REPORT ON THE

2010 DRILLING PROJECT MCFAULDS EAST GROUP MCFAULDS LAKE PROPERTY

PORCUPINE MINING DIVISION JAMES BAY LOWLAND ONTARIO CANADA

Prepared for

UC Resources Limited 1000-355 Burard St. Vancouver British Columbia, V6C 2G8

Prepared by

Fortunato Milanes, P.Geo. BILLIKEN MANAGEMENT SERVICES INC 304-65 Front Street East Toronto Ontario October 2011

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	PROPERTY DESCRIPTION AND LOCATION	2
4.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	
	PHYSIOGRAPHY	5
5.0	PREVIOUS WORKS	7
6.0	GEOLOGIC SETTING	8
7.0	MINERALIZATION	9
8.0	GEOPHYSICS SURVEY	10
9.0	DRILLING	11
	MCF-10-80	
	MCF-10-81	
	MCF-10-82	
	MCF-10-83	
10.0	FINDINGS AND INTERPRETATIONS	20
11.0	SAMPLING PROCEDURE	21
12.0	OTHER OBSERVATIONS	21
13.0	CONCLUSIONS AND RECOMMENDATIONS	22
14.0	REFERENCES	23
15.0	DATE AND SIGNATURE	24

List of Figures:

Figure 1	Index Map
Figure 2	McFaulds Lake Group of Claims
Figure 3	Geologic Interpretation of McFaulds Lake Area
Figure 4	Drill Plan Map for MCF-10-80, 81, 82 & 83

List of Tables:

Drill Holes Summary

Table 22010 Assay Results Summary

List of Appendices:

- Appendix 1 Drill Logs
- Appendix 2 Drill Sections
- Appendix 3 Samples Masterlist
- Appendix 4 Results of Analysis
- Appendix 5 XRF Readings for MCF-10-80 and MCF-10-81 Cores
- Appendix 6 Multi-Probe Core Measurements

1.0 SUMMARY

The 2010 Exploration Program of UC Resources Ltd for the McFaulds Lake Property in the James Bay Lowlands Ontario consisted of airborne geophysical survey and further drill testing of the VMS occurrences at McFaulds 3 and 5 within the McFaulds East group of claims.

Scott Hogg and Associates Ltd of Toronto conducted the airborne survey and were able to fly 430 production kilometres out of the target of 950 kilometres. Equipment breakdown prevented the completion of the survey. A second airborne survey undertaken by Fugro Airborne Survey Pty Ltd completed 5 production flights for a combined total of 1810 line kilometres of data of high-sensitivity aeromagnetic and Falcon[™] Airborne Gravity Gradiometer (AGG) survey over the East and West claims of UC Resources Ltd. Detailed discussion on these are contained in separate reports.

The drilling completed four shallow holes with a total meterage of 505 meters. Three holes were drilled at claim 3010462 (McFaulds 3) and one at claim 1242319 (McFaulds 5). All holes intercepted the mineralized zones. The three holes at McFaulds 3 had mineralized intercepts ranging from 16.98m to 29.45m in thickness (not true width). The mineralization consists of upper and lower zones of inter-layered magnetite-sulphide and a center zone of dense, massive sulphide. This dense, massive sulphide has thickness of 14 to 19 meters with Cu content ranging from .03 to 5.95%. The hole drilled at McFaulds 5 showed that the mineralization still persist towards the south.

Drilling at McFaulds 3, past and present, have revealed layered massive sulphide deposit trending 40° to 45° NE dipping 65° to 75° NW (Burns, J. G., 2004). This deposit appears to represent a limb of a folded massive sulphide. A review of all drill holes and results of laboratory analysis at McFaulds 3 suggest that the Cu mineralization is at highest within the upper 200m of the deposit for a lateral distance of 150m between L7+50E to L9+00E. Below the 200m depth, Cu value diminishes.

Since all holes drilled within McFaulds 5, past and present, dipped at -45°, future holes should include steeper angles to test the deposit at depth.

There were several factors that affected the execution of the programs according to plans but the major cause was the unpredictable wintry weather that had trickling down effects to the whole operation.

2.0 INTRODUCTION

This report presents the results of the 2010 Exploration Program of UC Resources Ltd for the McFaulds Lake Property in the James Bay Lowlands in the "Ring of Fire" area of north-central Ontario consisting of an airborne geophysical survey of the McFaulds Property and further drill testing of the VMS occurrences in the McFaulds East Group of claims. Two airborne surveys were conducted; the first by Scott Hogg and Associates Ltd and the second by Fugro Airborne Surveys. Scott Hogg employed the SHA three-axis, helicopter towed, magnetic gradiometer and VLF-EM (Very Low Frequency-Electro Magnetic) system while Fugro undertook a high-sensitivity aeromagnetic and Falcon Airborne Gravity Gradiometer (AGG) survey. The low flying close gradient survey will provide vivid magnetic details to better define drilling targets over UC Resources held mining claims in the future.

The first airborne survey was undertaken during the first week of December 2010 while the second was conducted on the first week of January 2011.

Further drill testing of the VMS occurrences at McFaulds 3 and 5 deposits were done during the period December 9-19, 2010. Four holes with total meterage of 505m were drilled during the said period. The details of 2010 exploration program were planned in November and executed in December under the guidance of Brian Newton, PGeo, of Billiken Management Services, Toronto, the technical consultants for UC Resources Ltd.

Scott Hogg and Associates Ltd of Toronto and Fugro Airborne Surveys Pty Ltd were contracted to do the airborne geophysical surveys while Orbit Garant Drilling Inc of Vald'Or, Quebec was contracted to undertake the drilling. Expedition of Cochrane Ontario provided the helicopter support and catering services.

3.0 PROPERTY DESCRIPTION AND LOCATION

The McFaulds Lake East Group of Claims, which is the subject of the drilling program, is located in the James Bay lowlands in the "Ring of Fire" area of north-central Ontario and is within the Porcupine Mining Division. It is about 530 km NNE of Thunder Bay and 580 km NW of Timmins (Fig 1). The McFaulds Lake East Group consists of 73 contiguous claims bounded by geographic coordinates 52° 44′ 14.77″ to 52° 59′ 16.67″ north latitudes and 85° 56′ 0.12″ to 86° 12′ 5.06″ west longitudes. The property lies within NTS areas 43 C/13, 43 D/09 & 10 and 43 D/16.

The mining claims within the McFaulds Lake East Group are the following:

3005641 to 3005650 (10) 3005606 to 3005615 (10) 4218195 to 4218198 (4) 3007788 to 3007791 (4) 3010448 to 3010467 (20) 1192078 to 1192086 (9) 3016267 to 3016269 (3) 4222548, 3001151, 3011011, 3011012, 3010636, 30103637, 3007785, 1242319, 1242329, 4204504, 4204505, 4204507, &4204509

Spider and KWG Resources hold the rights these claims. The claims are located in Base Map Areas (BMAs) 527854, 527861, 528854, and 528861, all within the Porcupine Mining Division. All claims are registered 50% in the name of Spider Resources Inc. and 50% to KWG Resources Inc.

The mineral claims subjects of the first airborne survey are located south and east of McFaulds Lake and identified as follows:

3005527, 3005528, 3005529, 3005530, 4229298, 4229299, 4229300, 4229304, 4229305, 4229306, 4229309, 4229310, 4229311, 4229312, 4229315, 4229434, 4229506, 4229507, 4229510, 4229511, 4229512

Fig. 2: McFaulds Lake Group of Claims

4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The McFaulds Lake Property can be accessed by a 2 hour flight from Nakina by fixed wing aircraft with McFaulds Lake as the main landing point. Depending on the season, the aircrafts are fitted with floats or skis to make it adaptable on the lake condition. Nakina can be reached by land from any town along the Trans-Canada Highway or air from Thunder Bay. Other routes to McFaulds Lake are via Marten Falls First Nation to the southeast and Webequie First Nation to the northwest where an all-weather airstrip is available. From there, a chopper is dispatched from McFaulds camp to pick up people and supplies headed for the camp.

Billiken's McFaulds camp is situated on the northwest edge of McFaulds Lake, a northsouth elongated lake 6km long and 1.6km wide with surface elevation of 160m asl. The geographic coordinates for McFaulds Lake are 52° 46' 03" north latitude and 86° 03' 29" west longitude.

The McFaulds camp is composed of 13 cabins, 1 dining hall/kitchen, 1 dry, 1 core logging shack, 1 core cutting shack, 1 maintenance shack, 1 geology office and 2 helipads. Each cabin can accommodate up to 4 people. The dry has 4 shower rooms, 3 washing machines, and 1 drier. The core logging shack can accommodate up to 28 core boxes at any one time. During the summer months, up to 60 core boxes can be accommodated in the three core racks just beside the shack. A 2-bed first aid room is available located beside the dining hall. Every cabin has a fire extinguisher for emergency purposes and a diesel-fed heater for the cooler months. Internet, phone and cable tv services are provided 24/7 at the camp by satellite means. All the survey personnel were housed at Billiken's McFaulds Lake camp.

Food and fuel supplies are sourced from the towns of Nakina, Geraldton and Thunder Bay. Skilled labor is sourced from Nakina and neighboring First Nation communities.

The area experiences a temperate climate with long cold winters and short warm to hot summers. The hottest months are July to September. October snow is not unusual. Breakup or freeze-up may hinder exploration activities but normally, exploration may be conducted year round.

The topography appears to be flat but is actually very gently sloping down to north and east. Across the property the elevations ranges from 140 to 190 m above sea level. String bogs are interspersed with numerous small ponds and muskeg swamps. Trellis pattern best describes the drainage which flows to the northeast and eventually drains to Attawapiskat and Muketi Rivers. Vegetation is typical for a fringe area to a boreal forest. The tree cover is generally sparse and stunted with larger trees found in better drained areas and also close to rivers, creeks, lakes and ponds. The dominant species include black spruce and tamarack with much lesser quantities of balsam fir, jackpine and poplar.

5.0 PREVIOUS WORKS

Spider Resources Inc and KWG Resources Inc jointly hold the mineral rights to 141 staked mining claims in the McFaulds Lake area in the James Bay Lowlands. The two companies first became active in the general area in the mid 1990's in search of diamond deposits.

In 2002 De Beers Canada conducted drilling in one of the Spider/KWG claims in search for kimberlites but instead discovered copper mineralization in magnetite-rich VMS occurrence. From 2003 to 2007 Spider and KWG have conducted multi-disciplinary exploration programs to further test the original discovery zone and other significant geophysical anomalies in the McFaulds Lake area. From 2003 to 2007 a total of 79 holes were drilled with total meterage of 22,093m.

In 2009, UC Resources Ltd signed an agreement with Spider and KWG to be the operator of the McFaulds Lake property. Since then UC Resources has undertaken several multidisciplinary exploration works including drilling of 17 holes totalling 3,130m.

6.0 GEOLOGIC SETTING

The James Bay Lowland is underlain mainly with Pre-Cambrian rock suites, Paleozoic rocks and Quaternary cover. The Pre-Cambrian rock suites were determined from the cores recovered from hundreds of holes drilled in the area in the past decade by various mineral exploration companies supplemented by geophysical data. James M. Franklin (2008) postulated that the Pre-Cambrian rocks "appear to be comprised of about five major geological units (Fig. 3). Most prominent on the magnetic map are the mafic-ultramafic intrusions (and possible extrusive equivalents) that occur primarily in the western part of the area. According to J Mungall (personal communication with Franklin, April 2008) these cut the large areas of granodiorite, which I (Franklin) interpret to have the lowest magnetic susceptibility in the area (together with the felsic volcanic rocks). A series of mafic intrusions seem to form the base of the volcanic successions, and have intermediate magnetic intensity. These may be subvolcanic intrusions. Finally, extensive mafic volcanic rocks, and some possible felsic sequences occur in the central and eastern part of the area. These have intermediate to low magnetic susceptibility".

Figure 3: Geological interpretation based on drill hole data and interpretation of magnetic intensity map Red triangles are drill hole locations, white dashed lines are structural; trends from magnetic data

(Franklin, James M. 2008)

The Paleozoic section spans Ordovician to Cretaceous, the latter being developed in the Moose River basin far to the southeast. In the project area, the section is limited to Ordovician and Silurian rocks, which are, absent along the west edge of the project area but reaches 200 m to the south and east. The section in the project area comprises thin, poorly consolidated, basal sandstone, mudstone overlain by muddy dolomites and limestone intervals of Ordovician and Silurian age (Lahti, H. 2008)

The Quaternary cover typically comprises 1 to 2 m of sandy (Wisconsin) till overlain by sand (proximal varves?) grading up to clays (distal varves?) and capped by marine clays (Thomas, 2004). Thickness ranges from 3.5 to 74.4 m in drill holes

7.0 MINERALIZATION

The Ring of Fire in the James Bay Lowland is host to several types of mineral deposits that include diamonds, chromite, nickel, copper, platinum, and palladium among others, that are deposited in various geologic settings. The McFaulds Lake Property, in 2003, was found to host a VMS (Volcanogenic Massive Sulphide) type of deposit with copper (Cu), lead (Pb) and zinc (Zn) as the primary minerals with gold (Au), silver (Ag) and titanium (Ti) as secondary minerals.

VMS deposit is volcanic-related ore deposits which form as a result of volcanic activity either in an oceanic, submarine environment or in a continental, sub-aerial environment. VMS deposits are usually hosted in submarine sedimentary and volcanic rocks. The ore occurs in the form of massive sulphides or dense concentrations of disseminated sulphide minerals of various types. Deposits that contain abundant massive pyrites are referred to as "yellow ore" while those that contain sphalerite and galena are referred to as "black ore".

The mineralization delineated during 2003-2004 drilling program at McFaulds 3 was described by Novak, N. (2006) as follows:

"The mineralized horizon is generally characterized by an envelope of black magnesium rich chlorite within which massive, semi-massive to disseminated magnetite has precipitated and/or replaced the chlorite. The intensity of this magnetite mineralization is focused between L7+50E and L9+60E down dip about 300m. Co-existing with the magnetite-chlorite rich horizon are found lenses/bands of mass (>75%), semi-mass (40-75%), stringers and disseminated pyrite, pyrrhotite, chalcopyrite and sphalerite. There is an apparent zoning in the deposit with the near surface mineralization rich in pyrite +/- pyrrhotite with a gradual increase in chalcopyrite and pyrrhotite with depth.

Sphalerite is more common near surface and is usually concentrated above the chalcopyrite. Both the gold and silver concentrations appear closely related to copper

concentration. Generally the lower sections of the magnetite beds have been replaced by the chalcopyrite. The high grade of copper mineralization and the nature of the mineralogy of the alteration minerals strongly suggest that McFaulds#3 is a typical feeder zone of a VMS deposit (personal communication between Novak, N. and Franklin J., 2005). The alteration consists of black magnesium rich chlorite, minor talc with interbedded tuffs and cherty sediments. Small-scale folds are occasionally observed but no repetition of the sulphide beds was observed."

The present shallow drilling at McFaulds 3 delineated a mineralization consisting of upper and lower zones of inter-layered magnetite-sulphide and a center zone of dense, fine massive sulphide. This dense, massive sulphide has thickness of 14 to 19 meters. Limited chalcopyrite was observed. An XRF analysis using a handheld equipment (Niton) showed appreciable amounts of Cu, Pb, and Zn concentrations coming from the center zone.

8.0 GEOPHYSICS SURVEY

The airborne geophysical survey, undertaken by Scott Hogg and Associates Ltd, aims to cover 950 line km over a contiguous group of 37 mineral claims using Heli-GT gradiometer and VLF helicopter borne system. The survey will provide vivid magnetic details to better define drilling targets over McFaulds Lake deposits in the future. A secondary objective of the survey is to meet the assessment requirement for twelve claims which are due to lapse before the end of December 2010. The SHA crew of 2 and their equipment arrived at McFaulds camp on the 2nd of December. Production began on the 4th of December with two flights flown and completed covering 430 production kilometres. The data was uploaded to the SHA office in Toronto for preliminary processing and QC. The scheduled third flight did not materialize due to equipment trouble. The crew tried to fix the equipment but lack of replacement parts made it impossible to fix the problem. Since the required expenditure for the 12 claims that are about to lapse had been met, the geophysics survey was terminated, rather than incurring additional costs for further delay. The survey data was compiled at SHA Toronto office and presented in a report entitled "UC Resources Ltd Heli-GT, 3 Axis Magnetic Gradient Survey & VLF McFaulds Lake Area James Bay Lowlands – Ontario, Operations and Processing Report" dated December 2010.

Fugro Airborne Surveys conducted a high-sensitivity aeromagnetic and Falcon[™] Airborne Gravity Gradiometer (AGG) survey over the East and West claims of UC Resources Ltd. The production flights took place during January 2011 with the first production flight taking place on January 3rd and the final flight taking place on January 6th. The survey completed 5 production flights for a combined total of 1810 line kilometres of data acquired. A Fugro Airborne Surveys Cessna C208B turbo prop, Canadian registration C-GGRD was used to carry out the survey. The survey team was based out of Webequie. The details of the survey were presented in a 43-page Logistics and Processing Report entitled "Falcon Airborne Gravity Gradiometer Survey for UC Resources" dated January 2011.

9.0 DRILLING

The December 2010 drilling completed 4 holes, one at McFaulds 5 and three at McFaulds 3. Total meterage drilled during the program is 505m. Result of drilling is summarized below.

Hole ID	Location	Grid	Azimut	Dip	Length	Mineralized
			h			Intercept
MCF-10-80	McFaulds 5	"G"	135	-45	177m	165.50-171.80m
		L1+00E/16+78N				
MCF-10-81	McFaulds 3	"C"	135	-45	150m	40.50-63.46m
		L7+75E/0+30N				
MCF-10-82	McFaulds 3	"C"	135	-60	100m	43.70-73.15m
		L7+75E/0+30N				
MCF-10-83	McFaulds 3	"C"	100	-45	78m	43.02-60.00m
		L7+75E/0+30N				

Table 1. 2010 Drill Holes Summary

Figure 4: Drill Plan Map for MCF-10-80, 81, 82 & 83

An XRF (x-ray fluorescence) analysis of the mineralized core was undertaken for MCF-10-80 and MCF-10-81 using a Niton portable analyzer. This analyzer measures concentrations in ppm of 27 different elements including Cu, Pb, Zn, Ag, Co and Ti, among others. A handheld multi-parameter probe that measures magnetic susceptibility (10^{-6} SI) as well as the relative and absolute conductivity (MHOS/M) of drill cores was also undertaken. It should be noted that the above measurements are only used to guide the field geologists in core logging and does not aim to replace the actual laboratory analysis and actual geophysical surveys.

No downhole survey was undertaken on any of the holes drilled. An attempt to survey the first hole using a Deviflex tool was done but the PDA used to record the measurements hanged and the survey was discontinued.

MCF-10-80

This hole was drilled at McFaulds 5 claim #1242319 (UTM: 563145/5850390; Az: 135, Dip:-45). The objective of this hole is to test the southern part of a major magnetic anomaly termed as "bull's eye". This hole is about 50m south of MCF-04-37. The hole intercepted a massive magnetite + sulphide zone from 165.50-171.80m or a length of 6.3m. The mineralized zone is composed of an upper and lower layer of mostly magnetite (165.50-167.00m and 169.45-171.80m) and a center layer of sulphides (167.00-168.83m). The portion 168.83-169.45m is a non-magnetic country rock with 10cm quartz vein. The magnetite and sulphides occur as fine grained minerals. Pyrites generally comprise the sulphide zones. 8 samples marked 235226 to 235233 were collected from this hole. Below are the core photos showing the mineralized zone.

Photo 1

Photo 2

An XRF (x-ray fluorescence) analysis of the mineralized core at 0.25m interval from depths 163.50-172.00m using a Niton portable analyzer revealed values of <500ppm for Pb and Zn. Cu showed nil values except in two readings at depths 168.50 and 168.75m where it registered 33.2K and 10.9K ppm, respectively. Cobalt and titanium returned some results between 1000 to 3000ppm. Complete list of XRF readings is shown in Appendix 3.

