-10-034	24-Jul-10	15	439828	5460494	362	1476	rusty carb altered granite with qtz and pyr
SAS-10-035	24-Jul-10	15	439829	5460494	363	2426	rusty carb altered granite with qtz and pyr
SAS-10-036	25-Jul-10	15	439851	5460461	359	987	float; rusty carb altered granite with qtz and pyr
SAS-10-037	25-Jul-10	15	439852	5460481	364	645	float; rusty carb altered granite with qtz and pyr
SAS-10-038	25-Jul-10	15	439821	5460539	376		o/c; rusty carb altered granite with qtz and pyr
SAS-10-039	25-Jul-10	15	439900	5460557	359	176	altered granite with qtz and pyr
SAS-10-040	25-Jul-10	15	439900	5460557	359		altered granite with qtz and pyr
SAS-10-041	25-Jul-10	15	439900	5460557	359		altered granite with qtz and pyr
SAS-10-042		15		5465388	341		mafic with qtz stringers and pyr
SAS-10-043				5464412	369		rusty altered granite with qtz stringers and pyr
SAS-10-044		15	430547	5464412	370		rusty qtz vein with pyr
SAS-10-045		15	430547	5464412	366		rusty altered granite with qtz stringers and pyr
SAS-10-046		15	430532	5464420	362		rusty altered granite with qtz stringers and pyr
	27-Jul-10	15		5464485	354		rusty altered granite with qtz stringers and pyr
SAS-10-048		15	430500	5464481	353		rusty altered granite with qtz stringers and pyr
SAS-10-049		15	430500	5464481	354		rusty altered granite with qtz stringers and pyr
	27-Jul-10	15		5464349	369		rusty carb altered qtz vein through mafic with pyr
	27-Jul-10	15	430570	5464348	369		rusty carb altered mafic with qtz stringers and pyr
SAS-10-052		15		5464299	379		mafic with qtz and trace pyr
	· · · · ·	-					1 17

SAS-10-053	28-Jul-10	15	434544	5464705	391	27	mafic with qtz eyes and pyr
BLE-CH-001	27-Jul-10	15	430937	5464023	358	489	chl/sericite schist with semi-transparent qtz stringers; trace pyrite; carb alteration (1.2m)
BLE-CH-002	27-Jul-10	15	430937	5464023	358	<5	massive pillows (0.25m)
BLE-CH-003	27-Jul-10	15	430937	5464023	358	67	chl/sericite schist with semi-transparent qtz stringers; trace pyrite; carb alteration (1.0m)
BLE-CH-004			430937	5464023	358	22	chl/sericite schist with semi-transparent qtz stringers; trace pyrite; carb alteration (0.75m)
BLE-CH-005	27-Jul-10	15	430937	5464023	358	225	chl/sericite schist with semi-transparent qtz stringers; trace pyrite; carb alteration (0.7m)
BLE-CH-006	27-Jul-10	15	430937	5464023	358	6	massiv pillows (0.65m)
BLE-CH-007	27-Jul-10	15	430937	5464023	358	564	chl/sericite schist with semi-transparent qtz stringers; trace pyrite; carb alteration (0.8m)
BLE-CH-008	27-Jul-10	15	430937	5464023	358	425	chl/sericite schist with semi-transparent qtz stringers; trace pyrite; carb alteration (0.85m)
BLE-CH-009	27-Jul-10	15	430937	5464023	358	62	chl/sericite schist within vol breccia (0.15m)
BLE-CH-010	27-Jul-10	15	430937	5464023	358	128	chl/sericite schist with qtz stringers and veinlets, strong carb (0.25m)

APPENDIX II

Personnel Involved with Prospecting Program

Personnel included in the 2009 Dogpaw prospecting program

Ricky Crocker Shane Stares Don Heerema Mike MacIsaac Jeff Myllyaho

APPENDIX III

Daily Work Log

Prospecting Log

July 19 2010 - R.Crocker, S.Stares, D.Heerema, M.MacIsaac and J.Myllyaho Travelled to Sioux Narrows from Thunder Bay July 20 2010 -D.Heerema, M.MacIsaac and J.Myllyaho mapped on grid lines at the eastern end of the Flint Lake Claims while R.Crocker and S.Stares prospected the area northeast of the shore of Flint Lake July 21 2010 -D.Heerema, M.MacIsaac and J.Myllyaho mapped on grid lines on the east-central part of the Flint Lake Claims while R.Crocker and S.Stares prospected around the Flint Central Showing D.Heerema, M.MacIsaac and J.Myllyaho mapped on grid lines on the west-central part of the Flint Lake Claims July 22 2010 while R.Crocker and S.Stares prospected around the Flint Central Showing July 23 2010 -D.Heerema, M.MacIsaac and J.Myllyaho finished mapping on grid lines on the western part of the Flint Lake Claims while R.Crocker and S.Stares prospected around the Flint North Showing with the entire crew moving to the Stephen's Lake Area late in the day D.Heerema, M.MacIsaac and J.Myllyaho mapped the northern grid lines on the Stephen's Lake Claims July 24 2010 while R.Crocker and S.Stares prospected areas south off the cut grid D.Heerema, M.MacIsaac and J.Myllyaho mapped the northern grid lines on the Stephen's Lake Claims July 25 2010 while R.Crocker and S.Stares prospected areas south off the cut grid July 26 2010 -R.Crocker, S.Stares, D.Heerema, M.MacIsaac and J.Myllyaho prospected the area on the eastern side of Bag Lake July 27 2010 -D.Heerema, M.MacIsaac and J.Myllyaho prospected the area on the north-eastern side of Bag Lake while R.Crocker and S.Stares prospected areas along the road and towards the south-central boundary D.Heerema, M.MacIsaac and J.Myllyaho mapped and channel sampled an outcrop on a forestry road on the eastern side July 28 2010 of Bag Lake while R.Crocker and S.Stares prospected towards the north-east side of Bag Lake

APPENDIX IV

Laboratory Certificates of Analysis

Certificate of Analysis

Saturday, August 14, 2010

Metals Creek Resources Date Received: 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Thunder Bay, ON, CAN

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Job #: 201042899

08/14/2010

Reference:

Completed:

Sample #: 56
Rock

Date

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.020	< 0.001	20	SAS-10-042		202636
0.350	0.010	350	SAS-10-043		202637
0.060	0.002	60	SAS-10-044		202638
0.054	0.002	54	SAS-10-045		202639
0.018	< 0.001	18	SAS-10-046		202640
0.051	0.001	51	SAS-10-047		202641
4.672	0.136	4672	SAS-10-048		202642
1.677	0.049	1677	SAS-10-049		202643
1.334	0.039	1334	SAS-10-050		202644
0.927	0.027	927	SAS-10-051		202645
1.044	0.030	1044	SAS-10-051	Dup	202646
0.008	< 0.001	8	SAS-10-052		202647
0.027	< 0.001	27	SAS-10-053		202648
0.010	< 0.001	10	JRC-10-102		202649
0.053	0.002	53	JRC-10-103		202650
0.121	0.004	121	JRC-10-104		202651
0.023	< 0.001	23	JRC-10-105		202652
0.071	0.002	71	JRC-10-106		202653
0.164	0.005	164	JRC-10-107		202654
0.027	< 0.001	27	JRC-10-108		202655
0.018	< 0.001	18	JRC-10-109		202656
0.016	< 0.001	16	JRC-10-109	Dup	202657

