2014 Assessment Report

on

Geophysical Modelling

Calvert-Aldina Project

December, 2014

Steven Siemieniuk, P.Geo.

Table of Contents

List of Tablesii
List of Figuresii
Summary and Introduction1
Location and Access 2
Claims
Regional Geology 6
Local Geology9
Property Geology
Previous Work14
2014 Geophysical Modelling14
Conclusions and Recommendations 14
References
Appendices16
Appendix A i
Condor Geophysics Maxwell Modelling Reporti
Appendix Bii
Condor Geophysics Invoiceii
Appendix Ciii
Property Summaryiii
Appendix Div
2004 RJK VTEM Assessment Reportiv

List of Tables

List of Figures

Figure 1: Regional location of the Calvert-Alina Project (labelled as the Calvert Project in the	
above image)	2
Figure 2: Calvert-Aldina claim map as of August 8, 2014 (modified from CLAIMaps)	5
Figure 3: Geology of the Wawa Subprovince of the Superior Province	8
Figure 4: Geology and Mineral Deposits of the Shebandowan Greenstone Belt	8
Figure 5: Geology of the Calvert-Aldina Project (Lodge, 2014)	11
Figure 6: Geology of the Discovery Trench (Schnieders et al., 2001)	13

Summary and Introduction

The following report covers the interpretation and modeling of VTEM data that was conducted by Geotech Ltd. for GLR Resources Inc. in 2004. The VTEM modelling was performed by Condor Geophysics of Lakewood, Colorado. Recent geological interpretations of the in-situ mineralization encountered in the Discovery Trench located on the Property have suggested to some a possible deeper source of mineralization.

Due to the fact that the initial drill program appears to have been based off of first-pass interpretations of the geophysical data in obtained in 2004 it was decided by the author that modeling of the data by Condor Geophysics - a world-renowned leader in geophysical modeling of VTEM data - would be the best first step in re-evaluating the Calvert-Aldina Project for deeper and larger occurrences of in-situ massive sulfide mineralization.

This work is being submitted for assessment under Ontario Regulation 6/96 Section 18, as it is an application of a new methodology or presentation of previously submitted field data which contributes new information to the geotechnical database.

The Maxwell Modelling completed was successful in outlining a number of steeply dipping conductive plates of variable thicknesses. The tops of the conductors were fairly shallow while the depth to bottom on the deepest plate was 596 meters in the area of the Discovery Trench. This suggests an additional or continuous, yet deeper, source to the conductive portions of the massive sulfides.

Completion of the digital data compilation, finalizing the 3D diamond drillhole database and incorporating the recent modelling work as an isosurface in the 3D visualization is recommended prior to planning any more physical work on the Property.

Location and Access

The Calvert-Aldina Project is located in Aldina Township in the Thunder Bay Mining Division on NTS sheet 52A/05. The coordinates of the approximate centre of the claim group are 283300 East and 5365000 North (NAD 83, UTM Zone 16).

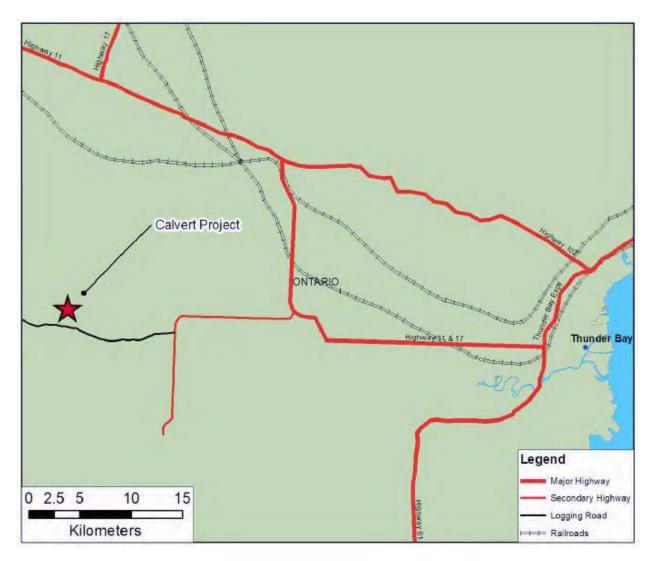


Figure 1: Regional location of the Calvert-Alina Project (labelled as the Calvert Project in the above image).

The Calvert-Aldina Project can be accessed by traveling approximately 30 kilometers west on Highway 11/17 from Thunder Bay to the village of Kakabeka Falls. Approximately 1 kilometer west of the village on Highway 11/17 is the turnoff to Highway 590 which only heads south. Driving on Highway 590 for approximately 14.5 kilometers will lead to the Boreal Timber Road (Boreal Road) which is an all-season, well maintained forestry road heading west off of Highway 590. Access to the Property is via secondary forestry roads with the southern boundary of 4242857 intersecting the Boreal Road lower portion of claim at around Kilometer 11 on the Boreal Road. The turnoff to the secondary forestry road at 283992 East 5363081 North (NAD 83, UTM Zone 16) is taken to access the Discovery Trench and proposed trenching areas for the 2014 program. A four wheel drive ATV is recommended for the portions of the road network closest to the Discovery Trench.

Claims

The Property consists of two contiguous, un-patented mining claims (Figure 2, Table 1).

Township/Area	Claim Number	Recording Date	Claim Due Date	Units	Work Required	Total Applied	Total Reserve
ALDINA	4242855	2011-May-	2014-Dec-	4	\$1,600	\$1,600	\$0
		18	18				
ALDINA	4242857	2011-Oct-	2014-Oct-	12	\$4,800	\$4,800	\$0
		20	20				

Table 1: Calvert-Aldina Project claim details.

Alienation WP2008-173 which covers the lower portion of 4242857 is an application for surface rights for a wind power installation. A copy of the application has been requested but not yet received. Information available from a query of the alienation states "Type N, Wind power area - App. for SRO, PLA subject to Section 28.2 (3) Mining Act. For further information on pending Wind Power appl. please contact the local MNR District Office.". If granted, this will have no impact on the proposed exploration program.

The Calvert-Aldina Project currently holds a Mineral Exploration Permit from the Ontario Ministry of Northern Development and Mines (PR-13-10400). This permit has been granted to Steven Siemieniuk for the purpose of conducting the early exploration activity of Mechanized Stripping. Permit PR-13-10400 is valid from October 08, 2013 until October 07, 2016 and is subject to the requirements of the Mining Act, Ontario Regulation 308/12, the applicable Provincial Standards for Early Exploration and the following Terms and Conditions:

The Permittee shall keep this permit or a true copy thereof on the permit area.

The person in charge of the operation conducted under this permit shall produce and show this permit or the true copy kept on the exploration permit area to any inspector whenever requested by the officer.

The requirements outlined in Schedule 1 of Ontario Regulation 308/2012 and applicable Provincial Standards for Early Exploration.

Other terms and conditions as listed on this permit.

There are no additional terms and conditions listed on Permit PR-13-10400.

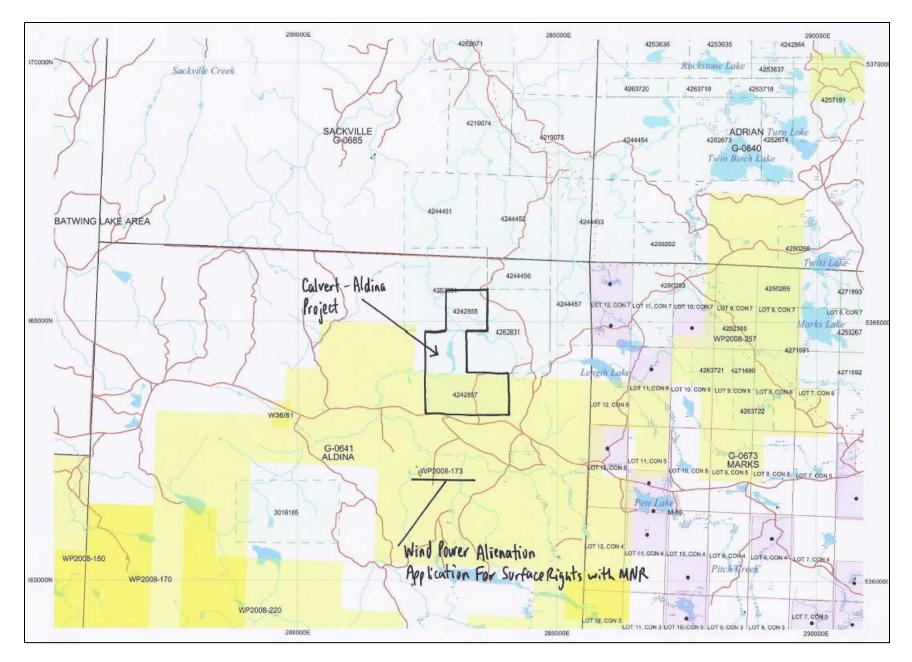


Figure 2: Calvert-Aldina claim map as of August 8, 2014 (modified from CLAIMaps).

Regional Geology

The regional geology of the area has been described well by Terence J. Bottrill in a 43-101 Technical Report on the Stares-Calvert Project written for RJK Explorations Ltd. and GLR Resources Inc. dated September 10th, 2003. The descriptions and figures for regional and local geology have been sourced directly from this report.

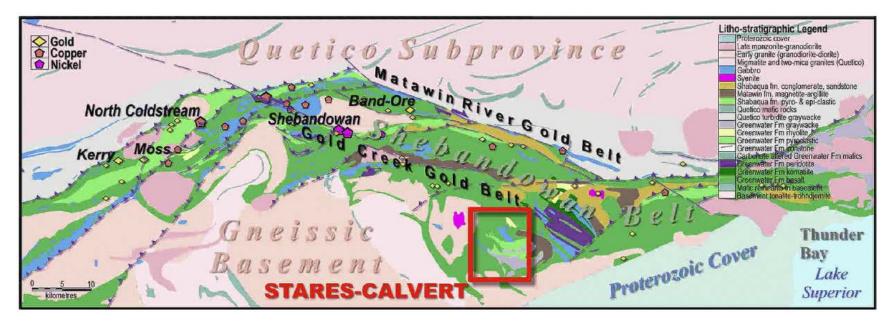
The Calvert-Aldina Project initially resulted from the discovery of well mineralized massive sulfide float and its subsequent exploration back to its bedrock source within the southern part of the Shebandowan Greenstone Belt. The Shebandowan greenstone belt is part of the western Wawa Subprovince of the Archean Superior Province of the Precambrian Canadian Shield. The Shebandowan greenstone belt is one of a series of greenstone belts which extend along the north shore of Lake Superior from the western boundary of the Kapuskasing Subprovince, through the Manitouwadge, Hemlo and Schreiber belts, together with the Michipicoten belt further to the south. These are all east of the Proterozoic Lake Nipigon, mid-continent rift cover sequence. To the west of the Proterozoic the Subprovince continues through the Shebandowan belt to the Saganogans belt and into the Soudan and Newton belts of the Vermillion district of Minnesota. It is covered at the west by the Palaeozoic sedimentary rocks of the western plains. The Wawa Subprovince has also been described as the western part of the Abitibi belt.

In most respects the Shebandowan belt is similar to the other greenstone belts of the Precambrian shield. It consists predominantly of mafic volcanic rocks, with minor ultramafic and felsic volcanic rocks, sedimentary rocks, both clastic and chemical, as well as various mafic and felsic intrusions. It typically dips steeply to sub-vertical, and is divided into tectonic blocks by numerous faults.

In other respects the Shebandowan belt is somewhat different from many, but probably not all, greenstone belts. The assemblage of rocks which are typically considered as part of a greenstone belt are in this case only one part of a larger orogenic belt with three adjacent lithologically distinct terranes. These were probably all formed more-or-less together and have a strong association in their geochronology, a similarity in their geochemical signatures indicating they were derived from the same part of the lithosphere, and a similar tectonic evolution. Whilst they now have a complex structural relationship consistent with that of an orogenic belt, they may be autochthonous one to another.

The first terrane, to the south, is predominantly granite gneiss which has dates which are older than the adjacent supracrustal rocks.

The second is the greenstone assemblage of volcanic, sedimentary and intrusive rocks. It appears to have been erupted and deposited directly upon, or immediately adjacent to, the basement granite-gneiss terrane. Many of the characteristics of the mafic volcanics, the associated ultramafic volcanics, and the relatively thin but a really extensive inter-flow sedimentary rocks (carbonaceous argillites and magnetite-jasper ironstones) indicate that they were deposited in what was a platformal environment, mostly in relatively shallow water to subaerial settings.


The third geological terrane is the Quetico Sub-province, consisting of graywackes and lesser siltstones and very minor mafic rocks. Further to the north the metamorphic grade gradually increases until the graywackes become migmatites with intrusions of two-mica granites which appear to be derived from melting of the graywacke and migmatite. While the Quetico is typically considered as a distinct Subprovince (Williams, 1991), it appears to be closely involved with the development of both the basement gneiss and the greenstone belt supracrustal rocks. The Quetico terrane turbidite graywackes were probably deposited in a deeper marine basin lying outboard of the original volcanic and basement block which stood topographically high, and are formed from the products of the adjacent greenstone belt, mafic-volcanic rocks as well as the exposed basement granite-gneiss.

Both the basement gneiss and the greenstone are intruded by a variety of granitoid plutons of similar ages. The geochemically very similar older granites and tonalites intrude both the basement granite-gneiss and the volcanic terranes. The younger, post-tectonic granites, granodiorites and quartz-monzonites intrude all three terranes and appear to be partly responsible for "welding" the supracrustal rocks to the basement.