A hand-held multi-parameter probe that measures magnetic susceptibility (10^{-6} SI) as well as the relative and absolute conductivity (MHOS/M) of drill cores, among others, was also undertaken. Measurements were taken at 1.0m intervals. Results showed spikes in magnetic susceptibility at depths 166-172m, coinciding with the mineralized zone apparently from presence of magnetite bands. Only one reading showed a value for conductivity of 0.5 Mhos/m at 168.0m depth. Complete list of multi-parameter probe readings is shown in Appendix 4.

Of the 8 samples collected for laboratory analysis, 1 sample returned a value of 1.5% Cu (Sample #235230, 168.00-168.83m). The actual lab result correlates to the values picked up by the XRF and multi-parameter probe analyzer.

MCF-10-81

This hole was drilled at McFaulds 3 claim #3010462 (UTM: 565360.7/5854203; Az: 135; Dip: -45). The objective of this hole is to test the continuity of the VMS deposit at the upper level (40m below the surface) along Section 7+75E. Previous hole drilled in 2004 intercepted this deposit at 80m below the surface along Sections 8+00E. The present drilling intercepted the Massive Sulphide from 40.50-63.46m for a total length of 22.96m. It consists of alternating magnetites-sulphides at the upper zone (40.50-47.00m), a massive dense sulphides at the center zone (47.00-61.30m) and alternating magnetite-sulphides at the bottom (61.30-63.46m). All zones are characteristically fine grained. Chalcopyrite and sphalerites are not very prominent perhaps because of the fine-grained nature of the deposit. A 3cm band of chalcopyrite was noted though close to the contact

of the center zone and the bottom zone. The massive dense sulphide at the center zone is characteristically magnetic. A total of 20 samples marked 235235-235244, 235246-235250, 235526-235530 were collected from this hole. Likewise, Niton and MagSus readings were undertaken. Below are the core photos showing the mineralized zone.

Photo 3

Photo 4

Photo 5

Page | 14

An XRF analysis of the core at 0.50m interval from 40.00 to 64.50m showed varying values for Cu, Pb and Zn. Cu readings of 1805 to 92.2K ppm were measured all coming from the center zone (47.00-61.30m). Zn values registered from the three mineralized zones; 2265ppm and 3887ppm from the upper zone, 1022 to 94.3K ppm from the center zone, and 4605ppm from the lower zone. A lone value of 1249ppm for Pb was registered from the center zone. Complete list of XRF readings is shown in Appendix 3.

Readings from multi-parameter probe at 1.0m intervals showed higher values for magnetic susceptibility, conductivity and high frequency response within the mineralized zone. Magnetic susceptibility readings from 23.7 to 1732 were registered from depth 40.00 to 63.00m coinciding with the whole mineralized zone. Conductivity readings were clustered in 3 sections of the center zone at 50.00-53.00m, 55.00-56.00m and 60.00-61.00m. High frequency readings from 2 sections of the center zone at 51.00-56.00m and 60.00-61.00m were likewise registered. Complete list of multi-parameter probe readings is shown in Appendix 4.

Of the 20 samples collected for laboratory analysis, 8 samples returned with Cu and/or Zn values (see Table 1). Six of the 8 samples come from the center zone while 2 come from the upper zone. Cu values range from 1.32 to 3.34% while Zn values range from 3.12 to 7.59%. The actual lab results correlate to the values picked up by the XRF and multi-probe analyzers.

MCF-10-82

This hole was drilled at the same set up as MCF-10-81 but at steeper angle (-60) to test the continuity of the VMS at the lower level. Secondary objective is to test the homogeneity of the deposit at this level compared to the upper level intercepted in the previous hole. The Massive Sulphide was intercepted from 43.70- 73.15m or a total length of 29.45m. This massive sulphide is characteristically similar to the previous hole wherein there is an upper zone of alternating magnetites-sulphides (43.70-51.55m), a center zone of dense, massive fine-grained sulphides (51.55-71.40m) and a lower zone of magnetites-sulphides (71.40-73.15m). Similarly, this deposit is fine grained hence, chalcopyrites and sphalerites does not occur prominently. Thin bands of chalcopyrite were noted close to contact between the center zone and the lower zone. A total of 23 samples marked 235532-235541, 235543-235552, 235554-235556 were collected from this hole. Only magnetic susceptibility readings were undertaken. Below are the core photos showing the mineralized zone.

Photo 6

Photo 7

Readings from multi-parameter probe at 1.0m intervals showed higher values for magnetic susceptibility, conductivity and high frequency response within the mineralized zone. Magnetic susceptibility readings from 20.0 to 1900 were registered from depth 44.00 to 73.00m coinciding with the whole mineralized zone. Conductivity readings from 0.8-161 at depth 57.0-71.0m coincide with the center zone of massive dense sulphides. High frequency readings were likewise measured from the center zone at 56.00-71.00m. Complete list of multi-parameter probe readings is shown at Appendix ___.

Of the 23 samples collected for laboratory analysis, 7 returned with Cu or Zn values (see Table 1). Five of the samples come from the center zone while 2 come from the upper zone. Cu values range from 1.06 to 1.90% while Zn values are 1.79 and 7.97%.

MCF-10-83

This hole was drilled at the same set-up as MCF-10-81 at 100° azimuth and 45° dip. The original plan was to drill this hole at L8+00E/0+30N, 135° azimuth, 45° dip but bad weather prevented the chopper to move the drill. Since the distance is only 50m to the planned location, it was decided to rotate instead the drill machine to drill the target at an

angle. The hole intercepted the massive sulphide from 43.02-60.00m or a total length of 16.98m. The deposit consist of coarse to fine grained sulphides with pyrite as the most visible. Chalcopyrite and magnetite were noted from 50.30-51.00m and 58.95-59.60m, respectively. A total of 11 samples marked 235557-235566, 235568 were taken from this hole. No XRF and magnetic susceptibility readings were undertaken. Below are the core photos showing the mineralized zone.

Photo 9

Of the eleven samples collected for laboratory analysis, 6 returned with Cu and Zn values between 43.02 to 52.50m intervals. Cu values range from 1.24 to 5.95% while the lone Zn value is 1.50%.

HOLE ID	Sample#	FROM (m)	TO (m)	LENGTH	Cu %	Zn %	Pb %
MCF-10-80	235230	168.00	168.83	0.83	1.50		
MCF-10-81	235240	45.00	46.00	1.00		3.12	
	235241	46.00	47.00	1.00	1.32		
	235244	49.50	51.00	1.50	1.43	7.59	
	235246	51.00	52.50	1.50	2.74		
	235247	52.50	54.00	1.50	2.77		
	235248	54.00	55.50	1.50		4.09	
	235526	58.50	60.00	1.50	3.34		
	235527	60.00	61.30	1.30	2.24		
MCF-10-82	235537	48.50	50.25	1.75		7.97	
	235538	50.25	51.55	1.30	1.06		
	235543	55.50	57.00	1.50		1.79	
	235545	58.50	60.00	1.50	1.54		
	235546	60.00	61.50	1.50	1.90		
	235547	61.50	63.00	1.50	1.12		
	235549	64.50	66.00	1.50	1.07		
MCF-10-83	235557	43.02	44.00	0.98	3.87		
	235559	45.00	46.50	1.50	1.46		
	235560	46.50	48.00	1.50	2.29	1.50	
	235561	48.00	49.50	1.50	1.24		
	235562	49.50	51.00	1.50	5.95		
	235563	51.00	52.50	1.50	4.33		

Table 2. 2010 Assay Results Summary

Figure 5. Drill Hole Locations at McFaulds 3

10.0 FINDINGS AND INTERPRETATION

McFaulds 3 and 5 exhibit similar mineralization characteristics wherein there is an upper and lower layer of magnetite-sulphides and a center layer of dense sulphides. However, results of laboratory analysis for the four holes shows differing Cu concentrations for McFaulds 3 and 5 VMS prospects. McFaulds 3 returned Cu values ranging from 1.06 to 5.95% mostly from the center zone of dense sulphide and some from the upper zone. The lone drill hole from McFaulds 5 returned a single value of 1.50%Cu.

The three holes drilled at McFaulds 3 all intercepted the mineralization at shallower depth. The mineralized intercept range from 16.98m to 29.45m in thickness (not true width). The mineralization consists of upper and lower zones of inter-layered magnetite-sulphide and a center zone of dense, massive sulphide. This dense, massive sulphide has thickness of 14 to 19 meters. Drilling at McFaulds 3, past and present, have revealed layered massive sulphide deposit trending 40° to 45° NE dipping 65° to75° NW (Burns, J. G., 2004). This deposit appears to represent a limb of a folded massive sulphide. A review of all drill holes and results of laboratory analysis at McFaulds 3 suggest that the Cu mineralization is at highest within the upper 200m of the deposit for a lateral distance of 150m between L7+50E to L9+00E. Below the 200m depth, Cu value dimishes.

11.0 SAMPLING PROCEDURE

Samples were collected for laboratory analysis from both the mineralized horizon and where possible, rock on either side. The nominal assay interval was 1.5m but within the mineralized zone the sampling reflected discrete bands of different types of mineralization i.e. bands primarily of pyrite, magnetite or both. However, in order not to cross lithological, structural, degree and type of alteration contacts, if recognizable, sampling was restricted to staying within the contact boundaries. A total of 62 samples were collected. To test the integrity of the analysis, 4 duplicate samples and 6 standards were inserted. The assay intervals were cut by a rock-cutting saw with a diamond-impregnated blade in a dedicated tent at the McFaulds Lake camp.

Each sample was placed in a durable plastic bag with a uniquely numbered assay tag and sealed with a nylon tie wrap. Five (5) to ten (10) samples were then placed in a rice bag and sealed with a unique orange plastic number coded security tie, so no sample could be removed without cutting the security tag. The rice bags were then placed and sealed in 20-gallon plastic pails (Photo 10), flown to Nakina and shipped by courier to the ALS Chemex Laboratory in Thunder Bay Ontario. ALS Chemex acknowledged receipt of the sample pails and the security seals of the contained rice bags were recorded as being unbroken.

12.0 OTHER OBSERVATIONS

The planned 2010 drilling done on the month of December did not exactly ended the way it was planned. Of the targeted meterage of 1000 meters, only 505 meters were drilled. Some factors that affected the drill program were as follows:

1. The drilling crew of 3 that arrived on the 3rd of December came only to set up the drill machine. The crew that would undertake the drilling did not arrive until the 8th of December and the crew only started drilling on the 9th of December. This greatly set back the drilling schedule. Furthermore, the drill

crew stayed for 10 days only and left camp on the 19 of December, afraid that they might get stranded in the camp during the holiday season because of unpredictable weather.

- 2. The lake was not frozen to the acceptable thickness until the 10th of December which prevented the fixed wing aircraft to bring in enough supply of fuel for the chopper and drill machine to operate unhampered. All supplies were flown from Nakina to Marten Falls First Nation where it was picked up by chopper.
- 3. The weather was not very cooperative. By the first week of December, a lot of snow has fallen. By the second week, the temperature dipped to -35°C and by the third week, freezing drizzle was the order for the day.

Also, the airborne survey did not finish what it hoped to accomplish. The airborne equipment bogged down in the middle of the survey and was brought back to SHA head office. The crew did not return to finish the survey.

13.0 CONCLUSIONS AND RECOMMENDATIONS

Scott Hogg and Associates Ltd of Toronto conducted the airborne survey and was able to fly 430 production kilometres out of the target of 950 kilometres. Equipment breakdown prevented the completion of the survey.

Fugro Airborne Surveys conducted a high-sensitivity aeromagnetic and Falcon[™] Airborne Gravity Gradiometer (AGG) survey over the East and West claims of UC Resources Ltd. The survey completed 5 production flights for a combined total of 1810 line kilometres of data acquired. Interpretations on the results of the airborne geophysical surveys are being worked on by both of the companies who undertook the surveys.

Four drill holes were completed with total meterage of 505 meters out of 1000m targeted for the program. The four holes that were drilled all intercepted the mineralized zone.

The lone hole drilled at McFaulds 5 showed that the mineralization still persist towards the south. Since all holes drilled within McFaulds 5, past and present, dipped at -45, future holes should include steeper angles to test the deposit at depth.

The three holes drilled at McFaulds 3 all intercepted the mineralization at shallower depth. The mineralized intercept range from 16.98m to 29.45m in thickness (not true width). The mineralization consists of upper and lower zones of inter-layered magnetite-sulphide and a center zone of dense, massive sulphide. This dense, massive sulphide has thickness of 14 to 19 meters. Drilling at McFaulds 3, past and present, have revealed layered massive sulphide deposit trending 40° to 45° NE dipping 65° to75° NW (Burns, J. G., 2004). This deposit appears to represent a limb of a folded massive sulphide. A review

of all drill holes and results of laboratory analysis at McFaulds 3 suggest that the Cu mineralization is at highest within the upper 200m of the deposit for a lateral distance of 150m between L7+50E to L9+00E. Below the 200m depth, Cu value dimishes.

14.0 REFERENCES

Burns, Jim G., (2004), Updated Technical Report for the McFaulds Lake Property, Porcupine Mining Division Ontario of Spider Resources INC. / KWG Resources

Franklin, James M. (2008). McFauld's Lake Volcanogenic Massive Sulfide Potential A Review of Lithogeochemical Data and its Implications for the Stratigraphic Setting and Alteration. 47pp.

Lahti, Howard R. (2005). Updated Technical Report for the McFaulds Lake Property. Porcupine and Thunder Bay Mining Division, Ontario. Spider Resources Inc./KWG Resources Inc. 25pp.

Novak, Neil D. (2006). Diamond Drilling Report for the McFaulds Lake Property, Porcupine Mining Division Ontario. Spider Resources Inc./KWG Resources Inc. 16pp.

Introduction to Exploration Geology, Delta Mine Training Center-Alaska, <u>http://www.dmtcalaska.org/course_dev/explogeo/intro.html</u>

15.0 Date and Signature

Certificate of Qualified Person

I, Fortunato Milanes, certify that;

- 1. I reside at 48-1310 Fieldlight Blvd, Pickering, Ontario L1V 2Y8
- 2. This certificate applies to the technical report entitled "Report on the 2010 Drilling Project, McFaulds East Group, McFaulds Lake Property, Porcupine Mining Division, James Bay Lowland, Ontario Canada" dated October 2011.
- 3. I am a graduate of University of the Philippines, Bachelor of Science in Geology (1977) and have been practicing continuously my profession.
- 4. I am a member of the Association of Professional Geoscientists of Ontario (APGO) with Registration No. 1959.
- 5. I am a geologist practitioner for Billiken Management Services Inc with office address 304-65 Front St. East, Toronto, Ontario M5E 1B5.
- 6. I am a qualified person for the purposes of National Instrument 43-101- Standards of Disclosure for Mineral Projects (NI 43-101)
- 7. I authored this Technical Report.
- 8. I am independent, as described in Section 1.4 of NI 43-101, of UC Resources Ltd.
- 9. I have had no prior involvement with the property that is the subject of this Technical Report.
- 10. I have read National Instrument 43-101 and this Technical Report has been prepared in compliance with NI 43-101.
- 11. As of the date of this certificate, to the best of my knowledge, information and belief, this Technical Report contains all scientific and technical information that is required to be disclosed to make this Technical Report not misleading.

Signed in Toronto, Ontario this 14th of October 2011

Fortunato Milanes

APPENDIX 1:

DRILL LOGS

Commonto	
DEPTH DIP AZIMUTH	
Hole Number: MCF-10-80 COLLAR To test the south side of a major magnetic anomaly ("Bull's eye")	
Units of Measurement: Metres The hole intercepted a massive magnetite + pyrite layer from 165.	50 to 171.80m
A downhole survey using Deviflex was attempted but the PDA used to inp	ut the data hang .
Location NTS Sheet: 43D/16 Another attempt was tried but the PDA work. Temperature during the	at time was -35 C.
Township: BMA 527 861 The drill shack was not sufficiently heated.	
Claim No: 1242319	
Grid: G Only 1 sample returned with Cu value > 1%	
Easting: L 1+00E	
Northing: 16+78N	
Elevation: 155	
GPS Co-ordinates: Zone: 18U	
(if applicable) Datum: NAD83	
Easting: 503145	
Northing: 5850390	
Collar Dip: 45°	
Collar Azimuth: 135	
Hole Length: 177	
Core Size: NQ	
Recovery:	
Logged By: Fortunato Milanes	
Date: Start: December 10.2010	
Finish: December 12, 2010	
Drilled by: Orbit Garant Drilling	
Date: Start: December 9, 2010	
Finish: December 12. 2010	

	Billiken Management		PROJECT	: McFaulds	s Lake		HOLE NO:	: MCF-10-8	30	PAGE: 20	of 4
		Billiken Management									
FROM	TO	DECODIPTION				ANAL	YTICAL RE	SULTS			
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH					
0.00	23.60	Overburden - nothing recovered except for few pebbles of dolomitic									
		limestone and mafic-looking rock.									
23.60	28.10	Dolomitic Limestone									
		This rock unit is hard, beige in color and slightly fossiliferous. Weakly									
		effervesce in acid. Solid core recovery is moderately poor with maximum									
		length at 0.60m and the rest between 5 to 20cm lengths.									
		Apparent contact with the next unit is at 60degrees to core axis									
28.10	31.10	Sandstone									
		This rock unit is brownish-gray in color, composed of siliceous grains,									
		and moderately weathered. Solid core recovery is poor with core length									
		<20cm. Contact with the next unit is abrupt.									
31.10	40.43	Extremely Weathered Meta-Sediment									
		This unit is extremely weathered meta-sediment exhibiting very soft									
		clayey condition, light gray color. A relatively intact 10cm portion exhibiting									
		the characteristic foliation of the underlying rocks points to its original									
		provenance. Occassional rounded quartz fragments 3cm and less occur									
		as xenoliths. Core recovery is very poor at only 30%.									
40.43	165.50	Meta-Sediment									
		This rock unit is characteristically highly foliated, hard, competent,									
		moderately silicified, slightly chloritized, sericitized and serpentinized.									
		It is crystalline on fresh surface and appear to be fine-grained in its									
		original state. This unit exhibit alternating colors of light gray and dirty									
		white coinciding with the the foliation. Foliation is in the									
		general direction of 55degrees to core axis. Joints almost always follow									
		the same angle. It is non-magnetic. Reaction to acid is very very slight									
		mostly coming from the interstices and microfractures.									
		Some of the localized observations are as follows:									
		48.00-58.55m:	I		L		L				L
		the dirty white bands have been replaced with pinkish									
		color; some silica veins and silica replacement have been observed;									
		this segment is moderately fractured from 52.05-58.55m with the portion				ļ					L
		57.0-58.55 characterized with slickenside marks and accompanying									
		serpentinization; this particular fracture is parallel to core axis.									
			1	1		1			1	1	

FROM	то										PROJECT: McFaulds Lake HOLE NO: MCF-10-80 PAGE: 3 of 4											
FROM	то	DESCRIPTION																				
FROM	10	DESCRIPTION																				
			SAMPLE	FROM	TO	LENGTH	Cu ppm	Zn ppm	Pb ppm	Cu %	Zn %	Pb %										
		58.55-66.00m:																				
		this segment is highly competent, colors of alternating																				
		light gray and dirty white bands, and moderately foliated. Alteration is																				
		very minor with sericite and chlorite minerals observed.																				
		66.00-144.50m:																				
		this segment is highly foliated, hard, very competent core, color of alternating light gray to greenish gray and dirty white bands;																				
		weakly chloritized and serpentinized mostly along joints; homogenous																				
		appearance all throughout.																				
		144.50-145.22m:																				
		Altered with moderate shearing; numerous fractures and some gougy																				
		portions																				
		146.00-147.00m:																				
		Silica in the form of replacement and undefined veins.																				
		147.00-152.00m:																				
		Silica appear to be as xenolith fragments with its rounded and defined																				
		edges; fragment size usually <10cm in diameter.																				
		At 150.40-150.80m some pyrite specks (<1%) present																				
		156.00-156.10m:																				
		Pyrite band formed in the same direction as foliation.																				
		163.90-164.85m:																				
		Highly fractured quartz vein with occassional pyrite flecks.																				
		164.90-165.50m: This betters as discuss the Materializant is an electric children in the	225220	464.00	465.50	0.00	2.00	20	50													
		rnis bottom portion of the Metasediment is moderately chloritized and	235226	104.90	105.50	0.00	3.00	30	52													
		serpendinized, rock is grayish-green in color and surface can be																				
		scratored with ingernali; Non-magnetic even close to contact with the																				
		magneute zone.																				
185.50	171.90	Massive Magnetite and Sulphides																				
100.00	171.00	This mineralized zone is composed of an unner and lower layer of																				
		magnetite and a center laver of sulphides. Magnetite and sulphides																				
		occur as fine grained minerals. Pyrites generally comprise the subhides																				
165.50	171.80	Massive Magnetite and Sulphides This mineralized zone is composed of an upper and lower layer of magnetite and a center layer of sulphides. Magnetite and sulphides																				