Certificate of Analysis

Saturday, August 14, 2010

Date Received: Metals Creek Resources 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Date Thunder Bay, ON, CAN 08/14/2010 Completed:

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com Job #: 201042899

(NFLD)

Reference:

56 Sample #: Rock

Rock					
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.036	0.001	36	JRC-10-110		202658
0.066	0.002	66	JRC-10-111		202659
0.425	0.012	425	JRC-10-112		202660
0.156	0.005	156	JRC-10-113		202661
0.119	0.003	119	JRC-10-114		202662
0.372	0.011	372	JRC-10-115		202663
0.043	0.001	43	JRC-10-116		202664
0.540	0.016	540	JRC-10-117		202665
0.082	0.002	82	JRC-10-118		202666
		No Sample Received	JRC-10-119		202667
		No Sample Received	JRC-10-119	Dup	202668
0.402	0.012	402	JRC-10-120		202669
0.540	0.016	540	JRC-10-121		202670
0.656	0.019	656	JRC-10-122		202671
0.531	0.015	531	JRC-10-123		202672
< 0.005	< 0.001	<5	JRC-10-124		202673
< 0.005	< 0.001	<5	JRC-10-125		202674
< 0.005	< 0.001	<5	JRC-10-126		202675
0.018	< 0.001	18	DHJ-10-026		202676
< 0.005	< 0.001	<5	DHJ-10-027		202677
0.033	< 0.001	33	MAM-10-032		202678
0.214	0.006	214	MAM-10-033		202679

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Saturday, August 14, 2010

Metals Creek Resources Date Received: 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Thunder Bay, ON, CAN

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Job #: 201042899

08/14/2010

Reference:

Sample #: 56
Rock

Date

Completed:

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
< 0.005	< 0.001	<5	JMM-10-059		202680
0.153	0.004	153	JMM-10-060		202681
< 0.005	< 0.001	<5	JMM-10-061		202682
2.508	0.073	2508	JMM-10-062		202683
1.016	0.030	1016	JMM-10-063		202684
0.489	0.014	489	BLE-CH-001		202685
< 0.005	< 0.001	<5	BLE-CH-002		202686
0.067	0.002	67	BLE-CH-003		202687
0.022	< 0.001	22	BLE-CH-004		202688
0.207	0.006	207	BLE-CH-005		202689
0.225	0.007	225	BLE-CH-005	Dup	202690
0.006	< 0.001	6	BLE-CH-006		202691
0.564	0.016	564	BLE-CH-007		202692
0.425	0.012	425	BLE-CH-008		202693
0.062	0.002	62	BLE-CH-009		202694
0.128	0.004	128	BLE-CH-010		202695

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Saturday, August 14, 2010

Metals Creek Resources Date Received: 07/30/2010

#329 1100 Memorial Avenue

Date Thunder Bay, ON, CAN 08/14/2010 Completed:

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Job #: 201042899 Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Reference:

56 Sample #: Rock

Au Au Au Client ID Acc # ppb oz/t g/t (ppm)

PROCEDURE CODES: ALP1, ALFA1

son Moore, General Manager

Certified By: The results included on this report relate only to the

items tested

The Certificate of Analysis should not be reproduced

except in full, without the written

approval of the laboratory

AL903-0730-08/14/2010 12:00 PM

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Wednesday, August 18, 2010

Metals Creek Resources Date Received: 08/08/2010

#329 1100 Memorial Avenue

Date Thunder Bay, ON, CAN 08/18/2010 Completed:

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Job #: 201043102 Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Reference:

Sample #: 2 Rock

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	Acc#
0.342	0.010	342	MAM10 034	217787
0.025	< 0.001	25	MAM10 035	217788
0.023	< 0.001	23	MAM10 035	217789 Dup

PROCEDURE CODES: ALP1, ALFA1

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0730-08/18/2010 10:11 AM

Certificate of Analysis

Monday, August 16, 2010

Metals Creek Resources Date Received: 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Thunder Bay, ON, CAN

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Job #: 201042900

08/16/2010

Reference:

Completed:

Sample #: $\frac{35}{\text{Rock}}$

Date

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.221	0.006	221	SAS-10-014		202696
0.721	0.021	721	SAS-10-015		202697
0.287	0.008	287	SAS-10-016		202698
< 0.005	< 0.001	<5	SAS-10-017		202699
32.505	0.948	32505	SAS-10-018		202700
59.350	1.731	59350	SAS-10-019		202701
18.233	0.532	18233	SAS-10-020		202702
0.127	0.004	127	JRC-10-046		202703
0.154	0.004	154	JRC-10-047		202704
0.214	0.006	214	JRC-10-048		202705
0.228	0.007	228	JRC-10-048	Dup	202706
0.376	0.011	376	JRC-10-049		202707
0.640	0.019	640	JRC-10-050		202708
0.087	0.003	87	JRC-10-051		202709
0.216	0.006	216	JRC-10-052		202710
0.033	< 0.001	33	JRC-10-053		202711
0.144	0.004	144	JRC-10-054		202712
0.011	< 0.001	11	JRC-10-055		202713
< 0.005	< 0.001	<5	JRC-10-056		202714
0.130	0.004	130	JRC-10-057		202715
0.007	< 0.001	7	JRC-10-058		202716
0.015	< 0.001	15	JRC-10-058	Dup	202717

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Monday, August 16, 2010

Metals Creek Resources Date Received: 07/30/2010

#329 1100 Memorial Avenue

Date Thunder Bay, ON, CAN 08/16/2010 Completed:

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Job #: 201042900 Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Reference:

35 Sample #: Rock

Acc #		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
202718		JRC-10-059	69	0.002	0.069
202719		JRC-10-060	68865	2.009	68.865
202720		JRC-10-061	60639	1.769	60.639
202721		JRC-10-062	112467	3.281	112.467
202722		DHJ10-005	46	0.001	0.046
202723		DHJ-10-006	695	0.020	0.695
202724		DHJ-10-007	17	< 0.001	0.017
202725		DHJ-10-008	10663	0.311	10.663
202726		DHJ-10-009	222	0.006	0.222
202727		DHJ-10-010	29683	0.866	29.683
202728		DHJ-10-011	5	< 0.001	0.005
202729	Dup	DHJ-10-011	<5	< 0.001	< 0.005
202730		DHJ-10-012	18	< 0.001	0.018
202731		MAM-10-026	<5	< 0.001	< 0.005
202732		MAM-10-027	14	< 0.001	0.014
202733		MAM-10-028	<5	< 0.001	< 0.005

PROCEDURE CODES: ALP1, ALFA1

Certified By:

Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0730-08/16/2010 11:31 AM

Monday, August 16, 2010

Metals Creek Resources Date Received: 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Thunder Bay, ON, CAN

