FIELD SAMPLING REPORT

ON THE KENORA URANIUM PROPERTIES FOR

GEOFORTUNE

RESOURCES CORP.

Kenora Mining Division

Ontario

NTS Maps 52E-16, 52F-13, -14, -15

by

John C. Archibald, P.Geo. October 28, 2014

TABLE OF CONTENTS

SUMMARY	
Introduction and Terms of Reference	3
Property Description and Location	3
Accessibility, Climate, Local Resources, Infrastructure and Physiography	8
History	8
Geological Setting	13
Deposit Types	15
Mineralization	20
Exploration	22
1: Preliminary Ground Check	17
2: Airborne Geophysical Survey results	26
Drilling	32
Sampling Method and Approach	32
Sample Preparation and Security	32
Data Corroboration	35
Adjacent Properties	27
Interpretation and Conclusions	33
Recommendations	34
References	36

List of Tables

Table 1: Claim Status	7
Table 2a: Mineral Deposit Index of Ontario- Uranium	9
Occcurrences near Kenora-Vermilion Bay	
Table 2b: Mineral Deposits Index of Ont.(Cont'd)	11
Table 3: Eagle Lake Area Data Set from OGS 2002	16
Table 4: Kenora East Geochemical Survey Correlations	
Table 5: Coordinates of the Airborne Geophysical	28
Survey (2006) Survey	
Table 6: Kenora Ground Check-up of Radiometric Anomalies Table 7: Kenora Ground Checkup of Radiometric Anomalies	21 22
Table 7a: Rock Sample Analysis- East of Kenora, Ontafter R. Laine 2006	23
Table 7b: Rock Sample Analysis- East of Kenora, Ontafter R. Laine 2006	24

List of Figures

Fig. 1: Location Plan – Geology of Ontario (after OGS –MNDM)	5
Fig. 2: Claim Location Plan of Geofortune Res. Corp. Clm. Gp.(Oct.15/14)	6
Fig. 3: Geology of Bridges Twp Harrison Lake Area	14
Fig. 4: Hawk Lake, Bee Lake, Richard Lake Areas – after R. Laine, 2006	28
Fig. 5: Bee & Petersun Lakes Areas by R. Laine	29
Fig. 6: Game and Cobble Lake Areas- R. Laine	30
Fig. 7: East Triangle & Petursun Lake Areas	31
Fig. 8a: Location Plan of Bridges Claim Gp.	58
Fig. 8b: Location Plan of Bridges Claim	59
Gp.(West Area)	
Fig. 8c: Sample Location Plan-Bridges Claims	60
Fig. 9: Location Plan of MacNicol Claims	61
Fig. 9a: Sample Location Plan- MacNicol Cls.	62
Fig. 10: Location Plan of Docker Cl. Group	63
Fig. 10a: Sample Location Plan – Docker Clms.	64
Fig.11: Geological Plan of Bridges Claim Gp.	72
Fig. 12: Geological Plan of Docker Cl. Group	73
Fig. 13 : Geological Plan of MacNicol Cl. Group	74

Appendices

- I: Photos of Property
- II: Laboratory Analyses Certificates
- III: Excepts from previous Reports: Maps and Plates

SUMMARY

Geofortune Resources Corp. is the owner of 100% interest in eight claims covering a total of approximately 736 hectares. Those claims are located about 60 km east of the town of Kenora and 20 km west of the town of Vermilion Bay, in northwestern Ontario. In all, 42 uranium occurrences are known in this part of Ontario and their location coincides with that of a large uranium anomaly in lake bottom sediments that had been previously carried out by the OGS of Ontario in 2004.

The Kenora properties are considered to have moderate potential to host uranium deposits because: known basement lithologies are favourable (leucogranitic peraluminous bodies); previous exploration has revealed the presence of uranium bearing rocks and one area has been the focus of diamond drilling an drifting in the mid 50's and 70's to evaluate a uranium bearing zone (Richard Lake); anomalous uranium values in lake bottom sediments and soil were discovered by the OGS in 2004. Exploration work in the mid 70's outlined a small uranium ore body close to Richard Lake in MacNicol Twp., just north of the Trans-Canada Highway 17 West approximately 60 kilometres from Kenora, Ontario.

In June 2006, an airborne geophysical survey commissioned by 4316282 Canada Inc., was completed by Terraquest and the radiometrics (Total Counts, Thorium, Uranium and potassium) gave areas with high count readings. A preliminary ground check was carried out during the site visit in July 2006, by Roger P. Laine, P.Geo., who discovered high radiometrics readings and significant assay results on some outcrops on the Company's claims.

Mr. Laine had recommended further exploration over the company's properties located in MacNicol, Docker, Tustin and Bridges Townships in his 2007 Technical Report. He indicated a first phase exploration program at that time to include ground prospecting to detect any areas of interest to be covered by a more detailed geological mapping program. Geological mapping would then be carried out in order to further outline zones to be tested in detail with percussion and diamond drilling (second and third phase). The total program was estimated to cost over \$1,525,000 dollars - \$408,000 for ground prospecting, \$483,000 for percussion and another roughly \$500,000 for diamond drilling.

The occurrence of a potential VMS sulphide-rich deposit on Zn-Pb-Ag along the Harrison Lake unconformity as well as a sub-parallel zone of low grade gold mineralization just north of the lake, makes the property unique in that there are multiple targets for exploration. It is this author's recommendation that further work should be carried out over the core group of claims to determine if significant base metal and gold-silver mineralization exists in economic quantities on the subject property. The quick reconnaissance of the property by the author during his visit from October 9th through 14th indicated some structural and geological evidence that this mineralization would be well worth spending further time and monies exploring.

The prospecting and subsequent analyses did not reveal any significant values in gold (less than Trace) and only mildly elevated values in uranium/thorium and rare earth elements taken from the peraluminous pegmatite dikes and rocks observed on the individual claim groups held by the Company.

One has just to revue the Tables and Results appended to this report (Samples from 914563 through to 914 579). Of these, samples 914563 to 914570 were taken over the Docker claim, samples 914571 to 914574 were taken from the MacNicol claim near Richard Lake and samples 914575 through to 914580 were taken from the Bridges claim group near Harrison Lake. Of these, only sample 914573 was elevated in rare earth elements and Ur/Th as it should have, being taken from the main pegmatite dike running through the adit on the Richard Lake prospect.

The prospecting was used as a first pass to determine just what significant exposures there were over the three claim groups. Most developed was the Richard Lake Ur/Th prospect which has several adits and a well exposed pegmatite dike which was enriched in Ur/Th and has a historical reserve of roughly 250,000 tons or uraniferous product (subeconomic today). The main showing is still covered by a patented claim and the main adit is presently being monitored and used as a bat sanctuary through the MNDM .

The other two (Docker and Bridges Twp.) claim groups have very little surface outcrop exposure except along ridges and road cuts. Off road the outcrops are limited, overgrown or poorly exposed due to overburden cover-although not deep and a backhoe could be used most effectively to cross-cut geological features.

The samples taken from the Docker claims were high in barite and strontium but insignificant in Ur/Th. This may not rule out other possible areas to be searched and sampled but generally the surface diking was not impressive or mineralized enough to give better results as observed by this author.

The Bridges claims were the most interesting and better developed through historical exploration work. They appeared to contain the right combination of geological units, airborne anomalies, and structural features. The past work included diamond drilling which produced some low but continuous gold numbers and VMS-sulphide intercepts over a fairly wide extent and significant intervals in the coring. The area where Noranda Exploration and Rio Algom had previously drilled off a number of airborne anomalies turned up both Zn-Pb-Cu and gold values over significant widths along a trend which extends for several kilometers. The author did not observe any of this evidence on surface after walking and prospecting along the north side of Harrison Lake in his trek over to the Cates Occurrence. There was only limited outcrop exposure, no evidence of stripping or trenching and only one drill-hole collar was found with casing still intact. The area does have the appearance that it occupies a major east-west structural feature (faulting) which extends both east and west through Harrison Lake between the contact between metasedimentary and metavolcanic units intercalated with pegmatite and highly sheared/myolinized. There is a major granitic intrusive to the south. This gives credence to a potential VMS-type deposition of base metals such as that found at the Willroy-Geco trend in the Manitouwadge area of Ontario. This author would recommend further ground work which would include stripping, trenching, sampling, soil geochemistry work and limited diamond drilling.

INTRODUCTION

Geofortune Resources Corp. contracted the writer to visit and report on his brief sampling of the subject property located in Bridges Twp., located some 25 kms. west of the town of Vermilion Bay, Northwestern Ontario. This was done to determine if the property had potential for VMS - massive sulphides, precious metals (gold and silver) and uranium potential and to recommend further work if the sampling program had warranted the effort.

The author reviewed much of the available assessment data covering the property that had been filed previously with the Ontario Geological Survey, Ministry of Northern Development and Mines as well as internal corporate documents covering the exploration carried out over the subject property during the past eight years. References to the material reviewed are included in References section of this report.

The author visited the property with his assistance from October 09 to October 14th, 2014 to sample and see for himself the geological terrain and identify some of the MDI features indicated to be located within the boundaries of the property. The author did find indications of the past drilling through drill-hole casings left by previous work and observed much of the peraluminous pegmatite diking and veining which has produced the elevated uraninite mineralization in the past. There was no evidence of the massive sulphide zones but these had only been found through diamond drilling geophysical targets in the past. There were a number of quartz-rich boudinaged veins cross-cutting the geological structures on the property and some of these were sampled by the author during his visit and subsequent analysis was done an accredited lab (Act Lab of Ancaster, Ont.) for determination of their gold, silver and multi-element content.(see Results Section)

Property Description and Location

The Bridges Property consists of eight mineral dispositions (claims) totalling 46 claim units and roughly 736 hectares or 1840 acres.

The claims can be viewed on the Ontario topographic map 52F-13, -14 and -15, and on the OGS produced Claims Map G-0812.

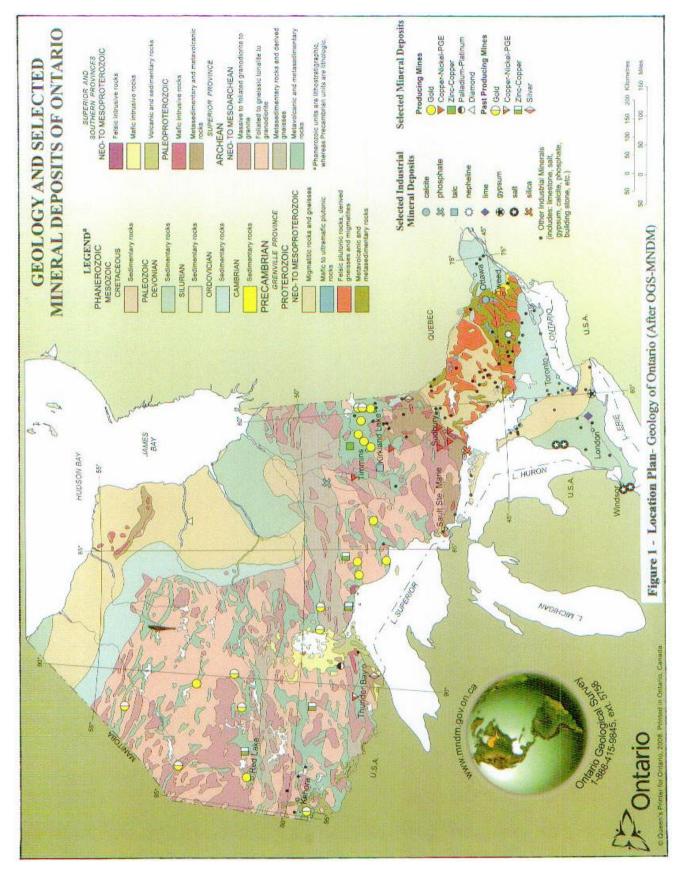
The claims are contiguous and briefly described in Table 1 in this report.

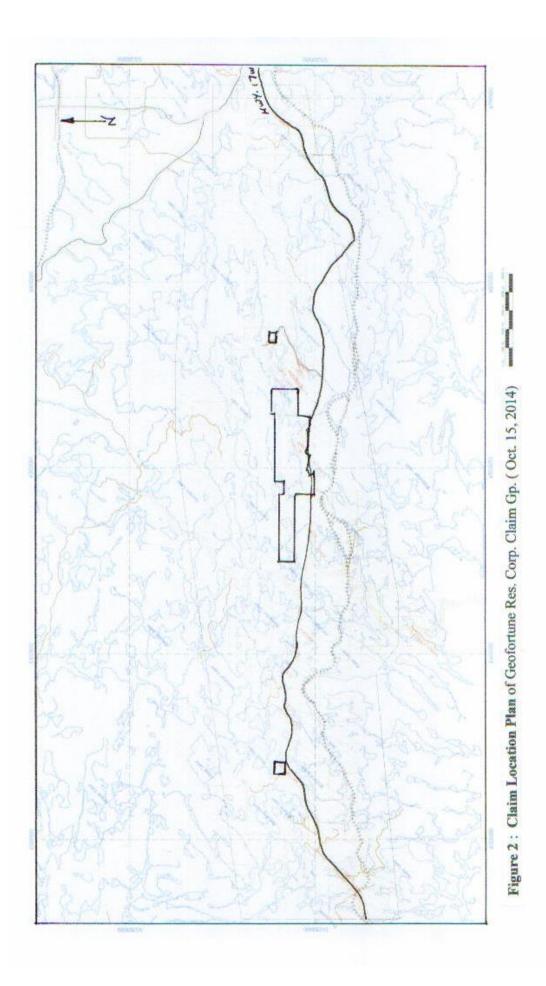
The claims are in good standing at the writing of this report and are held by

Geofortune Resources Corp. The earliest expiry date for any of the claims mining rights is December 12,

2014.

The government of Ontario requires any company doing exploration to spend a minimum of \$400 dollars per year per 16 hectare claim unit to maintain their mineral dispositions in good standing. In the interest of keeping the Bridges claims in good standing for another year, the commitment of \$18,400 in total for the full eight claims. Fortunately two are not requiring work until Feb. 14, 2016 and there is a number of Reserve credits available that can be filed on the claims which are contiguous from the Banked Reserve (\$20,000). Assessment reports, consisting of qualified ground work carried out over the claims, must be submitted annually in order to keep the mineral dispositions in good standing. Work


can also be banked and used as assessment credits at a later date.


The Mining Act of Ontario specifies that Mineral exploration activities on Crown land that do require a work permit under the Public Lands Act include:

* prospecting activities including clearing, mechanical stripping, bulk sampling, drilling and blasting; and the movement of heavy equipment, drilling rigs, etc.; and

* construction of a trail for mineral exploration purposes that all require the use of heavy equipment and have a significant impact on the environment.

Reconnaissance exploration work including geological mapping, hand sampling, small drill coring, geochemical soil sampling, ground geophysics and most non-destructive minimal disturbance activities such as line-cutting and gridding, would not require a work permit.

TABLE 1:						
Twp./Area	Claim Number	Recording Date	Claim Due Date	Status	Percent Option	Work Required
BRIDGES	<u>4259786</u>	2011-Jan-20	2015-Jan-20	A	100 %	\$ 3,600
BRIDGES	4259787	2011-Jan-20	2015-Jan-20	A	100 %	\$ 1,600
BRIDGES	<u>4261016</u>	2011-Jan-20	2015-Jan-20	A	100 %	\$ 1,600
BRIDGES	4261017	2011-Jan-20	2015-Jan-20	A	100 %	\$ 2,000
BRIDGES	<u>4262675</u>	2011-Dec-12	2014-Dec-12	A	100 %	\$ 1,600
BRIDGES	4262676	2011-Dec-12	2014-Dec-12	A	100 %	\$ 800
BRIDGES	<u>4277966</u>	2014-Feb-14	2007-Feb-14	A	100 %	\$ 4,000
BRIDGES	4277967	2014-Feb-14	2007-Feb-14	A	100 %	\$ 3,200
MACNICOL	4273745	2013-Jan-04	2015-Jan-04	A	100 %	\$1,600
DOCKER	4277968	2014-Feb-14	2016-Feb-14	A	100%	\$ 800

Accessibility, Climate, Local Resources, Infrastructure and Physiography

The properties are located about 60 km east of the town of Kenora, northwestern Ontario and approximately 300 km east of the city of Winnipeg in Manitoba, Canada. Winnipeg (population 700,000) is serviced by scheduled commercial airlines and highways. Access to the properties is by Trans-Canada Highway (Highway 17 West); the main lines of the Canadian Pacific Railway cross the area to the south and the Canadian National Railway lines cross the south part of the area. Power lines and the Tans-Canada pipeline run approximately parallel to each other just south of Highway 17.

The climate varies from -50° C in winter to $+30^{\circ}$ in the summer. Freeze-up begins in late November and break-up occurs in mid to late April.

The maximum relief in the area is roughly 90 m between in the Eagle Lake area, at 363 m above sea level and the Cobble Lake area at 460 m above sea level. The topography is moderately rugged, and local relief rarely exceeds 46 m. West of the Tustin Township and west of Cobble Lake, the watershed flows west into Lake of the Woods and the Winnipeg River; east of Tustin Township, the watershed flows east into the Wabigoon River system.

History

Most of the claims held by Geofortune Resources Corp. have been for their mineral potential and to date have not been developed mined or exploited for their mineral content.

