ASSESSMENT REPORT ON A DIAMOND DRILL PROGRAM LIZAR CLAIM GROUP KABINAKAGAMI LAKE AREA NORTH-CENTRAL ONTARIO

For

RENCORE RESOURCES LTD.

By

BRUCE MACKIE GEOLOGICAL CONSULTING SERVICES

August 15th, 2011

Bruce Mackie P.Geo.

IMPORTANT NOTICE

This report was prepared as a non National Instrument 43-101 Technical Report, for Rencore Resources Ltd. ("Rencore") by Bruce Mackie Geological Consulting Services ("BMGCS"). The quality of information, conclusions and estimates contained herein is consistent with the level of effort involved in BMGCS's services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This report is solely intended for internal use by Rencore. Any other use of this report by any third party is at that party's sole risk.

TABLE OF CONTENTS

1.0	INTRODUCTION AND TERMS OF REFERENCE	1
1.1	Introduction	1
1.2	Terms of Reference	1
1.3	Sources of Information	2
2.0	PROPERTY DESCRIPTION AND TENURE	2
2.1	Description and Tenure	2
3.0	LOCATION, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE	5
3.1	Location and Access	6
3.2	Climate, Physiography	7
4.0	HISTORY AND PREVIOUS EXPLORATION	
4.1	History	
4.2	Work Performed by Rencore	9
5.0	GEOLOGICAL SETTING	13
5.1	Regional Geology	13
5.2	Local Geology	17
6.0	DEPOSIT TYPES AND GENETIC MODELS	
7.0	2011 DIAMOND DRILLING PROGRAM	
7.1	Introduction	20
7.2	Discussion of Results	22
8.0	CONCLUSIONS AND RECOMMENDATIONS	
8.1	Conclusions	24
8.2	Recommendations	24
9.0	AUTHORS'S CERTIFICATION	

APPENDIX – I	Diamond Drill Hole Logs
APPENDIXII	Assay Sheets
APPENDIX – III	Assay Certificates
APPENDIXIV	Statement of Expenditures

LIST OF FIGURES

Figure 2-1: Lizar Property Claims	5
Figure 3-1: Regional Location Map	
Figure 4-1: Survey Flight Path and Extent of Airborne Survey	
Figure 4.2: Priority Electromagnetic Anomalies Shown on Total Field Magnetics	12
Figure 5-1: Property Geology from Teck Cominco 2003	16
Figure 5-2: Geology Legend from Teck Cominco 2003	17
Figure 6.1: Classic Noranda-type VMS Deposit section	20
Figure 7-1: Lizar Claim Group Drill Hole Locations	21

LIST OF TABLES

Table 2-1: List of Lizar Property Claims	4
Table 4-1: Description of EM Anomalies	
Table 8-1: 2011 Diamond Drill Hole Locations	

LIST OF MAPS

MAP 1: Drill Hole Section LIZ-11-01 Scale 1:500	. in pocket
MAP 2: Drill Hole Section LIZ-11-02 Scale 1:500	in pocket
MAP 3: Drill Hole Section LIZ-11-03 Scale 1:500	. in pocket

1.0 INTRODUCTION AND TERMS OF REFERENCE

1.1 Introduction

In November 2010 Rencore Resources Ltd. "Rencore" entered into an Option Agreement with three local vendors whereby Rencore could earn a 100% interest in the Lizar Property located approximately 100 kilometres east of the Hemlo Gold camp and approximately 60 kilometres northeast of the town of White River, Ontario.

In the middle of January 2011 a Helicopter Borne Versatile Time Domain Electromagnetic ("VTEM") and Aeromagnetic Geophysical Survey, contracted to Geotech Ltd. was flown over the Lizar Property. The survey data was reviewed by Scott Hogg & Associates Ltd. and eighteen (18) Electromagnetic ("EM") Conductors of interest were indentified, including several anomalies which according to the assessment files have not been previously drill tested.

In May 2011 a reconnaissance prospecting and geological mapping program was conducted over selected portions of the Lizar Property to ground truth certain electromagnetic anomalies identified from the VTEM Airborne Survey.

In June-July 2011 a diamond drill holes program was carried out. Three holes (LIZ-11-01 to 03) totalling 738 metres were drilled.

The primary exploration target on the Lizar Property is for magmatic nickel-copper-platinum group metal deposits and volcanogenic copper-zinc-lead-silver deposits.

1.2 TERMS OF REFERENCE

The following report was prepared to provide a <u>non</u> NI 43-101 compliant Technical Report on the exploration history and results of a preliminary prospecting program carried out for Rencore on their Lizar Property, Kabinakagami Lake area, north-central Ontario.

This report was prepared by Bruce Mackie Geological Consulting Services, at the request of Mr. John Harvey, Chief Operating Officer for Rencore, whose office is located at:

Suite 1000, 15 Toronto Street Toronto, Ontario M5C 2E3

Tel: 416-864-1456 Fax: 416-864-1443

This report is considered current as of August 15th 2011.

1.3 SOURCES OF INFORMATION

This report is based, in part, on assessment file reports, and maps, published government reports, and public information as well as the results of the Helicopter Borne Versatile Time Domain Electromagnetic ("VTEM") and Aeromagnetic Geophysical Survey flown in early 2011 by Rencore as well as a preliminary geological mapping and prospecting program that was carried out between the dates of May 12th through to May 20th 2011 which the author participated in and supervised.

This report summarizes the results of a diamond drilling program that was carried out between the dates of June 10th through to July 4th 2011 which the author participated in.

2.0 PROPERTY DESCRIPTION AND TENURE

2.1 Description and Tenure

In November 2010 Rencore entered into an Option Agreement with three local vendors whereby Rencore could earn a 100% interest in the Lizar Property located approximately 60 kilometres northeast of the town of White River, Ontario. The original optioned property consisted of 41 claims totaling 447 claim units (~7152 hectares). Subsequent to the execution of the Option Agreement, Rencore staked an additional sixteen claims (210 units).

The Lizar Property currently consists 57 claims totalling 657 units (10640 hectares) (**see Table 2-1 and Figure 2-1**). The centre of the main claim group sits at approximately 5,409,100N and 675,900E, UTM Zone 16 NAD 83.

The Property covers several Surface Rights Only Freehold Patents.

The properties were acquired by ground staking pursuant to requirements of the Mining Act R.S.O. 1990, Chapter M.14. In the Kabinakagami Lake area, claims corners are generally established with the aid of handheld GPS receivers, whose accuracies are in the order of +/- 10 metres, depending on which type of unit is used. Claim stakers mark out claim block boundaries by navigating, blazing and flagging their course with the aid of a compass or GPS receiver and placing line posts along this course every 400 meters. Corner claim posts are established at each corner of the claim, and positional information is provided on the corner posts with the aid of a GPS receiver.

Several claim posts and claim lines were observed there locations were recorded and were in general found to be located approximately where shown on the claim maps.

Table 2-1: List of Lizar Claims

Table 2-1: Li	Claim	Recording	Claim Due	Recorded	Percent	Work	Total	Total	Claim
Township/Area	Number	Date	Date	Name	Option	Required	Applied	Reserve	Bank
BRECKENRIDGE	1166901	2001-Jul-05	2012-Jul-05	Rencore	100%	\$6,400	\$57,600	\$0	\$0
BRECKENRIDGE	1166902	2001-Jul-05	2012-Jul-05	Rencore	100%	\$6,400	\$57,600	\$0	\$0
BRECKENRIDGE	1166903	2001-Jul-05	2012-Jul-05	Rencore	100%	\$6,400	\$57,600	\$0	\$0
BRECKENRIDGE	1246627	2001-Mar-07	2012-Mar-07	Rencore	100%	\$6,400	\$57,600	\$0	\$0
BRECKENRIDGE	3004629	2003-Jan-30	2012-Jan-30	Rencore	100%	\$5,228	\$42,772	\$0	\$0
BRECKENRIDGE	3010826	2002-Dec-17	2011-Dec-17	Rencore	100%	\$4,000	\$28,000	\$0	\$0
BRECKENRIDGE	4218151	2009-Dec-30	2012-Dec-30	Rencore	100%	\$3,600	\$3,600	\$0	\$0
BRECKENRIDGE	4218152	2009-Dec-30	2012-Dec-30	Rencore	100%	\$3,600	\$3,600	\$0	\$0
BRECKENRIDGE	4242133	2009-Dec-14	2011-Dec-14	Rencore	100%	\$1,200	\$0	\$0	\$0
BRECKENRIDGE	4242134	2009-Dec-14	2011-Dec-14	Rencore	100%	\$1,600	\$0	\$0	\$0
BRECKENRIDGE	4242135	2009-Dec-14	2011-Dec-14	Rencore	100%	\$2,400	\$0	\$0	\$0
BRECKENRIDGE	4242136	2009-Dec-30	2011-Dec-30	Rencore	100%	\$3,600	\$0	\$0	\$0
BRECKENRIDGE	4260729	2010-Dec-23	2012-Dec-23	Rencore	100%	\$6,400	\$0	\$0	\$0
BRECKENRIDGE	4260730	2010-Dec-23	2012-Dec-23	Rencore	100%	\$4,800	\$0	\$0	\$0
BRECKENRIDGE	4260731	2010-Dec-23	2012-Dec-23	Rencore	100%	\$3,600	\$0	\$521	\$0
BRECKENRIDGE	4260732	2010-Dec-23	2012-Dec-23	Rencore	100%	\$3,600	\$0	\$442	\$0
LIZAR	1237578	2000-Nov-01	2011-Nov-01	Rencore	100%	\$3,600	\$32,400	\$0	\$0
LIZAR	1237579	2000-Nov-01	2011-Nov-01	Rencore	100%	\$3,200	\$28,800	\$0	\$0
LIZAR	1237584	2000-Nov-01	2011-Nov-01	Rencore	100%	\$2,400	\$21,600	\$0	\$0
LIZAR	1239724	2001-Jun-12	2012-Jun-12	Rencore	100%	\$6,400	\$57,600	\$0	\$0
LIZAR	1239725	2001-Jun-12	2012-Jun-12	Rencore	100%	\$2,000	\$18,000	\$0	\$0
LIZAR	1246613	2001-Feb-15	2012-Feb-15	Rencore	100%	\$6,400	\$57,600	\$0	\$0
LIZAR	1246614	2001-Feb-15	2012-Feb-15	Rencore	100%	\$5,600	\$50,400	\$0	\$0
LIZAR	1246615	2001-Feb-15	2012-Feb-15	Rencore	100%	\$4,800	\$43,200	\$0	\$0
LIZAR	1246616	2001-Feb-15	2012-Feb-15	Rencore	100%	\$6,400	\$57,600	\$0	\$0
LIZAR	1246617	2001-Feb-15	2012-Feb-15	Rencore	100%	\$6,400	\$57,600	\$0	\$0
LIZAR	1246618	2001-Feb-15	2012-Feb-15	Rencore	100%	\$6,000	\$54,000	\$0	\$0
LIZAR	1246619	2001-Feb-15	2012-Feb-15	Rencore	100%	\$6,400	\$57,600	\$0	\$0
LIZAR	1246620	2001-Feb-15	2012-Feb-15	Rencore	100%	\$1,600	\$14,400	\$0	\$0
LIZAR	1246621	2001-Feb-15	2012-Feb-15	Rencore	100%	\$6,400	\$57,600	\$0	\$0
LIZAR	3010827	2002-Dec-17	2011-Dec-17	Rencore	100%	\$4,800	\$33,600	\$0	\$0
LIZAR	3010828	2002-Dec-17	2011-Dec-17	Rencore	100%	\$400	\$2,800	\$0	\$0
LIZAR	3013494	2004-Mar-23	2012-Mar-23	Rencore	100%	\$1,200	\$7,200	\$0	\$0
LIZAR	4260721	2010-Dec-23	2012-Dec-23	Rencore	100%	\$6,400	\$0	\$0	\$0
LIZAR	4260722	2010-Dec-23	2012-Dec-23	Rencore	100%	\$6,400	\$0	\$0	\$0
LIZAR	4260723	2010-Dec-23	2012-Dec-23	Rencore	100%	\$6,400	\$0	\$0	\$0
LIZAR	4260724	2010-Dec-23	2012-Dec-23	Rencore	100%	\$6,400	\$0	\$0	\$0
LIZAR		2010-Dec-23		Rencore	100%	\$800	\$0	\$0	\$0
LIZAR	4260726	2010-Dec-23	2012-Dec-23	Rencore	100%	\$6,400	\$0	\$0	\$0
LIZAR	4260727	2010-Dec-23	2012-Dec-23	Rencore	100%	\$1,600	\$0	\$0	\$0
LIZAR	4260728	2010-Dec-23	2012-Dec-23	Rencore	100%	\$6,400	\$0	\$0	\$0
MOSAMBIK	1246622	2001-Feb-15	2012-Feb-15	Rencore	100%	\$6,000	\$54,000	\$0	\$0
MOSAMBIK	4259818	2011-Jan-20	2013-Jan-20	Rencore	100%	\$6,400	\$0	\$0	\$0
MOSAMBIK	4259840	2011-Jan-20	2013-Jan-20	Rencore	100%	\$6,000	\$0	\$0	\$0
NAMEIGOS	1215489	1998-Jun-01	2012-Jun-01	Rencore	100%	\$3,600	\$43,200	\$2,158	\$0
NAMEIGOS	1218138	1998-Sep-10	2011-Sep-10	Rencore	100%	\$6,400	\$70,400	\$0	\$0
NAMEIGOS	1218139	1998-Sep-10	2011-Sep-10	Rencore	100%	\$4,800	\$52,800	\$0	\$0
NAMEIGOS	1239714	2000-Feb-23	2012-Feb-23	Rencore	100%	\$6,400	\$64,000	\$0	\$0
NAMEIGOS	1246623	2000 Feb-15	2012-Feb-15	Rencore	100%	\$4,400	\$39,600	\$0	\$0
NAMEIGOS	1246628	2001-Mar-07	2012-Mar-07	Rencore	100%	\$1,600	\$14,400	\$0 \$0	\$0
NAMEIGOS	1246629	2001-Mar-07	2012-Mar-07	Rencore	100%	\$6,000	\$54,000	\$0	\$0
NAMEIGOS	1246630	2001-Mar-07	2012-Mar-07	Rencore	100%	\$6,000	\$54,000	\$0 \$0	\$0
NAMEIGOS	1246631	2001-Mar-07	2012-Mar-07	Rencore	100%	\$4,000	\$36,000	\$0 \$0	\$0
NAMEIGOS	1246632	2001 Mar 07	2012 Mar 07	Rencore	100%	\$4,000	\$36,000	\$0 \$0	\$0 \$0
NAMEIGOS	4259825	2001-Mar-07	2012-War-07	Rencore	100%	\$4,800	\$30,000	\$0 \$0	\$0 \$0
NAMEIGOS	4259826	2011-Jan-20	2013-Jan-20	Rencore	100%	\$6,400	\$0 \$0	\$0 \$0	\$0 \$0
NAMEIGOS	4259830	2011-Jan-20	2013-Jan-20	Rencore	100%	\$4,800	\$0	\$0	\$0 \$
INAMILIOUS	4233030	2011-Jail-20	2013-Jaii-20	Rencore	100%	J-1,000	ŲÇ	Ψ	ې

Page 4

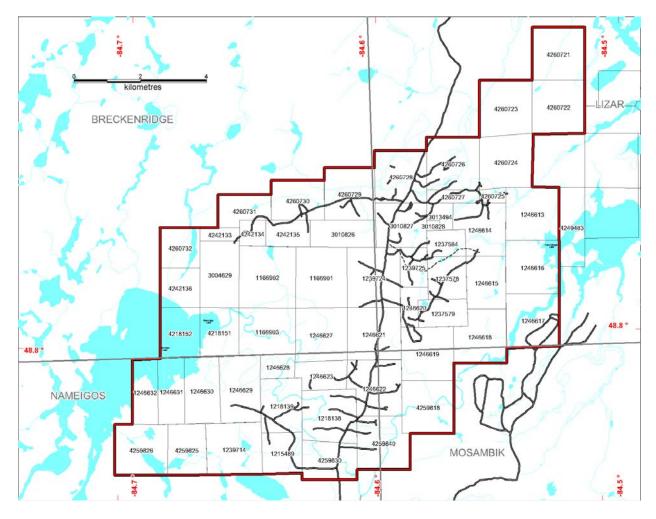


Figure 2-1 Lizar Property Claims

3.0 LOCATION, ACCESS, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE

3.1 Location and Access

The Lizar Property is situated to the Breckenridge (G-1875), Lizar (G-2328), Nameigos (G-2283), and Mosambik (G1593) Areas (NTS 42C/15), approximately 60 kilometres northeast of the town of White River, Ontario (see Figure 3-1).

