

KING BAY PROJECT

ASSESSMENT REPORT ON

2006 - 2007 DIAMOND DRILL PROGRAM

NTS 52J2 FOURBAY LAKE AREA (G-2543)

THURDER BAY MINING DIVISION NORTHWESTERN ONTARIO

Prepared by Conquest Resources Limited Erick H. Chavez, M.Sc. KBG Minerals Corporation John L. Wahl Ph.D., P. Geo (NB)

$2 \cdot 37634$

February 28, 2008

E

I

TABLE OF CONTENTS

1.0	Introduction						
	1.1	Location and access	1				
	1.2	Property	2				
	1.3	Physiography, Climate and Vegetation	3				
2.0	Geol	ogical setting	3				
3.0	Mine	eralization	5				
4.0	Expl	oration	5				
5.0	Drilling						
	5.1	Winter 2006 Drill Program					
	5.2	Winter 2007 Drill Program	7				
	5.3	Description of Drill Holes	10				
		W Series Anomalies	10				
		W1 Anomaly	10				
		KB-07-W1-01	10				
		KB-07-W1-02	10				
		W2 Anomaly	12				
		KB-07-W2-01	12				
		KB-07-W2-02	12				
		W3 Anomaly	14				
		KB-06-W3-01	14				
		KB-07-W3-02	14				
		W4 Anomaly	16				
		KB-06-W4-01	16				
		KB-07-W4-02	16				
		KB-07-W4-03	17				
		KB-07-W5-04	17				
		KB-07-W4-05	17				
		KB-07-W4-06	18				
		W5 Anomaly	20				
		KB-07-W5-01	20				
		KB-07-W5-02	20				
	EC1 Anomaly						
		EC1 Anomaly	22				
		EC1-06-EC1-06	22				
		EC1-07-EC1-07	22				
	5.4	Drill core recovery	24				
	5.5	Core sampling and analyses	24				
6.0	Discu	ussion of results	24				

List of Figures

Figure 1:-Location and access map of the King Bay project
Figure 2:-King Bay claim map
Figure 3:-EC1 and W Series magnetic anomalies
Figure 4:-W Series diamond drill hole plan map.
Figure 5:-EC1 Diamond drill hole plan map.
Figure 6:-Anomaly W1 diamond drill hole cross section
Figure 7:-Anomaly W2 diamond drill hole cross section
Figure 8:-Anomaly W3 diamond drill hole cross section
Figure 9:-Anomaly W4 diamond drill hole cross section
Figure 10:-Anomaly W5 diamond drill hole cross section
Figure 11:-Anomaly EC1 diamond drill hole composite cross section.

List of Tables

Table 1:-Active Mining Claims Table 2.:-Active dispositions (Leases/patents) Table 3.:-Summary of the drill holes completed in winter 2006 - 2007 diamond drill program

List of Appendix

Appendix I:- Option Agreement KBG Minerals Corporation & Conquest Resources Ltd. Appendix II:- Drill Logs Appendix III:- Assay Results and Certificates of Analysis

REPORT ON KING BAY PROJECT WINTER 2006 & 2007 DIAMOND DRILL PROGRAM

1. INTRODUCTION

The following report details the results of the diamond drill program completed during the winters of 2006 and 2007 by Conquest Resources Limited ("Conquest") on its King Bay property. The 2006 drill program was carried out between March 10 and March 21, 2006. The 2007 drill program was carried out between December 15, 2006 and February 26, 2007. The drilling completed during the 2006 and 2007 were to have been completed in one season but due to the pre-emption of the program in 2006 due to deteriorating ice conditions the remainder of the planned 2006 drill program was carried out in 2007. This explains why two years of drilling is combined in one submission.

Previous work completed in the drill area defined six ground magnetic anomalies located in two areas identified as the West Grid (anomalies W1, W2, W3, W4 and W5) and the East Grid (anomaly EC1). These anomalies are believed to reflect Au mineralization in breccia pipes developed within a quartz-feldspar porphyry unit. The winter 2006 program has the objective to test the magnetic anomalies defined previously. The West Grid is located within patented claim AL368 while the East Grid is located within patented claim AL369.

Conquest has entered into an option and joint venture agreement with KBG Minerals Corp. ("KBG") pursuant to which Conquest may earn a 60% working interest in KBG's King Bay Gold Project by expending \$600,000 on exploration prior to April 30, 2008, of which \$200,000 is a firm commitment to be expended prior to April 30, 2006. Upon Conquest acquiring its interest, a joint venture will be constituted with Conquest, the Operator of the venture and KBG having an initial working interest of 60% and 40% respectively. If either party's working interest is reduced below 10%, the interest will be converted to a 10% net profits royalty (refer Appendix I for Option Agreement).

1.1. Location and Access

The King Bay property is located at the southern shore of King Bay, an inlet on the western shore of the Sturgeon Lake, approximately 24Kms south from Savant Lake and 91Kms NE from Ignace in Ontario, NTS 52J2, Fourbay Lake Area (G-2543), Thunder Bay Mining Division (Figure 1).

The access to the property is through 102Kms of paved road (HWY 599) from Ignace to the Six-Mile Road turn-off and 14.2Kms via drill trail to the camp (tend frame). From this point the access to the drill area is through a snowmobile/ATV road of approximately 700m to the access to the lake. A network of secondary access trails connects this point with the rest of the area.

Figure 1. Location and access map of the King Bay project

1.2. Property

The King Bay property comprises 5 active mining claims with a total of 1030.36 Has and 14 leases/patents with a total of 763.10 Has, which comes to a total of 1793.46 Has of coverage in the King Bay area. The 2006 and 2007 drill programs were carried on claims AL368 and AL369. Details are shown in Tables 1 and 2.

Property map, Figure 2, was prepared using the Claimap Polygon Data (ArcView polygon shape file format *.shp) provided by The Ministry of Northern Development and Mines and available online and imported into MapInfo updated as of June 16, 2005

Table 1 - Active Mining Claims						
Claim No.	Area (Has)	Perimeter (Kms)	Date Comp	Time Stamp		
1248341	258.26	6.42	11/07/2002	07/17/2002 03:48:23 PM		
1248342	260.66	7.79	11/07/2002	08/09/2002 9:23:56 AM		
1248343	189.32	7.55	11/07/2002	07/02/2004 4:27:41 PM		
1248344	256.34	6.41	11/07/2002	07/17/2002 11:43:08 AM		
1248345	65.78	5.02	11/07/2002	07/17/2002 11:38:09 AM		
TOTAL	1030.36					

Table 2 - Active dispositions (Leases/patents)							
Disposition No.	Area (Has)	Perimeter (Kms)	Date Comp				
AL367	15.96	1.60	January 1, 2001				
AL368	16.23	1.61	January 1, 2001				
AL369	16.23	1.61	January 1, 2001				
AL370	15.93	1.60	January 1, 2001				
AL371	16.94	1.77	January 1, 2001				
AL372	24.13	2.29	January 1, 2001				
AL373	27.01	2.51	January 1, 2001				
BG128	15.76	1.59	January 1, 2001				
BG129	14.36	1.57	January 1, 2001				
BG134	15.89	1.65	January 1, 2001				
BG135	21.57	2.60	January 1, 2001				
BG136	12.37	2.19	January 1, 2001				
BG149	17.12	1.88	January 1, 2001				
CLM307	533.60	9.91	January 1, 2001				
	ТОТ	AL 763	.10				

1.3. Physiography, Climate and Vegetation

The topography of the area is irregular with elevations ranging between 408m and 480m above sea level on the hill tops. The main landscape features are the steep slope of the southern shore of the King Bay area and the King Bay inlet with depths of water close to 20m. The climate is characterized by freezing temperatures during winter and warm (>30°C) temperatures during summer with abundant precipitation year round. The vegetation is typical for a northern boreal forest dominated by coniferous trees such as white and black spruce and broadleaf trees such as white birch.

2. GEOLOGICAL SETTING

The geology of the Sturgeon Lake area comprises three major lithological sequences. The oldest rocks are mainly mafic metavolcanics (basalts) with a minor component of metasediments (siltstones, mudstones with disseminated pyrrhotite and pyrite). A coarse-grained felsic unit intrudes the previous one, commonly described as plagioclase feldspar +/- quartz porphyry (QFP). These intrusives appear as stocks, bosses and dykes. The youngest rock unit is also a felsic intrusive, described as a tonalite to granodiorite, the Lewis Lake Batholith.

The main regional structural trend has a direction N40°-46°E coincident with topographic features such as scarps and shape of lakes. At King Bay, the local structural settings show the same trend with the addition to N-S and E-W trends revealed by the E-W trending King Bay inlet.

Figure 2:- King Bay claim map

3. MINERALIZATION

Mineralization in the King Bay area is characterized by fine grained Au associated with pyrrhotite \pm pyrite in blue-black quartz found in boulders grouped in three trains oriented approximately N40°E. The Au content in boulders is as high as 521.1 gr/t (15.2 opt) with an average grade of the Central train of 18.2 gm/t gold (0.53 opt), while the Eastern train averages 18.9 gm/t gold (0.55 opt) and the Western train averages 5.14 gm/t gold (0.15 opt).

4. EXPLORATION

There were several previous exploration campaigns involving soil geochemistry, prospecting and ground magnetometer survey, which defined the current drill target area. The present diamond drill program was fine tuned with the aid of the detailed ground magnetometer survey carried out by Quantec Geoscience Inc. in January 2004.

That 2004 survey defined six ground magnetic anomalies located in two areas identified as the West Grid (anomalies W1, W2, W3, W4 and W5) and the East Grid (anomaly EC1). These anomalies are believed to reflect Au mineralization in breccia pipes developed within a quartz-feldspar porphyry unit. The winter 2006 and 2007 drill programs were designed to test the causative sources of the defined magnetic anomalies. The West Grid is located within patented claim AL368 while the East Grid is located within patented claim AL369.

5. DRILLING

5.1. Winter 2006 Drill Program

The 2006 diamond drill program was performed by Summit Drilling Services of Hammer, Ontario, between March 10 and March 19, 2006. The drill was track mounted and the drill core size used was BQ.

The area of the East ground magnetic anomaly (EC-1) was drilled from the ice. Drill hole KB-06-EC1-6 was completed as planned.

The area of the West ground magnetic anomalies (W series) was also drilled from ice. Drill hole KB-06-W3-01 was completed as planned but drill hole KB-06-W4-01 was terminated prematurely due to deteriorating ice conditions.

The program consisted of 3 drill holes with a total of 197.5m drilled and only anomalies W3, W4 and EC-1 were tested. Refer to Table 3 for details regarding to completed drill holes. Holes drilled on ice were cemented. Drill collars were surveyed with a Garmin VistaC GPS with accuracies <5m. Descriptive drill logs and assay results are presented in Appendix II and Appendix III respectively.

Deteriorating ice conditions forced the termination of the drill program before it could be completed.

Figure 3:- EC1 and W Series magnetic anomalies

5.2. Winter 2007 Drill Program

The drilling component of the 2007 diamond drill program was performed by Downing Drilling, between January 20 and February 25, 2007. The drill rig was a LF-70 and the drill core size used was NQ. The 2007 drill program completed the 2006 drill program that was prematurely terminated due to deteriorating ice conditions.

The area of the East Ground Magnetic anomaly (EC-1) was drilled from the ice.

The area of the West Ground Magnetic anomalies (W series) was also drilled from ice.

The program consisted of 13 drill holes with a total of 1,145.1m drilled. Refer to Table 3 for details regarding to completed drill holes. Holes drilled on ice were cemented. Drill collars were surveyed with a Garmin VistaC GPS with accuracies <5m. Descriptive drill logs and assay results are presented in Appendix II and Appendix III respectively.

Table No. 3 – Summary of the Drill HolesCompleted Winter 2006 & 2007 Diamond Drill Programs											
Hole ID	Grid- E	Grid- N	Easting	Northing	Elev (m)	Length (m)	Azimuth	Dip	Started	Finished	Comments
KB-06-W3-01	375	462	658267.9	5543182.9	408	70.5	264°	-65°	14-Mar-06	15-Mar-06	Drilled on ice
KB-06-W4-01	380	525.	658266.5	5543246.5	408	67.0	264°	-75°_	16-Mar-06	19-Mar-06	Drilled on ice
KB-06-EC1-06	961.5	531	658656.0	5543255.0	408	60.0	330°	-45°	10-Mar-06	13-Mar-06	Drilled on ice
KB-07-W4-02	385	525	658276.0	5543247.0	408	99.8	268°	-60°	26-Jan-07	28-Jan-07	Drilled on ice
KB-07-W4-03	360	525	658242.0	5543244.0	408	121.8	0.0	-90°	30-Jan-07	01-Feb-07	Drilled on ice
KB-07-W4-04	360	525	658242.0	5543244.0	408	79.7	84°	-75°_	02-Feb-07	03-Feb-07	Drilled on ice
KB-07-W3-02	360	462	658252.0	5543181.0	408	101.7	84°	-75°	04-Feb-07	06-Feb-07	Drilled on ice
KB-07-W1-01	220	483	658112.0	5543189.0	408	88.7	318°	-70°	06-Feb-07	08-Feb-07	Drilled on ice
KB-07-W2-01	269	521	658458.0	5543236.0	408	35.0	318°	-70°	09-Feb-07	09-Feb-07	Drilled on ice
KB-07-W2-02	257	536	658144.0	5543247.0	408	100.8	0.0°	-90°	10-Feb-07	14-Feb-07	Drilled on ice
KB-07-W1-02	208	499	658098.0	5543204.0	408	85.5	0.0°	90°	14-Feb-07	16-Feb-07	Drilled on ice
KB-07-W5-01	345	604	658225.0	5543321.0	408	89.7	120°	-75°_	_16-Feb-07	18-Feb-07	Drilled on ice
KB-07-W5-02	360	596	658239.0	_5543315.0	408	62.7	0.0°	-90°	18-Feb-07	19-Feb-07	Drilled on ice
KB-07-W4-05	347.5	535	658231.0	5543250.0	408	66	84°	75°	19-Feb-07	20-FFeb-07	Drilled on ice
KB-07-W4-06	_ 247.5	515	658233.0	5543228.0	408	112.7	84°	-75°	21-Feb-07	22-Feb-07	Drilled on ice
KB-07-EC1-07	720	531	658615.4	5543251.0	408	110.0	60°	-75.0°	23-Feb-07	24-Feb-07	Drilled on ice
		Total (m)	1.351.6m							

The locations of the W Series drill holes are presented in plan view on Figure 4 while the EC-1 drill holes are presented in plan view on Figure 5. In both figures the drill holes are overlain on ground total field magnetic data.

Figure 5 EC1 Grid Drill Plan View

5.3 Description of Drill Holes

W1 Anomaly

Anomaly W1 was investigated by two diamond drill holes completed during the 2007 winter drill season. Results of the W1 anomaly drilling are presented in cross section on Figure 6. Detailed logs of the drill holes are presented in Appendix ii. The purpose of the drilling was to investigate the causative source of the W1 magnetic anomaly

Hole KB-07-W1-01 was drilled at a dip of 70° to cross cut the near surface area of Anomaly W-1.

Depth to bedrock in this hole was 20.30m. At bedrock the drill hole intersected a QFP and remained in same to the end of the hole at 88.70 save for a thin intersection of diabase dyke between 34.30-34.40m and several fine grained dark green mafic metavolcanic sequence between 36.78-47.33m, 71.80-71.87m and 72.04-72.50m. Alteration of the QFP was pervasive down the hole with several blue black quartz (BBQ) veins intersected. Sampling of the BBQ veins returned a high of 2.85g/t Au across 0.08m. Associated with the sections of BBQ was an increase in the magnetic susceptibility. A detailed description of the drill hole is given in Appendix II

Hole KB-07-W1-02 was drilled at a dip of 90° to test at depth the near surface area of Anomaly W-1.

Depth to bedrock in this hole was 23.00m. At bedrock the drill hole intersected a QFP and remained in same to the end of the hole at 85.50m save for several intersections of fine grained dark green mafic metavolcanic sequence between 31.90-31.95m, 33.50-36.60m, 40.93-46.60m, 46.75-48.50m and 71.30-72.00m. Alteration of the QFP was pervasive down the hole with several blue black quartz (BBQ) veins intersected. Sampling of the BBQ veins returned a high of 3.17g/t Au across 0.68m. Associated with the sections of BBQ was an increase in the magnetic susceptibility especially marked between 31.95-33.50m. A detailed description of the drill hole is given in Appendix II

W2 Anomaly

Anomaly W2 was investigated by two diamond drill holes completed during the 2007 winter drill season. Results of the W2 anomaly drilling are presented in cross section on Figure 7. Detailed logs of the drill holes are presented in Appendix ii. The purpose of the drilling was to investigate the causative source of the W2 magnetic anomaly

Hole KB-07-W2-01 was drilled at a dip of 70° to cross cut the near surface area of Anomaly W-2.

This drill hole was abandoned due to difficult drilling conditions in the overburden (uncharacteristically thick) before reaching the bedrock interface.

Hole KB-07-W2-02 was drilled at a dip of 90° to test at depth the near surface area of Anomaly W-2.

Depth to bedrock in this hole was 27.80m. At bedrock the drill hole intersected a QFP and remained in same to the end of the hole at 80.16m save for several intersections of fine grained dark green diabase dykes between 38.06-38.40m, 53.92-54.07m, 73.72-74.50m and 80.05-80.16m. Alteration of the QFP was pervasive down the hole with several blue black quartz (BBQ) veins intersected. Sampling of the BBQ veins returned a high of 2.58g/t Au across 0.35m. Associated with the sections of BBQ is an increase in the magnetic susceptibility especially marked between 33.38-33.96m. A detailed description of the drill hole is given in Appendix II

W3 Anomaly

Anomaly W3 was investigated by two diamond drill holes; one completed during the 2006 winter drill season and another completed during the 2007 winter drill season. Results of the W3 anomaly drilling are presented in cross section on Figure 8. Detailed logs of the drill holes are presented in Appendix ii. The purpose of the drilling was to investigate the causative source of the W3 magnetic anomaly

Hole KB-06-W3-01 was drilled at an angle of 65° to cross cut the near surface area of the W-3 magnetic anomaly. This hole cut across the surface expression of the ground magnetic anomaly but no causative source for the magnetic response was found in the core.

Depth to bedrock in this hole was 10.15m. At bedrock the drill hole intersected a fine grained dark green mafic metavolcanic sequence and remained in same to a depth of 27.41m whereupon it entered a moderately altered QFP to the end of hole at 70.50m. Two narrow diabase dyke were intersected between 34.95-35.95m and 36.25-37.10m. A detailed description of the drill hole is given in Appendix II. Alteration, although reportable, was weak and no blue black quartz veining was intersected. Magnetic susceptibility readings taken down the length of the drill hole did not define a causative source of magnetic anomaly W3. No samples were collected from the core recovered.

Hole KB-07-W3-02 was drilled at an angle of 75° to cross cut the near surface area of the W-3 magnetic anomaly in the opposite direction of KB-06-W3-01. This hole also cut across the surface expression of the ground magnetic anomaly but no causative source for the magnetic response was found in the core.

Depth to bedrock in this hole was 8.50m. At bedrock the drill hole intersected a fine grained dark green mafic metavolcanic sequence to 28.85m where upon it cut a QFP and remained in same to the end of the hole at 101.70m save for several intersections of fine grained dark green mafic metavolcanics between 44.95-45.60m, 45.70-45.84m and 46.28-46.50m. Alteration of the QFP was pervasive down the hole but no BBQ veining was intersected. Magnetic susceptibility readings taken down the length of the drill hole did not define a causative source of magnetic anomaly W3. No samples were collected from the core recovered. A detailed description of the drill hole is given in Appendix II

W4 Anomaly

Anomaly W4 was investigated by six diamond drill holes; one completed during the 2006 winter drill season while the other five completed during the 2007 winter drill season. Results of the W4 anomaly drilling are presented in cross section on Figure 9. Detailed logs of the drill holes are presented in Appendix ii. The purpose of the drilling was to investigate the causative source of the W4 magnetic anomaly

Hole KB-06-W4-01 was drilled at 75° to test the near surface area of the W-4 magnetic anomaly. Drilling was terminated due to deteriorating ice conditions at a depth of 67.00m. The hole was to have been drilled to a depth of 210m. This hole was terminated in the marginal zone of the W4 magnetic anomaly.

Depth to bedrock in this hole was 11.60mm. At bedrock the drill hole intersected a fine grained dark green mafic metavolcanic sequence and remained in same to a depth of 16.50m whereupon it entered an area (16.50m–29.94m) of narrow sequences of QFP and mafic metavolcanics. From 29.94m to end of hole at 67.00m the drill hole intersected QFP. A detailed description of the drill hole is given in Appendix II

Between the interval 29.94m and end of hole at 67.00m the drill hole intersected a 32m (7m true thickness) of intensely altered QFP cross cut by a stockwork of blue black quartz containing varying amounts of pyrrhotite. Free gold was identified in two locations across this section. Numerous samples were collected across this section with all samples analysis presented on the drill logs in Appendix II. The most anomalous values reported were 43.00g/t Au across 0.11m and 12.00g/t Au across 0.21m. Magnetic susceptibility measurements taken down the length of the drill hole report anomalously high values across this mineralized section. Projection to surface of this magnetic zone corresponds directly to the weakly magnetic marginal zone of anomaly W4. The direct correlation between elevated magnetic susceptibility and presence of gold bearing blue black quartz veining within an intensely altered QFP provides tangible evidence to support the contention that the weak magnetic anomalies found to lie under the waters of King Bay may represent the source areas of the gold bearing float found on the south shore of King Bay.

Hole KB-07-W4-02 was drilled at 60° to test the near surface area of the W-4 magnetic anomaly.

Depth to bedrock in this hole was 13.50m. At bedrock the drill hole intersected a alternating sequence of fine grained dark green mafic metavolcanic sequence and QFP down the entire length of the hole. Mineralized BBQ veining was intersected within altered QFP between 36.85-40.00m. Within this section the highest gold values returned 23.62g/t Au over 0.22m. Several other sections of BBQ veining was intersected in the hole, specifically at 65.78-65.85m where a gold value of 3.41g/t Au over 0.07m was reported. In all cases the QFP, within which the BBQ was localized, reported an increase in magnetic susceptibility as did the BBQ themselves. The hole was terminated in QFP at a depth of 99.80m. A detailed description of the drill hole is given in Appendix II

Hole KB-07-W4-03 was drilled at a dip of 90° to test at depth the near surface area of Anomaly W-3.

Depth to bedrock in this hole was 12.00m. At bedrock the drill hole intersected a alternating sequence of fine grained dark green mafic metavolcanic sequence and QFP down the entire length of the hole. Mineralized BBQ veining was intersected within altered QFP between 31.80-36.38m. Within this section the highest gold values returned 1.13g/t Au over 0.35m. Several other sections of BBQ veining was intersected in the hole, specifically at 103.20-103.45m where a gold value of 74.55g/t Au over 0.25m was reported. In all cases the QFP, within which the BBQ was localized, reported an increase in magnetic susceptibility as did the BBQ themselves. The hole was terminated in QFP at a depth of 121.80m. A detailed description of the drill hole is given in Appendix II

Hole KB-07-W4-04 was drilled at a dip of 75° to test at depth the near surface area of Anomaly W-3.

Depth to bedrock in this hole was 12.50m. At bedrock the drill hole intersected a sequence of fine grained dark green mafic metavolcanic sequence between 12.50-33.00m and then into QFP down the majority of the remaining hole save for several thin intersections of diabase dyke at 52.87-63.07m, 68.37-68.83m, 69.47-69.55m 72.46-72.62m and 74.40-79.00m. Mineralized BBQ veining was intersected within altered QFP between 33.00-50.87m. Within this section the highest gold values returned 68.62g/t Au over 0.22m with another anomalous section between 43.70-44.00m where 17.14g/t Au was reported. In all cases the QFP, within which the BBQ was localized, reported an increase in magnetic susceptibility as did the BBQ themselves. The hole was terminated in QFP at a depth of 79.70m. A detailed description of the drill hole is given in Appendix II

Hole KB-07-W4-05 was drilled north of the section containing KB-W4-01, 02, 03 and 04 at a dip of 75° to test for the northern extension of the mineralized structure intersected in those holes.

Depth to bedrock in this hole was 19.00m. At bedrock the drill hole intersected a alternating sequence of fine grained dark green mafic metavolcanic sequence and QFP down the entire length of the hole. One mineralized white quartz veining was intersected within altered QFP between 34.70-34.92m which returned 19.90g/t Au. Other than this one intersection the mineralized structure, as exemplified in hole KB-06-W4-01 was not intersected. The hole was terminated in QFP at a depth of 65.95m. A detailed description of the drill hole is given in Appendix II

Hole KB-07-W4-06 was drilled south of the section containing KB-W4-01, 02, 03 and 04 at a dip of 75° to test for the southern extension of the mineralized structure intersected in those holes.

Depth to bedrock in this hole was 14.20m. At bedrock the drill hole intersected a alternating sequence of fine grained dark green mafic metavolcanic sequence and QFP down the entire length of the hole. The mineralized structure, as exemplified in hole KB-06-W4-01 was not intersected. The hole was terminated in QFP at a depth of 112.70m. A detailed description of the drill hole is given in Appendix II

W5 Anomaly

Anomaly W5 was investigated by two diamond drill holes completed during the 2007 winter drill season. Results of the W5 anomaly drilling are presented in cross section on Figure 10. Detailed logs of the drill holes are presented in Appendix ii. The purpose of the drilling was to investigate the causative source of the W5 magnetic anomaly.

Hole KB-07-W5-01 was drilled at a dip of 75° to cross cut the near surface area of Anomaly W-5.

