۶

٩

р.6

REPORT

On the

Geological Prospecting and Sampling

Of the

"West Hemlo" Property

For

Strike Minerals Inc.

MAY 0 4 2012 GEOSCIENCE ASSESSMENT OFFICE

Chris North

October 6, 2011

. –

1

٩

SUMMARY

The Strike Minerals "West Hemlo" property is located in Priske Township approximately 10 kilometres within the radius of Schreiber, Ontario. The property consists of 30 claims comprising 214 units with 7 additional patented claims. It lies within the Schreiber-Hemlo Greenstone belt of the Thunder Bay Mining Division (Plan G-0631), as outlined by the Ontario Geological Survey Open File Report 5951. The area hosts the world class known Hemlo gold deposits in the area currently being operated by Barrick Gold Corporation.

On three separate occasions the author with assistance visited the West Hemlo claim group for reconnaissance prospecting and sampling. On November 3, 2009, September 24 and 25 of 2010 and Sept. 16 and 17, 2011 the author travelled to and from the property from southern Ontario and, with assistance, performed reconnaissance geological prospecting on the interior of the property and geological sampling on some of the historical showings on the property.

Outcrop covers at least 30% in the investigated areas to the north-western and southeastern portions of the property. During the three field visits over the past 22 months a total of 23 rock samples were collected. The laboratory results for the 23 samples from the three visits are located in the appendix of the report. •

٩

р.8

Summary2
Introduction3
Location and Access
Geological Setting5
Regional Geology5
Property Geology5
Results of Geological Prospecting and Sampling6
Geology6
Mineralization6
Sampling Results8
Work Performed
Discussion7
Conclusions and Recommendations9
References10
Certificate and Qualifications11
List of Figures
Strike Minerals "West Hemlo" property location map12
Strike Minerals "West Hemlo" claim location map13
Plan of Rock Sampling,
List of Appendices
Appendix 1 Figure 1, 2, 3, 4, 5

Appendix 1	Figure 1, 2, 3, 4, 5
Appendix II	Assay Certificates
Appendix III	Claim Abstract
Appendix IV	MNDM Work Assessment Work Report

p.9

INTRODUCTION

In July, 2011, the author was retained by Mr. Mike Newbury, P. Eng., (President, Strike Minerals Inc.) to perform a short program of reconnaissance prospecting and sampling on the company's "West Hemlo" property in Priske Township, Ontario.

The West Hemlo property consists of 30 claims with 214 units and 7 claims patented for surface and mining rights (claim list is in the Appendix of the report). The property lies within a 10 kilometres radius of Town of Schreiber, Ontario.

During the period November 3, 2009, September 24 and 25, 2010 and on September 16, 17 and 18 2011, the author with assistance performed a program of reconnaissance prospecting and sampling on some of the known showings in the southeastern and north-western sections of the property. In the South-eastern section of the claims, on the Morley polymetallic showing two chip samples across a narrow massive sulphide vein located within a rhyollite returned values of 5.5 g/t Au and 1040 g/t Ag in the first sample and 3.65 g/tonne Au and 1320 g/t Ag in the second sample. Sampling of the north-western section of the property revealed vg in one of the samples with values ranging from trace to 13.0 g/t.

The initial program consisted of reconnaissance prospecting over some of the anomalous areas of the property and selective samplings of these showings. Initial work would provide necessary assessment work requirements, as well as providing impetus for further work on the property which may include trenching, geophysics and future diamond drilling.

LOCATION and ACCESS

The "West Hemlo" property is located in Priske Township (Plan G-0631) within the Schreiber – Hemlo greenstone belt of the Thunder Bay Mining Division. The property is located within 10 kilometers of Schreiber, Ontario and is easily accessed, firstly by gravel roads and then by bush roads followed by ATV trails. The route to the southwestern portion of the property is via the Worthington Bay Road south of HWY 17 two kilometres west of Schreiber. Access to the north-western portion is through the north part of the town of Schreiber then by bush which starts at the Schreiber water reservoir and proceeds along the west side of Cook Lake . Several access trails utilized by Ontario Hydro for maintenance provides access to the claim group. The area has been lumbered in the past with thick secondary growth present in most locals.