		Dilliken Mensenset	PROJECT	: McFaulds	Lake		HOLE NO:	MCF-10-80)		PAGE: 4 d	of 4
		Billiken Management										
FROM	то	DESCRIPTION					ANALYTICAL RESULTS					
TROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Cu ppm	Zn ppm	Pb ppm	Cu %	Zn %	Pb %
		165.50-166.00m										
		Magnetite is 65%, sulphide is 35%; contact with the overlying rock is	235227	165.50	166.00	0.50	546	21	39			
		abrupt at 90° to core axis										
		199.00.197.00										
		166.00-167.00m			407.00							
		Mostly magnetite up to 95%	235228	166.00	167.00	1.00	5	24	92			
		167.00-168.00m	225220	467.00	409.00	4.00	2050	42	45			
		70% sulphide, 30% magnetite; pyrite is coarse crystalline	235229	167.00	100.00	1.00	2950	42	45			
		169 00-169 93m										
		00% subbide 10% magnetite	235230	168.00	168.83	0.83	10000	84	33	15		
		eo lo supride, 10 lo magnette	200200	100.00	100.00	0.00	10000			1.0		
		168 83-169 45m										
		Metasediment with 10cm quartz vein_non-magnetic	235231	168.83	169.45	0.62	312	49	7			
			200201			0.02						
		169.45-170.45m										
		95% magnetite, 5% sulphide	235232	169.45	170.45	1.00	497	19	38			
		170.45-171.80m										
		95% magnetite, 5% sulphide; contact with underlying rock is 65° tca	235233	170.45	171.80	1.35	710	15	45			
171.80	177.00	Metasediment										
		This rock unit is characteristically highly foliated, hard, competent,										
		moderately silicified, slightly chloritized, sericitized and serpentinized.										
		It is crystalline on fresh surface and appear to be fine-grained in its										
		original state. This unit exhibit alternating colors of light gray and dirty										
		white coinciding with the the foliation. Foliation is in the										
		general direction of 55degrees to core axis. Joints almost always follow										
		the same angle. It is non-magnetic. Reaction to acid is very very slight										
		#										
		EOH										

						· · · · · · · · · · · · · · · · · · ·	
Project:		UC McFaulds Project	INCL	INATION T	ESTS	Comments	
			DEPTH	DIP	AZIMUTH	commenta	
Hole Number:		MCF-10-81	COLLAR			To test the continuity of the VMS deposit at the upper level (40m below the surface)	
Units of Measurement:		Metres				The hole intercepted the massive sulphide deposit from 40.50-63.46m	
						Result for Cu-Zn-Pb incorporated; 8 samples returned with Cu & Zn values >	1%
Location	NTS Sheet:	43D/16				No downhole survey was undertaken	
	Township:	BMA 527 861					
	Claim No:	3010461					
	Grid:	<u>c</u>					
	Easting:	L 7+75E					
	Northing:	0+30N					
	Elevation:	155					
GPS Co-ordinates:	Zone:	<u>16U</u>					
(if applicable)	Datum:	NAD83					
	Easting:	565360.7					
	Northing:	5854203					
Collar Dip:		<u>45°</u>					
Collar Azimuth:		135					
Hole Length:		150					
Core Size:		NQ					
Recovery:							
Logged By:		Fortunato Milanes					
Date:	Start:	December 16, 2010					
	Finish:	December 17, 2010					
Drilled by:		Orbit Garant Drilling					
Date:	Start:	December 13, 2010					
	Finish:	December 16, 2010					

			PROJECT	: McFaulds	Lake			HOLE NO	: MCF-10-8	1	PAGE: 2 d	of 3
		Billiken Management										
		_										
FROM	то	DESCRIPTION	CAMPLE	TO	ANALY		ALYTICAL RESULTS				DL 0/	
0.00	45.00		SAMPLE	FROM	10	LENGTH	Cu ppm	∠n ppm	Pb ppm	Cu %	∠n %	PD %
0.00	15.00	Overburden										
		Nothing recovered. It is assumed to be loose sediments.										
15.00	20.40	Delensitie Lineartene										
15.00	38.40	40 Dolomitic Linestone This mak upit is hard, buff colored and fasciliformus with corols and										
		This rock unit is hard, buff colored and fossiliferous with corals and										
		worm burrows. Core is moderately competent with good solid core										
		recovery. Reaction to acid is weak. Contact with the underlying unit is										
		undefined because of the fragmented occurrence of the two units.										
20.40	40.50	T., 65										
38.40	40.00	10π This work weit is shade announders work hust in links annound de soufings	225225	20.00	40.50	1.50	7000	776	52			
		This rock unit is dank gray when wet but is light gray on dry sufface.	200200	39.00	40.50	1.50	7090	(/0	52			
		It is highly fractured with only about 5% solid core recovery. It has										
		pervasive hematization and its bottom portion close to the contact with										
		the underlying unit is completely weathered. A 10cm highly pyritized										
		portion is noted at 40.00-40.10m										
40.50	63.46	Massive Sulphide										
		This massive sulphide intercept consist of an upper and lower layer										
		of alternating magnetite-sulphide and a center zone of massive dense										
		sulphide. All zones are characteristically fine grained. Chalcopyrite and										
		sphalerite are not very prominent perhaps because of the fine-grained										
		nature of the deposit. A 3cm band of chalcopyrite was noted though										
		close to the contact of the center and bottom zone. The massive dense										
		sulphide at the center zone is characteristically magnetic.										
		40.50-47.00m: Upper Zone										
		40.50-42.00m - this consist of 80% magnetite and 20% sulphide;	235236	40.50	42.00	1.50	6540	119	42			
		magnetite is dense, dark brown color and oxidized in some parts;										
		magnetite is highly fractured with 5% solid core recovery and has minor										
		tuff layers										
		42.00-44.00m - sulphide with interlayered magnetite. This section exhibit	235237	42.00	43.00	1.00	3490	164	45			
		foliation structure similar to the underlying metasediment. Both	235238	43.00	44.00	1.00	1460	264	40			
		sulphides and magnetite are fine grained. Magnetite is moderately										
		weathered and fractured.										
		44.00-45.00m - 90% magnetite, 10% sulphide; moderately magnetic	235239	44.00	45.00	1.00	749	266	37			

	Billiken Management			McFaulds	Lake		HOLE NO: MCF-10-81 PAGE: 3 of 3					f3
		Billiken Management										
									~			
FROM	то	DESCRIPTION	SAMPLE	FROM	то			Zn nom	S Phnom	Cu %	7n %	Ph %
		45 00-46 00m - 80% magnetite, 20% sulphide; poorly magnetic;	235240	45.00	46.00	1.00	5700	10000	65	04.70	3.12	10.70
		both appear to be diluted with tuffaceous metasediment	200210				0.00				0.12	
		46 00-47 00m - sulphide with minor intercelated magnetite	235241	46.00	47.00	1.00	10000	338	109	1 32		
		10.00 - 11.0011 - Suprice war hind intercatated magnetice	200211	10.00	11.00	1.00	10000			1.02		
		47.00-61.30m: center zone of massive dense sulphide										
		This mineralized zone is about 95% sulphide and 5% magnetite;	235242	47.00	48.00	1.00	2350	300	56			
		core is competent, dense, fine grained and exhibit foliation structure;	235243	48.00	49.50	1.50	681	7500	43			
		it is magnetic all throughout.	235244	49.50	51.00	1.50	10000	10000	191	1.43	7.59	
		With increasing magnetite content ≈50% from 57.00-59.00m	235246	51.00	52.50	1.50	10000	1550	102	2.74		
		Some coarse grained pyrites from 60.00-61.00m	235247	52.50	54.00	1.50	10000	2600	193	2.77		
		Contact with the lower zone is 55° tca.	235248	54.00	55.50	1.50	3540	10000	131		4.09	
			235249	55.50	57.00	1.50	7860	2870	112			
			235250	57.00	58.50	1.50	8030	153	461			
			235526	58.50	60.00	1.50	10000	364	326	3.34		
			235527	60.00	61.30	1.30	10000	335	198	2.24		
		61.30-63.46m: Lower Zone										
		80-95% magnetite, 5-20% sulphide, contact with the underlying rock	235528	61.30	62.46	1.16	6630	119	72			
		is abrupt at 75° tca	235529	62.46	63.46	1.00	4320	24000	53			
63.46	150.00	Metasediment										
		This rock unit exhibit strong fissile structure coincident with foliation	235530	63.46	65.00	1.54	59	183	4			
		particularly from 63.46-111.30m; from 111.30 downward the rock is more										
		competent but is still exhibit foliation structures.										
		Strong to weak hematization characterize this rock from 65.30 to 75.00m										
		It also exhibit weak sericitic, chloritic and serpentine alteration mostly										
		observed along joints and fractures. Minor pyrite mineralization is										
		observed between 112.00-118.00m										
		EOH										
		2011										
			1									

Project:		UC McFaulds Project
Hole Number:		MCF-10-82
Units of Measurement:		Metres
Location	NTS Sheet: Township: Claim No: Grid: Easting: Northing: Elevation:	43D/16 BMA 527.861 <u>3010461</u> C L.7+75E <u>0+30N</u> 155
GPS Co-ordinates: (if applicable)	Zone: Datum: Easting: Northing:	<u>18U</u> NAD83 565360.7 5854203
Collar Dip: Collar Azimuth: Hole Length: Core Size: Recovery:		80 135 100 NQ
Logged By: Date:	Start: Finish:	Eortunato Milanes. December 18, 2010 December 19, 2010
Drilled by: Date:	Start: Finish:	Orbit Garant Drilling December 16, 2010 December 17, 2010

INC	LINATIO	N TESTS
DEPTH	DIP	AZIMUTH
COLLAR		
	-	
	+	
	+	
		_
		_
		_
		_
	_	

	Comments
This hol	e was drilled at same set-up as MCF-10-81 at deeper angle to undercut the VMS
The ho	e intercepted the VMS at 43.70-73.15m.
No dowr	ihole survey undertaken.
7 sampl	es returned with Cu or Zn values >1%

			PROJECT	: McFaulds	Lake			HOLE NO:	MCF-10-8	2	PAGE: 2 d	if 3
Billiken Management												
									T.C.			
FROM	TO	DESCRIPTION	CAMPLE	EDOM	то	LENCTH	ANALYTIC	AL RESUL	Db ppm	Cu 94	7n %	Db %
0.00	12.20	Querburden Nathing recovered execut for pabble to exhibit rized	SAMPLE	FROM	10	LENGTH	Cu ppm	Znippin	Po ppm	Cu 76	211 70	FN 70
0.00	12.00	fragments of limestene and mate looking make										
		ragments of infestorie and manc looking rocks										
12.30	32.34	Dolomitic Limestone	-									
12.00	02.01	This mok unit is hard, buff colored and fossiliferous with corals and										
		worm burrows. Color turns to gray at 31.00-32.24m				<u> </u>						
		Core is moderately competent with good solid core recovery										
		Reaction to acid is weak. Contact with the underlying unit appear to be										
		interfingering.										
		······································										
32.24	43.70	Fine Tuff										
		This rock unit is highly weathered, fractured and hematized in the upper	235532	42.00	43.70	1.70	81	956	60			
		portion but slight to moderately weathered with hematized joints/fractures										
		in the lower portion. It is slightly pyritized with quartz veins in places										
		though not necessarily together. It is non-magnetic. The sample										
		taken at the bottom portion has disseminated pyrites in it.										
43.70	73.15	Massive Sulphide										
		This massive sulphide intercept consist of an upper and lower layer										
		of alternating magnetite-sulphide and a center zone of massive dense										
		sulphide. All zones are characteristically fine grained. Chalcopyrite and										
		sphalerite are not very prominent perhaps because of the fine-grained										
		nature of the deposit. The massive dense sulphide at the center zone										
		is characteristically magnetic.										
		43.70-51.55m - Upper Zone										
		43.70-45.00m: This section is weathered with alternating bands of	235533	43.70	45.00	1.30	6510	143	93			
		magnetite and sulphide in equal proportion										
		45.00-48.30m: This section consist of 95% magnetite and 5% sulphide	235534	45.00	46.30	1.30	5030	154	49			
			005505	40.00	17.10	4.40	5470	407	50			
		46.30-47.40m: This consist of 90% sulphide and 10% magnetite;	235535	46.30	47.40	1.10	51/0	127	53			
		Sulphide exhibit foliation										
			005500	47.40	40.50	4.40	4500	407	47			
		47.40-48.50m: This consist of almost 100% magnetite	235536	47.40	48.50	1.10	1530	197	4/			
		40 EO EO OEn: This security of OEO/ managelite and EO/ incomiting from	225527	40.50	50.05	4.75	4740	40000	05		7.07	
		48.50-50.25m: This consist of 85% magnetite and 5% impunties from	235537	40.50	50.25	1./5	4/10	10000	65		7.97	
		un										

		PROJECT	: McFaulds	Lake		HOLE NO: MCF-10-82 PAGE: 3 of 3								
		Billiken Management												
EROM	то	DESCRIPTION					ANALYTICAL RESULTS							
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Cu ppm	Zn ppm	Pb ppm	Cu %	Zn %	Pb %		
		50.25-51.55m: This consist of magnetite and sulphide in equal	235538	50.25	51.55	1.30	10000	828	102	1.06				
		proportion												
		51.55-71.40m - Center zone of Massive Sulphide												
		This mineralized zone is about 90-95% sulphide and 5-10% magnetite;	235539	51.55	53.00	1.45	2650	211	63					
		core is competent, dense, fine grained and exhibit layering structure	235540	53.00	54.00	1.00	1730	260	59					
		similar to foliation; it is magnetic all throughout.	235541	54.00	55.50	1.50	420	3060	58					
			235543	55.50	57.00	1.50	1450	10000	98		1.79			
			235544	57.00	58.50	1.50	8010	312	103					
			235545	58.50	60.00	1.50	10000	256	127	1.54				
			235546	60.00	61.50	1.50	10000	228	85	1.9				
			235547	61.50	63.00	1.50	10000	196	96	1.12				
			235548	63.00	64.50	1.50	7850	177	94					
			235549	64.50	66.00	1.50	10000	294	76	1.07				
			235550	66.00	67.50	1.50	7160	199	95					
			235551	67.50	69.00	1.50	3740	200	69					
			235552	69.00	70.00	1.00	7770	160	60					
			235554	70.00	71.40	1.40	5460	198	77					
		71.40-73.15m - Lower Zone												
		This consist of 95% magnetite and 5% sulphide	235555	71.40	73.15	1.75	7600	125	98					
73.15	100.00	Metasediment												
		This rock unit exhibit strong fissile structure coincident with foliation.	235556	73.15	75.00	1.85	36	290	7					
		It also exhibit weak sericitic, chloritic, talc and serpentine alteration												
		mostly observed along joints and fractures. It is generally light gray color												
		EOH												
									L					
									L					
			1											
									L					

Project:		UC McFaulds Project
Hole Number:		MCF-10-83
Units of Measurement:		Metres
Location	NTS Sheet: Township: Claim No: Grid: Easting: Northing: Elevation:	43D/16 BMA 527 861 <u>3010461</u> C <u>L 7+75E</u> <u>0+30N</u> <u>155</u>
GPS Co-ordinates: (if applicable)	Zone: Datum: Easting: Northing:	18U NAD83 565360.7 5854203
Collar Dip: Collar Azimuth: Hole Length: Core Size: Recovery:		45° 100 78 NQ
Logged By: Date:	Start: Finish:	Fortunato Milanes December 20, 2010 December 20, 2010
Drilled by: Date:	Start: Finish:	Orbit Garant Drilling December 18, 2010 December 19, 2010

INCL	INATION T	ESTS
DEPTH	DIP	AZIMUTH
COLLAR		
		I I

	Comments	
To test	the continuity of the VMS deposit at shallow level towards L8+00E	_
The hol	e intercepted the massive sulphide from 43.02-60.00m or a total	
length o	f 16.98m.	
ble deve		
NO DOW	nnoie survey	
6 samp	es returned with Cu-Zn values >1%	_
o samp		_
		_
		_
		_
		_
		-
		_
		_
		_
		_

				: McFaulds	Lake		HOLE NO: MCF-10-83				PAGE: 2 of 2			
Billiken Management														
			ANALYTICAL RESULTS											
FROM	то	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Cu ppm	Zn ppm	Pb ppm	Cu %	Zn %	Pb %		
0.00	15.80	Overburden - Recovery limited to few pebbles of dolomitic												
		limestone and mafic-looking rock.												
15.80	39.05	Dolomitic Limestone												
		This rock unit is hard, fossiliferous, buff in color but becoming gray towards												
		bottom. Weakly effervesce in acid. Core recovery is very good at 95%.												
		Core is competent with minor joints and fractures. Minor pyrites at 36m.												
		Contact with underlying rock is gradational at 35° tca.												
39.05	43.02	Tuff												
		This rock unit is badly fractured with coreloss of 1.22m. It is fine grained,												
		gray colored and hematized towards contact with the massive sulphide												
		below. Fractures are markedly serpentinized. Slight pyritization present.												
43.02	60.00	Massive Sulphide												
		43.02-58.95m:												
		This section consist of coarse to fine grained sulphides.	235557	43.02	44.00	0.98	10000	151	530	3.87				
		The first 3 meters has lots of broken core and appear incohesive	235558	44.00	45.00	1.00	9800	126	46					
		Massive sulphide is interbedded with fine tuff between 47.50-48.20m	235559	45.00	46.50	1.50	10000	386	63	1.46				
		Some visible chalcopyrite present between 50.30-51.00m	235560	46.50	48.00	1.50	10000	10000	114	2.29	1.5			
		The portion from 54.00-58.00m is badly broken with coreloss of 2.10m.	235561	48.00	49.50	1.50	10000	7060	87	1.24				
		Contact with magnetite below is abrupt at 40° tca.	235562	49.50	51.00	1.50	10000	1920	101	5.95				
			235563	51.00	52.50	1.50	10000	323	120	4.33				
			235564	52.50	54.00	1.50	3860	111	514					
			235565	54.00	57.00	3.00	6400	101	303					
			235566	57.00	58.95	1.95	8560	99	374					
		58.95-60.00m:												
		This portion consist of 60% magnetite and 40% sulphides. The	235568	58.95	60.00	1.05	4930	108	/3					
		magnetite portion is interlayered with minor sulphides showing a	_											
		foliated appearance. The sulphide portion is hard, dense and fine	_											
		grained.	_											
80.00	70.00	M-4												
60.00	/8.00	metaseoiment This and we his for an inclusion of a his his for the state of the												
		I his rock unit is the grained and exhibit highly fissile structure. The												
		preaks are almost always present with sencite, taic, chiorite and												
		serpentine. Low to moderate nematization also characterize this rock.	-											
		5011												
		EOH												

