Exploration Technical Report

On the

North Johnson Property

Mechanical Stripping & Channel Sample Program, 2013

Squash Lake Area, Patricia Mining Division

Sturgeon Lake, Ontario

NTS 52 J/02

For

AuXin Resources Ltd. Suite 606 - 1055 West Broadway Vancouver, BC. V6H 1E2

> Gord Yule, P.Geo. Consulting Geologist Thunder Bay, Ontario September 25, 2013

TABLE OF CONTENTS

1 E	XECUTIVE SUMMARY	
1.1	SUMMARY	
1.2	Conclusions	8
1.3	RECOMMENDATIONS	9
2 II	NTRODUCTION	
2.1	Owner	
2.2	TERMS OF REFERENCE & PURPOSE OF REPORT	
2.3	Sources of information & data	
2.4	GLOSSARY & CONVERSION FACTORS	
2.5	PROPERTY EXAMINATION	
3 P	ROPERTY DESCRIPTION & LOCATION	
3.1	Area	
3.2	LOCATION	
3.3	MINERAL TENURE	
3.4	SURFACE RIGHTS	-
3.5	ROYALTIES AND OTHER AGREEMENTS	-
3.6	Environmental Liabilities	-
3.7	Permits	
3.8	Other Factors and Risks	
	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRAST	
	SIOGRAPHY	
4.1	TOPOGRAPHY, ELEVATION AND VEGETATION	
4.2	ACCESS TO THE PROPERTY.	
4.3	PROXIMITY OF PROPERTY TO POPULATION CENTRE & LOCAL RESOURCES	
4.4	CLIMATE & LENGTH OF OPERATING SEASON	
	IISTORY	
5.1	Area History	
5.2	Previous Work	
5.3	Significant Historical Resource Estimates	21
	GEOLOGICAL SETTING & MINERALIZATION	
6.1	GEOLOGICAL SETTING	
6.2	REGIONAL GEOLOGY & STRUCTURE	
6.3	PROPERTY GEOLOGY	
	3.1 Volcanic Rock	
	3.2 Sedimentary Rocks	
-	3.3 Intrusive Rocks	
6.	3.4 Structure	26
	IINERALIZATION	
7.1	PROPERTY MINERALIZATION	
7.2	EQUATOR MINING CORP. (EMC) PROPERTIES	
7.	2.1 North Johnson Block Area	
	7.2.1.1 Johnson Showing (#MDI52J02SE00015)	

7.3	LOCAL ALTERATION	27
7.3	LOCAL ACTERATION	
	EPOSIT TYPE	
8.1	Epithermal Vein - Au Deposits	
9 CU	URRENT EXPLORATION PROGRAM	
9.1	AIRBORNE MAGNETIC GEOPHYSICAL SURVEY (2012)	
9.2	DETAILED GRID	
9.3	PROSPECTING	
9.4	DETAILED GEOLOGICAL MAPPING	
9.5	DETAILED GEOLOGICAL SAMPLING	32
9.5	1 Channel Sampling	
9.5		
9.5	3 Grab Samples	
10 DF	RILLING	
11 04		20
	MPLE PREPARATION, ANALYSIS AND SECURITY	
11.1	SAMPLING METHODS AND APPROACH	
	1.1 Channel Samples	
	1.2 Chip Samples	
11.2	1.3 Grab Samples SAMPLE PACKAGING AND SHIPPING	
11.2	SAMPLE PACKAGING AND SHIPPING SAMPLE PREPARATION TECHNIQUES	
11.3	ANALYTICAL TECHNIQUES	
12 DA	ATA VERIFICATION	
12.1	DATA VERIFICATION PROCEDURES BY QUALIFIED PERSON	42
12.2	Certified Reference Material: High Grade Standard	
CERTIF	IED REFERENCE MATERIAL: LOW GRADE STANDARD	
12.3	Blank Standard	
12.4	DUPLICATE CHECK SAMPLE ANALYSIS	
12.5	DUPLICATE PULP ANALYSIS	
12.6	REPLICATE PULP ANALYSIS	
12.7	Fire Assay With Gravimetric Check Analysis	
12.8	OPINION ON ADEQUACY OF DATA	47
13 M	INERAL RESOURCE ESTIMATE	
14 AI	DJACENT PROPERTIES	
14.1	PACIFIC IRON ORE (ST. ANTHONY)	
14.2	PACIFIC IRON ORE CORP BEST/KING BAY PROPERTY	
14.3	CONQUEST - KBG MINERALS CORP. (60%/40%) PROPERTY	53
14.4	PARAGON MINERALS CORP. PROPERTY	
14.5	Best Property	59
15 OT	THER RELEVANT DATA & INFORMATION	59
	TERPRETATION & CONCLUSIONS	
16.1		
16.2	CONCLUSIONS	60
17 RF	ECOMMENDATIONS	
17.1	Exploration Phase 1: Prospecting & Drilling	62
17.2	EXPLORATION PHASE II: DRILLING	

17.3 Drill Targets & Budget	63
17.3.1 North Johnson Proposed Targets	
17.3.2 Proposed Budget (Final Subject to Tender)	64
17.4 LAND ACQUISITION	

		FERENCES	
19		BIBLIOGRAPHY PPENDIX A Comparison of Fire Assay & Pulp Metallic Method:	72
20	AP	PPENDIX B: COMPOSITE WEIGHTED AVERAGE GRADES	73
21	AP	PENDIX C: SAMPLE DESCRIPTIONS & LOCATIONS	75
22	AP	PPENDIX D: SAMPLE INFORMATION & ASSAYS	82
23	AP	PPENDIX E: SAMPLE REFERENCE & WEIGHTED AVERAGE GRADES	89
24	AP	PPENDIX F: MS POWERPOINT PRESENTATION OF DRILL PROPOSAL	95
2	25.1 25.2	PENDIX G: ASSAY CERTIFICATES Reconnaissance Sampling Grab Assays & Geochem Channel samples Channel Sample – Gravimetric Check Analysis	96 96
_	25.3 M A	CHANNEL SAMPLE – GRAVIMETRIC CHECK ANALYSIS	

LIST OF TABLES

TABLE 1-1: RESULTS OF COMPOSITE WEIGHTED AVERAGE GRADE OF NORTH JOHNSON	-
OCCURRENCE	
TABLE 3-1: MINING CLAIMS STATUS	15
TABLE 5-1: JOHNSON SHOWING (AKA. HORNE, 123 LAKE, 123 OCCURRENCE)	
(#MDI52J02SE00015)	. 18
TABLE 9-1: DETAILED REFERENCE GRID CROSS REFERENCED WITH EQUIVALENT UTM	
COORDINATES	30
TABLE 9-2: SUMMARY OF SAMPLING ON NORTH JOHNSON PROPERTY (2013)	32
TABLE 9-3: CHANNEL SAMPLE INDIVIDUAL RESULTS & STATISTICS	34
TABLE 9-4: COMPOSITE CHANNEL ASSAY RESULTS	
TABLE 9-5: CHIP SAMPLE INDIVIDUAL RESULTS	36
TABLE 11-1: ACCURASSAY SAMPLE PREPARATION METHODOLOGY FOR AUXIN SAMPLE PREP	
Protocol	41
TABLE 11-2: ACCURASSAY PRECIOUS METALS METHODOLOGY FOR AUXIN ANALYTICAL	
PROTOCOLS	41
TABLE 12-1: CERTIFIED REFERENCE MATERIAL ANALYTICAL RESULTS (CERT #201341675)	42
TABLE 12-2: BLANK STANDARDS ANALYTICAL RESULTS	44
TABLE 12-3: DUPLICATE SAMPLE ANALYTICAL RESULTS	45

TABLE 12-4: COMPARISON OF AA FINISH V.S. GRAVIMETRIC FINISH RESULTS	46
TABLE 14-1: PACIFIC IRON ORE CORP ST. ANTHONY AREA GOLD OCCURRENCES	48
TABLE 14-2: PACIFIC IRON ORE CORP BEST/KING'S BAY GOLD OCCURRENCES	52
TABLE 14-3: CONQUEST-KBG MINERALS - KING'S BAY AREA GOLD OCCURRENCES	53
TABLE 14-4: PARAGON MINERALS CORP NORTHEAST BAY GOLD OCCURRENCES	54
TABLE 14-5: CONQUEST- KBG - KING'S BAY / BEST GOLD OCCURRENCES	59
TABLE 17-1: JOHNSON SHOWING – PHASE 1 DRILL PROPOSAL	63
TABLE 17-2: PHASE 1 & PHASE 2 DRILL EXPLORATION BUDGET	64

LIST OF FIGURES

FIGURE 3-1: REGIONAL MAP OF STURGEON LAKE - SAVANT LAKE AREA	12
FIGURE 3-2: LOCAL AREA MAP LOCATING EQUATOR CLAIMS	13
FIGURE 3-3: EQUATOR CLAIMS LOCATION, STURGEON LAKE, ONTARIO	14
FIGURE 5-1: HISTORIC DRILL HOLES J90-01 & 02	
FIGURE 6-1: REGIONAL GEOLOGY MAP AT 1:100,000 SCALE (AFTER SANBORN-BARRIE,M., AND	
Skulski, T., Geo. Surv Canada, 2005)	23
FIGURE 6-2: REGIONAL GEOLOGY – LEGEND	24
FIGURE 6-3: REGIONAL GEOLOGY: LEGEND (CON'T) & MAP SYMBOLS	25
FIGURE 8-1: SCHEMATIC PRESENTATION OF GEOLOGICAL ENVIRONMENT OF OROGENIC GOLD DEPOSI	TS
(Dubé and Gosselin, 2007)	
FIGURE 9-1: AIRBORNE MAGNETIC COVERAGE ON EQUATOR CLAIMS	29
FIGURE 9-2: NORTH JOHNSON GEOLOGICAL MAP & SAMPLE LOCATIONS (REDUCED: SEE BACKPOCH	KET
FOR 1:100 SCALE MAP)	
FIGURE 12-1: HIGH CERTIFIED REFERENCE MATERIAL STANDARD CONTROL CHART	43
FIGURE 12-2: LOW CERTIFIED REFERENCE MATERIAL STANDARD CONTROL CHART	43
FIGURE 12-3: CORRELATION COMPARISON OF FIRE ASSAY/AA FINISH VS. FA/GRAVIMETRIC FINISH	
Method	
FIGURE 14-1: PACIFIC IRON ORE PROPERTY POSITION (FROM PACIFIC IRON 43-101 REPORT, 2009)	50
FIGURE 14-2: PACIFIC IRON ORE CORP - PROPERTY GEOLOGY & OCCURRENCE MAP (PACIFIC IRON C)re,
2009)	51
FIGURE 14-3: EQUATOR MINING CORP. & PARAGON (GOLD STAR PROJECT) WITH GOLD OCCURRENCE	CES
ON REGIONAL AEROMAGNETIC SURVEY (PARAGON WEBSITE)	57
FIGURE 14-4: PARAGON MINERALS PROJECT WITH GOLD OCCURRENCES (PARAGON WEBSITE)	58
FIGURE 17-1: NORTH JOHNSON AREA – PHASE I PROPOSED 2013 DRILLING (YULE, 2012)	65
FIGURE 17-2: RAINBOW ISLAND LEASE - PHASE II PROPOSED 2014 DRILLING (YULE, 2012)	66
FIGURE 17-3: SOUTHERN CLAIM BLOCK - PHASE II PROPOSED 2014 DRILLING (YULE 2012)	67
FIGURE 25-1: POWERPOINT PRESENTATION OF 2013 DRILL PROPOSAL (CLICK TO OPEN)	95

1 EXECUTIVE SUMMARY

1.1 SUMMARY

AuXin Resources Ltd. proposes to acquire 100% interest in the North Johnson property from Equator Mining Corporation. The property consists of 2 mining claims totaling 28 claim units or 448 hectares in the Squash Lake Area (G3140), situated in the Patricia Mining Division of northwestern Ontario.

Gold exploration has been intermittent over the past 100 years in the Sturgeon Lake greenstone terrain where these claims are located. The largest past producer in the area is the St. Anthony Mine, having intermittently produced over 63,310 ounces of gold from 331,069 tons at an average grade of 0.191 opt gold between 1905 - 1941, is 6.5 km to the north of the North Johnson showing. Pacific Iron Ore Corporation has the largest landholdings in the area including the St. Anthony mine site and has been exploring for gold since 2008.

The North Johnson property is located at the southern tip of the North Arm of Sturgeon Lake and covers one documented historic gold occurrence. Access to the property is by boat or snowmobile when ice conditions permit.

Between the period, June 9-15th 2013, a reconnaissance prospecting, sampling program was completed by the author at the request of AuXin Resources Ltd., to evaluate certain properties held by Equator Mining Corp. in the Sturgeon Lake Area. Based on historic grab sample results on the North Johnson occurrence encouraging high grade gold grades obtained from both chip and grab samples during the reconnaissance sampling, and the potential for broader widths of a mineralized system and the possibility of multiple vein systems of alteration observed on the North Johnson gold occurrence additional exploration work on the North Johnson occurrence was recommended.

Between August 7 and August 17th 2013, a mechanical stripping and channel sample program was undertaken. Approximately 770 square metres of bedrock was exposed to investigate the occurrence, and 197 channel samples were cut on the North Johnson gold occurrence. The exposure and channel sample locations were mapped at a scale of 1:100. Encouraging composite weighted average grade results of the sampling program are encountered and are tabulated in Table 1-1 below. A full list of sample descriptions, locations and results are listed in Appendices C, D & E in back of report.

Vein Name	Channel Sample Assay Range (g/t Au/m)	# Composite Channels	# Samples	Composite Grade/Width (g/t Au/m)	Strike Length (m)
Ridge - West	0.012/1.0 – 81.064/1.0	20	40	8.344/1.46	40
Ridge – South Br.	0.229/0.70 – 31.82/0.40	9	15	8.054/0.84	14
Ridge - East	0.009/0.80 – 4.908/1.45	16	24	1.272/0.82	49
Shore Vein	0.386/0.60 – 85.465/0.40	7	7	21.525/0.39	9
Shore Altered	0.017/0.90 – 0.581/0.65	4	7	0.22/1.1	20

 Table 1-1: Results of Composite Weighted Average Grade of North Johnson Occurrence

Three other areas (<10m square) of sulphide iron rich sediments were exposed on the trail and 11 chip samples averaging 1 metre were taken. Results of the chip samples was not encouraging with 6 assays below detection limits and the others ranging from 0.007 to 0.06 g/t gold.

A 13-hole diamond drill program of 1250m is recommended to test the North Johnson vein system at depth & along strike. The vein system appears to have a strong mineralized plunge component within the dipping vein and hosts nugget gold. The gold-bearing structure needs to be evaluated. Mobilization, demobilization and logistical support costs will be equal to footage rates costs.

1.2 CONCLUSIONS

Results of geological mapping and detailed sampling on the North Johnson indicate

- The vein system(s) is a drag-folded quartz vein system and was exposed in the stripping program for 100m
- There are two veins within two alteration zones (Shore Vein, and Ridge Vein) 15 metres apart
- The alteration system is a sheared, foliated iron carbonate rich envelope up to 2.5m wide in mafic volcanic rock
- The shear trends at 070 degrees and dips southward at 70 degrees
- The Veins are generally narrow at up to 40 cm in horizontal width.
- Visible gold grains at up to 0.1mm are noted in the original occurrence Shore Vein
- The veining strikes 080 and dips 70 degrees southward.
- Quartz vein fold closures trend at 220 degrees and plunge 30 degrees southwest.
- Shearing kinematics suggest the shearing is dextral and 0.5m offset.
- A 6m wide feldspar porphyry dyke appears to passively offset the Ridge East and Ridge West alteration zone
- The Shore Vein assays at a weighted average grade of 21.525 g/t gold over an average width of 0.39m and over a strike of 7m strike length
- The Ridge Vein West (of the FP dyke) assays 8.344 g/t gold over an average width of 1.46m (horiz), over 40m strike length.
- The Ridge Vein South branch (west of the FP dyke) assays 8.054 g/t gold over an average width of 0.84m (horiz) over 14m strike length.
- The Shore Vein alteration assays 0.220 g/t gold over 1.1m for 20m of strike length.
- The Ridge Vein East (East of the FP dyke) assays 1.272 g/t gold over an average width of 0.82 m for 49m of strike length.

- Previous drill hole J90-01 intersected altered PF assayed 0.012 opt gold, and two sheared alteration zones with minor qv, but without assays.
- Previous drill hole J90-02 intersected 25.846 g/t gold over a core interval of 1.68m, down dip. Both holes were drilled from north to south.
- In 1969, Selco completed three diamond drill holes in the vicinity of the North Johnson occurrence. Drilling was exploring for base metals. Although no evidence of drilling, either collars refuse, or cribbing was detected, flat & open areas were noted at the approximate location. Any drilling would have undercut the alteration & vein system.
- The gold mineralization occurring as free gold and associated with sulphides is highly erratic. Drilling will have to explore the strike & dip extension of the North Johnson alteration & structure. Only detailed sampling along the vein system will accurately identify the gold content.

1.3 RECOMMENDATIONS

North Johnson: A Phase 1 Drill program is recommended to explore the depth & on strike continuity of the North Johnson occurrence. Mapping during the channel sample program suggested a strong plunge component to the vein system within the dip to the mineral veins. The plunge of at least three shoots may may be thought of as a pencil-like vein fold closure, and the high grade gold-bearing mineralized shoots in a drill cross-section may appear like "a string of pearls". Appendix F is a PowerPoint presentation of slides illustrating these plunging targets on the two vein systems on two longitudinal sections and a set of cross sectional views from 80mWest to 120m East along the North Johnson Occurrence indicates the proposed drill target locations.

A 13-hole diamond drill hole program totaling 1250m is proposed to test the geological structure and the potential mineralized "shoots" for economic gold grades over minable widths.

A pre-tender Phase I budget is estimated at \$400,000. An Invitation to Bid tender document has been prepared, submitted to AuXin for review and on September 25 submitted to several drill companies for review and bid.

This drilling would have to be completed in October 2013 to take advantage of the barge for mobilization and de-mobilization of the drill. The seasonal ice conditions, storms and combined with late daylight/early night make November very difficult and sometimes unproductive. Any winter drilling program could potentially add approximately \$5000 - \$8000 per km for 25 km of ice road construction & winter maintenance.

North Johnson, Southern Block Area: Reconnaissance shoreline geological investigation of the Sturgeon Lake area, and property examinations of the recent staking, North Johnson claim and the N.Johnson addition staked claim (pending), Southern Block and area. Approximately 7 days would be required.

AuXin/Equator Mining Claims: Phase II Drill Program is recommended in 2014, and in part based on results of the North Johnson Phase I program. Phase II of 1500m of drilling would assess the Rainbow Island mineral system, and the Southern Block interpreted structures.

2 INTRODUCTION

2.1 OWNER

Equator Mining Corporation is the current claimholder with 100% interest in the property. AuXin Resources Ltd. has been funding exploration activities.

2.2 TERMS OF REFERENCE & PURPOSE OF REPORT

The author Gordon Yule, P.Geo, and Qualified Person (QP) was contracted by Stanley Wong, CFO of AuXin Resources Ltd. of Vancouver, British Columbia to review and assess certain exploration properties in the Sturgeon Lake area owned by Equator Mining Corp. and to make recommendations to assess the potential economic viability of the properties. No recent ground exploration had been undertaken on the property. In October 2012, Fugro Airborne Systems completed a detailed helicopter-borne magnetic survey over three of four properties owned by Equator Mining Corp. In December 2012, the author reviewed the historic data and prepared an exploration approach and made recommendations for each of the four properties, pending a field visit in the spring of 2013, for AuXin Resources.

2.3 SOURCES OF INFORMATION & DATA

The author has made use of all existing public documents including NI 43-101 property reports prepared by Pacific Iron Ore Corporation in 2009, numerous government geological publications, and numerous exploration assessment files found online in "Geology Ontario", located on the Ministry of Northern Development & Mines website.

2.4 GLOSSARY & CONVERSION FACTORS

A Glossary and Conversion factors utilized in this report include:

1 troy ounce/ton = 34.285714 grams/tonne

1 gram/metric tonne = 0.02916 ounces (troy)/ton (short)

The term **gram/tonne** or **g/t** is expressed as "gram per tonne" where 1 gram/tonne = 1 ppm (part per million) = 1000 ppb (part per billion).

The mineral industry accepted terms Au (g/t) and (g/t) Au are substituted for "grams gold per metric tonne" or "g Au/t".

Grab Sample = Biased hand specimen of rock to identify specific minerals and mineral associations

Chip Sample = an unbiased dimensional sample taken with a hammer +/- chisel in attempts to obtain a representative suite of rock chips over a certain uniform or geological interval. Bias is usually introduced due to variances of rock hardness and irregular nature of bedrock surfaces.

Channel Sample = An unbiased, dimensional, sample of rock taken with the aid of a diamond-bladed rock saw in attempts to obtain a representative rock sample over a certain uniform or geological interval.

Bias is usually minimized by deep saw cuts through all variations of rock and introduced by the irregular nature of outcrop surfaces.

Other abbreviations include

MNDM = Ontario Ministry of Northern Development & Mines; is administrator of the Ontario Mining Act for Crown-owned mineral resources, on or under the surface.

MNR = Ontario Ministry of Natural Resources; is custodian of Ontario's surface resources including all Crown land, water, fish & wildlife, timber, sand, gravel and aggregate resources

Ma = million years

ppb = parts per billion;

ppm = parts per million;

oz/t = troy ounce per short ton;

Moz = million ounces;

Mt = million tonne;

t = tonne (1000 kilograms).

Dollars are expressed in Canadian currency (CAD\$) unless otherwise noted.

Where provided, Universal Transverse Mercator (UTM) coordinates are in the datum of Canada, NAD83, and Zone 15 North unless noted.

2.5 PROPERTY EXAMINATION

During the period June 8-15, 2013, field visits were made to three of the four Equator properties in the Sturgeon Lake area. On June 9 and on June 13 the author accompanied by Ed Barkauskas examined the North Johnson property and collected 19 mineralized rock samples. Of that total, 5 chip and 10 grab samples were gathered and analyzed from the North Johnson occurrence.

During the period August 7th to17th, 2013, the author & QP directly mapped & assisted with the sampling program on the North Johnson occurrence, and prospected in the area of the occurrence. This report summarizes the detailed mapping & sample results taken to assess the gold occurrence.

3 PROPERTY DESCRIPTION & LOCATION

3.1 AREA

The Sturgeon Lake gold area and the North Johnson claim block is located within the boreal forest region of northwestern Ontario. The region hosts a logging, mineral exploration and tourism.

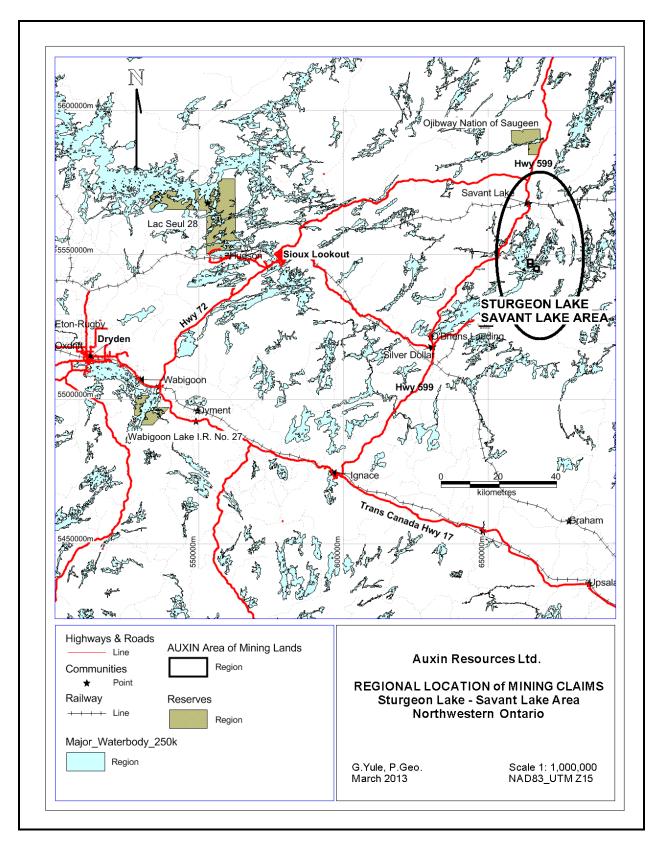


Figure 3-1: Regional Map of Sturgeon Lake - Savant Lake Area

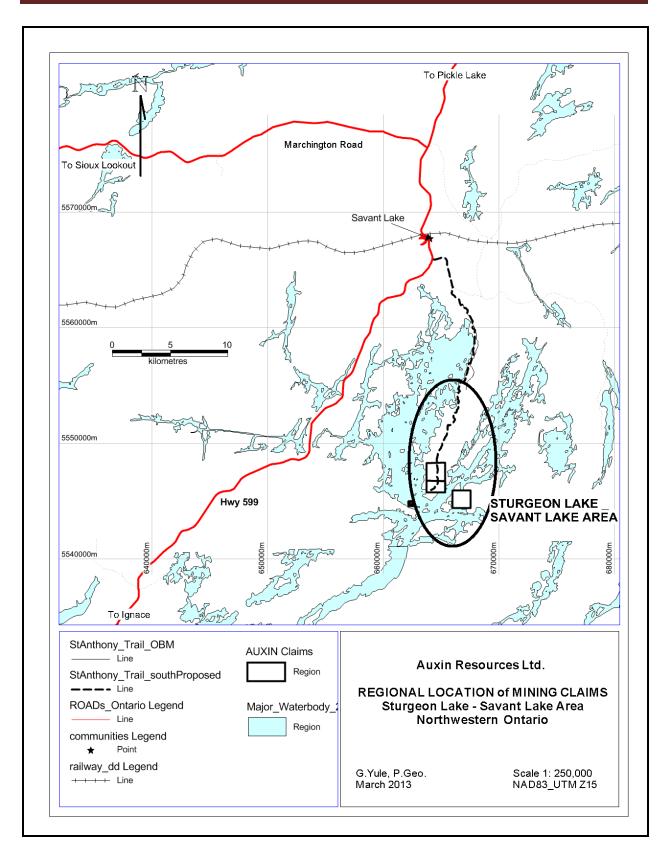


Figure 3-2: Local Area Map Locating Equator Claims

3.2 LOCATION

The North Johnson Occurrence is located 700m northeast of the eastern head of a bay on the west side of the southern end of the "Horn" peninsula. A series of pits & trenches originally exposed the occurrence in 1984 were located at the southern end of a small lake, locally referred to as Johnson Lake at UTM 15 664488 5546335 (NAD83) were re-exposed during this program.

The claims are located on National Topographic Series (NTS) map sheet 52 J/02 in the Squash Lake Area (G3140). The claims are centered at 50 °03' 12"N, 90° 42'W or UTM 15 664600 5546800 (NAD 83) just north of the confluence of the North Arm, the Northeast Arm, East Bay and King's Bay of Sturgeon Lake.

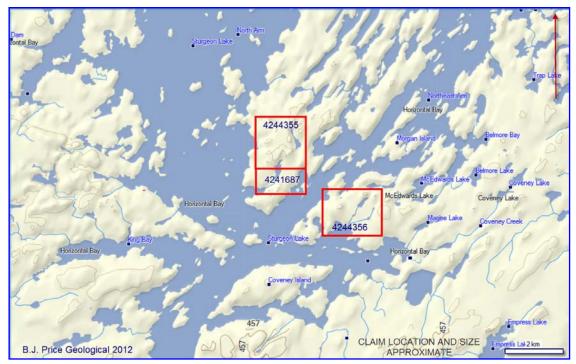


Figure 3-3: Equator Claims Location, Sturgeon Lake, Ontario

3.3 MINERAL TENURE

Equator Mining Corporation holds 100% interest in the North Johnson claim block comprising two mining claims. The claims provides the claim holder with the sole opportunity to acquire the mineral rights and surface rights for mining purposes from the Crown by eventually taking the claims to lease.

Equator does not own but has the first option to acquire the surface rights.

AREA	Claim Number	Recording Date	Claim Due Date	I Inite	Percent	Work Require d	Total Applied	Total Reserve	Claim Bank
SQUASH LAKE AREA	<u>4241687</u>		2016- Aug-06	12	100 %	\$ 4,800	\$ 24,000	\$ 8,765	\$0
SQUASH LAKE AREA	4244355		2016- Aug-06	16	100 %	\$ 6,400	\$ 32,000	\$ 11,686	\$ 0
	2	claims		28					

 Table 3-1: Mining Claims Status

From Mining Claims Information database (dated Sept 15, 2013): MNDM website

3.4 SURFACE RIGHTS

Equator does not hold any surface rights on the North Johnson property. There are no surface rights holders on lands covered by the North Johnson claims.

3.5 ROYALTIES AND OTHER AGREEMENTS

There are no underlying royalties or agreements on the Equator claims.

3.6 ENVIRONMENTAL LIABILITIES

There are no known environmental liabilities on the Equator claims.

3.7 PERMITS

On April 1st, 2013, revisions to the Ontario Mining Act legislation and regulations came into effect requiring the notification of proposed exploration activities on Crown Lands (i.e. mining claims, mining leases and Licenses of Occupation) to potentially affected traditional Aboriginal land users and surface rights land owners. Exploration activities now require the submission of Plans and Permit applications depending on the proposed level of environmental impact. The Plan & Permit process recognizes treaty & Aboriginal Rights as well as the rights of surface rights owners.

An Exploration Plan submission is required for low-level impact exploration activities such as line cutting (<1.5m wide) with hand tools, small scale overburden stripping (areas <100m²), geophysical surveys with a generator, small trenching (<= $3m^3$) or mechanical drilling with assembled weight <150kg). The Plan is posted on the Environmental Registry and sent to aboriginal communities potentially affected by this activity for a 30-day public comment period. Applicants can commence planned activities after 35 days if no comments are received and plans do not require amending.

An Exploration Permit is required for exploration activities of a low-to-moderate level of environmental impact such as drilling with equipment greater than 150kg, and/or mechanized stripping of sizable areas but less than what is triggered by the requirements of advanced exploration (<10,000 m2), and/or trenching (>3m³ in a 200m radius), and/or the line cutting of wide corridors (>1.5m wide). The Permit application is posted on the Environmental Registry for 30 days for public comment, and sent to potentially affect Aboriginal communities for comment. Permit applications may take 55 days to process and stop-time can extend the Permit if amendments to the Permit are required as a result of public and Aboriginal comments & concerns. Prior notification & consultation is strongly recommended to minimize delays to applications.

On April 22, 2013, as the registered claimholder, Equator Mining Corporation submitted to the MNDM an Exploration Plan for low environmental impact exploration activities. The Exploration Plan (PL-13-10126) allows exploration activities to commence on May 22, 2013 and is good for two years.

On April 22, 2013, an Exploration Permit application was submitted to the MNDM for low to moderate exploration activities, drilling and mechanized work. The Exploration Permit (PR-13-10284) was received by Equator on June 26, 2013 and will expire in three years, on June 25, 2016.

3.8 OTHER FACTORS AND RISKS

Access is by water. There are inherent risks with any transportation of personnel and equipment over water or the ice.

Mineral exploration is typically a very high risk activity. Exploration will not necessarily be successful in delineating an economic mineral deposit.

4 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

4.1 TOPOGRAPHY, ELEVATION AND VEGETATION

The Sturgeon Lake area is typically comprised of rounded, steep bedrock ridges up to 10m high and wet swampy lowlands. Overburden cover is typically a thin glacial till and less than one metre thick. There are few sand & gravel aggregate sources.

The area is covered by large and small lakes providing easy access for prospecting and early exploration, but can provide challenges for mobilization of equipment into areas.

The region is

The area is predominantly comprised of pine and spruce conifer forests. Swamp lands are black spruce, tamarack and cedar. The area has not been logged.

4.2 ACCESS TO THE PROPERTY

Access to the North Johnson property is seasonal, by a 30-45-minute boat ride in the summer or snowmobile in winter. Alternatively, ski or float equipped aircraft or helicopter provide quick access.

A small (20'x40'x5'), unmaintained barge rented from Allan Best, a local prospector & entrepreneur located at Trapper's Landing at the north end of Sturgeon Lake was rehabilitated & utilized to mobilize mechanized equipment for this program.

Boats were available for rent at the Whiskey Jack Lodge, a tourist facility located 25km south of Savant Lake. Room & board were available at the Four Winds Motor Hotel in Savant Lake.

The St. Anthony road, extending from the Rusty Myer-Vista Lake Road is a rough and unmaintained 13 km, forest access road to the St. Anthony mine site, recently upgraded or newly constructed by Pacific Iron. The old St. Anthony road/trail continues south 2 km as ATV/snowmobile trail from the St.Anthony mine site to Marie Bay on Sturgeon Lake. From the Marie Bay area, a new 6 to 8km trail would have to be developed through very rough country to the North Johnson property. The Couture Creek 0.7 km north of is a cold water fisheries resource that will require a water crossing permit from the MNR for a bridge to access St. Anthony mine site or points to the south.

4.3 PROXIMITY OF PROPERTY TO POPULATION CENTRE & LOCAL RESOURCES

The North Johnson property is located 210km northwest of Thunder Bay, Ontario, the largest regional centre in northwestern Ontario, and 460 km east of Winnipeg, Manitoba as the crow flies.