GEOLOGICAL SETTING

Regional Geology

The Strike Minerals Inc. "West Hemlo" property is regionally located in the eastern portion of the Wawa Subprovince within the Superior Province of the Canadian Shield. It is flanked to the north by the Quetico Subprovince of metasedimentry rocks. The property is locally situated at the western limits of the Schreiber – Hemlo Greenstone belt, as outlined by the Ontario Geological Survey Open File Report 5951 & 5952 (OFR 5951 & 5952).

The properties lie in a belt of early Precambrian basic to intermediate volcanic and metavolcanic rocks lying proximal to the Terrace Bay acid batholith. Minor bands of acid volcanics and metasediments occur within the belt which has been intruded by acid to basic dykes and sills of varying composition and orientation. Thin bands of iron formation are common, and diabase dikes are reportedly the most recent intrusives. The majority of structures as evidence by geologic and magnetic data have indicated a northwest and northeast orientation. These aforementioned lineaments are host auriferous quartz veining.

The area is underlain by Archean aged, iron-rich, tholeiitic meta-basalts which trend roughly east-west and dip steeply north. These basalts are bisected by a proliferation of felsic intrusives generally along strike, and by mafic intrusives (diabase dikes) in a north-westerly direction. Structural controls appear to be the most important factor in the localization of gold-bearing quartz veins in the area.

Property Geology

Schreiber South Group

The rocks near the Morley polymetallic high grade showing have been described by Gow (1985) as containing chemical and clastic metasedimentry rocks which locally include bands of and lenses of sulphides which separate basic metavolcanics in the northwest from metavolcanics in the south. The aforementioned metavolcanics have undergone several periods of intrusions which include a granitic, dioritic and quartz feldspar porphyry. Proterozoic diabase dikes bisect the metavolcanics. The Morley high grade vein has been described by (Smick 1996) as a discordant vein structure.

Mineralization

The Morley polymetallic vein has been described by (Patterson 1984) as being either a lead-zinc-silver contact type due to it proximal relationship with the Terrace Bay batholith or metavolcanic type due to the presence of gold mineralization in relation to the felsic volcanics. The later seems to be warranted based on the field evidence. The vein itself varies in width from 10 cm to 35 cm and is exposed for at least 250 meters. The vein strikes 185 to 200 degrees and dips from subvertical to 60 degrees west. The vein is composed of galena with banded sphalerite with associated chalcopyrite and pyrite. The vein is hosted in fractured metavolcanic which has been described as a by (Gow 1985) carbonatized rhyolite agglomerate with fragmental texture. Two samples were taken directly across the vein approximately 50 m apart. Additional samples were taken on adjacent vein stringers. The results of the sampling are presented are discussed in the following section.

Schreiber West Group

The rocks of this group are predominantly underlain by subaqueous intermediate volcanics and pillowed flows with inter-cycle iron formation. The aforementioned are bisected by gabbroic, dioritic and quartz feldspar stocks and dikes. (Carter 1988 OFR 5952) Subdivided the metavolcanics into two volcanic cycles which were separated a sulfide iron formation. During the course of prospecting and sampling the author observed the iron formation to be sulphides facies with the presence of chert, illmenite and magnetite.

Previous examination of the air photo and magnetic data by (Smick 1996 OFR 5691) indicated several major northwest trending lineaments which include Big Duck Creek and Hays Lake. A secondary northeastern trending lineament is present on the property and the resulting conjugate fault sets appear to be related to the areas of gold mineralization.

During the period of 2009 -2011, the author completed reconnaissance prospecting of the property and observed that the geology conformed to the Ontario Geological Service (OGS) Open File Reports (OFR) Reports 5951 and 5952 Mineral Occurrences in the Nipigon-Marathon 1996.

Mineralization

The rocks of the north-eastern portion of the claim group are primarily volcanic to metavolcanic. The gold mineralization is generally associated with quartz and stringer veins that vary in width from 5 cm to over 50 cm. The veins as evidenced during the field visits contain pyrite, chalcopyrite, tournaline and in one sample native gold. The veins in the area generally strike northwest with a dips ranging 40 to 60 degrees to the west. Present during the field examination were some small vein offsets that were oriented to the northeast. Noranda in 1984 had previously conducted exploration in the immediate vicinity and uncovered sulphide facies iron formation which assayed 0.07 oz/t. This has been suggested by (Twomey 1992) to be along the Grant Fault. In the area of the Schreiber-

Pyramid property there are numerous quartz feldspar porphyry (QFP) dikes which were located during field visit. The presence of the QFP's has been outlined by Twomey (1992) as potential gold targets. The results of the sampling are presented are discussed in the following section.