APPENDIX 2

DRILL SECTIONS

APPENDIX 3 SAMPLES MASTERLIST

Hole ID	Sample #	From (m)	To (m)	Length (m)	Description
MCF-10-80	235226	164.90	165.50	0.60	Metasediment-in contact with upper portion of massive mag+sulphides
MCF-10-80	235227	165.50	166.00	0.50	Massive Mag+Sulphides
MCF-10-80	235228	166.00	167.00	1.00	Massive Mag+Sulphides
MCF-10-80	235229	167.00	168.00	1.00	Massive Mag+Sulphides
MCF-10-80	235230	168.00	168.83	0.83	Massive Mag+Sulphides
MCF-10-80	235231	168.83	169.45	0.62	Massive Mag+Sulphides
MCF-10-80	235232	169.45	170.45	1.00	Massive Mag+Sulphides
MCF-10-80	235233	170.45	171.80	1.35	Massive Mag+Sulphides
MCF-10-80	235233B	Dup			Massive Mag+Sulphides
MCF-10-80	235234	STD OREA	S131a		
MCF-10-81	235235	39.00	40.50	1.50	Pyritized tuff in contact with upper portion of Massive Sulphide
MCF-10-81	235236	40.50	42.00	1.50	Massive Mag+Sulphides
MCF-10-81	235237	42.00	43.00	1.00	Massive Mag+Sulphides
MCF-10-81	235238	43.00	44.00	1.00	Massive Mag+Sulphides
MCF-10-81	235239	44.00	45.00	1.00	Massive Mag+Sulphides
MCF-10-81	235240	45.00	46.00	1.00	Massive Mag+Sulphides
MCF-10-81	235241	46.00	47.00	1.00	Massive Mag+Sulphides
MCF-10-81	235242	47.00	48.00	1.00	Massive dense Sulphides
MCF-10-81	235243	48.00	49.50	1.50	Massive dense Sulphides
MCF-10-81	235244	49.50	51.00	1.50	Massive dense Sulphides
MCF-10-81	235245	STD OREA	S94		
MCF-10-81	235246	51.00	52.50	1.50	Massive dense Sulphides
MCF-10-81	235247	52.50	54.00	1.50	Massive dense Sulphides
MCF-10-81	235248	54.00	55.50	1.50	Massive dense Sulphides
MCF-10-81	235249	55.50	57.00	1.50	Massive dense Sulphides
MCF-10-81	235250	57.00	58.50	1.50	Massive dense Sulphides
MCF-10-81	235526	58.50	60.00	1.50	Massive dense Sulphides
MCF-10-81	235527	60.00	61.30	1.30	Massive dense Sulphides
MCF-10-81	235528	61.30	62.46	1.16	Massive Mag+Sulphides
MCF-10-81	235529	62.46	63.46	1.00	Massive Mag+Sulphides
MCF-10-81	235530	63.46	65.00	1.54	Metasediment-in contact with lower portion of massive mag+sulphides
MCF-10-81	235530B	Dup			
MCF-10-81	235531	STD OREA	S131b		

Hole ID	Sample #	From (m)	To (m)	Length (m)	Description
MCF-10-82	235532	42.00	43.70	1.70	Tuff with disseminated py in contact with upper part of Massive Sulphide
MCF-10-82	235533	43.70	45.00	1.30	Massive Mag+Sulphides
MCF-10-82	235534	45.00	46.30	1.30	Massive Mag+Sulphides
MCF-10-82	235535	46.30	47.40	1.10	Massive Mag+Sulphides
MCF-10-82	235536	47.40	48.50	1.10	Massive Mag+Sulphides
MCF-10-82	235537	48.50	50.25	1.75	Massive Mag+Sulphides
MCF-10-82	235538	50.25	51.55	1.30	Massive Mag+Sulphides
MCF-10-82	235539	51.55	53.00	1.45	Massive dense Sulphides
MCF-10-82	235540	53.00	54.00	1.00	Massive dense Sulphides
MCF-10-82	235541	54.00	55.50	1.50	Massive dense Sulphides
MCF-10-82	235542	STD OREA	S95		
MCF-10-82	235543	55.50	57.00	1.50	Massive dense Sulphides
MCF-10-82	235544	57.00	58.50	1.50	Massive dense Sulphides
MCF-10-82	235545	58.50	60.00	1.50	Massive dense Sulphides
MCF-10-82	235546	60.00	61.50	1.50	Massive dense Sulphides
MCF-10-82	235547	61.50	63.00	1.50	Massive dense Sulphides
MCF-10-82	235548	63.00	64.50	1.50	Massive dense Sulphides
MCF-10-82	235549	64.50	66.00	1.50	Massive dense Sulphides
MCF-10-82	235550	66.00	67.50	1.50	Massive dense Sulphides
MCF-10-82	235551	67.50	69.00	1.50	Massive dense Sulphides
MCF-10-82	235552	69.00	70.00	1.00	Massive dense Sulphides
MCF-10-82	235553	STD OREA	S131a		
MCF-10-82	235554	70.00	71.40	1.40	Massive dense Sulphides
MCF-10-82	235555	71.40	73.15	1.75	Massive Mag+Sulphides
MCF-10-82	235555B	Dup			Massive Mag+Sulphides
MCF-10-82	235556	73.15	75.00	1.85	Metasediment in contact with lower portion of Massive Sulphide
MCF-10-83	235557	43.02	44.00	0.98	Fine to coarse grained Massive Sulphide
MCF-10-83	235558	44.00	45.00	1.00	Fine to coarse grained Massive Sulphide
MCF-10-83	235559	45.00	46.50	1.50	Fine to coarse grained Massive Sulphide
MCF-10-83	235560	46.50	48.00	1.50	Massive Sulphide with interbedded tuff
MCF-10-83	235561	48.00	49.50	1.50	Massive Sulphide
MCF-10-83	235562	49.50	51.00	1.50	Massive Sulphide with visible chalco
MCF-10-83	235563	51.00	52.50	1.50	Massive Sulphide

Hole ID	Sample #	From (m)	To (m)	Length (m)	Description
MCF-10-83	235564	52.50	54.00	1.50	Massive Sulphide
MCF-10-83	235565	54.00	57.00	3.00	Massive Sulphide with 1m coreloss
MCF-10-83	235566	57.00	58.95	1.95	Massive Sulphide with 1m coreloss
MCF-10-83	235567	STD OREA	S94		
MCF-10-83	235568	58.95	60.00	1.05	Massive Mag+Sulphides
MCF-10-83	235568B	Dup			Massive Mag+Sulphides

APPENDIX 4

RESULTS OF ANALYSIS

Quality Analysis ...

Innovative Technologies

Date Submitted: 03-Jan-11 Invoice No.: A11-0001 Invoice Date: 01-Feb-11 Your Reference: UC-McFaulds

Billiken Management Services 65 Front Street Toronto Ontario M5E1B5 Canada

ATTN: Mr. Brian Newton

CERTIFICATE OF ANALYSIS

6 Pulp samples and 66 Rock samples were submitted for analysis.

The following analytical packages were requested: Code 1C-Exp ICPOES-Tbay Fire Assay ICPOES

Code 1F2-Tbay Total Digestion ICP(TOTAL)

REPORT A11-0001

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY :

Emmanuel Eseme , Ph.D.

Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actiabs.com ACTLABS GROUP WEBSITE www.actiabs.com

Activation	Laboratories Ltd.	Report:	A11-0001
Activation	Laboratories Ltu.	neport.	A11-0001

Analyte Symbol	Au	Pd	Pt	Ag	AI	As	Ba	Be	BI	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	ĸ	Mg	Mn	Mo	Na	NI	P
Unit Symbol	ppo	ppo	ppo	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	%	ppm	%
Detection Limit	2	5	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	0.01	1	0.001
Analysis Method	FA-ICP	FA-ICP	FA-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP
235226	7	< 5	< 5	1.1	6.79	< 3	<7	< 1	251	1.99	0.4	126	19	3	14.7	132	3	< 0.01	10.0	272	705	< 0.01	4	0.777
235227	6	18	11	0.7	3.85	37	<7	< 1	221	1.38	0.5	359	10	546	33.5	5	< 1	< 0.01	5.23	185	220	< 0.01	4	0.522
235228	4	< 5	< 5	0.9	3.34	16	<7	< 1	432	0.38	0.7	91	10	5	40.5	< 1	< 1	< 0.01	4.85	199	165	< 0.01	4	0.129
235229	31	18	13	1.0	2.86	44	< 7	< 1	152	0.18	0.9	413	4	2950	36.8	< 1	< 1	< 0.01	3.91	187	67	< 0.01	7	0.066
235230	107	< 5	10	1.4	172	81	<7	< 1	14	0.19	07	779	4	> 10000	33.3	1	5	< 0.01	2.69	142	62	< 0.01	2	0.058
235221		6		0.4	2.69	- 2	-7	- 1	42	0.57	0.5	51	6	212	19.2	45	2	< 0.01	4.66	222	51	< 0.01	-	0.049
205200	10	- 5		0.4	0.97	10			40	0.00	1.0	95		407	54.0			- 0.01	174		510	< 0.01	7	0.000
230232		< 0		0.0	0.27	12	<1	< 1	40	0.23	1.2	40		49/	59.5	< 1	< 1	< 0.01	1.74	30	400	< 0.01		0.000
235233	6	10	< 0	0.5	0.22	20	</td <td>< 1</td> <td>20</td> <td>0.20</td> <td>0.7</td> <td>40</td> <td>8</td> <td>/10</td> <td>53.5</td> <td>< 1</td> <td>< 1</td> <td>< 0.01</td> <td>1.81</td> <td>72</td> <td>122</td> <td>< 0.01</td> <td>13</td> <td>0.048</td>	< 1	20	0.20	0.7	40	8	/10	53.5	< 1	< 1	< 0.01	1.81	72	122	< 0.01	13	0.048
2352338	10		19	0.5	0.21	16	< /	< 1	33	0.17	0.9	64	9	910	55.0	< 1	< 1	< 0.01	1.74	76	114	< 0.01		0.036
235234	8	< 6	< 5	30.6	1.91	67	234	3	< 2	5.16	81.0	20	53	220	5.31	18	< 1	2.10	2.60	1650	3	0.15	28	0.047
235235	241	8	< 5	4.2	3.39	72	96	1	< 2	3.93	0.8	97	42	7090	19.1	25	3	0.49	7.49	373	< 1	0.03	42	0.025
235236	248	20	22	1.8	0.15	71	13	< 1	5	2.10	0.6	132	7	6540	43.3	< 1	< 1	< 0.01	2.30	152	1	< 0.01	19	0.010
235237	144	17	7	1.7	0.24	75	<7	< 1	3	0.44	0.7	166	9	3490	41.8	< 1	< 1	0.05	2.91	124	< 1	< 0.01	12	0.007
235238	87	< 5	< 5	1.2	0.51	95	<7	< 1	3	0.54	0.7	181	14	1460	36.3	< 1	3	0.09	2.35	180	< 1	< 0.01	10	0.005
235239	34	< 5	7	0.7	0.53	63	<7	< 1	< 2	0.14	1.0	75	12	749	45.5	< 1	< 1	0.03	2.38	226	< 1	< 0.01	11	0.008
235240	22	19	14	3.3	2.09	64	9	< 1	< 2	0.16	69.9	221	36	5700	33.5	8	< 1	< 0.01	5.68	226	2	< 0.01	14	0.010
235241	210	32	13	3.1	0.11	195	< 7	< 1	5	0.13	1.3	1030	6	> 10000	42.8	< 1	< 1	< 0.01	1.09	95	3	< 0.01	19	0.008
235242	69	13	< 5	1.2	0.11	121	<7	< 1	2	0.02	0.8	252	3	2350	38.2	< 1	< 1	0.02	1.14	86	2	< 0.01	7	0.003
235243	34	12	7	1.0	0.19	92	<7	< 1	3	0.13	16.3	178	17	681	39.6	< 1	< 1	0.01	1.11	174	< 1	< 0.01	6	0.003
235244	205	22	< 5	6.0	0.03	100	<7	< 1	< 2	< 0.01	132	500	9	> 10000	34.6	< 1	4	< 0.01	0.24	75	< 1	< 0.01	25	0.004
235245	< 2	< 5	< 5	3.7	4.26	4	356	3	11	0.51	0.8	31	75	> 10000	5.08	27	< 1	2.73	1.47	621	< 1	0.52	48	0.063
235246	313	< 5	< 5	6.9	0.03	192	<7	< 1	< 2	0.02	5.4	1150	2	> 10000	39.5	< 1	< 1	< 0.01	0.52	85	< 1	< 0.01	22	0.009
235247	343	25	13	9.0	0.04	294	<7	< 1	< 2	0.12	9.1	2100	4	> 10000	39.4	< 1	< 1	0.03	0.50	85	< 1	< 0.01	18	0.050
235248	114	18	< 5	2.0	0.03	75	<7	< 1	< 2	0.01	89.1	503	7	3540	38.1	< 1	< 1	0.02	0.48	88	< 1	< 0.01	7	0.002
235249	79	11	< 5	2.7	0.14	92	<7	< 1	4	0.06	8.7	375	6	7860	40.7	< 1	< 1	0.04	1.60	158	2	< 0.01	14	0.006
235250	93	< 5	< 5	7.1	0.24	56	<7	< 1	< 2	0.11	1.5	267	10	8030	40.5	< 1	< 1	0.02	2.44	214	5	< 0.01	34	0.009
235526	359	< 5	< 5	11.6	0.30	127	-7	~1	12	0.50	1.6	663	12	> 10000	35.1	- 1	- 1	0.08	1 19	155	18	< 0.01	20	0.011
235527	281	~ 5	~5	11.3	0.36	50	-7	21	-2	0.12	1.0	317	13	> 10000	38.6	21	21	0.04	1 18	188	98	< 0.01	26	0.009
235528	115	16	< 5	21	0.03	87	-7	~1	5	0.15	0.5	398	10	6630	40.9	- 1	- 1	< 0.01	3.41	277	2	< 0.01	7	0.004
235529	54	~ 5	~5	1.5	0.07	40	-7	~ 1	- 2	0.10	7.6	192	2	4320	46.9	- 1	- 1	0.02	2.52	211	-1	< 0.01	11	0.005
235520	~ 2	19		< 0.2	5.16	~ 2	407		- 2	0.10	0.4	21	60	50	457	97	1	2.51	2.00	776	24	0.11		0.007
235550	~ ~ ~	14	10	< 0.0	5.07	< 0	500	-		0.12	- 0.0	45		00	2.00	20		2.01	2.00	740		0.11	40	0.027
2300308	40	14	10	< 0.3	0.27	< 3	602	2	< 2	0.19	< 0.3	10	02	21	3.99	20	< 1	2.08	2.11	1660	< 1	0.17	92	0.023
230031	42	~ ~ ~	~ ~ ~	20.0	5.40		000		~ ~ ~	0.03	11.3	20		330	0.00	10		2.00	7.40	1000		0.17		0.001
230032	400	14		0.3	0.10		302	2	< 2	0.00	0.8	20	02	01	8.40	24	< 1	1.07	1.43	198	< 1	0.04	47	0.012
235533	132	38	< 0	7.8	0.48	95	<1	< 1		1.81	0.8	221	10	6610	38.1	< 1	< 1	0.01	1.96	1//	< 1	< 0.01	56	0.007
235534	63	18	< 6	2.4	0.23	24	<1	< 1	ь	0.18	0.8	64	11	5030	62.4	< 1	< 1	< 0.01	1.85	232	< 1	< 0.01	14	0.004
235535	290	19	17	2.8	0.05	65	<7	< 1	< 2	0.49	1.0	189	3	5170	41.4	< 1	< 1	< 0.01	1.93	160	2	< 0.01	9	0.004
235536	43	10	< 5	2.3	0.35	23	<7	< 1	< 2	0.32	0.7	64	19	1530	43.7	< 1	< 1	0.02	3.87	282	< 1	0.01	10	0.005
235537	89	11	15	3.1	1.55	37	<7	< 1	< 2	0.49	179	402	31	4710	30.5	12	3	0.08	4.26	550	< 1	0.01	21	0.013
235538	138	28	< 5	4.7	0.07	123	<7	< 1	4	0.04	2.5	548	2	> 10000	46.5	< 1	< 1	< 0.01	1.83	203	4	< 0.01	14	0.006
235539	59	28	11	1.4	0.21	86	< 7	< 1	4	0.10	0.9	156	6	2650	37.7	< 1	3	0.04	2.08	150	< 1	< 0.01	10	0.004
235540	44	23	16	1.0	0.20	79	< 7	< 1	< 2	0.18	1.2	167	9	1730	39.9	< 1	< 1	0.01	1.48	203	< 1	< 0.01	13	0.007
235541	31	< 5	< 5	0.7	0.29	70	<7	< 1	2	0.22	9.0	97	12	420	40.5	< 1	< 1	0.02	1.61	257	< 1	< 0.01	8	0.007
235542	6	< 5	< 5	7.8	4.89	5	99	2	3	0.33	1.4	46	66	> 10000	8.56	27	< 1	2.15	2.23	1040	< 1	0.06	40	0.063
235543	51	6	8	1.0	0.01	66	< 7	< 1	< 2	0.01	39.7	171	6	1450	39.2	< 1	< 1	< 0.01	0.46	70	< 1	< 0.01	10	0.002
235544	172	13	< 5	2.3	< 0.01	122	<7	< 1	< 2	0.08	1.5	674	2	8010	41.1	< 1	< 1	< 0.01	0.27	51	2	< 0.01	23	0.003
235545	226	< 5	< 5	4.3	< 0.01	119	< 7	< 1	< 2	< 0.01	1.7	768	5	> 10000	39.9	< 1	< 1	< 0.01	0.42	43	2	< 0.01	32	0.005
235546	319	< 5	< 5	5.4	0.01	121	< 7	< 1	< 2	< 0.01	0.8	581	5	> 10000	38.9	< 1	< 1	< 0.01	0.65	54	< 1	< 0.01	23	0.005
235547	212	< 5	< 5	4.5	0.07	133	< 7	< 1	< 2	0.03	0.9	491	2	> 10000	39.6	< 1	< 1	0.03	0.85	82	< 1	< 0.01	13	0.005
235548	195	35	23	3.4	0.20	181	< 7	< 1	6	0.03	0.9	497	6	7850	40.5	< 1	< 1	0.05	0.66	116	< 1	< 0.01	10	0.005
235549	162	5	17	3.0	0.20	154	<7	< 1	3	0.04	1.4	351	6	> 10000	40.6	< 1	< 1	0.07	0.94	129	1	0.02	7	0.004
235550	193	< 5	6	3.0	0.04	153	<7	< 1	7	< 0.01	1.0	420	3	7160	42.6	< 1	< 1	0.01	0.85	92	< 1	< 0.01	6	0.003

Activation Laboratories Ltd.	Report:	A11-0001
------------------------------	---------	----------

Analyte Symbol	Au	Pd	Pt	Ag	AI	As	Ba	Be	BI	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к	Mg	Mn	Mo	Na	NI	P
Unit Symbol	ppb	ppb	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	%	ppm	%
Detection Limit	2	5	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	0.01	1	0.001
Analysis Method	FA-ICP	FA-ICP	FA-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP										
235551	123	< 5	9	2.0	0.03	112	< 7	< 1	3	< 0.01	1.4	304	5	3740	42.0	< 1	< 1	< 0.01	0.84	100	< 1	< 0.01	6	0.002
235552	136	6	< 5	2.5	0.09	111	<7	< 1	< 2	< 0.01	1.0	222	10	7770	41.6	< 1	< 1	0.03	0.21	95	1	< 0.01	6	0.003
235553	35	< 5	< 5	29.8	3.20	65	44	3	< 2	5.54	78.2	27	20	342	5.78	19	< 1	3.45	3.18	1670	3	0.17	30	0.052
235554	172	< 5	< 5	2.2	0.04	111	< 7	< 1	< 2	0.04	1.2	275	4	5460	41.3	< 1	< 1	0.01	0.28	98	4	< 0.01	7	0.003
235555	118	9	9	4.9	0.13	42	<7	< 1	4	0.33	0.8	281	7	7600	45.1	< 1	< 1	0.03	3.30	377	2	< 0.01	12	0.007
235555B	103	17	27	4.4	0.12	47	< 7	< 1	< 2	0.29	0.9	246	11	9340	45.5	< 1	< 1	0.02	3.34	372	1	< 0.01	11	0.008
235556	< 2	< 5	< 5	0.3	1.00	< 3	261	2	< 2	0.06	0.9	22	75	36	6.37	26	< 1	1.30	2.14	1520	< 1	0.08	55	0.032
235557	114	< 5	5	6.1	0.08	163	< 7	< 1	< 2	4.04	1.2	350	3	> 10000	32.2	3	< 1	< 0.01	0.43	87	1	0.01	25	0.013
235558	53	< 5	< 5	2.0	0.43	128	<7	< 1	5	0.93	0.7	222	11	9800	35.4	< 1	< 1	< 0.01	1.39	44	< 1	< 0.01	17	0.005
235559	36	25	< 5	1.7	0.87	110	< 7	< 1	< 2	0.72	1.3	82	15	> 10000	34.5	< 1	< 1	< 0.01	1.65	66	< 1	< 0.01	9	0.006
235560	48	13	< 5	3.0	0.36	76	< 7	< 1	< 2	0.36	34.3	211	10	> 10000	37.3	< 1	< 1	< 0.01	1.38	181	< 1	< 0.01	14	0.010
235561	212	16	< 5	3.8	0.31	124	< 7	< 1	6	0.03	20.5	517	12	> 10000	39.8	< 1	< 1	0.04	1.15	185	< 1	< 0.01	14	0.007
235562	477	< 5	9	11.4	0.27	146	< 7	< 1	37	0.03	6.6	512	9	> 10000	38.5	< 1	< 1	0.04	1.09	172	< 1	< 0.01	14	0.020
235563	185	14	7	12.6	0.12	89	<7	< 1	< 2	0.07	1.8	357	6	> 10000	41.8	< 1	< 1	0.02	1.27	180	2	< 0.01	7	0.014
235564	36	< 5	17	12.5	0.08	104	<7	< 1	< 2	1.26	0.8	437	3	3860	36.3	< 1	< 1	0.01	1.63	148	8	0.01	24	0.005
235565	34	< 5	< 5	3.6	0.30	82	< 7	< 1	10	0.25	1.1	375	7	6400	38.3	< 1	< 1	0.03	1.73	198	3	< 0.01	25	0.005
235566	39	7	7	3.5	0.04	53	< 7	< 1	< 2	0.32	0.8	661	3	8560	37.8	< 1	< 1	0.02	1.15	127	2	< 0.01	37	0.005
235567	< 2	< 5	< 5	3.7	4.67	4	418	3	4	0.57	0.4	27	74	> 10000	5.29	25	< 1	2.81	1.48	668	< 1	0.52	48	0.063
235568	114	< 5	< 5	1.6	0.09	83	< 7	< 1	9	0.43	1.1	480	4	4930	43.7	< 1	< 1	0.03	1.80	330	3	< 0.01	11	0.004
2355688	124	< 5	6	1.7	0.07	88	< 7	< 1	6	0.33	0.6	488	6	5310	43.2	< 1	< 1	0.02	1.70	299	3	< 0.01	9	0.003

Activation Laboratories Ltd.