Depth to bedrock in this hole was 23.70m. At bedrock the drill hole intersected QFP and immediately passed into a fine grained dark green mafic metavolcanic unit from25.75-47.55m. With the exception of several minor mafic metavolcanic intersections at 61.00-63.35m and 66.25-66.50m coarse grained QFP was intersected to 87.25m were a final mafic metavolcanic unit was intersected. The hole terminated at 89.70m in the mafic metavolcanic. Alteration of the QFP was pervasive down the hole with several blue black quartz (BBQ) veins intersected. Sampling of the BBQ veins returned a high of 11.14g/t Au across 0.20m. Associated with the sections of BBQ is an increase in the magnetic susceptibility. A detailed description of the drill hole is given in Appendix II

Hole KB-07-W5-02 was drilled at a dip of 90° to test at depth the near surface area of Anomaly W-5.

Depth to bedrock in this hole was 21.40m. At bedrock the drill hole intersected a fine grained dark green mafic metavolcanic unit but quickly intersected QFP at 33.35m and remained in same to the end of hole save for two thin intersections of mafic metavolcanics at 52.50-55.85m and 60.65-61.05m. The hole terminated at 67.70m in QFP. Alteration of the QFP was pervasive down the hole with several blue black quartz (BBQ) veins intersected. Sampling of the BBQ veins returned a high of 23.12g/t Au across 0.28m. Associated with the sections of BBQ is an increase in the magnetic susceptibility. A detailed description of the drill hole is given in Appendix II

EC1 Anomaly

Anomaly EC1 was investigated by seven diamond drill holes; five completed during the 2005 winter drill season and reported on earlier and another one hole, hole 6, during the 2006 winter drill season and a further hole, hole 7, completed during the 2007 winter drill season. Results of the EC1 anomaly drilling are presented in cross section on Figure 11. Detailed logs of the drill holes are presented in Appendix ii. The purpose of the drilling was to investigate the causative source of the EC1 magnetic anomaly

Hole KB-06-EC1-06 was drilled to test the near surface area of the EC-1 magnetic anomaly. This hole cut across the surface expression of the ground magnetic anomaly but no causative source for the magnetic response was found in the core.

Depth to bedrock in this hole was 4.20m. At bedrock the drill hole intersected coarse gained QFP and with the exception of several narrow diabase dykes remained in the same rock type down the length of the entire hole. A detailed description of the drill hole is given in Appendix II. Several samples were collected across areas of increased alteration of the QFP and in areas of increased structural deformation but no significant gold values were reported. Magnetic susceptibility readings were taken down the length of the hole and no causative source of the EC1 magnetic anomaly was identified.

Hole KB-07-EC1-07 was drilled to test the depth extension of the EC-1 magnetic anomaly. This hole cut across the surface expression of the ground magnetic anomaly but no causative source for the magnetic response was found in the core.

Depth to bedrock in this hole was 6.00m. At bedrock the drill hole intersected alternating sections of coarse gained QFP and dark green mafic metavolcanics down the length of the entire hole. A detailed description of the drill hole is given in Appendix II. Magnetic susceptibility readings were taken down the length of the hole and no causative source of the EC1 magnetic anomaly was identified. Only one sample was collected down the length of this hole for which only negligible Au (0.02g/t Au over 0.55m) was reported.

5.4 Drill Core Recovery

Core recovery was in general very good, the average recovery obtained during the 2006 and 2007 drilling programs was 99.5% influenced by moderate to intense fracturing of rock along small intervals.

5.5 Core Sampling and Analyses

Core samples selected from intervals with obvious alteration including presence of blue black quartz (BBQ) and intervals of silicified QFP. Sample size was as small as 5cms in length to up to 1.5m. This sampling procedure would not be suitable for narrow intervals with no obvious mineralization; eventually small rich intervals might have been included and diluted in longer intervals or perhaps not sampled. The core identified for sampling was split in the field. All core is stored on site (camp site).

Samples from the 2006 drill season (48 in total) were dropped-off at ALS Chemex Lab located in Thunder Bay where samples were prepared then sent to ALS Chemex Lab in Mississauga for analyses. All the samples were analyzed only for Au using the Au-AA25 method (Gold assay 0.01-100 ppm by 30g fire assay – AA analyses). Assay certificates are provided in Appendix iii.

Samples from the 2007 drill season (94 in total) were dropped off at Accurassay Labs located in Thunder Bay were the samples were prepared and analyzed. All the samples were analyzed only for Au (ALFA1) a 30gm fire assay with AA finish method (lower detection limit 5ppb Au). Assay certificates are provided in Appendix iii.

6 DISCUSSION OF RESULTS

The drilling completed provided important information for further exploration programs.

The direct correlation between elevated magnetic susceptibility and presence of gold bearing blue black quartz veining within an intensely altered QFP intersected provides bedrock evidence to support the belief that the weak magnetic anomalies found to lie under the waters of King Bay may represent the source areas of the gold bearing float found on the south shore of King Bay.

Further evaluation of the drill data is required in anticipation of further diamond drill investigations on the property.

Respectfully submitted

KBG Minerals Corporation

Man Cu Wink

John L. Wahl PhD, PGeo

APPENDIX I

Option Agreement KBG Minerals Corporation & Conquest Resources Ltd.

KBG Minerals Corporation 174 Carrington Lane Fredericton, NB E3A 5R6

August 18, 2004

Conquest Resources Limited Suite 201 347 Bay Street Toronto, Ontario M5H 2R7 Attention: Mr. Terance N. McKillen President & CEO

Dear Sirs:

Re. King Bay Project

This will confirm our understanding of the arrangements between our corporation ("KBG") and you ("Conquest") relating to the acquisition by Conquest of a sixty (60%) interest in all right, title and interest of KBG in and to the King Bay Project which currently consists of the option agreement (the "Tribute Agreement") between Tribute Minerals Inc. ("Tribute") and John L. Wahl Consulting Ltd. ("Wahl Consulting") on behalf of a corporation to be incorporated and having a term to June 1, 2006, the Tribute Agreement having been accepted by Tribute in May, 2003. A copy of the Tribute Agreement is attached hereto as Schedule "T".

KBG represents and warrants to Conquest as follows:

- (a) the Tribute Agreement is in good standing, unamended, save that KBG returned part of the properties therein referred and set forth in Schedule "A" to the Tribute Agreement to Tribute, such properties that are currently subject to the Tribute Agreement are as set forth in Schedule II attached hereto and are herein referred to as the "Property";
- (b) KBG is not aware of any event or circumstance that would constitute an event of default under the Tribute Agreement;
- (c) the right, title and interest of KBG under the Tribute Agreement and in and to the Property is free and clear of any lien, mortgage, agreement, encumbrance or adverse claim and no third party, other than Tribute, has any interest therein;
- (d) KBG has expended approximately \$75,000 in carrying out work as contemplated in the Tribute Agreement and has reported on the same to Tribute in accordance with the provisions of the Tribute Agreement and Tribute has not to date disputed any such expenditures;

- (e) KBG is not aware of any hazardous or other situations or circumstances on the Property or any work that has been carried out thereon that may give rise to any environmental claims, penalties or liability;
- (f) KBG has not received any notice, order or other communication from any governmental ministry or instrumentality relating to any actual or alleged unacceptable environmental circumstance or situation with respect to the Property;
- (g) KBG has the right to deal with the Tribute Agreement as herein contemplated;
- (h) the status of each part of the Property is as set forth in Schedule II attached hereto;
- to the best of KBG's knowledge and belief, each of the unpatented mining claims forming part of the Property has been duly staked and recorded in accordance with the laws of the Province of Ontario.

For convenience, certain words have been defined in the text of this letter. In addition, those words or phrases defined in Schedule "III" annexed hereto shall have the respective meanings therein set forth, it being agreed that all schedules annexed hereto form part of this letter.

Upon acceptance hereof, the foregoing representations and warranties of KBG shall continue for a period of twelve (12) months and the following provisions shall be applicable:

1 <u>Due Diligence/TSE Approval</u>

1.01 If, in the opinion of Conquest, it is necessary for Conquest to obtain approval hereof from the TSX Venture Exchange, this agreement and the obligations of Conquest hereunder shall be conditional upon the obtaining of such approval. If Conquest does not advise KBG of such necessity within ten (10) days after accepting this agreement, Conquest shall for all purposes of this agreement be considered to have decided that the obtaining of such approval is not necessary. If such notice is so given and such approval is not given or waived within thirty (30) days after the giving thereof, KGB may by notice given at any time thereafter and before such approval or waiver is so given terminate this agreement.

1.02 Conquest shall have a period of twenty (20) days after its acceptance hereof to carry out such due diligence as Conquest considers appropriate and KBG shall cooperate with Conquest with respect thereto. Conquest may by notice to KBG terminate this agreement within said period in which event Conquest shall have no right, title, interest or liability hereunder. If such notice is not so given within such period this agreement and the obligations of Conquest hereunder shall be in full force and effect.

2. <u>Acquisition of Interest</u>

2.01 Conquest shall prior to April 30, 2006 expend at least \$200,000 in doing work hereunder (such expenditure being referred to as "Phase I"), of which at least \$100,000 shall be expended prior to April 30. 2005. In consideration for such firm commitment,

KBG hereby grants to Conquest the exclusive option (the "Option") to acquire during the Acquisition Period a sixty percent (60%) interest in the Tribute Agreement and any interests to the Property acquired thereunder through the exercise of the option therein contained. It is agreed that if Conquest fails to complete Phase I, this agreement shall, subject to the provisions hereof, immediately terminate and Conquest shall have no right, title, interest, obligations or liabilities hereunder, save for the obligation to pay to KBG the difference between \$200,000 and the actual amount expended in doing work hereunder with respect to Phase I, which liability shall continue.

2.02 Notwithstanding anything to the contrary herein contained, expenditures made in doing work hereunder during Phase I shall be direct expenditures incurred for doing such work and Conquest shall not be entitled to charge or receive any administration or overhead allowance with respect thereto. This paragraph 2.02 shall terminate upon completion of Phase I.

2.03 Upon completion of Phase I the Option shall continue in full force and effect up to and including April 30, 2008. If prior to April 30, 2008 Conquest expends an aggregate of \$600,000 in doing work hereunder (including amounts expended for Phase I), Conquest may give notice accordingly to KBG together with a detailed listing of such expenditures not previously given to KBG and, subject to the right of KBG to dispute any or all of such expenditures, Conquest shall be considered to have exercised the Option, shall acquire a sixty percent (60%) interest in and to the Property (an "Ownership Interest") and shall assume its *pro rata* portion of the obligations under the Tribute Agreement, including, without limitation, the obligation to pay the royalty (the "Tribute Royalty") to Tribute thereunder; it being agreed that if Conquest has not exercised the Option or has not expended said aggregate \$600,000 on or before April 30, 2008, this agreement shall immediately terminate and Conquest shall have no right, title, interest, obligations or liabilities in or with respect to the Property, save only as specifically provided to the contrary hereunder.

2.04 It is acknowledged that the expenditures required under Phase I will, with amounts previously expended by KBG, exceed those required under the Tribute Agreement to exercise the option contained therein. KBG agrees that, as soon as practicable after an aggregate of \$200,000 has been expended in doing work as contemplated in the Tribute Agreement and not disputed by Tribute, KBG will exercise the said option. Upon such exercise, the Property so acquired shall be held subject to the provisions of this agreement and the rights of Conquest hereunder, subject always to the Tribute Royalty.

2.05 The Acquisition Period and the Option shall terminate upon the acquisition by Conquest of its Ownership Interest or as otherwise herein provided.

2.06 Any Ownership Interest acquired by Conquest hereunder shall vest automatically in Conquest without any further act required to be done on the part of Conquest or

KBG, save only that KBG shall do such acts as may reasonably be required in order to evidence such acquisition.

2.07 Conquest may at any time and from time to time during the Acquisition Period without notice to KBG pay to KBG any amounts contemplated to be expended in doing work hereunder pursuant to this Article 2, and upon the making of any such payment the amount thereof shall be considered to have been expended in doing work hereunder as at the date of the making of such payment.

2.08 Subject to the provisions of paragraph 2.01 hereof, Conquest may at any time during the Acquisition Period terminate this agreement with respect to all or any part of the Property by delivering a notice accordingly to KBG, provided that at the time of the giving of such notice such part or parts of the Property shall be in good standing for at least a period of one hundred and twenty (120) days. Upon the giving of such notice, this agreement shall terminate immediately with respect to the part or parts of the Property set forth in said notice and Conquest shall retain no right, title, interest or obligations in and to such part or parts of the Property.

2.09 During the Acquisition Period, the Property shall continue to be registered in the name of KBG and shall be held by KBG as bare trustee to be dealt with in accordance with the provisions hereof. If Conquest acquires an Ownership Interest the Property shall be transferred to the then Operator to be held pursuant to the provisions hereof and KBG shall deliver duly executed transfers transferring title to the Property to the Operator. During the Acquisition Period Conquest shall deliver to KBG in a timely manner such reports and documentation relating to work carried out by Conquest relating to the Property as may be reasonably required in order to maintain the Property in good standing.

In order to protect its interests hereunder, KBG and/or Conquest may register such notice or other document against title to the Property as it considers advisable and the other party hereto shall co-operate in effecting such registration.

3. Work During Acquisition Period

3.01 Subject to the provisions of paragraph 3.04 hereof, during the Acquisition Period KBG shall not be required to contribute to any costs of any Programme or to any amounts expended in doing work hereunder provided, however, that such work shall be carried out by Conquest as Operator hereunder and the provisions of paragraph 7.01 hereof shall be applicable thereto.

3.02 During the Acquisition Period, to the extent that the provisions of this Article 3 or of Article 2 hereof conflict with any other provisions of this agreement, the provisions of this Article 3 or said Article 2, as the case may be, shall prevail.

3.03 During the Acquisition Period the nature, extent and timing of work to be carried out hereunder shall be in the sole discretion of Conquest, save that Conquest shall carry

out such work under Programmes that have been discussed with KBG with respect to their formulation and execution. Conquest agrees that it will consider using the services of Wahl Consulting in doing work hereunder.

3.04 Upon the expenditure of an aggregate of \$600,000 as referred to in paragraph 2.03 hereof, Conquest, as Operator, may continue the then current Programme to completion or may terminate such Programme in an orderly fashion, as Conquest considers advisable, provided, however, that the costs of such Programme to a maximum of \$25,000 that are in excess of said \$600,000 shall, automatically and without reference thereto, be included as part of the first Programme proposed hereunder following termination of the Acquisition Period.

4. Joint Venture; Conquest Operator

4.01 The joint venture constituted hereunder is hereby formed for the purpose of exercising the option contained in the Tribute Agreement and carrying out work related to the Property with a view to determining if a viable orebody exists thereon and, if such an orebody does so exist, to develop the same to production and thereafter operate the same, all as herein contemplated.

4.02 Conquest is hereby appointed Operator of the joint venture constituted hereunder and shall have the right to remain as Operator hereunder during the Acquisition Period and thereafter for so long as Conquest has an Ownership Interest of at least sixty percent (60%) hereunder.

4.03 As at the date of termination of the Acquisition Period, the respective Ownership Interests of Conquest and KBG shall be sixty percent (60%) and forty percent (40%), respectively, and, subject always to the provisions hereof specifically to the contrary, Conquest and KBG shall share in all rights, titles, interests, benefits, costs and liabilities under the Tribute Agreement and which may arise hereunder *pro rata* to their respective Ownership Interests as determined from time to time hereunder.

5. <u>Programmes and Participation</u>

5.01 After the Acquisition Period and for so long as each of Conquest and KBG is a Participant, work performed hereunder shall be performed under Programmes which shall be of such extent, timing and estimated costs as is therein set forth. Save in the case of a Programme contemplating the preparation of a Feasibility Study or a Development Programme, Programmes shall contemplate work to be carried out during a period of not more than twelve (12) calendar months, provided, however, that during any such period supplemental Programmes may, with the consent of the Non-Operator, be proposed to supplement work contemplated in the Programme then being carried out.

5.02 After the Acquisition Period the Operator shall, prior to initiating any Programme and at such time or times as the Operator considers advisable for the orderly carrying out

of work hereunder and after consultation with the Non-Operator, submit to the Non-Operator a proposed Programme which has been prepared after consultation with the Non-Operator.

Within thirty (30) days after receipt of such a proposed Programme, the Non-Operator may by notice to the Operator elect:

- (a) to participate in such Programme; or
- (b) not to participate in such Programme.

The Operator shall be deemed to have elected to participate in such Programme and failure so to indicate by the Non-Operator, as aforesaid, shall be deemed to be an indication of intention not to participate therein.

5.03 If the Non-Operator elects to participate in a Programme, the Operator and the Non-Operator shall each be bound to contribute to the full cost of carrying out such Programme as therein set forth.

5.04 If the Non-Operator indicates or is deemed to have indicated that it does not wish to participate in a Programme (the "Proposed Programme"), then the Non-Operator shall immediately become an inactive Participant and, subject only to the provisions of this paragraph 5.04, shall forfeit the right to contribute to the Proposed Programme. For convenience, the date of the making or deemed making of such indication is herein referred to as the "Indication Date". The Operator may revise the Proposed Programme by reducing the aggregate estimated costs therein set forth by not more than twenty-five (25%), provided, however, that such revisions shall be made so as to preserve the objective proposed under the Proposed Programme. If the Proposed Programme or Proposed Programme as so revised, as the case may be:

- (a) is not proceeded with; or
- (b) is commenced but not carried out within the time period set forth in the Proposed Programme; or
- (c) is not carried out at an actual aggregate cost of amounts expended in doing work thereunder of at least eighty (80%) of the aggregate estimated costs as set forth in the Proposed Programme or Proposed Programme as so revised;

then in any such case the Non-Participant may, within thirty (30) days:

- (i) after receipt of the report relating to said revised Programme (or the portion thereof carried out),or
- (ii) the end of said time period set forth in the Proposed Programme,

whichever last occurs, elect by notice delivered to the Operator to pay its proportionate part of the amounts expended in doing work hereunder since the Indication Date and, provided that the inactive Participant does so pay such proportionate part within thirty (30) days after being notified of the amount thereof, it shall again become an active Participant with an Ownership Interest equal to its Ownership Interest as at the Indication Date and shall continue hereunder as if it had never so become an inactive Participant and its interest hereunder shall not be reduced as a result of its nonparticipation in such Programme. If the such inactive Participant does not so elect within said thirty (30) days, or, having so elected, fails to pay said proportionate part within said second-mentioned thirty (30) days, such inactive Participant shall continue as such or, if such inactive Participant has exercised its rights to re-enter under paragraph 5.06 hereof, it shall continue hereunder as a Non-Participant.

5.05 An inactive Participant shall forfeit to the other party hereto all rights to be Operator hereunder, and, subject only to the provisions of paragraph 5.04 hereof, as at the date that a Participant became an inactive Participant hereunder, its Ownership Interest shall reduce (and the Ownership Interest of the other party hereto increase accordingly) as the other party hereto continues to expend amounts in doing work hereunder. The respective Ownership Interests of the parties hereto shall thereafter be that percentage of the aggregate actual and deemed amounts expended in doing work hereunder after the Acquisition Period that were so expended or deemed expended by the party whose Ownership Interest is being calculated, it being agreed that Conquest and KBG shall for the purposes of such calculation and as at the termination of the Acquisition Period be deemed to have so expended an aggregate of \$1,000,000 as to \$600,000 and \$400,000, respectively. Subject to the provisions of this paragraph 5.05 to the contrary, if the Ownership Interest of a party is reduced to ten percent (10%), such ten percent (10%) Ownership Interest shall be immediately converted into a right to receive a royalty (the "Royalty") equal to ten percent (10%) of the net profit realized from operations carried out on the Property. The Royalty shall be determined and payable as set forth in Schedule "IV" attached hereto and shall not be considered to be an interest in the Property. Upon the arising of the right to receive the Royalty, this agreement shall terminate save for the provisions of Article 11 hereof, said Schedule "IV" and such other provisions hereof that relate to the determination and payment of the Royalty.

5.06 Until such time as the Ownership Interest of an inactive Participant has been reduced to ten percent (10%), as set forth in paragraph 5.05 hereof, work carried out hereunder with respect thereto shall continue to be carried out under Programmes (save that the Operator shall not be required to consult with such Participant as contemplated in paragraph 5.02 hereof) and a copy of each proposed Programme shall be delivered to such inactive Participant. Such inactive Participant may, within the thirty (30) days set forth in said paragraph 5.04, elect to participate in any such Programme to the extent of its Ownership Interest as at the commencement of such Programme. If such inactive Participant elects not to participate or fails to indicate its election to the Operator, the provisions of this paragraph shall continue until the earlier of such time as such Participant does elect to participate in a proposed Programme as contemplated above or its Ownership Interest has been so reduced to ten percent (10%), whereupon the said right of such Participant so to elect shall immediately terminate. If within said thirty (30) days, such Participant does so elect to participate in a proposed Programme, it shall do so as a Participant having an Ownership Interest equal to its Ownership Interest as at the date of commencement of such Programme and the right of such Participant to elect under this paragraph shall immediately terminate.

5.07 During the course of a Programme, the Operator may render periodic invoices for amounts previously expended in doing work thereunder or amounts anticipated by the

Operator to be so expended within a period not exceeding sixty (60) days from date of such invoice. All undisputed amounts set forth in an invoice shall be paid within thirty (30) days from receipt thereof. Any dispute relating to an invoice shall be referred to the auditors of the Operator (or if such auditors decline so to act, to a mutually acceptable independent chartered accountant or firm of chartered accountants or the Consultant) whose decision shall be final, any adjustment required being made immediately after the making of such decision and, if appropriate, paid. If a party fails to pay any undisputed invoice or portion thereof, interest shall be accrue on the undisputed amount thereof from the date of such invoice up to the day of payment at a rate equal to prime rate plus three percent (3%), where "prime rate" means semi-annual average of the rate of interest head office in Toronto, refers to as its "prime rate"

6. Feasibility Study and Development Programme

6.01 If at any time the Operator is of the view there is sufficient evidence that a potential orebody exists on the Property and that a feasibility study (the "Feasibility Study") should be prepared, it may by notice so advise the other Participant and may prepare a Feasibility Study.

6.02 Upon delivery of a notice pursuant to the provisions of paragraph 6.01 hereof, the Operator shall complete the then current Programme and shall then prepare a proposed Programme contemplating the preparation of a Feasibility Study either "in-house" or by use of a Consultant. The Participants shall consult with respect to the parameters to be used with respect to the preparation of the Feasibility Study and, in the event of dispute between them, such dispute shall be referred to a Consultant pursuant to the provisions of Article 9 hereof. The Feasibility Study shall be prepared promptly and shall be a comprehensive study and report as to the existence or otherwise of a commercially viable orebody on the Property. If a commercially viable orebody is believed to exist, the Feasibility Study shall include detailed recommendations as to the technical means and processes to develop the same, bring the same into commercial product, together with appropriate cost, financial and other information, data and forecasts.

6.03 Upon completion of the Feasibility Study, a copy thereof shall be delivered to each Participant and, if it is prepared "in-house", a Participant may require that it be accompanied with, or by notice delivered to the Operator within thirty (30) days after delivery of the Feasibility Study require that there be obtained immediately, an opinion from a Consultant to the effect that the Consultant has reviewed the Feasibility Study and considers that its recommendations are reasonable and practical and in keeping with good mining practice.

6.04 Within ninety (90) days after receipt of the Feasibility Study a Participant may by notice to the other Participant disagree with all or part of the Feasibility Study as therein specified and if within the next following thirty (30) days the disagreement cannot be

resolved, the unresolved disagreement shall be immediately submitted to a Consultant (other than the one that rendered an opinion as aforesaid) as contemplated in Article 9 hereof and the Feasibility Study shall be considered to be settled and agreed to in accordance with the Opinion given by such Consultant under said Article 9. A Development Programme based upon and to implement the provisions of a settled Feasibility Study may be proposed by the Operator and the provisions of paragraph 5.02 hereof shall be applicable with respect to elections by a Participant, save only that the thirty (30) days therein set forth shall be extended to sixty (60) days. If the other Participant does not elect to participate therein neither the Operator nor the other Participant shall be required to proceed with the Development Programme.

6.05 For so long as both of the parties hereto are Participants, the Operator shall not proceed with any development work carried out with a view to bringing the Property into commercial production except pursuant to a Development Programme.

6.07 Nothing contained herein shall be construed to limit or restrict a Participant from carrying out, or causing to be prepared, for its own purposes and account such studies or reports that such Participant considers to be appropriate.

7. Operator

7.01 The Operator shall:

- (a) by way of consultation and written reports or summaries keep the other Participant reasonably informed of work performed hereunder and the results thereof at least quarterly;
- (b) submit a written report at the completion of each Programme to the other Participant;
- (c) during reasonable business hours, afford a Participant access to the Property and to all records (without limiting the generality of this provision, including all data, accounting records, maps, reports and information in its possession and relating to the Property and work carried out for or by it thereon) with the right to make copies and/or take extracts but only for its own use (the Operator agreeing to keep full and complete records and accounts at a location or locations convenient to the Operator and known to the Participants), all at the sole expense and the sole risk of such Participant having such access, provided, always, that the exercise of any such rights shall not interfere with the operations or business of the Operator and that any information relating to such business or operations obtained shall be subject to the provisions of paragraph 13.01 hereof;
- (d) perform work in accordance with good mining, environmental and financial practice and standards and all applicable laws and legal requirements;
- (e) keep the Property in good standing, provided, always, that, after the Acquisition Period, the Operator has been put into funds therefor by the Participants; and
(f) after the Acquisition Period, maintain the Property registered in its name or such other name as the Participant having the larger Ownership Interest may reasonably require.

