Preliminary Report on the Exploration Work of Knick Exploration Inc. on its Triple Lake Property in the Timmins Area, Ontario

NTS 42A3

2.51949

April 24, 2012

RECEIVE

MAY 2 5 2612

GEOSCIENCE ASSESSMENT OFFICE

Table of Contents

Page

Introduction	1
Property Description, Location and Access	2
Geology-Mineralization	5
Regional Geology	5
Local Geology	5
Mineralization	5
History of Previous Work	8
Work Performed and Methods Used	10
Geological Mapping, Prospecting and Sampling Program	10
Re-Logging of Historic Drill Core	10
Results and Interpretation	11
Conclusions and Recommendations	16

References

Certificate of Author

Figures

Figure 1:	Location Map	3
Figure 2:	Claim Map	4
Figure 3:	Geological Map	7

Tables

Sample Descriptions and Gold Assay Results	12
Re: G. McNamara and P. Adomaitis	12, 13
Re: P. Adomaitis and J.L. Gauthier	14
Re: R. Campbell and G. Henriksen	14, 15

- Appendix 1 Diamond drill Hole Log
- Appendix II MEMO-geological Re; G. McNamara
- Appendix III Analysis Certificates
- Appendix IV Claim list

Map(in pocket)

Working Geology, Prospecting and Sample Map

Preliminary Report on the Exploration Work of Knick Exploration Inc. on its Triple Lake Property in the Timmins Area, Ontario

NTS 42A3

Introduction:

Between June 20, 2011 and April 8, 2012 geologic mapping, prospecting and sampling as well as re-logging and sampling of historic core for precious and base metals was performed on the Triple Lake Property of Knick Exploration Inc. in McArthur, Bartlett and Musgrove Townships in the Timmins mining camp, north eastern Ontario, NTS 42A3.

The property was acquired based on airborne electromagnetic and magnetic data from the Bartlett Dome Project 2007 MEGATEM II airborne survey covering the area immediately south of Timmins, Ontario and the Triple Lake area historic gold occurrences. The anomalies consist of isolated clustered electromagnetic responses referred to as CF-1 and CF-2. The historic Triple Lake gold occurrences are not well documented.

In the Triple Lake area, circa 1932, a 55 foot shaft was sunk on one vein. The operator, Triple Lake Porcupine Gold Mines Ltd, shipped 155 tons of ore that returned them \$2738.00 (1932 gold was \$20.67/ounce). Sampling of the vein in 1981 returned values of 0.8 oz/ton gold over 3 feet.

On the southern portion of the Triple Lake area several veins were reported by A. Hubert in 1959. They reported values up to 2.0 oz/ton gold.

The preliminary work was oriented toward locating/relocating, mapping and sampling and to confirm the scant historical documentation on the Triple Lake gold area of the property.

Re-logging and sampling of one hole, TL-87-01, located in the Timmins Core Library originally drilled by United Kingdom Energy Ltd in McArthur Township was performed as no record of the log was found in the Government Mining Offices. The hole was drilled to test a reverse circulation anomaly of 12.8g/t gold.

This preliminary report is to show good faith in terms of the mining act in accordance with compliancy of work commitment in regards to claim 4217114. A request for extension of filing was submitted April 17, 2012. The request was granted and the extension of filing date is to May 28, 2012.

Mapping, prospecting and sampling work related to this filing was performed by:

Paul Adomaitis Geophysicist	June 20 to 30, 2011
Galen McNamara Geologist	June 20 to 30, 2011
Paul Adomaitis Geophysicist	Aug. 10 to 17, 2011
Jean Luc Gauthier Geo-technician	Aug. 10 to 17, 2011
Robert Campbell Geologist	Aug. 12 to14, 2011
Gordon Henriksen Geologist	Aug. 12 to14, 2011
Robert Campbell Geologist	April 7, 8, 2012
Gordon Henriksen Geologist	April 7, 8, 2012

This work was carried out predominantly on claims 4217111, 4217114 and 4219537 of the claim block.

Property Description, Location and Access:

The Triple Lake Property is comprised of one block of 22 claims-177claim units covering 2,832 hectares (6,998 acres). It is located in NTS sheet 42A03 approximately 32km due south of the city of Timmins in Bartlett, Musgrove, McArthur and Fripp townships, Porcupine Mining Division, Ontario. The claims are listed in the Triple Lake Property, Ontario-Knick Exploration Dates table, included.

The property is accessed by an all weather gravel road which is the southern continuation of Pine Street in Timmins. This road traverses the property north-south and numerous secondary logging roads provide excellent access throughout the property area.

Geology-Mineralization:

Regional Geology

The claims are located in the Abitibi Volcanic Belt of the Superior Province of the Canadian Shield. The Abitibi Belt extends for nearly 550km in a west-east direction from Timmins, Ontario to Chibougamau, Quebec. It is host to a variety of precious and base metal deposits including the Timmins, Kirkland Lake, Harker-Holloway, Noranda, Val d'Or and Chibougamau Mining camps.

The Abitibi Volcanic Belt is composed of a complex assemblage of interbedded volcanic and sedimentary rocks, intruded by a variety of ultramafic to felsic intrusives. The rocks are Archean in age and have been metamorphosed to the greenschist facies. Numerous Late Precambrian diabase dykes cut the rocks of the belt. The rock units generally strike west-east, have near vertical dips and are highly faulted and folded. Geological interpretation of the Abitibi Belt is complicated by the wide scattering of outcrop exposures in most areas and the complex underlying structural relationships.

Local Geology

The property is underlain by four main geological formations, from west to east they are:

The Kenogamissi Batholith, an intermediate to felsic intrusive mainly made up of diorite, quartz diorite and trondhjemite. The Pacaud Assemblage, comprised of mafic metavolcanics, which contains the Muskasenda Lake Intrusion consisting of gabbro and the Deloro Assemblage, made up of intermediate to felsic metavolcanics.

Strike of the assemblages in the area of the property is generally north-south.

Mineralization:

The Hollinger deposit a historic drill proven mineral resource of 114,200 tons of 1.66% copper lies approximately 1 km west of the property.

In the northeast part of the property on the east side of Triple Lake, circa 1932, a 55 foot shaft was sunk on one vein. The operator, Triple Lake Porcupine Gold Mines Ltd, shipped 155 tons of ore that returned them \$2738.00 (1932 gold was \$20.67/ounce). Sampling of the vein in 1981 returned values of 0.8 oz/ton gold over 3 feet.

On the southern portion of the Triple Lake area several veins were reported by A. Hubert in 1959. They reported values up to 2.0 oz/ton gold.

In the southeast corner of the property in drill hole RMD-8-02, by Richmond Minerals Inc., 2008, a definite zone of polymetallic mineralization was intersected at a depth of 14.53m that has a down hole width of 2.42m of 0.78% copper including 1.22m of 1.41%

copper, 9.3g silver, 0.11% zinc and 249ppb gold. In the same hole, at 91.34m a sample returned 254.3g silver over 0.31m. The zone appears related to but does not represent the source of the CF-2 airborne EM anomaly. A surface showing of 191ppb gold and 0.6% copper and drill hole RMD-8-02 are separated by approximately 125m.

(Referenced from the Ministry of Mining Assessment Files)

Prior to **1926**, **John Spence** discovered a piece of quartz on the shore of Triple Lake. Mr. Spence dug into the bank uncovering a quartz vein. By 1926 a six foot pit had been sunk on the vein which strikes N50E and dips 60 degrees south.

By 1932 a 55 foot shaft was sunk on one vein. The operator, Triple Lake Porcupine Gold Mines Ltd shipped 155 tons of ore that returned them \$2738.00, (1932 gold was \$20.67/ounce). "This is equivalent to a grade of 0.85 oz per ton gold and recovery of 132oz of gold. Present dollar value \$171,600 based on \$1,300 per ounce gold."

In 1926 there were two claims just north of the southern boundary of McArthur Township called the Lokner claims. The same area was covered by nine claims held by A. Hubert and O. Thomas in **1959.** They reported up to 2.06 oz/ ton gold from spotty mineralization.

Lacana Mining Corporation, in 1981 held 6 claims within the present property and performed geological mapping sampling trenching and geophysics.

Sampling of the main quartz vein in 1981 returned values of 0.8 oz/ton gold and 1 oz/ton silver over 3 feet.