The property is located 98 km north of Ignace; a small town (pop. 1500) is located on Trans-Canada Highway #17 at secondary highway 599 and on the Canadian Pacific Railway between Thunder Bay and Kenora. The town of Sioux Lookout (pop.5000) is 110 km west of Savant Lake and hosts a regional hospital and airport with daily scheduled flights to Thunder Bay and Winnipeg.

The village of Savant Lake (pop. 80) 20 km to the north of the property, is on Highway 599, between Ignace and Pickle Lake, and is on the Canadian National transcontinental railway between Armstrong and Winnipeg. Savant Lake hosts a small general store, post office, fuel, and a hotel with telephone & internet service.

4.4 CLIMATE & LENGTH OF OPERATING SEASON

The climate in the Sturgeon Lake area is characterized by cold winters and moderate summers. The highest average temperature is 18°C in July and the coldest average temperature is -20°C in January. The average yearly precipitation is 640 mm, with the highest rainfall in June (90.8 mm) and the highest snowfall in January (33.4mm; www.climate.weatheroffice.gc.ca). Snowfall typically starts in late October and snow melting starts in late March.

Vegetation is typical of northern boreal forest consisting of aspen, spruce, birch, tamarack and pine. Exploration can be completed year round. Mapping and geochemical surveys are best executed in the summer months and drilling on the claims on lakes is only possible during the winter months when the ice cover on the lakes is thick or if a barge is available.

Exploration in this area of Sturgeon Lake will be seasonal, due to need to access this area by water. Should enough exploration work start to delineate a significant resource on the North Johnson, a trail and eventually a road into the exploration site would need to be considered.

Potentially, any mining operations in this region could continue on a year round basis.

5 HISTORY

5.1 AREA HISTORY

Gold exploration in the Sturgeon Lake area has been documented in government reports for over 100 years with the advance of the railway (Moore 1911).

5.2 **PREVIOUS WORK**

There is no mention of exploration activity in the North Johnson Lake area in Moore (1911) or later published sources.

Over the years, the North Johnson occurrence has also been referred to as "123 Lake", "123 Pond", "AL501", "Horne Showing" & "John Horne Showing".

In 1970, Selco Exploration Co. Limited drilled 3 ddh totaling 1024' in the North Johnson Lake as part of a regional exploration program in the search for volcanogenic massive sulphide deposits. See assessment file 52J02SE8975. Any drilling in vicinity to the occurrence would have been down dip and undercut the showing.

In 1984, Hudson Bay Exploration and Development Company Ltd. entered into an option JV agreement covering Steep Rock Resources Inc. gold properties in the Sturgeon Lake area. The North Johnson area was included in this agreement. Hudson Bay subsequently stripped and sampled this occurrence and reported in assessment file 52J02SW-0051.

In 1989, 007 Precious Metals Ltd. optioned the property from the claim holders. Two diamond drill holes totaling 506.3' were completed on PA 611965 (now claim #4241687) by Golden Mile Resources Ltd. DDH J-90-02 intersected 0.75 opt/5.5' (25 g/t gold/1.67m). Figure 5-1 provides the set of drill sections for the 1990 drilling. (Assessment files 52J04SE-0104, now 52J02SE8653. Both holes drilled down-dip intersected altered structure but the second hole intersected a quartz vein with economic gold grades over a minable width on the North Johnson.

The North Johnson claims were re-staked in August 06, 2009 by E. Barkauskas on behalf of Equator Mining Corporation. In September 2012, Equator contracted Fugro Airborne Systems to complete a detailed helicopter-borne magnetic survey over three of four of Equator's properties.

Assessment File (AFRI)	Company	Year	Activity	Mineralization	Remarks
52J02SE-0011-B1 (52J02SE8975)	Selco Expl. Co. Ltd. – on N. Johnson Claim Block	1970	4 ddh, Holes Sel 242- 01, 09, 10, 11 (467.9m)	SIF, gf	Target appears to be NE trending conductors (sulphide targets)

52J02SE8972 52J02SE8974	Selco Expl. Co. Ltd. – NW of N. Johnson Block Selco Expl. Co. Ltd N of N.	1970 1970	1 ddh, Sel 242- 02 1 ddh, Sel 242- 04 (472')	SIF	Target appears to be NE trending conductors (sulphide targets) Target appears to be NE
	Johnson Block				trending conductors (sulphide targets)
52J02SE8977	Selco Expl. Co. Ltd. – NE of N. Johnson Block	1970	1 ddh, Sel 242- 05, 06, 07 (962')	SIF	Target appears to be NE trending conductors (sulphide targets)
52J02SE8976	Selco Expl. Co. Ltd. – east of North Johnson Block	1970	1 ddh, Sel 242- 08 (341')	SIF	Target appears to be NE trending conductors (sulphide targets)
52J02SW-0051	Hudson Bay Exp & Dev. Co. Ltd. – North Johnson Occurrence	1984	Stripping & sampling	Grabs to 3.454 opt & 0.45 opt	White QV erratically dist'd in drag folded shear. Several shallow trenches & o/c exposed QV over 50m
52J02SE-0104 (52J02SE8653)	007 Precious Metals Ltd. / Golden Mile Res. – (North Johnson Occurrence)	1990	2 ddh Holes J90-01 & 02 (154.3m total)	Hole J90-02 intersected <mark>25.7 g/t Au over 1.68m @ 60m</mark> (0.75 opt/5.5 ft at 198')	J90-01 (100' N of vein) – NSV J90-02 (100'east of 90-01, 80' north of vein)
52J02SE-0104 (52J02SE8653)	007 Precious Metals Ltd. / Golden Mile Res.	1990	1 ddh Hole J90-03 (135m)	Qtz-cb bxa over 3m @48-51m -0.27 g/t over 0.85m. Cherty SIF @ 130- 134m - NSV	SW corner of Block – in Bay on Sturgeon L.

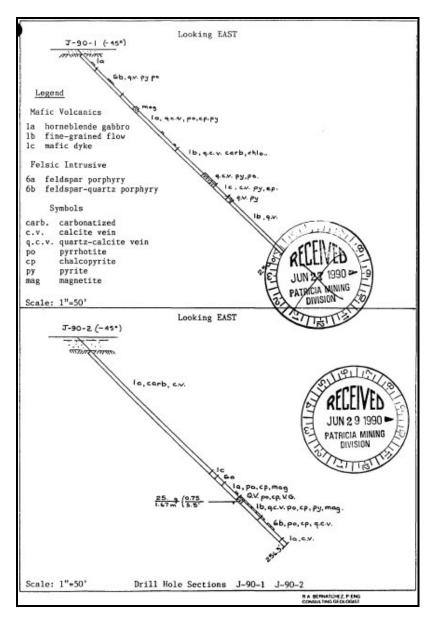


Figure 5-1: Historic Drill Holes J90-01 & 02

5.3 SIGNIFICANT HISTORICAL RESOURCE ESTIMATES

No previous resource estimates reported.

6 GEOLOGICAL SETTING & MINERALIZATION

6.1 GEOLOGICAL SETTING

6.2 REGIONAL GEOLOGY & STRUCTURE

Adapted from Evans, G., "The Sturgeon Lake regional geology has been studied by a number of groups from the OGS and GSC particularly for genesis of Neoarchean VMS systems and calderas (Morton, Trowell, Sanborn Barrie, Percival, Franklin and others). The regional geology in the area is a large NE trending synclinal greenstone belt of the Wabigoon belt rocks known as the Sturgeon Lake greenstone belt. This belt is connected to the Savant belt to the northeast and is bounded to the north by the Lewis Creek Batholith and bounded to the south and east by the Central Granitoid complex. This belt is bracketed by English River high metamorphic grade flysch sediments and Winnipeg River late metamorphic rocks and S-type granitic intrusive complexes along large scale fault systems.

The Sturgeon Lake greenstone belt has been subdivided in a series of assemblages which from the oldest basal sequence to youngest includes:

- the Fourbay Lake Assemblage (2775 Ma) a 1-2Km thick sequence of tholeiitic basalts commonly pillowed but including massive and tuffaceous sections and occasional thin dacite lapilli tuffs.
- This is conformably overlain by the Handy Lake Assemblage (2745Ma) which again is dominated by tholeiitic basalt flows which grades upwards into intermediate to felsic pyroclastic sequences interbedded with basalt flows.
- In turn this is overlain by the main South Sturgeon Assemblage (2735Ma). This caldera sequence hosts the Sturgeon Lake VMS systems in complex intermediate to felsic sequences and is contemporaneous with large intrusive complexes such as the Lewis Lake batholiths.

"The Sturgeon Lake Caldera is a large extinct caldera complex in Kenora District of Northwestern Ontario, Canada. It is one the world's best preserved mineralized Neoarchean caldera complexes, containing well-preserved mafic-intermediate pillow lavas, pillow breccias, hyaloclastite and peperites, submarine lava domes and dome-associated breccia deposits."

"The Sturgeon Lake Caldera contains a well preserved north facing homoclinal sequence of greenschist facies metamorphosed intrusive, volcanic, and sedimentary layers. This piecemeal caldera complex includes nearly 3,000 m of major subaqueous deposited intracaldera fill. Episodes of subaerial and subaqueous explosive felsic volcanism created rhyodacitic to rhyolitic tuffs and lapilli tuffs."

"The Sturgeon Lake Caldera contains volcanic units that outcrop over 30 kilometers from east to west with up to five separate, major ash flow tuff units with thickness ranging from 100 m (328 ft) to 1,200 m (3,937 ft). The Mattabi Mine pyroclastic flow, with a thickness in excess of 800 m (2,625 ft) and a strike length of at least 30 km (19 mi), is the third and most voluminous eruptive event associated with the Sturgeon Lake Caldera. It hosts the 12-Mt Mattabi Mine massive sulfide deposit

which is interpreted to have formed on and below the seafloor, the latter through the processes of pore-space filling and replacement."

"A younger assemblage consisting of sediments is known as the Quest Lake assemblage (2718-2735Ma). This sequence of wackes, siltstones, argillites and conglomerates is believed to be a volcanic hiatus which culminates with the Central Sturgeon assemblage (2720Ma). This assemblage is bimodal with tholeiitic basalt flows with calc-alkaline basalts and felsics."

"Unconformably overlying the volcanics are clastic rocks of the Warclub assemblage (26982704Ma). This assemblage defines a belt scale tectonic basin environment consisting of conglomerates, wackes and extensive Fe Formations. Sedimentary material is believed to have sourced from several directions in this post D1-D2 tectonic setting."

"Intrusive rocks in the region are dominated by the large Lewis Lake Batholith consisting of hornblende-biotite tonalite with granodiorite and diorite phases (2735Ma). Other intrusive complexes include the Beidelman Bay pluton, and younger deformed complexes including the Jutten Batholith in the Savant area. Late post tectonic alkali potassic intrusives include the Squaw Lake and Sturgeon narrows complexes of sanukitoid affinity. Numerous small post tectonic plutons exist in the region of granitic composition including Grebe Lake, Vista and possibly St. Anthony Pluton."

"Structural deformation in the region consists of two penetrative deformation events (D1 and D2). Post 2704Ma D1 deformation in the northern Sturgeon Lake area is dominated by north to northeast striking steep dipping fabrics and reflects early continental collision and deformation. This deformation is typically axial planar with moderate north plunging folds. The D2 event is most prominent in the King Bay-Fourbay area developed as 050-070 trending axial planar structures accompanied by steeply plunging folds and localized shear zones."

6.3 PROPERTY GEOLOGY

The property geology is summarized in part from the Pacific Iron Ore Corp. NI 43-101 by Evans (2009) report and Trowell (1983), the Squash Lake properties cover a portion of the northern end of the Sturgeon Lake greenstone belt.

The Squash Lake properties are underlain by tholeiitic basalts of the Handy Lake assemblage (2745Ma). These pillowed tholeiitic basalts generally have youngling evidence to the east on the St. Anthony property, situated north of the North Johnson Block, and youngling directions to the south on the King/Best property located to the southwest of the North Johnson & Rainbow Island properties. The upper portion of the Handy Lake assemblage have a higher proportion of calcalkaline intermediate and felsic volcanics which have been observed in the King Bay area and the southeastern portions of the St. Anthony peninsula. This sequence includes felsic tuffs and tuffaceous sediments as well as minor siltstones, sandstones and argillaceous sediments. Minor felsic and mafic tuff horizons are interbedded with the pillow flows and offer favourable stratigraphy for D1 & D2 deformation zones.

Numerous dykes and small stocks of gabbros, QFP felsic intrusive and FP dykes of intermediate composition are present within volcanics of both properties. While some of these maybe related to the

Lewis Lake batholith many maybe related to late D2 intrusive activity at Rainbow Island and contemporaneous with the Sturgeon Narrows intrusive alkalic activity (2696-2685Ma). These late tectonic intrusive complexes are significant because it has been suggested that they may be directly related to the gold event and in some cases maybe the causative intrusions for mineralization. Deformation zones on the properties comprise the two main structural events common throughout the area. D1 is attributed after 2704Ma and is believed to reflect regional continental collision. On the North Johnson property much of the D1 structure is N-S ductile axial planar steeply dipping foliation with tight north plunging folding. On the St. Anthony property the contact of the large Lewis Lake batholiths with mafic volcanics has provided a locus for structures with strong competency contrast. D2 deformation is more localized but likely occupies the King Bay – East Bay area and the southeastern portion of the St. Anthony property where structures are along 050-070 strikes with penetrative foliation and steeply plunging folds also other localized portions of the Southern Block property also display this D2 deformation which in some cases may superimpose D1 deformation. The D1/D2 appears to be a conjugate set of structures at the natural 120/60 degree confluence.

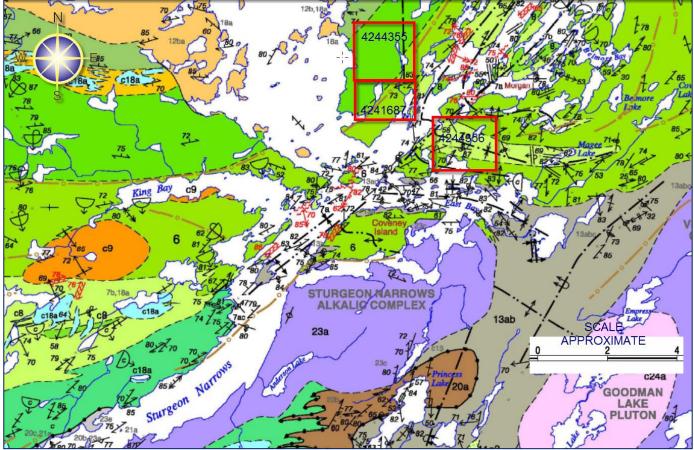


Figure 6-1: Regional Geology Map at 1:100,000 scale (after Sanborn-Barrie, M., and Skulski, T., Geo. Surv Canada, 2005)

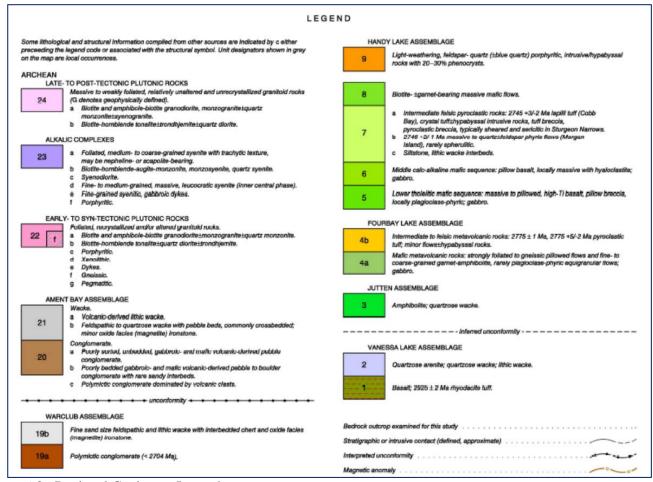


Figure 6-2: Regional Geology – Legend

MAFIC	INTRUSIVE ROCKS	Bedding, top unknown (inclined, vertical)
18b	Serpentinized peridotite.	Bedding, top (arrow) from grain gradation (inclined, vertical, overturned)
100	an permiting of permitted	Younging in volcanics, criteria other than pillows (inclined, vertical, overturned)
18a	Gabbro, diorite of different ages; locally amphibolite.	Pillow lava flow; top (arrow) from shape and packing; northwest-facing, southeast-dipping (inclined, vertical, overturned)
CENTR	RAL STURGEON ASSEMBLAGE	5
17	Porphyritic intrusions including 2720 ± 1 Ma Quest Lake porphyry and 2720.5 +3.5/-3	Younging based on pillow shape compiled from previous workers
	Ma tonalite (Cu-Mo) intrusion.	First foliation (S1) or sole foliation where only one planar fabric 75 observed (inclined, vertical)
16	Intermediate to felsic calc-alkaline pyroclastic deposits including 2717.9 +2.9/-1.5 Ma	Second foliation (S2) (inclined, vertical)
	rhyolitic tuff.	Third foliation (Sg) (Inclined)
15	Upper calc-alkaline mafic sequence: basalt, basaltic andesite, andesite, pillowed to massive, locally plagioclase-phyric.	First cleavage (Inclined, vertical)
	Lower tholeiltic mattic sequence: pillowed to massive basalt, locally high TiO ₂ (>1.5%)	Second cleavage (inclined, vertical)
14	Lower Inclusion manic sequence: pinowed to massive basait, locally high 1102 (21.0 m) basait. IT LAKE ASSEMBLAGE File sand size feldspathic clastic metasedimentary rocks. a Lithic wacke, fieldspathic wacke cut by fine-grained diorite dykes and 2720 Ma feldspar porphyry. b Sittetone, familysted to very thinly bedded. c Argittine, shale, slate. d Conglomerate. e Magnetite ironstone. f Biotite schist.	Z Third cleavage (inclined)
		Gnelssic layering (inclined, vertical)
QUES		Ductile shear zone (unknown sense of displacement)
13		Oblique-slip shear zone, solid circle on downthrown side
		Ductile shear zone (apparent dextral displacement)
		Ductile shear zone (apparent sinistral displacement)
		Mineral lineation (1st generation, 2nd generation)
	g Graphile, pyrrhotile.	· · · · · · · · · · · · · · · · · · ·
SYNV	DLCANIC PLUTONIC ROCKS	Elongation, dimensional lineation (1st generation, 2nd generation)
12	a Biotite and amphibole-biotite granodionite±monzogranite±quartz monzonite.	Crenulation lineation
	 Biotite-hornblende tonalite±quartz diorite±trondhjemite. Porphyritic. 	Mineral lineation in shear zone (1st generation, 2nd generation)
	d Leucocrstic. e Xenolithic.	Minor F ₁ fold with plunge (Z-, U-symmetry)
	e Xenounic. 1 Dykes.	Minor F2 told with plunge (Z-, S-, U-symmetry)
SOUT	H STURGEON ASSEMBLAGE	Axial plane of macroscopic fold (occurs with fold axis) (inclined, vertical)
a	Intermediate to felsic volcanic rocks host to volcanogenic massive sulphide mineralization (Mattabi).	Axial trace of first generation (F1) syncline (upright, inclined)
- b -	a Aphyric rhyolitic pyroclastic flow deposits; rhyolite flows.	Axial trace of first generation (F1) anticline (upright, inclined)
11	b Megabreccia. c Scoria.	Axial trace of second generation (F2) syncline (upright, inclined)
e	d Intermediate to feisic volcanics including tuff, lapilil tuff, tuff braccia, diacite-rhyolite flows, quartz phyric pyroclastic flows, e Andesite lava flows, flow braccias, and hyatoclastite. f Quartz paphyny, Volcaniolastic, epiciastic rocks.	Axial trace of second generation (Fg) anticline (upright)
g		Axial trace of second generation (F2) synform (upright)
		Axial trace of second generation (F2) antiform (upright)
		U-Pb age determination site
10	Fillowed and massive basalt, associated gabbro (Darkwater sequence).	Past-producing deposits

Figure 6-3: Regional Geology: Legend (Con't) & Map Symbols

6.3.1 VOLCANIC ROCK

The host rock of the North Johnson is a massive, dark green to black, fine to medium grained, hornblende bearing gabbros or medium grained mafic volcanic rock. There are no primary textures to suggest a mode of deposition or intrusive or extrusive.

6.3.2 SEDIMENTARY ROCKS

At the North Johnson occurrence, a 3m wide sulphide rich sedimentary unit was exposed 20-25m south of the shear and was channel sampled by 8 metre samples.

Three occurrences along strike of a sulphide iron formation unit exposed up to 10m wide, and situated along the trail to Sturgeon Lake were exposed by the excavator and 11 chip samples taken. The iron formation was a variably sulphide and graphite rich argillaceous to arkoses sedimentary unit trending at 240 degrees and dipping sub-vertically.

6.3.3 INTRUSIVE ROCKS

Feldspar Porphyry – A 6 m wide, light green feldspar porphyry dyke hosting up to 10% white feldspar crystals randomly scattered throughout the unit, cuts the mafic volcanics at 110 degrees and dips from 85-90 degrees southwest. The contact is sharp and weakly chilled. The dyke hosts weak limonitic joints at right angles to contact.

The dyke is offset 0.5m by the mineralized shear, that trends at 80 degrees.

6.3.4 STRUCTURE

The North Johnson occurrence as a drag-folded, quartz vein gold showing exposed over 100m. Milkywhite boudinaged quartz sulphide bearing veins are erratically distributed in a drag folded iron carbonate altered shear zone in mafic volcanics. Assays are highly erratic

The east-west shear trends at 070 degrees and dips 70 degrees southward. Foliation of biotite imparts a fissile, nature to the weathered altered mafic wall rock. Weathered wall rock is chocolate brown in color. Foliation observed in the unweathered wall rock is sub-vertical to 70 degrees south.

The vein is drag-folded into tight (<1m) fold noses that strikes at 080 degrees and dips 70 degrees southward. The trend & plunge of the lineation represented by fold closures is 220-30 degrees southwest. The vein also exhibits boudinage of up to 1.5m in strike length, and between boudins averaging 3m.

The vein structure is possibly two separate vein systems (Ridge Vein & Shore Vein), passively offset by the feldspar dyke. The narrow shear that offsets the dyke by a 0.5m may represent a remobilization of the east-west shear.

7 MINERALIZATION

7.1 PROPERTY MINERALIZATION

7.2 EQUATOR MINING CORP. (EMC) PROPERTIES

A review of recent exploration activities on and adjacent to the EMC properties was undertaken and tabulated. Gold mineralization in the Sturgeon Lake area is structurally controlled within all rock types. The D1 trend is a north to north-northeast (000-030 degree) set of structures prominently exposed in the Northeast Bay Cataclastic Zone described by Trowell, (1983) and St. Anthony Mine site. Cross cutting the D1 event is late stage D2 deformation east-west (060-120 degree) corridor event of ductile and brittle-ductile shearing as splays as noted by workers in the Armstrong-Best and probably related to a late stage FourBay-East Bay fault. The D1 event appears structurally controlled with broad alteration associated with the competency contrast between granitic and mafic volcanic units, The D2 mineral event of gold bearing blue-grey quartz veins hosts variable amounts of arsenopyrite. The use of MMI for trace element arsenic may be of value and hence an orientation MMI survey is recommended and budgeted.

7.2.1 NORTH JOHNSON BLOCK AREA

The North Johnson Claim block hosts one high grade gold occurrence identified as the Johnson Showing (a.k.a. Horne, 123 Lake, 123 Pond, and Johnson). Sampling by previous workers in 1984 reported assays of 0.46, 24.99 & 58.28 g/t on the original occurrence now referred to as the Shore Vein. Better grades assayed 1.68 g/t Au/0.4m, 29.07 g/t Au & 6.68 g/t Au from the Ridge vein west, and 23.86 g/t Au on the Ridge east vein.

7.2.1.1 JOHNSON SHOWING (#MDI52J02SE00015)

The North Johnson gold occurrence is a drag-folded, boudinage milky white quartz vein system hosting two narrow quartz veins. The Ridge Vein is most continuous vein strikes 080 degrees and dips 70 degrees south averaging 0.3m over a strike length of 13m. The Shore Vein, 15m to the north, has a continuous strike of 310 degrees, dips vertically and exposed over a length of 8m. The vein system has been exposed for 100m. The Ridge Vein hosts local concentrations of sulphides as pyrite, pyrrhotite and chalcopyrite at up to 15% over a metre strike length. The Shore Vein hosts styolites with minor pyrite and clusters of fine (0.1mm dia.) visible gold was noted within the milky white vein and associated adjacent to the styolitic shears.

7.3 LOCAL ALTERATION

The vein system is hosted within a variably altered, sheared mafic volcanic rock. The vein wall rock hosting the gold veins is variably foliated in a sub-vertical attitude. The wall rock is altered with iron carbonate (ankerite) and variable narrow pyritic halo immediately adjacent to the vein. The alteration zone trends at 070 degrees and dips southward at 70 degrees. The zone of alteration varies up to 3m of width.

7.4 LOCAL STRUCTURE

Vein kinematics such as a series of "s" drag-folds, and the altered shear zone measures a 0.5m dextral offset of the feldspar porphyry dyke centred within the stripped area. The 6m wide (TW), feldspar porphyry dyke trends at 110 degrees and dips near vertical to 85 degrees westerly

8 **DEPOSIT TYPE**

8.1 EPITHERMAL VEIN - AU DEPOSITS

The North Johnson gold occurrence is a typical lode gold vein system in a shear zone.

Most gold deposits in the Sturgeon Lake area can be classified as orogenic gold deposit ("shear zone hosted", "mesothermal", or "greenstone-hosted quartz-carbonate vein" deposits; Figure 8-1). These deposits occur in deformed greenstone belts, particularly those that are characterized by mafic tholeiitic basalts and ultramafic komatiites intruded by intermediate to felsic porphyritic intrusions (Dubé and Gosselin, 2007). They are located along major compressional to transtensional crustal-scale fault zones marking convergent margins between major units but ore is typically hosted by second- and third order shears and faults and at jogs and changes in strike (Goldfarb et al., 2005). In Canada, these vein deposits are often associated with conglomerates (e.g. the Timiskaming conglomerate). They are a major source of gold in the greenstone belts of the Superior and Slave provinces of the Canadian Shield. Orogenic gold deposits are characterized by a network of auriferous, laminated quartz-carbonate veins and locally hydrothermal breccias. The dominant sulfides are pyrite and arsenopyrite but W-, Bi- and Te bearing phases are also common. Sulfides also occur disseminated in the wall rock. Typical alteration includes iron-carbonate, silicification, potassic alteration as biotite, sericite or muscovite, chlorite, K-feldspar, tourmaline and albite.

Orogenic deposits formed from metamorphic fluids (Dubé and Gosselin, 2007) that were rich in CO₂, low in salinity and generated during prograde metamorphism where the fluids were channelled along major crustal deformation zones. Drastic pressure changes (and resulting unmixing and desulfidation) and wall rock interaction caused the precipitation of the sulfides (and gold).

World-class ore bodies measure between 2 and 10 km long, approximately 1 km wide and extend to depths of 2 to 3 km (Goldfarb et al., 2005). Canadian examples include the Timmins, Kirkland Lake, Val d'Or and Rouyn-Noranda districts of the Abitibi greenstone belt and the Pickle Lake and Rice Lake greenstone belts of the Uchi Subprovince.

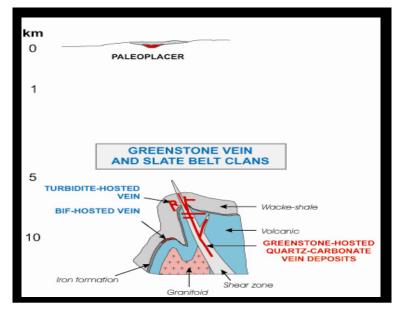


Figure 8-1: Schematic Presentation of geological environment of orogenic gold deposits (Dubé and Gosselin, 2007)

9 CURRENT EXPLORATION PROGRAM

9.1 AIRBORNE MAGNETIC GEOPHYSICAL SURVEY (2012)

In September 2012, Fugro Airborne Surveys completed a detailed helicopter-borne magnetic survey on three claim blocks for to complete assessment work credits for Equator Mining Corp. This work is summarized is an internal report by G.Yule in December 2012 for AuXin Resources Ltd.

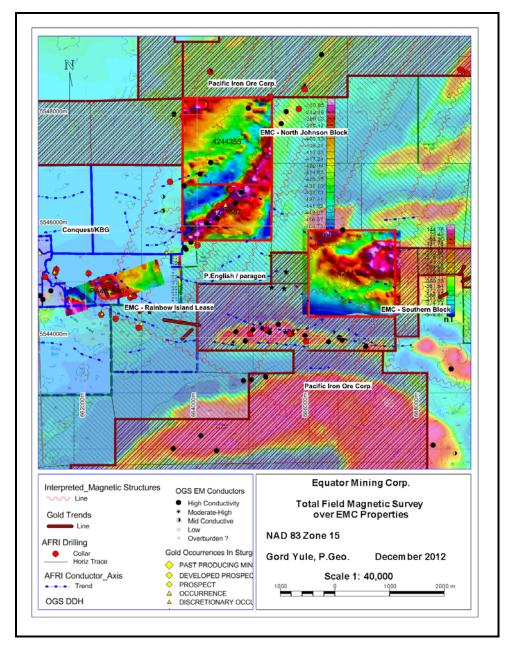


Figure 9-1: Airborne Magnetic Coverage on Equator claims (OGS Geophysical Survey & Fugro, 2012)

9.2 DETAILED GRID

A detailed, orthogonal 5 metre mapping grid was marked out in the exposed outcrop area to facilitate geological mapping and sample locations on the North Johnson occurrence. A baseline was established at an azimuth of 070 degrees, along the strike of the main alteration zone system. Table 9-1 documents the UTM coordinates of the baseline origin and specific stations along the baseline were surveyed with a recreational grade GPS unit over a long average and documented below.

Occurrence Field Grid (Azm @ 070 deg)		East_UTM 83_Z15	North_UTM83_Z15
Base Line 00 N (@ east side of beaver pond/creek, south of dam, SW end Johnson Lake (local name))	00mE	0664423	5546318
00	45mE	0664467	5546330
00	75mE	0664493	5546342
00	105mE	0664520	5546355
East Area Stripping reference		0664572	5546395
Other Outcrop Exposures			
Trail O/C #1 (south end)		0664373	5546183
Trail O/C #2 (southwest end)		0664212	5546048
Trail O/C #3 (southwest end)		0664202	5546036

 Table 9-1: Detailed Reference Grid Cross Referenced with Equivalent UTM Coordinates

9.3 PROSPECTING

On June 09, 2013, the author evaluated the North Johnson occurrence by taking 5 chip and 10 grab samples. The chip samples were taken on the Shore, and on the West, Central & East Ridge vein. The Shore chip reported 4.14 g/t gold over 0.3m. The west Ridge reported gold assays of 27.504 g/t Au/0.3m, and 0.207/0.5m at field grid 15E. The central Ridge area at 25E reported 40.51 g/t gold over 0.2m, and 12.073 g/t gold over 0.25m at the central Ridge vein area at 67m east. Grab samples ranged from 0.028 g/t gold in cb altered pyritic wall rock to 172.372 g/t gold in the Shore vein. Eight of the ten grab samples reported gold assays greater than 2.1 g/t gold. See assay certificate 201341347

As well, 4 grab samples of sulphide iron formation. Three grabs were taken along the access trail and returned assays of 0.013-0.036 g/t. A single sample of a sulphide rich section of a sedimentary unit north of the North Johnson occurrence reported a 0.356 g/t.

On August 08 & 09, GY & EB prospected the shoreline of North Johnson Lake for parallel structures to the North Johnson occurrence.

Eleven samples were taken of mineralization. Of that total, ten were of vein mineralization (i.e. milky white, blue grey quartz veins with weakly carbonate altered mafic wall rock. One sample was taken of cherty, sulphide rich pyrite bearing iron formation.

All samples were below or near detection limit for gold. See analytical certificate 201341676

9.4 DETAILED GEOLOGICAL MAPPING

A detailed geological and sample location map was prepared at a scale of 1:100 (1 cm = 1 metre), and appended with this report. This map was digitized and transformed to UTM grid coordinates for inclusion in the GIS database.

The Ridge Vein system was exposed over 40m to the west of the dyke, and 50m east of the dyke, appears to be a series of variably folded quartz veins enveloped within an iron carbonate altered shear zone. The quartz veins strikes at 80 degrees, within the carbonate altered shear that trends at 070 degrees, and is variably boudinaged. Individual quartz boudins range up to 8min strike length but average 1m, and vary in width to 20-30 cm in true width. The vein system is boudinaged & folded to the west and becomes tabular in appearance to the east and appears to terminate in proximity to the dyke. East of the dyke, the carbonate altered shear with minor boudinage quartz vein was exposed for another 50m.

The Shore Vein (original showing) strikes 130 degrees and dips vertical to steeply SW is uniformly tabular over a strike of 9m, before being folded and faulted into the sheared carbonate altered system trending at 070 degrees and dip at 70 degrees south, parallel to the Ridge Vein 13metres to the south. The vein system is hosted in weakly iron carbonate altered hornblende gabbro (mafic volcanic).