7.02 The Operator may resign as such upon ninety (90) days' notice to the other Participant, or, if the Operator becomes a Non-Participant, the Operator shall immediately cease to be Operator. In either case, the other Participant shall have the right to become or to appoint the Operator hereunder.

7.03 If the Operator institutes proceedings to be adjudicated a bankrupt or insolvent or consents to the institution of bankruptcy or insolvency proceedings against it or files a petition or answer or consent seeking reorganization or relief under any applicable law relating to bankruptcy or insolvency, or consents to the filing of any such petition or consents to the appointment of a receiver or receiver and manager or makes an assignment for the benefit of creditors or if any of the same are instituted or commenced by a third party with respect to the Operator, then the other party hereto shall have the right to become or appoint the Operator.

7.04 If within a period of twenty-four (24) months after completion of a Programme, the Operator has not proposed a new or further Programme having an aggregate estimated cost of at least \$150,000, the other Participant may by notice to the Operator require the Operator to submit a proposed Programme. If within the next succeeding thirty (30) days the Operator does not so propose a Programme, the other Participant may propose a Programme (which shall have an aggregate estimated cost of at least \$100,000) and shall deliver a summary thereof to the Operator. The Operator shall have the right within the next succeeding fifteen (15) days after delivery of such summary to elect:

- (a) to adopt and carry out such Programme as Operator, in which event it shall be obligated to contribute thereto; or
- (b) to participate in such Programme as the Non-Operator, in which event the other Participant shall immediately become Operator and both of the Participants shall be obligated to contribute thereto; or
- (c) not to participate in such Programme, in which event the Operator shall, as at the date of delivery of said summary, become an inactive Participant or Non-Participant, as the case may be, such other Participant shall immediately become the Operator and, the provisions of paragraph 5.04 hereof shall be applicable, save that the continuing Participant shall be obligated to carry out such Programme in its entirety.

If the Operator fails so to elect within said fifteen (15) days, it shall be deemed to have elected not to participate in such Programme under subparagraph (b) above.

7.05 The Operator, as such, shall not be required to expend any of its own funds to carry out or fulfill any of its duties or obligations hereunder and, if the Operator does not have on hand sufficient funds (or security for the payment thereof satisfactory to the Operator) so to carry out or fulfill, the Operator shall be relieved of any obligation so to

do hereunder, provided, always, that the provisions of this paragraph shall not be construed to relieve the Operator of any obligations that it may have as a Participant hereunder.

Further, it is acknowledged that a report of the Operator delivered hereunder may contain interpretations of work and/or expressions of opinions upon many matters, including, without limitation, a forecast of possible applications or results flowing from such results, interpretations or applications. In addition, a Development Programme may contain cost estimates, estimates of Product prices, revenue estimates, estimated return on in investment and other financial estimates made by the Operator. It is also acknowledged and agreed that the Operator is not receiving any remuneration or fees hereunder with respect to acting as such. Accordingly, any such interpretations, opinions, possible applications or estimates shall represent the opinion of the Operator only and shall be delivered by the Operator for the information of the Non-Operator only and are not intended to be relied upon by the Non-Operator, it being agreed that each of the parties hereto shall be solely responsible for preparing any interpretations of work results, forecasts, possible applications or estimates of the nature above referred to and for making its own decisions based thereon and that the Operator shall not be liable in any way whatsoever for any of the same offered by it.

8. <u>Representatives and Committee</u>

8.01 Each party shall immediately by notice to the other name one representative and one alternate representative (to act in the absence of the representative) to represent it hereunder. Representatives may be changed from time to time by notice and shall have full power and authority to bind the party which they represent with respect to matters arising hereunder. Such power and authority shall not extend to amending this agreement.

8.02 After the Acquisition Period, a committee shall be formed on which each Participant may be represented by its representatives, employees and/or professional advisors. The Committee shall not be a decision-making body but rather shall be a forum for discussion between the Participants with respect to work being carried out or proposed to be carried out hereunder, results of such work and other matters of mutual interest. Meetings of the Committee may be called by either Participant upon at least fifteen (15) days prior notice but not more than twice during each calendar year, save only that the Operator shall call a meeting of the Committee to discuss its report delivered upon the completion of a Programme. Procedures at Committee meetings shall be informal.

9. <u>Consultant</u>

9.01 A Consultant shall consider, as an expert and not as an arbitrator, only those matters which are referred to him pursuant to the provisions hereof and shall be paid his usual consulting fees plus expenses. Such fees and expenses shall be paid by the Participant initiating the matter or dispute submitted to the Consultant unless the dispute

or disagreement of such Participant is upheld by the Consultant, in which event the same shall be paid by the other Participant.

9.02 In considering a matter submitted to him a Consultant shall have made available to him a copy of this Article 9 together with all relevant data and information relating to such matter and shall, if so requested, meet and discuss the matter with the Participants. The Consultant shall express his opinion (the "Opinion") as to whether or not the proposal of the Operator constituting the matter submitted to the Consultant hereunder is reasonable and in keeping with good mining practice. The Opinion shall be expressed in writing and a copy thereof delivered to each Participant.

If the Opinion confirms that the proposal of the Operator is reasonable and in keeping with good mining practice, such proposal shall be deemed accepted by the Participants and the Operator may pursue the same. If the Opinion does not so confirm such proposal of the Operator, the Consultant may in the Opinion consider whether or not any alternate proposal received from the other Participant is reasonable and in keeping with good mining practice and, if such Opinion confirms that such alternate proposal is such then, provided that to implement such alternate proposal will not increase the estimated cost of the relevant Programme and will not alter or require the alteration of other aspects of such Programme in a material way, such alternate proposal shall be deemed accepted by the Participants and the Operator shall proceed accordingly.

9.03 The Consultant shall be instructed to render his Opinion as quickly as possible and both Participants shall co-operate with the Consultant in order to achieve such end.

10. Product

10.01 If the Property is brought into commercial production, each party having an Ownership Interest shall be obligated to take ores mined from the Property and/or concentrates and other products derived therefrom (the "Product") produced from the operations carried on hereunder in kind and to pay all costs or expenses relating to such operations (the "Costs"), each in proportion to their respective Ownership Interests. The Operator shall advise each such party of particulars relating to the nature and availability of Product. Costs shall be invoiced as set forth in paragraph 5.07 hereof which shall be applicable, *mutatis mutandis*.

10.02 Each Party hereto shall take Product deliverable to it as contemplated under paragraph 10.01 hereof, at the site where it is produced and on the date advised by the Operator (provided that such date is at least thirty (30) days after the date of such advice) and the Operator shall have no obligations or liabilities whatsoever with respect to any Product not so taken, including, without limitation, any obligation to stockpile or preserve any of the same.

10.03 If a party fails to pay its portion of Costs, the Operator may refuse to deliver Product to such party and may sell the same to any person, firm or corporation (including itself) at a fair price without any liability or obligation to such party, save only to account for and to pay the proceeds of such sale after deduction of any moneys owed to the Operator by such party. No such sale shall relieve a party of its obligation to pay any moneys owing hereunder that are not satisfied from the proceeds of any such sale and the Operator shall be under no obligation to avail itself of its rights under this paragraph which are in addition to any rights that it may have at law or in equity to recover moneys owed to it hereunder. The provisions of this paragraph are in addition to any other remedies available at law or in equity or pursuant to the provisions hereof. A price paid by an independent purchaser on an arms length basis for any Product shall, for the purposes hereof, be considered to be a fair price therefor.

10.04 It is acknowledged that a party obligated to take Product hereunder may act through a selling or other agent either alone or in concert with other Participants.

10.05 It is acknowledged that reclamation and other similar costs will have to be incurred prior to or upon the closing of any mine operated upon the Property, and at that time it is advisable for the protection of the parties hereto to have available moneys to meet such costs. Accordingly, notwithstanding anything to the contrary herein contained, the Operator shall have the right at any time and from time to time during the last five (5) years of the anticipated life of any mine operated on the Property to withhold a reasonable portion of Product otherwise deliverable to the parties hereto and to sell the same on behalf of such parties, provided, however, that:

- (a) such withholding shall be made pro rata to the respective Ownership Interests of the parties hereto at the time of such withholding;
- (b) such sale shall be on reasonable commercial terms;
- (c) the proceeds from such sale, less the costs of making the same, shall be deposited in a separate interest-bearing account (or guaranteed investment certificates of a chartered bank or major trust company) and used together with any interest received thereon to pay for reclamation or other similar costs and the cost of fulfilling requirements that relate to or arise in connection with or are required to be made in anticipation of, or upon, the closing of such mine;
- (d) upon completion of such reclamation and the fulfilling of other closing requirements any moneys then in the possession of the Operator shall be distributed to the parties hereto pro rata to their then Ownership Interests hereunder.

The Operator shall give to the parties hereto notice of its intention to exercise its rights under this paragraph together with particulars of the quantity of Product intended to be withheld. A party hereto may object to such quantity within thirty (30) days after receipt of such notice and if the parties are unable to agree upon an acceptable quantity within the next thirty (30) days the matter shall be referred to a Consultant pursuant to Article 9 hereof.

11. <u>Disposition of Interest; Termination</u>

11.01 Neither of the parties hereto will dispose of its respective interests hereunder without by notice first offering the same to the other party hereto for a cash purchase price (which may include in whole or in part a royalty). If such other party does not accept such offer and purchase all such interest so offered within the next following sixty (60) days, the offering party shall be free to dispose of the same to any third party within the next succeeding one hundred and twenty (120) days at a cash price (and/or royalty, as aforesaid) not more favourable to the buyer than those contained in such offer and this Article. If such interest is not so disposed of within said one hundred and twenty (120) days, the provisions of this paragraph shall again apply. If a party ("Royalty Party") is entitled to receive a Royalty then the provisions of this paragraph shall terminate and cease to be applicable to the other party hereto and such other party's interest hereunder but shall continue in full force and effect with respect to the Royalty Party and to the Royalty.

11.02 Either of the parties hereto may assign its interest to its parent or to a corporation that is controlled by it or by its parent without first offering the same pursuant to the provisions of paragraph 11.01 hereof, provided, however, that, notwithstanding anything to the contrary contained in paragraph 11.03 hereof, such party shall not be relieved of any liabilities hereunder with respect to such interest so assigned unless the assignee thereof appears to be financially able to meet its obligations as a party hereto as the same exist at the time in question, it being agreed that such financial ability may be established on the basis of the financial statements of such assignee.

11.03 No assignment or transfer of any interest hereunder shall be completed unless and until the assignee thereof has agreed in writing and in form and substance satisfactory to the continuing Participant to be bound by the provisions hereof and to assume the obligations hereunder to the extent of the interest so assigned or transferred and as fully as if such assignee had been a signatory hereto. Upon delivery of such agreement by the assignee, the assigning party shall, to the extent of such interest so assigned or transferred, have no further liability or obligation hereunder except for its full portion of any liability which was in existence prior to such delivery (which liability will continue to the extent not assumed and satisfied by such assignee).

11.04 If either the Operator or the Non-Operator considers that all or any part of the Property should no longer be subject to the provisions hereof, it may give notice accordingly to the other party hereto. Such other party may within the next following thirty (30) days require the same to be transferred to it and shall be entitled to receive appropriate documentation for such purposes. Upon giving of such notice, this agreement shall terminate with respect to those parts of the Property therein referred to save only for the obligation to deliver documentation as contemplated in this paragraph.

11.05 Subject to mutual agreement to the contrary, neither of the parties shall create or grant any mortgage, charge or encumbrance of any kind whatsoever on any right, title or interest to which this agreement relates which may adversely affect any other party's

interest hereunder or in the Property, provided, however, that it is agreed that a mortgage, charge or encumbrance granted to a lender for the purpose of securing moneys borrowed from such lender in order to finance a party's participation hereunder shall not be considered to adversely affect any other party's interest if such lender has agreed, in such form and substance as the other party may reasonably require, to be bound by the provisions hereof, including, without limitation, the provisions of this Article 11.

11.06 At such time as there is no Property that is subject to the provisions hereof, this agreement shall terminate.

12. Single Participant

12.01 If at any time there is only one Participant, such Participant may carry out work hereunder of such nature, to such extent and in such manner, and may make such decisions relating thereto and to the Property, all as it in its sole discretion considers advisable, provided, only, that it shall not impair the rights of the other party hereunder, save that such Participant may mortgage or charge any right, title or interest of the Non-Participant (but not an inactive Participant) in and to the Property upon the same terms and to the same extent as its own right, title and interest in order to secure moneys advanced to expend amounts in doing work hereunder. The carrying out of any work by such Participant shall in no way obligate it, or be construed to obligate it, to carry out further or other work hereunder.

13. <u>General</u>

13.01 The parties hereto agree that information relating to the Property and/or any work done hereunder shall be confidential and that any document or release made to or available to the public shall be subject to the prior approval of the Operator, provided, always, that the provisions of this paragraph shall in no way be construed to restrict either party from:

- (a) filing particulars of any such work to maintain the Property in good standing under any applicable laws; or
- (b) making disclosure to any governmental ministry, department or agency as may be required by any applicable rules, regulations and/or laws; or
- (c) making disclosure on a confidential basis to a financial institution in connection with a loan sought to be arranged by a party hereto with respect to the Property;
- (d) making disclosure on a confidential basis to the professional advisers of a party hereto; or
- (e) publishing an academic paper on the project;

and further provided that, in particular, but without limiting the generality of the foregoing, the provisions of this paragraph shall in no way be construed to require a party hereto or its parent corporation to be in default under or to breach the requirements of any securities commission or similar body having jurisdiction in the premises and/or the

requirements of any stock exchange upon which the securities of the relevant party may be listed with respect to timely disclosure of information and/or the requirements of law with respect to the release or dissemination of information by a corporation to the public, governmental authorities and/or its shareholders.

13.02 Any notice or delivery made in person or by registered or certified mail or by courier (delivery confirmed by courier or otherwise) or by fax or other wire service either to Conquest or KBG at their respective address set forth on the first page of this agreement shall be duly made and received on the day of delivery in person or of sending by fax or other wire service, as the case may be, or, on the day of actual receipt thereof (as indicated on the acknowledgment) in the case of delivery by courier, or, on the fifth business day after the mailing thereof in the case of mailing, provided, however, that a notice shall not be so delivered by registered or certified mail if at the time of the proposed mailing thereof the sender is aware of a disruption or potential disruption in regular mail deliveries due to labour disputes, unrest or otherwise. For the purposes of this paragraph and until changed the respective fax numbers for KBG and Conquest shall be: 506-459-8479 and 416-368-5344.

For information purposes only, a copy of any notice or delivery made shall be sent to:

- (a) in the case of Conquest, Neil J. F. Steenberg, Barrister & Solicitor, 201 347 Bay Street, Toronto, Ontario M5H 3R7, fax number 416-941-9417; and
- (b) in the case of KBG, Karl J. C. Harries, 87 Brock Street, Gananoque, Ontario K7G 1K1, fax number 613-382-7822.

13.03 Any payment made hereunder may be made by cheque made payable to the payee and if delivered as if it was a notice under paragraph 13.02 hereof, the payment which it represents shall be considered to have been duly made (for the purposes of satisfying the relevant provisions of this agreement) on the day that it would be considered to be received if in fact it was a notice.

13.04 Time shall be of the essence of this agreement, provided, however, that during the Acquisition Period and thereafter the time or times (including, without limitation, the term of the Option) within which moneys may or shall be expended in doing work hereunder or work may or shall be done hereunder or rights may be exercised hereunder or obligations shall be performed or fulfilled hereunder (save only for the obligation to pay moneys to a third party whether or not such third party is a party hereto) shall be extended by a period of time equal to the total of all periods of time during which any party hereto or its representatives, agents, contractors or employees are prevented from or seriously impeded in doing work hereunder by reason of fire; power shortage; labour unrest of any nature whatsoever, whether collective or otherwise, including, without limitation, strike or lockout; flooding; explosion; cave-in; landslide; adverse weather conditions; inability to obtain adequate or suitable machinery, equipment or labour; suspension of operations by the Operator in order to preserve or safeguard any property

or assets or in order to preserve or protect any person or persons from injury or death; war; acts of God or enemies of the state; acts of civil disobedience; interference from or actions of any activists (including, without limitation, any relating to native rights or the environment); any rights of or any claims relating to the rights, or alleged rights, of native peoples whether the same relate to the Property or otherwise; governmental regulation, requirement, order or policy; complying with any governmental, or purported governmental, regulation, requirement, order, policy or other requirements or instructions; inability to obtain or the non-issuance of any governmental approval, licence, permit, undertaking or consent; governmental action (including, without limitation, any imposition, restriction or requirement whether lawful or otherwise); or any other cause (whether or not similar to any of the foregoing) considered to be reasonably beyond the control of such party or its said representatives, agents, contractors or employees, it being agreed the settling of any labour dispute, environmental issue, constitutional issue, or native peoples' claim is for the purposes of this paragraph beyond the control of a party hereto and its representatives, agents, contractors or employees and nothing herein contained shall obligate or be construed to obligate any party hereto or any of its representatives, agents, contractors or employees to settle any such dispute, claim or issue or to require or be construed to require a party to test the constitutionality of any law.

If either of the parties hereto avails itself of the provisions of this paragraph, it shall give prompt notice to the other party hereto thereof.

13.05 Provided that the Operator acts in good faith in the performance of its duties hereunder and in fulfillment of its obligations hereunder, and, in the absence of gross negligence or willful misconduct on the part of the Operator, the Operator shall not be liable to any party hereto for any costs, expenses, claims, damages or liabilities incurred by reason of or relating to such performance or fulfillment and under no circumstances will the Operator be liable for contingent damages.

13.06 Neither of the parties hereto will take, or permit or assist in the taking of, any action or proceeding for or relating to partition or severance of the Property.

13.07 Each of the parties hereto acknowledges that the other party is or may hereafter become separately involved in ventures in the Province of Ontario or elsewhere which will have as their objective the performance of work and the acquisition of and/or exploration for and/or exploitation of minerals in said Province or elsewhere and that no right, title or interest in or to mining claims or other mining properties now owned or hereafter acquired by either of the parties hereto (other than the Property) shall be subject in any way to the provisions of this agreement or any of the rights, title, interests, obligations or liabilities herein contemplated.

13.08 This is the entire agreement between the parties hereto and supersedes and replaces any prior discussions, representations, warranties, communications or correspondence between the parties hereto.

The foregoing sets forth in summary form our understanding of the arrangements between us. If you agree with the same, please sign the enclosed copy of this letter as indicated and return the same to us.

Upon receipt of such copy, this letter and the Schedules annexed hereto shall form a binding agreement between, and enure to the benefit of, our corporations and their respective successors and permitted assigns. Any offer constituted by this letter will, unless extended by KBG, expire at five (5) o'clock p.m. (Toronto time) on August 31, 2004.

We look forward to hearing from you in the near future.

Yours very truly, KBG Minerals Corporation

per

c/s

ACCEPTED AND AGREED TO this day August, 2004 Conquest Resources Limited.

Per: _____

Per: _____

I

SCHEDULE "I" to the option agreement between KBG and Conquest

Copy of Tribute Agreement

SCHEDULE "II"

to the option agreement between KBG and Conquest

The following are the properties that form the "Property" as the date hereof, all of the same being subject to the tribute Agreement:

Patented Claims:-	Provincial L	and Tax Role Number 6089500910005990000
	Taxes	s paid for current year
	Ministry of 1	Northern Development & Mines Tax Number TB446
	Taxes	s outstanding \$1,898.44 (2003/2004)
	AL 367	100% KBĞ
	AL 368	100% KBG
	AL 369	100% KBG
	AL 370	100% KBG
	AL 371	100% KBG
	AL 372	100% KBG
	AL 373	100% KBG
	BG 128	100% KBG
	BG 129	100% KBG
	BG 134	50% KBG
	BG 135	50% KBG
	BG 136	50% KBG
	BG 149	50% KBG

Mining Lease:-

Provincial Land Tax Role Number 6089500910005500000 Not subject to Provincial Land Tax Ministry of Northern Development & Mines Tax Number LTB0093 Rent due for 2004 (\$1,610.66) CLM 307 100% KBG in good standing to May 2007

Unpatented Claims:-PA 1248341 100% KBG In good standing to July 11, 2005 PA 1248342 100% KBG In good standing to July 11, 2005 PA 1248343 100% KBG In good standing to July 11, 2005 PA 1248344 100% KBG In good standing to July 11, 2005 PA 1248345 100% KBG In good standing to July 11, 2005

APPENDIX II

Descriptive Drill Logs

<u>Drill Hole ID</u>	KB-07-W1	I-01	Property Township	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder	Вау	
<u>Collar Location</u>	Easting: 64 Northing: 554 Elevation: Projection: NAD	58112.0 m 43189.0 m 408.0 m D27 Zone	IE Gric IN 1 15N	i: 220.0 m 483.0 m	Azimutl Dip: Lenght	h: 318.0 ° -70.0 ° 88.70 m	Hole Sta Date Sta Date Fin	itus: Completed irted: February-06-07 iished: February-08-07 Aに368	
Purpose of Hole Investigate Anomaly	W1						``	Proposed depth:	m
Survey Data			Dri	ling Information			nd Samn	ling Information	
Depth(m) Azimut	h Dip Metl	hod							
88.70 322.	7° 76.1° Reflex	x	Contractor:	Downing Drilling		Geology Logged	by:	John Wahl	
			Hole Type:			Geotechnical Log	iging by:		
			Core Size:	NQ		Sampling by:		John Wahl	
			Drill Rig:	LF-70		Horizontal Trace:			m
			Casing Left:		m	Vertical Trace:			
			<u>Comments</u>						

Diamond Drill Log - KB-07-W1-01

FROM	то	CODE	DESCRIPTION	Sample	From	То	int	Au(g/t)	Fe(%)	As(ppm)
0.00	20.30	OVB	WATER + OVERBURDEN							
20.30	34.30	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- 20.3-31.5, 22.38-22.53, 22.74-22.84, 23.00-23.23, 23.75-24.04, 24.14-24.17, 25.00-27.79, 28.70-28.80, 29.08-29.26, 29.81-30.09, 30.20-30.86, 31.08-31.15, 31.20-31.44, 31.22-31.28, 31.33-31.46							
			20.30 21.50 Alteration							
			22.36 22.35 Alteration							
			23.00 23.23 Alteration							
			23.75 24.04 Alteration							
			24.14 24.17 Alteration							
			25.00 27.79 Alteration							
			28.70 28.80 Alteration							
			29.08 29.26 Alteration							
			29.81 30.09 Alteration							
			30.20 30.86 Alteration							
			31.08 31.15 Alteration							
			31.20 31.44 Alteration							
			31.22 31.28 Alteration							
			31.33 31.46 Alteration							
			33.68 33.74 Alteration							
			33.96 34.13 Alteration							
34.30	34.40	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
34.40	36.76	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- 33.68-33.74, 33.96-34.13, 36.50-36.65; upper contact @35°TCA 36.50 36.65 Alteration							
36.76	47.33	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, upper contact @30°TCA							

				Diamond Drill Log - KB-						3-07-W1-01
FROM	το	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
47.33	71.80	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- 48.75-48.83, 49.55-49.68, 50.59-50.63, 50.90-50.98, 51.21-41.28, 51.44-51.66, 52.62-52.70, 53.87-54.07, 54.27- 54.44, 55.28-55.37, 55.60-55.67, 55.70-55.91, 58.37-58.47, 60.67-60.74, 61.43-61.55, 63.37-63.50; intense alteration 58.81-58.87 (Po present); upper contact at @60°TCA;							
			48.75 48.83 Alteration	B020645	55.70	55.91	0.21	0.17		
			49.55 49.68 Alteration	B020646	58.37	58.47	0.10	0.03		
			50.59 50.63 Alteration	B020647	58.81	58.87	0.06	0.02		
			50.90 50.98 Alteration							
			51.21 51.28 Alteration							
			51.44 51.00 AREFAIION							
			52.62 52.70 Alteration							
			54.27 54.44 Alteration							
			55.28 55.37 Alteration							
			55.60 55.67 Alteration							
			55.70 55.80 BBQ zone. Po present, Magnetic susceptibility 1.06							
			55.70 55.91 Alteration							
			58.37 58.47 Alteration							
			58.81 58.87 Alteration							
			60.67 60.74 Alteration							
			61.43 51.55 Alteration							
			63.37 63.50 Atteration							
71.80	71.87	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, upper contact @80°TCA							
71.87	72.04	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unattered, upper contact @90°TCA							
72.04	72.50	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility anomalous across unit and specifically associated with BBQ vein at 72.44, upper contact @90°TCA							
			72.44 72.45 BBQ zone, Po present, Magnetic susceptibility 1.55	B020648	72.38	72.46	0.08	2,85		

-								Diai	nona Drill	Log - Ke	5-07-11-01
FROM	то	CODE	·	DESCRIPTION	Sample	From	To	Int	Au(g/t)	Fe(%)	As(ppm)
72.50	88.70	QFP	QUARTZ FELD fracture control 74.28, 77.66-77 badly broken co	SPAR PORPHYRY - Magnetic susceptibility readings regional in character, ed alteration across the following intervals:-72.82-72.92, 73.45-73.51, 74.19- .79, 78.65-78.73, 79.13-79.21, 79.27-79.35, 80.32-80.45, 80.66-80.72; re at 86.25; upper contact @90°TCA							
			72.82 72	92 Alteration	B020649	74.20	74.27	0.07	0.01		
			73.45 73	51 Alteration	B020650	79.13	79.21	0.08	0.03		
			74.19 74	28 Alteration	B020651	80.32	80.45	0.13	0.01		
			74.25 74	26 BBQ zone. Magnetic susceptibility 0.16							
			77.66 77	79 Alteration							
			78.65 78	73 Alteration							
			79.13 79	21 Alteration							
			79.18 79	19 BBQ zone. Magnetic susceptibility 0.57							
			79.27 79	35 Alteration							
			80.32 80	45 Alteration							
			80.38 80	40 BBQ zone. Magnetic susceptibility 0.12							
			80.66 80	72 Alteration							

- END OF HOLE -GHM & Wald

Printed: 11/02/2008 12:58:55 PM

<u>Drill Hole ID</u>	KB-07-W1-02	<u>Property</u> Township	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder	Вау	
<u>Collar Location</u>	Easting: 658098.0 Northing: 5543204.0 Elevation: 408.0 Projection: NAD27 Zon	mE Grid mN m e 15N	d: 208.0 m 499.0 m	Azimut Dip: Lenght	t h: 90.0 ° -90.0 ° t 85.50 m	Hole Sta Date Sta Date Fir	atus: Completed arted: February-14-07 nished: February-16-07 n AL 368	
Purpose of Hole Investigate Anomaly	W1						Proposed depth:	m
Surv Depth(m) Azimut 85.50	rey Data th Dip Method ° ° Reflex	Dri Contractor: Hole Type: Core Size: Drill Rig: Casing Left: Comments Blocked core	Iling Information Downing Drilling DD NQ LF-70	m	Logging a Geology Logged Geotechnical Log Sampling by: Horizontal Trace Vertical Trace:	and Samp by: gging by:	John Wahl John Wahl	m

Diamond Drill Log - KB-07-W1-02

FROM	то	CODE	DESCRIPTION	Sample	From	To	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	23.00	OVB	WATER + OVERBURDEN							<u> </u>
23.00	31.90	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, moderate fracture controlled alteration across the following intervals:-24.07-24.36, 25.52-25.59, 26.53-26.61, 27.43-37.75, 27.90-28.50, 29.00-29.43, 29.50-29.76, 30.15-31.90 24.07 24.36 Alteration 25.52 25.59 Alteration 26.53 26.61 Alteration 26.53 26.61 Alteration 27.43 27.75 Alteration 27.90 28.50 Alteration 29.00 29.43 Alteration 29.00 29.43 Alteration 29.00 29.43 Alteration 29.50 29.76 Alteration							
31.90	31.95	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, upper contact @45°TCA							
31.95	33.50	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, moderate fracture controlled alteration across the following intervals:-31.90-33.50, upper contact @45°TCA 32.56 32.57 BBQ zone. Magnetic susceptibility 0.06 32.62 32.63 BBQ zone. Magnetic susceptibility 0.10 32.66 32.68 BBQ zone. Magnetic susceptibility 0.06 32.86 32.87 BBQ zone. Magnetic susceptibility 0.10	B020661 B020662 B020663	32.50 32.83 33.46	32.70 32.92 33.50	0.20 0.09 0.04	0.01 0.02 0.09	2	
33.50	36.60	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character except at lower contact where moderately high (0.77-0.96) readings are recorded, upper contact @30°TCA; 33.50 33.51 BBQ zone. Magnetic susceptibility 0.20 36.58 36.60 BBQ zone. Magnetic susceptibility 0.88	B020664	36.50	36.60	0.10	0.37	7	
36.60	40.93	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, moderate fracture controlled alteration across the following intervals:-36.60-36.69, 36.77-36.96, 37.06-37.54, 37.66-37.79, 37.89-38.00, 38.32-38.39, 38.60-38.98, 39.90-39.99, 40.22-40.93; upper contact @30°TCA 36.77 36.96 Alteration 37.06 37.54 Alteration 37.66 37.79 Alteration 37.89 38.00 Alteration 38.32 38.39 Alteration 38.60 34.89 Alteration 37.66 37.79 Alteration 37.89 38.00 Alteration 38.32 38.39 Alteration 38.60 38.98 Alteration 39.50 39.99 Alteration 30.32 38.93 Alteration 38.60 38.98 Alteration 39.50 39.99 Alteration 30.51 39.99 Alteration 39.52 39.93 Alteration							
40.93	46.60	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, upper contact @30°TCA							
46.60	46.75	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @90°TCA							

Printed: 11/02/2008 1:05:03 PM

	_						Diai	mond Dril	Log - KI	5-07-111-02
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
46.75	48.50	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, upper contact @30°TCA							
48.50	71.30	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, moderate fracture controlled alteration across the following intervals:- 48.63-48.72, 48.98- 79.30, 49.63-49.80, 49.81-49.91, 51.03-51.20, 52.09-52.28, 52.38-52.50, 58.04-58.83, 59.03-59.10, 60.35-60.38, 61.65-61.67, 61.81-61.96, 62.58-62.75, 67.05-67.17, 67.33- 67.38; upper contact @90°, cut old drill hole at 55.7-56.0							
			48.63 48.78 Alteration							
			48.98 49.30 Alteration							
			49.63 49.80 Alteration							
			49.81 49.91 Alteration							
			51.03 51.20 Alteration							
			52.09 52.28 Alteration							
			52.38 52.50 Alteration							
			58.04 58.83 Alteration							
			59.03 59.10 Alteration							
			60.35 60.38 Alteration							
			61.65 61.67 Alteration							
			61.81 61.96 Alteration							
			62.05 67.17 Alteration							
			62.58 62.75 Alteration							
			67.33 67.38 Alteration							
71.30	72.00	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings elevated on either side of BBQ vein 71.42-71.45 (0.82-0.96), upper contact @90°TCA							
			71.42 71.45 BBQ zone. Magnetic susceptibility 2.25, in MV	B020665	71.42	71.48	0.06	3.1	7	
72.00	85,50	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, moderate fracture controlled alteration across the following intervals:-73.98-74.24, 74.37- 74.52, 78.87-78.91, 79.06-79.15, 80.00-80.40, 70.76-80.84, 81.42-81.64; upper contact @30°TCA							
			73.98 74.24 Alteration	B020666	74.08	74.12	0.04	4 0.1	D	
			74.08 74.12 BBQ zone. Magnetic susceptibility 3.15, heavy po							
			74.37 74.52 Alteration							
			78.06 79.15 Alteration							
			78.87 78.91 Alteration							
			80.00 80.40 Alteration							
			80.76 80.84 Alteration							
			81 42 81 64 Alteration							

---- END OF HOLE ----

/Am Ju Ul

...

<u>Drill Hole ID</u>	KB-07-W2-01	<u>Property</u> Township	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder Bay	
Collar Location	Easting:65815Northing:554323Elevation:40Projection:NAD27 2	8.0 mE Gri 5.0 mN 8.0 m Cone 15N	d: 269.0 m 521.0 m	Azimuti Dip: Lenght	h: 318.0 ° -70.0 ° 35.00 m	Hole Status: Date Started: Date Finished: CLAIM AL	Abandoned
Purpose of Hole Investigate Anomaly	W2					Propos	sed depth: m
Depth(m) Azimut	r <u>ey Data</u> th Dip Method	Dr Contractor: Hole Type: Core Size: Drill Rig: Casing Left: <u>Comments</u> Abandoried ir	Illing Information Downing Drilling DD NQ LF-70	m	Logging a Geology Logged I Geotechnical Log Sampling by: Horizontal Trace: Vertical Trace:	nd Sampling Inf by: John V ging by: John V	formation Wahl Wahl m m

							_		-	
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)

---- END OF HOLE ----

Alm que leter

<u>Drill Hole ID</u>	KB-07-	W2-02	Property Township	King Ba Fourba	ay Iy Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder Bay	
Collar Location	Easting:	658144.0 mE	Gi	rid:	257.0 m	Azimuth:	90.0 °	Hole Status:	Completed
	Northing:	5543247.0 mN			536.0 m	Dip:	-90.0 °	Date Started:	February-10-07
	Elevation:	408.0 m				Lenght	100.80 m	Date Finished:	February-14-07
	Projection:	NAD27 Zone 1	5N					CLAIM AL	- 368
Purpose of Hole									

Investigate Anomaly W2

Proposed depth:

Survey Data	Drill	ing Information	Logging and Sampling Information						
Depth(m) Azimuth Dip Method	Contractor:	Downing Drilling	Geology Logged by:	John Wahi					
103.80 330.6° 76.3° Reflex	Hole Type:	DD	Geotechnical Logging by:						
	Core Size:	NQ	Sampling by:	John Wahi					
	Drill Rig:	LF-70	Horizontal Trace:						
	Casing Left:	m	Vertical Trace:	m					
	Comments								

m

Diamond Drill Log - KB-07-W2-02

FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	27.80	OVB	WATER + OVERBURDEN -		· · · ·					<u> </u>
27.80	38.06	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings anomalous between 28-35m and between 82.5-84.5, remainder of magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- intense alteration 29.15-60.66, 31.41-31.48, 32.76-34.21, 35.16-35.29, 36.00-36.09; moderate alteration 27.80-38.35, 28.47-28.84, 31.15-31.28, 34.80-34.87, 35.60-35.67, 35.80-35.90, 36.17-36.43, 37.09-37.16, 37.61-37.87							
			27.80 28.33 Alteration	B020652	33,00	33.35	0.35	1,73		
			28.47 28.84 Alteration	B020653	33.35	33.70	0.35	0.26		
			29.15 30.66 Alteration	B020654	33.70	34.05	0.35	2,58		
			31.15 31.28 Alteration	B020655	36.19	36.31	0.12	0,7 6		
			31.41 31.48 Alteration							
			32.76 34.21 Alteration							
			33.38 33.41 BBQ zone. Magnetic susceptibility 0.75							
			33.52 33.53 BBQ zone. Magnetic susceptibility 0.84							
			33.62 33.65 BBQ zone. Magnetic susceptibility 0.82							
			33.74 33.77 BBQ zone. Magnetic susceptibility 0.63							
			33.90 33.96 BBQ zone. Magnetic susceptibility 0.12							
			34.80 34.87 Alteration							
			35.16 35.29 Alteration							
			35.60 35.67 Alteration							
			35,80 35,90 Alteration							
			36.00 36.09 Alteration							
			36.17 36.43 Alteration							
			36.19 36.31 BBQ zone. Magnetic susceptibility 0.90							
			37.09 37.16 Alteration							
			37.61 37.87 Alteration							
38.06	38.40	DIA	DIABASE DYKE - Fine to medium grain massive grey green, upper contact @45°TCA							

				_			Dia	nond Drill	Log - KE	3-07 - W2-02
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
38.40	53.92	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, moderate fracture controlled alteration across the following intervals:- 38.50-38.78, 38.83-38.91, 39.22-39.27, 40.73-40.77, 42.03-42.48, 42.79-42.88, 43.14-43.22, 43.95-44.00, 44.20-44.30, 44.34-44.38, 45.78-46.02, 49.92-52.28, 52.40-52.50, 52.69-52.77, 52.86-52.91, 53.16-53.72, upper contact @45°TCA 38.50 38.78 Alteration 38.51 38.91 Alteration 38.22 39.27 Alteration 38.30 38.91 Alteration 38.23 38.91 Alteration 39.22 39.27 Alteration 42.03 42.48 Alteration 42.03 42.48 Alteration 39.22 39.27 Alteration 42.03 42.48 Alteration 42.03 42.48 Alteration 42.03 42.88 Alteration		·					<u> </u>
			43.14 43.22 Alteration							
			44.20 44.30 Alteration							
			44.34 44.38 Alteration							
			45.78 46.02 Alteration							
			49.92 52.28 Alteration							
			52.40 52.50 Alteration							
			52.69 52.77 Alteration							
			52.86 52.91 Alteration							
			53.16 53.72 Alteration							
53.92	54.07	DIA	DIABASE DYKE - Fine to medium grain massive grey green, upper contact @30°TCA							
54.07	73.72	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, moderate fracture controlled alteration across the following intervals:- 55.30-56.46, 56.60- 56.63, 56.87-57.97, 59.35-59.38, 64.07-64.19, 64.45-64.50, 66.83-66.92, 67.40-67.90, 68.10-68.43, 70.38-71.42, 73.55-73.61, upper contact @45°TCA 55.30 56.46 Atteration 55.45 55.50 BBQ zone. Magnetic susceptibility 0.16 56.63 Alteration 56.45 59.38 Alteration 56.40 56.63 Alteration 56.43 59.38 Alteration 59.35 59.38 Alteration 64.07 54.19 Alteration 64.30 Alteration 64.33 64.50 Alteration 66.83 66.92 66.92 Alteration 64.83 64.90 64.90 Alteration 68.31 66.92 66.92 Alteration 67.40 67.90 68.10 68.43 68.43 Alteration	B020656	55.45	55.50	0.0	5 0.0 ⁴		
73.72	74.50	DIA	DIABASE DYKE - Fine to medium grain massive grey green, upper contact @30°TCA							

Diamond Drill Log - KB-07-W2-02

FROM	то	CODE			DESCRIPTION	Sample	From	То	int	Au(g/t)	Fe(%)	As(ppm)
74.50	80.05	QFP	QUARTZ FI	ELDSP	AR PORPHYRY - Magnetic susceptibility readings regional in character,							
			moderate fr	acture (controlled alteration across the following intervals:- 74.73-74.79, 75.55-							
			75.73, 75.84	-75.92	, 76.60-76.65, 76.67-76.71, 76.79-76.83, 76.84-76.86, 78.38-78.42,							
			78.44-78.50	, 78.56	-78.68, 79.09-79.19, 79.39-79.74, upper contact @30°TCA							
			74.73	74.79	Alteration	B020657	76,79	76.83	Ũ,Ū4	0.01		
			75,55	75,73	Alteration							
			75.84	75.92	Alteration							
			76,60	76.65	Alteration							
			76.67	76,71	Alteration							
			76.79	76,83	Alteration							
			76.80	76,82	BBQ zone. Magnetic susceptibility 0.45							
			76.84	76.86	Alteration							
			78.38	78.42	Alteration							
			78.44	78.50	Alteration							
			78.56	78.68	Alteration							
			79.09	79.19	Alteration							
			79.39	79.74	Alteration							
80.05	80.16	DIA	DIABASE D	YKE -	Fine to medium grain massive grey green, upper contact @70°TCA							

Diamond Drill Log - KB-07-W2-02

C DOM T	TO	000				T			510/			
FROM	10	CODE			DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
80.16	103.80	QFP	QUARTZ FE fracture cont 80.80-84.75 88.06-88.12 94.11, 94.22 96.10-96.25 103.44, upp	LDSP, rolled mode 88.60 -94.29 97.24 er cont	AR PORPHYRY - Magnetic susceptibility readings regional in character, alteration across the following intervals:- intense alteration between rate alteration 84.81-84.87, 85.39-85.44, 85.53-85.57, 87.81-87.89, -88.63, 90.10-90.25, 90.35-90.55, 91.13-91.24, 91.35-91.38, 93.94- , 94.67-94.71, 94.80-94.90, 95.00-95.19, 95.26-95.40, 95.72-95.76, -97.29, 97.91-97.95, 98.72-98.72, 99.58-99.66, 99.75-99.88, 103.28- act @45°TCA							
			80.80	84.75	Alteration	B020658	90.07	90.18	0.11	0.00		
			84.81	84.87	Alteration	B020659	90.35	90.45	0.10	0.01		
			85.39	85.44	Alteration	B020660	103.33	103.42	0.09	0.01		
			85.53	85.57	Alteration							
			87.81	87.89	Alteration							
			88.06	88.12	Alteration							
			88,60	88.63	Alteration							
			90.10	90,15	BBQ zone. Magnetic susceptibility 0.16							
			90.10	90.25	Alteration							
			90.35	90.55	Alteration							
			90.38	90.45	BBQ zone. Magnetic susceptibility 0.45							
			91.13	91.24	Alteration							
			91.35	91.38	Alteration							
			93.94	94.11	Alteration							
			95.72	95.76	Alteration							
			96.10	96.25	Alteration							
			97.24	97.29	Alteration							
			97.91	97.95	Alteration							
			98.72	98.77	Alteration							
			99.58	99.66	Alteration							
			99.75	99.83	Alteration							
			103.28	03.44	Alteration							
_			103.34	03,35	BBQ zone. Magnetic susceptibility 0.51							

---- END OF HOLE ----

Alm & Walk

<u>Drill Hole ID</u>	KB-06-W3-01	<u>Property</u> <u>Township</u>	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder Bay
Collar Location	Easting: 658267.9 Northing: 5543182.9 Elevation: 408.0 Projection: NAD27 Zon	9 mE G 9 mN 9 m 9 m 15 N	r id: 375.0 m 462.0 m	Azimuth: Dip: Lenght	264.0° -65.0° 70.50m	Hole Status: Completed Date Started: March 14, 2006 Date Finished: March 15, 2006 CLAIM AL 368
Purpose of Hole Test magnetic anom	naly W-3					

Proposed depth: 60.00 m

	Survey	Data		Drilling Information			Logging and Sar	npling Information
Depth(m)	Azimuth	Dip	Method	Contractor	Summit Drilling		Geology Logged by:	Frick Chavez
10.50	264°	-65°	Acid					
70.50	264°	-63°	Acid	Hole Type:	סט		Geotechnical Logging b	'Y :
				Core Size:	BQ		Sampling by:	
				Drill Rig:				
				Casing Left:		0m	Horizontal Trace:	m
				Cashig Leit.		on	Vertical Trace:	m
				<u>Comments</u>				
				Drilled on ice.	Ice thickness ~2ft			

Diamond Drill Log - KB-06-W3-01

			Т-								
FROM	то	CODE	<u> </u>	DESCRIPTION	Sample	From	То	Int	Au(ppm)	Fe(%)	As(ppm)
0.00	10.15	OVB	WATER + OVERB	URDEN							
10,15	27,41	BAS	MAFIC VOLCANIC	S (BASALT) - Medium to fine grained volcanics moderatelly crosscut							
			by calcite-qtz viens	<5mm thick.							
			12.15	Calcite-qtz vein 6mm LCA=50°							
			14.70	Calcite-qtz vein 5mm LCA=48°							
			19.18	Calcite vein <10mm LCA=45°							
			22.70	Calcite-qtz vein 1cm LCA=35°							
			25.65	Calcite-qtz vein 5mm. Traces of pyrite LCA=25°							
			27.25	Calcite-qtz vein <1cm LCA=40°							
			27.41	Calcite-qtz vein in contact with QFP crosscut by younger							
				subperpendicular calcite veins. Stronger alteration is associated with							
				fracture/fauls system subparallel to contact. LCA=48							
27.41	34.95	QFP	ALTERED QUART	Z-FELDSPAR PORPHYRY - Moderately silica altered QFP, More							
			27 /1	Calcite at vein in contact with OEP crosscut by younger							
			27.41	subperpendicular calcite veins. Stronger alteration is associated with							
				fracture/fauls system subparallel to contact. LCA=48°							
			28.32 34.95	Coarse crystalline QFP crosscut by seldom qtz-calcite veins affected							
				by silicification to the sides of interval							
			28.32	Qtz-calcite vein LCA=30°							
			31.00	Calcite-qtz vein <1cm LCA=45°							
			31.70	Calcite-qtz vein 1.5cm wide LCA≔45°							
			33.70	Qtz-calcite vein LCA=45°							
			34.95	Contact LCA=65°							
34.95	35.95	MFDK	MAFIC DYKE - Fin	e grained dyke. Dark grey, weakly affected by qtz veining							
			34.95	Contact LCA=65°							
			35.95	Contact LCA=55°							
35.95	36.25	QFP	QUARTZ-FELDSP	AR PORPHYRY - Unaltered coarse grained QFP							
			35.95	Contact LCA=55°							
			36.25	Contact LCA=45°							
36.25	37,10	MFDK	MAFIC DYKE - Me	dium to fine grained							
			36.25	Contact LCA=45°							
			37.10	Contact LCA=45°							

Diamond Drill Log KB-06-W2-01

_									Diamone Di	III LOg - Ke	5-00-143-01
FROM	то	CODE		DESCRIPTION	Sample	From	To	Int	Au(ppm)	Fe(%)	As(ppm)
37.10	70.50	QFP	QUARTZ-FELDSP	AR PORPHYRY - Coarse grained QFP affected by k-feldspar alteration							
			and silicification								
			37.10	Contact LCA=45°							
			40.90 41.00	Moderate K-feldspar atteration							
			41.38 41.44	K-feldspar alteration along calcite-qtz vein LCA=40°							
			42.10	2cm thick qtz vein with strong qtz-chlorite-carbonate alteration LCA=35°							
			43.15 43.34	Qtz alteration							
			43.98 44.07	Qtz alteration							
			44.48 45.25	Moderately to strongly qtz altered QFP associated with qtz-calcite veining of undifferenciated orientation							
			45.25 45.61	Unattered QFP							
			45,61 46,26	Moderate silicification of QFP							
			45.62	Qtz vein LCA=65°							
			46.26 46.77	Mod to strong K-feldspar alteration in QFP							
			46.30	Qtz-calcite vein LCA=35°							
			46.77 47.16	Moderate silicification of QFP							
			47.16 47.90	Strong qtz and k-feldspar alteration of QFP							
			47.29	Calcite-qtz-chlorite vein with associated k-feldspar alteration in QFP LCA=25°							
			47.90 48.92	Moderate silicification of QFP							
			52.38 52.47	K-feldspar alteration along calcite-qtz vein LCA=25°							
			53.22 53.29	Silicification and insipient qtz-sericite alteration							
			58.14 58.34	Mod to strong qtz alteration of QFP							
			58.70	Qtz-calcite vein LCA=35°							
			59.24 59.98	Moderate silicification and minor k-feldspar alteration of QFP							
			60.45	Qtz vein LCA=35°							
			61.61 61.87	Strong silicification of QFP							
			61.87	Qtz vein with associated silicification LCA=70°							
			61.87 62.26	mod to weak silicification of QFP							
			62.48 62.57	mod to weak silicification of QFP							
			65.30	2cm wide qtz-chlorite vein							

-- END OF HOLE ---

<u>Drill Hole ID</u>	KB-07-\	N3-02	Property Township	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder	Вау	
<u>Collar Location</u>	Easting: Northing: Elevation: Projection: N	658252.0 n 5543181.0 n 408.0 n NAD27 Zone	nE Gri nN n 15N	d: 420.0 m 462.0 m	Azimut Dip: Lenght	h: 84.0 ° -75.0 ° 101.70 m	Hole Sta Date Sta Date Fir CLAIN	atus: Completed arted: February-04-07 nished: February-06-07 か みんろん多	
Purpose of Hole Investigate Anomaly	W3							Proposed depth:	m
Surr Depth(m) Azimu 101.70 90	<u>rev Data</u> th Dip № .7° 76.7° Re	flex	Dri Contractor: Hole Type: Core Size: Drill Rig: Casing Left: <u>Comments</u>	Illing Information Downing Drilling DD NQ LF-70	m	Logging a Geology Logged Geotechnical Log Sampling by: Horizontal Trace: Vertical Trace:	nd Samp by: gging by:	John Wahl John Wahl	m

Diamond Drill Log - KB-07-W3-02

							-		L0g - /1L	-01-110-02
FROM	το	CODE	DESCRIPTION	Sample	From	To	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	8,50	OVB	WATER + OVERBURDEN -							
8.50	28.85	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility anomalous between 25.25-27.50m otherwise magnetic susceptibility of regional character, 26.70-27.00 fault zone about 6cm 3wide fault gouge.							
28.85	44.95	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- 31.32-31.70, 32.76-32.96, 38.00-38.75, upper contact @30°TCA31.3231.7031.70Alteration32.7632.96Alteration32.8332.84BBQ zone. Magnetic susceptibility 0.7438.0038.75Alteration							
44.95	45.60	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility of regional character, upper contact @90°TCA			_				
45.60	45.70	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @90°TCA							
45.70	45.84	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility of regional character, upper contact @30°TCA							
45.84	46.28	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @70°TCA							
46.28	46.50	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility of regional character, upper contact @90°TCA							

Diamond	Drill	Loa -	KB-0	7-W3-	.02

										mona Drii	Log - A	-07-993-02
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
46.50	101.70	QFP	QUARTZ FE fracture cont 57.68-57.81, 69.45, 70.53 79.12-79.40, 84.11, 85.17 101.24-101.4 50.45 52.62	LDSP/ rolled 58.21 -70.58 79.62 -85.53 46, upp 50.60	AR PORPHYRY - Magnetic susceptibility readings regional in character, alteration across the following intervals:- 50,45-50,60, 52,62-54,82, -58,77, 59.00-59.70, 61,35-66,69, 67,33-67,74, 68.00-68.54, 69.20- 72.43-73.68, 74.70-75.85, 75,95-76.18, 78.10-78.16, 78.40-78.53, -79.80, 80.89-81.27, 82,08-82,50, 82,57-83,66, 83,80-83,87, 84.05- 88.20-89.02, 89,15-89,40, 92.91-93.67, 94,90-95.85, 96,50-97,19, er contact broken core Alteration						_ ,	
			57.68	57.81	Alteration							
			58 21	58 77	Alteration							
			59.00	59.70	Alteration							
			61.35	66.69	Alteration							
			67.33	67.74	Alteration							
			68.00	68.54	Alteration							
			69.20	69.45	Alteration							
			70.73	70.58	Alteration							
			72.43	73.68	Alteration							
			74.70	75.85	Alteration							
			75.85	76.18	Alteration							
			78.10	78.16	Alteration							
			78.40	78.53	Alteration							
			79.12	7 9.4 0	Alteration							
			79.62	79.80	Alteration							
			80.89	81.27	Alteration							
			82.08	82.50	Atteration							
			82,57	83.66	Alteration							
			83.80	83.87	Alteration							
			84.05	84.41	Alteration							
			85.17	85.53	Alteration							
			88.20	89.02	Alteration							
			89.15	89.40	Alteration							
			92,91	93.67	Anteration							
			94.90	95.85	Alteration							
			96,50	97.19	Alteration							