WORK PERFORMED

On three separate occasions from November 3, 2009, September 24 and 25 of 2010 and on September 16,17 and 18 2011, the author with assistance travelled to and from the property from southern Ontario and completed reconnaissance prospecting over the interior of the property on some of the historical showings. Sampling was performed on areas surrounding the historical showings. Mapping was performed using a Garmin GPSmap 60CSx on NAD 83 UTM Zone 16.

Assaying was completed at Act Laboratories, of Ancaster, and Accurassay of Thunder Bay Ontario, both accredited laboratories. All information pertaining to the laboratory may be found in the appendix accompanying this report.

DISCUSSION

A total of 23 rock samples were taken during the three property visits and are plotted on the sample Key Map Figure 2. 16 of the 23 rock laboratory samples results are included in Appendix II. The South Claim Group of the property specifically the Morley high-grade zone yielded a brecciated massive sulphide vein with extremely positive results. The vein was observed in the field have a strike length in excess of 150 m with a subvertical to 60 degree westerly dip. The host rock for the massive sulphide vein is an altered rhyolite volcanic. Two samples taken across the vein at approximately 50 m separation yielded values of 5.5 g/t Au and 1040 g/t Ag in the first sample and 3.65 g/tonne Au and 1320 g/t Ag in the second sample gold with 2.62% Zn and 1% Pb. The results of this sampling are plotted in Figure 3. Samples in the Central Claim group primarily from a reduction iron formation yielded low results from trace to .31 g/t Au. The results of this sampling are plotted in Figure 5. In North Claim Group samples taken from altered basalts with qtz veining with sulphides ranged from trace to 13 g/t. The results of this sampling are plotted in Figure 4.

In the north-eastern portion of the property numerous hydrothermal quartz veins were located. The veins and offset veins were fracture filling and trended in primarily in a north-western direction with offsets in s north-easterly trend. The veins were generally associated with carbonate alteration and tourmaline. Samples taken were mineralized with pyrite, chalcopyrite and in some samples pyrrhotite. Visible gold was noted in one sample. The iron formations present in both the sections of the West Hemlo property were identified in the field to be sulphide facies indicated by the presence of chertmagnetite. Samples taken from the iron formation generally contained >5% pyrrhotite with minor amounts of pyrite. Results from the sampling of the iron formations yielded positive results with one sample vielding 2.53 g/t.

The presence of significant polymetallic grades in the south-western claim group and auriferous quartz veining at the north-eastern claim group indicate further work is required on the "West Hemlo" property.

Sampling Results

Grab Chip and Channel samples of were extracted from 23 locations within the West Hemlo Claim group. A plan map of the sample locations is included in the Appendix in Figure 3. Sample numbers, location, assay and description are shown in the following table:

Location	1	Au Assay (gpt)	Description
Easting	Northing		
16479327	5401581	<0.005	Basall/QFP contact, < 1% py,
16479318	5401506	0.005	QFP w qtz vein, up to 2% py,
16479324	5401455	0.007	QFP, tr py
16479299	5401416	0.007	QFP contact with volcanics, tr py,
16479307	5401381	<0.005	QFP, tr py,
16479361	5401506	0.010	QFP 2cm qtz vein, tr py,
16479545	5401362	0.023	QFP 2-5% po, py
16483413	5405063	0.31	IF/Basait contact 2-5% po tr py
16483412	5405063	0.017	IF/Basalt contact, 1-3% po tr py
1 64834 11	5405063	0.015	IF/Basalt contact, 1-3% po tr py
1 6481158	5403682	5.50	Morley East 25cm vein breccia 5%sph, py
16481117	5403595	3 65	Morley West 20cm vein breccia 5% sob. ov
	Location Easting 16479327 16479318 16479324 16479307 16479307 16479361 16479545 16483413 16483412 16483412 16481117	LocationEastingNorthing164793275401581164793185401506164793245401455164793295401416164793075401381164793615401506164834135405063164834125405063164834135405063164811585403582	Location Au Assay (gpt) Easting Northing 16479327 5401581 <0.005