The structure of the Shebandowan belt is also distinctive when compared with many other greenstone belts. It is predominantly homoclinal, with individual formations facing north and the overall sequence appearing in general to go from older units adjacent to the basement gneiss to younger ones towards the Quetico Subprovince to the north. It does not have the typical appearance of a symmetrical "keel" or "triple-junction" as seen in most other granite-greenstone terranes. Instead it is dominated by a series of thrust sheets which were directed to the northwest in their current orientation, in both the western and eastern parts of the belt. The stratigraphy and the thrusts strike predominantly northeast at these two extremities of the belt. The two thrust terranes are joined by the north-northwest striking linear section of the belt which is structurally dominated by imbricate, transpressive or strike-slip shear structures.

SHEBAN		-CALVERT		QUETICO Geco	▲ N
Proterozoic cover Kapuskasing Granitoid rocks	L a k	e Superior	Hemlo	MLO WAWA Goudreau Renabic	Children of the second
Quetico graywacke Volcanic belts Gneissic basement	 ☑ Cu-Zn ☑ Ni ● Fe 	0 km	100 Magino	Michipicoten Iron Ranges	tap

Figure 3: Geology of the Wawa Subprovince of the Superior Province.

Figure 4: Geology and Mineral Deposits of the Shebandowan Greenstone Belt.

Local Geology

As mentioned above, the regional and local geology of the area has been described well by Terence J. Bottrill in a 43-101 Technical Report on the Stares-Calvert Project written for RJK Explorations Ltd. and GLR Resources Inc. dated September 10th, 2003. The descriptions and figures for regional and local geology have been sourced directly from this report.

The geology in the area of the Calvert-Aldina project has been interpreted from the available outcrops as mapped during the exploration programme and as reported on published maps of the Ontario Geological Survey, which were published as recently as 1995. The local stratigraphic sequence is characteristic of many greenstone belts in areas associated with volcanic hosted base and precious metal mineralization. This sequence is primarily a basal iron tholeiite basalt overlain by variable thicknesses of felsic volcanic rocks and in turn by a thick sequence of turbiditic graywackes.

The felsic rocks are predominantly rhyolites which can be further divided into a younging sequence from subaqueous quartz-phyric high-silica rhyolites upwards to progressively more subaerial quartz-feldspar phyric rhyolite tuffs. The basal high-silica rhyolites include thinly bedded ignimbrite units which include basal tuff-breccia to agglomeratic horizons with similar coarse fragmental textures to those seen in sulphide mineralization. The tops of these units are finely laminated and graded ash-tuffs. Additional signs of probable subaerial volcanism include distinctive phreatic breccias restricted to single horizons in highly siliceous ash tuffs.

Throughout the sequence there are abundant ironstones and cherty tuffites, the latter being more abundant in the rhyolite units. The ironstones include chert-magnetic jasperoids as well as magnetite-silicate (amphibole-garnet) facies. The distribution of the different ironstones facies corresponds to probable water depths and each type is associated with a correspondingly appropriate rock type consistent with the appropriate water depth. The iron-oxide rich units are associated with the subaerial units, whereas separate pyretic and carbonaceous chert tuffites are located in progressively more subaqueous hosts. This facies distribution may reflect an original volcanic topography with a volcanic high in the area around the known sulphide mineralization progressively deepening to the north and east into the turbiditic graywacke basin.

These units are deformed and metamorphosed. The intensity of deformation is different among thevarious rocks types, with some such as the original mudstones showing the development of schistosity, whereas, by contrast, units such as the rhyolite ignimbrites, are almost internally pristine and mostly show brittle failure in locally closely-spaced faults. The ironstones,

especially magnetite-silicate facies ironstones are very finely laminated and unlike the many banded jasperoid ironstones show none of the classical internal folding.

The overall structure on the property is a southern isoclinally folded, steeply dipping overturned antiform, with the central area a corresponding synform underlain by the turbitic graywackes, with a further antiform in the northern part of the property. Each of these folds have east-west axial planes. They appear to have been re-folded around later northeast striking axes providing the oroclinal form of the folds, convex to the northeast. To a large extent the interpretation of the property geology has been based on the 1991 OGS airborne magnetic and electromagnetic survey, and the relationshop between the local geology with the ground magnetic data.

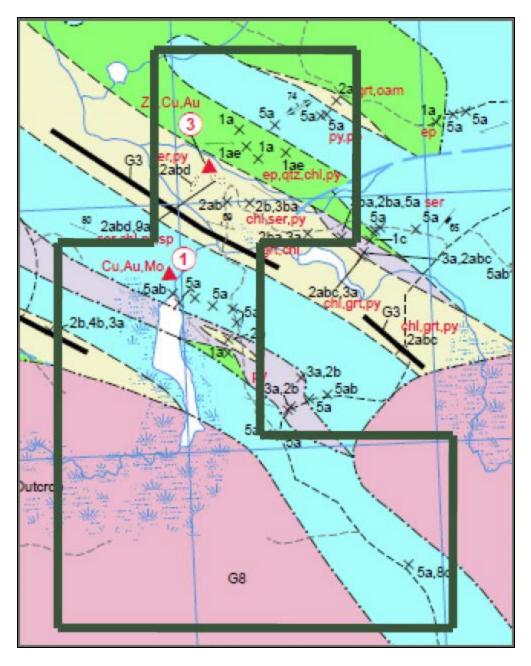


Figure 5: Geology of the Calvert-Aldina Project (Lodge, 2014).

Property Geology

The area of focus on the property is the Discovery Trench and associated volcanic stratigraphy. Mapping the Ontario Geological Survey shows a pod of massive sulfides encased in felsic tuffs, xenolitic rhyolite porphyry and sericite schist (Figure 6). A 6.5 meter chip sample in the Discovery Trench assayed 2.44% Zn, 465 ppm Cu, 521 ppm Pb, 13 ppm Ag and 54 ppb Au (Schneiders et al., 2001).

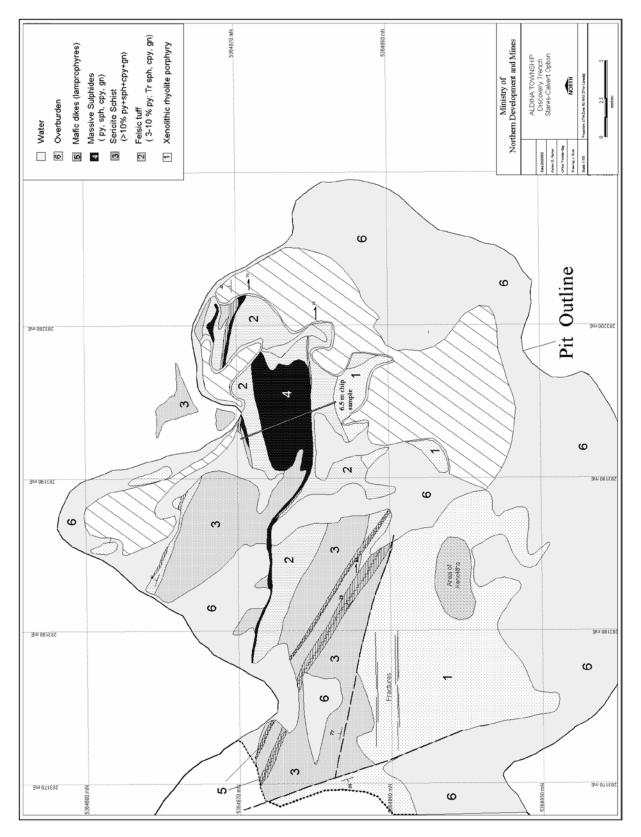


Figure 6: Geology of the Discovery Trench (Schnieders et al., 2001).

Previous Work

The applicant has not performed any previous work on the property since it was staked. Appendix C is a summary of the Calvert-Aldina property which includes a review of previous work done on the property as well as highlights of work.

2014 Geophysical Modelling

The author contracted a geophysical company to perform modeling of VTEM data that was by Geotech Ltd. for GLR Resources Inc. in 2004. The VTEM modelling was performed by Condor Geophysics of Lakewood, Colorado. Recent geological interpretations of the in-situ mineralization encountered in the Discovery Trench located on the Property have suggested to some a possible deeper source of mineralization.

The final report provided by Condor is included as Appendix A.

A copy of the assessment report that covers the 2004 VTEM survey and specifications has been included as Appendix D.

Due to the fact that the initial drill program appears to have been based off of first-pass interpretations of the geophysical data in obtained in 2004 it was decided by the author that modeling of the data by Condor Geophysics- a world-renowned leader in geophysical modeling of VTEM data - would be the best first step in re-evaluating the Calvert-Aldina Project for deeper and larger occurrences of in-situ massive sulfide mineralization.

Conclusions and Recommendations

The Maxwell Modelling completed was successful in outlining a number of steeply dipping conductive plates of variable thicknesses. The tops of the conductors were fairly shallow while the depth to bottom on the deepest plate was 596 meters in the area of the Discovery Trench. This suggests an additional or continuous, yet deeper, source to the conductive portions of the massive sulfides.

Completion of the digital data compilation, finalizing the 3D diamond drillhole database and incorporating the recent modelling work as an isosurface in the 3D visualization is recommended prior to planning any more physical work on the Property.

References

Bottrill, T. 2003. National Instrument 43-101 Technical Report on the Stares-Calvert Project for RJK Explorations Ltd. and GLR Resources Inc., dated September 10, 2003, 52 pages.

Lodge, R.W.D. 2014. Precambrian geology of Aldina Township; Ontario Geological Survey, Preliminary Map P.3776, scale 1:20 000.

Schnieders, B.R., Scott, J.F., Smyk, M.C., Parker, D.P. and O'Brien, M.S. 2002. Report of Activities 2001, Resident Geologist Program, Thunder Bay South Regional Resident Geologist Report: Thunder Bay South District; Ontario Geological Survey, Open File Report 6081, 45p.

Appendices

Appendix A

Condor Geophysics Maxwell Modelling Report

Date: November 26, 2014

To: Steve Siemieniuk

From: Ken Witherly

Subject: Maxwell modeling of Calvert/Kakabeka Falls property VTEM

Steve-

We have carried out Maxwell modeling to VTEM data acquired in 2004 over a single line conductor. While you provided Condor data from the area, in the end, we found the required airborne survey in our files.

Fig. 1 shows an image of EM response from the southern part of the 2004 VTEM survey (Geotech Project #422, Kakabeka Falls Block, March 2004). The EM feature for modeling is highlighted with your annotations Target 1A-4 inclusive.

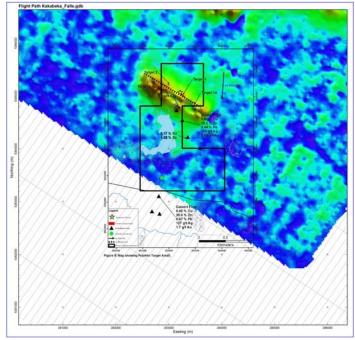


Figure 1: Image of southern part of 2004 VTEM survey EM response with client provided focus map as overlay.

While not required for this assessment, Fig. 2 shows the outline of the two VTEM surveys as well as the location of the Target Zone which the Maxwell modeling was carried out on.

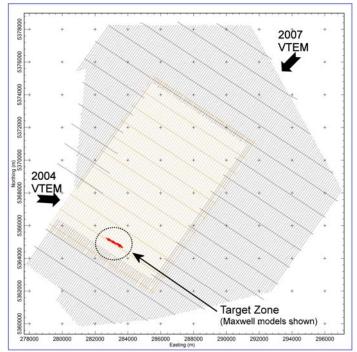


Figure 2: 2004 and 2007 VTEM surveys and Kakabeka Falls Target Zone.

Maxwell Results

In Fig. 3 the area that Maxwell modeling was carried out is shown. As is customary, the VTEM lines were sub-set over the modeling area; these clipped lines are shown in the figure. While the conductor extends slight to the NW and SE of the claim block, the modeling was done for those plates which fit along or inside the claim block.

A total of 8 lines were modeled (L1210-1280) and one plate produced for each line. In addition, a proposed drill hole was created which would test roughly the center of the Target Zone.

The conductivity-thickness values varied from 1.8-5.7 S.

The details of the plates are provided in Appendix A. The DXFs for the plates are attached as a separate zip file. All the tops of the plates are quite shallow, generally less than 10 m below ground surface.

The modeled was deemed of good quality as the anomalies were sharp and the fairly shallow. The resolution is such that direct drill from the Maxwell modeling is deemed a low risk option.

Ken Witherly CPG 11536

Figure 3: Target Zone show clipped flight lines and Maxwell models (in red).

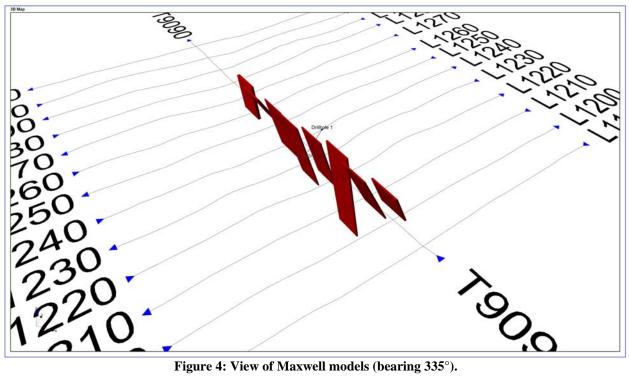


Figure 4: View of Maxwell models (bearing 335°).

