

2.49431

Line Cutting, Mapping and Drill Report on the Northwest and Southeast Iron Zones: Bending Lake Property

Bending Lake Iron Group Ltd.

Allen J. Raoul, P.Geo. Field Geologist August 31, 2011

TABLE OF CONTENTS

Summary		pg 3	
Introduction		pg 5	
Location and	Access	pg 5	
History		pg 7	
Geology		pg 9	
	Winter 2009/10 and Summer 2010	pg 11	
-	1apping Fall 2010	pg 12	
	amond Drilling	pg 20	
2011 Diamoi	•	pg 22	
	ts From 2011 Diamond Drilling	pg 22	
	oles Summaries	pg 26	
2011 Reflex		pg 30 pg 31	
Conclusions			
Recommend	lations	pg 32	
References		pg 34	
Budget	(Audhau	pg 35	
Certificate of	Author	pg 37	
<u>Tables</u>			
Table 1:	Assessment Files covering the Bending Lake Area	pg 7	
Table 2:	Geological Units from 2010 Mapping	pg 12	
Table 3A:	Historical Drilling of Bending Lake Iron Deposit	pg 20	
Table 3B:	Historical Technical Drilling of Bending Lake Iron Deposit	pg 20	
Table 3C:	Historical Drilling of Other Mineral Commodities	pg 20	
Table 4A:	2011 Drill Targets	pg 22	
Table 4B:	Locations of Northwest Iron Drilling	pg 22	
Table 4C:	Locations of Southeast Iron Drilling	pg 23	

- Locations of Southeast Iron Drilling Table 4C: Table 5: Drill Results for Precious and Base Metals
- pg 24 Lithology comparison of Fladgate vs. Bending Lake staff Table 6: pg 29 Proposed Drill Costs Table 7: pg 33

Figures

Figure 1:	Bending Lake Claim & Patent Status	pg 6
Figure 2:	Bending Lake Geology 2010	pg 10
Figure 3:	Index for 2009 prospecting and 2010 Mapping	pg 14
Figure 3A:	Northwest Iron Zone – grid 1	pg 15
Figure 3B:	Northwest Iron Zone – grid 2	pg 16
Figure 3C:	Northwest Iron Zone – grid 3	pg 17
Figure 3D:	Southeast Iron Zone	pg 18
Figure 4:	Algoma Mag Survey 1977 with NW-SE drilling	pg 19
Figure 5:	Drill Hole Location Map	pg 21

Appendices

Appendix A Outcrop Locations and Descriptions - Fall 2010

- Appendix B Detail mapping of Northwest Zone at 1:2000 (4 sheets)
- Appendix C 2011 Drill Cross Sections BL11-01 to BL11-08

Appendix D Accurassay Laboratories Assay Certificates

SUMMARY

The Bending Lake area was worked intermittently from 1954 to 1977 and the Bending Lake Iron Ore Deposit was located during this period. Based upon a February 2009 review by Behre Dolbear Ltd, a historical resource of 245.5 Million tonnes of 25.08% Fe exists on the property however, this review does not meet current NI43-101 Measured Resource standards. From 2002 to 2009, preliminary work by prospectors, other industry, government and Bending Lake Iron Group staff revealed an additional thirty-two mineral showings of iron, gold, copper and zinc mineralization occur on and around the Bending Lake property.

The Bending Lake property consists of 49 patents held by Bending Lake Iron Group Limited (BLIG), 10 patents held by the associated 1584859 Ontario Inc. and 52 mining claims held by the associated Windigo Ridge Resources Inc. on the main claim block and an additional 32 claims to the northeast. The main block of the property is located in the Bending Lake area on Ontario highway 622, approximately 25km south on the junction with the Highway 17, or 32km southwest of the town of Ignace.

The Bending Lake Iron Deposit comprises 2km section from a 14km long, magnetite-bearing, iron formation. The Bending Lake Iron Group Ltd is interested in investigating the potential of this iron formation for more resource potential and any other commodities (Au-Ag-Cu-Ni-Zn) that may be present. Two areas were drill investigated from March 24 to May 16, 2011:

- 1) the Northwest Iron Zone
- 2) the Southeast Iron Zone.

From December 2009 through March 2010, a line-cutting program was undertaken on the Northwest Iron Zone for the purposes of geological mapping and eventual geophysical surveys. This program was supplemented during August through October of 2010 with additional lines added for the same purposes. From August through October of 2010, this author preformed geological mapping at 1:1000 on the Northwest Iron Zone from Highway 622 eastward for 3000m (from L132.5E to L230E). In 2011, a drilling program was undertaken on this zone that produced 1,639m of core from five holes.

Two results obtained from the 2011 drilling of the Northwest Iron Zone were:

- 1. Effectively extends this zone for an additional 2200m from the pit area. The best hole was BL11-03, which intersected 29m of 39% Mgt, 27m of waste, 54m of 25% Mgt however, additional work is needed in order to define this area to current resource standards.
- Several alteration zones, silica or sulphides, were located and tested for precious metal, base metal, whole rock geochemistry, sulphur and rare earth elements. The best hole was BL11-05, which intersected 3 units (33m) of graphitic argillite +/silica alteration with pyrrhotite-pyrite but weak elevated Cu and anomalous Zn or elevated Ag values. Both of these zones are related to Volcanogenic Massive Sulphide deposits.

In 2011, the Southeast Iron Zone was located east of the potential pit area and extends east to the boundary of the Turtle River Park. Three drill holes totalling 672m were inserted at 300m intervals from the pit area. This operation extended this stringer zone for an additional 1200 m from the pit area, including Jalore's hole BL07-55. The best hole was BL11-07, which intersected located 88.85m of 44% Mgt however, additional work is required to define this area to current resource standards.

The intended purpose of the drill program was to identify significant widths of iron potential within the iron formation that can be eventually be used for a NI 43-101 technical report and compliant resource calculations. This program of core logging and sample preparation was carried out by Bending Lake Iron Group staff geologist's A. Raoul (PGeo) and consulting geologist J. Bolen (PGeo).

The drill logs were converted to the Fladgate Exploration Consulting Corporation core logging database for inclusion to their future resource calculations. Site visits were conducted by Fladgate Exploration Consulting Corporation manager J. Arnold (PGeo) and resource geologist S. Horan. These personnel confirm outlined the QA-QC procedure required to keep our sampling concurrent with future NI41-101 compliance.

INTRODUCTION

Bending Lake Iron Group Limited is currently evaluating the Northwest Iron Zone for additional iron potential to add to the known Bending Lake Iron Deposit. Line-cutting and geological mapping occurred from December of 2009 through October of 2010 for the purpose of assessing this magnetite-bearing unit. Using this data and the 1977 Algoma total magnetic survey, five diamond drill holes were drilled in 2011 to assess the iron potential of this section. The drill core was examined and tested for additional mineral potential was tested during this process.

Bending Lake Iron Group Limited is currently evaluating the Southeast Iron Zone for additional iron potential to add to the known Bending Lake Iron Deposit. Based upon 2009 mapping and the 1977 Algoma total magnetic survey, three diamond drill holes were drilled in 2011 for assessing the iron potential of this section.

Additional line-cutting and a new total magnetic survey is currently being planned for the entire property to produce additional drill targets, identify additional iron resources to the Bending Lake Iron Deposit and aid in pit design.

LOCATION AND ACCESS

The Bending Lake area is situated on Highway 622, 280km northwest of the City of Thunder Bay, Ontario or 32km southwest of the town of Ignace, Ontario. The outcropping of the iron formation is located 25km south of the Highway 17 & 622 intersection. This area is bisected by Highway 622 and is accessible by a well-maintained logging road and various trails.

Bending Lake Iron Group Ltd. has acquired 49 mining patents, and has obtained signed letters of understanding for the 10 patents of 1584859 Ontario Inc. and also for the 52 mining claims of Windigo Ridge Resources Inc. Recent additional staking is shown, without a claim identification number, in figure 1. These have been staked and recorded with the Ontario Ministry of Northern Development and Mines and Forestry in July 2010 however, processing by this government group has been tardy.

The claims and patents mentioned above total over >80 square kilometres over the main block of Bending Lake area. The work for this report covers only the two patent groups and the periphery of the mining claims of Windigo Ridge Resources.

The additional 32 claims of Windigo Ridge Resources to the northeast were not examined and will not be discussed in this report.

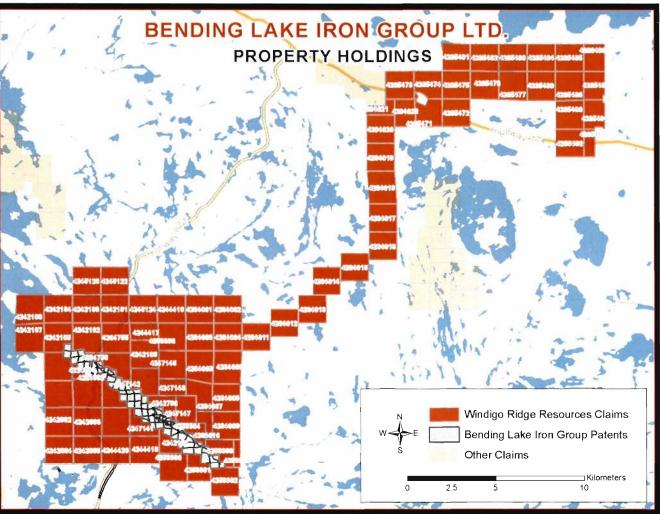


Figure 1: Bending Lake Claim & Patent Status (July 26, 2011)

HISTORY

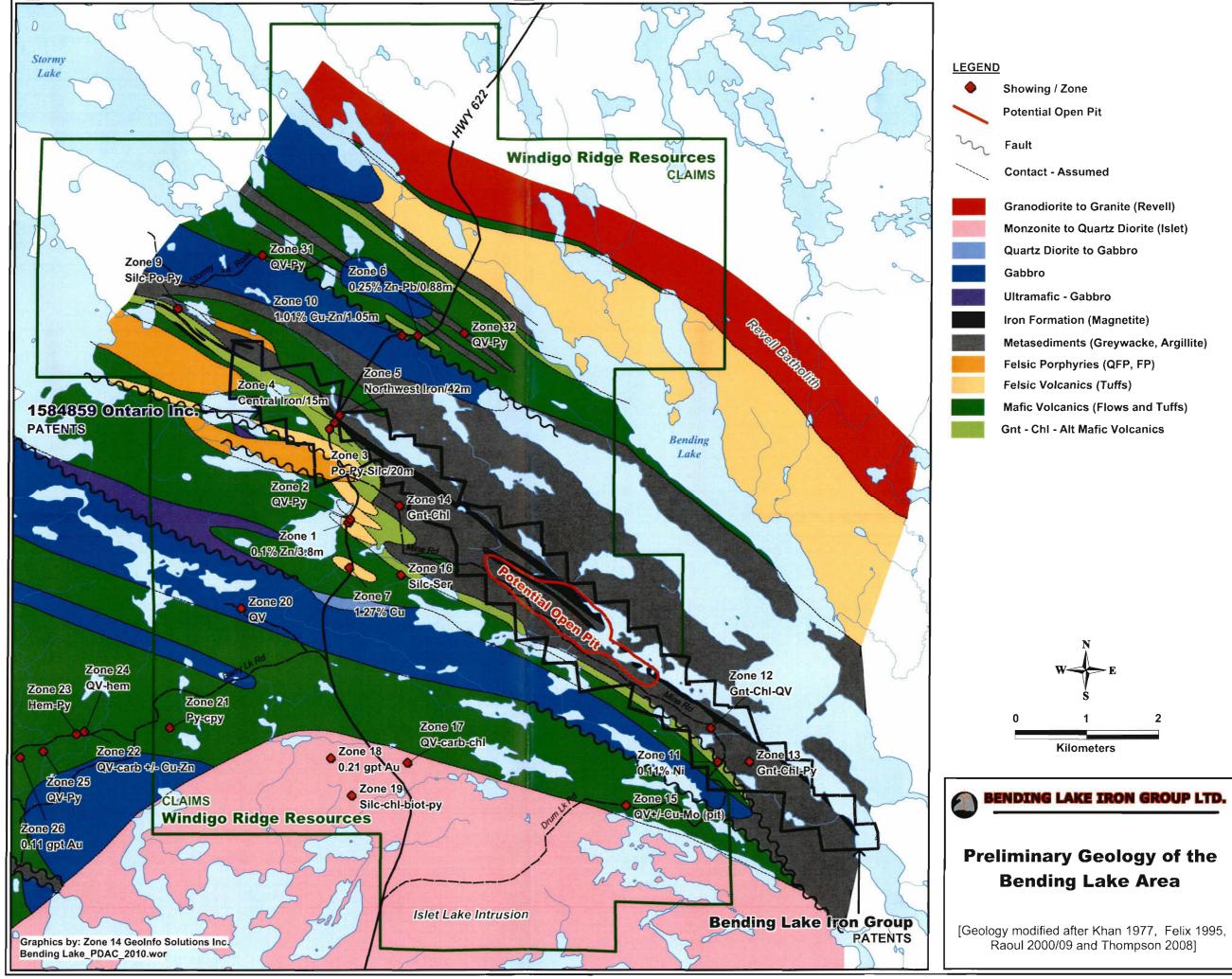
The following work has been carried out on the Bending Lake property:

File No.	Work	ling Lake Area (Kenora Assessment Files, OGS, 52F08SE) Results
52F08SE A-1	Geological Report with	Located Iron Formation with Thompson's 1933 mapping
Bending Lake Iron	map	(1":1/4 mi.) shows numerous magnetite bands (<1" to 36")
Formation		traced over 5.75 miles (9.2 km).
52F08SE B-1	SMDR (MDF)	Outline only of previous work.
Bending Lake		
Prospect		
52F08SE D-1	Geological, Drilling, Dip	Dip Needle Survey (Feb.1955) located NW-SE, 6 miles long
Jalore Mining Co.	Needle Survey	and separate into two pieces that are 300' apart that merge;
1954 -1956	(patented 1957)	the magnetic zone varies from 190' to 1530' wide in Geolog
		Report (Dec. 1955). 7 drill holes & 3 mini-bulk samples.
52F08SE E-1	Ground Magnetometer	Dip Needle survey (1": 200') from Sells patents to the east
Stratmat	Ŭ	as three separate anomalies; Anomaly A is >1800', Anomal
1957		B is >3000', Anomaly C is not plotted
52F08SE C-2	8 Drill holes (390m)	These 8 holes were drilled north of the above-mentioned
Canadian Nickel,	(EXT Winkie)	patents and along Bending Lake. No mineralization located
1971		and assays not given.
52F08SE C-1	1 Drill hole (52m)	Drilled 1 hole about 1200m north of the patents (Hwy) with
Canadian Nickel	(EXT Winkie)	disseminated Py +/- Cpy-Sph over 6.0m.
1973		
52F08SE	Geological, Sampling	Beard & Rivett visited the Algoma Steel site on March 2,
OGS Property		1977 with their geologist Mohammed Khan.
Visits		1) A 600-ton bulk sample just completed with 10,600' of
1977		drilling done and another 1000' scheduled. Possible
		production of 4.0 Mt/yr.
		2) Drill program of Algoma is 500' centre to a depth of 800'
		with over 30,000' of drilling in 1975-1977 with 15,000' of
		Jalore drilling.
		3) Current indicated resource of 200 Mt of 25% soluble iron
		with concentrate of 69% Fe and 2.5-3.0% silica with 80-90%
		recovery.
		4) Ore is magnetite and chert interbedded with greywacke
		metasediment. Contacts between ore and waste are
		gradational and dependant upon relative proportions of mgt
		chert bands to sediment bands.
		5) The ore zone results from tight isoclinal folding and
		repetition of the narrow IF. Dip is 52-57° with the fold
		plunges at 15-20° SE. Folding has given a maximum width
		of 1100' to the ore body with wider sections 5000' long.
		6) A proposed pit is to be 9000' long by ramping down the
		NW limb and extending the other to a depth of 300-400';
		total depth at the centre would be 800'. Maximum
		overburden was 80' thick.
		7) Perimeter drilling (vertical holes on 1000' centres of BX
		core with 10' into bedrock) is being carried out for
		engineering purposes.
52F08SE F-1	Geological Report	Bending Lake – in area (800m east of Stormy Lake) – the
Sulpetro Minerals		mineralized shear zones with Py, Po and Mgt cumulate
1982		zones (airborne EM responses) in shear zone of the felsic
		volcanics.

File No.	Work	Results
52F08SE I-1	Prospecting, Sampling	Sampled Hwy 622 north of the patents for 2.5 km and
D. Calvert, A. Wing,		located 1.5m Py zones in basalt, quartz veins with Cu
A. Wallace 1990		mineralization.
52F08SE J-1	Ground Mag & EM	Geophysical report on Sells patents with 7 possible sulphide
Noranda Expl.1994		targets identified.
52F08SE J-2	Geological and	Same area as J-1; Mapping (1:5000) locate gossan zones
Noranda Expl.	Lithogeochemical	(>25m) in gnt-chl altered felsic metavolcanic with <2m
1994		massive Po zones were located and an assay of 1.2% Zn.
52F08SE J-3	Geological and	Mapping surveys (1:5000) on the Sells Option located 700m
Noranda Expl.	Lithogeochemical	wedge of felsic metavolcanics with alteration and narrow
1994		sediments; suggests a proximal volcanic environment.
52F08SE J-7	Ground Mag & EM	Sells Re-interpretation identified: 1) a 1000m long target
Noranda Expl.	around mag a Lin	with high Mag-conductivity, 2) a 450m long target with highly
1994		conductivity zone with flanking magnetic high.
52F08SE J-4	Drill Report	4 holes (511m) drilled to test HLEM conductors on main
Noranda Expl.		patents. Drilling hit banded- massive Po and lesser Py with
1995		altered felsic volcanics (FV) with best value of 0.26% Zn.
52F08SE J-5	Drill Report	2 holes (250m) drilled to test HLEM conductors on the Sells
Noranda Expl.	Dhir Nepoli	patents. Drilling hit >6m massive Po with lesser Py in
1995		altered FV but no economic assays.
52F08SE J-6	Ground Mag & EM	
	Ground May & Elvi	Surveys covered southern Bending Lake to better define the
Noranda Expl. 1995		1994 surveys for massive sulphide targets on the claims.
52F08SE K-1	Caalagiaal Campling	Dreamanted the altered falsis value ris reals OF of Charry
	Geological, Sampling	Prospected the altered felsic volcanic rocks SE of Stormy
Alex Glatz 1993	Ground VLF-EM &	Lake (south of patents). Located 0.62-0.73% Zn in altered,
505000F	MAG	felsic volcanics with andesite.
52F08SE	Geological Mapping	A. Raoul completed mapping of Highway 622 from the Islets
OGS Property	and Lithogeochemical,	Intrusion to the Revell Batholith for VMS Potential. Located
Visits 2000	Sampling	a 52m section of sulphide-oxide iron formation with 55m of
		underlying VMS alteration. Assays to 0.25% Cu, 0.18% Zn
50500		and 9 gpt Ag.
52F08	Airborne Mag & EM	Ontario Geological Survey releases an airborne magnetic &
OGS 2001		electromagnetic survey covering the properties with many
FOFOOCE	Detail Manning and	EM targets with associated magnetics.
52F08SE	Detail Mapping and	A. Raoul & C. Ravnaas completed detailed mapping and
OGS Property	Geological Tour	analysis of the sulphide and oxide horizon to produce a type
Visits 2002	Decementing of L	section of a VMS deposit for teaching purposes.
52F08SW	Prospecting and	High-grade altered basalt boulder with 20% Py +/- Cpy
B Holmstrom 2003	sampling	located on Gold Lake with assay of 7.49 opt Au.
52F08SE	Property Acquisition	H. Wetelainen purchased the LTV patents and the
2005-2006		Holmstrom (Sells) patents.
52F08SE	Lake Sediment Report	Ontario Geological Survey releases a lake-sediment survey
OGS 2007	(OFR 6194)	covering the Manitou Lake to Bending Lake. Located
505005		several base-metal anomalies to SW, gold anomaly to SE.
52F08SE	Property Acquisition	Staking of the claims around the patents by Windigo Ridge
2007-2008		Resources Inc
52F08SE	Drill report from 2010	Completed 8 holes (2355m) from 2008. 5 holes for
Bending Lake Iron /		confirmation of historic and 3 holes for extensions. The
Windigo Ridge		results were very similar to the historic values.
52F08SE	Prospecting Report	Testing 7 old showings and located 25 new showings in the
Bending Lake Iron /	from 2008 - 2009	bending lake area for Fe, Au, Ag, Cu, Ni and Zn anomalies.
Windigo Ridge		
52F08	Geological Maps	Produced 2 new geology maps at 1: 50K for the bending
OGS 2011	P3623, P3624	lake north and bending lake south sheets.

GEOLOGY

The Bending Lake property is located within the western region of the Wabigoon Subprovince of the Archean Superior Province. The property is located within the 70km long by 30km wide area known as the Stormy – Bending Lake Greenstone Belt. It consists of differentiated mafic to felsic volcanic rocks that have been intruded by mafic to ultramafic intrusive units. They are overlain and interbedded with clastic and chemical metasedimentary rocks with a broad, southwest dipping synform. This package is bounded to the north by the Revell Batholith and to the south by the Irene-Eltrut Batholitic Complex.


Bending Lake Iron Group Limited's patents host the Bending Lake Iron Deposit, a classical Algoma-type iron ore deposit. This deposit has undergone folding, and a thickening event has produced large volumes of economic iron ore. The banded iron formation is a blue-grey to black, fine-grained, well-bedded unit of magnetite with minor hematite, specularite, biotite, amphibole, chlorite, garnet and pyrite or pyrrhotite. It is interbedded with quartz-biotite garnet schist. The iron formation average thickness is 90-120m and has been traced over 9km in outcrop, however aerial magnetic surveys indicate it extents up to 14km. Based upon a review by Behre Dolbear Ltd of February 2009, a historical resource of 245.5 Million tonnes of 25.08% Fe exists on the property on the proposed open pit area.

In the 1990s this area became a target for base metals by mining companies and prospectors alike. From 1993 to 1995, three Cu-Zn showings were identified associated with Volcanogenic Massive Sulphide (VMS) environments. In 2000, the Ontario Geological Survey (OGS) identified a 105m thick type section for Cu-Zn mineralization associated with VMS and produced an unpublished fieldtrip guide. Assays were obtained up to 0.25% Cu, 0.18% Zn and 9 gpt Ag from grab samples. In 2003, prospector B. Holmstrom located a highly altered basalt boulder with 20% pyrite and traces of chalcopyrite on Gold Lake, with high-grade gold assay of 7.49 opt.

Prospecting by the staff of Bending Lake Iron Group Ltd in the fall 2008 and the summer 2009 sampled the seven known base metal showings and identified twenty-five precious metal and base metal showings. The best results were:

<u>Zone 1</u> :	Garnet-chlorite altered basalt ran 3.80m of 0.10% Zn with elevated Cu, Ni
	and 0.51m of 142ppb Au.
<u>Zone 3</u> :	Chlorite altered basalt plus quartz veins ran 1.32m of 0.12% Zn
<u>Zone 6</u> :	Silica altered basalt ran 0.88m of 0.25% Zn-Pb.
<u>Zone 10</u> :	Silica altered gabbro ran 1.05m of 1.01% Cu-Zn with elevated Pt plus
	2.10m of elevated Cu, Pb, Zn or Pt.
<u>Zone 11</u> :	Foliated gabbro ran 0.11% Ni.
<u>Zone 15</u> :	Foliated basalt ran 2.01m of elevated Cu and Mo.
<u>Zone 18</u> :	Foliated basalt ran 212ppb Au and elevated Cu.
<u>Zone 22</u> :	Quartz-carbonate veins in folded granite ran 1.34m of elevated Cu, Zn.
<u>Zone 26</u> :	Red quartz vein in altered basalt ran 105ppb Au.
Zone 27:	Chlorite-biotite altered basalt ran 2.38m of elevated Cu, Ni
Zone 28:	Chlorite altered gabbro ran 0.38% Zn with elevated Cu, Ni

Further work is needed to follow up on the above results however our current efforts will be to concentrate on better defining the northwest and southeast extension of the iron formation for possible resource potential.

LINE CUTTING 2008-2009

In order for the Bending Lake Iron Group Ltd to properly compare the work done by our group to the historical work by Jalore and Algoma, we decided to use a grid similar to Algoma's grid during their 1975-1977 exploration programs.

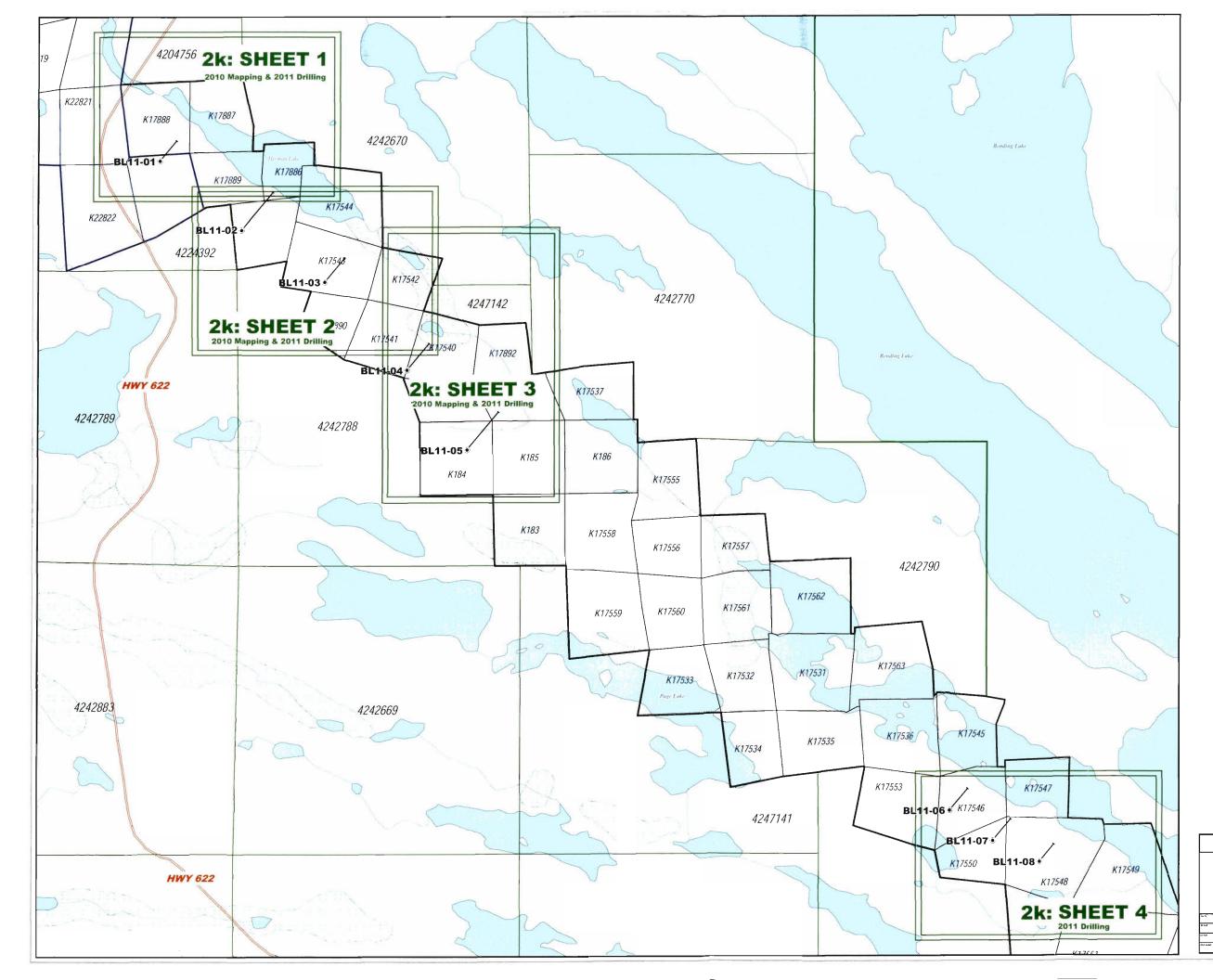
Algoma's original base-line was visible and several pickets were located for reference. The baseline was re-cut from L217+50E to L324+00E at 310° and re-picketed at 100 ft (30m) intervals in the fall of 2009. Wing-lines were then re-established at 250 ft (75m) intervals. This cutting covered the potential pit area.

Algoma's original base-line ended at L216+00E, however no lines were visible after L217+50E. They continued a 10+00 north BL, 1000 ft north of the 0BL, to the west from L216+00E to L146+00E with 200 ft (60m) wing-line intervals. Due to the positioning of the lakes and river, we moved our north BL, labelled as 0BL, to 800 ft north to avoid more of these water obstacles. The Bending Lake staff cut our survey lines when water conditions were not frozen; unlike Algoma who must have cut during winter operations.

The Bending Lake staff cut our survey lines from L217+50E to L120+00E, approximately 1250ft west of Highway 622, at 250 ft intervals for wing-lines. These wing-lines went south for 600 ft and north 1000 ft or to the water crossing (either lake, river or swamp).

See figure 5 for a regional location of the grid or see Appendix B for detailed line cutting and the geological mapping.

2010 GEOLOGICAL MAPPING


The following geological units, youngest to oldest, were located during the 2009 prospecting and 2010 mapping by the Bending Lake Iron Group:

Unit	Name	Description
6	Granodiorite to Granite (Revell Batholith)	Fine to medium-grained, light grey to pink, equigranular, granite to granodiorite with >2% pegmatite pods of Kspar-quartz.
5B	Quartz Diorite (Islet Intrusion)	Medium-grained, light grey to grey, massive, equigranular, quartz diorite to diorite with little to no fracturing. Appears a "grey granite" but less quartz and more mafic minerals.
5 A	Quartz Monzonite (Islet Intrusion)	Medium-grained, off-white to pale pink, massive, equigranular, quartz monzonite with little to no fracturing. Appears as a "white to pink granite" but less quartz and minor Kspar-quartz pegmatite dikes (<2%).
4C	Quartz Diorite to Gabbro	Fine-grained, light grey, massive, equigranular, quartz diorite to monzodiorite with moderate to intense fracturing @ 090°; possibly intruded along structural trend.
4B	Ultramafic to Gabbro	Fine to medium-grained, black, massive unit of >90% hornblende- pyroxene rich gabbro to melanogabbro. Precursor was a pyroxenite and has weak to moderate magnetism.
4A	Gabbro	Fine to medium-grained, grey to black, gabbro with >20% plagioclase and non-magnetic. Weathers a tan to greenish-tan.
3B	Iron Formation (Magnetite)	Fine-grained, blue-grey to black, well-bedded unit of 40% magnetite with very minor hematite or specularite hosted within chert that is transitional to massive to schistose, metagreywacke beds. Theses beds could contain biotite, amphibole, chlorite, garnet with minor pyrite or pyrrhotite and are interbedded quartz-biotite garnet schist.
3A	Metasediments (Greywacke, Argillite)	Fine to medium-grained, grey to dark grey, massive bedded to thinly bedded, units of greywacke with thinner units of dark grey to black, argillite to siltstone.
2C	Sulphide Formation (Main Zone)	Fine-grained, oxidized zone over 6m of 25-80%, semi-massive to massive Po-Py breccia with recrystallized chert fragments and 2% stringers of Cpy- Sph. This could be overlain by an Exhalite Horizon of chert with banded magnetite or similar sulphide zones in altered felsic volcanics over the next 22m. Total width is <25m true thickness.
2B	Felsic Porphyries (quartz feldspar, feldspar)	Fine-grained, tan to light grey, massive to weakly foliated, felsic porphyries with 2-5% medium-grained quartz-orthoclase crystals or 5-8% medium-grained, plagioclase crystals in a felsic to intermediate, foliated matrix.
2A	Felsic Volcanics (Tuffs and Fragmental)	Fine-grained, light grey, well to poorly foliated, units of dominated fine- grained, felsic crystal tuffs or thinner units of felsic pyroclastics with 10- 40% clasts of felsic and lesser mafic units.
1B	Garnet-Chlorite Altered Mafic Volcanics	Fine-grained, green, moderate to highly chloritized, mafic units with 5-30% fine to medium-grained, red garnet with trace-5% Py +/- Po.
1A	Mafic Volcanics (Massive to Pillowed Flows, Tuffs)	Fine-grained, grey to dark green, weakly to moderately chloritized, massive to pillowed flows and minor interbedded mafic tuffs and fragmentals.

Table 2: Geological Units from 2009 and 2010 Mapping on the Bending Lake property

In the fall of 2010, this author preformed geological mapping at a scale of 1:1000 on the Northwest Iron Zone. The focus of this mapping was to locate more outcrops of iron formation (units 3B) on the property from L132+50E (Highway 622) to L232+50E, over a 10,000 ft or 3000m strike length. Approximately 11 continuous outcrops of magnetite-bearing iron formation were located during mapping and 5 separate targets were produced. See Appendix A for outcrop locations.