<u>Previous Work:</u> Ground prospecting found numerous radioactive anomalies some of which included trenching, drilling and drifting from the mid 1950's to the late 1960's. There are 42 known radioactive occurrences in the Kenora east area, as shown in Table 2 and Fig. 1. Companies involved in

Uranium exploration were: New Campbell Island Mines, Tustin Mines Ltd, Olympia Mines Ltd,

Coulee Lead and Zinc Mines, Noranda Mines, Kenoratomic Mines Ltd, Quebec Ascot Copper Corp.,

MDI 2	MDI 1	Names	Other Names	Metal	EASTING	NORTHING	NTS Sheet
MDI52E16SE00004	K0059	Campbell- Macfarlane	HAWK LAKE	U	427832	5518208	52E16
MDI52F13SE00046	K 0145	Coulee Lead & Zinc	GAME LAKE	U - TH	455464	5521153	52F13SE
MDI52F13SE00047	K 0154	FAIRSERVICE	Noranda, Sherrit Gordon	U	450442	5520218	52F13SE
MDI52F13SE00049	K0181	Kimber Lake East		U	458916	5521264	52F13SE
MDI52F13SE00052	K 0266	WILSON, A.L.		U	451518	5521007	52F13SE
MDI52F13SE00053	K0993	Game Lake East		U	455620	5522178	52F13SE
MDI52F13SE00054	K 0368	HEADWAY		U	451450	5521339	52F13SE
MDI52F13SE00055	K 0420	PARTH, L.		U	446938	5520531	52F13SE
MDI52F13SE00058	K 0302	GAME LAKE		U	454960	5522232	52F13SE
MDI52F13SE00059	K0994	Kimber Lake East		U	455558	5520645	52F13SE
MDI52F13SE00060	K0995	COULEE AREA A		U, Th	454874	5521648	52F13SE
MDI52F13SE00061	K0996	COULEE AREA D		U	455372	5521532	52F13SE
MDI52F13SE00062	K0997	COULEE AREA		U, Th	454989	5521254	52F13SE
MDI52F13SE00063	K0998	COULEE AREA H		U, Th	454593		52F13SE
MDI52F13SE00064	K0999	COULEE AREA O		U, Th	455968		52F13SE
MDI52F13SW00040	K 0122		QUEBEC ASCOT	Ú	437496		52F13SW
MDI52F13SW00041	K 0131			U	439384		52F13SW
MDI52F13SW00042	K 0179			U	433708		52F13SW
MDI52F13SW00044	K 0211	New Cambell Island	RICHARD LAKE	U	434155		52F13SW
MDI52F13SW00046	K 0344		FAIRSERVICE, R.	U	441182		52F13SW
MDI52F13SW00047	K 0363		,	U	441319		52F13SW
MDI52F13SW00049		Paddington Lake		U	445844		52F13SW
MDI52F13SW00050	K 0512	0		U	428371		52F13SW
MDI52F13SW00053		Hollinger East		U - Mo	428440		52F13SW
MDI52F13SW00055		BEE LAKE EAST		U	440437		52F13SW
MDI52F13SW00056	K 1021			U	436614		52F13SW
MDI52F13SW00057	K 1022			U	437216		52F13SW
MDI52F13SW00058	K 1022			U	440521		52F13SW
MDI52F14NW00009		QUIBELL	MEEHAN	U	467510		52F14NW
MDI52F14NW00010		BENCHMARK		U	475011		52F14NW
MDI52F14SW00026		JENSON, M.		U	469092		52F14SW
MDI52F14SW00027		Preston East Dome	MCLEOD	U	469202		52F14SW
MDI52F14SW00028		Bottle-Bay Zone N	MCLLOD	U	480268		52F14SW
MDI52F14SW00030		LOUDON		U	474256		52F14SW
MDI52F14SW00031		MACKLE - TEW		U	474659		52F14SW
MDI52F14SW00031 MDI52F14SW00032	K1004	Bottle-Bay Zone G		U	479871		52F14SW
MDI52F14SW00032	K1005	Bottle-Bay Zone F		U	480523		52F14SW
MDI52F14SW00034	K1006	Bottle-Bay-Zone M		U	480871		52F14SW
MDI52F14SW00035	K 1008			U	474688		52F14SW
MDI52F14SW00036	K 1007			U	475320		52F14SW
MDI52F15NW00004		RUGBY LAKE	BLUETTE LAKE	U	502260		52F15NW
MDI52F15NE00011	K 0488			U	527813		52F15NE

TABLE 2: Mineral Deposit Index of Ontario; Uranium Occurrences in Eastern Kenora District

Viceroy Uranium Corp. and Anschutz Uranium Corp in the mid 50's and 70's. Prospecting for base metals was conducted Alcok, Campbell Island Mines, Conquest Exploration Ltd, Selco, Falconbridge Nickel Mines, Noranda, Isenbaert, and Rio Algom sporadically from 1953 through 1990.

In the early 80's, Rio Algom explored the Game Lake area for copper-zinc sulphides.

In the 1990's, Noranda Exploration Company searched for sulphide mineralization in the Kimber Lake area by conducted horizontal loop electro-magnetic surveys (Felix, 1992).

In 2002, the Ontario Geological Survey completed an extensive campaign of lake-bottom sediment sampling over the area covered by the NTS sheets 52F-11, -13, -14, -15. 932 lake sites were sampled and analyzed for a suite of 50 elements including Uranium (Felix, 2005).

In 2004, Emerald Fields Resources Corporation explored the Game Lake area and still holds some claims.

<u>Results:</u> Previous exploration for uranium in the area led to the discovery of 42 occurrences mentioned in the Mineral Deposit Index of Ontario (see Table 2) of which some saw exploration in the form of trenching, drilling and even drifting. A brief description of each is shown below.

<u>The New Campbell Mines</u> (K0211) were the only occurrences with drifting and a resource model estimated at 590,000 tonnes of 0.10% U3O8 over a width of 3 m, and 210 m length, down to 300 m (Internal report from the company by A.S. Bayne, 1976).

Cautionary Disclaimer: The resources quoted in this section predates the NI 43-101 Guidelines and does not conform to the more stringent reporting requirements of the Guidelines and should not be relied upon with the same degree of accuracy.

The historical resource at the Richard Lake Occurrence has not been confirmed, but was based on reports and work carried out during that period of time. Two adits were excavated at the flank of the hill into the ore zone at the -50- and -100-foot levels with approximately 5,000 feet of core drilling, 525 feet of crosscutting, 430 feet of drifting and a 78 foot inclined drift (raise) from the lower to upper adit level. Lab analyses of 95 closely spaced samples across drift backs and walls in a 100-foot length averaged 1.8lb/ton U3O8. A mill-scale analysis (standard Bench Test) of 2,000 pounds of muck-car samples taken from the same drift section while mining (averaged 2.6lbs/ton U3O8) and; trenching (10 trenches in total). The historical estimate was taken from a report by A.S. Bayne, B.Sc., P.Eng., dated December 30, 1976, entitled "Report on Richard Lake Uranium Property, MacNicol Township, Kenora Mining Division, Ontario Canada – for Golden Standard Mines Limited". The tunnel entrances were observed by this author but no attempt was made to enter the workings.

<u>The Bee Lake Project</u> (K0131) saw 6 shallow diamond drill holes and 12 trenches over 150 m strike length in the pegmatite at the contact with metasediments.

<u>The Kimber Lake Occurrence</u> (K0994 to 999) saw 8 trenches over 400 meters along the contact between the metasediments and a pegmatite dike. The radiometric anomaly was followed over 1,200 m along the contact.

TABLE 2b: Mineral Deposit Index of Ontario; Uranium Occurrences in Eastern Kenora District; previous work

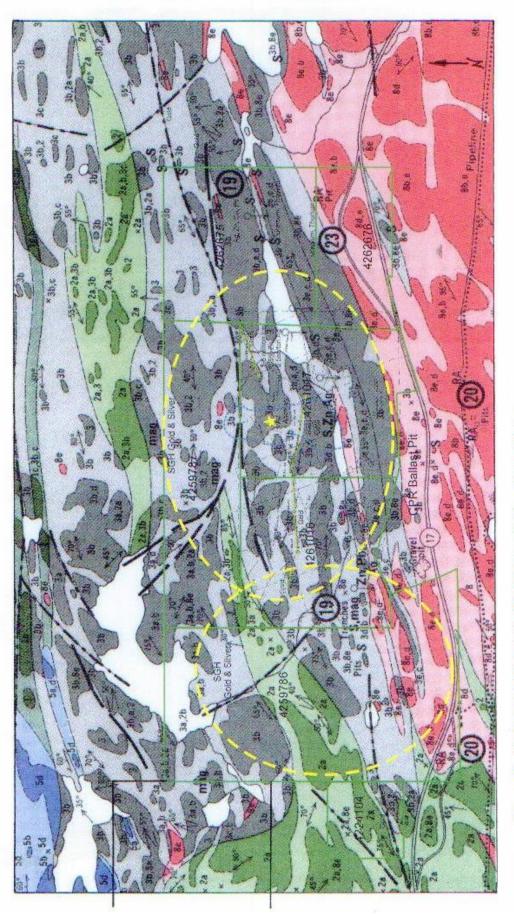
MDI 2	MDI 1	Names	Metal	Trench	DRILL	DRIFT	Best Assay
MDI52E16SE00004	K0059	HAWK LAKE	U	Yes	Y	0.02	
MDI52F13SE00046	K 0145	Coulee Lead & Zinc					
			U,				
MDI52F13SE00047	K 0154	FAIRSERVICE	Mo				0.05
MDI52F13SE00049		Kimber Lake East	U	8			0.17
MDI52F13SE00052	K 0266	WILSON, A.L.	U		1 DDH		
MDI52F13SE00053	K0993	GAME LAKE EAST					0.09
MDI52F13SE00054	K 0368	HEADWAY	U, Zn		1 DDH		0.20
MDI52F13SE00055	K 0420	PARTH, L.	U				0.13
MDI52F13SE00058	K 0302	GAME LAKE					
MDI52F13SE00059	K0994	Kimber Lake West			1.5m/0.08		0.42
MDI52F13SE00060	K0995	COULEE AREA "A"		Yes	4+2		0.08
MDI52F13SE00061	K0996	COULEE AREA "D"					0.04
MDI52F13SE00062	K0997	COULEE AREA "F"					0.03
MDI52F13SE00063	K0998	COULEE AREA "H"					0.17
MDI52F13SE00064	K0999	COULEE AREA "O"					
MDI52F13SW00040	K 0122	ASCOT	U	8			0.13
MDI52F13SW00041	K 0131	BEE LAKE	U, Mo	12			None
MDI52F13SW00042	K 0179	KENORATOMIC	U	2	10 DDH		0.10
MDI52F13SW00044	K 0211	New Cambell Island	U	10		Yes	
MDI52F13SW00046	K 0344	PINE ROAD					
MDI52F13SW00047	K 0363	Peturson Lake	U	5 Winkie		0.28	
MDI52F13SW00049	K 0509	Paddington Lake	U				0.50
MDI52F13SW00050	K 0512	FOOT LAKE			1 DDH	3m/0.07	
MDI52F13SW00053	K 0725	HOLLINGER EAST	U, Mo			10m/.19	
MDI52F13SW00055	K 1003	BEE LAKE EAST					
MDI52F13SW00056	K 1021	EARNGEY LAKE	U				
MDI52F13SW00057	K 1022	POACHER LAKE	U?				
MDI52F13SW00058	K 1023	Pine Road South	U?				
MDI52F14NW0000	K 0228	QUIBELL					
MDI52F14NW0001		BENCHMARK					
MDI52F14SW00026		JENSON, M.	U		1 DDH		0.09
MDI52F14SW00027		Preston East Dome	U	5	28 DDH		7.5m/0.28
MDI52F14SW00028		Bottle Bay Zone N	U	Y	1 DDH		0.08

MDI52F14SW00030	K 0508	LOUDON	U	11 M		11m/0.25
MDI52F14SW00031	K 0693	MACKLE - TEW	U			2.05
MDI52F14SW00032	K1004	Bottle Bay Zone G				0.15
MDI52F14SW00033	K1005	Bottle Bay Zone F	U	Y	1 DDH	0.15
MDI52F14SW00034	K1006	Bottle Bay Zone M				0.06
MDI52F14SW00035	K 1008	Waldhof Bay West	U			0.12
MDI52F14SW00036	K 1007	Waldhof Bay East	U			0.22
MDI52F15NW0000	K 1010	RUGBY LAKE				
MDI52F15NE00011	K 0488	DROPE				

<u>The Coulee Lead and Zinc Mines</u> (K0145) conducted radiometric survey in 1967 and found many anomalous zones near Game Lake (K0302). The area is underlain by metasediments intruded by felsic granitic rocks. Uranium mineralization is linked to pegmatites and erratically distributed in the pegmatites bodies.

There are many more occurrences, all showing the same kind of grades and limited extent (width and length), see Table 2b. Uranium associated with pink pegmatites bodies intruding the metasediments; the pegmatites are often hematized and show local enrichment in magnetite; often secondary yellow minerals are observed on the fractures.

The Lake-Bottom sediment survey outlined several areas with anomalous uranium values ranging from an average of 7.74 ppm with a median of only 3.75 ppm, up to 90 ppm. Two areas have values above 19 ppm (6 times the median, over twice the average): the western most and largest one (15 Km by 40 Km) covers a large portion of the townships of MacNicol to Langton, and it is where most of the previous radiometric showings (uranium) had been found in the past; and the eastern most is by Bluett Lake, Drope Township (See out of pocket Map 1). The largest anomaly, northwest of Eagle Lake, covers the metasedimentary volcanic belt of Bruin Lake, which is intruded by numerous dikes and sills of pegmatites and gabbros. Of the 865 samples that were analyzed for uranium, the latter element correlates with such elements as the Rare Earth (La, Eu, Y and Yb), Pb and Mo, to a lesser extend Ag, Cs, Cd. Uranium correlates negatively with Rb, Sn and Zr (see Table 3). Uranium does not correlates the samples from the westernmost and largest anomaly (307 samples only) that uranium correlates with Th (see Table 4); still there uranium correlates negatively with LOI (no links with organic matter content).


Known Deposits: Not Applicable

No production has been reported from these claims.

Geological Setting

All the rocks in the area are of Archean in age and belong to the Superior Province, (see Fig.1-Ontario Geological Map). One belt of volcanic rocks, regionally metamorphosed to lower amphibolite to upper greenschists facies forms an east-trending belt varying in width from about 2.8 km in the east (Langton Township), to 0.8 km in the west (MacNicol Township); see Map 1. Additional mapping has indicated the belt continues in a westerly direction up to Silver Lake.

This volcanic belt is bordered to the north by the English River subprovince and to the south by the Wabigoon subprovince, composed of distinct granitic batholiths with a complex history: the Lount Lake batholith to the north, and the Dryberry batholith to the south.

In the MacNicol, Tustin, Bridges, Docker and Langton townships, the metasedimentary sequence is composed of a mafic volcanic band, 1 to 2 km wide, with intercalated sandstones, argillites and siltstones, along with discontinuous bands of felsic to intermediate pyroclastics in the west (Tustin, Bridges) and flows (Docker); Map 2006-ON-01, included in this report. Throughout the area, the metasedimentary sequence is intruded by gabbro sills and pegmatite dikes. Numerous occurrences of copper and uranium mineralisation are known throughout the above townships, in association with the pegmatites. The pegmatite dikes vary greatly in size and shape, ranging from a meter to about 1,500 m in length and centimetres to 300 m in width; they often branch out and appear to follow the foliation, but locally they transect it.

Some late diabase dikes are reported to the southeast of the area of interest; they are dated 1,900 to 1,500 M.a. by Blackburn (1979); the granitic batholiths are dated at 2,600 to 2,500 M.a. It is considered that the large plutons predate most of the more potassic rocks that intrude the metasedimentary sequence.

Faulting is reported to be parallel and sometimes across the regional strike and has made it difficult to correlate the various volcanic and volcano-sedimentary units; therefore the stratigraphic column is not entirely clear.

Pleistocene glacial deposits are rare in the area. Lacustrine deposits are recent features.

Deposit Types

Based on existing geology one could expect deposits of the following types:

Bancroft Area, granitic pegmatites dikes in calcareous metasediments and gneiss (1.3 million tonnes of 0.11 U3O8) with uraninite associated with magnetite, hematite. A large pluton flanks the mineralized pegmatite en-echelon dykes transgressing the metasediments (Griffith, 1985).

- Beaverlodge vein type in granitic rocks, 500 to 1,000 thousand tonnes of 0.14 to 0.25 % U.; vein linked to major structural features (mylonites), and faults and the unconformity between the granitic Aphebian rocks and the Martin Helikian sediments. Pitchblende is the main uranium mineral and later than the main igneous or metamorphic activity (Tortosa and Langford, 1985). This part of Ontario is not known for multiple stage geological history except for the diabase dikes of the 1,900 M.a.

 Vein type uranium in granitic rocks and adjacent metasediments like in Western Europe; linked to alkaline granites along major structures, development of "Episyenite" by removal of quartz and introduction of albite, destruction of feldspar and replacement by Mg rich muscovite creating the "sponge" rocks. The veins are linked to major structural markers in "fertile" granite. These deposits vary in size from 5 to 10,000 tonnes of uranium metal at a grade of 0.15 to 0.3 % U.

- Michelin Type deposits in metavolcanic rocks (7,000 tonnes of uranium at a grade 0.11%): uranium disseminated in the sediments; albitization, hematization and carbonatisation accompany this type of deposits. Fluorite and molybdenum are often associated with uranium (Gandhi and Bell, 1995).
- Rössing type deposits is in the Damaran orogenic belt, composed of late Precambrian sedimentary and volcanic rocks (about 900 M.a. in age), intensely deformed and metamorphosed during the Damaran orogenic event about 510 M.a. ago. Quartzites, marbles, gneisses and schists are intruded numerous dikes of alaskites (leucogranitic rock resulting form anatexis), uraniferous granites and pegmatites; the deposit covers a large area 1.5 Km long and about 0.5 Km wide. The entire series is folded isoclinally along northwest-southwest axis. The deposit lies on the flank of a dome in the complex basin of domes and basins. Alaskite is present beyond the deposit limits and is not always uraniferous. The main mineral is uraninite (Guilbert and Park, 1986). At Rössing the tonnage is in the order of several hundred millions tonnes; the Rössing Uranium mine has been in operation since the mid-70's producing between 2,000 and 4,000 tonnes a year of U; current mine project is planning expansions to be in operations until 2025.

There are no known signs of regolith development which could point towards unconformity deposits (Saskatchewan) under the sandstones of the metasedimentary volcanic belt of the Kimber Lake area.

Mineralization

Previous work encountered mineralization in the form of yellow products (Uranophane or uranotyle) in all the showings. Uraninite was the only primary mineral recognized at Hawk Lake and New Campbell Mines.

Of the 42 known occurrences in the Kenora Project area (Table 2b), the most important uranium occurrences are considered to be those with extensive previous work programs, high-grade uranium mineralization or strong geological potential to host economic mineralization. These are: the Richard Lake Mine (New Campbell Mines); and the Hawk Lake; Bee Lake; Peturson Lake; Game Lake (Coulee Lead and Zinc Mines); Kimber Lake; Cobble Lake and Corner Lake occurrences.

Richard Lake Mine

The Richard Lake Mine is located in MacNicol Township and represents the most advanced prospect in the area. The uranium deposit, discovered in the early 1950's, occurs in Precambrian granites and granitic pegmatites intruding Archaean volcanic and sedimentary rocks. The mineralization is traceable in outcrop for over 300m, before disappearing under overburden, and was trenched over widths of up to 15 feet, although sections of up to 20 feet were commonly observed during drilling.

Uranium mineralization is associated with a series of parallel, magnetite-bearing pegmatite dikes, which are commonly hematized and intrude highly recrystallized, foliated to gneissic metavolcanics (Pryslak, 1976). Individual dikes vary in width from several inches (cm) to 30 feet (9 m) and occur in a zone that varies in width from 250 to 350 feet (76 to 110 m). The dikes trend east-northeast and dip steeply to the north. There appear to be five zones, with the most southerly two zones containing dykes of low grade material over widths of from 5 to 7 feet [1.5 to 2.1 m] (Baynes, 1976). Drilling has extended the southern zone to a vertical depth of 840 feet [256m] (Baynes, 1976). The two largest and most persistent zones occur in the central part of the formation, ranging in width from 10 to 20 feet [3 to 6m] as indicated by trenching, diamond-drilling, and underground work (Baynes, 1976). Sampling of underground workings and diamond drill core in these zones indicate a grade ranging from 0.08 percent to 0.14 percent U3O8, with a probable average of about 0.10 percent U3O8. Radioactive minerals include uraninite, uranothorite, allanite, and beta-uranotyle (Robertson, 1968).

Mining development commenced in 1955 in the form of two drifts, at the -50-foot and -100foot levels, totalling 525 feet of crosscutting and 430 feet of drifting. By 1956, the Company had failed to qualify the property as a "current supplier" of uranium, and operations were suspended.

Hawk Lake Occurrence

The Hawk Lake occurrence was discovered in 1949, and consists of uranium mineralization associated an irregular mass of leucogranite pegmatite (Satterly, 1955). The mineralization has been explored by stripping, nine trenches and one open-cut over a length of 130 feet. The pegmatite mass is wedge-shaped, with a maximum width of 70 feet, which splits and narrows into two offshoots approximately 5 and 17 feet in width. The host rock to the intrusive is a metavolcanic comprised of hornblende schist.

Magnetite-rich zones in the granite pegmatite are exposed in numerous trenches and typically give the highest scintillometer readings. The magnetite zones, stringers or lenses are erratic in distribution but appear to be localized by shears at, or near, the west contact or footwall of the

pegmatite mass (Satterly, 1955). The greatest width of magnetite-bearing pegmatite is 17 feet. The main uranium-bearing minerals were identified as uranophane and beta-uranotyle (Satterly, 1955). Geochemical analyses of trench samples in the magnetite zone averaged 0.10% U3O8, while a bulk sample taken from the open-cut averaged 0.054% U3O8 (Satterly, 1955).

Bee Lake Occurrence

The Bee lake occurrence is located in Tustin Township and was discovered in the early 1950's. The property has seen extensive exploration in the form of magnetometer and scintillometer surveys, trenching and diamond drilling.

Radioactive mineralization is associated with an irregular pegmatite mass that has a maximum thickness of 100 feet (30m) and a length of 2,700 feet (820m) (Pryslak, 1976). The pegmatite is in contact with intermediate to mafic metavolcanics, to the north of the mineralized pegmatite and gneissic granodiorite of the Feist Lake Pluton to the south. The pegmatite is coarse grained and composed of pink microcline and quartz, with minor amounts of biotite and hornblende, and rare molybdenite, which is typically associated with the hornblende but forms less than 1 percent of the pegmatite (Pryslak, 1976)

In 1955, three diamond-drill holes, totalling 858 feet (261.5m) were drilled into the pegmatite, while a series of 12 trenches, of unknown age, were sunk on the mineralized zone. In 1968, six diamond-drill holes, totalling 1,259 feet (383.7 m) were drilled on the property by Olympia Mines Limited.

Peturson Lake Occurrence

The Peturson Lake uranium showing occurs to the southeast of Bee Lake, and may be a strike extension of the Bee Lake Zone. The showing has seen limited exploration, and occurs as fine uraninite in a pink, medium-grained quartz monzonite in contact with hornblende shifts of probable volcanic origin (ODM property visit). Dimensions of the radioactive zone have been stated at 1200 feet long by 25 feet wide.

Exploration to date has consisted of limited surface sampling, with grab samples of up to 42 lb/ton U3O8, a single chip sample of 1.5 lb/ton U3O8 over 3.5 feet and four diamond drill holes completed by Sherritt Gordon Mines Ltd..

Given the potential strike extent of the occurrence, and the potential of a continuous radioactive zone to Bee Lake, Peturson Lake is considered a priority target for follow up exploration.

Game Lake Occurrence

Coulee Lead and Zinc Mines conducted radiometric survey in 1967 and discovered anomalous radioactive zones near the north shore of Game Lake in Bridges Township. The area is underlain by metasediments intruded by felsic granitic rocks. The granitic rocks vary in composition from medium- to coarse-grained granodiorite to pink pegmatite. Uranium mineralization is associated with pegmatite and, although uranium is widespread, it is also erratically distributed in the pegmatite bodies (Pryslak, 1976). Yellow secondary uranium minerals are concentrated along fractures near the surface. The fractures are discontinuous and are randomly oriented. The highest scintillometer readings were obtained from biotite-rich phases in the pegmatite. Robertson (1968) reports analyses from 0.04 to 8.4 pounds U308 per ton.

Kimber Lake Occurrence

An easterly trending radioactive pegmatite dike was discovered along the north shore of Kimber Lake, near its east end. The dike ranges from 100 to 250 feet (30 to 76 m) in width; and was traced over a length of approximately 4,000 feet (1200m). A 1,200-foot (370m) section of the western part of the dike was tested by eight trenches but no reports are available. The pink pegmatite is medium to coarse-grained, composed mainly of microcline and quartz, with minor amounts of biotite and blue-green apatite (Pryslak, 1976). Yellow secondary uranium oxides are abundant in most trenches and occur as fracture fillings (Pryslak, 1976). The highest radioactivity occurs in biotite-rich and apatite-rich phases of the pegmatite. The apatite-rich zones are generally less than 5 feet (1.5 m) wide but can reach up to 18 feet (5.5 m) in width, with apatite forming up to ten percent of the pegmatite.

Cobble Lake Occurrence

The Cobble Lake occurrence, located in Bridges Township, has seen almost no exploration; however, radiometric surveys indicate a large continuous zone of anomalously high radioactivity in the area. Previous mapping by the Ontario Geological Survey indicates thick sections of granite and granitic pegmatite in the area of the anomaly, in contact with mafic volcanics to the north. Most of the exploration in the area has been centered on a muscovite-bearing pegmatite on the southern shore of Cobble Lake comprised of microcline, perthitic microcline, and quartz with accessory biotite, muscovite and tourmaline and minor blue-green garnet and rare tantalite-niobium.

Corner Lake Occurrence

The Corner Lake occurrence is a recent discovery in Docker Township, and was identified in airborne radiometric surveys. The target consists of anomalously radioactive, red, medium- to coarse-grained granite occurring over wide areas. Scintillometer surveys show significant widths and lengths (100's

of meters) of moderate, but continuous radioactivity, and the area is considered to be a Rössing-type target. No records or indications of previous trenching, drilling or geochemical analyses have been found for the area.

The remaining 34 mineral occurrences (Table 2b) are strategically important, however, less work or data is available on these areas and therefore less can be said of their potential. Common to many of the mineralized zones is the positive correlation between biotite, magnetite and/or apatite content, in pegmatite, with radioactivity, although more work is required to categorize the majority of these showings.

Exploration

An airborne geophysical survey was carried out in June 2006, following the recommendation by the author (Laine, 2005); it covers a polygon roughly 44 Km long in the EW direction and from 2 to 10 Km (averaging 8 Km) in the NS direction. The survey was flown by Terraquest Ltd; flight lines were NS, spaced 100 m at flying altitude of about 70 m; three EW lines were flown to tie up the flight lines. A total 3,285 line Km were flown at an average speed of 160 Km/hour. The coordinates of the airborne survey are given in Table 5.

Table 5: Coordinates of Geophysical Survey

	POINT	EASTING	NORTHING
1		470600	5521600
2		470600	5524600
3		466100	5521600
4		466100	5526000
5		452300	5526700
6		444600	5525200
7		432900	5524200
8		425300	5523000
9		425300	5516000
10		439000	5517700
11		440500	5516400
12		443100	5516500
13		463200	5520400
1		470600	5521600

1: Site Visit and Preliminary Ground Work

Based on the preliminary gamma total counts and calculated first vertical derivative of the magnetic field, Mr. P. Laine, P.Geo., made a preliminary field ground check on July 19 and 20th, 2006. Choosing the areas with total count readings over 1200 counts/second (maximum percentile), a total of 42 outcrops were checked out in the vicinity of Richard Lake, Bee Bee Lake, Hawk Lake, Bee Lake, and the following Table 7 indicates some of the radiometric readings and analytical results encountered during his sampling of the claim areas.

	UND CHECK UP O					~~	Jul-06		
	e Area acture Strike RAD	D Extent A		Ν	ROCK	GS	COLOUR		
Number ID	_	Sheet							
2	Rich. Lake	52F15	433,912	5,521,757		F	GB		Lenses
3		52F15	433,921	5,521,867	-	с	Pink	Bi	Dike
4		52F15	433,904	5,521,861			GB	Bi	Bed
5		52F15	433,939	5,521,891	MafGn	F	GB	Bi	Bed
6		52F15	433,933	5,522,007		F	GP	Peg?	Bed
7		52F15	433,910	5,522,018	Peg	c	Pink		500
8 RL1		52F15	434,111	5,522,145	MafGn	F	GP	Peg?	Bed
9 RL2		52F15 Mag+YP		5,522,199 9500	•			700	
10 BL1	Bee Lake	52F15	439,382	5,521,865	Peg	c	Pink		
	Mag+YP	Dike?	NE	BOO	-		1000 10m	7	
53.4	0.1 H17	2	1.1	202		/	1000	,	
53.4 11 BL2	0.1 1117	52F15	439,376	5,521,877	Dag	F	White	Bi	Dike?
BL3		52F15 52F15	439,376 439,376	5,521,877			White	Ы	DIKC:
BLS		Bi	439,376 Dike?	5,521,877 NE	Peg	г 7800			
	77.9	וט	DIKC.	9.2		1000	/10		
BL4	11.2	52F15	439,376	5,521,877	Peg	F	White		
DLT		Bi	439,370 Dike?	NE	105	450	17		
	42.8	Di	Dine.	0.4			1/		
12		52F15	439,296	5,521,914	Peg				
13 BL5		52F15	439,275	5,521,904	-				
13 BL3 14 RL3	Rich. Lake	52F15 52F15	434,074	5,521,747	0	с	Pink	Bi	
14 RL3 15 RL4	Moll, Lune	52F15	434,014	5,521,747	-	c	Pink	Bi	
15 KL4 16 HL1	Hawk Lake	52F15 52F15	434,010	5,518,253	-	c	White	Mafic	
Lenses	500	1000	427,704 600	68 52.6		1.3	W IIIC	Winne	
17 HL2	500	1000 52F15	427,769	5,518,291		1.5 c	White	Mafic	
Lenses		52F15 500	427,709	5,518,291 600	UI		2.6	0.5	
18		500 52F15	427,763	5,518,412	Gr	25 42 C	White	0.5	
18 19 HL3		52F15 52F15	427,763 427,979	5,518,412			White	NoBi	
						c c			
20 HL4 21 BB1	Die Dee Lake	52F15	428,112	5,518,699	-	с м	Pink pw	Bi	
21 BB1	Bee Bee Lake : Hematite		432,619 2200	5,523,212 250		М	PW	►T-D;	
22 BB2		52F15	432,556	5,523,216	-			NoBi	
23		52F15	432,714	5,523,710	Peg			250	300
		SmokyQ		60 5 522 719		_		350	300
24		52F15	432,716	5,523,718			DG		140 D'1
25		52F15	432,700	5,523,768	-	FM	WP		Dikes
26 27 DD2		52F15	432,715	5,523,769		_		- •	
27 BB3		52F15	432,674	5,523,826		F	PW	Bi	
28		52F15	432,603	5,523,939		F	W	Bi	
29 20 EDL 1		52F15	432,542	5,524,065		F	W	Bi	
30 EBL1	East Bee Lake		440,371	5,521,228		М	PW	Bi	Porphyro
31 EBL2		52F15	450,891	5,520,661	-	С	Pink	Bi	Hematite
32 EBL3			451,868	5,520,643	-	с	Pink	Bi	SmokyQ
33	Game Lake		451,954	5,519,835		Μ	White	Bi	Fol
34 EBL4			452,178	5,520,229		Μ	White	Bi	Mafic Lei
35 EBL5			452,325	5,520,474		Μ	White	Bi	
36 TL1	Triangle Lake	50010	460,445	5,521,257	Ca	F	р	Bi	

TABLE 7: KENORA	A GROUND CH	HECK UI	P OF RADIO	METRIC AN	NOMAL	IES	Jul-06								(Contin	ued)
Outcrop Sample A	rea	NTS	X	Ν	ROCK	GS	COLOUR	Accessory	Structure S	trike RA	D		Extent		A!lsays		
Number ID		Sheet									Min	Max	BGD Width	Length	u 7	Гh	Notes
38			461,090	5,521,547	Gr	F	р	Bi				300	300				
39			461,089	5,521,611	Gr	F	W	Hematite			350	1050	400				
40			461,304	5,522,617	Gr	F	W		Peg Dike		50	1900	500 0.6-1.2	50m			
41			462,731	5,524,433	Gr	F	р	Bi				600	300				
42 CL1	Corner Lake		463,187	5,524,568	Gr	F	W	В			380	550	400		235	155	1.5
LA1	Peturson Lake		469,270	5,523,143	Peg	Μ	R		Peg Dike	N65E		280	2800 4m	50m			
LA2			468,284	5,523,422	Peg		R					700	50		"84	197	0.4
LA3			467,843	5,522,396	Peg		R	Bi				2000			247	143	1.7
_ LA4			469,110	5,522,323	Peg		R	YP?				2800	700		528	87.4	6.0
CA1			450,378	5,520,269	Peg		R	Bi				1200	700		9	52.2	0.2

TABLE	A. A.U.S.					Na2O			P205	MnO	Ba0 (Cr2O3	Be	Co	Cu NI	N	Rb	Sc	Sr	V	Y	Zn	Zr	LOI	Total	С	S	Dup	U	Th	U/Th
Sample Name	%	AI203 %	%	06	NIGO	Na20 %	%	%	%	%	Bau v				opm opn				ppm	-			mag	%	%	%					0/11
RL#1	67.07	14.13	6.08	1.77	1.65	3.65	3.59	0.7	0.01	0.08	0.03	0.05	<5	14	9 <10	1	1.1	10	187	52	<5	92	1.1.	0.48	99.36	0.02	0.02	ppm	56		0.66
RL#1	66.88	17.16	1.96	1.33	0.51	4.11		0.14	0.09	0.03	0.07	0.05	<5	5	<5 <10			<5	258	<5	13	6	153	0.34	98.96	0.02	0.01		10		
RL#2	71.82	11.98	3.67		0.72	2.35		0.38	0.12	0.08	0.03	0.07	<5	6	<5 <10	-		<5	52	17	28	54	12	0.37	98.52	0.03	0.01		604		
RL#4	66.43	17.18	0.75				10.48		< 0.01	0.01	0.03	0.06	<5	<5	67 <10	-		<5	159	<5	<5	<5	<10	0.13	98.74	0.02	0.01		283	29	9.79
BL#1	66.99	16.67	2.38		0.51	3.69		0.31	0.03	0.03	0.12	0.04	<5	<5	<5 <10) <5	184	6	238	<5	15	10	152	0.38	99.19	0.03	0.01		7	53	0.13
BL#2	72.04	12.89	2.42	0.29	0.63	2.17		0.27	< 0.01	0.04	0.03	0.05	<5	6	<5 <10) <5	375	<5	83	33	<5	33	<10	0.25	99.06	0.02	0.02		333	34	9.88
BL#3	65.97	17.09	1.24			2.69		0.11	0.01	0.02	0.06	0.05	<5	<5	17 <10) <5	300	<5	172	<5	6	<5	<10	0.21	99.05	0.01	0.01		718	78	9.22
BL#4	69.86	15.52	1.76		0.16	3.66	6.91	0.07	0.03	0.03	0.01	0.05	<5	<5	<5 <10) <5	477	5	24	<5	62	33	65	0.4	99.14	0.03	0.01	17	17	43	0.40
BL#5	70.01	15.89	1.43	1.21	0.10	4.30	5.93	0.05	0.01	0.08	0.02	0.05	<5	<5	50 <10) <5	285	<5	95	8	<5	<5	33	0.11	99.23	0.01	0.02		28	20	1.41
HL#1	71.19	15.83	0.53	1.12	0.04	3.37	6.98	0.01	< 0.01	0.02	0.01	0.03	<5	<5	12 <1) <5	498	<5	58	<5	<5	<5	85	0.28	99.49	0.02	0.01		68	53	1.29
HL#2	68.28	17.06	1.58	1.70	0.13	5.74	3.89	0.06	< 0.01	0.03	0.01	0.06	<5	<5	10 <1) <5	136	<5	119	<5	<5	<5	79	0.27	98.83	0.03	0.01		23	43	
HL#3	73.95	14.83	0.73	1.39	0.11	4.99	3.19	0.07	< 0.01	0.01	< 0.01	0.05	<5	<5	5 <1) 17	167	<5	55	<5	<5	<5	10	0.18	99.53	0.01	0.01	5	5	9	0.57
HL#4	69.22	17.26	1.27	2.00	0.04	6.70	2.27	0.05	0.04	0.03	<0.01	0.06	<5	<5	<5 <1) <5	137	<5	22	<5	337	<5	47	0.1	99.11	0.03	0.01	172	172	61	2.84
BB#2	64.61	15.75	3.68	3.30	0.22	4.91	6.22	0.48	0.03	0.17	0.03	0.04	<5	6	12 4) <5	265	11	306	57	180	5	16	0.44	99.95	0.08	0.01	39	39	712	0.05
BB#3	68.04	16.31	2.39		0.47	4.22	5.48		0.07	0.04	0.09	0.05	<5	6	<5 <1) <5	318	<5	207	43	<5	11	167	0.34	99.37	0.03	0.01	6	6	45	0.13
EBL#2	70.29	15.94	0.93	0.80	0.11	4.42	6.16	0.06	< 0.01	0.02	0.01	0.04	<5	65	173 <1) <5	245	<5	99	<5	5	6	74	0.17	99.02	0.05	0.01		63	21	2.94
EBL#3	71.54	14.63	0.98			3.69		0.02		0.01	0.03	0.06	<5	<5	<5 <1		392	<5	202	<5	<5	<5	18	0.16	99.26	0.02	0.01		5	6	0.86
EBL#5	66.35	17.30	2.96	2.69	1.12	6.20	1.56	0.23	0.06	0.08	0.03	0.05	<5	7	11 <1) <5	274	7	217	18	33	26	542	0.55	99.3	0.03	0.03		296	70	4.23
TL#1	70.03	18.05	0.29			6.78	1.77		0.02	0.02		0.03	<5	<5	<5 <1) <5	190	<5	50	<5	12	<5	184	0.44	100	0.06	0.01		244	86	2.83
CL#1	69.57	15.10	0.99	0.41	0.25		10.13		0.07	0.02	0.1	0.06	<5	<5	10 <1			<5		<5	39	<5	151	0.45	99.11	0.04	0.02		235	155	1.52
LA#2	71.52	15.50	1.00	1.22		4.74	4.74	0.04	0.09	0.01	0.04	0.06	<5	5	<5 <1) <5	234	<5	298	<5	7	<5	511	0.37	99.51	0.05	0.03		84	197	0.43
LA#3	70.62	14.30	1.12		0.29	2.14	8.79		0.05	0.03	0.08	0.06	<5	64	<5 <1) <5	390	<5	224	<5	34	<5	207	0.79	99.12	0.05	0.01		247	143	1.73
LA#4	66.86	16.89	3.05	1.40		5.13		0.08	0.02	0.04	0.02	0.04	<5	<5	<5 <1) <5	426	<5	106	24	50	38	877	0.36	99.59	0.01	0.01		528	87	6.04
CA#1	67.74	15.98	2.41	2.90	0.29	4.78	4.72	0.09	0.28	0.04	0.04	0.04	<5	9	428 4	7 68	3 207	<5	217	437	21	<5	57	0.3	99.75	0.04	0.01		9	52	0.17
	-0.11	-0.11	0.08	-0.28	0.08	-0.28	0.31	0.04	-0.16	0.00	-0.01	0.20					0.33		-0.18			0.37	0.50							0.10	
	Certific	cate	Number		6W22	275RL																									

east of Bee Lake, Cave Lake, Triangle and Corner Lake, as well as Peturson Lake (see Map 2). To evaluate various rock types and radioactive background (measured with a scintillometer), 27 samples were taken in the field in various geological environments with radioactive outcrops. Rocks were analyzed for whole rock major elements and Uranium assays, some minor elements (copper, lead, zinc, nickel, cobalt, etc...). Certificate of assays are presented in Appendix III in the report submitted by Mr. P. Laine back in 2006 when the work was filed for assessment work with the MNDM.

All the previously known anomalous areas reported in the Mineral Reserve and Deposit Inventory of Ontario are covered by the highest count areas (Map 2006-ON-02). The areas with highest gamma counts are much larger than the showings themselves and some appear in areas where no radioactive occurrences were known. The magnetic map shows strong structural trends coinciding with the known geology. Around Bee Lake (Fig. 3), it should be noted that the monzonite intrusion is encircled by metavolcanics and the whole area is tightly folded twice with an anticline just NE of Bee Lake, and a syncline just south of the lake; in association with the high radiometric background, the author considers these two areas very favourable. The ground check also shows that the band of metavolcanics that wraps around the monzonite intrusive is intercalated with pegmatitic dikes that are twice as radioactive as the surrounding metavolcanics; the sample from that area contained relatively low uranium content even though it is anomalous. The two folded areas should be ground checked thoroughly by NW-SE lines every 10 m, with systematic radiometric readings.

In the Richard Lake an extensive outcrop near Highway 17 just south of the New Campbell Mine adits (Fig. 3), gave highly encouraging results: over 300 ppm, with radioactive background over the 100 m or so of outcrop over 1000 counts/second. Obviously this area should be ground checked further on a systematic basis with line spacing every 10 meters also; then any areas of interest should be systematically sampled using a small portable drill.

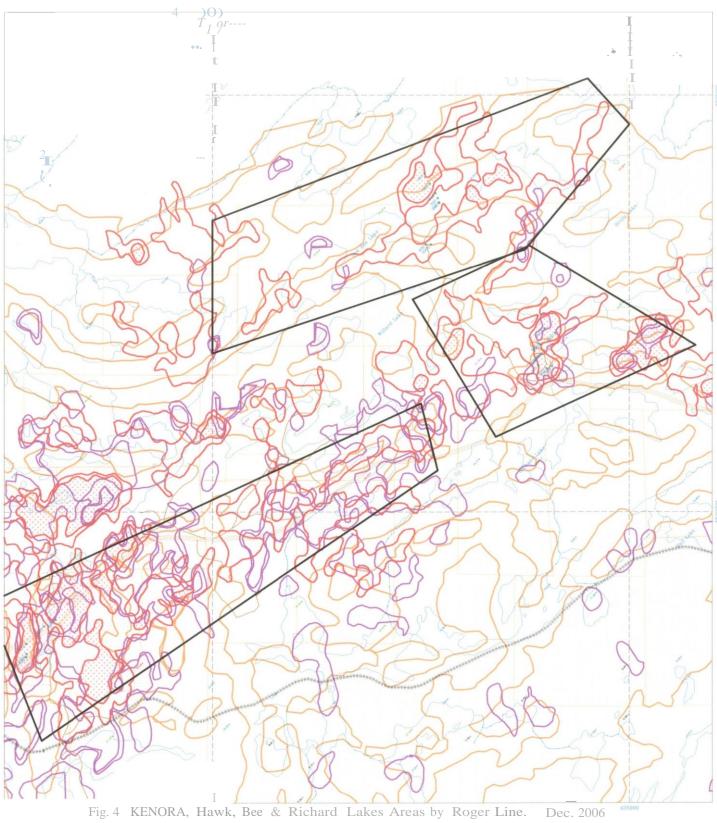
In the Bee Lake area (Fig. 4), the large outcrop near the highway, should also be systematically reviewed with 10 m line spacing covering the previous work just south and north of highway; specifically the area reported to have high radiometric background and good assays.

The other areas, Hawk Lake (Fig. 3), East Triangle Lake (Fig. 5), South Corner Lake and Peturson Lake (Fig. 6) are within areas of high radiometric background (airborne and ground) with encouraging assays results and they also should be systematically checked with 10 m line spacing; other areas such as the north of Cobble Lake (Fig. 5) for its magnetic fault paralleled by an airborne radiometric high, and the area west of Peturson Lake (Fig. 5) with higher than normal radiometric over the metasediments (correspond to swampy zones which could give apparently lower radiometrics but could have like at Peturson Lake pegmatitic dikes running through them), are good targets to be

checked. A promising area within that model would be the Kimber Lake area-Game Lake area. The area just east of Triangle Lake (Fig. 6) has high radiometric background over what is mapped as metasediments (geophysical survey with high uranium and high U/Th ratio); it should be tested thoroughly and some diamond drill holes should be drilled to look at the contact between the base of the metasediments and the basement: what does the unconformity look like?

The whole rock analyses give an indication of the favorability of the whole area; using the aluminous character index of Cuney (2005), see Table 7, most rock show a weakly peraluminous chemistry with the A/CNK index just above 1 and a very weak correlation between U and Th, also the U/Th ratio is high above 1 for half of the samples: similar to the chemical trend at Rössing.

Airborne Geophysical Survey Results


Terraquest conducted a High Resolution Magnetic Gradient, Radiometric and EDS-VLF-EM survey using a Cessna 206 gradiometer, radiometric equipped aircraft to conduct the data acquisition phase. The survey was 3,285 line kilometres and was flown at 100 meter line spacing, with control lines every 2.5 km. The survey sensor height is planned to be 70 meters above the ground level with readings collected at an average airspeed of 160 Km/hr or ~ 90 mph as deemed safe by the pilot.

The survey was completed on July 29th, 2006 and the operations report was submitted on November 20th, 2006. As per the contract with Terraquest, no interpretation of the data was made by the survey company, and maps were used by the author to interpret the geology (Magnetics and VLF) and the spectrometry (Total Counts, Uranium, Thorium and Potassium, as well U/Th maps). A few faults could be seen on the total magnetic field and calculated vertical gradient maps and were incorporated in the compilation.

The magnetic maps confirm very well the knowledge of the geology: east-west bands of metamorphosed metasediments intruded by pegmatites dykes and mafic to ultramafic dykes; one could almost use it to redo the geology in detail at 1/20,000 scale (recommended after field checking of the geology and magnetic intensity). The monzonite (west of Hawk Lake) and the granitic plutons (The Dryberry and Lount Lake Batholith) are very magnetic so are most of the pegmatite dykes: in red on the Total Magnetic Intensity. Based on the magnetics, the late ultramafic dykes are not distinguishable from the pegmatite dykes. The felsic to intermediate metasediments and volcanics are more likely to be weakly magnetic as shown by green on the Total Magnetic Intensity; the mafic volcanics are even weaker and have a magnetic intensity in blue mostly. West of Willard Lake and East of Hawk Lake, the batholith may have a border of pegmatite sills and metavolcanics intercalations. This features is outlined by the magnetic intensity being intermediate (yellow to orange with reddish folded bands); this was reported by Pryslak (1976) west of Willard Lake and shown on Map 2443 (Blackburn, 1979). This current survey suggested that the batholith border east of Hawk Lake with the metavolcanics could be of the same nature.

The uranium channel map shows high uranium count zones which parallel some of the regional features: east-west bands and folds. This analysis gives higher priority for ground prospecting to 8 areas: Hawk Lake and Richard Lake (Fig. 3); Bee Lake and Peterson Lakes (Fig. 4); West Game Lake and Cobble Lake (Fig 5); and Peturson Lake and East Triangle Lake (Fig. 6). The East Triangle Lake anomaly is of particular interest because it is located in an area of metasediments (clastics sandstones and argillites), that is likely intruded by many pegmatite dykes or a granitic intrusion. The Bee Bee Lake area was also chosen as a high target area because of the analogy between the geology of that area with the general geology of the Rössing uranium deposits: heavily folded metamorphosed sediments intruded by anatectic peraluminous pegmatites; though the U/Th ratio is not near as high as any of the other areas (pegmatites dykes might be narrow?).

The Kimber Lake-Game Lake area does not show as highly radioactive but one has to remember that it is underlain by metasediments which should have a lower count than the surrounding granitic rocks and the selection of anomalous areas by using the counts per seconds has to be reevaluated to take that into account. The area could also be intruded by pegmatite dykes or granites. The area has 8 previously known uranium occurrences (MRDI of Ontario, Table 2).

Dec. 2006

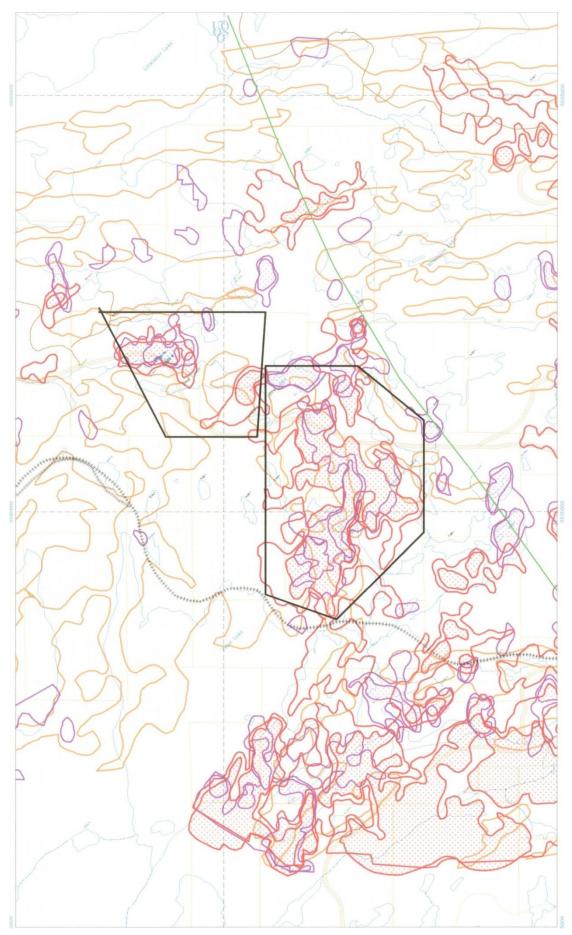


Fig 5. KENORA, Bee & Peterson Lakes Areas. by R. Laine-Dec.0

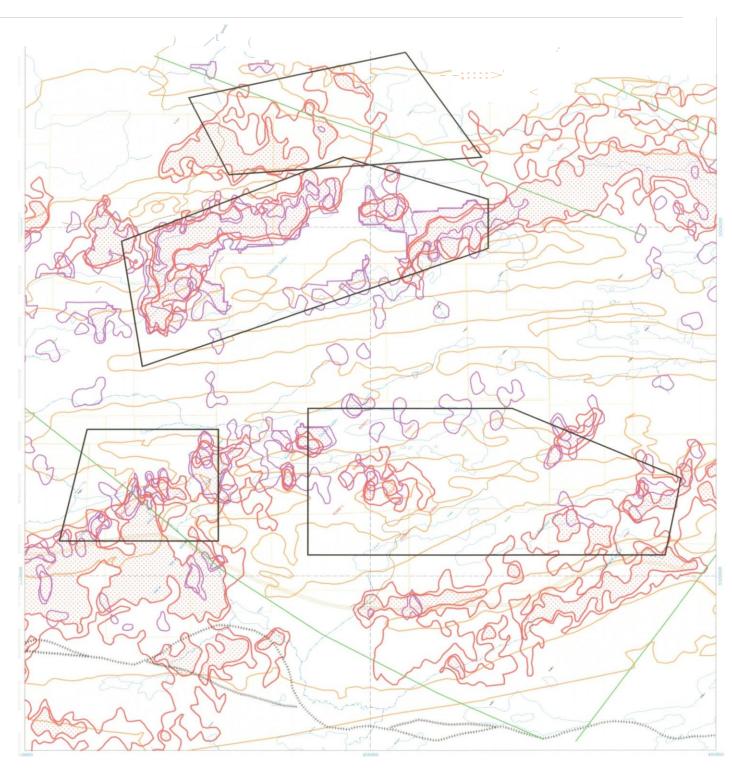


Fig 6 KENORA Game & Cobble Lakes Areas by Roger Laine Dec. 2006

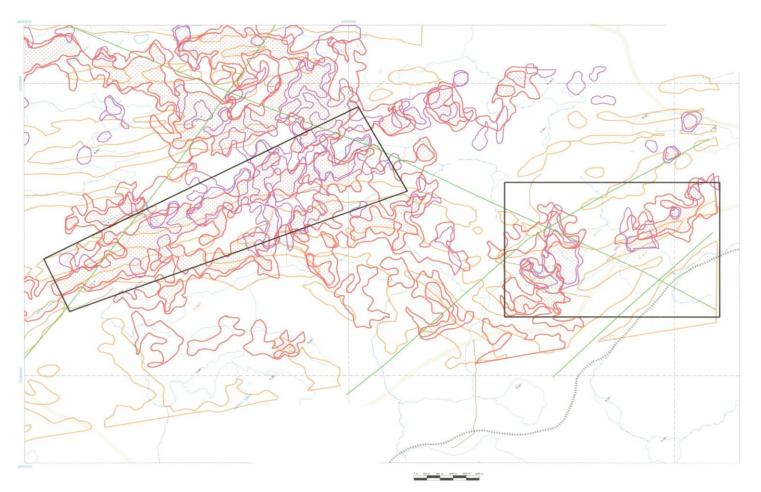


Fig. 7: East Triangle & Petursun Lake Areas

Map 2006-ON-02 is a compilation of Ontario Mineral Index Occurrences, Lake Bottom sediments uranium values, high count uranium, high U/Th ratio and high magnetic bands on the hydrographic system; with the area of higher interest outlined in black.

Drilling

At his point in time no drilling has been carried out by 4316282 Canada Inc.

Sampling Method and Approach

No drilling was done in this early stage; the sampling has been completed on available outcrop area based on radioactivity readings in order to characterize the different rock types to obtain an idea of the meaning of the higher scintillometerreadings.

Mr. R. Laine, P.Geo., indicated his rock samples were taken from massive granitic outcrops and that the results may have not represented an average value for that outcrop due to the mass effect - A more continuous sample using a small rock drill would likely produce better averages and more realistic values in future sampling programs.

Sample Preparation and Security

The radiometric samples from this period of work by Mr. R. Laine were sent to:

Assayers Ltd. 8282 Sherbrooke Street Vancouver B.C.

Samples from 0 to 4 Kg are dried, crushed, split and 250g are pulverized (Ring pulveriser) down to >95% minus 150 mesh). For uranium, assay quality was requested; the detection limit was 10 ppm.

The samples taken by the author from the work carried out over the claims in September, 1024, were analyzed at Act Labs in Ancaster, Ontario, for both their gold content and multi-element whole rock geochemistry. These results are appended along with their certificates in this report.

Adjacent Properties

Not Applicable

Interpretation and Conclusions

From the assessment reports files, it is obvious the east Kenora region is a uranium province with numerous uranium occurrences that were explored in the mid 1950's and late 1970's with limited success, based on the uranium prices at the time as well at the geological ideas of the time. However, the area with anomalous uranium values in Lake Bottom sediments (2004 survey by the OGS) is large, trends parallel to the metasedimentary volcanic belt, oriented ENE-WSW, and includes all previously known mineral occurrences from the Mineral Deposit Index of Ontario. The volcanic belt straddles the major structural boundary between the two subprovinces of the English River and Wabigoon. The local geology is better understood (Pryslak, 1976) as well as the type of deposits that could be found in this type of environment.

From 2005-2007, 4316282 Canada Inc. was able to control a large portion of the ground shown on Laine's maps (almost 80 km. long by 20 km, wide) but today the property has seen a shrinkage to a core group of 8 claims in Bridges Twp. and one in each of Docker and MacNicol Twps. These cover the best showings and occurrences and an area that was the target of Noranda/Rio Algom's and Tri-Origins diamond drilling and surface work in the past.

Previous exploration by Campbell Island Mines (Later Golden Standard Mines Ltd) did outline a small orebody by Richard Lake (K0211- MacNicol Twp.)) and numerous occurrences led to the identification of uranium minerals mainly uraninite: no uranothorite or other U and Th minerals. In the past little or no geophysics was done on the various properties.

The whole rock chemistry indicates that the granitic rocks of East Kenora and Rössing areas have similar characteristics, slightly peraluminous and weak uranium to thorium correlation with the U/Th ratio being very high. The outcrops that were checked during the authors visit show promising results with values in the order of the ones might expect from a Rössing type environment: uranium above 150 ppm, which is the cut-off at Rössing, see Table 7.

The airborne geophysical survey confirms that there are areas with high uranium counts and low thorium content (Map 2006-ON-02).

It is believed at that time that additional work was warranted, which was outlined in the

following in three phases:

1) Systematic ground checking and prospecting, geological mapping and sampling of the targeted areas at a scale of 1/500 or 1/1,000. Each area will have to be surveyed with

scintillometer using parallel lines, with 10 m spacing and recording of the cycles/second every 5 m on outcrop (clean the area if necessary) with UTM coordinates. Systematic sampling of granitic outcrops with high radiometric background based on the results from the systematic ground checking of the Bee Bee Lake, Richard Lake, Bee Lake, Peterson Lake, Peturson Lake, Corner Lake, Triangle Lake, North of Hawk Lake, Game Lake etc... Some Very Low Frequency (VLF) resistivity survey work should be performed on Hawk Lake North, Bee Lake, Game Lake West, and Peterson Lake areas over the areas of anomalous radioactivity to outline surficial structures.

2) Percussion drilling on the better showings; first wagon drill if available with gamma down the hole probing; calibration of the gamma readings can be done later on the better showings with DDH.

3) Diamond drilling for a detailed account of geology and mineralization.

Recommendations

<u>First Phase-Ground Prospecting:</u> This phase could last two to three months in the summer or before freeze-up with one or two geologist and a few prospectors at a cost of approximately \$150,000 for labour and logistics, plus systematic sampling and analysis of granitic outcrops and high radiometric background rocks, and ground geophysics (VLF-Resistivity), at a cost of an additional \$100,000. Compilation by a qualified geologist and recommendations would cost less than \$50,000. Total cost of ground check-up \$300,000. It is obvious from the most recent ground radiometric check up that the areas of North Hawk Lake (Fig. 10), Bee Lake-Peterson Lake (Fig. 7 & Fig. 8), West Game Lake (Fig. 9), and Kimber Lake-Game Lake areas need a more detail ground work (10 m line spacing, readings on outcrop every 5 m), VLF resistivity survey to show structures, then low impact packsack drilling.

Second Phase Percussion and Diamond Drilling:

A way to approach the highly radioactive outcrops of granite in the various areas to get a "continuous" sample, would be to drill cross-sections of shallow angle percussion or diamond drill holes at Richard Lake, Bee Bee Lake, Bee Lake, Hawk Lake, Peturson and Peterson Lakes, assuming equilibrium between uranium and the daughter products and using a correlation curve between radiometric GT and chemical GT's from other company; the latter can always be more accurately recalibrated once the diamond drill holes return enough samples for making a proper regression curve between radioactivity and chemistry.

A percussion or Pack-sack type diamondcould drill about 10 m an hour for \$250/hour.

4316282 Canada Inc. was recommended to purchase or rent such a drill along with a down-hole logging unit and to carry out approximately 10,000 m of drilling.

This would have cost about \$100,000.00 at that time. If one adds the geologist and technicians for probing and rig set-up, logistics, the whole drilling program would have cost less than \$300,000.00.

The cost of the three phases of work by R. Laine, P.Geo., was approximately \$1,525,000 at that time (see N.I. Report submitted to SEDAR, March, 2007- by R.Laine, P.Geo.)

This author (J.C.Archibald, P.Geol.) recommends to followup this recent sampling/prospecting program with further work on the Bridges claim group. This should include a full comprehensive compilation of all the data and study of the previous diamond drilling results and airborne magnetitc and EM survey work over the claim group, a visit to the surrounding pits/trenches/adits developed along the strike length to see just what mineralization is characterized at each site, to sample any other significant bedrock exposures and to determine where to best set up some exploration diamond drill holes to test some of the more significant anomalies and VMS-type targets at shallow depths(based on the limited I.P. survey done over the claims in the past)

There appears to be a cross-fault feature at the west end of Harrison Lake cutting the main East-West fault structure passing under the lake itself. The Cates Showing lies along the edge of this feature making it potentially significant(and similar in characterization to the Kremzar gold deposit near Wawa, Ontario) where both gold and massive sulphides enriched in Pb-Zn-Cu occurs close to an east-west trending deformation zone(the GLDZ) and pooled both sulphides and gold in a north trending, cross-cutting structure.

Respectfully Submitted,

John C. Archibald P.Geo.

References

- Blackburn, C.E., 1979, Kenora-Fort Frances Geological Compilation Series, Map of the Ontario Geological survey number 2443.
- Baynes, A.S, 1976, Report on Richard Lake Uranium Property Macnicol Township, Kenora Mining Division, Ontario for Golden Standard Mines Limited, OGS Assessment files 52F13 SW DD1.
- Cuney, Michel, 2005, Rössing type Mineralization, in Short Courses of the Quebec Exploration Conference; unpublished report.
- Cuney, Michel, 2005, Vein type Mineralization, in Short Courses of the Quebec Exploration Conference; unpublished report.
- Eckstrand, O.R., Sinclair, W.D., and Thorpe, R.I., 1995, Géologie des Gîtes Minéraux du Canada, Commission Géologique du Canada, Géologie du Canada N° 8, 706 pages.
- Evans, E.L., 1985, Uranium Deposits of Canada, CIMM Special Volume 33, 324 pages.
- Felix, Reg, 1992, Summary Report of Work Docker Reece-Project 1359, Noranda Exploration Company, Assessment File 2-15247.
- Felix, V.E., 2005, Eagle Lake Area High Density Regional Lake Sediment and Water Geochemical Survey, North-western Ontario, Ontario Geological Survey, Open File Report 6104, 79 pages.
- Gandhi, S.S., and Bell, R.T., 1995, Gîtes d'uranium associés à des roches volcaniques, in Eckstrand et al, Eds., Géologie des Gîtes Minéraux du Canada, Commission Géologique du Canada, Géologie du Canada N° 8, pp. 299-307.
- Griffith, J.W., 1985, Uranium deposits of the Bancroft area, Ontario, in Evans, Ed., Uranium Deposits of Canada, CIMM Special Volume 33, pp. 57-61..
- Guilbert John M., and Park, Charles, F. jr., 1986, Eds, The Geology of Ore Deposits, 985 p.
- Hasan, Zia, 1975, Geology and Radiometric Survey of Game Lake Claims, Bridges Township, Internal report Imperial Oil, assessment files F13 NE Y1.
- Klein, Jan, and Pemberton, Roger, 1967, Report on a Ground radiometric spectrometer survey in the Game Lake area, Bridges Township, Kenora Region Ontario for Coulee Lead and Zinc Mines; OSG Assessment Files 52F13 Se A3.
- Laine, Roger, 2005, Eagle Lake Uranium Occurrences East Kenora Area, Northwestern Ontario, Preliminary Evaluation Report.
- Laine, Roger, 2007, NI-43-101 Technical Report for 4316282 Canada Ltd., Uranium Occurrences over the claim Group East of Kenora, Ontario.
- Pryslak, A.P., 1976, Geology of the Bruin-Lake-Edison Lake Area, District of Kenora, Ministry of Natural Resources, Ontario Geosciences report 130, 61 pages.
- Robertson, James A., and Gould, Kerry L., 1983, Uranium and Thorium Deposits of Northern Ontario, Ontario Geological Survey, Mineral Deposit Circular 25, 152 pages.
- Robertson, James A., 1968, Uranium and Thorium Deposits of Northern Ontario, Ontario Geological Survey, Mineral Deposit Circular 9, 106 pages.

- Scime, V.J., 1978, Report on Geological and Geophysical Surveys Peturson Lake Grp. for Sherrit Gordon Mines Ltd, OGS Assessment Files FI3 SW AA2
- Scime, V.J., 1978, Report on Geological and Geophysical Surveys Feist Lake Grp. for Sherrit Gordon Mines Ltd, OGS Assessment Files FI3 SW AA3
- Szetu, S.S., 1978, report on Geological and Geophysical Surveys for Golden Standard Richard Lake Uranium Property, Macnicol Township, Ontario, OGS Assessment File 52 FI3 SW BB-3.
- Tortosa, Delio J-J., and Langford, Fred F., 1985, The geology of the Cenex Uranium deposit Beaverlodge, Saskatchewan, in Evans, Ed., Uranium Deposits of Canada, CIMM Special Volume33,pp. IIO-II9.
- Wetherley, M, 1977, Game Lake for Anschutz Uranium Corporation, OGS Assessment File 52 FI3 SE Z-1.

October 28, 2014.

Geofortune Resources Corp.,

Unit #7,

145 Riviera Dr.,

Markham, Ontario

L3R 5J6

Dear Sir,

Please find enclosed a report dated October 28, 2014 and entitled:

"Field Sampling Report on the Kenora Uranium Properties"

It is evident, after careful study of the available information and having visited the subject's properties in Bridges, Docker and MacNicol Twps. During the month of September, 2014, that the property has not been extensively explored on the ground and that there is some potential for further mineralization in uranium, gold and base metals to be found on these core properties.

The reference material used to prepare this report is available in the office's of Geofortune Resources Corp. at their Markham office or in the OGS assessment files located in Sudbury, Ontario.

A diligent effort and a recommended, comprehensive exploration program has been outlined with two phases for a combined total of \$1,500,000 Cdn. for the next stage of work on the property in order to fully evaluate the potential of the uranium, gold and base metal(VMS-Type) resources of the Company's claim groups.

Sincerely Yours, Ca JOHN C. ARCHIBALD John C. Archibald, P.Geo. VO MEMSER

John C. Archibald, 4 Oriole Crescent, Toronto, Ontario. M5P 1L5

CONSENT of AUTHOR

To: TSX Venture Exchange,

I, John C. Archibald, do hereby consent to the filing, with the regulatory authorities referred to above, of the field report titled "Field Sampling Report on the Kenora Uranium Properties", for Geofortune Resources Corp. and dated October 28, 2014.

I also certify that I have read the written disclosure being filed and do not have any reason to believe that there are any misrepresentations in the information derived from the "Field Sampling Report". Much of the information was taken from the results of the field sampling work done by this author and the work and recommendations put forward by Mr. R.P. Laine, P.Geo., in his N.I. 43-101 Technical Report from 2007.

G Dated this 28th Day of October, 2014. JOHN C. ARCHIBALD John C. Archibald, P.Geo. PRACTISING MEMBER 1251

John C. Archibald, Honours, B.Sc. Geology, P.Geo.

4 Oriole Crescent

Toronto, Ontario.

M5P 1L5

Tel.(647) 227-8700

Fax.(905) 660-7143

E-mail:

CERTIFICATE of AUTHOR

I, John C. Archibald, B.Sc. Geology, P.Geo. do hereby certify that:

- 1. I am currently self-employed as a consulting geologist.
- I graduated with a degree in Honours, Bachelor of Science, from Carleton University, Ottawa, in 1973.
- I am presently registered for full-time status with the APGO (Registration No. 1251) and also a member of the Ontario Prospectors Association (OPA - Southern Ontario Branch), and have been a member as a Fellow in the Geological Association of Canada (FGAC).
- 4. I have worked as a geologist for the past 37 years since my graduation from University.
- 5. I have read the definition of "Qualified Person" set out in the National Instrument 43-101 Guidelines ("NI 43-101") and certify that by reason of my education, affiliation with a Professional Association (as defined in the N.I. 43-101 Guidelines) and past relevant experience, I fulfill the requirements to be a "Qualified Person" for the purpose of NI 43-101.
- 6. I am responsible for the preparation and content in this report known as the "Field Sampling Report on the Kenora Uranium Properties" for Geofortune Resources Corp. of Markham, Ontario.
- 7. I have had geologist mapping, drilling and interpretation experience in the area of Northwestern Ontario from Fort Frances up to Red Lake and including the areas around Eagle Lake and Vermilion Bay over to the Manitoba border in the past and feel that I have the relevant experience and qualifications to determine the geological significance of mineralized occurrences of this type, including the search for uranium mineralization. I have not had prior involvement with the property that is the subject of this technical report.

- I am not aware of any material fact or material change with respect to the subject matter of the Field Sampling Report that is not reflected in this Report, the omission to disclose which makes the Field Sampling Report misleading.
- 9. I am independent of the issuer applying all of the tests in Section 1.5 of National Instrument 43-101.
- I have read the National Instrument 43-101 Guidelines and Form 43-101F1, and the Field Sampling Report has been prepared in compliance with that instrument and form.
- 11. I consent to the filing of the Field Sampling Report with any stock exchange or government body for assessment work filings or any other regulatory authority and the publication by them, including electronic publication in the public company files on their websites accessible by the public, of the Field Sampling Report.

October 28, 2014

John C. Archibald, B.Sc. Geol., P.Geo.

John C. C JOHN C. ARCHIBALO RACTISING MEMBER 1251 TAR

APPENDIX I PHOTOS OF PROPERTY

Bee Lake 1: Outcrop with Don McKinon and Larry Salo Bee Lake 2: Biotite Cluster with High Radiometric Readings Bee Lake: Coarse Grained Pegmatite Richard Lake 1 & 2: Pegmatite dyke in metavolcanics

APPENDICES II

LABORATORY ANALYSES Certificates

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 09-Oct-14

 Invoice No.:
 A14-07509

 Invoice Date:
 07-Nov-14

 Your Reference:
 GEOFORTUNE RES.

Sonic Soil (F.T ARCHIBALD CONSULTING) 15-668 Millway Ave. Concord ON L4K 3V2 Canada

ATTN: John Archibald

CERTIFICATE OF ANALYSIS

17 Rock samples were submitted for analysis.

The following analytical package was requested:

REPORT A14-07509

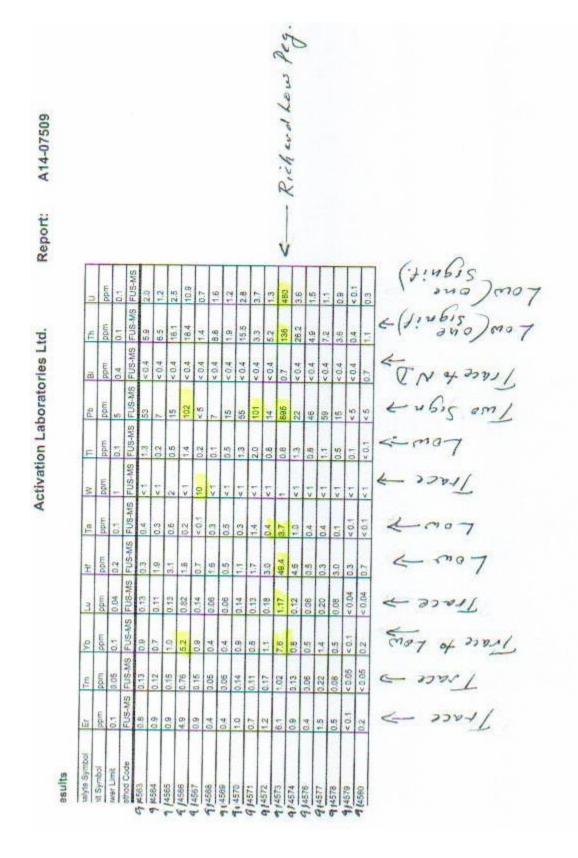
Code 1A3 Au - Fire Assay Gravimetric (QOP AA-Au) Code 4LITHO (11+) Major Elements Fusion ICP(WRA)/Trace Elements Fusion ICP/MS(WRA4B2)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

We recommend using option 4B1 for accurate levels of the base metals Cu, Pb, Zn, Ni and Ag. Option 4B-INAA for As, Sb, high W >100ppm, Cr >1000ppm and Sn >50ppm by Code 5D. Values for these elements provided by Fusion ICP/MS, are order of magnitude only and are provided for general information. Mineralized samples should have the Quant option selected or request assays for values which exceed the range of option 4B1. Total includes all elements in % oxide to the left of total.

CERTIFIED BY:


A Emmanuel Eseme , Ph.D. **Quality Control**

ACTIVATION LABORATORIES LTD. 41 Bittem Stroot, Anoaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@excitabs.com ACTLABS GROUP WEBSITE www.actlabs.com

	Г			Γ	MC		T	T	T	T	T	T	Т	T	T	T	V	T	Т	T	T		
2	2	-	mdd	20				20	40	22 ×	201	R v	R I	No v	R v	2	100	3	No.	3	< 20	< 20	For Mi ->
	8	_	mdd	-	ELIS-MS	-		0	12	t v	1	0			4	2	2 -				1	N	e2 me7
	5		ppm	20			10	P.	140	20 1	00	100	and the	No	130	14	00 ×	-	00		30	00	40
	12		mdd	4	FUS-ICP	0	0.0	100	133	31	07	20	90	4 50	115	4240	180	0.	2		071	0	E. shad us aZ
	>		ppm	N	FUS-ICP	K		0	10	2010	nic	2 4	14	-		48	10		the state	-		**	2
	Sr		mdd	2	FUS-ICP FUS-ICP FUS-ICP	197	T		404			T	1		458		144	T	27	T	000	T	
	BB		mda	14	US-ICP	690			4C3				547		672								1
	m	T	d Ludd	3		-							9				728		T			201	S - i spismaful - of
	2	T		t0	S-ICP FI	1			D U						128		15	2 P	×	So a			
	89	T	Ludd .	F	FUS-ICP FUS-ICP FUS-ICP	12	6.5	0	+ 2	0	1	12	14	8	1.V	0	~	12	1	12	1		5
	8	+	Ludd		CB.	~	00	1	T	Т	4	T	2 2	T	Г	T		1.2	T		++	Т	-
	Total	10	2	0.01	ICP FUS	89.5	98.82	100.1	100.8	100.0	88.52	100.8	98.4	99.09	99.29	100.8		99.51		98.45	100.4	1000	1000
	IQ I	34	2	-	CP FUS-ICP	12.0	1.37	2 30	0.30	1.60	1.09			0,61	1.05	0.34		0.13	0.33	1.00	0.25	0.0	N
	P205	1	2 2		HUB-ICP	0.05	0.10	0.13	0.04	0.13	0.02	< 0.01	< 0.01	0.06	0.13	< 0.01	0.06	0.03	0.02	0.06	0.01	A UN	1000
	TIOZ	18	A MALE	1000	CP FUS-ICP	0.047	0.255	0.494	0.111	0.228	0.175	0.033	0.048	0.055	0.569	0.351	0.192	0.015	0.073	0.427	0.027	0.007	
	¥20	10	.000	Inn	FUS-I	8.46	0.60	1.40	6.45	0.33	0.54	2.49	7,58	8.24	2.67	0.65	5, 10	4.44	5.24	3.56	0.14	0.30	
	Na20	1	104	10.0	FUS-KCP	3.10	0.76	3.81	2.82	0.27	0.36	1.14	2.05	1.37	3.69	3.79	3.40	1,15	2.19	3.69	0.78	0.16	
	CaO	8	10.01	INN OIL	10%-ICL	1.05	5.28	4,40	0.77	13.03	2.57	0.37	0.34	1.33	5.54	1.56	0.83	0.15	0.47	3.57	0.29	0.83	
	NgO	14		1	ć	0.18	1,43	1.55	0.33	3.33	0.94	0.09	0.12	0.23	2.58	0.40	0.28	0.03			D.13		
	MrO.	2	01	Out of the	חפיוכר	0.016	0.079		0.030		0.031			0.296				0.010				0.032	
	Fe203[T Mn0	3	10	alle ich	LOI-DO	23	3.58	-	0,86					1,32				0.70				1,47 0	Hi I Kow content
	AI203		1	1 IS ICD		3.01				_							_	Τ					
1	SIO2 N	5	0.01 0	Such a	10 10	10.01		66.00				90.28 5					72.21 14				87,24 1,03		15 Aluminum contra
		g/lonne %	-	1.0		01 000				< 0.03 63	1												Hi silica >
		1/B	0.0	FA	1	1	2	3>	3>	v	V	~	2	24	EU.U >	2	00'02	2	< 0.03	<0.03	< 0.03	< 0.03	Toace to Not
1 1 1 1 1 1	serves symbol	It Symbol	wer Limit	sthod Code	AFRY	direct	5004	1 4565	914566	567	494558	1142003	0/0	LIGHL	7)044	013	104014	01041	110	0/0	71 45/8	580	stus muss

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	taivte Sumbol	00	70	100	N		14																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sumhol			00		2	GY.	DN I	MO	N	u	Eg.	So				à	Nd	Sa	Eu	PB		10	Ho
$ \int \int$	$ \int \int$	in the second	und a	111dd	mdt	Ilidd	unde	mdd	unda	Hdd	mod	mpm	1					mod	mag	mom	mon	man		HUL	- Million
$ \begin{array}{rclccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AL FILIAL	01		4				-	N	0.5	0.2				Γ		0.05		1			T		- A
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \int \left\{ \int \left$	hod Code	FUS-M		18 FUS-W			EMS-WE	-	1	FUS	PUIS-MG	F112.142		140	0110110		000	1.1		50'0			1.0	0.5
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \int \int$	563	< 10	< 30	15	-	\$9×	204	15	6.0	20.7	000			-	000-000		PUS-M3	LUS-WS	FUS-MS		SW-		FUS-MS	FUS-MS
$ \int \int$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	564	22	60	12	1.2	4.6	35	30			704											0.2	1.3	0.3
$ \int \int$	$ \int \int$	585	40	1400	UG UG			1	23	*		< 0,2										28	0.4	81	6.0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \int \int$	200		m	R	-	en V	55	19	14		< 0.2												00	1.4
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	000	of s	2	16	-	S S	243	10	2		< 0.2						T				T			-
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \int \frac{c(0 - 80}{10} - \frac{c(0 - 80)}{10} - c(0 - 8$	192	10	290	15	52	4 5	81	00	<2	< 0.5	< 0.2					T	T						0.0	1.5
$ \begin{array}{rrrr} \begin{array}{c ccccccccc} < & < < < < < < < < < < < < < < < < < $	$ \int Correct for the constraints for the const$	568	< 10	50	00	12	4 E	19	20	26	<0.5	<0.0			T	T		T						2	0.3
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \int e^{-1} e^{-$	569	< 10	< 30	a	12	< E	112	40						T									0.8	0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \int C C C C C C C C C C C C C C C C C C $	570	< 10	< 30	14	-	44	202	-					T										0.7	0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int C_{200} \int C_{10} = \frac{1}{100} \int C_{10} = \frac{1}{10$	571	< 10	180	38	0		-	,	-														2.0	0.4
$ \int \frac{1}{\sqrt{2}} \int $	$\int Control = \int Co$	420	1012	101	14	2	0	254	-	22														2	20
$\frac{1}{16} \int_{1}^{1} \int_{1}$	$\int \int $	141	100	2	2	-	0	124	1	25													T	0	P.U
$\int \frac{110}{100} \frac{100}{100} \frac{110}{100} $	$\frac{16}{100} \frac{10}{100} \frac{10}{100$	010	A N	R	23	-	v ce	125	20	53		< 0.2											T		
$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{(10)}{10} \frac{(20)}{70} (2$	14	10	40	18	-	4.te	228	13	< 2		< 0.2						Τ			T			4 4	0.0
$\frac{10}{100} \frac{12}{70} \frac{12}{100} \frac{12}{100}$	$\frac{10}{10} \frac{10}{10} \frac{10}{21} 10$	8/18	< 10	< 30	2	-	e e	128	0	4				Г				T	T		040			2	2.0
$\frac{10}{16} \frac{71}{16} 71$	$\frac{10}{1600} \frac{10}{1000} 10$	225	< 10	2	12	41	4.6 2	188	4	<2	T	T		T			T				0.14			50	0.2
$\frac{10}{1000} \int \frac{10}{1000} \int \frac{10}{1000} \int \frac{10}{1000} \int \frac{10}{1000} \int \frac{10}{10000} \int \frac{10}{1000000000000000000000000000000000$	$\frac{1}{16} \frac{1}{16} \frac$	178	10	2	21	1.2	4 6 2	54	-	00	1	T		T							0.20			2.1	0.5
Lew/insegnicus to the Nin Signicus to the Sign	$\int \frac{1}{16} \frac{1}{16}$	679	< 10	< 30	-	41	44			4 2											0.73			11	0.2
Low Low Con Low Con Low Con Low Con Low Con Low Con	There to N.D = 2 12 20 01 101 101 101 101 101 101 101	90	4 10	< 30			2 1		+	7	T				5						-	-		c.0.1	< 0.1
The to N.D > 10. to N.D > 10	Low Low Sm. 2 Low Con Ga -> Jace + N.D -> Jace +				2	-	~	1	2	7		< 0.2											_	5	< 0.1
The to N.D. The to N.D. Toce	To the N.D. Not Defect Trace to N.D. Trace to N.D.		Ar)	4	4	4		45	C	¢		44	4	1	1									9	1.0 2
The to N. D The to N. D Toce	To the Minsegn Mot Detect Trace to Min Trace to Minsegn Low Ca Low Ca Lo		5	-	-	-		n	1	•		24	2	· C											
The to al to the al to to the al to the a	The to a Not 25te Trace to a Trace to a	~	4	4		2		%	•	T		0	0	7											
The to we	The to the the top of top of the top of	1	63	2	10-	2:		Y	(T		2		2											
1 + m 1	Tence to Tence to Tencet		51	2.	9	2		12	-	4		4	N												
14 40 49V 1000 100 1000 1	Jerce Jerce Jerce Zerce Zerce Zerce Zerce Zerce	-	"	1	(7	1			0	+		ヤ	2	4											
49V 2000 2000 2000 2000 2000 2000 2000 20	14 49V 10 10 10 10 10 10 10 10 10 10		/	~	20			21	7	(-	ay												
N IN	21 N N N N N N N N N N N N N N N N N N N		on	a .	27				1	3		+	4	27											
	Le Le Le	-	37	1	7			b		21		N	r	72-											
	L L	-	r				1	5		2		1	1/	11											
L .L	Y							72		1			6	,											
								1																	

p.	
1	
Laboratories	
Activation	

Report: A14-07509

						200	Non		NYN	1000	204	E.C.I	III O	20 S	2 A	an .	Ba Br	7	17	ð	8	
tit Symbol	gitonne	8	8	-g.	36	2	sR.	18	*	*	8	1	1	noni r	mon mon			T		T		
INTER LITTE	0.03	0.01	0.01	10.01	0.001 0.01	0.01	0.01	0.01	0.01	100.0			101		T	T	T	Ludd undd	ELICA .	mdd	Hdd .	
athod 0,006	FA-GRA	FUS-ICP	FUS-ICP	FUS-ICP	FUSHCI	EUS-ICI	PUS-RCP	FUS-ICP	FUSICP	FUS-ICP		FUS.ICP P	FUS-ICP F	FUS-SOP. F	ISHOP	112 (CD 11	our as	in inte	and use and	144 44	The loss into the state and	1
ST 694 Meas		11,58		0.75	0.013	0.33	\$2.72	0.86	0.54	0.118		T	T		-	aka -		-		ICP FUS	WS FUE	21
ST 694 Cert		11.2	1,80	0.780	0.0115	0.330	43.6	0.660	015.0	0.110	30.2		T		+	1740	T		+	+	+	
VC-1 MBBB		47.27	18.85	8.58	0.545		11,56	1.93	0.22	0.477	70.0			0		11	Т	T		100	Т	
VC-1 CBH		47.15	18.34	9.97	0.150		11,48	0	0.234	0.480	020.0	T		31		10	110	11 0.821	10 00 + 00	0R7	9	270
3W 07113 M888		71.31	13.06	3.24	G.140	0.54	0.60		5.43	0.290	0.05		u	2	-	40	T			14	T	
SW 07113 Cert		72.8	13.0	3.21	0.140	0.160	0.580		5,43	002	0.0500	T	- u	0	4.00 K		Т	10 10	T	+	+	
(SD-3 Meas												T	T		T		Т			-	-	
(SD-3 Cert												T			1	1	1	-	+	80	53	
DB-1 Mess											T		-		1			-	1	87.0		
3B-1 Cert										T	T	1	1		-	1	-	-	-	240		08
-2a Meas		52.16	1	1	0.168	8.24	11 10	2 20	1.84				1									
-Za Cerl		52.4	15.4	10.7	0.463	8.97	100	212	T	1 0011	0.14 1 400		0			280 17	171 19	198 20	88	80	42	
r-4 Meaa		50.50	1	1	0.004	0 50	0.40	0.00	T		2,130		0	38.0	30							70.0
(4 Cert		49.9	1		0 100	100	0.00	000	T	1	14		-			10 35	201					
TA-AC-1 Mees			1				0.00	1.10	1.00	1	0.337			1.1	2.6 8	1	10					
FA-AC-1 Cert										-								-				
R-1a Meas		46.91	1	11 00	0.475	0 55	12 00		T	Т		1				-		_		-	-	
R-1a Cert		47 96	15 50		0.476	D TANG	10.00	1/1		1	0.02	1	4	43 A		337 8	110	0 15		380	50	180
28 DC86312 Meas					211.0	001-2	DC.CI	1.62	0.030	0.88	0.025				0.58 31	-			18	370		
CS DC86312 Cert																-	-				t	
N.C. Manan																					-	T
N.C. Cast																-		-		+	+	T
TE DI TANDA																	-	+	+	+	+	
IBW07241) Meas															-	-		+	-	8	-	< 20
2S DC70009									T	T		1		1	+	1		1	-	-	-	-
The section of the se							1	1			-			-	-		-	-		30	-	-
usion) Mens															-	1			+	-	100	-
REAS 100s										1						-				-	1	
usion) Cert					- AL		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							_		_		-		-	18.1	1
REAS 101a usion) Meas														-		-	-	1	+	+	-	+
REAS 101a												-	-		-			-	-	-	p	
usion) Cert												-				-					48.8	+
REAS 101b									T			1	1		+		1			-		+
REAS FORK											-			-	-	-	-	-	_		4	< 20
usion) Cent																	-	-	-	-	47	+
2-1 Mices	T		T							1		1	1	1	-				-	-	6	-
t-1 Cert									T	-		1		1	-	-		-				-
	7.61									1		-		1	-	-		-		_		1.67
	7.64								1	1	1	-		1	-	-		-	_	_		-
	3.60		T	T			T	T		1		-		-		-		_		-		-
	3.602			T								1	+			-				-		-
	< 0.03								T	1			-	-		1	-			_		-
4572 Dup	< 0.03							T	1	1		1	+		-	-	-				_	-
4578 Ong	46			4,43 0	0.067	1.12				0.446 0.0			*						-	-		-
4576 Dup	40	62,68	17.89 4				3.59	3.70	3 58	T	20.0	* P(1	1 10 10 10 10 10 10 10 10 10 10 10 10 10	V	2	836	553	3	126	30	11	¥
ethod Blank	< 0.03						Г			1			i i	5					127	30	11	< 20
																		-				

telyte Symbol	Cu Zn	e c				ſ	ſ		ſ													
nit Sverbei			8		₽									La C	Ce Pr		Nd IS	Eu Eu		e	NO	Ho
wer Limit					dd E	d us	Edd Edd				ppm und		ppm pp					ppm pp			moe	Dom
athert Cride	0.440	O ME		0	2	-		_	5 0.2	+	0	0.5 0.	0.5 0.	1 0	0.1 0.05			1 0.05	5 0.1	Γ	0.1	+ 1
ST 694 Meas		AL DULO	D-MO	LUS-MS FU	TH SW-R	29-WS L	SW-SD	FUS-MS FU	FUS-MS FL	FUS-MS FL	FUS-MS FI	H SW-SC	FU8-MS FI	FUS-MS FI	FUS-MS FU	FUS-MS FI	SW-9	FUS-MS FL	Wa	WB		
ST 694 Cert		t	-	-	-	1		1				1			-		-		-			
VC-1 Mess	100 70			1	1	T	1	-	1	1		1	-			1			-	-		
VC-1 Cert	100 7	70	-		-	1		t	1	-	+	-	3	3.5	-	03	5.2	0.58	-	-		_
BW 07113 Meas		-	-					1		1	T	1		0.0			20	0	0.68	-	_	_
5W 07113 Cert			-	-	T	1				+	1		1	1		1	1		-	-		
	30	-			78	-	~	T	+	1		1		T		1			-	-	_	_
(SD-3 Cert	35.0		-		78.0	0	2.00	0 2.20	-	-	1	1.1			0.08	4	43.4 7.1	7.8 1.38	80	-	4.7	
	320 150	0	-	+					-	1	1	N	2.30 52	52.0 90	90.0	4			0	-	4.90	_
DB-1 Cert	T	155		-	-	t	1	1	+	1	1	+	1		8.8	23	23.4		_			
	100 70	19	+	an V		u.	6.2	an	+	1	-	1		17 4	41	N	23		-			
-2a Cert	110 90.0	Γ	1.00		0 25.0		00		00100	1	+	-	-	24	24.5	13	1 3.3		0	0.7	3.8	0.8
	Γ	Т		T		T	T		100	1	1	-		21	0	13	13.0 3.	1.00		0.630	3.60	0.760
r4 Cert		+	-	+	1	1	+	+	+	+	+	1	-									
Weas	60	-	+	+	-	T	1	-	1	-	1	-			-							
	54.0	-	+	+		1	+	1	-	-	-	-	n		> 3000	11			0 126	14.3		
	120 70	15	+	-	+	1	1	-	+	1	1	1	2	2176 3	3326	-	1087 1	162 46.7		13.9		
R-fa Cert	125 70	T		+	1			1	+	-	-		-			2.6						L
2 Meas		T		-	+	-	0	+	1	1	-	1	-		-	es			0.55 2.0			
CS DC86312 Cert		-		-		-	-	-	-		-		~	> 2000 18	180	12	1590		226	12	183	35.8
N-C Meas	1030	101 00		+	> 10	> 1000 193	0	1	+		1				8	-	009	-	225	0 34.6	183	88
N-C Cert	105	1050 000 99	-	-	59		198	-	-	-	t	21	260	-	1	+	1	+	+	-		
	670 90	17	11	-12	500	1		-	0.1	1	0							-	-	_		_
BW07241] Meas				-	-				4		3	40.2	8:07 7	8 61.2	2 7,66	32.8	B 13.0	0	14.8	3.4	20.9	4.4
E	960 100	0 16.5	5 112	2 69.9	-B 200	0		-	13	-	3.1	4		23.7 6	60.3 7.9	-	32.9 2	12.5	\$4.8	33	20.7	4.6
REAS 100a usion) Mess	170		_	-	-	-	24	-		1		-	271	1 481	1 48.5	161	24.8	3.65		1.7	24.0	6.8
S 100a	169	-	-	-	-		24.1	-	-	1	-	-	26	260 46	463 47.1				T	3.80	21.2	4.84
REAS 1018 Usion) Meas	410	-		-	+	-	51	-			-	1	698		1500 133	416	16.	1 ce		a v	• 44	
	434	-	-	+	-	-	21.9	cii				-	10		100				9	5.92	33.3	646
	390	-	-	-	-	-	6	+					810		1350 120	375	4	-		53	29.9	62
	416	+	-		-	-	20.9	0		-	-	-	789	+	1331 127				0	5.37	32.1	8.34
	< 10	16	-	15	245	15	0	00	000	T		100	T	T								
t-1 Cert	2.68	18.1	-	16.3			3	T	34	0.036 380	1	7.81	-			1	47		5.4	-	6.2	
cN92 Meas		-	H	+	T	11	H					20	+	19.7 47	47.2 5.58	8 23.3	-	6.03 0.30		101	5.68	
KK110 Maas	+	+	+	+	-	+	+	-	-		-	-	-		-	-	-	+				
ck110 Carl	-	-	+	-	-	+	-		-		-				+	-	t		+	-		
4572 Orio	-	+	-		+	-		+	-				_						-	-		
4572 Dup		+	+	-	-	-		+	+	+	-											
	10 70	20	14	i0 y	85	-		-		T			-				-	000			-	
	I				- Int	*	N N	0.0	× 0.2	1 4	202	5 26	F 1058	1.44.4	200 ×	1 1 1		1				

In Sn 80 Ca La Ce Fpm ppm ppm ppm ppm ppm 0.2 1 0.5 0.5 0.4 0.1 MS FUS-MS FUS-MS FUS-MS FUS-MS FUS-MS <0.2 <1 <0.5 <0.5 <0.1 <0.1	00			Au.					ſ												
Ippm Ippm <th< th=""><th></th><th>DN DN</th><th>DN MA</th><th>IN</th><th></th><th>0</th><th>ER S</th><th>-</th><th></th><th></th><th>80</th><th>0</th><th>Ea.</th><th>Ce</th><th>i.</th><th>PN</th><th>ES</th><th>114</th><th>104</th><th></th><th></th></th<>		DN DN	DN MA	IN		0	ER S	-			80	0	Ea.	Ce	i.	PN	ES	114	104		
0.2 1 0.5 0.4	mag 1	mpm ppm ppm	mag mag mag	mag mag m	mag 1		9		Γ		hom	- March	mhm	-					~~~		
02 1 0.5 0.5 0.1 0.1 0.0 0.5 0.1 0.1 0.05 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0. MS FUS-MS FU							1	I					instell.	Thirty I	Indel	under	Edd	EDDIN -	Edd		
MS FUS-MS	2 1 2 0						-12	0.5 0.2	F	-	50	0.6	0.1	0.4	10.05		10	U DE			
MS FUG-MS		STOLAC CHO ALC CHO LIP PLIN AND	CHO MC CHO MA MIN AND	IC NO CLO TIO LIG LIN AND	IC LID THE PLAN AND			1			1			-				0000	1.0		n
< 1 <0.5 <1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	08-00-02-00-0	SM-SOL CM-SOL DALLOS AND	LOGING LOGING LOGING	DM-DOL DM-DOL DM-DO	DW-DDL DW-DD			DNA I	214-5	S	2-2		ũ.	FUS-W	0	2	5-1	u'	FURANCE MAG	ų	UV.
<0.2 <1 <0.5 <0.5 <0.1 <0.3 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1						-													241-22		2
<0.2 <1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.0 <0.1 <0.1 <0.1																					
	<1 <5 <2 <1 <2 <05	5 <2 <1 <2	5 <2 <1 <2	2 <1 <2	<2		201				< 0.5	< 0.5	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	Г	404		

Report: A14-07509

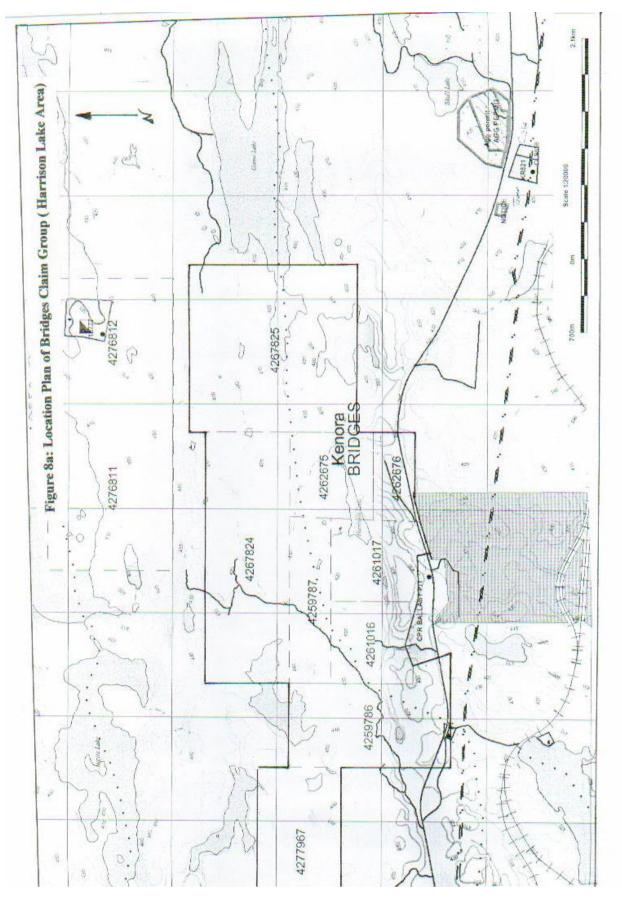
Activation Laboratories Ltd.

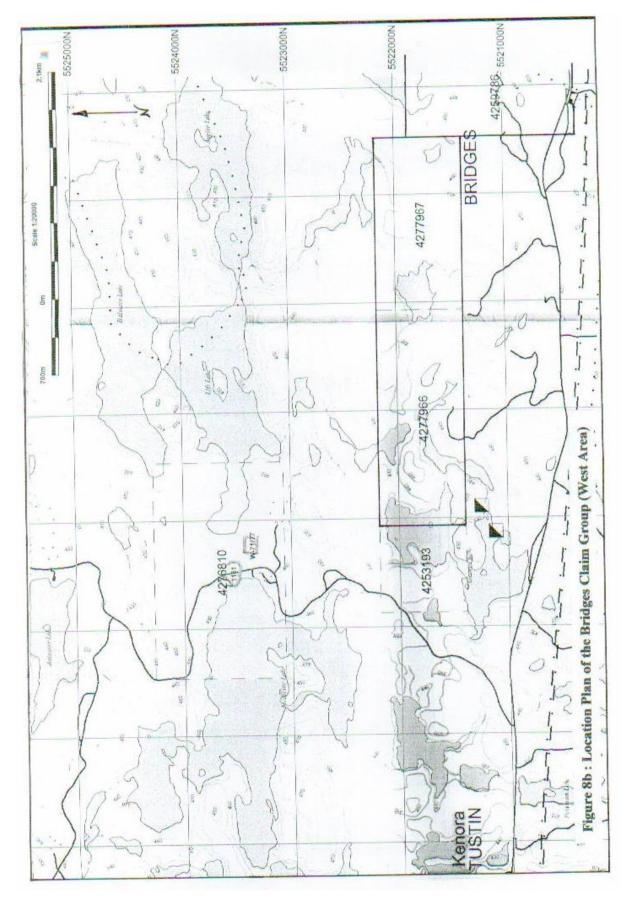
includes milita	CI	50	Ga	3	Se.	202	22	Mo	Ac	- ult	Sn	Cia.	ĉ
读 Symbol		mad				obm.			a dent	T			3
wer Limit	10	30	T	T	Г	-		C C	Ppun -	midd	-	ming and	udd
athod Code	FUS-MS	S-MS	FUS-MS	FUS-MS	FUS-MS FUS-MS	FUS-MS	FUS-MS	FLIS-MS	EI ISLAIS	FLIC.MC	Elle Me	Ci le Me	0.0
ethod Blank										016-00-1	000-001	LUG-WS	LOS
ethod Blank	< 10	< 30	<1	++	2 P	< 2	<1	< 2	< 0.5	< 0.2	15	< 0.5	< 0.5
QC													
Analyte Symbol	ц	Ten	24	ILU	Ŧ	Ta	M	F	-	10	14		Г
Unit Symbol	udd	bpm	mdd	mag	maa	moo	mom	and an	-	-	-	2	Т
Lower Limit	0.1		0.1	0.04	0.2	14	+	+ 0	Hours R	blue	Eldd . X	Enda	Т
Method Code	FUS-MS		-	-			C CLUD AND	-	-	_		-	T
NIST 694 Meas				-				S LUS-WS	S FUS-MS	S FUS-MS	EUS-MS	8 FUS-WS	0
NIST 694 Cert					-		-		-	-	-	-	T
DNC-1 Mess			2.1							-			Т
DNC-1 Cert			2.0									+	Т
GBW 07113 Meas													T
GBW 07113 Cert											-		Т
LKSD-3 Meas			2.8	0.39		0.6					10.5	24	T
LKSD-3 Cert			2.70	0.400		0.780					17.4	4.60	Т
TDB-1 Meas			3.2								2.9		T
TDB-1 Cert			3.4								27		-
W-28 Meas	_	0.35	2.1	0.30	2.4	0.5	-	< 0.5		< 0.4	2.4		T
W-2a Cert		0.390	2.10	0.330	2.60	0.500	0.300	0.200		0.0300	2.40		-
The made			-										-
CTA-AC-1 Meas			51.2	4 15								_	
CTA-AC-1 Cert			11.4	1 08			1	-		-	23.5	4.2	Т
BIR-1a Meas			1.7		0.6			1	52		017		-
BIR-1a Cert			11		0.60				m		-		T
NCS DC86312 Meas	95.7	14.3	66.8	12.0							25.3		T
NCS DC86312 Cert	96.2	15.1	87.78	11.86							23.6		-
ZW-C Meas	-					87.8	335	34.3					-
ZN-C Cert						82	320	34					T
NCS DC70009 (GBW07241) Meas	13.2	2.37	15.3	2.35			2140				30.6		T
NCS DC70009 (GBW07241) Cert	13.4	2.2	14.9	2.4			2200				28.3		T
OREAS 100a (Fusion) Meas	15.0	2.39	16.3	2.31							55.8	148	1
OREAS 100a (Fusion) Cert	14.8	2.31	14.9	2.26							51.8	135	1-
OREAS 101a (Fusion) Meas	19.6	3.14	29.0	2.61							37.8	445	-
OREAS 101a (Fusion) Cert	19.5	2.90	17.5	2.68							36.6	422	_
OREAS 101b (Fusion) Meas	18.0	2.85	17.6	2.43							31.15	408	-
OREAS 1015 (Fusion) Cert	18.7	2.66	17.8	2.58							37.1	386	-
JR-1 Mpas	4.0	1.2'0	4.8	0.73	4.0	1.8		1.5	10	0.4	276	. 0	-
JR-1 Cert	3.61	0.67	4.55	12.0	4.51	1.86		1.56	18.3	0.56	26.7	8.86	
OXN92 Meas													T

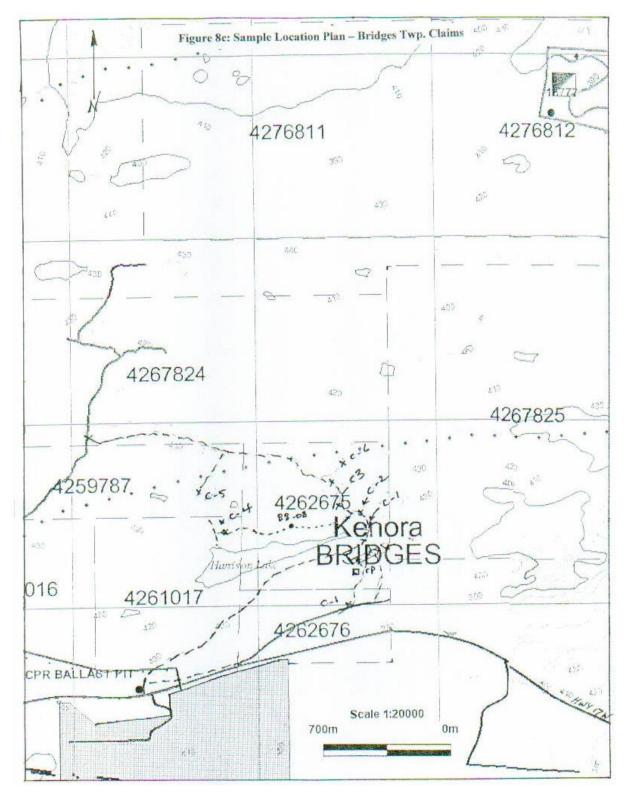
K20 TI02 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	P205 % 0.01 0.05 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	Lana Lana Alla and and a second s	EUS-1	Pm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm P	V B ppm ppr 5 5 11 69 45 45 91 92 91 92 91 92 45 45 91 92 103 13 41 48
a construction of the second second second second second	FUS-ICP 0.05 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.04	and the second second second	and the second s	and the second second second	and the second s
S S A S A S A S A S A S A S A S A S A S	PUS-ICP 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.02 0.03	Service Contraction of the service o	and the second second second second	and the second second second	an angle and a second or strength a second of
and the owner of the second second second second	0.01 FUS-ICP 0.05 0.13 0.13 0.13 0.13 0.13 0.13	 Construction and the second sec	and the second second second second	and a second second second	and the second s
The one share the second second second second	FUS-ICP 0.05 0.13 0.04 0.04 0.03 0.03 0.02 0.02	Character approximation and		and an and a state of the second	and the state of t
		and the state of t	99.53 38.82 00.1 00.6 8.52	0 00 00 10 14 14 14 10 14 10 14 14 14 10 14 10 14 14 14 10 14 10 14 14	
			38 82 100 1 00 6 00 6 8 52	80 10 10 14 14 1 01 10 10 14 14	48 103 103 14 14 14
			100.1 100.6 100.8 18.52	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	91 103 11 11
			00.6	10 - 4 -	36 41 7
			8.52	0 - 4 -	103
			8.52	4 4 4 4 9 4 4 4 9 4	14 14
			20.02	4 4	14
				1 <1	2
			8.00		
			8.46	2 <1	Ø
			9.09	2 8	12
			9.28	4 <1	128
			OD R	4	
			8.78		14
					2
				-	v
			0.01	1 v 1	1
			8,48	1 <1	80
			> 00.4	1 41	-
			00.8	1 <1	14
4000		0.589 0.151 0.192 0.015 0.015 0.427 0.027 0.097	0.569 0.13 1.05 0.151 <0.01 0.34 0.192 0.06 0.84 0.015 0.03 0.13 0.079 0.02 0.33 0.427 0.06 1 0.027 0.01 0.25 0.097 0.01 0.25	0.569 0.13 0.151 < 0.01 0.192 0.06 0.079 0.03 0.079 0.02 0.427 0.06 0.027 0.06	0.569 0.13 1.05 99.28 14 0.151 < 0.01

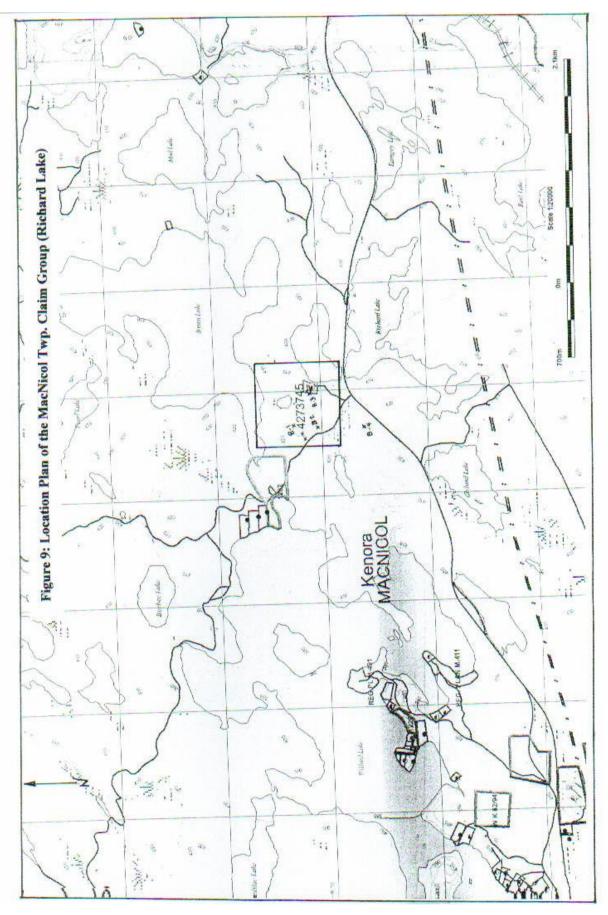
Report Number: A14-U/009 Report Date: 7/11/0014																	
Anahda Sumhol		2			1000												
include adjusting	ñ	1	17	S	8	Z	Cu	Zu	Ga	Ge	Ac	40	MIN	14~		1.11	
Unit Symbol	mdd	ppm	mad	maa	DOM	DOM	muo	mont				2		NIN	P.	E	L'S
Detection Limit	2	0	P	UC			1144	in the	Under	under	Edd	bpm	Eldd	mdd	unda	mad	ppm
Dalueie Mathod								30		-	10	2		2	0.5	00	
CURINESS MEETING	LOO-IVL	- 11	r UVICP	FUS-MS	FUS-MS	FUS-MS	FUS-MS.	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUSAMS		PIIC MC
2001-00 100-100	181	œ	CO.	< 20	v	< 20			15	-	v	204	31	62	41	000	
	310	00	83	10	10	< 20		60	CX F	12	NC V	34	ac	1 0	2.0	200	1
914565	402	10	133	140	12	40		100	00				B7	4	0.0	2.0.2	v
914568	1961	50	37	50	1	< 20		Sec. 1				B	10	N	× 0.9	< 0.2	14
814567	659	6	26	80	40	-		200	2 .	+ 1	V	243	0	5	< 0.5	< 0.2	v
814568	381	0	63		2 0			087	-	2		10	00	<2	< 0.5	< 0.2	-
914569	44		4 0		0			20	80	¢ v	W V	18	20	26	< 0.5	< 0.2	v
014870				2	v	× 20		× 30	8	1.2	SP V	112	10	67	<05	002	
		11	47	30	1 >	× 20		< 30	14	+	ND V	207	1	0 >	40.5	100	1
	214	0	33	20	2	< 20		160	26	10	4 Y	ACP.		1 1		202	
B14572	458	0	115	120	10	UE		10	0.			190	+	VV	\$ 0.0	× 0.2	v
914573	101	4.R	1318	10		200		2 2	20	1×	v	124	4	×2	< 0.5	< 0.2	1×
D14574	***		0.00	2	0	122		08	23	***	v	125	20	3	45	<02	-
014578		2	net	202 2	-	< 20		40	40	P	v S	228	en	< 2	20	202	
	00	0	01	30	1.2	< 20		< 30	~	+	5 V 5	128					
//04LR	37	15	L	20	1>	< 20		20	10		-	004		F. 1	0.01	Z'N'S	V
914578	548	9	126	30	11	< 20		11	1.2			200	4	N V	\$0.5	< 0.2	*
914579	30	6 ×	a	an a					¥	-	n v	50	4	× 2	9.0	< 0.2	× 1
914580	as		0	3 9		27		200 ×	-	v	2 2 V	4	4	2	\$ 0.5	<02	4 Y
	0	0	10	40	~	< 20		< 30	10	t,	v v	10	0	~	< 0.6	< 0.2	Y

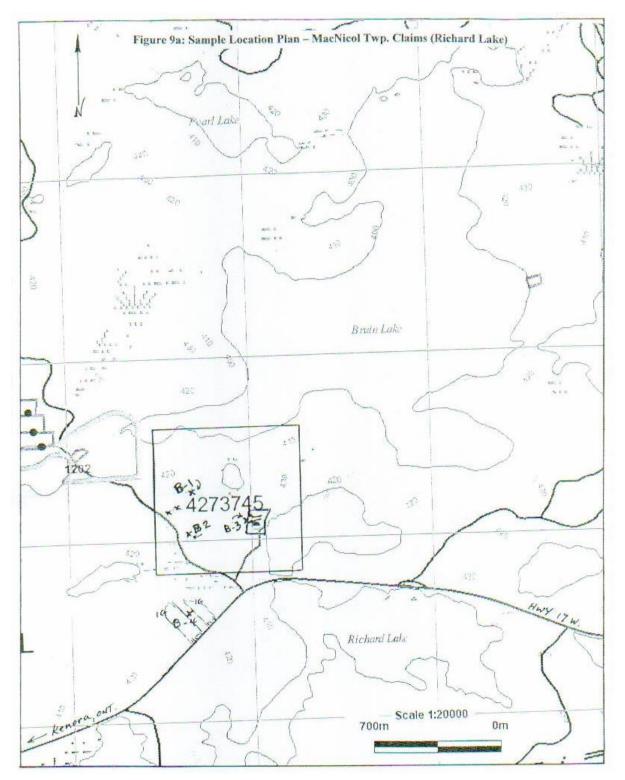
Report Number: A14-07509																	
Report Date: 7/11/2014																	
Analyte Symbol	Sb	Cs	La	1 Ce	L.	DN	Sm			10	2	Hu	ů	Tm	5	100	111
Unit Symbol	Lidd	mdd	bpm	mad L	mad	mod				HUU I	5				2	3	I
Detection Limit	0.5	20	ç			T C					Inde	under	mdd	Endd	Edd	Hidd	udd
Asis Mathod	CITC NO	CING MIC	and and		-	1.0				0.1	0.1	0.1	0.1	0.05	0.1	0.04	0.2
227 202 202 202 202 202 202 202 202 202	20000	OMPOOL	200-MO	2-001	1	FUS-WS	- 1	- 1	34	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUSAG	FLISAAS	FUSANC	ELIC MC
2	× 0.0	3.7	0,1		1.29	4.7		L		0.2	5	5.5	a C	0.12	000	Se v	
814004 8	× 0.6	10	16.5	5 30.2	3.54	13.4	2.6			0.4	9	e c	00		0 0	21.0	0.0
914565	< 0.5	CN	32.7	50.8	8.59	23.5							0 0	1	1.0	0.11	3
B14566	< D.F.	2.7	4.4.4							4.0	N	4.0	0.0	0.15	-	0.13	3.1
0+2567	1.6			3	0.40	Z				8.0	0	1.01	0,4	0.76	52	0.82	1.8
			2.0			8.8				0.3	1.3	0.3	0.9	0.15	80	0.14	1 C
0	0'0 >	0			3.07	10.8				0.2	0.8	10	70	0.05	10	1000	
R 14004	× 0.6	4.2	2.4	4.7	0.54	1.8				10	10	0.3	70	0.08			
8140/0	× 0.5	63	12.7	28.2	3.53	12.9				14	-	P C			* 0	00.0	0.0
14571	< 0.5	14.7	6.2	111		L.								1	B.O	1.0	L'L
914572	\$08	195	10.2							2.0	Y	0.2	1.0	0.11	00	0.13	1.7
14673			2.01		10.0	10.0				0.3	0	0,4	12	0.17	11	0.18	67
	0.0		4	14.6		10.3				1.2	0	1.8	1.9	1 02	78	1 12	YOY
	20.0	4.0	47	88.1	8.83	27.8	4.1	0.48	3.1	0.4	1.8	0.3	0.0	0.13	80	64.0	
Diotio	\$ 0.5	5.5	21	4.3		1.0				01	0 0	CU	20	ann		4 00 00	2 4
1/47LR	< 0.5	8,1	5,9			-				20	+ 0	14		200		00.0	0
914578	< 0.5	10	20.9			47				2 4	4	2.0	-	0.42	4	0.2	0.3
914579	<05	A D A	P.C							7.0	1.1	0.2	0.5	0.08	0.6	0.08	e
4580		5 0	5		01.0	0.0				× 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.04	0.3
	0.0 /	1.0	4	80	1.13	4				< 0.1	0.6	< 0.1	0.2	< 0.05	02	< 0.04	0.7

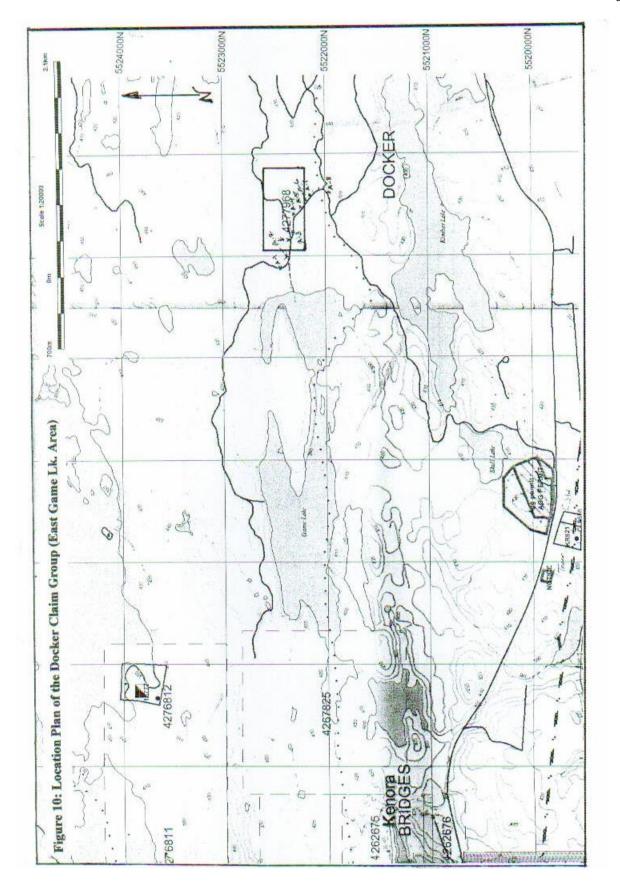

Final Report Activation Laboratories Final Report Activation Laboratories

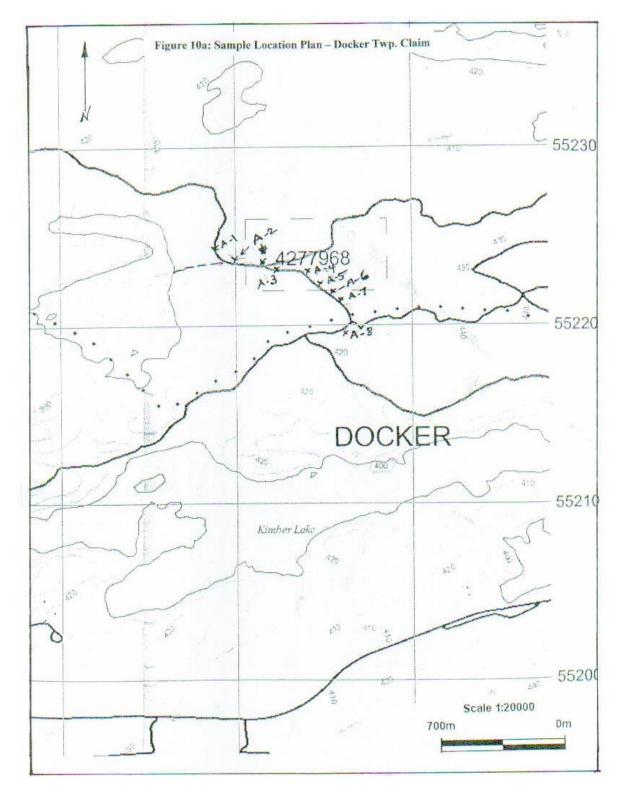

Report Date: 7/11/2014								
Analyte Symbol	Ta	M	F	Pb	B		n	
Unit Symbol	mdd	ppm	DOM	mag	mon			
Detection Limit	0.1	*	0.1	w)	0.4			
Analva's Method	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUS-MS	FUS.MS	
914563	0.4	12	1.3	63	×0×			
914564	0.3	1×	0.2	~	<0×	8.8	10	
B14565	9.0	64	0.5	15	< 0.4	18.1	50	
914566	0.2	4 t	4.1	102	< 0.4	18.4	10.0	
914587	< 0.1	10	0.2	S N	< 0.4	14	07	
B1456B	0.3	L.V.	0.1	1	< 0.4	88	1 29	
814569	0.5	÷.v	0.6	15	< 0.4	19	10	
914570	0.3	v	1.3	520	×0.4	15.5	4 6	
B14571	1.4	12	~	101	×0.4		1 0	
914572	0.4	1×	0.8	14	<04	2 4	- e	
914573	3.7	+	0.8	895	0.7	136	Can a	
914574		1×	1.3	22	<04	28.2	and a	
914578	0.4	12	0.8	46	< 0.4	1 4		
114577	0.4	1 >	11	0	<04	01		
914578	0.1	v	0.6	10	<0.4	1 40	00	
914579	< 0.1	12	0.1	NO.	<04	14	e c v	
914580	<01	1.1	101	4				


APPENDICES III


Excerpts from Previous Reports


Additional Plates and Figures





Picture No.	Sample No.	GPS Coordinates	Description - Notes
Pics. 1, 2, 3	A-1 (grab)	15U0456867	- general east-west strike
	# 914563	5522392	- vertical to 70 N. dipping contacts
Pic.4	A-2 (grab)	15U0457236	
and the state of the	# 914564	5522313	
Pic. 5	A-3 (grab)	15U0457330	
	# 914565	5522311	
Pic. 6	A-4 (grab)	15U0457449	
	# 914566	5522233	
Pic. 7, 8, 9	A-5 (grab)	15U0457559	- pegmatite dikes on top hill in
	# 914567	5522147	contact w. mafic flows
Pics 10, 11,	A-6 (grab)	15U0457607	
12, 13	# 914568	5522093	
Pic. 14	A-7 (grab)	15U0457669	
	# 914569	5522011	
Pic. 15	A-8 (grab)		- general east-west strike
	# 914570		- contacts vert. to 70 deg N. Close to south bdry of claims

Property 'A' - Docker Twp. (Claim 4277968) Map.G-0818

Property 'B'- Macnicol Twp. (Claim 4273745) Richard Lake Occurrence - Map G1342 Approx. 47 kms west of Vermilion Bay, Ont.