The Lizar Lake Property consists of a contiguous 57 claim group comprising a total 10640 hectares.

Access to the northern part of the claim group is best gained from as series of logging roads that lead off Highway 637 (Hoken and Breckenridge Roads) approximately 15-25 kilometres south of Hornpayne. Travel time to the central portion of the Lizar Property by truck from Hornpayne is roughly 80 minutes while from White River it is approximately 1.5 hours.

Access to the southern part of the property south of Kabinakagami River is best gained during the summer months using a helicopter that is based out of Wawa.

Figure 3-1: Regional Location Map

3.2 Climate and Physiography

The area that includes the Lizar Property experiences long, cold winters and short, warm summers. Freeze-up of the major rivers occurs in late October or early November. The mean daily minimum temperature in January is approximately -15°C. Spring breakup occurs in early to mid May. Mean annual precipitation is approximately 660 millimetres, and mean annual

River levels reach their maximum during the spring runoff in late May. Water levels typically drop through the summer and then increase slightly during the fall prior to freeze up. Water levels fluctuate in response to even modest rainfall and short dry spells.

The Lizar Property elevation varies between 350-420 meters. The relief while locally reflects the distribution of the underlying bedrock units, mainly tends to show the distribution of the Pleistocene and Recent Deposits. Relief is moderate never exceeding 50 meters.

The entire area has been glaciated. Outcrop exposure is variable from moderate to very poor.

Vegetation comprises modest sized trees, predominantly tamarack (larch) and black spruce. Woody species increase in size and proportion as drainages cut into overburden, forming betterdrained banks. Significant portions of the claim block have been recently logged.

4.0 HISTORY AND PREVIOUS EXPLORATION

4.1 History

Historic work on the Lizar Property has been discussed in some detail in previous assessment reports and will only briefly be described below.

1930's: Hiawatha Gold Mine, located northeast of the current Lizar property was discovered and subsequently produced 1931 tons of ore grading 0.074 opt. gold, J. E. Stenabough discovered several gold-polymetallic occurrences, in addition the Kalibak prospects were found by person(s) unknown, Hollinger Gold Mines worked the Charpentier Showings.

1950's: Neoscope Explorations Limited completed an airborne magnetic and scintillometer survey over Kabinakagami area and outlined a massive magnetite body hosted by a pyroxenite approximately 4 kms. northeast of the Hiawatha Mine (Perkin Occurrence).

1960's: Primrock Mining and Exploration dewatered the Hiawatha gold mine and drilled two exploration holes.

1970's: Rio Tinto and Nickel Rim Mines Ltd. carried out limited exploration programs in and around the Lizar Property.

1980's: The area around the Lizar Property was worked by numerous companies including, Sveinson Way Minerals Services Inc, Pryme Energy, Tundra Gold Mines, Noranda Exploration and Golden Trio resources amongst others. Very little diamond drilling was carried out by any of these companies.

1990's: Two local propsectors, Doug Kakeeway and Lloyd Halverston prospected the area and came up with several new gold showings in altered, pyritic felsic rocks.

2001 to 2008: The Lizar property was optioned by Freewest Resources Ltd. in 2001. Between 2002 and 2004 Teck Cominco entered into an option and joint venture agreement with Freewest. In 2001 Freewest Resources Canada Ltd. establishes two grids (Nameigos and Patent Grids), conducts a Max-Min survey on the Nameigos Grid and I.P. Resistivity over the Patent Grid, carries out soil surveys, prospecting and trenching, successfully discovers eight new gold occurrences. In 2002 Teck Cominco Limited flies a GEOTEM airborne survey over the property and surrounding area outlining several priority EM anomalies. Teck Cominco conducts ground UTEM surveys over selected airborne EM targets and geological maps and prospects property. In 2004 Teck Cominco extends I.P. Resistivity coverage on the Patent Grid. Drills 1514 metres in 8 holes. Two holes LIZ-01 and 02 test priority EM conductors in northern portion of property while the remaining 6 holes (LIZ-03-08) were collared to test I.P. Conductors on the southern extension of the Patent Grid. Highlights included the discovery of a potential new magmatic Ni, Cu, PGM target in hole LIZ-01-01 which intersected a 3.0 metre interval at the base of a peridotite sill that ran 0.54% nickel, 1.26 gpt palladium and 0.23 gpt platinum.

Freewest in 2007 drills 15 holes totalling 2160 metres. Twelve holes (LIZ-07-01 to 12) were drilled to test various gold targets on the Patent Grid, while three holes (LIZ-07-12 to 15) were collared to test the volcanogenic massive sulphide target on the Nameigos Grid. All drill holes located on the Patent Grid encountered significant zones of alteration and pyrite mineralization, while anomalous gold values were commonly encountered the best values obtained were 1.31 gpt/1.0 metres in hole LIZ-07-06 and 1.67 gpt/0.8 metres in holes LIZ-07-09. All three holes drilled on the Nameigos Target interested minor amounts of chalcopyrite and sphalerite. Of note was that hole LIZ-07-15 encountered a chloritic stockwork alteration zone that contained 5.8

metres grading 1596 ppm copper and 996 ppm zinc.

4.2 Work Performed by Rencore

Between January 16th and January 23rd 2011, a VTEM Airborne Survey was completed over the original Icarus claims and surrounding area (**see Figures 4-1 and 4-2**). Survey lines were flown at 200 metres traverse line separation at a direction of N45 degrees in the northern half of the survey area and in a N-S direction in the southern half. A total of 831 line km were acquired. The system employed a conventional VTEM system operated by Geotech Ltd. using a 26 metre transmitter loop, 384,000 NIA dipole movement and operated at 30Hz base frequency

An interpretation report completed by Scott Hogg & Associates Ltd. ("Scott Hogg") has been filed under separate cover. Preliminary EM Anomaly "Picks" of Scott Hogg are described in their report and are also shown superimposed on the Total Field magnetic image in **Figure 4-2**.

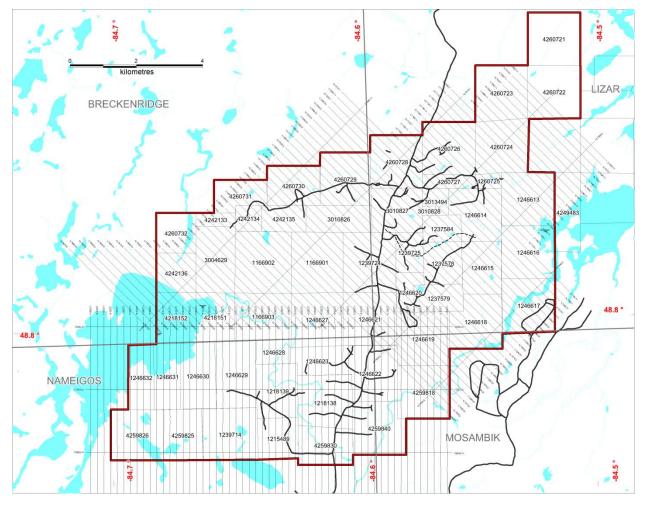


Figure 4-1 Survey Flight Path and Extent of Airborne Survey

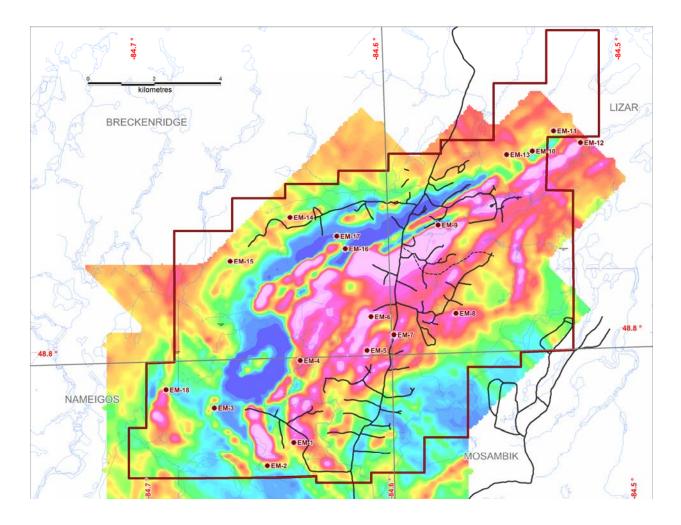


Figure 4-2 Priority Electromagnetic Anomalies Shown on Total Field Magnetics

A reconnaissance prospecting and geological mapping program was was carried out in May 2011 to ground truth selected electromagnetic anomalies delineated in the recent VTEM survey.

The prospecting/mapping crew consisted of the author and two 2 person prospecting teams, one under contract from Karl Bjorkman of Atikokan, Ontario (Aaron Bjorkman and Bjorn Bjorkman) and Doug Kakeeway and Lloyd Halverston/Orville Mcwatch. The Report of Work has been filed under a separate cover.

Some of the more principle findings/observations are summarized below. A description of the findings for each of the anomalies follow-up is given in **TABLE 4-1**.

Page 10

- Outcrop exposure was fairly good through-out some of the project area but in other places it is extremely poor to nonexistent which presented challenges in trying to determine the cause/source of the EM Conductors. A network of old logging roads helped gaining access to the exploration targets in the central portion of the claim group. Most often traverses were in the order of 1 to 3 kilometres. Bush conditions are poor; there is abundant blow down and heavy underbrush. A lot of the area(s) investigated were recently logged. A helicopter was used for one day to check anomalies south of Kabinakagami River and in the extreme northwest corner of the property.
- Principle lithologies observed on the Lizar Property included a) intermediate to amphibolites and mafic orthogneisses (mafic volcanics?) b) feldspar +/-quartz, biotite or hornblende schists (intermediate volcanics and possibly high level, sub volcanic intrusives), and c) mafic to ultramafic units of intrusive origin found through the northwestern portion of the project area. All of the above units were intruded by various felsic granites, gneissic granites, pegmatites etc. A few narrow <10 metre wide diabase dykes that were also observed.
- Most of the airborne EM anomalies could not be explained. Two conductors EM-6, 15 could be explained by the sulphides seen in outcrop or hand dug trenches. Two other anomalies, EM 7 and 18, were found to be due to cultural effects (culverts and a cabin respectively).
- The strong conductive trend located in the northwestern portion of the property (Anomalies 14 and 15) appear to offer the best potential to host volcanogenic massive sulphide style mineralization. Outcrops and hand dug trenches along Anomaly 15 returned consistently anomalous Zn, +/- Cu, and Au values over 900 metre strike length. Best values obtained were 1.03% zinc, 0.26% copper and 1.43 gpt gold.
- While the VTEM Survey did not show a definitive response over the Big Kahuna UTEM Anomaly defined by Teck Cominco (possible due to the poor flight line orientation) the anomaly was field checked but was found to lie in an area covered by extensive glacial fluviatile deposits

ſ			
Anomaly	Easting	Northing Decription	Recommendations
EM-1	673489	5404972 [trenched and drill tested by Freewest (LIZ-07-015) pyrrhotite viens and stringers in intermediate to felsic volcanics, weak Cu, Zn	low priority, whole rock shows no sign. alteration
EM-2	672690	672690 5404251 poor exposure, nearby outcrops, mafic volcanics, unexplained, short strike length	low priority
EM-3	671086	5406006 unexplained, no outcrop, swampy, winter drill target	moderate priority
EM-4	673687	5407435 Verry strong conductor, single line, associated mag, unexplained in large swampy area, winter drill target	moderate priority
EM-5	675708	5407752 tested by Reck Cominco in ddh LlZ-06 which encountered pyr rhotite stringers, no significant assays	no further interest
EM-6	675827	5408772 pyrite veins and stringers in gabbro, good exposure, no significant assays	no further interest
EM-7	676526	5408225 [culvert	no further interest
EM-8	678404	5408873 Irrenched and drill tested by Freewest by several holes anomaly not explained but likely due to pyrrhotite viens and stringers	no further interest
EM-9	677862	5411537 drill tested by Teck Cominco (LIZ-02) graphitic sediments	no further interest
EM-10	680715	5413788 fairly good exposure, appears due to interflow sediments in mafic volcanics	no further interest
EM-11	681354	681354 541430 fairly good exposure, appears due to interflow sediments in mafic volcanics	no further interest
EM-13	679934	5413682 [fairly good exposure, appears due to interflow sediments in mafic volcanics	no further interest
EM-14	673375	5411768 no outcrop, likely thick overburden, extension on Anomaly 15, good magnetic association	high priority one hole LIZ-11-03 is proposed
EM-15	671565	5410449 corresponds to iron formation, possible more than one horizon or folded, anomalous zinc, copper, contct intermediate and mafic volcanics	high priority two holes LIZ-11-01 and 02 are proposed
EM-16	675048	5410830 swampy area, outcrop either side mafic volcanics	low priority
EM-17	674793	5411199 swampy area no outcrop	low priority
EM-18	669621	5406560 cabin on lake	no further interest

Page	12
------	----

5.0 GEOLOGICAL SETTING

5.1 Regional Geology

The Lizar Property lies within the western portion of the Abitibi-Wawa Subprovince of the Archean Canadian Shield.

The Abitibi-Wawa greenstone Belt in the Lake Superior region consists of a series of relatively small greenstone belts including the Manitouwadge, Shrieber-Hemlo, Mishibishu and Michipicoten as well as the Dayohessarah-Kabinakagami greenstone belt. The Lizar Property is located within the Kabinakagami portion of the Dayohessarah-Kabinakagami greenstone belt.

Significant mineral deposits within the above greenstone belts include: a) volcanogenic massive sulphide deposits (Winston Lake 3.1 mtonnes @ 15.6% Zn, 1.0% Cu, 31 gpt Ag, 1.0 gpt Au, Geco 58.4 mtonnes @ 3.45% Zn, 1.80% Cu and 50 gpt Ag) and b: gold deposits (Hemlo Camp +25 moz, Eagle River and Island Gold).

Approximately 25 kilometres west of the Lizar Property Harte Gold Corp. ("Harte") is advancing its Sugar Zone Property in the Dayohessarah Lake area. Harte recently released an updated NI 43-101 Compliant Resource for the Sugar Zone of 1.12 mtonnes grading 8.41 gpt Au (Indicated Resources) and 0.42 mtonnes at 7.30 gpt Au (Inferred Resources).

5.2 Local Geology

The Lizar Property geologically mapped by Teck Cominco in 2003, the following property geologically description is taken from an assessment report written by J. Paakki in 2003 For Teck Cominco.

"The Lizar property covers the northern limb and fold closure of a northeast-plunging, beltscale syncline. This fold structure is readily apparent in magnetics data and supported by pillowed mafic flow top indicators and other supracrustal rocks which trend and dip accordingly (see Figures 5-1 and 2). Basal portion of the property stratigraphic section consists of mainly mafic volcanics with lesser ultramafic flows and probable intrusions grading upward into a sequence with increasing felsic lithologies capped by a package of sedimentary rocks. A number of intermediate to felsic intrusives likely of varying ages occur throughout the package. A description of property map units is tabled in Appendix I and is summarized below.

Mafic volcanics (Map Unit 2) are the predominant rock type observed on the property and include massive, pillowed, and lesser variolitic flows, flow breccias and chloritic schists. Massive flows range from fine-grained to coarser-grained varieties; the latter representing either thicker flows or sub-volcanic equivalents. Very coarse-grained mafics of uncertain origin were rock coded 2c/8, where Map Unit 8 refers to intrusive mafic rocks.

Within the northern and stratigraphically lower portion of the mafic sequence, laterally extensive, and previously unrecognized, ultramafic flows are mapped and confirmed geochemically with MgO contents of 35% (Map Unit 1). This map unit includes massive and well developed spinifex-textured flows, over widths ranging from less than 50 to 350 metres. The thickest portion of the ultramafic sequence occurs proximal to a large magnetic high feature with coincident EM geophysical anomalies in the north-central part of the property which as noted above is a pyroxenite (Map Unit 8).

Felsic volcanics (Map Unit 4), although limited in their aerial extent, are perhaps the one of the most important rock types related at least spatially to mineralization, both gold and possible base metals. Felsics occur intermittently over a broad stratigraphic interval within mafic flows and overly the ultramafic flows described above. Mapped felsic volcanics include tuffs and local breccias, massive and quartz and quartz-feldspar phyric flows, and quartz-sericite schists. Some of the felsic units mapped, in particular quartz eye and quartz-feldspar phyric varieties, may represent sills or dykes. These units are coded as Map Unit 4h.