In the summer of 2009, this author preformed geological mapping at a scale of 1:5000 on the Southeast Iron Zone, from east of the potential open pit (L324E) to the Turtle River Park boundary. At this time, there was no grid established on this area, however a grid is being cut concurrently with the production of this report. Approximately 3 outcrops of magnetite-bearing iron formation were located during mapping and produced one target zone.

Swamp Alt Bst Altered Basalt Alt Fv Altered Felsic Volcanic F٧ Felsic Volcanic Gah Sabbro G₩ Greywacke GW-IF Grevwacke, Iron Formation GW-QV Greywacke, Quartz Vein Mgt-GW Magnetite, Greywacke Quartz Vein Qv/Silc Quartz Vein/Silica Sulphides S (Py-Po) Sulphides 🔹 2011 Drill Hole 250 Meters Scale: 1:10,000 BENDING LAKE IRON GROUP LTD. BENDING LAKE PROJECT, NORTHWEST 2011 DRILLING & 2010 SUMMER MAPPING INDEX MAP: SHEETS 1 to 4 52F/08 July 2011 www.zone14.com 1: 10,000 Allen Raoul, PGeo NAD 83, Zone 15 Bending Lake NW Zone 2k.wor

Legend Claim Post

- Claim Line

Hilltop

Wood Slash Pile

----- Tench

------ Road ------- Highway 622

Ridge

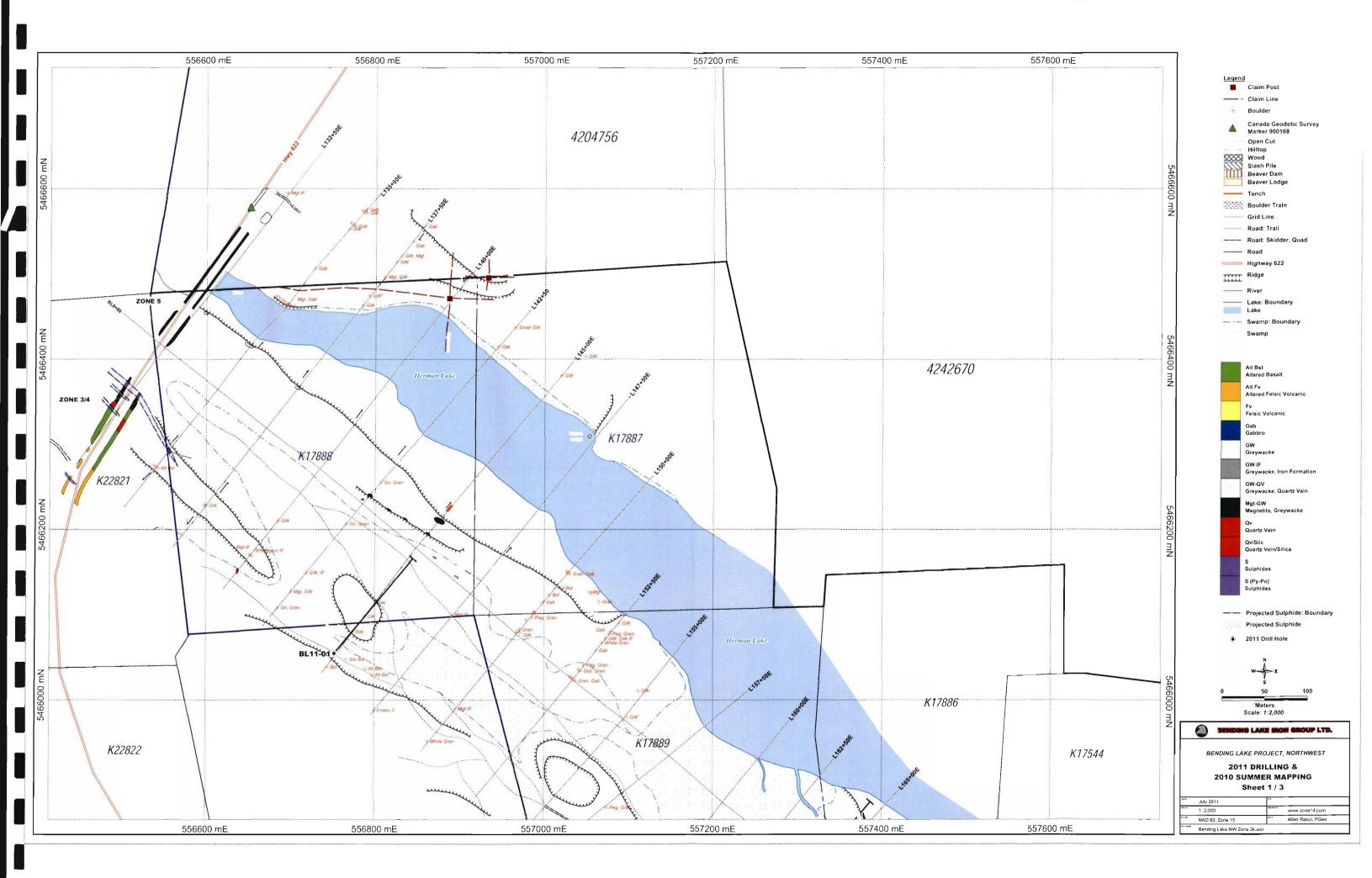
Lake

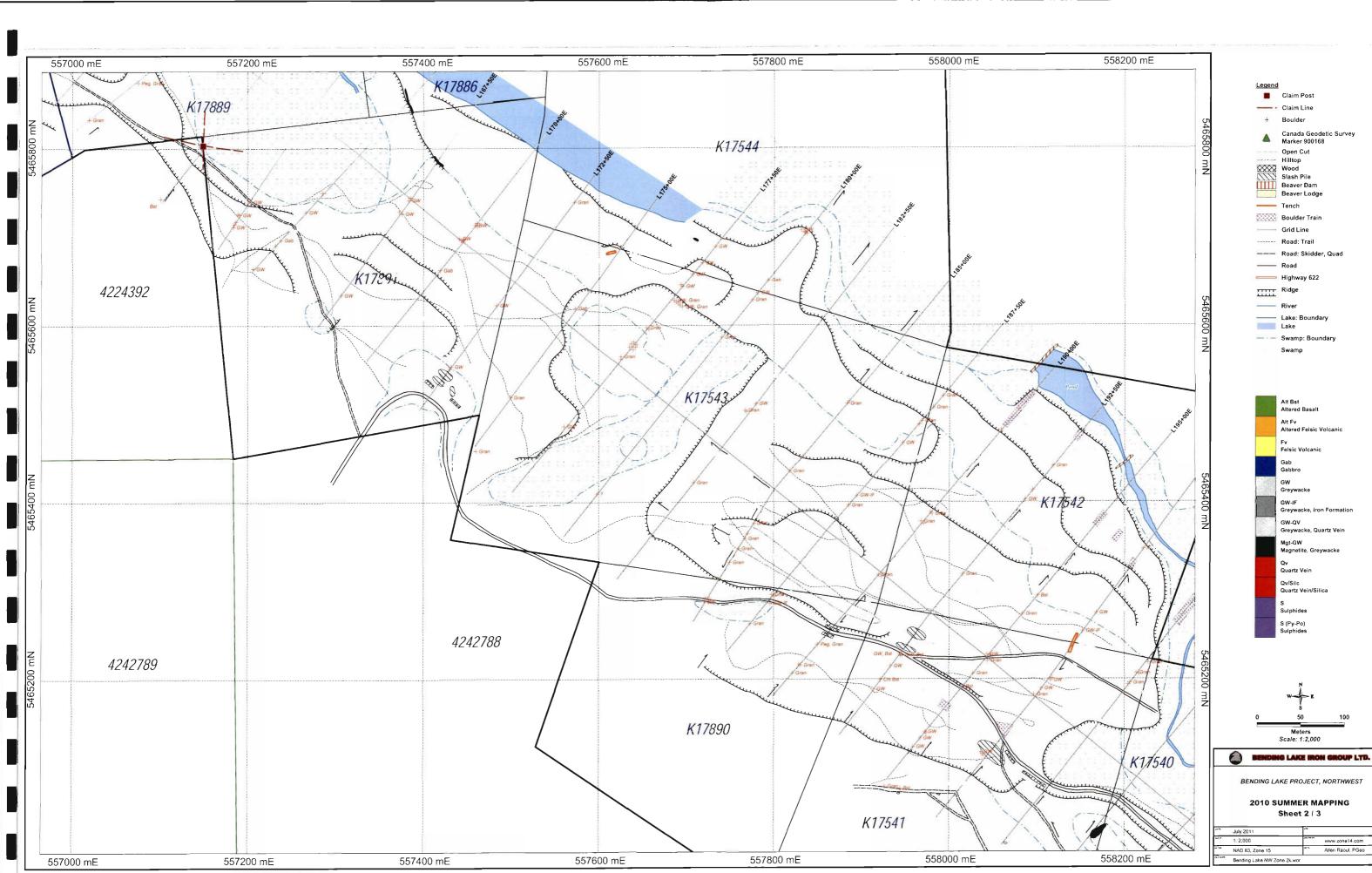
River

Beaver Dam

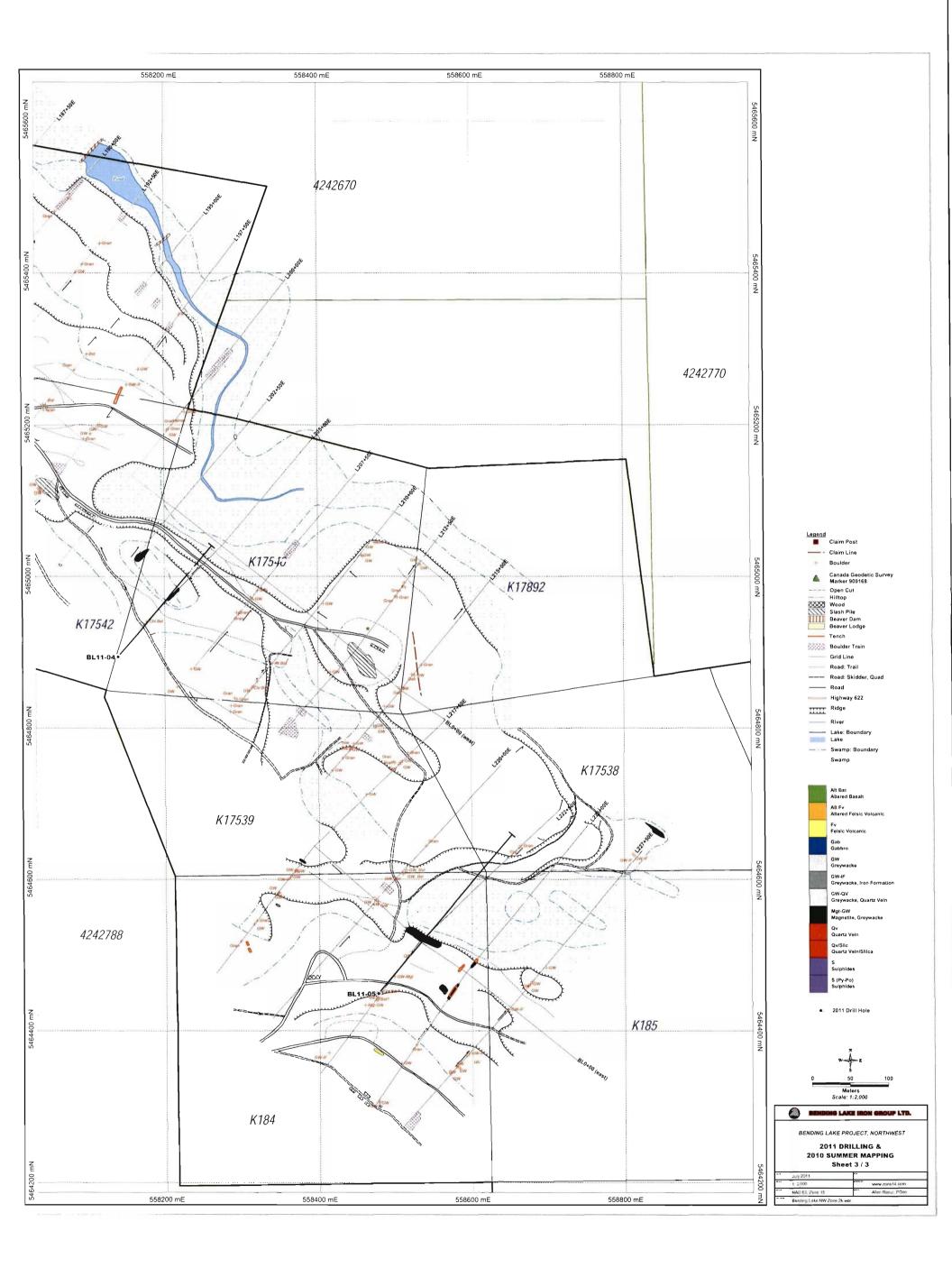
Boulder Train

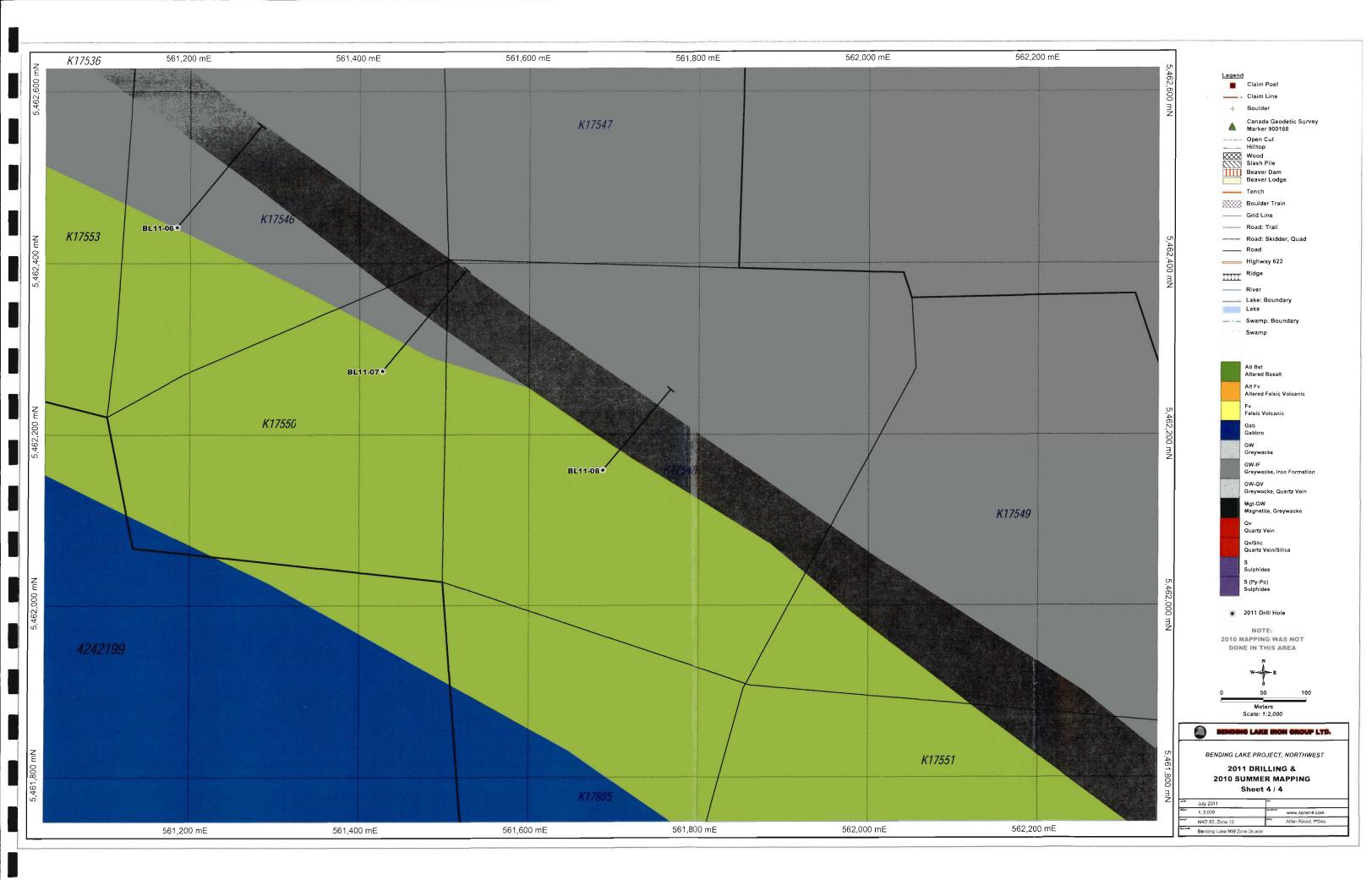
Grid Line Road: Trail

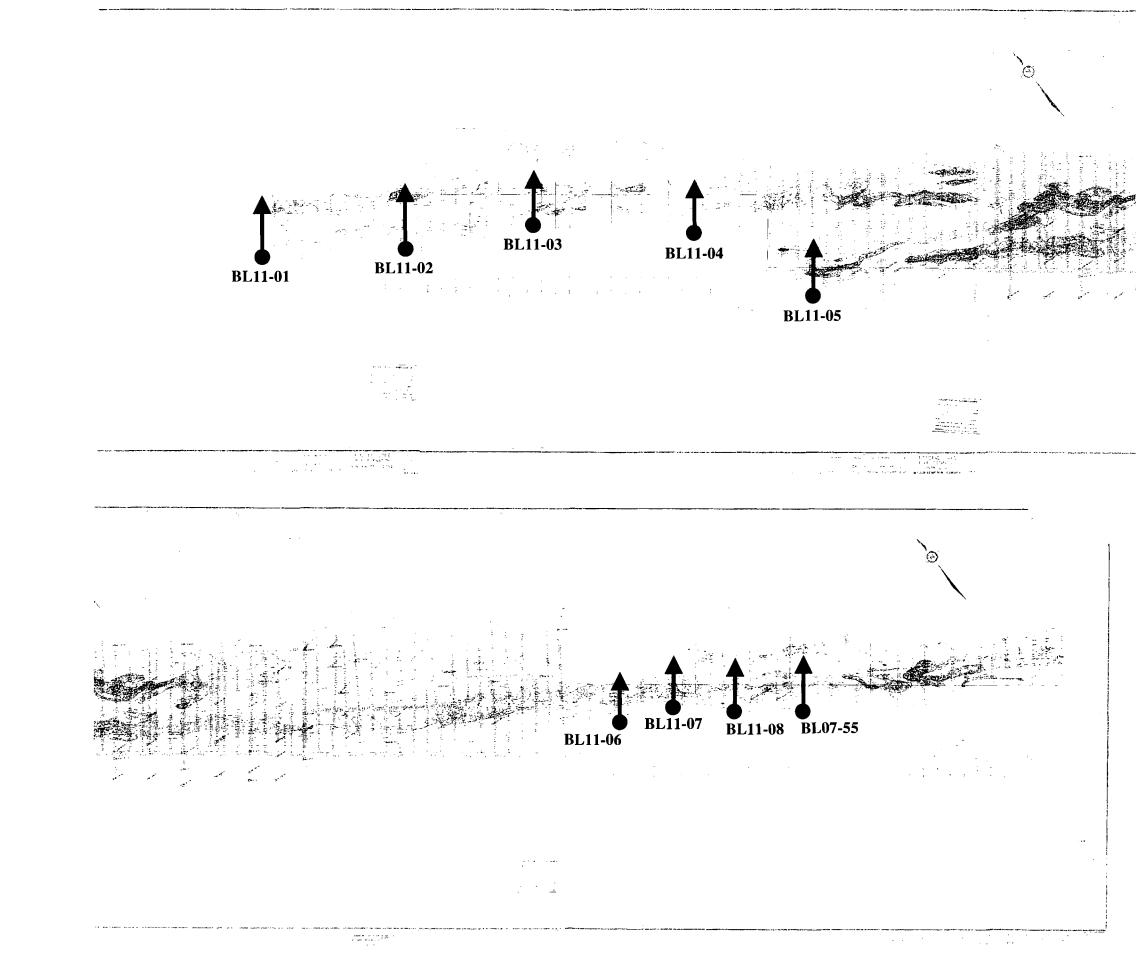

---- Road: Skidder, Quad


Lake: Boundary

----- Swamp: Boundary


Beaver Lodge


Canada Geodetic Survey Marker 900168



'n	July 2011	m.	
40	1: 2,000	~~~~ v	www.zone14.com
-	NAD 83, Zone 15	aura 4	Jlen Raoul, PGeo
7 ewe	Bending Lake NW Zone 2k.wor		

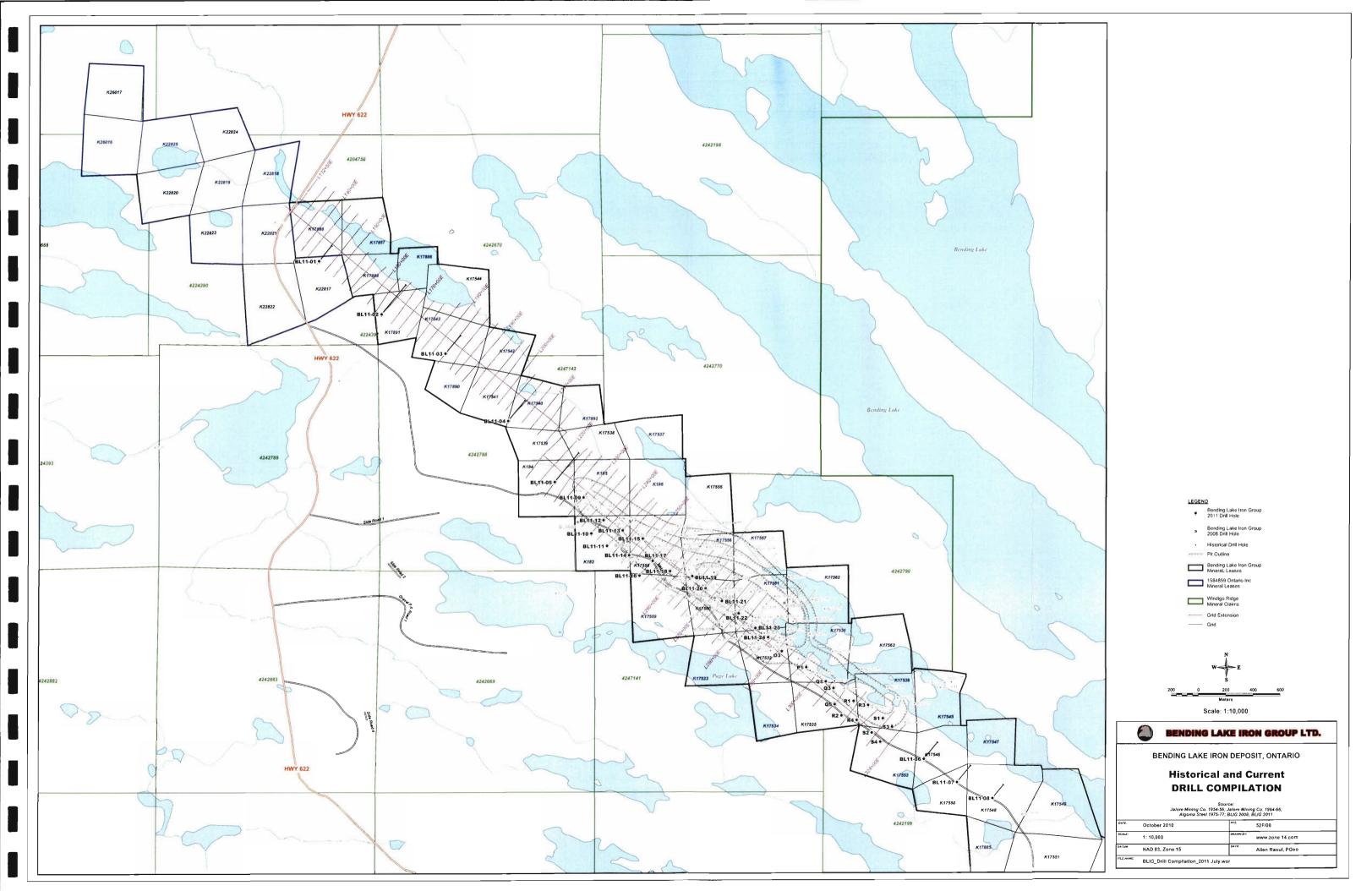
HISTORICAL DIAMOND DRILLING

The historical diamond drilling on the iron ore deposit has occurred in six separate stages:

Table 3A: Historic drilling of Bending Lake Iron Deposit

Company	Work	Results
Jalore Mining Co.	7 BX drill holes	Holes No.1 to No.7 intersected magnetite-brg iron formation
1954	(1764m)	with average Fe assays of 20-25% Mag Fe. Difficult to read
		some of the data but being re-assayed
Jalore Mining Co.	16 AX drill holes	Holes BL64-08 to BL64-22, BL 64-24 intersected magnetite-
1964	(3007m)	brg iron formation but assays unavailable; being re-assayed.
Algoma Steel Ltd	12 AQ drill holes	Holes BL 76-23, BL76-25 to BL76-38 intersected magnetite-
1976	(3873m)	brg iron formation but assays unavailable; being re-assayed
Algoma Steel Ltd	5 EXT drill holes	Unknown data
1976	(515m)	
Algoma Steel Ltd	15 AQ drill holes	Holes BL 77-41 to BL 77-55 intersected magnetite-brg iron
1977	(3627m)	formation but assays unavailable; being re-assayed
Bending Lake Iron	8 BQ drill holes	Holes BL08-01 to BL11-08 intersected magnetite-brg iron
Group Ltd 2008	(2355m)	formation with average grades >25% Fe.

The historical technical drilling on the property (for the iron ore deposit advancement) has been completed in three separate stages


Table 3B: Historic technical drilling of Bending Lake Iron Deposit

Company	Work	Results
Geocon	20 AX drill holes	Holes BL-G2-77 to BL-G3-77 located, re-logged and re-
1976	(339m)	assayed.
Algoma Steel Ltd	3 XRP drill holes	Unknown data
1977	(26m)	
Algoma Steel Ltd	3 AQ drill holes	Unknown data
1977	(272m)	

The historical diamond drilling on the property, not related to the iron ore deposit, has occurred in two separate stages

Table 3C: Historic drilling of Other Mineral Commodities on the Bending Lake Property

Company	Work	Results
Canadian Nickel, 1971	8 Drill holes (390m) (EXT Winkie)	They drilled these 8 holes north of patents above and along Bending Lake. No mineralization located and assays not given.
Canadian Nickel 1973	1 Drill hole (52m) (EXT Winkie)	Drilled 1 hole about 1200m north of the patents (Hwy) with disseminated py +/- cpy-sph over 6.0m.
Noranda Expl. 1995	Drill Report (B1-B4)	4 holes (511m) drilled to test HLEM conductors on main patents. Drilling hit banded- massive Po and lesser Py with altered felsic volcanics (FV) with best value of 0.26% Zn.
Noranda Expl. 1995	Drill Report (S01-2)	2 holes (250m) drilled to test HLEM conductors on the SELLS patents. Drilling hit >6m massive Po with lesser Py in altered FV but no economic assays.

2011 DIAMOND DRILLING

In 2011, from March 24th to May 16th, an 8 hole (BQ) diamond drill program was totalling 2311 meters was designed by this author. This drilling program was subsequently carried out on the Bending Lake Patents for two purposes:

- 1. a five hole program at 600m intervals in order to test the Northwest Iron Zone (holes BL11-01 to BL11-05).
- 2. a three hole program at 300m intervals in order to test the Southeast Iron Zone to Jalore's hole BL07-55.

These 8 holes would be used for an eventual NI 43-101 compliant resource calculation. This program of core logging and sample preparation was carried out by this author and J. Bolen, PGeo.

The following iron targets were chosen for the 2011 drill program:

Table 4A:Drill Targets from BLIG Mapping (see figures 3A, 3B, 3C, 3D) and Algoma Geophysics
(see figures 4A and 4B)

Hole	Outcrop Exposures	Algoma Magnetic Survey
BL11-01	40m exposure of 30% Mgt	Magnetic anomaly of 130m
BL11-02	9m exposure of greywacke >10% Mgt	Magnetic anomaly of 30m
BL11-03	No outcrop evident	110m section of highly folded magnetics
BL11-04	>75m exposure of >20% Mgt	Magnetic anomaly of 250m
	No outcrop evident	Magnetic anomaly of 30m
BL11-05	>75m exposure of >20% Mgt	Magnetic anomaly of 250m
BL11-06	No outcrop evident	Magnetic anomaly of 80m
BL11-07	>80m exposure of 5-30% Mgt	Magnetic anomaly of 70m
BL11-08	No outcrop evident	Magnetic anomaly of 60m

Table 4B: Locations and Iron Drill Results for Northwest Iron Zone

Line	Grid	Hole	Northing	Easting	Azimuth	Dip	Drill Hole Length (m)	APPROX. RESULTS
L145E	550S	BL11-01	5466055	556752	0400	500	225	9.32m of 23% Magnetite
								59.46m of waste
								44.67m of 14% Magnetite
L165E	470S	BL11-02	5465670	557210	0400	500	428	13.01m of 40% Magnetite
								85.88m of waste
								22.00m of 15% Magnetite
L182.5E	100S	BL11-03	5465445	557767	0400	500	264	26.20m of 39% Magnetite
								27.03m of waste
								53.95m of 25% Magnetite
L205E	650S	BL11-04	5464894	558139	0400	500	297	32.10m of 26% Magnetite
								22.64m of waste
								27.13m of 28% Magnetite
L222.5E	300S	BL11-05	5464450	558477	0400	500	425	46.28m of 12% Magnetite

				187.20m of waste
				86.64m of 15% Magnetite
			1639	

Line	Grid	Hole	Northing	Easting	Azimuth	Dip	Drill Hole Length (m)	APPROX. RESULTS
L335.10E	330N	BL11-06	5462434	561183	0400	500	240	81.57m of 45% Magnetite
L342.85E	335N	BL11-07	5462271	561427	0400	500	240.2	88.85m of 44% Magnetite
L352E	695N	BL11-08	5462154	561689	0400	500	192	85.23m of 26% Magnetite
							672.2	

Other Drill Results from 2011 Program

The testing of these iron zones located both precious metal and base metal targets during this drill program. These alteration zones were sampled for two reasons:

- 1. to see if they had any economic potential
- 2. to confirm that these other elements would not interfer with any iron testing.

The assays from Accurassay Laboratories of Thunder Bay, Ontario previous metal, base metal, whole rock geochemistry, sulphur, and rare earth elements are located in Appendix C. The following elevated to anomalous values are from sampling of the 2011 drill program:

Hole	Meterage	Rock type	sample	Au	Ag	Cu	Мо	Ni	Zn	Fe	S
				ppm	ppm	ppm	ppm	ppm	ppm	%	%
BL11-05	175.08 - 176.08	GAS-Py-Po	103	0.006	<1	324	50	185	3126	20.68	17.20
BL11-05	176.08 - 177.08	GAS-Py-Po	104	<0.005	<1	317	50	186	1474	21.05	16.30
BL11-05	177.08 - 178.08	GAS-Py-Po	105	0.007	<1	236	41	165	1198	17.41	12.90
BL11-05	211.50 - 212.50	GAS-Py-Po	108	<0.005	<1	50	<1	106	571	2.83	1.99
BL11-05	236.27 - 237.27	GAS-Py	134	<0.005	10	40	2	140	236	2.85	3.21
BL11-05	237.27 - 238.34	GAS-Py	135	0.008	6	36	<1	114	179	2.52	3.08
BL11-05	238.34 - 239.34	GAS-Py	136	<0.005	6	13	<1	52	69	1.89	2.19
BL11-05	241.34 - 242.34	GAS-Py	139	<0.005	6	<1	2	73	111	3.01	3.86
BL11-05	242.34 - 243.34	GAS-Py	140	<0.005	7	<1	<1	38	40	1.45	1.72
BL11-05	243.34 - 243.73	GAS-Py	141	<0.005	5	<1	2	97	278	3.92	4.79
BL11-05	243.73 - 244.40	Silc GAS	142	<0.005	5	13	<1	72	670	4.12	5.18
BL11-05	244.40 - 245.40	Silc GAS	143	<0.005	5	48	4	97	300	3.67	2.64
BL11-05	245.40 - 246.40	Silc GAS	144	<0.005	6	7	<1	51	28	1.72	1.64
BL11-05	246.40 - 247.40	Silc GAS	145	<0.005	6	14	<1	58	135	2.75	3.17
BL11-05	248.40 - 248.84	Silc GAS	147	<0.005	6	30	<1	59	64	2.07	1.50

 Table 5:
 Drill Results for Precious and Base Metals of the Northwest Iron Zone

Samples 103 through 105 and 108 are representative of a 3m unit of 10% to 20% graphitebearing Argillite or Siltstone with stringers of 3% to 20% Po – Py as net-textured, fracturefilled, sulphide. Based upon assays, approximately 30-38% iron sulphides were present with elevated Cu values (0.02-0.03% Cu), anomalous Zn values (0.12-0.31%) and rare elevated Mo values. This is interpretative of a Volcanogenic Massive Sulphides (VMS) Deposits.