Refer to Figure 9-2 for a reduced schematic of the geology of North Johnson occurrence. The map also illustrates sample locations. Geological Map #1 at scale 1:100 (in back pocket) for geological & individual sample locations and results. Geological Map #2 at 1:100(in back pocket) for composite average grades weighted by channel interval, and overall Vein Composite average grade.

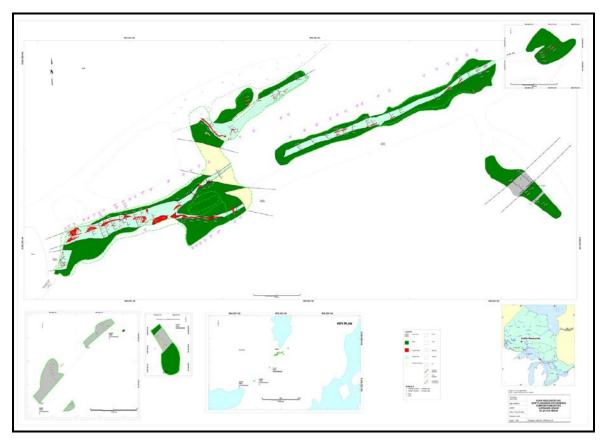


Figure 9-2: North Johnson Geological Map & Sample Locations (Reduced: See backpocket for 1:100 scale map)

9.5 DETAILED GEOLOGICAL SAMPLING

Geological sampling on the North Johnson occurrence included 5 chip and 14 grab samples to verify previous sample results; and 227 detailed channel samples including QA/QC samples to assess the mineral content and variability of the mineralization. On three exposures of sulphide iron formation along the access trail, 11 chip samples were taken to assess the potential for the sedimentary rock to host gold mineralization, and 11 grab samples taken while on reconnaissance prospecting & geological investigation of the North Johnson property. Table 9-2 summarizes the amount & type sampling completed in 2013. Refer to Geological Map #1 at scale 1:100 (in back pocket) for geological & individual sample locations and results. Geological Map #2 at 1:100(in back pocket) for composite average grades weighted by channel interval, and overall Vein Composite average grade. A summary map at 1:500 detailing the veins weighted composite average grade.

Activity	Date	Grab Samples	Chip Samples	Channel Samples	QA/QC	Assay Cert#
Recon Sample:	June 2013	14	5	0		201341347 (grabs & chips)
Mech Stripping:	August 2013	11	11	197	30	201341676 (grabs) 201341675 (channels & chips)
Total:		25	16	197	30	268 samples

 Table 9-2: Summary of Sampling on North Johnson Property (2013)

9.5.1 CHANNEL SAMPLING

Between August 7 and August 17th 2013, a mechanical stripping and channel sample program was undertaken. Belham Ltd. of Kaministiquia, Ontario was contracted to prepare the barge, mobilize equipment, as well as to complete mechanical stripping, power washing and cut channel sampling on the North Johnson occurrence. A small Terex 330 excavator with a ½ yd bucket with a scraper blade, a 6-wheeled ATV, high pressure washing, multiple utility pumps, fire hose, rock saws and associated equipment was utilized to complete the program.

Approximately 770 square metres of bedrock was exposed by mechanical stripping and 197 channel samples were cut on the North Johnson gold occurrence. The exposure and channel sample locations were mapped at a scale of 1:100. A total of 238 samples were analyzed. Of that total, 197 channel samples were taken on the occurrence, and 11 chip samples taken elsewhere on the North Johnson property. A total of 30 QA/QC verification samples including 20 certified reference standards and 10 blank samples were inserted in the sample stream. Five duplicate side-by-side samples of the occurrence were also included to assess the mineral variation of the vein & wall rock alteration.

Geologically-defined channel samples averaged 0.66 m in width, ranging from 0.25 to 1.35m in sample width crosscut the mineralized vein system and unaltered wall rock. Mineralization was separated into quartz veins, wall rock alteration. Two vein systems trending at 070-080 degrees and dipping 70 degrees south were exposed and labeled the Ridge & Shore Veins. The two veins systems are 13m apart. A

weakly altered feldspar porphyry dyke trending at 100 degrees and dip vertically crosscuts the exposure is crosscut and exhibits a dextral offset by the Ridge Vein shear.

See Table 9-3 which summarizes the number of individual samples and the statistical analytical results of the quartz veins, various rock units and various phases of alteration analyzed

Figure____: Map of Composite Weighted Average Grades for North Johnson Occurrence (1:500)

Rock ID	# Samples	Distinct Observe	Mean	Min-Max	Median	Std Dev
Unaltered Mafic	Wall rock			I	I	I
Unaltered Mafic	9	3	<0.005	<0.005-0.068	<0	2.222
Subtotal:	9			<0.005-0.068		
Altered Wall roo	:k					
Mafic: Very Wk Alt'd Wall rock	8	2	<0.005	<0.005-0.18	<0	1.831
Wk Carb alt'd- FW	48	24	<0.005	<0.005-6.481	0.008	2.749
Wk Carb alt'd -HW	41	30	<0.005	<0.005-2.679	0.045	2.261
Wk-Mod Alt'd FW	19	19	1.142	0.019-9.151	0.121	2.353
Wk0Mod Alt'd HW	11	9	0.0621	0.005-0.245	0.019	0.0836
Subtotal:	136			<0.005-9.15		
Mineralization	1			1	I	1
QV	16	16	2.16	0.024-12.77	0.685	3.354
QV, Sulphides	33	33	16.78	0.019-85.47	8.349	23.21
Subtotal:	49			0.019-85.47		
Other rock Uni	ts	I	I	1	1	I
Ferruginous Sed	10	3	<0.005	<0.005-0.015	<0.005	2.113
SIF gf, qv,	11	9				
Subtotal:	21					
QAQC - Blanks	I	1		I	l	1

Table 9-3: Channel Sample Individual Results & Statistics

QAQC Blank:	12	9	<0.005	<0.005-0.037	0.009	2.469
Feldspar						
Porphyry						
	12					
QA/QC-CRM S	tandards					
High CRM	10	10	5.44	5.072-5.879	5.461	0.244
Standard						
Low CRM	10	10	0.816	0.776-0.863	0.813	0.0267
Standard						
CRM QA/QC	20					
Subtotal:						
TOTAL:	238					

Vein Name	Channel Assay Range (g/t Au/m)	#Compos ite Channels	# Samples	Weighted Composite Grade/Width (g/t Au/m)	Strike Length (m)
Ridge - West	0.012/1.0 - 81.064/1.0	20	40	8.344/1.46	40
Ridge – South Br.	0.229/0.70 - 31.82/0.40	9	15	8.054/0.84	14
Ridge - East	0.009/0.80 - 4.908/1.45	16	24	1.272/0.82	49
Shore Vein	0.386/0.60 - 85.465/0.40	7	7	21.525/0.39	9
Shore Altered	0.017/0.90 - 0.581/0.65	4	7	0.22/1.1	20

 Table 9-4: Composite Channel Assay Results

9.5.2 CHIP SAMPLES

Five (5) chip samples were taken on the North Johnson occurrence and eleven (11) chip samples were taken on three exposed areas of sulphide iron formation situated along the access trail to Sturgeon Lake.

 Table 9-5: Chip Sample Individual Results

Sample_ID	Location	East83_15	North83_15	Rock_Desc	Interval (m)	Assay (g/t Au)
1489701	N.Johnson Shore	664459	5546340	Qv - styolites	0.30	4.140
1489706	N.Johnson Ridge centre	664447	5546327	QV – tr py	0.20	40.510
1489710	N.Johnson –Ridge west	664434	5546327	QV – cb wx 1% py	0.50	0.207/0.128
1489711	N.Johnson – Ridge west	664434	5546327	QV -	0.30	27.504
1489713	N.Johnson Ridge- east	664453	5546332	QV – 15cm wide	0.25	12.073
1249375	Trail #1	664373	5546183	5-8% py	1.0	0.007

AuXin Resources Ltd.

1249376	Trail #1	664373	5546183	4-6% ру	1.0	<0.005
1249377	Trail #1	664373	5546183	2-4% ру	2.7	0.006
1249381	Trail #2	664212	5546048	10% ру	1.3	<0.005
1249382	Trail #2	664212	5546048	10-20% ру	0.7	<0.005
1249383	Trail #3	664202	5546036	2-3% py, gf	1.6	0.06
1249384	Trail #3	664202	5546036	3-5% py, gf	1.9	<0.005
1249385	Trail #3	664202	5546036	3-5% py, gf	1.0	0.007
1249386	Trail #3	664202	5546036	3-5% py, gf	1.7	0.007
1249387	Trail #3	664202	5546036	90% qv,, 3-5% py	0.15	<0.005
1249388	Trail #3	664202	5546036	5-8% py, net textured	1.0	<0.005

9.5.3 GRAB SAMPLES

Twenty-five grabs were taken during geological investigations at the North Johnson occurrence, along the access trail, and along the exposed o/c along the shoreline of North Johnson lake.

Sample_ID	Location	East83_15	North83_15	Rock_Desc	Interval (m)	Assay (g/t Au)
1489702	Shore vn	664459	5546340	Qv,5-8% py	grab	27.191
1489703	Shore vn	664459	5546340	Qv, 2-3% py	grab	2.135
1489704	Shore vn	664459	5546340	Qv ,10-15% py	grab	172.372
1489705	Shore vn	664459	5546340	Wx to vn	grab	2.688
1489707	Ridge- centre	664447	5546327	Qv, 1-3% py,po	grab	5.435
1489708	Ridge- centre	664447	5546327	Qv, 3-5% py, po	grab	6.690
1489709	Ridge-	664447	5546327	Wx to vn	grab	0.129

	centre					
1489712	Ridge- West	664434	5546327	Py wx	Grab	0.028
1489714	Ridge-East	664453	5546332	Qv – 2-3%py	grab	13.765
1489715	Ridge-East	664453	5546332	Qv, Wx 3-5% py	grab	112.960
1489716	NW side Johnson Lake	664469	5546475	Ferrug sed	grab	0.356
1489717	Trail #1	664372	5546194	Ferrug sed	grab	0.036
1489718	Trail #1 1m s of 717	664372	5546194	Ferrug sed	grab	0.013
1489719	Trail #3	664236	5546059	Ferrug sed	grab	0.016
1489747	W shore NJohnson Lake	664406	5546555	Qv-blue grey @200-80	grab	<0.005
1489748	W shore NJohnson Lake	664408	5546559	Qv-milky white 1m wide@170-90	grab	<0.005
1489749	W shore NJohnson Lake	664410	5546566	Qv – wt str's – 5to8m on strike of 748	grab	0.007
1489750	W shore NJohnson Lake	664403	5546617	Float - SIF	grab	0.026
1489751	W shore NJohnson Lake	664440	5546404	1-3 cm tensional qv	grab	<0.005
1489752	W shore NJohnson Lake	664430	5546394	3cm tensional qv @ 240-40N, west of 751	grab	<0.005
1489753	130m east of NJohnson	664578	5546396	Sheared Fecb mafic	grab	<0.005
1489754	120m east of	664570	5546397	Sheared FeCb	grab	<0.005

	NJohnson			mafic		
1489755	130m east of NJohnson	664575	5546405	Sheared FeCb mafic	grab	<0.005
1489756	East side NJohnson lake	664614	5546604	Qv,3-5cm, styolites, @170- 90	grab	0.015
1489757	East side NJohnson lake	664612	5546612	Qv, 20cm styolites, tr cpy @170-90	grab	0.01
TOTAL:		25 grabs				

10 DRILLING

Drilling has not been undertaken in 25 years. Refer to Section 5 for historic drill results.

11 SAMPLE PREPARATION, ANALYSIS AND SECURITY

11.1 SAMPLING METHODS AND APPROACH

11.1.1 CHANNEL SAMPLES

Channel samples are a dimensional uniform sample, taken with the aid of a circular, diamond bladed gasoline-powered saw. Two parallel saw cuts approximately 3-5 cm apart and to a depth of 3-8 cm deep is usually made across the rock surface. The sample can be of uniform interval length if the unit to be sampled is homogenous, or as varying intervals to sample specific geological or mineralized units. A large sample of the rock unit is usually chipped from the slot produced by the saw cut, and the sample is bagged for analysis. There is a low level of bias due to a complete and large amount

A total of 197 channel samples were cut during the evaluation of the North Johnson Occurrence, ranging from 0.25 to 1.35m but averaging 0.66m. Channel samples were cut across the mineralized system at 1.5 or 3m intervals to evaluate the variable nature of assays within the vein system, and analyze the gold content of the altered and unaltered wall rock. Duplicate samples were taken, with three parallel cuts made in order to take side-by-side rock samples in efforts to check variability of analytical results between adjacent samples.

11.1.2 CHIP SAMPLES

Chip samples are a dimensional type of sample across a measured interval. A hammer is usually utilized to pulverize and chip pieces of uniform size across an interval to collect a sample of rock. The chip sample is usually a quick representative sample over an irregular surface. The sample may be biased and not be as complete or as thorough a sample due to weathering, structure, veining and/ or alteration (hard

or soft). A large bias can potentially be introduced by inexperienced samplers and the sample not accurately reflecting the interval.

A total of 11 chip samples were taken across the width of three occurrences of sulphide rich sedimentary rock. Samples averaged 1 metre.

11.1.3 GRAB SAMPLES

Grab samples are approximately a fist size rock sample designed to be biased and to provide a specific or highest analysis with the intent to evaluate the occurrence or type mineralization.

A total of 11 grab samples were taken along the shoreline of North Johnson Lake while prospecting for additional structures & veins.

Accurassay Laboratories, a certified analytical laboratory with accreditation by the Standards Council of Canada to the internationally recognized ISO/IEC 17025 guidelines with sample preparation and analytical facilities at 1046 Gorham Street, Thunder Bay, Ontario P7B 5X5 were retained to handle analytical work.

The following is provided by the Accurassay website.

11.2 SAMPLE PACKAGING AND SHIPPING

All Chain of Custody (COC) protocols were followed by the QP & his designates. At each sample site, each sample numbered by the field number was bagged and a laboratory reference tag inserted into each sample bag, then the bag was sealed. Each sample site was labeled with a metal tag identifying the field sample number, and the label was then secured to the sample site with a nail. The individual samples were secured in poly-woven shipping bags and secured by tape. The QP cataloged the field sample with the analytical reference tag while documenting the channel sample descriptions & as part of the mapping process. The samples were delivered to the Accurassay laboratory facility in Thunder Bay, Ontario. A COC document completed by the QP accompanied the shipment in a secured shipping bag documented the analytical sample numbers, total samples, and methods of sample preparation and analysis. When preparing samples for shipment, no shipping bag (poly-woven) was greater than 50lbs (22.5kg) for health and safety concerns. The outside of the poly-woven bags were marked with the sample sequence enclosed. The polywoven bag that contains the COC was identified for easy retrieval and all bags were marked how many shipping bags were used in the shipment on the COC to ensure all samples had arrived at the lab.

As part of the COC procedure, the samples upon receipt at the laboratory were logged in and stored in secure facilities pending preparation and analysis.

11.3 SAMPLE PREPARATION TECHNIQUES

"Sample Preparation is required on all samples to ensure a proper, homogeneous, analytical sub-sample is produced and delivered to the lab for testing. This subsample is a critical part of the analysis as it is the primary introduction of the client's sample to the internal workings of the lab. At this stage, the lab is creating both a proper representation of the material supplied by the client and ensuring that the integrity of the sample identification is maintained."

All of samples are processed using both Jaw Crushers and Ring Mill Pulverizers. Samples received by the lab are routinely processed using the following sample preparation package for rock & drill core at the instructions of the QP.

Sample Preparation Methodology (Modified from Accurassay website)						
Accurassay Code Methodology Standard						
ALP2	Dry, Crush (<5kg)	to 90% -8 mesh (2mm),				
	Split (1000g) and Pulverize	To 90% -150 mesh (106μ).				
	Silica abrasive clean between each					
	sample					

11.4 ANALYTICAL TECHNIQUES

"Accurassay Laboratories offer a high caliber analytical capability, with high sample capacity, reliable quality and fast turnaround service for these key precious metals: Au, Ag, Pt, Pd, and Rh. All of their precious metals analyses are performed using Fire Assay procedure combined with multiple finishes (AAS, ICP, and Gravimetric). These combinations allow for a wide spectrum of detection limits (from 1ppb to 1%) and raw sample concentrations."

Gold: "Historically, the analysis of gold has been performed using a 30g sub-sample during the fire assay procedure. A 50g sub-sample can also be used to help increase the sensitivity of gold detection while decreasing the sampling error. However, high levels of base metals, chromium, selenides and tellurides can reduce the effectiveness of the gold collection. Accurassay Laboratories may decrease the subsample size during fusion to overcome these effects."

"For a more comprehensive analysis of gold in rock/core, we would recommend the Pulp Metallic procedure. This procedure is able to overcome the "Nugget Effect" of gold by increasing the sub-sample size to 1,000g and physically collecting the free gold within the system using a 150 mesh (106 μ) sieve. This procedure is most effective when the whole sample is used for the analysis. The sub-sample is pulverized to ~90% -150 mesh (106 μ) and subsequently sieved through a 150-mesh (106 μ) screen. The entire +150 metallics portion is assayed along with two duplicate sub-samples of the -150 pulp portion. Results are reported as a weighted average of gold in the entire sample."

"For the analysis of gold in soils, sediments, and tills we recommend using a 50g sub-sample for the fire assay procedure with an ICP finish with the lower detection limit of 2ppb."

"For a more comprehensive analysis of both the gold content of the sample and the particulate size of the gold within the material, we recommend a Screen Metallic analysis. Screen Metallics analysis includes the crushing of the entire sample to 90%-10 mesh and using a Jones Riffler (unbiased splitter) to split the sample to a 1kg sub-sample. The entire sub-sample is pulverized and subsequently sieved through a series of meshes (80, 150, 200, 230, 400 mesh). Each fraction is then assayed for Gold (maximum 50g.). Results are reported as a calculated weighted average of Gold in the entire sample."

Gold and Silver Analysis by Fire Assay (Modified from Accurassay website)							
Accurassay Code Analysis Detection Limit							
ALFA2	Gold (FA/AAS, 50g)	0.005 – 30.000 g/t					
ALFA7	Gold (FA/Gravimetric, 50g)	0.5 – 1,000 g/t					
ALPM1	Gold Pulp Metallic (1,000g, FA/AAS)						

As standard operating procedure (SOP) and because the upper threshold for the Fire Assay/AA finish method is considered by experts at approximately of 3-5 grams per tonne gold the QP has requested all results greater than 5 g/t gold be check analyzed by fire assay with a gravimetric finish method. Usually the SOP also recommends assays greater than 6 g/t is check assayed by a Pulp metallic method of analysis as a check for potential "nugget effect" issues with gold mineralization.

12 DATA VERIFICATION

12.1 DATA VERIFICATION PROCEDURES BY QUALIFIED PERSON

A quality control program was implemented by the QP to verify & validate the channel sample results. In the opinion of the QP, due to the nature of this type of verification sampling a QC/QA program was not necessary for the reconnaissance grab & chip samples.

12.2 CERTIFIED REFERENCE MATERIAL: HIGH GRADE STANDARD

Ten samples of a relatively high grade certified reference standard (CRM) was systematically inserted by the QP into the channel sample stream as a check on the repeatability of analytical procedure. The reported analytical result of these inserted standards is compared against the statistically calculated mean assay value of the known standard value. The "high grade" standard GS-18 is a commercial laboratory reference standard purchased from Accurassay Laboratories, in Thunder Bay, Ontario. Reference standard GS-18 is certified to be 5272 ppb +/- 244 ppb (5.272 +/- 0.244 g/t) gold. The first standard deviation ranges from the mean between 5.028 to 5.517 g/t gold

The assay results reported in Table 12-1 for the high grade CRM ranged from 5.072 to 5.879 g/t gold. Figure 12-1 the high certified reference control chart illustrates the reference material analysis. The results of 6 analysis within 1 standard deviation of the certified mean assay. The highest analysis was just over 3 standard deviations of the certified mean assay for the CRM. This repeatability of the high CRM suggests that although there is a natural variance in the CRM results because of the nature of the high grade reference material, the variance in the high grade sample analysis accurately represent the gold content of the samples analyzed.

Certified Reference Analysis							
Hi	Standard (GS-18))	Low Standard (GS-23)				
Sample_ID	Hi Standard 1 st Std Dev		Sample_ID	Low Standard	1 st Std Dev		
	Result	Range		Result	Range		
	5.272 +/- 0.244	5.028-		0.796 +/- 0.061 g/t	0.735-0.857		
	g/t Au	5.517		Au			
1249171	<mark>5.587</mark>	<2 std dev	1249172	0.815	<1		
1249194	5.451	<1	1249195	<mark>0.863</mark>	<2		
1249217	5.273	<1	1249218	0.791	<1		
1249240	5.176	<1	1249241	0.834	<1		
1249264	<mark>5.879</mark>	<3	1249265	0.820	<1		
1249286	<mark>5.622</mark>	<2	1249287	0.846	<1		
1249309	<mark>5.601</mark>	<2	1249310	0.790	<1		
1249332	5.471	<1	1249333	0.811	<1		
1249355	5.270	<1	1249356	0.810	<1		
1249378	5.072	<1	1249379	0.776	<1		

Table 12-1:	Certified Reference Material Analytical Results (Cert #201341675)
-------------	---

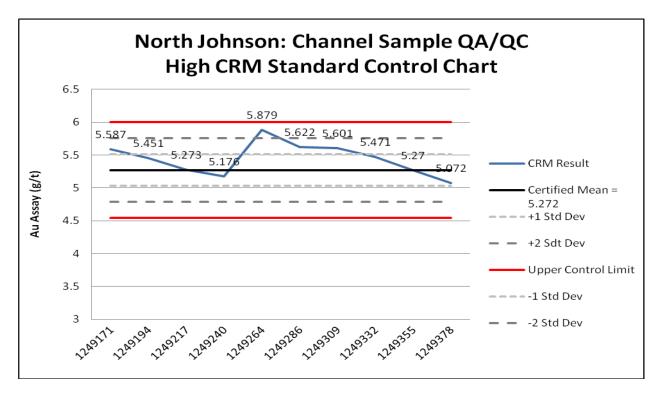


Figure 12-1: High Certified Reference Material Standard Control Chart

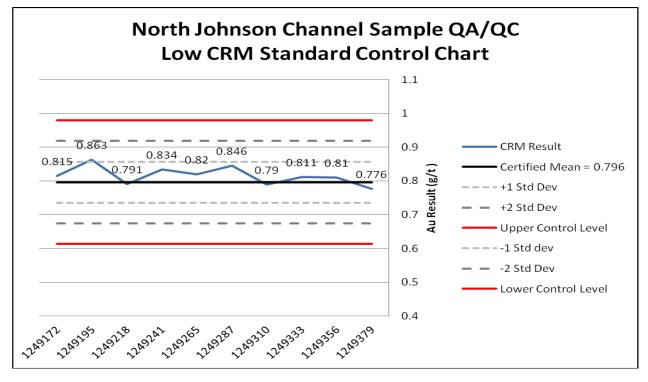


Figure 12-2: Low Certified Reference Material Standard Control Chart

CERTIFIED REFERENCE MATERIAL: LOW GRADE STANDARD

Ten samples of a relatively low grade certified reference standard (CRM) was systematically inserted by the QP into the channel sample stream as a check on the repeatability of analytical procedure and compared against the statistically estimated mean reported assay of a known sample material of a consistent analytical value. The low grade standard GS-23 is a commercial laboratory reference standard purchased from Accurassay Laboratories, in Thunder Bay, Ontario. Reference standard GS-23 is reported to be 796 ppb +/- 61 ppb. The analytical range for one standard deviation relative to the mean reference analysis for the low standard ranged is 0.735 to 0.857 g/t gold.

The certified reference assay results reported in Table 12-1 ranged from 0.776 to 0.863 g/t gold. Figure 12-2, the control chart illustrates the sample results were within acceptable limits of the certified reference mean. With the exception of the highest assay reported at just greater than the one standard deviation, the low standards analyzed within 1 standard deviation of the reported low grade CRM mean analysis. This repeatability of the low CRM suggests the low grade analysis were accurately represents the gold content of the channel samples analyzed.

12.3 BLANK STANDARD

Ten samples of a blank rock sample were systematically inserted by the QP into the channel sample stream as a check on the repeatability of the analytical procedure. The blank reference was a uniformly unaltered feldspar porphyry rock centered on the North Johnson stripped outcrop. Table 13-2 summarizes the assay results. Of the 10 samples analyzed, 4 results were below detection limit, and the rest ranged from 0.006 - 0.37 g/t (Accurassay certificate 201341675). Detection limit is <0.005 g/t.

SAMPLE_ID	BLANK Analytical Results
1249173	0.015
1249196	0.019
1249219	0.008
1249242	0.010
1249266	0.037
1249288	<0.005
1249311	<0.005
1249334	<0.005
1249357	0.006
1249380	<0.005
MEAN	0.005 with <dl< td=""></dl<>
Std Dev	0.0114

 Table 12-2: Blank Standards Analytical Results

From Accurassay Certificate #201341675

12.4 DUPLICATE CHECK SAMPLE ANALYSIS

Five side by side duplicate samples were taken to evaluate the potential range of gold analysis in immediately adjacent channel samples of mineralized vein and variably altered wall rock using a double

channel sample cut was cut across several rock sample types. The results in Table 13-3 suggest that there can be a wide range of analytical result in the mineralized sulphide bearing quartz veins, and fairly uniform background grades in the altered and unaltered wall rock.

Duplicate ("Side by Side") Sample Evaluations							
Field Sample_ID	Analytical _ID	Sample Desc	Sample#1	Field_ID	Analytical _ID	Sample#2	
037	1249190	Sulphide vein/1.0m	13.18	038	1249191	19.55	
059	1249215	Weakly cb alt'd wx/1.15m	0.094	060	1249216	0.040	
061	1249220	Cb altered wx/1.0m	0.130	062	1249221	0.125	
067	1249226	Weakly cb alt'd wx /0.9m	0.121	068	1249227	0.111	
069	1249228	Unaltered wx/0.9m	<0.005	070	1249229	<0.005	

 Table 12-3: Duplicate Sample Analytical Results

From Accurassay Certificate #201341675

12.5 DUPLICATE PULP ANALYSIS

Twenty duplicate pulp samples were routinely re-analyzed were as part of Accurassay Lab QA/QC internal check samples on their equipment. Analytical results should be repeatable if the analytical equipment is correctly calibrated. Analytical results were acceptable and within the sample error.

12.6 REPLICATE PULP ANALYSIS

Three replicate pulps were prepared and analyzed as part of Accurassay QA/QC internal check on their procedures. One new pulp sample is routinely prepared and re-analyzed in every fifty samples from the sample reject. The original pulp and the new pulp are compared to identify homogeneity of the sample preparation process. Wide variances in assay results could suggest problems with "nugget effect" nature of the gold mineralization, and the need to pulverize the whole sample to a finer mesh to obtain a consistent analytical result. Analytical results were acceptable and within the error of the sample

12.7 FIRE ASSAY WITH GRAVIMETRIC CHECK ANALYSIS

At the request of the QP, nineteen check analyses were conducted on the initial analytical results that reported greater than 5 g/t gold. The original results were reported based on fire assay with atomic adsorption finish method (Accurassay method FA 5). The re-analyzed was completed utilizing a fire assay with a gravimetric finish check analysis (Accurassay Method FA7). The FA/AA (50g) method has a reported detection range from 0.005-30.000 g/t, while the FA/Gravimetric finish (50 g) check has a reported detection range of 0.5-1000g/t. With analytical results greater than 3 g/t the gravimetric method provides greater accuracy.

	FA/Atomic Absorption Finish	FA/Gravimetric Finish	
Sample_ID	Au _FA/AA (g/t)	Au_Grav (oz/t)	Au_Grav (g/t)
	<0.005 DL	<0.029 DL	<1.000 DL
1249158	18.212	0.436	14.941
1249187	58.926	0.296	10.132
1249190	13.745/12.615	0.146	5.015
1249191	19.55	0.411	14.091
1249209	26.016	0.826	28.302
1249210	10.458/10.603	0.515	17.651
1249211	81.064	1.055	36.168
1249224	13.980	0.441	15.114
1249250	68.615/64.283	1.937	66.41
1249252	31.820	1.005	34.435
1249257	12.774	0.499	17.095
1249261	10.122	0.139	4.769
1249262	31.776	0.677	23.219
1249266	85.465	4.253	145.767
1249267	15.149	0.488	16.716
1249298	14.677	0.534	18.301
	(Accurassay Certificate #201341675)	(Accurassay Certi	ificate

Table 12-4: Comparison of AA Finish v.s. Gravimetric Finish Results

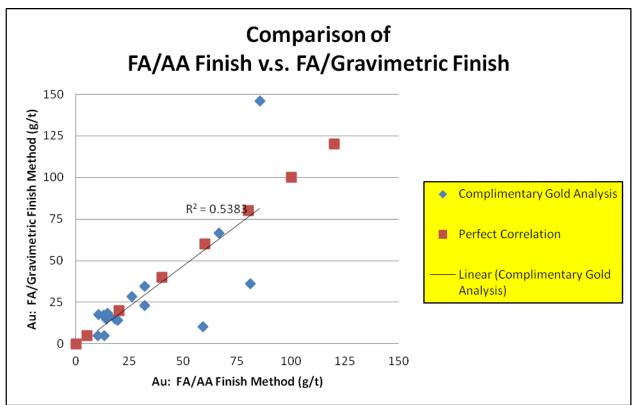


Figure 12-3: Correlation comparison of Fire Assay/AA Finish vs. FA/Gravimetric Finish Method

12.8 OPINION ON ADEQUACY OF DATA

In the expert opinion of the QP, the analytical data presented is of high quality and accurately reflects the sample medium. Each sample was accurately identified and marked by the QP onsite. All samples were cut, bagged, secured in a professional manner in accordance with accepted industry standards.

Samples were prepared & analyzed in a certified analytical laboratory. Both the internal laboratory and the external corporate QA/QC program inserted into the sample stream indicated the sample preparation and analytical results are quite acceptable and within the acceptable ranges of quality control results for this type of mineral occurrence and ore deposit type.

In the expert opinion of the QP, the North Johnson occurrence was sampled in enough detail to best reflect and evaluate the mineralized system and to assess the variability of visible nugget effect gold mineralization inherent in typical lode gold vein systems.

13 MINERAL RESOURCE ESTIMATE

Resource estimates are not appropriate at this stage of project.

14 ADJACENT PROPERTIES

14.1 PACIFIC IRON ORE (ST. ANTHONY)

Pacific Iron Ore Corp. by amalgamation in 2008 with Emerald Fields has acquired an extensive land package in the St. Anthony and King Bay area of Sturgeon Lake, Ontario. The original St. Anthony property was acquired by option in 2002, while the second, the Best/King Bay property was optioned in 2007 by Emerald Fields. The two properties consisted of 54 mining claims (537 units), and 14 mining leases totaling approximately 8,784 ha. The St. Anthony property consists of 6,656 ha in 47 mining claims. Pacific Iron have done little exploration but in 2009 completed a NI 43-101 technical report on the St. Anthony and Best/King Bay Properties.

The following table summarizes the historical gold occurrences found on the various properties.