APPENDIX A

VTEM				Depth to		Dip			Conductivity		
Line	Х	У	Z	top	Dip	Direction	Length	Depth Extent	Thickness	Cond	Thick
1210	283601	5364660	500	-7	66	34	809	188	3.73	0.46	8.04
1220	283455	5364715	497	-9	64	34	657	359	1.75	0.25	7.13
1230	283347	5364827	498	-3	80	34	779	596	1.56	0.20	7.99
1240	283207	5364880	498	0	73	34	676	333	2.79	0.39	7.10
1250	283065	5364953	488	-9	74	34	764	449	2.26	0.34	6.63
1260	282944	5365039	487	-3	75	34	613	325	3.01	0.51	5.91
1270	282797	5365098	490	-4	60	34	684	247	4.55	0.48	9.49
1280	282704	5365215	473	-14	83	34	424	216	5.75	0.36	15.79

Appendix B

Condor Geophysics Invoice

Condor North Consulting ULC 300-1055 West Hastings Street Vancouver, BC V6E 2E9

(303) 423-8475

BILL TO

Clark Exploration Consulting Inc 1000 Alloy Drive Thunder Bay, ON P7B 6A5 Canada

Date	INVOICE #
01/12/2014	2014-016

Invoice

Wire Transfer Details:
RBC Royal Bank
Main Branch Royal Centre
1025 West Georgia Street
Vancouver, BC V6E3N9
Swift Code: ROYCCAT2
CAD Account: 1026988
USD Account: 4007191
Bank: 003
Phone: 604.665.6991

	Tot	al	CAD 6,720.00	
	Sale	s Tax	CAD 320.00	
We accept payments with Major Credit Cards (for invoices less than \$2,500.00)	Subtotal		CAD 6,400.0	
Data retrieval and Maxwell Modeling of VTEM data		6,400.00	6,400.00	
Description	Qty	Rate	Amount	
			01/12/2014	
	Pur	chase Order	Due Date	

Sales Tax Summary

GST@5.0% CAD 320.00 Total Tax CAD 320.00

Appendix C

Property Summary

cell: 807.633.3000 • home: 807.683.3063 • steve@clarkexploration.com

PROJECT NAME: CALVERT PROPERTY

TARGET: Cu-Zn-Pb-Ag-Au VMS

CLAIM UNITS: 2 claims (4242855, 4242857) covering 16 units (256 hectares)

LOCATION: Aldina Township, Thunder Bay Mining Division of Ontario

HIGHLIGHTS:

- Currently permitted for mechanical trenching through October, 2016. Good relationships with First Nations would allow for a quick turnaround on a drilling amendment to the current permit
- Mineralized float discovered beginning in 1996 was followed up ice in the direction of OGS airborne conductors where an in-situ massive sulfide pod was uncovered in 2001. This has been drilled to shallow depths and intersected in drill core
- A 6.5 meter chip sample in the Discovery Trench over assayed 2.44% Zn, 465 ppm Cu, 521 ppm Pb, 13 ppm Ag and 54 ppb Au. Other grab samples from the trench yielded up to 10 % Zn, 0.21 % Cu, 1.18 % Pb, 134 g/t Ag, and 0.68 g/t Au
- Drilling underneath the massive sulfide lens in the Discovery Trench yielded:

Hole ID	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	Length (m)
MSD-01-01	0.41	41.7	0.07	0.23	2.52	7.0
MSD-01-02	1.38	170.9	0.05	0.86	2.27	8.0

• Drilling in the vicinity of the Disovery Trench yielded:

Hole ID	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	Length (m)
MSD-01-04	1.0	98.1	0.11	0.64	4.91	3.0
MSD-01-05	3.2	109	0.03	0.05	11.8	2.6
including	4.4	188	0.47	0.07	31.1	1.0

- Recent modeling of a 2007 VTEM survey covering property has shown a source for the conductor deeper than current drilling under the Discovery Trench
- OGS conductor axis has a strike length of 1,150 metres, of which 850 meters fall on the Calvert Property

- A conductor from the 1991 airborne survey up-ice from massive sulfide boulders has yet to be examined
- A comprehensive digital compilation of a majority of the project data has been done in ArcGIS, and a partial 43-101 is complete on the property
- A thorough lithogeochemical review has been done on drill core and outcrop locations by Dr. Jim Franklin. He describes the rocks on the Calvert Project as having:

"a well-developed felsic assemblage capped by a laterally extensive, thin unit of graphitic shale. An ideal sequence for the formation of VMS deposits is a semi-permeable felsic host sequence that is capped by an impermeable shale unit. This sequence is present in almost all VMS districts."

• All four high-priorty targets identified by Dr. Jim Franklin on the property have not yet been followed up with

SUMMARY

The Calvert Property is located approximately 55 kilometres west of the city of Thunder Bay, Ontario. Access is by travelling 12 kilometers on a well maintained all weather road from Highway 590. Logging roads lead to the Discovery Trench as well as other areas of the property. The property currently consists of 2 unpatented mining claims in the Thunder Bay Mining Division (Figures 1 and 2). cell: 807.633.3000 • home: 807.683.3063 • steve@clarkexploration.com

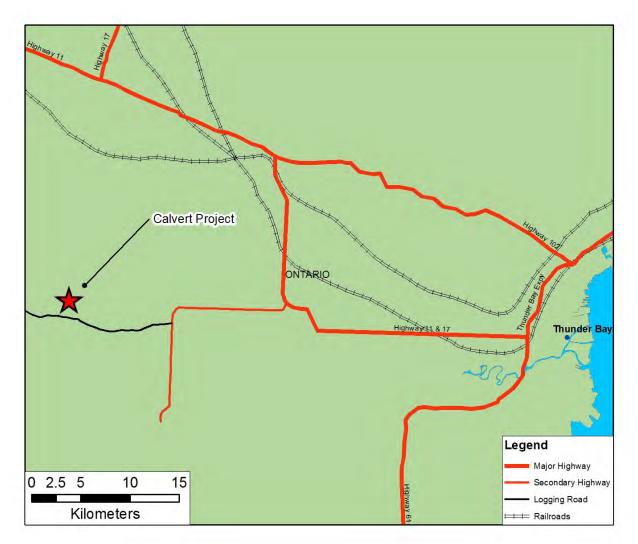
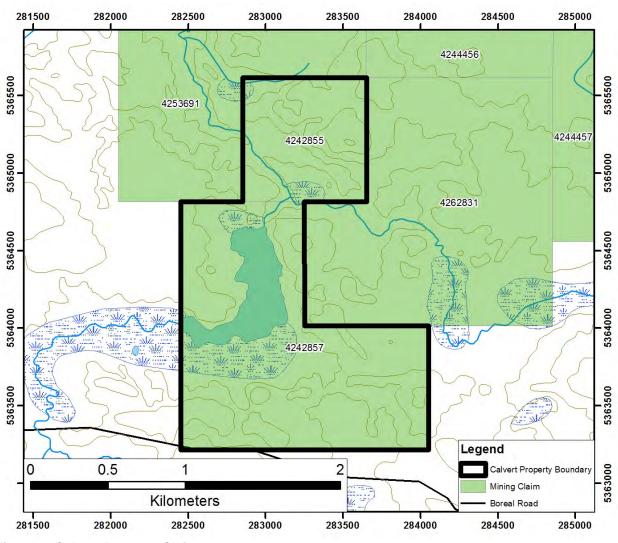



Figure 1: Location of Calvert Property.

cell: 807.633.3000 • home: 807.683.3063 • steve@clarkexploration.com

Recorded previous work in the area dates back to the 1950's, however exploration at the time was for iron ore. The current claim block and surrounding properties only started to receive attention after the discovery of high grade massive sulfide boulders in the area by the OGS, the Stares Brothers and Dan Calvert. Work completed to date was done by a number of different operators and includes airborne magnetics and electromagnetics, geological mapping, mechanical trenching, ground geophysics and diamond drilling.

The Property lies within the Shebandowan Greenstone Belt which is part of the Wawa Subprovince of the Archean Superior Province. The local stratigraphic sequence is characteristic of many greenstone belts in areas associated with volcanic hosted base and precious metal mineralization. This sequence is primarily a basal iron tholeiite basalt overlain by variable thicknesses of felsic volcanic

Figure 2: Calvert Property Claims.

rocks and in turn by a thick sequence of turbiditic greywackes.

Disucussions with professionals familiar with the exploration techniques of previous operators suggest that the property was not explored properly. The Property contains many high priority targets that have yet to be explored.

Lithogeochemical studies by Franklin identified lithological sequences present in almost all VMS districts and identified areas of high-potential for exploration that have yet to be tested. In addition to the internal study by Franklin, a recent review of the 2007 VTEM data by an independent geophysicist suggest that a deeper and larger source for the conductors exists below the discovery trench than what has been drilled to date. Drilling beneath the Discovery Trench has only gone roughly 50 metres below surface. No downhole geophysics has been conducted to date and zinc explorers have been recently enjoying success employing downhole pulse EM.

A strong conductor from the 1991 Shebandowan Geophysical Survey (instrumental in locating the Discovery Trench) exists further south on the Property, is untested, and has a coincident zinc soil anomaly. This area is directly up-ice from the high grade Calvert Boulder, as is the Discovery Trench, however this may represent a parallel zone of mineralization.

The claim holder is looking for a partner to option the property and conduct an exploration program consisting of trenching and drilling. Open ground to the west of the property exists and covers the prospective mineralized horizon and should also be staked. The claim holder is willing to do a reasonable option deal and would structure the deal to be free of first year cash payments if the claim holder and the company they work for were hired to conduct the work. A \$240,000 program is proposed which would consist of finalizing the digital compilation, conducting geophysical modeling and performing downhole geophysics, trenching of the high-priority Franklin Targets, and finally 1000 metres of diamond drilling to test deeper targets. At a minimum, the \$35,000 trenching program of the Franklin targets should be completed this fall.

PREVIOUS WORK

The recorded work on the Calvert Property for VMS mineralization contained in the Ministry of North Development and Mines Assessment Files dates back to the mid-1990's.

A summary of previous work by date, company and method is compiled below:

cell. 807 633 3000 . home.	807 683 3063	 steve@clarkexploration.com
Cell. 007.000.000 - Home.	007.000.0000	

Year	Company / Individual	Method	
1996	Stares brothers	Prospecting	
1996	Cumberland Resources	Quaternary, Geological, Lithogeochem, Soils, Ground Geophysics, Diamond Drilling	
1998	RJK Explorations / Greater Lenora Resources	IP, Stripping and Trenching, Prospecting	
2000-2001	RJK Explorations / Greater Lenora Resources	IP, Stripping and Trenching	
2001	RJK Explorations / Greater Lenora Resources	Stripping and Trenching, Diamond Drilling	
2002	RJK Explorations / Greater Lenora Resources	Geological, Geochem, Stripping and Trenchin Diamond Drilling	
2003	RJK Explorations / Greater Lenora Resources	Geological	
2004	RJK Explorations / Greater Lenora Resources	VTEM, Diamond Drilling	
2005	RJK Explorations / Greater Lenora Resources	IP, Diamond Drilling	
2006	RJK Explorations / Greater Lenora Resources	Diamond Drilling	
2007	RJK Explorations / Greater Lenora Resources	VTEM	
2007	RJK Explorations / Greater Lenora Resources	Diamond Drilling	

MINERALIZATION

Gold-rich VMS boulders discovered in 1996 led to the discovery of a glacial dispersal train of boulders that seemed to emanate from a 1200 metre long conductive zone shown on the OGS' 1991 Shebandowan geophysical survey. One boulder in particular assayed 0.6% Cu, 12.0% Zn, 4.44% Pb, 359 g/t Ag, 5.54 g/t Au.

The eventual Discovery Trench revealed a massive sulfide zone consisting largely of mediumgrained pyrite with finer-grained sphalerite, porphyroblastic galena and minor chalcopyrite. A sphalerite-rich lens, approximately 5 meters in diameter, appears to grade laterally into pyritic and sericitic rocks. A chip sample across 6.5 meters of massive-sulfide mineralized, felsic metavolcanic rocks (Figure 3) returned the following assays:

Au (g/t) Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	Length (m)	
-------------------	--------	--------	--------	------------	--

cell: 807.633.3000 • home: 807.683.3063 • steve@clarkexploration.com

		0.054	13	0.04	0.05	2.44	6.5
--	--	-------	----	------	------	------	-----

Select grabs from the Discovery Trench returned values of 0.68 g/t Au, 134 g/t Ag, 0.21% Cu, 1.18% Pb and 10.0 % Zn.

Drilling under the Discovery Trench (Figure 4) also intersected semi-massive and massive sulfide mineralization and returned the following assays:

Hole ID	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	Length (m)
MSD-01-01	0.41	41.7	0.07	0.23	2.52	7.0
MSD-01-02	1.38	170.9	0.05	0.86	2.27	8.0

Drilling near the Discovery Trench returned the following assays:

Hole ID	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	Length (m)
MSD-01-04	1.0	98.1	0.11	0.64	4.91	3.0
MSD-01-05	3.2	109	0.03	0.05	11.8	2.6
including	4.4	188	0.47	0.07	31.1	1.0

In addition to the above intersections, later drilling intersected semi-massive sulfides over 0.57 metres approximately 75 meters west of the Discovery Trench.

It is speculated that the podiform nature of the polymetallic sulfides suggests that they may be localized and/or zoned due to folding and remobilization.

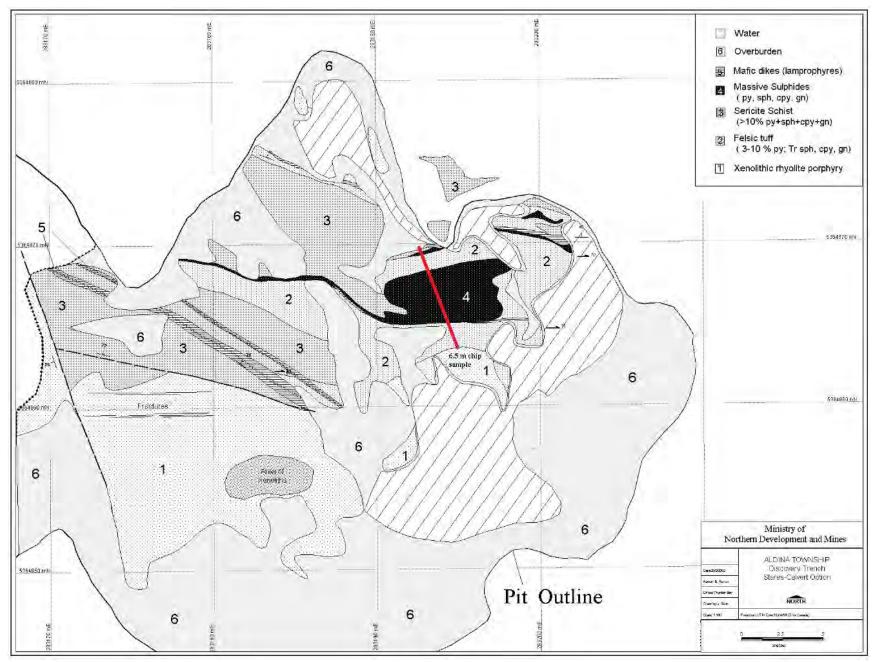


Figure 3: Discovery Trench showing 6.5 metre chip sample location (from OFR6081).