Samples 134 through 141 are representative of a 7m unit of 3% to 5% graphite-bearing Argillite or Siltstone with stringers of 1% to 5 % Py +/- Po as net-textured, fracture-filled, sulphide. Based upon assays, approximately 3% to 8% iron sulphides were present with elevated Ag values (5-10 ppm). This is interpretative of a Volcanogenic Massive Sulphides (VMS) Deposits.

Samples 142 through 147 are representative of a 5m unit of 3% graphite-bearing Argillite or Siltstone with stringers of 1% to 5 % Py +/– Po as net-textured, fracture-filled, sulphide then were later overprinted with 25% to 60% silica event . Based upon assays, approximately 3% to 9% iron sulphides were present with elevated Ag values (5-6 ppm). This is interpretative of a Volcanogenic Massive Sulphides (VMS) Deposits.

Several other alteration zones, silica or sulphides, were located and tested for precious metal, base metal, whole rock geochemistry, sulphur and rare earth elements. No other significant assays were located in the other seven holes.

Drill Hole Summaries

The following summaries were provided by this author using the Fladgate Exploration Consulting Corporation Exploration dbase system. Detailed cross-sections showing lithology and based upon drill summaries are available in Appendix B, however iron assays are still pending from SGS Mineral Services. The location of these drill holes with respect to line cutting, old drill holes and new 2011 drilling are found in figure 5.

<u>Drill Hole BL11-01</u> – intersected 9 meters of 23% magnetite, 59m of waste rock and 45m of 14% magnetite.

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-01	0.00	8.00	OVBN	Casing
BL11-01	6.31	6.51	OVBN	Boulders
BL11-01	6.51	22.85	QCBS	Quartz Chlorite Biotite Schist
BL11-01	22.85	24.83	QCBS	Quartz Chlorite Biotite Schist
BL11-01	24.83	32.23	QCBS	Quartz Chlorite Biotite Schist
BL11-01	32.23	39.98	QCBS	Quartz Chlorite Biotite Schist
BL11-01	39.98	46.74	GAS	Graphite Argillite Schist with 1-15% Po-Py
BL11-01	46.74	55.73	QCBS	Quartz Chlorite Biotite Schist
BL11-01	55.73	63.05	BIF	Banded Iron Formation with 23% Mgt
BL11-01	63.05	87.38	QCBS	Quartz Chlorite Biotite Schist
BL11-01	87.38	91.67	QCBS	Quartz Chlorite Biotite Schist
BL11-01	91.67	95.74	QCBS	Quartz Chlorite Biotite Schist
BL11-01	95.74	105.36	GBS/mag	Garnet Biotite Schist w/magnetite with 3% Mgt
BL11-01	105.36	110.29	GBS/mag	Garnet Biotite Schist w/magnetite with 10% Mgt
BL11-01	110.29	122.51	QCBS	Quartz Chlorite Biotite Schist
BL11-01	122.51	143.84	GBS/mag	Garnet Biotite Schist with 8% Mgt
BL11-01	143.84	167.18	BIF	Banded Iron Formation with 30% Mgt
BL11-01	167.18	174.32	QCBS	Quartz Chlorite Biotite Schist
BL11-01	174.32	178.32	BIF	Banded Iron Formation with 12% Mgt
BL11-01	178.32	225.00	QCBS	Quartz Chlorite Biotite Schist
BL11-01	225.00	E.O.H.		

Drill Hole BL11-02 – intersected 13 meters of 40% magnetite, 86m of waste rock and then 22m of 15% magnetite.

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-02	0.00	6.50	OVBN	Casing
BL11-02	6.50	56.08	GBS	Garnet Biotite Schist
BL11-02	56.08	62.00	QCBS	Quartz Chlorite Biotite Schist with 4-5% Po-Py
BL11-02	62.00	96.69	QCBS	Quartz Chlorite Biotite Schist
BL11-02	96.69	109.60	BIF	Banded Iron Formation with 40% Mgt
BL11-02	109.60	195.00	QCBS/mag	Quartz Chlorite Biotite Schist with <2% mgt
BL11-02	195.00	217.00	QCBS/mag	Quartz Chlorite Biotite Schist with 15% mgt
BL11-02	217.60	249.00	QCBS/mag	Quartz Chlorite Biotite Schist with <2% mgt
BL11-02	249.00	258.00	GBS	Garnet Biotite Schist with <1% Py
BL11-02	258.00	428.00	QCBS	Quartz Chlorite Biotite Schist
BL11-02	428.00	E.O.H.		

<u>Drill Hole BL11-03</u> – intersected 26 meters of 39% magnetite, 27m of waste rock and 54m of 25% magnetite.

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-03	0.00	8.20	OVBN	Casing and Overburden
BL11-03	8.20	34.40	BIF	Banded Iron Formation with 39% magnetite
BL11-03	34.40	58.30	K-GRAN	Pink Granite
BL11-03	58.30	61.43	QCBS	Quartz Chlorite Biotite Schist
BL11-03	61.43	115.38	BIF	Banded Iron Formation with 35% magnetite
BL11-03	115.38	205.40	QCBS	Quartz Chlorite Biotite Schist with <3% magnetite
BL11-03	205.40	231.05	GAB	Gabbro
BL11-03	231.05	264.00	QCBS	Quartz Chlorite Biotite Schist
BL11-03	264.00	E.O.H.		

Drill Hole BL11-04 - intersected 32 meters of 26% magnetite, 23m of waste rock and 27m of 28 % magnetite.

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-04	0.00	6.40	OVBN	Casing
BL11-04	6.60	149.50	QCBS	Quartz Chlorite Biotite Schist
BL11-04	149.50	166.76	GAS	Graphite Argillite Schist with 1-2% Po
BL11-04	166.76	196.00	QCBS	Quartz Chlorite Biotite Schist
BL11-04	196.00	206.07	QCBS/mag	Quartz Chlorite Biotite Schist with 35% magnetite
BL11-04	206.07	214.10	GBS	Garnet Biotite Schist
BL11-04	214.10	228.13	BIF	Banded Iron Formation with 40% magnetite
BL11-04	228.13	240.82	GAB	Gabbro
BL11-04	240.82	250.77	GBS	Garnet Biotite Schist
BL11-04	250.77	277.90	BIF	Banded Iron Formation 28% magnetite
BL11-04	277.90	297.00	GBS	Garnet Biotite Schist
BL11-04	297.00	E.O.H		

<u>Drill Hole BL11-05</u> - intersected 46 meters of 12% magnetite, 187m of waste rock and 87m of 15% magnetite.

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-05	0.00	4.30	OVBN	Casing
BL11-05	4.30	20.50	QCBS	Quartz Chlorite Biotite Schist
BL11-05	20.50	36.13	GBS	Garnet Biotite Schist
BL11-05	36.13	46.52	BIF	Banded Iron Formation with 10-15% magnetite
BL11-05	46.52	47.74	QCBS	Quartz Chlorite Biotite Schist with <2% magnetite
BL11-05	47.74	51.29	QCBS/mag	Quartz Chlorite Biotite Schist with 30% magnetite
BL11-05	51.29	54.35	BIF	Banded Iron Formation with 10-15% magnetite
BL11-05	54.35	66.30	GBS	Garnet Biotite Schist with <2% magnetite
BL11-05	66.30	69.49	BIF	Banded Iron Formation with 10% magnetite
BL11-05	69.49	72.70	GBS/mag	Garnet Biotite Schist with 25-30% magnetite
BL11-05	72.70	82.41	BIF	Banded Iron Formation with 12-15% magnetite
BL11-05	82.41	125.80	GBS	Garnet Biotite Schist
BL11-05	125.80	151.75	GBS	Garnet Biotite Schist
BL11-05	151.75	155.30	ABS	Amphibolite Biotite Schist

BL11-05	155.30	162.43	QCBS	Quartz Chlorite Biotite Schist with <2% magnetite
BL11-05	162.43	167.84	QCBS	Quartz Chlorite Biotite Schist
BL11-05	167.84	169.15	ABS	Amphibolite Biotite Schist
BL11-05	169.15	175.08	QCBS	Quartz Chlorite Biotite Schist
BL11-05	175.08	178.05	GAS	Graphite Argillite Schist with 3-20% Po-Py
BL11-05	178.05	189.01	QCBS	Quartz Chlorite Biotite Schist with <1% magnetite
BL11-05	189.01	203.20	QCBS	Quartz Chlorite Biotite Schist with 1-2% Po-Py
BL11-05	203.20	210.50	QCBS/py	Quartz Chlorite Biotite Schist with 2-10% Po-Py
BL11-05	210.50	222.50	GAS	Graphite Argillite Schist with 1-5% Po-Py
BL11-05	222.50	224.05	QCBS/py	Quartz Chlorite Biotite Schist with 5-25% Po-Py
BL11-05	224.05	224.65	QCBS	Quartz Chlorite Biotite Schist with <2% Py
BL11-05	224.65	225.15	GAS	Graphite Argillite Schist with 15% Py
BL11-05	225.15	228.27	GAS	Graphite Argillite Schist with 1-3% Py
BL11-05	228.27	238.34	GAS	Graphite Argillite Schist with 1-3% Py
BL11-05	238.34	243.73	GAS	Graphite Argillite Schist
BL11-05	243.73	244.40	GAS	Graphite Argillite Schist with 15% Po-Py
BL11-05	244.40	248.34	GAS	Graphite Argillite Schist with 1-5% Po-Py
BL11-05	248.34	255.78	QCBS	Quartz Chlorite Biotite Schist
BL11-05	255.78	294.96	GBS	Garnet Biotite Schist with <1% Py-Po
BL11-05	294.96	313.00	GBS	Garnet Biotite Schist
BL11-05	313.00	399.64	GBS/mag	Garnet Biotite Schist with 15% magnetite
BL11-05	399.64	425.10	GBS	Garnet Biotite Schist with <1% Py
BL11-05	425.10	EOH		

Drill Hole BL11-06 - intersected 82 meters of 45% magnetite

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-06	0.00	9.00	OBVN	Casing
BL11-06	9.00	61.60	GBS	Garnet Biotite Schist
BL11-06	61.60	86.00	QCBS	Quartz Chlorite Biotite Schist
BL11-06	86.00	111.90	QCBS	Quartz Chlorite Biotite Schist
BL11-06	111.90	156.27	GBS/mag	Garnet Biotite Schist with 3% magnetite
BL11-06	156.27	237.84	BIF	Banded Iron Formation with 45% magnetite
BL11-06	237.84	240.00	GBS	Garnet Biotite Schist
BL11-06	240.00	E.O.H.		

Drill Hole BL11-07 - intersected 89 meters of 44% magnetite

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-07	0.00	3.65	OVBN	Casing
BL11-07	3.65	11.23	QCBS	Quartz Chlorite Biotite Schist
BL11-07	11.23	54.91	GBS	Garnet Biotite Schist
BL11-07	54.91	58.57	GAB	Gabbro
BL11-07	58.57	85.70	QCBS	Quartz Chlorite Biotite Schist
BL11-07	85.70	139.15	GBS/mag	Garnet Biotite Schist with 10% magnetite
BL11-07	138.15	228.00	BIF	Banded Iron Formation with 44% magnetite
BL11-07	228.00	240.20	GBS/mag	Garnet Biotite Schist with 5-10% magnetite
BL11-07	240.20	E.O.H.		

Drill Hole BL11-08 - intersected 85 meters of 26% magnetite

Hole ID	From (m)	To (m)	Rock Code	Rock Name
BL11-08	0.00	1.50	OVBN	Casing
BL11-08	2.50	19.29	QCBS	Quartz Chlorite Biotite Schist
BL11-08	19.29	29.00	GBS	Garnet Biotite Schist
BL11-08	29.00	77.53	GBS/mag	Garnet Biotite Schist with <3% magnetite
BL11-08	77.53	158.81	BIF	Banded Iron Formation with 26% magnetite
BL11-08	162.80	192.00	GBS	Garnet Biotite Schist
BL11-08	192.00	E.O.H.		

Abbreviations (for above drill logs from Fladgate Consulting Exploration)

OBVN	Överburden
QCBS	Quartz Chlorite Biotite Schist
GBS	Garnet Biotite Schist
GAB	Gabbro
GBS/mag	Garnet Biotite Schist with Magnetite
GAS	Graphite Argillite Schist
K-GRAN	Pink Granite
GRAN	Granite (black-white)
BIF	Banded Iron Formation with Magnetite
ABS	Amphibolite Biotite Schist
ABS/mag	Amphibolite Biotite Schist with Magnetite

The following table represents a simplified lithological comparison of units from the 2008 sampling and logging of the 2008 drill program by Fladgate Exploration Consulting Corporation and the 2009 & 2010 mapping by Bending Lake Iron Group geology staff (this author).

	MODIFIED FLADGATE LEGEND (A. Raoul, Aug 2011)									
Abbrev	Fladgate	Bending Lake Iron Group Ltd Legend								
K-GRAN	Pink Granite	Pink Granite dike (granodiorite to porphyritic from Revell Batholith)								
GRAN	Granite (black-white)	White granite dikes (monzogranite from Islet Lake Intrusion)								
GAB	Gabbro	Gabbro to anorthorsitic gabbro (Wapageisi group)								
GAS	Graphite Argillite Schist	Graphite Argillite with 1-20% Py-Po								
ABS	Amphibolite Biotite Schist	Chlorite-Biotite +/- 10% amphibole-garnet schist								
ABS/mag	Amphibolite Biotite Schist w/magnetite	Chlorite-Biotite +/- 10% amphibole-garnet schist with 1-15% Mgt								
BIF	Banded Iron Formation	Chert bearing magnetite								
BIF	Banded Iron Formation	Banded Magnetite in argillite/siltstone with minor sandy or chlorite-biotite-carbonate units								
QCBS/mag	Quartz Chlorite Biotite Schist/w magnetite	Arkosic Sandstone to Siltstone, minor biotite- chlorite and minor Mgt 1-10%								
QCBS	Quartz Chlorite Biotite Schist	Arkosic Sandstone to Siltstone, minor biotite- chlorite								

 Table 6: Lithology comparison of Fladgate versus Bending Lake Staff (Aug. 2011)

2011 Reflex Tests

The following Reflex Tests were completed on these drill holes by Mallette Drilling:

		gs Inc., Keno	,						
Bending Lake	Project (NTS 5								
Data		Depth	Din	A	Mag	Onereter	Mallete		
Date	Hole no.	(m)	Dip	Azm	Mag	Operator	Timeshee		
11-Apr-11	BL11-02	59	49.1	42.2	5680	B. Levesque	1604		
		109	47.7	43.1	5885				
		159	46.8	45.1	5013				
		209	44.8	46.4	5117				
		259	44.4	47.7	5064				
		309	43.2	50.5	5061				
		359	44.3	47.6	4624				
		428	38.3	50.5	5361		4000		
13-Apr-11	BL11-01	40	49.4	42.4	5965	J. Savard	1693		
		75	47.7	113.7	3462				
		150	42.5	18.0	6516				
		225	38.6	40.4	4494		1701		
18-Apr-11	BL11-03	25	48.8	43.2	5885	B. Levesque	1701		
		100	45.6	46.4	6653				
		175	42.6	48.1	4417				
00 Arridd		264	39.0	50.5	5018				
22-Apr-11	BL11-04	15	48.8	39.4	6100	J. Savard	1705		
		58	48.2	37.9	5927				
		150	48.7	34.8	5995				
		225	46.5	30.4	6141				
		300	43.1	22.3	4812				
29-Apr-11	BL11-05	24	49.5	41.0	7234	M. Paradis	1660		
		104	50.0	39.0	3469				
		179	46.0	34.7	4777				
		254	49.5	31.9	7231				
		339	43.5	35.8	4867				
		423	41.9	36.0	4462	_			
09-May-11	BL11-08	25	47.8	356.0	8841	L. Veiette	1674		
		100	45.3	35.0	0				
		175	42.8	20.0	3565				
11-May-11	BL11-07	75	46.4	3.1	5370	M. Paradis	1676		
		150	47.9	354.1	6139				
		230	45.2	83.3	3721				
15-May-11	BL11-06	75	49.2	38.4	0	M. Paradis	1679		
		150	46.7	20.1	6681				
		240	43.1	341.1	3790				

CONCLUSIONS

The following conclusions can be drawn from the 2011 diamond drill program by the Bending Lake Iron Group Ltd on the Northwest Zone:

- 1. Detailed 2010 mapping located 11 semi-continuous exposures of magnetite bearing iron formation over 3000m. Based upon this, four separate drill targets were defined and a fifth target was defined based upon Algoma's 1977 total magnetic ground survey.
- 2. All five drill holes (1,639m) intersected magnetite-bearing iron formation within a metasedimentary package of the bending lake area. Two separate magnetic units were defined, however, they are separated by a unit of waste rock: south unit averaged 25m thick of 25% magnetite central unit averaged 50m thick of waste rock north unit averaged 47m thick of 19% magnetite
- **3.** Holes BL11-03 to BL11-05 (986m) represent a 2200m defined extension of the Algoma's Northwest Stringer Zone. This is the northern section of the northwest iron Zone. These holes represent the following grades:
 - south unit averaged 35m thick of 23% magnetite central unit averaged 79m thick of waste rock north unit averaged 27m thick of 20% magnetite
- 4. Hole BL11-03 collarede into high-grade iron (>30% magnetite), representing the south unit of the Northwest Iron Zone, but was not located in outcrop or from the Algoma magnetic survey. Further work is needed to define the lateral extent of this south zone.
- 5. Several alteration zones (silica or sulphides) were located within these five holes and were assayed. However, only hole BL11-05 intersected 3 units (33m) of graphitic argillite +/- silica alteration with pyrrhotite-pyrite. Assays yielded weakly elevated Cu, anomalous Zn or elevated Ag values

The following conclusions can be drawn from the 2011 diamond drill program by the Bending Lake Iron Group Ltd on the Southeast Iron Zone:

- 1. Regional 2009 mapping located 3 semi-continuous exposures of magnetite bearing iron formation over 600m. Based upon this, one drill target was defined and two more targets were defined based upon Algoma's 1977 total magnetic ground survey.
- 2. All three drill holes (672m) intersected magnetite-bearing iron formation within a metasedimentary package of the bending lake area. One magnetic unit was defined and averaged 85m thick of 38% magnetite.
- 3. Using these three holes and Algoma's 1977 total magnetic ground survey, southeast iron zone was extended for an additional 1200m from the pit area.

Both the Northwest Iron Zone and the Southeast Iron Zone require additional drilling before they can be brought into compliance with NI43-101 resource calculations.

RECOMMENDATIONS

The following recommendations should be undertaken to further develop the Northwest and Southeast Iron Zones:

- New geophysical surveys can be completed on the property on the existing grid (L120E to L384E) to aid in the location of the iron formation and aid in the design of the open pit. Current technology exceeds 300m depths for magnetic surveys, however the 1977 Algoma total magnetic surveys had only a 30m depth penetration limit.
- 2. The following drill holes are recommended in order to assist with bringing the Northwest Iron Zone into resources calculations:

Hole	Grid Location	Reasons
А	L182.5E at 500S	Hole BL11-03 collared into iron formation and this will
	Azm: 0400 @ -500	determine true width of this undetected iron zone (by
	Depth: 650 ft (200m)	Algoma 1977 Magnetic Survey)
В	L192.5E at 200S	Intersect south iron zone (undetected) and 30m magnetic
	Azm: 040o @ -50o	target to north
	Depth: 825 ft (250m)	
С	L215E at 1100S	Intersect south iron zone (undetected) and 70m magnetic
	Azm: 040o @ -50o	target to north
	Depth: 1475 ft (450m)	

3. The following drill holes are recommended in order to assist with bringing the Southeast Iron Zone into resources calculations:

Hole	Location	Reasons
D	L329E at 150N	Intersect main zone of 80-100m thick of iron formation
	Azm: 0400 @ -500	
	Depth: 825 ft (250m)	
E	L339E at 300N	Intersect main zone of 80-100m thick of iron formation
	Azm: 0400 @ -500	
	Depth: 825 ft (250m)	
F	L346.5E at 400N	Intersect main zone of 80-100m thick of iron formation
	Azm: 0400 @ -500	
	Depth: 825 ft (250m)	
G	L357E at 200N	Intersect main zone of 80-100m thick of iron formation
	Azm: 0400 @ -500	
	Depth: 825 ft (250m)	

Line	Northing (ft)	Proposed Hole	Drill Hole Length (ft)	Core Cut (ft)	# Samp. (10 ft)	Samples Costs	Drilling Cost	Logging Costs	Cutting Costs	Supplies (Log/cut)	TOTALS	
L182.5E	500S	А	650	325	33	6500	19825	1189	650	119		
L192.5E	200S	В	825	413	41	8250	25163	1509	825	151		
L215E	1100S	С	1475	738	74	14750	44988	2698	1475	270		
L329E	150N	D	825	413	41	8250	25163	1509	825	151		
L339E	300N	E	825	413	41	8250	25163	1509	825	151		
L346.5E	400N	F	825	413	41	8250	25163	1509	825	151		
L357E	200N	G	825	413	41	8250	25163	1509	825	151		
			6250	3125	313	62500	190625	11433	6250	1143	271951	
			(1905m)									
							10% Com	oilation & Report			27195	
							10% Admi	nistration Costs			27195	
							5% Manag	jement Fees			13598	
							FINAL TOTAL					

- 1

1

nan anan anan anin disin kala anan t

REFERENCES

Behre Dolbear & Company (USA) Inc., Dec. 2008. Preliminary Review, Valuation, and Cash Flow Projection: Bending Lake Iron Ore Deposit and the Bending Lake Project (Behre Dolbear Project 08-149), 74p.

Felix, R. 1994. Noranda Mining and Exploration Inc. *in* Report on Geology and Geochemical Surveying 1994, Bending Lake Option, NTS 52F8, West Precambrian District.

Felix, V.E. 2006. Upper Manitou Lake area high-density regional lake sediment and water geochemical survey, northwestern Ontario; Ontario Geological Survey, Open File Report 6194, 77p.

Raoul, A. and Ravnaas, C. 2002. An Introduction to Volcanogenic Massive Sulfides: Bending Lake Area, an unpublished Fieldtrip Guide by the Kenora District Geologist's Office, Ontario Geological Survey.

Stone, D., Hellebrandt, B. and Lange, M. 2011. Precarribrian geology of the Bending Lake area (south sheet); Ontario Geological Survey, Preliminary Map P.3624, scale 1:20 000.

Stone, D., Hellebrandt, B. and Lange, M. 2011. Precambrian geology of the Bending Lake area (north sheet); Ontario Geological Survey, Preliminary Map P.3625, scale 1:20 000.

Thompson, Michael, HBSc., P.Geo. Nov.1/08. Independent Technical Report on the Bending Lake Property *for* Bending Lake Iron Group Ltd by Fladgate Exploration Consulting Corporation Exploration Consulting Corporation, 51p.

The following assessment files were located the Kenora District Geologist's Office at 810 Robertson Street, Kenora ON:

52F08SE A-1	Bending Lake Iron Fm	
52F08SE B-1	Bending Lake Prospect	
52F08SE D-1	Jalore Mining Co.	1954-56
52F08SE E-1	Stratmat,	1957
52F08SE C-2	Canadian Nickel,	1971
52F08SE	OGS Property Visit	1977
52F08SE F-1	Sulpetro Minerals	1982
52F08SE I-1	D. Calvert, A. Wing, A. Wallace	1990
52F08SE J-1	Noranda Expl.	1994
52F08SE J-2	Noranda Expl.	1994
52F08SE J-3	Noranda Expl.	1994
52F08SE J-7	Noranda Expl.	1994
52F08SE J-4	Noranda Expl.	1995
52F08SE J-5	Noranda Expl.	1995
52F08SE J-6	Noranda Expl.	1995
52F08SE K-1	Alex Glatz	1993
52F08SE	OGS Property Visits	2000
52F08SE	OGS Property Visits	2002
52F08SE	Bending Lake Prosp. Report	2010
52F08SE	Bending Lake Petrography Report	2010

			1	1						ending Lake			1		1			
Salary	9-Dec	10-Jan	10-Feb	10-Mar	10-Aug	10-Sep	10-Oct	10-Nov	10-Dec	11-Jan	11-Mar	11-Apr	11-May	11-Jul	11-Aug	Days	Cost	Subtot
leff King.			3690 15	2171 55														5851.7
.incutter			2680.15	3171.55														
Fom Palosaari, Lineutter	3583.40	3525.18	2777.58															9886.1
																		6198.6
id Anderson, Lincutter	4744.68	1453.99																0198.0
Travis Echum, Lincutter	4744.68	801.46	1093.96															6640.10
Nathan Morriseau.	(240.02	2646 71	20/7 01															10854.54
	6240.82	2546.71	2067.01															100,422
Ken Everett. Lineutter	1898.00	1008.52	1113.82														-	4020.34
lonathan McKay.																		12236.09
.incutter	2836.68	2187.95	1968.32	5243.14														12230.05
lraeme McKay, lineutter	3801.80	3915.14	3170.67															10887.6
Graeme																		
AcKaylexpenses	1039,50	1548.58	404,50															2992.5
Paul Parenteau, van driver for LC	2609.98																	2609.98
Crystal Shaw (Gardner) -																		
cook	3576.00	4500.00																8076.00
ine Grove - short stop / itchen	1699.55	730.88		2415.00														4845.43
elix Cutteet, labor core																		
office								956.25										956.25
A. Raoul, PGeo, Jeologist					7.00	18.50	6.00		4.50	3.00	0.00	13.50	9.00	3.50	13.50	78.50	500.00	39250.00
Allen Expenses						3963.90	1631.10		1707.45	0.00	0,00	1669.72	1480.37					10452.54
. Bolen, PGeo, Jeologist												16.00	7.00			23.00	678.00	15594.00
<u>coogia</u>																		
lack Expenses													482.24					482.24
A. Stevens, Core Cutters						18.00	13.00		5,00			11.50	12.00			59,50	200.00	11900.00
M. Leckner.						18,00	15.00		5,00			112.0	12100					
Core Cutters													66.50				15.60	1037.40
. Wetelainen.	2175 99			4437.13				4780.50			5352.81	9491.44	11680.81					37918.57
Eco Exploration	2175.88			4437.13				4760.00			2022-01	7471.44	TIOUSAN					
nileage (Eco)											1354.00	1939.00	3304.00			6597.00	0.57	3727.31
	2176.00							1220-10			2090.28	6453.09	965.48					12904.83
layton Expenses	2175.88							1220,10			2090.28	04,13,09	90.7.48					12704.6.
ine Grove accommodation	1540.00	4165.00	0.00	650.28									1600.00					7955.28
												17(01.00	2012240.02					324050 0
failette Drilling												47601.82	207249.03					254850.85
failette Drilling camp osts													13486.20					13486.20
-																		
one 14 GeoSolutions		4149.36	2479.50												3678.99			10307.85
weurassay Labs															12209.09			12209.09
OTALS																		518131.61

CERT IFICATE OF AUTHOR

- I, Allen J. Raoul, of the town of Fort Frances, in the province of Ontario, do certify as follows:
 - I am the Field Geologist with Bending Lake Iron Group Ltd ., with an office at... 201 Hardisty Street Thunder Bay, Ontario P7C 3G8 807-285-5364
 - 2) I achieved my Professional Geoscientist status with the Association of Professional Geoscientist of Ontario in December of 2010 Number 1925 (limited).
 - 3) I spent the previous three years in the Thunder Bay and Kenora Districts of Ontario for Bending Lake Iron Group Ltd as Field Geologist
 - 4) Starting in May of 2008, I spent the next 6 months in the Kenora District in Ontario for Rainy River Resources as Project Geologist.
 - 5) Starting in March of 2007, I spent the next 14 months in the Kenora District of Ontario for Western Warrior Resources Inc as Project Geologist and then Exploration Manager.
 - I spent the previous seven years, July 2000 February 2007, in the Kenora District of Ontario for the Ontario Geological Survey as Acting District Geologist and District Support Geologist.
 - 7) I have practiced my profession since 1990.
 - 8) I am a graduate of Mount Allison University, Sackville, New Brunswick with a B.Sc. in Geology in 1990.
 - 9) I am a graduate Mineral Technologist from the University College of Cape Breton, Sydney, Nova Scotia in 1987.

Permission is granted to Bending Lake Iron Group Ltd to publish this report dated August 31, 2011 for assessment purposes, raising of funds and other corporate purposes.