Mineral Deposit Inventory (MDI)	Name	Status	Assays	Structural Attitude
	North Bay		0.03 opt	010/
	(Contact Vein, Classic		(grab)	
	Sturgeon, AL668,			
MDI52J02NE00007	TB648)	Occurrence		
	Bucksaw		0.2-2.0 opt	000-025/
	(Burke, R.Steen,		(grabs),	
MDI ?	W.Leduit)	Occurrence	0.06 (grab)	
	North Couture Lake		Up to 17.1 opt	020-030/
	(Metropolitan, Savant		(grab)	
	Sturgeon, Beau-			
MDI52J02NE00009	Larder, HW692)	Occurrence		
MDI52J02NE00012	West Couture Lake	Occurrence		
MDI52J02NE00013	Northeast Arm - NW	Occurrence		
			16.8 g/t /	000-020/
	Dawson-White		1.14m	
	(Pomac, Dawson,		(Coastoto 84-	
MDI52J02NE00045	White, BG157)	Prospect	01)	
			0.12 opt gold	165/80
			(Grab BB-S1)	
			from No. 1	
	Belmore Bay		shaft. 1.29 opt	
	(HW 748, HANNULA		gold (Grab BB-	
	LAKE, MUD LAKE)		S2 from No. 2	
MDI52J02SE00002		Prospect	shaft)	
			Past Prod.	
		Past Producing Mine	63,300 ounces	
	St. Anthony Mine:	With Reserves	from No.1	020/90, 100/90,
	(Jack Lake, GML, St.	(No.1, No.2,	Vein,	190/25
	Anthony GMC, St.	Carbonate Zone,	Carb Zone: 2.1	
MDI52J02SE00003	Anthony Dev. Co. Ltd)	Diorite Zone)	g/t/5.7m	

 Table 14-1: Pacific Iron Ore Corp. - St. Anthony Area Gold Occurrences

			1	1
			(SA83-03)	
			Diorite Zone:	
			0.58 opt/1m	
			(ddh-Can Con	
			1963)	
			Tr-0.74 opt	
			(grabs), 0.25	090/
	McEdwards Lake	Prospect (stripping,	opt/1.2m (ME-	,
MDI52J02SE00004	(Moran)	ddh)	03)	
WD1323023E00004	, ,	uunj	,	
	Magee Lake		0.88,0.92,	
	(Davidson, Jarvis,		2.76 opt	
	Clam Lake, HW679,		(grabs)	
MDI52J02SE00009	East Bay group)	Occurrence		090/70
			0.396	
			opt/3.94' (KB-	
	Copper Lake		41-83), 0.29	
	(Copper Lake Zone,		opt/14.4' (KB-	
MDI ?	Claim PA21735)	Occurrence	35-83)	120/90
MDI52J02SE00012	Iron Duke Group	Occurrence	0.03 opt/	090/
1101020020200012	Morgan Island	Discretionary	0.13 opt	020-030/
	_			020-030/
MDI52J02SE00014	(Phelps Dodge claims)	Occurrence	(grab)	
	Debe and take NG		REPORTS VG	
	Belmore Lake – NE		IN ONE OF	
	(AL 506, COTE + ST.	Discretionary	TWO VEINS	
MDI52J02SE00018	JULIEN)	Occurrence		
			46.0 gpt (1.34	
			ounce) over	
			0.75 m.	
			(AC 5431,	
			assayed	
	Salkeld Property	.	52J02SE -	
	(ANDERSON CLAIMS)	Discretionary	0077)	
MDI52J02SE00025		Occurrence		030-060/50-70
	St. Anthony – South		0.046 opt/2.5'	020/90, 100/90,
MDI52J02SE00027	(TB1416, TB20109)	Occurrence (ddh)	(SL-84-02)	190/25
MDI52J02SE00037	Coveney Brothers	Occurrence		
			0.005	020-90/52
			opt/0.3m	· ·
		1		
MD152102SW00020	Patlake	Occurrence	(chin)	
MDI52J02SW00020	Pat Lake	Occurrence	(chip)	
MDI52J02SW00020	Pat Lake	Occurrence	1983 grab	
MDI52J02SW00020	Pat Lake	Occurrence	1983 grab sample (af-	
MDI52J02SW00020	Pat Lake	Occurrence	1983 grab sample (af- 0082):	
MDI52J02SW00020	Pat Lake	Occurrence	1983 grab sample (af- 0082): indicated on	
MDI52J02SW00020	Pat Lake	Occurrence	1983 grab sample (af- 0082): indicated on maps of 1983-	
MDI52J02SW00020	Pat Lake	Occurrence	1983 grab sample (af- 0082): indicated on	
MDI52J02SW00020	Pat Lake	Occurrence Discretionary	1983 grab sample (af- 0082): indicated on maps of 1983-	
MDI52J02SW00020 MDI52J02SW00022		Discretionary	1983 grab sample (af- 0082): indicated on maps of 1983- 84, assay of	
	Shore's Bay - Central		1983 grab sample (af- 0082): indicated on maps of 1983- 84, assay of 0.37 opt au	
		Discretionary	1983 grab sample (af- 0082): indicated on maps of 1983- 84, assay of	090/

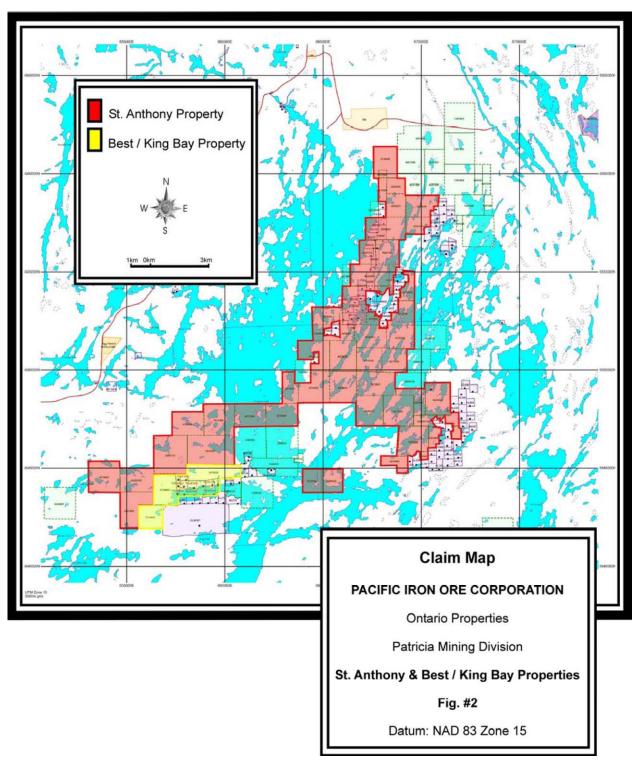


Figure 14-1: Pacific Iron Ore Property Position (from Pacific Iron 43-101 Report, 2009)

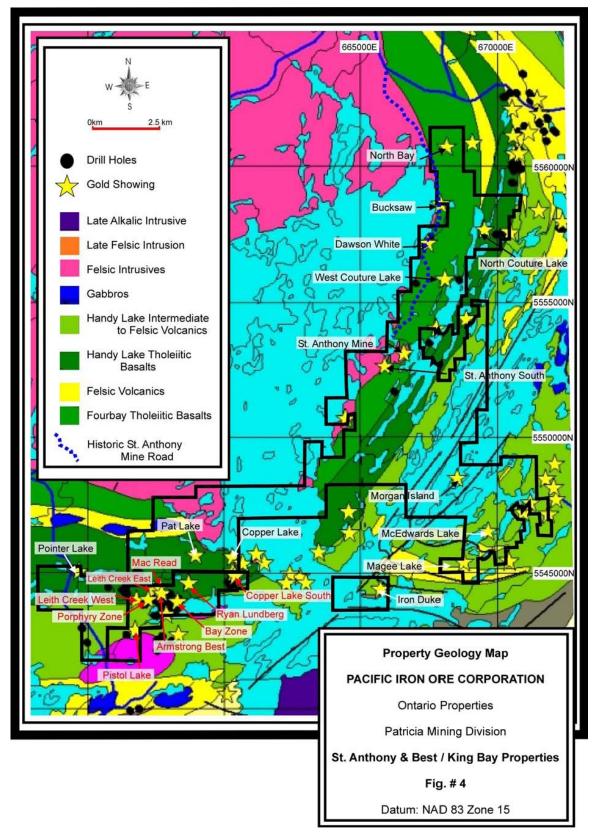


Figure 14-2: Pacific Iron Ore Corp - Property Geology & Occurrence Map (Pacific Iron Ore, 2009)

14.2 PACIFIC IRON ORE CORP. - BEST/KING BAY PROPERTY

In 2008, Pacific Iron Ore Corp. by amalgamation with Emerald Fields acquired an extensive land package in the St. Anthony and King Bay area of Sturgeon Lake, Ontario. The original St. Anthony property was acquired by option in 2002, while the second, the Best/King Bay property was optioned in 2007 by Emerald Fields. The two properties consisted of approximately 8,784 ha comprising of 54 mining claims (537 units), and 14 mining leases. The Best/King Bay Property is comprised of 1632 ha based on 7 mining claims and 14 leases.

Pacific Iron have done little exploration but in 2009 completed a NI 43-101 technical report on the St. Anthony and Best/King Bay Properties. The project is requiring assessment work filing in 2013.

The following table summarizes the historical gold occurrences found on the various properties.

MDI #	Name	Status	Assays	Structural
				Trend/Attitude
MDI52J02SW00016	Mac-Read	Prospect	8.2-112 g/t	090/
	(MacDonald-Read,	(ddh, stripped)	/0.2-1.3m	
	Pressman)		(chips)	
MDI52J02SW00018	Ryan-Lundmark West	Discretionary	0.08opt /2.6'	045-090/
		Occurrence (ddh)		
MDI52J02SW00019	Ryan-Lundmark East	Discretionary	0.054 opt /7.8'	045-090/
	(IB)	Occurrence (ddh)		
MDI52J02SW00027	Armstrong-Best	Prospect	Up to 13.4	090/
		(ddh, stripped)	opt/various	
			widths (chips)	
			0.396 OPT	
			AU/3.94'(KB-	
			41-84),0.291	
			OPT AU/14.4'	
			(KB-35-83)	
MDI52J02SW00029	Copper Lake - South	Occurrence		
			0.703/0.03m	090/
			(KB-19-83),	
	Leith Creek – West	Discretionary	0.03/0.5m (KB-	
MDI52J02SW00013	(Zone A (Silversides)	Occurrence (Ddh)	26-83)	
	Leith Creek – East		0.022/0.55m	090/
MDI52J02SW00014	(Johnson Property)	Occurrence (Ddh)	(KB-13-83)	
	Porphyry Zone – Kb		0.025-0.12 opt	?
	(NW King Bay, Zone			
MDI52J02SW00015	C)	Occurrence (Ddh)		
			ASSAYS UP TO	
			0.23 OPT	
			AU/4.9' and	
			0.27 OPT	
			AU/1.3', 1987	
			-, -,	
			(DDH KB-16	
	Copper Lake – North	Discretionary		

Table 14-2: Pacific Iron Ore Corp. - Best/King's Bay Gold Occurrences

9

14.3 CONQUEST - KBG MINERALS CORP. (60%/40%) PROPERTY

Conquest Resources Limited operates the King Bay Project as a joint venture with KBG Minerals Corp. The property is contagious with the Pacific Iron Ore Corp. properties situated to the north and west of King Bay, The King Bay gold property comprises 32 mining claims held under a mining lease and 13 patented claims lying over King Bay and it's southern shore, an inlet on the western shore of Sturgeon Lake, Ontario. Five additional mining claims are located to the northeast of King Bay. In the 1980's and early 1990's significant work was completed by a number of companies. Numerous gold bearing boulders were discovered in three discrete boulder trains trending south-southwest along the south shore of King Bay. In 1990, a drill hole from the ice of King Bay intersected highly altered QFP with qv hosting good gold values (1.431 opt) over a narrow width of 2" (5cm) , 350m north of the south shore. Subsequent drilling on the ice targeting numerous magnetic anomalies has encountered quartz stockwork system associated with these magnetic features. Conquest is reviewing exploration options.

MDI #	Name	Status	Assays	Structural Trend/Attitude
MDI52J02SW00017	Bay-Zone-KB	Mineral Occurrence (ddh)	0.7opt /0.03m (KB-19-83) 0.075opt/0.6m (KB-21-83) 300m SSW	090/
MDI52J02SW00026	Shore	Prospect		100, 070, 325/
MDI52J02SW00023	Shore's Bay - SE	Discretionary Occurrence		?
MDI52J02SW00005	LMS (Larchmont, Anderson Claims)	Mineral Occurrence	0.02 opt/1m (ddh) 0.88/0.7', 0.1/2' (chips)	020-040/
MDI52J02SE00016	Rickaby (Black Vein)	Discretionary Occurrence	0.01-0.56 opt (grabs)	075/60
MDI52J02SE00020	Rainbow Island - SE	Discretionary Occurrence (ddh)	0.05 & 0.18 opt/0.5' (M86- 08)	?
MDI52J02SE00023	Rainbow Island - NW	Discretionary Occurrence (ddh)	0.02 opt/0.25m (M-86-01)	?
MDI52J02SE00024	Rainbow Island - South	Discretionary Occurrence (ddh)	0.06 opt/0.1m (M-86-07)	?
8				

	Table 14-3:	Conquest-KBG Minerals ·	· King's Bav Area	Gold Occurrences
--	--------------------	--------------------------------	-------------------	-------------------------

14.4 PARAGON MINERALS CORP. PROPERTY

Paragon Minerals Corp has a 100% controlling interest in the Gold Star gold project located near the community of Savant Lake, Ontario. Mr. Perry English, the optionor, is the recorded claim holder of at least 50 mining claims (513 units) covering 8,032 hectares under option to Paragon. The property comprised of three blocks is situated on the eastern side of the Northeast Arm, the East Bay area to southeast of King Bay, and west of King Bay of Sturgeon Lake approximately 230 kilometres northwest of Thunder Bay, Ontario, Canada. The project is subject to two option agreements, whereby the Company can earn a 100% interest in the properties by making cash and share payments to the vendors. There are approximately 16 gold occurrences on the property. No further exploration work was completed during the period-ended June 30, 2012. In September 2012, Canadian Zinc Corp. acquired all the outstanding shares of Paragon for base metal assets in Newfoundland. The property may be available for option.

The following table summarizes the gold occurrences located on the Paragon Minerals Corp. – Gold Star Project.

MDI #	Name	Status	Assays	Structural
				Trend/Attitude
			0.49 OZ	020-040/
	Davidson Carr		AU/TON OVER	
	(JOHNSON, S)		2 FT (DC-88-8)	
MDI52J02NE00003		Occurrence		-
	Ouilette			?
	(MINE LAKE - SOUTH,			
	SV421 (1911), MAIN MINERALIZED ZONE			
	(1946), MAIN SHAFT			
	(1940), MAIN SHAFT (1983), NO.1 AND 4			
	VEINS (1936),			
	OUILETTE MINE,			
	SUPREME			
MDI52J02NE00008		Occurrence		
			0.04 to 3.8 opt	060-065/68-vert
			Grab-	
			southwest	
			vein) 0.12 to	
	Y Island		2.16 opt (Grab- northeast vein)	
MDI52J02NE00011	(HW 684)	Occurrence	northeast vein)	
			DDH B-87-6	?
			(AF-0068): BEST	•
			ASSAY 0.10 OPT	
			AU/1.8 FT.	
MDI52J02NE00014	Northeast Arm Creek	Occurrence (ddh)	,	
	Mine Lake – North		ASSAY 0.27 OPT	
MDI52J02NE00016	(SV 422, NO.2 VEIN)	Occurrence	AU/5 FT (#1)	

Table 14-4:	Paragon Minerals	Corp Northeast Bay	Gold Occurrences
-------------	------------------	--------------------	------------------

	- 1	1	- 1	1
			and 0.065 OPT	
			AU/15 FT (#4),	
			APPROX.400M	
			TO N OF LAKE	
MDI52J02NE00017	Thomas Creek	Occurrence		
	Thomas Lake			345-360/
	(TRIPLEX VEINS			545 5007
	(1945), NO.8 + 10			
	VEINS (1936)			
MDI52J02NE00018		Occurrence		
	Wagon Road			
	(EAST ZONE (1945)			
MDI52J02NE00019		Occurrence		
			ASSAY OF 0.35	
			OPT AU	
			SHOWN AT N	
	Mine Lake – SE		END OF #3	
	((MINE LAKE - SE,		VEIN (1935),	
	NO. 3 VEIN (1936),		0.317 OPT	
	OLD SHAFT)		AU/8 FT (1945)	
MDI52J02NE00020	OLD SHALL)	0.000	A0/811 (1945)	
WIDI52J02NE00020		Occurrence		
			DH #BE-9 (AF-	
			0051,0019):	
			0.410 g/t	
			AU/12 FT AT	
			448FT, #BE-10	
			(AF-0020-	
			B1,0033-B1):	
			0.610 g/t	
	Moose Creek Zone		AU/1M AT 275,	
	(DDH BECK		HOLE IS 350M	
	#9,10,11,21,21A)	Occurrence (ddh)	N OF #9.	
MDI52J02NE00023	#3,10,11,21,217		N OI #5.	
MDI52J02NE00027	Powell	Prospect		
		FIUSPELL		
	McEdwards Lake		0.25 OPT AU/4	
	(BG 148)		FT (ME-03)	
MDI52J02SE00004		Prospect (ddh)		090/
	Magee Lake		grab between	270/80
	(EAST BAY GROUP,		0.88 to 2.76	
	HW, CLAM,		ounce gold per	
	DAVIDSON JARVIS	Occurrence	ton	
MDI52J02SE00009		(stripped)		
				025-050/steep
			3.7 to 10.6 g	, · · · ·
			gold per tonne	
			(ddh)	
			29.8, 46.9 and	
	McEwan			
	McEwan		59.3 g gold per	
	(TB 578, TB579, AL		ton were	
	767, TB768, SYLVIA	Occurrence	recorded in the	
MDI52J02SE00006		(stripped)	surface and	1

			trench sampling	
MDI52J02SE00014	Morgan Island (Phelps Dodge)	Discretionary Occurrence	0.13 ounce gold per ton (Grab)	020-040/
MDI52J02SE00017 16	Oz Island	Discretionary Occurrence	0.4-0.75 opt (grabs)	060, 120/

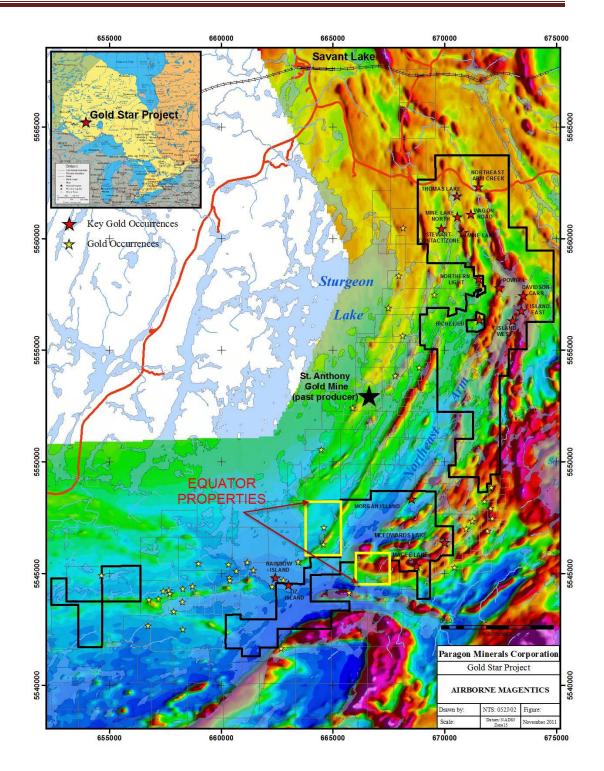


Figure 14-3: Equator Mining Corp. & Paragon (Gold Star Project) with Gold Occurrences on Regional Aeromagnetic survey (Paragon Website)

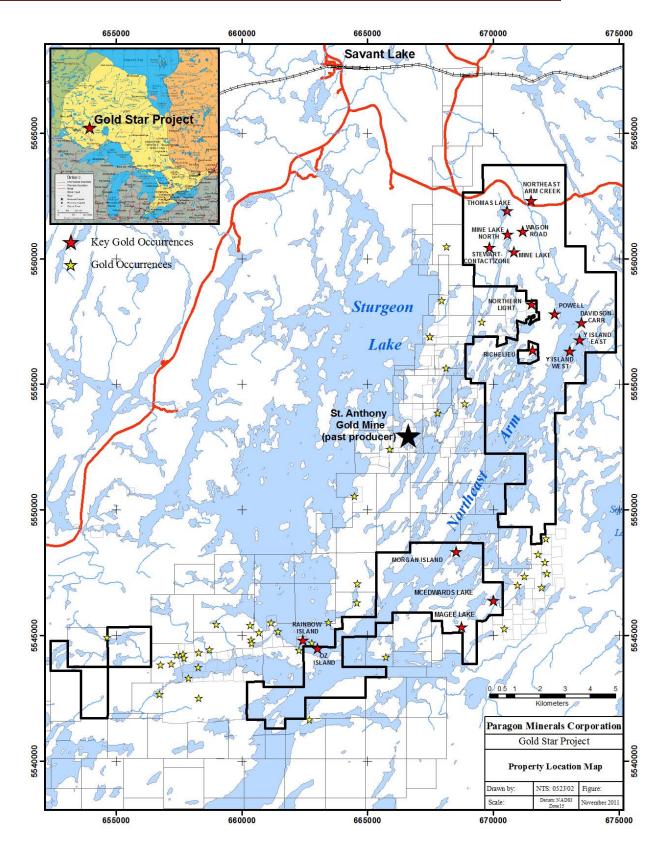


Figure 14-4: Paragon Minerals Project with Gold Occurrences (Paragon Website)

14.5 BEST PROPERTY

Allan Best is the claimholder of three mining claims (33 units) optioned to Pacific Iron Ore Corp. located immediately to the west and north of the Conquest/KBG property. Assessment work is due with work pending.

Table 14-5:	Conquest- KBG - King's Bay / Best Gold Occurrences
--------------------	--

MDI #	Name	Status	Assays	Structural
				Trend/Attitude
			0.03/0.5m	090/
			(KB-26-83),	
			0.041/1.1m	
MDI52J02SW00012	PISTOL LAKE	OCCURRENCE (ddh)	(KB-28-83)	
1				

15 OTHER RELEVANT DATA & INFORMATION

To the author's knowledge, there is no other relevant data & information in the public domain pertinent to this property.

16 INTERPRETATION & CONCLUSIONS

16.1 INTERPRETATION

The North Johnson vein system is a drag folded vein system comprised of two vein sets. The two vein systems were labeled the Ridge and the Shore Veins describing their geographical position on the North Johnson occurrence are parallel and 15metres apart. The Ridge Vein System is located along the local grid baseline 00N between 00E and 100E. The Shore Vein System is mapped at 15m north, between 40mE and 70mE.

The main Ridge Vein set appears to strike at 080 degrees and dipping at 70 degrees south, within an iron carbonate altered shear zone trending at 070 degrees. The Ridge Veins system comprised several narrow veins are highly erratic and folded.

The unusually straight Shore vein at 45E, 15N trending at 135 degrees, and the Ridge Vein - South branch at 35E, 05mSouth trending at 100 degrees suggests these are undeformed segments of the 080 vein or a second set of veins or are sub-parallel to major stresses on the rock that prepared but did not fold these 100-135 veins. Mapping of the variably folded Ridge Vein indicates the Ridge Vein South Branch may be a continuation of the vein, but appears to be a straightened limb of a fold closure at its west end. The styolites or shears within the Shore vein suggest vein parallel shearing or crack-seal fracturing.

The lode gold mineralization is highly erratic.

Three quartz vein fold noses were observed at 05E, 025E and 033E on the Ridge Vein plunging at 30 degrees southwest. The J90-02 drill hole on drill cross section 60E appears to represent a shoot on the Shore Vein. For the interpretation and drill target selection, these shoots for both the Ridge and Shore Veins were projected from their surface location at the 30 degree plunge. A series of thirteen (13) drill holes totalling 1250m were targeted to intersect these proposed targets.

16.2 CONCLUSIONS

Results of geological mapping and detailed sampling on the North Johnson indicate

- The vein system(s) is a drag-folded quartz vein system and was exposed in the stripping program for 100m
- There are two veins within two alteration zones (Shore Vein, and Ridge Vein) 15 metres apart
- The alteration system is a sheared, foliated iron carbonate rich envelope up to 2.5m wide in mafic volcanic rock
- The shear trends at 070 degrees and dips southward at 70 degrees
- The Veins are generally narrow at up to 40 cm in horizontal width.
- Visible gold grains at up to 0.1mm are noted in the original occurrence Shore Vein
- The veining strikes 080 and dips 70 degrees southward.

- Quartz vein fold closures trend at 220 degrees and plunge 30 degrees southwest.
- Shearing kinematics suggest the shearing is dextral and 0.5m offset.
- A 6m wide feldspar porphyry dyke appears to passively offset the Ridge East and Ridge West alteration zone
- The Shore Vein assays at a weighted average grade of 21.525 g/t gold over an average width of 0.39m and over a strike of 7m strike length
- The Ridge Vein West (of the FP dyke) assays 8.344 g/t gold over an average width of 1.46m (horiz), over 40m strike length.
- The Ridge Vein South branch (west of the FP dyke) assays 8.054 g/t gold over an average width of 0.84m (horiz) over 14m strike length.
- The Shore Vein alteration assays 0.220 g/t gold over 1.1m for 20m of strike length.
- The Ridge Vein East (East of the FP dyke) assays 1.272 g/t gold over an average width of 0.82 m for 49m of strike length.
- Previous drill hole J90-01 intersected altered PF assayed 0.012 opt gold, and two sheared alteration zones with minor qv, but without assays.
- Previous drill hole J90-02 intersected 25.846 g/t gold over a core interval of 1.68m, down dip. Both holes were drilled from north to south.
- In 1969, Selco completed three diamond drill holes in the vicinity of the North Johnson occurrence. Drilling was exploring for base metals. Although no evidence of drilling, either collars refuse, or cribbing was detected, flat & open areas were noted at the approximate location. Any drilling would have undercut the alteration & vein system.
- The gold mineralization occurring as free gold and associated with sulphides is highly erratic. Drilling will have to explore the strike & dip extension of the North Johnson alteration & structure. Only detailed sampling along the vein system will accurately identify the gold content.

17 RECOMMENDATIONS

17.1 EXPLORATION PHASE 1: PROSPECTING & DRILLING

North Johnson, Southern Block Area: Reconnaissance shoreline geological investigation of the Sturgeon Lake area, and property examinations of the recent staking, North Johnson claim and N.Johnson addition and Southern Block and area. Approximately 7 days would be required.

North Johnson: A Phase 1 Drill program is recommended to explore the depth & on strike continuity of the North Johnson occurrence. Thirteen drill holes totaling 1250m costing approximately \$400,000 have been planned to drill a shallowly plunging mineral system within the Ridge and Shore Vein system. The plunging drill target is included as a PowerPoint presentation at end of this report. Two vertical longitudinal sections in the plane of the two veins illustrates the proposed drill targets, and a set of vertical drill cross-sections illustrates a cross-sectional view of the proposed targets. This drilling would have to be completed in October 2013 to take advantage of the barge for mobilization and de-mobilization of the drill. The seasonal ice conditions, storms and combined with late daylight/early night make November very difficult and sometimes unproductive. Any winter drilling program could add approximately \$5000 - \$8000 per km for 25 km of ice road construction & maintenance.

Equator has an MNDM Exploration permit for drilling.

17.2 EXPLORATION PHASE II: DRILLING

North Johnson: A results-based Phase II drill program is proposed for the of spring 2014, with recommendations from the Phase 1 drill results and shoreline reconnaissance geology. A 4 hole, deep (1500m) drill program from four locations is recommended to drill test the high grade gold intersection on strike and on the structural trend of the gold systems on the D1 structure, This Phase 2 program would take 4 weeks.

Rainbow Island: Three holes (900m) two holes along strike and one at depth beneath the Rainbow Island Occurrence is required to evaluate the larger potential of the vein system.

Southern Block: Two holes, each 300m (600m) to drill test potentially auriferous D1 & D2 structures.

17.3 DRILL TARGETS & BUDGET

17.3.1 NORTH JOHNSON PROPOSED TARGETS

Hole_ID East_Local		North_Local	Azm	Dip	Horiz_Trace (m)	EOH(m)	Target: REMARKS	
PNJ13-A	05E	255	20°W of	-45	42	060	Ridge plunge	
			Grid				@ -15m vert	
			North					
PNJ13-B	05E	25S	20°W of	-80	17	100	Shore plunge	
			Grid				@ -75m vert	
			North					
PNJ13-C	05E	25S	38°E of	-45	70	100	Shore vein	
			Grid					
			North					
PNJ13-D	60W	50S	Grid	-50	76	120	Ridge plunge	
			north				@ -40m vert	
PNJ13-E	40E	25S	Grid	-55	50	090	Ridge plunge	
			North				@ -18m vert	
PNJ13-F	40E	25S	10° W of	-69	36	100	Shore plunge	
			Grid				@ -50m vert	
			North					
PNJ13-G	60E	25S	10° W of	-45	43	060	Below Ridge	
			Grid				plunge @ -7m	
			North				vert	
PNJ13-H	60E	255	Grid	-60	40	080	Shore plunge	
			North				@ 40 vert	
							(check J90-02)	
PNJ13-I	90E	255	Grid	-45	57	080	Shore plunge	
			North				@ -25 vert	
PNJ13-J	120E	40S	Grid	-45	58	080	East end	
			North				structures	
PNJ13-K	80E	75S	Grid	-45	55	130	Deep	
			North				structures	
PNJ13-L	80W	70S	Grid	-54	77	130	Ridge plunge	
			North				@ -60m vert	
PNJ13-M	60W	50S	Grid	-74	35	120	Ridge & Shore	
			north				plunge @ -75	
401.1				· · ·		4252	&-95 vert	
13 holes				approximately		1250m		
Target Summary:			Ridge Vein Plunge		4 intercepts			
		1		Shore Vein Plunge		5 intercepts		
				Shore Vei	-	1 intercept		
		1		Structure	ext'n	3 intercepts		

Table 17-1: Johnson Showing – Phase 1 Drill Proposal

17.3.2 PROPOSED BUDGET (FINAL SUBJECT TO TENDER)

PHASE 1- DRILL	Item Unit Cost	\$Cost			
Geologist	42 days x \$800/day	\$33,600			
Field Assistant	30 days x \$400/day	\$12,000			
Drilling	1250m X \$200/m	\$250,000			
Drill - Mobilization		\$25,000			
Assays	300 x \$30/sample	\$9,000			
Rental (Boat/motor/fuel)	27 X \$90/day	\$2,400			
Rental (daily drill crew shift)	27 X \$250/day	\$6,800			
Rental (2 - ATV/fuel)	27 x \$200/day	\$5,400			
Rental (Core Logging, cutting Facility & Equip)	30 X \$250/day	\$7,500			
2 Vehicle (4x4)	30 X \$200/day	\$6,000			
Room & Board	54 x \$150 day	\$8,100			
Contingencies	10%	\$36,500			
SUBTOTAL			~ \$402,300		
PHASE 2 -DRILL	Item Unit Cost	\$Cost			
Geologist	45 days				
Field Assistant	25 days				
Drill	4 holes – 1500m				
SUBTOTAL	All - inclusive	@ \$325/metre	~ \$487,500		
GRAND TOTAL:			~ \$889,800		

Table 17-2: Phase 1 & Phase 2 Drill Exploration Budget

A proposed timetable schedule follows.

•	North Johnson: Phase I Drill program	October 2013
•	Evaluate Phase1 results & next phases	Nov-Dec 2013
•	Sturgeon Lake: Phase II Drill Program	Spring 2014

Figure 26-1 is a detailed section of the accompanying compilation map of the North Johnson Claim Block locating the proposed drilling along strike and beneath the historic high grade assay intersection. The maps overlay a detailed topographic base with the Fugro magnetic survey to reflect structures and lithology. Final drill site locations will be subject to local topographic conditions and confirmation checks on structural trends.

Figure 26-2 is a detailed compilation map of the Rainbow Island Lease Block locating the proposed drilling along the trend of the vein system. The proposed drilling will test on strike and beneath the

historic surface workings to re-assess the mineralization along the vein system. Although the map illustrates the collars of historic drilling, no assay results were located in the records. The map overlies a detailed 1:20,000 topographic base with the Fugro magnetic survey to reflect different structures and lithology. Final drill site locations will be subject to local topographic conditions and confirmation checks on structural trends.

Figure 26-2 is a detailed portion of the accompanying compilation map of the Southern Claim Block area. The proposed drilling will test several structures and geologically section the lithology. The map overlies a detailed 1:20,000 scale topographic base map with the Fugro magnetic survey to reflect different structures and Lithology. Final drill site locations will be subject to local topographic conditions and confirmation checks on structural trends.

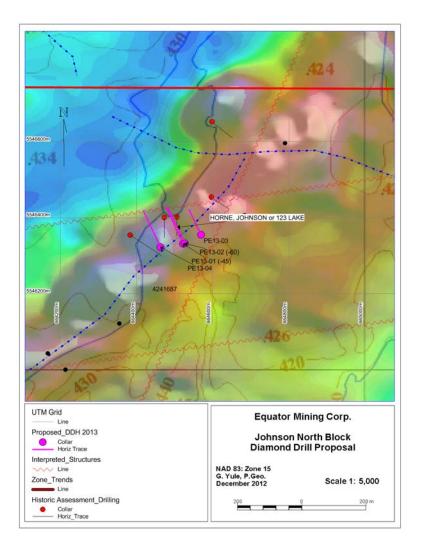


Figure 17-1: North Johnson Area – Phase I Proposed 2013 Drilling (Yule, 2012)

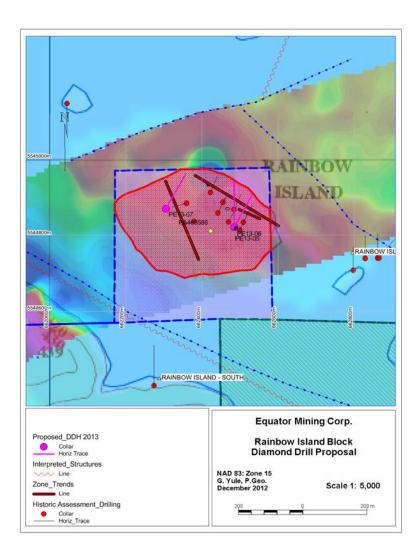


Figure 17-2: Rainbow Island Lease - Phase II Proposed 2014 Drilling (Yule, 2012)

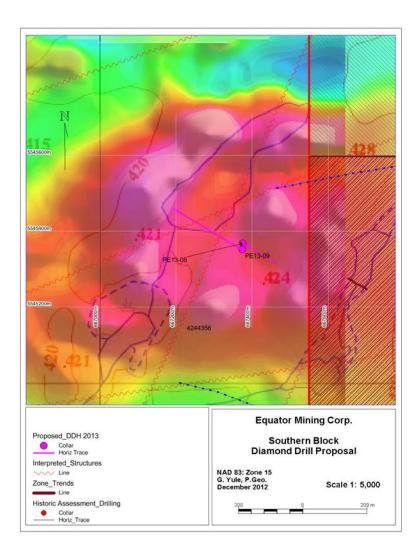


Figure 17-3: Southern Claim Block - Phase II Proposed 2014 Drilling (Yule 2012)

17.4 LAND ACQUISITION

Recommended is the evaluation of the corporate reasons for exploring the Sturgeon-Savant Lake area. Thought should be given to either;

- Abandon the project (not preferable since 2012 assessment work filed & 2013 mechanical stripping program completed) or
- Evaluate current properties with focused Phase 1 & Phase 2 exploration programs,
- Potentially expand project presence by investigating the opportunities for possible land acquisition by optioning of various properties in order of priority.
 - o Pacific Iron Ore Corp. (Armstrong-Best & St.Anthony occurrences) (85 claims)

- Conquest Resources Limited KBG Minerals Corp. The King's Bay gold property comprises 32 mining claims held under lease and 13 patented claims lying over King Bay and its southern shores. Five additional claims are located to the northeast of King Bay.
- o Paragon Minerals Corp (50 claims)

The adjoining properties are summarized in Chapter 23 of this report.