GPS a	t turn	from H	wv 17	into subie	ct property	: 15U0433907	- 5521750
11 0 0	1 11111	11 Otto 1 I	** * * *	TTEEL'S PLANEL IN	and the second second		

Sample No.	GPS Coords.	Description-Notes
B-1 # 914571	15U0433421 5522201	-at 0.6 kms from Rd Stn.1 - approx. 100 m to east-top of ridge-IG gneiss
B-2 # 914572	15U0433590 5522023	- dip is approx. 070 N.W.
B-3 # 914573	15U0433918 5522178	- at gate of adit (Richard Lk. Lodge- on patent cl.)
B-4 # 914574	15U0433596 5521427 15U0433599 5521427	 Road Cut near Highway 17W-old trenches area location of old picket line thru property(N-S) granites on Hwy.(N-side) + dikes of mylonized mica schist (alt. mafic volcs.)

Property 'C' – Bridges Township – Claims 4259786, 4259787, 4261016, 4261017, 4262675, 4262676, 4277966, 4277967

Map G-0812 – VMS-Type Mineralization + Peraluminous Pegs.(Ur/Th) Noted past work adjacent to Harrison Lake

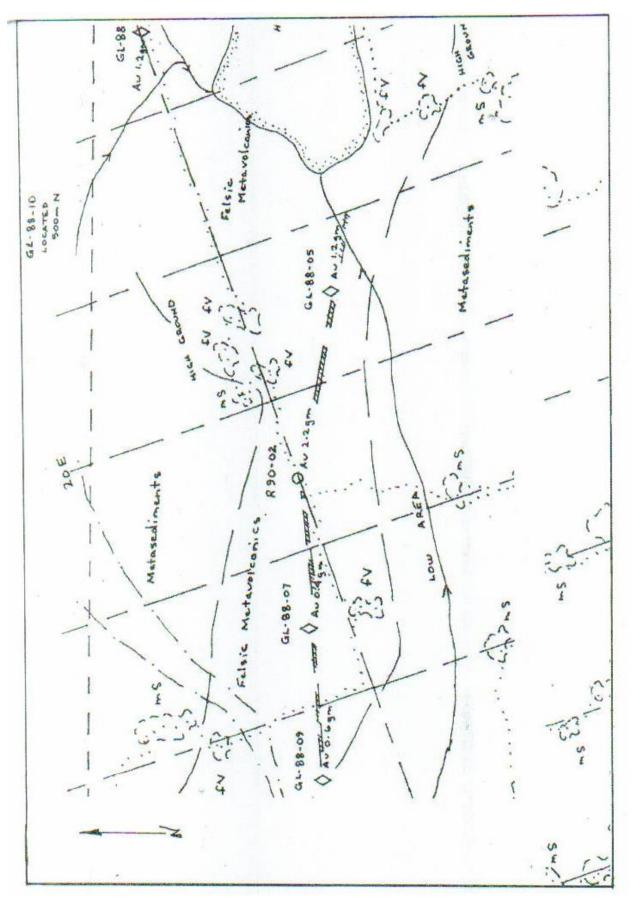
Sample No.	GPS Coords.	Description- Notes
C.P. #3	15U0451553	- location of older Claim Post
4204690	5521221	
GPS @ Road	15U0451677	- turnoff from Hwy 17W at Gravel/borrow pit
Turnoff	5521417	
D.H.Casing	15U0451157	- Hole GL 88-08 depth 201 mFeb./88 -70 dip S.
Difficusing	5521455	
C-1	15U0451477	- beside dirt road(grab)
# 914575	5520956	
C-1a	15U0451724	- qtz. boudinaging on ridge-granite w. pegmatite
C-1a	5521300	diking
C-2	15U0451624	- west side rd peral.Pegs + biotite mica schist
# 914576	5521367	· · · · · · · · · · · · · · · · · · ·
C-3	15U0451238	- west side rd peral. Pegs + biot. mica schist
# 914577	5521205	
C-4	15U0450822	- qtz. carb vng in granitic host material near
# 914578	5521409	Cates Showing location
C-5	15U0450836	- N. side Cobble Lk. Rd qtz. rick pegs.+ rusty
# 914579	5521423	sections in shrd. Mafic voles.
Note: Cobble	Hill Rd solits @ 3.5	kms fr. Hwy 17 W(one SSW track , one west track)
1000.000000	@ 15U0450082	
	5521957	100 0 6 Pd (Cabble Lk Truck Pta)
C-6	15U0451506	- 100 ft. fr. Rd. (Cobble Lk. Truck Rte.)
# 914580	5521509	

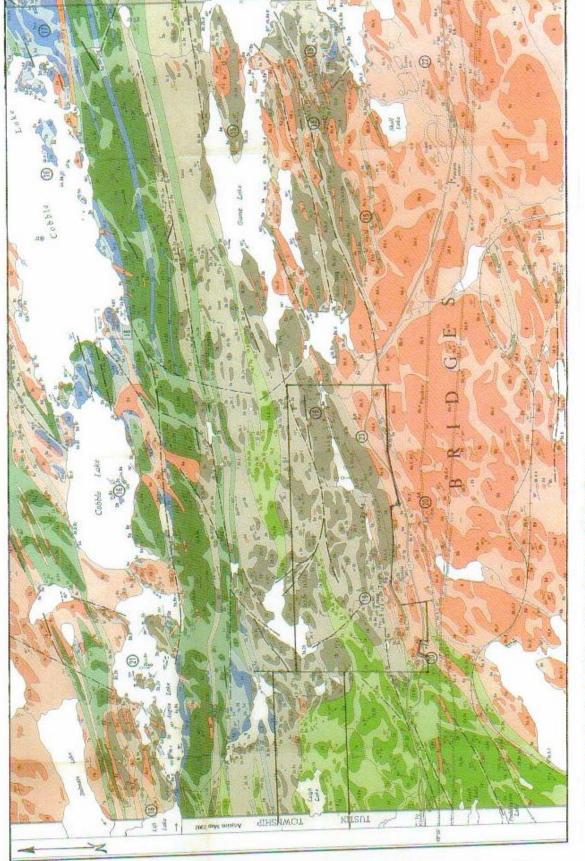
Sample Descriptions :

Sample #	Sample Decription	Analysis Methods
	 white c.g. pegmatitic vn. In mafic/fe;sic volcs white alt. with qtz shards/columnar albitized pink plag. + silic. pegspoorly mineralized 	Au + M.E.
914564 (A-2)	 c.g.crystalline qtzreddish/hem. stained to dk. grey color- odd dissol. Mica clots+ shrd mica schist on slip faces-poorly mineralized 	
914565 (A-3)	- intermixed finely lamin, shrd, sil, mafic volcs/alt, gra	nite gneisses
	with rusty /stnd. surfaces(Fe oxide) w. clots biotite m joints/layering	Au + M.E.
914566 (A-4)	 c.g. pegs with felsp/qtz. cumulative texture + v.c.g. grained pegs w. clots biotite mica (5-20%) – weather 	ed Au + M.E
	white on surface- poorly mineralized	Au + MLE
914567 (A-5)	 clear milky white vng. in lrg. c.g. aphanitic plag/qtz p + odd rusty contact w. metavolc. units 	Au + M.E.
914568 (A-6)	 c.g. qtz. vn. milky to blue smokey-grey qtz.) w. clots c.g. biotite mica on faces/slips-some qtz. vuggy with 	
	rusty faces (Fe oxide)	Au + M.E.
914569 (A-7)	 c.g. qtz, fels pegs. w. clots mica schist in/along slips/fractures/contacts-pink to smokey grey qtz poorly mineralized- not sheared 	Au + M.E.
914570 (A-8)	 c.g. qtz. rich pegs(plag-rich) w. clots/books mica diss. all thru – no sulphides-qtz. milky, reddish to smokey grey color 	Au + M.E.

Sample Descriptions:

Property 'B' - MacNicol Twp. - Richard Lake Occurrence - Claim 4273745


Note: Au = Gold Assay M.E. = Multi-element whole rock geochem. Analysis


Sample Number	Description	Analytical Methods			
# 914571 (B-1)	w. biotite mica-silica rich(+65%); slight schistocity to granite-foliated-layered w. jt. plains every 1.5-2";				
1 01 (F72 (D 0)	no sulphides; no alteration; no peg. diking - mylonized granite schist-salt-pepper layers-	hands with			
# 914572 (B-2)	fine laminations- alt, metasvolcs, alt, to biot	ite schist			
	with fine silica banding	Au + M.E.			
# 914573 (B-3)	 smokey blue qtz. in peg. diking at adit entrar overhead-country rx. are granites-reddish to w. c.g. large felds. Xstals (plag.)+ black pitch c.g. intercumulate text. from top of adit in 0.5 50%-60% in slips-jointing planes (almost met alt.pegs. 	dk. grey h-like hnblde-biotite; m. vn.; biothnble in			
# 914574 (B-4)	 qtz. vng. in shrd. granite schist (biotite mica- some fine tourmaline vngpoor in sulphides (qtz.felsp porphyry) 	rich) plus Au + M.E.			
Note: Large sam	ple B-3 is for dislplay purposes- c.g. pegs with hornblende clots around felsic phenocrsysts	qtz. plus black mica- (plag. xstals)			

Sample Descriptions:

Property "C" - Bridges Claims

Sample No.	Description	Analytical Methods
# 914575 (C-1)	from smokey qtz. vn. so rd. at east end Harrison	outh of access Au + M.E. Lkgrab
(e qt	smokey qtz. vn. in altero g-beige large fels xstls)- z. xstals-poorly mineraliz inor tourmaline on faces	ed peg dikes c.g.large twinned Au + M.E. red w. plates-books mica:
+, lge bi + c	- columnar qtzfels. in 5 m.vn. widths x length c. fels. phencrysts + odd otite mica in plates(whte + large peg. dike w. clun lark smokey grey qtz. w. o sulphides	(hundreds metres); speck Py diss + . phlogopite) ups-clusters mica schist
# 914578 (C-4) fi wi (u n f. # 914579 (C-5) i	 muscovite-biotite mic nely banded-finely lam. th 1-3" qtz veins cutting p on road S. of Harrison yolinized granite schist g, laminar beds; very sil 	Lk.); also f.g. w. mica on joints; icieous-poorly mineralized rey with balck biotite/hnblde w. bull qtz. veining Au + M.E. ly mineralized in mica
iı	- white bull qtz. vein with mafic volcanic flows + poorly mineralized	h fine tourmaline on joints laminar sed. Flows Au + M.E.

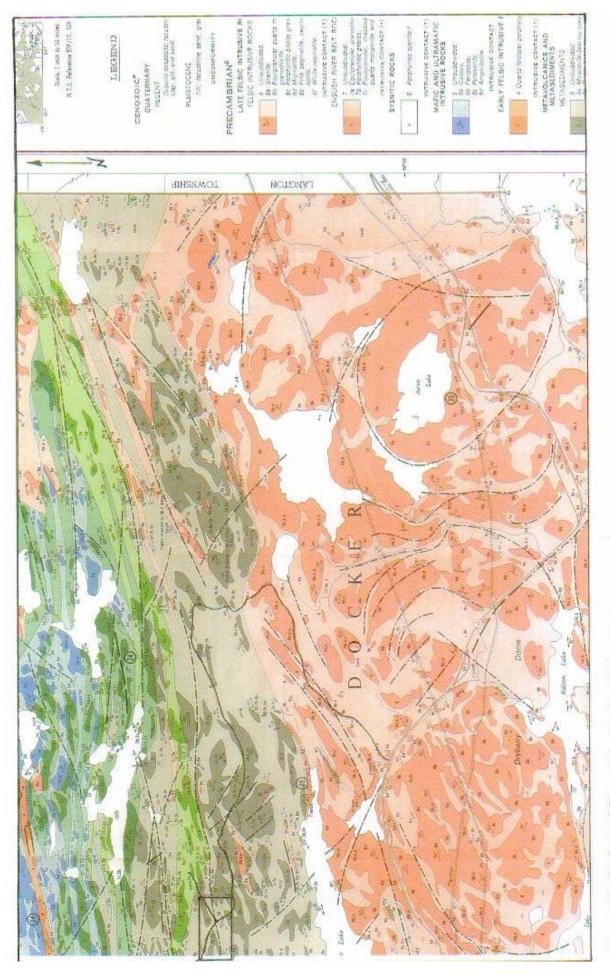
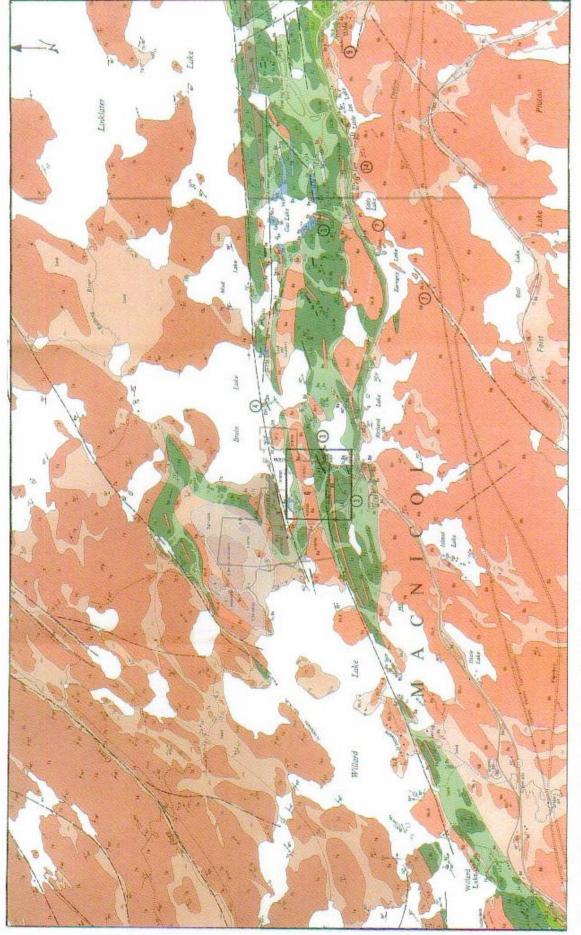



Figure 12: Geological Plan of the Docker Claim Group

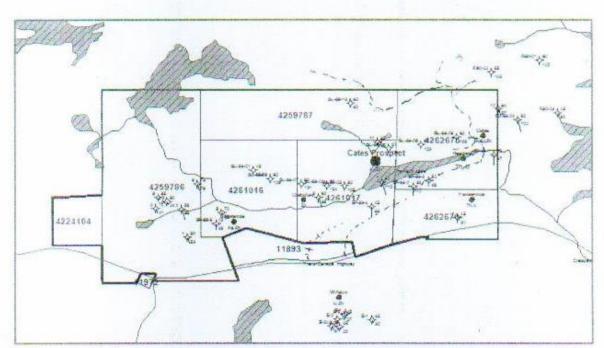


Figure 3. Historic drill holes and mineral deposits

Historic Mineral Deposits

Metallic mines, prospects and mineral occurrences have been taken from the MNDMF Mineral Deposit Inventory - 2011, a digital geoscience database providing an overview of mineral deposits within the province of Ontario. The full MDI full database contains information on some 19,300 metallic and industrial mineral deposits, as well as some building stone and aggregate sites. Each MDI record provides information on deposit name(s), location, status (e.g., occurrence, prospect, producer, past producer), principal and secondary commodities, character/classification, geological structure, lithology, minerals and mineral alteration, geochemistry, exploration history, and production and reserve data where available.

The 11 MDI entries for the compilation map sheet area are listed in table 3. 'Cates Prospect' is a 'developed prospect with reserves'. The other 10 are occurrences. MDI entries within GeoFortune's claim block are shown in red.

MDI IDENT	UTMe	UTMn	name	Princiapl	Secondary	class
MDI52F13SE00065	450746	5521316	Cates Prospect	Ag,Zn	-	DR
MDI52F13SE00048	452976	5523775	Harrison	Ni, Ta		OC
MDI52F13SE00055	446943	5520529	Parth	U	-	OC
MD152F13SE00054	451455	5521338	Headway	Th, U	-	OC
MDI52F13SE00052	451523	5521006	Fairservice	Th, U		OC
MDI52F13SE00067	448681	5523898	Augite Lake	Cu	Ni	OC
MDI52F13SE00056	451615	5521523	Cates	Pb,Ag,Zn	Cu	OC
MDI52F13SE00058	452645	5520145	Pipeline	Th,U	-	OC
MDI52F13SE00066	450162	5521002	Crabclaw	Zn	-	OC
MDI52F13SE00050	449594	5520826	Noranda	Ag, Zn	-	OC
MDI52F13SE00047	450447	5520217	Wilson	U, Zn	1	OC

Table 3. Historic mineral deposits

Deposit status types in the MDI database are Producing Mine, Past Producing Mine with Reserves, Past Producing Mine without Reserves, Developed Prospect with Reserves, Developed Prospect without Reserves, Prospect, Occurrence, and Discretionary Occurrence. For the compilation map sheet area -

GeoFortune Resources - Bridges and MacNicol Properties