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Job #: 201042901

08/16/2010

Reference:

Completed:

Sample #: 87
Rock

Date

Acc#		Client ID	Au ppb	Au oz/t	Au g/t (ppm)
202734		SAS-10-021	1696	0.049	1.696
202735		SAS-10-022	522	0.015	0.522
202736		SAS-10-023	1252	0.037	1.252
202737		SAS-10-024	179	0.005	0.179
202738		SAS-10-025	236	0.007	0.236
202739		SAS-10-026	35	0.001	0.035
202740		SAS-10-027	8257	0.241	8.257
202741		SAS-10-028	2705	0.079	2.705
202742		SAS-10-029	1580	0.046	1.580
202743		SAS-10-030	46	0.001	0.046
202744	Dup	SAS-10-030	46	0.001	0.046
202745		SAS-10-031	47	0.001	0.047
202746		SAS-10-032	106	0.003	0.106
202747		SAS-10-033	671	0.020	0.671
202748		SAS-10-034	1476	0.043	1.476
202749		SAS-10-035	2426	0.071	2.426
202750		SAS-10-036	987	0.029	0.987
202751		SAS-10-037	645	0.019	0.645
202752		SAS-10-038	2594	0.076	2.594
202753		SAS-10-039	176	0.005	0.176
202754		SAS-10-040	227	0.007	0.227
202755	Dup	SAS-10-040	241	0.007	0.241

Monday, August 16, 2010

Metals Creek Resources Date Received: 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Thunder Bay, ON, CAN

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Job #: 201042901

08/16/2010

Reference:

Sample #: 87
Rock

Date

Completed:

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.036	0.001	36	SAS-10-041		202756
0.306	0.009	306	JRC-10-063		202757
2.472	0.072	2472	JRC-10-064		202758
2.640	0.077	2640	JRC-10-065		202759
2.275	0.066	2275	JRC-10-066		202760
0.551	0.016	551	JRC-10-067		202761
0.411	0.012	411	JRC-10-068		202762
0.508	0.015	508	JRC-10-069		202763
6.541	0.191	6541	JRC-10-070		202764
9.082	0.265	9082	JRC-10-071		202765
8.815	0.257	8815	JRC-10-071	Dup	202766
1.201	0.035	1201	JRC-10-072		202767
0.082	0.002	82	JRC-10-073		202768
0.048	0.001	48	JRC-10-074		202769
0.027	< 0.001	27	JRC-10-075		202770
0.012	< 0.001	12	JRC-10-076		202771
0.050	0.001	50	JRC-10-077		202772
0.063	0.002	63	JRC-10-078		202773
0.121	0.004	121	JRC-10-079		202774
3.872	0.113	3872	JRC-10-080		202775
0.425	0.012	425	JRC-10-081		202776
0.549	0.016	549	JRC-10-081	Dup	202777

Monday, August 16, 2010

Metals Creek Resources Date Received: 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Thunder Bay, ON, CAN

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Job #: 201042901

08/16/2010

Reference:

Completed:

Sample #: 87
Rock

Date

Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
3.424	0.100	3424	JRC-10-082		202778
0.436	0.013	436	JRC-10-083		202779
4.991	0.146	4991	JRC-10-084		202780
4.457	0.130	4457	JRC-10-085		202781
10.681	0.312	10681	JRC-10-086		202782
0.045	0.001	45	JRC-10-087		202783
0.046	0.001	46	JRC-10-088		202784
5.740	0.167	5740	JRC-10-089		202785
3.221	0.094	3221	JRC-10-090		202786
11.038	0.322	11038	JRC-10-091		202787
10.522	0.307	10522	JRC-10-091	Dup	202788
1.679	0.049	1679	JRC-10-092		202789
8.313	0.243	8313	JRC-10-093		202790
0.364	0.011	364	JRC-10-094		202791
4.778	0.139	4778	JRC-10-095		202792
0.572	0.017	572	JRC-10-096		202793
14.937	0.436	14937	JRC-10-097		202794
5.254	0.153	5254	JRC-10-098		202795
0.265	0.008	265	JRC-10-099		202796
0.280	0.008	280	JRC-10-100		202797
0.093	0.003	93	JRC-10-101		202798
0.006	< 0.001	6	DHJ-10-013		202799

Monday, August 16, 2010

Metals Creek Resources Date Received: 07/30/2010

Tel: (807) 626-1630

Fax: (807) 622-7571

#329 1100 Memorial Avenue

Thunder Bay, ON, CAN

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Job #: 201042901

08/16/2010

Reference:

Completed:

Sample #: 87
Rock

Date

110011					
Au g/t (ppm)	Au oz/t	Au ppb	Client ID		Acc#
0.051	0.001	51	DHJ-10-014		202800
0.089	0.003	89	DHJ-10-015		202801
< 0.005	< 0.001	<5	DHJ-10-016		202802
0.465	0.014	465	DHJ-10-017		202803
0.011	< 0.001	11	DHJ-10-018		202804
0.149	0.004	149	DHJ-10-019		202805
0.026	< 0.001	26	DHJ-10-020		202806
0.011	< 0.001	11	DHJ-10-021		202807
29.471	0.860	29471	DHJ-10-022		202808
1.189	0.035	1189	DHJ-10-023		202809
1.298	0.038	1298	DHJ-10-023	Dup	202810
1.691	0.049	1691	DHJ-10-024		202811
0.164	0.005	164	DHJ-10-025		202812
0.025	< 0.001	25	MAM-10-029		202813
< 0.005	< 0.001	<5	MAM-10-030		202814
< 0.005	< 0.001	<5	MAM-10-031		202815
< 0.005	< 0.001	<5	JMM-10-048		202816
< 0.005	< 0.001	<5	JMM-10-049		202817
< 0.005	< 0.001	<5	JMM-10-050		202818
0.008	< 0.001	8	JMM-10-051		202819
0.005	< 0.001	5	JMM-10-052		202820
0.006	< 0.001	6	JMM-10-052	Dup	202821

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Monday, August 16, 2010

Metals Creek Resources Date Received: 07/30/2010

#329 1100 Memorial Avenue

Date Thunder Bay, ON, CAN 08/16/2010 Completed:

P7B 4A3

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Job #: Email#: mmacissac@metalscreek.com, astares@metalscreek.com

(NFLD)

Reference:

87 Sample #: Rock

201042901

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	Acc #
0.007	< 0.001	7	JMM-10-053	202822
< 0.005	< 0.001	<5	JMM-10-054	202823
0.011	< 0.001	11	JMM-10-055	202824
0.017	< 0.001	17	JMM-10-056	202825
0.016	< 0.001	16	JMM-10-057	202826
1.381	0.040	1381	JMM-10-058	202827

PROCEDURE CODES: ALP1, ALFA1

Certified By:

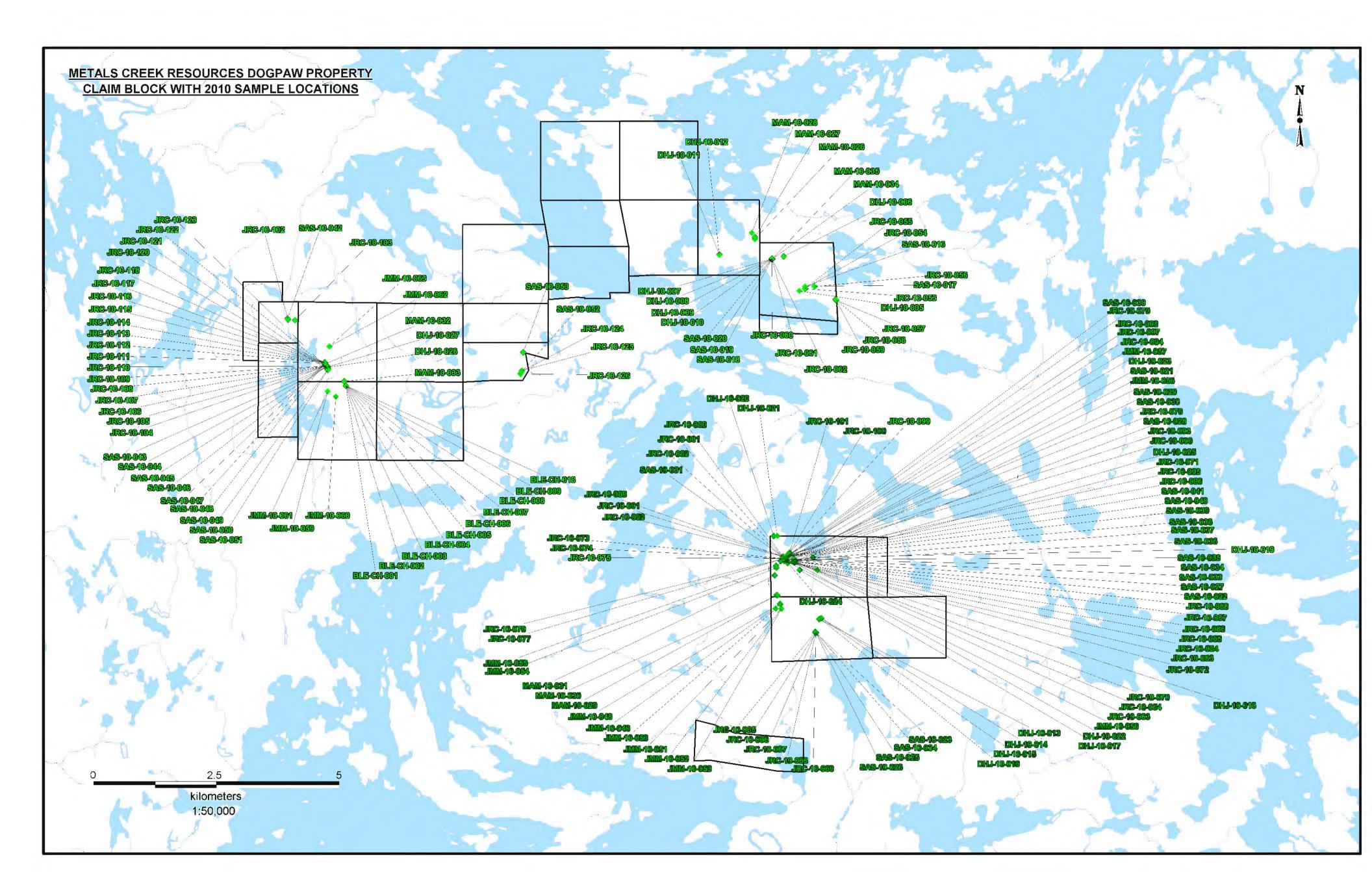
Derek Demianiuk H.Bsc., Laboratory Manager

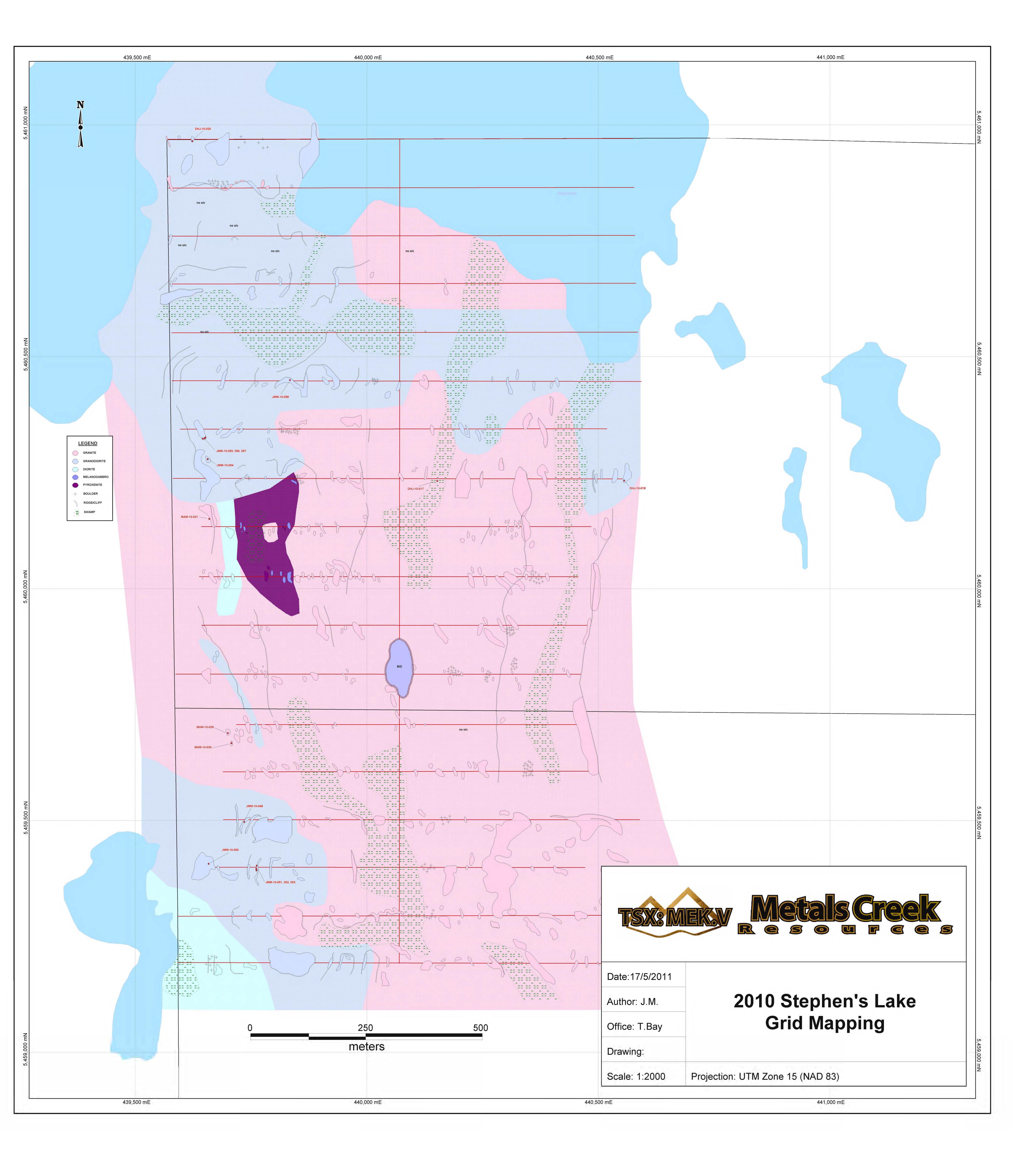
The results included on this report relate only to the items tested