The largest volume of felsic volcanics occurs in the fold nose area in the southwestern part of the property, namely the Nameigos area. This large felsic volcanic pile measures up to 700 metres thick covering a strike length of some 2 kilometres and hosts a flanking sulphide zone referred to as the Nameigos Sulphide Zone. Sulphide mineralization is exposed in three existing trenches over a strike length of approximately 300 metres. The semi-massive, disseminated and stringer sulphide zone is 15 to 23 metres thick consisting primarily of pyrite, lesser pyrrhotite, +/-sphalerite and chalcopyrite. Host rocks are well sericitized and local aluminous minerals such as kyanite and staurolite are noted in surrounding rocks.

Significant gold occurrences are also hosted within felsic volcanics rocks, specifically disseminated pyrite-hosted gold mineralization which is probably the most attractive target on the property (e.g., Hemlo and Bouquet-style targets). New prospecting finds of this type by Freewest include the Kirk, Kyle and 42 Zones in the central part of the property. Gold values up to 90.7 g/t Au were yielded from pyritic felsic lithologies occurring as discrete to irregular disseminated zones (e.g., 42 Zone) and anastomosing stringers/dykes cutting mafic volcanics (Kirk and Kyle Zones). Garnet alteration and complex mafic dykes are common in these areas of mineralization.

Clastic sedimentary rocks (Map Unit 6) cap the volcanic sequence and form the core of the belt-scale syncline. At the Kirk/Kyle/42 Zones and the Nameigos Sulphide Zone area, clastic sedimentary rocks are intercalated with felsics. Mapped sedimentary rocks include feldspathic arenites, siltstone and wackes and volcaniclastics.

Felsic intrusive rocks (Map Units 10 and 11) include discrete granitic to granodioritic plugs and dykes. Intrusion bodies occur in the Hiawatha mine area, in the central portion of the property, and an even larger, but late syenite body at the west end of the property, and dykes. Dykes are most often feldspar +/quartz porphyritic and occur within, and define structural zones, namely the Bear Creek Shear Zone, described below.

The northeast-trending and steeply south dipping Bear Creek Shear Zone (BCSZ) has been previously identified as a major structure with the southern belt of the Kabinakagami greenstone belt associated with gold occurrences (Siragusa, 1977 and Wilson, 1993). The 2003 mapping program indicates that the BCSZ occurs as broad structural corridors along the limb portion of the synclinal fold described above. These corridors are in the order of 500 metres wide and are most readily identified by felsic dyke swarms as mentioned above and sheared lithologies. The western strike extent of the Bear Creek Shear Zone is ill-defined where it appears to "splay out" but is readily identified at the Hiawatha mine area to the northeast where it is focused along the contact of ultramafics and a granodiorite body, which is host to the gold-bearing quartz vein zones at Hiawatha. All lithologies and structures, including the BCSZ, described above are offset by several northwest-trending faults in the central part of the property.

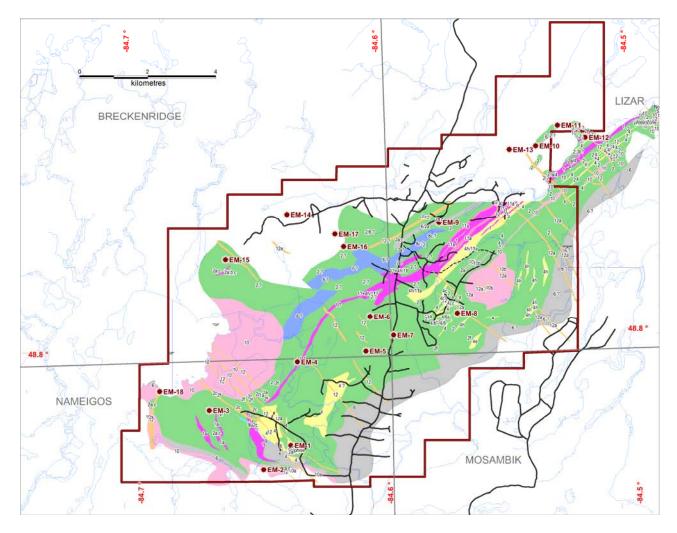


Figure 5-1 Local Geology from Teck Cominco 2003

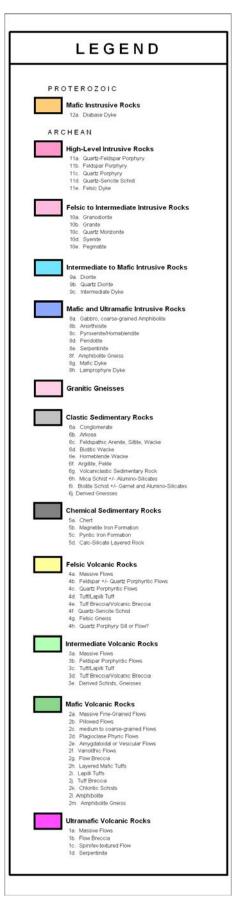


Figure 5-2 Geology Legend from Teck Cominco 2003 Page 17

6.0 DEPOSIT TYPES AND GENETIC MODELS

The primary exploration targets on the Lizar Property are for: 1) magmatic nickel-copper +/- platinum group elements and 2) volcanogenic massive sulphide deposits. Secondary exploration targets would be for Hemlo-Bousquet Style Disseminated Gold (Patent Gold area) and Lode Gold Deposits along the Bear Creek Fault.

One of the primary exploration targets on the Lizar Property is for magmatic nickel-copper +/- platinum group metals ("Ni-Cu+/-PGM") deposits (Big Kahuna UTEM Conductor). Most economic Ni-Cu+/-PGM deposits occur almost exclusively at the base of their associated mafic igneous bodies and except for the Sudbury orebodies are restricted to "conduits" including thermal erosion channels (Kambalda), conduits feeding extrusive magmatism (Noril'sk) or feeders to a large mafic intrusion (Jinchuan) or within a feeder linking a lower reaction chamber with an overlying intrusive (Voisey's Bay). Two notable Canadian examples to the above are the Montcalm and Lynn Lake Ni-Cu Deposits which are interpreted to have been tectonically emplaced into their current locations from a predominantly pyroxenitic host during the late stages of consolidation.

The second primary target on the Lizar Property is for volcanogenic massive sulphide deposits (EM Conductors 14 and 15, and the Nameigos Lake area). All volcanic-associated massive sulphide deposits occur in terranes dominated by volcanic rocks. The individual deposits however may be hosted predominantly by volcanic or sedimentary strata, all of which form integral parts of a volcanic complex. Such deposits are also commonly referred to as volcanogenic massive sulphides, or simply as VMS.

These deposits are important sources of base metals and precious metals in Canada. In 1988 they produced 32.8% of Canada's copper, 29.4% of its lead, 56.3% of its zinc, 3.6% of its gold, and 30.4% of its silver.

The deposits occur in two distinct compositional groups, the **copper-zinc group** and the **zinc-lead-copper group**, according to their total contained copper, lead, and zinc. Using the Zn/Zn+Pb ratio, the division between these two groups is established at 0.90. All are within sequences dominated by submarine volcanic rocks, and contain about 90% iron sulphide (pyrite dominant). They consist of two parts: massive sulphide ore that formed either on or immediately below the seafloor, and generally less important vein and disseminated ore (stringer zone) that immediately underlies the massive sulphide ore. The stringer ore is usually within an intensely metasomatically altered "alteration pipe". Deposits of the

volcanic-associated massive sulphide type are important sources of copper, zinc, and lead; many deposits contain economically recoverable silver and gold. Cadmium, tin, indium, bismuth, and selenium are also recovered as smelter by products.

These deposits occur in two principal geological settings; 1) in mafic-volcanic dominated areas, such as Archean and Proterozoic greenstone belts and modern and Phanerozoic spreading ridges and seamounts; 2) in areas containing subequal amounts of both mafic volcanic rocks and sedimentary strata, such as are in Phanerozoic arc sequences.

Significant variation in the composition of these deposits, and the alteration associated with them, has been related to the depth of water under which the deposits formed. Morton and Franklin (1987) defined two groups:

1) Deposits typified by the Noranda and Matagami Lake Districts, Quebec were formed at depths of considerably more than 500 metres. These are associated with sequences composed primarily of massive to pillowed mafic flows. Felsic ash-flow tuff beds are usually prominent immediately below the deposits, and felsic domes may immediately underlie or enclose the ore. However, the amount of felsic rock in the footwall sequence may be only minor (Flin Flon, Manitoba), or comprise as much as 30% (e.g. Noranda);

2) A second group of deposits, typified by those near Sturgeon Lake, Ontario, Hackett River, Northwest Territories, and possibly the Kidd Creek Mine near Timmins, Ontario, are associated with volcanic rocks deposited in subaerial to shallow marine environments (<500 metres). These include mafic and felsic amygdaloidal and scoriaceous flows and pyroclastic rocks, volcanic breccia, and epiclastic strata. Felsic rocks typically comprise 30% of the footwall sequence.

Both groups of deposits occur in volcanic sequences that have prominent subvolcanic intrusions near their base. Trondhjemitic intrusions predominate (Noranda, Sturgeon Lake, Flin Flon, Snow Lake), but a layered mafic intrusion forms the base of the Matagami Lake Sequence.

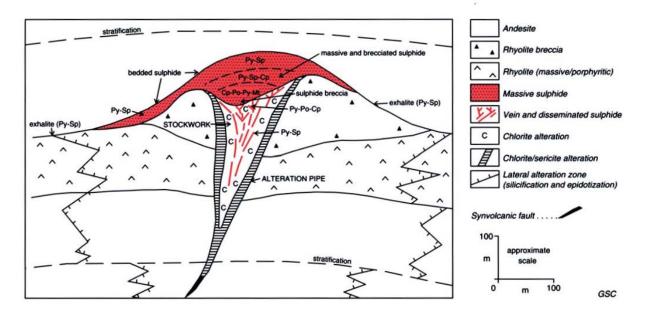


Figure 6-1: Classic Noranda-type VMS Deposit section

7.0 2011 DIAMOND DRILL PROGRAM

7.1 Introduction

Between June 10th and July 4th, 2011 a diamond drilling program was carried out on the Lizar Claim Group. The program consisted of three (3) holes (LIZ-11-01 to 03) totaling 738 metres.

The drilling was contracted Blackhawk Drilling Ltd. of Smithers, British Columbia. The program was based out of White River located approximately 80 kilometres south of the project area. The drill program was delayed nearly a week as a replacement drill needed to be brought in from British Columbia.

Drill hole collars were spotted using a hand held GPS. The holes were aligned using a Silva Compass.. Downhole surveys were conducted approximately every 50 metre interval using a Flex It Instrument.

A total of 92 samples representing a combined length of 84.62 metres were collected for gold and multielement ICP assay. The core was split and logged in the field. Sample intervals were marked the core boxes with a coloured 'China Marker'. A 'Write-in-Rain' numbered tag was placed at the beginning of each core sample. Sampling lengths ranged from 0.3 to 1.5 metres and averaged ~0.9 metres. Samples collected were individually bagged and labeled; individually bagged samples were then put into rice bags for shipping to Accurassay Laboratories in Thunder Bay. The samples are first analysed for gold using standard fire assay procedures with an AA/ICP finish. For base metals the samples are digested using aqua regia and then analysed using ICP-OES.

Summaries of the diamond drill collar co-ordinates as well as highlights of the mineralized zones and assay results encountered is given in **Tables 4**. Diamond drill logs can be found in **Appendix I**, while copies of the Assay Certificates are located in **Appendix III. Figure 7-1** shows the location of the diamond drill holes in relation to the claim boundaries.

Diamond drill hole data were entered into Gemcom and a set of sections as well as drill hole plans were produced a scale of 1:500 for the drill sections. These maps are included as **Maps 1 to 3** which accompany this report.

Table 4 Drill Hole Collar Location

	2011 LIZAR DRILL HOLE LOCATIONS										
HOLE EASTING NORTHING AZIMUTH DIP DEPTH COMMENTS											
LIZ-11-01 672069 5410823 310 -50 172.8				-50	172.8	test extension of EM 15 underneath surface showings					
LIZ-11-02	673204	5411630	360	-50	169.8	test EM Conductor 14					
LIZ-11-03	LIZ-11-03 675969 6510400 360 -60 395.4			-60	395.4	150 metre steup from hole LIZ-01 on the Big Kahuna UTEM Conductor					
738.0											

Drill core is being stored at the field at UTM 677,200E and 5,412,150N (see Figure 7-1).

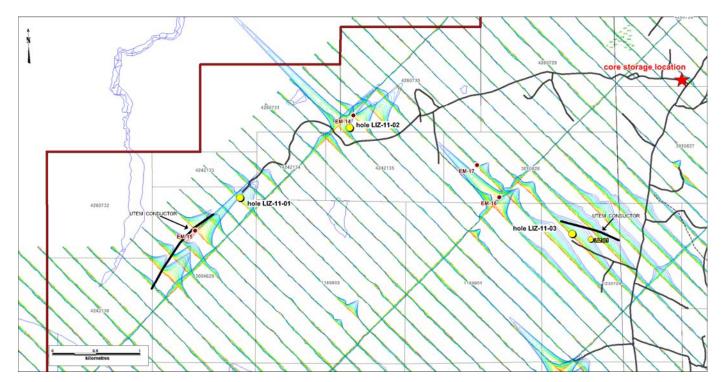


Figure 7-1: Lizar Claim Group Drill Hole Location

7.2 Discussion of Results

Three diamond drill holes (LIZ-11-01 to 03) totaling 738 metres were drilled on mining claims 3004629 (LIZ-11-01), 4260730 (LIZ-11-02), and 1239724 (LIZ-11-03) (see Figure 7-1). The holes were drilled in a approximately south to north direction to test a) the strike extension of EM 15 where surface mineralization (Cu,Zn) was noted (LIZ-11-01), b) EM 14 (LIZ-11-02) and c) a stepout of historic hole LIZ-01 which encountered anomalous platinum and palladium along the contact zone of an ultramafic intrusive (LIZ-11-03).

<u>LIZ-11-01</u>

Diamond drill hole LIZ-11-01 located at 672069E and 5410415N (NAD 83 Zone 16) and was collared at -50 and drilled at an azimuth of 310 degrees (see Figure 7-1 and Map 1). It was designed to test the strike extension of EM 15 where surface showings return anomalies zinc and copper values. LIZ-11-01 was drilled to a depth of 172.8 metres. It encountered predominantly mafic volcanics with lesser amounts of feldspar porphyritic bearing units (high level intrusive or

crystal tuff). Hosted within the mafic volcanics were sections of sulphide bearing lean iron formation containing disseminated to semi massive pyrite, pyrrhotite, with minor amounts of sphalerite and chalcopyrite. Several narrow ~1 metre sections containing anomalous base metal values were encountered. Results included 8836 ppm zinc and 1062 ppm copper between 75.4 and 76.0 metres and 423 ppm zinc and 6571 ppm copper between 107.0 and 107.5 metres.

- <u>LIZ-11-02</u>

Diamond drill holes LIZ-11-02 was collared at 673204E and 5411630N at -50 degrees and at an azimuth of 360 degrees to test EM Anomaly 14 (see Figure 7-1 and Map 2). The hole was drilled to a depth of 169.8 metres.

The hole encountered lithologies similar to those observed in hole LIZ-11-01. However no significant sulphides were observed except for a narrow section between 73.7 and 74.1 metres which contained 10% pyrrhotite and ran weakly anomalous zinc (1241 ppm and copper 205 ppm).

- <u>LIZ-11-03</u>

Hole LIZ-11-03 was collared at 675969E and 6510400N at an azimuth of 360 degrees and at dip of -60 degrees (**see Figure 7-1 and Map 3**) as a 150 metre stepout (west) of hole LIZ-01 drilled by Teck Cominco in 2004 which encountered 1.59 gpt PGM and 0.54% Ni over 3.0 metres at the base of a serpentinized pyroxenite. The hole drilled through the contact however no visible sulphides were observed. At a depth between 159.6 metres and 200.9 metres trace to 1% finely disseminated pyrite was observed. This section contained anomalous base metal (maximum 8907 ppm nickel and 747 ppm copper as well as anomalous PGM values (maximum 368 ppb palladium and 222 ppb platinum.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

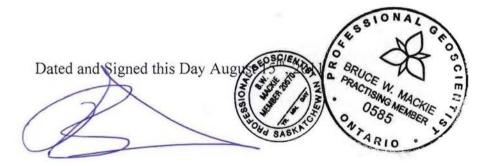
The Lizar Property is a grass roots exploration property that was acquired because it was believed prospective for magmatic nickel-copper-platinum group metal deposits and volcanogenic massive sulphide deposits. Secondary exploration targets would be for Hemlo-Bousquet Style Disseminated Gold (Patent Gold area) and Lode Gold Deposits along the Bear Creek Fault. The Patented Grid area would appear to be have been more than adequately explored (at least the near surface potential) by Freewest and Teck Cominco.

The EM Anomaly trend defined by EM 15 and 14 was tested by two diamond drill holes (LIZ-11-01 and 02). EM Anomaly 15 was explained in hole LIZ-11-01 by the presence is narrow sections of semi-massive sulphides (pyrite-pryyhotite) containing trace amounts of sphalerite and chalcopyrite). Anomaly EM 14 was not explained by hole LIZ-11-02.

The encouraging results in diamond drill hole LIZ-01 drilled by Teck Cominco in 2004, which encountered 1.59 gpt PGM and 0.54% Ni over 3.0 metres at the base of serpentinized pyroxenite was tested in a stepout in (LIZ-11-03) which likewise encountered anomalous but uneconomic PGM values.

8.2 Recommendations

At this time no further work can be recommended for any exploration targets north of Kabinakagami River. Results from the 2011 exploration prospecting and drilling programs were not sufficiently encouraging to warrant additional work.


There are still several unexplained EM Targets south of Kabinakagami River that warrant further investigation. However access to this area is limited to during freeze-up or would require helicopter support. Further, since there is no outcrop in the vicinity of these Anomalies they would likely require having to be tested/explained by diamond drilling.

9.0 AUTHOR"S CERTIFICATE

Bruce W. Mackie, P. GEO. CERTIFICATE of AUTHOR

I, Bruce W. Mackie, P. Geo., residing at 339 Parkridge Crescent, Oakville, Ontario, L6M-1A8 do hereby certify that:

- 1) Rencore Resources Ltd. currently contracts me as a consultant geologist.
- I graduated with an Honours Bachelor of Science degree in Geology and Chemistry from the Carleton University in 1975 and with a Master of Science degree in Geology from University of Manitoba in 1978.
- I am a member of the Canadian Institute of Mining and Metallurgy and a P. Geo., Registered in the Province of Ontario (APGO No. 0585) and Saskatchewan No. 20570).
- 4) I have worked as a geologist for a total of 36 years since obtaining my B.Sc. degree.
- 5) I am responsible for the preparation of this report titled "Assessment Report on a Diamond Drill Program Lizar Claim Group Kabinakagarni Lake Area" and dated August 15th, 2011.
- 6) I have visited the Property between the dates May 12th through to May 20 2011 and June 10th to 18th 2011

Bruce W. Mackie P. Geo.

APPENDIX – I

Diamond Drill Hole Logs

DRILL HOLE REPORT

Hole Number: LIZ-11-01				Project: LIZAR PROPERTY							Project Number: 001		
Drilling		Casing			Core				Location		Other		
Azimuth:	310	Length:		0	Dimension:	NQ			Township:	BRECKENRI	Logged by:	John Londry	
Dip:	-50	Pulled:	no		Storage:	In Field At	Dri		Claim No.:		Relog by:		
Length:	172.8	Capped:	yes		Section:				NTS:	42C15	Contractor:	Blackhawk	
Started:	22-Jun-11	Cemented:			Hole Type	DD			Hole:	SURFACE	Spotted by:	Bruce Mackie	
Completed:	26-Jun-11										Surveyed:		
_ogged:	26-Jun-11										Surveyed by:	GPS	
Comment:	Water line is 2000 metres long						Coordinate -	Gemcom	Coordinate - L	тм	Geophysics:		
	-Core stored(X-piled) along Nort -Spl	h Nameigos R	oad at UTM (Zone16, NAD83)	5412745N, 676	6570E	East:	671620	East:	672069	Geophysic Contractor:		
							North:	5410415	North:	5410823	Left in hole:		
							Elev.:	330	Elev.:	330	Making water:	no	
									Zone: 16	NAD: NAD83	Multi shot sur		

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	310.00	-50.00	С	\checkmark	
50.00	313.00	-47.60	F	\checkmark	magnetic 5713hz
100.00	313.60	-47.70	F	\checkmark	magnetic 5708hz
172.00	342.20	-47.20		\checkmark	problem reading, magnetic 1864hz

Hole Number: LIZ-11-01					Project:	LIZAR PROPERTY					Project Numbe	er: O	001		
From (m)	To (m)			Lithology			Sample #	From	То	Length				Ni (ppm)	
0.00	4.30		Casing rden / Casing												

4.30 20.82 MVOL Mafic Volcanics / Feldspar Porphyry

-green to dk grey, fg-mg massive, Vwk Foliation (75 DTCA), Chloritic alteration along fractures, NVM -narrow F porphyry intrusions with poor defined contacts (As below) usually <15 cm in width. -Lower contact gradational marked by the beginning of continuous Feldspar Pophyry

20.82 61.30 5 Felsic Intrusive-Feldspar Pophyry /Tuf

-White-grey, fg mass ground mass, porphyritic with anhedral white feldspar phenocrysts(30-40%), specled appearance, V wk foliation at 80 DTCA.
-Lower contact sharp with Vb @70 deg TCA
- 36.1-36.3 minor py-po (~5%) along fractures and wk magnetic
-41.9-42.0 wht-gry QV NVM
-61.0-61.3 increase I Qving with minor Py (<0.5%)

61.30	73.95	MVOL	Mafic Volcanics	1003351	73.00	73.95	0.95	68	15	25	4	95
		-Dk Grey, Fine	e Grain massive, Local Wk magnetic.									
		-68.6-68.8 Q ri	ch banded tuff with 3-5% Po fracture									

Hole Number: LIZ-11-01			Project: LIZAR PROPERTY		Project Number: 001							
From (m)	То (m)	Lithology		Sample #	From	То	Length	Аи (ррb)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
73.95	76.01	MVOLMafic Volcanics / Tuff-Grey, F grain, mod Magnetics, Bedding @50 deg TCA-Massive to Semi Massive Po-74.0-74.2 semi massive Po (25-40%)-74.2-74.5 massive Po with minor Cp-74.5-74.65 semi massive Po (10-25%)-74.65-75.40 grey fgr tuff (porphyhy) anhedral feldspar clasts (phenod-75.4076.00 semi massive Po (10-30%)	rysts)	1003352 1003353 1003354	73.95 74.65 75.40	74.65 75.40 76.00	0.70 0.75 0.60	73 9 38	1004 997 1062	32	25	3664 672 8836
76.01	89.50	MVOLMafic Volcanics-Dk gry, f gr massive, Wk local magnetic, NVM- 88.7-89.1 Tuff with good fol. @ 70 deg TCA diss 5%Po		1003355 1003356 1003357	76.00 88.00 88.75	77.00 88.75 89.10	1.00 0.75 0.35	8 5 14	88 81 441	43 50 84	3 5 10	147 83 5940

ble Number: LIZ-11-01 Project: LIZAR PROPERTY						Project Number: 001					
rom (m)	To (m)	Lithology	Sample #	From	То	Length	Au (ppb)	Си (ррт)	Ni (ppm)	Pb (ppm)	Zn (ppm
89.50	107.50	MVOL Mafic Volcanics / Tuff	1003358	89.10	90.00	0.90	108	59	45	6	20
		Dk Gry, f-m gr,	1003359	90.00	91.00	1.00	25	13	27	5	13
		- 97.8 Minor Qving (<3cm), -99.8local Bx with minor Po	1003360	91.00	92.00	1.00	8	28	40	4	9
		-89.5-92.5 Tuff Lt_gry, with white anhedral feldspar phenocrysts	1003361	92.00	92.50	0.50	5	20	26	1	1(
		-94.5-94.9 Tuff Lt gry, Wk banding, with Diss to semi massive Po (Cp, Sp 106.7-107.2) at 5-10% -97.5-101.5 maf Vol, with diss Po at 1-5%, with Chl rich vesicles (up to 2cm) magnetic and diss Po	1003362	92.50	93.50	1.00	11	69	39	1	6
		-101.5-107.5 Dk gry, f gr, maf Vol, biotite along foliation 65deg TCA	1003363	93.50	94.50	1.00	14	77	46	4	6
			1003364	94.50	94.90	0.40	70	417	75	11	69
			1003365	94.90	95.90	1.00	20	67	45	5	12
			1003366	95.90	96.50	0.60	5	59	42	1	6
			1003367	96.50	97.50	1.00	5	70	35	1	8
			1003368	97.50	98.50	1.00	5	129	43	1	7
			1003369	98.50	99.50	1.00	5	73	45	5	9
			1003370	99.50	100.50	1.00	5	121	63	5	11
			1003371	100.50	101.50	1.00	5	58	40	1	8
			1003372	101.50	102.72	1.22	5	63	43	4	6
			1003373	107.00	107.50	0.50	6	6571	59	4	42
107.50	111.25	Chert Chert Lean Iron Formation/Tuff	1003374	107.50	108.00	0.50	5	533	53	5	11
		-Lt gry,f gr, mod magnetic, cherty bands @ 60deg TCA -Diss Po mineral scattered through unit along foliations. Upto 10% locally with Cp & Py noted locally	1003375	108.00	109.00	1.00	5	20	22	1	10
		(109.5-110.0, 111.0-111.3	1003376	109.00	110.00	1.00	10	140	35	6	54
		-Unit moderately bleached (silicified) -Lower contact is sharp @45 deg TCA	1003377	110.00	110.65	0.65	8	65	29	6	13
		-Upper contact is gradational over 10cm defined by the start of sulphides.	1003378	110.65	111.25	0.60	13	137	32	2	12
111.25	120.15	5 <i>Felsic Intrusive/Tuff</i> -Gry, f gr, poor foliation with local banding @40 deg TCA (112.2m), Speckled appearance.	1003379	111.25	112.10	0.85	10	47	42	1	11

Hole Number	: LIZ-11-01	Proje	ct: LIZAR PROPERTY					Project Number:	001			
From (m)	To (m)	Lithology		Sample #	From	То	Length	Аи (ppb		Ni (ppm)	Pb (ppm)	Zn (ppm)
	()	- Wht anhedral feldspar phenocrysts abundant at 10-20%, indicating a V wk folia Lower contact sharp @ 80 deg TCA	ion									
120.15	128.10	MVOL Mafic Volcanics -Dk gry, f gr, local mod magnetic, massive, NVM -lowercontact@50deg TCA										
128.10	131.60	5 Felsic Intrusive/Tuff Grey, f gr, mod magnetic, -Wht anhedral feldspar phenocrysts -130.7-131.6 cherty with Po-Py (5-10%) along fol (semi mass Local) -lower contact @45 deg TCA		1003380 1003381	130.00 130.70	130.70 131.60	0.70 0.90	51 91		-	18 32	241 4827
131.60	136.85	MVOLMafic VolcanicsDy gry, f-m gr, local mod magnetic, NSM-Wht Qving (<5 cm) and sericitic alteration along fractures and foliations		1003382	131.60	132.00	0.40	ç	67	4 0	1	111

lole Number:	LIZ-11-01		Project: LIZAR PROPER	RTY				Project Number:	001			
From (m)	То (т)	Lithology		Sample #	From	То	Length	Au (ppb)	Cu (ppm)	Ni (ppm)	Рb (ррт)	Zn (ppm)
136.85	143.75	5 Felsic Intrusive/Tuff/ Porphyry -Lt gry, f gr, non magnetic, V wk foliation, NSM -Wht Feldspar anhedral phenocrysts (clasts) evenly distributed (10-20%) -Lower Contact @ 75 deg TCA										
143.75	146.50	MVOL <i>Mafic Volcanics</i> -DK gry, f gr, local magnetic, wk foliation @ 80 deg TCA -Lower contact sharp @ 65 deg TCA		1003383	146.00	146.50	0.50	5	71	74	2	179
146.50	149.30	LBIF <i>Lean Iron Formation/Tuff</i> Lt gry, f gr, local magnetic, mod foliation @55 deg TCA 146.7-147.1 Diss to semi massive Po-Py (10-15%)		1003384 1003385	146.50 147.10	147.10 148.00	0.60 0.90	8 5	391 266	76 83	8 11	1429 202
149.30	159.20	MVOL Mafic Volcanics										

-Dk gry,f gr, local magnetic, mod foliation, NSM -Wk to local banding(pillows) 75 deg @ 156.5m, 70 deg @ 153.0m -Lower contact sharp @ 60 deg TCA -153.1-154.0 Fractured and broken core, possible Fault Zone

Hole Number	:: LIZ-11-01		Project:	LIZAR PROPERTY				Project Number:	001		
From (m)	To (m)	Lithology		Sampl	e # Froi	n To	Length			Ni (ppm)	

159.20 168.50 **5** *Felsic Intrusive/Tuff*

-t gry, f gr, non magnetic, massive texture, NVM -Wht feldspar anhedral phenocrysts evenly distributed and packed (15-25%) throigh out -163.6-163.8 Gouge Zone (fault) with sand return. Lost circulation

168.50170.804Mafic Intrusive/Lamprophyre Dyke

-Dk grn-gry, Vf gr, No foliation, soft. -wk chloritic clots noted through out.

170.80 172.80 **5** *Felsic Intrusive/Tuff*

-Similar to unit 159.2-168.5 above -Wk foliation @75 deg TCA

172.80 0.00 END OF HOLE (567 Feet)

Hole Number	:: LIZ-11-0 1		Project:	LIZAR PROPERTY					Project Numbe	r: 0 0	01		
From (m)	To (m)	Lithology			Sample #	From	То	Length	A (PF			Pb (ppm)	

DRILL HOLE REPORT

Hole Number: I	LIZ-11-02				Projec	ct: LIZAR	PROPERTY				Project Numbe	r: 001
Drilling		Casing			Core				Location		Other	
Azimuth:	360	Length:		0	Dimension:	NQ			Township:	BRECKENRI	Logged by:	John Londry
Dip:	-50	Pulled:	no		Storage:	In Field At	Dri		Claim No.:		Relog by:	
Length:	169.8	Capped:	yes		Section:				NTS:	42C15	Contractor:	Blackhawk
Started:	26-Jun-11	Cemented:			Hole Type	DD			Hole:	SURFACE	Spotted by:	Bruce Mackie
Completed:	28-Jun-11										Surveyed:	
Logged:	29-Jun-11										Surveyed by:	GPS
Comment:	-Water line is ~400 metres						Coordinate - C	Semcom	Coordinate - L	тм	Geophysics:	
	-Core stored along North Nat -Split core store	meigos Road at U	TM (Zone1	6, NAD83) 541274	5N, 676570E		East:	673204	East:	673204	Geophysic Contractor:	
							North:	5411632	North:	5411630	Left in hole:	
							Elev.:	392	Elev.:	392	Making water:	
									Zone: 16	NAD: NAD83	Multi shot sur	

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	360.00	-50.00	С	\checkmark	
50.00	0.80	-48.00	F	\checkmark	magnetic 563hz
150.00	358.20	-47.70	F	\checkmark	magnetic 5672hz

Hole Number: LIZ-11-02						LIZAR PROPERTY					Project Number:	001			
From	То										Au	Cu	Ni	Pb	Zn
From (m)	(m)			Lithology			Sample #	From	То	Length	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
0.00	2.13	ο	Casing												

2.13 13.70 MVOL Mixed Mafic Volcanics-Tuff

-Gry to Dk gry, f-m gr, non-mag, mod-well foliated (55 deg TCA @ 7.0m, 50 deg TCA @12.5m) -Alternating units of well foliated biotite rich volcanics,and tuffs with elongated white feldspar clasts. -Units are locally bleached with green sericite and Qving along many fractures.