Strike Minerals Inc. "West Hemio" Property Rock Samples Descriptions

p.13

14

p.14

104604	16481520	5403593	<0.03	Morley IF, 2%-5% coarse po,
104605	16481 41 4	5403608	0.63	Morley Trench IF 2-5% coarse py, cubes, po
104606	16481399	5403586	2.63	Morley Trench IF, 2% coarse py, py
104607	16479494	5401017	0.30	Galena breccia 2-5% galena silicified
1085974	16483650	5409683	0.008	Sheared Basalt m/silicified tr py
1085975	16483924	5409508	0.029	Basalt #2 vein 12 cm 1% py cupy
1085976	164 838 76	5409530	0.010	Sheared Basalt slic py,po, cupy
1085977	16483712	5409438	4.00	Qtz vein 46 cm 1-2% py in mv
1085978	16483729	5409425	0.30	Qtz vein 40 cm 1% py cubes in mv
1085979	16482088	5409378	0.701	MJ Qtz vein 30 cm tr py ca alt
1085980	16482985	5408633	13.00	MM Qtz vein 2-5% py cupy vg in mv

CONCLUSIONS AND RECOMMENDATIONS

Geological prospecting and sampling was completed at a reconnaissance scale however the sampling of the historical showings returned highly significant grades for gold silver zinc and lead on the Morley showing. Results from the sampling of the northeastern portion were not available at the time of submission of the report however field examination of several samples indicated the presence of mineralization including one sample with visible gold. There are numerous gold and polymetallic ocurrences on the West Hemlo property and further work is warranted on to establish the scale of the mineralization.

The author believes that the "West Hemlo" property specifically in the south-western portion may have the potential to host a possible massive sulphide deposit. In the northeastern portion of the property the presence of economically viable auriferous quartz veining is to be determined and confirmed with laboratory results however field examination of the quartz veins was positive. The iron formation in the south-western claim group yielded positive results and deserves some further work.

It is recommended that further work be completed on the property. Mechanical stripping using an excavator and washing of exposed rock could provide access to a structural and mineralogical definition and provide for more detailed channel sampling. Positive results could lead to a drill program designed to test the mineralized structures at depth.

	-		
12:45:09 p.m. 05-04-2012	15	416 261 7528	prais

、 、

REFERENCES

Carter, M. W.	Geology of the Schreiber-Terrace Bay Area, District of Thunder
1988	Bay: Ontario Geological Survey, Open File Report 5692
Daniels, G. 1996	OPAP Final Report. AFRI # 42D15NW0009
Gow	Mineral Occurrences in the Nipigon-Marathon Area
1996	Ontario Geological Survey, Open File Report 5692
Noranda Exploration Limited 1988.	Geology and Humus Sampling AFRI # 42D14SE0094
Patterson	Mineral Occurrences in the Nipigon-Marathon Area
1984	Ontario Geological Survey, Open File Report 5691
Smick, M.	Mineral Occurrences in the Nipigon-Marathon Area
1996	Ontario Geological Survey, Open File Report 5691 &5692
Twomey, T.	OPAP Final Report Prospecting, Stripping and Sampling
1992	Schreiber-Pyramid Property Priske Township

p.16

QUALIFICATIONS

I, Chris North, resident of 129 Midland Avenue, Scarborough, Ontario hereby certify that:

- 1) I am a graduate of Lake Superior State University, Sault Ste. Marie, Michigan, U.S.A receiving an Bachelor of Science Degree in Geology in 1986
- 2) I am a graduate of Sault College of Applied Arts and Technology receiving a Geological Engineering Technology diploma in 1983
- 3) 1 have practiced my profession for 25 years, managing and supervising many Exploration and development programs.
- 4) During the period November 3, 2009, October 9 and 10 of 2010 and on September 16, 17 and 18 2011, I have visited the property.
- 5) I have received no compensation for this report other than the normal consulting fees.
- 6) This report is based upon field work completed by myself and from data obtained from various geological reports and other published material.