The old shaft was dewatered, but before sampling could be done the Ministry of Natural Resources filled the shaft with gravel. In 1982, Lacana drilled 5 diamond drill holes totaling 1393 feet. Hole MC-1-82, drilled below the shaft mineralized material, which assayed 01oz/ton gold over 3.5 feet. There was significant sub parallel fracturing in the hole indicating that the hole may have been drilled along a fault zone thus obscuring the mineralized zone. Holes MC-2,-3,-4 and-582 were drilled to test the western extension of the shaft zone

United Kingdom Energy Inc. in 1987 performed a reverse circulation drilling covering a portion of the property which returned several highly anomalous results. The highest value was 12,895 ppb gold on the Triple Lake property. The gold anomaly was drilled however the company became insolvent. No record of the core log was found in the Ministry files. The core has been located in the Timmins core library and is available and accessible for re-logging and sampling.

In 2006, the Precambrian Geoscience Section (PGS) of the Ontario Geological Survey (OGS) started a multi-year project of geological mapping of the Bartlett Dome as part of an ongoing project to update geological mapping in the Timmins mining camp.

The summer of **2006**, the 1:20 000 scale bedrock mapping was focused on McArthur Township .The new geological map was released April 17, 2007, map P.3585 along with the **MEGATEM II Airborne survey** data for the **Bartlett Dome project**.

The geological map indicated several previously unrecognized features, including a tonalite plug on the property. The airborne data included the EM anomalies which are now referred to as CF-1 and CF-2.

Richmond Minerals Inc. performed limited ground geophysics in the CF-1 and CF-2 areas, in 2007.

In the early winter of 2007 a personal two hour meeting with the **senior geophysicist Jean Lemieux of Fugro Geophysics**, G. N. Henriksen and P. Adomaitis was conducted to explain the finer points of the new **MEGATEM II** airborne **EM** technology and its interpretation. "It is also important to remember that the GEOTEM and MEGATEM systems have a very large footprint (in the order of 400 to 500 m) and will tend to homogenize the conductive responses into a single response." This means an anomaly is accurately located however precision is lost in favour of depth of penetration.

Detailed modeling of the **CF-1 airborne anomaly** by the senior geophysicist **Jean Lemieux of Fugro Geophysics** interpreted the source as the upper part of the anomaly to be sphere like and the lower part to be plate like. This interpretation fits the VMS model.

In the winter-spring of **2008** a limited follow up **diamond drill program** was carried out to test various geophysical targets for gold, silver and base metals. Total drilling completed was 1,135m, 893.18m as 4 holes on CF-1 and 241.84 on CF-2.

The source of the airborne EM anomaly on CF-1 was not located by the limited drilling.

On CF-2 in drill hole RMD-8-02 a definite zone of polymetallic mineralization was intersected at a depth of 14.53m that has a down hole width of 2.42m of 0.78% copper including 1.22m of 1.41% copper, 9.3g silver, 0.11% zinc and 249ppb gold. In the same hole, at 91.34m a sample returned 254.3g silver over 0.31m. The zone appears related to but does not represent the source of the airborne EM anomaly. The surface showing of 191ppb gold and 0.6% copper and drill hole RMD-8-02 are separated by approximately125m.

Casing was left in holes proximal to airborne EM anomalies to enable future down hole geophysical surveys to define potential drill targets.

Work Performed and Methods Used

Geological Mapping, Prospecting and Sampling Program

Preliminary mapping of the claim boundaries, roads, trails, claim posts, old workings, were located using GPS NAD 83 coordinates in conjunction with traditional pace and compass method. The geological mapping, prospecting and sampling performed was concentrated in the area of claims 4217111, 4217114 and 4219537 in the vicinity of historic gold showings. For detailed mapping and sampling a zero point was established GPS coordinates taken. A north-south control line was then flagged and a chain lain out across the area. Mapping of the work area outcrops, shears, veins, trenches and sample locations was then performed by pace and compass using the control line for reference. Sample locations, outcrops, shearing, topography etc.; are plotted on the Working Geology, Prospecting and Sample Map at a scale of 1:5,000 and its insert map at a scale of 1:200 included in the map pocket of the report.

A total of 51 samples were collected. All samples were analyzed for gold 27 of which had multi-element scans performed and 2 were assayed for platinum and palladium.

During the period of June 20 to 30, 2011 Paul Adomaitis, Geophysicist and Galen McNamara, Geologist collected 27 samples. From Aug.10 to 17, 2011 Paul Adomaitis, Geophysicist and Jean Luc Gauthier Geo-technician collected 12 samples. Between the period Aug. 12 to14, 2011 and on April 7, 8, 2012, Robert Campbell, Geologist and Gordon Henriksen, Geologist collected 12 samples.

The sample descriptions and gold assay results have been tabled and are included in the results and interpretation of this report. AGAT laboratory in Sudbury, Ontario and Expert Laboratory in Rouyn-Noranda, Quebec were used for sample analyses. Certificates of analyses are included in Appendix III.

Re- Logging of Historic Diamond Drill Core

A total of 890 feet were re-logged in 1 hole of BQ core size. The hole, TL-87-1, was originally drilled by United Kingdom Energy Inc. in 1987 to test a reverse circulation overburden drill anomaly of 12.8g/t gold. The drill hole is situated on active claim number 4217111 at NAD 83 co-ordinates 477701E/5338754N.

The core was picked up from the core library in Timmins, Ontario during the period of August 12 and 14, 2011 and returned November 14, 2011 by Gordon Henriksen and Robert Campbell. A total of 41 samples were quartered-split and assayed for gold. The core was logged at the Knick Exploration Inc. office in Val d'Or, Quebec. Imperial units-footage was used to measure core as the original chock markers are in feet.

The diamond drill log and section are included in Appendix I and its location is plotted on the Working Geology, Prospecting and Sample Map included in the back pocket of the report. Expert Laboratory in Rouyn-Noranda, Quebec was used for sample analyses. Certificates of analyses are included in Appendix III.

Results and Interpretation

The diamond drill hole TL-87-01 contains a 263.2 foot (80.2m) zone of quartz mineralization as stock work to breccia hosted in Andesite from 548.8 to 812.0 feet. The core contained <1% sulfides. No significant gold values were returned from the 41 samples taken. The reverse circulation anomaly of 12.8 g/t gold was not explained by the drill results however the quartz mineralization over the 80.2m indicates a large structural system in this area with potential for gold mineralization elsewhere in the system, possibly related to the reverse circulation gold anomaly.

Two areas located from the surface sampling returned anomalous gold.

A grab sample, number 59674, at NAD 83 co-ordinates 477522E/5337499N, collected by G. McNamara and P. Adomaitis, of 0.7m wide quartz vein returned 127 ppb gold. This sample is from the vicinity of historical workings where up to 2oz/ton Au was reported by A. Hubert 1957. Follow up work is warranted. A memo on their field work is included in Appendix II. This area is now referred to as the Hubert South.

Three grab samples collected by P. Adomaitis and J.L. Gauthier in the vicinity of NAD 83 co-ordinates 477547E/5338092N returned anomalous gold. Samples of quartz veining assayed 384ppb and 358ppb gold a sample of wall rock returned 49ppb gold. The area is now referred to as the Hubert North.

Subsequent follow up detailed work on the Hubert North, geologic mapping and sampling by G. Henriksen and R. Campbell was performed. The Hubert North showing consists of a quartz vein up to 1.5m (5feet) wide and exposed in outcrop and old trenches for 10m. A numbered of old trenches/pits lie along strike of the exposure. Nine samples were taken, 3 of sheared gabbro host rock and 6 of quartz veining. Five of the 6 samples of quartz veining retuned anomalous gold anomalous including 1.92g/t, 4.59g/t and 116.88g/t.