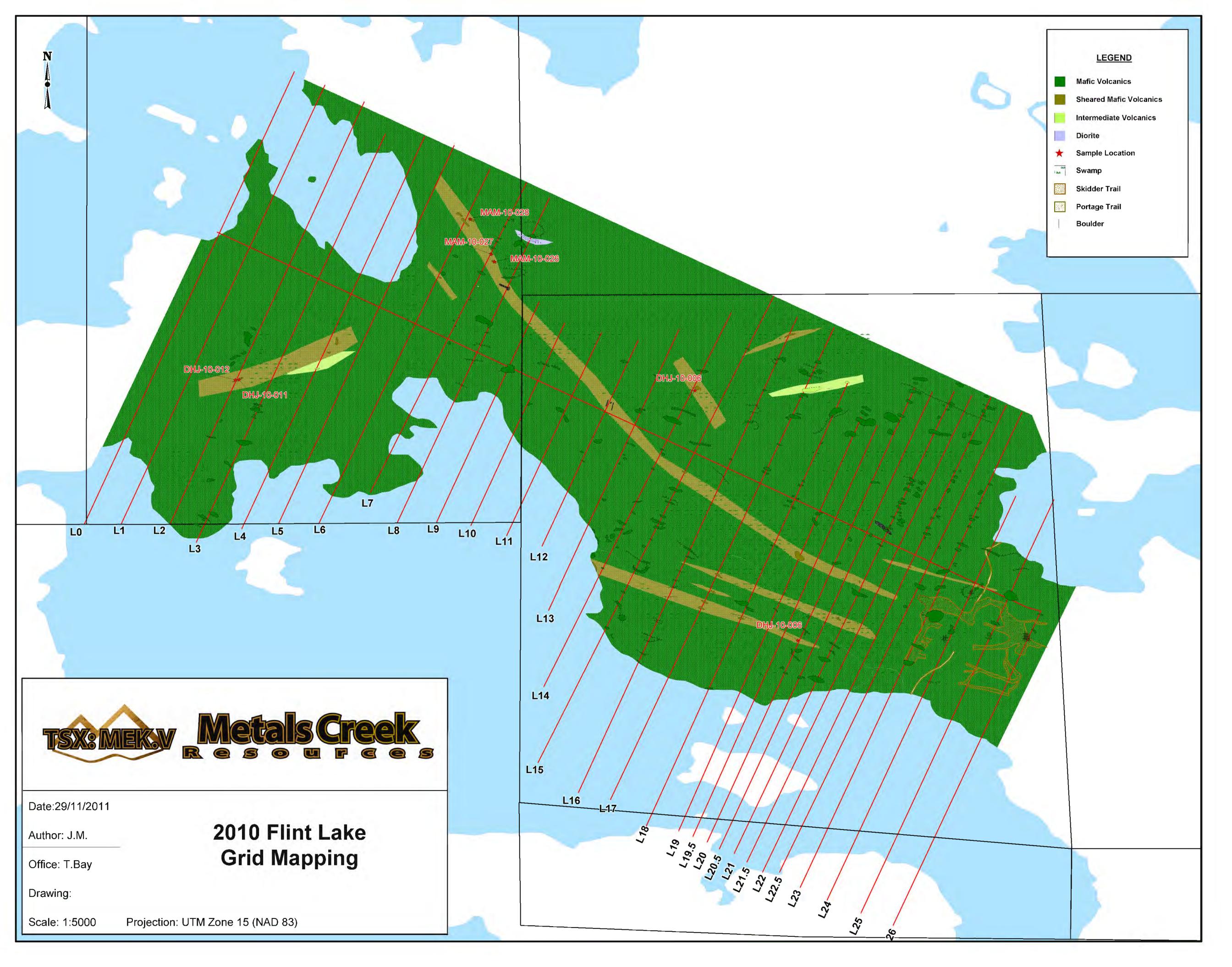
The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

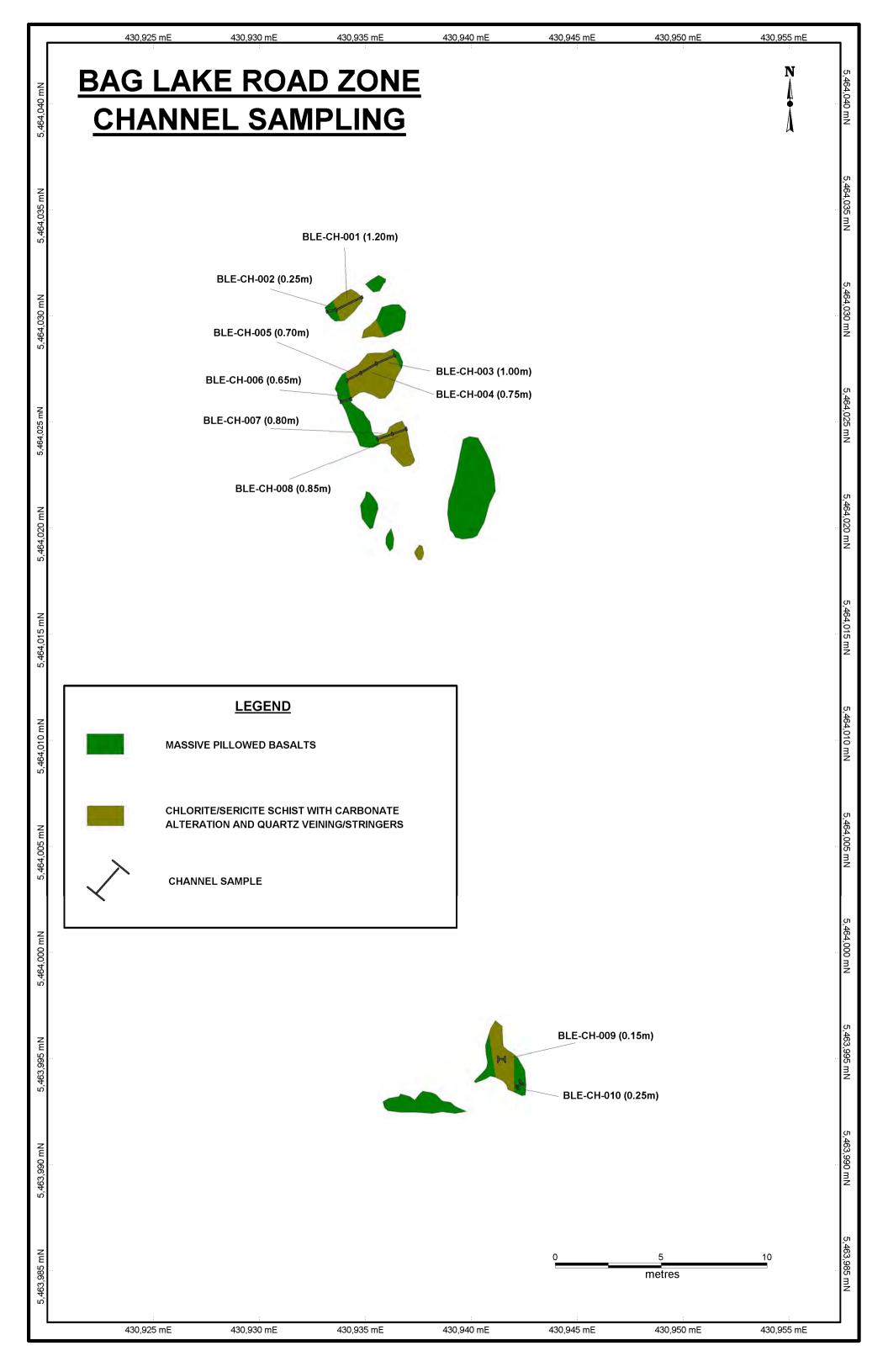
AL903-0730-08/16/2010 11:30 AM

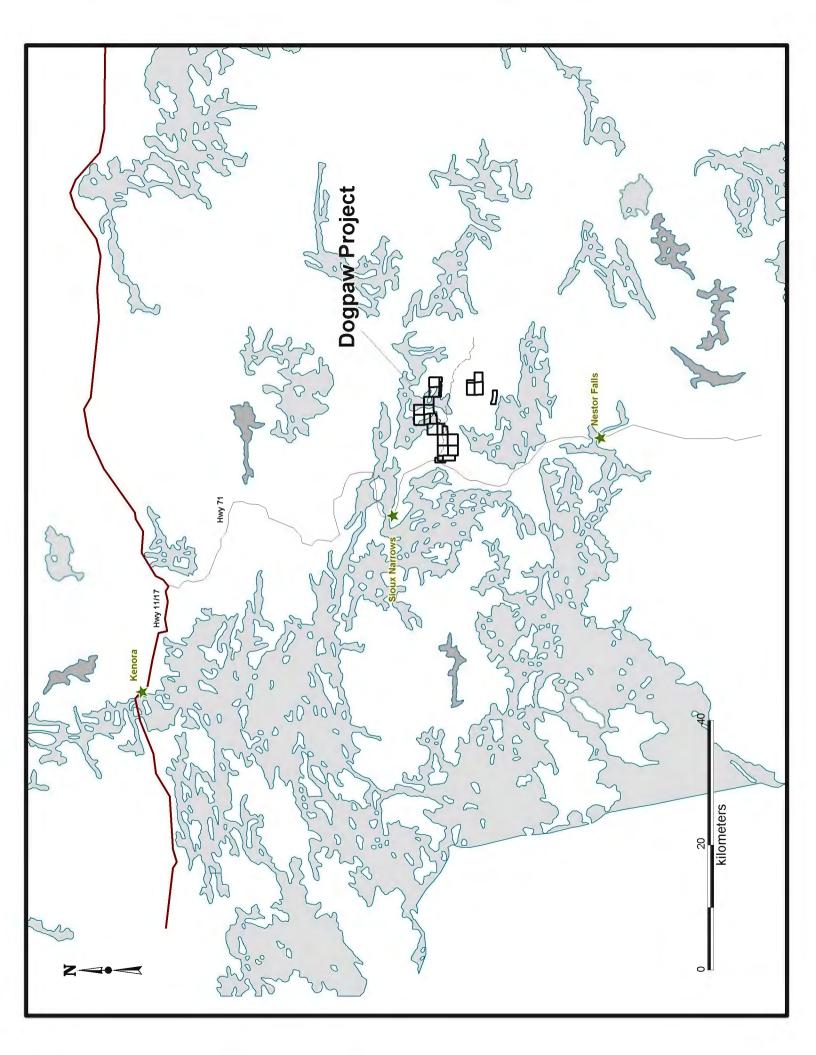
APPENDIX V

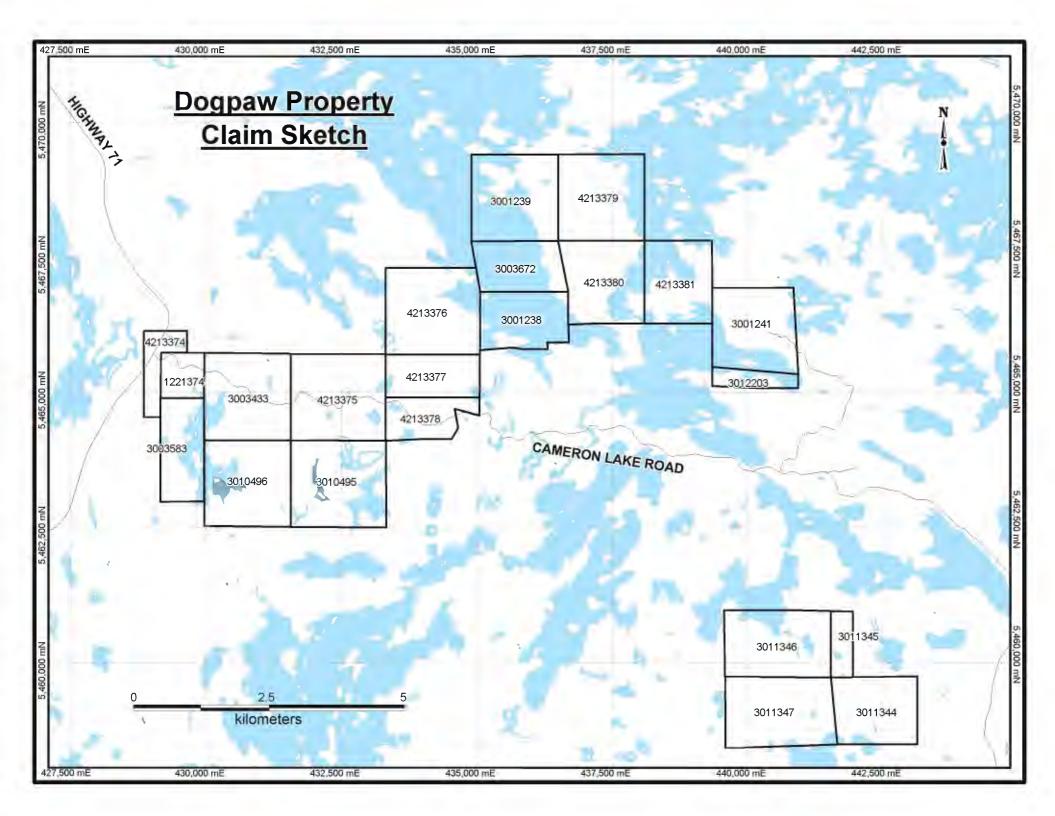

Expenditures

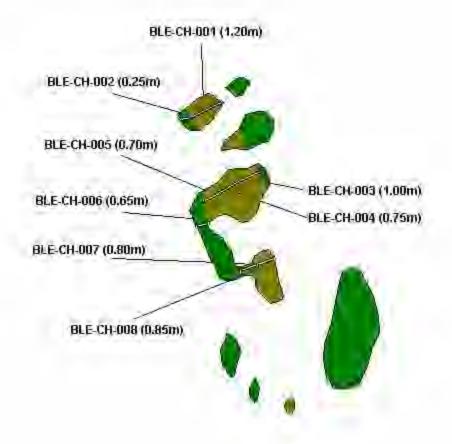

Expenditures submitted for assessment credit:

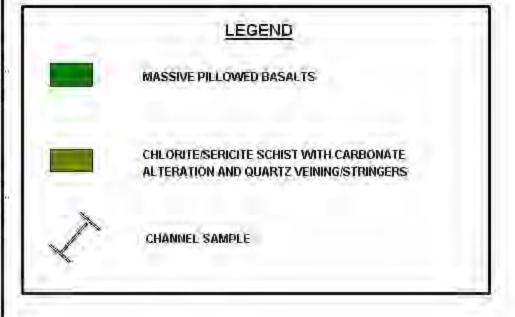

Total		\$	32,528.00
Assays (Au) 170 rock s	samples @ \$16.25/day	\$	2,763.00
Food and Meal	S:	\$	2,251.00
Accomodations/Mo		\$	3,107.00
Supplies Field Supplies:		\$	922.00
Equipment Rentals Boat and Motor Quad Rental: 9	\$ \$	360.00 360.00	
Fuel:		\$	361.00
Transportation Air Transportat Truck rentals:	ion:	\$ \$ \$	864.00 840.00
Report Writing/Con Geologist: Geologist:	npilation 6 days @ \$400/day (Report) 3 days @ \$400/day (Prep/Planning)	\$ \$	2,400.00 1,200.00
· ·	9 days @ \$400/day 9 days @ \$350/day	\$ \$	10,800.00 6,300.00