13.70	32.80	5	Felsic Intrusive-Tuff	1003386	30.00	30.95	0.95	14	1	5	5	304
		- Phenocrysts speckled appe -15.75-17.50 g -18.8-19.0; 27. 65 deg TCA,	d mag locally, poor to mod foliation (70 deg TCA @18.4m, 55 deg TCA @ 29.5m) in a dk grey ground mass. The wht feldspar anhedral are evenly distributed giving it a earance gry, f-m gr, sed defined by silica and biotite, Lower contact sharp at 60 deg TCA .1-27.5; 29.95-32.0; Lamp dykes, dk Grn, f-m gr, non mag, mod foliated, band @27.0m is A contact at 32.0 is 55 deg TCA liss Po,Py,Cp (1%) above Lamp dyke									

Hole Number:	LIZ-11-02			Project:	LIZAR PROPERTY					Project Number:	001			
From (m)	То (т)		Litholog	/		Sample #	From	То	Length	Аи (ррb)	Си (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
32.80	48.15	MVOL	Mafic Volcanics			1003387	42.50	43.50	1.00	22	132	3	5	101
		-Dk gry to	grn gry, f-m gr, Mod magnetic, Wk foliatio	n		1003388	43.50	44.00	0.50	11	156	6	5	89
		-Lower co	ntact sharp @ 60 deg			1003389	44.00	45.00	1.00	14	103	6	5	58
		-33.0-35.7	Core broken with 0.2m of lost core. FeO Magnetic through out with scattered Po			1003390	45.00	45.50	0.50	13	166	5	7	56

48.15 52.45 **5** *Felsic Intrusive/Tuff*

-Dk gry, F gr, Non magnetic, Wk foliation. -Wht feldspar anhedral Phenocrysts (15-30%) and wk stretched defining a foliation. Speckled appearance -Lower contact @ 50 deg TCA

52.45	169.80	MVOL Mafic Volcanics	1003391	52.45	53.05	0.60	13	4	1	5	52
		Dk gry to Grn gry, f-m gr, mod magntic locally, Wk-Mod foliation (60 deg @56.3m, 60 deg @ 76.8m, 60 deg @ 68.5m, 60 deg @ 107.6m, 60 deg @ 132.8m, 60 deg @ 161.4m TCA.	1003392	53.05	53.45	0.40	14	118	15	6	703
		-Minor sulphides	1003393	53.45	54.00	0.55	11	50	2	6	75
		114.8-128.0 Vb Grn Gry color change, m gr, Black chlorite fine clots thru out	1003394	64.00	64.75	0.75	13	27	1	5	37
		White QV ing; 67.0m (2cm @20Deg TCA), 78.4 (20cm), 88.7 (10cm), 130.3-160.8 Qving Content	1003395	64.75	65.30	0.55	9	249	1	5	34
		increases along fractures (<10cm)	1003396	65.30	66.00	0.70	9	8	1	11	66
		53.05-53.45 Wk IF, Dk Gry, f gr, local str magnetics, beddin @60 deg TCA	1003397	73.20	73.70	0.50	17	76	1	5	162
		59.65-62.0 Fel Tuff, gry, f gr, non mag, weak fol. Lower contact @45 deg TCA	1003398	73.70	74.10	0.40	8	205	11	5	1241
		Wht Feldspar Pheno($10-15\%$) not as abundant or clear as above.	1003399	74.10	74.60	0.50	7	1	1	5	59
		 64.75-65.3 QV, Lt gry-gry, Local magnetic 73.7-74.1 Wk IF, gry-Lt gry,Str magnetics, bedding 60 deg TCA. Magnetic-Po (5-10%) with wht Qving 	1003400	88.40	88.80	0.40	8	1	1	7	42

Hole Numbe	r: LIZ-11-02	Project: LIZAR PROPERTY					Project Number:	001			
From (m)	То (т)	Lithology	Sample #	From	То	Length	Au (dqq)		Ni (ppm)	Pb (ppm)	Zn (ppm)
		 91.9-92.6 Feldspar Porphyry Dyke, Dk gry, Non Magnetic, No foliation, Wht anhedral feldspar phenocrysts tight packed (25-30%) 128.9-130.3 Felsic Dyke, Lt gry, f-m gr, non magnetic poor foliation 145.8-146.2 Mafic Dyke, gry, m gr, Wk magnetic, poor foliation Speckled appearance with amphibole rich rock. 165.6-166.7 Mafic Dyke, Dk gry, f gr, poor foliation fine amphibole phenocrysts ,0.05cm A Vb clast was noted 3cm in diameter 									

169.80 0.00 END of HOLE (557 Feet)

DRILL HOLE REPORT

Hole Number: I	LIZ-11-03				Proje	ct: LIZAR	PROPERTY				Project Numbe	er: 001
Drilling		Casing			Core				Location		Other	
Azimuth:	360	Length:		0	Dimension:	NQ			Township:	BRECKENRI	Logged by:	John Londry
Dip:	-60	Pulled:	yes		Storage:	In Field At	Dri		Claim No.:		Relog by:	
Length:	395.4	Capped:	no		Section:				NTS:	42C15	Contractor:	Blackhawk
Started:	30-Jun-11	Cemented:			Hole Type	DD			Hole:	SURFACE	Spotted by:	Bruce Mackie
Completed:	30-Jun-11										Surveyed:	
Logged:	03-Jul-11										Surveyed by:	Grid Location
Comment:	-Water line is 850 metres						Coordinate - (Gemcom	Coordinate - l	ЛТИ	Geophysics:	
	-Core stored along North Nat -Split core stored	meigos Road at U	TM (Zone1	6, NAD83) 54127	45N, 676570E		East:	675969	East:	675969	Geophysic Contractor:	
							North:	6510400	North:	6510400	Left in hole:	
							Elev.:	371	Elev.:	371	Making water	
									Zone: 16	NAD: NAD83	Multi shot sur	

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	360.00	-60.00	С	\checkmark	
75.00	0.00	0.00		\checkmark	
150.00	0.00	0.00		\checkmark	
215.00	58.80	-65.70		\checkmark	Bad Az. Rock magnetic 5758hz
250.00	0.00	0.00		\checkmark	Bad Az. Rock magnetic 3440hz
279.00	310.50	-65.50		\checkmark	Bad Az. Rock magnetic 3440hz
389.30	311.50	-65.80		\checkmark	Bad Az. Rock magnetic 6173hz

e Number:	ber: LIZ-11-03 Project: LIZAR PROPERTY						Project Number:	001			
rom (m)	To (m)	Lithology	Sample #	From	То	Length	Au (ppb)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
0.00	48.70	<i>Overburden</i> -Casing to 56.1m (184 ft)									
48.70	371.00	UM Ultramafic unsubdivided	1003401	160.00	161.50	1.50	5	246	-	6	19
		-Dk gry to black, M gr, Strong magnetic through out, Poor to no foliation, Dark speckled appearance.	1003402	161.50	163.00	1.50	5	158	2406	8	2
		-Green talc/serpentine filled fracturing (10-70 deg TCA) at varying intensity	1003403	163.00	164.50	1.50	5	134	2358	9	;
	-Bedding / Foliation TCA: 45deg@123.8m, 55deg@168.5m, 35deg@177.3m, 35de 227.0m, 35deg @ 275.7m, 60deg @ 282.8m, 40deg @311.5	227.0m, 35deg @ 275.7m, 60deg @ 282.8m, 40deg @ 311.5	1003404	164.50	166.00	1.50	5	144	2538	6	
		-Lower contact is gradational	1003405	166.00	167.50	1.50	5	125	2505	7	
		-FAULT ZONES: Broken core, Strong fracturing, Lost core, Brecciation	1003406	167.50	169.00	1.50	5	147	2384	7	
			1003407	169.00	170.50	1.50	5	115 144	2763 2781	4 2	
		155.1-158.5, Broken core-rubble, lost core	1003408	170.50 172.00	172.00	1.50	5	144	3180	2	
	-FAULT ZONES: Broken core, Strong fracturing, Lost core, Brecciation 104.8-105.6, Broken core-rubble, lost core 117.5-118.3, Broken core, Talc/serpintine filled fractures 155.1-158.5, Broken core-rubble, lost core 216.8-224.6 Heavy green talc/serpentine (10-20%) fracture filling at 10-50deg TCA 234.0-234.6 Broken core, Breccia, Talc/serpentine filled fractures	1003409 1003410	172.00	173.50 175.00	1.50 1.50	6	135		9		
		258.2-259.6 Broken core, Breccia, Talc filled fractures	1003410	175.00	176.50	1.50	5	106	2677	2	
		FELSIC DYKES: Lt gry, M gr evenly distributed, non magnetic, no foliation, Wk wht anhedral feldspar	1003412	176.50	178.00	1.50	10	96	2307	5	
		phenocrysts, contacts defined my end and start of strong magnetics. 76.0-79.5	1003413	178.00	179.50	1.50	5	84	2714	6	
		102.5-104.8 Bleached contact along with increase in fracturing 154.0-155.1 A brown mica bed (10-20cm) included in the dyke @55 deg TCA	1003414	179.50	181.00	1.50	7	141	2493	10	
			1003415	181.00	182.50	1.50	5	163	2433	12	
		159.6 - 200.9 section	1003416	182.50	184.00	1.50	22	147	2358	13	
		-UM is denser with fewer fracturing & talc/serpentine fillings, Color is darker black,	1003417	184.00	185.50	1.50	187	115	2393	6	
	Disseminated py (~1%)noted through out section with locally up to 5%. 200.9 - 323 Section	1003418	185.50	187.00	1.50	7	139	2347	7		
			1003419	187.00	188.50	1.50	21	123	2042	4	
		UM, Black, M gr, strong magnetics, -Similar to above section but no significant sulphides.	1003420	188.50	190.00	1.50	95	152	1872	6	
		-Fracturing with talc/serpentine filling increases.	1003421	190.00	191.50	1.50	9	391	2949	7	

Hole Number:	: LIZ-11-03	Project: LIZAR PROPERTY					Project Number:	001			
From	To	l itte lenne	Samala #	From	То	Longth	Au		Ni (nom)	Pb	Zn
(m)	(m)	Lithology	Sample #	From	10	Length	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
		270.0-277.1 Heavier green and blue talc/serpentine fracture filling	1003422	191.50	193.00	1.50	5	232	3135	5 10	95
		282.8-284.2 & 296.7-297.5 Felsic rock- Bleaching- Strong magnetics, Green talc/serpentine fracture filling	1003423	193.00	194.50	1.50	5	450	2478	6	43
			1003424	194.50	196.00	1.50	5	464	1980) 10	28
		328.3 - 330.4 FAULT ZONE: Broken core, Rubble, Green talc/serpentine fracture filling 328.8-330.4 Broken core-rubble, lost core Fracture filling	1003425	196.00	197.50	1.50	5	575	4206	8	18
		340.2-340.6 talc/serpentine (10-20%), Rubble	1003426	197.50	199.00	1.50	13	747	8907	7	22
		347.5-348.3 Heavy talc/serpentine (20-40%)	1003427	199.00	200.90	1.90	5	41	4266	8	20
		358.3-371.0 Green talc/serpentine fracture filling with mottled texture. Black blotches in a grn-gry	1003428	200.90	202.50	1.60	5	3	2232	2 6	16
		bleached host becming lighter to the bottom. Strong magnetics	1003429	202.50	204.00	1.50	5	1	2334	4	18
			1003430	204.00	205.50	1.50	5	1	2266	8	17
			1003431	216.00	217.00	1.00	5	1	2434	4 3	20
			1003432	226.00	227.00	1.00	13	1	2449	4	18

371.00 395.40 **MSA** *Metasediments*

-Dark gry to gry (becomes lighter to the bottom), F gr, Mod-Strong magnetics, Wk foliation 40deg @386.3m, 50deg @389.0m -Contact gradational with end of talc/serpentine,and deceease in fracturing, Increase in Carb. -Appears to be harder than UM unit -NVM

395.40 0.00 EOH 395.4 Metres (1297 feet)

Hole Numbe	:: LIZ-11-03		Project:	LIZAR PROPERTY					Project Numbe	er: 0	01		
From (m)	To (m)	Lithology			Sample #	From	То	Length				Pb (ppm)	

APPENDIX – II

Assay Sheets

HOLE-ID	FROM	ТО	INTERVAL	SAMPLE	Au ppb	Ag ppm	Cu ppm	Ni ppm	Pb ppm	Zn ppm	Pd ppb	Pt ppb
LIZ-11-01	73.00	73.95	0.95	1003351	68	<1	15	25	4	95		
LIZ-11-01	73.95	74.65	0.70	1003352	73	4	1004	193	54	3664		
LIZ-11-01	74.65	75.40	0.75	1003353	9	2	997	32	25	672		
LIZ-11-01	75.40	76.00	0.60	1003354	38	5	1062	114	175	8836		
LIZ-11-01	76.00	77.00	1.00	1003355	8	<1	88	43	3	147		
LIZ-11-01	88.00	88.75	0.75	1003356	5	<1	81	50	5	83		
LIZ-11-01	88.75	89.10	0.35	1003357	14	<1	441	84	10	5940		
LIZ-11-01	89.10	90.00	0.90	1003358	108	<1	59	45	6	209		
LIZ-11-01	90.00	91.00	1.00	1003359	25	<1	13	27	5	130		
LIZ-11-01	91.00	92.00	1.00	1003360	8	<1	28	40	4	98		
LIZ-11-01	92.00	92.50	0.50	1003361	<5	<1	20	26	<1	102		
LIZ-11-01	92.50	93.50	1.00	1003362	11	<1	69	39	<1	60		
LIZ-11-01	93.50	94.50	1.00	1003363	14	<1	77	46	4	63		
LIZ-11-01	94.50	94.90	0.40	1003364	70	1	417	75	11	6923		
LIZ-11-01	94.90	95.90	1.00	1003365	20	<1	67	45	5	126		
LIZ-11-01	95.90	96.50	0.60	1003366	<5	<1	59	42	<1	67		
LIZ-11-01	96.50	97.50	1.00	1003367	<5	<1	70	35	<1	82		
LIZ-11-01	97.50	98.50	1.00	1003368	<5	<1	129	43	<1	79		
LIZ-11-01	98.50	99.50	1.00	1003369	<5	<1	73	45	5	94		
LIZ-11-01	99.50	100.50	1.00	1003370	<5	<1	121	63	5	113		
LIZ-11-01	100.50	101.50	1.00	1003371	<5	<1	58	40	<1	84		
LIZ-11-01	101.50	102.72	1.22	1003372	5	<1	63	43	4	67		
LIZ-11-01	107.00	107.50	0.50	1003373	6	4	6571	59	4	423		
LIZ-11-01	107.50	108.00	0.50	1003374	<5	<1	533	53	5	1182		
LIZ-11-01	108.00	109.00	1.00	1003375	<5	<1	20	22	1	100		
LIZ-11-01	109.00	110.00	1.00	1003376	10	<1	140	35	6	544		
LIZ-11-01	110.00	110.65	0.65	1003377	8	<1	65	29	6	130		
LIZ-11-01	110.65	111.25	0.60	1003378	13	<1	137	32	2	129		
LIZ-11-01	111.25	112.10	0.85	1003379	10	<1	47	42	<1	112		
LIZ-11-01	130.00	130.70	0.70	1003380	59	<1	151	92	18	241		
LIZ-11-01	130.70	131.60	0.90	1003381	96	2	799	87	32	4827		
LIZ-11-01	131.60	132.00	0.40	1003382	9	<1	67	40	1	111		
LIZ-11-01	146.00	146.50	0.50	1003383	<5	<1	71	74	2	179		
LIZ-11-01	146.50	147.10	0.60	1003384	8	1	391	76	8	1429		
LIZ-11-01	147.10	148.00	0.90	1003385	<5	<1	266	83	11	202		

HOLE-ID	FROM	ТО	INTERVAL	SAMPLE_NO	Au ppb	Ag ppm	Cu ppm	Ni ppm	Pb ppm	Zn ppm	Pd ppb	Pt ppb
LIZ-11-02	30.00	30.95	0.95	1003386	14	1	1	5	<5	304		
LIZ-11-02	42.50	43.50	1.00	1003387	22	<1	132	3	<5	101		
LIZ-11-02	43.50	44.00	0.50	1003388	11	<1	156	6	5	89		
LIZ-11-02	44.00	45.00	1.00	1003389	14	<1	103	6	5	58		
LIZ-11-02	45.00	45.50	0.50	1003390	13	<1	166	5	7	56		
LIZ-11-02	52.45	53.05	0.60	1003391	13	<1	4	<1	<5	52		
LIZ-11-02	53.05	53.45	0.40	1003392	14	<1	118	15	6	703		
LIZ-11-02	53.45	54.00	0.55	1003393	11	<1	50	2	6	75		
LIZ-11-02	64.00	64.75	0.75	1003394	13	<1	27	<1	<5	37		
LIZ-11-02	64.75	65.30	0.55	1003395	9	1	249	<1	<5	34		
LIZ-11-02	65.30	66.00	0.70	1003396	9	<1	8	1	11	66		
LIZ-11-02	73.20	73.70	0.50	1003397	17	<1	76	<1	5	162		
LIZ-11-02	73.70	74.10	0.40	1003398	8	<1	205	11	5	1241		
LIZ-11-02	74.10	74.60	0.50	1003399	7	1	<1	<1	<5	59		
LIZ-11-02	88.40	88.80	0.40	1003400	8	<1	1	<1	7	42		