Triple La NAD	ke 2011 S	ample Loca	ations, Descriptions and Gold assay Results		
83			Reference: Galen McNamara & Paul Adomai June 20-30, 2011	tis	
Sample	Easting	Northing	Description	Mineralization	Gold assay
					ppm
59662	477598	5337480	Mafic volcanic	tr-1% diss py	0.005
59663	477609	5337330	Mafic volcanic, weak foliation,	1-2% diss py	0.002
			not outcrop, rubble as base of cliff		
59664	477564	5337321	Quartz vein, 0.5m wide,	NA	0.003
			N-S orientation, hosted in sheared basalt		
59666	477195	5337714	Quartz vein, 1.5m long, 0.2 m wide,	tr py, concentrated	0.002
			N-S orientation	on margin	
59667	477186	5337734	Quartz vein, pinch and swell, ~0.5m wide,	tr py	0.009
			hosted in strongly sheared basalt		
59668	477073	5337950	BOULDER, Mafic volcanic	20-30% py, cubic	0.014
59669	477776	5336264	BOULDER, Heavily altered mafic volcanic ?,	2-5% diss py	0.002
			massive chlorite associated w/ foliation,		
			variably silicified		
			OFF PROPERTY, taken from pit material to	10-20% py	
59670	477009	5334067	S,	stringers	0.047
			massive quartz		
59671	477281	5337598	Rusty quartz feldspar porphyry (QFP),	tr py	0.003
			5-8 cm wide dykes of QFP cut gabbro		
			(5% of outcrop)		
59672	477561	5337442	Quartz vein, 15cm wide, N-S orientation	NA	0.003
59673	477564	5337410	Gabbro, slightly rusty,	NA	0.010
			5% quartz-carbonate veinlets		
59674	477522	5337499	Quartz vein, 0.7m wide, white to grey,	tr-3% py, tr cpy,	0.127
			hosted in intensely sheared + mineralized	concentrated in	
			mafic volcanic (?), N-S orientation	wall rock blocks	
				near margins	
59675	477522	5337499	Sheared mafic volcanic,	5-10% py	0.068
			wall rock to previous sample, >5m wide		
59676	477459	5337527	Altered Gabbro. pegmatoidal.	5-10% py stringers	0.003
55070		5557527	plagioclase now dark chlorite (?)		0.000
			spoil nile adjacent to very old nit (?)		
59677	477459	5337527	As previous less mineralization	2-3% py, tr cpy	0.003

Triple La	ke 2011 S	ample Loca	ations, Descriptions and Gold assay Results		
83			Reference: Galen McNamara & Paul Adomait	is	
			June 20-30, 2011		
					Gold
Sample	Easting	Northing	Description	Mineralization	assay
					ppm
59678	477459	5337527	Chlorite-pyrite rock, 5-10% quartz veinlets,	5-10% py	0.005
			spoil pile		
				20% ру,	
59679	477495	5337515	Quartz vein, contains fragments of sheared	stringers	0.009
			and altered mineralized wall rock,	and cm sized	
			spoil pile, high graded sample	pockets	
59680	477495	5337515	As previous, less mineralization	5% py, stringers	0.004
59681	475114	5335881	Mafic volcanic, 1m xenolith in granodiorite,	1-5% py, tr cpy	0.008
			strong chlorite alteration		
59682	475225	5335837	Quartz vein, float in boulder pile,	tr py on margins	0.004
			local source?		
59683	477515	5337581	Quartz vein, 15cm wide, deep blue colour,	NA	0.002
			boulder directly above shear zone,		
			local source?		
59684	477515	5337581	Mafic volcanic, sheared, directly adjacent	1-2% py	0.007
			to previous sample, this rock and host to		
			quartz vein in boulder is equivalent		
59685	477536	5338154	Quartz vein, 30 cm wide, in very old	NA	0.003
			and small pit ?, NW-SE orientation		
59686	477546	5338089	Quartz vein, <15cm wide, pinch and swell,	tr-1% py, tr cpy	0.006
			N-S orientation, in old trench		
59687	477546	5338089	Quartz vein spoil from pit adjacent to last	tr py	0.010
59688	477280	5337735	Mafic volcanic, 2cm wide guartz veinlets	tr po	0.002
			w/ 2-3% po, not directly from outcrop.	· · · · · · · · · · · · · · · · · · ·	
			but broken up from it		
59689	477319	5337513	QFP, rusty spots correspond to py	tr py	0.002

Triple Lake 2011 Sample Locations, Descriptions and Gold assay Results NAD				
83			Reference:P. Adomaitis & Jean-luc Gauthier	
			Aug. 10-17, 2011	
Sample	Easting	Northing	Description	Gold assay
				ppb
67501	474992	5335722	Basalt-metased., fine grained, dark grey green, rusty	<5
67502	477997	5338111	Quartz stringers, 5.0m south of road	<5
* North	Hubert	Showing	5 foot wide Quartz Vein, sheared wall rock	
		Glietting	(see map insert)	
*67503	477551	5338102	wall rock, slightly mineralized	<5
*67504	477550	5338100	Quartz vein	384
*67505	477554	5338095	Quartz vein + wall rock	12
*67506	477554	5338094	Mineralized rubble "pit"	16
*67507	477550	5338100	Mineralized wall rock	49
*67509	477551	E220100	Quartavoia	250
07308	477551	3339100		358
*67509	477552	5338102	Trench rubble	8
*67510	477550	5338111	Mineralized wall rock	20
*67511	477550	5338111	Quartz rubble	20
67512	474928	5335475	Banded Iron Formation?, blocky angular, float	<5

			Triple Lake	August 13, 2011, R. Campbell & G. Henriksen
Sample	NAD 83	zone 17	Sample	Sample
Number	Easting	Northing	туре	Description
16264	477365	5337515	grab outcrop	chl.+carb schist, +1.5m wide, strike 350 degrees, dip approx.45 degrees E

Tripla La	ka 2012 S	ample Loss	tions Descriptions and Gold assay Posults	Page 1 of	
NAD	KE 2012 S	ample Loca		I	
83			Reference: R. Campbell & G. Henriksen		
			April 7, 8, 2012	FA-GEO	FA-GRAV
Sampla	Eacting	Northing	Description	Gold	Gold
Sample	Easting	Northing		assay	assay
1.0005	477560	F220406		ddd	g/t
16265	477563	5338186	White qtz with patches of beige carb+chl	23	
			shear margins, 0.15m wide, trench rubble		
			Main and Transk lumption Deint for detailed leasting		
*	177517	5220002	Vein and Trench Junction Point for detailed location		
	4//54/	5556092	(map)		
*10200	477547	5220002	(map insert) Ke: claim number 421/114		
*16266	4//54/	5338092	Gabbro, greenish-grey, sheared, carb.+cni.+	16	
			qtz alter., no apparent sulfides, outcrop,		
			west wall of vein, trench area		
*16267	477547	5338092	Gabbro, similar to 16266	31	
*16268	477547	5338092	White qtz vein with minor carb., sugary	28	
			texture, fine seams and specs of py and po-		
 			brownish black tarnished mineral 1%, west		
			side of vein, grab of outcrop trench area		
*16269	477547	5338092	White qtz vein with minor carb., sugary	478	
			texture, specs blebs and patches of py and		
			brownish black tarnished mineral po 2%,		
			center of vein, grab of outcrop, trench area		
*16270	477547	5338092	Sheared gabbro within vein, qtz+carb.,	37	
			3-5% py, grab outcrop in trench		
*16271	477547	5338092	White qtz vein with minor carb., sugary	1783	1.92
			texture, 1-3% py, east side of vein, grab of		
			outcrop in trench area		
*16272	477547	5338092	White qtz vein with minor carb., sugary	>DL	116.88
			texture, 1% py, po blackish tarnished min.,		
			grab of trench rubble		
*16273	477547	5338092	White atz vein with minor carb., sugary	4353	4.59
			texture, light Fe stain on surface, grab of		
*16274	477547	5338092	White gtz vein with minor carb., sugary	142	
			texture, no apparent sulfides, grab of rubble		
			hy trenches		
16275	477270	5227610	White atz voin with natches of dark groon	16	
102/3	4//2/9	5557048	chlarita, grah autoron	10	
			cmonte, grab outcrop		

Conclusions and Recommendations

The preliminary geological mapping, prospecting and sampling was successful in locating historical workings, quartz veining, shear zones as well as claim posts, claim lines and tying into topographic features. Two areas of anomalous gold mineralization were found, referred to as the Hubert South and the Hubert North. At present the Hubert North has retuned the most significant gold assays including a grab sample 116.88g/t of quartz vein material.

The re-logging and sampling of the historic drill hole TL-87-01 was successful in determining that a large zone of quartz mineralization (over the 80.2m down hole) as stock work to breccia in andesite underlies this part of the property. No significant gold values were returned from sampling of the core and the original targeted reverse circulation 12.8g/t gold anomaly remains unexplained.

Further work is warranted on the property. A program of mechanical stripping in the Hubert North area as well as follow up and full coverage geological mapping, prospecting and sampling are recommended. Down hole electromagnetic surveys should be carried out in the areas of CF-1 and CF-2 and any off hole anomalies should be drill tested for precious and base-metals.

fordow 11 bl Respectively submitted,

Gordon Henriksen P.Geo Knick Exploration Inc. V.P.

April 23, 2012

References

<u>NI 43-101 Technical Report-Triple Lake Property</u>, Eastern Ontario, Timmins Area, Timmins Mining Camp, March 2 2011, knick Exploration Inc., by Donald Theberge, P. Eng., M.B.A.