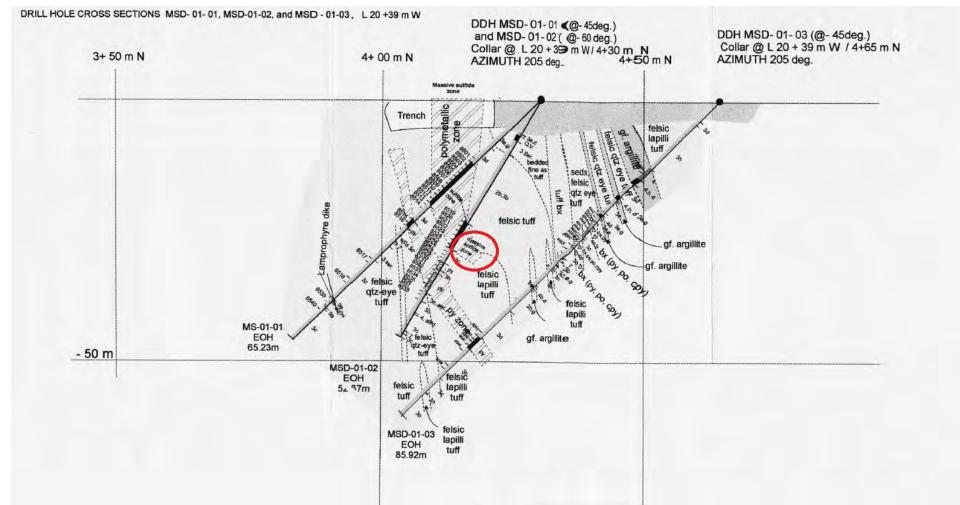


Figure 4: Drill section under Discovery Trench showing massive sulfide intersections (from AFRI# 52A05NW2021).

ECONOMIC POTENTIAL

The massive sulfide mineralization exposed in trenching and intersected in drill core suggests that the Calvert Project has tremendous potential to host an economic ore body. Lithogeochemical studies by Franklin identified lithological sequences present in almost all VMS districts and identified areas of high-potential for exploration that have yet to be tested (Figures 5 and 6). A summary of the four areas, based on geochemical areas, to be intensively prospected by drilling, pitting and detailed geophysical surveys is as follows:

- **Target 1**: Drilling immediately below and to the east of the Discovery Pit, to establish the distribution and structural form of the occurrence. This should include systematic testing of the favourable zone eastwards for about 500m. Drilling should be targeted to intersect the region immediately to the south t of the southernmost graphitic shale unit.
- **Target 2**: A strong anomaly in hole MS00-17 should be followed up with detailed geophysical surveying and pitting. The area has high prospectivity, but any sulfide body will probably be along strike of the existing hole.
- **Target 3**: A zone of high potential occurs to the east of the end of hole AD97-01towards MS00-10 and MS01-24. Detailed geophysical surveying and pitting is recommended in this area.
- **Target 4**: A parallel zone of mineralization may occur about 250-300m the south of the Discovery pit. This should be tested by pitting prior to any drilling.

In addition to the internal study by Franklin, a recent review of the 2007 VTEM data by an independent geophysicist suggest that a deeper and larger source for the conductors exists below the discovery trench than what has been drilled to date. Drilling beneath the Discovery Trench has only gone roughly 50 metres below surface. No downhole geophysics has been conducted to date and zinc explorers have been recently enjoying success employing downhole pulse EM.

A strong conductor from the 1991 Shebandowan Geophysical Survey (instrumental in locating the Discovery Trench) exists further south on the Property, is untested, and has a coincident zinc soil anomaly. This area is directly up-ice from the high grade Calvert Boulder, as is the Discovery Trench, however this may represent a parallel zone of mineralization.

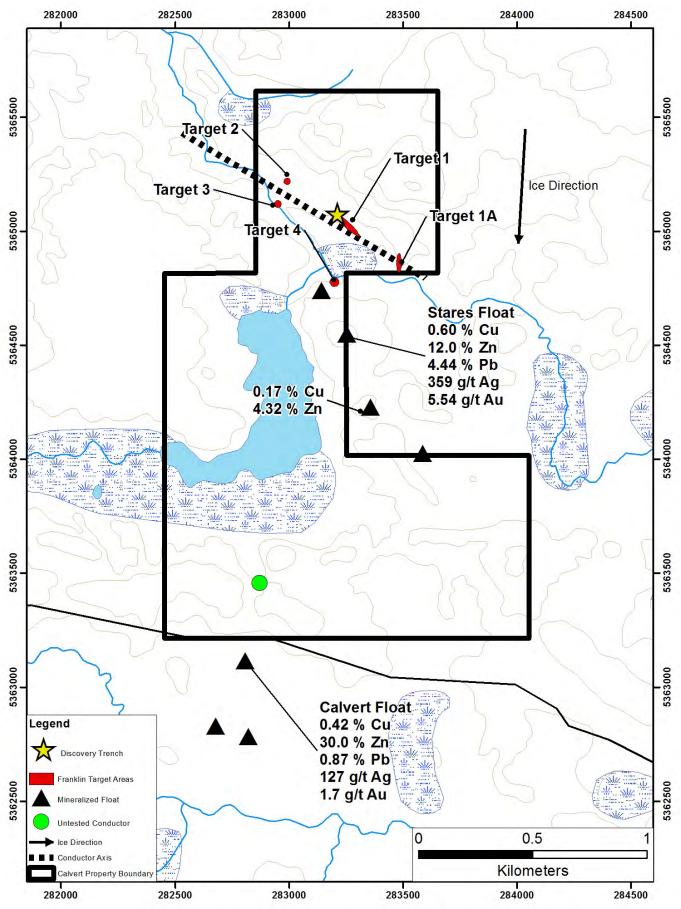


Figure 5: Map showing Franklin Target Areas.

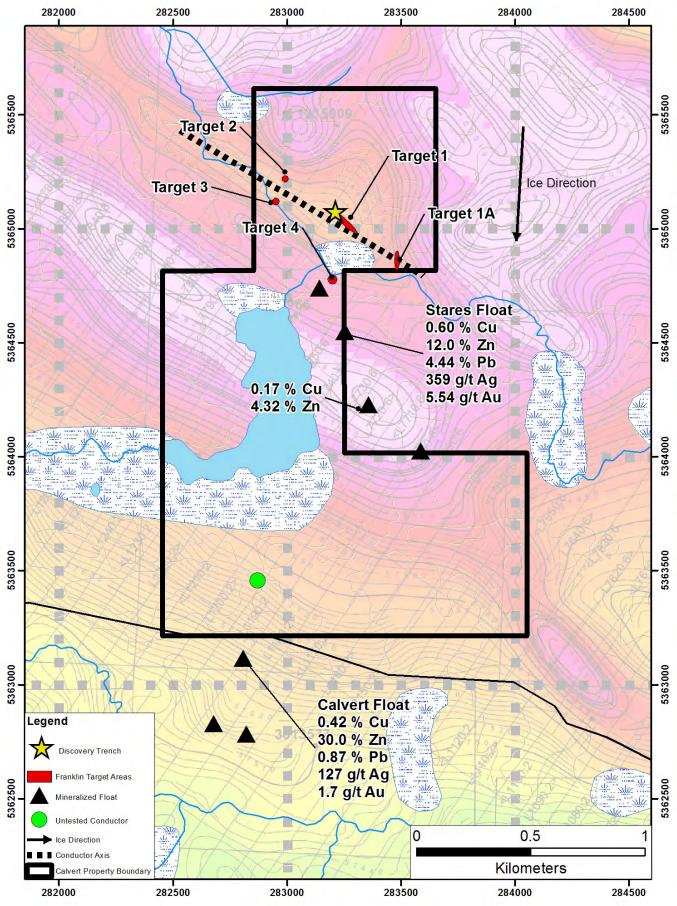


Figure 6: Map showing Franklin Target Areas overlain on 2007 Total Magnetic Field.

PROPOSED WORK

The claim holder is looking for a partner to option the property and conduct an exploration program consisting of trenching and drilling. Open ground to the west of the property exists and covers the prospective mineralized horizon and should also be staked. The claim holder is willing to do a reasonable option deal and would structure the deal to be free of first year cash payments if the claim holder and the company they work for were hired to conduct the work. A \$240,000 program is proposed which would consist of the following:

Item	Details	Cost
Finalize Compilation	Bring drilling into Target 3D, Obtain Franklin Data and Incorporate	\$5,000.00
Dr. Jim Franklin Consultation		\$10,000.00
Geophysical Modeling	Model VTEM, Review Historical Geophysics	\$10,000.00
Downhole Pulse EM	Pulse holes near Discovery Trench	\$30,000.00
Trenching	Trench Franklin Target Areas, Untested Conductor	\$35,000.00
Drilling	1000 metres to test deeper targets (all in costs)	\$150,000.00

This project has much potential and significant historical results. A reasonable deal can be made on the property and for more information please contact Steven Siemieniuk, P.Geo. (claim holder) at Clark Exploration Consulting - (807) 622-3284 (office); (807) 633-3000 (cell); or by email at steve@clarkexploration.com. Appendix D

2004 RJK VTEM Assessment Report

REPORT ON A HELICOPTER-BORNE TIME DOMAIN ELECTROMAGNETIC GEOPHYSICAL SURVEY

Kakabeka Falls Block Thunder Bay Area, Ontario, Canada

GLR Resources Inc.

By

for

Geotech Ltd. 30 Industrial Parkway South Aurora, Ontario L4G 3W2 Tel: 905 841\5004

Fax: 905 844-0611 www.geotechairborne.com

Email: info@geotechairborne.com

Survey flown in February 2004

Project 422 March, 2004

A 24.

MAY 0 5 2004

GEOSCIENCE ASSESSMEN

RECEIVED

MAY - 5 2004

TABLE OF CONTENTS

INTRODUCTION	3
SURVEY OPERATIONS	5
AIRCRAFT AND EQUIPMENT	6
1 Aircraft	
1 Electromagnetic System	6
3 Airborne magnetometer	
4 Ancillary Systems	
4.0 Radar Altimeter	
4.0 GPS Navigation System	7
4.0 Digital Acquisition System	
5 Base Station	
PERSONNEL	
DATA PROCESSING AND PRESENTATION	9
DELIVERABLES	10
CONCLUSIONS	
APPENDIX A	
List of Selected Anomalies	

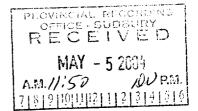

2 . 276 1 1

TABLE OF FIGURES

FIGURE 1 - LOCATION MAP	4
FIGURE 2	6
FIGURE 3	6

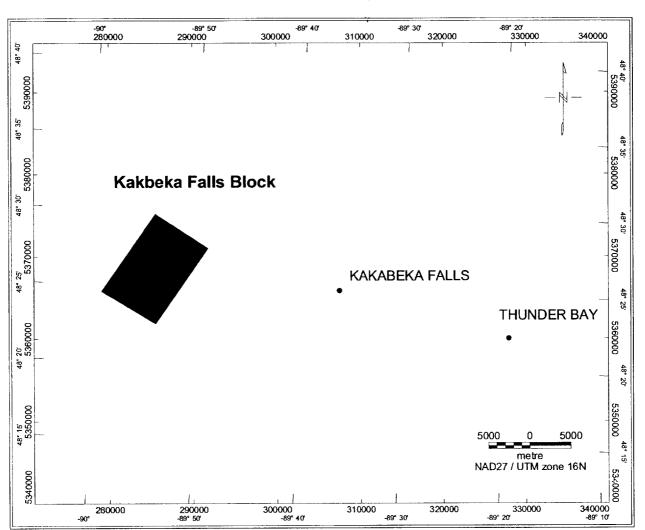
TABLES

TABLE 1 - SURVEY BLOCK	5
TABLE 2 - SURVEY SCHEDULE	5
TABLE 3 - SAMPLING RATES	8

Geotech Ltd. - Report on an Airborne Geophysical Survey for GLR Resources Inc.

REPORT ON A HELICOPTER-BORNE TIME DOMAIN ELECTROMAGNETIC SURVEY

Kakabeka Falls Block, Thunder Bay Area, Ontario, Canada


INTRODUCTION

This report describes the helicopter-borne geophysical survey carried out on behalf of GLR Resources Inc. by Geotech Ltd. under an agreement dated January 2004. Principal geophysical sensors included a time domain electromagnetic system and a cesium magnetometer. Ancillary equipment included a GPS navigation system and a radar altimeter.

One block, referred to as Kakabeka Falls block, was surveyed. The Kakabeka Falls block is located approximately 22 km west of Kakabeka Falls, Ontario. The coordinates of the centre of the block are: 89° 54' W, 48° 27' N. The area of the block is 84.5 km², the total line kilometres flown was 655.2 km.

Data acquisition was initiated on February 12th and completed on February 14th, 2004.

This report describes the survey, the data processing and presentation.

The survey areas are shown in figure 1.

Figure 1 - Location Map

The survey specifications are summarised in the following table:

BLOCK	AREA	LINE	LINE	FLIGHT
NAME	KM ²	SPACING	KM	DIRECTION
Kakabeka Falls Block	84.5	150 m - lines 1100 m - tie	655.2	N35E lines E33S tie

Table 1 - Survey Block

SURVEY OPERATIONS

2.27611

Survey operations were based out of Kakabeka Falls. The following table shows the timing of the flying.