Dated at Scarborough, Ontario, Canada this 6th day of October 2011.

•

.

416-261-7528

p.17

~

Appendix 1

Figures

Figure 1

ł

Strike Minerals West Hemlo Project

Ŧ

Strike Minerals West Hemlo Project

Strike Minerals West Hemlo Project

•

p.23

Appendix 2

Assay Certificates

13

Quality Analysis ...

Innovative Technologies

Date Submitted:28-Jan-10Invoice No.:A10-0351Invoice Date:18-Feb-10Your Reference:CANDIAN STAR

Canadian Star Minerals Ltd. 129 Midland Ave. Toronto ON M1N 3Z8 Canada

ATTN: Chris North

CERTIFICATE OF ANALYSIS

7 Rock samples were submitted for analysis.

ſ

The following analytical packages were requested:

REPORT A10-0351

Code 1A3-Ag Au, Ag-Fire Assay Gravimetric Code 1C-Exp Fire Assay-JCP/MS Code 1H INAA(INAAGEO)/Total Digestion ICP(TOTAL)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

We recommend reanalysis by tire assay Au, Pt, Pd Code 8 if values exceed upper limit. Elements which exceed the upper limits should be analyzed by assay techniques. Some elements are reported by multiple techniques. These are indicated by MULT.

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9511 or +1.886.228.5227 FAX +1.905.648.9513 E-MAIL ancaster@actiabsinLcom ACTLABS GROUP WEBSITE http://www.actiabsint.com

Analyte Symbol	Nd	Sm	Sn	ТЪ	Yb	Łu	Mass	
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	ម	
Dotection Limit	5	0.1	10.01	0.6	0.2	0.05		
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	
104601	< 5	1.0	× 0.01	< 0.5	0.5	< 0.05	32.2	
104602	< 6	0.9	≼ 0.01	< 0.5	< 0.2	< 0.05	32.7	
104603								
104604								
104605								

Activation Laboratories Ltd. Report: A10-0351

ł

÷

Ţ

Č.

ŧ

... **L**...

104606 104607

.

Quality Contro	l																							
Analyte Symbol	AU	Ag	۴d	Pt	Au	Au	Ag,	Cu	Cd	Мо	РЬ	Ni	Zn	Zn	5	AI	As:	Ba	Be	ន័រ	Ca	Cp	Ċı	Fe
Unit Symbol	ennahg	ព្វ/លោកទ	ppb	pob	000	ppb	ppm	ppm	ppm	ppm	ppm	ppm	maq	ppm	%	*/•	ppm	ppm	ppm	thour thou	%	E I I I I	ppm	*
Detection Limit	0.03	3	1	,	2	2	0.3	1	0.3	1	з	1	1	50	0.01	0.01	0.5	60	1	2	0.01	1	2	0.01
Analysis Method	FA-GRA	FA-GRA	FA-MS	FA-M8	FA-MS	INAA	TD-ICP	TOICP	TT-ICP	TD-ICP	ID-ICP	TD-ICP	TD-ICP	INAA	TOICP	70-107	INAA	INAA	TO-ICP	TD-ICP	TOICP	INAA	INAA	INAA
GXR-1 Meas							31.1	1200	3.3	15	762	44	765		0.23	2.96			1	1380	0.97			
GXP-1 Cort							31.0	1110	3,30	15.0	730	41.0	760		0.257	3.52			1.22	1380	0.960			
DNC-1 Moae							< 0.3	91		د ۱	4	239	55		0.05	9.60			< 1	< 2	7.68			
DNC-1 Cert							0.0270	96.0		0.700	6.30	247	66.0		0.0390	9.69			1.00	9.0200	8.08			
GXR-4 Moas							5.6	6430	0.5	314	49	47	79		1.82	8.52			э	18	1.26			
GXR-4 Cert							4.00	6520	0.850	310	52.0	42.0	73.0		1.77	7.20			1.90	19.0	1.01			
GXR-2 Meas							17.3	74	43	< 1	673	19	521		0.02	11.2			2	< 2	0.87			
GXR-2 Cert							17.0	76.0	4.10	2.10	590	21.0	530		0.0313	16.5			1.70	0.690	0.930			
SDC-1 Moas							< 0.3	27	< 0.3	∢1	24	38	102		0.05	8.27			3	< 2	1.18			
SDC-1 Cert							0.0410	30,0	0.0820	0.250	25.0	38.0	103		0.0650	8.34			3.00	2.60	1,00			
SCO-1 Mnas							< 0.3	24	< 0.3	< 1	29	28	96			7.23			2	< 2	2.06			
SCO-1 Cen							0.134	28.7	0.140	1.37	31.0	27.0	103			7.24			1.84	0.370	1.87			
GXR-6 MB68							0.5	81	≤ 0.3	د 1	85	27	123		0.01	14.1			1	< 2	C.22			
GXR-8 Cart							1.30	68.0	1.00	2.40	101	27.0	118		0.0160	17.7			1.40	0.293	0.160			
CON-PGM8-9 Meas			2680	847	1080																			
CDN-PGMS-8 Cost			2600	710	1040																			
OREAS 13P MORE								2540				2160												
OREAS 13P Cart								2500				2260												
CDN-SE-1 Mgas	0.57	693																						
CDN-SE-1 Cert	9,480	712																						
DMMAS 109 Meas						679								180			2680	460				87	158	7.23
DMMAS 109 Cert						458.3								223			2434	573				84.9	166.0	6.8
104601 Orig							0.76	270	0.30	4,18	7.63	22.2	62.8		0.16	3.50			< 1	68.5	0.52			
104501 Out							1.01	272	< 0.3	4.39	7.91	22.6	46.0		0.17	3.92			< 1	58.7	0.52			
104502 Ond			< 1	1	52.90																			
104502 000			<1	2	4460																			
Method Blank Method Blank							¢ 0.3	≮1	< 0.3	< 1	< 3	s .1	1		< 0.01	< 0.01			< 1	< 2	∢ 0.01			
Method Blank Method Blank							≤ 0,3	ء ۱	< 0.3	< 1	< 3	< 1	1		< 0.01	< 0.01			<1	< 2	< 0.01			