Report on the Diamond Drill Program on the CF-1 and CF-2 Properties of the Triple Lake Project, Bartlett and Musgrove Townships, Ontario, NTS 42A3, Sept. 22, 2008, by G. Henriksen P. Geo., for Richmond Minerals Inc.

Report on the Ground Total Field Magnetic, VLF-Electromagnetic and Horizontal Loop Electromagnetic Surveys and Sampling, CF-2 Property, Bartlett and Musgrove

Townships, Ontario, NTS 42A3, Jan. 29, 2008, by G. Henriksen P. Geo., for Richmond Minerals Inc.

<u>Report on the Ground Total Field Magnetic, VLF-Electromagnetic and Horizontal Loop</u> <u>Electromagnetic Surveys and Sampling, CF-1 Property, Bartlett and Musgrove</u>

Townships, Ontario, NTS 42A3, Jan. 29, 2008, by G. Henriksen P. Geo., for Richmond Minerals Inc.,

<u>Airborne Magnetic and Electromagnetic Survey, Bartlett Dome Area, April 17, 2007</u> OGS/GSC: Block 1 (42A03)

Scale 1:50,000

Maps 81982 to 81985

81982/OF5512 to8198/OF5515

Scale 1:20,000

Maps 81989/OF5519

81991/OF5521

OGS Data Set # 1057 Magnetic and Electromagnetic Data

Grid and Profile Data (ASCII and Geosoft Formats) and Vector Data Precambrian Geology of McArthur Township, April 17, 2007

by M.G. Houlé,

Scale 1:20,000

Map P.3583

Moneta Porcupine Mines Inc., Press release, August 13, 1996

Falconbridge Ltd. Metallurgical Technology, Inter-office memo, January 24, 1992

From J.D. Scott to M.Y. Houle, subject: Mineralogy and petrology of a mineralized shear in DDH F-21 Moneta- Fripp property

Report on the Overburden Drilling on the Triple Lake property in McArthur Township, Porcupine Mining Division, February 15, 1987 for United Kingdom Energy Inc.

by William E. MacRare

<u>Geophysical Report, McArthur Township, Exics Exploration Ltd, October 27, 1985</u> by J.S. Grant for R. Lavoie

O.D.M. Geological Compilation Series, Timmins-Kirkland Lake Sheet, Map No. 2205, Cochrane Sudbury and Timiskaming Districts, 1973

by D.R. Pyke, L. D. Ayres and D. G. Innes

Gordon N. Henriksen 877 Riverside Drive, Wakefield, Quebec Tel: (819) 459-2600 Cell: (819) 210-1406

CERTIFICATE of AUTHOR

I, Gordon N. Henriksen, P. Geo., do hereby certify that:

- 1. I am currently employed as an independent consulting geologist.
- 2. I graduated with a degree, BSc, Specialization Geology from Concordia University in 1986.
- 3. I am a Professional Geologist registered in the Province of Quebec (RN #451) with the Order of Professional Geologists of Quebec.
- 4. I have held an Ontario Prospectors permit for 25 years.
- 5. I have been employed in my profession for a total of 25 years by various mining companies since graduation and have worked extensively in exploration in Quebec, Ontario, Labrador, B.C., Mexico and Alaska.
- 6. I have read the definition of "qualified person" set out in the National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purpose of NI 43-101.
- 7. I have had prior involvement with the property that is the subject of this report.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical report, the omission to disclose which makes the Technical Report misleading.
- 9. I currently hold 1,238,315 free trading shares of Knick Exploration Inc.
- 10. I have not done an extensive review of all available government files on the history of this property as this is a general assessment report of the work completed between June 20, 2011 and April 8, 2012.

Dated this 23nd Day of April, 20,

Gordon N. Henriksen, P. Geo.

APPENDIX I

DIAMOND DRILL HOLE LOG

DIAMOND DRILL LOG-KNICK EXPLORATION INC

Sheet1

ORIGINALLY DE	RILLED BY UNITED KINGDOM ENERGY INC, 1987- NO RECORD OF ORIGINAL LOG		Page 1 of :	3
Core stored in ti Hole Number: T	he Timmins Core Library L-87-01, MNDM # TI3339 47 core boxes as 1-3 on pallet 34, 4-47 pallet 35	Local file #T3098		
Township: McAr Property: Triple Claim Number: Re-logged by: G	thur NTS: 42A03 Collar-N.A.D. 83 Co-ordinates: zone 17, 477701E/5338754N Grid C Lake Company: Knick Exploration Inc. Historic Hole Number: TL 87-01 4217111 Core Type: 3Q Dip: -5C Azimuth: 035 degrees, Ultimate Depth 860.7 ft, : N.Henriksen, P.Geo., Sept. 26, 2011 Signature:	26 2.4m	1980W747	50\$
DEPTH	DESCRIPTION	SAMPLE	SAMPLE	GOLD
(FEET) 0.81.7	NO CORE N.B. STARTING WITH BOX # 4	NUMBER	(FEET)	(pob)
91.7-404.6	Andesite: med to dark grey green to green, aphanitic to fine grained,			
90.1-92.1	carb t/- qtz ± triorange mineral, no apparent sulfides, 83.0m fabric @ 25" to CA	B67851	2.0	20
104.0-106.9	2 inch qtz + carb veinlet @ 25" to CA	B67852	2.9	3
133.7-134.1	Brecclated, < 1% Py with gtz + carb filling / matrix		4.0	
168.5-173.0 173.0 188.3	fine grained, weakly fractured score mixed up in part missing -10.2 ft. missing			
<u>188.3-198.5</u> 226.9-229.4	5 core missing weakly bleached – brecciated + tuffaceous	B67854	2.5	8
229.4-231.5 231.5-234.2	Ituffaceous - weakly bleached, 20% gtz + carb + minor hematte, fabric @ 25% to CA	B67855 B67856	2.1	7
257.0-258.4 295.0-296.7	2 inch white qtz vein @ 45" to CA 0.5 ft qtz vein white with orange spots	B67857 B67858	1.4	Э 10
→ 307.8 307.8-312 (484.6 fine grained mod fractured to brecciated, carb + .qtz ± hem filling	B67859	4.2	9

Page 1

			3	
DEPTH	DESCRIPTION	SAMPLE	SAMPLE	SOLD
(FEET)		NUMBER	WIÐTH ft	opo
372 3-374.8	1.8 ft white gtz + minor carb vein @ 20° to CA	B67861	2.5	7
383 2-386.4	30% white qtz ± carb veinlets	B67862	3.2	B
399 1-401.5	20% white qtz veinlets ± albite ± pink feldspar, veinlets @ 15' to 45' to CA, tr Py	B67863	2.4	. 11
404 9-407.1	40% white qtz veinlet e triorangy pink mineral, veinlet @ 75° to CA ,tr Py	B67864	2.2	14
434 2-436.7	30% white qtz with minor feldspar, tr hem alter seam @ 30' to CA, tr Py	B67865	2.3	9
483 0 484.6	60% white qtz @ approx 30° to 60°, 0.02 ft with 3 to 5% Py as whispy chloritic lamilli	B67866	16	11
484.6-503.3	Intermediate dyke (Melanocratic diorite) med to dark grey, fine to med grained			
	occasional qtz veinlet ≤ 0.04 ft			
	20° to 40° to CA, grad contacts	B67867	8,4	5
484.6-493.0	Representative <1% dissem Py			
503.3-522.4	Andesite: similar to 81.7-484.6	1		
509.3-511.0	0.02 ft qtz vein with < 1% cpy + bornite @ margins as patches + dissem @ 20° to CA	B67868	1.7	16
512.3-514.0	core missing			
521.C-522.4	weak nematite alter on fractures			
522.4-548.8	Diorite as 484.6-503.3, upper contact gradational, lower contact brecciated-gradational			
536 7-540.6		867869	3.9	ា
548.8-812.0	Andesite (similar to 81.7-484.6) stockwork to "Breccia"			
548.8-551.6	brecciated up contact tr Py	B67870	2.8	7
566.2-573.0	dominate veining sub II to 20° to CA, ≤ 3% dissem sulfides with veining + margins tr Cpy	B 67871	6.8	9
573.0-579.8	similar to B67871 with 3% Py las diss + patches	B67072	6.8	10
581.0-585.9	breccia greenish grey and grey fragments, grey fragment with 3-5% disser: Py,	B67873	4.9	16
	40% qtz matrix			
589.5-592.3	"stock work" 30% qtz \leq 3% Py	867874	2.8	9
599.1-601.1	core missing			
801.1-603.6	similar to 867874, 40% qtz	867875	2.5	8
607.5-612.3	breccia similar to B67873	B67876	4.8	10
624.2-628.7	breccia – grey fragments "andesite" no apparent sulfides, 50% qtz	B67877	4.5	8
658.1-665.0	Breccia, 90% gtz with trace orangy specs, no apparent sulfices	867878	6.9	7

SheetI

Page 2 of 3

Page 2

	DESCRIPTION	SAMPLE	SAMPLE WIDTH f:	COLD		
668.3-673.0	80% atz on annarent suifides	667879	4.7	8		
667.5-693.9	75% dtz. 2% orangish spots, tr Py	B67880	5.4	7		
699.3-703.0	30% gtz-white	B67891	3.7	8		
725.8-728.8	bieccia 50% gtz matrix, tr Py	867881	3.0	I		
728.8-733.0	3-5% dissem Py in 'And fragments', 35% gtz	867882	4.2	12		
733.0-738.0	5% Py as dissem + patches in "And tragments", 50% qtz	867883	5.0	-9		
738.0 741.3	tr Py, 50% qtz	867884	3.3	7		
741.3-750.1	broccia, tr Py as dissem + patches 30% etz	B67885	8.8	В		
771.5-778.7	breccia, light green and dark fragments, dark grey fragments with 5-10% dissers Py	B67886	7.2	10		
785.1 793.4	similar to B67886	B67837	8.3	В		
808.5-812.0	transition breccia + fine grain massive, and (Core Mixed Up ! And in part missing),	B67888	3.5	7		
	tr. bright red coppery					
	mineral, < 1% suffides					
812.0-890.0	Andesite, light grey frequent ctz veinlet, minor hem alter associated with fractures	2.14				
1	plus veinlet orange red	199				
	mineral					
846.4-856.6	mod "Hem" orange-red alter. ≤ 1% dissem Py	B/67889	10,2	10		
877.4-583.0	smilar to B67889	B-57890	5.6	9		
890.0	E.O.H. CHECK GOV. • 860 ft & 30 ft within tolerances considering core condition	-				

Sheet I

Page 3

BOX	FROM	TO	CORE IN	COMMENTS
NUMBER	(FEET)	(FEET)	BOX	
4	81.7	85.5	13.8	
5	95.5	114.2	18.7	
8	114.2	132.6	18.4	
7	132.6	152.2	19.6	
8	152.2	170.3	18.1	
9	170.3	188.3	18.0	section of core mixed up & missing
10	198.5	205.5	7.0	10.2 feet missing, 188.3 to 198.5
11	205.5	224.3	18.8	<i>.</i>
12	224.3	241.2	16.9	
13	241.2	259.7	18.5	
14	259.7	278.6	18.9	
15	278.6	297.2	18.6	
16	297.2	315.4	18.2	
17	315.4	334.0	18.6	
18	334.0	350.0	19.0	
19	353.0	371.9	18.9	and the second
20	371.9	391.1	19.2	
21	391.1	409.5	18.4	
22	409.5	428.2	18.7	
23	428.2	146.7	18.5	
24	446.7	465.6	18.9	
25	465.6	494.6	19.0	
26	484.6	503.3	18.4	
27	503.3	522.4	19.4	
28	522.4	540.5	18.1	
29	540.5	5587	18.2	
30	558.7	577.7	19.0	and have not addressed of a constraint of the design of the design of the design of the second s
31	577.7	593.8	16.1	
32	593.8	612.3	18.5	599.1 to 601.1 missing (2 feet)
33	612 3	630.3	28.0	
34	830.3	648.8	18.5	
35	648.8	667.5	18.7	
36	667.5	685.2	17.7	
37	685.2	703.9	18.2	-
38	703.9	722.3	18.4	approx, 2 feet of core missing
39	722.3	741.4	19.0	core slightly mixed up, approx, 1 foot missing
40	741.4	766.5	25.2	lost & missing core
41	766.5	785.0	18.5	approx. 3 feet of core missing
42	785.0	B03.6	18.6	approx. 1 foot of core missing
43	803.6	823.6	20.6	approx, 2 feet of core missing, partly mixed up
44	823.6	846.4	22.8	approx. 4 feet of core missing
45	846.4	865.1	18.7	
46	865.1	883.8	187	
47	883.8	890.0	6.2	
47	890.0	EOH		Gordon N. Henriksen, Geologist
				Sept. 26, 2011
		1	1	

Diamond Drill Hole Section

APPENDIX II Memo-Geological

Memo

To: Jacques Brunelle, Gordon Henriksen

From: Galen McNamara

Date: 5/22/2012

Re: Triple Lake Project

Attachements: Assay and sample description spreadsheet

Message

Gentlemen,

This memo summarizes ideas that came out of work done by Paul Adomaitis and myself at Triple Lake in June.

Please find included a spreadsheet that contains sample descriptions and assay.

The best assay was 0.13 g/t Au. Although this is relatively low grade, a number of areas of interest were identified and further work is warranted.

Bartlett-McArthur Township Boundary

A shear zone up to 50m wide was uncovered at the Bartlett-McArthur township boundary. Although this area has been recently clear-cut, several historic, spoil piles from old pits and/or trenches were found. The broken up rock in the spoil piles was often pyrite bearing, sometimes containing up to 20% pyrite as ribbons and disseminated throughout. This shear zone extends northwards from the township boundary for at least several hundred metres. The east margin of the shear zone is flanked by metre-scale **Quartz-Feldspar Porphyry** dykes. A 1926 government report noted V.G. at this location.

Recommendations:

- 1. Further prospecting of shear zone to both N and S. I note that the sample of 0.13 g/t Au is from a very narrow quartz vein just S of the township boundary in the same structure
- 2. Mechanical stripping of area where known spoil piles exist to uncover both length and width of mineralization. Although samples from the spoil piles were barren, only very few samples were taken and follow up is warranted and up to 2 oz/t Au were reported from this area in the 1960's. The area lies ~200 m off of a road and is in a clear cut. Access is very favourable and the mineralized zone could potentially be quite large at surface.

<u>CF-1</u>

The area around anomaly CF-1 on the western part of the property was briefly prospected. The target at this location is most likely a volcanic rock hosted massive sulfide deposit as identified by Megatem. At surface the rocks are dominated by granodiorite. However, rare blocks of hydrothermally altered and weakly mineralzed volcanic rocks occur in the granodiorite, indicating the verifying the potential for a massive sulfide deposit below.

Recommendations:

- 1. Re-cutting of grid in E-W direction, 100m spacing. Since the Megatem survey was flown E-W, follow up ground geophysics should be completed in the same direction.
- 2. Ground EM survey to tie down the exact location of the anomaly. Since, the Megatem footprint is so large, a follow up, higher precision survey is warranted. The same survey method should also be used at CF-2.

Examination of drill core TL-87-01 at the Timmins Core Library

This drill hole is 873' in length and stored in 46 boxes of core. The majority of the core has been halved, but all assay information is missing from the assessment records. Roughly 90% of the rock of the hole is basaltic.

Interesting features:

530'-750' - 30% quartz veins, various angles to core axis, widest is ~3', mostly barren looking

533'-535' - inch wide bluish quartz veins run roughly parallel to core axis, tr-1% py on margins

582'-584' - 5% py in inch wide bands roughly parallel to core axis

Recommendations:

1. The core should be completely re-assayed. Although for the most part unmineralized, there is a significant amount of quartz veining in the core and this warrants re-assay.