Respectfully

Gord Yule, P.Geo.

18 REFERENCES

18.1 BIBLIOGRAPHY

Aerodat Limited, 1989: Logistic Report on Combined Helicopter Borne Magnetic and VLF-EM Survey, Sioux Lookout Area for 007 Precious Metals Inc, 1989 (AFRI # 52J02SE0001).

Band, R.B. 1985: Diamond Drilling of King Bay property for Falconbridge. (AFRI#52J02SW0025)

Beggs, D.G. 1975: Petrology and geochemistry of Archean volcanic rocks north of Sturgeon Lake, M.Sc. thesis, University of Toronto, 151p.

Best, A.1992: King Bay report on 1992 Work Program, (AFRI#52J02SW0005)

Bernatchez, R.A. 1990: King Bay diamond drilling for precious metals inc. (AFRI#52J02SE8653)

Bernatchez, R.A. 1995: A Qualifying Report on the Rainbow Island Property, Sturgeon Lake Area Savant Lake, For Equator Mining Corp. dated July 10, 1995, internal company report.

Blackburn, C.E., Johns, G.W., Ayer, J. and Davis, D.W. 1991. Wabigoon Subprovince; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, part 1, p.303-381

Burns, J. 1997. Diamond Drilling on the King Bay property, (AFRI#52J02SW2001)

Coleman, A. P. 1902. Mines of Ontario, Ontario Bureau of Mines, Annual Report, 1902, v.11, p.148

Collins, W. H. 1910. Geological Survey of Canada, Report 1059, p.83-86

Conquest Resources Limited website - King Bay Gold Project, Ontario (http://www.conquestresources.net/)

Davis, D.W. and Trowell, N.F. 1982. U-Pb zircon ages from the eastern Savant Lake-Crow Lake metavolcanicmetasedimentary belt, northwest Ontario; in Canadian Journal of Earth Science, v. 19, no.4, p.868-877.

Drummond, A.D. 1984. Report on Sturgeon Lake gold property for Coastoro Resources, (AFRI.# 52J02NE9292) Dubé, B. and Gosselin, P., 2007, Greenstone-hosted quartz-carbonate vein deposits, *in* Goodfellow, W.D. (ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, The Evolution of Geological Provinces, and Exploration Models: Geological Association of Canada, Mineral Deposit Division, Special Publication No. 5, p. 49-73.

Evans, G. 2009, Technical Report on the St.Anthony and Best/King Bay Properties, In the Beckington Lake Squaw lake and Fourbay Areas of Patricia Mining Division, Ontario, Canada. A NI 43-101 report prepared for Pacific Iron Ore Corp. June 2009. SEDAR

Ferreira, W.S. 1984: Drilling for Falconbridge in St. Anthony area, (AFRI#52J02SE8669) Gillet, T.E., 1987: Mine Lake Minerals Inc. Geological and Geophysical Report of the 1987 program (AFRI#52J02NE0003)

Gledhill, T. L. 1924. Geology Along an Eastward Continuation of Niven's 4th Base Line; Ontario Department of Mines, Annual Report, 1924, v.33, pt.6, p.18-39

Goldsmith, L.B. 1984: Rock Geochemistry Morgan Island claims for Noble Peak Resources, (AFRI# 52J02SE8683)

Graham, A. R. 1930. Sturgeon Lake Gold Area, Districts of Kenora and Thunder Bay; Ontario Department of Mines Annual Report, 1930, v.39, pt.2, p.36-50.

Horwood, H. C. 1937. Geology at the Darkwater Mine; Ontario Department of Mines Annual Report, 1937, v.46, pt.6, p.26-35

Holmstead, W. 1983: Geological Mapping of the Sturgeon Lake Property for Candore Explorations Ltd. (AFRI#52J02NE0039)

Janes, D.A. 1988, Letter to Mr. Rudy Mitterer, 007 Precious Metals Inc. unpublished correspondence Janes, D. 1991, Gold Deposits in the Sturgeon Lake area, Unpub. OGS report

Jobin-Bevins, L.S. 1996. Armstrong-Johnson Gold Prospect, Diamond drilling program. (AFRI# 52J02SW0021)

Kuryliw, C.J. 1994. Report on diamond drilling on Kuryliw-Armstrong claim blocks. (AFRI# 52J02SW0002)

Leary, G.M., 1981: Final Report 1981 Savant Lake Project, (AFRI#52J09SW8880)

Moran, J. 1983. The McEdwards Lake property, (AFRI# 52J02SE8676)

McInnes, W. 1899. Geological Survey of Canada, Summary Report, 1899, p.118-120

-----, 1901. Geological Survey of Canada, Summary Report, 1901, p.90-92

Miller, W. G. 1903. Mines of Ontario, Ontario Bureau of Mines, Annual Report, 1903, v.12, p.83-86

Moore, E. S. 1911. The Sturgeon Lake Gold Field; Ontario Bureau of Mines, Annual Report, 1911, v.20, pt.1, p.133-157

Morton, R.L., Hudsak, G.J., and Franklin, J.M. 1999. Geology, South Sturgeon Lake area, Geological Survey of Canada.

Mumin, A.H., Scott, S.D., Somarin, A.K. and Oran, K.S. 2007: Structural Controls on Massive Sulphide Deposition and Hydrothermal Alteration in the South Sturgeon Lake Caldera, Northwestern Ontario, CIM – Expl. & Mining Geol., Vol 16, Nos.1-3, pg 83-107.

Pacific Iron Ore Corp website http://www.pacificironorecorp.com/properties/ontario/gold-silver/index.html

Percival, J.A., Whalen, J.B., Tomlinson, K.Y., McNicoll, V.J., and Stott, G.M. 2002. Geology and Tectonostratigraphic Assemblages, north-central Wabigoon Subprovince, Ontario, Geological Survey of Canada, Open file 4270

Ravanas, C. 2002. Red Lake District Geologist Office (Kenora District), St. Anthony Property, OFR6119, pp 106-111

Redden, J.W., 1988, Evaluation of the Rainbow Island Claim Group and the Iron Duke Claim Group Squaw Lake Area for Mistango Consolidated Resources Limited. (AFRI # 52J02SE8657)

Robinson, D. J. 1992. Geology of the Six Mile Lake area; Ontario Geological Survey, Open File Report 5838, 93p

Rogers, D.P., 1964: Metionga Lake Area, Districts of Thunder Bay and Kenora; Ontario Department of Mines, Report 24, 53p

Sanborn-Barrie, M. 1989: Geology of the Savant Lake area; in Summary of Field Work and Other Activities 1989, Ontario Geological Survey, Miscellaneous Paper 146, p. 54-62

-----, 1990: Geology of the Savant Lake Area; in Summary of Field Work and Other Activities 1990, Ontario Geological Survey, Miscellaneous Paper 151, p. 22-30

Hogg, G.M. 1983. A report on geophysics, geology and diamond drilling on the St. Anthony mine project, of Aubet Resources Inc., (AFRI# 52J02SE8677)

Sanborn-Barrie, M., and Skulski, T., 2005: Geology, Sturgeon Lake Greenstone Belt, western Superior Province, Ontario; Geological Survey of Canada, Open File1763, scale 1:100,000

Sanborn-Barrie, M., and Skulski, T., 2006: Sedimentary and structural evidence for 2.7Ga continental-arc oceanicarc collision in the Savant-Sturgeon greenstone belt, western superior province, Canada. C.J.E.S. #43-pp. 995-1030

Smith, D.B., 1983: Report on the Morgan Island property for Noble Peak Resources, (AFRI# 52J02SE8692)

Stares, S., Mowat A.J.M. 2004, Prospecting, AEM and Magnetic survey on the St. Anthony project. (AFRI# 52J02NE2001 & 2002)

Trowell, N. F. 1974a: Geology of the Bell Lake-Sturgeon Lake Area, Districts of Kenora and Thunder Bay; Ontario Division of Mines, Report 114, 67 p

-----, 1974b: Geology of the Glitter Lake Area; Districts of Kenora and Thunder Bay; Ontario Division of Mines, Report 120, 31p

-----, 1978: Geology of the Sturgeon Lake-Chevrier Township Area, District of Thunder Bay; Ontario Division of Mines, Open File Report 5250, 97p

-----, 1983: Geology of the Squaw Lake-Sturgeon Lake Area, District of Thunder Bay; Ontario Geological Survey, Report 227, 114 p.

-----, 1983: Geology of the Sturgeon Lake Area, Districts of Kenora and Thunder Bay; Ontario Geological Survey, Report 221, 97p.

Williams, H. R. 1993: Re-assessment of the stratigraphy and structure of the northern part of the Sturgeon Lake region, districts of Kenora and Thunder Bay, Ontario Geological Survey, Open File Report 5845, 123p.

Van Enk, R.J., 1984: Stornaway Resources Ltd. McEdwards Lake Property, report on diamond drilling. (AFRI# 52J02SE9258)

Van Enk R. 1987: Almaden Resources Corporation, King Bay Property, Drill Program. (AFRI#52J02SW0004)

Williams, H.R., Stott, G.M., Thurston, P.C., Sutcliffe, R.H., Bennett, G., Easton, R.M. and Armstrong, D.K. 1992. Tectonic Evolution of Ontario: Summary and Synthesis in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 2, p.1255-1332

Yule, G. R., 2012: Squash Lake Area Property Assessment & Recommendations Report, Internal Report for AuXin Resources Ltd.

19 APPENDIX A

19.1 COMPARISON OF FIRE ASSAY & PULP METALLIC METHOD:

	Comparison of Gold Analysis: North Johnson Reconnaissance samples										
Fire Assay method <i>Analytical Job: 201341347</i>		vs	Pulp Metallic Analytical Job: 201341453								
	Client ID	FA/AA (g/t)		Client ID	#1 Pulp Assay (ppb)	#2 Pulp Assay (ppb)	Metallics Assay (ppb)	Total (g/t)	% Met. in Pulp	Pulp Met. Weight(g)	Diff between Fire Assay/Pulp Metallic methods (%)
	1489702	27.191		1489702	19810	23680	181682	26.075	2.71%	15.43	104.28
	1489704	172.372		1489704	165296	16123 0	515856	164.396	0.32%	0.8	104.85
	1489706	40.51		1489706	23788	25919	406932	47.409	5.90%	39.67	85.45
	1489711	27.504		1489711	17184	17805	540283	27.32	1.88%	9.19	100.67
	1489713	12.073		1489713	10292	10356	16328	10.605	4.69%	32.11	113.84
	1489714	13.765		1489714	12858	13322 11807	16032	13.236	4.98%	48.86	104.00
	1489715	112.96		1489715	139539	2	67949	127.525	2.10%	20.06	88.58
	Certificate Metadata Date Created: 13-07-15 02:01:51 PM			Certificate Metadata Date Created: 13-07-29 12:30:22 PM							
Job: 201341347 Date Received: 06/27/2013 Number of Samples: 19			Job: 201341453 Date Received: 07/15/2013 Number of Samples: 7 Type of Sample:								

Type of Sample: Rock Date Completed: 07/15/2013 Project ID: NJ 13-01 Date Received: 07/15/2013 Number of Samples: 7 Type of Sample: Reject's Date Completed: 07/29/2013 Project ID: 201341347

20 APPENDIX B: COMPOSITE WEIGHTED AVERAGE GRADES

Section (sample_ID)	Ave Channel Assay (g/t)	Wt_Ave Width (m)		Vein Tenor
West Vein	5E-40E, 00		Gr X W	
005	1.870	0.45	0.8415	
008	18.212	1.35	24.5862	
006-010	1.006	2.85	2.8671	
011	1.642	0.90	1.4778	
013-014	0.980	1.45	1.4210	
018	0.174	0.70	0.1218	
022-023	1.530	1.35	2.0655	
028-029	0.732	1.50	1.0980	
				Weighted Ave Grade
033-034	18.900	2.20	41.5800	8.344 (g/t)
037	16.365	1.00	16.3650	1.46 Ave Width (m)
041-042	2.434	1.15	2.7991	over 40m strike length
048-050	1.007	2.55	2.5679	
045-046	8.694	1.45	12.6063	
052-054	16.169	1.80	29.1042	
055	81.064	1.00	81.0640	
056-058	3.455	2.80	9.6740	
061-062	0.127	1.00	0.1270	
064-066	5.420	2.40	13.0080	
067-068	0.116	0.90	0.1044	
072	0.394	0.40	0.1576	
		29.20		
30 - 40E,				
5S			Gr X W	
074	6.230	0.50	3.1150	
076-077	1.716	1.10	1.8876	
078	0.523	0.25	0.1308	
				Weighted Ave Grade
079-080	0.229	0.70	0.1603	8.054 (g/t)
082-083	1.812	1.20	2.1744	0.84 Ave Width (m)
085-086	1.000	1.30	1.3000	over 14m strike length
087-089	19.248	2.35	45.2328	
090	31.820	0.40	12.7280	
092	0.116	1.00	0.1160	

N_Johnson Channel Samples _Aug2013.xls

		8.30			
	40E-44E,				
Shore Vein	12N		Gr X W		
093	0.386	0.60	0.2316		-
095	12.774	0.35	4.4709		
097	1.116	0.30	0.3348		
					Weighted Ave Grade
099	10.122	0.50	5.0610	21.525	(g/t)
100	31.776	0.35	11.1216	0.39	Ave Width (m)
101	85.465	0.40	34.1860	over 7m s	trike length
102	15.149	0.25	3.7873		
		2.75			
Shore Vein	45E-60E,				
Snore vein East	45L-00L, 15N		Gr X W		
103-106	0.25	2.15	0.5375		-
					Weighted Ave Grade
109	0.017	0.90	0.0153	0.220	(g/t)
112	0.053	0.70	0.0371	1.1	Ave Width (m)
115	0.581	0.65	0.3777	over 20m	strike length
		4.40			
Fast Vein	58-103F 2N		Gr X W		
East Vein	58-103E, 2N	0.80	Gr X W		
122	0.012	0.80	0.0096		
122 124	0.012 0.009	0.80	0.0096 0.0072		-
122 124 127	0.012 0.009 0.656	0.80 0.40	0.0096 0.0072 0.2624		
122 124 127 130-132	0.012 0.009 0.656 2.980	0.80 0.40 1.30	0.0096 0.0072 0.2624 3.8740		
122 124 127 130-132 133-134	0.012 0.009 0.656 2.980 0.435	0.80 0.40 1.30 1.10	0.0096 0.0072 0.2624 3.8740 0.4785		
122 124 127 130-132	0.012 0.009 0.656 2.980	0.80 0.40 1.30	0.0096 0.0072 0.2624 3.8740		Weighted Ave Grade
122 124 127 130-132 133-134	0.012 0.009 0.656 2.980 0.435	0.80 0.40 1.30 1.10	0.0096 0.0072 0.2624 3.8740 0.4785	1.272	Weighted Ave Grade (g/t)
122 124 127 130-132 133-134 138	0.012 0.009 0.656 2.980 0.435 0.011	0.80 0.40 1.30 1.10 0.65	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072	1.272 0.82	_
122 124 127 130-132 133-134 138 142-143	0.012 0.009 0.656 2.980 0.435 0.011 4.908	0.80 0.40 1.30 1.10 0.65 1.45	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166	0.82	(g/t)
122 124 127 130-132 133-134 138 142-143 144-146	0.012 0.009 0.656 2.980 0.435 0.011 4.908 0.047	0.80 0.40 1.30 1.10 0.65 1.45 1.90	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166 0.0893	0.82	(g/t) Ave Width (m)
122 124 127 130-132 133-134 138 142-143 144-146 148	0.012 0.009 0.656 2.980 0.435 0.011 4.908 0.047 0.138	0.80 0.40 1.30 1.10 0.65 1.45 1.90 0.30	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166 0.0893 0.0414	0.82	(g/t) Ave Width (m)
122 124 127 130-132 133-134 138 142-143 144-146 148 150	0.012 0.009 0.656 2.980 0.435 0.011 4.908 0.047 0.138 0.045	0.80 0.40 1.30 1.10 0.65 1.45 1.90 0.30 0.50	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166 0.0893 0.0414 0.0225	0.82	(g/t) Ave Width (m)
122 124 127 130-132 133-134 138 142-143 144-146 148 150 152	0.012 0.009 0.656 2.980 0.435 0.011 4.908 0.047 0.138 0.045 0.127	0.80 0.40 1.30 1.10 0.65 1.45 1.90 0.30 0.50	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166 0.0893 0.0414 0.0225 0.0635	0.82	(g/t) Ave Width (m)
122 124 127 130-132 133-134 138 142-143 144-146 148 150 152 156	0.012 0.009 0.656 2.980 0.435 0.011 4.908 0.047 0.138 0.045 0.127 0.127	0.80 0.40 1.30 1.10 0.65 1.45 1.90 0.30 0.50 0.50 0.30	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166 0.0893 0.0414 0.0225 0.0635 0.0441	0.82	(g/t) Ave Width (m)
122 124 127 130-132 133-134 138 142-143 144-146 148 150 152 156 159	0.012 0.009 0.656 2.980 0.435 0.011 4.908 0.047 0.138 0.045 0.127 0.147 0.039	0.80 0.40 1.30 1.10 0.65 1.45 1.90 0.30 0.50 0.50 0.30 0.30 0.40	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166 0.0893 0.0414 0.0225 0.0635 0.0441 0.0156	0.82	(g/t) Ave Width (m)
122 124 127 130-132 133-134 138 142-143 144-146 148 150 152 156 159 162	0.012 0.009 0.656 2.980 0.435 0.011 4.908 0.047 0.138 0.045 0.127 0.147 0.039 2.216	0.80 0.40 1.30 1.10 0.65 1.45 1.90 0.30 0.50 0.50 0.30 0.30 0.40 0.60	0.0096 0.0072 0.2624 3.8740 0.4785 0.0072 7.1166 0.0893 0.0414 0.0225 0.0635 0.0441 0.0156 1.3296	0.82	(g/t) Ave Width (m)

21 APPENDIX C: SAMPLE DESCRIPTIONS & LOCATIONS

Sample#	Field#	QV (%)	Vein Sulphide(%)	Wx Sulphide (%)	Rock Desc	NAD83_EASTING	NAD83_NORTHING	GRID_EAST	GRID_NORTH
1249151	1	10.00	tr-0.2		wk cb altered	_ 664,425.18	_ 5,546,315.24	1.35	-3.29
1249152	2	15.00	tr	0.2-0.5 % ру	wk cb altered	664,425.64	5,546,315.67	1.94	-3.06
1249153	3	5.00		0.5% py	wk cb altered	664,425.55	5,546,316.95	2.30	-1.83
1249154	4	5.00		0.5% py	wk cb altered	664,425.02	5,546,316.48	1.64	-2.07
1249155	5	80.00	0.2% py	2% py	qv	664,426.93	5,546,320.83	4.97	1.30
1249156	6	<5	tr		wk cb altered	664,426.87	5,546,321.78	5.24	2.22
1249157	7	90.00	5.0% py, cp	2-3% py	qv	664,427.06	5,546,322.11	5.54	2.46
1249158	8	40.00	1-3% py	1-3% py	qv	664,427.62	5,546,321.44	5.83	1.63
1249159	9	70.00	1% py	1-5% py	qv	664,427.50	5,546,322.53	6.11	2.69
1249160	10	90.00	1% py	1-3% py	qv	664,428.35	5,546,323.15	7.12	2.97
1249161	11	70.00	1% py	1-3% py	qv	664,431.01	5,546,322.83	9.49	1.73
1249162	12	20.00	1% py	3-5% py	wk cb altered	664,431.27	5,546,323.56	9.99	2.32
1249163	13	90.00	5% py, cp, sp	5% py	qv	664,431.44	5,546,323.08	9.98	1.81
1249164	14	<5		tr	fissile cb alt'd	664,431.78	5,546,322.63	10.14	1.27
1249165	15	<5		tr	fissile cb alt'd	664,432.01	5,546,322.11	10.17	0.70
1249166	16	<5		tr	foliated cb alt'd	664,433.14	5,546,324.25	11.98	2.30
1249167	17	35.00	2-3% py	2-3% py	qv	664,433.34	5,546,323.77	12.01	1.78
1249168	18	10.00	1% py		punky fol'd cb	664,433.58	5,546,323.13	12.00	1.09
1249169	19	10.00		1% py	foliated cb alt'd	664,433.85	5,546,322.41	12.00	0.32
1249170	20	10.00		1% py	foliated cb alt'd	664,434.16	5,546,321.63	12.01	-0.51
1249171	20A				High Standard: GS18 Low Standard:				
1249172	20B				GS23 Blank: Feldspar				
1249173	20C			1.0 5%	Porphyry				
1249174	21	<5		tr-0.5% py	wk cb alt'd	664,434.21	5,546,324.77	13.17	2.41
1249175	22	70.00	1-3% py	1-3% py	qv	664,434.41	5,546,324.17	13.14	1.77
1249176	23	<5		1% py	wk sheared cb	664,434.61	5,546,323.61	13.13	1.18
1249177	24	<5		<1% py	wk sheared cb	664,434.88	5,546,322.94	13.15	0.46
1249178	25	<5		<1% py	wk sheared cb	664,435.21	5,546,322.15	13.18	-0.40
1249179	26	<5		<1% py	wk alt'd, fol'd	664,435.12	5,546,325.73	14.36	2.97
1249180	27	15.00	2-3% py	1-2% py	cb alt'd	664,435.52	5,546,325.20	14.55	2.35
1249181	28	70.00	1-2% py	1-2% py	qv	664,435.82	5,546,324.74	14.66	1.81
1249182	29	15.00		1-2% py	cb alt'd	664,436.10	5,546,324.22	14.74	1.22
1249183	30	40.00	1-2% py	2-3% ру	qv	664,436.36	5,546,323.72	14.81	0.66
1249184	31	<5		<1% py	wk sheared cb	664,436.63	5,546,323.15	14.85	0.03
1249185	32	5.00	tr	<1% py	wk sheared cb	664,437.63	5,546,326.42	16.95	2.73