Allen J. Raoul, PGed #1925 Limited

APPENDIX A Sample Descriptions Fall 2010

Date	Group	Line (ft)	Picket (ft)	Northing	Easting	outcrop size	description
aug 24/10	AR & AS	L132E	OBL	5466411N	556548E	42m x 6m	northwest iron formation of 32% Mgt (hwy 622)
aug 24/10	AR & AS	L135E	220N	5466419N	556654E	3m x 3m	3m ledge of schistose greywacke
aug 24/10	AR & AS	L135E	310S	5466292N	556537E	6m x 2m	2m zone of >50% Po-Py with cherty frags
aug 24/10	AR & AS	L137.5E	200N	5466375N	556711E	1m x >5m	greywack ridgetop
aug 25/10	AR & AS	L140E	260S	5466207N	556674E	2m x 2m	mafic greywacke
aug 25/10	AR & AS	L140E	510S	5466147N	556628E	1m x 1m	folded greywacke with 6" white, quartz vein
aug 25/10	AR & AS	L142.5E	45N	5466230N	556794E	4m x 4m	sandy greywacke with 35% mgt and 1" QV
aug 26/10	AR & AS	L145E		5466189N	556857E	3m x 3m	sandy greywacke with >20% mgt
aug 26/10	AR & AS	L145E	130N	5466202N	556869E	10m x 7m	sandy greywacke with 25-30% mgt
aug 26/10	AR & AS	L145E	200N	5466220N	556883E	9m x 1m x 0.6m	trench @ 040o with 3m of exposed 25% mgt in sandy greywacke
aug 26/10	AR & AS	L146.70E	10N	5466148N	556880E	6m x 3m	sandy greywacke with <5% mgt
aug 31/10	AR & AS	L137.5E					no outcrop found
aug 31/10	AR & AS	L132.5E	660N	5466565N	556670E	12m x 12m	sandy greywacke
aug 31/10	AR & AS	L135E					no outcrop found
aug 31/10	AR & AS	L131.8E	620N	5466580N	556641E		Geodectic Survey of Canada marker #900168
aug 31/10	AR & AS	L131.8E	620N	5466580N	556641E	40m x 9m	sandy greywacke
sept1/10	AR & AS	L139.75E	850N	5466480N	556880E		old claim post - east face IVK 17887
sept1/10	AR & AS	L142.5E					no outcrop found
sept1/10	AR & AS	L145E					no outcrop found
sept1/10	AR & AS	L147.5E					no outcrop found
sept1/10	AR & AS	L150E	1000N	5466493N	556929E		old claim post -no tags or writing >15 yrs
sept1/10	AR & AS	L150E	1000N	5466493N	556929E		old claim post -no tags or writing but 2-5 yrs
sept 6/10	AR & AS	old trail		5465784N	556873E	4m x 4m	garnet-chlorite altered basalt
sept 6/10	AR & AS	old trail		5465759N	556889E	6m x 5m	intense altered garnet-chlorite basalt
sept 6/10	AR & AS	old trail		5465730N	556907E	3m x 4m	felsic fragmental / volcaniclastic

sept 6/10	AR & AS	old trail	5465620N	556936E	2m_x 2m	felsic fragmental / volcaniclastic
sept 6/10	AR & AS	old trail	5465566N	556936E	3m x 1m	chlorite-garnet altered basalt
sept 6/10	AR & AS	old trail	5465540N	556935E	5m x 2m	garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5463554N	559258E	200m x 100m	gabbro
sept 7/10	AR & AS	mine road	5463695N	559258E	50m x 50m	greywacke
sept 7/10	AR & AS	mine road	5463903N	559155E	12m x 2m	garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464163N	558832E	5m x 2m	gabbro
sept 7/10	AR & AS	mine road	5464185N	558681E	5m x 2m	gabbro
sept 7/10	AR & AS	mine road	5464336N	558533E	4m x 2m	garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464342N	558317E		basalt to garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464355N	558200E	25m x 8m	garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464398N	558120E	1m x 1m	basalt to garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464415N	558050E	3m x 2m	garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road		557915E	2m x 4m	basalt to garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464513N	557469E	6m x 2m	basalt
sept 7/10	AR & AS	mine road	5464540N	557438E	6m x 2m	basalt
sept 7/10	AR & AS	mine road	5464589N	557421E	6m x 2m	garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464763N	557506E	6m x 5m	basalt to garnet-chlorite altered basalt
sept 7/10	AR & AS	mine road	5464802N	557480E	6m x 6m	garnet-chlorite altered basalt with QV
sept 7/10	AR & AS	mine road	5465100N	557417E	10m x 6m	foliated basalt
sept 7/10	AR & AS	mine road	5465168N	557425E	25m x 3m	basalt with 3 QV
sept 7/10	AR & AS	mine road	5465372N	557143E	5m x 3m	basalt
sept 7/10	AR & AS	mine road	5465470N	557013E	12m x 5m	basalt / felsic volcaniclastic contact
sept 7/10	AR & AS	mine road	5465516N	556910E	25m x 15m	basalt
sept 7/10	AR & AS	mine road	5465538N	556816E	15m x 3m	basalt
sept 8/10	AR & AS	L150E				no outcrop found
sept 8/10	AR & AS	L152.5E		+		no outcrop found
sept 8/10	AR & AS	L155E				no outcrop found
sept 8/10	AR & AS	other	5465813N	556909E	4m x 5m	felsic fragmental with tr-1% py

sept 9/10	AR & AS	L157.5E					no outcrop found
sept 9/10	AR & AS	L160E	320N	5465800N	557152E		claim post - #1 of 4224392, #1 of 4204750
sept 9/10	AR & AS	L162.5E					no outcrop found
cont 14/10	AR & AS		70S		5570105		
sept 14/10				5465777N	557312E		claim post - #1 of 1196693
sept 14/10	AR & AS	L167.5E	140N	5465781N	557495E	12m x 5m	greywacke
sept 14/10	AR & AS	L170E					no outcrop found
sept 14/10	AR & AS	L172.5E					no outcrop found
sept 15/10	AR & AS	 L174.9E	390N	5465696N	557626E	15mx 1.5m x 1m	trench @ 0650 with no outcrop
sept 15/10	AR & AS	L177.5E	520N	5465675N	557700E	7m x 3m	greywacke with >20% mgt
sept 16/10	AR & AS	L180E					no outcrop found
sept 16/10	AR & AS	L182.5E					no outcrop found
<u>sept 10/10</u>					-		
sept 21/10	AR & AS	L185E					no outcrop found
sept 21/10	AR & AS	L187.5E					no outcrop found
sept 22/10	AR & AS	L190E					no outcrop found
sept 22/10	AR & AS	L192.5E					no outcrop found
sept 22/10	AR & AS	L195E - N			-		no outcrop found
sept 22/10	AR & AS	L197.5E- N	250N			21m x 2m x 1m	trench @ 0200 with no outcrop
sept 23/10	AR & AS	L195E - S					no outcrop found
sept 23/10	AR & AS	L195.8E	615S	5465065N	557940E	2m x 1m	greywacke
sept 23/10	AR & AS	L197.5E - S					no outcrop found
sept 23/10	AR & AS	L197E	510N	5465067N	557988E	25m x 1m	felsic fragmental with 1% py
sept 23/10	AR & AS	L200E -S	475S	5465023N	558069E	2m x 2m	greywacke
sept 23/10	AR & AS	L202.9E	400S	5464986N	558148E	6m x 5m	foliated gabbro
sept 23/10	AR & AS	L202.5E - S	500S	5464969N	558118E	30m x 18m	greywacke with 5-30% mgt
sept 28/10	AR & AS	L200E - N					no outcrop found

ľ

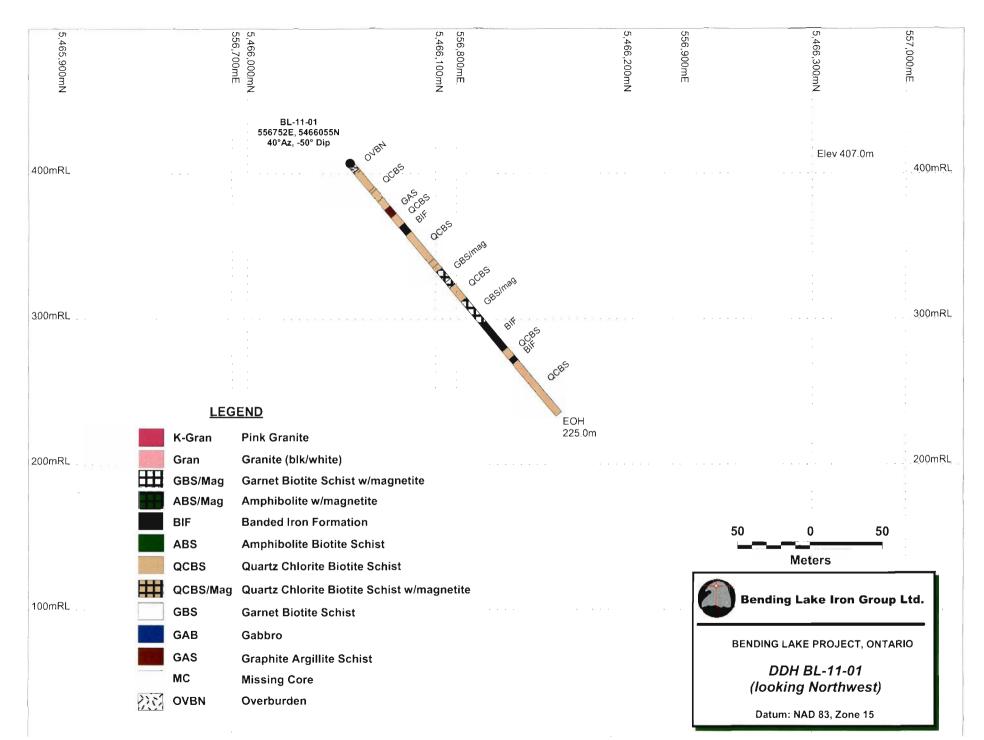
Г

sept 28/10	AR & AS	L202.5E- N					no outcrop found
sept 28/10	AR & AS	L205E- N					no outcrop found
sept 28/10	AR & AS	L207.5E- N					no outcrop found
sept 28/10	AR & AS	L205E- S	315S	5464969N	558209E	>30m x 18m	greywacke with >5-30% mgt
sept 30/10	AR & AS	L210E					no outcrop found
sept 30/10	AR & AS	L212.45E	100N	5464935N	558449E	4m x 1m	altered basalt with garnet-chlorite-anthophyllite- staurolite
oct 5/10	AR & AS	L217.8E	530S	5464511N	558304E	5m x 1.5m x 1m	trench @ 000o with no outcrop
oct 5/10	AR & AS	L217.6E	510S	5464520N	558302E	5m x 2m x 1.5m	trench @ 000o with no outcrop
oct 5/10	AR & AS	L217.6E	305S	5464568N	558338E	6m x 4m	greywacke
oct 5/10	AR & AS	L217.5E	95S	5464626N	558374E	8m x 4m	greywacke with 5-10% mgt
oct 5/10	AR & AS	L215E	_				no outcrop found
oct 7/10	AR & AS	L220E	710S			3m x 3m	greywacke contact with felsic poprhyry / volc.
oct 7/10	AR & AS	L222.5E	30N	5464512N	558524E	>50m wide ridge	greywacke with 20-25% mgt
oct 8/10	AR & AS	L225E	500S	5464360N	558465E	10m x 5m	garnet-chlorite altered basalt
oct 8/10	AR & AS	L225E	125N	5464448N	558572E	18m x 2m x 1m	trench @ 040o with 0.6m exposure of greywacke with 30% mgt
oct 8/10	AR & AS	L224.7E	125N	5464452N	558564E	12m x 7m	greywacke with 20-25% mgt
oct 8/10	AR & AS	L225E	40N	5464488N	558604E	5m x 10m	greywacke with >20% mgt
oct 8/10	AR & AS	L227.5E	900N	5464638N	558823E	18m x 6m	greywacke with 30% mgt / BIF
oct 9/10	AR & AS	L230E					no outcrop found
oct 9/10	AR & AS	L232.5E					no outcrop found
End of Mapp	J ping - Fall 201	10 - A. Raoul					

Appendix B Detail mapping of Northwest Zone at 1:2000 (3 sheets)

APPENDIX C 2011 Drilling Cross Sections BL11-01 TO BL11-08

BL-11-01		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start	7-Apr-11		
Finish	13-Apr-01		
Northing	5466055N	Grid Northing 5+50 South	
Easting	0556752E	Grid Easting 145+00 East	
Strike	040*	Dip -50*	
Core Size	3Q		
Logged by:		Allen J. Raoul BSc., PGeo	
From	To		MS
0.00	8.00	Casing, Casing left in hole,	
6.31	6.51	20cm of white, fine-grained, granite boulder	0.08
6.51	22.85	Garnet-bearing Greywacke	
		dark gray to dark green, fine to medium grained, greywacke with 5-15% fine chlorite-biotite within a matrix of fine quartz and	0.31-0.63
		feldspar rich sands. It contains 1-5% garnets, of 2-3mm size, with patches up to 12-15%. Bedding averages 0.5 to 5 cms and at	
		80° TCA. There small more mafic, pelitic zones under 10cm with up to 30% of biotite-chloritie with fibourous patches, possibly	
		actinolite. Several fractures or bedding with trace-5% pyrite but under 1% py overall. There are small magnetic zones with	
		trace to 3% magnetite but is not obvious in core.	
		10.00-10.25 several 3-5cm bands of 10% magnetite +/- trace-2% pyrite in chlorite-biotite pelitic zone	5.20
		10.56-10.82 5-10% fine magnetite in chlorite-biotite-rich pelitic zones	1.60
		11.30-13.70 2-5% fine magnetite in chlorite-biotite pelitic zone	16.80
22.85	24.83	Grey Sandstone	0.046-0.92
		light grey, medium-gained, well bedded sandstone at 80° TCA with 5% chlorite-biotite between the arkosic grains	
24.83	32.23	Garnet-bearing Graywacke	1.24-1.77
		similar to 6.51-22.85 with several units of <10cm of 5-10% magnetite in chlorite-biotite pelitic units and bedding at 80 $^{\circ}$ TCA.	
32.23		Felsic Volcanoclastics to Felsic Fragmental	_
		grey, fine-grained, bedded units of ash and coarser fragments of quartz and feldspar at 1-2mm with poor to moderate	
		bedding. Several large clasts from 5cm to 1m of chlorite-carbonate pelitic greywacke within the top of this volcanoclastic unit	
		there are selected fractures containing <1-5% pyrrhotite-pyrite mineralization	



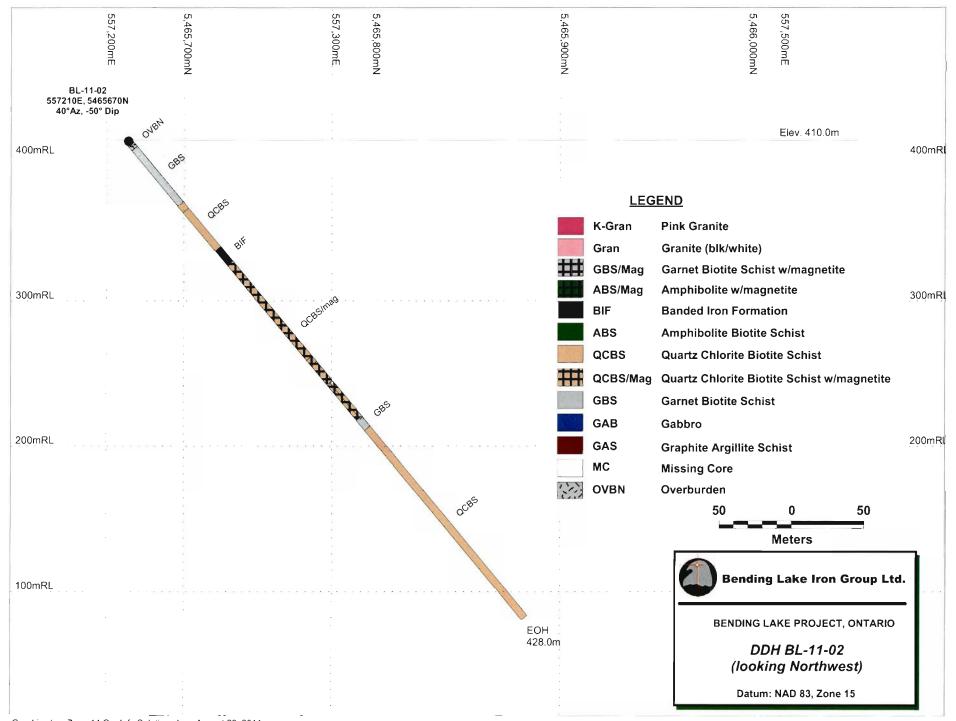
39.98	46.74	Graphitic Argillite	5.44-30.40
		dark grey to black, fine-grained, soft sediments of 3-10% graphite-bearing argillite with 1-15% fine Po +/- Py as stringers or	
		fractures and minor <5% calcite alteration; fine bedding developed. Locallized up to 40% graphite and 10-20% Po-Py along	
		fractures.	
		# 022 41.33 - 42.36 (1.03) <3% graphite within argillite with 8-15% py along fractures	0.0
		# 023 42.36 - 43.56 (1.20) 3% graphitic argillite with >5% py stringers	0.5
		# 024 43.56 - 44.66 (1.10) 3-10% graphitic argillite with 1-3% py stringers	0.51-2.1
		# 025 44.66 - 45.68 (1.02) 10-25% folded, graphitic argillite with 1-5% py stringers	0.8
		# 026 45.68 - 46.74 (1.06) 5-50% folded, graphitic argillite with 4-5% po stringers (locally up to 12% Po)	1.1
46.74	55.73	Grey Sandstone gradational to Chlorite-Biotite Greywacke	
		dark grey to black, fine to medium-grained, sandstone with <5% pelitic unit of chlorite-biotite-calcite with bedding at 80* TCA	0.20-0.7
		there are several 5-10cm chlorite-biotite pelitic units with 10% magnetite (2-5% unit) and 3-5 cm recrystallized quartz veins	25.0
		this grades into >80% chlorite-biotite schist (greywacke) with minor sandy units of grey sandstone.	0.85-2.1
55.73	63.05	Banded iron Formation (26% Mgt)	118.0
		dark grey to light grey, fine grained, well bedded at 800 TCA, magnetic, iron formation with 5-20cm sandy sections and several	
		40-60cm sections of chlorite-biotite-calcite pelitic zones that are non-magnetic. Average grade is 30-35% magnetite but 25% is	
		waste units, therefore grades averages 26% magnetite.	
		# 027 53.73 - 56.73 (3.00) 32% magnetite in sandstone	145.0
		# 028 56.73 - 59.73 (3.00) 22% magnetite in sandstone and chlorite schist	80.0
_		#028A Standard FER-2	
		# 029 59.73 - 63.05 (3.32) 20% magnetite in sandstone and chlorite schist	66.0
63.05	87.38	Garnet-bearing Sandstone	0.1
		light to dark green, fine to medium grained, well bedded at 80* TCA with thinnner (<10cm) pelitic sections of 10-15% of	
		chlorite-biotite with 5-10% garnets at 2-3mmm; locally up to 25% garnet over 10cm.	
87.38	91.67	Grey Sandstone	0.0
		dark grey to black, fine to medium-grained, arkosic sandstone with 5-8% pelitic units of chlorite-biotite with bedding 80* TCA	_
		there are thin beds (<10cm) of 50% chlorite-biotite within this unit.	
91.67	95.74	Cherty Sandstone to Greywacke	0.051-6.00
		unit begins as a white, fine-grained, cherty with 2-10% po (over 68cm) then grades into a greywacke with 10-15% chlorite-	
		biotite and thinner (<10cm), interbedded units of arkose. There are several 3-5cm pelitic beds of >30% chlorite-biotite with	

		2-5% Po and possible fine magnetite <3%; the Po averages 2% for the unit.	
		# 030 91.67 - 92.35 (0.68) 2-10% Po in cherty sandstone	0.54
95.74	105.26	Crow Sandstone with minor magnetite (2%)	
95.74	105.50	Grey Sandstone with minor magnetite (3%)	8.4
		dark grey to black, fine to medium-grained, arkosic sandstone with 5-8% pelitic units of chlorite-biotite with bedding 80* TCA	
		with 141 cm of 1-10 cm beds of 20-25% magnetite; this averages 3% magnetite over the unit	
105.36	110.29	Grey Greywacke with magnetite bands (10%)	25.4
		dark gray to dark green, fine to medium grained, greywacke with 5-15% fine chlorite-biotite within a matrix of fine quartz and	
		feldspar rich sands. It contains 1-5% garnets, of 2-3mm size. bedding averages 0.5 to 2 cms and at 80* TCA. This unit is	
		becoming increasing pelitic downhole (more chlorite-biotite and contains 3-25 cm, interbedded bands of 20-40% magnetite	
		over 169cm; this yielded an average of 10% magnetite	
		# 031 105.36 - 108.36 (3.00) 10% magnetite in greywacke	28.7
		# 032 108.36 - 110.29 (1.93) 10% magnetite in greywacke	23.8
110.29	122.51	Grey Sandstone to Grey Greywacke	D.101-0.20
		light grey, fine to medium-grained, arksosic sandstone with 5-8% pelitics that grades into a darker grey, medium-grained,	5.101 0.10
		greywacke with 12-20% pelitics (chlorite-biotite) with 1-3% garnets.	
122.51	143.84	Greywacke with magnetite bands (8%)	
		dark gray to dark green, fine to medium grained, greywacke with 5-20% fine chlorite-biotite within a matrix of fine quartz and	
		feldspar rich sands and trace-2% pyrite. bedding averages 0.5 to 2 cms and at 80o TCA. This unit is contains 3-20 cm beds of	
		10-50% magnetite over 544cm (in 21.33m) but the unit averages 8% magnetite.	
		# 033 122.51 - 125.51 (3.00) 5% magnetite in greywacke	13.0
		# 034 125.51 - 128.51 (3.00) 6% magnetite in greywacke	14.7
		# 035 128.51 - 131.51 (3.00) 8% magnetite in greywacke	41.9
		# 036 131.51 - 134.51 (3.00) 9% magnetite in greywacke	37.5
		#37A Crush Duplicate of 37	
		# 037 134.51 - 137.51 (3.00) 9% magnetite in greywacke	35.6
		# 038 137.51 - 140.51 (3.00) 8% magnetite in greywacke	47.5
		# 039 140.51 - 143.84 (3.33) 9% magnetite in greywacke	21.8
143.84	167.18	Banded iron Formation (30% Mgt)	88.9
		dark grey to light grey, fine grained, well bedded at 800 TCA, magnetic, iron formation with 5-20 cm sandy sections and several	
		40-60 cm sections of chlorite-biotite pelitic zones that are non-magnetic. BIF zones grade is variable from 40% magnetite to	

ſ

		8 % magnetite over the zone; therefore grades averages 20% magnetite.	
		# 040 143.84 - 146.84 (3.00) 40% magnetite in greywacke	94.51
		# 041 146.84 - 149.84 (3.00) 30% magnetite in greywacke	92.93
		# 042 149.84 - 152.84 (3.00) 25% magnetite in greywacke	75.78
		# 043 152.84 - 155.84 (3.00) 21% magnetite in greywacke	65.10
		# 044 155.84 - 158.84 (3.00) 15% magnetite in greywacke	53.50
		# 045 158.84 - 161.84 (3.00) 12% magnetite in greywacke	36.70
		#46A Standard FER-2	
		# 046 161.84 - 164.84 (3.00) 5% magnetite in greywacke	20.90
_		# 047 164.48 - 167.18 (2.60) 8% magnetite in greywacke	23.30
167.18	174.32	Graywacke	
		medium to coarse grained dirty sandstone, feldspathic, 20% 1-2 mm white grains of feldspar, locally interbedded silty beds	
		bedding variable 30 cm in sandstone. 2 - 8 mm in silty sections Bedding @ 172 m @ 70* to CA.	
		168.42 - 168.66 white unmineralized quartz vein, contacts sharp at 70*	
		169.67 -169.65 white quartz vein as above.	
		170.84 - 170.93 quartz vein, as above.	
		several 2 mm to 1 cm white quartz veins in fractures and along bedding planes over interval. 1% Of unit.	
174.32	178.32	Banded Iron Formation approximately 10 - 12% magnetite	30.10
		weak BIF. Bands as 2 cm to 20 cm well bedded IF separated by 20 to 1 metre beds of medium grained graywacke.	
178.32	225.00	Graywacke	
		Weakly garnetiferous as locallized bands up to 5%. Garnets are mostly restricted to the darker more pelitic beds which	
		make up 15% of unit. Local weakly graphitic beds. Dark black with an increase in garnets	
		187.5 to 188.5. 195.3 to 200.0 core is more friable and broken.	
		200 to 208 unit shows strong soft sediment deformation, slumping accompanyed by later weak brecciation and weak	
		silicification. Below 208 the unit is weakly silicified and more siliceous overall. Poor quartzite. Minor pyrite smeared on	
		bedding planes. <.10%.	
		Bedding / Foliation at 216 m @ 69* to CA.	
225.00	E.O.H.		

BL-11-02		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start	24-Mar-11		
Finish	3-Apr-11		
Northing	5465679	Grid Northing 4+70 South	
Easting	557201	Grid Easting 165+00 East	
Strike	040*	Dip -50*	
Core Size_B	3Q		
Logged by:		Jack A. Bolen BSc., PGeo	
		Allen J. Raoul BSc., PGeo	
From	То		Mag Susc
0.00	6.50	Casing, Casing left in hole, capped.	
6.50	56.08	Graywacke, dark gray to dark green, fine to medium grained. 10 to 15% fine disseminated biotite as matrix to fine quartz	
		sand. 2-3% garnets desseminated throughout, locally patchs with garnets up to 20% over .5 metre length. Garnets	
		typically 2-3 mm diameter but occasionally up to 5-6 mm diameter. Bedding typically 1 to 5 cms. Thinner beds of <.5 cm	
		are more mafic , pelitic with a higher % of biotite. Bedding consistant @ 82*n to CA. Localized patchy fibourous	
		actinolite. Very minor patchy bleaching along hstorical well sealed fractures. Bleaching typically < 1 cm width.	
		Minor disseminated patchy pyrite, locally up to 1 % as smeared disseminated grains along foliation planes.	
		33.0 - 37.0 Unit is weakly calcareous with pervasive bleaching, weakly chloritic up to 10%	
		39.3 - 39.78 white, massive quartz vein, no visable sulphides, contacts sharp at 30* to CA.	
		51.6 - 56.08 unit becomes more siliceous, 40% sericite altertion, 10% chlorite with up to 30% garnets, 1-2% pyrite smeared	
		along foliation planes, Schistose. Foliation strong at 82* to CA.	
typically 2-3 mm diameter but occasionally up to 5-6 mm diameter. Bedding typically 1 to 5 cms. Thinner beds of <.5 cmare more mafic , pelitic with a higher % of biotite. Bedding consistant @ 82*n to CA. Localized patchy fibourousactinolite. Very minor patchy bleaching along hstorical well sealed fractures. Bleaching typically < 1 cm width.			
		boudinage, numerous rounded clasts of chert up to 2 cm size. Matix of darker gray siliceous material, < 5% fine sericite and	
		very minor5 chlorite. Fine pyrite up to 2 % as disseminated grains. Po as blebs and stringers in fractures and along	
		foliation planes. Average 4-5%, locally up to 25%. Sulphides is confined to the matrix and not in the cherty clasts.	
		# 001 56.08 - 57.00 (.92) Cherty, gray, 50% chert clasts with a darker gray siliceous matrix, 2-3% fine disseminate4d pyrite in	
		matrix, minor chloriten as part of matrix.	
		# 002 57.00 - 58.00 (1.00) highly siliceous, 50% chert clasts, 50% siliceous matrix, weakly to moderately sericitic, 1-2%	
		fine disseminated pyrite in matrix and fractures. 2% Po as fine stringers in fractures.	
		# 003 58.0 - 59.00 (1.00) 60-70% chert clasts, matrix slightly more chloritic, 3-4% fine disseminated pyrite, 1% po.	
		# 004 59.00 - 60.00 (1.00) as above, 4-5% pyrite, 2% Po as stringers in fractures, highly siliceous.	

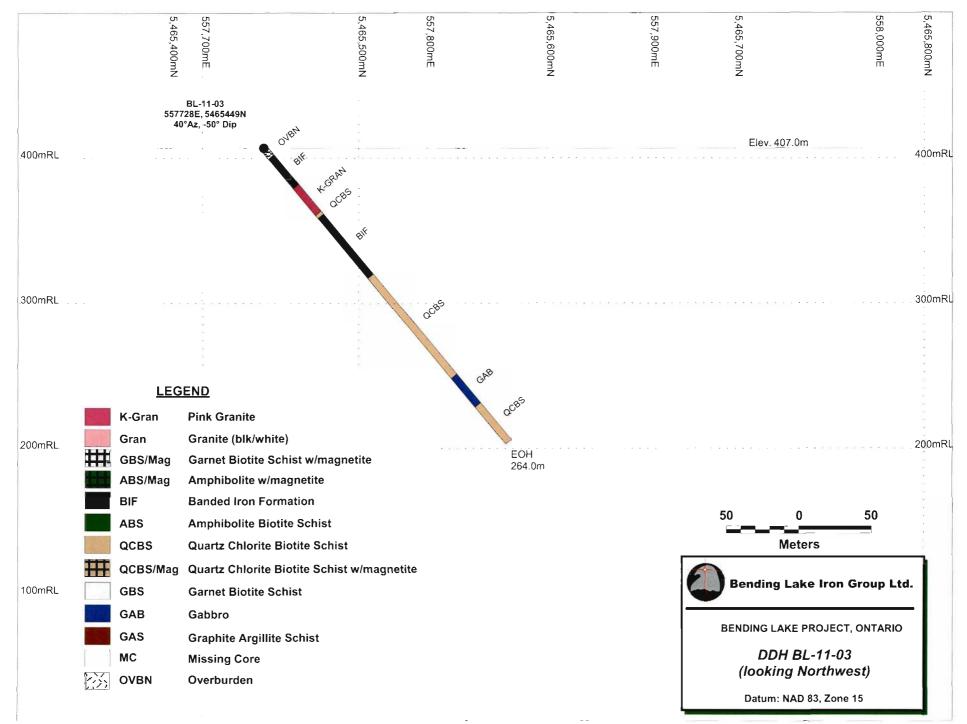

- 1

1

		# 005 60.00 - 61.00 (1.00) a stinger of 50% Po at beginning of sample with 5-6% Po as fracture filling in remaindr of	
		sample, 1-2% fine disseminated py in matrix.	
		# 006 61.00 - 62.00 (1.00) unit becomes less siliceous gradeing in to a bedded fine graines sandstone, weakly sericitic	
		1-2% fine disseminated py on foliation.	
62.00	96.69	Fine grained well beddid Siltstone which at 75 metres grades into a medium grained feldspathic sandstone. Sandstone is	
		feldspar phorphyritic with 40% white feldspar phenocrysts of 1-2 mm size. Massive not bedded, local minor interbeds	
		dark gray silty material.	
		Foliation/Bedding @ 75 m - 81*, 88 m - 78* to CA	
96.69	109.60	100.11 - 109.12 BIF gradational from the above sandtone in to a fine grained well bedded siltstone with minor 1-3 cm beds	
		making up 5% of unit. At 100.11 magnetite increases to 30-35% of unit as alternating beds of magnetite and chert.	
		Bedding variable from 2 mm to 3 cm.	
			201
		# 007 100.11 - 103.00 (2.89) siltstone/chert 20-25% magnetite	293
		# 008 103.00 - 106.00 (3.00) chert/magmetite. 50-60% magnetite. # 009 106.0 - 109.12 (3.12) chert/magnetite, 50% magnetite.	483
			524
109.60	249.00	Siltstone/fine sandstone, bedding .5 to 3 cm. Light gray. Occasional minor magnetite beds, < 2% of unit. Magnetite beds	
		are typically < 10 cm thick spaced 1-3 metres apart.	
		Foliation/Bedding 120 m @ 78*, 184 m @ 76*, 237 m @ 71* to CA.	
		Locally patchy garnets, pinhead 1-2 mm size which locally make up to 10% of unit.	
		At 195 to 217m magnetite bands become more frequent making up 12-15% of unit. Distinct 2 to 30 cm well bedded bands	
		of BIF separated by deci to metre bands of barren siltstone;	
		# 014 195.00 - 198.00 (3.00) 15% magnetite bands in sandstone	
		#14A Blank Silica Sand	
		# 015 198.00 - 201.00 (3.00) 15% magnetite bands in sandstone	
		# 016 201.00 - 204.00 (3.00) 15% magnetite bands in sandstone	
		# 017 204.00 - 207.00 (3.00) 15% magnetite bands in sandstone	
_		# 018 207.00 - 210.00 (3.00) 15% magnetite bands in sandstone	
		# 019_210.00 - 213.00 (3.00) 15% magnetite bands in sandstone	
		# 020 213.00 - 215.00 (2.00) 15% magnetite bands in sandstone	

		# 021 215.00 - 217.00 (2.00) 15% magnetite bands in sandstone	
_		MS 195 to 200 m 205	
		MS 200 to 205 m 187	
		MS 205 to 210 m 323	
		Ms 210 to 217 M 226	
249.00	258.00	Pelitic Sediment. Very fine grained, chloritic with 2-3% garnets of 1-2 mm size.	
		Bedding @ 254 m @ 70* to CA.	
		Core is friable, well bedded and broken into 2-3 cm lengths.	
258.00	428.00	Siltstone. Light gray, very fine grained, massive. Bedding 68* to CA. Bedding variable from 2 mm to 2 metres.	
230.00	420.00	Locally minor fine pyrite smeared on foliation planes. Minor very fine biotite and traces of chlorite. Occasional minor	
		patchy garnets < 1%.	
		Several small zones, <10cm, of chlorite-carbonate rich pelitic units with bedding at 850	
		#010 260.0 - 261.0 (1.00) weakly brecciated with 2-3% Po as cementing. Weak calcite veining, 1-2%	
		#011 261.0 - 262.0 (1.00) more brecciated than above sample, , weakly silicified. 4-5% Po as fracture filling.	
		#012 262.0 (1.00) as above, less brecciated, 1-2% Po. Weakly silicified.	
		#013 263.0 - 264.0 (1.00) as above.	
		259.45 - 259.9 (.45) Lost Core.	
		Bedding/Foliation 308 m @ 68*, 343 m @ 68*, 368 m @ 68*	
		359.22 - 359.25 Quartz Vein, gray to white, not mineralzed, irregular contacts.	
		367.18 - 367.34 Quartz Vein, white, massive, 3% calcite, contacts @ 70* to CA.	
		371.7 - 377.42 weak patchy silicification with minor cm quartz veinlets spaced a metre apart. 0 % visable sulphides.	
		377.26 - 377.42 white quartz vein.	
		381 - 381.23 brecciated white quartz vein, well cemented.	
		400.62 - 400.77 white quartz vein, trace pyrite, < .05%	
		412.00 - 413.20 (1.20) Lost Core.	
		414.66 - 415.00 (0.34) Lost Core.	
	428.00	END OF HOLE	

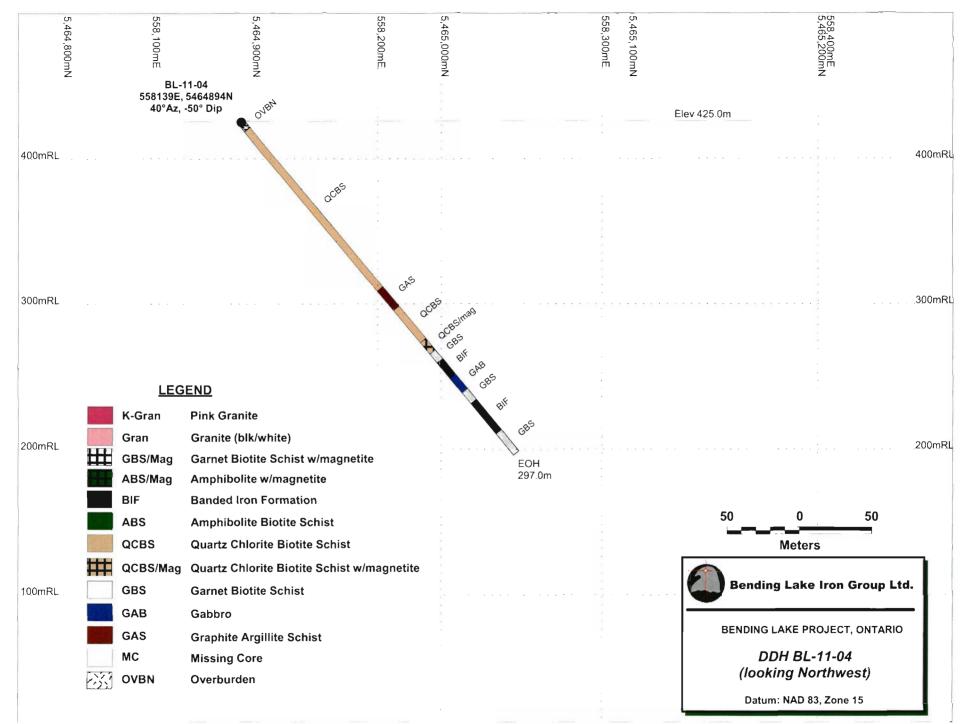
.