APPENDIX III Analysis Certificates

h			<u>*** Cer</u>	tificate of analysis ***	Date : 2011/11/16
Labora 127, Boulevard Rouyn-Norand Canada, J9X 6 Telephone : (8	Industriel a, Québec 197 702-7100, Fax: (819) 762-7510				Page : 1 of 3
Client	: Knick Exploration	nn fa fa shirigin sa an			
Addressee	536, 3rd Avenue Vald'Or			Folder : 32402 Your order number : Project : TRIPLE LAKE	
	J9P 1S4	Fax : (819	874-5258	Total number of samples : 41	
Designation	Au FA-GEO ppb 5	Ad-Dup FA-GEO ppb 5			
867851	20	16			
867852	9				
B67853	8				
B67854	8				
867855	9				
B67856	7				
867857	9				
B67858	10				
B67859	9				
B67860	7				
B67861	7				
B67862	8				
867863	11	9			
167864	14				
867865	9				
867866	11				
	S S				
B67867					
B67867 B67868	16				

Joe Landers, Marager

Labora	atoire Expert Inc.		<u>*** Ce</u>	rtificate of analysis ***	Date : 2011/11/16
27, Boulevar Rouyn-Norand Canada, J9X 6	d Industriei la, Québec IP2 190 782-7100 Env : (819) 782-7510				Page 2 of 3
Client	: Knick Exploration				
Addressee	Safe Stream Safe Stream Safe Stream Safe Stream Safe Stream Strea			Folder : 32402 Your order number : Project : TRIPLE LAKE	
	Québec J9P 1S4	Telephone (819 Fex : (819	9) 874-5252 9) 874-5258	Total number of samples : 41	
Designation	Au FA-GEO ppb 5	Au-Dup FA-GEO ppb			
367871	Ŷ				
67872	10				
67873	16				
67874	9				
17074	8	7			
lo / d / 5					
uo / 8 / 5 367876	10				
167876 167877	10 8				
167876 167877 167878	10 8 7				
167876 367877 367878 367878 367879	10 8 7 8				
167876 167876 167877 167878 167879 167880 167880	10 8 7 8 7 7				
107775 167876 167877 167878 167878 167879 167880 167881 167882	10 8 7 8 7 7 12				
1077175 167876 167877 167878 167879 167880 167881 167881 167882 167883	10 8 7 8 7 7 12 9				
16783 16787 16787 167878 167878 167880 167881 167882 167883 167883 167884	10 8 7 8 7 7 12 9 7				
167876 167877 167878 167878 167879 167880 167881 167882 167883 167883 167884 167884 167885	10 8 7 8 7 7 12 9 7 8				
1807/875 3667/876 3667/878 3667/878 3667/878 3667/880 3667/882 3667/883 3667/883 3667/885 3667/885 3667/885 3667/885	10 8 7 7 7 12 9 7 8 10				
1807475 1667877 1667878 1667878 1667878 1667881 1667881 1667882 1667884 1667884 1667885 1667886 1667886 1667886 1667885 1667886 1667885 166785 166785 166785 166785 166785 166785 166785 166785 167885 167885 16785 167855 16785 167885 167885 167885	10 8 7 7 12 9 7 8 10 8	7			
180 / 17 / 27 3667877 3667878 3667878 3667878 3667881 367881 367883 367883 367883 367885 367885 367885 367887 167888	10 8 7 8 7 12 9 7 8 10 8 7	7			
0007875 B657875 B657878 B657878 B657839 B657880 B657881 D657882 D657883 D657884 B657885 D657885 D657888 B657888 B657888	10 8 7 8 7 12 9 7 8 10 8 7 10	7			

Labora 127, Boulevan Rouyn-Norand Ceneda, J9X (Telephone : (8	atoire Expert Inc. d Industriel da, Quebec BP2 319) 782-7100, Fax: (819) 782-7510	<u>*** C</u>	ertificate of analysis ***	Date : 2011/11/16 Page : 3 of 3
Client	Knick Exploration			
Addressee	536, 3rd Avenue VaktOr		Folder : 32402 Your order number : Project : TRIPLE LAKE	
	Québec J9P 1S4	Telephone : (819) 874-5252 Fax : (819) 874-5258	Total number of samples : 41	
Designation	Au FA-GEO ppb 5	Au-Dup FA-GEO ppb 5		

٦

B67891

۶

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agallabs.com

CLIENT NAME: KNICK EXPLORATION INC. 536 3RD AVE. VAL D'OR, QC J9P1S4

ATTENTION TO: Gordon Henriksen

PROJECT NO:

AGAT WORK ORDER: 11U506811

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, General Manager

DATE REPORTED: Jul 20, 2011

PAGES (INCLUDING COVER): 12

Should you require any information regarding this analysis please contact your client services representative at (905) 501 9998, or at 1-800-856-6261

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Results relate only to the items tested

Page 1 of 12

Certificate of Analysis AGAT WORK ORDER: 11U506811

ATTENTION TO: Gordon Henriksen

PROJECT NO:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agailabs.com

CLIENT NAME: KNICK EXPLORATION INC.

			Aqua R	egia Dige	st - Meta	ils Packa	ge, ICP-0	DES finis	h (20107	3)				
DATE SAMPLED: JI	ul 04, 2011		DATE	RECEIVED	: Jul 05, 20'	11	DA	TE REPORT	(ED: Jul 20,	2011	SA	MPLE TYPE	Rock	
Ana	ilyte: Sample Login Weight	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu
	Unit: kg	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL: 0.01	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5
59662	1.06	<0.2	1.53	6	6	10	<0.5	<1	1.97	<0.5	9	15.3	103	139
59663	1.02	≪0.2	2 70	7	15	12	<0 5	<1	2.05	<0.5	11	20.0	30.1	152
59664	0.78	<0.2	3.08	1	<5	<1	<0.5	<1	0.09	<0.5	<1	1.1	242	11.3
59666	0.68	<0.2	0.33	3	<5	1	<0.5	<1	0.22	<0.5	2	12.8	351	60.9
59667	0.82	<0.2	1.11	7	<5	12	<0.5	<1	1.35	<0.5	5	7.2	314	6.3
59668	0.52	0.2	0.55	5	16	19	<0.5	<1	0.26	0.6	9	11.8	184	142
59669	1.38	<0.2	1.89	9	14	2	<0.5	<1	16.7	<0.5	13	24.0	51.8	111
59670	0.90	1.5	0.13	5	9	</td <td><0 5</td> <td>650</td> <td>0.33</td> <td><0.5</td> <td>5</td> <td>345</td> <td>306</td> <td>13.4</td>	<0 5	650	0.33	<0.5	5	345	306	13.4
59671	0.92	<0.2	1.72	6	<5	14	<0.5	<1	1.44	<0.5	14	9.6	77.4	34.6
59672	0.26	<0.2	0.50	3	<5	2	<0 5	4	0.36	<0.5	3	7.1	303	88.4
59673	0.74	<0.2	2.94	7	17	6	<0.5	<1	2.88	<0.5	15	38.4	38.2	150
59674	1,24	<0.2	1.00	6	<5	21	<0 5	<1	0.49	<0.5	3	7.8	221	62.7
59675	1.00	<0.2	2.68	9	12	19	<0.5	<1	2.13	<0.5	6	34.2	119	238
59676	1.50	<0.2	1.81	5	8	21	<0.5	<1	2.23	<0.5	8	24.4	41.2	172
59677	1.12	<0.2	1.00	5	5	20	<0.5	<1	1.12	<0.5	4	16.1	51.0	77.5
59678	2.22	<0.2	0.64	8	12	12	<0.5	<1	0.76	<0.5	5	84.4	59.7	129
59679	0.60	<0.2	0.22	2	<5	7	<0.5	<1	0 10	<0.5	2	29.3	258	139
59680	1.48	<0.2	0.57	4	<5	7	<0.5	<1	0.54	<0.5	4	4.6	165	28.7
59681	2.24	<0.2	2.98	10	15	61	<0.5	1	0.65	<0 5	19	10.4	123	81.4
59682	1.30	<0.2	1.06	7	6	15	<0.5	4	3.56	<0.5	27	25.2	152	10.2
59683	0.50	<0.2	0.07	4	<5	7	<0 5	<1	1.80	<0.5	1	1.3	237	8.6
59684	0.84	<0.2	1.64	9	16	60	<0.5	1	0.57	<0.5	11	28.7	37.4	320
59685	1.84	<0.2	0.37	2	~5	5	<0.5	<1	0.08	<0.5	2	3.2	225	8.9
59686	0.86	<0.2	0.86	7	<5	13	<0.5	<1	3.29	<0.5	4	9.8	222	90.3
59687	1.62	<0.2	1.38	6	<5	6	<0.5	<1	2 66	<0.5	6	8.8	213	61.1
59688	0.66	<0.2	1.33	5	<5	10	<0.5	<1	1.89	<0.5	5	26.0	52.1	120
59689	0.56	<0.2	1.13	5	<5	143	<0.5	<1	0.49	<0.5	62	3.3	128	12.6
59661	2.56	<0.2	0.59	4	\$	17	<0.5	<1	0.61	<0.5	17	4.0	175	40.5

Certified By:

hor Cardinall

CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested

Page 2 of 12

			aborato	ories	AGA PRO	r tifica r work o lect no:	te of A	Analys		O: Gordon	Hanrikean	M	5623 McAD IISSISSAUGA, CANAD TEL (90! FAX (90! http://www.ag	AM ROAD ONTARIO A L42 1N9 5)501-9998 5)501-0589 atlabs.com
	AF LONATI		Aqua R	egia Dige	est - Meta	uls Packa	de ICP-0	OES finis	h (20107	3)	rieni (Koch			
DATE SAMPLED: Jul 04, 20	11		DATE	RECEIVED); Jul 05, 20	11	DA	TE REPORT	TED: Jul 20.	2011	SA	MPLE TYPI	E: Rock	
Analyta:	Fe	Ga	Ho	lo	к	i a		Ma	Mn	Mo	Na	Ni	P	Pb
Unit	~	PCM	nga maga	DDM	*	0001	0000	96	0000	0000	%	0000		0000
Sample Description 8Di.:	0.01	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5
59662	3.35	<5	<1	2	0.05	2	3	0.62	384	2.3	0.16	5.3	1090	2.9
59663	7.47	9	<1	<1	0.08	1	7	1.25	834	2.3	0.29	1.2	588	2.7
59664	0.49	<5	<1	<1	<0.01	<1	<1	0.04	39	3.3	0.02	5.3	31	<0.5
59666	1,14	<5	<1	<1	<0.01	<1	2	0.26	110	3.7	0.04	16.4	39	<0.5
59667	3.02	<5	<1	1	0.03	<1	11	1,17	623	3.3	<0.01	17.2	33	<0.5
59668	12.4	<5	1	<1	0.01	<1	<1	0.19	407	3.5	<0.01	37	227	<0.5
59669	6.43	7	<1	<1	<0.01	2	1	5.82	3150	2.0	<0.01	125	123	1.4
59670	8.13	<5	<1	2	<0.01	<1	<1	0.18	102	644	<0.01	32.2	<10	14.4
59671	2.58	5	<1	<1	0.09	5	9	1.29	413	3.3	0,13	18.5	185	3.9
59672	1.58	<5	<1	<1	<0.01	<1	2	0.35	182	18.4	0.02	6.4	111	<0.5
59673	10.6	9	<1	<1	0.02	2	13	1.74	1110	3.1	0.05	<05	855	4.9
59674	3.32	6	<1	<1	0.02	<1	6	0.78	389	2.5	0.03	10.6	113	1.0
59675	7.85	10	1	<1	0.03	<1	13	2.02	904	2.2	0.03	22 8	61	3.0
59676	5.41	<5	<1	<1	0.10	<1	6	1.32	768	2.3	0.23	11.4	334	2.7
59677	2.75	<5	<1	<1	0.05	<1	5	0.74	417	1.0	0.10	89	300	1.8
59678	10.7	<6	1	<1	0.06	<1	4	0.66	253	1.8	0.08	30.9	355	<0.5
59079	4.09	<5	<1	<1	0.02	<1	1	0.17	95	3.9	0.01	18 1	30	<0.5
59680	2.12	<6	<1	<1	0.01	1	3	0.33	451	2.5	< 0.01	6.6	66	0.5
59681	9.16	8	<1	<1	0.09	6	10	1.52	1860	3.0	0.04	11.4	489	6.7
59682	4.21	<5	<1	<1	0 04	11	21	1.41	757	47.5	0.06	44.7	372	<0.5
59683	0.41	<3	<1	<1	< 0.01	< 1	<1	0.05	201	2.1	<0.01	6.3	22	<0.5
59684	8.92	9	1	<1	0.13	1	7	0.96	582	3.4	0.06	74	917	5.2
59685	0.98	<5	<1	<1	0.02	<1	4	0.34	117	3.3	<0.01	11.1	63	3.1
59686	1.92	<5	<1	<1	0 07	<1	6	0.84	386	3.0	0.02	29.5	58	<0.5
59687	3.29	<5	<1	<1	0.01	<1	9	1.26	602	2.8	0.02	20.1	49	0.7
59688	3.68	<5	<1	<1	0.05	<1	13	1.24	534	1.6	0.07	27.6	363	2.0
59689	1.76	<5	<1	<1	0.34	25	16	0.48	206	1.3	0.08	10.8	240	3.8
59661	0.79	<5	<1	<1	0.05	8	3	0.19	125	1.6	0.09	7.9	328	2.2

hon Cardinall

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested

Certified By:

Page 3 of 12

PROJECT NO:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9996 FAX (905)501-0569 http://www.agatisbs.com

CLIENT NAME: KNICK EXPLORATION INC.

ATTENTION TO: Gordon Henriksen

			Aqua R	egia Dige	est - Meta	ils Packa	ge, ICP-0	DES finis	h (20107	3)				
DATE SAMPLED: Jul 04, 20	011		DATE		: Jul 05, 20	11	DA	TE REPORT	FED: Jul 20,	2011	SA	MPLE TYPE	Rock	
Analyte:	Rb	S	Sb	Sc	Se	Sn	Sr	Τə	Тө	Th	Ti	n	U	v
Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description RDL:	10	0.005	1	0.5	10	5	0.5	10	10	5	0.01	. 5	5	0.5
59662	<10	0.316	2	9.6	<10	<5	37.4	<10	<10	<5	0.19	7	<5	72.3
59663	10	0.300	<1	21.0	<10	<5	9.4	<10	<10	<5	0.24	9	<5	212
59664	<10	0.009	<1	0.5	<10	<5	<0.5	<10	<10	<5	0.01	<5	<5	7.9
59666	<10	0.225	1	1.3	<10	<5	1.3	<10	<10	<5	0.04	<5	<5	18.2
59667	<10	0.018	2	12.7	< 10	<5	18.5	<10	<10	<5	0.01	<5	<5	63.2
59668	<10	4.11	<1	1.0	<10	<5	1.4	<10	<10	<5	0.02	<5	<5	8.2
59669	13	0.903	4	26.3	<10	15	138	<10	<10	<5	0.01	<5	<5	99.8
59670	<10	8.69	<1	0.9	<10	<5	11	<10	174	7	<0.01	<5	<5	8.5
59671	12	0.186	2	8.7	<10	<6	11.5	<10	<10	<5	0.20	8	<5	71.2
59672	<10	0.085	1	3.5	<10	<5	0.7	<10	<10	<5	0.06	<5	<5	69.9
59673	<10	0.559	<1	22.3	<10	<5	29.5	<10	<10	<5	0.33	11	<5	122
59674	<10	0.669	<1	10.6	<10	<5	2.7	<10	≺10	<5	0.12	<5	<5	108
59675	13	1.88	<1	25.1	<10	<5	10.4	<10	<10	<5	0.24	9	<	271
59676	15	0.686	<1	18.7	<10	<5	8.8	< 10	<10	<5	0.82	18	<5	251
59677	13	0.538	2	7.1	<10	<5	9.4	<10	<10	<5	0.25	6	<5	83.9
59678	<10	8.30	<1	5.8	<10	5	5.4	<10	<10	<5	0.04	<5	<5	39.5
59679	<10	2.20	<1	1.4	<10	<5	1.5	<10	<10	<5	0.05	<5	<5	103
59680	<10	0.249	1	0.7	<10	<5	2.4	<10	<10	<5	0.02	<5	<5	24.4
59681	10	0.943	3	3.4	<10	<5	23.5	<10	<10	7	0.08	<5	<5	49.1
59682	<10	2.55	3	7.5	<10	<5	32.0	<10	<10	<5	0.02	<5	<5	20.7
59683	<10	0.041	3	<0.5	<10	<5	4.7	<10	<10	<5	<0.01	<5	<5	3.2
59684	16	1.46	Э	10 6	<10	<5	11.5	<10	<10	6	0.41	<5	<5	174
59686	<10	0.009	<1	2.8	<10	<5	1.5	<10	<10	<5	0.06	<5	<5	29.5
59686	10	0.399	3	9.7	<10	<5	15.2	<10	<10	<5	0.11	<5	<5	70.3
59687	<10	0.251	2	12.5	<10	<5	10.0	<10	≺10	<5	0.16	6	<5	50.8
59688	<10	0.797	1	7.7	<10	<5	7.2	<10	<10	<5	0.22	8	<5	77.2
59689	35	0.013	<1	4.0	<10	<5	9.4	<10	<10	9	0.15	5	<5	21.2
59681	<10	0.041	2	2.1	<10	<5	16.7	<10	<10	<5	0.04	<5	<5	16.3

Certified By:

hon Cardinall

Results relate only to the items tested

Page 4 of 12

ATTENTION TO: Gordon Henriksen

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

AGAT WORK ORDER: 11U506811 PROJECT NO:

CLIENT NAME: KNICK EXPLORATION INC.