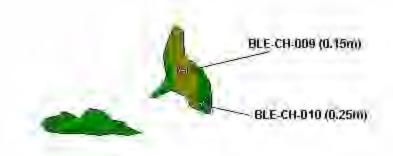

APPENDIX VI

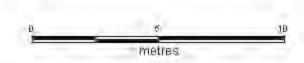

Attached Maps and Figures








BAG LAKE ROAD ZONE CHANNEL SAMPLING

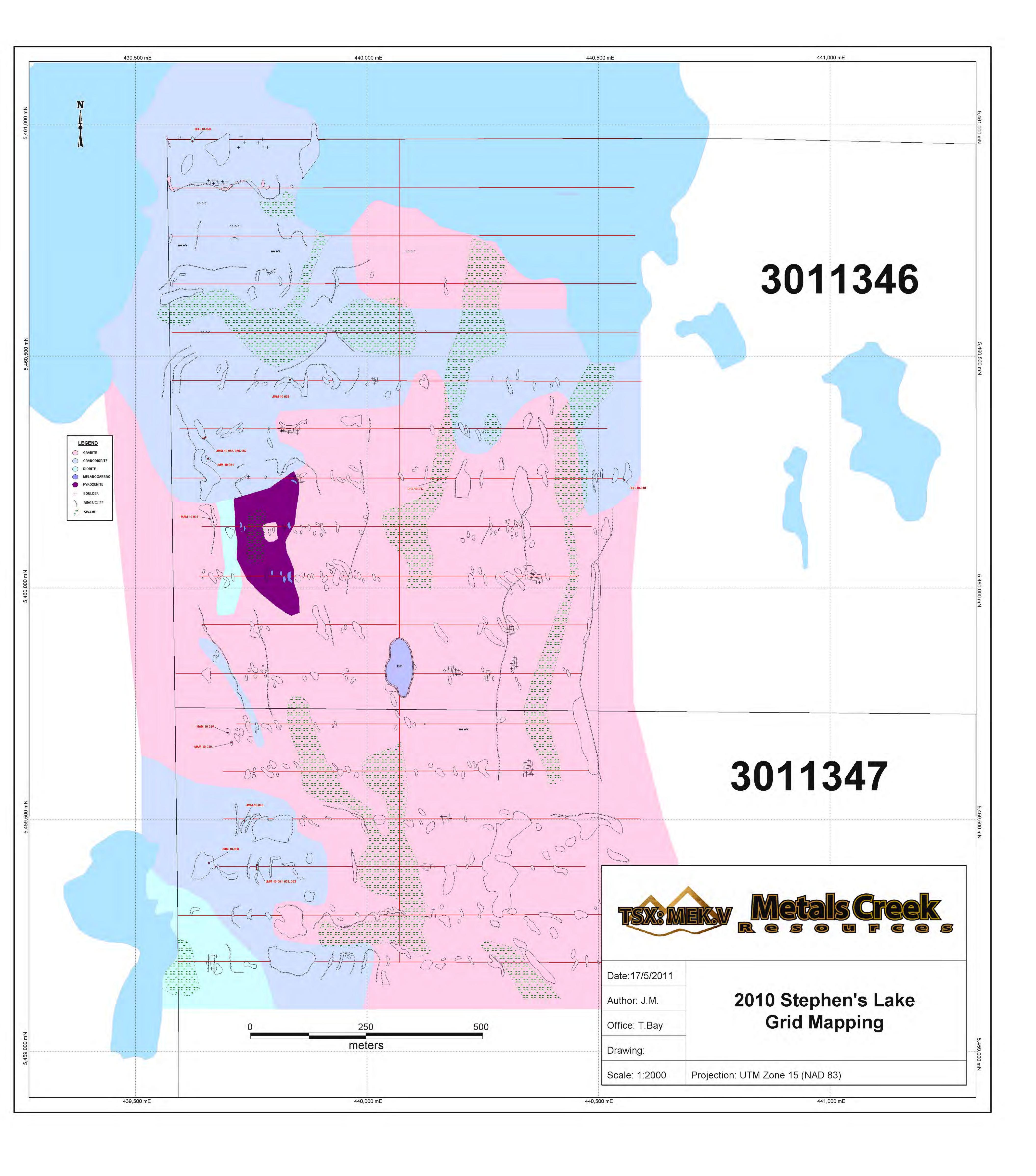


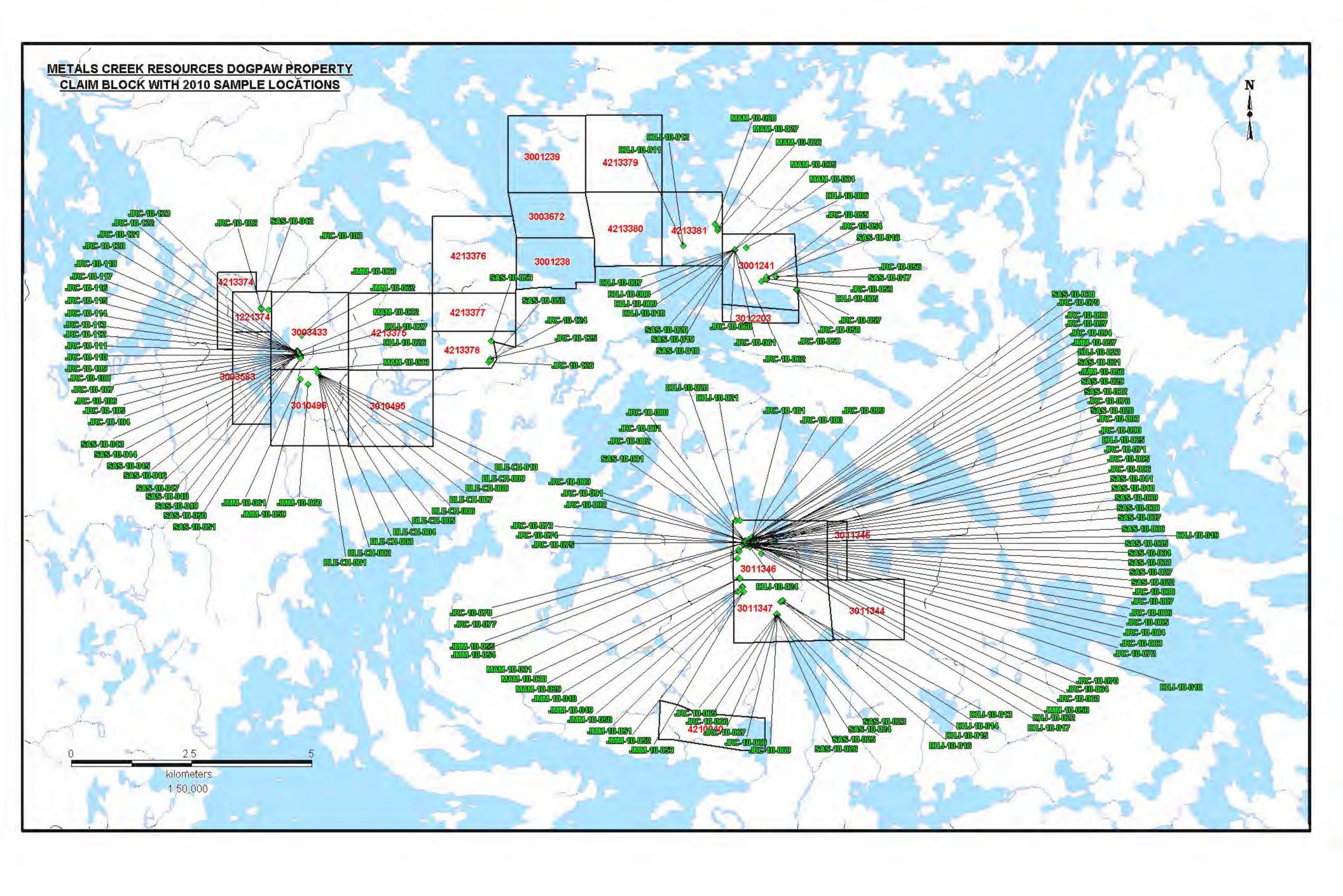
Claim 3010496

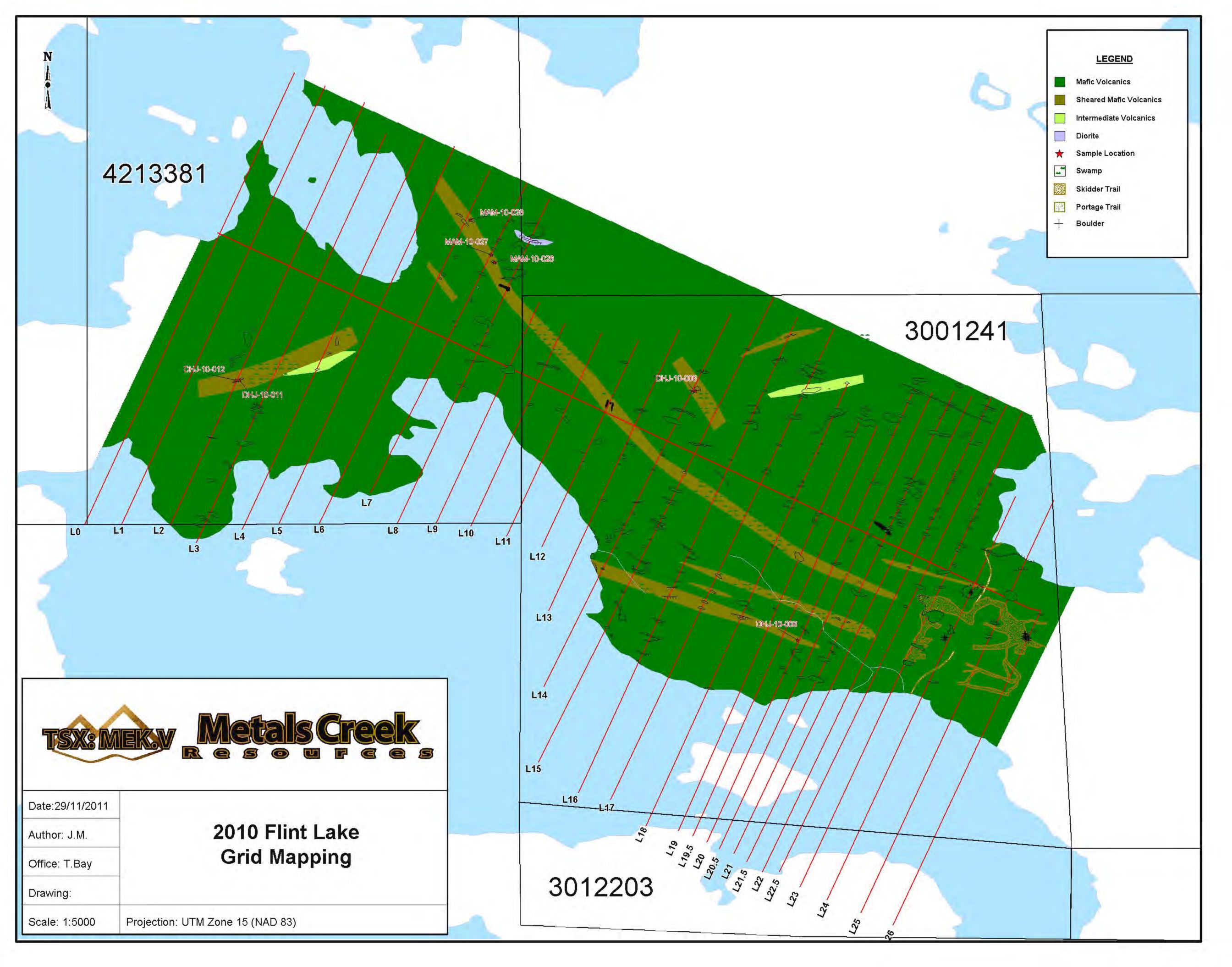
480:925 mE

AR3,985 m.N

480,930 m.E


430,935 mE


480,940 mE


430:945 mE

430,950 mE

430,955 mE