i

1

p.26

416-261-7528

. --

.....

4

Page 5 of 6

ω
22
Ň
5
8

p.27

A LAROPATORIES

1046 Gorben Struct inunder his CN Gaugela 270 525

941: 4507) 598 2030 Tax: 307: 822-7671 WWW.SCCALINGSOM 555.45Decomberigation

Certificate of Analysis

Friday, October 15, 2010

Canadian Star Minerals 129 Midland Ave Toronto, On, CAN M1N 3Z8 Ph#; (416) 261-3925 Fax#: (416) 261-7528 Email#; north44@primus.ca, vdrylie@gmall.com

Date Received: 09/30/2010 Date Completed: 10/08/2010 Job #: 201044177

Reference:

Sample #: 10 Rock

Acc # 613051 <0.005 1 8.09 <7 351 <1 <5 1.62 <4 8 334 7 2.23 1.53 43 1.59 430 16 40 511 6 <5 <5 2 327 941 6 50 <10 8 68 289339 813052 0.005 1 8.72 <2 346 <1 14 3.04 <4 17 289 15 3.25 1.71 30 1.73 547 17 51 598 6 <5 <5 2 329 2050 8 85 <10 11 67 289340 613053 0.007 <1 10.09 2 396 1 12 3.52 <4 23 370 32 4.29 1.55 43 2.45 778 18 72 857 11 <5 <5 <1 375 2010 4 116 <10 14 81 289341 1 11 3.03 <4 25 130 32 4.15 1.62 43 2.94 718 15 106 750 11 <5 <5 2 342 1993 5 104 <10 12 84 613054 0.007 1 8.90 2 388 285342 613055 <0.005 1 9.80 <2 161 1 13 2.33 <4 17 466 25 3.51 1.56 82 1.45 528 15 75 611 4 <5 <5 2 110 358 3 73 <10 8 74 289343 10.77 <2 459 1 19 3.93 <4 29 307 40 5.14 1.62 49 2.72 737 18 65 1073 8 <5 <5 3 463 2266 <1 129 <10 16 87 289344 613055 0.010 1 1 10.01 3 168 1 8 5.22 <4 30 381 87 5.22 1.98 52 3.17 1999 18 127 1169 10 <5 <5 2 228 254 7 118 <10 14 109 289345 613057 0.023 513056 0.031 1 4.23 28 47 <1 5 0.48 <4 8 744 16 4.74 1.68 15 0.24 300 29 21 <100 13 <5 <5 <1 40 118 5 4 <10 4 22 289346 613069 0.017 1 7.08 479 135 1 15 2.50 5 35 419 100 8.83 1.40 22 1.39 1562 21 45 374 11 <5 <5 3 122 4198 2 181 <10 16 71 289347 613060 0.015 1 8.25 133 112 2 23 2.76 8 62 187 268 13.59 1.56 48 2.21 2238 25 113 535 18 <5 <5 2 106 6618 <1 272 <10 27 112 289348 299349 Dup 513060 0.015 1 753 99 114 1 17 2.25 5 45 138 193 10.04 1.49 39 1.73 1708 21 83 404 12 <5 <5 3 98 5029 <1 205 <10 21 82