Report: A11-0001

Analyte Symbol	Pb	Sb	S	Sc	SI	Те	TI	т	U	V	w	Y	Zn	Zr	Cu	Zn	Pb	
Unit Symbol	ppm	ppm	96	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	96	%	%	
Detection Limit	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.001	0.001	0.003	
Analysis Method	TD-ICP	TD-ICP	ICP-OES	ICP-OES	ICP-OES													
235226	52	< 5	0.06	22	16	215	0.26	9	40	34	< 5	66	30	308				
235227	39	< 5	4.80	12	13	161	0.25	9	< 10	27	9	41	21	245				
235228	92	< 5	0.33	11	5	285	0.25	< 5	< 10	23	16	36	24	238				
235229	45	< 5	17.5	8	з	127	0.22	< 5	< 10	15	8	27	42	205				
235230	33	< 5	> 20.0	5	2	30	0.15	< 5	< 10	12	< 5	20	84	130	1.50			
235231	7	< 5	0.14	8	5	26	0.23	< 5	< 10	12	7	25	49	125				
235232	38	< 5	0.75	< 4	3	39	0.01	< 5	< 10	18	< 5	3	19	20				
235233	45	6	0.51	< 4	2	32	0.01	< 5	< 10	21	< 5	2	15	19				
2352338	44	5	0.76	< 4	2	29	0.01	< 5	< 10	18	< 5	2	17	20				
235234	> 5000	26	4.59	< 4	23	8	0.18	42	< 10	44	< 5	9	> 10000	75		3.05	1.84	
235235	52	< 5	4.31	5	31	7	0.19	13	< 10	55	13	10	776	79				
235236	42	< 5	6.86	< 4	13	14	< 0.01	< 5	< 10	10	< 5	2	119	14				
235237	45	< 5	18.9	< 4	7	6	0.01	< 5	< 10	10	< 5	< 1	164	15				
235238	40	9	> 20.0	< 4	5	4	0.03	< 5	< 10	14	Б	< 1	264	18				
235239	37	6	3.74	< 4	5	8	0.02	< 5	< 10	15	8	1	266	19				
235240	65	< 5	4.87	< 4	11	< 2	0.08	< 5	< 10	43	< 5	4	> 10000	36		3.12		
235241	109	8	> 20.0	<4	4	19	< 0.01	6	< 10	14	< 5	<1	338	13	1.32			
235242	56	< 5	> 20.0	<4	1	9	< 0.01	6	< 10	8	< 5	<1	300	13				
235243	43	< 5	> 20.0	< 4	1	3	0.01	< 5	< 10	10	< 5	< 1	7500	15				
235244	191	< 5	> 20.0	< 4	< 1	17	< 0.01	< 5	< 10	8	< 5	< 1	> 10000	10	1.43	7.59		
235245	26	< 5	1.32	11	30	4	0.47	< 5	< 10	100	< 5	26	241	145	1.09			
235246	102	5	> 20.0	< 4	< 1	11	< 0.01	7	< 10	9	< 5	< 1	1550	12	2.74			
235247	193	8	> 20.0	<4	3	20	< 0.01	16	< 10	8	< 5	<1	2600	11	2.77			
235248	131	< 5	> 20.0	<4	<1	10	< 0.01	< 5	< 10	7	< 5	<1	> 10000	11		4.09		
235249	112	< 5	> 20.0	< 4	1	10	< 0.01	< 5	< 10	10	< 5	< 1	2870	14				
235250	461	< 5	> 20.0	< 4	3	26	0.01	< 5	< 10	13	< 5	<1	153	16				
235526	326	< 5	> 20.0	< 4	4	38	0.02	12	< 10	13	< 5	< 1	364	15	3.34			
235527	198	7	> 20.0	<4	2	24	0.02	< 5	< 10	16	< 5	< 1	335	17	2.24			
235528	72	6	14.5	< 4	1	16	< 0.01	< 5	< 10	8	< 5	< 1	119	12				
236529	53	6	5.05	< 4	1	14	< 0.01	< 5	< 10	12	< 5	< 1	2400	14				
235530	4	< 5	0.21	6	19	< 2	0.21	< 5	< 10	56	< 6	6	183	106				
2365308	4	< 6	0.07	6	18	< 2	0.22	< 5	< 10	57	< 5	6	181	109				
235531	> 5000	2/	4.52	1	25	4	0.19	36	< 10	4/	< 5	13	> 10000	86		2.72	1.63	
235532	60	< 5	0.13	9	22	<2	0.22	< 5	< 10	63	11	12	956	94				
235533	93	(> 20.0	<4	2	1/	0.02	< 5	< 10	12	< 6	2	143	18				
230034	49	6	2.46	<4	2	15	< 0.01	< 5	< 10	12	5	<1	154	19				
235535	53	10	> 20.0	< 4	2	15	< 0.01	6	< 10	8	< 5	<1	127	13				
230030	4/	< 0	2.08	< 4	а	9	0.02	< 5	< 10	14	-	1	19/	17		7 07		
23003/	60	< 6	7.85	<4	4	9	0.09	< 0	< 10	29	< 0	2	> 10000	30	1.00	1.9/		
220038	102	< 0	18.4	<4	1	18	< 0.01	< 0	< 10	10	13	<1	828	14	1.06			
230039	63	1	> 20.0	<4	<1	10	0.01	< 6	< 10	11		<1	211	15				
225541	50		> 20.0		- 1	10	0.02		< 10	10	- 5	- 1	200	10				
230041	50	< 0	20.0	10	1		0.02	< 0	< 10	13	< 0	< 1	3000	10	0.54			
235542	08	< 0	2.80	12	13	10	0.94	< 0	< 10	94	0	28	321	191	2.01	5 70		
230043	100	< 0	> 20.0	<4	<1	13	< 0.01	< 0	< 10	-	< 0	<1	> 10000	12		1-1.8		
230044	103	< D	> 20.0	<4	< 1	20	< 0.01	< 5	< 10	6	8	<1	312	11	1.54			
225546	12/	< 0	> 20.0		< 1	34	> 0.01		< 10		< 0	<1	200	12	1.04			
005547	80	< 0	> 20.0	< 4	< 1	3/	< 0.01	< 0	< 10	2	< 0	<1	105	10	1.30			
22004/	90	< 0	> 20.0	< 4	< 1	4/	< 0.01	< 0	< 10	10	0	<1	190	12	1.12			
230048	94	< D	> 20.0	<4	<1	50	0.01	< 0	< 10	13	< D	<1	1//	10	6.07			
230049	76	1	> 20.0	<4	3	42	0.01	< 0	< 10	12	0	<1	294	15	1.07			
230000	ар	< 0	> 20.0	<4	<1	49	< 0.01	< 0	< 10	8	< 0	<1	138	12				

Page 4 of 9

Activation Laboratories Ltd.

Report: A11-0001

Analyte Symbol	Pb	Sb	S	SC	Sr	Те	П	П	U	v	w	Y	Zn	Zr	Cu	Zn	Pb	1
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	<i>i</i>
Detection Limit	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.001	0.001	0.003	ł.
Analysis Method	TD-ICP	TD-ICP	ICP-OES	ICP-OES	ICP-OES	1												
235551	69	8	> 20.0	< 4	< 1	43	< 0.01	6	< 10	8	< 5	< 1	200	12				
235552	60	5	> 20.0	< 4	< 1	22	< 0.01	< 5	< 10	9	< 5	< 1	160	13				
235553	> 5000	20	4.60	7	26	< 2	0.19	39	< 10	47	< 5	13	> 10000	87		2.78	1.67	
235554	77	8	> 20.0	< 4	1	41	< 0.01	< 5	< 10	9	6	< 1	198	13				
235555	98	6	8.74	< 4	2	31	< 0.01	< 5	< 10	13	< 5	2	125	14				
235555B	88	< 5	8.19	< 4	2	15	< 0.01	< 5	< 10	12	< 5	2	129	14				
235556	7	< 5	0.08	< 4	8	< 2	0.24	< 5	< 10	73	< 5	< 1	290	96				
235557	530	< 5	> 20.0	< 4	9	20	< 0.01	6	< 10	8	< 5	1	151	10	3.87			
235558	46	< 5	> 20.0	< 4	6	9	0.02	< 5	< 10	11	< 5	< 1	126	16				
235559	63	< 5	> 20.0	< 4	5	6	0.04	< 5	< 10	11	< 5	1	386	24	1.46			
235560	114	< 5	> 20.0	< 4	3	11	0.02	< 5	< 10	12	< 5	< 1	> 10000	17	2.29	1.50		
235561	87	7	> 20.0	< 4	1	12	0.02	6	< 10	13	< 5	<1	7060	16	1.24			
235562	101	< 5	> 20.0	< 4	1	13	0.02	8	< 10	15	< 5	< 1	1920	16	5.95			
235563	120	10	> 20.0	< 4	2	6	< 0.01	9	< 10	11	8	< 1	323	13	4.33			
235564	514	12	> 20.0	< 4	5	9	< 0.01	< 5	< 10	8	< 5	< 1	111	11				
235565	303	5	> 20.0	< 4	4	6	0.01	< 5	< 10	13	< 5	< 1	101	16				
235566	374	< 5	> 20.0	< 4	2	12	< 0.01	< 5	< 10	9	6	< 1	99	11				
235567	27	< 5	1.31	12	35	< 2	0.47	6	< 10	100	< 5	26	165	145	1.07			
235568	73	10	19.9	< 4	2	15	< 0.01	< 5	< 10	10	< 5	< 1	108	13				
2355688	83	< 5	> 20.0	< 4	1	17	< 0.01	< 5	< 10	9	< 5	< 1	103	13				

							A	ctivati	on La	oorato	ries Lt	d.	Repo	ort:	A11-0	001								
Quality Control												-												
Analyte Symbol	Au	Pd	Pt	Ag	AI	As	Ba	Be	BI	Са	Cd	Co	Cr	Cu	Fe	Ga	Hg	к	Mg	Mn	Mo	Na	N	P
Unit Symbol	ppo	ppo	ppo	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	96	ppm	ppm	%	ppm	%
Detection Limit	2	5	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	0.01	1	0.001
Analysis Method	FA-IUP	HA-ICP	FA-ICP	TUHCP	TUHCP	TUHCP	TUFICP	TUHUP	TUFICP	TDHCP	TDHCP	TUHUP	TUHUP	TUHCP	TUHUP	TUHUP	TUHUP	TETCP	TETCP	TDHCP	TUHOP	TOHOP	TDHCP	THICP
GXR-1 Meas				31.6	1.56	427	721	1	1380	0.95	3.3	8	14	1190	24.1	15	4	0.04	0.22	887	15	0.05	48	0.059
GXH1 Cen				31.0	3.52	42/	210	1.22	1380	1.12	3.30	8.20	12.0	1110	23.6	13.8	3.90	0.0500	1.70	852	18.0	0.0520	41.0	0.0650
GXP-4 Cert				4.00	7.20	98.0	1640	1.90	19.0	1.01	0.860	14.6	64.0	6520	3.09	20.0	0.110	4.01	1.66	155	310	0.564	42.0	0.120
CZN-3 Meas				17.0		2.20		6.5		1.00	2.40	6.2		14074		25.00		1.75	10.00	174		1203	1947	1000
CZN-3 Cert																								
SDC-1 Meas				< 0.3	5.12	< 3	630	3	< 2	1.09	< 0.3	19	53	28	4.49			1.97	0.98	861	< 1	1,48	39	0.054
SDC-1 Cert				0.0410	8.34	0.220	630	3.00	2.60	1.00	0.0800	17.9	64.0	30.0	4.82			2.72	1.02	883	0.250	1.52	38.0	0.0690
SCO-1 Meas				0.3	5.06	6	594	2	< 2	2.02	0.4	13	45	28	3.50			2.23	1.60	398	< 1	0.70	32	0.081
SCO-1 Cert				0.134	7.24	12.4	570	1.84	0.370	1.87	0.140	10.5	68.0	28.7	3.59			2.30	1.64	410	1.37	0.670	27.0	0.0900
GXR-6 Meas				0.5	8.74	327	> 1000	1	< 2	0.18	0.7	17	72	71	5.71	38	< 1	1.90	0.60	1140	1	0.10	31	0.038
GXH-6 Cert				1.30	17.7	330	1300	1.40	0.290	0.180	1.00	13.8	96.0	66.0	5.58	35.0	0.0680	1.87	0.609	1010	2,40	0.104	27.0	0.0350
CCU-1C Meas																								
COD 1 Maar																								
CPB-1 Meas																								
PTC-18 Mess																								
PTC-1a Cert																								
OREAS 13P Meas														2690	7.16								2270	
OREAS 13P Cert														2500	7.58								2260	
OREAS 14P Meas																								
OREAS 14P Cert																								
MP-1b Meas																								
MP-1b Cert																								
CDN-PGMS-17 Meas	979	4440	1050																					
CDN-PGMS-17 Cert	927.00	4300.00	998.000																					
CDN-PGMS-17 Meas	954	4320	952																					
CUN-PGMS-1/ Cert.	927.00	4300.00	998.000				104					EC.	103	100									074	
DNC 1a Cart							110					57.0	270	100									247	
CDN-PGMS-18 Meas	493	1490	330				110					51.5	210	100									2.47	
CDN-PGMS-18 Cert	517.00	1420.00	329.00																					
CDN-PGMS-18 Meas	541	1470	338																					
CDN-PGMS-18 Cert	517.00	1420.00	329.00																					
CDN-PGMS-18 Meas	531	1440	333																					
CDN-PGMS-18 Cert	517.00	1420.00	329.00																					
CDN-PGMS-18 Meas	520	1420	311																					
CDN-PGMS-18 Cert	517.00	1420.00	329.00																					
CDN-PGMS-18 Meas	513	1490	326																					
CDN-PGMS-18 Cert.	517.00	1420.00	329.00																					
236235 Orig	200	3	< 0																					
235237 Orin	101	10	0	14	0.24	80	-7	~1	2	0.45	10	174	12	3590	427	-1	21	0.05	2 97	126	21	< 0.01	12	0.007
235237 Dup				20	0.23	69	~7	~1	4	0.44	0.5	158	6	3390	40.8	- 1	-1	0.05	2.85	122	-1	< 0.01	12	0.007
235244 Orig	213	26	6													(d. 1)								
235244 Dup	198	19	< 5																					
236526 Orig				11.1	0.30	126	<7	<1	< 2	0.50	1.5	664	14	> 10000	34.8	<1	<1	0.08	1.19	155	18	< 0.01	31	0.011
235526 Dup				12.0	0.31	129	<7	<1	< 2	0.50	1.7	662	11	> 10000	35.4	< 1	<1	0.08	1.19	156	18	< 0.01	33	0.011
236527 Orig	275	< 5	< 5																					
235527 Dup	288	< 5	< 5																					
236529 Orig	54	< 5	< 5	1.5	0.07	40	<7	< 1	< 2	0.10	7.6	192	2	4320	46.8	< 1	< 1	0.02	2.53	311	< 1	< 0.01	11	0.005
235529 Split	52	11	20	1.6	0.07	51	<7	<1	< 2	0.10	8.1	198	8	4400	47.7	< 1	<1	0.02	2.60	319	< 1	< 0.01	8	0.005
236530 Orig	< 2	8	5																					
235530 Dup	3	16	10																					
235537 Ong																								
235546 Orig					0.01	110	-7		- 7	-0.01	0.0	coe	1	> 10005	20.7			.0.01	0.65	50		- 0.01	22	0.005
concerning				0.0	0.01	118	<1	< 1	<2	< 0.01	0.8	DBB	*	> 10000	39./	< 1	< 1	< 0.01	0.00	bg	< 1	< 0.01	23	0.000

Activation Laboratories Ltd. Re	port: /	A11-0001
---------------------------------	---------	----------

Quality Control																								
Analyte Symbol	Au	Pd	Pt	Ag	AI	As	Ba	Be	BI	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	к	Mg	Mn	Мо	Na	NI	Р
Unit Symbol	ppb	ppb	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	%	ppm	%
Detection Limit	2	5	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	0.01	1	0.001
Analysis Method	FA-ICP	FA-ICP	FA-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP										
235546 Dup				54	0.01	123	<7	<1	-2	< 0.01	0.9	574	5	> 10000	38.2	<1	<1	< 0.01	0.64	51	-1	< 0.01	22	0.005
235548 Orig	195	35	23	3.4	0.20	181	<7	< 1	6	0.03	0.9	497	6	7850	40.5	< 1	< 1	0.05	0.66	116	< 1	< 0.01	10	0.005
235548 Split	186	11	11	3.3	0.20	188	<7	< 1	6	0.03	1.0	467	8	7540	39.7	<1	< 1	0.06	0.68	120	<1	< 0.01	10	0.005
235554 Orig	173	< 5	21						-				-											
235554 Dup	171	5	< 5																					
235557 Orig	114	< 5	5	6.1	0.08	163	<7	< 1	< 2	4.04	1.2	350	3	> 10000	32.2	3	< 1	< 0.01	0.43	87	1	0.01	25	0.013
235557 Split	113	24	18	6.3	0.08	179	< 7	< 1	< 2	3.02	0.7	369	7	> 10000	32.6	5	1	< 0.01	0.45	93	< 1	< 0.01	27	0.014
235559 Orig				1.7	0.87	109	<7	< 1	< 2	0.75	1.4	81	17	> 10000	34.1	2	3	< 0.01	1.64	64	< 1	< 0.01	10	0.005
235559 Dup				1.7	0.88	111	<7	< 1	< 2	0.70	1.3	83	13	> 10000	34.9	< 1	< 1	< 0.01	1.66	68	< 1	< 0.01	9	0.006
235563 Orig	187	22	5																					
235563 Dup	182	5	8																					
235568 Orig	110	< 5	< 5																					
235568 Dup	119	< 5	< 5																					
Method Blank Method Blank				< 0.3	< 0.01	< 3	<7	< 1	< 2	< 0.01	< 0.3	<1	4	< 1	< 0.01	< 1	< 1	< 0.01	< 0.01	4	< 1	< 0.01	< 1	< 0.001
Method Blank Method Blank				< 0.3	< 0.01	< 3	<7	< 1	< 2	< 0.01	< 0.3	<1	8	2	< 0.01	< 1	< 1	< 0.01	< 0.01	19	< 1	< 0.01	< 1	< 0.001
Method Blank Method Blank				< 0.3	< 0.01	< 3	<7	< 1	< 2	< 0.01	< 0.3	< 1	3	< 1	< 0.01	< 1	< 1	< 0.01	< 0.01	4	< 1	< 0.01	< 1	< 0.001
Method Blank Method Blank	< 2	< 5	< 5																					
Method Blank Method Blank	< 2	< 5	< 5																					
Method Blank Method Blank	< 2	< 5	< 5																					
Method Blank Method Blank	< 2	< 5	< 5																					
Method Blank Method Blank	< 2	< 5	< 5																					
Method Blank Method Blank	< 2	< 5	< 5																					
Method Blank Method Blank																								

							A	ctivati	on Lat	oorato	ries Lt	d.	Repo	ort:	A11-0	001		
Quality Control										100 M 200 2000				22-112		10.00		
Analyte Symbol	Pb	SD	s	Sc	Sr	Те	π	π	U	v	w	Y	Zn	Zr	Cu	Zn	Pb	
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	
Detection Limit	3	5	0.01	4	1	2	0.01	Б	10	2	5	1	1	6	0.001	0.001	0.003	
Analysis Method	TERCP	TDIOP	POPULI	TD-ICP	1D-ICP	1D-ICP	ID-ICP	TD-ICP	TUHCP	ID-ICP	ID-ICP	ID-ICP	1D-ICP	1D-ICP	ICP-OES	ICP-OES	ICP-OES	
GXR-1 Meas	743	47	0.24	<4	290	13		< 5	40	89	159	27	757	27				
GXR-1 Cert	730	122	0.257	1.58	2/5	13.0		0.390	34.9	90.0	164	32.0	760	38.0				
GXP-4 Cert	52.0	4.90	1.79	770	219	0.970		3 20	6 20	92 0	30 8	14.0	72.0	195				
CZN-3 Mess	0000		1	1.1.4		0.010		0.10	0.20	01.0	00.0	14.0	1000	100	0.685	51.0		
CZN-3 Cert															0.685	50.9		
SDC-1 Meas	22	< 5	0.06	14	163		0.14			48	< 5	30	99	47	in the second	0.050400		
SDC-1 Cert	25.0	0.540	0.0650	17.0	183		0.606			102	0.800	40.0	103	290				
SCO-1 Meas	27	< 5		12	163		0.32			127	< 5	19	99	104				
SCO-1 Cert	31.0	2.50		10.8	174		0.390			131	1.40	26.0	103	160				
GXR-6 Meas	96	< 5	0.02	29	39	<2		< 5	< 10	193	< 5	13	135	102				
GXFI-6 Cert	101	3.60	0.0160	27.6	35.0	0.0190		2.20	1.54	186	1.90	14.0	118	110				
CCU-1C Meas															25.6	3.99		
CCU-1C Cert															25.6	3.99		
CPB-1 Meas																4.61		
CPB-1 Cert															125	4.42	0.057	
PTC-1a Cort															12.51		0.05	
OREAS 13P Mees															0.249		0.00	
OREAS 13P Cert															0.250			
OREAS 14P Meas															0.949			
OREAS 14P Cert															0.997			
MP-1b Meas															2.99	16.6	2.09	
MP-1b Cert															3.069	16.67	2.091	
CDN-PGMS-17 Meas																		
CDN-PGMS-17 Cert																		
CDN-PGMS-17 Meas																		
CDN-PGMS-17 Cert		100		-	104					10								
DNC-18 Meas		< 5		29	134					14/		10.0	70.0	3/				
CONLIGANS, 10 Maps		0.900		31.0	144					140		10.0	70.0	36.0				
CDN-PGMS-18 Cert																		
CDN-PGMS-18 Meas																		
CDN-PGMS-18 Cert																		
CDN-PGMS-18 Meas																		
CDN-PGMS-18 Cert																		
CON-PGMS-18 Meas																		
CDN-PGMS-18 Cert																		
CON-PGMS-18 Meas																		
CDN-PGMS-18 Cert																		
235235 Orig																		
235235 Dup	44	- 5	19.6	- 4	7		0.01	- 5	c 10	11	- 5	- 1	162	15				
295237 Dun	47	- 5	18.2	-	5		0.01	- 5	- 10	10	20		165	15				
235244 Orig	-		10.0		2	-	5-50 T		- 19				199	12				
235244 Dup																		
235526 Orig	325	6	> 20.0	<4	4	40	0.02	15	< 10	13	< 5	<1	364	15				
236526 Dup	328	< 5	> 20.0	<4	4	37	0.02	9	< 10	14	< 5	<1	365	15				
235527 Orig																		
235527 Dup																		
236529 Orig	53	6	5.06	<4	1	14	< 0.01	< 5	< 10	12	< 5	<1	2400	14				
235529 Split	61	12	5.28	<4	1	5	< 0.01	< 5	< 10	10	< 5	<1	2490	15				
235530 Orig																		
235530 Dup																		
235537 Orig															0.451	7.98	0.013	
23553/ Dup 235546 Orla	or		20.0			22	-0.01	F	- 10	0	- 5		000	44	0.459	7.96	0.012	
revenue only	60	< 0	> 20.0	< *	< 1	ad	2001	< 0	< 10	3	< 0	E 1	2.33	11				
										Pa	age 8 of	9						

							Α	ctivati	on Lat	orato	ries Lt	d.	Repo	ort:	A11-0	001		
Quality Control																		
Analyte Symbol	Pb	Sb	s	Sc	Sr	Те	п	п	U	v	w	Y	Zn	Zr	Cu	Zn	Pb	
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	
Detection Limit	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.001	0.001	0.003	
Analysis Method	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	ICP-OES	ICP-OES	ICP-OES								
205545 Durp	0.4	0				40	.0.01	. F	. 10				222					
230046 Dup 235548 Orla	84	- 5	> 20.0	< 4	<1	40	< 0.01	< 0	< 10	10	< 0	<1	177	15				
235548 Solit	90	12	> 20.0	- 4	1	50	0.01	< 5	< 10	12	6	~1	174	15				
235554 Orig	50		20.0				0.01	~ ~ ~	~ 10	14								
235554 Dup																		
235557 Orig	530	< 5	> 20.0	< 4	9	20	< 0.01	6	< 10	8	< 5	1	151	10	3.87	0.021	0.074	
235557 Split	526	< 5	> 20.0	< 4	8	22	< 0.01	6	< 10	8	< 5	1	154	11	3.70	0.019	0.072	
235559 Orig	64	< 5	> 20.0	< 4	5	4	0.04	< 5	< 10	9	< 5	1	382	24				
235559 Dup	63	< 5	> 20.0	< 4	5	8	0.04	< 5	< 10	13	7	1	389	25				
235563 Orig															4.37	0.039	0.026	
235563 Dup															4.30	0.038	0.025	
235568 Orig																		
235568 Dup																		
Method Blank Method Blank	< 3	< 5	< 0.01	< 4	< 1	< 2	< 0.01	< 5	< 10	<2	< 5	<1	< 1	< 5				
Method Blank Method Blank	< 3	< 5	< 0.01	< 4	< 1	< 2	< 0.01	< 5	< 10	<2	< 5	<1	< 1	< 5				
Method Blank Method Blank	< 3	< 5	< 0.01	< 4	< 1	< 2	< 0.01	< 5	< 10	<2	< 5	<1	< 1	< 5				
Method Blank Method Blank																		
Method Blank Method Blank																		
Method Blank Method																		
Blank																		
Method Blank Method																		
Method Diank Method																		
Blank																		
Method Blank Method																		
Blank																		
Method Blank Method Blank															< 0.001	< 0.001	< 0.003	

APPENDIX 5

XRF READINGS FOR MC-10-80 and MCF-10-81

											XRF	READI	NGS (IN	PPM) I	FOR MO	F-10-8	D												
Hole ID	Depth	Reading#	Sb	Sn	Cd	Pd	Ag	Мо	Nb	Zr	Sr	Rb	Bi	As	Se	Pb	w	Zn	Cu	Ni	Co	Fe	Mn	Cr	v	Ti	Ca	K	S
MCF-10-80	163.50	1	1	1	1	76	37	18	7	186	2	1	1	1	1	1	30	22	-17199	57	42	27.2K	93	400	120	1870	1938	1172	1
MCF-10-80	163.75	2	40	36	72	95	84	5	7	278	4	1	28	3	4	1	52	4	-17150	12	1	48.2K	254	377	112	2637	1342	4128	1
MCF-10-80	164.00	3	1	1	1	26	1	1	6	12	2	1	1	1	3	1	1	3	-17173	81	13	30.7K	141	396	70	275	14.3K	190	1
MCF-10-80	164.25	4	1	1	123	82	6	17	1	7	7	3	1	9	1	1	1	1	-17199	94	1	6854	1	684	33	642	2108	283	1
MCF-10-80	164.50	5	1	1	44	63	15	1	1	13	3	1	1	2	1	1	1	1	-17194	1	99	4614	94	392	81	262	1194	182	1
MCF-10-80	164.75	6	8	47	149	21	171	5	13	1	5	1	28	3	10	1	2	59	-17199	18	11	149.6K	296	345	101	957	2159	547	1
MCF-10-80	165.00	7	1	1	1	1	1	2091	68	213	21	37	275	1	28	211	1	33	-17199	58	64	167.4K	254	393	212	2229	15.8K	332	1
MCF-10-80	165.25	8	1	1	318	115	282	81	9	18	1	1	6	1	1	2	1	33	-17199	1	384	202.1K	445	257	78	630	675	140	1
MCF-10-80	165.50	9	7	41	224	119	337	5	22	508	1	1	18	1	18	38	58	32	-17181	55	126	297.6K	532	429	288	3488	2772	232	1
MCF-10-80	165.75	10	1	40	1	92	648	2	1	52	7	1	256	26	180	1	1	2	-17118	97	188	461.8K	167	488	69	498	7151	558	78.4K
MCF-10-80	166.00	11	1	61	21	1	114	152	11	306	2	1	49	9	8	1	1	128	-17164	303	1	312.7K	191	373	1	2904	1919	502	18.8K
MCF-10-80	166.25	12	1	44	7	5	1	148	1	297	11	1	324	1	53	54	1	8	-17185	1	1005	261.7K	244	276	1	2749	10.8K	1	1
MCF-10-80	166.50	13	1	93	1	1	6	248	16	252	5	1	654	1	108	174	30	1	-17198	2	365	469.4K	531	290	4	1749	6660	199	1
MCF-10-80	166.75	14	1	155	23	59	294	223	21	299	1	1	161	1	1	1	1	31	-17198	2	1012	467.0K	139	293	65	2667	471	332	6678
MCF-10-80	167.00	15	1	174	172	41	524	48	42	141	5	1	127	9	273	31	1	134	-17077	224	539	354.0K	47	494	125	2144	923	1	312.6K
MCF-10-80	167.25	16	1	177	125	54	696	61	1	88	8	3	152	1	3	63	1	146	-17159	2	1	575.0K	1	619	1	844	2383	1	3471
MCF-10-80	167.50	17	1	267	244	26	392	9	4	121	1	1	297	31	220	28	1	137	-13524	88	552	373.5K	510	588	90	2143	1779	867	259.6K
MCF-10-80	167.75	18	1	103	107	12	213	59	3	218	8	3	71	1	57	110	160	77	-16781	23	1	297.3K	722	438	343	2626	626	1	202.9K
MCF-10-80	168.00	19	1	62	208	1	135	23	1	49	7	1	116	17	172	39	1	94	-9581	2	1	380.2K	861	457	1	1083	704	1	317.6K
MCF-10-80	168.25	20	1	289	71	57	330	94	20	290	10	2	59	48	91	1	26	139	-14791	9	1	346.0K	100	485	1	2819	2392	349	274.8K
MCF-10-80	168.50	21	93	87	335	163	663	161	30	261	11	1	1	142	163	58	92	314	33.2K	2	2554	328.6K	1	214	42	2368	3452	289	347.1K
MCF-10-80	168.75	22	1	736	185	1	468	246	1	92	4	1	121	23	51	43	254	135	10.9K	2	1022	379.4K	101	418	1	2110	3299	174	187.3K
MCF-10-80	169.00	23	1	1	170	99	332	90	20	39	18	1	61	1	11	38	1	37	-16885	1	1	172.4K	312	420	137	535	16.2K	1	576
MCF-10-80	169.25	24	12	1	1	1	1	1	15	96	4	1	12	1	1	5	1	10	-17196	53	1	90.7K	1	380	142	1657	6714	1	1
MCF-10-80	169.50	25	121	253	1	1	285	1	28	1	1	3	50	1	20	136	42	78	-17197	2	1	587.1K	93	216	122	283	2997	1	4258
MCF-10-80	169.75	26	175	309	43	518	1315	48	12	25	3	1	287	2	2	175	1	123	-17197	375	2515	703.5K	1	444	49	237	2637	1	31.4K
MCF-10-80	170.00	27	1	1	1	1	423	1372	1	8	10	1	201	1	1	190	1	34	-17015	78	1	571.2K	30	515	1	549	2907	599	9393
MCF-10-80	170.25	28	1	204	259	40	496	229	1	1	6	6	17	2	16	348	171	108	-15721	3	1029	669.0K	1	569	1	325	1374	538	29.1K
MCF-10-80	170.50	29	50	132	1	1	972	1	1	7	1	1	233	2	1	1	1	2	-17198	189	1	704.4K	369	414	1	473	1089	693	1
MCF-10-80	170.75	30	1	843	1	86	613	1	1	1	1	15	103	1	1	47	1	74	-17084	3	1136	666.7K	390	374	19	1	753	173	10.4K
MCF-10-80	171.00	31	1	220	1	1	1	35	7	18	1	6	303	1	1	61	1	77	-17198	2	1	607.2K	146	294	117	1	1436	777	1
MCF-10-80	171.25	32	1	1	1	1	183	1	1	1	1	1	123	1	1	1	1	147	-17068	2	291	585.2K	1	619	1	414	565	1	1
MCF-10-80	171.50	33	1	98	1	51	622	46	1	2	1	1	53	1	1	135	1	8	-17121	147	84	607.7K	1	555	23	528	830	727	1
MCF-10-80	171.75	34	44	515	299	8	877	1776	12	6	8	1	54	22	1	1	1	2	-16162	3	1	703.4K	230	445	60	380	672	1	11.2K
MCF-10-80	172.00	35	1	1	63	1	32	2	7	36	1	1	1	1	1	10	1	63	-17199	106	1	90.4K	257	318	163	1751	809	1	1

XRF READINGS (IN PPM) FOR MCF-10-81																													
Hole ID	Depth	Reading#	Sb	Sn	Cd	Pd	Ag	Mo	Nb	Zr	Sr	Rb	Bi	As	Se	Pb	w	Zn	Cu	Ni	Co	Fe	Mn	Cr	٧	Ti	Ca	ĸ	5
MCF-10-81	40.00	39	1	488	474	239	926	30	31	19	22	1	1	1	7	121	1	3887	-16239	510	1	359.2K	279	499	106	486	35.9K	859	1
MCF-10-81	40.50	40	1	145	1	1	551	23	1	18	1	1	257	1	10	65	736	687	-16489	2	1	528.7K	35	234	1	260	16.1K	1115	1
MCF-10-81	41.00	41	5	1	1	1	637	15	1	6	11	4	38	39	58	85	418	495	-9366	2	889	498.3K	1	443	1	284	28.7K	913	119.0K
MCF-10-81	41.50	42	147	212	49	67	474	18	20	9	14	1	13	1	28	75	1	359	-15821	165	1	430.4K	9	719	1	404	22.6K	674	9844
MCF-10-81	42.00	43	206	402	1	32	574	1	1	8	11	1	204	28	26	27	80	204	-13222	158	1	517.4K	22	530	77	145	13.0K	1	16.5K
MCF-10-81	42.50	44	1	81	317	1	390	1	13	7	11	1	86	26	45	26	108	130	-13252	32	358	494.8K	41	510	1	113	12.6K	667	195.5K
MCF-10-81	43.00	45	1	489	218	149	259	34	8	3	12	1	1	43	34	48	1	96	-13976	2	867	353.2K	5	531	101	219	13.8K	1128	393.0K
MCF-10-81	43.50	46	54	301	494	92	727	18	9	7	20	1	1	39	26	45	1	143	-16011	2	701	354.4K	42	562	1	83	62.8K	1742	361.2K
MCF-10-81	44.00	47	95	304	219	113	482	16	5	11	11	1	1	70	58	37	1	217	-15953	59	772	380.8K	2	703	1	247	32.0K	989	349.9K
MCF-10-81	44.50	49	1	202	1	1	371	6	1	1	2	1	1	1	14	206	1	439	-17080	2	1	567.8K	331	198	86	285	3627	1	4884
MCF-10-81	45.00	50	1	684	73	435	1453	25	57	11	11	1	123	52	2	1	1	592	-11132	99	1	746.6K	527	664	1	649	526	437	44.1K
MCF-10-81	45.50	51	1	41	181	1	378	22	10	1	10	1	1	1	1	105	83	496	-16590	2	2172	371.0K	174	448	141	186	2527	1	1
MCF-10-81	46.00	52	1	460	1	1	2	8	7	45	15	1	20	31	15	4	1	668	-14791	66	1	242.7K	87	749	52	715	3161	402	86.0K
MCF-10-81	46.50	53	12	320	207	97	642	1	1	19	21	9	81	88	111	212	1	2265	-4817	145	1	524.2K	1	234	160	1	12.2K	1176	269.2K
MCF-10-81	47.00	54	1	43	216	1	558	1	1	7	13	1	1	172	73	136	142	784	8318	2	546	465.9K	1	617	84	197	3686	1041	336.5K
MCF-10-81	47.50	55	1	591	570	212	1106	18	50	1	5	1	54	49	48	142	1	459	-15742	182	1	487.3K	2	417	1	232	1136	1	463.8K
MCF-10-81	48.00	56	1	266	1	1	559	1	1	1	2	1	28	74	62	43	1	1022	-14941	2	1	428.6K	1	578	1	1	2278	1	467.6K
MCF-10-81	48.50	57	1	503	356	113	957	30	13	1	9	1	21	127	21	32	3	268	-16605	658	1	504.6K	142	482	42	319	1968	1378	449.3K
MCF-10-81	49.00	58	1	505	161	27	258	1	1	2	1	1	55	75	38	38	1	382	-16741	2	383	401.6K	668	749	1	48	3308	1	417.1K
MCF-10-81	49.50	59	1	209	333	89	745	29	1	1	3	1	6	32	49	118	1	94.3K	-16983	79	1	425.8K	1	503	130	81	2620	1	396.4K
MCF-10-81	50.00	60	18	490	261	255	921	18	1	9	12	1	64	115	53	16	1	31.4K	-17012	111	1354	426.7K	2	490	111	1	744	236	536.4K
MCF-10-81	50.50	61	1	693	360	53	1029	1	13	13	15	3	25	43	296	113	559	17.1K	54.3K	286	1	408.SK	444	283	1	1	3612	1	482.8K
MCF-10-81	51.00	62	169	640	53	84	428	6	1	1	4	1	92	200	480	622	1	46.0K	31.5K	2	964	373.0K	229	34	1	147	3238	791	491.3K
MCF-10-81	51.50	63	3	303	29	1	468	1	1	5	2	1	94	306	88	143	227	550	1805	53	79	376.7K	2	906	8	1	212	444	487.4K
MCF-10-81	52.00	64	1	98	1	1	191	15	1	1	1	1	31	155	169	51	53	702	3319	206	782	376.8K	33	501	1	1	723	1138	475.0K
MCF-10-81	52.50	65	1	676	636	171	769	3	24	14	10	3	83	297	41	334	1	456	-5230	- 44	985	556.6K	1180	575	1	32	1456	74	343.5K
MCF-10-81	53.00	66	86	621	52	1	437	17	1	1	19	1	47	441	351	300	595	1392	31.2K	58	3223	381.7K	184	581	2	272	2034	7074	422.3K
MCF-10-81	53.50	67	1	529	278	252	1016	26	2	2	1	1	32	9	160	284	135	823	19.3K	4	449	387.4K	198	905	1	394	1511	1	470.2K
MCF-10-81	54.00	68	86	187	278	1	954	1	1	17	14	6	1	16	24	115	1	740	-14438	224	532	459.7K	2	801	1	20	1168	393	400.2K
MCF-10-81	54.50	69	1	503	276	1	650	17	34	1	6	2	93	99	205	35	1248	62.8K	-14298	85	329	397.9K	107	678	106	1	5308	1	514.1K
MCF-10-81	55.00	70	126	443	45	176	649	14	26	1	1	з	64	73	102	83	546	2796	-10551	137	819	419.8K	80	687	1	83	722	512	523.1K
MCF-10-81	55.50	72	1	426	4	1	760	1	1	1	8	1	53	62	86	65	1	71.8K	-11510	160	1	377.4K	2	585	1	51	339	181	490.4K
MCF-10-81	56.00	73	144	795	1	1	750	1	17	17	3	1	57	2	239	183	573	323	15.5K	3	2	407.5K	2	774	1	174	2947	918	357.0K
MCF-10-81	56.50	74	6	389	1	1	227	1	16	13	7	1	75	63	139	63	1	138	-14811	265	1	440.6K	2	744	1	95	1517	281	433.4K
MCF-10-81	57.00	75	1	1	1	1	192	1	1	1	7	1	1	146	78	663	1	522	-14302	3	1	424.6K	1	691	1	353	11.7K	922	147.7K
MCF-10-81	57.50	76	40	277	1	1	301	1	7	23	7	1	120	2	9	509	1	79	-14728	4	180	555.2K	390	540	146	378	5573	484	28.4K
MCF-10-81	58.00	77	222	808	302	98	818	36	45	28	12	2	1	31	139	1249	1	24	-14531	328	2	505.9K	252	619	1	263	19.0K	112	355.7K
MCF-10-81	58.50	78	13	341	1	1	347	26	4	10	1	1	63	62	148	8	1	157	-12651	107	1	533.0K	77	495	104	473	8332	1038	270.7K
MCF-10-81	59.00	79	1	1	11	1	381	63	14	10	14	5	1	11	95	87	1	190	-14980	52	271	264.9K	2	489	1	608	33.4K	1303	397.0K
MCF-10-81	59.50	80	1	176	29	111	437	36	1	1	27	1	29	107	71	356	114	74	57.2K	195	1	315.8K	568	634	144	16	104.08	1	368.8K
MCF-10-81	60.00	81	1	594	356	2	523	38	13	28	15	1	8	28	138	71	1	1564	92.2K	3	3512	367.3K	684	806	1	1	6000	1	387.3K
MCF-10-81	60.50	82	1	319	1	1	200	170	1	2	- 4	1	34	- 30	290	189	45	7	30.3K	182	1	330.9K	120	563	1	- 55	11.3K	39	410.0K
MCF-10-81	61.00	83	1	590	1	1	1	16	13	1	1	1	67	120	50	57	263	151	-9012	109	109	362.6	57	679	1	504	1872	1	400.4K
MCF-10-81	61.50	84	98	101	4	210	445	31	43	12	4	1	6	28	32	116	471	252	-11758	35	326	385.1K	861	543	191	164	1046	329	110.8K
MCF-10-81	62.00	85	160	281	- 24	38	542	14	1	1	3	1	15	21	90	128	1	221	1999	3	1	467.8K	938	591	49	177	2223	1	220.3K
MCF-10-81	62.50	86	245	204	1	1	790	1	29	1	8	1	114	44	19	1	117	14	-11624	211	1	570.4K	2	652	112	1	1028	859	134.5K
MCF-10-81	63.00	87	1	203	260	35	461	1	1	22	8	3	63	2	38	58	1	140	-12507	- 4	803	566.2K	503	532	41	51	855	298	28.0K
MCF-10-81	63.50	88	14	1	1	1	1	1	1	1	3	- 4	- 39	1	1	151	32	4604	-16362	102	303	500.6K	1158	582	1	213	871	2720	15.9K
MCF-10-81	64.00	89	19	1	1	9	1	6	1	118	13	49	2	1	1	13	1	112	-17194	39	1	33.3K	543	721	189	2072	3255	40.1K	1
MCF-10-81	64.50	90	1	3	60	100	131	15	11	136	12	42	1	1	1	23	1	101	-17182	1	245	43.3K	862	650	327	2371	748	48.7K	1

APPENDIX 6

MAGNETIC SUSCEPTIBILITY READINGS

Num	Date	Position	U	SYM	HF_Response	SYM	Scpt:0.001_SI	SYM	Cond:Mhos/m
MCF-10-80	11/12/2010	23	m		0		2.2	?	0
MCF-10-80	11/12/2010	24	m		0	2	0.3		0
MCF-10-80	11/12/2010	25	m		0		0.5		0
MCF-10-80	11/12/2010	26	m		0		0.8		0
MCF-10-80	11/12/2010	27	m		0		2.4	2	0
MCF-10-80	11/12/2010	28	m		0		0.5		0
MCF-10-80	11/12/2010	29	m		0		0.7		0
MCF-10-80	11/12/2010	30	m		0		1.3		0
MCF-10-80	11/12/2010	31	m		0		1.5	7	0
MCF-10-80	11/12/2010	32	m		0		2.1	2	0
MCF-10-80	11/12/2010	33	m		0		2	2	0
MCF-10-80	11/12/2010	34	m		0		2.3	7	0
MCF-10-80	11/12/2010	35	m		0	2	0.4		0
MCF-10-80	11/12/2010	36	m		0		0.6		0
MCF-10-80	11/12/2010	37	m		0		0.9		0
MCF-10-80	11/12/2010	38	m		0		1.2		0
MCF-10-80	11/12/2010	39	m		0	:	0.5		0
MCF-10-80	11/12/2010	40	m		0		1.7		0
MCF-10-80	11/12/2010	41	m		0		1.8	2	0
MCF-10-80	11/12/2010	42	m		0	2	0.1		0
MCF-10-80	11/12/2010	43	m		0	2	0.4		0
MCF-10-80	11/12/2010	44	m		0		1.3	?	0
MCF-10-80	11/12/2010	45	m		0		1.4	2	0
MCF-10-80	11/12/2010	46	m		0	2	0.5		0
MCF-10-80	11/12/2010	47	m		0		0		0
MCF-10-80	11/12/2010	48	m		1		1.7	7	0
MCF-10-80	11/12/2010	49	m		0	2	0.3		0
MCF-10-80	11/12/2010	50	m		0	2	0.4		0
MCF-10-80	11/12/2010	51	m		0	2	0.5		0
MCF-10-80	11/12/2010	52	m		0	2	0.2		0
MCF-10-80	11/12/2010	53	m		0		0.4		0
MCF-10-80	11/12/2010	54	m		0	2	0.5		0
MCF-10-80	11/12/2010	55	m		0		0.7		0
MCF-10-80	11/12/2010	56	m		0		0.9	?	0
MCF-10-80	11/12/2010	57	m		0	2	0.5		0
MCF-10-80	11/12/2010	58	m		0		0.6		0
MCF-10-80	11/12/2010	59	m		0		0.8		0
MCF-10-80	11/12/2010	60	m		0		0.2		0
MCF-10-80	11/12/2010	61	m		0	1	0.4		0
MCF-10-80	11/12/2010	62	m		0	1	0.5		0
MCF-10-80	11/12/2010	63	m		0	1	0.4		0
MCF-10-80	11/12/2010	64	m		0		0.5		0
MCF-10-80	11/12/2010	65	m		0		0.5		0
MCF-10-80	11/12/2010	66	m		0	1	0.2		0
MCF-10-80	11/12/2010	67	m		0	1	0.4		0
MCF-10-80	11/12/2010	68	m		0	2	0.3		0
MCF-10-80	11/12/2010	69	m		0	2	0.4		0
MCF-10-80	11/12/2010	70	m		0	2	0.2		0
MCF-10-80	11/12/2010	71	m		0	1	0.3		0
MCF-10-80	11/12/2010	72	m		0	:	0.2		0
MCF-10-80	11/12/2010	73	m		0	2	0.4		0

MCF-10-80	11/12/2010	74	m	0	7	0.3		0	
MCF-10-80	11/12/2010	75	m	0	7	0.4		0	
MCF-10-80	11/12/2010	76	m	0		0.6		0	
MCF-10-80	11/12/2010	77	m	0	7	0.2		0	
MCF-10-80	11/12/2010	78	m	0	5	0.3		0	
MCF-10-80	11/12/2010	79	m	0		0.6		0	
MCF-10-80	11/12/2010	80	m	0		0.6		0	
MCF-10-80	11/12/2010	81	m	0		0.8		0	
MCF-10-80	11/12/2010	82	m	0	2	0.2		0	
MCF-10-80	11/12/2010	83	m	0	7	0.4		0	
MCF-10-80	11/12/2010	84	m	0	2	0.4		0	
MCF-10-80	11/12/2010	85	m	0		0.8		0	
MCF-10-80	11/12/2010	86	m	0		0.8		0	
MCF-10-80	11/12/2010	87	m	0		32.6		0	
MCF-10-80	11/12/2010	88	m	0	7	0.4		0	
MCF-10-80	11/12/2010	89	m	0	7	0.5		0	
MCF-10-80	11/12/2010	90	m	0		0.6		0	
MCF-10-80	12/12/2010	91	m	0	7	0.5		0	
MCF-10-80	12/12/2010	92	m	 0	_	0.6		0	
MCF-10-80	12/12/2010	93	m	0		0.8		0	
MCF-10-80	12/12/2010	94	m	0		0.9		0	
MCF-10-80	12/12/2010	95	m	0	7	0.4		0	
MCF-10-80	12/12/2010	96	m	0		1.7		0	
MCF-10-80	12/12/2010	97	m	0		0.8		0	
MCF-10-80	12/12/2010	98	m	0		42.9		0	
MCF-10-80	12/12/2010	99	m	0		5.5	?	0	
MCF-10-80	12/12/2010	100	m	0	2	0.4		0	
MCF-10-80	12/12/2010	101	m	0		0.5		0	
MCF-10-80	12/12/2010	102	m	0		25.6		0	
MCF-10-80	12/12/2010	103	m	0		1.2	7	0	
MCF-10-80	12/12/2010	104	m	0		1.4	7	0	
MCF-10-80	12/12/2010	105	m	0		1.5	7	0	
MCF-10-80	12/12/2010	106	m	0		1.9	2	0	
MCF-10-80	12/12/2010	107	m	0	2	0.4		0	
MCF-10-80	12/12/2010	108	m	0		0.7	7	0	
MCF-10-80	12/12/2010	109	m	0	7	0.2		0	
MCF-10-80	12/12/2010	110	m	0	7	0.2		0	
MCF-10-80	12/12/2010	111	m	0	2	0.3		0	
MCF-10-80	12/12/2010	112	m	0		30		0	
MCF-10-80	12/12/2010	113	m	0	7	0.2		0	
MCF-10-80	12/12/2010	114	m	0	2	0.3		0	
MCF-10-80	12/12/2010	115	m	0	7	0.3		0	
MCF-10-80	12/12/2010	116	m	0	7	0.5		0	
MCF-10-80	12/12/2010	117	m	0	2	0.3		0	
MCF-10-80	12/12/2010	118	m	0		0.8		0	
MCF-10-80	12/12/2010	119	m	0		1.2		0	
MCF-10-80	12/12/2010	120	m	0		0.7		0	
MCF-10-80	12/12/2010	121	m	 0		0.4		0	
MCF-10-80	12/12/2010	122	m	0	2	0.5		0	
MCF-10-80	12/12/2010	123	m	0	•	0.5		0	
MCF-10-80	12/12/2010	124	m	 0		0.6		0	
MCF-10-80	12/12/2010	125	m	 0		0.7		0	

MCF-10-80	12/12/2010	126	m	0		0.9		0	
MCF-10-80	12/12/2010	127	m	0		8.7		0	
MCF-10-80	12/12/2010	128	m	0		1.4		0	
MCF-10-80	12/12/2010	129	m	0		1.4		0	
MCF-10-80	12/12/2010	130	m	0		0.7		0	
MCF-10-80	12/12/2010	131	m	0		0.8		0	
MCF-10-80	12/12/2010	132	m	0		0.9		0	
MCF-10-80	12/12/2010	133	m	0		2.4		0	
MCF-10-80	12/12/2010	134	m	0		0.8		0	
MCF-10-80	12/12/2010	135	m	0		1		0	
MCF-10-80	12/12/2010	136	m	0		67.9		0	
MCF-10-80	12/12/2010	137	m	0		1		0	
MCF-10-80	12/12/2010	138	m	0		1.2		0	
MCF-10-80	12/12/2010	139	m	0		1.2		0	
MCF-10-80	12/12/2010	140	m	0		1.3	2	0	
MCF-10-80	12/12/2010	141	m	0	2	0.2		0	
MCF-10-80	12/12/2010	142	m	0	7	0.4		0	
MCF-10-80	12/12/2010	143	m	0	1	3		0	
MCF-10-80	12/12/2010	144	m	0		0.7	1	0	
MCF-10-80	12/12/2010	145	m	0		0.8	1	0	
MCF-10-80	12/12/2010	146	m	0		1.2	2	0	
MCF-10-80	12/12/2010	147	m	0		1.2	2	0	
MCF-10-80	12/12/2010	148	m	0		1.5	2	0	
MCF-10-80	12/12/2010	149	m	0		45.4	2	0	
MCF-10-80	12/12/2010	150	m	0		0.6		0	
MCF-10-80	12/12/2010	151	m	0		1.1	2	0	
MCF-10-80	12/12/2010	152	m	0		1.7	2	0	
MCF-10-80	12/12/2010	153	m	0		1.4	2	0	
MCF-10-80	12/12/2010	154	m	0		1.5	2	0	
MCF-10-80	12/12/2010	155	m	0		1.6	2	0	
MCF-10-80	12/12/2010	156	m	0		0.7		0	
MCF-10-80	12/12/2010	157	m	0		0.9	2	0	
MCF-10-80	12/12/2010	158	m	0		1.2	2	0	
MCF-10-80	12/12/2010	159	m	0		1.3	?	0	
MCF-10-80	12/12/2010	160	m	0		1.6	2	0	
MCF-10-80	12/12/2010	161	m	0		1.9	?	0	
MCF-10-80	12/12/2010	162	m	0		1.9	?	0	
MCF-10-80	12/12/2010	163	m	0		0.5		0	
MCF-10-80	12/12/2010	164	m	0		0.6		0	
MCF-10-80	12/12/2010	165	m	0		6.3		0	
MCF-10-80	12/12/2010	166	m	0		678		0	
MCF-10-80	12/12/2010	167	m	0		1395		0	
MCF-10-80	12/12/2010	168	m	5		539		0.5	
MCF-10-80	12/12/2010	169	m	0		178		0	
MCF-10-80	12/12/2010	170	m	0		2024	:	0	
MCF-10-80	12/12/2010	171	m	0		2074		0	
MCF-10-80	12/12/2010	172	m	2	1	1970	?	0	
MCF-10-80	12/12/2010	173	m	0		2.5	?	0	
MCF-10-80	12/12/2010	174	m	0		1.4	:	0	
MCF-10-80	12/12/2010	175	m	0		1.4	?	0	
MCF-10-80	12/12/2010	176	m	0		1.4	?	0	
MCF-10-80	12/12/2010	177	m	0		1.9	7	0	

MCF-10-61 MCF-10-81 17/12/2010 25 m 0 1.1 MCF-10-81 17/12/2010 26 m 0 1.5 1.1 MCF-10-81 17/12/2010 27 m 0 1.9 1.9 MCF-10-81 17/12/2010 28 m 0 2.5 1.9 MCF-10-81 17/12/2010 29 m 0 2.8 1.1 MCF-10-81 17/12/2010 30 m 0 2.8 1.1 MCF-10-81 17/12/2010 30 m 0 1.1 1.1 MCF-10-81 17/12/2010 32 m 0 1.5 1.1 MCF-10-81 17/12/2010 32 m 0 2.5 ? 1.7 MCF-10-81 17/12/2010 34 m 0 2.5 ? 1.7 MCF-10-81 17/12/2010 35 m 0 ? 0.5 1.7 MCF-10-81 17/12/2010 36 m 0 2.7 1.1 MCF-10-81 17/12/2010 39 m 0 2.5 ? 1.7	0
MCF-10-81 17/12/2010 25 m 0 0 1.1 MCF-10-81 17/12/2010 26 m 0 1.5 MCF-10-81 17/12/2010 27 m 0 1.9 MCF-10-81 17/12/2010 28 m 0 2.5 MCF-10-81 17/12/2010 29 m 0 2.8 MCF-10-81 17/12/2010 30 m 0 0.8 MCF-10-81 17/12/2010 31 m 0 1.1 MCF-10-81 17/12/2010 32 m 0 1.5 MCF-10-81 17/12/2010 33 m 0 2.1 ? MCF-10-81 17/12/2010 36 m 0 2.5 ? MCF-10-81 17/12/2010 36 m 0 0 2 ? MCF-10-81 17/12/2010 38 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 2.3.7 ? MCF-10-81	0
MCF-10-81 17/12/2010 26 m 0 1.5 MCF-10-81 17/12/2010 27 m 0 1.9 MCF-10-81 17/12/2010 28 m 0 2.5 MCF-10-81 17/12/2010 29 m 0 2.8 MCF-10-81 17/12/2010 30 m 0 0.8 MCF-10-81 17/12/2010 31 m 0 1.1 MCF-10-81 17/12/2010 32 m 0 1.5 MCF-10-81 17/12/2010 32 m 0 2.1 MCF-10-81 17/12/2010 34 m 0 2.5 MCF-10-81 17/12/2010 35 m 0 2.5 MCF-10-81 17/12/2010 35 m 0 2.5 MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2.5 MCF-10-81 17/12/2010 39 m 0 2.5 MCF-10-81 17/12/2010 40 m 0 2.12	0
MCF-10-81 17/12/2010 27 m 0 1.9 1.9 MCF-10-81 17/12/2010 28 m 0 2.5	0
MCF-10-81 1/1/12/2010 28 m 0 2.5 MCF-10-81 17/12/2010 29 m 0 2.8 MCF-10-81 17/12/2010 30 m 0 0.8 MCF-10-81 17/12/2010 31 m 0 1.1 MCF-10-81 17/12/2010 32 m 0 1.5 MCF-10-81 17/12/2010 33 m 0 2.1 ? MCF-10-81 17/12/2010 34 m 0 2.5 ? MCF-10-81 17/12/2010 35 m 0 7 0.5 MCF-10-81 17/12/2010 36 m 0 2.5 ? MCF-10-81 17/12/2010 36 m 0 2.5 ? MCF-10-81 17/12/2010 38 m 0 2.3 ? MCF-10-81 17/12/2010 40 m 0 2.3 ?	0
MCF-10-81 17/12/2010 29 m 0 2.8 MCF-10-81 17/12/2010 30 m 0 0.8 MCF-10-81 17/12/2010 31 m 0 1.1 MCF-10-81 17/12/2010 32 m 0 1.5 MCF-10-81 17/12/2010 32 m 0 2.1 ? MCF-10-81 17/12/2010 34 m 0 2.5 ? MCF-10-81 17/12/2010 35 m 0 ? 0.5 MCF-10-81 17/12/2010 36 m 0 0.9 P MCF-10-81 17/12/2010 36 m 0 0.2 ? MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2.5 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 21.7 ? MCF-10-81 17/12/2010 43 m 1 39.	
MCF-10-81 17/12/2010 30 m 0 0.8 MCF-10-81 17/12/2010 31 m 0 1.1 MCF-10-81 17/12/2010 32 m 0 1.5 MCF-10-81 17/12/2010 33 m 0 2.1 ? MCF-10-81 17/12/2010 34 m 0 2.5 ? MCF-10-81 17/12/2010 35 m 0 ? 0.5 MCF-10-81 17/12/2010 35 m 0 ? 0.5 MCF-10-81 17/12/2010 36 m 0 0.99 MCF-10-81 17/12/2010 36 m 0 2.5 ? MCF-10-81 17/12/2010 38 m 0 2.5 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 21.2 ? MCF-10-81 17/12/2010 42 m 0 21.7 ? MCF-10-81 17/12/2010 43 m 1 <td< td=""><td>0</td></td<>	0
MCF-10-81 17/12/2010 31 m 0 1.1 MCF-10-81 17/12/2010 32 m 0 1.5 MCF-10-81 17/12/2010 33 m 0 2.1 ? MCF-10-81 17/12/2010 34 m 0 2.5 ? MCF-10-81 17/12/2010 35 m 0 7.5 MCF-10-81 17/12/2010 36 m 0 0.9 MCF-10-81 17/12/2010 36 m 0 0.9 MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2.7 MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 2.3.7 ? MCF-10-81 17/12/2010 41 m 0 2.1.7 MCF-10-81 17/12/2010 42 m 0 2.17 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 45 m 0 198 <td>0</td>	0
MCF-10-81 17/12/2010 32 m 0 1.5 MCF-10-81 17/12/2010 33 m 0 2.1 ? MCF-10-81 17/12/2010 34 m 0 2.5 ? MCF-10-81 17/12/2010 35 m 0 ? 0.5 MCF-10-81 17/12/2010 36 m 0 0.9 MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2.5 ? MCF-10-81 17/12/2010 38 m 0 2.5 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 3 334	0
MCF-10-81 17/12/2010 33 m 0 2.1 ? MCF-10-81 17/12/2010 34 m 0 2.5 ? MCF-10-81 17/12/2010 35 m 0 ? 0.5 MCF-10-81 17/12/2010 36 m 0 0.9 MCF-10-81 17/12/2010 36 m 0 0.9 MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2.5 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 2.3.7 ? MCF-10-81 17/12/2010 41 m 0 212 ? MCF-10-81 17/12/2010 42 m 0 217 ? MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 3 33	0
MCF-10-81 17/12/2010 34 m 0 2.5 ? MCF-10-81 17/12/2010 35 m 0 ? 0.5 MCF-10-81 17/12/2010 36 m 0 0.9 MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 3 334 ? MCF-10-81 17/12/2010 48 m 3 580	0
MCF-10-81 17/12/2010 35 m 0 ? 0.5 MCF-10-81 17/12/2010 36 m 0 0.9	0
MCF-10-81 17/12/2010 36 m 0 0.9 MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 40 m 0 21.2 ? MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 21.7 ? MCF-10-81 17/12/2010 42 m 0 21.7 ? MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 0 123 MCF-10-81 17/12/2010 45 m 0 123 MCF-10-81 17/12/2010 47 m 3 334 ? MCF-10-81 17/12/2010 48 m 3 33	0
MCF-10-81 17/12/2010 37 m 0 1.1 MCF-10-81 17/12/2010 38 m 0 2 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 0 123 MCF-10-81 17/12/2010 46 m 0 123 MCF-10-81 17/12/2010 47 m 2 904 ? MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 50 m 456 260 <td>0</td>	0
MCF-10-81 17/12/2010 38 m 0 2 ? MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 43 m 0 198 MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 0 123 MCF-10-81 17/12/2010 46 m 0 123 MCF-10-81 17/12/2010 47 m 334 ? 1334 ? MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 50 m 4 45.8 <td>0</td>	0
MCF-10-81 17/12/2010 39 m 0 2.5 ? MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 0 123 MCF-10-81 17/12/2010 46 m 0 123 MCF-10-81 17/12/2010 47 m 3 334 ? MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 50 m 30 260<	0
MCF-10-81 17/12/2010 40 m 0 23.7 ? MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 44 m 0 406 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 0 123 MCF-10-81 17/12/2010 46 m 0 123 MCF-10-81 17/12/2010 47 m 2 904 ? MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 49 m 3 580 ? MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 51 m 80 260<	0
MCF-10-81 17/12/2010 41 m 0 122 ? MCF-10-81 17/12/2010 42 m 0 217 MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 44 m 0 406 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 46 m 0 123 MCF-10-81 17/12/2010 46 m 0 123 MCF-10-81 17/12/2010 47 m 2 904 ? MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 48 m 3 580 ? MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 51 m 80 260 MCF-10-81 17/12/2010 52 m 50 205	0
MCF-10-81 17/12/2010 42 m 0 217 1 MCF-10-81 17/12/2010 43 m 1 39.9 ? 1 MCF-10-81 17/12/2010 44 m 0 198 1 MCF-10-81 17/12/2010 44 m 0 198 1 MCF-10-81 17/12/2010 45 m 0 406 1 MCF-10-81 17/12/2010 46 m 0 123 1 MCF-10-81 17/12/2010 46 m 0 123 1 MCF-10-81 17/12/2010 47 m 2 904 ? 1 MCF-10-81 17/12/2010 48 m 3 334 ? 1 MCF-10-81 17/12/2010 49 m 3 580 ? 1 MCF-10-81 17/12/2010 50 m 4 45.8 1 MCF-10-81 17/12/2010 51 m 80 260 1 MCF-10-81 17/12/2010 52 m 50 305 1 MCF-10-81 17/12/2010 52 m 50 305 1	0
MCF-10-81 17/12/2010 43 m 1 39.9 ? MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 0 406 MCF-10-81 17/12/2010 45 m 0 123 MCF-10-81 17/12/2010 46 m 0 123 MCF-10-81 17/12/2010 47 m 2 904 ? MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 49 m 3 580 ? MCF-10-81 17/12/2010 50 m 45.8 MCF-10-81 17/12/2010 50 m 30 260 MCF-10-81 17/12/2010 51 m 80 260 MCF-10-81 17/12/2010 52 m 120 534	0
MCF-10-81 17/12/2010 44 m 0 198 MCF-10-81 17/12/2010 45 m 0 406 100 MCF-10-81 17/12/2010 46 m 0 123 123 MCF-10-81 17/12/2010 46 m 0 123 123 MCF-10-81 17/12/2010 47 m 2 904 ? 100 MCF-10-81 17/12/2010 48 m 3 334 ? 100 MCF-10-81 17/12/2010 49 m 3 580 ? 100 MCF-10-81 17/12/2010 50 m 45.8 100 100 MCF-10-81 17/12/2010 50 m 80 260 100 MCF-10-81 17/12/2010 52 m 120 534 100 MCF-10-81 17/12/2010 53 m 50 205 100	0
MCF-10-81 17/12/2010 45 m 0 406 100 MCF-10-81 17/12/2010 46 m 0 123 123 MCF-10-81 17/12/2010 47 m 2 904 ? 100 MCF-10-81 17/12/2010 48 m 3 334 ? 100 MCF-10-81 17/12/2010 48 m 3 334 ? 100 MCF-10-81 17/12/2010 49 m 3 580 ? 100 MCF-10-81 17/12/2010 50 m 4 45.8 100 MCF-10-81 17/12/2010 51 m 80 260 100 MCF-10-81 17/12/2010 52 m 120 534 100 MCF-10-81 17/12/2010 53 m 50 205 100	0
MCF-10-81 17/12/2010 46 m 0 123 123 MCF-10-81 17/12/2010 47 m 2 904 ? 904 ? MCF-10-81 17/12/2010 48 m 3 334 ? 904 ? MCF-10-81 17/12/2010 49 m 3 580 ? 904 ? MCF-10-81 17/12/2010 50 m 4 45.8 904 ? MCF-10-81 17/12/2010 50 m 80 260 904 ? MCF-10-81 17/12/2010 51 m 80 260 904 ? MCF-10-81 17/12/2010 52 m 120 534 90 MCF-10-81 17/12/2010 53 m 50 205 90	0
MCF-10-81 17/12/2010 47 m 2 904 ? MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 49 m 3 580 ? MCF-10-81 17/12/2010 50 m 45.8 2 MCF-10-81 17/12/2010 51 m 80 260 260 MCF-10-81 17/12/2010 52 m 120 534 265 MCF-10-81 17/12/2010 52 m 50 205 565	0
MCF-10-81 17/12/2010 48 m 3 334 ? MCF-10-81 17/12/2010 49 m 3 580 ? MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 51 m 80 260 MCF-10-81 17/12/2010 52 m 120 534 MCF-10-81 17/12/2010 52 m 205 50	0
MCF-10-81 17/12/2010 49 m 3 580 ? MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 51 m 80 260 MCF-10-81 17/12/2010 52 m 120 534 MCF-10-81 17/12/2010 53 m 50 205	0
MCF-10-81 17/12/2010 50 m 4 45.8 MCF-10-81 17/12/2010 51 m 80 260 MCF-10-81 17/12/2010 52 m 120 534 MCF-10-81 17/12/2010 53 m 50 205	0
MCF-10-81 17/12/2010 51 m 80 260 MCF-10-81 17/12/2010 52 m 120 534 120 MCF-10-81 17/12/2010 53 m 50 205 120	1066
MCF-10-81 17/12/2010 52 m 120 534 MCF-10-81 17/12/2010 53 m 50 205	37.5
MCE-10-81 17/12/2010 53 m 50 205	174
	31.5
MCF-10-81 17/12/2010 54 m 2 622 ?	0
MCF-10-81 17/12/2010 55 m 60 56.2	39.1
MCF-10-81 17/12/2010 56 m 19 937	1.5
MCF-10-81 17/12/2010 57 m 1 530 ?	0
MCF-10-81 17/12/2010 58 m 0 761	0
MCF-10-81 17/12/2010 59 m 0 33.4 ?	0
MCF-10-81 17/12/2010 60 m 14 40.2	18.5
MCF-10-81 17/12/2010 61 m 70 508	18.7
MCF-10-81 17/12/2010 62 m 0 1076	0
MCF-10-81 17/12/2010 63 m 0 1732	0
MCF-10-81 17/12/2010 64 m 0 0.8	0
MCF-10-81 17/12/2010 65 m 0 0.8	0
MCF-10-81 17/12/2010 66 m 0 1.2	0
MCF-10-81 17/12/2010 67 m 0 2 ?	0
MCF-10-81 17/12/2010 68 m 0 1.2 ?	0
MCF-10-81 17/12/2010 69 m 0 1.4 ?	n

MCF-10-81	17/12/2010	70	m	1	2.9	2	0
MCF-10-81	17/12/2010	71	m	0	1		0
MCF-10-81	17/12/2010	72	m	0	1.1		0
MCF-10-81	17/12/2010	73	m	0	1		0
MCF-10-81	17/12/2010	74	m	0	1.3	?	0
MCF-10-81	17/12/2010	75	m	0	1.5	?	0
MCF-10-81	17/12/2010	76	m	0	1.5	2	0
MCF-10-81	17/12/2010	77	m	0	1.7	?	0
MCF-10-81	17/12/2010	78	m	0	1.9	2	0
MCF-10-81	17/12/2010	79	m	0	0.8		0
MCF-10-81	17/12/2010	80	m	0	0.9	2	0
MCF-10-81	17/12/2010	81	m	0	1	2	0
MCF-10-81	17/12/2010	82	m	0	1.6	2	0
MCF-10-81	17/12/2010	83	m	0	2.1	3	0
MCF-10-81	17/12/2010	84	m	0	1.8	3	0
MCF-10-81	17/12/2010	85	m	1	1.9	5	0
MCF-10-81	17/12/2010	86	m	1	2.5	3	0
MCF-10-81	17/12/2010	87	m	1	2.6	5	0
MCF-10-81	17/12/2010	88	m	0	0.9		0
MCF-10-81	17/12/2010	89	m	0	1.6		0
MCF-10-81	17/12/2010	90	m	0	1		0
MCF-10-81	17/12/2010	91	m	0	1.4		0
MCF-10-81	17/12/2010	92	m	0	1.5	2	0
MCF-10-81	17/12/2010	93	m	0	2	3	0
MCF-10-81	17/12/2010	94	m	0	2.6	2	0
MCF-10-81	17/12/2010	95	m	0	1.8	2	0
MCF-10-81	17/12/2010	96	m	0	2.4	2	0
MCF-10-81	17/12/2010	97	m	0	0.7		0
MCF-10-81	17/12/2010	98	m	0	1.3		0
MCF-10-81	17/12/2010	99	m	0	1.3		0
MCF-10-81	17/12/2010	100	m	0	1.5		0
MCF-10-81	17/12/2010	101	m	0	1.5	P.	0
MCF-10-81	17/12/2010	102	m	0	1.2	2	0
MCF-10-81	17/12/2010	103	E	0	2.3	2	0
MCF-10-81	17/12/2010	104	E	0	1.6	?	0
MCF-10-81	17/12/2010	105	m	0	1.5	3	0
MCF-10-81	17/12/2010	106	m	0	1.9	2	0
MCF-10-81	17/12/2010	107	m	0	2.3	2	0
MCF-10-81	17/12/2010	108	m	0	2.1	2	0
MCF-10-81	17/12/2010	109	m	0	0.6		0
MCF-10-81	17/12/2010	110	m	0	0.9		0
MCF-10-81	17/12/2010	111	m	0	0.8		0
MCF-10-81	17/12/2010	112	m	0	0.9	2	0
MCF-10-81	17/12/2010	113	m	0	1.1	2	0
MCF-10-81	17/12/2010	114	m	0	1.4	2	0
MCF-10-81	17/12/2010	115	m	0	4.9	2	0
MCF-10-81	17/12/2010	116	m	0	2.4		0

MCF-10-81	17/12/2010	117	m	0	0.6		0
MCF-10-81	17/12/2010	118	m	0	2.5	2	0
MCF-10-81	17/12/2010	119	m	0	1.5	?	0
MCF-10-81	17/12/2010	120	m	0	1.1	?	0
MCF-10-81	17/12/2010	121	m	0	1.5	2	0
MCF-10-81	17/12/2010	122	m	0	0.5		0
MCF-10-81	17/12/2010	123	m	0	0.6		0
MCF-10-81	17/12/2010	124	m	0	0.6	?	0
MCF-10-81	17/12/2010	125	m	0	0.7		0
MCF-10-81	17/12/2010	126	m	0	0.9		0
MCF-10-81	17/12/2010	127	m	0	0.9	2	0
MCF-10-81	17/12/2010	128	m	0	1	?	0
MCF-10-81	17/12/2010	129	m	0	1.1	?	0
MCF-10-81	17/12/2010	130	m	0	1.2	?	0

Num	Date	Position	þ	SYM	HF_Response	SYM	Scpt:0.001_SI	SYM	Cond:Mhos/m
MCF-10-82									
MCF-10-82	18/12/2010	24	m		0		0.6		0
MCF-10-82	18/12/2010	25	m		0		0.6		0
MCF-10-82	18/12/2010	26	m		0		0.8		0
MCF-10-82	18/12/2010	27	m		0		0.8	P -1	0
MCF-10-82	18/12/2010	28	m		0		1	?	0
MCF-10-82	18/12/2010	29	m		0	2	0.1		0
MCF-10-82	18/12/2010	30	m		0	2	0.2		0
MCF-10-82	18/12/2010	31	m		0	2	0.3		0
MCF-10-82	18/12/2010	32	m		0	2	0.5	2	0
MCF-10-82	18/12/2010	33	m		0		0.8	2	0
MCF-10-82	18/12/2010	34	m		0		1	?	0
MCF-10-82	18/12/2010	35	m		0		1.1	2	0
MCF-10-82	18/12/2010	36	m		0		1.2	?	0
MCF-10-82	18/12/2010	37	m		0		0.7		0
MCF-10-82	18/12/2010	38	m		0		0.9		0
MCF-10-82	18/12/2010	39	m		0		0.8		0
MCF-10-82	18/12/2010	40	m		0		0.9		0
MCF-10-82	18/12/2010	41	m		0		1.4	2	0
MCF-10-82	18/12/2010	42	m		0		1.4	2	0
MCF-10-82	18/12/2010	43	m		0		1.6	?	0
MCF-10-82	18/12/2010	44	m		0		370		0
MCF-10-82	18/12/2010	45	m		0		177		0
MCF-10-82	18/12/2010	46	m		0		1734	_	0
MCF-10-82	18/12/2010	47	m		2		709	2	0
MCI-10-82	18/12/2010	48	m		0		1255		0
MCF-10-82	18/12/2010	49	m		0		961		0
MCF-10-82	18/12/2010	50	m		0		1236		0
MCF-10-82	18/12/2010	51	m		0		1//8	-	0
MCF-10-82	18/12/2010	32	m		0		515	5	0
MCF-10-82	18/12/2010	22	m		0		200		0
MCF-10-82	18/12/2010	24	m		0		2001		0
MCE-10-82	18/12/2010	56			1		110	2	0
MCE-10-82	18/12/2010	57			10		270	-	2.4
MCE-10-82	18/12/2010	58			130		485		161
MCE-10-82	18/12/2010	50			60		152		13.5
MCE-10-82	18/12/2010	60			50		399		15.4
MCE-10-82	18/12/2010	61	m		50		301		15.7
MCF-10-82	18/12/2010	62	m		22		239		6
MCF-10-82	18/12/2010	63	m		28		158		8.2
MCF-10-82	18/12/2010	64	m		9		718		1
MCF-10-82	18/12/2010	65	m		11		674		12
MCF-10-82	18/12/2010	66	m		2		20.1	?	0
MCF-10-82	18/12/2010	67	m		17		795		1.3
MCF-10-82	18/12/2010	68	m		17		1130		1.2

MCF-10-82	18/12/2010	69	m	12		247		2.9
MCF-10-82	18/12/2010	70	m	10		313		1.7
MCF-10-82	18/12/2010	71	m	5		402		0.8
MCF-10-82	18/12/2010	72	m	0		1096		0
MCF-10-82	18/12/2010	73	E	0		1900		0
MCF-10-82	18/12/2010	74	m	0		2.3		0
MCF-10-82	18/12/2010	75	m	0		1.7	?	0
MCF-10-82	18/12/2010	76	m	0		0.6		0
MCF-10-82	18/12/2010	77	E	0		0.8		0
MCF-10-82	18/12/2010	78	m	0		0.8		0
MCF-10-82	18/12/2010	79	m	0		0.8	P -1	0
MCF-10-82	18/12/2010	80	m	0		1	2	0
MCF-10-82	18/12/2010	81	Ε	0		1.4	p.	0
MCF-10-82	18/12/2010	82	E	0		1.4	ē.	0
MCF-10-82	18/12/2010	83	m	0		0.6		0
MCF-10-82	18/12/2010	84	m	0		1		0
MCF-10-82	18/12/2010	85	m	0		1		0
MCF-10-82	18/12/2010	86	E	0		1.8	p.	0
MCF-10-82	18/12/2010	87	E	0		1.4	p.	0
MCF-10-82	18/12/2010	88	m	0		1.2	P -1	0
MCF-10-82	18/12/2010	89	m	0		0.6		0
MCF-10-82	18/12/2010	90	m	0		0.6		0
MCF-10-82	18/12/2010	91	m	0		0.5		0
MCF-10-82	18/12/2010	92	m	0		0.7		0
MCF-10-82	18/12/2010	93	m	0		0.6		0
MCF-10-82	18/12/2010	94	m	0		0.8		0
MCF-10-82	18/12/2010	95	E	0		1.3	p.	0
MCF-10-82	18/12/2010	96	m	0		1.1	?	0
MCF-10-82	18/12/2010	97	m	0	2	0.3		0
MCF-10-82	18/12/2010	98	m	0		1.4		0
MCF-10-82	18/12/2010	99	m	0		0.9		0
MCF-10-82	18/12/2010	100	m	0		0.7		0