1220186 33 6.000 p-Serk pr. po. pr or 664.437.71 5.566.323.70 16.77 2.03 1220187 34 7.000 p or 664.437.78 5.566.324.93 17.57 0.66 1240187 35 0.200 tr-1% py tr-1% py whared to 664.437.78 5.566.325.40 17.04 0.66 1240198 35 0.000 5% po.py ork suphdes 664.438.00 5.566.325.40 17.04 0.08 1240191 38 0.000 5% po.py ork suphdes 664.439.55 5.566.325.41 17.04 0.08 1240193 400 15.00 2.78 py baid (nW 664.40.55 5.566.325.10 17.44 0.08 1240194 402 15.00 2.78 py baid (nW 664.40.57 5.566.325.18 19.81 1.38 1249197 41 15.00 2.78 py baid (nW 664.41.91 5.566.325.18 19.81 0.07 1249197 41 15.00 2.78 py baid (nW 664.41.42 5.566.325.29 1.03 0.02						sulphide wx to				
1249188 35 20.00 tr.1% py wt.sheared ch 664,438.47 5,546,324.53 17.07 0.66 1249189 36 15.00 5% po,py qv & suphides 664,438.00 5,546,324.51 11.00 1.24 1249190 37 80.00 5% po,py qv & suphides 664,439.00 5,546,324.51 11.00 1.44 1249192 40 15.00 2.37 py ch at'd, FW 664,439.15 5,546,325.54 18.08 1.44 1249197 40 15.00 2.37 py ch at'd, FW 664,440.55 5,546,325.54 19.81 1.83 1249197 41 15.00 2.37 py 2.37 py ch at'd, FW 664,441.42 5,546,325.55 19.91 0.47 1249197 41 5.00 2.37 py 2.37 py ch at'd p dip 664,441.42 5,546,325.55 19.91 0.47 1249197 41 4.00 2.37 py 2.37 py ch at'd, HW 664,441.42 5,546,325.35 19.91 0.47 1249197 43 4.00 2.38 py 2.38 py ch at'd, HW	1249186	33	60.00		5% py		664,437.71	5,546,325.70	16.77	2.03
1249199 36 15.00 1.2% py cb alt'd 664,438.00 5,546,326.48 18.06 2.37 1249190 37 80.00 5% po.pr or & suphides 664,439.00 5,546,325.00 17.94 1.48 1249191 38 90.00 5% po.pr or & suphides 664,439.00 5,546,325.01 17.84 -0.08 1249192 40 15.00 2.3% py ob alt'd. FW 664,4055 5,546,326.01 13.80 2.09 1249197 40 15.00 2.3% py ob alt'd. FW 664,410.55 5,546,326.01 19.81 1.39 1249197 41 15.00 2.3% py 0.3% py 70% 664,410.18 5,546,326.01 19.81 0.03 1249197 41 15.00 2.3% py 0.3% py 70% 664,411.2 5,546,325.30 19.91 0.04 1249197 41 15.00 2.3% py 0.31'd 664,412.4 5,546,325.45 19.81 0.02 1249200 44 .55 .566,325.35 19.91 0.04 .04'd.14'HW 664,442.35 <t< td=""><td>1249187</td><td>34</td><td>70.00</td><td>ср</td><td></td><td>qv</td><td>664,437.78</td><td>5,546,324.93</td><td>16.56</td><td>1.29</td></t<>	1249187	34	70.00	ср		qv	664,437.78	5,546,324.93	16.56	1.29
1249190 37 80.00 $5x p_0, p_0$ qv & sulphides 664,439.00 5.546,325.60 17.94 1.48 1249191 38 80.00 $5x p_0, p_0$ qv & sulphides 664,439.13 5.546,325.61 18.08 1.44 1249192 39 5.50 17 64 alf 4.FV 664,439.15 5.546,325.61 17.84 -0.08 1249192 40A 15.0 12.9 66 alf 4.FV $664,410.55$ $5.546,325.68$ 19.83 2.09 1249195 40A 15.0 $2.3k p_7$ $2.3k p_7$ $652,414.97$ $664,440.25$ $5.546,325.48$ 19.81 1.39 1249198 42 40.00 $2.3k p_7$ $2.3k p_7$ cb	1249188	35	20.00	tr-1% py	tr-1% py	wk sheared cb	664,438.47	5,546,324.53	17.07	0.66
1249191 38 80.00 S%po,p) qv & suphides 664,439.15 5.546,325.61 18.08 1.44 1249192 39 5.00 tr 664,439.15 5.546,326.14 17.84 0.08 1249193 40 1500 2.3% py ch alt's, FW 664,440.55 5.546,326.84 19.83 2.09 1249195 400 2.3% py ch alt's, FW 664,440.55 5.546,326.84 19.83 2.09 1249197 41 1500 2.3% py ch alt's, FW 664,441.42 5.546,326.18 19.81 1.39 1249197 41 1500 2.3% py ch alt'd, HW 664,441.42 5.546,326.5 19.81 0.27 1249200 44 -5 2.3% py ch alt'd, HW 664,441.43 5.546,325.59 12.02 0.04 1249201 45 40.00 -2.7% py ch alt'd, HW 664,441.43 5.546,325.20 21.08 0.04 1249201 46 70.00 3.5% py ch alt'd, HW 664,442.43 5.546,325.02 21.45 1.28 1249205 5.960.27	1249189	36	15.00		1-2% py	cb alt'd	664,438.80	5,546,326.48	18.06	2.37
1219132 39 5.00 tr 664,433.46 5,546,324.10 17.84 -0.08 1249133 40 15.00 2.3% py ch alt'd, FW 664,440.55 5,546,326.84 19.83 2.09 1249136 408	1249190	37	80.00		5% ро,ру	qv & sulphides	664,439.00	5,546,325.60	17.94	1.48
1249193 40 15.00 2.3% py cb alt 0, FW 664.440.55 5,546,326.84 19.83 2.09 1249195 400 2.3% py 3.5% py 705 664.440.75 5,546,326.18 19.81 1.39 1249197 41 15.00 2.3% py 3.5% py 705 664.440.78 5,546,326.18 19.81 1.39 1249198 42 40.00 2.3% py 2.3% py cb alt 0, troup 0, role of alt 0, fwe prophy 664,441.42 5,546,326.48 19.81 -0.39 1249200 44 c5 2.3% py cb alt 0, twe prophy 664,441.42 5,546,325.36 19.81 -0.09 1249201 45 40.00 Image cb alt 0, FW cb alt 0, FW 664,442.35 5,546,325.36 12.60 -0.01 1249201 45 40.00 Image cb alt 0, FW cb alt 0, FW 664,442.35 5,546,325.36 12.60 -0.01 1249201 48 10.00 1.2% py cb alt 0, FW cb alt 1, FW	1249191	38	80.00		5% po, py	qv & sulphides	664,439.15	5,546,325.61	18.08	1.44
High Standard: Cox Standard: GS32 1229195 408 High Standard: GS32 1229196 400 Standard: GS32 1229197 41 15.00 2.3% py 2.3% py 43 5.5% py 2.3% py 43 664,440.78 5.546,325.35 19.91 0.47 1249199 43 <5 2.3% py 43 2.3% py 43 vs/x 664,441.42 5.546,325.35 19.91 0.47 1249200 44 <5 T 2.3% py 5.5% py p, p, p, p, q, sulphides 664,441.42 5.546,325.36 21.80 -0.27 1249201 45 40.00 T r cb alt'd, HW 664,443.22 5.546,325.36 21.80 -0.24 1249201 48 10.00 1.2% py cb alt'd, HW 664,443.22 5.546,325.36 21.80 -0.24 1249204 48 10.00 1.2% py cb alt'd, FW 664,443.22 5.546,325.20 21.49 -0.31 1249205 5.90 1.2% py cb alt'd, FW 664,445.30 5.546,325.20 21.49 -0.31 <td>1249192</td> <td>39</td> <td>5.00</td> <td></td> <td>tr</td> <td></td> <td>664,439.46</td> <td>5,546,324.10</td> <td>17.84</td> <td>-0.08</td>	1249192	39	5.00		tr		664,439.46	5,546,324.10	17.84	-0.08
1232194 AA GS is boundard of the standard of the s	1249193	40	15.00		2-3% py	,	664,440.55	5,546,326.84	19.83	2.09
Bank Fieldgar Porphy Bank Fieldgar Porphy Colspan="4">Colspan= Porphy 129195 41 15.00 2.3% py 3.5% py 705 OV, fort ch aird OV, fort ch aird 664,440.78 5,546,326.18 19.81 1.39 129199 43 - 2.3% py 0 aird 664,441.42 5,546,325.35 19.91 0.47 1249200 44 -5 -2.3% py 0 aird HW 664,441.42 5,546,323.38 19.84 -0.93 1249201 45 40.00 - p_0 v.sulphides 664,441.43 5,546,323.53 21.60 -0.24 1249201 46 70.00 - T v.sulphides 664,442.31 5,546,325.50 21.49 -0.24 1249203 47 -5 T v.sulphides 664,442.31 5,546,325.50 21.49 -0.24 1249204 48 10.00 1-2% py 2.3% py c.aird, FW 664,442.31 5,546,326.20 23.52 -0.24 1249205 5.1	1249194	40A				GS18				
1249197 41 15.00 2.3% py 3% py 70_5 or 0_{ch} or 10^{ch} or 0_{ch} or 10^{ch} o	1249195	40B								
1249197 41 15.00 2.3% py 3.5% py 705 664,440.78 5.546,326.18 19.81 1.39 1249198 42 40.00 2.3% py 2.3% py chaird 664,441.19 5.546,325.35 19.91 0.47 1249190 43 <5	1249196	40C				Porphyry				
1249199 43 $< S$ $2.3\% pr$ cb alt'd $664,441,42$ $5,546,324,65$ 19.87 -0.27 1249200 44 $< S$ tr cb alt'd, HW $664,441,64$ $5,546,323,98$ 19.84 -0.98 1249201 45 40.00 pc, pr qv , sulphides $664,442,43$ $5,546,325,29$ 21.03 -0.04 1249202 46 70.00 $1.2\% pr$ qv sulphides $664,442,23$ $5,546,327,35$ 21.36 0.24 1249203 47 $< S$ tr cb alt'd, FW $664,442,35$ $5,546,327,35$ 21.36 0.24 1249204 48 10.00 $1.2\% pr$ $1.2\% pr$ qv $664,442,35$ $5,546,325,20$ 21.49 -0.31 1249205 50 5.00 $1.2\% pr$ $2.3\% pr$ c balt'd, FW $664,445,30$ $5,546,325,30$ 23.52 -0.20 1249205 53 90.00 $3.5\% pr$ $1.2\% pr$ c balt'd, FW $664,445,30$ $5,546,325,30$ 23.62 -1.07 1249205 53 90.00	1249197	41	15.00	2-3% ру	3-5% py	70S	664,440.78	5,546,326.18	19.81	1.39
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1249198	42	40.00	2-3% py	2-3% py	wx	664,441.19	5,546,325.35	19.91	0.47
12492014540.00 \cdot p_0 , p_0 , p_1 , p_2 , p_2 , q_2 , sulphides $664,42.43$ $5,546,325.29$ 21.03 -0.04 124920246 70.00 \cdot p_0 q_2 & sulphides $664,42.23$ $5,546,325.36$ 21.80 -0.24 124920347 < 5 trthe daltd, FW $664,442.23$ $5,546,325.66$ 21.45 1.28 124920448 10.00 $1-28$, p_2 p	1249199	43	<5		2-3% py	cb alt'd	664,441.42	5,546,324.65	19.87	-0.27
1249201 45 4.0.00 po, cp qv, sulphides 664,442.43 5,546,325.29 21.03 -0.04 1249202 46 70.00 po, cp qv & sulphides 664,443.22 5,546,325.36 21.80 -0.24 1249203 47 <5	1249200	44	<5			cb alt'd, HW	664,441.64	5,546,323.98	19.84	-0.98
1249202 46 70.00 po qv & sulphides 664,43.22 5,546,325.36 21.80 -0.24 1249203 47 <5	1249201	45	40.00		po, cp	qv, sulphides	664,442.43	5,546,325.29	21.03	-0.04
1249204 48 10.00 1-2% py 1-2% py cb alt'd 664,442.35 5,546,326.66 21.45 1.28 1249205 49 70.00 3-5% py qv 664,442.95 5,546,325.20 21.49 -0.31 1249206 50 5.00 1-2% py 2-3% py cb alt'd, HW 664,442.95 5,546,324.49 21.50 -1.07 1249207 51 5.00 tr tr cb alt'd 664,445.04 5,546,326.02 23.52 -0.20 1249208 52 20.00 1-2% py 1-2% py cb alt'd, FW 664,445.04 5,546,325.53 23.52 -0.74 1249209 53 90.00 3-5% py 1/2% py dip sample 664,445.30 5,546,325.53 23.62 -1.30 1249211 55 90.00 3-5% py 3/5% py dip of vein 664,445.33 5,546,325.53 25.31 -1.40 1249212 56 1.00 - 1-2% py dip of vein 664,450.34 5,546,325.53 25.31 -1.40 1249212 59 0.00 3-5% py <td>1249202</td> <td>46</td> <td>70.00</td> <td></td> <td></td> <td>qv & sulphides</td> <td>664,443.22</td> <td>5,546,325.36</td> <td>21.80</td> <td>-0.24</td>	1249202	46	70.00			qv & sulphides	664,443.22	5,546,325.36	21.80	-0.24
1249205 49 70.00 3-5% pv qv 664,442.95 5,546,325.20 21.49 -0.1 1249206 50 5.00 1-2% pv 2-3% pv cb alt'd, HW 664,442.95 5,546,325.20 21.49 -0.20 1249207 51 5.00 tr tr cb alt'd 664,443.24 5,546,325.02 23.52 -0.20 1249208 52 20.00 1-2% pv cb alt'd, FW 664,445.04 5,546,325.53 23.62 -1.30 1249209 53 90.00 3-5% pv 1% pv dip sample 664,445.04 5,546,325.53 23.62 -1.30 1249210 54 70.00 3-5% pv qv qv 664,445.30 5,546,325.53 25.31 -1.40 1249211 55 90.00 3-5% pv dip of vein 664,445.94 5,546,325.63 25.64 -1.30 1249212 56 1.00 1-2% pv ob alt'd 664,450.34 5,546,326.22 29.71 -0.20 1249213 57 5.00 1-2% pv abared cb alt'd 664,452.93 5,546,331.	1249203	47	<5		tr	cb alt'd, FW	664,441.99	5,546,327.35	21.36	2.05
1249206 50 5.00 1-2% py 2-3% py cb alt'd, HW 664,432,24 5,546,324.49 21.50 -1.07 1249207 51 5.00 tr tr cb alt'd 664,443.24 5,546,326.02 23.52 -0.20 1249208 52 20.00 1-2% py 1-2% py cb alt'd, FW 664,445.04 5,546,325.02 23.62 -1.30 1249209 53 90.00 3-5% py 1% py dip sample 664,445.30 5,546,325.02 23.62 -1.30 1249210 54 70.00 3-5% py 1% py dip sample 664,445.30 5,546,325.53 25.31 -1.40 1249211 55 90.00 3-5% py 3-5% py dip of vein 664,445.94 5,546,325.53 25.31 -1.40 1249212 56 1.00 1-2% py bat'd 664,450.34 5,546,325.63 29.64 1.34 1249213 57 5.00 1-2% py gv Tv 158 664,450.34 5,546,331.09 32.83 1.68 1249214 58 80.00 1-2% py	1249204	48	10.00	1-2% py	1-2% py	cb alt'd	664,442.35	5,546,326.66	21.45	1.28
1249207515.00trtrtrcb alt'd664,448.815,546,326.0223.52-0.2012492085220.001-2% py1-2% pycb alt'd, FW q' TW 20cm, q' TW 20cm, dip sample664,445.045,546,325.5323.56-0.7412492095390.003-5% py1% pydip sample664,445.305,546,325.5223.62-1.3012492105470.003-5% py3-5% pydip sample664,445.335,546,322.5325.31-1.401249212561.003-5% py3-5% pycb alt'd664,445.945,546,328.8129.641.341249213575.001-2% pycb alt'd664,450.945,546,328.8129.690.4412492145880.001-2% pyqvqv664,450.995,546,328.2229.71-0.20124921559<5	1249205	49	70.00	3-5% py		qv	664,442.95	5,546,325.20	21.49	-0.31
12492085220.00 $1-2\%$ py $1-2\%$ py $1-2\%$ py 0^{4} TW 20cm, q' TW 20cm, dip sample $664,445.04$ $5,546,325.53$ 23.56 -0.74 12492105390.00 $3-5\%$ py 1% py 1% py 0^{4} TW 15cm, q' TW 15cm, dip of vein $664,445.30$ $5,546,325.53$ 23.62 -1.30 12492115590.00 $3-5\%$ py $3-5\%$ py 0^{4} TW 15cm, q' TW 15cm, dip of vein $664,445.33$ $5,546,325.53$ 25.31 -1.40 1249212561.00 -2.5% py $1-2\%$ py ba' do ba' d $664,450.34$ $5,546,326.63$ 29.64 -1.40 124921357 5.00 -1.2% py ba' do ba' d $664,450.34$ $5,546,328.22$ 29.71 -0.20 124921458 80.00 $1-2\%$ py $1-2\%$ py qv $664,450.59$ $5,546,331.08$ 32.94 -1.75 124921559 <5 trfissile chalt'd $664,452.93$ $5,546,331.09$ 32.83 1.68 1249217 $60c$ -5 trfissile chalt'd $664,452.83$ $5,546,330.59$ 33.56 0.87 1249219 $60c$ -5 trfissile chalt'd $664,453.81$ $5,546,330.59$ 33.56 0.87 1249219 $60c$ -5 trfissile chalt'd $664,453.81$ $5,546,330.59$ 33.56 0.87 1249219 $60c$ -5 trfissile chalt'd $664,453.81$ $5,546,330.59$ 33.66 0.87 124	1249206	50	5.00	1-2% py	2-3% py	cb alt'd , HW	664,443.24	5,546,324.49	21.50	-1.07
12492095390.00 $3-5\%$ py 1% py 1% py qv rW 20cm, dip sample $664,445.30$ $5,546,325.02$ 23.62 -1.30 12492105470.00 $3-5\%$ py qv rW 15cm, qv rW 1	1249207	51	5.00	tr	tr	cb alt'd	664,444.81	5,546,326.02	23.52	-0.20
12492095390.00 $3-5\%$ py1% pydip sample $664,445.30$ $5,546,325.02$ 23.62 -1.30 1249210 54 70.00 $3-5\%$ py $3-5\%$ py qv $qv - TW 15cm,$ $qv - TW 15cm,$ $qv - TW 15cm,$ $664,445.33$ $5,546,325.53$ 25.31 -1.40 1249212 56 1.00 -5.5% py dip of vein $664,446.91$ $5,546,325.53$ 29.64 1.34 1249213 57 5.00 -1.2% py cb alt'd $664,450.34$ $5,546,328.81$ 29.69 0.44 1249214 58 80.00 $1-2\%$ py $1-2\%$ py qv $664,450.59$ $5,546,328.22$ 29.71 -0.20 1249215 59 <5 trfissile cb alt'd $664,452.93$ $5,546,331.18$ 32.94 1.75 1249216 60 <5 trfissile cb alt'd $664,452.93$ $5,546,331.18$ 32.94 1.75 1249217 $60A$ -5 trfissile cb alt'd $664,452.93$ $5,546,331.09$ 32.83 1.68 1249218 60 -5 trfissile cb alt'd $664,452.83$ $5,546,330.49$ 33.56 0.87 1249219 $60C$ -12% pytrsheared cb alt'd $664,453.74$ $5,546,330.49$ 33.46 0.87 1249210 61 5.00 trtrsheared cb alt'd $664,453.74$ $5,546,330.49$ 33.46 0.87 1249220 61 5.00 trtrsheared cb alt'd $664,453.74$ <td>1249208</td> <td>52</td> <td>20.00</td> <td>1-2% py</td> <td>1-2% py</td> <td></td> <td>664,445.04</td> <td>5,546,325.53</td> <td>23.56</td> <td>-0.74</td>	1249208	52	20.00	1-2% py	1-2% py		664,445.04	5,546,325.53	23.56	-0.74
1249211 55 90.00 3-5% py 3-5% py dip of vein 664,446.91 5,546,325.53 25.31 -1.40 1249212 56 1.00 1-2% py cb alt'd 664,449.98 5,546,329.63 29.64 1.34 1249213 57 5.00 1-2% py sheared cb alt'd 664,450.34 5,546,328.21 29.69 0.44 1249214 58 80.00 1-2% py 1-2% py qv 664,450.59 5,546,328.22 29.71 -0.20 1249215 59 <5	1249209	53	90.00	3-5% py	1% py	•	664,445.30	5,546,325.02	23.62	-1.30
1249211 55 90.00 3-5% py dip of vein 664,446.91 5,546,325.53 25.31 -1.40 1249212 56 1.00 1-2% py cb alt'd 664,449.98 5,546,329.63 29.64 1.34 1249213 57 5.00 1-2% py sheared cb alt'd 664,450.34 5,546,328.81 29.69 0.44 1249214 58 80.00 1-2% py qv 664,450.59 5,546,338.22 29.71 -0.20 1249215 59 <5	1249210	54	70.00	3-5% py		•	664,445.53	5,546,324.51	23.65	-1.87
1249213 57 5.00 1-2% py sheared cb alt'd 664,450.34 5,546,328.81 29.69 0.44 1249214 58 80.00 1-2% py qv 664,450.59 5,546,328.22 29.71 -0.20 1249215 59 <5	1249211	55	90.00	3-5% py	3-5% py	•	664,446.91	5,546,325.53	25.31	-1.40
1249214 58 80.00 1-2% py 1-2% py qv 664,450.59 5,546,328.22 29.71 -0.20 1249215 59 <5	1249212	56	1.00		1-2% py	cb alt'd	664,449.98	5,546,329.63	29.64	1.34
1249215 59 <5	1249213	57	5.00		1-2% py	sheared cb alt'd	664,450.34	5,546,328.81	29.69	0.44
124921660<5trfissile cb alt'd High Standard: GS18 Low Standard: GS23 Blank: Feldspar Porphyry664,452.835,546,331.0932.831.681249219608 <td>1249214</td> <td>58</td> <td>80.00</td> <td>1-2% py</td> <td>1-2% py</td> <td>qv</td> <td>664,450.59</td> <td>5,546,328.22</td> <td>29.71</td> <td>-0.20</td>	1249214	58	80.00	1-2% py	1-2% py	qv	664,450.59	5,546,328.22	29.71	-0.20
High Standard: GS18 1249217 60A GS18 1249218 60B GS23 1249219 60C Blank: Feldspar Porphyry 1249220 61 5.00 tr sheared cb alt'd 664,453.81 5,546,330.59 33.56 0.87 1249221 62 5.00 tr sheared cb alt'd 664,453.74 5,546,330.49 33.46 0.80 1249222 63 <5	1249215	59	<5		tr	fissile cb alt'd	664,452.93	5,546,331.18	32.94	1.75
1249217 60A GS18 1249218 60B GS23 1249219 60C Blank: Feldspar Porphyry 1249220 61 5.00 tr sheared cb alt'd 664,453.81 5,546,330.59 33.56 0.87 1249221 62 5.00 tr sheared cb alt'd 664,453.74 5,546,330.49 33.46 0.80 1249222 63 <5	1249216	60	<5		tr	fissile cb alt'd	664,452.83	5,546,331.09	32.83	1.68
1249218 60B GS23 1249219 60C Blank: Feldspar Porphyry 1249220 61 5.00 tr sheared cb alt'd 664,453.81 5,546,330.59 33.56 0.87 1249221 62 5.00 tr sheared cb alt'd 664,453.74 5,546,330.49 33.46 0.80 1249222 63 <5	1249217	60A				GS18				
1249219 60C Porphyry 1249220 61 5.00 tr sheared cb alt'd 664,453.81 5,546,330.59 33.56 0.87 1249221 62 5.00 tr sheared cb alt'd 664,453.74 5,546,330.49 33.46 0.80 1249222 63 <5	1249218	60B				GS23				
1249221 62 5.00 tr sheared cb alt'd 664,453.74 5,546,330.49 33.46 0.80 1249222 63 <5	1249219	60C								
1249222 63 <5 tr cb alt'd 664,454.35 5,546,330.06 33.87 0.19	1249220	61	5.00		tr	sheared cb alt'd	664,453.81	5,546,330.59	33.56	0.87
	1249221	62	5.00		tr	sheared cb alt'd	664,453.74	5,546,330.49	33.46	0.80
1249223 64 10.00 2-3% py 1% py cb alt'd 664,454.53 5,546,332.90 35.05 2.78	1249222	63	<5		tr	cb alt'd	664,454.35	5,546,330.06	33.87	0.19
	1249223	64	10.00	2-3% py	1% py	cb alt'd	664,454.53	5,546,332.90	35.05	2.78

					qv & sheared				
1249224	65	60.00	2-5% py	5-8% py	wx	664,455.07	5,546,332.27	35.32	2.00
1249225	66	5.00		tr	cb alt'd wx	664,455.52	5,546,331.80	35.58	1.40
1249226	67	20.00		1-2% py	cb alt'd	664,456.45	5,546,333.52	37.06	2.68
1249227	68	20.00		1-2% py	cb alt'd	664,456.53	5,546,333.55	37.15	2.68
1249228	69	<5		tr	cb alt'd	664,457.33	5,546,332.81	37.63	1.70
1249229	70	<5		tr	cb alt'd	664,457.44	5,546,332.87	37.75	1.72
1249230	71	<5		tr	Feldspar Porphyry sheared FP &	664,458.66	5,546,335.58	39.86	3.81
1249231	72	60.00	2-3% py	1% py	QV Feldspar	664,458.94	5,546,335.19	39.98	3.35
1249232	73	<5		tr py	Porphyry	664,459.50	5,546,334.29	40.19	2.31
1249233	74	90.00	1% py		qv - "fold nose"	664,459.11	5,546,334.89	40.04	3.01
1249234	75	10.00	2-3% py	tr tr-0.5%	cb alt'd, FW	664,451.31	5,546,325.83	29.53	-2.69
1249235	76	40.00	1-2% py	py tr-0.5%	qv - "fold nose"	664,451.56	5,546,325.58	29.67	-3.01
1249236	77	10.00		ру	cb alt'd, HW	664,451.90	5,546,325.19	29.85	-3.50
1249237	78	80.00	tr-0.5% py		qv - styolites	664,452.22	5,546,325.60	30.31	-3.23
1249238	79	80.00	tr-0.5% py		qv - styolites	664,453.10	5,546,325.59	31.12	-3.55
1249239	80	<5		tr	cb alt'd, HW	664,452.93	5,546,324.98	30.74	-4.05
1249240	80A				High Standard: GS18				
1249241	80B				Low Standard: GS23				
					Blank: Feldspar				
1249242	800				Porphyry				
1249242 1249243	80C 81	<5		tr	Porphyry cb alt'd, FW	664,454.51	5,546,326.07	32.61	-3.60
		<5 70.00	<0.5	tr		664,454.51 664,454.52	5,546,326.07 5,546,325.69	32.61 32.49	-3.60 -3.97
1249243	81		<0.5	tr tr	cb alt'd, FW				
1249243 1249244	81 82	70.00	<0.5		cb alt'd, FW QV	664,454.52	5,546,325.69	32.49	-3.97
1249243 1249244 1249245	81 82 83	70.00 <5	<0.5 2-3%	tr	cb alt'd, FW QV cb alt'd, HW	664,454.52 664,454.49	5,546,325.69 5,546,325.11	32.49 32.25	-3.97 -4.49
1249243 1249244 1249245 1249246	81 82 83 84	70.00 <5 10.00		tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW	664,454.52 664,454.49 664,456.04	5,546,325.69 5,546,325.11 5,546,325.79	32.49 32.25 33.94	-3.97 -4.49 -4.41
1249243 1249244 1249245 1249246 1249247	81 82 83 84 85	70.00 <5 10.00 90.00		tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV	664,454.52 664,454.49 664,456.04 664,456.04	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40	32.49 32.25 33.94 33.80	-3.97 -4.49 -4.41 -4.78
1249243 1249244 1249245 1249246 1249247 1249248	81 82 83 84 85 86	70.00 <5 10.00 90.00 <5		tr tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW	664,454.52 664,454.49 664,456.04 664,456.04 664,456.04	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71	32.49 32.25 33.94 33.80 33.56	-3.97 -4.49 -4.41 -4.78 -5.42
1249243 1249244 1249245 1249246 1249247 1249248 1249249	81 82 83 84 85 86 87	70.00 <5 10.00 90.00 <5 5.00	2-3%	tr tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW cb alt'd, FW	664,454.52 664,454.49 664,456.04 664,456.04 664,456.04 664,458.02	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,326.08	32.49 32.25 33.94 33.80 33.56 35.90	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250	81 82 83 84 85 86 87 88	70.00 <5 10.00 90.00 <5 5.00 80.00	2-3%	tr tr tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW cb alt'd, FW qv - sulphides	664,454.52 664,454.49 664,456.04 664,456.04 664,456.04 664,458.02 664,458.08	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,326.08 5,546,325.51	32.49 32.25 33.94 33.80 33.56 35.90 35.75	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251	81 82 83 84 85 86 87 88 88	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00	2-3% 3-5% ру, ро	tr tr tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW cb alt'd, FW qv - sulphides cb alt'd, HW	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,326.08 5,546,325.51 5,546,324.90	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252	81 82 83 84 85 86 87 88 88 89 90	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00 70.00	2-3% 3-5% ру, ро	tr tr tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW cb alt'd, FW qv - sulphides cb alt'd, HW qv - fol'd	664,454.52 664,456.04 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,326.08 5,546,325.51 5,546,325.51 5,546,324.90 5,546,327.09	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.40
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253	81 82 83 84 85 86 87 88 89 90 91	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00 70.00 <5	2-3% 3-5% ру, ро	tr tr tr tr tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW cb alt'd, FW qv - sulphides cb alt'd, HW qv - fol'd cb alt'd sheared	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.80	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,326.08 5,546,325.51 5,546,324.90 5,546,327.09 5,546,327.75	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.40 -4.99
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253 1249253	81 82 83 84 85 86 87 88 89 90 91 92	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00 70.00 <5 5.00	2-3% 3-5% ру, ро 2-3% ру	tr tr tr tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW cb alt'd, FW qv - sulphides cb alt'd, HW qv - fol'd cb alt'd sheared qcb vnl't, HW	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.80 664,463.07	5,546,325.69 5,546,325.11 5,546,325.79 5,546,324.71 5,546,326.08 5,546,325.51 5,546,325.51 5,546,327.09 5,546,327.75 5,546,327.15	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96 41.00	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.98 -5.40 -4.99 -5.64
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253 1249253 1249254 1249255	81 82 83 84 85 86 87 88 89 90 91 91 92 93	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00 70.00 <5 5.00 60.00	2-3% 3-5% ру, ро 2-3% ру	tr tr tr tr tr tr 3% py	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, HW cb alt'd, FW qv - sulphides cb alt'd, HW qv - fol'd cb alt'd sheared qcb vnl't, HW qv - styolites	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.80 664,462.80 664,463.07 664,455.93	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,326.08 5,546,325.51 5,546,327.09 5,546,327.75 5,546,327.15 5,546,346.54	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96 41.00 41.20	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.40 -4.99 -5.64 15.04
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253 1249254 1249255 1249255	81 82 83 84 85 86 87 88 89 90 91 91 92 93 94	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00 <5 5.00 60.00 5.00	2-3% 3-5% ру, ро 2-3% ру 1% ру	tr tr tr tr tr tr 3% py tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, FW qv - sulphides cb alt'd, FW qv - fol'd cb alt'd sheared qcb vnl't, HW qv - styolites cb alt'd	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.80 664,463.07 664,455.93 664,456.23	5,546,325.69 5,546,325.11 5,546,325.79 5,546,324.71 5,546,326.08 5,546,325.51 5,546,325.51 5,546,327.09 5,546,327.09 5,546,327.15 5,546,346.54 5,546,345.74	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96 41.00 41.20 41.19	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.40 -4.99 -5.64 15.04 14.18
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253 1249255 1249255 1249255	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00 70.00 <5 5.00 60.00 5.00 75.00	2-3% 3-5% py, po 2-3% py 1% py tr-1% py tr py	tr tr tr tr tr tr 3% py tr tr tr tr y	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, FW qv - sulphides cb alt'd, FW qv - fol'd cb alt'd sheared qcb vnl't, HW qv - styolites cb alt'd	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.80 664,462.80 664,455.93 664,455.93 664,456.23	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,324.71 5,546,325.51 5,546,325.51 5,546,327.09 5,546,327.15 5,546,345.74 5,546,345.74 5,546,346.04	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96 41.00 41.20 41.19 41.56	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.98 -5.40 -4.99 -5.64 15.04 14.18 14.36 13.30
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253 1249255 1249255 1249255 1249257 1249257	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	70.00 <5 10.00 90.00 <5 5.00 70.00 5.00 60.00 5.00 75.00 5.00	2-3% 3-5% py, po 2-3% py 1% py tr-1% py	tr tr tr tr tr tr 3% py tr tr	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, FW qv - sulphides cb alt'd, HW qv - fol'd cb alt'd sheared qcb vnl't, HW qv - styolites cb alt'd	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.20 664,463.07 664,455.93 664,456.23 664,456.51 664,456.73	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,326.08 5,546,325.51 5,546,327.09 5,546,327.09 5,546,327.15 5,546,345.74 5,546,345.74 5,546,345.00	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96 41.00 41.20 41.19 41.56 41.40	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.98 -5.40 -4.99 -5.64 15.04 14.18 14.36
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253 1249254 1249255 1249255 1249256 1249257 1249258 1249259 1249260	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	70.00 <5 10.00 90.00 <5 5.00 70.00 5.00 5.00 5.00 5.00 80.00 5.00	2-3% 3-5% py, po 2-3% py 1% py tr-1% py tr py tr py tr py, cp tr py	tr tr tr tr tr tr 3% py tr tr tr tr tr py tr py	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, FW qv - sulphides cb alt'd, FW qv - fol'd cb alt'd sheared qcb vnl't, HW qv - styolites cb alt'd qv cb wx qv - py, cp, vg cb alt'd	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.26 664,462.80 664,455.93 664,456.23 664,456.73 664,456.73 664,457.13	5,546,325.69 5,546,325.11 5,546,325.79 5,546,324.71 5,546,324.71 5,546,325.51 5,546,325.51 5,546,327.09 5,546,327.09 5,546,327.15 5,546,345.74 5,546,345.74 5,546,345.00 5,546,345.00	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96 41.00 41.20 41.19 41.56 41.40 41.91 42.28	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.98 -5.40 -4.99 -5.64 15.04 14.18 14.36 13.30 13.53 13.81
1249243 1249244 1249245 1249246 1249247 1249248 1249249 1249250 1249251 1249252 1249253 1249255 1249255 1249255 1249257 1249258 1249259	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	70.00 <5 10.00 90.00 <5 5.00 80.00 5.00 70.00 <5 5.00 60.00 5.00 75.00 80.00	2-3% 3-5% py, po 2-3% py 1% py tr-1% py tr py tr py tr py, cp	tr tr tr tr tr tr 3% py tr tr tr tr tr py tr py	cb alt'd, FW QV cb alt'd, HW cb alt'd, FW QV cb alt'd, FW qv - sulphides cb alt'd, HW qv - fol'd cb alt'd sheared qcb vnl't, HW qv - styolites cb alt'd qv cb alt'd	664,454.52 664,454.49 664,456.04 664,456.04 664,458.02 664,458.08 664,458.11 664,462.26 664,462.80 664,462.80 664,455.93 664,455.93 664,456.51 664,456.73 664,457.13	5,546,325.69 5,546,325.11 5,546,325.79 5,546,325.40 5,546,324.71 5,546,324.71 5,546,325.51 5,546,325.51 5,546,327.09 5,546,327.15 5,546,345.74 5,546,345.74 5,546,345.74	32.49 32.25 33.94 33.80 33.56 35.90 35.75 35.56 40.22 40.96 41.00 41.20 41.19 41.56 41.40 41.91	-3.97 -4.49 -4.41 -4.78 -5.42 -4.84 -5.39 -5.98 -5.98 -5.40 -4.99 -5.64 15.04 14.18 14.36 13.30 13.53

					High Standard:				
1249263	100A				GS18 Low Standard:				
1249264	100B				GS23				
1249265	100C				Blank: Feldspar Porphyry				
1249266	101	90.00	1-2% py, tr cp		qv - nose, cp, vg	664,458.98	5,546,343.13	42.83	
1249267	102	90.00	1% ру, ср		qv - styolites cb alt'd,	664,459.74	5,546,343.25	43.60	
1249268	103	<5		tr	sheared	664,461.48	5,546,345.04	45.86	
1249269	104	40.00	tr	tr	qv	664,461.84	5,546,344.68	46.06	
1249270	105	<5	tr	tr	cb alt'd shear	664,462.15	5,546,344.38	46.24	
1249271	106	5.00		tr-0.5% py	cb alt'd shear	664,462.60	5,546,343.94	46.50	
1249272	107	5.00	tr	tr		664,464.91	5,546,351.53	51.36	
1249273	108	10.00	tr	tr	cb alt'd shear	664,464.98	5,546,350.76	51.15	
1249274	109	15.00	0.5% py	tr	cb alt'd shear	664,465.10	5,546,350.02	50.99	
1249275	110	<5		tr	cb alt'd shear	664,470.49	5,546,352.76	57.01	
1249276	111	15.00		2-3% py	cb alt'd & qv	664,470.80	5,546,352.00	57.03	
1249277	112	10.00		tr	cb alt'd	664,471.08	5,546,351.19	57.01	
1249278	113	<5	tr	tr		664,471.82	5,546,353.31	58.44	
1249279	114	20.00	tr	tr	qv & wx	664,472.06	5,546,352.57	58.40	
1249280	115	15.00	tr	tr	vn - wk limonitic stain	664,472.26	5,546,351.93	58.37	
1249281	116	15.00	tr	tr	wk cb shear fol'd vn in cb	664,475.49	5,546,356.27	62.93	
1249282	117	20.00	tr	tr	shear	664,475.73	5,546,355.71	62.95	
1249283	118	15.00	tr	tr	cb alt'd shear	664,476.34	5,546,355.38	63.40	
1249284	119	15.00	tr	tr	cb alt'd shear & qv	664,477.81	5,546,355.87	64.95	
1249285	120	<5	tr	tr	cb alt'd shear	664,475.73	5,546,341.37	57.86	
1249286	120A				High Standard: GS18				
1249287	120B				Low Standard: GS23				
1249288	120C				Blank: Feldspar Porphyry				
1249289	121	5.00		tr	cb alt'd shear	664,476.15	5,546,340.87	58.08	
1249290	122	<5		tr	cb alt'd shear	664,476.58	5,546,340.34	58.30	
1249291	123	<5		tr	cb alt'd shear	664,478.70	5,546,342.64	61.09	
1249292	124	<5		tr	cb alt'd shear	664,479.16	5,546,342.17	61.35	
1249293	125	<5		tr	cb alt'd shear	664,479.67	5,546,341.68	61.66	
1249294	126	<5		tr	cb alt'd shear	664,481.86	5,546,343.52	64.36	
1249295	127	5.00		tr	cb alt'd shear	664,482.24	5,546,343.14	64.58	
1249296	128	5.00		tr	cb alt'd shear	664,482.71	5,546,342.63	64.84	
1249297	129	<5		tr	cb alt'd shear	664,484.14	5,546,344.60	66.88	
	130	60.00	1-2% py		qv	664,484.38	5,546,344.09	66.92	
1249298		F 00		1% py	cb alt's wx, HW	664,484.55	5,546,343.72	66.95	
1249298 1249299	131	5.00		1/0 0 9	,				
	131 132	5.00 <5		tr	qv, cb alt'd	664,484.72	5,546,343.28	66.96	