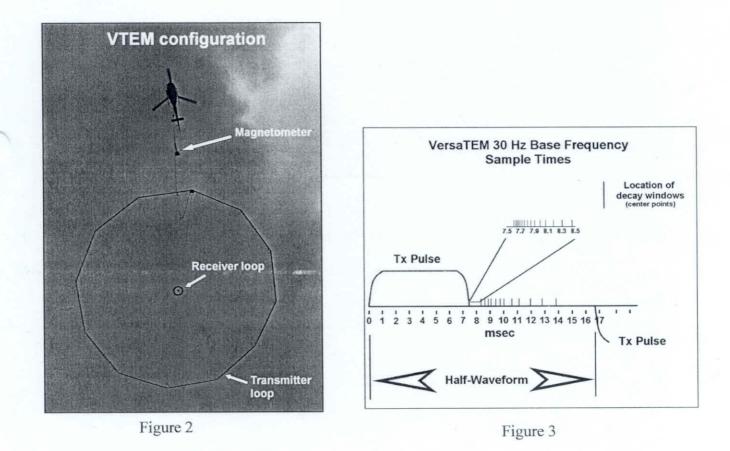
Date	Flight #	Block flown	Flown, km	Stand-by reason
12-Feb-04	1	Kakabeka Falls block	90.1	
13-Feb-04	2,3	Shebandowan block	397.0	
14-Feb-04	4	Shebandowan block	168.1	
		TOTAL	655.2	

Table 2 - Survey Schedule

The nominal EM sensor terrain clearance was 30 m (EM bird height above ground, i.e. helicopter is maintained 65 m above ground). Nominal survey speed was 80 km/hour. The data-recording rates of the data acquisition was 0.1 second for electromagnetics and magnetometer, 0.2 second for altimeter and GPS. This translates to a geophysical reading about every 2 metres along flight track. Navigation was assisted by a GPS receiver and data acquisition system, which reports GPS co-ordinates as latitude/longitude and directs the pilot over a pre-programmed survey grid.

The operator was responsible for monitoring of the system integrity. He also maintained a detailed flight log during the survey noting the times of the flight as well as any unusual geophysical or topographic feature.

On return of the aircrew to the base camp the survey data was transferred from a compact flash card (PCMCIA) to the data processing computer.


AIRCRAFT AND EQUIPMENT

1 Aircraft

An Astar BA helicopter, registration C-GHSM - owned and operated by Abitibi Helicopters was used for the survey. Installation of the geophysical and ancillary equipment was carried out by Geotech Ltd.

2 Electromagnetic System

The electromagnetic system was a Geotech Time Domain EM system. The layout is as indicated in Figures 2 below.

Receiver and transmitter coils were concentric and Z-direction oriented. Transmitter coil diameter was 26 metres, the number of turns was 3. Receiver coil diameter was 1.1 metre, the number of turns was 60. Transmitter pulse repetition rate was 30 Hz.

Geotech Ltd. - Report on an Airborne Geophysical Survey for GLR Resources Inc.

Peak current was 145 A. Duty cycle was 40%. Peak dipole moment was 230000 NIA. Wave form – trapezoid. Twenty-five measurement gates were used in the range from 130 µs to 6340 µs. The transmitter waveform and the receiver decay recording scheme is shown diagrammatically in Figure 3. Recording sampling rate was 10 samples per second. The EM bird was towed 35 m below the helicopter.

3 Airborne magnetometer

The magnetic sensor utilized for the survey was a Geometrics optically pumped cesium vapor magnetic field sensor, mounted in a separate bird towed 15 m below the helicopter. The sensitivity of the magnetic sensor is 0.02 nanoTesla (nT) at a sampling interval of 0.1 seconds. The magnetometer sends the measured magnetic field strength as nanoTeslas to the data acquisition system via the RS-232 port.

4 Ancillary Systems

4.1 <u>Radar Altimeter</u>

A Terra TRA 3000/TRI 30 radar altimeter was used to record terrain clearance. The antenna was mounted beneath the bubble of the helicopter cockpit.

4.2 GPS Navigation System

The navigation system used was a Geotech PC based navigation system utilizing a NovAtel's WAAS enable OEM4-G2-3151W GPS receiver, Geotech navigate software, a full screen display with controls in front of the pilot to direct the flight and an NovAtel GPS antenna mounted on the helicopter tail.

The co-ordinates of the block were set-up prior to the survey and the information was fed into the airborne navigation system.

4.3 Digital Acquisition System

A Geotech data acquisition system recorded the digital survey data on an internal compact flash card. Data is displayed on an LCD screen as traces to allow the operator to monitor the integrity of the system. Contents and update rates were as follows:

ДАТА ТҮРЕ	ŠAMPLING
TDEM	0.1 sec
Magnetometer	0.1 sec
GPS Position	0.2 sec
RadarAltimeter	0.2 sec

Table 3 - Sampling Rates

5 Base Station

A combine magnetometer/GPS base station was utilized on this project. A Scintrex CS-2 Cesium vapour magnetometer was used as a magnetic sensor with a sensitivity of 0.001 nT. The base station was recording the magnetic field together with the GPS time at 1 Hz on a base station computer. The base station magnetometer sensor was installed in Kakabeka Falls away from electric transmission lines and moving ferrous objects such as motor vehicles. The magnetometer base station's data was backed-up to the data processing computer at the end of each survey day.

2 27611

PERSONNEL

The following Geotech Ltd. personnel were involved in the project

Field Geophysicists: Data Processor: Operator:

Petr Kuzmin Valentina Kuzmina Daniel McKinnon

Office Data Processing/Reporting: Andrei Bagrianski

The survey pilot and the mechanic were employed directly by the helicopter operator – Abitibi Helicopters.

Pilot: Mechanic: Pierre Michaud Marco Blais

Overall management of the survey was carried out from the Aurora offices of Geotech Ltd. by Edward Morrison, President.

DATA PROCESSING AND PRESENTATION

Flight Path

The flight path, recorded by the acquisition program as WGS 84 latitude/longitude, was converted into the UTM co-ordinate system in Oasis Montaj.

The flight path was drawn using linear interpolation between x,y positions from the navigation system. Positions are updated every second and expressed as UTM eastings (x) and UTM northings (y).

Electromagnetic Data

A three stage digital filtering process was used to reject major sferic events and to reduce system noise. Local sferic activity can produce sharp, large amplitude events that cannot be removed by conventional filtering procedures. Smoothing or stacking will reduce their amplitude but leave a broader residual response that can be confused with geological phenomena. To avoid this possibility, a computer algorithm searches out and rejects the major sferic events. The filter used was a 16 point non-linear filter.

The signal to noise ratio was further improved by the application of a low pass linear digital filter. This filter has zero phase shift which prevents any lag or peak displacement from occurring, and it suppresses only variations with a wavelength less than about 1 second or 20 metres. This filter is a symmetrical 1 sec linear filter.

The results are presented as stacked profiles of EM voltages for the gate times.

Magnetic Data

The processing of the magnetic data involved the correction for diurnal variations by using the digitally recorded ground base station magnetic values. The base station magnetometer data was edited and merged into the Geosoft GDB database on a daily basis. The aero magnetic data was corrected for diurnal variations by subtracting the observed magnetic base station deviations. The corrected magnetic line data from the survey was interpolated between survey lines using a random point gridding method to yield x-y grid values for a standard grid cell size of approximately 0.2 cm at the mapping scale. The Minimum Curvature algorithm was used to interpolate values onto a rectangular regular spaced grid.

DELIVERABLES

The survey is described in a report, which is provided in two copies. The preliminary and final maps were produced at a scale of 1:20,000.

MAPS

The final results of the survey are presented in a colour magnetic contour map and an EM profiles map at a logarithmic scale. The coordinate/projection system used was NAD27, Universal Transverse Mercator, zone 16. For reference the NAD27 latitude and longitude are also noted on the maps. All the maps show the flight path trace.

The map products are as follows:

Geotech Ltd. - Report on an Airborne Geophysical Survey for **GLR Resources Inc.**

- 1. Total Field Magnetic color contour map on the GPS flight path, on paper in two copies
- 2. EM Profile Map at a logarithmic scale of the twenty one gates times $(220 6340 \ \mu s)$ on the GPS flight path, on paper in two copies.

3. EM Anomaly Map

DIGITAL DATA on CD-ROM

Two copies of CD-ROMs were prepared to accompany the report. Each CD-ROM contains a digital file of the line data in GDB Geosoft Montaj format in addition to the maps in Geosoft Montaj Map format. A *readme.txt* file may be found on the CD-ROM that describes the contents in more detail.

CONCLUSIONS

A time domain electromagnetic helicopter-borne geophysical survey has been completed over the Kakbeka Falls Block in the Thunder Bay Area, Ontario, Canada. The total areal coverage amounts to 84.5 km². Total survey line coverage is 655.2 line kilometres. The principal sensors included a Time Domain EM system and a magnetometer. Results have been presented as colour maps at a scale of 1:20,000.

A number of EM anomaly groupings were identified. Ground follow-up of those anomalies should be carried out if favourably supported by other geoscientific data.

Respectfully submitted,

Andrei Bagrianski, Geotech Ltd.

APPENDIX A

List of Selected Anomalies

Line 1000 1000 1000 1000	X, UTM16, NAD27 291625 291552	Y, UTM16, NAD27 5370748	Anomaly letter	TDEM channels	Ch150 amplitide,	Double pick anomaly
1000 1000 1000	NAD27 291625 291552	NAD27	letter	channels	amplitide,	anomalv
1000 1000	291625 291552				11111 44	
1000 1000	291552	5270749			pV/A/m^4	(vertical
1000 1000	291552	- K 2 / () / / ()				conductor)
1000			<u>A</u>	11	1.8	D
		5370644	В	15	5.2	D
1000	291311	5370296	С	5	1.5	
	291279	5370249	D	7	3.2	
1000	291090	5369970	E	25	10.6	
1000	290812	5369572	F	25	22.7	ļ.,
1000	290753	5369483	G	6	21.8	
1000	287770	5365156	Н	17	3.3	
1000	287398	5364623		6	0.3	
1010	287294	5364728	A	13	0.3	
1010	289678	5368177	В	1	0.0	
1010	290336	5369140	С	25	2.9	
1010	290461	5369329	D	20	3.2	
1010	290645	5369588	E	22	14.7	
1010	290802	5369828	F	8	3.9	
1010	290957	5370046	G	12	3.4	
1010	291147	5370308	Н	2	1.0	
1010	291382	5370652	I	19	2.0	D
1010	291460	5370764	J	17	1.7	D
1020	290822	5370129	A	19	3.4	
1020	290710	5369963	В	8	5.3	
1020	290558	5369727	С	25	18.4	
1020	290388	5369487	D	7	5.1	
1020	290078	5369031	Е	25	2.0	
1020	290035	5368965	F	25	1.8	· · · · · · · · · ·
1020	287260	5364958	G	19	0.2	
1030	289568	5368551	A	3	0.1	
1030	289738	5368805	B	25	1.0	·····
1030	289921	5369078	C C	25	4.2	
1030	289969	5369150	D	20	3.6	
1030	290354	5369697	E	12		
1030	290522	5369938	F	25		
1030	290619	5370082	G	10		
1030	290707	5370213	н	22	5.1	
1030	290968	5370587		25		
1030	291144	5370844	J	9		

1040	200945	5270024		0.5	~ ~	
1040	290815	5370634	<u>A</u>	25	6.7	
1040	290549	5370261	B	9	17.3	
1040	290464	5370140	C	25	17.1	
1040	289899	5369290	D	्र, 9	14.2	
1040	289847	5369215	E	<u>'</u> 24	18.6	
1040	289660	5368951	F	[∵] 25	1.7	
1050	287771	5366479	A	9	0.5	
1050	287833	5366566	В	6	0.3	D
1050	289308	5368710	С	25	0.4	
1050	289716	5369296	D	18	15.1	
1050	290235	5370055	E	14	1.2	
1050	290449	5370365	F	7	6.7	
1050	290695	5370715	G	25	5.8	
1060	290612	5370869	А	25	2.0	
1060	290550	5370785	В	17	8.6	
1060	290312	5370420	С	25	19.2	
1060	290209	5370277	D	8	2.6	
1060	289596	5369395	E	25	16.2	
1060	289438	5369159	F	7	0.8	
1060	289384	5369084	G	20	1.5	
1060	289142	5368742	Н	25	2.0	
1060	287314	5366086	-	19	1.3	D
1060	287254	5365996	J	18	1.1	D
1070	287124	5366073	А	12	0.4	D
1070	287190	5366168	В	12	0.5	D
1070	289449	5369434	С	25	14.1	
1070	289506	5369512	D	23	10.8	
1070	290103	5370384	E	25	8.0	
1070	290220	5370560	F	25	15.8	
1070	290397	5370818	G	25	10.2	
1070	290531	5371016	Н	25	6.1	
1080	290409	5371093	A	25	7.5	
1080	290245	5370863	В	23	15.6	
1080	290146	5370718	С	25	25.7	
1080	290005	5370511	D	25	12.1	
1080	289360	5369579	E	20	9.1	
1080	289274	5369446	F	25	26.1	
1080	288834	5368818	G	10	0.4	
1090	289105	5369472	A	25	11.2	
1090	289877	5370590	В	25	17.2	
1090	289996	5370758	C	6	4.9	
1090	290263	5371140	D	25	3.9	
1100	290107	5371199	A	14	3.5	
1100	290055	5371122	В	17	2.7	
1100	289790	5370745	C	24	22.6	
L			L	L		