- END OF HOLE -

<u>Drill Hole ID</u>	KB-06-	-W4-01	<u>Property</u> Township	King E Fourb	Bay ay Lake Area		<u>NTS</u> District	52J2 Thunder Bay	
Collar Locatio	<u>n</u> Easting:	658266.5	mE	Grid:	380.0 m	Azimuth:	264.0°	Hole Status:	Incomplete
	Northing:	5543246.5	mN		525.0 m	Dip:	-75.0°	Date Started:	March 16, 2006
	Elevation:	408.0	m			Lenght	67.00 m	Date Finished	: March 19, 2006
	Projection:	NAD27 Zone	e 15N					CLAIM AI	- 368

Purpose of Hole

Test magnetic anomaly W-4

Proposed depth: 160.00 m

Survey Data	Dri	lling Information	Logging and Sam	pling Information
Depth(m) Azimuth Dip Metho	Contractor:	Summit Drilling	Geology Logged by:	Erick Chavez
12.50 264° -76.5° Acid	Hole Type:	DD	Geotechnical Logging by	y:
	Core Size:	BQ	Sampling by:	Chester S.
	Drill Rig:	0m	Horizontal Trace:	m
	Casing Leit:		Vertical Trace:	m
	Comments Drilled on ice. was moved to before comple	Ice thickness ~12" blue ice a 380E-525N and drilled with - etion because of poor ice con	nd 10" white ice. Original locati 75° and a planned depth of 160 ditions.	ion at 390E-525N with -60° Dm. Drill was shut down

Diamond Drill Log - KB-06-W4-01

FROM TO CODE DESCRIPTION Sample From To Int Au(ppm) Fe(%) As(ppm) 0.00 11.60 OVB WATER AND OVERBURDEN Int Au(ppm) Fe(%) As(ppm) 11.60 06.00 WATER AND OVERBURDEN Int Au(ppm) Fe(%) As(ppm) 11.60 06.50 BAS MAFIC VOLCANIC - BASALT - Medium grained mafic volcanic with minor calcite-quartz veining that gets more intense to the bottom of interval. 14.80 Calcite-qtz win LCA=37* 5.00 Contact LCA=35* 0.01 20.456 21.76 22.07 0.31 0.01 21.75 22.07 MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crossocid by quartz-calcite veins with traces of pyrtholite-pyrite 20.457 22.07 22.17 0.20 0.01 28.50 Calcite-qtz win LCA=35* 20.463 28.94 29.08 0.14 0.23 22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crossocid by quartz-calcite veins with traces of pyrtholite-pyrite 20.467 22.07 22.27 0.20 0.01 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>" Lug - N</th><th>D-UO-YF4-U1</th></td<>											" Lug - N	D-UO-YF4-U1
0.00 11.60 OVB WATER AND OVERBURDEN 11.60 16.50 BAS MAFIC VOLCANIC - BASALT - Medium grained mafic volcanic with minor calcite-quartz veining that gets more intense to the bottom of interval. 14.80 Calcite-qtz vein LCA=37* 16.50 Contact LCA=35* 16.50 22.07 QFP QUART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar alteration of plagioclase crystals. 16.50 Contact LCA=35* 20456 21.76 22.07 0.31 0.01 21.76 22.07 QFP QUART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar alteration of plagioclase crystals. 16.50 Contact LCA=35* 20456 21.76 22.07 0.31 0.01 21.76 22.07 QFP QUART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches in during index of prymotile-pryntic crosscut by quartz-calcite veins with traces of prymotile-pryntic 28.50 Calcite-qtz vein LCA=35* 20457 22.07 22.27 0.20 0.01 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silice-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50* 20462 28.94 29.08 0.14 0.23 29.14 29.72 QFP QLATFELDSPAR PORPHYRY - Fresh to weakly altered QFP	FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppm)	Fe(%)	As(ppm)
11.60 16.50 BAS MAFIC VOLCANIC - BASALT - Medium grained mafic volcanic with minor calcite-quartz veining that gets more intense to the bottom of interval. 14.80 Calcite-qtz vein LCA=37* 16.50 22.07 QFP QUART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar alteration of plagioctase crystals. 16.50 Contact LCA=35* 20456 21.76 22.07 0.31 0.01 22.07 QFP QUART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar alteration of plagioctase crystals. 16.50 Contact LCA=35* 20456 21.76 22.07 0.31 0.01 22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crosscut by quartz-calcite veins with traces of pyrnhotite-pyrite 20457 22.07 22.27 0.20 0.01 28.10 Calcite-qtz vein LCA=35* 20453 28.94 29.08 0.14 0.23 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP confirms its origin. Weakly to none fractured. 20462 28.94 29.08 0.14 0.23 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP confirms its origin. Wea	0.00	11,60	OVB	WATER AND OV	ERBURDEN							
14.80 Calcite-qtz vein LCA=37° 16.50 22.07 QFP 0UART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar alteration of plagiodase crystals. 20456 21.76 22.07 0.31 0.01 21.76 22.07 QUART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar alteration of plagiodase crystals. 20456 21.76 22.07 0.31 0.01 22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crosscut by quartz-calcite veins with traces of pyrmotile-pyrite 28.10 Calcite-qtz vein LCA=35° 20457 22.07 22.07 0.20 0.01 28.10 Calcite-qtz vein LCA=35° 20457 22.07 22.07 0.20 0.01 28.10 Calcite-qtz vein LCA=45° 20463 28.94 29.08 0.14 0.23 29.15 29.40 ALFRED QUART-FELDSPAR PORPHYRY - Strongly silice-altered QFP, Original QFP texture almost enterety disappeared. Plaglociase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.08 0.14 0.23 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.40 Contact LCA=40°	11.60	16.50	BAS	MAFIC VOLCANIO	C - BASALT - Medium grained mafic volcanic with minor calcite-quartz ore intense to the bottom of interval.							
16.50 Contact LCA=35° 16.50 22.07 QFP QUART-FELDSPAR PORPHYRY - Coase crystalline QFP with few patches of K-feldspar alteration of plagioclase crystals. 16.50 Contact LCA=35° 20456 21.76 22.07 0.31 0.01 21.76 22.07 Moderate to strong sillefification ± chlorite in contact with underlying mafic volcanics. No sulphides. 20456 21.76 22.07 0.31 0.01 22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crosscut by quartz-calcite veins with traces of pyrrhotite-pyrite 20457 22.07 22.27 0.20 0.01 28.10 Calcite-qtz vein LCA=36° 20463 28.94 29.08 0.14 0.23 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture almost enterged plagodase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.72 Contact LCA=50° 29.72 QFP QUART-FELDSPAR				14.80	Calcite-qtz vein LCA=37°							
16.50 22.07 QFP QUART-FELDSPAR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar alteration of plagioclase crystals. 16.50 Contact LCA=35° 20456 21.76 22.07 0.31 0.01 21.76 22.07 0.21.76 22.07 0.31 0.01 22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic valcanics moderately crosscut by quartz-calicte veins with traces of pyrthotite-pyrite 20457 22.07 22.27 0.20 0.01 28.10 Calcite-qtz vein LCA=35° 20453 28.94 29.08 0.14 0.23 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture almost enterely disappeared, Plagioclase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 28.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP confirms its origin. Weakly to conte fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP confirms its origin. Weakly to conte fractured. 29.40 Contact LCA=50° 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=40° 29.72 Contact LCA=40°				16.50	Contact LCA=35°							
16.50 Contact LCA=35° 20456 21.76 22.07 0.31 0.01 21.76 22.07 Moderate to strong silicification ± chlorite in contact with underlying mafic volcanics. No sulphides. 0.01 0.01 22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crosscut by quartz-calcite veins with traces of pyrrhotite-pyrite 20457 22.07 22.27 0.20 0.01 28.10 Calcite-qtz vein LCA=35° 20457 22.07 22.27 0.20 0.01 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silice-altered QFP. Original QFP texture almost enteredy disappeared, Plaglodase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP confirms its origin. Weakly to contact LCA=50° 29.40 Contact LCA=50° 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.72 Contact LCA=40° 20461 29.72 29.94 0.22 0.10 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 20461 29.72 29.94	16.50	22.07	QFP	QUART-FELDSP/ alteration of plagio	AR PORPHYRY - Coarse crystalline QFP with few patches of K-feldspar clase crystals.							
21.76 22.07 Moderate to strong silicification ± chlorite in contact with underlying mafic volcanics. No suphrides. 22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crosscut by quartz-calcite veins with traces of pyrrhotite-pyrite 20.457 22.07 22.07 0.20 0.01 28.10 Calcite-qtz vein LCA=36° 20457 22.07 22.07 0.20 0.01 28.50 Calcite-qtz vein LCA=45° 20463 28.94 29.08 0.14 0.23 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture almost enterely disappeared. Plagioclase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 20461 29.72 29.94 0.22 0.10 29.72 Contact LCA=60°				16.50	Contact LCA=35°	20456	21.76	22.07	0.31	0.01		
22.07 29.15 BAS MAFIC VOLCANIC - BASALT - Medium to fine grained mafic volcanics moderately crosscut by quartz-calcite veins with traces of pyrrhotite-pyrite 28.10 Calcite-qtz vein LCA=35° 20457 22.07 22.27 0.20 0.01 28.10 Calcite-qtz vein LCA=35° 20463 28.94 29.08 0.14 0.23 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture almost enterely disappeared. Plagiodase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 29.72 29.94 BAS MAFIC COLCANIC - BASALT - With strong calcite-quartz veining 29.72 29.94 0.22 0.10				21.76 22.07	7 Moderate to strong silicification ± chlorite in contact with underlying mafic volcanics. No sulphides.							
28.10 Calcite-qtz vein LCA=35° 20457 22.07 22.27 0.20 0.01 28.50 Calcite-qtz vein LCA=45° 20463 28.94 29.08 0.14 0.23 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture atmost enterely disappeared. Plagiodase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP confirms its origin. Weakly to contact LCA=50° 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.72 Contact LCA=40° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 29.72 29.94 Contact LCA=40° 20461 29.72 29.94 0.22 0.10	22.07	29,15	BAS	MAFIC VOLCANIC crosscut by quartz	C - BASALT - Medium to fine grained mafic volcanics moderately -calcite veins with traces of pyrrhotite-pyrite				_			
28.50 Calcite-qtz vein LCA=45° 20463 28.94 29.08 0.14 0.23 29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture almost enterely disappeared. Plagioclase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.72 Contact LCA=40° 29.72 Contact LCA=40° 29.72 Contact LCA=40° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 29.72 Contact LCA=60° 20461 29.72 29.94 0.22				28.10	Calcite-qtz vein LCA=35°	20457	22.07	22.27	0.20	0.01		
29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture almost enterely disappeared. Plagiodase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.72 Contact LCA=40° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 29.72 29.94 Contact LCA=60° 20461 29.72 29.94 0.22 0.10				28.50	Calcite-qtz vein LCA=45°	20463	28.94	29,08	0.14	0.23		
29.15 29.40 AQFP ALTERED QUART-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP texture almost enterely disappeared. Plagioclase ghosts in black qtz-altered QFP confirms its origin. Weakly to none fractured. 29.40 Contact LCA=50° 29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 29.72 Contact LCA=50° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 29.94 Contact LCA=40° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 29.94 Contact LCA=40°						20462	28.94	29.08	0.14	0.23		
29.40 Contact LCA=50° 29.40 29.72 QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.72 29.72 29.72 Contact LCA=40° 29.72 29.94 29.72 Contact LCA=40° 29.72 Contact LCA=40° 29.72 Contact LCA=40° 29.72 Contact LCA=40° 29.94 Contact LCA=60°	29.15	29,40	AQFP	ALTERED QUAR texture almost enter its origin. Weakly t	T-FELDSPAR PORPHYRY - Strongly silica-altered QFP. Original QFP rely disappeared. Plagioclase ghosts in black qtz-altered QFP confirms o none fractured.							
29.40 29.72 QFP QUART-FELDSPAR PORPHYRY - Fresh to weakly altered QFP 29.40 Contact LCA=50° 29.72 29.72 Contact LCA=40° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 20461 29.72 0.10 29.94 Contact LCA=60° 20461 29.72 0.10				29.40	Contact LCA=50°							
29.40 Contact LCA=50° 29.72 29.72 Contact LCA=40° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 29.72 Contact LCA=40° 29.72 29.94 BAS Contact LCA=40° 29.72 Contact LCA=60° 20461 29.72 0.10	29.40	29,72	QFP	QUART-FELDSP	AR PORPHYRY - Fresh to weakly altered QFP							
29.72 Contact LCA=40° 29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 29.72 Contact LCA=40° 20461 29.72 0.10 29.94 Contact LCA=60° Contact LCA=60° 20461 29.72 0.10				29.40	Contact LCA=50°							
29.72 29.94 BAS MAFIC VOLCANIC - BASALT - With strong calcite-quartz veining 2010 29.72 Contact LCA=40° 20461 29.72 0.10 29.94 Contact LCA=60° Contact LCA=60° 20461 29.72 0.10				29.72	Contact LCA=40°							
29.72 Contact LCA=40° 20461 29.72 29.94 0.22 0.10 29.94 Contact LCA=60° <	29.72	29.94	BAS	MAFIC VOLCANI	C - BASALT - With strong calcite-quartz veining							
29.94 Contact LCA=60°				29.72	Contact LCA=40°	20461	29.72	29.94	0.22	0,10		
				29.94	Contact LCA=60°							

									Diamond Dril	ll Log - KE	3-06-W4-01
FROM	то	CODE		DESCRIPTION	Sample	From	То	int	Au(ppm)	Fe(%)	As(ppm)
29.94	67.00	QFP	QUART-FELDSP	R PORPHYRY - Moderately to strongly altered QFP							
			29.94	Contact LCA=60°	20458	30.74	31.09	0.35	0.03		
			30.74 31.09	Moderate qtz-chlorite-sericite alteration in QFP	20459	31.09	31.40	0.31	1.76		
			30,80	Fracture LCA=55°	20460	31.40	31.58	0,18	0.01		
			31,09 31,40	Strong silica altered QFP with chlorite-sericite with traces of Po-Py	20465	33.25	33.38	0.13	0.01		
			31.40 31.58	Moderate qtz-chlorite-sericite alteration in QFP	20466	35.08	35.26	0.18	0.79		
			31.50	Fracture LCA=43°	20467	35.26	35.44	0.18	0.04		
			33.26	Quartz vein 3cms wide LCA=50°	20468	35.44	35.70	0.26	0.10		
			34.37	Fracture LCA=40°	20469	35.95	36.09	0.14	0.02		
			35.00	Quartz vein 1cms wide LCA=50°	20470	36.09	36.18	0.09	0.11		
			35.26 35.44	Strong quartz alteration with BBQ veining 50% moderately altered to	20471	36.18	36,29	0.11	5.75		
			05.05 00.00	both sides	20472	36.45	36,53	0.08	0.02		
			35.95 36.0	BBQ vein	20473	37.16	37.27	0.11	0. 48		
			30,00 26.44	BBQ Ven LCA=35"	20474	37.82	37.89	0.07	2.20		
			36.09 36.10	BRO units with presence of 2 fine arrived V/C in 55 to 25 dee to sere	20475	38.45	38.58	0.13	0.01		
			30.10 30.23	avis	20476	38.58	38.74	0.16	0 .04		
			36.20	Fracture LCA=35°	20477	38.94	39.00	0.06	0.01		
			36.25	Fracture LCA=55°	20478	39.21	39.33	0.12	1.11		
			36.47	2cms wide BBQ vein LCA=45°	20479	40.67	40.91	0.24	0.01		
			37.10	Fracture LCA=25°	20480	40.91	41.11	0.20	0.01		
			37,16 37,27	BBQ vein 7 cms wide with minor Po-Py	20481	41.11	41.32	0.21	0.01		
			37.27	BBQ vein LCA=45°	20482	41.80	41.95	0.15	0.10		
			37.82 37.89	BBQ vein 4cms wide LCA=60°	20483	42.15	42.32	0.17	0.01		
			38.45 38.74	5 BBQ veins of 0.5 - 1 cm wide in Qtz-sericite altered QFP	20404	42.32	42.09	0.27	0.02		
			38,70	BBQ vein LCA=35°	20400	42.09	42.07	0.20	0.06		
			38.94 39.00	2 BBQ veins <1cm wide with associated Qtz-sericite alteration and	20400	42.07	42.90	0.11	43,00		
				<1%Po+Py	20407	42,90	43.19	0.21	12.00		
			38.98	BBQ vein LCA≠40°	20490	43.09	43.97	0.20	0 12		
			39.21 39.33	BBQ vein 3cms wide weakly altered to the sides LCA=40°	20400	43.09	43.51	0.20	0.12		
			40.67 41.32	Series of ~1cm wide BBQ veins in moderately to strongly qtz-altered	20430	44 53	45 10	0.13	0.21		
			44 10	QFP with moderate inacturing LCA=45	20492	45 10	45.10	0.54	0,09		
			41.12	DDQ vein LCA-30	20493	45 64	46 12	0.48	0.06		
			41.00 41.3	axis subperpendicular to BBQ LCA=60°	20494	46.12	46.32	0.20	0.02		
			42.15 42.3	Moderately otz-altered QFP	20496	46.32	46.77	0.45	0.01		
			42.32 42.8	Strongly gtz-sericite altered QFP with glossy aspect, 08 BBQ veins	20497	46.77	47.61	0.84	0.01		
				<1 cm thick in interval	20498	47.61	48.06	0.45	0.01		
			42.89 42.98	BBQ vein with presence of 3% pyrrhotite+pyrite and 06 grains of VG	20499	48.24	48.37	0.13	0.01		
				<1mm along a fracture 70° to core axis LCA=70°	20500	49,19	49,44	0.25	0.01		
			42.98 43.19	Strongly qtz-sericite altered QFP, Plagioclase crystals 80%	20501	62,54	62.92	0.38	0.03		
			43.60 43.0	uissapeareu	20502	62,92	63.15	0.23	0.15		
			43.09 43.9	dissapeared	20503	63,15	63.38	0.23	0.02		
			44,25 44.4	Moderately gtz-sericite altered QFP, Plagioclase crystals 50%							
				dissapeared							

Diamond	Drill	Log -	KB-	-06-W4-01
---------	-------	-------	-----	-----------

											m Log - / L		
FROM	то	CODE	-		DESCRIPTION	Sample	From	То	Int	Au(ppm)	Fe(%)	As(ppm)	
			44.44		Fracture with quartz-calcite replacement LCA≈50°			_					
			44.53	46.77	Strongly qtz-sericite altered with few <1cm BBQ veins								
			44.97		02 cms wide BBQ vein LCA=65°								
			46.12	46.77	Intense fracturing/shearing of QFP LCA=15°								
			46.77	48.06	Moderately qtz-sericite altered QFP of blocky texture on top of interval. Presence of traces of pyrrhotite+pyrite in fractures								
			48.24	48.39	Strongly qtz-altered QFP								
			48.37		Fracture LCA=45°								
			48.60		Quatz-calcite vein LCA=45°								
			4 9.19	49,44	Strongly sheared QFP and qtz-altered without presence of BBQ veining LCA=60°								
			50.84	50.95	QFP with dissolution aspect, dyke or qtz alteration?								
			54.00	54.11	Mafic dyke with plagioclase crystals <3mm LCA=60°								
			54.34	54.46	Mafic dyke								
			54.40		Fracture LCA=45°								
			55.62	55.81	Mafic dyke, Medium to fine grained mafic dyke. Plagioclase crystals <2mm								
			55.62		Contact LCA=35°								
			56.48	56.65	Moderately qtz-attered QFP with weak K-feldspar atteration of plagioclase								
			56.65		Fracture LCA=30°								
			57.67	57.80	Mafic dyke LCA=45°								
			61.10	61.25	K-feldspar alteration of plagioclase crystals and moderate to weak qtz alteration throughout								
			62.54	62.92	Moderate qtz alteration of QFP with patches of chlorite/biotite and insipient K-feldspar alteration								
			62.54		Fracture associated with qtz-alteration LCA=50°								
			62.92	63.38	Strong qtz alteration of QFP								
			63,02	63.05	Smoky white quartz vein with <2% py LCA=50°								
			63.32	63.35	Fracturing with pyrrhotite+pyrite (~4%) associated with quartz vein LCA=70°								
			64 44	64 68	Strong atz alteration of QEP. No BBQ veining								

---- END OF HOLE -----

An Ju Celali

<u>Drill Hole ID</u>	KB-07-	-W4-02	Property Township	King Bay Fourbay Lake Are	a	<u>NTS</u> District	52J2 Thunder Bay	
Collar Location	Easting:	658276.0 m	E Gri	i d: 385.0 m	Azimuth:	268.0 °	Hole Status:	Completed
	Northing:	5543247.0 m	N	525.0 m	Dip:	-60.0 °	Date Started:	February-26-07
	Elevation:	408.0 m	1		Lenght	99.80 m	Date Finished	: January-28-07
	Projection:	NAD27 Zone	15N				CLAIM A	1 368

Purpose of Hole

Investigate Anomaly W4

Proposed depth:

m

	<u>Survey</u>	<u>Data</u>		Dril	ling Information		Logging and Sam	pling Information	
Depth(m)	Azimuth	Dip	Method	Contractor:	Downing Drilling		Geology Logged by:	John Wahl	
99.80	268.6°	_63.4°	Reflex	Hole Type:	DD		Geotechnical Logging by	:	
				Core Size:	NQ		Sampling by:	Mike Buchan	
				Drill Rig:	LF-70				
				Casing Left:		m	Horizontal Trace:		m
							Vertical Trace:		m
				<u>Comments</u>					

							Diai	nona Drill	Log - N	5-07-994-02
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	13.50	OVB	WATER + OVERBURDEN							
13.50	23.56	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, occassional quartz carbonate veining							
·				B020551	21.95	22.00	0.05	0.00		
23.56	24.25	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @ 20°TCA.							
24.25	24.93	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, occassional quartz carbonate veining, upper contact @ 20°TCA							
24.93	25.85	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings moderately elevated (+-0.35) with moderate alteration, upper contact @ 30°TCA. 24.93 25.85 Alteration							
25.85	36.04	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, occassional quartz carbonate veining, upper contact @ 30°TCA							
				B020552	35.93	36.04	0.11	0.00		
36.04	36,50	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings elevated across entire section, intense fracture controlled alteration across section, upper contact sheared.							
			36.04 36.40 Alteration	B020553	36.04	36.18	0.14	0.29		
				B020554	36.18	36,34	0.16	3 0.01		
				B020555	36.34	36.50	0.16	3 0.04		
36.50	36.85	BAS	MAFIC VOLCANIC - BASALT - Fine grained, moderately sheared , grey green, magnetic susceptilility elevated (locally >1.0), upper contact @ 20°TCA							
				B020556	36.50	36.85	0.3	5 0.02		

							Dian	nond Drill	Log - KE	-07-W4-02
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
36.85	40.50	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings elevated across entire section, intense fracture controlled alteration across section, numerous BBQ veins intersected as detailed below, upper contact @ 20°TCA.			_				
			36.85 40.50 Alteration	B020557	36,85	37.20	0.35	0.01		
			36.90 36.91 BBQ zone. Magnetic susceptibility = 1.47	B020558D	37.20	37.50	0.30	0.04		
			37.16 37.18 BBQ zone. Magnetic susceptibility = 0.45	B020558	37.20	37.50	0.30	0.04		
			37.87 38.89 BBQ zone. Magnetic susceptibility = 0.96	B020559	37.50	37.80	0.30	0.00		
			38.23 38.25 BBQ zone, Magnetic susceptibility = 1.06	B020560	37.80	38.18	0.38	0.02		
			38.40 38.62 BBQ zone, Magnetic susceptibility = 5.35	B020561	38,18	38.40	0.22	3,40		
			38.90 38.92 BBQ zone. Magnetic susceptibility = 0.30	B020562	38,40	38.62	0.22	23.62		
			39.08 39.10 BBQ zone. Magnetic susceptibility = 0.30	B020563	38.62	38.70	0.08	0.12		
			39.26 39.35 BBQ zone. Magnetic susceptibility = 0.73	B020564	38.70	38.92	0.22	1.31		
			39.90 39.91 BBQ zone. Magnetic susceptibility = 0.61	B020565	38.92	39.20	0.28	0.03		
			39.99 40.00 BBQ zone. Magnetic susceptibility = 0.61	B020566	39,20	39.50	0.30	0.02		
				B020567	39,50	39.80	0.30	0.01		
				B020568D	39,80	40.10	0.30	0,02		
				B020568	39.80	40.10	0.30	0.01		
				B020569	40.10	40.40	0.30	0.00		
40.50	65.00	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readingselevated at contact with QFP (0.80-0.90) between contact and 43.00m, remainder regional in character, upper contact with QFP @ 20°TCA							

40.50 43.00 Alteration

FROM	ΤŌ	CODE			DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
65.00	99.80	QFP	QUARTZ FE to 69.50 mo sampled), re controlled (n 66.40-66.56 74.77, 75.82 84.05-84.19 91.39, 91.46 veins interse contact over	LDSP/ derately maindo , 66.20 -75.90 , 86.11 -91.58 -91.58 -ected to 64.80-	AR PORPHYRY - Magnetic susceptibility readings from contact @ 65.00 y elevated (>0.20 to <0.40), po vein at 65.78-65.85 (m.s. 10.60 er of hole magnetic susceptibility readings regional in character, fracture te) alteration across the following intervals:- 64.80-65.67,65.78-65.90, -68.50, 69.16-69.30, 69.35-69.40, 69.76-69.82, 71.80-71.86, 74.70- , 77.06-77.20, 79.02-79.12, 80.40-80.75, 82.92-82.97, 83.56-83.61, -86.59, 87.23-87.70, 88.28-88.34, 88.85-88.92, 89.7689.99, 91.33- , 95.91-95.97, 97.05-97.14, 97.43-97.47, 98.04-98.37; several BBQ wards bottom of hole as detailed below, upper contact subparrallel to 65.40.							
			65.78	65,90	Alteration	B020570	65.78	65.85	0.07	3.41		
			66.20	68,50	Alteration	B020571	80.40	80.75	0.35	0.01		
			66.40	66.56	Alteration	B020572	86.18	86.22	0.04	0.04		
			69.16	69.30	Alteration	B020573	87,37	87.53	0.16	0.02		
			69.35	69.40	Alteration							
			69.76	69.82	Alteration							
			71.80	81.86	Alteration							
			75.80	75 00	Alteration							
			73.02	10.00	Alteration							
			79.00	79.12	Atteration							
			80.40	80.25	BBO zone. Magnetic suscentibility = 0.10							
			80.46	80.75	Alteration							
			82.92	82.97	Alteration							
			83.56	83.61	Alteration							
			84.05	84,19	Alteration							
			86.11	86.59	Alteration							
			86.18	86.22	BBQ zone. Magnetic susceptibility = 0.10							
			87.23	87.70	Alteration							
			87.38	87.53	BBQ zone. Magnetic susceptibility = 0.06							
			88.28	88.34	Alteration							
			88.85	88.92	Alteration							
			89.76	89.89	Alteration							
			91.33	91.39	Alteration							
			91.46	91.58	Alteration							
			95.91	95.97	Alteration							
			97.05	97.14	Alteration							
			97.43	97.42	Alteration							
			98.04	98.37	Alteration							

---- END OF HOLE ----

HM Lu U

<u>Drill Hole ID</u>	KB-07-	-W4-03	<u>Property</u> Township	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder	Вау	
<u>Collar Location</u>	Easting: Northing: Elevation: Projection:	658242.0 m 5543244.0 m 408.0 m NAD27 Zone	nE Gri e nN n 15N	d: 360.0 m 525.0 m	Azimutł Dip: Lenght	n: 90.0 ° -90.0 ° 121.80 m	Hole Sta Date Sta Date Fir	atus: Completed arted: January-30-07 nished: February-01-07 ハ Aし 36名	
Purpose of Hole Investigate Anomaly	W4							Proposed depth:	m
Surv	vey Data		Dri	lling Information		Logging a	and Samp	ling Information	
Depth(m) Azimut	th Dip	Method	Contractor:	Downing Drilling		Geology Logged	by:	John Wahl	
121.80 145.	.3° 89.7° R	Reflex	Hole Type:	DD		Geotechnical Log	gging by:		
			Core Size:	NQ		Sampling by:		Mike Buchan	
			Drill Rig:	LF-70					
			Casing Left:		m	Horizontal Trace			
			<u>Comments</u>						

FROM	то	CODE	DESCRIPTION	Sample	From	To	Int	Au(a/t)	Fe(%)	As(ppm)
0.00	40.00	0\/D		o ann pio	1 1 1 1 1 1 1			····(8/9	1 4(70)	L'und benut
0.00	12.00	OVB	WATER + OVERBURDEN							
12.00	31.80	BAS	MAFIC VOLCANIC - BASALT - Fine gained, massive, grey green, magnetic susceptibility regional in character except for interval in immediate contact with underlying QFP (ms 0.9 range)	/ 92						
31.80	36.70	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings elevated across entire section with readings up to 1.25, BBQ veining numerous as detailed below, intense fracture controlled alteration across entire section, upper contact @75°TCA							
			31.80 36.70 Alteration	B020574	31.80	32.05	0.25	0.85	i	
			32.00 32.01 BBQ zone. Magnetic susceptibility = 0.98	B020575	32.05	32.30	0.25	0.05	i	
			32.15 32.16 BBQ zone. Magnetic susceptibility = 0.65	B020576	32.30	32.50	0.20	0.06	i	
			32.39 32.30 BBQ zone. Magnetic susceptibility = 1.37	B020577	32.50	32.70	0.20	0.03	5	
			32.96 32.98 BBQ zone. Magnetic susceptibility = 0.34	B020578	32.70	33.00	0.30	0.02	2	
			33.40 33.50 BBQ zone. Magnetic susceptibility = 0.55	B020578D	32.70	33.00	0.30	0.03	3	
			33.78 33.80 BBQ zone. Magnetic susceptibility = 0.34	B020579	33.00	33.25	0.25	0.10)	
			34.09 34.10 BBQ zone. Magnetic susceptibility = 0.36	B020580	33.25	33.55	0.30	0.07	,	
			35.43 35.50 BBQ zone, Magnetic susceptibility = 0.45	B020581	33.55	33.75	0.20	0.02	2	
			35.60 35.61 BBQ zone. Magnetic susceptibility = 0.22	B020582	33.75	34.00	0.25	0.03	3	
			35.79 35.81 BBQ zone. Magnetic susceptibility = 0.57	B020583	34.00	34.25	0.25	0.0	3	
			35.92 35.93 BBQ zone. Magnetic susceptibility = 0.24	B020584	34.25	34.50	0.25	0.04	ł	
			35.97 35.98 BBQ zone. Magnetic susceptibility = 0.33	B020585	34.50	34.75	0.25	0.04	ŀ	
			36.06 36.07 BBQ zone. Magnetic susceptibility = 0.59	B020586	34.75	35.00	0.25	0.0	5	
			36.35 36.38 BBQ zone. Magnetic susceptibility = 1.31	B020587	35.00	35.35	0.35	0.04	t i	
				B020588	35.35	35.65	0.30	0.1	7	
				B020588D	35,35	35.65	0,30	0.2	2	
				B020589	35.65	36.00	0.35	5 1.13	3	
				B020591	36.00	36.25	0.25	5 0.0	3	
				B020592	36.25	36.45	0.20	0.12	2	
				B020593	36.45	36.70	0.25	5 0.0	5	

36.70 54.50 BAS MAFIC VOLCANIC - BASALT - Fine gained, massive, grey green, magnetic susceptibility regional in character, upper contact @ 85°TCA

FROM	το	CODE			DESCRIPTION	Sample	From	To	Int	Au(g/t)	Fe(%)	As(ppm)
54.50	100.28	QFP	QUARTZ FE fracture cont 59.62-59.77, 68.22, 69.04 80.50-81.50, 89.60, 89.70 96.86-96.90,	LDSP/ rolled a 62.30 -69.10 82.55 -89.85 97.19	AR PORPHYRY - Magnetic susceptibility readings regional in character, alteration across the following intervals:- 57.45-57.85, 58.66-58.80, 62.75, 63.04-63.15, 63.30-63.55, 84.40-64.90, 65.30-66.25, 68.14- 69.70-69.75, 73.24-73.26, 74.40-74.43, 75.70-75.76, 78.80-78.84, 82.65, 83.00-83.80, 84.95-85.00, 85.23-85.40, 86.56-86.90, 89.30- 90.41-90.50, 91.80-91.90, 92.78-92.80, 92.97-93.00, 96.17-96.24, 97.24, 98.14-98.28, 99.72-99.88.		·					· · · · · · ·
			57,45	57.85	Alteration	B020594	62.50	62.70	0.20	0.36	i	
			58,66	58.80	Alteration							
			59,62	59.77	Alteration							
			62.30	62.75	Alteration							
			63,04	63.15	Alteration							
			63,30	63.55	Alteration							
			64.40	64.90	Alteration							
			65.30	66.23	Alteration							
			68.14	68.22	Alteration							
			69.04	69.10	Alteration							
			69.70	69.75	Alteration							
			73.24	73.26	Alteration							
			74.40	74.43	Atteration							
			75.70	75.76	Alteration							
			78,80	78.84	Alteration							
			80,50	81.50	Alteration							
			82,55	82.65	Alteration							
			83.00	83.80	Alteration							
			84.95	85.00	Alteration							
			85.23	85.40	Alteration							
			86.56	86.90	Alteration							
			89.30	89.66	Alteration							
			89.70	89.85	Alteration							
			90.41	90.50	Alteration							
			91.80	91.90	Anteration							
			92.78	92.80	Alteration							
			92.97	93.00	Alteration							
			90.17	90,24	Alteration			-				
			90.00	90.90	Alteration							
			97,19	9/.24								
			98.14	98.26	Aneration							
			99.74	39.00	Atteration							
			100,14 1	00.17								

100.28 100.48 DIA

DIABASE DYKE - Fine to medium grain massive grey green

							Dian	nond Drill	Log - KE	3-07-W4-03
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
100.48	103.90	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-100.14-100.17, 101.23-101.25, 102.90-103.90							
			101,23 101.25 Alteration	B020595	103.20	103.45	0.25	74,55		
			102.90 103.90 Alteration							
			103.02 103.04 BBQ zone. Magnetic susceptibility = 5.01							
103.90	104.55	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
104.55	107,30	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-104.95-105.91, 106.18-106.30, 106.40-107.30							
			104.95 105.91 Alteration							
			106,18 106.30 Alteration							
-			106.40 107.30 Alteration							
107.30	107.80	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
107.80	110.10	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-108.74-109.00 108.74 109.10 Alteration							
110.10	110.58	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
110.58	121.80	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings anomalous across 115.00-117.5 and 118.50-120.50 with highs to 1.52; fracture controlled alteration across the following intervals:-112.42-113.70, 114.35-115.00, 115.50-118.12, 118.66-121.00; several BBQ veins as detailed below							
			112.43 113.70 Alteration	B020596	115.90	116.25	0.35	0.12		
			114.35 115.00 Alteration	B020597	116.25	116.50	0.25	0.02	2	
			115.50 118.12 Alteration	B020598D	116.50	116.75	0.25	0.00)	
			116.05 116.07 BBQ zone. Magnetic susceptibility = 0.30	B020598	116.50	116.75	0.25	i 0.01		
			117.99 118.00 BBQ zone. Magnetic susceptibility = 0.59	B020599	116.75	117.00	0.25	i 0.01		
			118.66 121.00 Alteration	B020600	117.00	117.25	0.25	0.02	2	
				B020601	118.90	119,15	0.25	0.02	2	
				B020602	119.15	119.42	0.27	0.14	•	
				B020603	119.42	119.64	0.22	0.09)	
_				B020604	119.64	119.74	0.10	0.01		

- END OF HOLE --Allm Us Wall

<u>Drill Hole ID</u>	KB-0	7-W4-04	<u>Property</u> Township	King Bay Fourbay Lake Area	_	<u>NTS</u> District	52J2 Thunder	r Bay	
<u>Collar Location</u>	Easting: Northing: Elevation Projectio	658242.0 5543244.0 : 408.0 n: NAD27 Zone	mE Gri e mN m e 15N	l: 360.0 m 525.0 m	Azimut Dip: Lenght	t h: 84.0 ° ~75.0 ° t 79.70 m	Hole Sta Date Sta Date Fin C \ A v	atus: Completed arted: February-02-07 nished: February-03-07 れ Aに 368	
Purpose of Hole Investigate Anomaly	W4							Proposed depth:	m
Surv	ey Data		Dri	lling Information			and Samp	oling Information	
Depth(m) Azimut	h Dip	Method	Contractor:	Downing Drilling		Geology Logged	by:	John Wahl	· · ·
79.00 89.	4° 77°	Reflex	Hole Type:	DD		Geotechnical Log	gging by:		
			Core Size:	NQ		Sampling by:	_	Mike Buchan	
			Drill Rig:	LF-70				L	
			Casing Left:		m	Horizontal Trace			
			Comments						

Diamond Drill Log - KB-07-W4-04 DESCRIPTION FROM τo CODE Sample From То Int Au(g/t) Fe(%) As(ppm) WATER + OVERBURDEN -0.00 12.50 OVB 12.50 33.00 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character to 32m; from 32-33m @ contact with QFP magnetic susceptibility readings highly anomalous (pronounced po mineralization in qtz/carbonate veins) 32.00 33.00 Alteration B020605 32,00 32.25 0.25 0.07 B020606 32.25 32,50 0.25 1,02 B020607 32.50 32.75 0.25 2.13 B020608 32.75 33.00 0,23 0.25 B020608D 33.00 0.27 32.75 0.25

FROM	TO	CODE		DESCRIPTION	Sample	From	To	Int	Au(c/f)	Ee/%)	As(nnm)
22.00	60.67	OFR			Janha		10		1.1.1.1.1.1.1.1	1 0(70)	(יייקק)פרק
33.00	02.07	urr	(readings up to 1.08). mi	ineralized zone with numerous BBQ veins as detailed below.							
			fracture controlled alterat	tion across the following intervals:-33.00-34.25, 35.56-35.10, 35.30-							
			35.45, 35.94-36.02, 36.5	50-36.82, 36.83-37.35, 37.40-37.48, 37.50-37.70, 37.75-37.83,							
			40 17 40 53-40 57 40 6	8, 39,43-39,34, 39,02-39,70, 39,83-39,87, 39,91-40,04, 40,11- \$0-42.00_42.14-42.36_42.48-42.61_42.71_42.82_42.54_43.00							
			53.10-43.16, 53.20-43.20	6, 43.38-44.06, 44.54-44.63, 45.37-48.34, 48.70-48.87, 49.15-							
			49.48, 49.80-50.00, 50.4	18-50.96, 51.10-51.40, 53.90-54.14, 55.20-55.24, 55.80-55.82,							
			57.11-57.15, 57.30-57.3	5, 58.16-58.19, 60.02-60.05,60.27-60.31, 60.84-60.88, 60.94-							
			33.00 34.35 Altor	zo-1 CA	Bosoeoo	22.00	22.05	0.25	0 1 2		
			34.56 35.10 Alter	ration	B020609	33.00	33.25	0.25	0.12		
			34.50 35.10 Aller	auon) zone Magnetic suscentibility = 1.59	B020010 B020611	33,25	33.50	0.25	0.07		
			34.80 34.94 BBO	220 zone. Magnetic susceptibility = 0.34	B020612	33.50	34.00	0.25	0.04		
			35.00 35.05 BBO) zone. Magnetic susceptibility = 0.54	B020612	34.00	34.25	0.25	0.04		
			35.30 35.45 Alter	ration	B020614	34.56	34.70	0.14	0.02		
			35.32 35.38 BBQ) zone. Magnetic susceptibility = 0.38	B020615	34.70	35.10	0.40	0.10		
			35.94 36.02 Alter	ration	B020616	35.27	35.45	0.18	0.22		
			36,50 36,82 Alter	ration	B020617	36,50	36.62	0.12	0.19		
			36.54 36.60 BBQ	2 zone. Magnetic susceptibility = 8.91	B020618D	36.94	37.24	0.30	1.61		
			36.83 37.35 Alter	ration	B020618	36.94	37.24	0.30	1.39		
			37.00 37.04 BBQ	2 zone. Magnetic susceptibility = 0.32	B020619	37.24	37.48	0.24	0.02		
			37.06 37.16 BBQ	2 zone. Magnetic susceptibility = 0.36	B020640	37.48	37.70	0.22	68.62		
			37.17 37.20 BBQ	2 zone. Magnetic susceptibility = 0.92	B020620	38.00	38.25	0.25	0.01		
			37.30 37.32 BBQ	2 zone. Magnetic susceptibility = .79)	B020621	38.25	38.54	0.29	0.06		
			37.40 37.48 Alter	ration	B020622	39.04	39.19	0.15	0,16		
			37.42 37.44 BBQ	2 zone. Magnetic susceptibility = 0.30	B020623	39.40	39.60	0.20	1.87		
			37.50 37.70 Alter	ration	B020624	39.60	39.85	0.25	0.08		
			37.54 37.63 BBQ	2 zone. Magnetic susceptibility = 3.03	B020625	39.85	40.20	0.35	0.02		
			37.79 37.83 Alter	ration	B020626	40.51	40.72	0.21	0.32		
			37.95 38.60 Alter	ration	B020627	41.09	41.16	0.07	0.01		
			38.04 38.09 BBQ	2 zone. Magnetic susceptibility = 0.53	B020628	41.59	41.74	0.15	0.26		
			38.17 38.20 BBQ	2 zone. Magnetic susceptibility = 0.49	B020628D	41.59	41.74	0.15	0.23		
			38.30 38.32 BBQ	2 zone. Magnetic susceptibility = 0.30	B020629	41.86	42.00	0.14	0.04		
			38,39 38,43 BBQ	2 zone. Magnetic susceptibility = 0.30	B020631	42.28	42.35	0.07	0.01		
			38,47 38.50 BBC	2 zone. Magnetic susceptibility = 0.30	B020632	42.47	42.55	0.08	0.05		
			39.04 39.16 Arter	ration	B020633	42.75	42.82	0.07	0.02		
			39,07 39,12 BBQ	a zone, magnetic susceptibility = 0.10	B020634	43.40	43.45	0.05	0.03		
			39,43 39,34 Aller	rauon Disensi Magnetia succentibility = 0.12	BU20635	43,70	44.00	0.30	17,14		
			30.62 30.76 Altor	a zone. Magneus susceptionity - 0.12	BU20030	40.00	40,15	0.09	0.08		
			30.64 30.66 PPO	rauon 2 zone - Magnetic suscentibility - 0.10	B02003/	40.00	47.00	0.20	0.8/		
			30 73 30 75 PPO	x = 20 and $x = 0.22$	B020030D	41.43	47.53	0.10	0.00		
			39.81 40.04 Alter	ration	B020036	47.43 50 RA	50 06	0.10	0.00		
			39.83 39.87 Alter	ration	0020039	50.04	50.90	0.12	0,24		
			40.00 40.20 BRO) zone. Magnetic susceptibility = 0.08							

									Diam	ond Drill	Log - KE	3-07-W4-04
FROM	TO	CODE		DESCRIPTION	Sample	From	То	h	nt .	Au(g/t)	Fe(%)	As(ppm)
			40.11	40.17 Alteration								
			40.14	40.16 BBQ zone. Magnetic susceptibility = 0.10								
			40.53	40.57 Alteration								
			40.55	40.56 BBQ zone. Magnetic susceptibility = 0.16								
			40.60	42.00 Alteration								
			40.65	40.66 BBQ zone. Magnetic susceptibility = 0.16								
			40.68	40.71 BBQ zone. Magnetic susceptibility = 0.12								
			40.72	40.77 BBQ zone. Magnetic susceptibility = 0.10								
			41.13	41.16 BBQ zone. Magnetic susceptibility = 0.06								
			41.60	41.63 BBQ zone. Magnetic susceptibility = 0.22								
			41.68	41.70 BBQ zone. Magnetic susceptibility = 0.34								
			41.93	41.94 BBQ zone. Magnetic susceptibility = 0.51								
			42.14	42.36 Alteration								
			42.30	42.33 BBQ zone. Magnetic susceptibility = 0.14								
			42.48	42.61 Alteration								
			42.50	42.52 BBQ zone. Magnetic susceptibility = 0.16								
			42.71	42.82 Alteration								
			42.79	42.80 BBQ zone. Magnetic susceptibility = 0.12								
			42.94	43.00 Alteration								
			43.10	43.16 Alteration								
			43.20	43.28 Alteration								
			43.38	44.06 Alteration								
			43.43	43.44 BBQ zone. Magnetic susceptibility = 0.36								
			43.70	43.79 BBQ zone. Magnetic susceptibility = 1.00								
			44.54	44.63 Alteration								
			45.37	48.34 Alteration								
			46.02	46.11 BBQ zone. Magnetic susceptibility = 1.45								
			46.86	46.89 BBQ zone. Magnetic susceptibility = 0.79								
			47.46	47,50 BBQ zone. Magnetic susceptibility = 0.61								
			48.70	48.87 Alteration								
			49.15	49.48 Alteration								
			49.80	50.00 Alteration								
			50.40	50.96 Alteration								
			50.86	50.87 BBQ zone. Magnetic susceptibility = 1.37								
			51.10	51.40 Alteration								
			53,90	54.14 Atteration								
			55.20	55.24 Alteration								
			55,80	55.82 Atteration								
			57.11	57.15 Alteration								
			57.30	57.35 Alteration								
			58.16	58.19 Alteration								
			60.02	60.05 Alteration								
			60.27	60.31 Alteration								
			60.84	60.88 Alteration								

					_		Dian		LUg - N	
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
62.87	63.07	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
63.07	64.82	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- 63.13-63.17, 64.46-64.5063.1363.1764.4664.5064.4664.50							
65.00	68.37	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- 65.28-65.40, 65.86-65.89, 65.94-65.99, 67.06-67.10, 67.86-67.90 65.2665.2665.4065.2665.4065.8665.89Alteration65.9465.9965.95Alteration67.0667.10Alteration67.8667.90	B020641	65.28	65.40	0.12	0.1	5	
68.37	68.83	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
68.83	69.47	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered							
69.47	69,55	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
69.55	72.46	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character,fracture controlled alteration across the following intervals:-70.60-70.70, 72.20-72.3370.6070.70Alteration72.3072.33Alteration	B020642	70.60	70.70	0.10) 0.0	6	
72,46	72,62	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
72.62	74.23	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered							
74.23	74.40	DIA	DIABASE DYKE - Fine to medium grain massive grey green							
74.40	79.00	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-75.54-75.58, 75.62-75.74, 75.96 76.02, 78.17-78.19, 78.27-78.29, 78.96-79.10 75.54 76.58 Alteration 75.62 75.70 Alteration 75.96 76.02 Alteration 78.17 78.19 Alteration 78.27 78.29 Alteration	-						

							_					
FROM	то	CODE			DESCRIPTION	Sample	From	То	int	Au(g/t)	Fe(%)	As(ppm)
 84.82	65.00	DIA	DIABASE D	YKE -	Fine to medium grain massive grey green							
			65.26	65.40	Alteration							
			65.86	65.89	Alteration							
			65.94	65,99	Alteration							
			67.06	67.10	Alteration							
			67.86	67.90	Alteration							
			70.60	70.70	Alteration							
			72.30	72.33	Alteration							
			75.54	75.58	Alteration							
			75.62	75.70	Alteration							
			75.96	76.02	Alteration							
			78.17	78.19	Alteration							
			78.27	78.29	Alteration							
			78.96	79.10	Alteration							

---- END OF HOLE ----

John & belald

<u>Drill Hole ID</u>	KB-07-	-W4-05	<u>Property</u> Township	King B Fourba	ay ay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder Bay	
<u>Collar Location</u>	Easting: Northing: Elevation: Projection:	658231.0 5543250.0 408.0 NAD27 Zone	mE G mN m 9 15N	rid:	347.5 m 535.0 m	Azimuth: Dip: Lenght	84.0 ° -75.0 ° 66.00 m	Hole Status: Abandoned Date Started: February-19-07 Date Finished: February-20-07 CLAIM AL 368	
Purpose of Hole Investigate Anomaly W4 Proposed depth:									
Sun	vev Data		r)rilling in	formation			and Sampling Information	

	<u>Survey</u>	Data		<u>Dri</u>	ling Information		Logging and Sam	pling Information	
Depth(m)	Azimuth	Dip	Method	Contractor:	Downing Drilling		Geology Logged by:	John Wahl]
65.95	0		° Reflex	Hole Type:			Geotophnical Longing by		
				noie i ype.			Geotechnical Logging by	•	
				Core Size:	NQ		Sampling by:	John Wahl	
				Drill Rig:	LF-70				
				Casing Left:		m	Horizontal Trace:		m
							Vertical Trace:		m
				<u>Comments</u>					
				Abandoned ca	ving				

Diamond Drill Log - KB-	07-W4-05
-------------------------	----------

FROM	то	CODE	DESCRIPTION	Sample	From	To	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	19.00	OVB	WATER + OVERBURDEN	·						
19.00	34.70	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, interval between 19- 25.4m badly broken and overcut by several attempts to set hole, interval not logged; from 25.4-29.5m magnetic susceptibility high, remainder magnetic susceptibility regional in character.							
34.70	34.92	White Qtz	WHITE QUARTZ VEIN - White quartz vein with abundant (massive) medium grained po, magnetic susceptibility 0.71, upper contact @80°TCA							
			34.70 34.92 White Quartz Zone. Magnetic susceptibility = 0.71	B020692	34.70	34.92	0.22	19.90		
34.92	46.18	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility moderately high between 35- 36.5m (0.10-0.50); remainder magentic susceptibility regional in character; fracture controlled alteration over the following intervals:-34,92-34,97, 35.39-35.43, 36.34-36.44, 36.54-36.64, 38.94-39.04, 42.41-42.61, 42.79-42.90, 43.55-43.60, 43.88-43.95, 44.04- 44.13, 45.44-45.60, upper contact @90°TCA. 34.92 34.97 Alteration 35.39 35.43 Alteration 36.54 36.64 Alteration 38.94 39.04 Alteration 36.55 43.60 Alteration 36.54 36.64 Alteration 38.94 39.04 Alteration 42.79 42.90 Alteration 43.55 43.60 Alteration 43.88 43.95 Alteration							
			45.44 45.60 Alteration							
46.18	53.73	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility for most part regional in character except at 49.5, 50.5 and 52.5 where moderate readings were recorded, upper contact @45°TCA							
53.73	65.95	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-53.75-54.04, 54.74-54.79, 56.56- 56.59, 56.91-56.96, 59.18-59.47, 59.53-59.66, 59.97-60.04, 60.08-60.15, 61.50-61.70, 63.38-63.48; upper contact @30°TCA 53.75 54.04 Alteration 54.74 54.79 Alteration 56.56 56.59 Alteration 56.56 56.59 Alteration 56.56 56.59 Alteration 56.91 56.96 Alteration 59.18 59.47 Alteration 59.18 59.47 59.76 Alteration 59.73 59.66 59.74 Alteration 59.75 59.66 60.04 Alteration 59.97 60.04 60.15 Alteration 63.38 63.48							

---- END OF HOLE ----TUNN UU Page 2 of 2

Printed: 11/02/2008 1:29:50 PM

<u>Drill Hole ID</u>	KB-07-W4-06	Property Township	King Bay Fourbay Lake Area		<u>NTS</u> District	52J2 Thunder	Вау	
Collar Location	Easting: 658233.0 Northing: 5543228.0 Elevation: 408.0 Projection: NAD27 Zor) mE Gri) mN) m ne 15N	d: 347.5 m 515.0 m	Azimuth Dip: Lenght	n: 84.0 ° -75.0 ° 112.70 m	Hole Sta Date Sta Date Fir CLAJV	atus: Completed arted: February-21-07 nished: February-22-07 n AL-368	
Purpose of Hole Investigate Anomaly	W4						Proposed depth:	m
Surv	ey Data	 Dr	illing Information		Logging	and Samp	bling Information	
Depth(m) Azimut	h Dip Method	Contractor:	Contractor: Downing Drilling Geo			l by:	John Wahl	
112.70 80.	5 70.5 Reliex	Hole Type:	DD		Geotechnical Lo	gging by:		
		Core Size:	NQ		Sampling by:		John Wahl	
		Drill Rig:	LF-70		Horizontal Trace):		m
		Casing Left:		m	Vertical Trace:			m
		<u>Comments</u>						

то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
14.20	OVB	WATER + OVERBURDEN							
17.55	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered		_					
17.79	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA							
18.00	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA						_	
33,61	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @60°TCA		_					
38,85	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA							
46.25	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA							
51.75	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:- 46.42-46.48, 47.52-47.57, 47.92-48.07, 49.80-49.87, 50.07-50.18, 50.94-51.10, 51.28-51.42, upper contact @45°TCA46.4246.48Alteration47.5247.57Alteration47.9248.07Alteration47.9248.07Alteration47.9248.07Alteration50.0750.18Alteration50.0750.18Alteration50.9451.10Alteration50.9451.10Alteration51.2851.42Alteration							
51,95	DIA	DIABASE DYKE - Fine to medium grain massive grey green, upper contact @45° TCA							
54,22	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-52.98-53.02, 53.09-53.14, 53.56- 53.65, 53.82-53.86, upper contact @45°TCA 52.98 53.02 Alteration 53.09 53.14 Alteration 53.56 53.65 Alteration 53.82 53.86 Alteration							
54.62	DIA	DIABASE DYKE - Fine to medium grain massive grey green, upper contact @45° TCA							
62.90	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-55.20-55.28, 57.46-57.57, 58.56- 58.61, 58.77-58.81, 62.62-62.70, upper contact @45°TCA 55.20 55.28 Alteration 57.46 57.57 Alteration 58.56 58.61 Alteration 58.97 58.81 Alteration 62.62 62.70 Alteration							
	TO 14.20 17.55 17.79 18.00 33.61 38.85 46.25 51.75 51.75 54.22 54.62 62.90	TO CODE 14.20 OVB 17.55 QFP 17.79 BAS 18.00 QFP 33.61 BAS 38.85 QFP 46.25 BAS 51.75 QFP 51.95 DIA 54.22 QFP 54.62 DIA 62.90 QFP	TO CODE DESCRIPTION 14.20 OVB WATER + OVERBURDEN 11.55 GFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered 17.79 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA 18.00 QFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA 33.61 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @80°TCA 38.85 QFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA 48.25 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, unaltered, upper contact @30°TCA 46.25 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, unaltered, upper contact @30°TCA 46.25 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, unaltered, upper contact @30°TCA 46.25 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, upper contact @45°TCA 47.24 48.44	TO CODE DESCRIPTION Sample 14.20 CVB WATER + OVERBURDEN Intervention Sample 17.55 GFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered Intervention Intervention 17.79 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, unaltered, upper contact @30°TCA Intervention Intervention 38.16 DAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, unaltered, upper contact @80°TCA Intervention Intervention 38.85 OFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA Intervention Intervention 46.25 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, instrume controlled alteration across the following intervals - 46.4246.48, 47.52-47.57, 47.92-48.07, 48.90-49.57, 50.07-50.18, 50.94-50.10, 51.28-51.42, upper contact @45°TCA 46.42 46.44 Alteration 47.52 47.57 Attracter controlled alteration across the following intervals - 46.42-46.49, 47.52-47.57, 50.94-50.19, 50.94-50.19, 50.94-50.10, 51.28-51.42, upper contact @45°TCA 45.42 46.44 Alteration	TO CODE DESCRIPTION Sample From 14.20 OVB WATER + OVERBURDEN International in character, unaltered International in character, unaltered 17.59 GFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered International in character, upper contact @30°TCA 18.00 GFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA 33.61 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @80°TCA 38.65 OFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA 46.25 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, unaltered, upper contact @80°TCA 51.75 QFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture contoled afteration across the following intervals: +642-46.48, 475.474.57.47.57.47.52.45.53.56.53.56.53.56.53.56.53.66.53.46.53.46.53.46.53.46.53.46.53.46.53.46.53.46.53.46.53.46.53.46.53.46.53	TO CODE DESCRIPTION Sample From To 14.20 OVB WATER + OVERBURDEN Intervention To To 17.55 QFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unatlered Intervention Intervention Intervention 17.79 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, unper contact @807TCA Intervention Inter	TO CODE DESCRIPTION Sample From To Int 14.20 WATER + OVERBURDEN Int To Unattered Unattered	TO CODE DESCRIPTION Sample From To Int Au(gvt) 14.20 VWATER + OVERBURDEN Int Au(gvt) Int Au(gvt) 17.55 OFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaflered Int Au(gvt) 17.79 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA Interacter, unaflered, upper contact @30°TCA Interacter, upper contact @30°TCA 33.81 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA Interacter, upper contact @30°TCA 38.85 GFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, ground in character, upper contact @30°TCA Interacter, upper contact @30°TCA 46.25 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, ground and & 30°FCA Interacter, unaflered, upper contact @30°TCA 51.75 OFP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals: -46.32-47.57. Interacter, fracture controlled alteration across the following intervals: -46.32-47.57.	PO CODE DESCRIPTION Sample From To Int Au(grb) Fe(%) 14.20 VWATER + OVERBURDEN VATER + OVERBURDEN Int Au(grb) Fe(%) 17.55 OEP QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaftered Int Au(grb) Fe(%) 17.79 BAS MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility readings regional in character, unaftered, upper contated @00TCA Intel matcher, upper contat

Dlamond	Drill	Log	- KB-07	-W4-06
---------	-------	-----	---------	--------

FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)	
62.90	70.70	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @10°TCA								
70.70	84.96	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-71.29-71.39, 73.50-73.60, 73.71-73.76, 73.79-73.93, 75.81-75.90, 75.94-74.97, 76.32-76.50, 76.83-76.97, 77.10-77.30, 79.48-79.52, 80.05-80.15, 82.50-82.56, 82.74-82.86, 83.18-83.25, upper contact @30°TCA 71.29 71.39 Alteration 73.50 73.60 Alteration 73.71 73.76 Alteration 73.70 73.60 Alteration 73.71 73.76 Alteration 73.71 73.76 Alteration 73.79 73.93 Alteration 73.79 73.93 Alteration 75.87 75.90 Alteration 75.97 Alteration 76.32 76.50 Alteration 76.32 76.37 Alteration 76.32 76.30 Alteration 77.10 77.10 77.30 Alteration 76.83 76.97 Alteration 79.48 79.52 Alteration 80.05 80.15 Alteration 82.50 82.56 Alteration 82.66 Alteration 82.64 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
84.96	85,14	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility				_		_		
	regional in character, upper contact @45°TCA										

Diamond Drill Log	- KB-07-W4-06
-------------------	---------------

FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
85.14	112.70	QFP	QUARTZ I several BE across the 89.80, 93.1 107.98, 10 @45°TCA	FELDSP/ BQ veins following 54-93.58 08.15-108	AR PORPHYRY - Magnetic susceptibility readings regional in character, between 106-108m as detailed below, fracture controlled alteration j intervals:-85.63-85.75, 87.46-87.84, 88.50-88.72, 89.27-89.60, 89.68- , 97.51-97.86, 103.16-103.25, 103.83-104.00, 105.14-107.30, 107.50- 8.60, 109.70-109.72, 109.98-110.35, 110.71-110.76, upper contact	•	<u> </u>					_
			85.63	85.75	Alteration	B020693	106.28	106.35	0.07	0.05		
			87.46	87.84	Alteration	B020694	106,77	106.81	0.04	0.01		
			88.50	88.72	Alteration	B020695	107.16	107.23	0.07	0.02		
			89.27	89.60	Alteration							
			89.68	89.80	Alteration							
			93.54	93.58	Alteration							
			97.51	97.86	Alteration							
			103.16	103.25	Alteration							
			103.83	104.00	Alteration							
			105.14	108.30	Alteration							
			106.28	106.35	BBQ zone. Magnetic susceptibility = 0.08							
			106.79	106,80	BBQ zone. Magnetic susceptibility = 1.23							
			107.16	107.17	BBQ zone. Magnetic susceptibility = 0.51							
			107.22	107.23	BBQ zone. Magnetic susceptibility = 0.45							
			107.50	107.98	Alteration							
			107.86	107.87	BBQ zone. Magnetic susceptibility = 0.36							
			107.94	107.95	BBQ zone. Magnetic susceptibility = 0.32							
			108.15	108.60	Alteration							
			109.70	109.72	Alteration							
			109.98	110.35	Alteration							
_			110.71	110.76	Alteration							

- END OF HOLE --Arm Eu Celcell

Drill Hole ID KB-07-W5	-01 <u>Property</u> <u>Township</u>	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder	Вау	
<u>Collar Location</u> Easting: 65 Northing: 554 Elevation: Projection: NAD	8225.0 mE Gr 3321.0 mN 408.0 m 27 Zone 15N	id: 345.0 m 604.0 m	Azimuth: Dip: Lenght	120.0 ° -75.0 ° 89.70 m	Hole Sta Date Sta Date Fin てくみ	atus: Completed arted: February-16-07 nished: February-18-07 m Aに 368	
Purpose of Hole Investigate Anomaly W5						Proposed depth:	m
Survey Data Depth(m) Azimuth Dip Meth 89.70 125.7° 76.8° Reflex	od Contractor: Hole Type: Core Size: Drill Rig: Casing Left: <u>Comments</u>	Tilling Information Downing Drilling DD NQ LF-70		<u>Logging</u> Geology Logged Geotechnical Log Sampling by: Horizontal Trace Vertical Trace:	and Samp by: gging by:	John Wahl John Wahl	m

FROM	то	CODE	DESCRIPTION	Sample	From	To	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	23.70	OVB	WATER + OVERBURDEN							
23.70	25.75	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered							
25.75	47.55	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character except at contact with BBQ=po vein over 46.25-47.55m (up to 1.29), upper contact broken core. 43.16 43.20 White quartz vein	B020667	43.16	43.20	0.04	0.02	!	
47.55	49.20	BBQ	BLUE BLACK QUARTZ VEIN - Bluish white quartz vein, in sections heavily mineralized with po, magnetic susceptibility readings up to 1.29, upper contact @45TCA, lower contact @20TCA							
			-	B020668	47.55	48.00	0.45	0.06	i	
				B020669	48.00	48.50	0.50	0.00)	
				B020671	48.50	49.00	0.50	0.00)	
				B020672	49.00	49.20	0.20	11.14		
49.20	61.00	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character except over the interval in contact (lower) with BBQ (49.20-51.00m) where elevated to anomalous values recorded (up to 1.51), alteration intense over that section and moderate between 51-61m, fracture controlled alteration across the following intervals:-49.30-49.68, 49.87-50.17, 50.27-50.39, 50.56-50.65, 50.92-51.19, 51.23-51.26, 52.43-52.47, 52.56- 52.72, 52.78-53.00, 54.53-54.56, 55.15-55.20, 57.23-57.27, 57.43-57.46, 58.88-58.94, 59.38-59.97, upper contact @60°TCA 49.30 49.68 Alteration 50.27 50.39 Alteration 50.26 50.65 Alteration 50.27 50.39 Alteration 51.23 51.26 Alteration 51.23 51.26 Alteration 52.43 52.47 Alteration 52.43 52.47 Alteration 52.56 52.72 Alteration 54.53 54.56 Alteration 55.15 55.20 Alteration 55.15 55.20 Alteration 57.23 57.27 Alteration 57.43 57.46 Alteration 57.43 57.46 Alteration 58.88 58.94 Alteration							
61.00	63.35	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @60°TCA.							
63.35	66.25	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @45°TCA			_				
66.25	66.50	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @45°TCA.							

Diamond I	Drill Log -	KB-07-W5-01
-----------	-------------	-------------

FROM	το	CODE				DESCRIPT	io n			Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
66,50	87.25	QFP	QUARTZ F	ELDSP	AR PORPHYRY	' - Magnetic sus	sceptibility rea	adings regional	n character,							
			fracture con	ntrolled a	alteration across	the following in	ntervals:-71.9	92-72.00, 78 <i>.</i> 92-	79.04, 80.16-							
			80.20, 80.3	4-80.39	, 84.30-84.36, 8	5.33-85.37, 85.	.90-85.93, 86.	.95-87.64, uppe	r contact							
			@45°TCA													
			71.92	72.00	Alteration											
			78.92	79.04	Alteration											
			80.16	80.20	Alteration											
			80.34	80.39	Alteration											
			84.30	84.36	Alteration											
			85.33	85.37	Alteration											
			85.90	85,93	Alteration											
87.25	89.70	BAS	MAFIC VO regional in	LCANIC characte	- BASALT - Fin er, upper contac	e grained, mas t @50ºTCA.	ssive, grey gre	een, magnetic s	usceptibility							

---- END OF HOLE ----

Am to Wald

<u>Drill Hole ID</u>	KB-07-	W5-02	Property Township	King Fou	g Bay Irbay Lake Area		<u>NTS</u> District	52J2 Thunder Bay	1	
<u>Collar Location</u>	Easting: Northing: Elevation: Projection:	658239.0 5543315.0 408.0 NAD27 Zone	mE G mN m e 15N	Grid:	360.0 m 596.0 m	Azimut Dip: Lenght	h: 90.0 ° -90.0 ° 62.70 m	Hole Status Date Starte Date Finish C LAIM	: Completed d: February-18-07 ed: February-19-07 みに 368	
Purpose of Hole Investigate Anomaly	r W5							Pro	posed depth:	m
Surversion	th Dip 1	Method	Contractor	Drilling r: D	Information owning Drilling		Logging Geology Logged	and Sampling I by: Job	Information In Wahl	

Hole Type: Geotechnical Logging by: DD Core Size: NQ Sampling by: John Wahl LF-70 Drill Rig: Horizontal Trace: m Casing Left: m Vertical Trace: m <u>Comments</u>

FROM	TO	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	21.40	OVB	WATER + OVERBURDEN						_	
21.40	33,35	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character							

FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
33.35	52.50	QFP	QUARTZ FE and 51.50-5 recorded, B the following 36.71-36.82 41.65, 41.72 44.03-44.07 47.02, 47.10	ELDSP 2.50m 3Q vei interv , 37.00 -41.85 , 44.28 -47.45	AR PORPHYRY - Magnetic susceptibility readings across 33.50-46.50m regional in character - between 46.50-51.50 moderate to high readings ning numerous as detailed below, fracture controlled alteration across als:-34.95-35.04, 35.76-35.85, 36.03-36.08, 36.40-36.44, 36.55-36.59, -37.08, 38.93-38.97, 39.77-39.84, 40.71-40.79, 41.06-41.23, 41.56- -, 41.90-42.13, 42.17-42.36, 42.41-42.61, 42.81-52.84, 42.87-43.28, -44.33, 45.55-45.60, 44.70-44.79, 42.85-46.20, 46.60-46.80, 46.97- -, 47.53-47.56, 47.71-47.74, 47.81-50.70, 50.93-51.04, upper contact							
			@85ºTCA	25.04	Alteration	D020672	26.04	26.00	0.04	0.00		
			34.95	35,04	Alteration	B020073	30.04	30,00	0.04	0,22		
			35.70	35.65	Alteration	B020074 B020675	42.05	39.04 43.02	0.00	0.10		
			36.03	36.00	BBO Magnetic suscentibility reading = 0.18	B020676	42.33	43.02	0.07	0.10	r I	
			36.40	36.44	Alteration	B020677	44.70	44 74	0.12	0.03		
			36 55	36.59	Alteration	B020678	45.93	45.98	0.04	0.01	,	
			36.56	36.57	BBO Magnetic suscentibility reading = 0.14	B020679	46.67	46.72	0.05	0.00	1	
			36.71	36.82	Atteration	B020680	47.26	47.35	0.09	0.00	, 1	
			37.00	37.08	Alteration	B020681	47.78	47.80	0.02	0.01		
			38.93	38.97	Alteration	B020682	47.81	48.10	0.29	0.00)	
			39.77	39.84	Alteration	B020683	48.10	48.24	0.14	0.01	•	
			39.78	39.80	BBQ. Magnetic susceptibility reading = 0.20	B020684	48.24	48.41	0.17	0.02	2	
			40.71	40.79	Alteration	B020685	48.41	48,53	0.12	0.01		
			41.06	41.23	Alteration	B020686	48.53	48.81	0.28	23.12	2	
			41.56	41.65	Alteration	B020687	48,81	49.07	0.26	0.07	,	
			41.72	41.85	Alteration	B020688	49.10	49.17	0.07	0.02	2	
			41.90	42.13	Alteration	B020689	49.65	49.84	0.19	4,01		
			42.17	42.36	Alteration	B020690	49,84	50.05	0.21	0.20)	
			42.41	42.61	Alteration	B020691	50.04	50.22	0.18	4.14	ł	
			42.81	42.84	Alteration							
			42.87	43.28	Alteration							
			42.95	43.02	BBQ. Magnetic susceptibility reading = 0.08							
			43.11	43.12	BBQ. Magnetic susceptibility reading = 0.08							
			43.19	43.21	BBQ. Magnetic susceptibility reading = 0.12							
			44.03	44.07	Atteration							
			44.28	44.33	Atteration							
			44.70	44.74	BBQ. Magnetic susceptibility reading = 0.12							
			44.70	44.79	Alteration							
			45.85	46.20	Alteration							
			45,93	45.98	BBQ, Magnetic susceptibility reading = 0.38							
			46.60	46.80	Alteration							
			46,67	46.72	BBQ. Magnetic susceptibility reading = 0.14							
			46.97	47.02	Alteration							
			47.10	47.45	Alteration							
			47,26	47.35	BBQ. Magnetic susceptibility reading = 0.28							
			47.53	47.56	Alteration							

					_		Dia	mond Dril	Log - KE	3-07-W5-02
FROM	то	CODE	DESCRIPTION	Sample	From	Τo	Int	Au(g/t)	Fe(%)	As(ppm)
			47.71 47.74 Alteration							
			47.78 47.80 BBQ. Magnetic susceptibility reading = 0.32							
			47.81 50.70 Alteration							
			48.10 48.12 BBQ. Magnetic susceptibility reading = 0.43							
			48.27 48.40 BBQ. Magnetic susceptibility reading = 0.61							
			48.45 48.50 BBQ. Magnetic susceptibility reading = 1.59							
			48.53 49.07 BBQ. Magnetic susceptibility reading = 0.04							
			49.13 49.14 BBQ. Magnetic susceptibility reading = 1.66							
			49.65 50.22 BBQ. Magnetic susceptibility reading = 3.62							
			50.93 51.04 Alteration							
52.50	55,85	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA.							
55.85	60.65	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character unaltered, upper contact @30°TCA							
60,65	61.05	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA.			_				
61.05	67,70	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character unaltered, upper contact @30°TCA	,						

---- END OF HOLE ----

John du alabe

<u>Drill Hole ID</u>	KB-06-	EC1-06	<u>Property</u> <u>Township</u>	King Fourl	Bay Day Lake Area		<u>NTS</u> District	52J2 Thunder Bay	
Collar Location	Easting:	658656.0 r	nE C	Grid:	761.5 m	Azimuth:	330.0°	Hole Status:	Completed
	Northing:	5543255.0 r	nN		531.0 m	Dip:	-45.0°	Date Started:	March 10, 2006
	Elevation:	408.01	n			Lenght	60.00 m	Date Finished:	: March 13, 2006
	Projection:	NAD27 Zone	15N					CLAIM AL	~ 369

Purpose of Hole

Test magnetic anomaly EC-1

Proposed depth: 60.00 m

Survey Data	Dril	ling Information	Logging and Sam	pling Information
Depth(m) Azimuth Dip Method	Contractor:	Summit Drilling	Geology Logged by:	Erick Chavez
	Hole Type:	DD	Geotechnical Logging by	/
	Core Size:	BQ	Sampling by:	Chester S.
	Drill Rig:		Horizontal Trace:	m
	Casing Left:	Om	Vertical Trace:	m
	Comments Drilled on ice.	Ice thicknes ~ 20". Water dep	th ~3m	

Diamond Drill Log - KB-06-EC1-06

FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppm)	Fe(%)	As(ppm)
0.00	4.20	OVB	WATER AND OVERBURDEN					•		
4.20	12.90	QFP	COARSE CRYSTALLINE QUARTZ-FELDSPAR PORPHYRY - Plagioclase crystalls up to 1cm. Moderatelly fractured in small intervals. Scattered patches of K-feldspar alteration of plagioclase							
			5.20 5.35 Fracture zone							
			6.72 Fracture LCA=40°							
			7.55 7.70 Fracture zone							
			8.30 8.45 Fracture zone							
			9.25 Fracture LCA≠30°							
	10.10	0001/	12.90 Contact LCA=65°							
12,90	13.13	DBDK	UIABASE DYKE - Matic dyke, brecciated with calcite and qtz veinlets. I races of sulphides (Py) 12.90 Contact I CA=65°							
13.13	13.23	QFP	COARSE CRYSTALLINE QUARTZ-FELDSPAR PORPHYRY - Broken coreup to 20cms in size, Barren							
13,23	14.10	DBDK	DIABASE DYKE - Medium to fine grained dark green rock crosscut by few calcite veinlets					_		
			13.90 Fracture LCA≈65°							
14.10	16.53	QFP	COARSE CRYSTALLINE QUARTZ-FELDSPAR PORPHYRY - With biotite/chlorite in matrix and irregular distribution of K-feldspar altered plagioclase							
			15.20 Fracture LCA=60°							
			15.70 Fracture LCA≈30°							
			16.10 Fracture LCA=27°							
			16.53 Contact LCA=7°							
16.53	16.70	DBDK	MEDIUM TO FINE GRAINED MAFIC DYKE							
			16.53 Contact LCA=7°							
			16.58 Fracture LCA=30°							
			16.70 Contact LCA=60°							
16.70	22.65	QFP	COARSE CRYSTALLINE QUARTZ-FELDSPAR PORPHYRY - Of similar characteristics as above QFP interval, Irregular distribution of K-feld increasing towards the bottom of interval							
			16.70 Contact LCA=60°							
			18.00 Fracture LCA=55°							
			19.20 19.35 Broken core (mod to strongly fractured)							
			21.50 Fracture LCA=65°							
22,65	25.00	QFP	ALTERED QUARTZ-FELDSPAR PORPHYRY			-				
			22.65 23.00 Strongly silicified QFP interval associated with a 0.5cms calcite/chlorite vein 5° to core axis along this interval. No mineralization found except traces of sulphides. LCA=5°							
			23.00 24.63 K-altered QFP, Moderatelly altered interval. Approx. 25% of interval and patches of silicified QFP associated with fractures.							
			24.30 Fracture LCA=70°							
			24.63 25.00 Strongly silicified QFP with feldspar crystals faded to completely gone. Silicification intensifies to the bottom,							
			25.00 Contact LCA=45°							
25.00	25.68	SHR	SHEAR ZONE - Shear shows original porphyritic texture of QFP							
			25.00 Contact LCA=45°	20453	25.00	25.68	0.68	30.01		

Printed: 7/05/06 11:51:06 AM

Jiamong Unii Log - NB-VO-EC (-VO)iamond	Drill L	oa - KB-	06-E	C1-06
----------------------------------	---------	---------	----------	------	-------

								μ	lamona prili	Log - KB	-00-201-00
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppm)	F e (%)	As(ppm)
25,68	25.88	FLT	FAULT ZONE - W	ith qtz-calcite-chlorite replacement (70%) and minor sulphides.							
			25.88	Contact LCA=30°	20454	25.68	25.88	0.20	0.01		
25,88	27.70	QFP	ALTERED QUART	Z-FELDSPAR PORPHYRY			_				
			25.88 26.58	Partially and moreratelly silicified with minor chlorite-carbonate alteretion. Original porphyritic texture remains in patches	20455	25.88	26.17	0.29	0.02		
			25.88	Contact LCA=30°							
			26.58 27.70	Moderately silicified QFP. Coarse crystalline texture remains by evidence of faded feldspar crystals							
			26.58	Fracture - contact LCA=40°							
27.70	30.75	QFP	FRESH QUARTZ- last 5cms of interv	FELDSPAR PORPHYRY - Unaltered QFP with weak silicification in the al.							
			30.40	Fracture LCA=30°							
			30.75	Contact LCA=90°							
30.75	31.52	DBDK	MAFIC VOLCANI	CS/DYKE? - Dark green rock crosscut by several calcite veins							
			30.75	Contact LCA=90°							
			31.52	Contact LCA=60°				_			
31.52	49.65	QFP	FRESH QUARTZ-	FELDSPAR PORPHYRY - Coarse crystalline QFP							
			31.52	Contact LCA=60°							
			36.30	Fracture LCA≈50°							
			47.60	Moderate k-feldspar alteration in QFP along ~0.5cm vein LCA=48°							
			47.70	Vein LCA=25°							
			49.00	Vein with silicification LCA=90°							
49.65	49.85	QFP	ALTERED QUAR	TZ-FELDSPAR PORPHYRY - Strongly silicified QFP associated with							
			veins of qtz and ca	rbonate							
			49.85	Quartz vein LCA=35°							
49.85	60.00	QFP	FRESH QUARTZ	FELDSPAR PORPHYRY - With sporadic f-feldspar ateration and							
			crosscuting veins	with associated silicification halo							
			49.85	Quartz vein LCA=35							
			54.10	Fracture with sulcification LCA=15"							
			56.00	Quartz vein LCA=50°							

- END OF HOLE -Am Ly Wahl

<u>Drill Hole ID</u>	KB-07-	EC1-07	<u>Property</u> Township	King Bay Fourbay Lake Area		<u>NTS</u> <u>District</u>	52J2 Thunder	Вау	
Collar Location	Easting: Northing: Elevation: Projection:	658615.4 r 5543251.0 r 408.0 r NAD27 Zone	mE Gri mN n 15N	d: 720.0 m 531.0 m	Azimut Dip: Lenght	h: 60.0 ° -75.0 ° 110.00 m	Hole Sta Date Sta Date Fin CLAIr	atus: Completed arted: February-23-07 nished: February-24-07 n AL 369	
Purpose of Hole Investigate Anomaly	EC1							Proposed depth:	m
Depth(m) Azimut	<u>vey Data</u> th Dip	Method	Dri Contractor: Hole Type: Core Size: Drill Rig: Casing Left: Comments	Downing Drilling DD NQ LF-70	m	Logging Geology Logged Geotechnical Lo Sampling by: Horizontal Trace Vertical Trace:	and Samp I by: ogging by:	John Wahl John Wahl	m

FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(g/t)	Fe(%)	As(ppm)
0.00	6.00	OVB	WATER + OVERBURDEN							<u> </u>
6.00	16.15	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-4.03-7.14, 9.74-10.00, 10.50- 10.68, 11.37-11.55, 12.18-12.24, 14.47-14.537.037.14 Alteration9.7410.00 Alteration10.5010.68 Alteration11.3711.55 Alteration12.1812.24 Alteration14.4714.53 Alteration							
16.15	18.10	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @45°TCA.							
18.10	21.00	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @15°TCA			_				
21.00	22,88	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @45°TCA.							
22.88	38,62	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings ypically regional in character with isolated anomalous readings, fracture controlled alteration across the following intervals:-23.89-23.98, 24.20-24.26, 25.87-26.62, 26.72-26.75, 27.89-27.97, 28.06-28.14, 28.68-28.90, 30.18-30.29, 34.43-34.48, 35.94-35.88, 37.07-37.11, 37.45-37.63, 38.08-38.13, upper contact @45°TCA 23.89 23.98 Alteration 24.20 24.26 Alteration 25.87 26.62 Alteration 26.72 26.75 Alteration 26.72 26.75 Alteration 26.72 26.75 Alteration 28.06 28.14 Alteration 26.72 26.75 Alteration 27.89 27.97 Alteration 28.06 28.14 Alteration 28.06 28.14 Alteration 28.06 28.14 Alteration 30.18 30.29 Alteration 31.43 34.48 Alteration 35.84 35.88 Alteration 37.07 37.11 Alteration 37.03 34.63 Alteration 38.09 38.13 Alteration							
38.62	39.11	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA.							
39.11	49,78	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-46.30-46.35, 46.51-46.63, 47.96-48.02, upper contact @30°TCA 46.30 46.35 Alteration 46.51 46.63 Alteration 47.96 48.02 Alteration							

								/ia///			-07-EC1-07
FROM	то	CODE	DESCRIPTION	Sample	From	To	1	nt	Au(g/t)	Fe(%)	As(ppm)
49.78	50.75	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @30°TCA.								
50.75	57.70	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-53.02-53.09, 53.27-53.34, 54.43-54.50, upper contact @30°TCA 53.02 53.09 Alteration 53.27 53.34 Alteration 53.27 53.34 Alteration 54.43 54.50 Alteration								
57.70	57.96	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact @45°TCA.				_				
57.96	58.71	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, unaltered, upper contact @60°TCA								
58.71	63.17	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility regional in character, upper contact broken core.								
63.17	69.70	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, white quartz vein between 68.90-69.45m sampled, fracture controlled alteration across the following intervals:-64.04-64.25, 66.71-66.89, 67.04-67.15, upper contact @30°TCA 64.0464.0464.2564.7166.8966.7166.8967.0467.1567.0467.1568.9069.45White quartz vein	B020696	68.90	69.4	15	0.55	5 0.03	2	
69.70	72.75	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, shear zone, magnetic susceptibility regional in character, upper contact @10°TCA.								
72.75	95.21	QFP	QUARTZ FELDSPAR PORPHYRY - Magnetic susceptibility readings regional in character, fracture controlled alteration across the following intervals:-82.29-82.73, 84.92-85.69, 86.47- 86.57, 86.79-86.82, 87.49-89.60, 90.42-90.48, 90.86-90.93, 92.83-93.05, upper contact (@10°TCA82.2982.73Alteration84.9285.69Alteration86.4786.57Alteration86.4786.57Alteration86.7986.82Alteration89.4989.60Alteration90.4290.48Alteration90.4391.93Alteration90.8690.93Alteration92.8393.05Alteration								
95.21	103,70	BAS	MAFIC VOLCANIC - BASALT - Fine grained, massive, grey green, magnetic susceptibility								

---- END OF HOLE ----

AM Ju Ul

Printed: 11/02/2008 12:58:03 PM

APPENDIX III

Assay Results & Certificates of Analysis

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CONQUEST RESOURCES LIMITED 111 RICHMOND ST. WEST SUITE 1002 TORONTO ON M5H 2G4 Page: 1 Finalized Date: 5-MAY-2006 Account: CONRES

CERTIFICATE	TB06037477
-------------	------------

Project: TB06023295 Metallics Run								
P.O. No.:								
This report is for 3 Pulp samples submitted to our lab in Thunder Bay, ON, Canada on 1-MAY-2006.								
The following have access to data associated with this certificate:								
MR. CHAVEZ ERICK MR. TERENCE MCKILLEN								

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION	•				
SCR-21	Screen to -100 um	· · · · · · · · · · · · · · · · · · ·				

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
Au-SCR21	Au Screen Fire Assay - 100 um	WST-SIM
Au-AA25	Ore Grade Au 30g FA AA finish	AAS
Au-AA25D	Ore Grade Au 30g FA AA Dup	AAS

To: CONQUEST RESOURCES LIMITED ATTN: MR. CHAVEZ ERICK 111 RICHMOND ST. WEST SUITE 1002 TORONTO ON M5H 2G4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Geor Ros

Signature: Keith Rogers, Executive Manager Vancouver Laboratory

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: CONQUEST RESOURCES LIMITED 111 RICHMOND ST. WEST SUITE 1002 TORONTO ON M5H 2G4

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 5-MAY-2006 Account: CONRES

TB06037477

Project: TB06023295 Metallics Run

CERTIFICATE OF ANALYSIS

Au-SCR21 Au-SCR21 Au-SCR21 Au-SCR21 Au-SCR21 Au-SCR21 Au-AA25 Au-AA25D Method Analyte Au Total Au (+) F Au (-) F Au (+) m WT. + Fr WT. - Fr Au Au Units ppm ppm ppm тg ppm g g ppm Sample Description LOR 0,05 0,05 0,05 0,001 0,01 0,1 0,01 0.01 B020471 6.78 33.8 4.92 4.73 0.208 6,16 80,9 4.54 B020486 2290 39.2 28.7 0.642 D,28 59,8 30.2 27.2 B020487 12.05 21.7 11.30 0.251 11,56 147.5 11,40 11,20

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd,

212 Brocksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CONQUEST RESOURCES LIMITED SUITE 1002, 111 RICHMOND ST. WEST TORONTO ON M5H 2G4 Page: 1 Finalized Date: 24-MAR-2006 Account: CONRES

CERTIFICATE TB06023295	SAMPLE PREPARATION			
	ALS CODE	DESCRIPTION		
Project: King Bay	WEI-21	Received Sample Weight		
P.O. No.:	LOG-24	Pulp Login - Rcd w/o Barcode		
on 21-MAR-2006.	LOG-22	Sample login - Rcd w/o BarCode		
The following have access to data associated with this certificate:	CRU-31	Fine crushing - 70% <2mm Solit sample - riffle solitter		
ERICK CHAVEZ MR. TERENCE MCKILLEN	PUL-31	Pulverize split to 85% <75 um		

ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT					
Au-AA25	Ore Grade Au 30g FA AA finish	AAS					

To: CONQUEST RESOURCES LIMITED ATTN: ERICK CHAVEZ 161 OAKWOOD AVE. APARTMENT 202 TORONTO ON M6E 2V2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CONQUEST RESOURCES LIMITED SUITE 1002, 111 RICHMOND ST. WEST TORONTO ON M5H 2G4 Page: 2 - A Total # Pages: 3 (A) Finalized Date: 24-MAR-2006 Account: CONRES

Project: King Bay

CERTIFICATE OF ANALYSIS TB06023295

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0,02	Au-AA25 Au ppm 0.01	
B020451 B020452 B020453 B020454 B020455		0.96 0.93 0.58 0.28 0.40	0.01 <0.01 0.01 <0.01 0.02	
B020458 B020457 B020458 B020459 B020460		0.37 0.28 0.41 0.38 0.14	0.01 0.01 0.03 1.76 0.01	
B020461 B020462 B020463 B020464 B020465		0.37 0.13 0.25 0.09 0.17	0.10 0.23 0.23 10.00 0.01	
B020466 B020467 B020468 B020469 B020469		0.34 0.17 0.36 0.17 0.11	0.79 0.04 0.10 0.02 0.11	
B020471 B020472 B020473 B020473 B020474 B020475		0.18 0.23 0.17 0.23 0.21	5.75 0.02 0.48 2.20 0.01	
B020476 B020477 B020478 B020479 B020479		0.24 0.21 0.17 0.25 0.28	0.04 0.01 1.11 0.01 0.01	
B020481 B020462 B020483 B020484 B020484		0,19 0,19 0,19 0,31 0,34	0.01 0.10 <0.01 0.02 0.06	
B020486 B020487 B020486 B020489 B020499		0.18 0.27 0.37 0.09 0.25	43.0 12.00 0.12 20.6 0.21	

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd,

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CONQUEST RESOURCES LIMITED SUITE 1002, 111 RICHMOND ST. WEST TORONTO ON M5H 2G4 Page: 3 - A Total # Pages: 3 (A) Finalized Date: 24-MAR-2006 Account: CONRES

Project: King Bay

CERTIFICATE OF ANALYSIS TB06023295

Sample Description	Nethod Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA25 Au ppm 0.01							
B020491 B020492 B020493 B020494 B020495		0,78 0,65 0,45 0,25 Not Recvd	0.10 0.09 0.06 0.02							
B020496 B020497 B020498 B020499 B020500		0.31 1.07 0.48 0.18 0.32	0.01 0.01 <0.01 0.01 <0.01							
B020501 B020502 B020503		0.44 0.23 0.28	0.03 0.15 0.02							
								I		

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Tuesday, February 13, 2007

Conquest Resources Ltc Suite 1002, 111 Richmo Toronto, ON, CAN M5H2G4	l. ond St. West	Date Rece Date Compl Refere	-07 -07)241			
Ph#: (416)362-8243 Eax#: (416)368-5344		Sam	ple #: 94	Core		
Email terence_mckillen@con	nquestresources.net, whitelaw_brett@					
		A	۸	A		
Accurassay #	Client Id	Au	oz/t	a/t (ppm)		
19898	B020551	<5	<0.001	<0.005		
19899	B020552	<5	<0.001	<0.005		
19900	B020553	286	0.008	0.286		
19901	B020554	14	<0.001	0.014		
19902	B020555	41	0.001	0.041		
19903	B020556	15	<0.001	0.015		
19904	B020557	6	<0.001	0.006		
19905	B020558	44	0.001	0.044		
19906 Check	B020558	44	0.001	0.044		
19907	B020559	<5	<0.001	<0.005		
19908	B020560	24	<0.001	0.024		
19909	B020561	3397	0.099	3.397		
19910	B020562	23623	0.689	23.623		
19911	B020563	122	0.004	0.122		
19912	B020564	1311	0.038	1.311		
19913	B020565	28	<0.001	0.028		
19914	B020566	16	<0.001	0.016		
19915	B020567	9	< 0.001	0.009		
19916	B020568	12	<0.001	0.012		
19917 Check	B020568	17	<0.001	0.017		
19918	B020569	<5	<0.001	<0.005		
19919	B020570	3407	0.099	3.407		
19920	B020571	7	<0.001	0.007		

PROCEDURE CODES: AL4AU3 Certified By:

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written

Page 1 of 5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Tuesday, February 13, 2007

Conquest Resources Lt Suite 1002, 111 Richm Toronto, ON, CAN M5H2G4 Ph#: (416) 362-8243 Fax#: (416) 368-5344 Email terence_mckillen@ct	d. ond St. West onquestresources.net, whitelaw_brett@	Date Received : 08-Feb-07 Date Completed : 13-Feb-07 Job # 200740241 Reference : Sample #: 94 Core					
	Client Id	Au	Au	Au			
Accurassay #		ррр	oz/t	g/t (ppm)			
19921	B020572	44	0.001	0.044			
19922	B020573	23	<0.001	0.023			
19923	B020574	854	0.025	0.854			
19924	B020575	46	0.001	0.046			
19925	B020576	62	0.002	0.062			
19926	B020577	32	<0.001	0.032			
19927	B020578	20	<0.001	0.020			
19928 Check	B020578	29	< 0.001	0.029			
19929	B020579	99	0.003	0.099			
19930	B020580	72	0.002	0.072			
19931	B020581	20	< 0.001	0.020			
19932	B020582	26	<0.001	0.026			
19933	B020583	28	<0.001	0.028			
19934	B020584	36	0.001	0.036			
19935	B020585	35	0.001	0.035			
1 993 6	B020586	46	0.001	0.046			
19937	B020587	35	0.001	0.035			
19938	B020588	165	0.005	0.165			
19939 Check	B020588	218	0.006	0.218			
19940	B020589	1130	0.033	1.130			
19941	B020590	16205	0.473	16.205			
19942	B020591	62	0.002	0.062			
19943	B020592	119	0.003	0.119			

PROCEDURE CODES: AL4AU3 Certified By:

Page 2 of 5

The results included on this report relate only to the items tested

Derek Demianiuk H.Bsc., Laboratory Manager

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0449-02/13/2007 11:18 AM

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Tuesday, February 13, 2007

Conquest Resources Ltd.	Date Received : 08-Feb-07					
Suite 1002, 111 Richmond St. West	Date Completed : 13-Feb-07					
Toronto, ON, CAN	Job # 20074	0241				
M5H2G4	Reference :					
Ph#: (416) 362-8243	Sample # 94	Core				
Fax#: (416) 368-5344		00.0				
Email terence_mckillen@conquestresources.net, whitelaw_brett@						
	A., A.,	A.,				

A		Client Id	Au	Au	Au
Accurassay #			ppp	oz/t	g/t (ppm)
19944		B020593	48	0.001	0.048
19945		B020594	356	0.010	0.356
19946		B020595	74554	2.175	74.554
19947		B020596	117	0.003	0.117
19948		B020597	16	< 0.001	0.016
19949		B020598	7	< 0.001	0.007
19950	Check	B020598	<5	<0.001	<0.005
19951		B020599	13	< 0.001	0.013
19952		B020600	19	<0.001	0.019
19953		B020601	20	<0.001	0.020
19954		B020602	142	0.004	0.142
19955		B020603	85	0.002	0.085
19956		B020604	14	<0.001	0.014
19957		B020605	69	0.002	0.069
19958		B020606	1017	0.030	1.017
19959		B020607	2131	0.062	2.131
19960		B020608	231	0.007	0.231
1996	Check	B020608	265	0.008	0.265
19962		B020609	119	0.003	0.119
1 996 3		B020610	67	0.002	0.067
19964		B020611	37	0.001	0.037
19965		B020612	37	0.001	0.037
19966		B020613	23	<0.001	0.023

PROCEDURE CODES: AL4AU3 Certified By

The results included on this report relate only to the items tested

Page 3 of 5

Derek Demianluk H.Bsc., Laboratory Manager

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0449-02/13/2007 11 18 AM

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Tuesday, February 13, 2007

Conquest Resources Ltd.	Date Received : 08-Feb-07				
Suite 1002, 111 Richmond St. West	Date Completed : 13-Feb-07				
Toronto, ON, CAN	Job # 200740241				
M5H2G4	Reference :				
Ph#: (416) 362-8243	Sample #: 94	Core			
Fax#: (416) 368-5344		00.0			
Email terence_mckillen@conquestresources.net, whitelaw_brett@					
			_		

• • • • • •				Au	Au	Au
Accurassay #		Client Id		ррb	oz/t	g/t (ppm)
19967		B020614		102	0.003	0.102
19968		B020615		517	0.015	0.517
19969		B020616		218	0.006	0.218
1 997 0		B020617		190	0.006	0.190
19971		B020618	1	387	0.040	1.387
19972	Check	B020618	I	611	0.047	1.611
19973		B020619		22	<0.001	0.022
19974		B020620		14	<0.001	0.014
19975		B020621		59	0.002	0.059
19976		B020622		157	0.005	0.157
19977		B020623	I	869	0.055	1.869
19978		B020624		78	0.002	0.078
19979		B020625		15	< 0.001	0.015
19980		B020626	:	321	0.009	0.321
19981		B020627		13	<0.001	0.013
19982		B020628	:	262	0.008	0.262
19983	Check	B020628	:	230	0.007	0.230
19984		B020629		41	0.001	0.041
19985		B020630	1:	8920	0.552	18.920
19986		B020631		10	<0.001	0.010
19987		B020632		49	0.001	0.049
19988		B020633		15	<0.001	0.015
19989		B020634		28	<0.001	0.028

PROCEDURE CODES: AL4AU3

Certified By:

The results included on this report relate only to the items tested

Page 4 of 5

The Certificate of Analysis should not be reproduced except in full, without the written

Derek Demianluk H.Bsc., Laboratory Manager approval of the laboratory

AL903-0449-02/13/2007 11-18 AM

Tel: (807) 626-1630 Fax: [807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Tuesday, February 13, 2007

Conquest Resources Ltd.	Date Received : 08-Feb-07				
Suite 1002, 111 Richmond St. West	Date Completed : 13-Feb-07				
Toronto, ON, CAN	Job # 200740241				
M5H2G4	Reference :				
Ph#: (416) 362-8243	Sample #: 94	Core			
Fax#: (416) 368-5344	Gample #. 94	COIC			
Email terence_mckillen@conquestresources.net, whitelaw_brett@					

• "		Au	Au	Au	
Accurassay #	Client Id	ppb	oz/t	g/t (ppm)	
19990	B020635	17136	0.500	17.136	
19991	B020636	84	0.002	0.084	
19992	B020637	870	0.025	0.870	
19993	B020638	58	0.002	0.058	
19994 Check	B020638	83	0.002	0.083	
19995	B020639	243	0.007	0.243	
19996	B020640	1	No Sample		
19997	B020641	150	0.004	0.150	
19998	B020642	58	0.002	0.058	
19999	B020643	26	<0.001	0.026	
20000	B020644	18	< 0.001	0.018	

PROCEDURE CODES: AL4AU3 Certified By

Page 5 of 5

The results included on this report relate only to the items tested

Derek Demianiuk H.Bsc., Laboratory Manager

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-0449-02/13/2007 11 18 AM

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Wednesday, March 07, 2007

Conquest Resources Ltd.	Date Received : 21-Fel	-07	
Suite 1002, 111 Richmond St. West	Date Completed : 07-Mar-07		
Toronto, ON, CAN	Job # 200740391		
M5H2G4	Reference :		
Ph#: (416) 362-8243	Sample #: 48	Core	
Fax#: (416) 368-5344	oumpion: 40	0010	
Email terence_mckillen@conquestresources.net, whitelaw_brett@			

			Au	Au	Au	
Accurassay #		Client Id	ppb	oz/t	g/t (ppm)	
32575		B020640	68620	2.002	68.620	
32576		B020645	169	0.005	0.169	
32577		B020646	31	< 0.001	0.031	
32578		B020647	23	<0.001	0.023	
32579		B020648	2854	0.083	2.854	
32580		B020649	11	< 0.001	0.011	
32581		B020650	33	<0.001	0.033	
32582		B020651	7	< 0.001	0.007	
32583		B020652	1728	0.050	1.728	
32584		B020653	259	0.008	0.259	
32585	Check	B020653	240	0.007	0.240	
32586		B020654	2578	0.075	2.578	
32587		B020655	755	0.022	0.755	
32588		B020656	10	<0.001	0.010	
32589		B020657	5	<0.001	0.005	
32590		B020658	<5	< 0.001	< 0.005	
32591		B020659	12	< 0.001	0.012	
32592		B020660	8	<0.001	0.007	
32593		B020661	8	<0.001	0.008	
32594		B020662	24	<0.001	0.024	
32595		B020663	90	0.003	0.090	
32596	Check	B020663	65	0.002	0.065	
32597		B020664	374	0.011	0.374	

PROCEDURE CODES: AL4AU3

Certified By: Derek Demianluk H.Bsc., Laboratory Manager

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory A1.903-0449-03/07/2007 09:16 AM

Page 1 of 3

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Wednesday, March 07, 2007

Conquest Resources Ltd.	Date Received : 21-Feb-07			
Suite 1002, 111 Richmond St. West	Date Completed : 07-Mar-07			
Toronto, ON, CAN	Job # 200740391			
M5H2G4	Reference :			
Ph#: (416) 362-8243	Sample #: 48	Core		
Fax#: (416) 368-5344				
Email terence_mckillen@conquestresources.net, whitelaw_brett@				

			Au	Au	Au
Accurassay #		Client Id	ррЪ	oz/t	g/t (ppm)
32598		B020665	3173	0.093	3.173
32599		B020666	95	0.003	0.095
32600		B020667	15	<0.001	0.015
32601		B020668	63	0.002	0.063
32602		B020669	<5	<0.001	<0.005
32603		B020670	10619	0.310	10.619
32604		B020671	<5	<0.001	<0.005
32605		B020672	11135	0.325	11.135
32606		B020673	220	0.006	0.220
32607	Check	B020673	255	0.007	0.255
32608		B020674	178	0.005	0.178
32609		B020675	98	0.003	0.098
32610		B020676	92	0.003	0.092
32611		B020677	9	<0.001	0.009
32612		B020678	65	0.002	0.065
32613		B020679	<5	<0.001	<0.005
32614		B020680	<5	<0.001	<0.005
32615		B020681	5	< 0.001	0.005
32616		B020682	<5	<0.001	<0.005
32617		B020683	13	<0.001	0.013
32618	Check	B020683	32	<0.001	0.032
32619		B020684	16	<0.001	0.016
32620		B020685	13	<0.001	0.013

PROCEDURE CODES: AL4AU3

) The results include

Page 2 of 3

Certified By: Derek Demianiuk H.Bsc., Laboratory Manager approva

The results included on this report relate only to the items tested

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory AL903-0449-03/07/2007 09 16 AM

Tel: (807) 626-1630 Fax: (807) 622-7571

4007

196

4139

www.accurassay.com assay@accurassay.com

4.007

0.196

4.139

0.117

0.006

0.121

Certificate of Analysis

Wednesday, March 07, 2007

32624

32625

32626

Conquest Resources I	.td.	Date Rece	Date Received : 21-Feb-07 Date Completed : 07-Mar-07 Job # 200740391				
Suite 1002, 111 Richr	nond St. West	Date Compl					
Toronto, ON, CAN							
M5H2G4		Refere	Reference :				
Ph#: (416) 362-8243		Sam	Sample #: 48				
Email terence_mckillen@	conquestresources.net, whitelaw_brett@						
•		Au	Au	Au			
Accurassay #	Client Id	ppb	oz/t	g/t (ppm)			
32621	B020686	23125	0.675	23.125			
32622	B020687	66	0.002	0.066			
32623	B020688	23	< 0.001	0.023			

PROCEDURE CODES: AL4AU3

Page 3 of 3

Certified By

The results included on this report relate only to the items tested

Derek Demianiuk H.Bsc., Laboratory Manager approval of

B020689

B020690

B020691

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory AL903-0449-03/07/2007 09:16 AM

Tel: (807) 626-1630 Fax: (807) 622-7571

22

18

28

www.accurassay.com assay@accurassay.com

0.022

0.018

0.028

< 0.001

< 0.001

<0.001

Certificate of Analysis

Monday, March 12, 2007

35497

35498

35499 Check

B020695

B020696

B020696

Conquest Resources Ltd. Suite 1002, 111 Richmond St. West Toronto, ON, CAN M5H2G4		Date Rece	Date Received : 26-Feb-07 Date Completed : 12-Mar-07			
		Date Compl				
		,	Job # 200740439 Reference :			
		Refere				
Ph#: (416) 362-8243		Samp	Sample #: 5			
Email terence_mckillen@	conquestresources.net, whitelaw_brett@					
		. Au	Au	Au		
Accurassay #	Client Id	ppb	oz/t	g/t (ppm)		
35494	B020692	19897	0.580	19.897		
35495	B020693	45	0.001	0.045		
35496	B020694	10	<0.001	0.010		

PROCEDURE CODES: AL4Au Certified By:

The results included on this report relate only to the items tested

Derek Demianiuk H.Bsc., Laboratory Manager approval of the laboratory

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory AL903-0449-03/12/2007 04:37 PM

Page 1 of 1