Graphics by: Zone 14 GeoInfo Solutions Inc., August 29, 2011 BL-11-02 2500 page size.wor

BL-11-3		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start	14-Apr-11		
Finish	19-Apr-11	Grid Northing 1+00 North	
Northing	5465445N	Grid Easting 182+50 East	
Easting	557727E		
Strike	040*	Dip -50*	
Core Size E	3Q		
Logged by:		Jack A. Bolen BSc, PGeo.	
From	То		Mag Susc
_0	8.2	Casing in boulder till, Casing left in hole, capped.	
8.2	34.4	Banded Iron Formation.	
_	_	alternating beds of fine grained magnetite and whitentom gray beds of siltstone/chert, bedding usually <1 cm.	
		Interbeds of siltstone and fine sandstone 1 cm to co cm thick. Bedding consistant @ 70* to CA.	
		#048 8.2 - 11.0 (2.80) BIF 40% magnetite	335
		#049 11.0 - 14.0 (3.00) BIF 40% magnetite	436
		#050 14.0 - 17.0 (3.00) BIF 35% magnetite, 25% silty interbeds with 10-12% garnets.	232
		# 51 17.00 - 20.0 (3.0) BIF 35% magnetite, 30% interbeds of siltstone with 10-12% garnets.	232
		#52 20.00 - 23.00 (3.00) BIF 35 - 40% magnetite 20% sand interbeds with 15n - 18% garnets	233
		#53 23.00 - 26.00 (3.00) BIF 50-60% magnetite, much of the magnetite is very fine grained in siltstone.	541
		#54 26.00 - 29.00 (3.00) BIF 45 - 50% magnetite,	399
		#55 29.00 - 32.00 (3.00) BIF 45% magnetite	424
_		#55A Duplicate 1/4 split of 55	
		#56 32.0 - 34.4 (2.40) BIF 30 - 35% magnetite	284
34.4	58.3	Granite Dike, massive fine grained. 30% 1-3 mm feldspar phenocrysts	3.7
		10% clasts of dark gray siltstone with, clasts typically < 10 cm.	
		clasts of magnetite - 39.72 - 39.82, 29.92 - 30.0, 40.53 - 40.62, 40.72 - 41.12. 59.55 - 59.7	
58.3		Siltstone, fine sandstone. Bedding @ 78* to CA.	4.7
61.43	115.38	Banded Iron Formation	
		cm to deci cmetrw bands of magnetite with interbeds of sandstone and siltstone, Low grade Iron	

		#57 61.43 - 64.0 (2.57) 25% magnetite	83.5
		#58 64.0 - 67.0 (3.00) 25 - 30% magnetite	106
		#59 67.0 - 70.0 (3.00) 33% magnetite	122
		#60 70.0 - 73.0 (3.00) 20-25% magnetite	92.3
	_	#61 73.0 - 76.13 (3.13) 25% magnetite	90.0
		73.19 -84.94 siltstone and fine grained sandstone with 5% garnets and 3-4% sillmanite.	12.9
		#62 84.94 - 88.0 (3.06) 30% magnetite	174
		#63 88.0 - 91.0 (3.00) 30% magnetite	192
		#64 91.0 - 94.0 (3.00) 40 -45% magnetite	287
		#64A Standard FER-2	
		#65 94.0 - 97.0 (3.00) 30 - 35% magnetite	231
		#66 97.0 - 100.00 (3.00) 30% magnetite	182
		#67 100.00 - 103.00 (3.00) 30% magnetite	197
		#68 103.0 - 106.0 (3.00) 35 - 40% magnetite	230
		#69 106.0 - 109.0 (3.00) 50% magnetite	276
		#70 109.0 - 112.0 (3.00) 30 - 35% magnetite	185
115.38	205.4	Siltstone with 20% interhades of conditions (are weaks. Operational small 1, 10 cm had of RIF, 22, 20% of whit	
115.50	203.4	Siltstone with 30% interbedes of sandstone/graywacke. Occasional small 1 - 10 cm bed of BIF, <2-3% of unit localized minor pinhead garnets <.25% and up to 1% sillmanite crystals.	15.4
		bedding/foliation @ 76* to CA.	15.4
		after 124 m magnetite beds are absent.	
		154 - 155 more pelitic with 5% small garnets, thinly bedded, very dark gray colour.	
		162.6 - 168.3 graphitic shale, dark gray to black, graphite, core broken and locally sheared.168 - 168.3 fault gouge.	
205.4	231.05	Anorthositic Gabbro	
		Intruded into sitstone/sandstone. Rom 205.4 to 214.84 a mix of gabbro and siltstone clasts. Approximately 50% of each.	0.043
		After 214.84 mainlt anorthositic gabbro with occasional accidental silstone clast. 214.84 to 219.18 - 10 % clasts	
		219 onward massive fine to medium grained anorthositc gabbro with 70% white plagioclase crystals of 1-3 mm size.	
		massive, medium grained. Upper mixed portion of unit is finer grained chilled with partial digestion of clasts.	
		Gabbro has occasionI speck of pyrite and magnetite.	
231.05	264	Siltstone, siliceous, very fine grained, cherty. 15% very fine disseminated biotite, dark gray colour.	0.29

		Intermittant bands of pinhead garnets, locally up to 2%. Bedding / foliation @ 70* to CA.	
		Minor white quartz veins 246.5 - 246.55, 246.75 - 246.80, 252.18 - 252.27	
264	E.O.H.		



Graphics by: Zone 14 GeoInfo Solutions Inc., August 29, 2011 BL-11-03 2500 page size.wor

BL11-04		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start .	19-Apr-11		
Finish	22-Apr-11	Grid Northing Line 222+50 East	
Northing	15U055813	Grid Easting 3+00 South	
Easting	5464894		
Strike	040*	Dip 50	
Core Size	BQ		
Logged by:	:	Jack A. Bolen BSc. PGeo.	
From	То		Mag Susc
0.00	6.40	Casing, Casing left in hole. Capped	
6.60	149.50	Siltstone / Fine grained Sandstone.	
		Alternating beds, siltstone is dark gray and usually contains up to 15% garnets, fine grained sandstone is light gray to whitish	
		in colour and rarely contains garnets. Bedding thickness is variable from mm to 2 cm in siltstone. 1 to 10 cm in sandstone.	
		Siltstone is 30% of unit. Sandstone is 70% of unit. 10% fine biotite, often as 3-4 mm clots in the sandstone.	1.17
		Bedding at 10 m @ 70*, 48 m @ 71*, at 89 m @ 74* to CA.	
		occasional speck of pyrite smeared on bedding planes. Below 109 m garnets disappear.	
		71.3 - 72.1 weakly graphitic shale.	
149.50	166.76	Graphitic Shale	
		very fine grained, ink black, massive. Strong foliation. 1-2% po. on bedding planes and along historic fractures.	1.57
		Bedding/Foliation at 155 m @ 71* to CA.	
166.76	196.00	Siltstone / fine grained Sandstone.	
		well bedded cm to decimetre. 15% dark gray shale material, 80% fine sandstone,	1.47
		Sandstone has spotty clots of biotite 2-4 mm length, in the coarser grained fraction.	
		minor interbeds of graphitic shale. 180.34 to 181.43, 182.08 to 182.30	
		Bedding/Foliation at 192 m @ 72* to CA.	
196.00	206.07	Siltstone with interbeds of BIF	
		#071 196.0 - 199.0 (3.00) siltstone with occasional 1 to 6 cm bed of maagnetite, 15% magnetite	57
		#072 199.0 - 202 (3.00) as above 20% magnetite	73

		#73A Blank Silica Sand	
		#073 202.0 - 204.0 (2.00) BIF, contorted bedding, 50 - 55% magnetite	21
		#074 204.0 - 206.07 (2.07) BIF as above, 40 - 50% magnetite	19
206.07	214.10	Sandstone, Graywacke	
		15% fine biotite, 2-3% garnets 1-2 mm in size, .5% sillmanite as 4-5 mm poorly defined crystals.	
		very minor weakly magnetic patchs	5.9
		traces of smeared pyrite on bedding plane, Bedding 211 m @ 65* to CA.	
214.10	228.13	Banded Iron Formation	
		2 to 20 cm beds of magnetite in a biotitic siltstone. Magnetite is very fine grained and is often finely disseminated	
		within the siltstone.	
		#075 214.1 - 217.0 (2.90) 35-40% fine grained magnetite in siltstone,	17
		#076 217.0 - 220 (3.0) 35-40% fine grained magnetite in siltstone	17
		#077 220.0 - 223.0 (3.00) BIF 30 - 35% magnetite interbedded with biotitc graywacke	95.
		#078 223.0 - 226.0 (3.00) 55 - 60% magnetite	320
		#079 226.0 - 228.13 (2.13) 35 - 40% magnetite	13
228.13	240.82	Anorthositic Gabbro	
		50-60% plagioclase phenocrysts set in a groundmass of biotite and hornblende. Fine to medium grained	
		numerous clasts of siltstone, and occasional small magnetite clasts. Clasts represent 25% of unit.	2:
240.82	250.77	Silttone/Graywacke	
		Local patchy garnets with traces of sillmanite.	
		a mix of fine grained siltstone and coarser biotitic sandstone (Graywacke) Well bedded on a cm scale	
		Bedding/Foliation at 246 m @ 74* to CA.	16.
250.77	277.90	BIF, poorly developed	
		20-30% banded iron formation in a thinly bedded siltstone. Magnetite bands 10 to 60 cm thick spaced up to 1 metre apart.	
		#80 250.77 - 253.5 (2.73) BIF 30 - 35% magnetite	122
		#81 253.5 - 256.85 (3.35) traces of IF as cm beds < 5% magnetite.	8.27
		#82A Standard FER-2	
		#082 256.85 - 260.0 (3.15) BIF, 30 - 35% magnetite	136

		#083 260.0 - 263.0 (3.00) 30 - 35% magnetite	121
	_	#084 263.0 - 266.0 (3.00) 30 - 35% magnetite	126
		#085 266.0 - 269.0 (3.00) 25 - 30% magnetite	89.5
		#086 269.0 - 272.0 (3.00) 25 - 30% magnetite	79.9
		#087 272.0 - 275.0 (3.00) 10 - 12 % magnetite	27.3
		#088 275.0 - 277.9 (2.90) 30 - 35% magnetite	121
	_		
277.90	297.00	Siltstone	
		thinly bedded, fine grained, 1-2% 1-2 mm garnets disseminated throughout.	
	_	Bedding/Foliation at 280 @ 74* to CA.	0.724
297.00	E.O.H		

Graphics by: Zone 14 GeoInfo Solutions Inc., August 29, 2011 BL-11-04 2500 page size.wor

BL - 11-05		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start	23-Apr-11		
Finish	29-Apr-11	Grid 3+00 South	
Northing	5464450	Grid L222+50 Easting	
Easting	558477		
Strike	040*	Dip -50*	
Core Size I	BQ		
Logged by:		Jack Bolen, P.Geo.	
		Allen Raoul, P.Geo.	
From	То		Mag Susp
0.00	4.30	Casing, Casing left in Hole, Capped.	
4.30	20.50	Graywacke Siltstone/Sandstone mix	
		10% amphibolite beds, 5-10% fine biotite, occasional patchy garnets.	
		Bedding/Foliation at 12 m @ 74* to CA. Bedding variable .5 to 20 cm.	
20.50	26.42		
20.50		Graywacke, mix of sandstone and siltstone, more pelitic than the above unit.	
		strong garnet alteration. Garnets 15 to 20% by volume, Bedding < 1 cm to 3 cm.	
		Bedding at 32 m @ 64* to CA.	
36.13	46.52	Sandy Iron Formation	18.100
	+0.52	fine to medium-grained, light grey, well bedded sandstone at 750 TCA with 10-15% disseminated magnetite and	18,100
		over 10% bands of dark, pelletic units with 15% magnetite	
		089 - 36.13 - 39.13 (3.00) - 10-15% magnetite in sandy argillite	17.220
		090 - 39.13 - 42.13 (3.00) - 10-15% magnetite in sandy argillite with minor chlorite-biotite schist	20.070
	-	#91A Crush Duplicate of #91	
		091 - 42.13 - 44.25 (2.12) - 10-15% magnetite in sandy argillite	14.070
		092 - 45.96 - 46.52 (0.56) - 10-15% magnetite in sandy argillite	7.400
		44.25 - 45.96 - Sandstone	
		medium to course grained, grey, moderately bedded sandstone at 750 TCA	2.410
	47.74		
46.52	47.74	Sandstone to Greywacke	

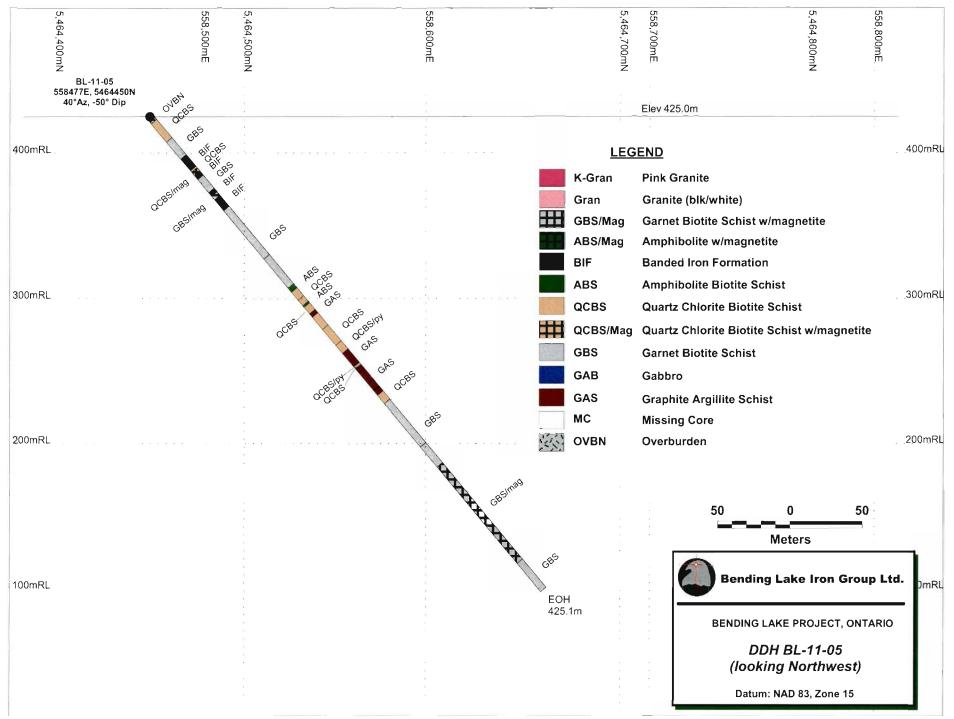
		medium to course grained, grey, moderately bedded sandstone at 750 TCA with interbedded, 10cm units of light green,	
		chlorite-biotite-carbonate greywacke	
		093 - 46.52 - 47.74 (1.24) - under 2% magnetite in chlorite-biotite greywacke	
47.74	51.29	Highly Banded Chlorite-Biotite Schist/Greywacke with Magnetite	164.0
		fine to medium grained, dark green, 1/4 to 1cm banding of chlorite-biotite, pelitic units with arkosic - magnetite matrix	
		small clots under 10cm of chlorite-biotite-carbonate	
		094 - 47.74 - 49.74 (2.00) - 30% magnetite in chlorite-biotite schist/greywacke	104.0
		095 - 49.74 - 51.29 (2.00) - 30% magnetite in chlorite-biotite schist/greywacke	205.0
51.29	54.35	Sandy Iron Formation	31.4
		fine to medium-grained, light grey, well bedded sandstone at 750 TCA with 10-15% disseminated magnetite and	
		over 10% bands of dark, pelletic units with 15% magnetite	
		096 - 51.29 - 54.35 (3.06) - 10-15% magnetite in sandy argillite	
54.35	66.30	Garnet-bearing Sandstone to Greywacke	1.0
		fine to medium-grained, grey, weakly to moderately bedded at 75o TCA, with 2-20% pink garnets at 1-3mm, weak	
		magnetite under 2%. Several small, pelitic subunits of 3-5cm of 20-40% chlorite-biotite-garnet and 10-20% magnetite;	
		these subunits make up 5-10% of the entire unit. Several 2-10cm quartz veins at 45-90o TCA.	
66.30	69.49	Sandy Iron Formation	15.1
		fine to medium-grained, light grey, well bedded sandstone at 750 TCA with 10-15% disseminated magnetite and	
		over 10% bands of dark, pelletic units with 15% magnetite	
		097 - 66.30 - 69.49 (3.19) - 8-12% magnetite in sandstone	
69.49	72.70	Highly Banded Chlorite-Biotite Schist/Greywacke with Magnetite	61.5
		fine to medium grained, dark green, 1/4 to 1cm banding of chlorite-biotite, pelitic units with arkosic bands, 25-40% Mgt	
		several pelitic bands of 3-10cm of chlorite-biotite-carbonate schist but no magnetite	
		098 - 69.49 - 72.70 (3.21) - 25-30% magnetite in chlorite-biotite schist/greywacke	
		70.75-71.00 - 25cm dike of white Kspar, porphyritic granite at 75o TCA	
72.70		Sandy Iron Formation to Argillite	77.1
		has 20% bands of 5-20cm of 30% magnetite in weakly magnetite, sandy iron formation, with 5-10% magnetite, but averages	

		12-15% magnetite. Can contain trace to 5% fine, pink garnets	
		099 - 72.70 - 74.98 (2.28) - 12-15% magnetite in sandstone	
		74.98 - 77.43, this units becomes transitional to a semi-massive, 20-50% magnetite within a grey argillite	55.80
		100 - 74.98 - 77.43 (2.45) - 25 -30% magnetite in grey argillite	
	_	100A Duplicate 1/4 split of 100	
		77.43 - 79.23, increasing pelitic content yield a medium grained, green, chloritic greywacke with 20-25% chlorite-biotite	15.70
		with minor carbonate at 70o TCA and under 2-3% magnetite	
		101 - 77.43 - 79.23 (1.80) - under 3% magnetite in chlorite-biotite schist	
		79.23 - 82.41 - magnetite-bearing argillite	74.80
		fin-grained, thinly laminated 1/8 - 1/2 cm, dark magnetite bands and light arkosic bands with under 10% chlorite - biotite	
		bands at 80o TCA with minor Z-folding of end of unit. Magnetite content varies from 20-50% but averages 25-27%	
		102 - 79.23 - 82.41 (3.18) -25-27% magnetite in argillite	
82.41	125.80	Grey Sandstone with Pelitic Garnet-Chlorite Bands	0.79
		fine-grained, light grey, well bedded sandstone with 5-90cm bands of pelitic bands of 2-20% fine to coarse garnet,	
		under 5% chlorite, with trace to 2% magnetite. Several large clasts over 20 cm of cherty sediment.	
		96.85 - 97.02 - 17cm section of 30% magnetite in argillite; possible clast	20.70
		102.08 - 102.43 - 43cm clast of 30% magnetite in chloritic argillite	15.20
		103.55-105.58 - 3cm bed of 10% magnetite in sandstone	2.11
125.80	151.75	Garnet bearing Greywacke	0.11
		fine-grained, dark green, weakly chloritic-biotitic 5% greywacke with 5-30% garnet as 2-4mm crystals	
		there are several 5-50cm sandy beds of fine-grained, interedded grey sandstone but no garnet	
		127.08m, 1cm dike of muscovite-plagioclase pegmatite	
		128.15m, 5cm white, quartz vein at 50o TCA	
		134.06m, 6cm white, quartz vein at 20o TCA	
		134.78m, 4cm folded, white quartz vein as M-fold along core axis	-
		139.78m, 3cm white, quartz vein at 50o TCA	
161 75	155.20		
151.75	155.30	Chlorite-Carbonate Greywacke	0.08
		fine to medim-grained, green, chlorite-biotite, greywacke with a 75 cm subzone of sporadic quartz	

155.30	162.43	Grey Sandstone	1.350
		grey, fine-grained, well bedded, feldspathic to arkosic sandstone with under 5% thin bands of chlorite-biotite with minor	
		carbonate and trace to 2% magnetite	
162.43	167.84	Felsic Volcaniclastics	
		fine grained, light grey to white, well bedded, felsic sediments composed of feldspar and quartz with over 10%	0.39
		felsic or mafic clasts under 3 cm and calcite along fractures; bedding at 75o TCA	
167.84	169.15	Chlorite-Biotite-Calcite Schist / Greywacke	0.13
		medium grained, green, chlorite-biotite over 15%, greywacke with minor calcite 2-3% at 75o TCA	
169.15	175.08	Interbedded Garnet Sandstone to Grey Sandstone	0.22
		fine grained, grey, well bedded, sandstone with trace to 2% garnet then interbeds with more pelitic units of 10-15%	
		pink garnet	
175.08	178.05	Graphitic Argillite with 3-20% Po - Py	1.41
		fine grained, black, laminated to folded unit of argillite with 10-20% grapjite and 3% Po-Py stringers to 20% Po-Py	
		as net-textured, sulphide, filled fractured.	
		103 - 175.08 - 176.08 (1.00) - 20% Po- Py in graphitic argillite	
		104 - 176.08 - 177.08 (1.00) - 20% Po- Py in graphitic argillite	
		105 - 177.08 - 178.08 (1.00) - 20% Po- Py in graphitic argillite	
178.05	189.01	Grey Sandstone to Greywacke	0.04
		fine grained, dark grey, moderately bedded wacke with 10% biotite-chlorite with subunits of 10 cm of arkose with	
		sporadic magnetite but under 1%. Several small quartz veins under 5 cm at 70-90o TCA	
		181.20-181.70 - patches of 2-20% Po along fractures but not sampled	
189.01	203.20	Felsic Volcaniclastics	0.22
		fine grained, light grey, well bedded, felsic sediments composed of feldspar and quartz at 75o TCA	
		from 191.17 - 191.60, there is a 43cm section of graphitic argillite with 10% graphite and under 5% calcite, trace to 2%	
		pyrite as stringers or along fractures	
203.20	210.50	Pyritic Felsic Volcaniclastics	0.04
		fine grained, light grey, well bedded, felsic sediments composed of feldspar and quartz at 75o TCA	
		pyrite content from 2 to 10% as very thin stringers, but increasing down-hole	

		0106 - 209.50 - 210.50 (1.00) - 3 to 5% average pyrite in felsic sediment	
210.50	222.50	Graphitic Argillite	0.39-0.0
		fine grained, black, thinly laminated at 75o TCA, with 5-30% graphite but averages 5-10% within argillite with 5% calcite	
		along fractures and trace to 1% Po-Py.	
		0107 - 210.50 - 211.50 (1.00) - 5% graphitic argillite with 5% pyrite	
		0108 - 211.50 - 212.50 (1.00) - 10% graphitic argillite with 1% pyrite	
		0109 - 212.50 - 213.50 (1.00) - 10% graphitic argillite with 1% pyrite	
		0110 - 213.50 - 214.50 (1.00) - 10% graphitic argillite with 1% pyrite	
		0111 - 214.50 - 215.50 (1.00) - 10% graphitic argillite with 1% pyrite	
		0112 - 215.50 - 216.50 (1.00) - 10% graphitic argillite with 1% pyrite	
		0113 - 216.50 - 217.50 (1.00) - 10% graphitic argillite with 1% pyrite	
		0114 - 217.50 - 218.50 (1.00) - 10% graphitic argillite with 1% pyrite	
		0115 - 218.50 - 219.50 (1.00) - 5% graphitic argillite with 2% pyrite	
		0116 - 219.50 - 220.50 (1.00) - 5% graphitic argillite with 2% pyrite	
		0117 - 220.50 - 221.50 (1.00) - 5% graphitic argillite with 2% pyrite	
		0118 - 221.50 - 222.50 (1.00) - 5% graphitic argillite with 2% pyrite	
222.50	224.05	Pyritic Felsic Volcaniclastics	0.04
		fine grained, light to medium grey, moderately bedded, felsic sediments composed of feldspar and quartz at 800 TCA	
		with < 5% felsic or mafic clasts and there is 5-25% interbedded pyrite; averages 10% Py.	
		0119 - 222.50 - 223.50 (1.00) - 5-7% Py in felsic volcaniclastic	
		0120 - 223.50 - 224.05 (0.55) - 10-12% Py in felsic volcaniclastic	
224.05	224.65	Felsic Volcaniclastics	0.02
		fine grained, light grey, well bedded, felsic sediments composed of feldspar and quartz at 75o TCA	0.01
		there is pyrite <2% fine pyrite interbeds or along along fractures	
		0121 - 224.05 - 224.65 (0.60) - <2% Py in felsic volcaniclastic	
224.65	225.15	Pyritic Graphitic Argillite	7.2
		fine grained, dark grey, weakly laminated at 75o TCA, with 3-5% graphite with thinner cherty beds	
		along 15% Py as disseminated and along fractures.	
		0122 - 224.65 - 225.15 (0.50) - 5% graphitic argillite with 15% pyrite	

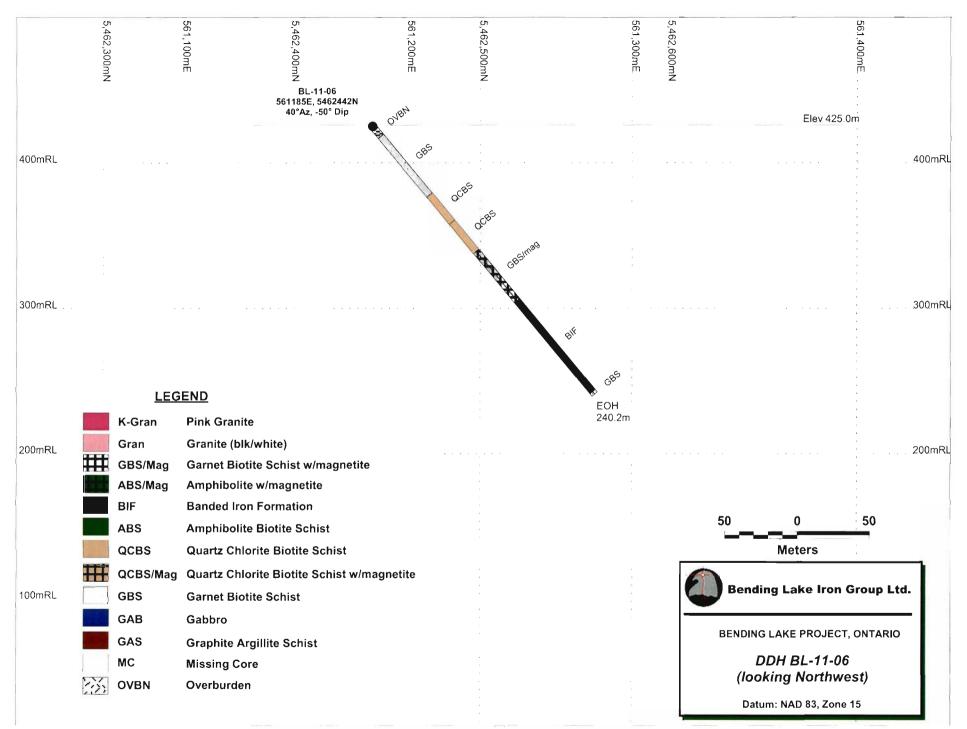
225.15	228.27 Interbedded Cherty Sediments with Argillite / Siltstone	0.025
	fine grained, grey to dark grey bands of siltstone with 2-5% graphite and thinner, light grey to w	hite, interbedded units of
	chert over 2-10cm. Trace to 3% pyrite as disseminations or along fractures.	
	0123 - 225.15 - 226.27 (1.12) - cherty argillite with 1% graphite and trace pyrite	
	0124 - 226.27 - 227.27 (1.00) - cherty argillite with 3% graphite and 1-3% pyrite	
	0125 - 227.27 - 228.27 (1.00) - cherty argillite with 1% graphite and 1% pyrite	
228.27	238.34 Graphitic Argillite to Siltstone	0.039
	fine grained, black, weakly laminated, argillite to siltstone, at 750 TCA, with 3-5% graphite, 1-5%	5 Py and occasional
	thin beds of chert <10cm	
	0126 - 228.27 - 229.27 (1.00) - 3-5% graphitic argillite with 3-5% pyrite	
	0127 - 229.27 - 230.27 (1.00) - 3-5% graphitic argillite with 1-3% pyrite	
	0128 - 230.27 - 231.27 (1.00) - 3-5% graphitic argillite with 1-3% pyrite	
	0129 - 231.27 - 232.27 (1.00) - 3-5% graphitic argillite with 1-3% pyrite	
	0130 - 232.27 - 233.27 (1.00) - with cherty bands in <3% graphitic argillite with 1-3% pyrite	
	0131 - 233.27 - 234.27 (1.00) - with cherty bands in <3% graphitic argillite with 1-3% pyrite	
	0132 - 234.27 - 235.27 (1.00) - with cherty bands in <3% graphitic argillite with 1-3% pyrite	
	0133 - 235.27 - 236.27 (1.00) - 3-5% graphitic argillite with 1-3% pyrite	
	0134 - 236.27 - 237.27 (1.00) - 3-5% graphitic argillite with 1-3% pyrite	
	0135 - 237.27 - 238.34 (1.07) - 3-5% graphitic argillite with 1-3% pyrite	
238.34	243.73 Intensely Folded Graphitic Argillite with Pyrite	0.039
	fine grained, dark grey, laminated argillite with 2-5% graphite and trace-5% Py. This unit has bee	en intensely folded along
	the core axis to produce M-folds.	
	0136 - 238.34 - 239.34 (1.00) - folded argillite with 3% graphite and 1% pyrite	
	0137 - 239.34 - 240.34 (1.00) - folded argillite with 3% graphite and 1% pyrite	
	0138 - 240.34 - 241.34 (1.00) - folded argillite with 3% graphite and 1% pyrite	
	0139 - 241.34 - 242.34 (1.00) - folded argillite with 3% graphite and 1% pyrite	
	0140 - 242.34 - 243.34 (1.00) - folded argillite with 3% graphite and 1% pyrite	
	0141 - 243.34 - 243.73 (0.39) - folded argillite with 3% graphite and 1% pyrite	
243.73	244.40 Silica Flooded Argillite	0.097
i	this sample consists of 43cm of over 90% silica overprinting of the argillite with small relic fragm	ents of argillite
	the other 24cm consists of the unaltered, graphitic argillite with 15% Py-Po	
	0142 - 243.73 - 244.40 (0.67) - partially silica flooded argillite with remenant graphitic argillite w	



1

244.40	248 34	Partially Silica Altered Argillite	0.61
		fin-grained, dark grey, 3% graphite in argillite that has 20-80% silica flooding, averaging 50%, with trace-1% Py	0.01
		0143 - 244.40 - 245.40 (1.00) - 50% silica flooded, graphitic argillite with 1%Py	
		0144 - 245.40 - 246.40 (1.00) - 50% silica flooded, graphitic argillite with 1%Py	
		0145 - 246.40 - 247.40 (1.00) - 50% silica flooded, graphitic argillite with 1%Py	
		0146 - 247.40 - 248.40 (1.00) - 50% silica flooded, graphitic argillite with 3-5% Py-Po	
		0147 - 248.40 - 248.84 (0.44) - 50% silica flooded, graphitic argillite with 1-2% Py	
248.34	255.78	Siltstone to Argillite	0.23
2.10101	200.70	fine-grained, dark grey, weakly chloritic 5%, siltstone with minor chlorite beds at 80o TCA	0.2.
255.78	294.96	Garnetiferous Schist / Greywacke	
		fine to medim-grained, dark green, with 10-20% chlorite-biotite bands with 5-20% medium, pink garnets at 2-4mm, weak	0.24
		to moderate bedding at 80o TCA with trace - 1% Po or Py	
		258.49 - 261.41 - Felsic Volcaniclastic	0.52
		fine grained, light grey, well bedded, felsic sediments composed of feldspar and quartz at 75o TCA	
		there are over 10% clastics of felsic or mafics but no sulphides	
		268.35 - 271.52 - Sandy Greywacke to Sandstone	0.03
		fine grained, medim to dark grey, weakly bedded at 80o TCA, with over 10% clasts of felsics or mafics	
		290.63 - 291.05 - 39cm band of 1-5cm bands of 10-15% magnetite with chlorite-garnet schist	8.0
		293.53 - 294.96 - 93cm band of 1-5cm bands of 10-15% magnetite with chlorite-garnet schist	36.8
294.96	313.00	Garnet Greywacke / Schist with minor Grunerite	0.7
		fine to medim grained, dark green, chlorite schist with 2-10% pink garnet and 1-5% tan, grunerite; grunerite can be	
		patchy but locallized to 5-10cm units of 10%	
313.00		Magnetite bearing Garnet Schist / Greywacke	98.9
		fine to medium grained, dark green, over 10% chlorite-biotite wacke with 1-10% garnet with under 5% calcite	
		3-40cm bands of magnetite, from 20-60%, within chert or argillite with sandy / arskoic sections	