1100	200052	5200502		05	44.0	
	288952	5369503	D	25	11.9	
1100	288682	5369126	E	4	0.2	
1110	288609	5369284	<u>A</u>	14	1.1	
1110	288823	5369593	В	<u>,</u> 25	15.9	
1110	289614	5370729	C	<u> </u>	28.5	
1110	289669	5370815	D	∵ 24	22.7	
1110	289963	5371243	E	15	1.3	
1120	289761	5371219	A	10	2.6	· · · · · · · · · · · · · · · · · · ·
1120	289565	5370933	В	25	10.6	
1120	289503	5370839	C	11	7.4	
1120	288693	5369663	D	25	16.5	
1120	288543	5369434	E	25	8.4	
1120	288510	5369385	F	25	6.8	
1120	288041	5368719	G	16	0.8	
1130	286618	5366929	А	17	1.1	D
1130	286689	5367029	В	16	1.0	D
1130	287323	5367949	С	15	1.3	
1130	287686	5368469	D	20	2.7	
1130	288133	5369125	E	16	8.4	
1130	288268	5369311	F	20	4.8	
1130	288575	5369758	G	24	11.5	
1130	288634	5369841	Н	25	3.9	
1130	289507	5371118	1	25	10.7	
1130	289648	5371326	J	25	4.5	
1140	289609	5371525	A	20	1.4	
1140	289553	5371445	В	25	3.7	
1140	289391	5371208	С	19	5.4	
1140	288463	5369858	D	25	11.6	
1140	288428	5369806	E	25	11.5	·
1140	288148	5369400	F	25	6.6	
1140	287513	5368489	G	24	4.2	
1140	287217	5368057	Н	8	1.0	
1150	286086	5366674	A	10	0.5	
1150	287361	5368513	В	8	6.4	
1150	287478	5368682	С	10	4.1	
1150	287679	5368981	D	15	1.3	
1150	287835	5369216	E	8	4.7	
1150	287910	5369325	F	25	2.9	
1150	288291	5369878	G	25	5.5	
1150	288352	5369971	H	22	11.6	
1150	289246	5371270	1	24	4.5	
1150	289315	5371372	 J	20	3.6	
1160	287273	5368659	A	25	18.3	
1160	287516	5369029	B	17	3.2	
1160	287576	5369114	C	10	2.4	
		0000117	<u> </u>	10	۲.4	

1160	288133	5260907	n	25	2.2	
1160		5369897	D E	25	3.3	
	288186	5369977	F	25	6.7	
1160	288281	5370129		25	3.7	
1160	289117	5371343	G	25	11.9	
1160	289169	5371425	H	<u>′</u> 15	3.2	
1170	289295	5371859	A	·· 12	0.6	
1170	289230	5371770	В	16	1.6	
1170	288991	5371417	С	16	1.9	
1170	288930	5371328	D	16	1.3	
1170	288164	5370229	E	9	2.8	
1170	288065	5370079	F	25	7.5	
1170	287572	5369360	G	20	1.0	
1170	287526	5369297	Н	21	2.6	
1170	287147	5368745		24	3.1	
1180	286876	5368623	A	12	1.0	
1180	287037	5368859	В	20	4.4	
1180	287929	5370134	С	25	3.4	
1180	287972	5370202	D	24	3.9	
1180	288082	5370365	E	6	1.3	
1180	288937	5371608	F	18	1.6	
1180	289115	5371865	G	12	1.2	
1180	289169	5371949	Ĥ	4	0.3	
1190	288912	5371832	Α	21	2.4	
1190	288796	5371660	В	16	1.7	
1190	288037	5370558	С	25	2.7	
1190	287801	5370220	D	24	6.7	
1190	287223	5369381	E	22	0.5	
1190	287177	5369314	F	21	0.5	
1190	286851	5368844	G	4	0.7	
1190	286795	5368761	Н	20	1.4	
1200	285381	5366975	Α	14	1.1	D
1200	285446	5367067	В	13	0.6	D
1200	287181	5369597	С	9	1.2	
1200	287634	5370244	D	25		
1200	287680	5370310	E	25	5.9	
1200	287921	5370650	F	25	11.8	
1200	288438	5371427	G	25	1.7	
1200	288483	5371492	H	1	1.0	
1200	288649	5371732		25	17.9	
1200	288836	5371995	J	18	0.7	····
1210	288748	5372122	A	18	2.1	· · · · ·
1210	288587	5371889	B	25	6.5	
1210	288550	5371838	C	25	15.3	
1210	288340	5371526	D	25	0.4	
1210	287841	5370809	E	16	6.1	
		1.007.0000	<u> </u>		0.1	L

1210	287777	5370717	F	24		· · · · ·
1210	287597	5370457	G	17	4.1	
1210	287533	5370457	H	22	<u> </u>	
1210	286984					
		5369563	<u> </u>	. 0	0.4	
1210	285824	5367899	J	14	0.9	
1210	285321	5367152	ĸ	······································	0.5	
1210	283638	5364709	L	13	1.6	D
1210	283576	5364621	M	13	0.7	D
1220	283425	5364671	A	5	0.3	D
1220	283498	5364783	B	9	0.6	D
1220	285205	5367246	С	10	0.3	
1220	285599	5367818	D	21	1.4	
1220	285690	5367941	E	18	2.8	
1220	285777	5368071	F	22	0.8	
1220	286487	5369113	G	15	3.0	D
1220	286539	5369187	Н	12	0.7	D
1220	287425	5370467	- 1	25	7.5	
1220	287644	5370786	J	3	3.3	
1220	287740	5370920	K	10	5.6	
1220	288429	5371924	L	25	6.9	
1220	288621	5372204	М	8	0.9	
1220	288684	5372303	N	5	0.3	
1230	288321	5372030	А	18	3.5	
1230	287662	5371072	В	18	4.7	
1230	287536	5370890	С	25	18.8	<u></u>
1230	287368	5370656	D	14	3.8	
1230	287295	5370550	E	25	4.8	
1230	286534	5369436	F	12	1.4	
1230	285556	5368023	G	10	0.6	
1230	285089	5367349	Н	24	2.1	
1240	283175	5364832	A	17	0.9	D
1240	283247	5364939	В	19	1.1	D
1240	284988	5367462	С	25	1.5	
1240	286353	5369443	D	9	0.2	D
1240	286428	5369547	E	9	0.3	D
1240	287178	5370648	 F	16	4.8	
1240	287290	5370808	G	25	9.0	
1240	287349	5370891	H	25	4.8	
1240	287474	5371074		25	7.1	
1240	287951	5371766	J	19	0.7	D
1240	288038	5371889	K	19	0.5	D
1250	287899	5371936	A	3	1.1	
1250	287846	5371859	B	25	1.6	
1250	287355	5371161	C	25	8.7	
1250	287197	5370938	D	18	6.1	
	20/101		<u> </u>	10	0.1	

1250	287028	5370692	E	25	6.0	
1250	285176	5368015	F	20 19	6.9 0.3	
1250	284826	5367509		3		
1250	284215		G		1.8	
		5366605	H	17	1.3	
1250	283129	5365034	1	[′] 15	0.6	D
1250	283031	5364896	J	·· 15	0.5	D
1260	282902	5364979	A	15	0.7	D
1260	282982	5365098	B	18	1.5	D
1260	284016	5366590	C	5	0.3	
1260	284623	5367470	D	25	7.3	·····
1260	284816	5367750	E	18	2.2	
1260	286882	5370746	F	25	6.0	
1260	287011	5370936	G	12	4.6	
1260	287189	5371186	Н	25	10.1	
1260	287780	5372041		25	4.0	
1260	288184	5372626	J	8	0.6	
1270	288170	5372883	A	9	0.4	
1270	288101	5372781	В	25	1.7	
1270	287641	5372094	С	25	5.6	
1270	287057	5371255	D	25	1.3	
1270	286850	5370959	E	13	2.4	
1270	286792	5370873	F	7	2.6	
1270	284754	5367922	G	11	0.5	
1270	284567	5367652	Н	24	1.6	
1270	284491	5367543	l	14	2.4	
1270	284014	5366843	J	22	1.2	
1270	283899	5366672	К	13	1.5	
1270	283825	5366574	L	12	0.3	
1270	282850	5365158	М	24	3.4	D
1270	282785	5365055	N	14	0.9	D
1280	282666	5365165	А	25	1.6	D
1280	282736	5365271	В	16	2.1	D
1280	283723	5366690	С	23	0.6	
1280	283791	5366785	D	22	2.4	
1280	284355	5367604	E	25	2.4	
1280	284424	5367705	F	23	2.5	
1280	285192	5368829	G	13	0.7	
1280	285297	5368988	Н	3	0.1	
1280	286061	5370078		14	0.7	
1280	286669	5370951	J	18	2.3	
1280	286756	5371078	ĸ	12	1.7	
1280	287485	5372140	L	25	6.4	
1280	288023	5372922	M	25	1.2	
1290	288012	5373187	A	18	0.3	
1290	287898	5373014	B	23	1.7	
L				20		·

1290	287353	5372212	С	25		1
1290	286654	5372212		25	2.8	
1290			D	25	8.4	
	286588	5371103	E	25	3.6	
1290	285917	5370132	F	<u>,</u> 9	0.5	
1290	284683	5368346	G	<u>í</u> 16	0.6	
1290	284540	5368146	Н	<u> </u>	1.3	
1290	284390	5367927		21	4.9	
1290	284332	5367841	J	5	4.9	
1290	284283	5367769	K	1	5.1	
1290	284051	5367431	L	9	1.1	
1290	283963	5367303	M	14	0.3	
1290	282589	5365319	N	8	0.9	
1300	283430	5366790	Α	10	0.2	
1300	283893	5367461	В	17	1.0	
1300	284145	5367832	С	25	2.8	
1300	284213	5367926	D	25	6.8	
1300	285123	5369253	E	11	0.6	
1300	285679	5370055	F	14	2.1	
1300	285772	5370185	G	11	0.4	
1300	286006	5370533	Н	19	0.3	
1300	286536	5371288		25	3.1	
1300	286614	5371402	J	25	4.8	
1300	287135	5372160	К	9	0.5	
1300	287221	5372285	L	6	0.7	
1300	287853	5373196	М	12	2.5	
1310	287736	5373299	A	11	1.9	
1310	287084	5372356	B	25	2.1	
1310	287032	5372282	C	25	2.8	· · · · · · · · · · · · · · · · · · ·
1310	286543	5371557	D	25	5.6	
1310	286483	5371472	E	25	3.9	
1310	285726	5370382	 F	6	0.3	
1310	285639	5370260	G	11	0.7	·
1310	285569	5370155	Й	16	1.1	
1310	285501	5370053		24	2.1	
1310	284167	5368123	J		1.4	
1310	284030	5367932	K	25	3.7	
1310	283866	5367687		25	0.9	
1310	283772	5367558	L M	18		
1320	283452	5367348			0.7	
1320	283766		A	9	0.3	
	283975	5367810	B	10	1.1	
1320		5368115	C	17	1.2	
1320	284074	5368263	D	17	1.2	
1320	284152	5368377	E	18	2.0	
1320	284294	5368583	F	16	0.7	
1320	284790	5369286	G	25	1.3	

1320	285278	5370000	Н	10	0.5	
1320	285468	5370000	· · · · · · · · · · · · · · · · · · ·	12	0.5	
1320	285515		J	25	2.0	
1320	286376	5370347		16	0.9	
		5371602	ĸ	20	2.8	
1320	286436	5371684	L	20	6.7	
1320	286500	5371776	M	<u>v</u> 19	2.4	
1320	286972	5372460	N	25	3.5	
1320	287062	5372587	0	25	0.8	
1320	287659	5373452	Р	16	2.5	
1330	287536	5373540	A	25	6.1	
1330	286956	5372691	B	25	0.6	
1330	286886	5372593	С	25	3.1	
1330	286345	5371812	D	24	4.6	
1330	286288	5371733	E	24	2.8	
1330	285221	5370191	F	14	0.3	
1330	284825	5369603	G	16	1.0	
1330	284646	5369343	H	25	1.5	
1330	284194	5368690	l	15	1.3	
1330	283966	5368366	J	13	2.1	
1330	283880	5368243	К	15	1.2	
1330	283694	5367972	L	13	1.4	
1330	283622	5367866	M	15	0.6	
1330	283323	5367427	N	6	0.5	
1340	283141	5367426	А	9	0.3	D
1340	283202	5367519	В	13	0.9	D
1340	283804	5368387	С	13	1.4	
1340	283880	5368500	D	13	3.5	
1340	284033	5368722	E	15	2.4	10.
1340	284116	5368841	F	18	0.9	
1340	284514	5369416	G	6	0.6	
1340	284562	5369486	Н	24	2.7	
1340	284710	5369705	I	25	2.5	
1340	285028	5370165	J	13	0.8	
1340	285273	5370522	К	8	0.8	
1340	285321	5370586	L	23	0.8	
1340	286208	5371870	М	17	1.5	
1340	286329	5372042	N	11	0.7	
1340	286751	5372678	0	25	4.8	
1340	286809	5372758	P	25	1.1	
1340	287400	5373611	Q	25	4.1	
1340	287461	5373695	R	16	7.2	
1350	287365	5373812	A	19	8.7	
1350	287279	5373685	B	25	5.1	
1350	286128	5372022	C	16	1.1	
1350	286060	5371923	D	16	2.4	······
					2.4	

Geotech Ltd.

1250	005475	5070050				·····
1350	285175	5370650	E	17	1.3	
1350	284911	5370258	F	17	1.8	
1350	284613	5369825	G	12	1.1	
1350	284054	5369016	H	<u>, 14</u>	0.7	
1350	283842	5368720		19	2.6	
1350	283731	5368557	J	ir 13	1.1	
1350	283089	5367611	K	11	0.7	D
1350	283019	5367512	L	2	0.3	D
1360	283246	5368112	A	15	0.9	
1360	283324	5368224	В	21	1.2	
1360	283639	5368692	С	24	1.4	
1360	283719	5368805	D	24	1.6	
1360	283919	5369094	E	25	4.1	
1360	283981	5369188	F	25	2.2	
1360	284292	5369622	G	12	1.3	
1360	284347	5369702	Н	13	1.1	
1360	284910	5370520	l	25	5.4	
1360	284958	5370593	J	15	0.8	
1360	285142	5370860	К	18	1.0	
1360	285201	5370941	L	12	0.7	
1360	285925	5371995	М	25	5.7	
1360	285971	5372061	N	25	2.5	
1360	287233	5373887	0	25	7.5	
1360	287307	5374000	Р	25	8.1	
1370	287187	5374099	А	25	13.7	- - -
1370	286326	5372833	В	25	2.6	
1370	285869	5372186	С	25	7.3	
1370	285274	5371316	D	1	0.1	
1370	284653	5370426	E	25	6.8	
1370	284277	5369863	F	18	1.1	D
1370	284209	5369767	G	21	1.9	D
1370	283884	5369301	Н	25	2.2	
1370	283802	5369182	1	14	1.6	· · · · · · · · · · · · · · · · · · ·
1370	283608	5368902	J	25	1.6	
1370	283539	5368803	К	25	2.2	
1370	283219	5368330	L	24	1.3	D
1370	283146	5368227	М	25	0.9	D
1380	283058	5368371	A	25	1.4	 D
1380	283126	5368467	В	25	1.8	 D
1380	283468	5368953	С	25	8.6	
1380	283746	5369364	D	25	3.2	**
1380	283814	5369462	E	25	1.4	
1380	284087	5369851	F	10	0.9	
1380	284160	5369962	G	5	0.5	
1380	284399	5370307	H	25	4.6	D
1300	204399	5570307	Н	25	4.6	<u> </u>

Geotech Ltd.

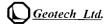
1380	294450	5270270				
	284450	5370378		25	2.4	D
1380	284577	5370562	J	18	0.9	
1380	285001	5371189	K	25	4.7	
1380	285146	5371397	L.	<u> </u>	1.1	- · · · · · · · · · · · · · · · · · · ·
1380	285773	5372307	M	· 22	5.4	
1380	286131	5372818	N	· 19	0.9	D
1380	286213	5372940	0	21	1.7	D
1380	287070	5374179	Р	25	5.7	
1390	286157	5373122	В	25	1.5	D
1390	286051	5372973	С	24	4.6	D
1390	285694	5372448	D	10	6.8	
1390	285638	5372364	E	25	5.4	
1390	284910	5371316	F	25	7.7	
1390	284773	5371112	G	22	3.4	
1390	284318	5370454	Н	25	2.3	D
1390	284256	5370367	I	25	2.9	D
1390	283725	5369594	J	19	1.0	
1390	283610	5369428	K	12	1.3	
1390	283406	5369142	L	25	2.9	
1390	283359	5369072	М	25	7.3	
1390	283057	5368626	N	25	1.4	D
1390	282998	5368544	0	25	2.2	D
1390	282744	5368179	Р	14	0.2	·
1400	282903	5368667	A	19	0.9	
1400	283286	5369225	В	17	16.7	
1400	283319	5369272	С	25	9.2	
1400	283542	5369594	D	11	1.3	
1400	283633	5369718	E	2	0.8	
1400	284167	5370494	F	24	3.7	
1400	284219	5370568	G	21	1.2	
1400	284617	5371164	H	15	2.7	
1400	284676	5371244		16	2.4	
1400	284827	5371457	J	22	3.7	
1400	284874	5371523	ĸ	7	2.9	
1400	285600	5372577	L	25	19.4	
1400	286054	5373230	M	12	5.8	
1400	286177	5373405	N	24	1.6	
1410	286034	5373476	B	25	2.1	
1410	285521	5372726	C	23	15.1	
1410	284787	5371661	D	17	1.5	
1410	284596	5371391	E	22	1.5	
1410	284508	5371265	F	4	1.3	
1410	284026	5370566	G	11	0.9	
1410	283807	5370252	<u>- </u>	21	1.1	
1410	283597	5369935		6	2.3	
	200007	0000000		0	2.3	

Geotech Ltd.

	000 (70		r=			r
1410	283473	5369762	J	25	3.0	
1410	283207	5369381	K	11	3.5	
1420	283146	5369551	A	14	1.5	
1420	283363	5369868	В	· 18	2.9	
1420	283500	5370072	<u> </u>	10	3.9	
1420	283574	5370175	D	· ₂ 15	1.9	
1420	283718	5370385	E	22	5.4	
1420	284023	5370815	F	17	0.8	
1420	284438	5371434	G	15	1.8	
1420	284498	5371516	Н	3	2.0	
1420	285400	5372809	I	25	9.9	
1420	285464	5372902	J	8	18.1	
1430	285253	5372864	А	25	1.8	
1430	285169	5372747	В	25	1.9	
1430	284216	5371362	С	21	0.5	
1430	284138	5371252	D	24	0.6	
1430	283918	5370937	E	11	0.6	
1430	283839	5370823	F	16	1.1	
1430	283610	5370489	G	11	2.1	
1430	283407	5370197	Н	23	4.2	
1430	283298	5370030	I	25	2.2	••••••••••••••••••••••••••••••••••••••
1430	283067	5369705	J	13	0.8	
1440	282398	5368996	A	22	0.4	
1440	282911	5369741	В	16	1.2	
1440	283228	5370196	С	23	3.0	
1440	283322	5370333	D	11	2.7	
1440	283409	5370460	E	3	1.3	
1440	283480	5370559	F	17	1.5	
1440	283608	5370737	G	13	1.2	
1440	283798	5371034	H	13	1.3	
1440	284047	5371378		19	0.7	
1440	285072	5372868	J	23	3.5	
1450	284880	5372857	A	17	2.7	
1450	283913	5371455	B	25	0.8	
1450	283859	5371374	C	20	0.6	
1450	283624	5371036	D	13	1.2	
1450	283563	5370945	E	18	1.2	
1450	283206	5370430	F	7	1.0	
1450	283111	5370291	G	25	1.0	
1450	282968	5370086	H	25	0.7	
1450	282824	5369879		16	0.6	
1450	282285	5369093	J	10	0.0	
1460	283432	5371032	A	16	0.4	
1460	283635	5371316	B	24	4.2	
1460	283686	5371387	C	23	1.5	
	200000	007 1007		20	1.5	

2.27611

1400	004754	1 50700 10				
1460	284754	5372942	D	25	14.0	
1470	284728	5373166	A	7	0.9	
1470	283534	5371432	В	25	1.2	
1470	283453	5371317	C	<u> </u>	2.2	
1470	283273	5371051	D	<u>′</u> 10	0.8	
1470	283146	5370871	E	∵ 19	1.6	
1470	282978	5370621	F	22	1.3	
1470	282337	5369703	G	11	0.6	
1470	282153	5369440	Н	18	1.2	
1480	282051	5369544	А	21	0.8	
1480	282684	5370472	В	25	3.3	
1480	282741	5370554	С	15	2.2	
1480	282849	5370710	D	23	3.8	
1480	283137	5371131	Е	6	0.4	
1480	283378	5371472	F	19	1.8	
1480	284635	5373292	G	23	4.0	·····
1480	284730	5373417	Н	22	1.3	
1490	284595	5373499	Α	16	4.0	
1490	283451	5371843	В	11	0.8	
1490	283318	5371651	С	19	1.1	
1490	282773	5370861	D	10	2.2	
1490	282703	5370754	E	25	1.5	
1490	282634	5370655	F	9	2.3	
1490	281909	5369607	G	25	0.6	
1500	282457	5370680	A	11	1.3	
1500	282551	5370811	В	8	0.8	
1500	283188	5371728	С	15	1.4	
1500	283289	5371886	D	2	2.4	
1500	283401	5372037	E	15	3.3	
1500	284407	5373486	F	20	2.1	
9000	287204	5374043	A	25	7.7	
9000	287304	5373977	В	13	8.4	
9010	290551	5370505	A	25	3.5	
9010	290171	5370749	B	25	28.1	
9010	289992	5370869	C	23	4.0	
9010	289480	5371210	D	9	4.4	
9010	289355	5371291	E	18	4.1	
9010	289153	5371433	 F	24	3.1	
9010	288628	5371770	G	20	14.3	
9010	288530	5371836	— Ө	25	14.4	
9010	288367	5371944		23	9.9	
9010	286193	5373376	J	19	0.9	
9010	286086	5373447	ĸ	25	7.5	
9020	284562	5373138	A		0.8	
9020	284797	5372982		13	10.8	
		30,2002	U	13	10.0	


9020	285055	5372809	С		10	
9020	285204	5372809	<u> </u>	23	1.8	
9020	285534		D	25	1.8	
9020		5372490	E	21	4.2	
	285796	5372321	F	4	4.8	
9020	285924	5372238	G	19	4.4	
9020	286266	5372010	Н	<u>⊬</u> 13	1.4	
9020	286528	5371845		22	0.9	
9020	287535	5371177	J	3	3.9	
9020	287643	5371104	K	25	5.1	
9020	287991	5370872	L	18	2.1	
9020	290370	5369308	M	25	3.6	
9030	289543	5368536	A	5	0.1	
9030	289297	5368692	В	25	0.5	
9030	289172	5368780	С	22	0.5	
9030	288517	5369211	D	2	0.6	
9030	288327	5369337	E	17	6.4	
9030	288163	5369446	F	25	2.0	
9030	287980	5369564	G	25	0.4	
9030	287810	5369671	Н	8	0.3	
9030	285161	5371422		14	1.0	
9030	285044	5371495	J	25	1.6	
9030	284848	5371629	K	24	6.6	
9040	283470	5371223	А	19	1.0	
9040	283767	5371024	В	7	0.8	
9040	284671	5370427	С	25	3.7	
9040	284916	5370267	D	25	1.8	
9040	285371	5369970	Е	6	0.6	· · · · · · · · · · · · · · · · · · ·
9040	286490	5369228	F	11	0.7	······
9040	287050	5368858	G	25	4.2	
9040	287276	5368709	Н	25	14.2	· · · · · · · · · · · · · · · · · · ·
9040	287520	5368554	1	12	3.7	
9040	287608	5368497	J	11	5.0	
9050	285151	5368800	В	21	0.5	
9050	283538	5369855	С	20	1.7	
9050	283347	5369984	D	25	2.8	
9050	282925	5370260	E	11	0.6	
9050	282717	5370397	F	25	3.4	
9060	281981	5369574	A	25	1.1	
9060	282140	5369468	В	14	1.0	
9060	282224	5369412	C	17	0.9	
9060	283802	5368363	D	15	1.5	· · · · · · · · · · · · · · · · · · ·
9060	284026	5368219	E	1	1.0	
9060	284248	5368075	 F	12	1.0	
9060	284351	5368009	G	16	3.8	
9060	284474	5367929	H H	25	1.9	
			• •	20	1.3	

Geotech Ltd.

9060	284738	5367752	1	25	2.1	
9060	284972	5367592	J	15	0.6	
9060	285121	5367496	K	25	0.8	
9060	287259	5366085	L	, 17	1.3	
9070	287329	5364722	A	/ 16	0.4	
9070	284080	5366863	В	., 16	0.6	
9091	283527	5364591	A	12	0.4	
9091	283192	5364817	В	13	1.0	
9091	282729	5365123	С	22	2.6	·····

2.27611

·

Work Report Summary

Transaction No:	W0440.00676	Status:	APPROVED
Recording Date:	2004-MAY-05	Work Done from:	2004-FEB-12
Approval Date:	2004-JUN-04	to:	2004-FEB-14

Client(s):

187972RJK EXPLORATIONS LTD.400249GLR RESOURCES INC.

AEM

Survey Type(s):

AMAG

<u>Wo</u>	rk Report D	etails:	Perform		Applied		Assign		Reserve	
Cla	im#	Perform	Approve	Applied	Approve	Assign	Approve	Reserve	Approve	Due Date
ΤВ	1209573	\$4,128	\$4,128	\$0	\$0	\$2,272	2,272	\$1,856	\$1,856	2004-JUL-31
тв	1209574	\$4,128	\$4,128	\$0	\$0	\$2,272	2,272	\$1,856	\$1,856	2004-JUL-31
тв	1209575	\$2,064	\$2,064	\$0	\$0	\$2,064	2,064	\$0	\$0	2004-AUG-26
ΤВ	1215006	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-06
ТΒ	1215007	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-06
тв	1215008	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-06
тв	1215009	\$4,128	\$4,128	\$0	\$0	\$0	0	\$4,128	\$4,128	2007-MAY-06
тв	1215053	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-2
ΤВ	1215054	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-2
ΤВ	1215055	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-2
ΤВ	1215056	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-21
ΤВ	1215058	\$3,870	\$3,870	\$6,000	\$6,000	\$0	0	\$0	\$0	2005-MAY-21
тв	1215059	\$4,128	\$4,128	\$6,400	\$6,400	\$0	0	\$0	\$0	2005-MAY-21
ΤВ	1215060	\$3,096	\$3,096	\$4,800	\$4,800	\$0	0	\$0	\$0	2005-MAY-21
тв	1215132	\$2,064	\$2,064	\$0	\$0	\$0	0	\$2,064	\$2,064	2004-MAY-30
тв	1239437	\$2,064	\$2,064	\$0	\$0	\$2,064	2,064	\$0	\$0	2004-SEP-30
тв	1239746	\$506	\$506	\$0	\$0	\$0	0	\$506	\$506	2004-SEP-29
тв	1239790	\$1,548	\$1,548	\$0	\$0	\$0	0	\$1,548	\$1,548	2004-SEP-29
тв	1239791	\$4,128	\$4,128	\$0	\$0	\$0	0	\$4,128	\$4,128	2004-SEP-29
ΤВ	1239792	\$1,032	\$1,032	\$0	\$0	\$274	274	\$758	\$758	2004-SEP-29
тв	1239793	\$1,032	\$1,032	\$0	\$0	\$0	0	\$1,032	\$1,032	2004-SEP-29
тв	1239794	\$2,064	\$2,064	\$0	\$0	\$1,704	1,704	\$360	\$360	2004-SEP-29
тв	1241517	\$4,128	\$4,128	\$0	\$0	\$2,272	2,272	\$1,856	\$1,856	2004-AUG-22
тв	1241518	\$3,612	\$3,612	\$0	\$0	\$2,272	2,272	\$1,340	\$1,340	2004-SEP-05
тв	1241519	\$3,870	\$3,870	\$0	\$0	\$2,272	2,272	\$1,598	\$1,598	2004-SEP-05
тв	1241520	\$3,870	\$3,870	\$0	\$0	\$2,272	2,272	\$1,598	\$1,598	2004-SEP-05
тв	1245650	\$774	\$774	\$0	\$0	\$0	0	\$774		2004-SEP-25
ТΒ	1245660	\$3,870	\$3,870	\$0	\$0	\$2,272	2,272	\$1,598		2004-SEP-25
тв	3007335	\$4,128	\$4,128	\$0	\$0	\$0	0	\$4,128	\$4,128	2005-NOV-25
	-	\$93,128	\$93,128	\$62,000	\$62,000	\$22,010	\$22,010	\$31,128	\$31,128	

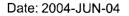

```
ADRIAN
```


Work Report Summary

Transaction No:	W0440.00676	Status:	APPROVED
Recording Date:	2004-MAY-05	Work Done from:	2004-FEB-12
Approval Date:	2004-JUN-04	to:	2004-FEB-14
External Credits:	\$0		
Reserve:	\$31,128	Reserve of Work Report#: W0440.00	0676
-	\$31,128	Total Remaining	

Status of claim is based on information currently on record.

Ministry of Northern Development and Mines


RJK EXPLORATIONS LTD.

KIRKLAND LAKE, ONTARIO

CANADA

4 AL WENDE AVENUE

Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.27611 Transaction Number(s): W0440.00676

Dear Sir or Madam

P.O. BOX 546

P2N 3J5

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

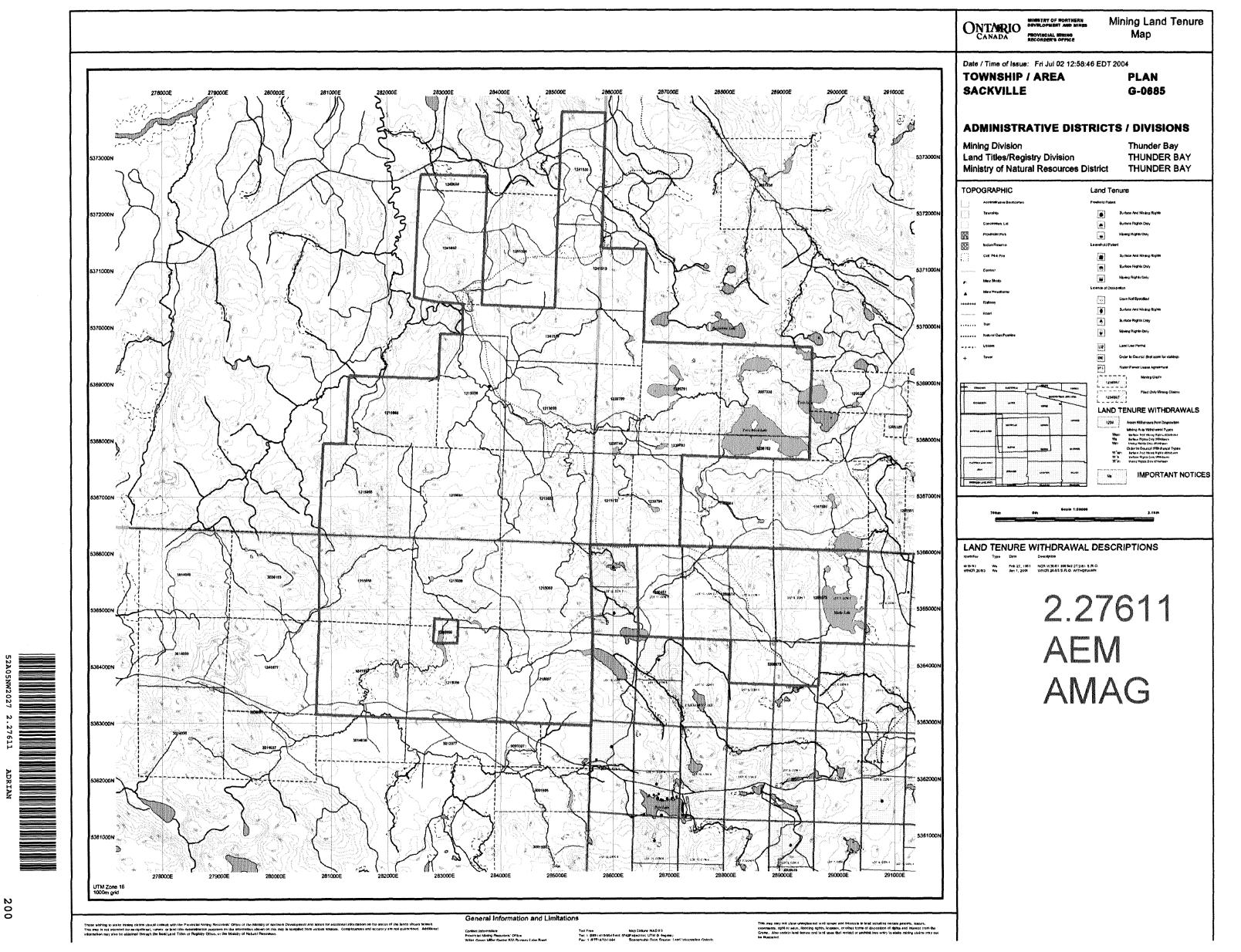
At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

Thank you for your prompt response to the 45 Day Notice dated May 10, 2004. The deficiencies outlined in the Notice have been corrected. Accordingly, assessment work credit has been approved as outlined on the Declaration of Assessment Work Form that accompanied this submission.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

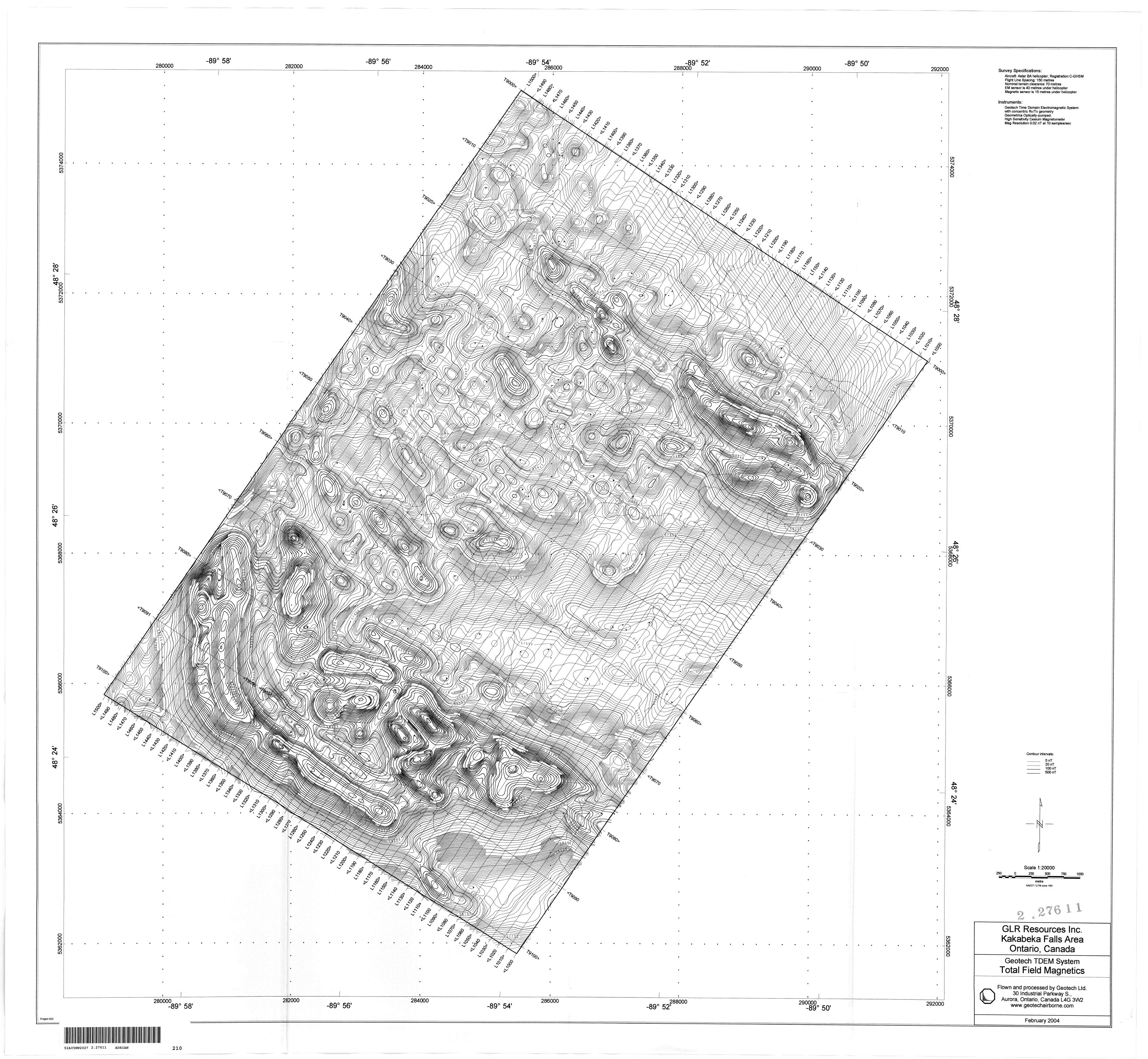
Yours Sincerely,

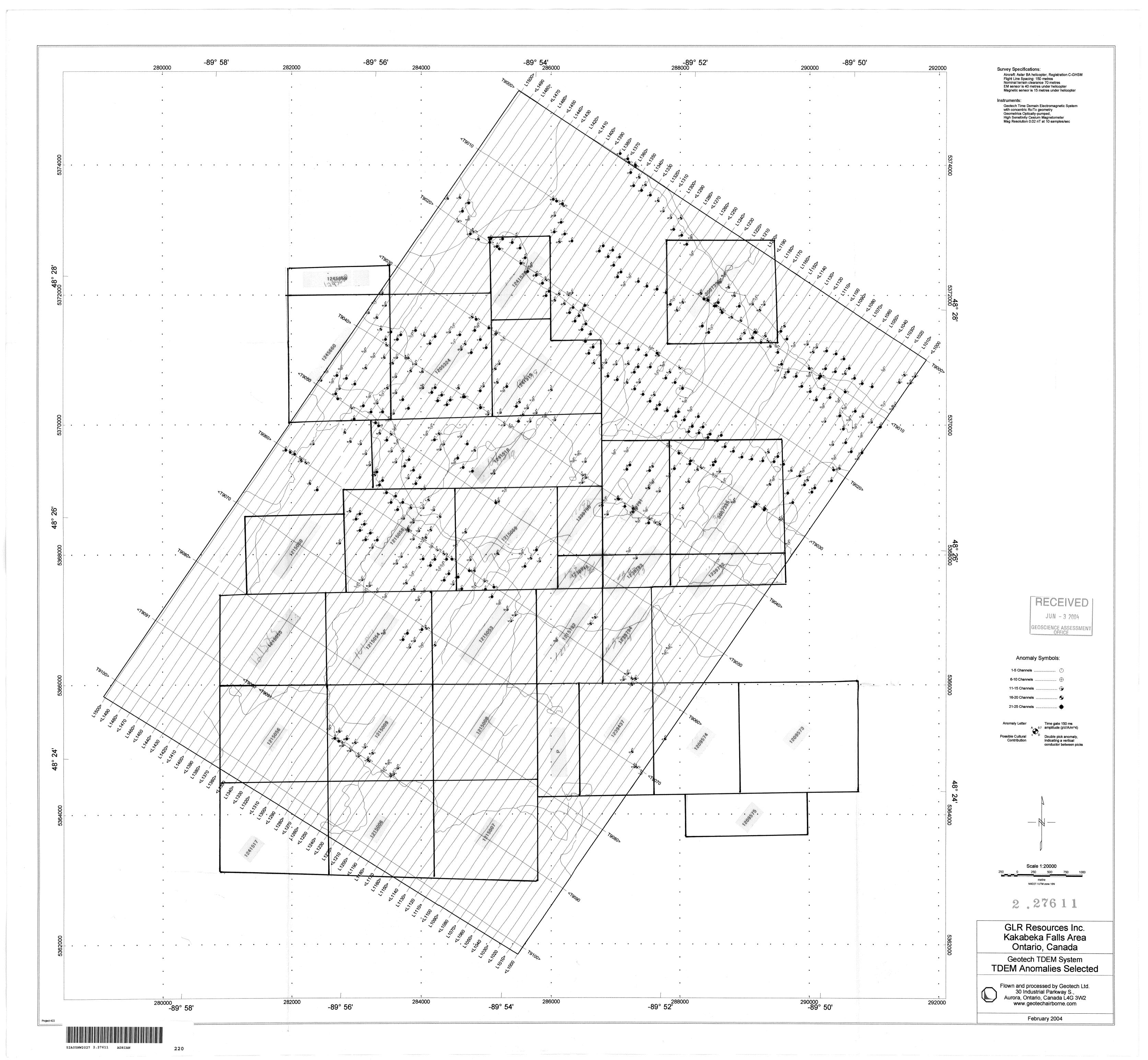
Roy Denomme Senior Manager(A), Mining Lands Section


Cc: Resident Geologist

Rjk Explorations Ltd. (Claim Holder)

Glr Resources Inc. (Claim Holder) Assessment File Library


Rjk Explorations Ltd. (Assessment Office)


Diane Dorice Mckean (Agent)

B

IAN

This page has been intentionally left blank.