HOLE-ID	FROM	TO	INTERVAL	SAMPLE_NO	Au ppb	Ag ppm	Cu ppm	Ni ppm	Pb ppm	Zn ppm	Pd ppb	Pt ppb
LIZ-11-03	160.00	161.50	1.50	1003401	<5	<1	246	2116	6	19	0.035	<0.015
LIZ-11-03	161.50	163.00	1.50	1003402	<5	<1	158	2406	8	25	0.033	<0.015
LIZ-11-03	163.00	164.50	1.50	1003403	<5	1	134	2358	9	31	0.034	<0.015
LIZ-11-03	164.50	166.00	1.50	1003404	<5	1	144	2538	6	39	0.039	0.044
LIZ-11-03	166.00	167.50	1.50	1003405	<5	1	125	2505	7	26	0.049	<0.015
LIZ-11-03	167.50	169.00	1.50	1003406	<5	1	147	2384	7	31	0.044	<0.015
LIZ-11-03	169.00	170.50	1.50	1003407	<5	<1	115	2763	4	17	0.057	<0.015
LIZ-11-03	170.50	172.00	1.50	1003408	<5	<1	144	2781	2	23	0.058	<0.015
LIZ-11-03	172.00	173.50	1.50	1003409	<5	1	107	3180	6	18	0.057	<0.015
LIZ-11-03	173.50	175.00	1.50	1003410	6	1	135	3422	9	20	0.041	<0.015
LIZ-11-03	175.00	176.50	1.50	1003411	<5	1	106	2677	2	21	0.042	<0.015
LIZ-11-03	176.50	178.00	1.50	1003412	10	1	96	2307	5	65	0.019	<0.015
LIZ-11-03	178.00	179.50	1.50	1003413	<5	1	84	2714	6	22	0.034	<0.015
LIZ-11-03	179.50	181.00	1.50	1003414	7	<1	141	2493	10	18	0.027	0.037
LIZ-11-03	181.00	182.50	1.50	1003415	<5	1	163	2433	12	17	0.028	<0.015
LIZ-11-03	182.50	184.00	1.50	1003416	22	1	147	2358	13	14	0.028	<0.015
LIZ-11-03	184.00	185.50	1.50	1003417	187	1	115	2393	6	21	0.031	<0.015
LIZ-11-03	185.50	187.00	1.50	1003418	7	1	139	2347	7	14	0.025	<0.015
LIZ-11-03	187.00	188.50	1.50	1003419	21	1	123	2042	4	37	0.03	<0.015
LIZ-11-03	188.50	190.00	1.50	1003420	95	1	152	1872	6	189	0.039	<0.015
LIZ-11-03	190.00	191.50	1.50	1003421	9	1	391	2949	7	31	0.035	<0.015
LIZ-11-03	191.50	193.00	1.50	1003422	<5	1	232	3135	10	95	0.043	<0.015
LIZ-11-03	193.00	194.50	1.50	1003423	<5	1	450	2478	6	43	0.029	<0.015
LIZ-11-03	194.50	196.00	1.50	1003424	<5	1	464	1980	10	28	0.039	<0.015
LIZ-11-03	196.00	197.50	1.50	1003425	<5	1	575	4206	8	18	0.025	<0.015
LIZ-11-03	197.50	199.00	1.50	1003426	13	1	747	8907	7	22	0.368	<0.015
LIZ-11-03	199.00	200.90	1.90	1003427	<5	<1	41	4266	8	20	0.363	0.222
LIZ-11-03	200.90	202.50	1.60	1003428	<5	<1	3	2232	6	16	0.126	0.193
LIZ-11-03	202.50	204.00	1.50	1003429	<5	1	<1	2334	4	18	<0.01	0.018
LIZ-11-03	204.00	205.50	1.50	1003430	<5	1	<1	2266	8	17	<0.01	<0.015
LIZ-11-03	216.00	217.00	1.00	1003431	<5	1	<1	2434	3	20	0.025	<0.015
LIZ-11-03	226.00	227.00	1.00	1003432	13	1	<1	2449	4	18	0.429	<0.015

APPENDIX – III

Assay Certificates

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com Fax: (807) 622-7571

Monday, July 18, 2011

Certificate of Analysis

Suite 10 Toronto, Ph#: (41	Resources 00 15 Toronto On, CAN 6) 864-1443 graham@renco		es.com	ı, bwma	ckie@c	cogeco	.ca																		Refe	oleted:	07/13/2 201142	2011							
Acc #	Client ID	Au ppm	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y	Zn ppm
161342	1003351	0.068	<1	1.15	<2	52	5	<2	<1	1.36	<4	12	47	15	1.95	0.04	7	0.74	298	7	0.15	25	389	4	<5	22	0.03	<10	13	1615	7	53	<10	6	95
161343	1003352	0.073	4	0.55	<2	56	9	5	57	0.33	27	103	22	1004	31.08	0.05	12	0.38	415	106	0.03	193	178	54	<5	25	0.01	<10	<3	344	17	11	37	2	3664
161344	1003353	0.009	2	1.10	<2	55	41	<2	<1	0.61	<4	10	24	997	2.93	0.42	21	0.53	331	12	0.07	32	355	25	<5	20	0.01	<10	11	1302	4	24	<10	3	672
161345	1003354	0.038	5	1.00	<2	56	15	2	17	1.41	31	55	49	1062	12.11	0.08	15	0.60	405	46	0.06	114	309	175	<5	29	0.02	<10	16	730	8	28	75	3	8836
161346	1003355	0.008	<1	1.34	<2	50	6	<2	<1	1.51	<4	17	62	88	2.37	0.03	8	0.93	349	8	0.17	43	320	3	<5	19	0.05	<10	11	1252	12	63	<10	5	147
161347	1003356	0.005	<1	3.00	<2	56	7	<2	<1	2.48	<4	18	55	81	2.10	0.03	9	0.82	334	8	0.24	50	299	5	<5	21	0.04	<10	46	1277	5	51	<10	5	83
161348	1003357	0.014	<1	2.40	<2	55	148	<2	18	2.04	18	76	54	441	6.24	0.84	20	1.09	906	27	0.10	84	433	10	<5	18	0.03	<10	34	2709	5	75	48	6	5940
161349	1003358	0.108	<1	2.76	<2	59	239	<2	16	1.35	<4	27	54	59	4.20	1.31	26	1.34	766	16	0.17	45	809	6	<5	23	0.03	<10	42	3774	9	93	<10	6	209
161350	1003359	0.025	<1	3.25	<2	58	70	<2	15	1.27	<4	15	23	13	3.12	1.44	25	1.26	592	11	0.29	27	853	5	<5	18	0.05	<10	59	2308	6	58	<10	3	130
161351	1003360	0.048	<1	1.64	<2	56	64	<2	<1	0.96	<4	13	45	25	2.05	0.90	21	0.98	397	7	0.11	35	1145	4	<5	25	0.04	<10	37	1750	7	39	<10	4	88
161352D	1003360	0.008	<1	1.78	<2	58	70	<2	<1	1.02	<4	15	49	28	2.23	0.98	22	1.06	431	9	0.12	40	1244	4	<5	18	0.04	<10	39	1869	5	42	<10	5	98
161353	1003361	<0.005	<1	1.73	<2	49	265	<2	<1	0.69	<4	14	30	20	2.67	1.08	25	1.02	555	12	0.12	26	1156	<1	<5	18	0.02	<10	37	2100	4	55	<10	7	102
161354	1003362	0.011	<1	1.98	<2	51	33	<2	<1	1.59	<4	13	53	69	1.67	0.16	10	0.78	266	6	0.21	39	278	<1	<5	23	0.02	<10	48	1074	4	44	<10	3	60
161355	1003363	0.014	<1	2.13	<2	48	3	<2	3	1.73	<4	14	45	77	1.58	0.04	8	0.71	230	6	0.20	46	285	4	<5	19	0.02	<10	47	692	6	39	<10	3	63
161356	1003364	0.070	1	1.80	<2	51	75	<2	8	1.13	16	49	45	417	5.98	0.37	17	0.76	519	23	0.09	75	332	11	<5	7	0.01	<10	22	1709	8	54	51	6	6923
161357	1003365	0.020	<1	3.01	<2	53	62	<2	<1	3.59	<4	22	45	67	2.78	0.14	10	0.67	616	10	0.22	45	636	5	<5	17	0.05	<10	66	2679	3	76	<10	9	126
161358	1003366	<0.005	<1	1.57	<2	53	13	<2	<1	2.06	<4	20	38	59	2.07	0.05	4	0.46	394	9	0.19	42	609	<1	<5	19	0.03	<10	31	3499	6	62	<10	8	67
161359	1003367	<0.005	<1	1.04	<2	51	7	<2	<1	2.81	<4	18	46	70	2.42	0.03	6	0.66	496	9	0.18	35	635	<1	<5	26	0.04	<10	12	2551	6	79	<10	12	82
161360	1003368	<0.005	<1	0.95	<2	58	3	<2	<1	1.85	<4	26	42	129	2.58	0.03	9	0.63	348	9	0.16	43	598	<1	<5	21	0.04	<10	14	2195	7	72	<10	9	79
161361	1003369	<0.005	<1	0.81	<2	57	6	<2	<1	1.39	<4	24	43	73	2.55	0.05	6	0.61	507	9	0.16	45	714	5	<5	19	0.03	<10	5	2696	4	73	<10	10	94

PROCEDURE CODES: ALP1, ALFA1, ALAR1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Certified By: Hason Moore, General Manager

-1201-07/18/2011 2:35 PM

 1046 Gorham Street
 Tel: (807) 626-1630

 Thunder Bay, ON
 Fax: (807) 622-7571

 Canada P7B 5X5
 Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Monday, July 18, 2011

Certificate of Analysis

Suite 100 Toronto, Ph#: (416	Resources 10 15 Toronto On, CAN 6) 864-1443 raham@renc		es.com	ı, bwma	ackie@c	cogeco.	са																		ate Cor Ref	npleted		2011							
Acc #	Client ID	Au ppm	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
161362	1003370	<0.005	<1	0.82	<2	57	4	<2	<1	2.12	<4	37	43	121	3.32	0.05	4	0.47	734	12	0.13	63	685	5	<5	19	0.03	<10	12	3650	3	73	<10	10	113
161363D	1003370	<0.005	<1	0.75	<2	53	4	<2	<1	1.96	<4	35	40	116	3.10	0.05	4	0.43	681	11	0.12	60	650	<1	<5	16	0.02	<10	11	3361	4	67	<10	9	108
161364	1003371	<0.005	<1	1.15	<2	52	85	<2	<1	1.21	<4	25	48	58	3.04	0.51	18	0.97	536	10	0.13	40	638	<1	<5	21	0.02	<10	5	3325	6	83	<10	9	84
161365	1003372	0.005	<1	0.74	<2	53	57	<2	<1	0.87	<4	22	108	63	2.21	0.39	38	0.78	219	9	0.07	43	1625	4	<5	15	0.02	<10	35	1902	5	47	<10	9	67
161366	1003373	0.006	4	0.94	<2	50	8	<2	2	1.35	<4	22	37	6571	4.59	0.09	9	0.61	416	18	0.05	59	577	4	<5	12	0.02	<10	10	2530	5	48	<10	4	423
161367	1003374	<0.005	<1	1.19	<2	50	16	<2	3	1.02	4	29	42	533	3.86	0.16	22	0.87	457	14	0.04	53	503	5	<5	22	0.03	<10	10	2290	5	50	10	4	1182
161368	1003375	<0.005	<1	1.06	<2	53	84	<2	<1	0.48	<4	7	21	20	1.73	0.64	18	0.52	323	7	0.08	22	366	1	<5	21	0.01	<10	13	1434	6	24	<10	4	100
161369	1003376	0.010	<1	0.95	<2	53	61	<2	<1	1.64	<4	15	24	140	2.76	0.55	14	0.55	437	18	0.08	35	328	6	<5	22	<0.01	<10	20	1012	5	23	<10	4	544
161370	1003377	0.008	<1	1.30	<2	60	80	<2	1	0.56	<4	9	24	65	2.27	0.77	19	0.66	395	13	0.11	29	621	6	<5	21	0.02	<10	21	1678	6	33	<10	6	130
161371	1003378	0.013	<1	1.23	<2	65	35	<2	<1	1.45	<4	20	19	137	2.54	0.41	14	0.54	293	45	0.09	32	532	2	<5	18	0.02	<10	23	1053	7	22	<10	4	129
161372	1003379	0.010	<1	1.19	<2	53	72	<2	<1	0.51	<4	8	26	47	2.73	0.67	18	0.59	308	12	0.12	42	500	<1	<5	25	0.03	<10	23	1368	3	28	<10	4	112
161373	1003380	0.059	<1	1.43	88	55	95	<2	7	0.96	<4	13	29	151	2.24	0.75	16	0.62	405	9	0.14	92	447	18	<5	21	0.02	<10	23	1589	5	32	<10	5	241
161374D	1003380	0.090	<1	1.41	<2	57	90	<2	<1	0.77	<4	8	23	20	2.01	0.73	15	0.57	379	9	0.14	21	408	5	<5	20	0.01	<10	21	1615	5	29	<10	4	232
161375	1003381	0.096	2	0.83	2	49	15	2	5	0.58	16	57	36	799	8.27	0.28	10	0.54	310	33	0.07	87	310	32	<5	9	<0.01	<10	10	802	5	31	42	4	4827
161376	1003382	0.009	<1	2.17	<2	55	8	<2	<1	2.33	<4	21	46	67	2.87	0.09	7	0.74	505	10	0.20	40	589	1	<5	19	0.02	<10	38	3285	7	78	<10	10	111
161377	1003383	<0.005	<1	2.24	<2	52	45	<2	2	2.41	<4	27	68	71	3.85	0.22	18	1.08	637	16	0.14	74	604	2	<5	19	0.04	<10	15	3851	3	93	<10	11	179
161378	1003384	0.008	1	1.18	<2	55	9	<2	9	1.09	8	64	30	391	5.91	0.22	10	0.32	347	28	0.09	76	210	8	<5	14	0.02	<10	13	914	6	16	13	7	1429
161379	1003385	<0.005	<1	0.89	<2	59	3	<2	1	2.31	<4	47	37	266	3.68	0.06	2	0.18	257	33	0.03	83	242	11	<5	21	0.04	<10	11	2416	14	39	<10	3	202

PROCEDURE CODES: ALP1, ALFA1, ALAR1

Certified By: Jeson Moore, General Manager

 1046 Gorham Street
 Tel: (807) 626-1630

 Thunder Bay, ON
 Fax: (807) 622-7571

 Canada P7B 5X5
 Fax: (807) 622-7571

30 www.accurassay.com 71 assay@accurassay.com

Tuesday, July 19, 2011

Rencore Resources Suite 1000 15 Toronto Street Toronto, On, CAN **Certificate of Analysis**

Date Received: 07/04/2011 Date Completed: 07/18/2011 Job #: 201142482 Reference: Sample #: 16

Ph#: (416) 864-1443 Email: dgraham@rencoreresources.com, bwmackie@cogeco.ca

Acc #	Client ID	Au ppm	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
163577	1003385																	N	S																
163578	1003386	0.014	1	0.88	<2	58	85	3	5	0.35	4	7	179	1	1.81	0.56	<1	0.57	622	<1	0.34	10	497	5	<5	6	0.04	<10	141	1179	22	20	<10	5	304
163579	1003387	0.022	<1	0.42	<2	40	4	3	<1	1.21	<4	18	127	132	1.03	<0.01	<1	0.52	199	<1	0.08	37	330	3	<5	13	0.05	<10	218	3957	<2	33	<10	6	101
163580	1003388	0.011	<1	1.16	<2	40	183	11	<1	1.81	7	27	205	156	3.71	0.25	<1	1.46	475	46	0.48	57	307	6	5	8	0.10	<10	403	4012	10	78	<10	7	89
163581	1003389	0.014	<1	1.12	<2	36	20	9	<1	1.86	6	32	35	103	3.33	0.06	<1	0.84	519	18	0.30	28	524	6	5	5	0.07	<10	440	4028	19	84	<10	8	58
163582	1003390	0.013	<1	1.43	<2	40	54	13	<1	1.73	7	33	33	166	4.13	0.15	<1	1.18	614	38	0.47	37	549	5	7	5	0.09	<10	475	2481	17	92	<10	7	56
163583	1003391	0.013	<1	1.72	<2	38	112	9	3	0.98	5	29	293	4	3.20	0.69	<1	1.92	381	56	0.47	102	569	<1	<5	6	0.08	<10	295	2617	15	59	<10	4	52
163584	1003392	0.014	<1	2.17	<2	44	120	27	13	1.98	18	37	158	118	6.67	0.32	<1	1.33	643	65	0.61	24	889	15	6	9	0.09	<10	731	1859	14	74	<10	11	703
163585	1003393	0.011	<1	1.96	<2	39	9	10	2	1.80	6	24	87	50	3.97	0.06	<1	1.36	439	37	0.32	23	747	2	6	9	0.08	<10	401	2109	17	95	<10	11	75
163586	1003394	0.013	<1	2.20	<2	39	7	5	2	2.07	4	17	109	27	2.50	0.06	<1	1.18	354	30	0.30	24	404	<1	<5	7	0.08	<10	221	1498	12	59	<10	6	37
163587D	1003394	0.015	<1	2.16	<2	39	7	8	<1	2.06	4	16	112	31	2.48	0.06	<1	1.17	370	26	0.30	26	402	3	6	11	0.09	<10	296	1445	8	55	<10	6	32
163588	1003395	0.009	1	1.41	<2	41	6	9	4	1.89	5	21	275	249	3.31	0.02	<1	0.76	499	48	0.21	34	465	<1	<5	9	0.07	<10	323	1126	9	43	<10	5	34
163589	1003396	0.009	<1	1.56	<2	34	6	5	6	1.58	4	15	94	8	2.35	0.08	<1	1.12	356	23	0.28	24	344	1	11	8	0.08	<10	277	1304	23	59	<10	6	66
163590	1003397	0.017	<1	2.30	<2	37	11	6	4	2.16	5	24	128	76	2.94	0.07	<1	1.18	477	29	0.20	59	302	<1	5	11	0.06	<10	255	1791	25	51	<10	6	162
163591	1003398	0.008	<1	1.62	<2	42	48	12	3	1.03	9	17	230	205	3.96	0.13	<1	0.96	445	30	0.31	33	438	11	5	9	0.05	<10	387	1392	14	39	<10	5	1241
163592	1003399	0.007	1	2.16	<2	41	20	7	<1	1.12	5	25	131	<1	3.30	0.18	<1	2.18	432	58	0.18	39	259	<1	<5	7	0.07	<10	393	2081	33	73	<10	3	59
163593	1003400	0.008	<1	1.83	<2	40	139	6	1	1.57	5	19	216	1	3.00	0.27	<1	1.28	502	29	0.41	15	767	<1	7	8	0.07	<10	215	2259	9	67	<10	7	42

PROCEDURE CODES: ALP1, ALFA1, ALAR1

Certified By: Jeson Moore, General Manager

1046 Gorham Street Tel: Thunder Bay, ON Fax Canada P7B 5X5

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Friday, July 22, 2011

Certificate of Analysis

Suite 10 Toronto Ph#: (41	e Resources 00 15 Toront , On, CAN 6) 864-1443 graham@ren		rces.com	ı, bwma	ckie@d	cogeco	o.ca																			Refe		07/19/ 20114	/2011								
Acc #	Client ID	Au ppm	Pt ppm	Pd ppm	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
164312	1003401	<0.005	<0.015	0.035	<1	0.11	<2	47	<1	<2	2	0.28	4	126	475	246	7.73	<0.01	<1	>10.00	742	<1	0.01	2116	<100	6	<5	11	0.07	<10	6	<100	9	6	11	<2	19
164313	1003402	<0.005	<0.015	0.033	<1	0.09	<2	45	<1	<2	<1	0.27	5	156	472	158	7.13	<0.01	<1	>10.00	831	<1	<0.01	2406	<100	8	<5	<5	0.07	<10	6	<100	13	5	10	<2	25
164314	1003403	<0.005	<0.015	0.034	1	0.13	<2	53	<1	<2	<1	0.16	5	148	608	134	6.93	<0.01	<1	>10.00	813	<1	0.01	2358	<100	9	<5	<5	0.07	<10	5	107	6	7	10	<2	31
164315	1003404	<0.005	0.044	0.039	1	0.21	<2	51	<1	<2	<1	0.31	5	166	678	144	6.93	<0.01	<1	>10.00	812	<1	0.01	2538	<100	6	<5	<5	0.07	<10	6	124	7	9	10	2	39
164316	1003405	<0.005	<0.015	0.049	1	0.16	<2	48	<1	<2	<1	0.25	5	155	675	125	6.62	<0.01	<1	>10.00	774	<1	0.01	2505	<100	7	<5	7	0.07	<10	6	105	10	8	10	<2	26
164317	1003406	<0.005	<0.015	0.044	1	0.14	<2	48	<1	<2	<1	0.25	5	133	525	147	6.60	<0.01	<1	>10.00	804	<1	0.01	2384	<100	7	<5	<5	0.07	<10	6	<100	12	6	11	<2	31
164318	1003407	<0.005	<0.015	0.057	<1	0.11	<2	52	<1	<2	<1	0.14	5	157	544	115	6.63	<0.01	<1	>10.00	770	<1	0.01	2763	<100	4	<5	6	0.07	<10	5	<100	10	6	11	<2	17
164319	1003408	<0.005	<0.015	0.058	<1	0.13	<2	53	<1	<2	<1	0.22	5	151	558	144	6.53	<0.01	<1	>10.00	787	<1	0.01	2781	<100	2	<5	6	0.07	<10	6	<100	13	6	11	<2	23
164320	1003409	<0.005	<0.015	0.057	1	0.13	<2	51	<1	<2	<1	0.16	4	181	561	107	6.45	<0.01	<1	>10.00	788	<1	0.01	3180	<100	6	<5	8	0.06	<10	5	<100	7	6	11	<2	18
164321	1003410	0.006	<0.015	0.041	1	0.12	<2	50	<1	<2	<1	0.20	4	189	554	135	6.98	<0.01	<1	>10.00	793	<1	0.01	3422	<100	9	<5	<5	0.07	<10	6	<100	4	6	11	<2	20
164322D	1003410	0.006	<0.015	0.039	1	0.11	<2	50	<1	<2	<1	0.20	5	181	508	130	6.70	<0.01	<1	>10.00	763	<1	<0.01	3258	<100	5	<5	8	0.07	<10	5	<100	11	6	11	<2	18
164323	1003411	< 0.005	<0.015	0.042	1	0.11	<2	49	<1	<2	1	0.23	5	142	512	106	6.56	<0.01	<1	>10.00	796	<1	0.01	2677	<100	2	<5	5	0.07	<10	6	<100	/	6	10	<2	21
164324 164325	1003412 1003413	0.010 <0.005	<0.015 <0.015	0.019 0.034	1	0.09 0.11	<2 <2	47 49	<1 <1	<2 <2	<1 <1	0.64 0.28	4	122 114	497 552	96 84	6.73 6.15	<0.01 <0.01	<1 <1	>10.00 >10.00	848 788	<1 <1	<0.01 0.01	2307 2714	<100 <100	5 6	<5 <5	<5 <5	0.06 0.07	<10 <10	8 6	<100 <100	8 11	5	12 10	<2 <2	65 22
164326	1003413	0.007	0.037	0.034	<1	0.11	<2	49 55	<1	<2	<1	0.20	4	109	654	141	6.16	<0.01	<1	>10.00	780	<1	0.01	2493	<100	10	<5	<5	0.07	<10	6	<100	16	7	10	<2	18
164327	1003415	< 0.007	<0.007	0.027	1	0.14	<2	54	<1	<2	<1	0.43	4	103	653	163	6.23	<0.01	<1	>10.00	821	<1	0.01	2433	<100	12	<5	9	0.00	<10	7	<100	14	6	10	<2	17
164328	1003416	0.022	<0.015	0.020	1	0.13	<2	54	<1	<2	2	0.43	4	125	683	147	6.27	<0.01	<1	>10.00	764	<1	0.01	2358	<100	13	<5	6	0.06	<10	6	<100	15	6	12	<2	14
164329	1003417	0.187	<0.015	0.031	1	0.13	<2	50	<1	<2	<1	0.22	4	136	677	115	6.42	<0.01	<1	>10.00	803	<1	0.01	2393	<100	6	<5	10	0.07	<10	6	<100	8	6	10	<2	21
164330	1003418	0.007	<0.015	0.025	1	0.12	<2	54	<1	<2	<1	0.19	4	136	627	139	6.38	<0.01	<1	>10.00	777	<1	0.01	2347	<100	7	<5	9	0.07	<10	6	103	6	7	11	<2	14
164331	1003419	0.021	<0.015	0.030	1	0.11	<2	54	<1	<2	<1	0.51	4	125	693	123	6.00	<0.01	<1	>10.00	811	<1	0.01	2042	<100	4	<5	9	0.06	<10	8	<100	9	6	10	<2	37

PROCEDURE CODES: ALP1, ALPG1, ALAR1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Certified By: Ason Moore, General Manager

 1046 Gorham Street
 Tel: (807) 626-1630

 Thunder Bay, ON
 Fax: (807) 622-7571

 Canada P7B 5X5
 Fax: (807) 622-7571

30 www.accurassay.com 71 assay@accurassay.com

Friday, July 22, 2011

Certificate of Analysis

Suite 100 Toronto, Ph#: (41	Resources 00 15 Toront On, CAN 6) 864-1443 graham@ren		rces.com	n, bwmao	ckie@c	cogeco	.ca																			Refe		07/19 20114	/2011								
Acc #	ppm ppm ppm ppm 9 pm 9 pm 9 pm 9 pm 9 p														K %	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm			
164332	1003420	0.095	<0.015	0.039	1	0.10	<2	55	<1	<2	<1	0.38	5	154	546	152	6.56	<0.01	<1	>10.00	767	<1	0.01	1872	<100	6	<5	<5	0.06	<10	7	<100	6	6	12	<2	189
164333D	1003420	0.008	<0.015	0.044	1	0.10	<2	54	<1	<2	<1	0.38	4	153	575	152	6.57	<0.01	<1	>10.00	766	<1	0.01	1857	<100	5	<5	9	0.06	<10	7	<100	9	7	12	<2	77
164334	1003421	0.009	<0.015	0.035	1	0.10	<2	50	<1	<2	<1	0.17	4	193	551	391	7.20	<0.01	<1	>10.00	749	<1	0.01	2949	<100	7	<5	7	0.07	<10	6	<100	5	7	11	<2	31
164335	1003422	<0.005	<0.015	0.043	1	0.10	<2	50	<1	<2	<1	0.14	4	226	566	232	6.76	<0.01	<1	>10.00	760	<1	0.01	3135	<100	10	<5	5	0.07	<10	5	<100	9	7	12	<2	95
164336	1003423	<0.005	<0.015	0.029	1	0.10	<2	55	<1	<2	<1	0.17	5	199	535	450	6.85	<0.01	<1	>10.00	753	<1	0.01	2478	<100	6	<5	6	0.07	<10	6	<100	9	7	12	<2	43
164337	1003424	<0.005	<0.015	0.039	1	0.11	<2	53	<1	<2	<1	0.08	5	211	568	464	6.70	<0.01	<1	>10.00	734	<1	0.01	1980	<100	10	<5	<5	0.08	<10	5	<100	7	7	11	<2	28
164338	1003425	<0.005	<0.015	0.025	1	0.11	<2	54	<1	<2	<1	0.08	5	211	529	575	6.71	<0.01	<1	>10.00	739	<1	0.01	4206	<100	8	<5	9	0.07	<10	5	<100	9	6	10	<2	18
164339	1003426	0.013	<0.015	0.368	1	0.12	<2	55	<1	<2	<1	0.17	5	202	557	747	6.63	<0.01	<1	>10.00	742	<1	0.01	8907	<100	7	<5	15	0.07	<10	6	<100	15	7	10	<2	22
164340	1003427	<0.005	0.222	0.363	<1	0.12	<2	54	<1	<2	<1	0.39	4	162	515	41	5.83	<0.01	<1	>10.00	745	<1	0.01	4266	<100	8	<5	6	0.06	<10	8	107	12	6	11	<2	20
164341	1003428	<0.005	0.193	0.126	<1	0.11	<2	54	<1	<2	<1	0.62	4	114	408	3	5.53	<0.01	<1	>10.00	788	2	0.01	2232	<100	6	<5	6	0.05	<10	9	113	13	5	10	<2	16
164342	1003429	<0.005	0.018	<0.01	1	0.11	<2	53	<1	<2	<1	0.17	4	126	477	<1	5.57	<0.01	<1	>10.00	698	<1	0.01	2334	<100	4	<5	7	0.06	<10	6	115	9	5	12	<2	18
164343	1003430	<0.005	<0.015	0.010	<1	0.10	<2	48	<1	<2	<1	0.30	4	113	433	<1	5.41	<0.01	<1	>10.00	677	<1	0.01	2178	<100	3	<5	6	0.06	<10	7	<100	16	4	12	<2	16
164344D	1003430	<0.005	<0.015	<0.01	1	0.11	<2	47	<1	<2	<1	0.31	4	116	480	<1	5.62	<0.01	<1	>10.00	703	<1	0.01	2266	<100	8	5	7	0.07	<10	7	<100	5	5	10	<2	17
164345	1003431	<0.005	<0.015	0.025	1	0.12	<2	52	<1	<2	1	0.16	4	106	541	<1	5.53	<0.01	<1	>10.00	677	<1	0.01	2434	<100	3	<5	5	0.06	<10	6	<100	8	4	10	<2	20
164346	1003432	0.013	<0.015	0.429	1	0.14	<2	52	<1	<2	2	0.08	4	108	595	<1	5.48	<0.01	<1	>10.00	637	<1	0.02	2449	<100	4	<5	11	0.09	<10	7	<100	8	5	11	<2	18

PROCEDURE CODES: ALP1, ALPG1, ALAR1

Certified By: Jeson Moore, General Manager

Monday, July 18, 2011

Certificate of Analysis

Rencore Resources Suite 1000 15 Toronto Street Toronto, On, CAN

Ph#: (416) 864-1443

Email: dgraham@rencoreresources.com, bwmackie@cogeco.ca

Date Received: 07/04/2011 Date Completed: 07/18/2011 Job #: 201142482 Reference: Sample #: 16

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
163577	1003385	No Sample Received		
163578	1003386	14	<0.001	0.014
163579	1003387	22	<0.001	0.022
163580	1003388	11	<0.001	0.011
163581	1003389	14	<0.001	0.014
163582	1003390	13	<0.001	0.013
163583	1003391	13	<0.001	0.013
163584	1003392	14	<0.001	0.014
163585	1003393	11	<0.001	0.011
163586	1003394	13	<0.001	0.013
163587 Dup	o 1003394	15	<0.001	0.015
163588	1003395	9	<0.001	0.009
163589	1003396	9	<0.001	0.009
163590	1003397	17	<0.001	0.017
163591	1003398	8	<0.001	0.008
163592	1003399	7	<0.001	0.007
163593	1003400	8	<0.001	0.008

PROCEDURE CODES: ALP1, ALFA1, ALAR1

Certified By: Derivative H.B.Sc., Laboratory Manager

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Tuesday, July 19, 2011

Certificate of Analysis

Rencore Resources Suite 1000 15 Toronto Street Toronto, On, CAN

Ph#: (416) 864-1443

Email: dgraham@rencoreresources.com, bwmackie@cogeco.ca

Date Received: 07/05/2011 Date Completed: 07/19/2011 Job #: 201142492 Reference: Sample #: 32

Acc #	Client ID	Au ppb	Pt ppb	Pd ppb	
164312	1003401	<5	<15	35	
164313	1003402	<5	<15	33	
164314	1003403	<5	<15	34	
164315	1003404	<5	44	39	
164316	1003405	<5	<15	49	
164317	1003406	<5	<15	44	
164318	1003407	<5	<15	57	
164319	1003408	<5	<15	58	
164320	1003409	<5	<15	57	
164321	1003410	6	<15	41	
164322 Dup	1003410	6	<15	39	
164323	1003411	<5	<15	42	
164324	1003412	10	<15	19	
164325	1003413	<5	<15	34	
164326	1003414	7	37	27	
164327	1003415	<5	<15	28	
164328	1003416	22	<15	28	
164329	1003417	187	<15	31	
164330	1003418	7	<15	25	
164331	1003419	21	<15	30	
164332	1003420	95	<15	39	
164333 Dup	1003420	8	<15	44	
164334	1003421	9	<15	35	
164335	1003422	<5	<15	43	
164336	1003423	<5	<15	29	
164337	1003424	<5	<15	39	
164338	1003425	<5	<15	25	
164339	1003426	13	<15	368	
164340	1003427	<5	222	363	
164341	1003428	<5	193	126	

PROCEDURE CODES: ALP1, ALPG1, ALAR1

Certified By: Derek Demianiuk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory Rh ppb

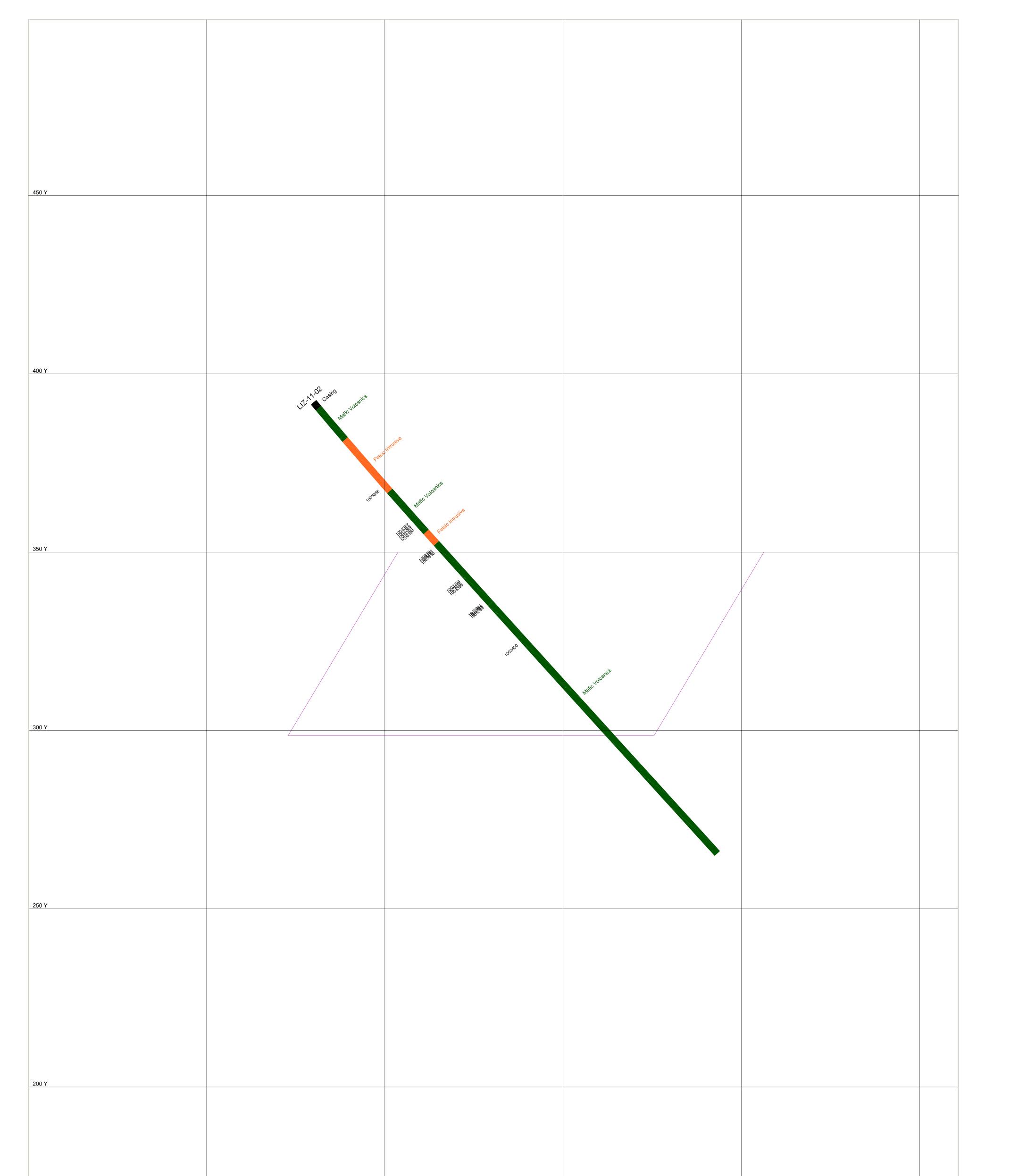
1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

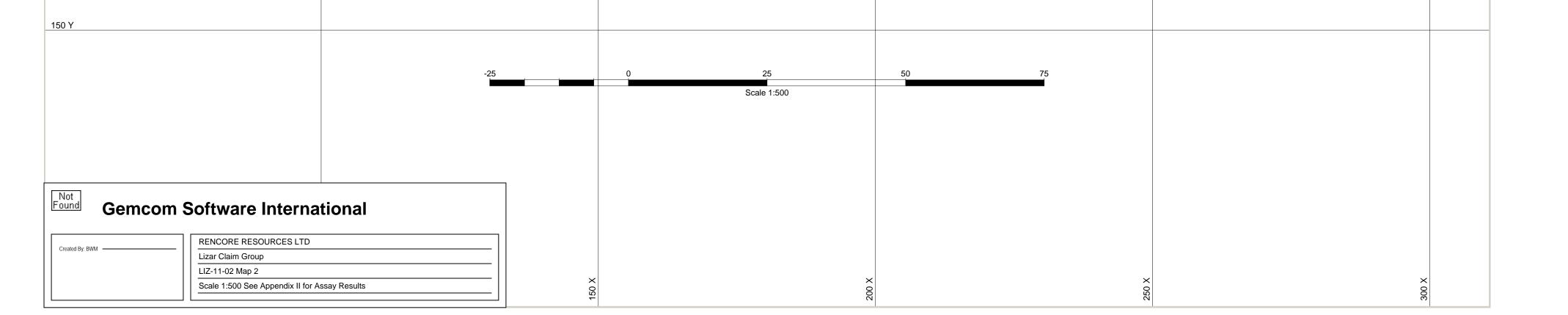
Tuesday, July 19, 2011

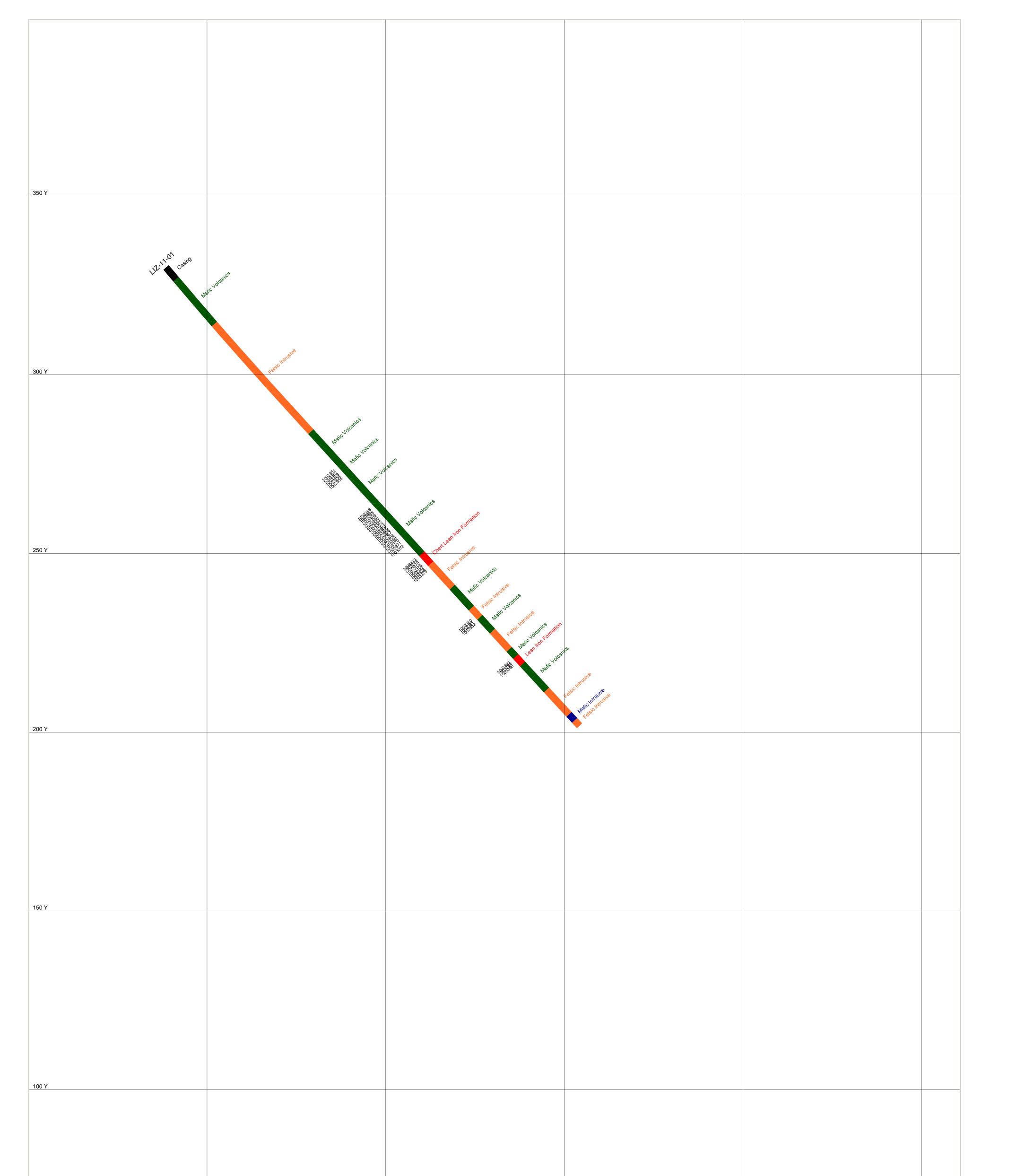
Certificate of Analysis

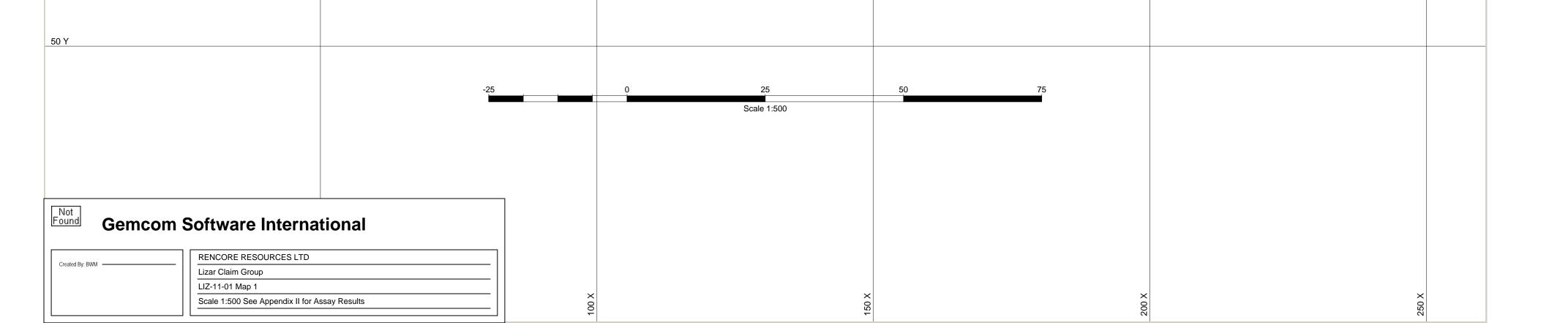
Rencore Resources Suite 1000 15 Toronto Street Toronto, On, CAN

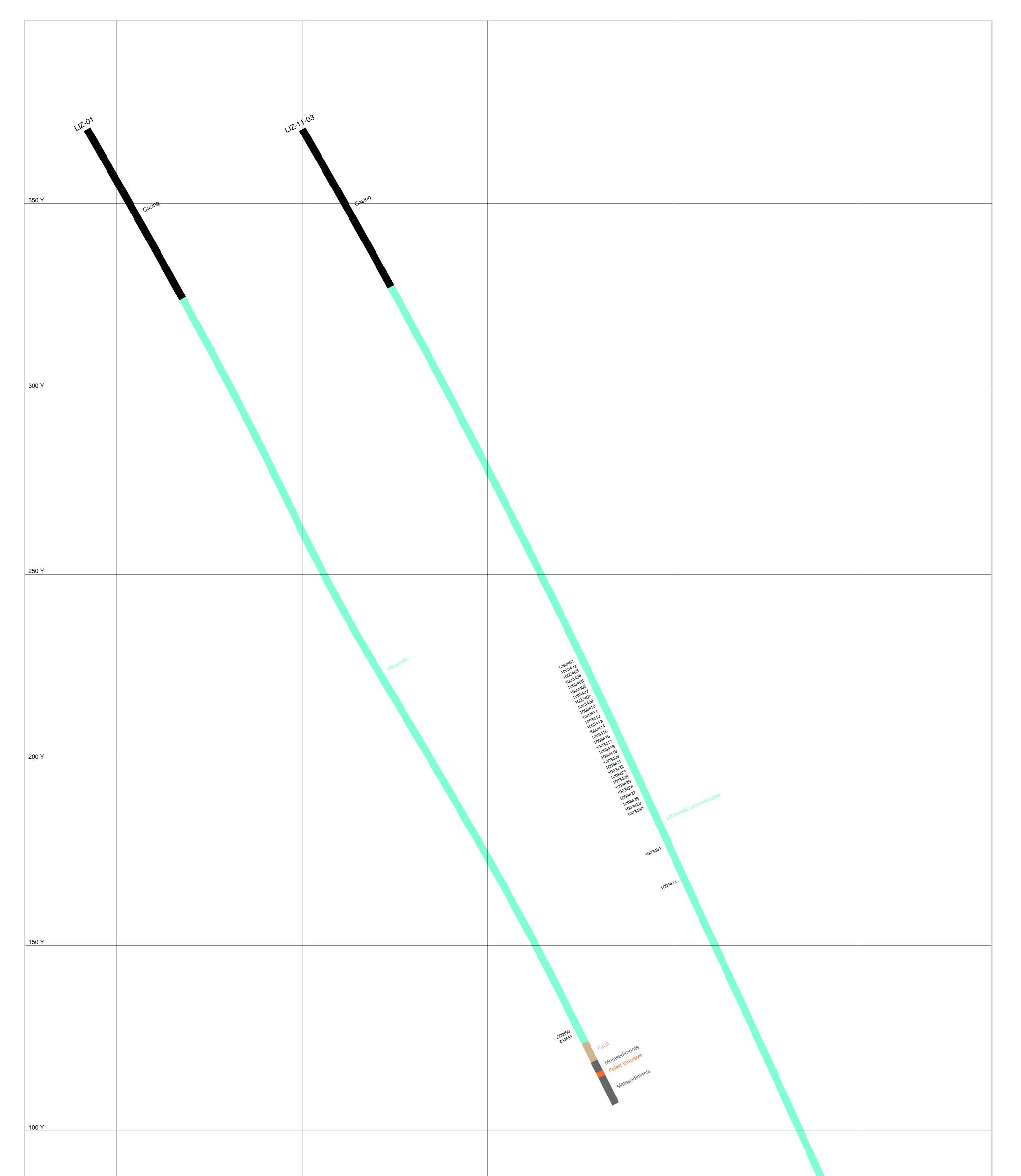
Ph#: (416) 864-1443


Email: dgraham@rencoreresources.com, bwmackie@cogeco.ca


Date Received: 07/05/2011 Date Completed: 07/19/2011 Job #: 201142492 Reference: Sample #: 32


Acc #	Client ID	Au ppb	Pt ppb	Pd ppb	Rh ppb
164342	1003429	<5	18	<10	
164343	1003430	<5	<15	10	
164344 Dup	1003430	<5	<15	<10	
164345	1003431	<5	<15	25	
164346	1003432	13	<15	429	


PROCEDURE CODES: ALP1, ALPG1, ALAR1


Certified By: Derek Demianiuk H.Bsc., Laboratory Manager