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Otrex Domiarius H Bsc., Laboratory Manager

Certifled By:"

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-1093-10/15/2010 5:04 PM

i.

brals

Tel: (807) 028 1630 Fas: (807; 622-7571

www.accurrossay.com essurverscurassay.com

106808	iy. November 1,	2011												(Certifi	cate	of A	naiy	sis																
Cenad 129 Mi Toroni M1N 3 Ph#: (4 Fex#: (Email:	ian Star Minerals idland Ava o, On, CAN 20 416) 261-3925 (416) 261-7528 cnorth44@gmaf	s iī.com, vdry lia @gmall.com														Date Received: 09/29/2011 Date Completed: 10/11/2011 Job #: 201110487 Reference: Sample #: 19																			
Acc #	Cilent 10	Лш руб	Ag ppm	A) %	As ppm	8 ppm	8a ppm	Ba Ppm	al mqq	Ca %a	Cd ppm	Co	Cr	Cu ppm	Fa %	к %	L) P\$P/m	мg %	Mn ppm	Мо ррлп	Na %	Ni ppm	Р ррил	Pb ppm	Sb ppm	Se ppro	Si %	Su spm	Sr ppm	በት መርዓ	נד ppm	V niqq	W ppm	Y ppm	Zn ppm
52436	1085953	40	<1	1.37	137	68	83	<2	3	0.65	્ય	10	47	33	2.40	0.85	19	0.71	456	10	0.16	59	728	44	<6	<5	0.01	≺10	29	705	10	31	<1D	10	117
52437	1085955	71	<1	1.32	240	58	66	<2	١	0.83	લ	8	43	41	1.91	0.83	34	0.60	439	9	0.09	62	709	43	<6	~5	0.01	<1D	34	474	1	16	<10	10	269
52438	1085957	210	<1	1.83	43	60	74	<2	51	0.53	ধ	6	31	73	1.89	0.74	17	0.51	213	8	0.14	53	649	558	-5	8	0.01	<10	40	292	6	10	<10	8	161
62430	1085858	2290	<1	3.82	18317	58	89	2	12	1.63	c4	21	83	40	4.05	1.38	25	1.36	568	9	0.49	75	1787	33	<5	<6	<0.01	<10	142	5080	8	88	13	15	55
\$2440	1085961	672	<1	2.0P	7887	47	151	<2	<1	1.18	<4	20	72	18	3.81	1.50	25	1.33	555	8	0.20	57	1568	33	<5	×5	0.01	<10	74	2418	4	ai	<10	14	43
52441	1085962	7	≺1	2,20	54	64	213	<2	5	1.51	લ	23	100	47	4.28	1.65	38	1.48	735	8	0.20	65	1525	29	<5	<5	0.01	≺10	71	3367	9	05	<10	10	84
52442	1085983	7	< ?	3.27	1504	54	284	<2	3	Z.33	<4	43	284	81	6,12	1.46	205	1.83	1018	9	0.27	123	621	38	5	<5	0.01	<10	41	2620	Ð	129	<10	- 11	86
52443	1085964	20	۲»	0.39	47	44	33	-2	1	0.04	<4	*1	34	30	2.13	0.22	2	0.05	<100	14	0,02	50	143	19	<6	<5	0.01	<10	3	~100	4	16	<10	5	31
52444	1085965	\$35	<1	0.93	792	50	26	<2	<1	0.63	<4	8	48	15	\$.76	0.89	12	0.56	302	,	0.12	51	524	14	<6	<6	0.01	<10	38	653	G	30	<10	0	42