				Aqua Re	egia Digest - Metals Pack	age, ICP-OES finish (201073)	
DATE SAMPLED:	Jul 04, 20	111		DATE	RECEIVED: Jul 05, 2011	DATE REPORTED: Jul 20, 2011	SAMPLE TYPE: Rock
A	nalyte:	W	Y	Zn	Zr		
	Unit:	ppm	ppm	ppm	ppm		
Sample Description	RDL:	1	<u>1</u>	0.5	5		
59662		<1	19	22.1	<5		
596 63		<1	20	87.0	<5		
59664		<1	<1	4.9	<5		
59666		<1	2	10.1	<5		
59667		<1	2	26.5	<5		
59668		<1	2	27.2	<5		
59669		<1	7	60.8	<5		
59670		<1	1	11.8	<5		
59671		<1	8	29.7	<5		
59672		<1	2	14.5	<5		
59673		<1	30	81.2	<5		
59674		<1	6	24.6	<5		
59675		<1	13	52.7	<5		
59676		<1	13	39.1	<5		
59677		<1	8	25.8	<5		
59678		<1	1	24.7	<5		
59679		<1	<1	11.2	<5		
59680		<1	1	29.8	<5		
59681		<1	4	126	<5		
59682		<1	8	21.5	<5		
59683		<1	<1	6.8	<5		
59684		<1	14	69.7	<5		
59685		<1	2	15.3	<5		
59686		4	3	16.1	<5		
59687		3	6	24.1	<5		
59688		<1	5	44.6	<5		
59689		<1	7	39.1	17		
59661		<1	3	17.7	<5		
			-				

Comments: RDL - Reported Detection Limit

Certified By:

hor Cardinall

Page 5 of 12

(Gat	Laboratories
		Luconatorico

AGAT WORK ORDER: 11U506811 PROJECT NO: ATTENTION TO: Gordon Henriksen 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: KNICK EXPLORATION INC.

			Fire Assa	ıy - Au, Pt, Pd Trace Lev	rels, ICP-OES finish (202055)	
DATE SAMPLED: Jul 04, 2	011		DATE R	RECEIVED: Jul 05, 2011	DATE REPORTED: Jul 20, 2011	SAMPLE TYPE: Rock
Analyte:	Au	Pđ	Pt			
Unit:	ppm	ppm	ppm			
Sample Description RDL:	0.001	0.001	0.005			
59676	0.003	⊲0.001	<0.005			
59677	0.003	0.002	<0.005			

Comments: RDL - Reported Detection Limit

Certified By:

hon Cardinall

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested

			*** Ce	rtificate of analysis ***		
Labora	atoire Expert Inc.					Date : 2011/09/13
127, Boulevar Rouyn-Norand Canada, J9X (Telephone ; (8	d Industriel da, Québec 6P2 319) 762-7100, Fax : (819) 762-7510					Page : 1 of 1
Client	Knick Exploration					
Addressee	Gordon Henriksen			Folder 31649)	
1				Your order number		
	536, 3rd Avenue			Project TDID	FLAKE	
	Québec	Telephone (819) 674-5252			
	J9P 1S4	Fax (i	819) 874-5258	Total number of samples :	13	
Designation	Au FA-GEO ppb 3	Au-Dup FA-GEO ppb 5			······································	· · · · · · · · · · · · · · · · · · ·
16264	<5	3				
B67501	<5					
B67502	~5					
H67503	<5					
B67504	384					
R67505	12					
B67506	16					
B67507	49					
B67508	358					
867509	8					
B67510	20					
867511	a ,					

Joe Landers, Manager

127, Boulevard Rouyn-Norand Canada, J9X 6 Telephone : [8	d Industriel la, Québec 3P2 119) 762-7100, Fax : (819) 762-7610	Market a promote at					Page	:1of1
Client	: Knick Exploration							
Addressee	Gordon Henriksen 536, 3rd Avenue Vald'Or			Folder Your order Project	: 3445 number : : TRIF	i5 PLE LAKE		
	Québec J9P 1S4	Telephone Fax	: (819) 874-5262 : (819) 874-5258	Total numb	er of samples :	11	ala ang ang ang ang ang ang ang ang ang an	
Designation	As FA-GEO ppb 5	Au-Drip FA-QEO ppb 5	Au FA-GRA.V gA 0.03	Au-Dup FA-QRAV g/t 0.03	Ag AAT-7 ppm 0,2	Cu AAT-7 ppen 2	Za AAT-7 ppm 2	Pb AAT-7 ppm 2
6265	23	25						
6266	16							
6267	31							
6268	28				-<0.2	159	33	12
6269	478				<0.2	76	(3	8
6270	37				<0.2	213	43	21
6271	1783		1.92		<0.2	195	21	14
6272	>DL		116.88	118.87				
6273	4353		4.59					
6274	142							
6275	16							

*** Certificate of analysis ***

. _ 1 . . .

1

Dete : 2012/04/16

>DL Value greater than detection limit

Joe Landers, Manager

APPENDIX IV

CLAIM LIST

.

				1			Present			1
CLAIM	Number	Arca	RESERVE	EXPIRATION	REQUIRED	TOTAL	Work	Townsh p	Comments	Bankod
						WORK	Assignment		1	· · · · · · ·
ħ	of Units	Hectares	\$	DATE	WÓRK S	\$	ŝ			\$
3009047	6	96	0	2012-Oct-31	2,400	7,200	Û	Bartielt &	CF-1 plus	U
			1					Musgrovo		
4217111	15	240	Û	2013-Apr-16	Ø ,000	24.000	. 0	McArthur	TL vein	0
4217112	4	64	15,366	2014-Apr-20	1,600	8,000	11,200	Bartlett	CF-2	0
4217113	9	144	207,498	201 <u>4-Apr-20</u>	3,600	18,000	4,800	Bartlett &	CF-1	0
					9			Musgrove		
4217114	б	96	U	2012-Apx-28	2,000	7.600	U	McArthur	TL south block	0
4219537	*3	208	0	2013-Jan-02	5,200	15.600	0	Bartiett	CF-2 plus	0
4251594	15	240	Ð	2013-Feb-25	6,000	0	0	McArthur		0
4255345	6	96	0	2012 Oct-15	2,400	0	0	Bartlett	Link CFs	0
4257642	4	64	0	2012-Oct-15	1,600	0	0	Bartlett	Link CFs	U
4258987	14	224	0	2013-Feb-25	5,800	0	U	Fripp		Q
4259065	11	176	Ð	2013-Feb-25	4,400	0	0	McArthur		0
4259097	- 3	48	Û	2013-Feb-25	1,200	0	0	Musgrove		0
4260453	6	96	0	2013-Feb-25	2,400	0	0	Bartlett		0
4260454	4	64	U	2013-Feb-25	1.600	0	U	Bartlett		Û
4260455	4	64	D	2013-Feb-25	1,600	0	0	Bertlett		0
4260456	12	192	0	2013-Feb-25	4,800	0	0	Bartlett		0
4260457	12	192	0	2013-Feb-25	4,800	0	0	McArthur		0
4260458	3	48	Ū	2013-Feb-25	1.200	0	0	McArthur		0
4260459	4	64	ប	2013-Feb-25	1,600	0	0	McArthur		0
4260460	12	192	Û	2013-Feb-25	4,800	0	0	Bartlet:		0
4260461	8	128	0	2013-Feb-25	3,200	0	<u> </u>	Bartlet:		0
4260462	6	96	0	2013-Feb-25	2,400	0	U	Bartlet:		0

CLAIM LIST

Totals 22 claims: 177claim units-2,832 hectares (6,998 acres)

	LEGEND
	Sumbols
	P4, CL 4217114 CLAIM POST WITH CLAIM TAG NUMBER
	■ 800m W, PI LINE POST WITH LINE TAG DENOTATION
	CLAIM LINE CASING WITH HOLE DIRECTION
	TL-87-01 DRILL COLLAR LOCATION & NUMBER
	O PIT
	TRENCH
	Gooloou
	JET VA 0.5M QUARTZVEIN WITH WIDTH STRIKE . D. NID
	SHEAR STRIKE & DIP
	Vn QUARTZ VEIN
	GZ GARDO-
	V3 BASALT
	chl+carb.schist CHLORITE - CARBONATE SCHIST
	IF IRON FORMATION-oxide-banded
	·
 .	
	KNICK EXPLORATION INC.
	TRIPLE LAKE PROPERTY BARTIETT M. ANTILIT O MA
	ONTARIO NTS: 42 ANZ
	UTM: NAD 83 ZONE17 WORKING
	GEOLOGY, PROSPECTING & SAMPLE MAP
	DRAFTED BY: Gordon N. Han-ika
	MAY16, 2012