1249302	134	<5		tr	cb alt'd shear	664,485.94	5,546,344.13	68.40	
1249303	135	<5		tr	wk alt'd, fol'd	664,486.09	5,546,343.77	68.41	
1249304	136	5.00		tr	wk cb alt'd	664,486.21	5,546,343.53	68.43	
1249305	137	<5		tr tr-0.5%	cb alt'd shear	664,487.93	5,546,345.28	70.66	
1249306	138	<5		ру	cb alt'd shear	664,487.94	5,546,344.63	70.43	
1249307	139	<5		tr	wk alt'd, fol'd	664,487.95	5,546,343.92	70.20	
1249308	140	<5		tr-0.5% py	wk cb alt'd sheared	664,490.49	5,546,347.09	73.69	
		-		F 7	High Standard:		-,,		
1249309	140A				GS18 Low Standard:				
1249310	140B				GS23 Blank: Feldspar				
1249311	140C				Porphyry				
1249312	141	<5		tr		664,490.78	5,546,346.59	73.79	
1249313	142	10.00				664,491.13	5,546,346.02	73.91	
1249314	143		tr	tr-0.5%	cb alt'd sheared	664,491.26	5,546,345.34	73.80	
1249314	143	<5	u	ру <0.5% ру	cb alt'd shear	664,492.17	5,546,346.28	74.98	
1249315	145	30.00	0.5% py	<0.5% ру 0.5% ру	qv	664,492.41	5,546,345.77	75.03	
1245510	145	50.00	0.5% py	0.370 py	Sheared, cb	004,452.41	5,5+0,5+5.77	75.05	
1249317	146	5.00		tr	alt'd wx	664,493.19	5,546,345.50	75.66	
1249318	147	<5		tr	cb alt'd shear	664,496.12	5,546,347.65	79.16	
1249319	148	70.00		tr	qv	664,496.47	5,546,347.08	79.28	
1249320	149	<5		tr	cb alt'd sheared	664,498.00	5,546,348.84	81.34	
1249321	150	5.00		tr	cb alt'd sheared cb alt'd sheared	664,498.31	5,546,348.26	81.42	
1249322	151	<5		tr	wx	664,505.39	5,546,352.10	89.40	
1249323	152	<5		tr-0.5% py	Sheared, cb alt'd wx	664,505.82	5,546,351.52	89.60	
					Sheared, cb				
1249324	153	<5		tr	alt'd wx sheared, cb	664,506.26	5,546,351.00	89.82	
4240225	454	F 00		L.	alt'd wx & fg-	664 500 40	5 546 252 04	02.04	
1249325	154	5.00		tr	mg mafic	664,508.49	5,546,353.91	92.94	
1249326	155	30.00	tr	tr	qv sheared, cb	664,508.63	5,546,353.59	92.95	
1249327	156	<5		tr	alt'd	664,508.83	5,546,353.12	92.98	
1249328	157	<5		tr	cb, mg mafic	664,510.75	5,546,356.07	95.81	
1249329	158	<5		tr	sheared cb alt'd sheared, cb	664,510.98	5,546,355.61	95.88	
1249330	159	20.00	tr	tr	alt'd & qv	664,511.17	5,546,355.28	95.94	
1249331	160	<5		tr	mafic wx	664,511.40	5,546,354.87	96.00	
1249332	160A				High Standard: GS18				
					Low Standard:				
1249333	160B				GS23 Blank: Feldspar				
1249334	160C				Porphyry				
1249335	161	<5		nil-tr py	cb mafic wx	664,512.76	5,546,356.66	97.90	
1249336	162	<5		tr	sheared cb alt'd mafic	664,513.11	5,546,356.11	98.04	
1249337	163	10.00	tr	tr	vn - ll to bl	664,513.97	5,546,353.11	97.78	
1249338	164	<5		tr	cb alt'd sheared	664,514.41	5,546,357.88	99.88	

					cb alt'd sheared				
1249339	165	5.00		tr	wx sheared cb alt'd	664,514.59	5,546,357.52	99.93	4.45
1249340	166	20.00	tr-0.5% py		& qv cb alt'd sheared	664,514.75	5,546,357.15	99.94	4.03
1249341	167	10.00		tr	wx cb alt'd sheared	664,515.16	5,546,356.54	100.11	3.32
1249342	168	<5		tr	wx cb alt'd sheared	664,515.51	5,546,355.86	100.20	2.56
1249343	169	<5		tr	wx qv & cb alt'd	664,516.33	5,546,358.48	101.89	4.72
1249344	170	10.00		tr	sheared wx sheared wx, cb	664,516.43	5,546,358.08	101.85	4.31
1249345	171	<5		tr	alt'd	664,516.57	5,546,357.64	101.82	3.85
1249346	172	<5		tr	cb alt'd wx	664,516.79	5,546,356.98	101.79	3.15
1249347	173	<5		tr-nil	cb alt'd mafic, ferruginous	664,521.80	5,546,333.53	98.16	-20.56
1249348	174	<5		tr-0.5% py	seds - jnt'd limonitic ferruginous	664,522.77	5,546,333.03	98.88	-21.37
1249349	175	<5		tr-0.5% py	seds - jnt'd limonitic ferruginous	664,523.54	5,546,332.51	99.42	-22.13
1249350	176	<5		tr-0.5% py	seds - jnt'd limonitic ferruginous	664,524.14	5,546,332.06	99.83	-22.77
1249351	177	<5		tr-0.5% py	seds - jnt'd limonitic ferruginous	664,524.60	5,546,331.63	100.10	-23.34
				tr-0.5%	seds - jnt'd				
1249352	178	<5		ру	limonitic	664,525.22	5,546,331.07	100.48	-24.08
1249353	179	<5		tr	mafic wx ferruginous	664,525.64	5,546,330.56	100.70	-24.70
1249354	180	<5		1-3% py seam	seds - jnt'd limonitic	664,527.40	5,546,329.34	101.91	-26.47
					High Standard:		-,,		
1249355 1249356	180A				GS18 Low Standard: GS23				
1249350	180B				Blank: Feldspar				
1249357	180C				Porphyry ferruginous				
1249358	181	<5		nil-tr	seds - jnt'd limonitic ferruginous	664,527.56	5,546,328.91	101.91	-26.94
1249359	182	<5		nil-tr	seds - jnt'd limonitic	664,528.71	5,546,328.61	102.88	-27.63
1249360	183	<5		nil-tr	mafic	664,529.33	5,546,328.29	103.34	-28.14
1249361	184	<5		nil-tr	mafic - cb vnl't	664,523.44	5,546,335.40	100.36	-19.40
1249362	185	<5		nil-tr	mafic - cb vnl't ferruginous	664,523.95	5,546,335.07	100.72	-19.89
1249363	186	<5		1-2% vfg py	seds - jnt'd limonitic ferruginous	664,524.67	5,546,334.59	101.22	-20.60
1249364	187	<5		1-2% vfg py	seds - jnt'd limonitic ferruginous	664,525.40	5,546,334.06	101.71	-21.35
1249365	188	5.00		1-2% vfg py	seds - jnt'd limonitic ferruginous	664,525.88	5,546,333.60	102.00	-21.95
1249366	189	<5		2-3% ру	seds - jnt'd limonitic	664,526.37	5,546,333.18	102.30	-22.52

1249367	190	<5		tr	mafic	664,526.24	5,546,331.76	101.69	-23.79
1249368	191	<5		tr	cb alt'd mafic	664,571.94	5,546,395.29	166.93	19.36
1249369	192	5.00		tr	cb alt'd mafic, cb vnl'ts cb alt'd mafic,	664,572.16	5,546,394.76	166.94	18.78
1249370	193	<5		tr	cb vnl'ts	664,572.34	5,546,394.31	166.96	18.30
1249371	194	<5		tr	cb alt'd mafic	664,572.75	5,546,393.51	167.06	17.41
1249372	195	<5		tr	wk cb alt'd	664,573.72	5,546,396.39	168.98	19.75
1249373	196	5.00		tr	wk cb alt'd	664,574.28	5,546,396.01	169.37	19.20
1249374	197	<5		tr	wk cb alt'd SIF - siliceous,	664,574.85	5,546,395.64	169.77	18.65
1249375	198	<5		5-8% py	ser SIF - siliceous,	664,371.65	5,546,190.81	-92.81	-100.63
1249376	199	<5		4-6% py	ser SIF - siliceous,	664,372.59	5,546,190.19	-92.14	-101.54
1249377	200	<5		2-4%	ser	664,373.31	5,546,189.08	-91.87	-102.84
1249378	200A				High Standard: GS18 Low Standard:				
1249379	200B				GS23				
1249380	200C				Blank: Feldspar Porphyry				
1249381	201	<5		10% py 10-20%	SIF - siliceous	664,216.53	5,546,051.51	-287.21	-175.72
1249382	202	<5		ру	SIF - siliceous	664,217.47	5,546,051.03	-286.50	-176.50
1249383	203	<5		2-3% py	SIF - gf	664,206.15	5,546,043.35	-299.81	-179.66
1249384	204	<5		3-5% py	SIF - gf	664,205.90	5,546,042.15	-300.47	-180.69
1249385	205	5.00	tr	3-5% py	SIF - gf, qv	664,205.92	5,546,040.99	-300.86	-181.79
1249386	206	<5		3-5% py tr-0.5%	SIF - gf	664,206.32	5,546,039.81	-300.91	-183.03
1249387	207	90.00		py 5-8% py (local to	SIF - qv	664,205.84	5,546,041.45	-300.77	-181.32
1249388	208	<5		(iocal to 20%)	SIF	664,208.74	5,546,035.53	-300.16	-187.89

22 APPENDIX D: SAMPLE INFORMATION & ASSAYS

Sample#	Field#	Location	Section East	Samp_Type	Remarks	Au_AA (g/t)	Au_AAD up (g/t)	Au_Gr av (g/t)	Au_AA/Wt Ave (g/t)	Interval (m)
1249151	1	NJ - West Area	2.5	channel		0.019			0.019	1.00
1249152	2	NJ - West Area	3.0	channel		0.035			0.035	1.00
1249153	3	NJ - West Area	3.5	channel		0.012			0.012	0.75
1249154	4	NJ - West Area	3.5	channel		0.015			0.015	0.75
1249155	5	NJ - West Area	5.0	channel		1.87			1.870	0.45
1249156	6	NJ - West Area	6.0	channel		0.18			0.180	0.80
1249157	7	NJ - West Area	6.0	channel		1.6			1.600	0.25
1249158	8	NJ - West Area	6.0	channel		18.212		14.941	18.212	1.35
1249159	9	NJ - West Area	6.0	channel		0.548			0.548	1.00
1249160	10	NJ - West Area	6.0	channel	5cm TW	2.204	2.234		2.219	0.80
					(sample dip					
1249161	11	NJ - West Area	9.4	channel	extent)	1.642			1.642	0.90
1249162	12	NJ - West Area	10.0	channel	0.5m east	0.069			0.069	0.40
1249163	13	NJ - West Area	10.0	channel	of #011	1.873			1.873	0.70
1249164	14	NJ - West Area	10.0	channel		0.245			0.245	0.35
1249165	15	NJ - West Area	10.0	channel		0.012			0.012	0.70
1249166	16	NJ - West Area	11.5	channel		0.019			0.019	0.70
1249167	17	NJ - West Area	11.5	channel		0.019			0.019	0.45
1249168	18	NJ - West Area	11.5	channel		0.174			0.174	0.70
1249169	19	NJ - West Area	11.5	channel	flat ab	0.007			0.007	0.65
					flat cb vnlts, perp					
1249170	20	NJ - West Area	11.5	channel	to fol'n	0.006	0.005		0.006	0.85
1249171	20A			High Standard: G	S18	5.587			5.587	
1249172	20B			Low Standard: GS	523 Feldspar	0.815			0.815	
1249173	20C			BLANK	Porphyry	0.015			0.015	
1249174	21	NJ - West Area	13.0	channel		0.01			0.010	0.70
1249175	22	NJ - West Area	13.0	channel	as #017	2.859			2.859	0.65
1249176	23	NJ - West Area	13.0	channel		0.298			0.298	0.70
1249177	24	NJ - West Area	13.0	channel		0.032			0.032	0.80
1249178	25	NJ - West Area	13.0	channel		0.006			0.006	0.70
1249179	26	NJ - West Area	15.0	channel		0.013			0.013	0.70
1249180	27	NJ - West Area	15.0	channel		0.038	0.024		0.031	0.55
1249181	28	NJ - West Area	15.0	channel	as #022	0.206			0.206	0.45
1249182	29	NJ - West Area	15.0	channel		0.14			0.140	0.75
1249183	30	NJ - West Area	15.0	channel		3.003			3.003	0.30

1249184	31	NJ - West Area	15.0	channel	cb vnl'ts	0.027			0.027	0.85
1249185	32	NJ - West Area	16.5	channel		0.017			0.017	0.50
1249186	33	NJ - West Area	16.5	channel		0.164			0.164	0.80
1249187	34	NJ - West Area	16.5	channel	as # 028	58.926		10.132	58.926	0.70
1249188	35	NJ - West Area	17.0	channel		0.289			0.289	0.70
1249189	36	NJ - West Area	18.0	channel		0.03			0.030	0.90
1249190	37	NJ - West Area	18.0	channel	Duplicate of #038	13.745	12.615	5.015	13.180	1.00
					Duplicate					
1249191	38	NJ - West Area	18.0	channel	of #037	19.55		14.091	19.550	1.00
1249192	39	NJ - West Area	18.0	channel		0.068			0.068	1.00
1249193	40	NJ - West Area	20.0	channel		0.008			0.008	0.60
1249194	40A			High Standar		5.451			5.451	
1249195	40B			Low Standard	1: GS23	0.863			0.863	
1249196	40C		20.0	BLANK		0.019			0.019	0.00
1249197	41	NJ - West Area	20.0	channel		0.689			0.689	0.80
1249198	42	NJ - West Area	20.0	channel		6.422			6.422	0.35
1249199	43	NJ - West Area	20.0	channel		0.045			0.045	1.10
1249200	44	NJ - West Area	20.0	channel		-5	0.007		0.006	0.75
1249201	45	NJ - West Area	22.0	channel		8.349			8.349	1.00
1249202	46	NJ - West Area	22.0	channel		9.461			9.461	0.45
1249203	47	NJ - West Area	22.0	channel		0.053			0.053	0.70
1249204	48	NJ - West Area	22.0	channel	cross	0.425			0.425	0.80
					sample to					
1249205	49	NJ - West Area	22.0	channel	#046	3.021			3.021	0.85
1249206	50	NJ - West Area	22.0	channel		0.138			0.138	0.90
1249207	51	NJ - West Area	24.0	channel		0.02			0.020	0.60
1249208	52	NJ - West Area	24.0	channel		9.151			9.151	0.50
1249209	53	NJ - West Area	24.0	channel		26.016		28.302	26.016	0.70
1249210	54	NJ - West Area	24.0	channel		10.458	10.603	17.651	10.531	0.60
1249211	55	NJ - West Area	25.5	channel		81.064		36.168	81.064	1.00
1249212	56	NJ - West Area	29.5	channel		1.678			1.678	1.30
1249213	57	NJ - West Area	29.5	channel		5.061			5.061	0.90
1249214	58	NJ - West Area	29.5	channel		4.896			4.896	0.60
1249215	59	NJ - West Area	33.0	channel	Duplicate of #060	0.094			0.094	1.15
1249216	60	NJ - West Area	33.0	channel	Duplicate of #059	0.04			0.040	1.15
1249217	60A			High Standar	d: GS18	5.273			5.273	
1249218	60B			Low Standard	l: GS23	0.791			0.791	
1249219	60C			BLANK		0.008			0.008	
1249220	61	NJ - West Area	33.5	channel	Duplicate of #062	0.09	0.169		0.130	1.00
					Duplicate		0.105			
1249221	62	NJ - West Area	33.5	channel	of #061	0.125			0.125	1.00
1249222	63	NJ - West Area	33.5	channel		0.006			0.006	0.50

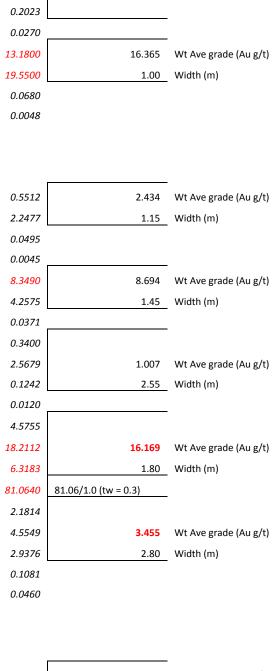
1249223	64	NJ - West Area	35.5	channel		3.062			3.062	0.90
1249224	65	NJ - West Area	35.5	channel		13.98		15.114	13.980	0.70
1249225	66	NJ - West Area	35.5	channel		0.584			0.584	0.80
1249226	67	NJ - West Area	37.5	channel	Duplicate of #068 Duplicate	0.121			0.121	0.90
1249227	68	NJ - West Area	37.5	channel	of #067	0.111			0.111	0.90
1249228	69	NJ - West Area	37.5	channel	Duplicate of #070 Duplicate	-5			-5.000	0.95
1249229	70	NJ - West Area	37.5	channel	of #069	-5			-5.000	0.95
1249230	71	NJ - West Area	40.0	channel		0.017	0.006		0.012	1.00
1249231	72	NJ - West Area	40.0	channel		0.394			0.394	0.40
1249232	73	NJ - West Area	40.0	channel		0.016			0.016	1.00
1249233	74	NJ - South Branch	28.5	channel		6.23			6.230	0.50
1249234	75	NJ - South Branch	29.0	channel		0.026			0.026	0.45
1249235	76	NJ - South Branch	29.0	channel		3.625			3.625	0.50
1249236	77	NJ - South Branch	29.0	channel	as Sample	0.126			0.126	0.60
1249237	78	NJ - South Branch	30.0	channel	#079	0.523			0.523	0.25
1249238	79	NJ - South Branch	30.5	channel		0.312			0.312	0.35
1249239	80	NJ - South Branch	30.5	channel		0.146			0.146	0.35
1249240	80A			High Standard	d: GS18	5.176			5.176	
1249241	80B			Low Standard	: GS23	0.834			0.834	
1249242	80C			BLANK		0.010			0.010	
1249243	81	NJ - South Branch	32.5	channel		0.007			0.007	0.50
1249244	82	NJ - South Branch	32.5	channel		5.811			5.811	0.35
1249245	83	NJ - South Branch	32.5	channel		0.165			0.165	0.85
1249246	84	NJ - South Branch	34.0	channel		0.01			0.010	0.50
1249247	85	NJ - South Branch	34.0	channel		3.104			3.104	0.40
1249248	86	NJ - South Branch	34.0	channel		0.072			0.072	0.90
1249249	87	NJ - South Branch	36.0	channel		0.401			0.401	0.80
1249250	88	NJ - South Branch	36.0	channel		68.615	64.283	66.410	66.449	0.65
1249251	89	NJ - South Branch	36.0	channel		1.912			1.912	0.90
1249252	90	NJ - South Branch	41.0	channel		31.82		34.435	31.820	0.40
1249253	91	NJ - South Branch	42.0	channel		0.116			0.116	1.00
1249254	92	NJ - South Branch	42.0	channel		0.022			0.022	0.60
1249255	93	NJ - Shore Vein	41.0	channel		0.386			0.386	0.60
1249256	94	NJ - Shore Vein	42.0	channel		0.201			0.201	0.60
1249257	95	NJ - Shore Vein	42.0	channel		12.774		17.095	12.774	0.35
1249258	96	NJ - Shore Vein	42.0	channel		0.143			0.143	0.75
1249259	97	NJ - Shore Vein	42.0	channel		1.116			1.116	0.30
1249260	98	NJ - Shore Vein	42.0	channel		0.027	0.011		0.019	0.60
1249261	99	NJ - Shore Vein	42.0	channel		10.122		4.769	10.122	0.50
1249262	100	NJ - Shore Vein	42.5	channel		31.776		23.219	31.776	0.35

1249263	100A			High Standard: GS18	5.879			5.879	
1249264	100B			Low Standard: GS23	0.820			0.820	
1249265	100C			BLANK	0.037			0.037	
	4.04		42.0				145.76		0.40
1249266	101	NJ - Shore Vein	43.0	channel	85.465		7	85.465	0.40
1249267	102	NJ - Shore Vein	43.5	channel	15.149		16.716	15.149	0.25
1249268	103	NJ - Shore Vein	46.0	channel	0.228			0.228	0.65
1249269	104	NJ - Shore Vein	46.0	channel	0.073			0.073	0.50
1249270	105	NJ - Shore Vein	46.0	channel	0.096	0.073		0.085	0.50
1249271	106	NJ - Shore Vein	46.0	channel	0.622			0.622	0.50
1249272	107	NJ - Shore Vein	51.0	channel	0.021			0.021	0.70
1249273	108	NJ - Shore Vein	51.0	channel	0.006			0.006	0.60
1249274	109	NJ - Shore Vein	51.0	channel	0.017			0.017	0.90
1249275	110	NJ - Shore Vein	57.0	channel	-5			-5.000	0.80
1249276	111	NJ - Shore Vein	57.0	channel	0.008			0.008	0.80
1249277	112	NJ - Shore Vein	57.0	channel	0.053			0.053	0.70
1249278	113	NJ - Shore Vein	58.5	channel	0.024			0.024	0.90
1249279	114	NJ - Shore Vein	58.5	channel	0.091			0.091	0.60
1249280	115	NJ - Shore Vein	58.5	channel	0.57	0.589		0.580	0.65
1249281	116	NJ - Shore Vein	63.0	channel	-5			-5.000	0.50
1249282	117	NJ - Shore Vein	63.0	channel	-5			-5.000	0.75
1249283	118	NJ - Shore Vein	63.0	channel	-5			-5.000	0.30
1249284	119	NJ - Shore Vein	65.0	channel	-5			-5.000	0.50
1249285	120	NJ - East Area	58.0	channel	0.006			0.006	0.60
1249286	120A			High Standard: GS18	5.622			5.622	
1249287	120B			Low Standard: GS23	0.846			0.846	
1249288	120C			BLANK	-5.000			-5.000	
1249289	121	NJ - East Area	58.0	channel	-5			-5.000	0.60
1249290	122	NJ - East Area	58.0	channel	0.01	0.014		0.012	0.80
1249291	123	NJ - East Area	62.0	channel	-5			-5.000	0.55
1249292	124	NJ - East Area	62.0	channel	0.009			0.009	0.80
1249293	125	NJ - East Area	62.0	channel	-5			-5.000	0.70
1249294	126	NJ - East Area	65.0	channel	-5			-5.000	0.50
1249295	127	NJ - East Area	65.0	channel	0.656			0.656	0.40
1249296	128	NJ - East Area	65.0	channel	0.013			0.013	0.90
1249297	129	NJ - East Area	67.0	channel	-5			-5.000	0.80
1249298	130	NJ - East Area	67.0	channel	14.677		18.301	14.677	0.25
1249299	131	NJ - East Area	67.0	channel	0.266			0.266	0.45
1249300	132	NJ - East Area	67.0	channel	0.085	0.179		0.132	0.60
1249301	133	NJ - East Area	68.5	channel	0.821			0.821	0.50
1249302	134	NJ - East Area	68.5	channel	0.113			0.113	0.60
1249303	135	NJ - East Area	68.5	channel	0.021			0.021	0.30
1249304	136	NJ - East Area	68.5	channel	-5			-5.000	0.30
					-				

1249305	137	NJ - East Area	70.0	channel		0.005		0.005	0.60
1249306	138	NJ - East Area	70.0	channel		0.011		0.011	0.65
1249307	139	NJ - East Area	70.0	channel		-5		-5.000	0.80
1249308	140	NJ - East Area	73.5	channel		-5		-5.000	0.60
1249309	140A			High Standard:	GS18	5.601		5.601	
1249310	140B			Low Standard:	GS23	0.790		0.790	
1249311	140C			BLANK		-5.000		-5.000	
1249312	141	NJ - East Area	73.5	channel		-5		-5.000	0.65
1249313	142	NJ - East Area	73.5	channel		6.481		6.481	0.85
1249314	143	NJ - East Area	73.5	channel		2.679		2.679	0.60
1249315	144	NJ - East Area	75.0	channel		0.056		0.056	0.80
1249316	145	NJ - East Area	75.0	channel		0.024		0.024	0.35
1249317	146	NJ - East Area	76.0	channel		0.048		0.048	0.75
1249318	147	NJ - East Area	79.5	channel		0.009		0.009	1.00
1249319	148	NJ - East Area	79.5	channel		0.138		0.138	0.30
1249320	149	NJ - East Area	81.0	channel		0.005	0.008	0.007	0.80
1249321	150	NJ - East Area	81.0	channel		0.045		0.045	0.50
1249322	151	NJ - East Area	91.0	channel		-5		-5.000	0.70
1249323	152	NJ - East Area	91.0	channel		0.127		0.127	0.50
1249324	153	NJ - East Area	91.0	channel		-5		-5.000	0.75
1249325	154	NJ - East Area	93.0	channel		0.013		0.013	0.45
1249326	155	NJ - East Area	93.0	channel		0.147		0.147	0.30
1249327	156	NJ - East Area	93.0	channel		-5		-5.000	0.70
1249328	157	NJ - East Area	96.0	channel		-5		-5.000	0.80
1249329	158	NJ - East Area	96.0	channel		-5	_	-5.000	0.30
1249330	159	NJ - East Area	96.0	channel		0.034	0.043	0.039	0.40
1249331	160	NJ - East Area	96.0	channel		-5		-5.000	0.35
1249332	160A			High Standard:	GS18	5.471		5.471	
1249333	160B			Low Standard:	GS23	0.811		0.811	
<mark>1249334</mark>	160C			BLANK		-5.000		-5.000	
1249335	161	NJ - East Area	97.5	channel		-5		-5.000	0.70
1249336	162	NJ - East Area	97.5	channel	vein	2.216		2.216	0.60
					parallel to				
1249337	163	NJ - East Area	98.0	channel	baseline	-5		-5.000	0.70
1249338	164	NJ - East Area	100.0	channel		-5		-5.000	0.40
1249339	165	NJ - East Area	100.0	channel		-5		-5.000	0.30
1249340	166	NJ - East Area	100.0	channel		5.008	5.759	5.384	0.45
1249341	167	NJ - East Area	100.0	channel		0.12		0.120	0.85
1249342	168	NJ - East Area	100.0	channel		0.006		0.006	0.50
1249343	169	NJ - East Area	101.5	channel		0.006		0.006	0.50
1249344	170	NJ - East Area	101.5	channel		2.233		2.233	0.30
1249345	171	NJ - East Area	101.5	channel		0.11		0.110	0.45

1249346	172	NJ - East Area	101.5	channel		0.01		0.010	0.80
					vein at				
1249347	173	South Area	98.0	channel	210-10 & 210-70	-5		-5.000	1.00
1249348	174	South Area	99.0	channel		0.015		0.015	0.85
1249349	175	South Area	99.0	channel		-5		-5.000	1.00
1249350	176	South Area	99.0	channel		-5	-5	-5.000	0.40
1249351	177	South Area	99.0	channel		-5		-5.000	0.85
1249352	178	South Area	99.0	channel		-5		-5.000	0.55
1249353	179	South Area	99.0	channel		-5		-5.000	0.70
					sulphide bxa seam				
1249354	180	South Area	102.0	channel	@ 220- vert	-5		-5.000	0.50
1249355	180A	Journa Ca	10110	High Standard		5.270		5.270	0.00
1249356	180B			Low Standard		0.810		0.810	
1249357	180C			BLANK		0.006		0.006	
1249358	181	South Area	102.0	channel		-5		-5.000	0.80
1249359	182	South Area	103.0	channel		0.012		0.012	0.50
					see				
1249360	183	South Area	103.0	channel	sample #179	-5	-5	-5.000	0.90
1249361	184	South Area	102.0	channel		-5		-5.000	0.50
1249362	185	South Area	102.0	channel		-5		-5.000	0.60
1249363	186	South Area	102.0	channel		0.01		0.010	1.00
1249364	187	South Area	102.0	channel		-5		-5.000	0.80
1249365	188	South Area	102.0	channel		-5		-5.000	0.55
1249366	189	South Area	102.0	channel		-5		-5.000	0.75
1249367	190	East Area	101.5	channel		-5		-5.000	1.00
1249368	191	East Area		channel		-5		-5.000	0.80
1249369	192	East Area		channel		-5		-5.000	0.30
1249370	193	East Area		channel		-5	-5	-5.000	0.60
1249371	194	East Area		channel		-5		-5.000	0.60
1249372	195	East Area		channel		-5		-5.000	0.70
1249373	196	East Area		channel		-5		-5.000	0.55
1249374	197	East Area		channel		-5		-5.000	0.80
		Trail #1			At Grab location NJ-017 (0.013), 018				
1249375	198	Occurrence		chip	(0.036)	0.007		0.007	1.00
1249376	199	Trail #1 Occurrence		chip		-5		-5.000	1.00
1249377	200	Trail #1 Occurrence		chip		0.006		0.006	2.70
1249378	200A			High Standard	d: GS18	5.072		5.072	
1249379	200B			Low Standard	: GS23	0.776		0.776	
1249380	200C			BLANK		-5		-5.000	
1249381	201	Trail #2		chip	At Grab	-5		-5.000	1.30

		Occurrence		location NJ-019 (0.016)		
		Trail #2				
1249382	202	Occurrence Trail #3	chip	-5	-5.000	0.70
1249383	203	Occurrence Trail #3	chip	0.06	0.060	1.60
1249384	204	Occurrence Trail #3	chip	-5	-5.000	1.90
1249385	205	Occurrence Trail #3	chip	0.018	0.018	1.00
1249386	206	Occurrence Trail #3	chip	0.007	0.007	1.70
1249387	207	Occurrence Trail #3	chip	-5	-5.000	0.15
1249388	208	Occurrence	chip	-5	-5.000	1.00


Quality Control / Quality Assurance Legend

High Standard: GS18: 5.272 +/-	
0.244 g/t Au (10)	1 SD Range= 5.028 - 5.517 g/t Au
Low Standard: GS23: 0.796 +/-	
0.061 g/t Au (10)	1 SD Range= 0.735 - 0.857 g/t Au
BLANK (10)	DL - 0.037 g/t Au
Duplicate check analysis of	
original pulp (20)	
Replicate check analysis of a	
second pulp (3)	

23 APPENDIX E: SAMPLE REFERENCE & WEIGHTED AVERAGE GRADES

Sample#	Field#	FA/AA Assay_Cert	Grav_Assay Cert	Gr x W		
1249151	1	201341675		0.0190		
1249152	2	201341675		0.0350		
1249153	3	201341675		0.0090		
1249154	4	201341675		0.0113		
1249155	5	201341675		0.8415	1.870/0.45	
1249156	6	201341675		0.1440	1.006	Wt Ave grade (Au g/t)
1249157	7	201341675		0.4000	2.85	Width (m)
1249158	8	201341675	201341900	24.5862	18.212/1.35	
1249159	9	201341675		0.5480		
1249160	10	201341675		1.7752		
1249161	11	201341675		1.4778	1.642/0.90	
1249162	12	201341675		0.0276		
1249163	13	201341675		1.3111	0.982	Wt Ave grade (Au g/t)
1249164	14	201341675		0.0858	1.45	Width (m)
1249165	15	201341675		0.0084		
1249166	16	201341675		0.0133		
1249167	17	201341675		0.0086		
1249168	18	201341675		0.1218	0.174/0.70	
1249169	19	201341675		0.0046		
1249170	20	201341675		0.0047		
1249171	20A	201341675				
1249172	20B	201341675				
1249173	20C	201341675				
1249174	21	201341675		0.0070		
1249175	22	201341675		1.8584		
1249176	23	201341675		0.2086	1.531	Wt Ave grade (Au g/t)
1249177	24	201341675		0.0256	1.35	Width (m)
1249178	25	201341675		0.0042		
1249179	26	201341675		0.0091		
1249180	27	201341675		0.0171		
1249181	28	201341675		0.0927		
1249182	29	201341675		0.1050	0.732	Wt Ave grade (Au g/t)
1249183	30	201341675		0.9009	1.50	Width (m)
1249184	31	201341675		0.0230		
1249185	32	201341675		0.0085	[
1249186	33	201341675		0.1312	18.901	Wt Ave grade (Au g/t)
1249187	34	201341675	201341900	41.2482	2.20	Width (m)

1249188	35	201341675	
1249189	36	201341675	
1249190	37	201341675	201341900
1249191	38	201341675	201341900
1249192	39	201341675	
1249193	40	201341675	
1249194	40A	201341675	
1249195	40B	201341675	
1249196	40C	201341675	
1249197	41	201341675	
1249198	42	201341675	
1249199	43	201341675	
1249200	44	201341675	
1249201	45	201341675	
1249202	46	201341675	
1249203	47	201341675	
1249204	48	201341675	
1249205	49	201341675	
1249206	50	201341675	
1249207	51	201341675	
1249208	52	201341675	
1249209	53	201341675	201341900
1249210	54	201341675	201341900
1249211	55	201341675	201341900
1249212	56	201341675	
1249213	57	201341675	
1249214	58	201341675	
1249215	59	201341675	
1249216	60	201341675	
1249217	60A	201341675	
1249218	60B	201341675	
1249219	60C	201341675	
1249220	61	201341675	
1249221	62	201341675	
1249222	63	201341675	
1249223	64	201341675	
1249224	65	201341675	201341900
1249225	66	201341675	
1249226	67	201341675	
1249227	68	201341675	
1249228	69	201341675	

0.1295	0.127	Wt Ave grade (Au g/t)
0.1250	1	Width (m)
0.0030		
2.7558	5.420	Wt Ave grade (Au g/t)
9.7860	2.40	Width (m)
0.4672		
0.1089	0.116	Wt Ave grade (Au g/t)
0.0999	0.90	Width (m)

1249229	70	201341675		<0.005				
1249230	71	201341675		0.0115				
1249231	72	201341675		0.1576		0.394	Wt Ave grade (Au g/t)	
1249232	73	201341675		0.0160		0.40	Width (m)	
1249233	74	201341675		3.1150	6.230/0.50			
1249234	75	201341675		0.0117				
1249235	76	201341675		1.8125		1.716	Wt Ave grade (Au g/t)	
1249236	77	201341675		0.0756		1.10	Width (m)	
1249237	78	201341675		0.1308	0.523/0.25			
1249238	79	201341675		0.1092		0.229	Wt Ave grade (Au g/t)	
1249239	80	201341675		0.0511		0.70	Width (m)	
1249240	80A	201341675						
1249241	80B	201341675						
1249242	80C	201341675						
1249243	81	201341675		0.0035				
1249244	82	201341675		2.0339		1.812	Wt Ave grade (Au g/t)	
1249245	83	201341675		0.1403		1.20	Width (m)	
1249246	84	201341675		0.0050				
1249247	85	201341675		1.2416		1.005		
1249248	86	201341675		0.0648		1.30		
1249249	87	201341675		0.3208				
1249250	88	201341675	201341900	43.1919		19.248	Wt Ave grade (Au g/t)	
1249251	89	201341675		1.7208		2.35	Width (m)	
1249252	90	201341675	201341900	12.7280	31.820/0.40			
1249253	91	201341675		0.1160	0.116/1.00			
1249254	92	201341675		0.0132				
1249255	93	201341675		0.2316	0.386/0.60			
1249256	94	201341675		0.1206				
1249257	95	201341675	201341900	4.4709	12.774/0.35		_	
1249258	96	201341675		0.1073				
1249259	97	201341675		0.3348	1.116/0.30		21.52	Wt Ave grade (Au g/
1249260	98	201341675		0.0114			2.75	
1249261	99	201341675	201341900	5.0610	10.122/0.50		0.39	ave width (m)
1249262	100	201341675	201341900	11.1216	31.776/0.35		over 7m strike length	
1249263	100A	201341675			- ·			
1249264	100B	201341675						
1249265	100C	201341675						
1249266	101	201341675	201341900	34.1860	85.465/0.40			
1249267	102	201341675	201341900	3.7873	15.149/0.25			
1249268	102	201341675		0.1482				
1249269	105	201341675		0.0365		0.250	Wt Ave grade (Au g/t)	
1273203	104	201041070		0.0505	I	0.230	The Brane (An B/ I)	