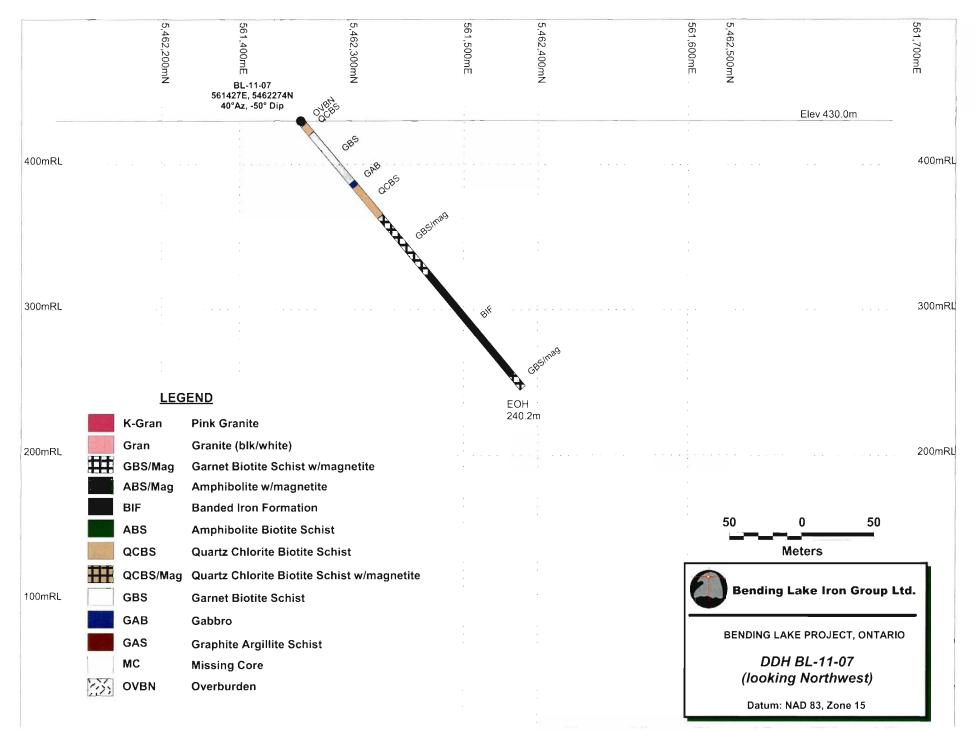
	0148 - 313.00 - 316.00 (3.00) - 8% magnetite in sandy wacke with 5cm of 10% Po	
	0149 - 316.00 - 319.00 (3.00) - 17% magnetite in wacke with trace Py	
	0150 - 319.00 - 322.00 (3.00) - 17% magnetite in wacke with trace Py	
	0151 - 322.00 - 325.00 (3.00) - 24% magnetite in wacke	
	0152 - 325.00 - 328.00 (3.00) - 20% magnetite in wacke	
	0153 - 328.00 - 331.00 (3.00) - 15% magnetite in wacke	
_	#154A Standard FER-2	
	0154 - 331.00 - 334.00 (3.00) - 20% magnetite in wacke	
	0155 - 334.00 - 337.00 (3.00) - 15% magnetite in wacke	
	0156 - 337.00 - 340.00 (3.00) - 16% magnetite in wacke	
	0157 - 340.00 - 343.00 (3.00) - 16% magnetite in wacke	
	343.00 - 348.46 - Garnet Schist	1.01
	similar to the above unit but under 2% magnetite as thin beds	
	0158 - 343.00 - 346.00 (3.00) - garnet greywacke with 2% magnetite	
	0159 - 346.00 - 348.48 (2.46) - garnet greywacke with 1% magnetite	
	348.46 - 365.84 - Magnetite bearing Garnet Schist / Greywacke	81.90
	similar to the above unit with 10-30% magnetite	
	0160 - 348.48 - 351.48 (3.00) - 8% magnetite in sandy wacke	
	0161 - 351.48 - 354.48 (3.00) - 8% magnetite in wacke	
	0162 - 354.48 - 357.48 (3.00) - 22% magnetite in sandy wacke	
	#163A Blank Silica Sand	
	0163 - 357.48 - 360.48 (3.00) - 27% magnetite in wacke	
	0164 - 360.48 - 363.48 (3.00) - 17% magnetite in wacke	
	0165 - 363.48 - 365.38 (2.38) - 18% magnetite in wacke	
	365.84 - 372.88 - Chloritic Greywacke	1.92
	medium-grained, dark green, chlorite-biotite over 10% with minor carbonate in arkosic matrix and under 2% magnetite	1.92
	0166 - 365.84 - 368.38 (3.00) - chloritic wacke with 2% magnetite and 6 inch quartz vein	
	0167 - 368.84 - 371.38 (3.00) - chloritic wacke with 2% magnetite	
	0168 - 371.84 - 372.88 (1.04) - chloritic wacke with 2% magnetite	
	372.88 - 399.64 - Magnetite bearing Garnet Schist / Greywacke	62.50
	similar to the above unit with 10-30% magnetite	


	425.10	END OF HOLE	
		of biotite, under 2-3mm	
		fine-grained, light grey to white, sandstone with over 50% precipated chert in a sandy matrix with thin, 5cm beds of pelitics	
		419.80 - 422.67 - Cherty Sandstone	0.041
		0178 - 416.20 - 416.80 (0.60) - 5-20% pyrite in fractures with schist	
		416.20 - 419.80 - 60cm section of 5-20% Po along fractures within garnet, chlorite schist	1.09
		minor quartz veins at 800 TCA, paralleling to bedding, and rare to 1% magnetite. Trace - 1% Py as fractures or disseminated.	
		fine to medium grained, dark green, chlorite-biotite over 10% with 2-10% pink garnets with subunits of sandy / arkose,	0.721
399.64	425.10	Garnet Chlorite Schist / Greywacke with Sandstone Interbeds	0.421
		0177 - 396.88 - 399.64 (3.00) - 12% magnetite in garnet-chlorite schist	
		0176 - 393.88 - 396.88 (3.00) - 11% magnetite in garnet-chlorite schist	
		0175 - 390.88 - 393.88 (3.00) - 14% magnetite in sandy wacke with 5cm of 10% Po	
-		0174 - 387.88 - 390.88 (3.00) - 13% magnetite in sandy wacke	
		0173 - 384.88 - 387.88 (3.00) - 18% magnetite in sandy wacke	
		#172A Standard FER-2 0172 - 381.88 - 384.88 (3.00) - 21% magnetite in sandy wacke	
		0171 - 378.88 - 381.88 (3.00) - 16% magnetite in sandy wacke	
		0170 - 375.88 - 378.88 (3.00) - 30% magnetite in sandy wacke	
		0169 - 372.88 - 375.88 (3.00) - 21% magnetite in sandy wacke	

BL-11-06		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start	12-May-11		
Finish	13-May-11		
Northing	5462442N	Grid Northing North	
Easting	561185E	Grid Easting	
	040*	Dip -50*	
Core Size			
Logged by:		Jack A. Bolen PGeo.	
From	То		
0.00		Casing, Casing left in hole. Capped.	
0.00	5.00		
9.00	61.60	Greywacke	3.14
5100	01.00	strong garnet alteration, garnets 2 - 5 mm in size disseminated throughout, , 5 to 6%, locally up to 15%, 15% fine biotite.	
		a mix of sand and silt, dark gray with interbedded light gray arkosic sand (15%) well bedded from mm to decimetre.	
		locally weakly chloritic, usually with an increase in garnets. Some beds are truncated due to soft sediment slumping.	
		minor quartz veining spaced metres apart, quartz veins 11.15 - 11.25, 13.82 - 13.97, 19.52 - 19.54, 30.55 - 30.63, 30.02 - 30.08	
		34.52 - 34.56, 38.55 - 38.58, 62.02 - 62.0. qv have random orientation	
		Bedding/Foliation at 17 m @ 75*, 35m @ 75*, 48 m @ 75*, 60 m @ 71* to CA.	
61.60	86.00	Sandstone / Siltstone	0.248
		Sand and silt beds become more differentiated and distinct. 50% of each. Siltstone is dark gray, sandstone is light gray.	
		Garnets almost disappear and where present are confined to the more pelitic siltstone beds. Siltstone beds are often	
_		truncated due to soft sediment slumping, Siltstone is biotitic with up to 15% very fine biotite. Sandstone is weakly sericitic.	
		Bedding/Foliation 71 m @ 74*, 82 m @ 76* to CA	
86.00	111.90	Sandstone, Arkosic	
		strong sericite alteration, a poor sericite schist. 90% white to light gray sandstone, grains are indistinct, mainly altered to	0.0825
		fine sericite. 10% darker gray siltstone, siltstone beds are often truncated leaving oblong clasts with indistinct boundaries	
		blothcy appearance.	
		Bedding/Foliation 87 m @ 79*, 95 m @ 81*, 101 m @ 78* to CA.	
111.90	156.27	Greywacke	10.8
		mix of sandstone and siltstone. 4-5% disseminated garnets, mainly confined to the more pelitic siltstone beds	
		30% light gray fine grained sandstone, 60% darker gray fine siltstone with interbeds of BIF. BIF beds rarely exceed 10 cm in	
		length spaces decimetre to metres apart.	

		1
	BIF beds 114.47 - 114.53, 123.54 - 123.59, 124.1 - 124.15, 124.63 - 124.73, 125.16 - 124.23, 125.72 - 125.79, 126.42 - 126.42	
	30.03 - 130.04, 132.75 - 133.03, 134.8 - 134.9, 136.2 - 136.3, 137.4 - 137.44, 138.09 - 138.12, 138.49 - 138.54, 140.06 - 140.16	
	140.9 - 141.05, 144.15 - 145.2, 144.65 - 14.76, 145.26 - 145.46, 146.17 - 146.37, 154.04 - 154.13, 155.0 - 155.1.	
	Most of the small BIF beds are high grade, > 50% magnetite, areas between BIF beds have MS of <10 3% iron	
	Bedding/Foliation at 122m @ 70*, 137 m @ 74*, 150 m @ 75* to CA.	
156.27	237.84 BIF	
	banded iron formation in fine grained siltstones and very fine sandstones. Top 10 metres have BIF as beds spaced	
	decimetres apart grading into a more consistent massive BIF.	
	#308 156.27 - 159.0 (2.73) 20% magnetite in siltstone	13
	#309 159.0 - 162.0 (3.00) 20% magnetite as 10 cm beds	98.
	#309A duplicate 1/4 split of 309	
	#310 162.0 - 165.0 (3.00) 40% magnetite	28
	#311 165.0 - 168.0 (3.00) 40% magnetite	23
	#312 168.0 - 171.0 (3.00) 40 - 45% magnetite	27
	#313 171.0 - 174.0 (3.00) 50 - 55% magnetite	42
	#314 174.0 - 177.0 (3.00) 55 - 60% magnetite, cherty	49
	#315 177.0 - 180.0 (3.00) 55 - 60% magnetite	46
	#316 180.0 - 183.0 (3.00) 60 - 65% magnetite	49
	#317 183.0 - 186.0 (3.00) 50% magnetite	398
	#318A Standard FER-2	
	#318 186.0 - 189.0 (3.00) 60% magnetite	404
_	#319 189.0 - 192.0 (3.00) 45 - 50% magnetite	332
	#320 192.0 - 195.0 (3.00) 20 - 22% magnetite, 50% sandy beds, minor <5% chlorite	67.9
	#321 195.0 - 198.0 (3.00) 30 - 35% magnetite, very fine grained in fine siltstone	21
	#322 198.0 - 201.0 (3.00) 50- 55% magnetite, poorly bedded, very fine grained disseminated	310
	#323 201.0 - 204.0 (3.00) 40% very fine grained disseminated magnetite in siltstone, poorly bedded	200
	#324 204.0 - 207.0 (3.00) 40 - 45% magnetite, well bedded on a mm scale, cherty	365
	#325 207.0 - 210.0 (3.00) 40% magnetite, well bedded, cherty	28
	#326 210.0 - 213.0 (3.00) 60 - 65% magnetite, fine grained, disseminated	444
	#327 213.0 - 216.0 (3.00) 70 - 75% magnetite, fine grained, disseminated.	488
	#327A Blank Silica Sand	
	#328 216.0 - 219.0 (3.00) 60 - 65% magnetite, fine grained, disseminated, weakly cherty.	409

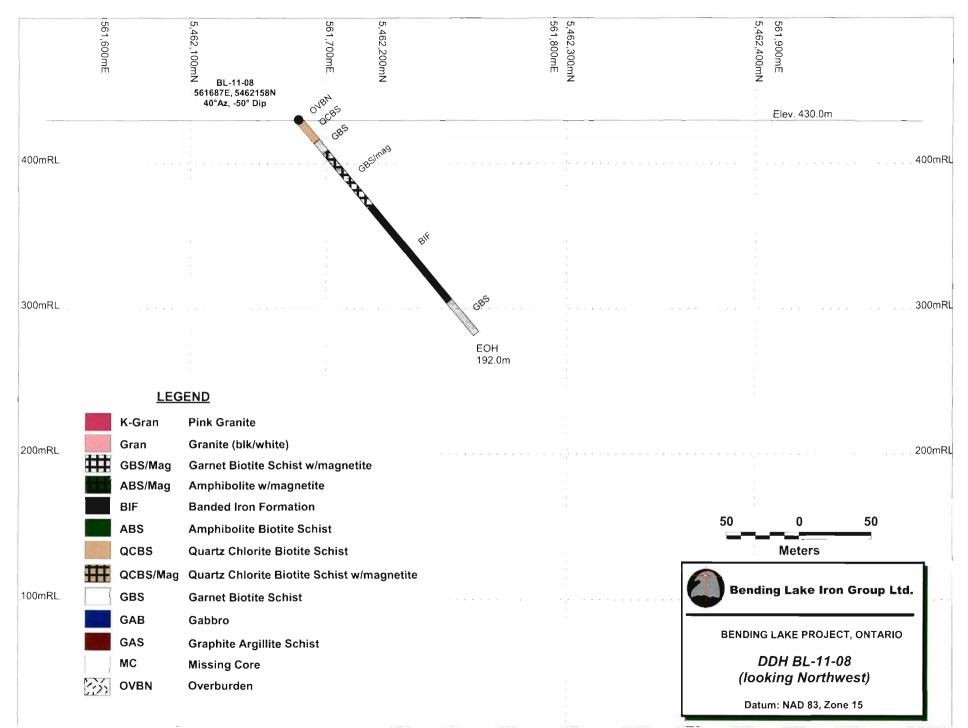
		#329 219.0 - 222.0 (3.00) 40 - 45% magnetite, very fine grained disseminated.	285
		#330 222.0 - 225.0 (3.00) 40 45% magnetite, 30% silty/sandy beds	270
		#331 225.0 - 228.0 (3,00) 45% magnetite, 10% chlorite, 10% quartz veining	290
		#332 228.0 - 229.82 (1.82) 50% magnetite, mm scale banding	357
		#333 229.82 - 232.0 (2.18) 30% magnetite, sandstone with fine disseminated magnetite	114
		#334 232.0 - 235.0 (3.00) 40% magnetite, well bedded	197
		#335 235.0 - 237.84 (2.84) 30% magnetite, 20% sandstone beds, garnets starting to appear.	153
237.84	240.00	Greywacke	
		strong garnet alteration, 15-20% garnets, 2-3 mm size4., biotitic, 15-20% very fine biotite	
		#336 237.84 - 240.0 (2.16) greywacke, strong garnet alteration.	8.28
240.00 E	.O.H.		
		Bit went at 240 metres. The intent was to change the bit and drill another 25 metres. When pulling the rods the reaming	
		shell and bit caught the casing and broke off in the hole. When they tried to retrieve the reaming shell at 9 m, the	
		core barrel and core tube were badly damaged. The expense of drilling out the reaming shell was to great so I decided	
		to abandon the hole. No down hole testing with the Reflex instrument was possible.	


BL-11-07		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start	May 9/11		Mag Suso
Finish	May 12/11		
Northing	5462274N	Grid	
Easting	561427E	Grid	
Strike	040*	Dip -50*	
Core Size	BQ		
Logged by	: J. A. Bolen	P.Geo.	
	A. Raoul	P.Geo.	
From	То		
0.00	3.65	CASING, Casing left in hole, capped.	
3.65	11.23	Grey Sandstone	0.0544
		fine grained, light grey, well bedded at 75* to CA	
		arkosic sandstone with <5% laminea of chlorite and biotite	
		8.05 - 8.19 (0.14) dike of chloritic basalt	
		8.70 - 9.3 <10 cm of rubble grey sandstone, 50 cm of last core, fault??	
11.23	54.01	Garnet/Chlorite Schist (Greywacke)	0.102
11.25	54.51	medium grained, light green, chloritic >5% chlorite schist increasingly felsic down hole, trace pyrite as isolated grains	0.163
		smeared along foliation/bedding planes.	
		43.25 0 43.30 (0.05) band of chlorite/biotite schist with 5% magnetite	
		43.23 0 43.30 (0.03) band of chlorite/blotite schist with 5% magnetite	
		at 38.1 a 3 cm band of chlorite schist.	
54.91	58.57	Gabbro Dike	
		medium grained, massive, weak chlorite on contacts, contacts sharp. Contaminated with 40% clasts in top 1.5 metre,	0.268
		clasts are partially digested.	
58.57	85.70	Siltstone / Sandstone.	
		alternating beds of light gray to whitish fine grained sandstone and darker gray siltstone. Beds typically < 1 cm.	0.148
		70% fine sandstone, 30% siltstone. Minor <.5% scattered garnets of 1-3 mm size. Locally, weakly sericitic.	
	_	bedding at 50 m @ 70*, 80 m @ 70*,	
		73.5 - 74.0 Dike. Strongly biotitic >60%, possible lamp dike.	

85.70	139.15	Greywacke, dirty sandstone with strong bands of garnets, dark gray with 15% interbeds of lighter gray sandstone.	7.6
		moderately biotitic, 15% as very fine grains. Garnets locally up to 20% over decimetre lengths. 10% average.	
		localized patchy magnetite up to 10% over 10 cm lengths usually associated with strong garnet alteration.	
		below 110 metres occasional beds of banded Iron formation, rarely exceeding 15 cm in length spaced metres apart.	
		BIF beds 111.13 - 111.28, 112.23 - 112.43, 117.66 - 117.69, 121.31 - 121.45, 122.0 - 122.05, 124.59 - 124.67, 126.05 - 126.15,	
		126.82 - 1295, 127.59 - 127.82, 128.17 - 128.22, 128.78 - 12886, 132.2 - 170, 123.16 - 123.22, 133.8 - 133.92, 134.10 - 134.14,	
		Mag rich unit have a MS of 367, high grade.	
		bedding at 113 @ 66*, 134 m @ 64*	
120.15	228.00		
138.15	228.00	Greywacke with interbeds of BIF.	
		4-5% garnets in top 3 metres 10% magnetite, sandstone, fine to medium grained, well bedded.	
		#277 139.15 - 142.0 (2.85) bedding, 10 to 15 cm, 5-6% garnets, 20% magnetic beds,	63
	_	#278 142.0 - 145.0 (3.0) Greywacke with inter beds of BIF 30% magnetite	1
		#279 145.0 -147.0 (2.00) Chloritic Greywacke 40% magnetite.	2
		#280 147.0 - 150.0 (3.00) BIF in siltstone 40-50% magnetite	2
		#281 150.0 - 153.0 (3.00) BIF 40-45% magnetite	19
		#282A Standard FER-2	
		#282 153.0 - 156.0 (3.00) BIF 30% magnetite	1
		#283 156.0 - 159.0 (3.00) BIF 50-60% magnetite	3
		#284 159.0 - 162.0 (3.00) BIF 50 - 60%% magnetite	3
		#285 162.0 - 165.0 (3.00) BIF 40% Magnetite	2
		#286 165.0 -168.0 (3.00) BIF 50-60% magnetite	34
		#287 168.0 - 171.0 (3.00) 50% sandy beds, 30% magnetite	93
		#288 171.0 - 174.0 (3.00)65 70% sandy beds 25-30% magnetite.	12
		#289 174.0 - 177.0 (3.00) as above, 25 - 30% magnetite	13
		#290 177.0 - 180.0 (3.00) 30-35% magnetite	19
		#291 180.0 - 183 (3.00) 75% garnetiferous siltstone, 25% BIF 25-30% magnetite.	16
		#291A Crush Duplicate of #291	
		#292 183.0 - 186.0 (3.00) as above 15-20% magnetite	90
		#293 186.0 - 189.0 (3.00) 45 - 50% magnetite, 50% siltstone	37
		#294 189.0 - 191.6 (2.60) broken core, BIF 40 -45% magnetite	20
		191.6 - 192 . (0.40) Lost Core	
		#295 192.0 - 195.0 3.00) very fine disseminated magnetite in fine grained siltstone poorly bedded, 60 - 65% magnetite.	35

- 1

 (


	#296 195.0 - 198.0 (3.00) as above, 50 - 55% very fine magnetite.	289
	#297 198.0 - 201.0 (3.00) well bedded, 2-5 mm scale, very fine grained magnetite in siltstone. 55-60% magnetite	378
	#298 201.0 - 204.0 (3.00) as above	319
	#299 204.0 - 207.0 (3.00) as above, more sandy beds, 10 cm qv at 204.5 to 204.6, 40-45% thin magnetite beds	209
	#300 207.0 - 210.0 (3.00) thinly bedded, 50-55% magnetite, very fine grained	348
	#300A Standard FER-2	
	#301 210.0 - 213.0 (3.00) as above, 55-60% magnetite	392
	#302 213.0 - 216.0 (3.00) as above, 50 - 55% magnetite	316
_	#303 216.0 - 219.0 (3.00) as above 55-60% magnetite	408
	#304 219.0 - 222.00 (3.00) 50% magnetite	292
	#305 222.0 - 225.0 (3.00) 60% sandy beds, 35 - 40% magnetite	121
	#306 225.0 - 228.0 (3.00) 50-60% sandy/silt beds with 1-2% garnets 30% magnetite	161
228.00	240.20 Siltstone/Sandstone, fine to medium grained.	
	strong garnet alteration, 10 -12% garnets, bedding on a decimetre scale, Bedding at 237 m @ 65* to CA.	13.4
	minor disseminated magnetite, <5%	
	#307 228.0 - 231.0 (3.00) siltstone, strong garnet alteration, minor <2% chlorite, 10% biotite, <10% magnetite	35.6
240.20 E.C		

BL 11-08		Bending Lake Iron Group Limited, Bending Lake, Ontario	
Start	May 5/11		
Finish	May 7/11		
Northing	5462158N	Grid	-
Easting	561687E	Grid	
Strike	040*	Dip -50*	
Core Size	BQ		-
Logged by:	A. Raoul	P.Geo.	
From	То		MS
0.00	1.50	Casing	
		50cm of broken rock from 2.50-3.00m; mis-numbered or missing core	
2.50	19.29	Felsic Volcaniclastics	0.0967
		fine to medium-grained, light grey to white, poorly to moderately bedded, felsic tuff or sediments with 5-10% clasts of	
		of felsic or mafic rocks	
		at 5.93m, 60cm subunit of chloritic greywacke/schist	
		at 15.55m, 10cm chloritic mafic dike at 60o TCA with overprinted 4cm white, paralle, quartz vein at 60o TCA	
19.29	29.00	Garnet Schist/Greywacke plus minor Chlorite	0.0534
		medium-grained, grey, moderately to well-bedded, greywacke with 2-10% pink garnets at 2-3mm and 2-10% chlorite	
		in a arkosic to pelitic matrix. Several subzones, 5-30cm, of 20-50% chlorite-garnet at 75o TCA	
		at 21.45m, a 55cm zone of small, white quartz vein in arkosic greywacke but no sulphide	0.0662
29.00	77.53	Garnet-Chlorite Schist/Greywacke plus minor magnetite	0.22-10.31
		medium-grained, grey, moderately to well-bedded, greywacke with 2-10% pink garnets at 2-3mm and 2-10% chlorite	
		in a arkosic to pelitic matrix with 2-3% magnetite bands. There are subzones, 2-20cm, of 20% chlorite-garnet with	
		20-50% magnetite bands. Several chlorite-biotite-carbonate pelitic bands but only 2% of unit.	
		at 29.00-32.65m, 18% magnetite within 20% chlorite-garnet schist; not sampled	20.30
		at 46.33-47.58m, 1.25m unit of over 90% dikes of feldspar porphyry. This is fine-grained, light grey matrix with 5-10%	1.55
		chlorititic phenocrysts, formerly amphibole, in medium-grained, feldspar and quartz rich dike.	
		at 58.35m, 15cm zone of over 20% garnet, 5% calcite, 10% chlorite with 10% pyrite clots.	0.40
77.53	158.81	Banded Iron Formation	
		fine to medium-grained, grey, sandstone that is well bedded at 800 TCA with under 5% chlorite in matrix. Magnetite occurs	

	as thin black interbeds in silstone/argillite then more disseminated downhole in the grey sandstone.	
	#247 77.53 - 80.53 (3.00) 13% magnetite bands in sandstone	19.80
	#248 80.53 - 83.53 (3.00) 16% magnetite bands in sandstone	50.60
	#249 83.53 - 86.53 (3.00) 19% magnetite bands in sandstone	93.80
	#250 86.53 - 89.53 (3.00) 28% magnetite bands in sandstone	70.20
	#251 89.53 - 92.53 (3.00) 35% magnetite bands in sandstone	87.90
	#252 92.53 - 95.53 (3.00) 39% magnetite bands in sandstone	107.80
	#253 95.53 - 98.53 (3.00) 26% magnetite bands in sandstone; becoming more disseminated	112.00
	#254 98.53 - 101.53 (3.00) 30% magnetite bands in sandstone with 9cm quartz vein	85.40
	#255 101.53 - 104.53 (3.00) 25% magnetite bands in sandstone	73.60
	#255A Duplicate 1/4 split of 255	
	#256 104.53 - 107.53 (3.00) 35% magnetite bands in sandstone	123.00
	#257 107.53 - 110.53 (3.00) 21% magnetite bands in sandstone	56.30
	#258 110.53 - 113.53 (3.00) 21% magnetite bands in sandstone	51.10
	#259 113.53 - 116.53 (3.00) 18% magnetite bands in sandstone with 64cm chloritic mafic dike	64.50
	#260 116.53 - 119.53 (3.00) 33% magnetite bands in sandstone	83.00
	#261 119.53 - 122.53 (3.00) 35% magnetite bands in sandstone	159.00
	#262 122.53 - 125.53 (3.00) 36% magnetite bands in sandstone	119.00
	#263 125.53 - 128.53 (3.00) 43% magnetite bands in sandstone	126.00
	#264 128.53 - 131.53 (3.00) 45% magnetite bands in sandstone	133.40
	264A Standard FER-2	
	#265 131.53 - 132.36 (0.89) 33% magnetite bands in sandstone	112.00
	132.36-135.80 - Sandy Greywacke with minor magnetite	0.74-2.12
_	medium-grained, grey, sandstone that is weakly bedded at 800 TCA with 2-5% fine, pink garnet and under 2% magnetite	
	#266 132.36 - 134.36 (2.00) 2% magnetite bands in grey sandstone to chlorite-biotite schist/greywacke	
	#267 134.36 - 135.80 (1.46) 2% magnetite bands in grey sandstone	
	Banded Iron Formation - contunuous unit from above.	
	#268 135.80 - 138.80 (3.00) 19% magnetite bands in sandstone	68.40
	#269 138.80 - 141.80 (3.00) 24% magnetite bands in sandstone	63.80
	#270 141.80 - 144.80 (3.00) 19% magnetite bands in sandstone	55.00
	#271 144.80 - 147.80 (3.00) 21% magnetite bands in sandstone with 53cm gabbro dike	71.60
	#272 147.80 - 150.80 (3.00) 27% magnetite bands in sandstone	153.00
	#273 150.80 - 153.80 (3.00) 25% magnetite bands in sandstone with minor guartz veins	77.30

		#274 153.80 - 156.80 (3.00) 30% magnetite bands in 3% garnet sandstone	48.90
		#275 156.80 - 159.80 (3.00) 24% magnetite bands in 8% garnet sandstone	74.90
		#276 159.80 - 162.60 (2.80) 18% magnetite bands in garnet sandstone	62.50
162.80	192.00	Garnet Schist/Greywacke plus minor Chlorite	0.71
		fine to medium-grained, grey, moderately to well-bedded, sandstone to greywacke with 3-15% pink garnets and under 5%	
		chlorite in matrix. small subzones, 5-30cm, of 20-50% chlorite-garnet schist at 80o TCA and several 2-5cm quartz veins.	
		168.13-169.02, a 89cm zone of 30% magnetite in grey sandstone with interbeds of chlorite-garnet schist.	
192.00	E.O.H.		

APPENDIX D Accurassay Laboratories Assay Certificates

1046 Gorham Street Tel: (807) 626 1630 www.accurussay.com Fax (807) 622-7571 assay@accurassay.com

Wednesday, June 29, 2011

Certificate of Analysis

Date Received: 05/03/2011
Date Completed: 05/31/2011
Job #: 201141685
Reference:
Sample #: 62

Acc #	Client ID	Au	Au	Au
		dqq	oz/t	g/t (ppm)
115497	001	<5	<0.001	<0.005
115498	002	<5	<0.001	<0.005
115499	003	7	<0.001	0.007
115500	004	6	<0.001	0.006
115501	005	10	<0.001	0.010
115502	006	8	<0.001	0.008
115503	010	<5	<0.001	<0.005
115504	011	<5	<0.001	<0.005
115505	012	<5	<0.001	<0.005
115506	013	7	<0.001	0.007
115507	022	No Sample Received		
115508	023	No Sample Received		
115509	024	No Sample Received		
115510	025	No Sample Received		
115511	026	No Sample Received		
115512	030	8	<0.001	0.008
115513	103	6	<0.001	0.006
115514	104	<5	<0.001	< 0.005
115515	105	7	<0.001	0.007
115516	106	<5	<0.001	< 0.005
115517	107	<5	<0.001	<0.005
115518 Du	p 107	<5	<0.001	<0.005
115519	108	<5	<0.001	< 0.005
115520	109	<5	<0.001	<0.005
115521	110	<5	<0.001	<0.005
115522	111	6	<0.001	0.006
115523	112	<5	<0.001	<0.005
115524	113	<5	<0.001	<0.005
115525	114	<5	<0.001	<0.005
115526	115	10	<0.001	0.010

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

Certified By: Deter Demander Esc. Laboration Martade

1046 Gotham Street Tel: (807) 626 1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Wednesday, June 29, 2011

Certificate of Analysis

Bending Lake Iron Group Date Received: 05/03/2011 201 Hardisty Street Date Completed: 05/31/2011 Thunder Bay, ON, CAN Job #: 201141685 P7C 3G9 Reference: Ph#: (807) 285-5364 Sample #: 62 Email: georaoul@gmail.com

Acc #	Client ID	Au opb	Au oz/t	g	Au /t (ppm)
115527	116	8	<0.001		0.008
115528	117	7	<0.001		0.007
115529 Dup	ə 117	8	<0.001		0.008
115530	118	10	<0.001		0.010
115531	119	7	<0.001		0.007
115532	120	5	<0.001		0.005
115533	121	9	<0.001		0.009
115534	122	7	<0.001		0.007
115535	123	9	<0.001		0.009
115536	124	7	<0.001		0.007
115537	125	<5	<0.001		<0.005
115538	126	7	<0.001		0.007
115539	127	8	<0.001		0.008
115540 Dup	0 127	8	<0.001		0.008
115541	128	9	<0.001		0.009
115542	129	34	<0.001		0.034
115543	130	<5	<0.001		<0.005
115544	131	7	<0.001		0.007
115545	132	<5	<0.001		<0.005
115546	133	<5	<0.001		<0.005
115547	134	<5	<0.001		<0.005
115548	135	8	<0.001		0.008
115549	136	<5	<0.001		<0.005
115550	137	<5	<0.001		<0.005
115551 Dup	o 137	<5	<0.001		<0.005
115552	138	<5	<0.001		<0.005
115553	139	<5	<0.001		<0.005
115554	140	<5	<0.001		<0.005
115555	141	<5	<0.001		<0.005
115556	142	<5	<0.001		<0.005

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

Certified By: Deres Demarks - Bis - aborators Manage

Thurder Bay, ON Carada F/H 5X5

1046 Gotham Street Tel: (807) 626 1630 www.accurdissay.com Fax (807) 622-7571 assay@accurassay.com

Wednesday, June 29, 2011

Certificate of Analysis

Bending Lake Iron Group	Date Received: 05/03/2011
201 Hardisty Street	Date Completed: 05/31/2011
Thunder Bay, ON, CAN	Job #: 201141685
P7C 3G9 Ph#: (807) 285-5364	Reference:
Email: georaoul@gmail.com	Sample #: 62

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
115557	143	<5	<0.001	<0.005
115558	3 144	<5	<0.001	<0.005
115559	145	<5	<0.001	<0.005
115560	146	<5	<0.001	<0.005
115561	147	<5	<0.001	< 0.005
115562	2 178	7	<0.001	0.007

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

1046 Gorham Street Thunder Bay, ON Canada P78 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, June 7, 2011

Certificate of Analysis

Bending Lake Iron Group 201 Hardisty Street Thunder Bay, ON, CAN P7C 3G9 Ph#: (807) 285-5364 Email: georaoul@gmail.com Date Received: 05/31/2011 Date Completed: 06/07/2011 Job #: 201142004 Reference: Sample #: 31

Acc #	Client ID	Au	Au	Au	
135724	#216	ppb	oz/t	g/t (ppm)	
135725		12	<0.001	0.012	
	#217	9	<0.001	0.009	
135726	#218	13	<0.001	0.013	
135727	#219	<5	<0.001	<0.005	
135728	#220	6	<0.001	0.006	
135729	#221	9	<0.001	0.009	
135730	#222	<5	<0.001	<0.005	
135731	#223	<5	<0.001	<0.005	
135732	#224	7	<0.001	0.007	
135733	#225	5	<0.001	0.005	
135734 Du	p #225	7	<0.001	0.007	
135735	#226	6	<0.001	0.006	
135736	#227	19	<0.001	0.019	
135737	#228	11	<0.001	0.011	
135738	#229	8	<0.001	0.008	
135739	#230	6	<0.001	0.006	
135740	#231	10	<0.001	0.010	
135741	#232	10	<0.001	0.010	
135742	#233	9	<0.001	0.009	
135743	#234	8	<0.001	0.008	
135744	#235	12	<0.001	0.012	
135745 Du	p #235	14	<0.001	0.014	
135746	#236	10	<0.001	0.010	
135747	#237	10	<0.001	0.010	
135748	#238	11	<0.001	0.011	
135749	#239	13	<0.001	0.013	
135750	#240	9	<0.001	0.009	
135751	#241	10	<0.001	0.010	
135752	#242	8	<0.001	0.008	
135753	#243	11	<0.001	0.011	

PROCEDURE CODES: ALP1, ALFA1, ALMA1, ALWR1, ALTS1, ALREE1

Certified By: Derey Demanut H Bio Laboratory Manager

1046 Gorham Street Thunder Bay: ON Canada: P78 5X5 Tel: (807) 626 1630 Fax (807) 622 7571

www.accurassay.com assay@accurassay.com

Tuesday, June 7, 2011

Certificate of Analysis

Bending Lake Iron Group 201 Hardisty Street Thunder Bay, ON, CAN P7C 3G9 Ph#: (807) 285-5364 Email: georaoul@gmail.com

Date Received: 05/31/2011 Date Completed: 06/07/2011 Job #: 201142004 Reference: Sample #: 31

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
135754	#244	9	<0.001	0.009
135755	#245	12	<0.001	0.012
135756 Dup	» #245	9	<0.001	0.009
135757	#246	<5	<0.001	<0.005

PROCEDURE CODES: ALP1, ALFA1, ALMA1, ALWR1, ALTS1, ALREE1

J. .. \rightarrow Certified By: iry Manage

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax (807) 622-7571 assay@accurassay.com

Friday, June 10, 2011

ļ

Certificate of Analysis

Bending Lake Iron Group	Date Received: 06/02/2011
201 Hardisty Street	Date Completed: 06/10/2011
Thunder Bay, ON, CAN	Job #: 201142015
P7C 3G9	
Ph#: (807) 285-5364	Reference:
Email: georaoul@gmail.com	Sample #: 17

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
136328	357	24	<0.001	0.024	
136329	374	15	<0.001	0.015	
136330	375	12	<0.001	0.012	
136331	376	26	<0.001	0.026	
136332	377	10	<0.001	0.010	
136333	378	41	0.001	0.041	
136334	379	<5	<0.001	<0.005	
136335	380	7	<0.001	0.007	
136336	381	<5	<0.001	<0.005	
136337	382	<5	<0.001	<0.005	
136338 Du	p 382	11	<0.001	0.011	
136339	383	<5	<0.001	<0.005	
136340	384	<5	<0.001	<0.005	
136341	385	<5	<0.001	<0.005	
136342	386	<5	<0.001	<0.005	
136343	387	<5	<0.001	<0.005	
136344	388	<5	<0.001	<0.005	
136345	389	6	<0.001	0.006	

PROCEDURE CODES: ALP1, ALFA1, ALMA1, ALWR1, ALREE1, ALTS1

Certified By: Derek Demanuk ** Bsc. Laborator, Manager

C.M. Sectors Street In: 807 025 (1630) www.c.commun.cm Th. 307 Ris, RN F. 807 022 7571 result has a subbar and a F/R 5 V.

Tuesday, July 26. 2011

Certificate of Analysis Bending Lake Iron Group Date Received: 05/03/2011 201 Hardisty Street Date Completed: 05/31/2011 Thunder Bay, ON, CAN Job #: 201141685 P7C 3G9 Reference: Ph#: (807) 285-5364 Sample #: 62 Email: georaoul@gmail.com -Acc # Client ID Au Ag A Ва Be Bi Ca Cd As Co Cr Cu Fe ĸ Li Mg Mo Mo Ni P Ph Sb Se Sп Sr ΤI v w Y Zn ppm ppm % ppm ppm ppm ppm % ppm ppm ppm ppm % % ppm % ppm maa pom nag pom noa pom nom DOM mqq ppm ppm non ppm ppm 115497 001 <0 005 <1 5.55 <2 177 11 1.16 13 27 67 10.84 2 45 1.64 16 0.65 2870 40 <100 15 14 <5 <5 <10 114 1899 <2 129 <10 82 <0.005 115498 002 <1 5.54 23 134 <2 <1 0.77 <4 10 50 19 3.12 1.61 5 0.30 145 <1 41 <100 4 <5 8 <10 74 306 <2 20 <10 5 46 115499 003 0.007 <1 4.98 24 122 <2 <1 0.71 <4 5 64 7 1 34 1 57 4 0.24 <100 <1 45 <100 1 <5 13 <10 67 221 <2 12 <10 34 115500 004 0.006 <1 5.14 14 120 <2 <1 0.77 <4 3 77 12 2.06 1.61 3 0.27 122 <1 48 <100 <1 <5 q <10 67 195 <2 9 <10 4 37 115501 005 0 0 1 0 6.04 14 257 <1 2 б 1.59 10 21 163 79 1.56 711 62 8 26 8 1.06 13 267 15 <5 <5 <10 126 1013 <2 47 <10 6 55 115502 006 17 675 <2 <1 1.55 0.008 <1 5.99 <4 10 113 13 2 50 1.63 7 0.78 580 <1 39 228 910 7 <5 8 <10 108 <2 35 <10 5 52 115503 010 < 0.005 <1 7.81 9 498 2 15 3.22 7 31 174 66 6.00 1.59 31 1.57 68 616 1056 12 <5 q <10 374 1591 <2 117 <10 10 87 115504 011 <0.005 <1 6 17 4 346 3 <1 4 4 3 18 46 46 5 3.84 1.68 20 0.62 813 <1 42 602 17 <5 19 <10 537 1158 <2 60 <10 7 20 115505 012 < 0.005 <1 6.37 7 525 2 25 4 4 4 6 24 98 54 5.01 1.59 33 0.93 1195 <1 49 490 19 1857 <5 19 <10 317 <2 146 <10 q 74 115506 013 0.007 <1 7.80 17 518 2 19 1.79 35 6 104 40 5.40 1.49 39 1.53 53 483 734 <1 18 <5 13 <10 232 2127 <2 152 <10 113 8 115507 022 NS 115508 023 NS 115509 024 NS 115510 025 NS 115511 026 NS 115512 0.30 0.008 <1 4.83 <2 170 2 5 0.87 8 13 52 42 7.43 1.66 5 0.37 2915 7 42 <100 11 <5 557 <2 21 6 <10 84 <10 25 4 115513 103 0.006 <1 3.60 <2 225 3 28 0.98 34 140 69 324 20.68 1.55 8 0.47 1041 50 185 109 45 <5 10 132 569 <2 45 < 5 33 5 3126 115514 104 <0.005 <1 3.92 10 251 4 39 0.81 31 84 97 317 21.05 1.37 6 0.60 1566 50 186 <100 55 <5 <5 <10 93 634 <2 49 17 1474 s 115515 105 0.007 <1 3.96 8 230 4 12 1.08 25 65 71 236 17.41 1.45 7 1106 165 0.54 41 <100 47 <5 <5 <10 134 529 <2 49 13 5 1198 115516 106 < 0.005 <1 5.66 81 235 2 4 1.89 8 18 73 45 6.35 1.45 11 876 0.57 54 942 23 <5 <5 <10 336 538 <2 88 <10 1 88

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

Certified By: Hoch Nooie General Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-0837-07/26/2011 11:19 AM

Page 1 of 4

anada Palitik

Tuesday, July 26, 2011

Bending Lake fron Group Date Received: 05/03/2011 201 Hardisty Street Date Completed: 05/31/2011 Thunder Bay, ON, CAN Job #: 201141685 P7C 3G9 Reference: Ph#: (807) 285-5364 Sample #:62 Email: georaoul@gmail.com Client 1D AI Ca Cđ Co Fe Acc # Au Aq As Ва Be 8 Cr Cu к Ŀ Mg Mn Мо Ni Ρ Рb Sb Se Sn Sr Tr Υŀ v w ppm ppm % ppm ppm % % % ppm ppm ppm ppm ppm ppm opm % ppm ppm ppm pom pom ppm ррл ppm ppm ppm ppm ppm ppm ppm ppm 115517 107 <0.005 <1 5.87 42 189 2 <1 2.22 7 17 67 63 5.29 1.73 13 0.63 485 <1 63 773 30 <5 <10 337 1025 6 <2 82 <10 115518D 107 <0.005 <1 6.42 40 186 2 <1 2.31 7 16 67 64 5.38 1.65 12 0.67 479 1 62 775 30 <5 12 343 1025 <10 <2 82 <10 8 115519 108 <0.005 <1 5.49 9 138 <2 <1 2 10 4 18 78 50 2.83 1.60 12 0.81 477 <1 106 505 22 <5 <5 <10 309 597 <2 71 <10 571 115520 109 <0.005 <1 5.95 14 322 2 8 1.52 4 44 101 87 3 15 1.83 11 0.73 382 201 449 18 <5 5 21 <10 262 933 <2 73 <10 10 322 115521 118 < 0.005 <1 6.56 10 584 <2 14 0.99 -5 41 100 186 3.74 1.61 18 0.80 393 6 230 468 13 <10 149 1493 <2 99 <10 10 7 5 425 115522 111 0.006 <1 41 434 1.51 141 6.47 3 6 6 71 114 4.45 1.37 19 0.84 393 11 252 560 18 <5 13 <10 275 1207 <2 102 <10 10 323 115523 112 <0.005 75 < 1 6.88 546 2 < 1 1.42 Δ 50 102 121 3.22 1.37 15 0.82 287 4 208 594 24 <5 24 11 290 1208 <2 102 <10 11 211 115524 113 < 0.005 <1 6.20 112 654 2 5 1 16 <4 91 67 272 1.34 48 15 0.65 232 3 212 425 15 <5 19 <10 246 1179 <2 86 <10 9 294 114 115525 <0.005 <1 7 26 93 492 2 6 3.15 5 46 183 89 3.97 1.41 18 1.41 559 <1 155 808 21 <5 11 <10 310 1355 <2 101 <10 13 274 115526 115 0.010 <1 5.80 103 507 1.89 42 59 2 14 4 144 3.17 1.45 15 1.06 420 < i 134 715 13 <5 17 <10 320 892 <2 77 <10 238 116 800.0 115527 1.34 <1 6 4 2 125 391 3 8 -5 38 76 46 3.83 1.41 12 0.55 311 3 130 465 26 <5 10 <10 279 1111 <2 72 <10 9 223 115528 117 0.007 <1 5.28 172 176 3 5 1.06 8 56 97 72 5.73 1.44 13 0.47 449 8 174 514 22 <5 15 <10 1117 205 <2 84 <10 351 - 8 115529D 117 0.008 <1 5.39 167 205 3 1 10 56 101 74 5.88 1.36 13 17 8 8 0.47 449 11 176 519 <5 19 <10 209 1117 <2 84 <10 8 357 115530 118 0.010 <1 6.17 109 244 2 <1 1.24 6 36 74 50 5.02 1.34 11 0.57 523 8 109 555 20 <5 16 <10 989 242 <2 60 <10 8 149 115531 119 0 007 <1 160 126 1,24 12 21 5.27 20 62 9.59 144 9 974 78 3 0.42 21 1423 40 <5 <5 <10 165 714 <2 34 <10 11 119 115532 120 0.005 <1 6.10 161 144 6 1 08 9 46 83 51 6.95 1.38 143 399 2 6 0.43 360 12 20 <5 13 <10 189 957 <2 62 <10 12 154 115533 121 0.009 <1 57 591 6.09 <1 0.92 <4 16 47 2.28 1.30 10 239 62 253 2 16 0.41 <1 14 <5 11 <10 184 1041 <2 32 <10 9 115534 122 0.007 <1 5.51 129 242 <1 1 01 43 76 41 4.06 1.43 10 0.35 242 149 284 18 2 5 5 <5 20 <10 199 1334 <2 65 <10 8 84 115535 123 0.009 <1 5.92 21 642 <2 <1 1.13 1.52 <4 3 32 7 1.15 10 0.35 161 <1 28 141 11 <5 8 <10 248 782 <2 14 <10 35 4 115536 124 D 007 <1 5.17 103 488 2 6 1.38 4 26 63 41 3.42 1.46 11 0,45 300 96 246 25 <5 10 970 4 <10 285 <2 51 <10 161 5

Certificate of Analysis

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

Certified By: High Medie General Vanage

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-0837-07/26/2011 11:19 AM

Zn

91

89

68

Page 2 of 4

1046 Gottam Street Thursder Bay, ON Canada P7B 5X5

Tel: (807) 626 1630 www.accurassay.com Fax: 18071 622 7571

assay@accurassay.com

Tuesday, July 26, 2011

Certificate of Analysis Bending Lake Iron Group Date Received: 05/03/2011 201 Hardisty Street Date Completed: 05/31/2011 Thunder Bay, ON, CAN Job #: 201141685 P7C 3G9 Reference: Ph#: (807) 285-5364 Email: georaoul@gmail.com Sample #:62 Acc # Client ID Au Ag A As Ba Be Bi Ca Cd Co Cr Cυ Fe Li ĸ Mg Mn Mo Ni P Pb Sb Se Sл S ΤL Ti V W Zn ppm oom % ppm ppm ppm ppm % % % ppm ppm ppm ppm ppm % ppm ppm oom ppm opm opm noa oom oom ppm ppm nqq oom ppm pom 115537 125 <0.005 <1 5.89 59 745 <1 1.47 13 1.52 2 <4 12 42 1.84 13 0.65 249 5 57 309 25 <5 <5 <10 299 1108 <2 33 <10 88 115538 126 0.007 <1 4.35 104 484 <2 <1 1.16 <4 36 79 42 2.67 1.38 7 0.38 160 <1 127 359 14 <5 <10 225 8 1078 <2 66 <10 215 6 115539 127 0.008 <1 4.84 120 434 3 <1 1.33 5 44 80 33 1.49 10 197 3 67 0.49 7 150 400 21 <5 <5 <10 256 1045 <2 73 <10 247 115540D 127 0.008 <1 5.36 130 438 2 <1 1.40 5 44 81 34 3.81 1.49 11 0.54 201 9 154 404 18 <5 19 <10 267 1082 <2 74 <10 248 115541 128 0.009 <1 4.65 96 408 2 <1 1.38 4 39 76 86 3.13 1.42 6 168 0.44 1 149 380 20 <5 <5 <10 275 867 <2 63 <10 292 115542 129 0.034 <1 5.84 126 464 3 7 1.22 5 49 81 45 3.93 1.37 12 0.43 158 7 145 516 20 <5 16 <10 267 1408 <2 83 <10 289 115543 130 < 0.005 <1 5.37 64 659 3 4 0.96 <4 42 75 1.78 30 2.75 13 0.47 190 6 423 23 144 <5 18 <10 184 1298 <2 67 <10 218 115544 131 0.007 <1 6.42 646 1.63 2 2 <4 30 107 42 2.72 1.72 13 0.94 316 3 120 626 28 <5 8 <10 353 1065 <2 66 <10 203 115545 132 < 0.005 <1 5.96 65 442 3 7 1.12 7 39 72 44 5.07 1.35 12 0.64 250 12 161 386 37 <5 <10 210 1194 <2 8 58 <10 9 303 115546 133 <0.005 <1 6.28 14 543 1.27 35 56 1 4 7 2 <4 70 2.55 12 0.62 237 3 122 497 22 <5 7 <10 257 1277 <2 67 <10 230 115547 134 < 0.005 10 6.02 81 471 3 1.26 4 40 77 40 2.85 1.44 12 0.57 225 453 2 2 140 18 <5 14 <10 243 1299 <2 62 <10 9 236 115548 135 0.008 490 6 5.80 89 <1 1.30 <4 35 68 141 177 36 2.52 10 0.50 <1 114 460 18 <5 14 <10 260 1206 <2 58 <10 179 115549 136 <0.005 55 6 5.86 640 2 11 1.72 <4 12 42 13 1.89 1.45 7 0.37 317 <1 52 341 26 5 15 <10 306 1108 <2 33 <10 69 7 115550 137 < 0.005 3 5.04 144 123 3 3 1.25 8 43 81 19 1.40 10 590 6.64 480 0.47 12 116 30 <5 7 <10 240 1222 <2 65 <10 7 217 115551D 137 < 0.005 3 4.86 149 126 1.28 6 9 44 85 20 6.88 1.34 11 0.49 630 14 122 499 30 <5 13 10 247 1265 <2 69 <10 229 115552 138 < 0.005 3 6.21 111 201 3 10 1.66 18 58 28 6.73 1.39 9 0.55 931 10 805 64 29 <5 8 <10 206 958 <2 30 <10 12 85 115553 139 < 0.005 79 540 6 5.65 <1 1.38 54 2 18 <1 3.01 141 12 0.43 336 2 73 308 20 <5 9 <10 274 1314 <2 38 <10 9 111 115554 140 < 0.005 7 6.02 36 706 2 <1 1.40 <4 38 1.56 <1 1.45 10 0.45 239 <1 38 242 11 <5 9 <10 276 966 <2 24 <10 5 40 115555 141 < 0.005 135 5 6.58 282 1.42 31 93 2 5 <1 3.92 1.35 5 19 0.72 427 2 97 507 22 <5 7 <10 237 1463 <2 63 <10 8 278 115556 142 <0.005 5 5.68 95 292 <2 2 1.41 6 19 63 13 4.12 1.48 353 25 6 0.44 <1 72 <100 <5 q <10 123 735 670 <2 34 11 8

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

Alberre Certified By: The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full,

without the written approval of the laboratory

-0837-07/26/2011 11:19 AM

1046 Gorham Street Tel: (807) 626 1630 www.accurassay.com Thunder Bay, ON Canada, P78 5X5

Fax: (807) 622-7571 assay@accurassay.com

Tuesday, July 26, 2011

														••••	outo	0.7.	iai yoi	5														
201 Har Thunder P7C 3G Ph#: (80	Lake Iron Gri disty Street Bay, ON, CA 9 17) 285-5364 eoraoul@gma	N																					e Comp J Refer	leted: 04 lob #: 20	5/03/201 5/31/201 0114168 2	1						
Acc #	Client ID	Au ppm	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Си ррт	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	Ti ppm	V mgg	W ppm	Y ppm	Zn
115557	143	< 0.005	5	7.92	6	487	3	8	2.51	4	28	155	48	3.67	1.55	14	1.24	735	4	97	606	18	<5	22	<10	392	2189	<2	86	<10	15	300
115558	144	<0.005	6	5.50	26	163	<2	3	0.75	<4	7	60	7	1.72	1.52	4	0.26	<100	<1	51	<100	10	<5	9	<10	120	483	<2	34	<10	5	28
115559	145	<0.005	6	4.34	53	124	<2	<1	0.63	<4	12	74	14	2.75	1.55	2	0.19	<100	<1	58	<100	10	<5	7	<10	116	415	<2	35	<10	4	135
115560	146	<0.005	4	4.50	13	93	<2	5	0.69	5	9	60	31	4.40	1.54	2	0.22	141	<1	70	<100	13	<5	5	<10	90	308	<2	18	<10	4	40
115561	147	<0.005	6	5.40	6	266	<2	10	0.96	<4	14	117	30	2.07	1.51	5	0.34	358	<1	59	112	15	<5	17	<10	242	901	<2	84	<10	5	64
115562	178	0.007	<1	4.21	168	196	3	25	1.17	16	26	67	123	12,34	1,41	6	0.30	1072	34	77	267	23	<5	<5	<10	199	569	<2	30	<10	4	141

Certificate of Analysis

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

1046 Gorham Street Tel: (807) 626 1630 www.accurassay.com Thunder Bay, ON Canada, P78,5X5

Certificate of Analysis

Fax: (807) 622 7571 assay@accurassay.com

Tuesday, June 21, 2011

201 Hard Thunder P7C 3G9 Ph#: (80)	Lake Iron Gro disty Street Bay, ON, CAN 7) 285-5364 eoraoul@gmai	N	_																				e Comp Refe	eived: 0 Jeted: 0 Job #: 2 rence: ple #: 1	5/10/20 ⁻ 0114201	11						
, Acc #	Client ID	Аџ ррђ	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	Ti ppm	V ppm	W	Y ppm	Zn ppm
136328	357	24	<1	4.38	5	568	<2	<1	1.15	<4	5	324	10	1.38	0.27	<1	0.47	196	<1	10	308	<1	<5	17	<10	557	1064	2	20	<10	6	74
136329	374	15	1	3.37	16	171	2	<1	0.63	<4	50	322	91	8.44	0.02	4	1.15	870	<1	75	438	9	6	<5	<10	207	1689	<2	140	<10	8	135
136330	375	12	1	4.30	16	180	2	<1	3.05	<4	17	287	54	6.86	0.07	19	1.96	1020	<1	64	2104	5	7	<5	<10	387	569	27	94	<10	17	112
136331	376	26	1	4.16	87	125	2	2	1.13	<4	21	349	32	6.76	0.08	7	0.85	586	<1	45	1131	6	9	<5	<10	296	395	<2	79	<10	10	88
136332	377	10	1	3.85	17	283	<2	1	1.43	<4	51	410	84	3.98	<0.01	2	1.54	441	<1	181	832	8	5	8	<10	310	637	6	68	<10	19	345
136333	378	41	<1	3.84	49	272	<2	<1	1.32	<4	41	426	81	4.32	<0.01	2	1.15	332	<1	124	618	7	8	11	<10	224	614	2	70	<10	14	279
136334	379	<5	<1	3.75	99	251	<2	1	0.58	<4	51	423	68	4.01	0.25	2	0.89	169	<1	150	672	8	7	11	<10	165	671	<2	65	<10	16	328
136335	380	7	1	4.55	63	326	2	<1	0.84	<4	32	393	47	3.49	0.17	5	1.10	339	<1	91	478	3	6	17	<10	251	717	3	55	<10	13	219
136336	381	<5	1	3.69	103	207	2	<1	0.70	<4	58	478	100	5.59	0.23	3	0.81	460	<1	174	553	14	6	10	<10	222	607	3	76	<10	13	370
136337	382	<5	1	3.08	104	196	2	2	0.79	<4	38	465	63	5.38	0.17	2	0.82	486	<1	116	587	17	6	<5	<10	199	384	<2	51	<10	11	239
136338D	382	11	1	3.99	108	176	2	1	0.87	<4	39	470	65	5.66	0.13	3	0.89	507	<1	121	624	21	8	11	<10	216	387	<2	52	<10	12	255
136339	383	<5	1	4.41	82	302	2	<1	0.52	<4	28	385	40	3.80	0.08	2	0.84	431	<1	81	351	8	7	10	<10	198	599	5	36	<10	13	186
136340	384	<5	1	3.63	112	137	2	<1	0.89	<4	42	391	62	5.47	0.15	2	0.92	604	<1	114	552	17	8	12	<10	224	416	5	57	<10	12	305
136341	385	<5	1	4.87	37	358	2	<1	1.26	<4	21	387	31	2.89	0.02	10	1.18	425	<1	65	522	2	7	11	<10	190	584	<2	35	<10	14	114
136342	386	<5	1	3.93	8	171	<2	2	4.28	<4	40	812	73	6.46	<0.01	12	5.03	1379	<1	404	1033	5	8	11	<10	225	1008	12	108	<10	16	68
136343	387	<5	1	5.86	8	191	2	<1	3.78	<4	40	634	82	5.58	0.04	11	4.54	1018	<1	303	1325	2	9	14	<10	443	1270	13	91	<10	16	78
136344	388	<5	<1	4.12	66	346	<2	2	0.69	<4	37	341	58	3.90	0.20	<1	1.01	289	<1	126	431	7	7	6	<10	192	634	<2	70	<10	12	290
136345	389	6	<1	4.01	58	351	<2	<1	0.36	<4	33	358	67	3.46	0.11	<1	0.83	226	<1	88	560	7	7	8	<10	142	658	<2	66	<10	11	149

PROCEDURE CODES: ALP1, ALFA1, ALMA1, ALWR1, ALREE1, ALTS1

Certified By: The Analytic Acade Weater

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-0837-06/21/2011 10:47 AM

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Tuesday, May 31, 2011

Certificate of Analysis

Bending Lake Iron Group	Date Received: 05/03/2011
201 Hardisty Street	Date Completed: 05/31/2011
Thunder Bay, ON, CAN	Job #: 201141685
P7C 3G9	Reference:
Ph#: (807) 285-5364	
Email: georaoul@gmail.com	Sample #: 62

Acc #	(Client ID	Al203 %	Ca0 %	Cr203 %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %	L0I %	Total %
115497		001	13.338	2.149	0.012	21.190	0.684	1.975	0.622	2.284	0.071	51.266	0.736	4.200	98.526
115498		002	2.018	0.547	0.013	5.604	0.404	0.161	0.019	0.713	0.044	87.778	0.083	1.394	98.778
115499		003	1.115	0.470	0.016	2.822	0.258	0.103	0.017	0.809	0.048	92.375	0.060	0.698	98.790
115500		004	0.864	0.645	0.018	4.086	0.169	0.133	0.022	0.884	0.037	91.042	0.037	0.897	98.832
115501		005	3.959	2.124	0.031	14.474	0.667	2.208	0.117	0.584	0.089	70.779	0.205	3.200	98.437
115502		006	8.047	2.452	0.022	4.891	1.843	1.837	0.096	1.108	0.096	76.101	0.193	1.900	98.588
115503		010	19.902	6.392	0.029	16.356	1.996	4.271	0.190	4.853	0.156	37.786	1.917	5.300	99.148
115504		011	21.714	7.715	0.007	7.839	2.834	1.870	0.127	6.493	0.179	43.868	0.847	4.600	98.095
115505		012	20.994	7.776	0.015	10.897	3.240	3.119	0.182	4.000	0.158	39.201	0.931	6.394	96.905
115506		013	21.504	3.435	0.018	11.140	3.231	3.881	0.116	3.773	0.144	45.447	0.881	4.204	97.775
115512		030	4.087	0.839	0.013	15.758	0.257	0.706	0.484	0.909	0.062	73.399	0.267	1.992	98.774
115513		103	7.154	1.272	0.016	37.613	0.964	1.250	0.161	1.723	0.060	33.461	0.310	16.168	100.150
115514		104	6.468	1.220	0.018	34.111	1.199	1.416	0.252	1.459	0.069	32.691	0.265	15.400	94.566
115515		105	7.275	3.460	0.016	29.333	0.890	1.351	0.168	1.829	0.053	40.371	0.284	14.186	99.215
115516		106	15.426	2.949	0.013	10.104	1.582	1.476	0.136	3.199	0.264	54.413	0.532	7.000	97.092
115517		107	14.290	3.818	0.022	10.230	0.571	1.590	0.099	4.165	0.225	48.310	0.505	16.267	100.092
115518	Dup	107	14.347	3.941	0.019	9.563	0.607	1.479	0.077	4.366	0.222	47.219	0.480	16.433	98.754
115519		108	13.610	3.482	0.018	5.151	0.383	2.195	0.075	3.933	0.163	55.727	0.407	13.473	98.617
115520		109	15.044	2.406	0.025	6.033	1.513	2.043	0.062	3.435	0.149	53.388	0.465	15.200	99.764
115521		110	16.826	1.216	0.022	6.915	3.516	2.225	0.059	1.771	0.156	48.900	0.529	17.964	100.100

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Certified By: Leson Moore General Manager

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Tuesday, May 31, 2011

Certificate of Analysis

Bending Lake Iron Group	Date Received: 05/03/2011
201 Hardisty Street	Date Completed: 05/31/2011
Thunder Bay, ON, CAN	Job #: 201141685
P7C 3G9	
Ph#: (807) 285-5364	Reference:
Email: georaoul@gmail.com	Sample #: 62

Acc #		Client ID	AI203 %	Ca0 %	Cr203 %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %	L01 %	Total %
115522		111	13.536	2.237	0.022	8.670	1.683	2.149	0.065	2.732	0,149	51.024	0.439	15.916	98.622
115523		112	17.707	2.229	0.039	5.587	2.731	1.925	0.045	3.304	0.179	49.957	0.537	13.700	97.940
115524		113	16.323	1.665	0.018	4.572	3.972	1.743	0.036	3.863	0.126	54.762	0.512	11.423	99.014
115525		114	15.396	4.964	0.034	7.770	1.479	3.797	0.088	2.646	0.231	51.499	0.564	9.910	98.378
115526		115	17.015	3.809	0.029	8.059	1.542	3.265	0.089	3.820	0.211	53.369	0.764	7.193	99.165
115527		116	15.503	1.967	0.012	6.914	2.510	1.287	0.050	2.887	0.151	54.015	0.435	9.700	95.433
115528		117	13.400	1.526	0.019	10.761	2.510	1.268	0.098	2.173	0.165	55.613	0.397	11.089	99.021
115529	Dup	117	14.836	2.376	0.016	9.952	2.653	1.381	0.077	2.833	0.172	51.940	0.467	11.000	97.704
115530		118	14.013	2.430	0.013	8.843	2.315	1.351	0.087	2.592	0.181	55.647	0.342	9.820	97.634
115531		119	9.147	1.798	0.012	16.898	1.520	0.852	0.249	1.595	0.419	55.108	0.197	11.155	98.950
115532		120	10.753	1.449	0.019	18.555	1.961	1.104	0.116	1.812	0.115	52.869	0.340	9.710	98.802
115533		121	14.783	1.452	0.010	5.916	3.058	1.005	0.052	2.220	0.101	63.554	0.287	5.706	98.145
115534		122	14.555	1.617	0.015	7.556	2.671	0.897	0.041	2.571	0.110	58.501	0.405	9.200	98.139
115535		123	16.006	1.999	0.006	3.310	2.369	0.890	0.032	3.037	0.092	66.611	0.205	3.303	97.861
115536		124	15.278	2.763	0.015	6.434	1.990	1.580	0.052	3.323	0.101	60.164	0.379	6.893	98.970
115537		125	17.567	2.760	0.010	4.528	2.812	1.883	0.050	3.390	0.126	58.925	0.425	5.200	97.677
115538		126	15.469	2.315	0.019	6.760	2.169	1.464	0.037	3.137	0.137	57.607	0.465	9.309	98.890
115539		127	14.906	2.560	0.012	7.006	2.350	1.316	0.039	3.086	0.135	53.040	0.419	10.120	94.988
115540	Dup	127	15.658	2.350	0.022	7.210	2.206	1.499	0.034	3.460	0.142	55.994	0.440	10.010	99.025
115541		128	14.509	2.622	0.019	7.297	1.825	1.277	0.039	3.557	0.151	58.640	0.459	8.882	99.278

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full,

Certified By: Moore. General Manager

without the written approval of the laboratory

1046 Gorham Street Tel: (807) 626-1630 Fax: (807) 622-7571

Date Received: 05/03/2011

Date Completed: 05/31/2011

Reference:

Sample #: 62

Job #: 201141685

www.accurassay.com assay@accurassay.com

Tuesday, May 31, 2011

Certificate of Analysis

Bending Lake Iron Group 201 Hardisty Street Thunder Bay, ON, CAN P7C 3G9 Ph#: (807) 285-5364 Email: georaoul@gmail.com

Email: georad	oul@gma	ail.com								3	ample #.	02			
Acc #		Client ID	Al203 %	Ca0 %	Cr203 %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %	L0I %	Total %
115542		129	15.700	1.729	0.015	7.436	2.591	1.058	0.030	3.405	0.170	53.955	0.550	10.778	97.417
115543		130	14.940	1.500	0.016	5.594	2.647	1.651	0.037	2.913	0.156	59.945	0.490	9.200	99.090
115544		131	16.418	2.613	0.022	5.494	2.054	2.515	0.052	3.929	0.204	58.503	0.520	6.700	99.025
115545		132	15.076	2.906	0.012	8.415	2.244	1.481	0.059	3.858	0.135	53.102	0.395	10.020	97.703
115546		133	16.350	2.037	0.015	4.751	2.671	1.573	0.037	3.390	0.163	57.271	0.419	10.210	98.887
115547		134	15.545	2.086	0.015	5.244	2.701	1.529	0.037	3.377	0.149	58.373	0.420	9.127	98.603
115548		135	14.954	2.297	0.016	8.075	2.449	1.240	0.049	3.405	0.142	59.064	0.399	7.892	99.982
115549		136	17.321	3.085	0.009	3.431	2.519	0.902	0.049	4.017	0.119	61.877	0.319	4.995	98.643
115550		137	13.504	2.015	0.016	11.519	2.161	1.376	0.093	3.064	0.151	53.889	0.362	10.679	98.829
115551	Dup	137	13.712	1.991	0.018	11.470	2.085	1.297	0.089	3.162	0.158	54.223	0.384	10.811	99.399
115552		138	11.736	2.763	0.010	11.279	1.861	1.106	0.143	2.499	0.231	56.679	0.234	8.791	97.332
115553		139	14.957	2.010	0.009	5.384	2.366	1.058	0.050	3.374	0.115	61.285	0.279	6.287	97.174
115554		140	16.167	2.334	0.026	3.305	2.433	1.239	0.039	3.591	0.099	65.268	0.234	3.900	98.633
115555		141	15.462	2.103	0.018	7.143	2.921	1.779	0.065	2.972	0.158	57.887	0.435	7.900	98.843
115556		142	5.812	1.849	0.010	7.553	0.987	0.623	0.054	1.521	0.053	71.786	0.170	6.667	97.086
115557		143	16.622	3.656	0.022	6.980	2.338	2.875	0.097	3.011	0.174	56.193	0.545	5.311	97.824
115558		144	5.657	0.674	0.013	3.629	0.977	0.395	0.017	1.237	0.076	84.372	0.143	1.600	98.790
115559		145	5.344	0.686	0.012	6.488	0.946	0.285	0.025	1.289	0.066	80.810	0.147	2.603	98.698
115560		146	3.900	0.637	0.012	9.041	0.722	0.270	0.034	1.081	0.048	81.022	0.105	1.900	98.771
115561		147	12.442	1.329	0.022	4.126	2.548	0.786	0.059	1.599	0.057	72.586	0.537	2.597	98.689

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full,

Certified By: Uson Moore, General Manager

without the written approval of the laboratory

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Tuesday, May 31, 2011

Certificate of Analysis

Bending Lake Iron Group	Date Received: 05/03/2011
201 Hardisty Street	Date Completed: 05/31/2011
Thunder Bay, ON, CAN	Job #: 201141685
P7C 3G9	Reference:
Ph#: (807) 285-5364	Sample #: 62
Email: georaoul@gmail.com	

Acc #	Client	Al203	Ca0	Cr203	Fe203	K20	Mg0	Mn0	Na20	P205	Si02	Ti02	L01	Total
	ID	%	%	%	%	%	%	%	%	%	%	%	%	%
115562	178	6.275	1.476	0.012	20.263	0.893	0.647	0.181	1.758	0.101	62.677	0.202	4.104	98.588

PROCEDURE CODES: ALP1, ALWR1, ALTS1, ALREE1, ALFA1, ALMA1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

Certified By: Uson Macore General Manager

1046 Gorham Street Thunder Bay, ON Canada P78 5X5

Fax (807) 622-7571

Tel: (807) 626 1630 www.accurassay.com assay@accurassay.com

Friday, August 5, 2011

Certificate of Analysis

Bending Lake Iron Group 201 Hardisty Street Thunder Bay, ON, CAN P7C 3G9 Ph#: (807) 285-5364 Email: georaoul@gmail.com

Date Received: 05/31/2011 Date Completed: 06/07/2011 Job #: 201142004 Reference: Sample #: 31

•															
Асс #		Client ID	AI203 %	Ca0 %	Cr203 %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %	LOI %	Total %
135724		#216	21.703	5.257	0.077	5.068	2.196	1.414	0.111	7.130	0.195	51.810	0.859	2.800	98.620
135725		#217	20.881	4.723	0.039	6.747	1.904	1.779	0.106	4.800	0.206	53.947	0.786	2.600	98.518
135726		#218	16.628	3.257	0.057	8.537	1.488	1.280	0.116	2.854	0.149	62.279	0.637	1.500	98.781
135727		#219	18.336	2.734	0.057	5.787	2.192	1.088	0.111	2.873	0.126	60.953	0.604	3.900	98.760
135728		#220	11.817	1.928	0.099	4.649	1.252	0.741	0.056	2.740	0.082	74.407	0.369	0.800	98.940
135729		#221	14.504	4.496	0.092	4.498	1.838	0.688	0.080	3.160	0.119	67.352	0.469	1.500	98.796
135730		#222	14.122	2.857	0.072	11.921	1.479	1.416	0.133	2.990	0,140	61.537	0.490	2.000	99.157
135731		#223	16.055	3.295	0.056	5.942	1.137	0.985	0.093	3.938	0.126	59.184	0.490	7.700	99.000
135732		#224	15.345	2.114	0.057	6.515	1.812	1.013	0.066	2.993	0.135	59.385	0.475	7.800	97.709
135733		#225	17.671	2.430	0.080	8.565	2.121	1.748	0.110	3.404	0.156	57.487	0.626	4.400	98.797
135734	Dup	#225	14.982	2.611	0.047	8.520	1.599	2.238	0.132	3.282	0.174	59.346	0.564	4.200	97.694
135735		#226	18.950	2.580	0.066	7.126	2.727	1.628	0.076	5.156	0.181	55.966	0.646	3.600	98.701
135736		#227	12.850	3.618	0.064	13.822	0.936	2.965	0.132	2.948	0.202	50.314	0.495	11.588	99.935
135737		#228	15.885	4.134	0.063	8.851	1.306	2.353	0.085	3.192	0.222	56.086	0.517	5.900	98.594
135738		#229	13.965	3.271	0.082	10.661	1.290	2.711	0.096	3.175	0.165	54.796	0.485	9.400	100.097
135739		#230	12.008	1.792	0.075	5.417	1.812	1.469	0.053	2.155	0.128	46.605	0.377	30.100	101.991
135740		#231	11.596	2.245	0.077	14.077	1.826	1.940	0.105	2.239	0.117	55.526	0.339	10.100	100.186
135741		#232	10.927	1.815	0.066	12.854	1.743	1.573	0.087	2.235	0.105	54.073	0.335	11.200	97.013
135742		#233	15.730	2.843	0.073	4.022	2.737	1.283	0.044	4.715	0.085	60.136	0.272	6.200	98.139
135743		#234	14.205	2.412	0.075	4.841	1.955	1.179	0.037	3.470	0.087	63.358	0.277	6.500	98.395

ROCEDURE CODES: ALP1, ALFA1, ALMA1, ALWR1, ALTS1, ALREE1

Certified By: Jeson Moore General Manager

1046 Gorham Street - Tel: (807) 626 1630 Thunder Bay, ON Canada, P78,5X5

Fax: 18071 622-7571

WWW.accurassin.com assay@accurassay.com

Friday, August 5, 2011

Certificate of Analysis

Bending Lake Iron Group 201 Hardisty Street Thunder Bay, ON, CAN P7C 3G9 Ph#: (807) 285-5364 Email: georaoul@gmail.com

Date Received: 05/31/2011 Date Completed: 06/07/2011 Job #: 201142004 Reference: Sample #: 31

Acc #		Client ID	Al203 %	Ca0 %	Cr203 %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %	L0I %	Total %
135744		#235	13.504	2.210	0.079	7.559	1.644	1.263	0.052	3.146	0.092	57.295	0.360	9.800	97.005
135745	Dup	#235	13.483	2.576	0.102	7.406	1.761	1.331	0.050	3.398	0.099	58.444	0.360	10.190	99.201
135746		#236	15.467	2.752	0.085	4.458	2.342	1.519	0.041	5.225	0.117	58.713	0.385	7.100	98.204
135747		#237	12.985	2.840	0.085	5.550	1.860	1.240	0.043	3.059	0.048	58.927	0.340	11.100	98.076
135748		#238	14.402	5.183	0.072	5.487	1.535	1.325	0.046	3.290	0.096	58.039	0.307	9.300	99.083
135749		#239	20.820	3.254	0.094	6.685	2.845	1.298	0.056	4.157	0.154	52.394	0.467	6.800	99.024
135750		#240	15.437	2.378	0.072	4.353	3.660	1.059	0.045	5.106	0.128	59.947	0.297	5.800	98.284
135751		#241	16.771	6.873	0.092	6.901	1.904	3.933	0.102	2.922	0.289	52.466	0.537	5.700	98.492
135752		#242	15.874	4.857	0.088	7.620	2.178	4.485	0.094	3.119	0.222	51.232	0.562	8.600	98.932
135753		#243	16.792	5.683	0.070	6.512	2.606	3.125	0.081	3.743	0.115	53.619	0.467	7.000	99.814
135754		#244	15.789	2.521	0.064	5.972	2.585	2.709	0.053	3.180	0.190	58.702	0.489	7.000	99.254
135755		#245	16.907	1.640	0.056	7.199	3.688	1.580	0.044	2.607	0.078	56.311	0.517	8.600	99.226
135756	Dup	#245	17.036	1.200	0.061	6.740	3.945	1.227	0.036	2.563	0.073	57.141	0.510	8.800	99.332
135757		#246	11.507	5.045	0.107	16.507	1.226	0.930	0.054	3.038	0.050	54.482	0.342	6.100	99.389

_PROCEDURE CODES: ALP1, ALFA1, ALMA1, ALWR1, ALTS1, ALREE1

Certified By: Ason Moore General Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full,

without the written approval of the laboratory

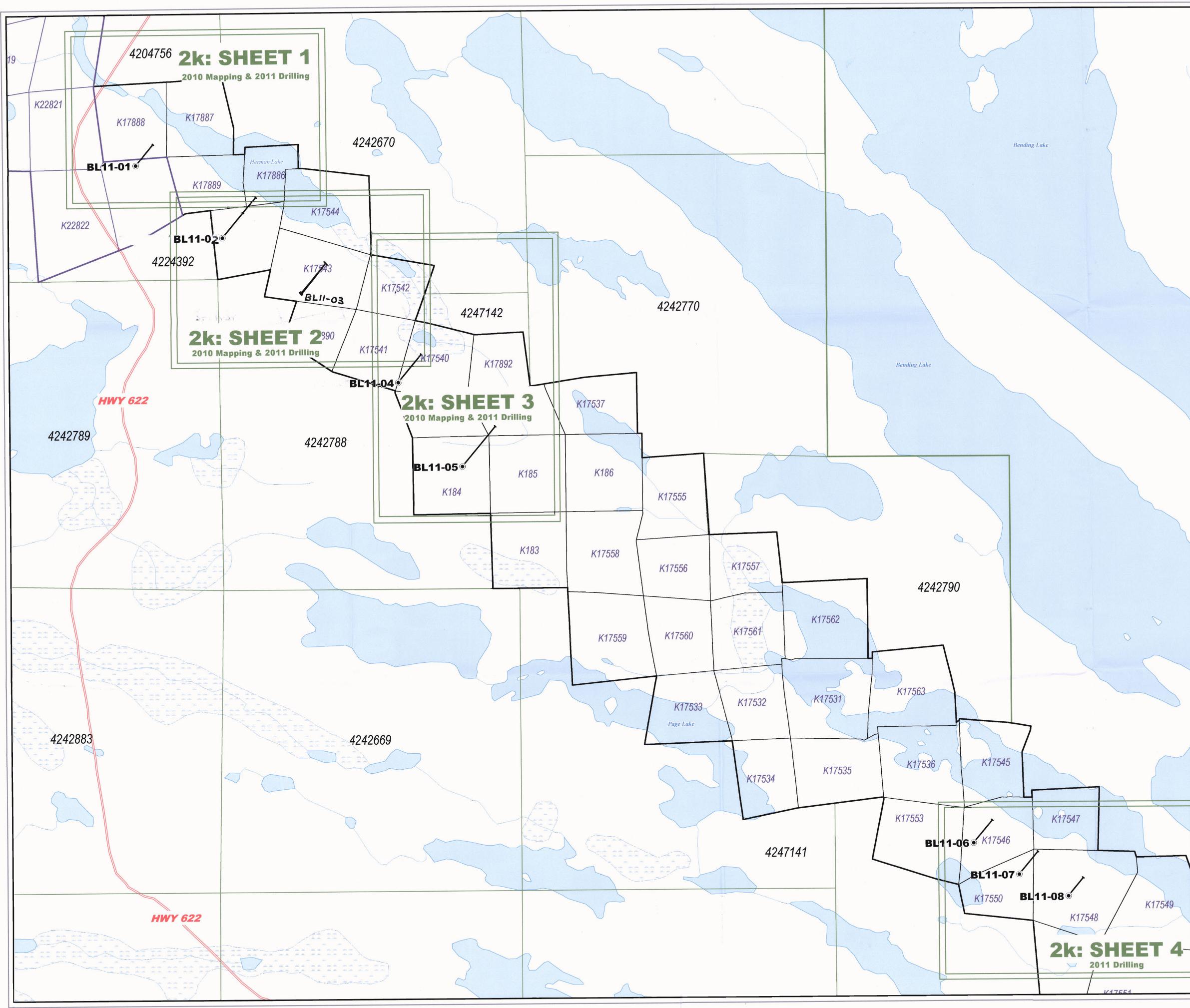
1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Friday, August 5, 2011

Certificate of Analysis

Bending Lake Iron Group	Date Received: 06/02/2011
201 Hardisty Street	Date Completed: 06/10/2011
Thunder Bay, ON, CAN	Job #: 201142015
P7C 3G9	Reference:
Ph#: (807) 285-5364	Sample #: 17
Email: georaoul@gmail.com	


Acc #	(Client ID	Al203 %	Ca0 %	Cr203 %	Fe203 %	K20 %	Mg0 %	Mn0 %	Na20 %	P205 %	Si02 %	Ti02 %	L01 %	Total %
136328		357	17.125	2.784	0.056	2.117	1.925	0.832	0.043	6.876	0.089	65.831	0.239	1.100	99.016
136329		374	18.043	2.258	0.069	14.063	3.745	2.368	0.291	2.798	0.135	51.311	0.809	3.200	99.089
136330		375	15.388	4.562	0.063	8.344	1.760	2.658	0.111	3.041	0.369	55.504	0.589	6.500	98.889
136331		376	17.965	2.646	0.079	10.779	1.970	1.423	0.077	3.204	0.243	52.886	0.517	7.493	99.280
136332		377	15.347	3.524	0.085	5.404	1.851	2.583	0.066	3.509	0.204	58.655	0.474	7.600	99.302
136333		378	15.995	4.390	0.095	6.754	2.596	2.101	0.056	3.583	0.174	56.441	0.457	7.100	99.741
136334		379	14.591	2.289	0.086	5.827	2.802	1.451	0.027	3.100	0.170	59.624	0.475	9.200	99.643
136335		380	15.626	2.224	0.073	5.054	2.636	1.898	0.052	3.622	0.135	60.623	0.394	6.400	98.738
136336		381	13.308	2.170	0.089	7.748	2.224	1.303	0.065	3.227	0.144	56.394	0.399	11.900	98.970
136337		382	12.860	2.455	0.085	8.021	2.094	1.404	0.075	3.464	0.170	56.788	0.335	10.400	98.150
136338	Dup	382	13.124	3.082	0.082	7.154	2.120	1.308	0.068	3.580	0.160	56.465	0.342	10.653	98.140
136339		383	14.861	2.492	0.063	5.253	2.907	1.353	0.061	3.300	0.096	59.772	0.315	7.300	97.772
136340		384	13.918	2.934	0.079	8.221	1.898	1.567	0.098	3.849	0.156	57.678	0.345	8.585	99.327
136341		385	14.774	3.535	0.060	4.495	2.683	2.195	0.066	3.423	0.137	60.219	0.302	5.906	97.795
136342		386	12.669	8.135	0.152	9.951	2.088	12.428	0.229	2.188	0.312	44.442	0.854	5.200	98.647
136343		387	14.817	8.113	0.115	8.088	1.897	10.749	0.176	2.914	0.371	45.817	0.836	4.400	98.294
136344		388	16.259	2.450	0.072	5.923	3.597	1.963	0.046	5.175	0.151	53.547	0.484	8.800	98.467
136345		389	17.841	2.417	0.072	4.951	3.609	1.595	0.040	5.176	0.190	55.707	0.542	6.400	98.541

PROCEDURE CODES: ALP1, ALFA1, ALMA1, ALWR1, ALREE1, ALTS1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full,

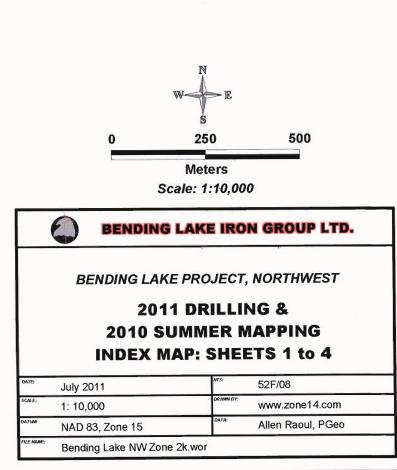
without the written approval of the laboratory

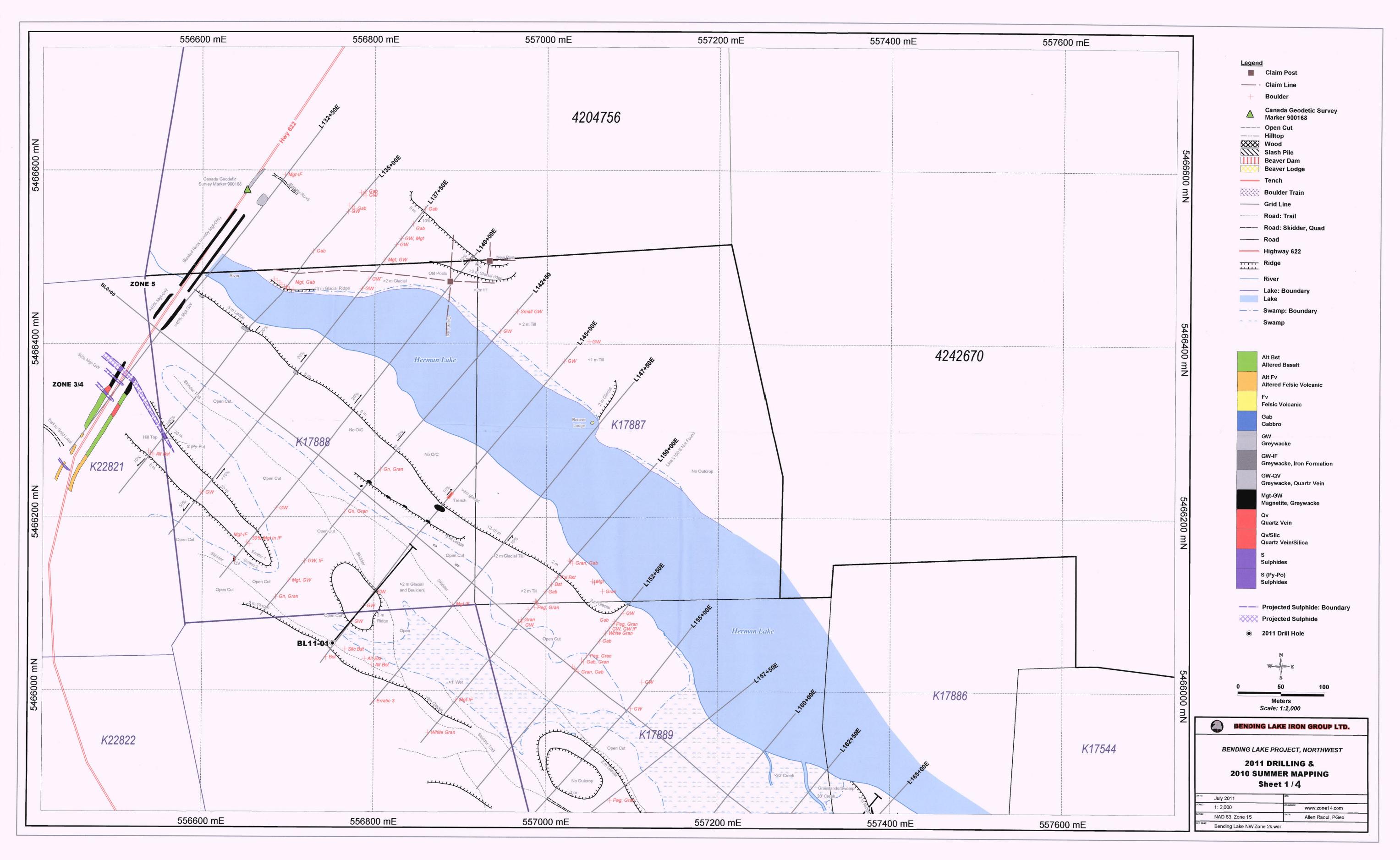
Certified By: Hoore General Manager

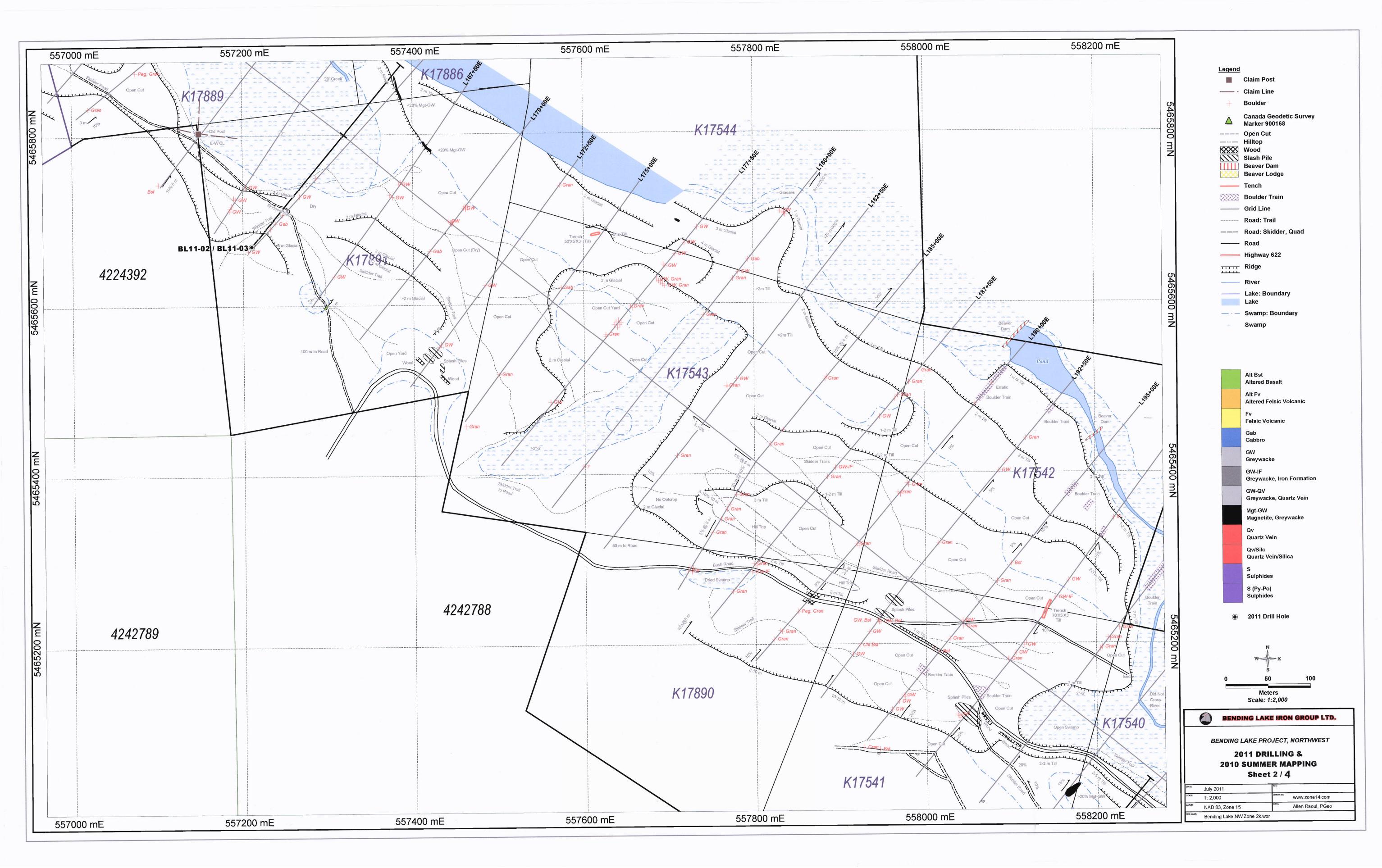
Legend

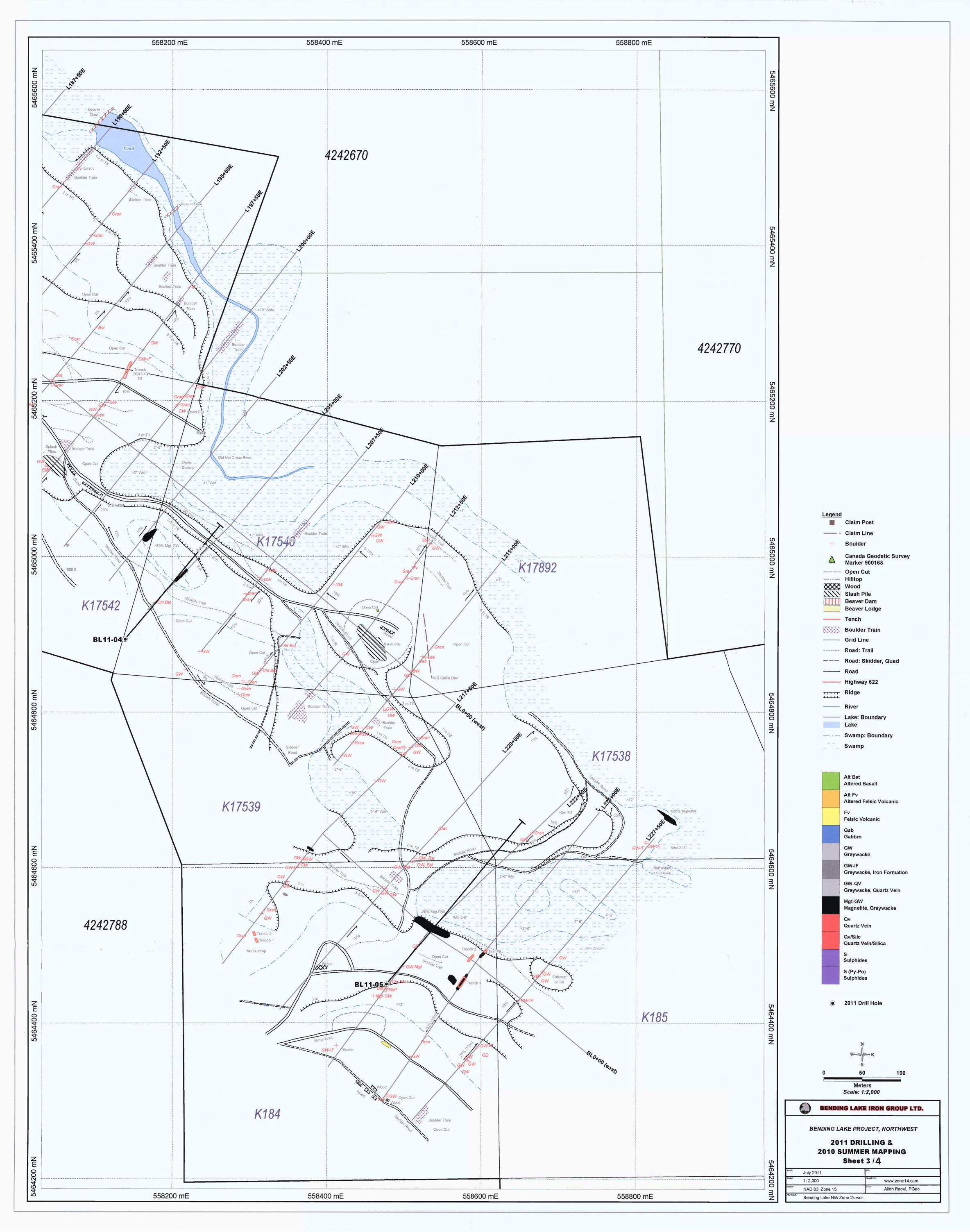
Boulder Canada Geodetic Survey Marker 900168

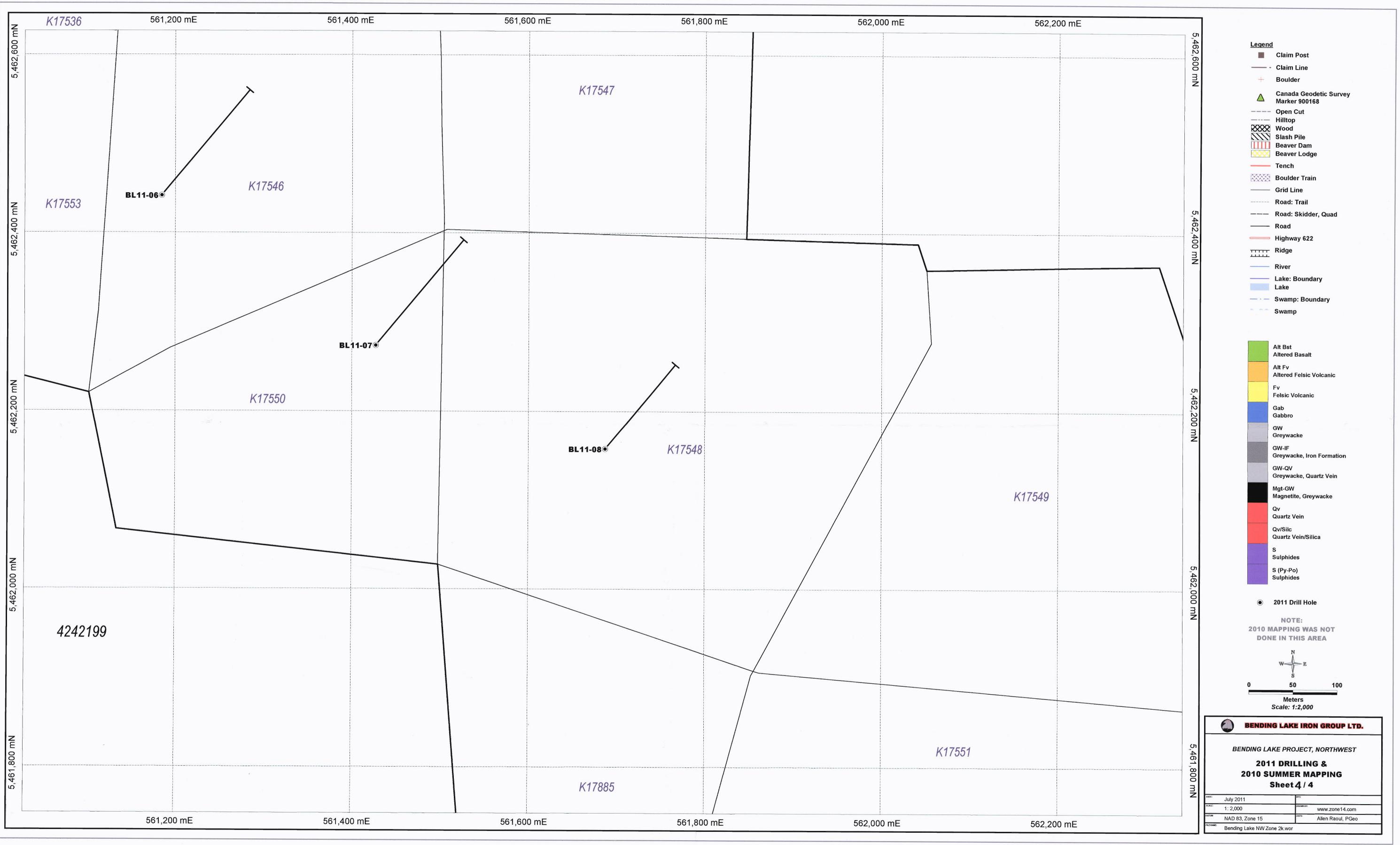
---- Open Cut —--- Hilltop Wood **Beaver Dam** Beaver Lodge \times


----- Road Ridge


----- River Lake


—— Tench Boulder Train —— Grid Line Road: Trail ——— Road: Skidder, Quad —— Highway 622 — Lake: Boundary — — Swamp: Boundary Swamp




2011 Drill Hole