52445	1085968	76	<t< td=""><td>1.03</td><td>428</td><td>59</td><td>107</td><td><2</td><td>5</td><td>0.69</td><td><4</td><td>7</td><td>44</td><td>11</td><td>1,84</td><td>0.75</td><td>11</td><td>0.81</td><td>360</td><td>8</td><td>0.18</td><td>• 49</td><td>545</td><td>20</td><td>*5 .A</td><td><5 </td><td>0.01</td><td>= 10</td><td>53</td><td>741</td><td>6 0</td><td>30</td><td><10</td><td>ъ</td><td>31</td></t<>	1.03	428	59	107	<2	5	0.69	<4	7	44	11	1,84	0.75	11	0.81	360	8	0.18	• 49	545	20	*5 .A	<5 	0.01	= 10	53	741	6 0	30	<10	ъ	31
524460	1035968	74	<1	1.04	424	59	109	*2	3	0.90	≪4	7	45	12	1.86	0.76	11	0.82	364	,	0.10	48 52	243	21	50	K a	0.01		24	732	α 0		-10	40	51
52447	1085969	2432	<1	1.44	5	52	89	<2 ~2	9	0.36	<4	7	41	115	1,96	0.87	12	0.55	202	,	0.05	33	130	- 00 - 24	0 5	~	-0.01	<10	20	277	10	22	~10	40 A	75
52445	1000074	8	<1 	0.91	4	57	14	3	15	2.51	•		30	36	14.00	1.01	1	0.07	0.04	10	0.07	33	404	44 0	-5	40	<0.01	<10	24	894	10	70		16	34
52450	1000870	23	•	3.17	<2 -	42	11	<2	<1	>10.00	<4	12	23	14	2,91	0.03	40	1.00	1992	0	0.02	48	494	1.16	~0	68	-0.01	<10	200	2026	14	157	10		839
52364	1086077	4004	ا حط	£./Q	5	41	20		8	0.02		40	10	การ	13.30	0.10	10	1.00	2004	2	0.07	- <u>1</u> 0	<100	4	~	-0	<0.01	<10	167	259		76	e 10	9	63
52457	1085978	302	~1).ca 4 16	د م	40 37	40	~	, n	×10.00	~*	47	41	440 A5	7.50	0.04	24	3.00	1387	ے 1	0.02	162	536	9	5	≺5	0.01	ະເມ	132	594	14	125	<10	13	38
52453	1025979	701	~1	1 37	~	46	5	~2	2	4.05	~	47	AF	81	7.00	0.01		1.03	501		0.03	49	<100	3		-5	0.02	<10	27	837	7	58	<10	4	28
62454	1085980	13000	,	0.60		57	К	<2	41	1,80	4 <d< td=""><td>7</td><td>58</td><td>184</td><td>1.24</td><td>0.03</td><td>3</td><td>0.50</td><td>268</td><td>13</td><td>0.02</td><td>83</td><td><100</td><td>30</td><td><5</td><td>~5</td><td><0.01</td><td><10</td><td>26</td><td><100</td><td>٥</td><td>22</td><td><10</td><td>2</td><td>18</td></d<>	7	58	184	1.24	0.03	3	0.50	268	13	0.02	83	<100	30	<5	~5	<0.01	<10	26	<100	٥	22	<10	2	18
67455	1085981	1930	<1	1.03	21	48	85	<2	7	1.30	4	26	59 59	28	5,64	0.37	3	1,34	400	7	0.58	71	1117	83	د	<5	D.01	<10	280	4344	11	60	<10	5	94
						40	0.0		,						314		-																		

Page 1 of 1

PROCEDURE CODES: ALP1, ALFA1, ALAR1

C LABORATORIES

Tuesday, November 1, 2011

1946 Gorhawi Street Thunder Bay, ON Cenetta: P70 5X6

Certified By: Desire the Lawrence to State

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full. without the written approval of the laboratory

-1093-11/01/2011 4:09 PM

÷

1