1249270	105	201341675			0.0423	2.1	5 Width (m)
1249271	106	201341675			0.3110		
1249272	107	201341675			0.0147		_
1249273	108	201341675			0.0036		
1249274	109	201341675			0.0153	0.017/0.90	
1249275	110	201341675		<0.005			
1249276	111	201341675			0.0064		
1249277	112	201341675			0.0371	0.053/0.70	
1249278	113	201341675			0.0216		
1249279	114	201341675			0.0546		
1249280	115	201341675			0.3767	0.58/0.65	
1249281	116	201341675		<0.005			
1249282	117	201341675		<0.005			
1249283	118	201341675		<0.005			
1249284	119	201341675		<0.005			
1249285	120	201341675			0.0036		
1249286	120A	201341675					
1249287	120B	201341675					
1249288	120C	201341675					
1249289	121	201341675		<0.005			
1249290	122	201341675			0.0096	0.012/0.80	
1249291	123	201341675		<0.005			
1249292	124	201341675			0.0072	0.009/0.80	
1249293	125	201341675		<0.005			
1249294	126	201341675		<0.005			
1249295	127	201341675			0.2624	0.656/0.40	
1249296	128	201341675			0.0117		
1249297	129	201341675		<0.005			
1249298	130	201341675	201341900		3.6693	2.9	8 Wt Ave grade (Au g/t)
1249299	131	201341675			0.1197	1.3	0 Width (m)
1249300	132	201341675			0.0792		
1249301	133	201341675			0.4105	0.43	
1249302	134	201341675			0.0678	1.1	0 Width (m)
1249303	135	201341675			0.0063		
1249304	136	201341675		<0.005			
1249305	137	201341675			0.0030		
1249306	138	201341675			0.0072	0.011/0.65	
1249307	139	201341675		<0.005			
1249308	140	201341675		<0.005			
1249309	140A	201341675					
1249310	140B	201341675					
1249311	140C	201341675					

1249312	141	2012/1675	<0.005			
1240212		201341675	<0.005	F F090	4 008	-
1249313	142	201341675		5.5089	4.908	Wt Ave grade (Au g/t)
1249314	143	201341675		1.6074	1.45	
1249315	144	201341675		0.0448	0.047	Wt Ave grade (Au g/t)
1249316 1249317	145 146	201341675 201341675		0.0084 0.0360	1.90	Width (m)
1249317	140	201341675		0.0000		-
1249318	147	201341675		0.0030	0.138/0.30	_
1249319	148	201341675		0.0052	0.138/0.30	-
1249321	145	201341675		0.0225	0.045/0.50	-
1249322	150	201341675	<0.005	0.0225	0.043/0.30	-
1249323	152	201341675	(0.000	0.0635	0.127/0.50	_
1249324	152	201341675	<0.005	0.0000	0.12770.00	-
1249325	154	201341675	(0.000	0.0059		
1249326	155	201341675		0.0441	0.147/0.30	-
1249327	156	201341675	<0.005	010112	01217/0100	-
1249328	157	201341675	<0.005			
1249329	158	201341675	<0.005			
1249330	159	201341675		0.0154	0.039/0.40	_
1249331	160	201341675	<0.005			_
1249332	160A	201341675				
1249333	160B	201341675				
1249334	160C	201341675				
1249335	161	201341675	<0.005			_
1249336	162	201341675		1.3296	2.216/0.60	_
1249337	163	201341675	<0.005			
1249338	101		10.005			
	164	201341675	<0.005			
1249339	164 165	201341675 201341675			Γ	-
1249339 1249340			<0.005	2.4226	1.942	-
	165	201341675	<0.005	2.4226 0.1020	1.942 1.30	-
1249340	165 166	201341675 201341675	<0.005			-
1249340 1249341	165 166 167	201341675 201341675 201341675	<0.005	0.1020		-
1249340 1249341 1249342	165 166 167 168	201341675 201341675 201341675 201341675	<0.005	0.1020 0.0030		-
1249340 1249341 1249342 1249343	165 166 167 168 169	201341675 201341675 201341675 201341675 201341675	<0.005	0.1020 0.0030 0.0030	1.30	- - -
1249340 1249341 1249342 1249343 1249344	165 166 167 168 169 170	201341675 201341675 201341675 201341675 201341675 201341675	<0.005	0.1020 0.0030 0.0030 0.6699	0.959	-
1249340 1249341 1249342 1249343 1249344 1249345	165 166 167 168 169 170 171	201341675 201341675 201341675 201341675 201341675 201341675 201341675	<0.005	0.1020 0.0030 0.0030 0.6699 0.0495	0.959	-
1249340 1249341 1249342 1249343 1249344 1249345 1249346	165 166 167 168 169 170 171 172	201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675	<0.005 <0.005 <0.005	0.1020 0.0030 0.0030 0.6699 0.0495	0.959	-
1249340 1249341 1249342 1249343 1249344 1249345 1249346 1249347 1249348 1249349	165 166 167 168 169 170 171 172 173 174 175	201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675	<0.005 <0.005 <0.005 <0.005	0.1020 0.0030 0.0030 0.6699 0.0495 0.0080	0.959	-
1249340 1249341 1249342 1249343 1249344 1249345 1249346 1249347 1249348 1249349 1249350	165 166 167 168 169 170 171 172 173 174 175 176	201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675	<0.005 <0.005 <0.005 <0.005 <0.005	0.1020 0.0030 0.0030 0.6699 0.0495 0.0080	0.959	-
1249340 1249341 1249342 1249343 1249344 1249345 1249346 1249347 1249348 1249349 1249350 1249351	165 166 167 168 169 170 171 172 173 174 175 176 177	201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.1020 0.0030 0.0030 0.6699 0.0495 0.0080	0.959	-
1249340 1249341 1249342 1249343 1249344 1249345 1249346 1249347 1249348 1249349 1249350	165 166 167 168 169 170 171 172 173 174 175 176	201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675 201341675	<0.005 <0.005 <0.005 <0.005 <0.005	0.1020 0.0030 0.0030 0.6699 0.0495 0.0080	0.959	-

1249354	180	201341675	<0.005	
1249355	180A	201341675		
1249356	180B	201341675		
1249357	180C	201341675		
1249358	181	201341675	<0.005	
1249359	182	201341675		0.0060
1249360	183	201341675	<0.005	
1249361	184	201341675	<0.005	
1249362	185	201341675	<0.005	
1249363	186	201341675		0.0100
1249364	187	201341675	<0.005	
1249365	188	201341675	<0.005	
1249366	189	201341675	<0.005	
1249367	190	201341675	<0.005	
1249368	191	201341675	<0.005	
1249369	192	201341675	<0.005	
1249370	193	201341675	<0.005	
1249371	194	201341675	<0.005	
1249372	195	201341675	<0.005	
1249373	196	201341675	<0.005	
1249374	197	201341675	<0.005	
1249375	198	201341675		0.0070
1249376	199	201341675	<0.005	
1249377	200	201341675		0.0162
1249378	200A	201341675		
1249379	200B	201341675		
1249380	200C	201341675		
1249381	201	201341675	<0.005	
1249382	202	201341675	<0.005	
1249383	203	201341675		0.0960
1249384	204	201341675	<0.005	
1249385	205	201341675		0.0180
1249386	206	201341675		0.0119
1249387	207	201341675	<0.005	
1249388	208	201341675	<0.005	

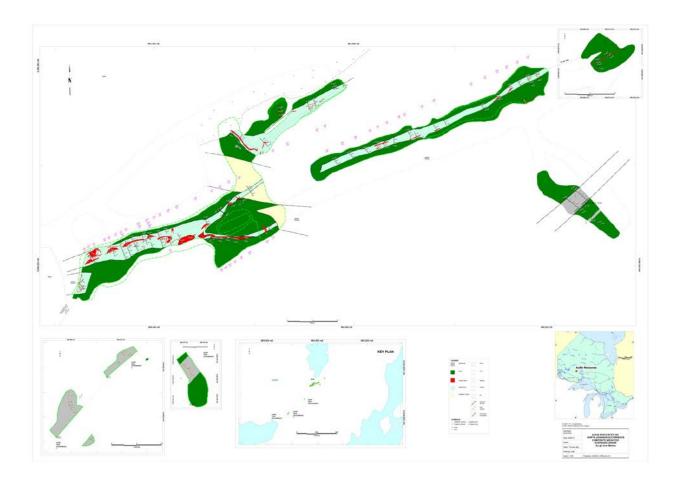
24 APPENDIX F: MS PowerPoint PRESENTATION OF DRILL PROPOSAL

Figure 25-1: PowerPoint Presentation of 2013 Drill Proposal (Click to open)

25 APPENDIX G: ASSAY CERTIFICATES

25.1 RECONNAISSANCE SAMPLING GRAB ASSAYS & GEOCHEM

25.2 CHANNEL SAMPLES



25.3 CHANNEL SAMPLE – GRAVIMETRIC CHECK ANALYSIS

26 MAPS (BACK POCKET)

Geological Map (1:100) with Individual Sample Locations Geological Map (1:100) with Composite Sample Intervals

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/03/2013 Job #: 201341676 Reference: NJ 13-02 Sample #: 11

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119843	1489747	<5	<0.001	<0.005	
119844	1489748	<5	<0.001	<0.005	
119845	1489749	7	<0.001	0.007	
119846	1489750	26	<0.001	0.026	
119847	1489751	<5	<0.001	<0.005	
119848	1489752	<5	<0.001	<0.005	
119849	1489753	<5	<0.001	<0.005	
119850	1489754	<5	<0.001	<0.005	
119851	1489755	<5	<0.001	<0.005	
119852	1489756	15	<0.001	0.015	
119853 Dup	1489756	10	<0.001	0.010	
119854	1489757	8	<0.001	0.008	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Thunder Bay, ON Canada P7B 5X5

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd.	Date Received: 07/15/2013
Suite 606-1055 West Broadway	Date Completed: 07/29/2013
Vancouver, BC, Can	Job #: 201341453
V6H-1E2	Reference: 201341347
Ph#: (807) 621-0450 Fax#: (604) 736-2760	Sample #: 7
Email: stanley_wong@telus.net, gryule@tbaytel.net	

Acc #	Client ID	#1 Pulp Assay ppb	#2 Pulp Assay ppb	Metallics Assay ppb	Total ppb	% Met. in Pulp	Pulp Met. Weight(g) ppb
105121	1489702	19810	23680	181682	26075	2.71%	15.43
105122	1489704	165296	161230	515856	164396	0.32%	0.8
105123	1489706	23788	25919	406932	47409	5.90%	39.67
105124	1489711	17184	17805	540283	27320	1.88%	9.19
105125	1489713	10292	10356	16328	10605	4.69%	32.11
105126	1489714	12858	13322	16032	13236	4.98%	48.86
105127	1489715	139539	118072	67949	127525	2.10%	20.06

PROCEDURE CODES: ALPM1

Certified By: Dr. David Brown, VP Quality laboratory.

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 09/10/2013 Date Completed: 09/25/2013 Job #: 201341900 Reference: 201341675 Sample #: 16

Acc #	Client ID	Au Grav oz/t	Au Grav g/t(ppm)
133564	1249158	0.436	14.941
133565	1249187	0.296	10.132
133566	1249190	0.146	5.015
133567	1249191	0.411	14.091
133568	1249209	0.826	28.302
133569	1249210	0.515	17.651
133570	1249211	1.055	36.168
133571	1249224	0.441	15.114
133572	1249250	1.937	66.410
133573	1249252	1.005	34.435
133574	1249257	0.499	17.095
133575	1249261	0.139	4.769
133576	1249262	0.677	23.219
133577	1249266	4.253	145.767
133578	1249267	0.488	16.716
133579	1249298	0.534	18.301

PROCEDURE CODES: ALFA7

Hamil M. from Certified By: Dr. David Brown, VP Quality The results included on this report relate only to the items tested.

 1046 Gorham Street
 Tel: (807) 626-1630

 Thunder Bay, ON
 Fax: (807) 622-7571

 Canada P7B 5X5
 Fax: (807) 622-7571

30 www.accurassay.com 71 assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net Date Received: 06/27/2013 Date Completed: 07/15/2013 Job #: 201341347 Reference: NJ 13-01 Sample #: 19

Acc #	Client ID	Ag ppm			Ba ppm	Be ppm		Ca %	Cd mag	Ce ppm	Co ppm	Cr ppm	Cu mag	Fe %	Ga ppm	Ge ppm	Hf maa	Hg maa		K %	La ppm	Li maa	mg	Mn maa		Nb mqq		9 maa	Pb ppm		-		Sc ppm		Sn ppm r	Sr	Ta ppm i	Te maa	Th mag	iT maa	IT maa	U maa	V maa	W a maa	Y maa	Zn ppm p	Zr mag
97606	1489701	1		••	176			1.64	<4	9				1.66		•••	•••			<0.01	<10	<1	0.53	241	17	<1	124	100	3	<1	0.60	10	2	7	<10	47	<1 <1	<1	<50	1073	<2	21	47	<10	7	16	43
97607	1489702	1	0.69	27	144	<2	<1	1.41	<4	8	42	115	190	2.12	<10	<1	<1	3	<1	<0.01	<10	<1	0.48	227	16	<1	149	<100	3	<1	1.31	10	<1	11	<10	42	<1	<1	<50	979	<2	31	40	<10	7	11	29
97608	1489703	<1	4.82	16	156	<2	<1	3.40	6	17	54	106	105	7.75	17	<1	<1	<1	<1	<0.01	<10	<1	2.25	1086	4	25	68	542	11	<1	0.84	12	31	5	<10	89	3	2	<50	7841	<2	103	326	<10	29	71	48
97609	1489704	7	1.64	29	179	<2	10	0.77	4	2	141	93	859	5.22	<10	<1	<1	2	<1	<0.01	<10	<1	0.58	263	10	1	195	162	5	<1	4.14	16	6	<5	<10	51	<1	<1	<50	2381	<2	53	78	<10	9	48	45
97610	1489705	1	6.35	15	132	<2	11	1.72	8	11	59	92	210	10.79	28	<1	<1	1	<1	<0.01	<10	<1	2.65	1081	3	28	104	712	8	<1	2.24	8	40	<5	<10	87	5	<1	<50	9094	<2	89	399	22	34	76	61
97611	1489706	2	1.47	11	175	<2	19	0.30	<4	2	11	131	167	2.78	<10	<1	<1	2	<1	<0.01	<10	<1	0.71	286	16	3	122	161	7	<1	0.69	14	5	<5	<10	47	<1	12	<50	1910	<2	20	75	10	10	13	45
97612	1489707	1	0.64	7	142	<2	1	0.42	<4	4	5	124	67	1.37	<10	<1	<1	<1	<1	<0.01	<10	<1	0.35	111	15	<1	93	<100	11	<1	0.94	5	<1	5	<10	42	<1	<1	<50	224	<2	<20	14	<10	5	4	47
97613	1489708	1	3.63	6	430	<2	9	1.74	6	12	49	121	192	8.02	17	<1	<1	3	<1	<0.01	<10	<1	1.60	868	11	12	105	328	4	<1	2.89	12	18	7	<10	57	<1	1	<50	4366	7	91	205	20	18	44	71
97614	1489709	<1	5.45	17	150	<2	12	3.58	7	19	59	59	262	10.12	24	<1	<1	7	<1	<0.01	<10	<1	2.41	1359	<1	28	47	759	7	<1	3.33	12	35	5	<10	94	3	<1	<50	9156	7	98	391	21	30	63	68
97615	1489710	<1	4.16	14	431	<2	3	0.73	5	1	23	108	160	7.06	17	<1	<1	2	<1	<0.01	<10	<1	1.91	871	5	18	56	437	10	<1	0.90	10	25	9	<10	55	<1	<1	<50	5651	<2	79	272	10	22	58	50
97616D	1489710	1	4.26	13	436	<2	14	0.73	5	1	25	113	163	7.13	18	<1	<1	3	<1	<0.01	<10	<1	1.94	880	6	18	73	447	4	<1	0.90	16	26	6	<10	56	<1	2	<50	5674	<2	52	274	11	22	60	55
97617	1489711	2	1.49	13	177	<2	1	0.15	<4	<1	5	117	176	4.38	<10	<1	<1	3	<1	<0.01	<10	<1	0.66	258	15	3	106	167	5	<1	0.52	13	4	5	<10	45	<1	5	<50	1482	<2	85	72	<10	8	24	51
97618	1489712	1	6.35	15	136	<2	19	2.05	8	12	46	102	212	10.65	28	4	2	2	<1	<0.01	<10	<1	2.93	1604	<1	31	54	642	2	<1	1.61	13	40	<5	<10	83	4	<1	<50	9255	<2	94	434	17	33	104	55
97619	1489713	1	3.46	14	239	<2	<1	1.30	4	10	23	96	122	5.27	13	<1	<1	<1	<1	<0.01	<10	<1	1.32	609	7	17	80	305	3	<1	1.02	11	17	<5	<10	54	<1	<1	<50	4746	<2	79	250	<10	16	39	45
97620	1489714	1	1.90	6	141	<2	7	1.47	<4	7	17	90	81	3.25	<10	<1	<1	4	<1	<0.01	<10	<1	1.01	440	9	4	70	154	3	<1	0.64	10	6	<5	<10	46	<1	7	<50	2193	<2	33	103	<10	11	30	63
97621	1489715	4	3.26	14	165	<2	29	1.15	7	6	23	114	168	9.37	20	<1	<1	3	<1	<0.01	<10	<1	1.51	669	6	14	46	399	4	<1	0.66	10	17	<5	<10	53	2	18	<50	5333	<2	80	228	<10	19	48	60
97622	1489716	1	3.32	8	202	<2	3	0.34	14	5	103	74	834	11.01	22	<1	<1	1	<1	<0.01	<10	<1	0.70	400	7	<1	131	214	12	<1	6.29	8	4	8	<10	67	<1	11	<50	1408	6	121	44	23	7 2	2164	80
97623	1489717	1	5.88	22	502	<2	2	0.73	<4	8	19	56	57	4.12	15	<1	<1	2	<1	<0.01	<10	<1	0.60	317	9	<1	78	247	13	3	3.38	8	<1	5	<10	163	<1	3	<50	1034	<2	88	19	<10	8	146	68
97624	1489718	1	5.83	23	477	<2	7	0.82	4	15	18	32	71	4.65	16	<1	<1	3	<1	<0.01	<10	<1	0.61	371	5	<1	43	273	13	4	3.87	<5	<1	7	<10	171	<1	1	<50	968	<2	59	19	<10	8	274	68
97625	1489719	1	6.36	19	704	<2	<1	0.09	<4	<1	2	42	6	2.16	17	7	<1	3	<1	<0.01	<10	<1	0.57	153	5	1	36	224	5	7	0.34	10	<1	<5	<10	118	<1	2	<50	1172	<2	<20	17	<10	5	21	60

PROCEDURE CODES: ALP2, ALFA2, ALMA1, ALHg1, ALSu1, ALUr1, ALMA2

Certified By: Dr. David Brown, VP Quality

The results included on this report relate only to the items tested.

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 06/27/2013 Date Completed: 07/15/2013 Job #: 201341347 Reference: NJ 13-01 Sample #: 19

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
97606	1489701	4140	0.121	g, (pp.n) 4.140	
97607	1489702	27191	0.793	27.191	
97608	1489703	2135	0.062	2.135	
97609	1489704	172372	5.029	172.372	
97610	1489705	2688	0.078	2.688	
97611	1489706	40510	1.182	40.510	
97612	1489707	5435	0.159	5.435	
97613	1489708	6690	0.195	6.690	
97614	1489709	129	0.004	0.129	
97615	1489710	207	0.006	0.207	
97616 Dup	p 1489710	128	0.004	0.128	
97617	1489711	27504	0.802	27.504	
97618	1489712	28	<0.001	0.028	
97619	1489713	12073	0.352	12.073	
97620	1489714	13765	0.402	13.765	
97621	1489715	112960	3.295	112.960	
97622	1489716	356	0.010	0.356	
97623	1489717	36	0.001	0.036	
97624	1489718	13	<0.001	0.013	
97625	1489719	16	<0.001	0.016	

PROCEDURE CODES: ALP2, ALFA2, ALMA1, ALHg1, ALSu1, ALUr1, ALMA2

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119582	1249151	19	<0.001	0.019	
119583	1249152	35	0.001	0.035	
119584	1249153	12	<0.001	0.012	
119585	1249154	15	<0.001	0.015	
119586	1249155	1870	0.055	1.870	
119587	1249156	180	0.005	0.180	
119588	1249157	1600	0.047	1.600	
119589	1249158	18212	0.531	18.212	
119590	1249159	548	0.016	0.548	
119591	1249160	2204	0.064	2.204	
119592 Du	up 1249160	2234	0.065	2.234	
119593	1249161	1642	0.048	1.642	
119594	1249162	69	0.002	0.069	
119595	1249163	1873	0.055	1.873	
119596	1249164	245	0.007	0.245	
119597	1249165	12	<0.001	0.012	
119598	1249166	19	<0.001	0.019	
119599	1249167	19	<0.001	0.019	
119600	1249168	174	0.005	0.174	
119601	1249169	7	<0.001	0.007	
119602	1249170	6	<0.001	0.006	
119603 Du	up 1249170	5	<0.001	0.005	
119604	1249171	5587	0.163	5.587	
119605	1249172	815	0.024	0.815	
119606	1249173	15	<0.001	0.015	
119607	1249174	10	<0.001	0.010	
119608	1249175	2859	0.083	2.859	
119609	1249176	298	0.009	0.298	
119610	1249177	32	<0.001	0.032	
119611	1249178	6	<0.001	0.006	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	¢ Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
1196	612 1249179	13	<0.001	0.013	
1196	613 1249180	38	0.001	0.038	
1196	614 Dup 1249180	24	<0.001	0.024	
1196	615 1249181	206	0.006	0.206	
1196	616 1249182	140	0.004	0.140	
1196	617 1249183	3003	0.088	3.003	
1196	518 1249184	27	<0.001	0.027	
1196	619 1249185	17	<0.001	0.017	
1196	620 1249186	164	0.005	0.164	
1196	621 1249187	58926	1.719	58.926	
1196	622 1249188	289	0.008	0.289	
1196	623 1249189	30	<0.001	0.030	
1196	624 1249190	13745	0.401	13.745	
1196	25 Dup 1249190	12615	0.368	12.615	
1196	626 1249191	19550	0.570	19.550	
1196	627 1249192	68	0.002	0.068	
1196	628 1249193	8	<0.001	0.008	
1196	629 1249194	5451	0.159	5.451	
1196	30 1249195	863	0.025	0.863	
1196	631 1249196	19	<0.001	0.019	
1196	32 1249197	689	0.020	0.689	
1196	633 1249198	6422	0.187	6.422	
1196	34 1249199	45	0.001	0.045	
1196	35 1249200	<5	<0.001	<0.005	
1196	36 Dup 1249200	7	<0.001	0.007	
1196	37 1249201	8349	0.244	8.349	
1196	338 1249202	9461	0.276	9.461	
1196	39 1249203	53	0.002	0.053	
1196	640 1249204	425	0.012	0.425	
1196	641 1249205	3021	0.088	3.021	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	Client ID	Au	Au art	Au c# (com)	
440040	1010000	ppb	oz/t	g/t (ppm)	
119642	1249206	138	0.004	0.138	
119643	1249207	20	<0.001	0.020	
119644	1249208	9151	0.267	9.151	
119645	1249209	26016	0.759	26.016	
119646	1249210	10458	0.305	10.458	
119647 Rep		10603	0.309	10.603	
119648	1249211	81064	2.365	81.064	
119649	1249212	1678	0.049	1.678	
119650	1249213	5061	0.148	5.061	
119651	1249214	4896	0.143	4.896	
119652	1249215	94	0.003	0.094	
119653	1249216	40	0.001	0.040	
119654	1249217	5273	0.154	5.273	
119655	1249218	791	0.023	0.791	
119656	1249219	8	<0.001	0.008	
119657	1249220	90	0.003	0.090	
119658 Dup	0 1249220	169	0.005	0.169	
119659	1249221	125	0.004	0.125	
119660	1249222	6	<0.001	0.006	
119661	1249223	3062	0.089	3.062	
119662	1249224	13980	0.408	13.980	
119663	1249225	584	0.017	0.584	
119664	1249226	121	0.004	0.121	
119665	1249227	111	0.003	0.111	
119666	1249228	<5	<0.001	<0.005	
119667	1249229	<5	<0.001	<0.005	
119668	1249230	17	<0.001	0.017	
119669 Dup	0 1249230	6	<0.001	0.006	
119670	1249231	394	0.012	0.394	
119671	1249232	16	<0.001	0.016	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119672	1249233	6230	0.182	6.230	
119673	1249234	26	<0.001	0.026	
119674	1249235	3625	0.106	3.625	
119675	1249236	126	0.004	0.126	
119676	1249237	523	0.015	0.523	
119677	1249238	312	0.009	0.312	
119678	1249239	146	0.004	0.146	
119679	1249240	5176	0.151	5.176	
119680 Dup	0 1249240	Insufficient Sample			
119681	1249241	834	0.024	0.834	
119682	1249242	10	<0.001	0.010	
119683	1249243	7	<0.001	0.007	
119684	1249244	5811	0.170	5.811	
119685	1249245	165	0.005	0.165	
119686	1249246	10	<0.001	0.010	
119687	1249247	3104	0.091	3.104	
119688	1249248	72	0.002	0.072	
119689	1249249	401	0.012	0.401	
119690	1249250	68615	2.002	68.615	
119691 Dup	0 1249250	64283	1.875	64.283	
119692	1249251	1912	0.056	1.912	
119693	1249252	31820	0.928	31.820	
119694	1249253	116	0.003	0.116	
119695	1249254	22	<0.001	0.022	
119696	1249255	386	0.011	0.386	
119697	1249256	201	0.006	0.201	
119698	1249257	12774	0.373	12.774	
119699	1249258	143	0.004	0.143	
119700	1249259	1116	0.033	1.116	
119701	1249260	27	<0.001	0.027	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119702 Dup	1210260	ppb 11	<0.001	g/t (ppm) 0.011	
119702 Dup	1249261	10122	<0.001	10.122	
119703	1249262	31776	0.923	31.776	
		5879	0.927	5.879	
119705	1249263				
119706	1249264	820	0.024	0.820	
119707	1249265	37	0.001	0.037	
119708	1249266	85465	2.493	85.465	
119709	1249267	15149	0.442	15.149	
119710	1249268	228	0.007	0.228	
119711	1249269	73	0.002	0.073	
119712	1249270	96	0.003	0.096	
119713 Rep	1249270	73	0.002	0.073	
119714	1249271	622	0.018	0.622	
119715	1249272	21	<0.001	0.021	
119716	1249273	6	<0.001	0.006	
119717	1249274	17	<0.001	0.017	
119718	1249275	<5	<0.001	<0.005	
119719	1249276	8	<0.001	0.008	
119720	1249277	53	0.002	0.053	
119721	1249278	24	<0.001	0.024	
119722	1249279	91	0.003	0.091	
119723	1249280	570	0.017	0.570	
119724 Dup	1249280	589	0.017	0.589	
119725	1249281	<5	<0.001	<0.005	
119726	1249282	<5	<0.001	<0.005	
119727	1249283	<5	<0.001	<0.005	
119728	1249284	<5	<0.001	<0.005	
119729	1249285	6	<0.001	0.006	
119730	1249286	5622	0.164	5.622	
119731	1249287	846	0.025	0.846	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119732	1249288	<5	<0.001	<0.005	
119733	1249289	<5	<0.001	<0.005	
119734	1249290	10	<0.001	0.010	
119735 Du		14	<0.001	0.014	
119736	1249291	<5	<0.001	<0.005	
119737	1249292	9	<0.001	0.009	
119738	1249293	<5	<0.001	<0.005	
119739	1249294	<5	<0.001	<0.005	
119739	1249295	656	0.019	0.656	
119741	1249296	13	<0.001	0.013	
119742	1249297	<5	<0.001	<0.005	
119743	1249298	14677	0.428	14.677	
119744	1249299	266	0.008	0.266	
119745	1249300	85	0.002	0.085	
119746 Du		179	0.005	0.179	
119747	1249301	821	0.024	0.821	
119748	1249302	113	0.003	0.113	
119749	1249303	21	<0.001	0.021	
119750	1249304	<5	<0.001	<0.005	
119751	1249305	5	<0.001	0.005	
119752	1249306	11	<0.001	0.011	
119753	1249307	<5	<0.001	<0.005	
119754	1249308	<5	<0.001	<0.005	
119755	1249309	5601	0.163	5.601	
119756	1249310	790	0.023	0.790	
119757 Du	p 1249310	Insufficient Sample			
119758	1249311	<5	<0.001	<0.005	
119759	1249312	<5	<0.001	<0.005	
119760	1249313	6481	0.189	6.481	
119761	1249314	2679	0.078	2.679	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

					_
Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119762	1249315	56	0.002	0.056	
119763	1249316	24	<0.001	0.024	
119764	1249317	48	0.001	0.048	
119765	1249318	9	<0.001	0.009	
119766	1249319	138	0.004	0.138	
119767	1249320	5	<0.001	0.005	
119768 Du	p 1249320	8	<0.001	0.008	
119769	1249321	45	0.001	0.045	
119770	1249322	<5	<0.001	<0.005	
119771	1249323	127	0.004	0.127	
119772	1249324	<5	<0.001	<0.005	
119773	1249325	13	<0.001	0.013	
119774	1249326	147	0.004	0.147	
119775	1249327	<5	<0.001	<0.005	
119776	1249328	<5	<0.001	<0.005	
119777	1249329	<5	<0.001	<0.005	
119778	1249330	34	<0.001	0.034	
119779 Re	p 1249330	43	0.001	0.043	
119780	1249331	<5	<0.001	<0.005	
119781	1249332	5471	0.160	5.471	
119782	1249333	811	0.024	0.811	
119783	1249334	<5	<0.001	<0.005	
119784	1249335	<5	<0.001	<0.005	
119785	1249336	2216	0.065	2.216	
119786	1249337	<5	<0.001	<0.005	
119787	1249338	<5	<0.001	<0.005	
119788	1249339	<5	<0.001	<0.005	
119789	1249340	5008	0.146	5.008	
119790 Du	p 1249340	5759	0.168	5.759	
119791	1249341	120	0.004	0.120	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119792	1249342	6	<0.001	0.006	
119793	1249343	6	<0.001	0.006	
119794	1249344	2233	0.065	2.233	
119795	1249345	110	0.003	0.110	
119796	1249346	10	<0.001	0.010	
119797	1249347	<5	<0.001	<0.005	
119798	1249348	15	<0.001	0.015	
119799	1249349	<5	<0.001	<0.005	
119800	1249350	<5	<0.001	<0.005	
	up 1249350	<5	<0.001	<0.005	
119802	1249351	<5	<0.001	<0.005	
119803	1249352	<5	<0.001	<0.005	
119804	1249353	<5	<0.001	<0.005	
119805	1249354	<5	<0.001	<0.005	
119806	1249355	5270	0.154	5.270	
		810			
119807	1249356		0.024	0.810	
119808	1249357	6	<0.001	0.006	
119809	1249358	<5	<0.001	<0.005	
119810	1249359	12	<0.001	0.012	
119811	1249360	<5	<0.001	<0.005	
	up 1249360	<5	<0.001	<0.005	
119813	1249361	<5	<0.001	<0.005	
119814	1249362	<5	<0.001	<0.005	
119815	1249363	10	<0.001	0.010	
119816	1249364	<5	<0.001	<0.005	
119817	1249365	<5	<0.001	<0.005	
119818	1249366	<5	<0.001	<0.005	
119819	1249367	<5	<0.001	<0.005	
119820	1249368	<5	<0.001	<0.005	
119821	1249369	<5	<0.001	<0.005	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Tuesday, December 2, 2014

Final Certificate

Auxin Resources Ltd. Suite 606-1055 West Broadway Vancouver, BC, Can V6H-1E2 Ph#: (807) 621-0450 Fax#: (604) 736-2760 Email: stanley_wong@telus.net, gryule@tbaytel.net

Date Received: 08/19/2013 Date Completed: 09/06/2013 Job #: 201341675 Reference: NJ 13-03 Sample #: 238

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
119822	1249370	<5	<0.001	<0.005	
119823 Dup	1249370	<5	<0.001	<0.005	
119824	1249371	<5	<0.001	<0.005	
119825	1249372	<5	<0.001	<0.005	
119826	1249373	<5	<0.001	<0.005	
119827	1249374	<5	<0.001	<0.005	
119828	1249375	7	<0.001	0.007	
119829	1249376	<5	<0.001	<0.005	
119830	1249377	6	<0.001	0.006	
119831	1249378	5072	0.148	5.072	
119832	1249379	776	0.023	0.776	
119833	1249380	<5	<0.001	<0.005	
119834 Dup	1249380	Insufficient Sample			
119835	1249381	<5	<0.001	<0.005	
119836	1249382	<5	<0.001	<0.005	
119837	1249383	60	0.002	0.060	
119838	1249384	<5	<0.001	<0.005	
119839	1249385	18	<0.001	0.018	
119840	1249386	7	<0.001	0.007	
119841	1249387	<5	<0.001	<0.005	
119842	1249388	<5	<0.001	<0.005	

PROCEDURE CODES: ALP2, ALFA2

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality