Assessment Report On Metallurgical Testing

Rockstone Property Thunder Bay Mining Division Northwestern Ontario

Prepared for Greencastle Resources Ltd.

> 330 Bay Street, Suite 1208 Toronto, Ontario M5C 2S8

Prepared by: Steven Siemieniuk, P.Geo., D. Cullen, P.Geo. and J. Garry Clark, P.Geo. Clark Exploration Consulting 1000 Alloy Drive

1000 Alloy Drive Thunder Bay, ON P7B 6A5

May 5th, 2015

TABLE OF CONTENTS

SUMMARY	5
INTRODUCTION	7
PROPERTY DESCRIPTION AND LOCATIO	N8
ACCESSIBILITY, CLIMATE, LOCAL RESO PHYSIOGRAPHY	
EXPLORATION HISTORY	
GEOLOGICAL SETTING AND MINERALIZA	TION 15
2014 EXPLORATION PROGRAM	19
Assaying of Pulps	Error! Bookmark not defined.
Mineralogical Study	Error! Bookmark not defined.
Prospecting	Error! Bookmark not defined.
Ground Geophysics (VLF)	Error! Bookmark not defined.
Metallurgical Testing	19
Sample Preparation, Analysis and Sec	urity Error! Bookmark not defined.
INTERPRETATION AND CONCLUSIONS	
RECOMMENDATIONS	21
Proposed Budget	22
ITEM 27: REFERENCES	23
APPENDICES	
APPENDIX A	
2012 Drill Log for GC-12-01	
APPENDIX B	
Graphitic Carbon Assay Certificate	
APPENDIX C	
LUMINX Independent Mineralogical Re	port
APPENDIX D	
Core Photo	
APPENDIX E	
Prospecting Map	
APPENDIX F	

VLF Station Map
APPENDIX G
VLF Interpretation and Maps
APPENDIX H
VLF Readings
Instrument Manual

LIST OF TABLES

Table 1. Ro	ockstone Property Claims	8
	eencastle 2012 Drill Hole Summary	

TABLE OF FIGURES

Figure 1. Location Map	10
Figure 2. Rockstone Property Claims	
Figure 3. Regional and Property Geology	
Figure 4. Property Compilation	18

SUMMARY

This report includes the metallurgical testing done by SGS Laboratories on the Rockstone Graphite Property. This work compliments an earlier report dated January 8th, 2015 and filed as assessment work by the same authors.

Clark Exploration Consulting of Thunder Bay, Ontario was contracted by Greencastle Resources to conduct follow up work on its Rockstone Property (the "Property") to re-evaluate the potential for economic graphite mineralization. Drilling of geophysical anomalies in 2012 by Greencastle Resources targeting VMS mineralization encountered a 24 metre section of graphitic argillite which was not evaluated at the time for graphitic carbon (Cg).

The Rockstone Property is located on Marks and Adrian Townships in northwestern Ontario, approximately 55 km west of Thunder Bay and 20 km southwest of Kakabeka Falls (Figures 1 and 2). The Property consists of 15 staked, unpatented claims totalling 100 units (1,600 ha).

The Rockstone property is located within the Superior Province of the Canadian Shield and sits within the eastern portion of the Shebandowan Greenstone Belt (Berger and Rogers, 1995). The property also covers portions of the Shebandowan and Greenwater assemblages which are primarily supracrustal rocks. The area of interest in this program lies within the Greenwater assemblage of volcanic and associated metasediments. The Greenwater assemblage is most commonly associated with volcanogenic and magmatic base metal mineralization (Corfu and Stott 1998) whereas the deformation and magmatic events at the time of deposition of the Shebandowan assemblage is temporally associated with gold mineralization (Stott and Schnieders 1983; Jobin-Bevans, Kelso and Cullen 2006).

In 2012 Greencastle drilled three VMS targets, totalling 724m on the Rockstone Property The mineralization that Greencastle is targeting on its Rockstone Property is primarily copper-zinc VMS mineralization, as was intersected in drill hole GC-12-01 between 60.5 m and 84.5 m which returned 0.82% Zn, 0.15% Cu over 24 metres in a graphitic argillite unit. The unit is thinly bedded, graphite rich, very fine grained, dark grey to black in colour. The mineralized zone is within a brittle brecciated zone with angular clasts ranging in size from 3mm-5cm (syntectonic breccia). Mineralization occurs within the white carbonate/quartz matrix to the clasts as stringers and pods of pyrite+pyrrhotite (1-5%) with lesser reddish brown sphalerite and chalcopyrite.

Recent work by Zenyatta Ventures Ltd. on its Albany Graphite Project prompted Greencastle Resources to look at the 2012 drill intersection for potentially economic graphite. The pulps from this 24 m interval were subsequently analysed for carbon as graphite and returned 25% graphite over the 24 m section, using the graphitic carbon by LECO analytical procedure. Working under the guidance of Dr. Jim Pirie at Greencastle Resources, Clark Exploration conducted a multi-phased assessment of the prospect through assaying of pulps, mineralogical studies, ground prospecting, ground geophysics (VLF) and, finally, metallurgical testing by SGS Laboratories in Lakefield, Ontario.

Preliminary results from the metallurgical processing (generation of a concentrate through flotation) suggest that the carbon rich intersection is too contaminated with other silicate minerals to make an economic concentrate. Final results are not available at the time of writing this report.

Assuming that this intersection potentially represents VMS mineralization remobilized into a distal-type setting, then the clusters of AEM conductors near the currently tested drill targets may be considered for further exploration for proximal-type VMS mineralization. Followup of the graphite mineralization should continue as a secondary target.

A Phase 1 exploration program of ground geophysics, mapping and sampling at an estimated cost of \$108,500 is recommended to evaluate the Property. The ground geophysics will be comprised of magnetic and electromagnetic surveys on cut lines. Due to the lack of outcrop and known complexity of folding and deformation of the supracrustal rocks, the magnetic survey will help define the geological stratigraphy and structure. The electromagnetic survey will be used to better refine the VTEM anomalies in preparation for diamond drilling. The mapping and sampling will assess the geological environment around the conductive zones and assist in defining stratigraphic and structural setting of potential drill targets.

Once the results of the Phase 1 field work and detailed evaluation of the geophysical data are available, a number of targets will be identified and it is anticipated that a diamond drilling program of 2,000 metres in 8 holes at an estimated cost of \$340,000 will test the priority targets.

INTRODUCTION

This report includes the metallurgical testing done by SGS Laboratories on the Rockstone Graphite Property. This work compliments an earlier report dated January 8th, 2015 and filed as assessment work by the same authors.

Clark Exploration Consulting of Thunder Bay, Ontario was contracted by Greencastle Resources to conduct follow up work on its Rockstone Property (the "Property") to re-evaluate the potential for economic graphite mineralization. Drilling of geophysical anomalies in 2012 by Greencastle Resources targeting VMS mineralization encountered a 24 metre section of graphitic argillite which was not evaluated at the time for graphitic carbon (Cg).

The report and recommendations are based on:

1/ Public data archived at the Ministry of Northern Development, Mines and Forestry ("MNDMF"), Thunder Bay Resident Geologist's Office, Thunder Bay, Ontario, and on the MNDM website (www.geologyontario.mndm.gov.on.ca/);

2/ Participation in the exploration on the property by S. Siemieniuk, D. Cullen and G. Clark from 2012 to 2014.

PROPERTY DESCRIPTION AND LOCATION

The Rockstone Property is located on Marks and Adrian Townships in northwestern Ontario, approximately 55 km west of Thunder Bay and 20 km southwest of Kakabeka Falls (Figures 1 and 2).

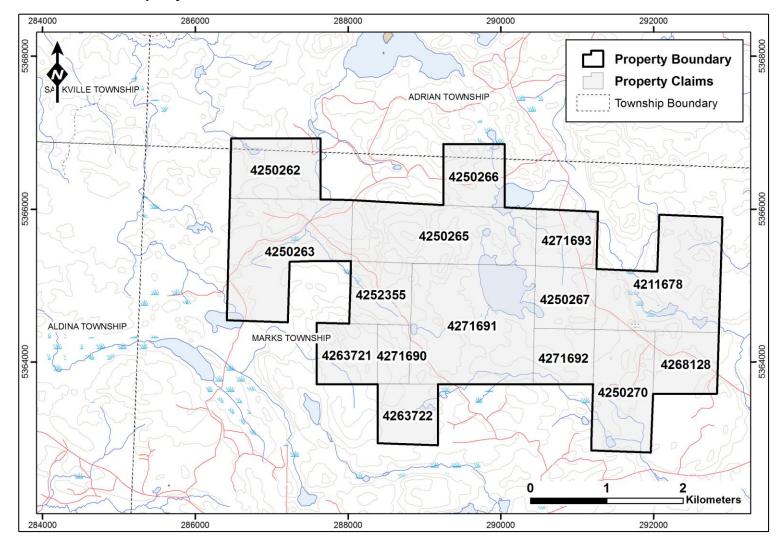
The Property consists of 15 staked, unpatented claims totalling 100 units (1,600 ha). The claim dispositions are listed in Table 1 below.

Claim No.	Township	Date Recorded	Due Date	Work Required	Units
4250262	Adrian	May 6, 2011	May 6, 2015	\$2,400	6
4250263	Marks	June 1, 2011	Jan 30, 2015	\$2,686	12
4250265	Adrian	May 6, 2011	May 6, 2015	\$4,800	12
4250266	Adrian	May 6, 2011	May 6, 2015	\$1,600	4
4250267	Marks	May 6, 2011	May 6, 2015	\$1,600	4
4250270	Marks	May 6, 2011	May 6, 2015	\$3,200	8
4211678	Marks	Sept 1, 2006	Jan 27, 2015	\$2,800	12
4252355	Marks	Feb 12, 2010	Feb 12, 2016	\$1,600	4
4263721	Marks	June 1, 2011	June 1, 2015	\$1,600	4
4263722	Marks	June 1, 2011	June 1, 2015	\$1,600	4
4268128	Marks	June 27, 2012	Jan 30, 2015	\$1,600	4
4271690	Marks	April 14, 2014	April 14, 2016	\$800	2
4271691	Marks	April 14, 2014	April 14, 2016	\$6,400	16
4271692	Marks	April 14, 2014	April 14, 2016	\$1,600	4
4271693	Marks	April 14, 2014	April 14, 2016	\$1,600	4
Total				\$38,886	100

Table 1. Rockstone Property Claims

The Ontario Mining Act requires Exploration Permits or Plans for exploration on Crown Lands. The permits and plans are obtained from the MNDM. The processing periods are 50 days for a permit and 30 days for a plan while the documents are reviewed by the Ministry and presented to the Aboriginal communities whose traditional lands will be impacted by the work. Discussion with the First Nation on access and potential economic benefit is recommended by the Ontario Government and authors.

The government of Ontario requires expenditures of \$400 per year per unit for staked claims, prior to expiry, to keep the claims in good standing for the following year. The work report must be submitted by the expiry date.


No mineral resources, reserves or mine existing prior to the mineralization described in this report are known by the authors to occur on the Property. There are no known environmental liabilities associated with the Property.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Rockstone Property is located on Marks and Adrian Townships in northwestern Ontario, approximately 55 km west of Thunder Bay and 20 km southwest of Kakabeka Falls (Figures 1 and 2). The property is accessible by road, by way of the Trans-Canada Highway (Highway 17) and the regional highway 590, which goes south from just west of Kakabeka Falls, from which the Boreal Forest Road extends to the west across a large area as a primary forestry access road. The property is accessible by a series of logging roads extending north and south of the Boreal Forest Road, and also by the Adrian Lake Road that extends north from Highway 590. The main lines of the Canadian Pacific and Canadian National railways run through Kakabeka Falls. Major electrical power lines follow the route of Highway 17 and the railways.

Figure 1. Location Map

Figure 2. Rockstone Property Claims

10

EXPLORATION HISTORY

- 1957: New Fortune Mines drilled one hole of 145 ft. on an outcrop of magnetite iron formation on what is now claim 4211678 of the Property, and intersected 80 ft. of 30.82% iron. No other elements were assayed for.
- 1961: Hanna Mining Company conducted a detailed magnetometer survey and geological mapping covering parts of claims 4250267, 4271692, 4250270, 4211678 and 4268128 on the east side of the current Property. The survey was conducted as a follow up to the previous work by New Fortune Mines in order to better define the iron formation, and the survey outlined a narrow, folded band of iron formation.
- 1962: Hanna Mining Company completed another magnetometer and geological survey in the area, this time further east, and it appears it may have only touched on the easternmost part of the Property.
- 1996: Cumberland Resources Ltd. conducted a soil geochemistry survey on a grid which was mostly on claims 4271692, 4250270 and 4211678 of the current Property. The grid consisted of 12 km of line, and a total of 174 B-horizon soil samples were collected at 50m intervals and analyzed by the ICP method for 32 elements. The results were described as being inconclusive, with the best anomaly being achieved from zinc. A continuous zinc anomaly with values ranging from 100 to 288 ppm extends for 2000m on the west end of the grid, with background values for zinc on the property said to be less than 40 ppm (McCrindle 1996). Further work was recommended, including mapping and, where possible, lithogeochemical and assay sampling in order to try to determine the cause of the soil anomalies.
- 1997: Cumberland Resources Ltd. conducted magnetic and electromagnetic surveys (VLF and Max-Min II+) over a 9.9 km grid that covered the area of the soil geochemistry anomaly outlined the previous year and described above. The magnetic survey was interpreted as defining magnetite rich iron formations toward the eastern part of the survey, while the Max-Min II+ survey did not locate any conductive trends, but did produce readings in the eastern part of the grid consistent with the presence of strong magnetite iron formations (Middaugh 1997).
- 2001- 2002: Candor Ventures Ltd. conducted geophysics consisting of magnetometer and Max-Min I electromagnetic surveys on a property that covered claim 4250266 and the north quarter of claim 4250265 in the northern part of the current Property. The two most significant EM conductors were subsequently drilled in winter 2002, with one of the holes (TL-02-02) being on claim 4250266 of Greencastle's Property. Candor was interested in gold at the time, and in both drill holes the conductors were identified as graphitic sediments, so they recommended no further work.

However, it should be noted that graphite is now one of the current targets for economic mineralization by Greencastle.

- 2001: Whalen Resources Ltd. conducted a program of digging test pits and trenches on what is now claim 4250270 of the current Property. A total of 34 test pits were dug at least 7m deep to try to locate bedrock, and where bedrock was exposed a 2-3m trench was dug until the overburden got too deep. Four trenches were dug of varying length for a total length of approximately 170m. The trenching showed that the area was underlain by deformed mafic pillowed volcanic, though only one trench exhibited mineralization, with ~1% fine grained disseminated pyrite in a siliceous, altered, mafic volcanic (Spence 2001). No samples were taken during the program.
- 2004: GLR Resources Inc. performed an airborne time domain electromagnetic (TDEM) geophysical survey which covered all of claim 4250262 and approximately 90% of claim 4250263 at the west side of the current Property. Only several weak EM anomalies were located on Greencastle's Property.
- 2007: In 2007 Sabina Silver Corporation conducted a versatile time domain electromagnetic (VTEM) geophysical survey over a large property, which included all of Greencastle's current Property. This survey was subsequently used as the basis for the 2012 diamond drilling program by Greencastle. Since Greencastle is a subsidiary of Greencastle, with Greencastle owning 65% of Greencastle, the exploration and drilling done by Greencastle will be discussed in detail in Items 9 and 10, "Exploration" and "Drilling".
- 2012: Using an airborne VTEM and magnetic survey carried out by Sabina Silver Corp. over the Rockstone property in 2007 (Figure 4), Greencastle reviewed a number of the VTEM anomalies using the Maxwell plate modeling method by Geotech Ltd. and selected four separate, potential base metal volcanogenic massive sulphide (VMS) targets to be tested by diamond drilling. A total of 916 meters were drilled in four holes on these targets. It should be noted that since this work Greencastle returned a number of the claims constituting the Property, and one of the holes drilled in 2012 (GC-12-03) is no longer on the current Property. The drilling on the current Property totalled 724m, and the holes are shown in Figure 4. The best intersection was found in drill hole GC-12-01 between 60.5 m and 84.5 m which returned 0.82% Zn, 0.15% Cu over 24 metres within a graphitic argillite unit.

Hole Number	Fasting		Northing Length (m)		Azimuth	
GC-12-01	291260	5364780	201	-45	42.5	
GC-12-02	290260	5365599	261	-45	66	
GC-12-03*	291208	5368638	192	-45	65	
GC-12-04	288210	5365180	262	-45	215	

Table 2. Greencastle 2012 Drill Hole Summary

*Note: Hole GC-12-03 is not located on Greencastle's current Property.

The best intersection was found in drill hole GC-12-01 between 60.5 m and 84.5 m which returned 0.82% Zn, 0.15% Cu over 24 metres within a graphitic argillite unit. The unit is thinly bedded graphite-rich, very fine grained, dark grey to black in colour. The mineralization occurs within a brittle brecciated zone with angular clasts ranging in size from 3mm-5cm (syntectonic breccia). Mineralization occurs within the white carbonate/quartz matrix to the clasts as stringers and pods of pyrite+pyrrhotite (1-5%) with lesser reddish brown sphalerite and chalcopyrite. The pulps from this 24 m interval were subsequently analysed for carbon as graphite and returned 25% graphite over the 24 m section, using the graphitic carbon by LECO analytical procedure.

In GC-12-04, two weakly mineralized zones were identified: 0.32% Zn over 2.5 m from 177.8 m to 180.3 m and 0.15% Zn over 20.2 m from 182.3 to 202.5 m.

In September 2012, Greencastle contracted Crone Geophysics to conduct 3D Borehole Pulse Electromagnetic Surveys on the four holes and again interpreted the results using the Maxwell plate modelling method. This work identified several anomalous conductive features which should be reevaluated for further exploration.

GEOLOGICAL SETTING AND MINERALIZATION

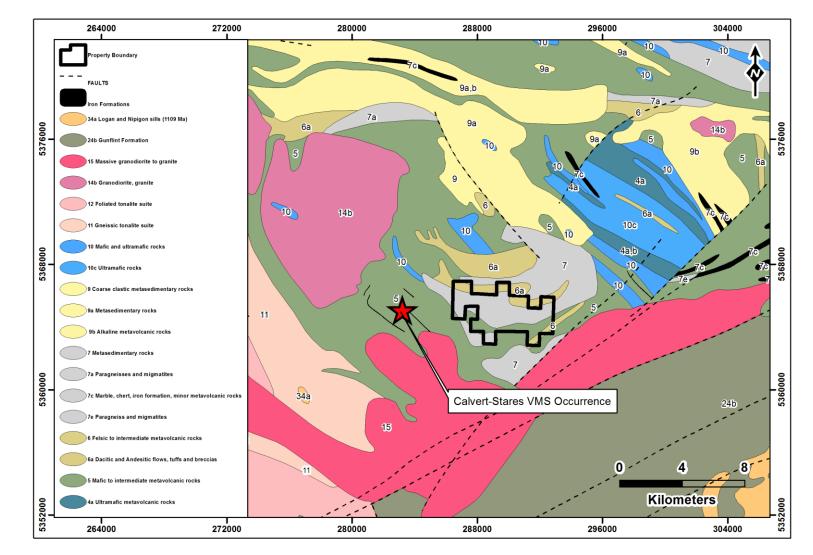
Regional Geology

The area around the Property is underlain by Neoarchean rocks of the Shebandowan Greenstone Belt, within the Wawa Subprovince of the Superior Province and by Paleo-Mesoproterozoic rocks of the Southern Province. (Rogers and Berger, 1995). The Shebandowan Greenstone Belt is fault-bounded to the north by metasedimentary and felsic intrusive rocks of the Quetico Subprovince and is overlain to the south by Paleoproterozoic metasedimentary rocks of the Animikie Group also known as the Gunflint and Rove Formations (Figure 3) (Bajc 1999). The Neoarchean rocks of the Shebandowan Greenstone Belt are composed mainly of ultramafic, mafic, intermediate and felsic metavolcanic rocks. Related intrusive rocks include peridotite, gabbro, felsic porphyries, and clastic and chemical metasedimentary rocks (Rogers and Berger, 1995). The supracrustal rocks are divided into two assemblages based on morphology, composition, structure and metamorphism which correlate with the Greenwater and Shebandowan assemblages described in the work of Carter (1990) (Berger and Rogers 1995).

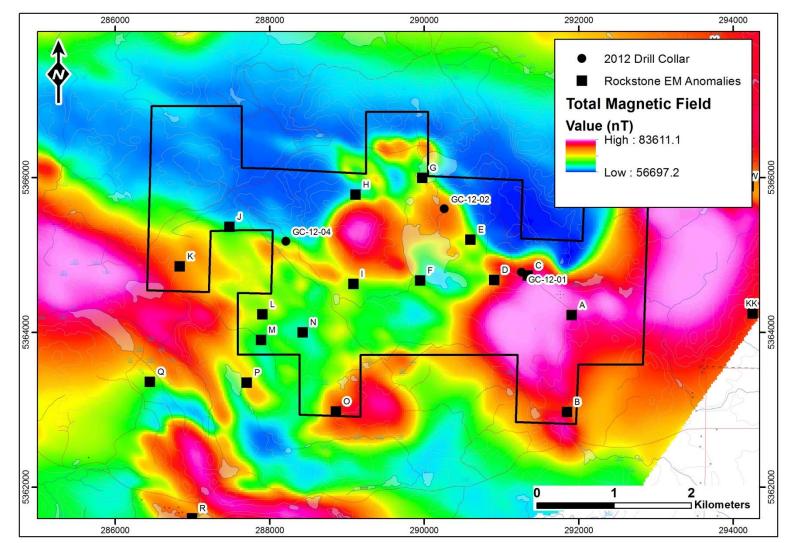
The Greenwater assemblage is most commonly associated with volcanogenic and magmatic base metal mineralization (Corfu and Stott 1998) whereas the deformation and magmatic events in the Shebandowan assemblage are temporally associated with gold mineralization (Stott and Schnieders 1983; Jobin-Bevans, Kelso and Cullen 2006).

Property Geology

The Rockstone Property sits within the eastern portion of the Shebandowan Greenstone Belt (Rogers and Berger, 1995). and is underlain primarily by supracrustal rocks of the Greenwater assemblage of metavolcanics and associated metasediments (Figure 3).


The rocks types found within the property boundary include; mafic, ultramafic, intermediate metavolcanics, coarse clastic metasedimentary rocks, dacitic and andesitic flows, tuffs and breccias, felsic to intermediate metavolcanics, alkaline metavolcanic rocks, and metasedimentary rocks comprised of: conglomerate, arkose, arenite, wacke, sandstone, siltstone, and graphitic argillite. There is a fault running northwest – southeast through the property and there are two iron occurrences within the property boundary. Portions of the property are also underlain by mafic intrusive rocks (Bajc, 1999).

Mineralization


The mineralization that Greencastle is targeting on the Rockstone Property is primarily copper-zinc volcanogenic massive sulphide (VMS) mineralization, as was intersected in drill hole GC-12-01 between 60.5 m and 84.5 m which returned 0.82% Zn, 0.15% Cu over 24 metres in a graphitic argillite unit. The unit is thinly bedded, graphite rich, very fine grained, dark grey to black in colour. The mineralized unit occurs within a brittle brecciated zone with angular clasts ranging in size from 3mm-5cm (syntectonic breccia). Mineralization occurs within the white carbonate/quartz matrix to the clasts as stringers and pods of pyrite+pyrrhotite (1-5%) with lesser reddish brown sphalerite and chalcopyrite. Assuming that this intersection potentially represents VMS mineralization remobilized into a distal-type setting, then the clusters of AEM conductors near the currently tested drill targets may be considered for further exploration for proximal-type VMS mineralization.

The pulps from the 24 m interval in GC-12-01 were subsequently analysed for carbon as graphite and returned 25% graphite over the 24 m section, using the graphitic carbon by LECO analytical procedure.

Greencastle is following up on the potential of graphite mineralization as a secondary target.

Figure 3. Regional and Property Geology

Figure 4. Property Compilation.

2014 EXPLORATION PROGRAM

Recent work by Zenyatta Ventures Ltd. on its Albany Graphite Project prompted Greencastle Resources to look at the 2012 drill intersection for potentially economic graphite.

Working under the guidance of Dr. Jim Pirie at Greencastle Resources, Clark Exploration conducted a multi-phased assessment of the prospect through assaying of pulps, mineralogical studies, ground prospecting, ground geophysics (VLF) and, finally, metallurgical testing by SGS Laboratories in Lakefield, Ontario.

Metallurgical Testing

As mentioned previously, ¼'d core of the graphitic intersection has been sent to SGS Laboratories for metallurgical testing. A copy of the final report by SGS is included as Appendix A.

INTERPRETATION AND CONCLUSIONS

The work done on the Property to date has indicated the presence of low grade copper-zinc volcanogenic massive sulphide (VMS) mineralization. The 2012 drilling by Greencastle drill tested three of the airborne conductive targets and confirmed that the geology over the general area has potential for base metal VMS mineralization since moderate Zn-Cu mineralization (0.82% Zn, 0.15% Cu over 24 metres) was encountered in one hole, while all holes encountered graphitic argillite rock units within a sequence of intermediate to felsic metavolcanics. The pulps from this 24 m interval were subsequently analysed for carbon as graphite and returned 25% graphite over the 24 m section, using the graphitic carbon by LECO analytical procedure.

Preliminary results from the metallurgical processing (generation of a concentrate through flotation) suggest that the carbon rich intersection is too contaminated with other silicate minerals to make an economic concentrate of graphite.

In GC-12-04, two weakly mineralized zones were identified: 0.32% Zn over 2.5 m from 177.8 m to 180.3 m and 0.15% Zn over 20.2 m from 182.3 to 202.5 m.

Down-hole pulse EM surveys of each hole suggest a number of off-hole conductive targets which require follow-up evaluation and possible testing as part of a future phase of drilling in the area to identify a potential larger source of VMS mineralization. Assuming that these drill intersections potentially represents base metal mineralization remobilized into a distal-type setting, then a number of the clusters of AEM conductors near the currently tested drill targets within the Property boundaries should be considered for further exploration for proximal-type VMS mineralization.

RECOMMENDATIONS

A Phase 1 exploration program of ground geophysics, mapping and sampling at an estimated cost of \$108,500 is recommended to evaluate the Property. The ground geophysics will be comprised of magnetic and electromagnetic surveys on cut lines. Due to the lack of outcrop and known complexity of folding and deformation of the supracrustal rocks, the magnetic survey will help define the geological stratigraphy and structure. The electromagnetic survey will be used to better refine the VTEM anomalies (Figure 4) in preparation for diamond drilling. The mapping and sampling will assess the geological environment around the conductive zones and assist in defining stratigraphic and structural setting of potential drill targets.

Once the results of the Phase 1 field work and detailed evaluation of the geophysical data are available, a number of targets will be identified and it is anticipated that a diamond drilling program of 2,000 metres in 8 holes at an estimated cost of \$340,000 will test the priority targets.

Proposed Budget

<u>Phase 1</u>

Line Cutting (50 kilometres @ \$850/kilometre)	
Magnetic Survey (50 kilometres @ \$180/kilometre)	9,000
Electromagnetic Survey (30 kilometres @ \$300/kilometre)	9,000
Geophysical Supervision & Interpretation (10 days @ \$1,000/day)	
Mapping & Sampling (20 days @ \$1,200/day)	
Assays (100 samples @ \$40/sample)	4,000
Reports and Maps	5,000
Contingencies	
TOTAL Phase 1	<u>\$108,500</u>
TOTAL Phase 1 <u>Phase 2</u>	<u>\$108,500</u>
Phase 2	
Phase 2 Diamond Drilling (2,000 metres@ \$120 /metre)	240,000
Phase 2 Diamond Drilling (2,000 metres@ \$120 /metre) Geology, Logging, Sampling, Splitting etc (\$30/metre)	240,000 60,000
Phase 2 Diamond Drilling (2,000 metres@ \$120 /metre) Geology, Logging, Sampling, Splitting etc (\$30/metre) Assaying, Analyses (250 samples @ \$40)	240,000 60,000 10,000

ITEM 27: REFERENCES

- **Note:** Notations listed in the references below in the format "AFRI 52A05SW0021" refer to assessment files archived with the Ontario Ministry of Northern Development and Mines, Thunder Bay Resident Geologist's Office, Thunder Bay, Ontario, and on the MNDM website (www.geologyontario.mndm.gov.on.ca/).
- Bagrianski, A. 2004. Report on Helicopter-Borne Time Domain Electromagnetic Geophysical Survey, *for* GLR Resources Inc. AFRI 52A05NW2027
- Bajc, A.F. 1999. Results of Regional Humus and Till Sampling in the Eastern Part of the Shebandowan Greenstone Belt, Northwestern Ontario, Ontario Geological Survey Open File Report 5993.
- Bottrill, T.J. 2003. Technical report on the Stares–Calvert project, Adrian, Aldina, Marks, and Sackville townships, Shebandowan Belt, Thunder Bay District, Ontario, prepared for RJK Explorations Ltd. and GLR Resources Inc. by Bottrill Geological Services; RJK Explorations Ltd., NI 43-101 Technical Report, filed September 22, 2003 with SEDAR®
- Burton, G.B. and Chamois, P. 2002. Report on Geophysical Surveys, Twist Lake Property, Adrian Township, NTS 52A/5. AFRI 52A05NW2025
- Carter, M.W. 1990. Geology of Goldie and Horne Townships, Ontario Geological Survey Open File Report 5720.
- Chamois, P. 2002. Report on Diamond Drilling, Twist Lake Property, Adrian Township, NTS 52A/5. AFRI 52A05NW2024
- Corfu, F. and Stott, G.M. 1998. Shebandowan greenstone belt, western Superior Province: U/Pb ages, tectonic implications, and correlations; Geological Society of America Bulletin, v.110, p.1467-1484.
- Galley, A.G., Hannington, M.D. and Jonasson, I.R.2007. Volcanogenic Massive Sulphide Deposits *in* Goodfellow, W.D., ed., Mineral Deposits of Canada: Geol. Assoc. of Canada, Min. Depts. Div., Spec. Pub. No. 5. pp 141-161.
- Jobin-Bevans, S., Kelso, I. and Cullen, D. 2006. NI 43-101 Technical report on the Tower Mountain gold deposit, Conmee Township, northwestern Ontario, Canada for ValGold Resources Ltd., 95p.
- Lodge, R.W.D, Ratcliffe, L.M. and Walker, J.A. 2014. Geology and Mineral Potential of Sackville and Conmee Townships, Wawa Subprovince; *in* Summary of Field Work and Other Activities 2014, Ontario Geological Survey, Open File Report 6300, p. 9-1 to 9-17.

- McCrindle, W. 1996. Soil Geochemistry Survey, Marks Township Property, Thunder Bay Mining Division, Ontario; for Cumberland Resources Ltd. AFRI 52A05NW0005
- Middaugh, R.D. 1997. Geophysical Report, Marks Township Project, NTS 52-A-5 for Cumerland Resources Ltd. AFRI 52A05NW0022

New Fortune Mines 1957. Diamond drill log and section. AFRI 52A05SW0021

- Rogers, M.C. and Berger, B.R. 1995. Precambrian Geology, Adrian, Marks, Sackville, Aldina and Duckworth Townships; Ontario Geological Survey, Report 295, 66p.
- St-Pierre, M. 2014. Discussion of Results from VLF Survey Carried out by Clark Exploration Consulting Inc., Greencastle Resources Inc., Rockstone Property; internal report for Greencastle.
- Siemieniuk, S. 2013. Report on Downhole Geophysics and Drill Core Re-Logging on Greencastle Resources Ltd. Rockstone Property. AFRI 20000007993.
- Spence, I. 2001. Trenching Report for Whalen Resources Ltd., Marks Township Property, Northwestern Ontario, Concession VI Lot 5,6. AFRI 52A05NW2018
- Stott, G.M. and Schnieders, B.R. 1983. Gold mineralization in the Shebandowan belt and its relation deformation patterns; in The geology of gold in Ontario, Ontario Geological Survey, Miscellaneous Paper 110, p.181-193.
- Toews, R. and Hunt, D.S. 2008. Geophysical Report for Sabina Silver Corporation, Helicopter-Borne Versatile Time Domain Electromagnetic (VTEM) Survey, 2007; on the Rockstone Project. AFRI 20004517
- Wilton, D. 1999. Zinc-Lead-Copper VMS Deposits, Part 1; *in* The Northern Miner, January 11-17, 1999.
- Winston, R.L. 1961. Report on Magnetometer Survey for Hanna Mining Company. AFRI 52A05SW0005
- Winston, R.L. 1961. Port Arthur Iron Ore Corporation, Adrian-Conmee Group, Conmee Township, Port Arthur Mining Division; Magnetometer Survey by the Hanna Mining Company. AFRI 52A05NE0017

APPENDICES

APPENDIX A

SGS Report

An Investigation into

A PRELIMINARY FLOWSHEET DEVELOPMENT PROGRAM FOR THE ROCKSTONE GRAPHITE PROPERTY

prepared for

GREENCASTLE RESOURCES LTD.

Project 14748-001 – Final Report March 4, 2015

NOTE:

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Minerals Services. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the law. Test method information available upon request.

SGS Canada Inc. P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.met.sgs.com www.ca.sgs.com

Table of Contents

Executive Summary	ii
Introduction	v
Testwork Summary	.1
1. Sample Receipt and Preparation	1
1.1. Sample Receipt	
1.2. Sample Preparation 1.2.1. Head Assay Results	.1
2. Mineralogy Testwork	
2.1. Head XRD Mineralogy	2
2.2. Head Optical Mineralogy	.3
2.3. Concentrate Optical Mineralogy	.4
3. Metallurgical Test Program	5
3.1. Batch Rougher Flotation Testwork	.5
3.2. Batch Cleaner Flotation Testwork	.8
4. Conclusions and Recommendations1	0
Appendix A – Head Assay Data1	2
Appendix B – Mineralogy Report1	4
Appendix C – Batch Rougher Flotation Test Data	2
Appendix D – Batch Cleaner Flotation Test Data4	2

List of Tables

Table 1: Test Sample Head Assay Results	ii
Table 2: Rougher Flotation Results	iii
Table 3: Cleaner Flotation Results	iv
Table 4: Test Sample Carbon and Sulphur Speciation Assay Results	1
Table 5: ICP Scan Results on Test Samples	2
Table 6: F1 Flotation Test Conditions	6
Table 7: F1 Flotation Test Results	6
Table 8: F2, F9, F10, and F13 Test Conditions	6
Table 9: F2, F9, F10, and F13 Test Results	
Table 10: F11 Test Conditions	7
Table 11: F11 Test Results	7
Table 12: F3 and F4 Test Conditions	8
Table 13: F3 and F4 Test Results	9
Table 14: F5 Test Conditions	
Table 15: F5 Test Results	9
Table 16: F6, F7, F8, and F12 Test Conditions	10
Table 17: F6, F7, F8, and F12 Test Results	10

List of Figures

Figure 1: Optical Photomicrograph of Feed Head Sample	.4
Figure 2: Optical Photomicrograph of Concentrate Sample	.5
Figure 3: Rougher Flotation Grade/Recovery Curves	.8

Executive Summary

One sample received on the 2nd of September, 2014, weighing approximately 22.7 kg, was used for this testwork. The sample was mixed, crushed, homogenized, and split into 1 kg charges. A head sample was taken for both head assay and mineralogical analysis. A batch flotation program was then undertaken to focus on the possibility of producing a final flotation concentrate grading greater than 90% C(t), at the most coarse grind size possible. Each flotation test used 1 kg batches of the crushed material (minus 6 mesh).

The main composite was submitted for assaying. Table 1 shows the major head assay results for the main composite.

Elen	nent	Main Composite
C (t)	%	26.2
C (g)	%	25.3
S	%	4.77
S⁼	%	4.43
AI	%	5.21
Cu	%	0.13
Fe	%	6.73
Zn	%	0.76

Table 1: Test Sample Head Assay Results

XRD analysis confirms that the main gangue minerals of consequence are quartz and moderate amounts of feldspars. Minor amounts of pyrrhotite, pyrite, and mica were also detected. Chalcopyrite and chlorite were detected in trace amounts.

One polished section of the main composite was prepared and examined with an optical microscope using reflected light. Volumetric and liberation determinations of the minerals were completed using the optical point counting technique. Volumetric results revealed that the head sample contains approximately 53.5% gangue, 37.4% graphite, and 9.1% sulphides. Graphite is poorly liberated and typically occurring either as graphite rich aggregates that host multiple micrometric inclusions of silicate gangue or as fine-grained intergrowths within gangue. Clean individual graphite platy particles are rare and the silicate minerals associated with the graphite are very fine grained (<10 μ m). The majority of the graphite is finer than 50 μ m with major micro-inclusion gangue activity. This indicates that the ore must be ground at least finer than a P₈₀ of 50 μ m to achieve adequate concentrate grade and sufficient recovery.

The sulphides contained within the sample are generally coarse but are typically associated with silicates as attachments or inclusions.

A concentrate sample was also taken for optical mineralogy. The graphite still has many micro-inclusions of quartz and silicates, even as low as 5 to 10 μ m particles. This suggests it will be very difficult to achieve a final carbon grade of >90% in the final cleaner flotation concentrate.

Table 2 shows the main rougher flotation results focusing on the pH of the slurry. Each 1 kg charge was ground in a steel rod mill for 15 minutes. The resulting slurry was rougher floated for a total of 8 minutes. The rougher tailing was reground for a further 5 minutes in a steel rod mill and re-floated as a rougher scavenger for an additional 4 minutes. Tests F2 and F13 were conducted at natural pH. Test F9 was conducted at a pH of 12 and test F10 was completed at a pH of 10. The grind P₈₀ of test F2 was 106 μ m, whilst all other tests were run at a P₈₀ of 125 μ m.

	Roughe	Rougher Flotation Concentrate			Rougher Scav Flotation Concentrate			Overall Flotation Concentrate		
Test No.	Mass Carbon		Mass	Mass Carbon		Mass Carbon		arbon		
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	
F2	39.4	35.7	58.7	32.2	30.3	40.7	71.6	33.3	99.4	
F9	61.7	34.1	84.2	14.8	24.0	14.3	76.5	32.1	98.5	
F10	64.4	34.1	87.6	15.5	19.5	12.0	79.9	31.3	99.6	
F13	60.2	34.6	86.5	15.7	19.3	12.6	75.9	31.4	99.1	

Table 2: Rougher Flotation Results

The overall results for each test were very similar, with comparable total recoveries of ~99% and carbon grades of ~32% C(t) being recorded. The individual results for test F2 were quite different from the other tests, which may be a function of the finer grind size. The pH difference across tests F9, F10, and F13 appears to make very little difference to the stage and overall results. The rougher flotation concentrate grades appear reasonably stable between 34% - 35% carbon. The carbon upgrade ratio from head grade to rougher concentrate grade is small, at 1.3.

The mineralogy results, along with the small upgrade ratios observed in the rougher flotation tests, indicate that significant regrinding is required to achieve the required viable carbon cleaner concentrate grades (>90% C(t)). Four cleaner flotation tests were carried out to determine if a carbon grade of >90% C(t) was indeed achievable. The rougher concentrate was reground in ceramic media and floated over 3 stages of cleaner flotation. The third cleaner concentrate was reground a second time in ceramic media and again floated over a 2^{nd} 3 stage flotation circuit. Finally, the sixth cleaner concentrate was again reground in ceramic media and cleaned over another 3 stage flotation circuit. The grind size of the 9^{th} cleaner concentrate in tests F6, F7, F8, and F12 were 13 µm, 25 µm, 12 µm, and 15 µm, respectively. Table 3 shows the relevant results over the four tests.

	Rougher Concentrate			9th Cleaner Concentrate		
Test No.	Mass	Carbon		Mass	Carbon	
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %
F6	67.5	35.2	95.2	14.9	55.9	33.5
F7	64.8	34.3	90.6	27.8	50.8	57.5
F8	30.2	33.4	39.3	5.08	65.3	12.9
F12	59.0	37.0	86.8	20.9	58.8	48.9

Table 3: Cleaner Flotation Results

The highest carbon grade achieved was 65.3% C(t) in test F8. This result could also be anomalous with the poor rougher results with this test compared to the other rougher flotation results. The results indicate that a P₈₀ of significantly less than 10 µm is needed to achieve the required target carbon grades that would be useful in the graphite industry. At this point in time with the current technology in place, this deposit would be deemed as unviable to process, as the gangue material (specifically quartz and feldspars) are too intertwined with the graphite at such fine grain sizes to be economically viable to liberate.

Introduction

This report presents results from the batch flotation development program completed on the Rockstone deposit ore on behalf of Greencastle Resources Ltd. The Rockstone project is located between Shebandowan and Thunder Bay in north-west Ontario. The main purpose of the project was to produce high quality carbon flotation concentrate that could be suitable for further hydrometallurgical testing.

The test program was directed by Mr. Jim Pirie of Greencastle Resources Ltd., where the testwork results were forwarded to him as they became available over the course of the program.

ANWW

Russell McCarley Senior Metallurgist, Mineral Processing

Q_.

Dan Imeson, M.Sc. Manager, Mineral Processing

Experimental work by: Marteen Lortie Report preparation by: Russell McCarley Reviewed by: Alicia Kavish, Dan Imeson

Testwork Summary

Approximately 23 kg of sample was received on the 2nd of September, 2014. The entire sample was mixed, crushed to minus 6 mesh, homogenized, and split into 1 kg batches.

A head sub-sample was taken and assayed for carbon speciation, sulphur speciation, and a full ICP-OES scan.

A second head sub-sample was taken for mineralogical analysis using X-Ray Diffraction (XRD) and optical techniques.

The results are summarized in the following sections, and full details of the described work are appended.

1. Sample Receipt and Preparation

1.1. Sample Receipt

One Rubbermaid container, weighing approximately 23 kg, was received at SGS Lakefield on the 2nd of September, 2014 on behalf of Greencastle Resources Ltd. for testwork.

1.2. Sample Preparation

The entire received sample was thoroughly mixed and crushed to minus 6 mesh. The resulting crushed material was homogenized thoroughly and split into 1 kg charges.

1.2.1. Head Assay Results

A sub-sample was assayed for carbon speciation, sulphur speciation, and a full ICP-OES scan. Table 4 shows the head assay carbon and sulphur speciation results, while the results from the ICP scan are shown in Table 5. Based on assay results, the majority of carbon appears to be graphite, and the majority of sulphur occurs as sulphides.

Eler	nent	Main Composite
C (t)	%	26.2
C (g)	%	25.3
TOC	%	0.10
CO ₃	%	0.41
S	%	4.77
S⁼	%	4.43
SO ₄ S ⁰	%	0.10
S ⁰	%	<0.05

Table 4: Test Sample Carbon and Sulphur Speciation Assay Results

ICP-OE	S Scan	Main Composite					
Ag	g/t	<4.0					
AI	g/t	52,100					
As	g/t	<30					
Ва	g/t	562					
Ве	g/t	1.24					
Bi	g/t	<20					
Ca	g/t	7,720					
Cd	g/t	14					
Co	g/t	143					
Cr	g/t	234					
Cu	g/t	1,270					
Fe	g/t	67,300					
к	g/t	14,600					
Li	g/t	32					
Mg	g/t	8,610					
Mn	g/t	209					
Мо	g/t	16					
Na	g/t	16,400					
Ni	g/t	420					
Р	g/t	442					
Pb	g/t	122					
Sb	g/t	<10					
Se	g/t	<30					
Sn	g/t	<20					
Sr	g/t	129					
Ti	g/t	2,060					
П	g/t	<30					
U	g/t	<20					
V	g/t	83					
Y	g/t	28					
Zn	g/t	7,610					

Table 5: ICP Scan Results on Test Samples

Full head assay data can be viewed in Appendix A.

2. Mineralogy Testwork

2.1. Head XRD Mineralogy

The X-Ray Diffraction (XRD) analysis indicates that the main crystalline mineral components of the head sample are quartz with moderate amounts of plagioclase. Minor amounts of pyrrhotite, mica, and pyrite are also present. Chalcopyrite and chlorite were present in trace amounts.

The XRD technique did not detect graphite in appreciable quantities, as suggested by the head grade, due to two factors. Firstly, the graphite peak is very close to the quartz peak, which is the main gangue phase. This may cause the graphite peak to be overshadowed due to peak overlap with the quartz mineral. Secondly, the graphite mineral is not well crystalline in nature and is difficult to identify by the XRD method.

2.2. Head Optical Mineralogy

The as-received sample was stage-ground to a P_{80} of 300 µm to help with liberation of contained graphite analysis. One polished section was prepared and examined with an optical microscope using reflected light. Volumetric and liberation determinations of the minerals were completed using the optical point counting technique.

Volumetric results reveal that the head sample contains approximately 53.5% gangue, 37.4% graphite, and 9.1% sulphides.

Graphite is poorly liberated and typically occurring either as graphite rich aggregates that host multiple micrometric inclusions of silicate gangue or as fine-grained intergrowths within gangue. Clean individual graphite platy particles are rare and the silicate minerals associated with the graphite are very fine grained (<10 μ m). The majority of the graphite is finer than 50 μ m with major micro-inclusion gangue activity. This indicates that the ore must be ground to least finer than a P₈₀ of 50 μ m to achieve adequate concentrate grade at sufficient recovery.

The sulphides contained within the sample are generally coarse but are typically associated with silicates as attachment or inclusions.

Figure 1 illustrates the fine grained nature of the graphite particles indicated by the black grains. The nonsulphide gangue is also very fine. The photo also shows the relative coarseness of the bright sulphide minerals (mainly pyrite).

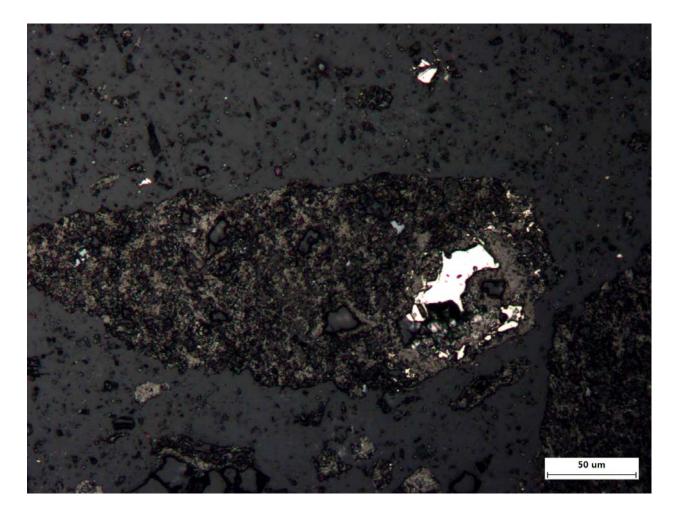


Figure 1: Optical Photomicrograph of Feed Head Sample

2.3. Concentrate Optical Mineralogy

A concentrate sample from test F8 was also taken for optical mineralogy. Figure 2 shows that the graphite still has many micro-inclusions of quartz and silicates, even as low as 5 to 10 μ m particles. This suggests it will be very difficult to achieve a final carbon grade of >90% in the final cleaner flotation concentrate.

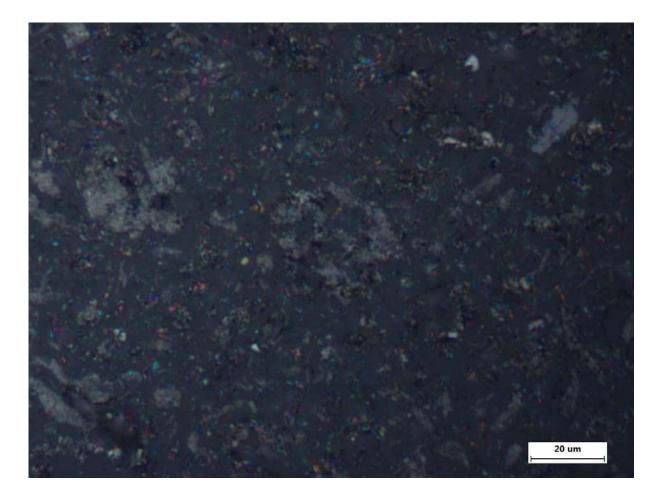


Figure 2: Optical Photomicrograph of Concentrate Sample

The full mineralogical report can be viewed in Appendix B.

3. Metallurgical Test Program

The metallurgical test program included:

- Batch rougher flotation testwork to achieve high carbon recovery at the lowest mass pull to the rougher concentrate possible;
- Batch cleaner flotation testwork to generate final flotation concentrate of more than 90% C(t).

3.1. Batch Rougher Flotation Testwork

The potential for carbon recovery by flotation was initially evaluated by flash flotation followed by rougher flotation of the flash flotation tails after regrinding of the Main Composite. A 1 kg charge was ground for 15 minutes in ceramic media and flash flotated for a period of 4 minutes. The resulting flash flotation tailings were reground further for another 7 minutes in a conventional rod mill. Once reground, the slurry

was subjected to 4 minutes of rougher flotation. Table 6 shows the conditions used for the test, and Table 7 tabulates the relevant results.

Table 6: F1 Flotat	ion Test Conditions
--------------------	---------------------

Í	Test	Reagent A	ddition (g/t)	Flash Froth	Rougher Froth	Rougher Tail P ₈₀	рН
	No.	Fuel Oil	MIBC	Time (min)	Time (min)	(µm)	рп
ſ	F1	40	40	4	4	304	7.3-7.6

Table 7: F1 Flotation Test Results

	Flash Flotation Concentrate			Roughe	r Flotation C	oncentrate	Overall Flotation Concentrate		
Test No.	st No. Mass Carbon		irbon	Mass Carbon		Mass	Ca	arbon	
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %
F1	22.5	38.4	36.2	35.4	32.4	47.9	57.9	34.7	84.1

The major purpose of the test was to investigate the kinetic curve of the flash and rougher flotation steps. After 4 minutes of flash flotation, a concentrate of $\sim 38\%$ C(t) was possible at a carbon recovery of $\sim 36\%$, whilst pulling 22.5% of the mass to concentrate. An extra $\sim 48\%$ carbon recovery, at a grade of 32.4% C(t), was generated by regrinding the flash flotation tail and floating the ground material for an extra 4 minutes. The results indicated that flash flotation is not a worthwhile processing technique to be considered due to the relatively low upgrade ratio of the graphitic material into the flash flotation concentrate.

A successive round of tests was completed by grinding 1 kg samples for 15 minutes in a standard steel rod mill to attain a P_{80} of ~175 µm. The resulting slurry was floated for 8 minutes. The rougher tails were then ground for a further 5 minutes in a steel rod mill to attain a P_{80} of ~125 µm. The resulting slurry was then floated for an additional 4 minutes and the final product was characterized as rougher tailings. Table 8 illustrates the conditions used for each test, while Table 9 tabulates the relevant results.

Test	Reag	ent Additior	n (g/t)	Rougher Froth	Rougher Scav Froth	Rougher Scav Tail P ₈₀	Ηα
No.	Fuel Oil MIBC Lime		Lime	Time (min) Time (min)		μm	рп
F2	60	60	-	8	4	106	7.0-7.8
F9	60	60	2440	8	4	125	12.0
F10	60	60	1180	8	4	125	10.0
F13	60	60	-	8	4	125	7.5-7.7

Table 8: F2, F9, F10, and F13 Test Conditions

	Rougher Flotation Concentrate			Rougher Scav Flotation Concentrate			Overall Flotation Concentrate		
Test No.	Mass Carbon		Mass	Mass Carbon		Mass	Carbon		
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %
F2	39.4	35.7	58.7	32.2	30.3	40.7	71.6	33.3	99.4
F9	61.7	34.1	84.2	14.8	24.0	14.3	76.5	32.1	98.5
F10	64.4	34.1	87.6	15.5	19.5	12.0	79.9	31.3	99.6
F13	60.2	34.6	86.5	15.7	19.3	12.6	75.9	31.4	99.1

Table 9: F2, F9, F10, and F13 Test Results

The results indicate that, whilst excellent carbon recoveries were recorded for each test, the carbon grade remained relatively low compared to the head grade of 26.2% carbon. In order to achieve the high recoveries of >99%, the mass pull from each test was very high with over 70% of the mass reporting to both of the concentrates. The varying pH of each test did not seem to make any difference in the results.

Test F11 included a pre-float targeting the sulphide material in the main composite. A 1 kg charge was ground to a P_{80} of 177 µm and PAX was added to help float the sulphide material from the head slurry for 1 minute. The pre-float tailing was dosed with fuel oil and MIBC as per the standard rougher flowsheet, and floated for another 8 minutes. Table 10 illustrates the conditions used for the test, while Table 11 tabulates the relevant results.

Table 10: F11 Test Conditions

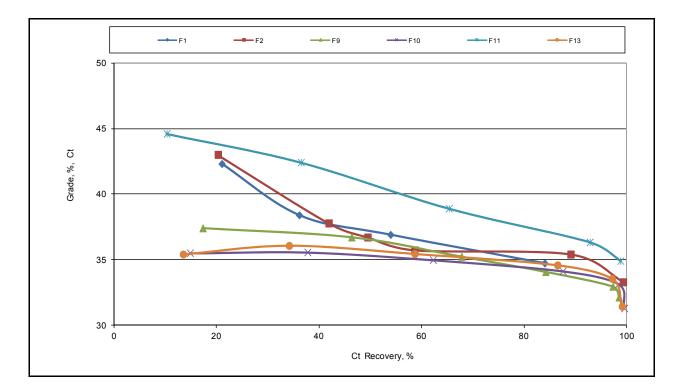

Test	Reagent Addition (g/t)			Pre-Float Froth	Rougher Froth	Rougher Scav Tail P ₈₀	рН
No.	Fuel Oil MIBC PAX		Time (min)	Time (min)	μm	рп	
F11	40	40	25	1	8	177	7.3-7.6

Table 11: F11 Test Results

	Pre-Float Concentrate			Rougher Flotation Concentrate			Overall Flotation Concentrate		
Test No.	Mass	Carbon		Mass	Carbon		Mass	C	arbon
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %
F11	5.79	44.6	10.3	65.1	34.0	88.5	70.9	34.9	98.8

The pre-float concentrate produced a higher carbon grade than any of the previous rougher flotation tests. This may be due to the fact that graphitic carbon is, by nature, easily floatable and highly hydro-phobic. The fast floating graphite particles were concentrated along with the sulphide species into the pre-float concentrate. The rougher flotation concentrate results were very similar to the previous tests.

Figure 3 illustrates the carbon grade/recovery relationships over each of the rougher flotation tests completed. Only three tests produced concentrates greater than 40% C(t). The other tests hovered around the 35% C(t) grade line as the recovery increased.

Figure 3: Rougher Flotation Grade/Recovery Curves

Further batch rougher flotation test data can be viewed in Appendix C.

3.2. Batch Cleaner Flotation Testwork

A number of cleaning flotation tests were carried out on the main composite to determine the effect on carbon grade and recovery with variable regrind grain size. Flotation tests F3 and F4 were carried out using a regrind time of 15 and 30 minutes, respectively, in a mill using ceramic media. The P_{80} of each test was 45 and 30 µm, respectively. Each re-ground slurry was subjected to a 4 stage flotation cleaner circuit in order to improve on the carbon grade and maintaining high carbon recovery. Table 12 illustrates the conditions used for the test, while Table 13 tabulates the relevant results.

Table 12:	F3 and F	4 Test C	onditions
-----------	----------	----------	-----------

Test	Reagent Addition (g/t)		Primary Grind Time	Rougher Froth	Regrind Time	Cleaner Froth	Rougher Tail P80	4th Cl. Con. P ₈₀
No.	Fuel Oil	MIBC	(min)	Time (min)	(min)	Time (min)	(µm)	(µm)
F3	80	80	10	8	15	4 x 4	357	45
F4	80	80	10	8	30	4 x 4	346	30

	Ro	ugher Conce	entrate	4th Cleaner Concentrate			
Test No.	Mass	Carbon		Mass	Carbon		
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	
F3	55.6	35.5	79.4	16.8	48.1	32.6	
F4	61.7	25.2	81.3	23.2	45.7	55.3	

Table 13: F3 and F4 Test Results

The carbon grades in the 4th cleaner concentrate did not improve markedly over the rougher concentrate grades in tests F3 and F4. The carbon recovery in each test also dropped significantly over the rougher flotation results.

Test F5 was undertaken to add a second regrind step into the flowsheet to investigate whether a more staged regrind was necessary to improve carbon grade. The rougher concentrate was ground for 15 minutes with ceramic media and subjected to a 3 stage cleaner flotation circuit. The 3rd cleaner concentrate was reground for a second time for 15 minutes and the subsequent ground material was subjected to another 3 stage cleaner flotation circuit. Table 14 illustrates the conditions used for the test, while Table 15 tabulates the relevant results.

Table 14: F5 Test Conditions

ſ	Test	Reagent A	ddition (g/t)	Primary Grind Time	Rougher Froth	Regrind Time	Cleaner Froth	Rougher Tail P ₈₀	6th Cl. Con. P ₈₀
	No.	Fuel Oil	MIBC	(min)	Time (min)	(min)	Time (min)	(µm)	(µm)
ſ	F5	150	150	15	8	2 x 15	6 x 4	188	20

Table 15: F5 Test Results

	Ro	ugher Conce	entrate	6th Cleaner Concentrate			
Test No.	Mass	Ca	irbon	Mass	Carbon		
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	
F5	44.9	34.1	63.7	9.85	54.9	22.5	

Adding a second regrind and a further 3 stage flotation circuit improved the carbon grade by up to 10%. The carbon recovery declined significantly to 22.5%, however. The rougher flotation performance was also significantly lower than the previous tests.

Four more flotation tests were completed, incorporating a third regrind stage and the addition of a third round of a 3 stage cleaner flotation circuit, hence, making a total of 9 stages of cleaner flotation. A third stage regrind P_{80} of between 10 – 20 µm was recorded for each test. Table 16 illustrates the conditions used for the test, while Table 17 tabulates the relevant results.

Test	Reagent A	ddition (g/t)	Primary Grind Time	Rougher Froth	Regrind Time	Cleaner Froth	Rougher Tail P ₈₀	9th Cl. Con. P ₈₀
No.	Fuel Oil	MIBC	(min)	Time (min)	(min)	Time (min)	(µm)	(µm)
F6	220	220	15	8	3 x 20	9 x 4	173	13
F7	220	220	15	8	3 x 30	9 x 4	177	25
F8	230	230	15	8	45, 15	9 x 4	177	12
F12	220	220	15	8	3 x 45	9 x 4	207	15

Table 16: F6, F7, F8, and F12 Test Conditions

Table 17: F6, F7, F8, and F12 Test Results

	Ro	ugher Conce	entrate	9th Cleaner Concentrate			
Test No.	Mass	Carbon		Mass	Carbon		
	%	Grade, %	Recovery, %	%	Grade, %	Recovery, %	
F6	67.5	35.2	95.2	14.9	55.9	33.5	
F7	64.8	34.3	90.6	27.8	50.8	57.5	
F8	30.2	33.4	39.3	5.08	65.3	12.9	
F12	59.0	37.0	86.8	20.9	58.8	48.9	

Even at a P_{80} as low as 12 µm, the carbon grade did not reach 66% C(t). This indicates that the grind size of the material must be finer than 10 µm to have any chance at producing a concentrate carbon grade of over 90%. This is almost prohibitive with today's current technology.

The batch cleaner flotation testwork results are presented in Appendix D.

4. Conclusions and Recommendations

The tests performed in this project indicated:

- The test sample contained, on average, 26.2% carbon, of which, the majority of this was of graphitic nature. The test sample also contained 4.77% sulphur, of which, 4.43% of this was in the form of sulphides.
- Mineralogy on the test sample indicated that the major minerals were quartz and graphite with moderate amounts of plagioclase. Minor amounts of pyrrhotite, mica, and pyrite are also present. Chalcopyrite and chlorite were present in trace amounts. Mineralogical assessment also indicated that the graphite is poorly liberated and typically occurring either as graphite rich aggregates that host multiple micrometric inclusions of silicate gangue or as fine-grained intergrowths within gangue. The silicate minerals associated with the graphite are very fine grained (<10 µm). The majority of the graphite is finer than 50 µm with major micro-inclusion gangue activity. This indicates that the ore must be ground to least finer than a P₈₀ of 50 µm to achieve adequate concentrate grade at sufficient recovery.

None of the flotation flowsheets attempted was able to produce a graphite concentrate grading >90% C(t) at reasonable graphite recovery. The highest graphite grade achieved was 65.3% C(t) at a very fine P₈₀ grind size of 12 μm.

Under the assumption that the test sample was representative of the resource, further flotation testwork is not recommended given the poor results obtained in this program.

Appendix A – Head Assay Data

Α

14748-001		GreenCastle Resources
Elem	ent	Main Composite
C (t)	%	26.2
C (g)	%	25.3
TOC	%	0.10
CO_3	%	0.41
S	%	4.77
S⁼	%	4.43
SO_4	%	0.10
S ⁰	%	<0.05
ICP-S	can	
Ag	g/t	<4.0
Al	g/t	52,100
As	g/t	<30
Ва	g/t	562
Be	g/t	1.24
Bi	g/t	<20
Ca	g/t	7,720
Cd	g/t	14
Со	g/t	143
Cr	g/t	234
Cu	g/t	1,270
Fe	g/t	67,300
К	g/t	14,600
Li	g/t	32
Mg	g/t	8,610
Mn	g/t	209
Мо	g/t	16
Na	g/t	16,400
Ni	g/t	420
Р	g/t	442
Pb	g/t	122
Sb	g/t	<10
Se	g/t	<30
Sn	g/t	<20
Sr	g/t	129
Ti	g/t	2,060
ТΙ	g/t	<30
U	g/t	<20
V	g/t	83
Y	g/t	28
Zn	g/t	7,610

Appendix B – Mineralogy Report

В

An Investigation into

THE MINERALOGICAL CHARATERIZATION OF ONE GRAPHITE FEED SAMPLE FROM THE ROCKSTONE PROPERTY LOCATED IN NORTHWEST ONTARIO

prepared for

GREENCASTLE RESOURCES

Project 14748-001– Final Report November 17, 2014

NOTES

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical, and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Lakefield: <u>http://palcan.scc.ca/SpecsSearch/GLSearchForm.do</u>.

SGS Canada Inc. P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.met.sgs.com www.ca.sgs.com

Table of Contents

Exec	cutive Summary	ii
Intro	duction	v
Test	work Summary	1
1.	Sample Receipt and Preparation X-Ray Diffraction Analysis	1
2. 3.	Optical Mineralogy Results	2
Арре	endix A – X-Ray Diffraction Results	.6

List of Tables

Table 1: Major Elemental Composition	. ii
Table 2: Summary of the XRD Restults	1

List of Figures

Figure 1: Liberation of Graphite in the Head Sample	. iv
Figure 3: Liberation of Graphite, NSG, and Sulphides for the Head Sample	3
Figure 4: Optical Photomicrographs in Plane Polarized Reflected Light (PPRL) from the Feed Head Sample	4
Figure 5: Optical Photomicrographs (PPRL) from the Feed Head Sample	5

Executive Summary

The mineralogical examination of one metallurgical feed, labelled Head Sample, was carried out using chemical analysis, optical microscopy, and X-ray diffraction (XRD) analysis. This characterization was requested by Mr. Russell McCarley of SGS Minerals Services who is conducting the beneficiation testwork on behalf of Greencastle Resources. The purpose of this test program was to determine the mineralogy of the sample and the liberation characteristics of the graphite and gangue minerals. A summary of the results is given below.

Sample Preparation

The sample was received as -6 mesh material but was further stage-ground to a P_{80} of 300 µm for the optical analysis. This was to determine if the liberation of graphite would be adequate to produce an acceptable concentrate grade at this grind target.

One polished section (PS) was prepared and examined with an optical microscope using reflected light. Volumetric and liberation determinations of the minerals were completed using the optical point counting method.

An additional representative sub-sample was riffled and pulverized for X-ray diffraction analysis to determine the gangue minerals.

Chemical Analysis and X-ray Diffraction (XRD)

The chemical assays were provided and are referenced under CA02476-SEP14. The major elemental compositions for sulphur (both total sulphur and sulphide sulphur) and carbon (both carbon total and graphitic carbon) are presented in Table 1. According to these results, graphitic carbon accounts for approximately 25% of the sample.

	C(total) %	C(graphite)	%S Total	%(Sulphide)	SO4 %	Fe %	K %	Na %
Head Sample	26.2	25.3	4.77	4.43	0.1	6.73	1.46	1.64

Table 1: Major Elemental Composition of the Head Sample

ii

X-Ray Diffraction Analysis (XRD)

XRD analysis indicates that the main crystalline mineral components of the head sample are quartz with moderate amounts of plagioclase, minor pyrrhotite, mica, and pyrite (Appendix A).

However, XRD analysis did not detect graphite in appreciable quantities, which should account for \sim 25% of the head sample as per the assay. This is attributed to:

- 1. The fact that graphite is not well "crystalline" and thus, difficult to identify by XRD method.
- 2. The graphite peak is close to the quartz peak which is the main gangue phase, and thus the graphite gets overshadowed due to peak overlap.

Optical Mineralogy Results

The volumetric results from the optical point counting reveal the sample consists mainly of gangue (54%), graphite (37%), and sulphides (9%).

Graphite is poorly liberated and typically occurs either as aggregates that host multiple micrometric inclusions of silicate gangue or as fine-grained intergrowths within gangue. Graphite ranges in size from <5 to 50 μ m. Due to an excess of these micro-inclusions, the sample will most likely have to be ground to <50 μ m to liberate the graphite and achieve an acceptable concentrate grade. Figure 1 and Figure 2 graphically illustrate the liberation data for both graphite and gangue, indicating that the graphite is not well liberated.

iii

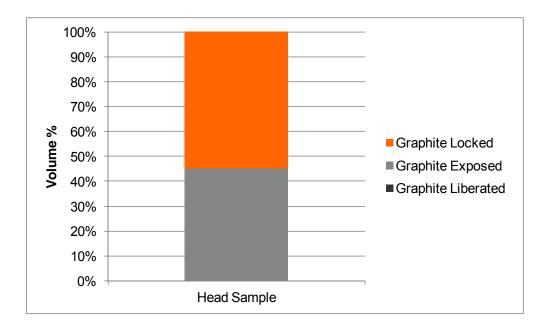


Figure 1: Liberation of Graphite in the Head Sample

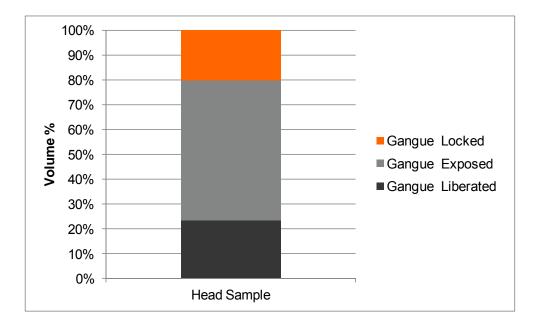


Figure 2: Liberation of Gangue in the Head Sample

iv

Introduction

The mineralogical examination of one metallurgical feed, labelled Head Sample, was carried out using chemical analysis, optical microscopy and X-ray diffraction (XRD) analysis. This characterization was requested by Mr. Russell McCarley of SGS Minerals Services who is conducting the beneficiation testwork on behalf of Greencastle Resources. The purpose of this test program was to determine the mineralogy of the sample and determine the liberation characteristics of the graphite and gangue minerals. A summary of the results is given below.

A Mi

Chris Gunning, H. B.Sc Senior Mineralogist, Advanced Mineralogy Facility

Judai Davrier

Stephanie Downing, M.Sc Manager, Advanced Mineralogy Facility

Sample Preparation by: Scott Young Optical Mineralogy: Maria Mezei and Chris Gunning Report preparation by: Chris Gunning Report reviewed by: Tassos Grammatikopoulos, Alicia Kavish, Stephanie Downing

1

Testwork Summary

1. Sample Receipt and Preparation

This mineralogical examination of one metallurgical feed, labelled Head Sample, was carried out using chemical analysis, optical microscopy and X-ray diffraction (XRD) analysis. The LIMS number MI5016-SEP14 was assigned to the mineralogical work.

The sample was received as -6 mesh material but was further stage-ground to a P_{80} of 300 µm for the optical analysis. The scope was to determine if the liberation of graphite would be adequate to produce a reasonable concentrate grade at this grind target.

One polished section (PS) was prepared from the sample and examined with an optical microscope using reflected light. Volumetric and liberation analysis of the minerals was completed using the point count method.

An additional representative sub-sample was also riffled and pulverized for X-ray diffraction analysis to determine the gangue minerals.

2. X-Ray Diffraction Analysis

The results of the XRD analysis are given in Table 2 and the complete analyses are given in Appendix A. XRD analysis indicates that the main crystalline mineral components of the head sample consist mainly of quartz with moderate amounts of plagioclase, minor pyrrhotite, K-feldspar, mica, and pyrite.

The XRD results did not detect graphite in appreciable quantities which could be due to:

- 1. The fact that graphite is not well "crystalline" and thus, difficult to identify by XRD method.
- 2. The graphite peak is close to the quartz peak which is the main gangue phase and, thus the graphite gets overshadowed due to peak overlap.

Sample ID	Major	Moderate	Minor	Trace	
1. Head Sample	quartz	plagioclase	pyrrhotite, mica, pyrite, potassium-feldspar	*chalcopyrite *chlorite, *graphite	

Table 2: Summary of the XRD Restults

* tentative identification due to low concentrations, diffraction line overlap or poor crystallinity

3. Optical Mineralogy Results

Optical microscopy was conducted using both reflected light at 50X to 500X magnifications. Observations are summarized below.

- The volumetric results from the optical point counting reveal the sample consists mainly of gangue (53.5%), graphite (37.4%), and sulphides (9.1%).
- Graphite is poorly liberated and typically occurring either as graphite rich aggregates that host multiple micrometric inclusions of silicate gangue or as fine-grained intergrowths within gangue. Clean individual graphite platy particles are rare and the silicate minerals associated with the graphite are very fine grained (<10 µm).
- The graphite ranges in size from <5 to 50 μm. Due to an excess of these micro inclusions, the sample will most likely have to be ground to <50 μm to achieve an adequate concentrate grade.
- Figure 3 graphically illustrates the volumetric liberation data for graphite, gangue, and sulphides.
- Sulphides (manly pyrite) are common and occur as coarse liberated particles (can be >500 μm), but are typically associated with the silicates as attachment or inclusions.
- Representative optical photomicrographs of graphite and associated gangue minerals taken in plane polarized reflected light (PPRL) are shown in Figure 4 and Figure 5.

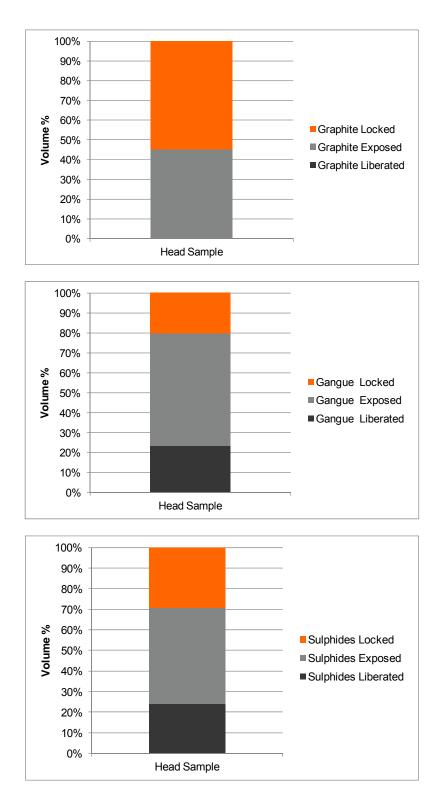
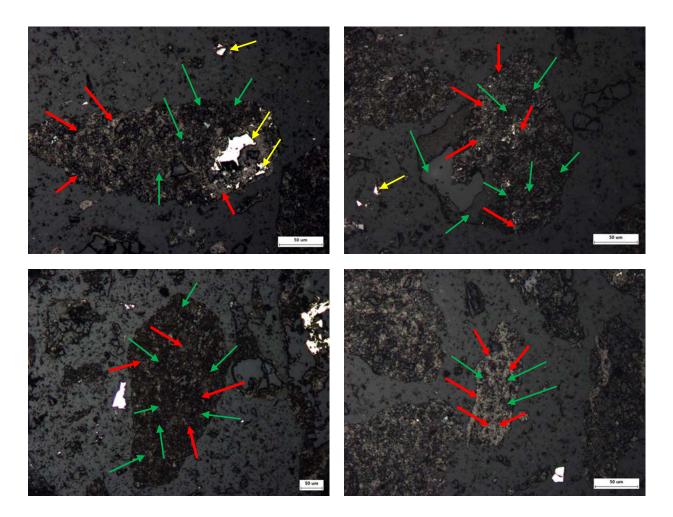



Figure 3: Liberation of Graphite, NSG, and Sulphides for the Head Sample

Figure 4: Optical Photomicrographs in Plane Polarized Reflected Light (PPRL) of the Feed Head Sample

The photomicrographs show coarse particles with very fine-grained graphite (red arrow) that ranges from <5 to ~50 μ m in length with pervasive micrometric inclusions of silicates or NSG (non sulphide gangue minerals, green arrow). Overall graphite is poorly liberated in the sample. Sulphides are also present (yellow arrow).

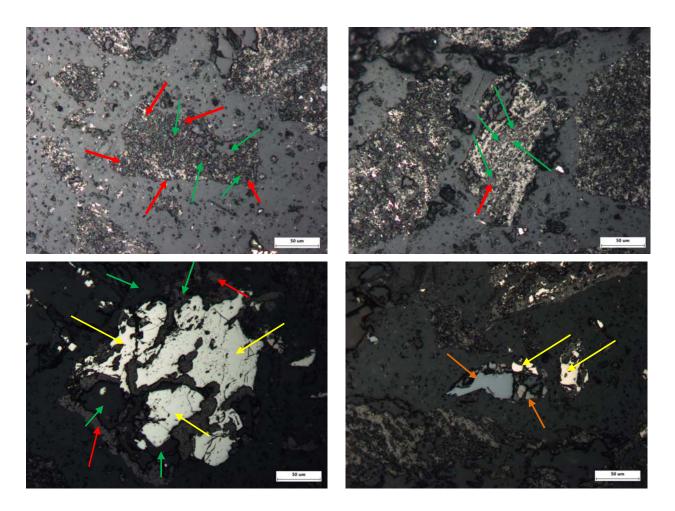


Figure 5: Optical Photomicrographs (PPRL) of the Feed Head Sample

The top two images show coarse particles with very fine-grained graphite (red arrow) that ranges from <5 to ~50 μ m in length also with pervasive micro inclusions of silicates or NSG (non sulphide gangue minerals, green arrow).

The bottom left image illustrates coarse-grained pyrite (yellow arrow) intergrown with silicates and graphite. The image to the bottom right shows ilmenite (orange arrow) having silicate and sulphide attachments.

Appendix A – X-Ray Diffraction Results

Α

Qualitative X-Ray Diffraction

Report Prepared for:	Metallurgical Operations
Project Number/ LIMS No.	14748-001/MI5016-SEP14
Sample Receipt:	September 24, 2014
Sample Analysis:	September 27, 2014
Reporting Date:	October 1, 2014
Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 40 kV, 35 mA Regular Scanning: Step: 0.02°, Step time:0.2s, 20 range: 3-70°
Interpretations :	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva software.
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.
Contents:	1) Method Summary 2) Summary of Mineral Asemblages 3) XRD Pattern(s)

Connie Kot

Technologist, XRD

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada - Minerals Services - Lakefield: <u>http://palcan.scc.ca/SpecsSearch/GLSearch/Form.do</u>.

SGS Minerals P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 a division of SGS Canada Inc. Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA)

Method Summary

The Qualitative Mineral Identification By XRD (ME-LR-MIN-MET-MN-D01) method used by SGS Minerals Services is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involve matching the diffraction pattern of an unknown test sample to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) and released on software as a database of Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds. Mineral proportions are based on relative peak heights and may be strongly influenced by crystallinity, structural group or preferred orientations. Interpretations and relative proportions should be accompanied by supporting petrographic and geochemical data (Whole Rock Analysis, Inductively Coupled Plasma - Optical Emission Spectroscopy, etc.).

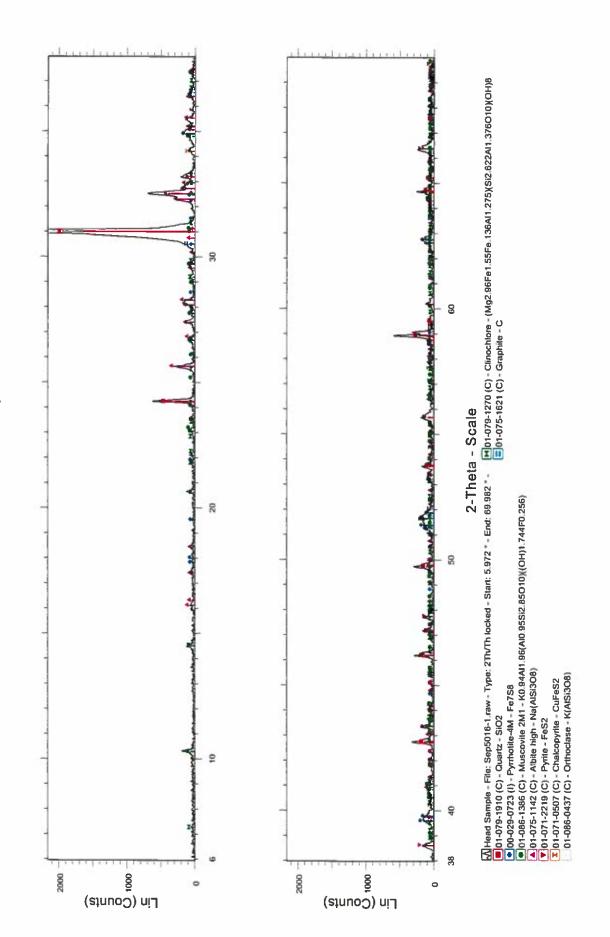
DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

SGS Minerals P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 a division of SGS Canada Inc. Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA)

Metallurgical Operations 14748-001/MI5016-SEP14 10/01/2014

Summary of Qualitative X-ray Diffraction Results

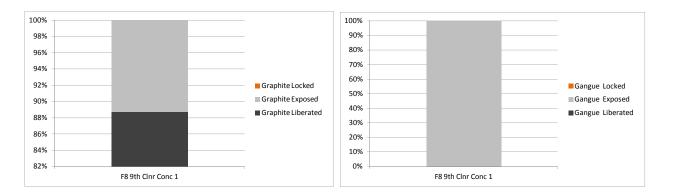

Crystalline Mineral Assemblage (relative proportions based on peak height)

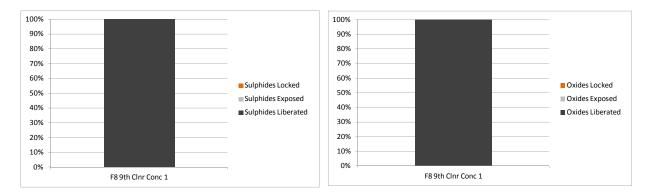
Sample ID	Major	Moderate	Minor	Trace
1. Head Sample	quartz	plagioclase	pyrrhotite, mica, pyrite, potassium-feldspar	*chalcopyrite, *chlorite, *graphite

* tentative identification due to low concentrations, diffraction line overlap or poor crystallinity

Mineral	Composition
Chalcopyrite	CuFeS ₂
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Graphite	C
Mica	K(Mg,Fe)Al ₂ Si ₃ AlO ₁₀ (OH) ₂
Plagioclase	(NaSi,CaAl)AlSi ₂ O ₆
Potassium-Feldspar	KAISi ₃ O ₈
Pyrite	FeS ₂
Pyrrhotite	Fe _(1-x) S
Quartz	SiO ₂

Head Sample


Greencastle Resources 14748-001 MI5025-OCT14


Mineral Distributions (Volume %)

Sample ID	Graphite	Gangue	Sulphides
F8 9th Clnr Conc 1	88.1	11.6	0.3

Liberation Data (Normalized %)

ĺ	Sample ID		Graphite			Gangue			Sulphides			Oxides	
	Sample iD	Liberated	Exposed	Locked	Liberated	Exposed	Locked	Liberated	Exposed	Locked	Liberated	Exposed	Locked
	F8 9th Clnr Conc 1	78.1	9.9	0.0	0.0	11.3	0.0	0.3	0.0	0.0	0.3	0.0	0.0

С

Appendix C – Batch Rougher Flotation Test Data

Project No.: 14748-001

Purpose: Initial batch flotation tests.

Procedure: As per below.

F1

Feed: 1 kg of Master Composite

Grind: 15 minutes per 1kg in ceramic media

Regrind: 7 minutes in rod mill

Conditions:

Test No.:

		Reagents added, grams per tonne			Time, minutes				
Stage	Fuel	MIBC			Grind	Cond.	Froth	pН	Ep (mV)
Grind					15				
Flash 1	10	10				1	2	7.3	0
Flash 2	10	10				1	2	7.5	-100
Regrind					7				
Rougher 1	10	10				1	2	7.5	-100
Rougher 2	10	10				1	2	7.6	-150
Total	40	40	0						

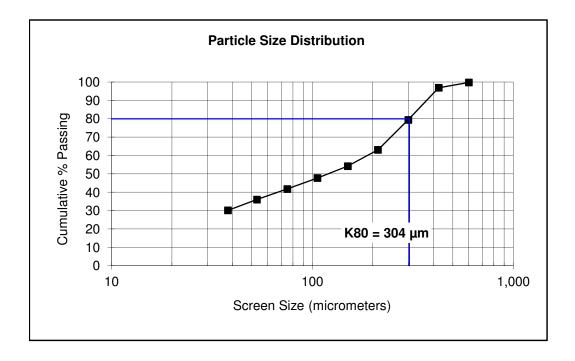
SGS Minerals Services CONFIDENTIAL

Stage	Rougher
Flotation Cell	2Kg
Speed: rpm	1800

* use as required - record

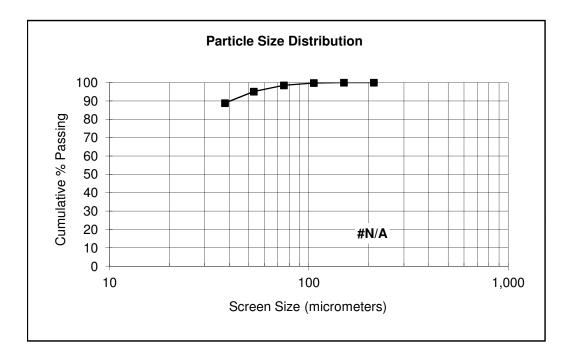
Metallurgical Balance - Rougher Kinetics

Product	We	eight	Assays %	% Distribution
	g	%	C (t)	C (t)
Flash Con 1	119	11.9	42.3	21.1
Flash Con 2	106	10.6	34.0	15.1
Rougher Con 1	125	12.5	34.2	17.8
Rougher Con 2	229	22.9	31.4	30.1
Rougher Tail	420	42.1	9.08	16.0
Head (calc.)	999	100.0	23.9	100.0
(direct)			25.3	
Combined Products				
Flash Con 1		11.9	42.3	21.1
Flash Con 1+2		22.5	38.4	36.2
Rougher Con 1		12.5	34.2	17.8
Rougher Con 1 + 2		35.4	32.4	47.9
Rougher Tail		42.1	9.08	16.0
Head (calc.)		100.0	23.93	100.0



Date: September 18,2014

 $P_{80} = 304 \ \mu m$


SGS Minerals Services Size Distribution Analysis Project No. 14748-001

Sample:	Ro Tail					
Si	ze	Weight	% Retained		% Passing	
Mesh	μm	grams	Individual	Cumulative	Cumulative	
28	600	0.3	0.2	0.2	99.8	
35	425	4.3	2.9	3.1	96.9	
48	300	26.0	17.5	20.6	79.4	
65	212	24.3	16.4	36.9	63.1	
100	150	13.2	8.9	45.8	54.2	
150	106	9.6	6.5	52.3	47.7	
200	75	8.9	6.0	58.3	41.7	
270	53	8.5	5.7	64.0	36.0	
400	38	8.8	5.9	69.9	30.1	
Pan	-38	44.7	30.1	100.0	0.0	
Total	-	148.6	100.0	-	-	
K80	304					

SGS Minerals Services Size Distribution Analysis Project No. 14743-001

Sample:	Flash Conc		Test No.:	F1	
Si	Size		% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65 100 150 200	212 150 106 75	0.0 0.0 0.2 1.2	0.0 0.0 0.2 1.3	0.0 0.0 0.2 1.5	100.0 100.0 99.8 98.5
270 400	53 38	3.2 5.9	3.4 6.3	4.9 11.1	95.1 88.9
Pan	-38	83.7	88.9	100.0	0.0
Total			100.0	-	-
K80	#N/A				

21.0	34.8	30.4
32.2	30.3	40.7
28.4	0.55	0.65

21.9

0.55

24.0

25.3

43.0

37.8

36.7

35.7

24.00

Speed: rpm		1800							
Metallurgical Balance - Rougher Kinetics									
Product	We	eight	Assays %	% Distribution					
	g	%	C (t)	C (t)					
Rougher Con 1	113.8	11.3	43.0	20.3					
Rougher Con 2	153.5	15.3	33.9	21.6					
Rougher Con 3	57.5	5.73	31.7	7.57					
Rougher Con 4	70.7	7.05	31.2	9.16					
Rougher Scav Con 1	210.6	21.0	34.8	30.4					

11.2

28.4

100.0

11.3

26.7

32.4

39.4

100.0

2KG

Meta Produ

112.5

284.4

1003

Stage	Fuel	MIBC			Grind	Cond.	Froth	pН	(mV)
Grind					7				
Rougher 1	10	10				1	2	7.0	75
Rougher 2	10	10				1	2	7.5	0
Rougher 3	10	10				1	2	7.8	-100
Rougher 4	10	10				1	2	7.7	-100
Regrind					7				
Scav 1	10	10				1	2	7.5	-125
Scav 2	10	10				1	2	7.7	-125
Total	60	60	0						
Stage		Rougher		* l	use as required	d - recore	b		

C

Flotation Cell

Rougher Scav Con 2

(direct)

Rougher Con 1 - 2

Rougher Con 1 - 3

Rougher Con 1 - 4

Ro Scav Con 1 - 2

Ro Scav Con 1

Rougher Tail

Head (calc.)

Combined Products Rougher Con 1

Rougher Tail

Head (calc.)

Test No.:

F2

Conditions:		Reagents added, grams per tonne	Time, minutes							
Regrind:	7	minutes in rod mill		P ₈₀ =						
Grind:	7	minutes per 2kg in rod mill								
Feed:	1 kg o	1 kg of Master Composite								
Procedure:	As pe	As per below.								
Purpose:	Initial	Initial batch flotation tests.								

Project No.: 14748-001

Operator: ML

10.2

0.65

100.0

20.3

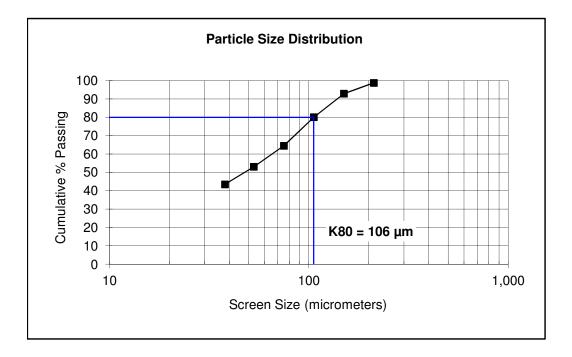
41.9

49.5

58.7

100.0

106 µm


Ер

36

Date: September 18,2014

SGS Minerals Services Size Distribution Analysis Project No. 14748-001

Sample:	Ro Tail				
Si	Size		% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65 100	212 150	2.1 10.2	1.2 5.9	1.2 7.1	98.8 92.9
150	106	22.3	12.8	19.9	80.1
200	75	27.0	15.6	35.5	64.5
270	53	19.9	11.5	46.9	53.1
400	38	16.6	9.6	56.5	43.5
Pan	-38	75.5	43.5	100.0	0.0
Total	-	173.6	100.0	-	-
K80	106				

Test No.:	F9	Project No.: 14748-001	Operator: ML	Date: Nov 24, 2014				
Purpose:	Initial batch flotation tests.							
Procedure:	As per b	As per below.						
Feed:	1 kg of N	laster Composite						
Grind:	15 m	inutes per 2kg in rod mill			P ₈₀ =	177 µm		
Regrind:	5 m	inutes in rod mill			P ₈₀ =	125 µm		

Conditions:

	Re	Reagents added, grams per tonne					Time, minutes			
								12	Ep	
Stage	Fuel	MIBC	Lime		Grind	Cond.	Froth	pН	(mV)	
Grind					15					
								7.5	-50	
Rougher 1	10	10	1900			1	2	12.0	-200	
Rougher 2	10	10				1	2	12.0	-50	
Rougher 3	10	10				1	2	12.0	-50	
Rougher 4	10	10				1	2	12.0	-40	
Regrind					5					
Scav 1	10	10	540			1	2	12.0	-25	
Scav 2	10	10				1	2	12.0	0	
Total	60	60	2440							

Stage	Rougher	* u
Flotation Cell	2KG	
Speed: rpm	1800	

use as required - record

Metallurgical Balance - Rougher Kinetics

Product	We	eight	As	ssays %			% Distribution	
	g	%	C (t)	S	Fe	C (t)	S	Fe
Rougher Con 1	117.6	11.6	37.4	2.15	4.23	17.4	6.24	7.63
Rougher Con 2	202.5	19.9	36.3	2.26	4.42	29.0	11.3	13.7
Rougher Con 3	167.8	16.5	32.4	2.60	4.73	21.5	10.8	12.2
Rougher Con 4	138.6	13.7	30.0	3.10	5.33	16.4	10.6	11.3
Rougher Scav Con 1	122.0	12.0	27.2	3.25	5.12	13.1	9.79	9.58
Rougher Scav Con 2	28.6	2.82	10.6	5.01	8.01	1.20	3.54	3.51
Rougher Tail	238.2	23.5	1.57	8.12	11.5	1.48	47.8	42.0
Head (calc.)	1015	100.0	25.0	3.99	6.42	100.0	100.0	100.0
(direct)			25.3	4.77	6.73			
Combined Products								
Rougher Con 1		11.6	37.4	2.15	4.23	17.4	6.24	7.63
Rougher Con 1 - 2		31.5	36.7	2.22	4.35	46.4	17.5	21.4
Rougher Con 1 - 3		48.1	35.2	2.35	4.48	67.8	28.3	33.5
Rougher Con 1 - 4		61.7	34.1	2.52	4.67	84.2	38.9	44.9
Ro Scav Con 1		12.0	27.2	3.25	5.12	13.1	9.79	9.58
Ro Scav Con 1 - 2		14.8	24.0	3.58	5.67	14.3	13.3	13.1
Rougher Tail		23.5	1.57	8.12	11.5	1.48	47.8	42.0
Head (calc.)		100.0	24.96	3.99	6.42	100.0	100.0	100.0

Test No.:	F10 Project No. : 14748-001	Operator: ML	Date:Nov,24,2014
Purpose:	Batch flotation tests with pH 10.		
Procedure:	As per below.		
Feed:	1 kg of Master Composite		
Grind:	15 minutes per 2kg in rod mill		P ₈₀ = 177 μm
Regrind:	5 minutes in rod mill		P ₈₀ = 125 μm

Conditions:

	Re	agents add	ded, grams pe	r tonne	Ti	me, minu			
								10	Ep
Stage	Fuel	MIBC	lime		Grind	Cond.	Froth	pН	(mV)
Grind					15				
								7.5	-50
Rougher 1	10	10	450			1	2	10.0	-240
Rougher 2	10	10	300			1	2	10.0	-50
Rougher 3	10	10	110			1	2	10.0	-25
Rougher 4	10	10	100			1	2	10.0	0
Regrind					5				
Scav 1	10	10	120			1	2	10.0	50
Scav 2	10	10	100			1	2	10.0	50
Total	60	60	1180						<u> </u>

Stage	Rougher				
Flotation Cell	2KG				
Speed: rpm	1800				

* use as required - record

Metallurgical Balance - Rougher Kinetics

Product	We	eight	As	ssays %		% Distribution			
	g	%	C (t)	S	Fe	C (t)	S	Fe	
Rougher Con 1	105.5	10.5	35.5	2.64	5.02	14.9	6.41	7.84	
Rougher Con 2	162.2	16.1	35.6	2.54	4.64	22.9	9.48	11.1	
Rougher Con 3	180.9	18.0	34.1	2.49	4.71	24.5	10.4	12.6	
Rougher Con 4	198.0	19.7	32.2	2.75	4.60	25.3	12.5	13.5	
Rougher Scav Con 1	101.9	10.1	26.9	3.37	5.08	10.9	7.90	7.66	
Rougher Scav Con 2	53.4	5.32	5.35	7.53	9.75	1.13	9.25	7.70	
Rougher Tail	202.7	20.2	0.51	9.45	13.2	0.41	44.1	39.6	
Head (calc.)	1005	100.0	25.1	4.33	6.73	100.0	100.0	100.0	
(direct)			25.3	4.77	6.73				
Combined Products									
Rougher Con 1		10.5	35.5	2.64	5.02	14.9	6.41	7.84	
Rougher Con 1 - 2		26.6	35.6	2.58	4.79	37.8	15.9	19.0	
Rougher Con 1 - 3		44.7	35.0	2.54	4.76	62.3	26.3	31.6	
Rougher Con 1 - 4		64.4	34.1	2.61	4.71	87.6	38.8	45.1	
Ro Scav Con 1		10.1	26.9	3.37	5.08	10.9	7.90	7.66	
Ro Scav Con 1 - 2		15.5	19.5	4.80	6.69	12.0	17.2	15.4	
Rougher Tail		20.2	0.51	9.45	13.2	0.41	44.1	39.6	
Head (calc.)		100.0	25.1	4.33	6.73	100.0	100.0	100.0	

Project No.: 14748-001 Ope

Operator: ML Date:Nov,24,2014

Purpose: Batch flotation tests with natural pH and sulphide pre-float.

Procedure: As per below.

F11

Feed: 1 kg of Master Composite

Grind: 15 minutes per 2kg in rod mill

Conditions:

Test No.:

	Re	Reagents added, grams per tonne					Time, minutes			
								10	Ep	
Stage	Fuel	MIBC	lime	PAX	Grind	Cond.	Froth	pН	(mV)	
Grind					15					
								7.5	-50	
Prefloat				25			1	7.6	-50	
Rougher 1	10	10				1	2	7.3	-240	
Rougher 2	10	10				1	2	7.4	-50	
Rougher 3	10	10				1	2	7.5	-25	
Rougher 4	10	10				1	2	7.5	0	
Total	40	40								

Stage	Rougher					
Flotation Cell	2KG					
Speed: rpm	1800					

* use as required - record

Metallurgical Balance - Rougher Kinetics

Product	We	eight	As	ssays %		% Distribution			
	g	%	C (t)	S	Fe	C (t)	S	Fe	
Prefloat Con 1	58.2	5.8	44.6	1.75	3.95	10.3	2.48	3.54	
Rougher Con 1	158.2	15.7	41.6	1.95	4.09	26.2	7.52	10.0	
Rougher Con 2	206.3	20.5	35.2	2.40	4.32	28.9	12.1	13.7	
Rougher Con 3	220.0	21.9	31.4	2.67	4.58	27.5	14.3	15.5	
Rougher Con 4	69.3	6.9	21.7	4.23	6.35	5.98	7.15	6.78	
Rougher Tail	292.5	29.1	1.00	7.92	11.2	1.16	56.5	50.5	
Head (calc.)	1005	100.0	25.0	4.08	6.46	100.0	100.0	100.0	
(direct)			25.3	4.77	6.73				
Combined Products									
Prefloat Con 1		5.8	44.6	1.75	3.95	10.3	2.48	3.54	
Rougher Con 1		15.7	41.6	1.95	4.09	26.2	7.52	10.0	
Rougher Con 1 - 2		36.3	38.0	2.20	4.22	55.1	19.6	23.7	
Rougher Con 1 - 3		58.2	35.5	2.38	4.36	82.5	33.9	39.2	
Ro Scav Con 1 - 4		65.1	34.0	2.58	4.57	88.5	41.1	46.0	
Rougher Tail		29.1	1.00	7.92	11.2	1.16	56.5	50.5	
Head (calc.)		100.0	25.0	4.08	6.46	100.0	100.0	100.0	

SGS Minerals Services CONFIDENTIAL

$P_{80} = 177 \ \mu m$

Test No.:	F13 Project No. : 14748-001	Operator: ML	Date:Dec,12,2014
Purpose:	Batch flotation tests at natural pH.		
Procedure:	As per below.		
Feed:	1 kg of Master Composite		
Grind:	15 minutes per 2kg in rod mill		P ₈₀ = 177 μm
Regrind:	5 minutes in rod mill		P ₈₀ = 125 μm

	Re	Reagents added, grams per tonne			Time, minutes			
							10	Ep
Stage	Fuel	MIBC	lime	Grir	d Cond.	Froth	pН	(mV)
Grind				15				
							7.5	50
Rougher 1	10	10			1	2	7.6	25
Rougher 2	10	10			1	2	7.5	-50
Rougher 3	10	10			1	2	7.7	-50
Rougher 4	10	10			1	2	7.6	-75
Regrind				5				
Scav 1	10	10			1	2	7.5	-75
Scav 2	10	10			1	2	7.6	-100
Total	60	60						

Stage	Rougher	
Flotation Cell	2KG	
Speed: rpm	1800	

* use as required - record

Metallurgical Balance - Rougher Kinetics

Product	Product We			Assays %			% Distribution		
	g	%	C (t)	S	Fe	C (t)	S	Fe	
Rougher Con 1	92.5	9.19	35.4	2.77	5.29	13.5	5.36	7.21	
Rougher Con 2	137.2	13.6	36.5	2.59	4.79	20.7	7.44	9.7	
Rougher Con 3	171.6	17.0	34.6	2.69	4.75	24.5	9.7	12.0	
Rougher Con 4	205.0	20.4	32.9	2.96	4.96	27.8	12.7	15.0	
Rougher Scav Con 1	95.5	9.5	27.0	3.31	5.37	10.6	6.62	7.56	
Rougher Scav Con 2	62.4	6.20	7.59	6.88	9.27	1.96	8.99	8.52	
Rougher Tail	242.7	24.1	0.86	9.69	11.2	0.86	49.2	40.0	
Head (calc.)	1007	100.0	24.1	4.74	6.74	100.0	100.0	100.0	
(direct)			25.3	4.77	6.73				
Combined Products									
Rougher Con 1		9.2	35.4	2.77	5.29	13.5	5.36	7.21	
Rougher Con 1 - 2		22.8	36.1	2.66	4.99	34.2	12.8	16.9	
Rougher Con 1 - 3		39.9	35.4	2.67	4.89	58.7	22.5	28.9	
Rougher Con 1 - 4		60.2	34.6	2.77	4.91	86.5	35.2	43.9	
Ro Scav Con 1		9.5	27.0	3.31	5.37	10.6	6.62	7.56	
Ro Scav Con 1 - 2		15.7	19.3	4.72	6.91	12.6	15.6	16.1	
Rougher Tail		24.1	0.86	9.69	11.2	0.86	49.2	40.0	
Head (calc.)		100.0	24.1	4.74	6.74	100.0	100.0	100.0	

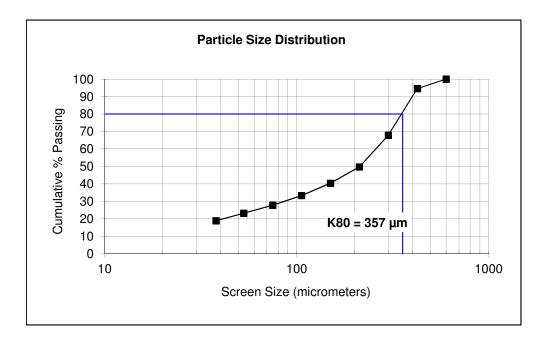
Appendix D – Batch Cleaner Flotation Test Data

D

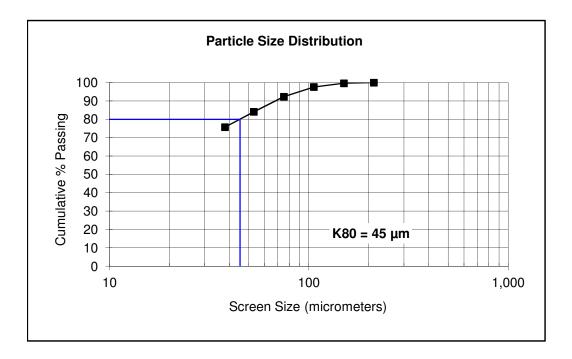
Test No.:	F3 Project No. : 14748-001	Operator: ML	Date: September 26,2013
Purpose:	Initial batch flotation tests.		
Procedure:	As per below.		
Feed:	1 kg of Master Composite		
Grind:	10 minutes per 1kg in rod mill		P ₈₀ = 357 μm
Regrind:	15 minutes with ceramic media		P ₈₀ = 45 μm

		Reagents	added, grams	s per tonne	Tii	me, mini	utes		
Stage	Fuel	MIBC			Grind	Cond.	Froth	pН	Ep (mV)
Grind					10				
Rougher 1	10	10				1	2	7.4	-75
Rougher 2	10	10				1	2	7.5	-50
Rougher 3	10	10				1	2	7.6	-75
Rougher 4	10	10				1	2	7.6	-100
Regrind					15				
Cleaner 1	0,10	0,10				1	2,2	7.5	-175
Cleaner 2	0,10	0,10				1	2,2	7.5	-200
Cleaner 3	0,10	0,10				1	2,2	7.6	-250
Cleaner 4	0,10	0,10				1	2,2	7.5	-275
Total	100	90	0						

Stage	
Flotation Cell	2Kg
Speed: rpm	1800


* use as required - record

Metallurgical Balance - Rougher Kinetics


Product	Product Wei		Assays %	% Distribution
	g	%	C (t)	C (t)
4th Cleaner Con	167.1	16.8	48.1	32.6
4th Cleaner Tail	5.8	0.58	28.2	0.66
3rd Cleaner Tail	8.2	0.83	19.7	0.66
2nd Cleaner Tail	28.3	2.85	25.2	2.89
1st Cleaner Tail	341.8	34.5	30.7	42.6
Rougher Tail	440.9	44.4	11.5	20.6
Head (calc.)	992.1	100.0	24.84	100.0
(direct)			25.3	
Combined Products				
4th Cleaner Con		16.8	48.1	32.6
4CC + 4CT		17.4	47.4	33.3
4CC + 4CT + 3CT	4CC + 4CT + 3CT		46.2	33.9
4CC + 4CT + 3CT + 2CT		21.1	43.3	36.8
4CC + 4CT + 3CT + 2	55.6	35.5	79.4	
Rougher Tail	44.4	11.50	20.6	
Head (calc.)		100.0	24.84	100.0

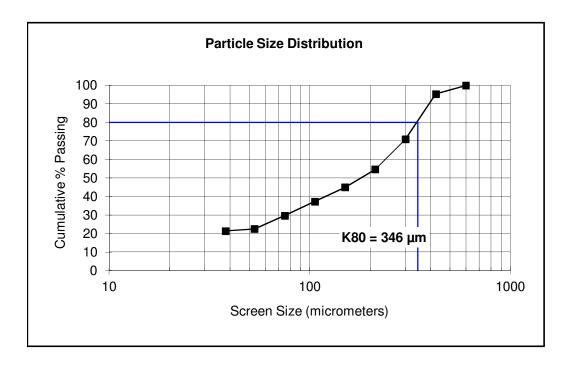
Project No.
14748-001

Sample:	Ro Tail		Test No.:	F3	
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
28 35 48 65 100 150 200 270 400 Pan Total	600 425 300 212 150 106 75 53 38 -38	0.0 8.2 40.5 27.4 14.1 10.7 8.4 6.9 6.5 28.6 151.3	0.0 5.4 26.8 18.1 9.3 7.1 5.6 4.6 4.3 18.9 100.0	0.0 5.4 32.2 50.3 59.6 66.7 72.2 76.8 81.1 100.0	100.0 94.6 67.8 49.7 40.4 33.3 27.8 23.2 18.9 0.0
K80	- 357	151.5	100.0	-	-

Sample:	4th Clnr Conc	;	Test No.:	F3	
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65 100 150 200 270 400 Pan	212 150 106 75 53 38 -38	0.0 0.3 1.8 4.6 7.2 7.3 66.1	0.0 0.3 2.1 5.3 8.2 8.4 75.7	0.0 0.3 2.4 7.7 15.9 24.3 100.0	100.0 99.7 97.6 92.3 84.1 75.7 0.0
Total	-	87.3	100.0	-	-
K80	45				

Test No.:	F4 Project No. : 14748-001	Operator: BC	Date: September 26,2013
Purpose:	Initial batch flotation tests.		
Procedure:	As per below.		
Feed:	1 kg of Master Composite		
Grind:	10 minutes per 1kg in rod mill		P ₈₀ = 346 μm
Regrind:	30 minutes with ceramic media		

	Reagents added, grams per tonne			Time, minutes					
Stage	Fuel	MIBC			Grind	Cond.	Froth	pН	Ep (mV)
Grind					10				
Rougher 1	10	10				1	2	7.5	75
Rougher 2	10	10				1	2	7.5	-50
Rougher 3	10	10				1	2	7.6	-75
Rougher 4	10	10				1	2	7.6	-100
Regrind					30				
Cleaner 1	0,10	0,10				1	2,2	7.5	-150
Cleaner 2	0,10	0,10				1	2,2	7.6	-175
Cleaner 3	0,10	0,10				1	2,2	7.6	-225
Cleaner 4	0,10	0,10				1	2,2	7.6	-275
Total	80	80							


Stage	
Flotation Cell	2Kg
Speed: rpm	1800

* use as required - record

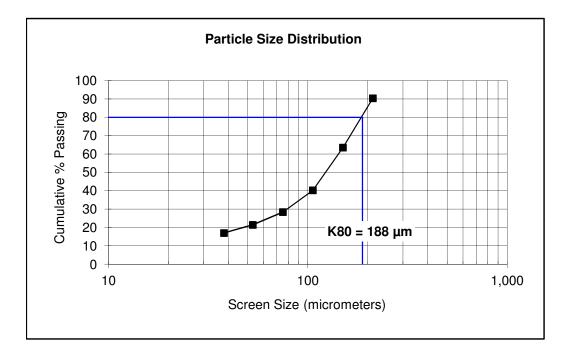
Metallurgical Balance - Rougher Kinetics

Product	We	eight	Assays %	% Distribution
	g	%	C (t)	C (t)
4th Cleaner Con	231.1	23.2	45.7	55.3
4th Cleaner Tail	9.4	0.94	17.6	0.87
3rd Cleaner Tail	18.7	1.87	22.4	2.19
2nd Cleaner Tail	54.5	5.46	29.2	8.33
1st Cleaner Tail	302.1	30.3	9.24	14.6
Rougher Tail	381.6	38.3	9.38	18.7
Head (calc.)	997.4	100.0	19.2	100.0
(direct)			25.3	
Combined Products				
4th Cleaner Con		23.2	45.7	55.3
4CC + 4CT		24.1	44.6	56.1
4CC + 4CT + 3CT		26.0	43.0	58.3
4CC + 4CT + 3CT + 20	31.5	40.6	66.7	
4CC + 4CT + 3CT + 20	61.7	25.2	81.3	
Rougher Tail		38.3	9.38	18.7
Head (calc.)		100.0	19.16	100.0

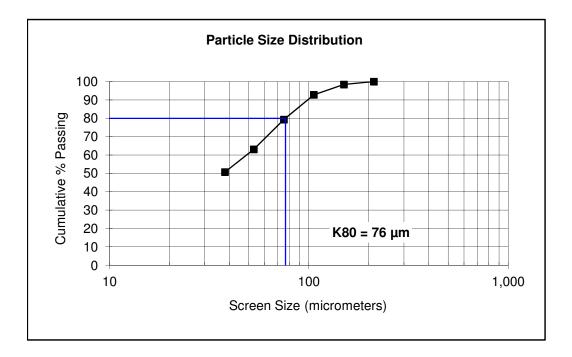
Sample:	Ro Tail		Test No.:	F4	
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
28 35 48 65 100 150 200 270 400 Pan	600 425 300 212 150 106 75 53 38 -38	0.2 7.6 40.2 26.8 16.0 12.7 12.5 11.9 1.8 35.3	0.1 4.6 24.4 16.2 9.7 7.7 7.6 7.2 1.1 21.4	0.1 4.7 29.1 45.3 55.0 62.7 70.3 77.5 78.6 100.0	99.9 95.3 70.9 54.7 45.0 37.3 29.7 22.5 21.4 0.0
Total	-	165.0	100.0	-	-
K80	346				

Test No.:	F5	Project No.: 14748-001	Operator: ML	Date:	October 3	3,2013
Purpose:	Initial batch	cleaner flotation tests.				
Procedure:	As per below	w.				
Feed:	1 kg of Mas	ter Composite				
Grind:	15 minu	tes per 1kg in rod mill			P ₈₀ =	188 µm
Regrind:		tes with ceramic media tes with ceramic media			P ₈₀ = P ₈₀ =	76 μm 20 μm

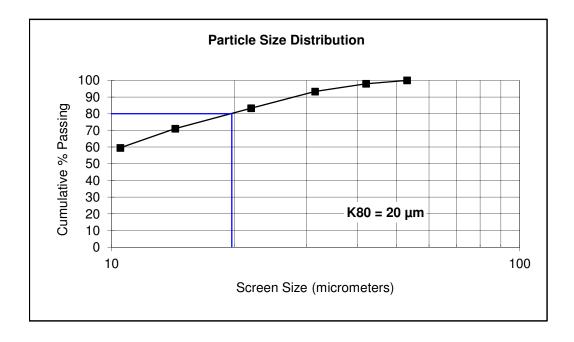
	Reagents added, grams per tonne			Time, minutes				
								Ep
Stage	Fuel	MIBC		Grind	Cond.	Froth	pН	(mV)
Grind				15				
	10	10			1	2	7.5	75
Rougher 2	10	10			1	2	7.4	-50
Rougher 3	10	10			1	2	7.4	-50
Rougher 4	10	10			1	2	7.4	-100
Regrind				10				
negrina				10				
Cleaner 1	10+10	10+10			1	2+2	7.5	-150
Cleaner 2	10+10	10+10			1	2+2	7.4	-175
Cleaner 3	0+10	0+10			1	2+2	7.3	-175
Regrind				10				
Cleaner 4	10+10	10+10			1	2+2	7.2	-190
Cleaner 5	10+10	10+10			1	2+2	7.2	-200
Cleaner 6	10+10	10+10			1	2+2	7.1	-225
Total	80	90				<u> </u>		


Stage	
Flotation Cell	4L
Speed: rpm	1800

* use as required - record


Metallurgical Balance - Rougher Kinetics

Product	We	eight	Assays %	% Distribution
	g	%	C (t)	C (t)
6th Cleaner Con	98.9	9.85	54.9	22.5
6th Cleaner Tail	16.4	1.63	45.8	3.12
5th Cleaner Tail	16.2	1.61	39.1	2.63
4th Cleaner Tail	43.0	4.28	36.6	6.53
3rd Cleaner Tail	35.3	3.52	29.3	4.29
2nd Cleaner Tail	55.7	5.55	27.7	6.40
1st Cleaner Tail	184.9	18.4	23.8	18.3
Rougher Tail	553.4	55.1	15.8	36.3
Head (calc.)	1004	100.0	24.0	100.0
(direct)			25.3	
Combined Products				
6th Cleaner Con		9.85	54.9	22.5
6CC + 6CT		11.49	53.6	25.6
6CC + 6-5CT		13.10	51.8	28.3
6CC + 6-4CT		17.38	48.1	34.8
4CC + 6-3CT		20.90	44.9	39.1
4CC + 6-2CT		26.45	41.3	45.5
4CC + 6-1CT		44.9	34.1	63.7
Rougher Tail		55.1	15.8	36.3
Head (calc.)		100.0	24.0	100.0

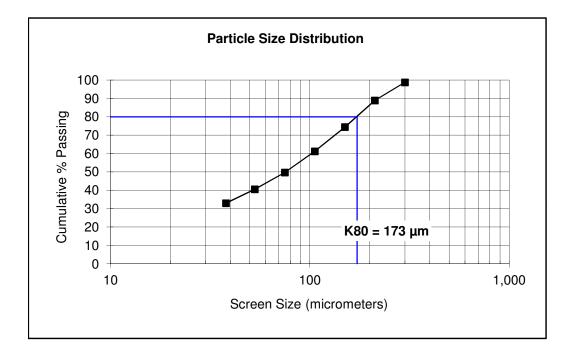

Sample:	Ro Tail		Test No.:	F5	
S	ize	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	14.0	9.6	9.6	90.4
100 150	150 106	39.2 33.9	26.9 23.3	36.5 59.8	63.5 40.2
200 270	75 53	17.3 10.1	11.9 6.9	71.7 78.6	28.3 21.4
400	38	6.5	4.5	83.0	17.0
Pan	-38	24.7	17.0	100.0	0.0
Total	-	145.7	100.0	-	-
K80	188				

Sample:	1st Cl Tail		Test No.:	F5	
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65 100	212 150	0.0 2.1	0.0 1.6	0.0 1.6	100.0 98.4
150	106	7.5	5.6	7.2	92.8
200	75	18.0	13.5	20.7	79.3
270	53	21.6	16.2	36.9	63.1
400	38	16.6	12.4	49.3	50.7
Pan	-38	67.6	50.7	100.0	0.0
Total	-	133.4	100.0	-	-
K80	76				

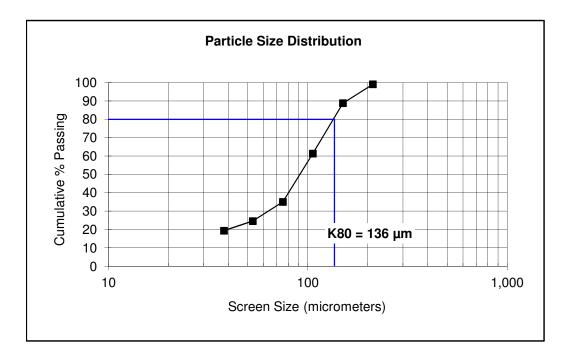
Sample:	6th Cl Con		Test No.:	F5	
Dry Soli	ds S.G.=	2.60	Water Ten	perature =	18.00 Cº
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
270	53 42 32 22 14 11 -11	0.0 1.1 2.5 5.4 6.6 6.2 32.1	0.0 2.0 4.6 10.0 12.2 11.5 59.6	0.0 2.0 6.7 16.7 28.9 40.4 100.0	100.0 98.0 93.3 83.3 71.1 59.6 0.0
Total K80	- 20	53.9	100.0	-	-

Test No.:	F6	Project No.: 14748-001	Operator: ML	Date: October 3	,2013
Purpose:	Initial bate	ch cleaner flotation tests.			
Procedure:	As per be	low.			
Feed:	1 kg of Ma	aster Composite			
Grind:	15 mir	nutes per 1kg in rod mill		P ₈₀ =	173 µm
Regrind:	20 mir	nutes with ceramic media nutes with ceramic media nutes with ceramic media		P ₈₀ = P ₈₀ = P ₈₀ =	136 μm 32 μm 13 μm

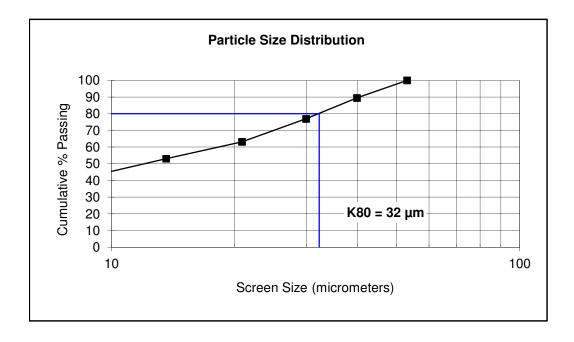
		Reagents	added, grams per tonne	Ti	ne, mini	utes		
								Ep
Stage	Fuel	MIBC		Grind	Cond.	Froth	рН	(mV)
Grind				15				
Rougher 1	10	10			1	2	7.6	75
Rougher 2	10	10			1	2	7.5	0
Rougher 3	10	10			1	2	7.5	-50
Rougher 4	10	10			1	2	7.4	-100
Regrind 1				20				
Cleaner 1	10+10	10+10			1	2+2	7.2	-150
Cleaner 2	10+10	10+10			1	2+2	7.3	-175
Cleaner 3	10+10	10+10			1	2+2	7.2	-175
Regrind 2				20				
Cleaner 4	10+10	10+10			1	2+2	7.3	-200
Cleaner 5	10+10	10+10			1	2+2	7.4	-210
Cleaner 6	10+10	10+10			1	2+2	7.2	-225
Regrind 2				20				
Cleaner 7	10+10	10+10			1	2+2	7.4	-200
Cleaner 8	10+10	10+10			1	2+2	7.4	-200
Cleaner 9	10+10	10+10			1	2+2	7.4	-200
Total	40	40						

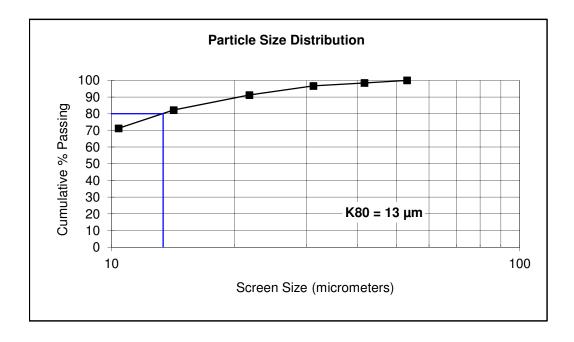

Stage	4L				
Flotation Cell	1800				
Speed: rpm					

* use as required - record


Product	We	eight	Assays %	% Distribution
	g	%	C (t)	C (t)
9th Cleaner Con	149.3	14.9	55.9	33.5
9th Cleaner Tail	15.5	1.55	41.5	2.58
8th Cleaner Tail	9.4	0.94	33.4	1.26
7th Cleaner Tail	14.4	1.44	27.8	1.61
6th Cleaner Tail	14.0	1.40	33.0	1.85
5th Cleaner Tail	11.4	1.14	23.7	1.08
4th Cleaner Tail	52.2	5.22	33.7	7.06
3rd Cleaner Tail	39.9	3.99	28.9	4.63
2nd Cleaner Tail	40.3	4.03	19.1	3.09
1st Cleaner Tail	327.9	32.8	29.3	38.6
Rougher Tail	325.0	32.5	3.66	4.77
Head (calc.)	999	100.0	24.9	100.0
(direct)			25.3	
Combined Products				
9th Cleaner Con		14.9	55.9	33.5
9CC+9CT		16.5	54.5	36.1
9CC+9CT+8CT		17.4	53.4	37.3
9CC+9CT+8CT+7CT		18.9	51.4	38.9
9CC+9CT+8CT+7CT+	-6CT	20.3	50.2	40.8
9CC + 5-9CT		21.4	48.8	41.9
9CC + 4-9CT		26.6	45.8	48.9
9CC + 3-9CT		30.6	43.6	53.6
9CC + 2-9CT		34.7	40.8	56.7
9CC + 1-9CT		67.5	35.2	95.2
Rougher Tail		32.5	3.66	4.77
Head (calc.)		100.0	24.9	100.0

52


Sample:	Ro Tail		Test No.:	F6	
Si	Size		% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48	300	1.9	1.2	1.2	98.8
65	212	15.3	9.8	11.1	88.9
100	150	22.6	14.5	25.6	74.4
150	106	20.5	13.2	38.8	61.2
200	75	17.9	11.5	50.3	49.7
270	53	14.3	9.2	59.5	40.5
400	38	11.7	7.5	67.1	32.9
Pan	-38	51.2	32.9	100.0	0.0
Total	-	155.4	100.0	-	-
K80	173				


Sample:	1st Cl Tail		Test No.:	F6	
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	1.5	0.9	0.9	99.1
100	150	16.5	10.3	11.2	88.8
150	106	44.1	27.4	38.6	61.4
200	75	42.4	26.4	65.0	35.0
270	53	16.8	10.4	75.4	24.6
400	38	8.4	5.2	80.7	19.3
Pan	-38	31.1	19.3	100.0	0.0
Total	-	160.8	100.0	-	-
K80	136				

Sample:	4th Cl Tail	Tail Test No.: F6									
Dry Soli	ds S.G.=	2.77	2.77 Water Temperature =								
Si	ze	Weight	% Re	tained	% Passing						
Mesh	μm	grams	Individual	Cumulative	Cumulative						
270	53 40 30 21 14 10 -10	0.0 2.6 3.1 3.4 2.5 1.9 11.2	0.0 10.5 12.6 13.8 10.1 7.7 45.3	0.0 10.5 23.1 36.8 47.0 54.7 100.0	100.0 89.5 76.9 63.2 53.0 45.3 0.0						
Total K80	- 32	24.7	100.0	-	-						

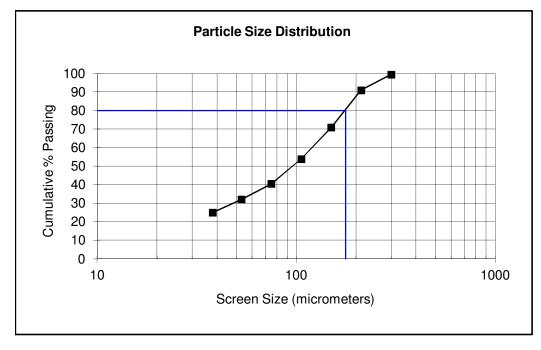
Sample:	9th Cl Con		Test No.:	F6	
Dry Soli	ds S.G.=	2.63	Water Ten	nperature =	18.00 Cº
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
270	53 42 31 22 14 10 -10	0.0 0.8 0.9 2.8 4.6 5.6 36.4	0.0 1.6 1.8 5.5 9.0 11.0 71.2	0.0 1.6 3.3 8.8 17.8 28.8 100.0	100.0 98.4 96.7 91.2 82.2 71.2 0.0
Total K80	- 13	51.1	100.0	-	-

Comple	Neme					66)P Na					,			-		red:							
				efaulta	-									r eu: r 7, 2014	6:22	2:14	AM							
Sample	Source &	type	:	-		Me	easur	red I	by:					Analysed:										
							R_Mal								Oct	obei	r 7, 2014	6:22	2:16	AM				
Sample ar	bulk lot re	ef:				-	esult : verage		rce	:														
ai						AV	eraye	u																
Particle	Name:						cess										is model						ensitivity	
Default	DI.					-	Hydro 2000G (A)									l purpose	•					nhanced		
Particle 1.520	e RI:						Absorption: 0.1						0.02		nge: to	200	0.00	0	um	-	Descuration 2.26	ion: %		
Dispers	ant Name:					Dis	Dispersant RI:					Wei	ght	ed Resid	lual:				F	lesult Em	nulatio			
Water						1.3	330								0.80)5	%					C	Off	
Concen	tration:					Sc	an :								Unit	forn	nity:					F	lesult un	its:
0.0069	%Vol						124								1.28							V	olume/	
Specific	Surface A	rea:				Su	irface	e We	ight	ted I	lean D	[3,2]:			Vol.	. We	eighted N	lean	D[4	,3]:				
1.8	m²/g					3.3	331		um						12.5	590	um							
																				_				
d(0.1)	: 1.284		um							d(0	.5):	7.237	7	um	1					D	(0.	80) :	19.51 J	μm
		r						_		P	article	Size	Dis	tribution	L									
		100																						
		90																						
		80																						
	(%	70																						
	9 0	60																						
	Volume (%)	50					_						Ϊ		_									
	>	40						_																
		30										\square												
		20										+++												
		10																						
		0.U	01			0.1				1				10			100			100		⊥ 300	0	
		0.	01			0.1				•	Partic	e Si					100			100		000	0	
	-14748-	001	F6 7th	n Cl	Tail	I-Ave	erade	. 0	cto	ber														
	Size (µm)			_		n) Vol Ur		_			Vol Under		_	ze (µm) V		%	Size (µm) Vol	Under	%	Si	ize (µm)	Vol Under	%
	0.010		0.00		0.10 0.12		0.00 0.00			.096 .259	8.0 9.7			11.482 13.183	65.0 69.2		120.226 138.038		100. 100.			1258.925 1445.440	100.0 100.0	
	0.013		0.00		0.12		0.00			.445	11.0			15.136	73.2		158.489		100.			1659.587	100.0	
	0.015		0.00		0.15 0.18		0.00 0.00			.660 .905	13. ⁻ 15			17.378 19.953	77.0 80.5		181.970 208.930		100. 100.			1905.461 2187.762	100.0 100.0	
	0.020		0.00		0.20	09	0.00		2	.188	17.4	41		22.909	83.8	81	239.883	3	100.	00	2	2511.886	100.0	0
	0.023		0.00		0.24 0.27		0.00 0.00			2.512 2.884	20.0 22.9			26.303 30.200	86.7 89.4		275.423 316.228		100. 100.			2884.032 3311.311	100.0 100.0	
	0.030		0.00		0.31	16	0.02		3	3.311	26.2	22		34.674	91.8	32	363.078	3	100.	00	З	3801.894	100.0	0
	0.035		0.00		0.36 0.41		0.18 0.60			.802 .365	29.8 33.8			39.811 45.709	93.8 95.5		416.869 478.630		100. 100.			4365.158 5011.872		
			0.00		0.47	79	1.26		5	6.012	38.0	02		52.481	96.9	97	549.541	1	100.	00	5	5754.399	100.0	0
	0.046										40	10		60.256	98.0	6	630.957	7	100.	00	6	606.934	100.0	0
	0.052		0.00		0.55 0.63		2.12 3.15			6.754 6.607	42.4 46.9						724 436							
			0.00 0.00 0.00 0.00		0.55 0.63 0.72 0.83	31 24	2.12 3.15 4.31 5.58		6 7	5.754 5.607 7.586 5.710	42.4 46.9 51.9 56.1	97 56		69.183 79.433 91.201	98.8 99.4 99.7	86 11	724.436 831.764 954.993	6 4	100. 100. 100.	00 00	7	7585.776 3709.636 0000.000	100.0 100.0	0

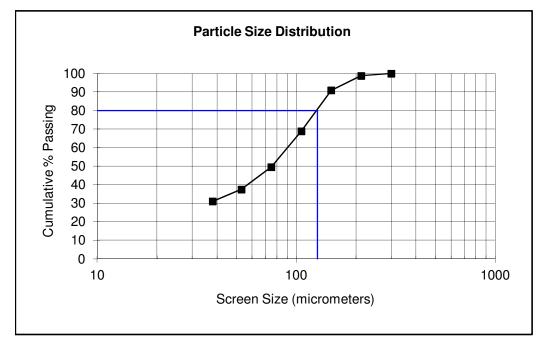
Operator notes:

Test No.:	F7 Project No. : 14748-00	Operator: ML	Date: 17-Oct-14	
Purpose:	Initial batch cleaner flotation tests.			
Procedure:	As per below.			
Feed:	1 kg of Master Composite			
Grind:	15 minutes per 1kg in rod mill		P ₈₀ = 177	μm
Regrind:	30 minutes with ceramic media		P ₈₀ = 128	μm
	30 minutes with ceramic media		P ₈₀ = 36	μm
	30 minutes with ceramic media		P ₈₀ = 25	μm

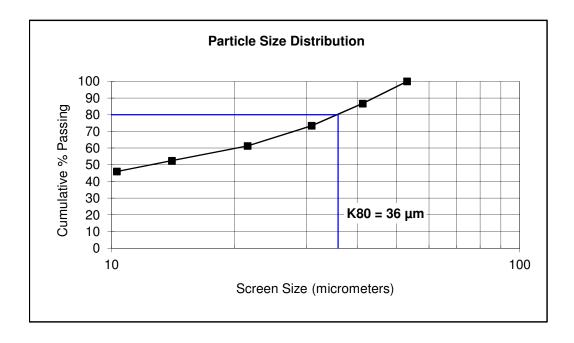
		Reagents	s added, grams per tonne	Ti	me, mini	utes		
Stage	Fuel	MIBC		Grind	Cond.	Froth	pН	Ep (mV)
Grind				15				
Rougher 1	10	10			1	2	7.6	75
Rougher 2	10	10			1	2	7.5	0
Rougher 3	10	10			1	2	7.5	-25
Rougher 4	10	10			1	2	7.4	-75
Regrind 1				30				
Cleaner 1	10+10	10+10			1	2+2	7.2	-150
Cleaner 2	10+10	10+10			1	2+2	7.3	-175
Cleaner 3	10+10	10+10			1	2+2	7.2	-175
Regrind 2				20				
Cleaner 4	10+10	10+10			1	2+2	7.3	-200
Cleaner 5	10+10	10+10			1	2+2	7.3	-225
Cleaner 6	10+10	10+10			1	2+2	7.2	-225
Regrind 2				20				
Cleaner 7	10+10	10+10			1	2+2	7.4	-200
Cleaner 8	10+10	10+10			1	2+2	7.4	-200
Cleaner 9	10+10	10+10			1	2+2	7.5	-225
Total	40	40						

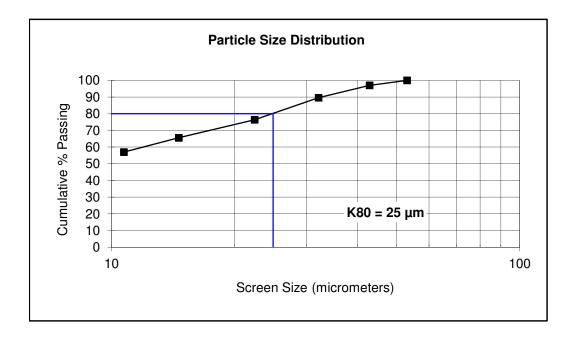

Stage	
Flotation Cell	4L
Speed: rpm	1800

* use as required - record


Metallurgical Balance	Metallurgical Balance - Rougher Kinetics								
Product	We	eight	Assays %	% Distribution					
	g	%	C (t)	C (t)					
9th Cleaner Con	275.7	27.8	50.8	57.5					
9th Cleaner Tail	4.1	0.41	7.18	0.12					
8th Cleaner Tail	8.8	0.89	15.4	0.56					
7th Cleaner Tail	27.8	2.80	27.7	3.16					
6th Cleaner Tail	11.3	1.14	21.6	1.00					
5th Cleaner Tail	11.9	1.20	6.04	0.30					
4th Cleaner Tail	24.6	2.48	16.1	1.63					
3rd Cleaner Tail	14.3	1.44	6.10	0.36					
2nd Cleaner Tail	46.9	4.73	14.4	2.77					
1st Cleaner Tail	217.6	21.9	25.9	23.1					
Rougher Tail	348.8	35.2	6.58	9.43					
Head (calc.)	992	100.0	24.5	100.0					
(direct)			25.3						
Combined Products									
9th Cleaner Con		27.8	50.8	57.5					
9CC+9CT		28.2	50.2	57.6					
9CC+9CT+8CT		29.1	49.1	58.2					
9CC+9CT+8CT+7CT		31.9	47.2	61.4					
9CC+9CT+8CT+7CT+	6CT	33.0	46.3	62.4					
9CC + 5-9CT		34.2	44.9	62.7					
9CC + 4-9CT		36.7	43.0	64.3					
9CC + 3-9CT		38.2	41.6	64.7					
9CC + 2-9CT		42.9	38.6	67.4					
9CC + 1-9CT		64.8	34.3	90.6					
Rougher Tail		35.2	6.58	9.43					
Head (calc.)		100.0	24.5	100.0					

58


Sample:	RO Tail		Test No.:	F7	
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48	300	0.8	0.5	0.5	99.5
65	212	12.8	8.5	9.0	91.0
100	150	30.5	20.2	29.1	70.9
150	106	25.7	17.0	46.1	53.9
200	75	20.3	13.4	59.6	40.4
270	53	12.8	8.5	68.0	32.0
400	38	10.7	7.1	75.1	24.9
Pan	-38	37.7	24.9	100.0	0.0
Total	-	151.3	100.0	-	-
K80	177				


Sample:	Ro Tail		Test No.:	F7	
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48 65 100 150 200 270 400 Pan	300 212 150 106 75 53 38 -38	0.0 2.0 12.6 35.3 30.7 19.3 10.3 49.5	0.0 1.3 7.9 22.1 19.2 12.1 6.4 31.0	0.0 1.3 9.1 31.2 50.5 62.6 69.0 100.0	100.0 98.7 90.9 68.8 49.5 37.4 31.0 0.0
Total	-	159.7	100.0	-	-
K80	128				

Sample:	7th Cl Con		Test No.:	F7	
Dry Soli	ds S.G.=	2.75	Water Ten	nperature =	16.00 Cº
Size		Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
270	53	0.0	0.0	0.0	100.0
	41 31	3.3 3.3	13.3 13.3	13.3 26.6	86.7 73.4
	22 14	3.0 2.2	12.1 8.9	38.7 47.6	61.3 52.4
	10	1.6	6.5	54.0	46.0
	-10	11.4	46.0	100.0	0.0
Total	-	24.8	100.0	-	-
K80	36				

Sample:	9th Cl Con		Test No.:	F7	
Dry Soli	ds S.G.=	2.62	Water Ten	nperature =	16.00 Cº
Si	Size		% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
270	53 43 32 22	0.0 1.5 3.7 6.6	0.0 3.0 7.4 13.2	0.0 3.0 10.4 23.6	100.0 97.0 89.6 76.4
	15 11 -11	5.4 4.3 28.5	10.8 8.6 57.0	34.4 43.0 100.0	65.6 57.0 0.0
Total K80	- 25	50.0	100.0	-	-

Test No.:	F8 Project No. : 14748-001	Operator: ML	Date: 20-Oct-14
Purpose:	Initial batch cleaner flotation tests.		
Procedure:	As per below.		
Feed:	1 kg of Master Composite		
Grind:	15 minutes per 1kg in rod mill		P ₈₀ = 177 μm
Regrind:	45 minutes with ceramic media		P ₈₀ = 17 μm
	15 minutes with ceramic media		P ₈₀ = 12 μm

Conditions:		Reagents	added, grams	per tonne	Ti	Time, minutes			
Stage	Fuel	MIBC			Grind	Cond.	Froth	pН	Ep (mV)
Grind					15				
Rougher 1	10	10				1	2	7.5	50
Rougher 2	10	10				1	2	7.6	0
Rougher 3	10	10				1	2	7.6	-75
Rougher 4	10	10				1	2	7.5	-125
Regrind 1					45				
				~17 um					
Cleaner 1	10+10	10+10				1	2+2	7.6	-125
Cleaner 2	10+10	10+10				1	2+2	7.6	-125
Cleaner 3	10+10	10+10				1	2+2	7.5	-150
Regrind 2					0				
Cleaner 4	10+10	10+10				1	2+1.5	7.5	-175
Cleaner 5	10+10	10+10				1	2+1.5	7.5	-200
Cleaner 6	10+10	10+10				1	2+1.5	7.5	-200
Regrind 2					15				
Cleaner 7	10+10	10+10				1	2+1	7.4	-200
Cleaner 8	10+10	10+10				1	2+1	7.4	-225
Cleaner 9 #1	10	10				1	1	7.5	-250
Cleaner 9 #2	10	10				1	1	7.5	-250
Cleaner 9 #3	10	10				1	1	7.4	-250
Total	70	70							

Stage		
Flotation Cell	4L	
Speed: rpm	1800	

* use as required - record

Metallurgical Balance						
Product	We	eight	Assays %	% Distribution		
	g	%	C (t)	C (t)		
9th Cleaner Con	50.9	5.08	65.3	12.9		
9th Cleaner Tail	1.5	0.15	42.4	0.25		
8th Cleaner Tail	5.5	0.55	45.7	0.97		
7th Cleaner Tail	10.5	1.05	39.6	1.61		
6th Cleaner Tail	7.3	0.73	51.0	1.44		
5th Cleaner Tail	8.1	0.81	46.1	1.45		
4th Cleaner Tail	11.8	1.18	40.7	1.86		
3rd Cleaner Tail	15.9	1.59	22.1	1.36		
2nd Cleaner Tail	33.7	3.36	22.5	2.94		
1st Cleaner Tail	157.9	15.8	23.7	14.5		
Rougher Tail	698.9	69.8	22.4	60.7		
Head (calc.)	1002	100.0	25.7	100.0		
(direct)			25.3			
Combined Products						
9th Cleaner Con		5.1	65.3	12.9		
9CC+9CT		5.2	64.6	13.1		
9CC+9CT+8CT		5.8	62.8	14.1		
9CC+9CT+8CT+7CT		6.8	59.3	15.7		
9CC+9CT+8CT+7CT+	6CT	7.6	58.5	17.2		
9CC + 5-9CT		8.4	57.3	18.6		
9CC + 4-9CT		9.5	55.2	20.5		
9CC + 3-9CT		11.1	50.5	21.8		
9CC + 2-9CT		14.5	44.0	24.8		
9CC + 1-9CT		30.2	33.4	39.3		
Rougher Tail		69.8	22.4	60.7		
Head (calc.)		100.0	25.7	100.0		

63

Sample Na 14748-001 Sample So ml Sample bu	f8 1st cln ource & ty	ype:	veraç	ge	SOP Na Defaulta Measur LR_Mal Result Average	ar red by vern1 Sourc					Measured: October 20, 2014 11:56:47 AM Analysed: October 20, 2014 11:56:49 AM					
Particle Na Default Particle Rl 1.520 Dispersant Water	l:				Accessory Name:Analysis model:Hydro 2000G (A)General purposeAbsorption:Size range:0.10.020to 2000.000Dispersant RI:Weighted Residual:1.3300.677				um	Sensitivity Enhanced Obscuratio 11.15 % Result Eme Off	on:					
Concentra 0.0077	tion: %Vol				Span : 2.981						Unifor 0.927	mity:			Result unit Volume	S:
Specific Si 1.33	urface Are m²/g	ea:			Surface 4.509	-	ihted I m	Mean D[3,2]:		Vol. W 11.487	-	ean D[4,3]:			
d(0.1):	2.199	um					d(0	.5): 7	.853	u	m		D)(0.80)) : 17.14 µ	m
								Particle S	ize D	Distributio	n				1	
Volumo (%)		20 30 60 40 20													-	
		0.01		().1		1	Particle	a Siz	10 ze (μm)		100	100	00 30	000	
	14748-0	01 1st c	lrn f	feed (October 1	7 20)14 1			. ,						_
				,	October 1	,										
					Average,						١M					
					l, Octobe											
	14748-0	01 f8 1s	t clr	nr feed	l, Octobe	r 20,	2014	11:58:	04 A	١M						
_	14748-0	01 f8 1s	t clr	nr feed	I - Averag	je, O	ctobe	er 20, 20	014	11:56:4	7 AM					
	Size (µm)	Vol Under % 0.00	S		Vol Under %	Siz		Vol Under %		Size (µm)	Vol Under %	Size (µm) 120.226	Vol Under % 100.00	Size (
	0.010	0.00		0.105 0.120	0.00 0.00		1.096 1.259	4.10 4.94		13.183	66.01 71.26	138.038	100.00	1258.9 1445.4		
	0.013	0.00 0.00		0.138 0.158	0.00 0.00		1.445 1.660	5.88 6.91		15.136 17.378	76.07 80.41	158.489 181.970	100.00 100.00	1659. 1905.		
	0.017	0.00		0.182	0.00		1.905	8.29	9	19.953	84.26	208.930	100.00	2187.	762 100.00	
	0.020	0.00 0.00		0.209 0.240	0.00 0.00		2.188 2.512	9.90 12.00		22.909 26.303	87.63 90.52	239.883 275.423	100.00 100.00	2511. 2884.		
	0.026	0.00		0.275	0.00		2.884	14.59	9	30.200	92.98	316.228	100.00	3311.	311 100.00	
	0.030	0.00 0.00		0.316 0.363	0.00 0.01		3.311 3.802	17.79 21.62		34.674 39.811	95.00 96.62	363.078 416.869	100.00 100.00	3801.4 4365.		
	0.040	0.00		0.417	0.10		4.365	26.08	3	45.709	97.87	478.630	100.00	5011.	872 100.00	
	0.046	0.00 0.00		0.479 0.550	0.36 0.76		5.012 5.754	31.12 36.63		52.481 60.256	98.78 99.39	549.541 630.957	100.00 100.00	5754.3 6606.9		
	0.060	0.00		0.631	1.28		6.607	42.47	7	69.183	99.78	724.436	100.00	7585.	776 100.00	
	0.069	0.00 0.00		0.724 0.832	1.89 2.58		7.586 8.710	48.49 54.5		79.433 91.201	99.96 100.00	831.764 954.993	100.00 100.00	8709.0 10000.0		
	0.091	0.00		0.955	3.31		10.000	60.40		104.713	100.00	1096.478	100.00			

Operator notes:

F12 Project No. : 14748-001	Operator: ML	Date: 12-Dec-14
Batch cleaner flotation tests with sodium silicate.		
As per below.		
1 kg of Master Composite		
15 minutes per 1kg in rod mill		P ₈₀ = 207 μm
45 minutes with ceramic media		P ₈₀ = 53 μm
45 minutes with ceramic media		P ₈₀ = 26 μm
45 minutes with ceramic media		P ₈₀ = 15 μm
	 Batch cleaner flotation tests with sodium silicate. As per below. 1 kg of Master Composite 15 minutes per 1kg in rod mill 45 minutes with ceramic media 45 minutes with ceramic media 	 Batch cleaner flotation tests with sodium silicate. As per below. 1 kg of Master Composite 15 minutes per 1kg in rod mill 45 minutes with ceramic media 45 minutes with ceramic media

		Reagents	added, grams	per tonne	Ti	Time, minutes			
			Sodium					10	
Stage	Fuel	MIBC	Silicate	Lime	Grind	Cond.	Froth	pН	
Grind					15				
								7.4	
Rougher 1	10	10		530		1	2	10.0	
Rougher 2	10	10		260		1	2	10.5	
Rougher 3	10	10		120		1	2	10.1	
Rougher 4	10	10		60		1	2	10.0	
Regrind 1					45				
Cleaner 1	10+10	10+10	500	120		1	2+2	10.0	
Cleaner 2	10+10	10+10		250		1	2+2	10.0	
Cleaner 3	10+10	10+10		190		1	2+2	10.0	
Regrind 2					45				
Cleaner 4	10+10	10+10	1000	0		1	2+2	10.0	
Cleaner 5	10+10	10+10		380		1	2+2	10.0	
Cleaner 6	10+10	10+10		100		1	2+2	10.0	
Regrind 2					45				
Cleaner 7	10+10	10+10	1000	0		1	2+2	10.1	
Cleaner 8	10+10	10+10		350		1	2+2	10.0	
Cleaner 9	10+10	10+10		80		1	2+2	10.0	
Total	220	220	2500	2440					

Stage	
Flotation Cell	4L
Speed: rpm	1800

* use as required - record

Metallurgical Balance	e - Rougl	ner Kineti	cs	
Product	We	eight	Assays %	% Distribution
	g	%	C (t)	C (t)
9th Cleaner Con	208.5	20.9	58.8	48.9
9th Cleaner Tail	16.1	1.62	41.7	2.68
8th Cleaner Tail	11.1	1.11	23.3	1.03
7th Cleaner Tail	36.6	3.68	28.2	4.12
6th Cleaner Tail	6.7	0.67	20.3	0.54
5th Cleaner Tail	15.1	1.52	15.0	0.90
4th Cleaner Tail	85.4	8.58	30.2	10.3
3rd Cleaner Tail	13.5	1.36	5.46	0.29
2nd Cleaner Tail	65.2	6.55	23.3	6.06
1st Cleaner Tail	129.5	13.0	23.1	11.9
Rougher Tail	408.0	41.0	8.11	13.2
Head (calc.)	996	100.0	25.2	100.0
(direct)			25.3	
Combined Products				
9th Cleaner Con		20.9	58.8	48.9
9CC+9CT		22.6	57.6	51.6
9CC+9CT+8CT		23.7	56.0	52.6
9CC+9CT+8CT+7CT		27.3	52.2	56.8
9CC+9CT+8CT+7CT+	6CT	28.0	51.5	57.3
9CC + 5-9CT		29.5	49.6	58.2
9CC + 4-9CT		38.1	45.2	68.5
9CC + 3-9CT		39.5	43.9	68.8
9CC + 2-9CT		46.0	40.9	74.9
9CC + 1-9CT		59.0	37.0	86.8
Rougher Tail		41.0	8.11	13.2
Head (calc.)		100.0	25.2	100.0

Sample Nume: SOP Name: Measured: Description:								ne	;3u		IIIa	цу.	31	5 11	ch												
L. E., Malverni December-16-14 12:41:02 PM Sample bulk lot ref: ar Averaged Particle Name: Default Accessory Name: Hydro 2000G (A) December-16-14 12:41:02 PM Particle Name: Dispersant Name: Noter Accessory Name: Hydro 2000G (A) Dispersant Name: Dispersant Name: Noter Accessory Name: Accessory Name: Dispersant RI: Dispersant RI: Dispersa				ail - A	verage	-			1										14 1	2:4 ⁻	1:00) PM					
Sample bulk tot ref: ar Result Source: Averaged Particle Name: Default Accessory Name: Hydre 20003 (A) Absorption: 1.520 Analysis model: General purpose Sensitivity: Enhanced Particle Rit: 1.520 Absorption: Dispersant Name: Dispersant	Sample	e Source	e & type	:																							
ar Averaged Particle Name: Default Accessory Name: Hydro 20006 (A) Analysis model: General purpose Sensitivity: Enhanced 1.520 0.1 Absorption: 0.020 to 200.000 um 0.020 to 200.000 um n: 1.389 % Water 1.330 0.471 % Obscuration: 0.025 m/Vol 0.471 % Pesult Emulation: 0.471 % 0.481 Weighted Mean D(3.2): 0.587 m/Vg Vol.Weighted Mean D(3.3): 105.81 um 0.78 Woighted Mean D(3.3): 106.827 um Pesult units: Volume d(0.1): 4.365 um d(0.5): 9.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 9.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 9.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 9.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 9.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 9.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 9.161 um d(0.8): 179.267 um </td <td>Sample</td> <td>bulk lo</td> <td>t rof.</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>De</td> <td>ecen</td> <td>nber</td> <td>-16-</td> <td>14 1</td> <td>2:41</td> <td>1:02</td> <td>PM</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sample	bulk lo	t rof.				_								De	ecen	nber	-16-	14 1	2:41	1:02	PM					
Default Hydro 2000C (A) General purpose Enhanced Particle RI: Absorption: Size range: Obscuration: 13.89 Obscuration: 13.89 0 Dispersant Name: Dispersant RI: Weighted Residual: O.471 % Off 0.025 %Val 2.457 0.78 Vol.Weighted Residual: Result Emulation: 0.0567 mPig 0.581 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um <td< td=""><td>-</td><td></td><td>i iei.</td><td></td><td></td><td></td><td></td><td></td><td>UE.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-		i iei.						U E.																		
Particle RI: 1.520 Absorption: 0.1 Size range: 0.0245 Observation: 0.0245			:																								
Dispersant Name: Water Dispersant RI: 1.330 Weighted Residual: 0.471 Result Emulation: 0f Concentration: 0.0245 Span : %Vol Span : 2.457 Uniformity: 0.587 Result units: Volume d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um um um d(0.5): 93.161 um d(0.8): 179.267 um um	Particle	e RI:					-																			n:	
Water 1.330 0.471 % Off Concentration: Span : 2.457 Uniformity: Result units: Volume Specific Surface Area: Surface Weighted Mean D[3.2]: Vol. Weighted Mean D[4.3]: O.6827 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um upper state Distribution Distribution d(0.8): 179.267 um upper state Distribution Distribution d(0.8): 179.267 um upper state Distribution Distribution Distribution Distribution Distribution Distribution upper state Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution upper state Distribution Distribution Distribution Distribution <thdistribution< th=""> <thdistret< th=""></thdistret<></thdistribution<>						-		4	D I.						-				-		000	un	n				
0.0245 %/vol 2.457 0.78 Volume Specific Surface Area: Surface Weighted Mean D[3,2]: 10.8 Weighted Mean D[4,3]: 106.8 27 um d(0.1): 4.365 um d(0.5): 93.161 um d(0.8): 179.267 um Particle Size Distribution 0.001 0.01 0.01 100	-	sant Na	me:				-	sant	RI:							-	ited		aua	11:					It Emi	liatioi	n:
$\frac{10567}{0.000} \text{ m/g} \qquad 10.581 \text{ un} \qquad 106.827 \text{ un} $																	mit	y:								s:	
$(1) : 4.35 \text{in} \qquad (2) : 9.11 \text{in} \qquad (2) : 17.27 \text{in} $	-							e We	ighte	ed Mea	an D[[3,2]	:					hted	Меа	an [D[4,	3]:					
Security Valuet Security Valuet Security Valuet Security Valuet Security Sec	0.567	m²/	g			10	0.581		um						10)6.82	27	un	I								
Image: state of the s	d(0.1): 4.3	365	um					d	l(0.5):	93	3.16 ⁻	1	un	n							d(0.8):	179	.267	um	ı
Image: state			Г						F	Partic	le Siz	ze D	oist	ributi	on									1		7	
Stee Value			100				_													+			_				
Stee (um) Volume** Stee (um) Volume** Stee (um) Stee (um) Stee (um) Volume** Stee (um) Stee (um) Stee (um) Volume** Stee (um) St			90																				_				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			80				_	_											_				_				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(%)	70																-	+			_				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Je (++								+							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		In															/										
20 0		Ĭ														Ϊ											
10 0.1 1 10 100 1000 3000 Particle Size (µm) - 14748-001 F12 1st C1 Tail - Average, December-16-14 12:41:00 PM Size (µm) Vol Under %																											
Size (µm) Vol Under % Size (µ																											
Size (µm) Vol Under % Size (µ										_																	
Size (µm) Vol Under % Size (µ			0.0	01		0.1			-	1			1	0			100)			1	000	30	000			
Size (µm) Vol Under % Size (µ																											
0.0100.000.1050.001.0962.5611.48217.61120.22661.181258.925100.000.0110.000.1200.001.2593.0713.18318.89138.03867.801445.440100.000.0130.000.1380.001.4453.6115.13620.24158.48974.411659.587100.000.0150.000.1580.001.6604.2117.37821.65181.97080.651905.461100.000.0170.000.1820.001.9054.8619.95323.11208.93086.212187.762100.000.0200.000.2400.002.5126.3526.03326.06275.42394.492884.032100.000.0260.000.2750.002.8847.1930.20027.52316.22897.093311.311100.000.0300.000.3160.003.3118.0834.67428.99363.07898.733801.894100.000.0350.000.4470.094.36510.0045.70932.27478.63099.945011.872100.000.0460.000.4790.275.01211.0052.48134.33549.541100.005764.399100.000.0520.000.6310.846.60713.0869.18340.18724.436100.005756.756100.000.0690.000.631 </td <td>_</td> <td>-147</td> <td>48-001</td> <td>F12</td> <td>1st Cl T</td> <td>Tail - A</td> <td>verag</td> <td>je, D</td> <td>ecer</td> <td>mber-</td> <td>16-1</td> <td>14 1</td> <td></td> <td></td> <td>PM</td> <td></td> <td>_</td> <td></td>	_	-147	48-001	F12	1st Cl T	Tail - A	verag	je, D	ecer	mber-	16-1	14 1			PM		_										
0.0110.000.1200.001.2593.0713.18318.89138.03867.801445.440100.000.0130.000.1380.001.4453.6115.1362.024158.4897.4.11659.57100.000.0150.000.1580.001.6604.2117.37821.65181.97080.651905.461100.000.0170.000.1820.001.9054.8619.95323.11208.93086.212187.762100.000.0200.000.2990.002.1885.5722.90924.5923.9839.0872511.866100.000.0230.000.2990.002.5126.5526.30326.6627.52394.492884.032100.000.0260.000.2750.002.8847.1930.20027.52316.2897.093311.311100.000.0260.000.3160.003.3029.023.981130.5246.669.6536.0789.653801.89100.000.0350.000.3630.003.3029.023.98113.227476.539.944577.89100.000.0460.000.4790.725.01211.0052.48134.33549.54110.00575.399100.000.0520.000.6530.525.75412.0360.25636.9163.95710.006606.934100.000.0540.050 <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Siz</td> <td>, u ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Vol Un</td> <td></td> <td>-</td> <td></td> <td></td> <td>Vol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_							Siz	, u ,						Vol Un		-			Vol							
0.0150.000.1580.001.6604.2117.37821.65181.97080.651905.461100.000.0170.000.1820.001.9054.8619.95323.11208.93086.212187.762100.000.0200.000.2090.002.1885.5722.90924.5923.83390.872511.866100.000.0230.000.2400.002.5126.3526.03326.06275.42394.492884.032100.000.0260.000.2750.002.8847.1930.2002.752316.2897.093311.311100.000.0300.000.3160.003.3118.0834.67428.99963.07898.733801.894100.000.0330.000.3630.013.3218.0834.67428.99363.7898.733801.894100.000.0340.000.3630.013.3218.0834.67428.99363.7898.733801.894100.000.0350.000.3630.013.3211.004.5703.227478.63099.645011.87100.000.0460.000.4170.295.57412.0360.2563.69163.0957100.006606.934100.000.0550.0525.75412.0360.2563.69163.0957100.006606.934100.000.0560.000.6310.846.607 <th< td=""><td></td><td>0.011</td><td>0.0</td><td>00</td><td>0.120</td><td></td><td>0.00</td><td></td><td>1.259</td><td>1</td><td>3.07</td><td></td><td></td><td>13.183</td><td></td><td>18.89</td><td></td><td>13</td><td>8.038</td><td></td><td>6</td><td>7.80</td><td></td><td>1445.440</td><td>1</td><td>00.00</td><td></td></th<>		0.011	0.0	00	0.120		0.00		1.259	1	3.07			13.183		18.89		13	8.038		6	7.80		1445.440	1	00.00	
0.020 0.000 0.209 0.000 2.188 5.57 22.99 24.59 23.983 90.87 2511.886 100.00 0.023 0.00 0.240 0.00 2.512 6.35 26.03 26.06 275.43 94.49 2884.02 100.00 0.026 0.00 0.275 0.00 2.884 7.19 30.200 2.752 316.28 97.09 3311.311 100.00 0.030 0.00 0.316 0.00 3.311 8.08 34.674 28.99 363.078 98.73 3801.894 100.00 0.035 0.00 0.363 0.01 3.802 9.02 39.811 30.54 416.89 99.65 4365.158 100.00 0.040 0.00 0.417 0.09 4.365 10.00 457.99 32.27 478.630 99.94 5011.872 100.00 0.040 0.040 0.479 0.27 5.012 11.00 52.481 34.33 549.541 100.00																											
0.023 0.00 0.240 0.00 2.512 6.35 2.633 2.606 2.75.423 94.49 2.884.032 100.00 0.026 0.00 0.275 0.00 2.884 7.19 30.200 2.752 316.228 97.09 3311.311 100.00 0.030 0.00 0.316 0.00 3.311 8.08 34.674 2.899 363.078 98.73 3801.894 100.00 0.035 0.00 0.363 0.01 3.802 9.02 39.811 30.54 416.89 99.65 4365.158 100.00 0.040 0.00 0.417 0.09 4.365 10.00 45.79 32.27 478.630 99.94 5011.872 100.00 0.040 0.00 0.479 0.27 5.012 11.00 52.481 34.33 549.541 100.00 5754.399 100.00 0.052 0.000 0.631 0.84 6.607 13.08 69.183 40.18 724.436 100.00																											
0.030 0.00 0.316 0.00 3.311 8.08 34.674 28.99 363.078 98.73 3801.84 100.00 0.035 0.00 0.363 0.01 3.802 9.02 39.811 30.54 416.89 99.65 4365.158 100.00 0.040 0.00 0.417 0.09 4.365 10.00 45.79 32.27 478.630 99.94 5011.872 100.00 0.046 0.00 0.479 0.27 5.012 11.00 52.481 34.33 549.541 100.00 5754.399 100.00 0.052 0.00 0.550 0.52 5.754 12.03 60.256 36.91 630.957 100.00 6606.934 100.00 0.052 0.00 0.631 0.84 6.607 13.08 69.183 40.18 724.436 100.00 7585.776 100.00 0.069 0.00 0.724 1.21 7.586 14.15 79.433 44.25 831.764 100.00																											
0.035 0.00 0.363 0.01 3.802 9.02 39.811 30.54 416.89 99.65 4365.158 100.00 0.040 0.00 0.417 0.09 4.365 10.00 45.79 32.27 478.630 99.94 5011.872 100.00 0.046 0.00 0.479 0.27 5.012 11.00 52.481 34.33 549.541 100.00 5754.399 100.00 0.052 0.00 0.550 0.52 5.754 12.03 60.256 36.91 630.957 100.00 6606.934 100.00 0.050 0.000 0.631 0.84 6.607 13.08 69.183 44.08 724.436 100.00 7585.776 100.00 0.069 0.00 0.724 1.21 7.586 14.15 79.433 44.25 831.764 100.00 8709.636 100.00 0.079 0.00 0.832 1.63 8.710 152.5 91.201 49.17 954.993 100.00																											
0.046 0.00 0.479 0.27 5.012 11.00 52.481 34.33 549.541 100.00 5754.399 100.00 0.052 0.00 0.550 0.52 5.754 12.03 60.256 36.91 630.957 100.00 6606.934 100.00 0.060 0.00 0.631 0.84 6.607 13.08 69.183 40.18 724.36 100.00 7585.776 100.00 0.069 0.00 0.724 1.21 7.586 14.15 79.433 44.25 831.764 100.00 8709.636 100.00 0.079 0.00 0.832 1.63 8.710 152.5 91.201 49.17 954.993 100.00 1000.000 1000.000																											
0.052 0.00 0.550 0.52 5.754 12.03 60.256 36.91 630.957 100.00 6606.934 100.00 0.060 0.000 0.631 0.84 6.607 13.08 69.183 40.18 724.436 100.00 7585.776 100.00 0.069 0.00 0.724 1.21 7.586 14.15 79.433 44.25 831.764 100.00 8709.636 100.00 0.079 0.00 0.832 1.63 8.710 15.25 91.201 49.17 954.993 100.00 1000.000 1000.000		0.040	0.0	00					4.365					45.709		32.27					9	9.94					
0.060 0.00 0.631 0.84 6.607 13.08 69.183 40.18 724.436 100.00 7585.776 100.00 0.069 0.00 0.724 1.21 7.586 14.15 79.433 44.25 831.764 100.00 8709.636 100.00 0.079 0.00 0.832 1.63 8.710 15.25 91.201 49.17 954.993 100.00 1000.000 1000.000																											
0.079 0.00 0.832 1.63 8.710 15.25 91.201 49.17 954.993 100.00 10000.000 100.00		0.060	0.0	00	0.631		0.84		6.607		13.08			69.183		40.18		72	4.436		10	0.00		7585.776	1	00.00	

Operator notes:

					nesui	l Allai	ysis n	epon				
Sample N a 14748-001		I Tail - A	verage	SOP Na Defaulta	-			Measure Decembe	d: r-16-14 12	:23:51 PM		
Sample So	ource & ty	pe:		Measur LR_Mal				Analysed Decembe	l: r-16-14 12	:23:52 PM		
Sample bı ar	ulk lot ref:			Result Average	Source: ed							
Particle N Default	ame:				ory Name: 2000G (A)			Analysis General p			Sensi Enhar	
Particle R	l:			Absorp				Size rang			Obsci	uration:
1.520				0.1				0.020	to 200	0.000 um	17.16	%
Dispersan Nater	it Name:			Dispers 1.330	sant RI:			Weighted 0.478	l Residual %	:	Resul Off	t Emulatior
Concentra	ation: %Vol			Span : 4.221				Uniformi 1.31	ty:		Resul Volum	t units:
											volum	e
Specific S 0.995	m²/g	ea:		Surface 6.032	e Weighted um	Mean D[3,	2]:	Vol. Weig 30.293	Ihted Mear um	n D[4,3]:		
d(0.1):	2.448	um			d(0	.5): 17.6	627 un	n		d(0	.8): 52.8	79 um
					Pa	rticle Size	Distributi	on				
	10	0										
	9											
	8											
-	-											
Ì		0										
	(%) aunio 4											
		0										
	3	0										
	2	0										
	1	0										
										1000		
		0.01		0.1	1	Deutiale C	10	10	0	1000	3000	
	14748-00)1 F12	4th Cl Tai	l - Averac	ie Decem	Particle S		PM				
	(μm) Vol Ur			ol Under %		Vol Under %	Size (µm)	Vol Under %	Size (µm)	Vol Under %	Size (µm)	Vol Under %
	0.010	0.00	0.105	0.00	1.096	3.81	11.482	38.64	120.226	97.71	1258.925	100.00
	0.011 0.013	0.00	0.120	0.00	1.259 1.445	4.62 5.51	13.183 15.136	42.29 45.97	138.038 158.489	98.88 99.58	1445.440 1659.587	100.00 100.00
	0.015	0.00	0.158	0.00	1.660	6.51	17.378	49.63	181.970	99.90	1905.461	100.00
	0.017	0.00	0.182	0.00	1.905	7.63	19.953	53.25	208.930	100.00	2187.762	100.00
	0.020 0.023	0.00	0.209	0.00	2.188 2.512	8.88 10.27	22.909 26.303	56.86 60.48	239.883 275.423	100.00 100.00	2511.886 2884.032	100.00 100.00
	0.026	0.00	0.275	0.00	2.884	11.82	30.200	64.16	316.228	100.00	3311.311	100.00
	0.030	0.00	0.316	0.00	3.311	13.54	34.674	67.93	363.078	100.00	3801.894	100.00
	0.035 0.040	0.00	0.363 0.417	0.01 0.13	3.802 4.365	15.45 17.57	39.811 45.709	71.81 75.78	416.869 478.630	100.00 100.00	4365.158 5011.872	100.00 100.00
	0.046	0.00	0.479	0.38	5.012	19.91	52.481	79.78	549.541	100.00	5754.399	100.00
	0.052	0.00	0.550	0.74	5.754	22.49	60.256	83.70	630.957	100.00	6606.934	100.00

Operator notes:

0.060

0.069

0.079

0.091

0.00

0.00

0.00

0.00

1.20

1.75

2.38

3.06

6.607

7.586

8.710

10.000

0.631

0.724

0.832

0.955

25.31

28.36

31.62

35.07

69.183

79.433

91.201

104.713

87.41

90.76

93.65

95.97

100.00

100.00

100.00

100.00

100.00

100.00

100.00

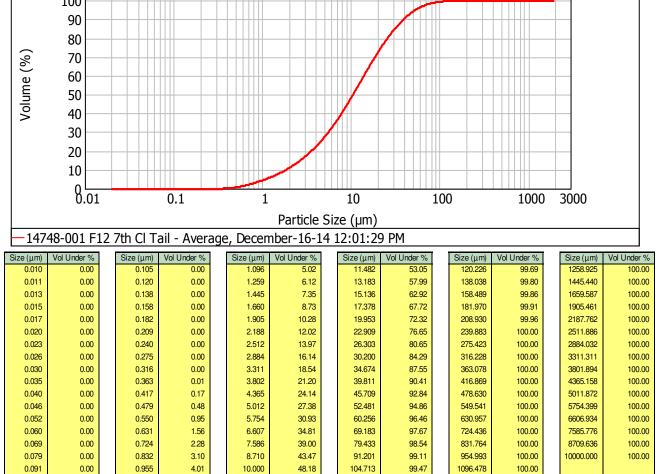
724.436

831.764

954.993

1096.478

7585.776


8709.636

10000.000

Sample Name: 14748-001 F12 7th Cl Tail - Average	SOP Name: Defaultar	Measured: December-16-14 12:01:29 PM	
Sample Source & type:	Measured by: LR_Malvern1	Analysed: December-16-14 12:01:31 PM	
Sample bulk lot ref: ar	Result Source: Averaged		
Particle Name: Default	Accessory Name: Hydro 2000G (A)	Analysis model: General purpose	Sensitivity: Enhanced
Particle RI:	Absorption:	Size range:	Obscuration:
1.520	0.1	0.020 to 2000.000 um	18.52 %
Dispersant Name:	Dispersant RI:	Weighted Residual:	Result Emulation:
Water	1.330	0.832 %	Off
Concentration:	Span :	Uniformity:	Result units:
0.0141 %Vol	3.524	1.12	Volume
Specific Surface Area:	Surface Weighted Mean D[3,2]:	Vol. Weighted Mean D[4,3]:	
1.31 m²/g	4.590 um	16.677 um	
d(0.1): 1.861 um	d(0.5): 10.535 u	ım d(0.8)): 25.697 um
	Particle Size Distribut	tion	
100			
100			

Operator notes:

This page has been intentionally left blank.

Deficiencies- Metallurgical Testing Assessment Report

May 7th, 2015

The metallurgical testing report is meant to compliment the earlier report on the property from 2014. The earlier work was filed without the current metallurgical work due to assessment work requirements. The metallurgical testing was done on hole GC-12-01 from 60.5 to 84.5 meters. A copy of the drill log, the drill section and a drillhole location map has been appended to this deficiency report in order to address concerns raised by MNDM assessors.

Signed,

Steven Siemieniuk, P.Geo.

May 7, 2015

Target:

Date Started: Date Completed:

Date Logged:

Logged By:

Drilling Company:

Company / Owner / Optionee: Greencastle Rockstone Property: Project Number: Claim Number(s): Target "C" GC-12-01 Hole Number: Length: 201m Core Size: Grid East: Grid North: UTM Easting: UTM Northing: NAD83, Zone 16 Datum and UTM Zone: Elevation: Az: 42.5, Dip: -45 Planned Collar Orientation: Surveyed Collar Orientation: Magnetic Declination:

B. CLARK

05/07/2012 06/07/2012 Chibougamau 06-Jul-12

291260

5364780

Diamond Drill Core Logging Sheet - Header Page

		D	ownhole Si	urveys
strument:				
Depth	Dip	Azimuth	Mag	Comment
96				
201	-33.4	53.7	53884	

Core Storage:

Comments:

Additional samples were taken to better "wing" the zone, they are highlighted in yellow (20-Sept-12)

Diamond Drill Core Log

Ma	ajor		Mi	nor			Sam	ples		QA/QC	Au	Cu	Pb	Zn
rom	То	Code	From	То	Description	Number	From	То	Length	S/B/D	ppm	ppm	ppm	ppm
.00	6.00				Casing to 6m, bedrock starts at 5.5m									
.50	60.53				Intermediate Pyroclastic.									
				~	Flow to tuff/lapilli tuff, dark grey in colour, contains angular-subrounded clasts of quartz ranging is size from 1mm-1cm. Bedded/banded at 55° to core axis	741551	52.00	53.50	1.50		0.0120	34	5	73
8					Quartz veining ranging in widths from 2mm-2cm. Mineralization occurs as stringers + disseminated in host rock of pyrite+pyrrhotite (1-5%). More intense zones of mineralzation are 53m-53.9m and 55m-58.3m. Contact is at 60° to core axis, occurs over 0.5cm	741552					0.0070	62	12	80
					7.47m to 8.5m Quartz vein									
					9m - 15.8m Lamprophyre Dike									
0.50	84.50				Metaseds - Graphitic Argillite-Mudstone									
	-	*			Thinly bedded graphite rich, v fine grained, dark grey to black in colour, brittle brecciated zone with angular clasts ranging in size from 3mm-5cm. (Syntectonic breccia) Mineralization occurs within white carbonate/quartz matrix to the clasts as stringers+pods of pyrite+pyrrhotite (1-5%) with reddish brown sphalerite and chalcopyrite.	741553	59.50	60.50	1.00		0.0080	143	17	68
					Contact is obscured by broken core.	741554	60.50	62.00	1.50		0.0140	1457	160	9817
						741555	62.00	63.50	1.50		0.0250	1555	116	9322
						741556	63.50	65.00	1.50		0.0320	1598	130	9897
					60.5m - 84.5 m : 0.82% Zn, 0.15% Cu	741557	65.00	66.50	1.50		0.0160	1935	122	8013
						741558	66.50	68.00	1.50		0.0140	1673	83	8647
						741559	68.00	69.50	1.50		0.0310	1828	190	10092
						741560	69.50	71.00	1.50		0.0580	1785	143	10037
						741561	71.00	72.50	1.50	10	0.0080	1769	144	10247
			-			741562	72.50	74.00	1.50	1	< 0.005	1802	99	7107
						741563	74.00	75.50	1.50		<0.005	1573	129	9124
						741564	75.50	77.00	1.50		< 0.005	1428	122	8727
						741565	77.00	78.50	1.50		0.0100	1515	136	9603
					A	741566	78.50	80.00	1.50		< 0.005	976	110	4462
					*	741567	80.00	81.50	1.50		0.008	1066	206	6618
			-			741568	81.50	83.00	1.50		<0.005	992	227	6910
						741569	83.00	84.50	1.50		< 0.005	748	126	3281

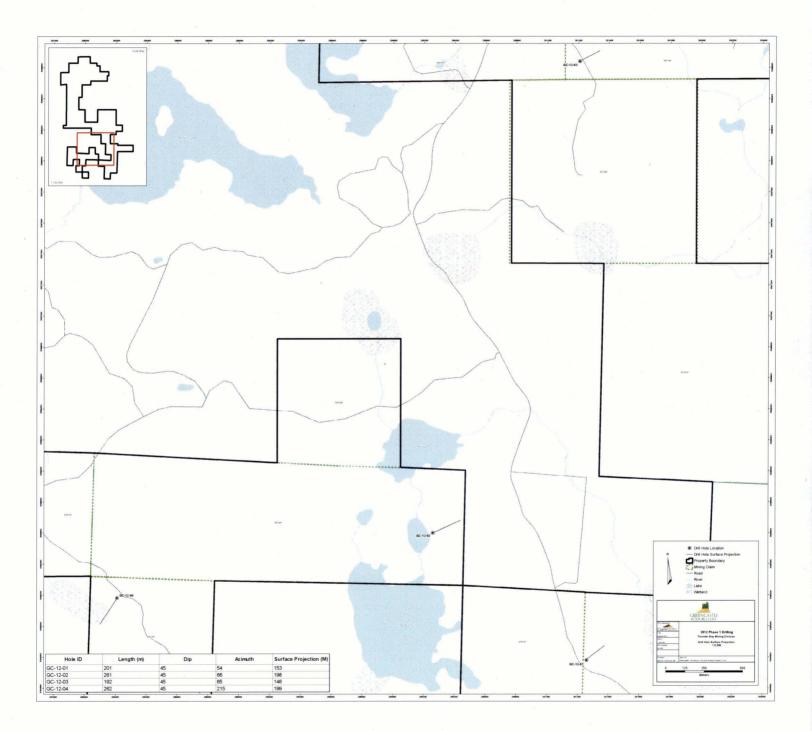
Page 2 of 5

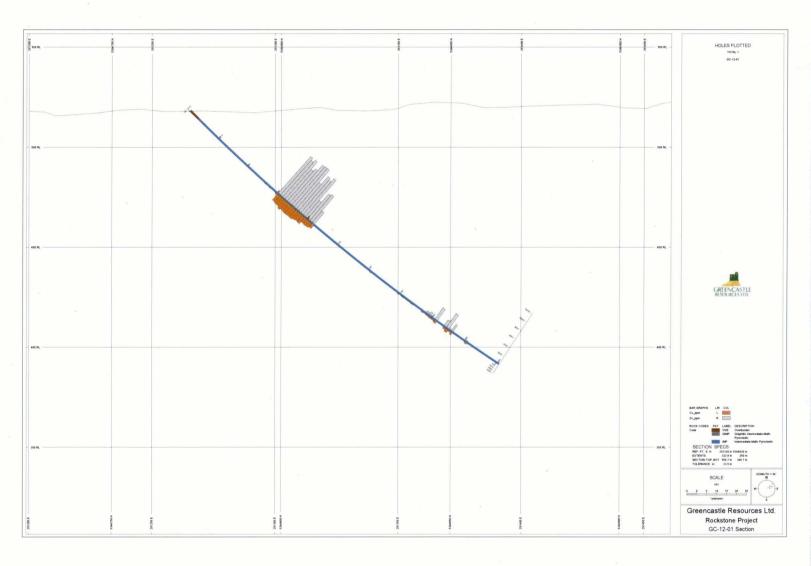
Diamond Drill Core Log

					Drillhole: GC-12-01							_		
N	1				2 X		6			04/05	A. 1	6	D1	7.
Ma		Code		nor	Description		-	nples	1	QA/QC	Au	Cu	Pb	Zn
From	То		From	То		Number	From	То	Length	S/B/D	ppm	ppm	ppm	ppm
					Dark grey in colour, flow to tuff clasts ranging in size 1-4mm, angular to sub-rounded clasts.									
					Foliated/bedded(?) at 60° to core axis. Mineralization consists of disseminated + stringers (1-3mm)									
					of pyrite+pyrrhotite (1-3%). Quartz veins ranging from 1mm-5mm									
					111.6-113: contains felsic veins (kfsp, qtz, minor bt). Chilled margin									
					Stronger Mineralized zones: 120m-123m: stringers and disseminated pyrrhotite+pyrite (1-3%).									
						741570	121.00	122.00	1.00		<0.005	62	11	285
					125-132m: stringers ranging from 1-4mm, pyrrhotite+pyrite (3%); minor pink elongate garnet	/415/0	121.00	122.00	1.00		<0.005	02		285
					grains locally 133m kfsp clasts appear 1-3mm, increase in abundance towards contact.									
					Contact is sharp at 133.3m @60° to core axis									
133.30	136.60				Lamprophyre Dike									
					Dark grey-green, med to coarse grained massive, grains ranging in size from 2mm-7mm, contains									
					common coarse biotite. Chlorite is more abundant around quartz veins (alteration). Porphyritic	2								
					feldspar near the base .				1.1					
					Disseminated pyrrhotite+pyrite throughtout (1-3%)									
					Unit ends at quartz vein.									
136.60	153.60				Intermediate Volcanic Breccia									
					Debris flow(?), Dark grey in colour, quartz/carbonate flooded material, matrix contains biotite.							-		
					Minor chlorite alteration present. Weakly foliated @50° to core axis.	741571	138.50	139.50	1.00		0.006	73	3	113
			N		Pyrite+pyrrotite occur as stringers and disseminated thoughout host rock (1-3%), stringer are									
					mostly pyrrhotite with minro pyrtie ranging in width from 3mm-2.5cm.									
						741572	141.00	142.50	1.50		0.013	61	6	87
						741573	142.50	144.00	1.50		<0.005	32	2	80
						741574	144.00	145.50	1.50		<0.005	42	6	97
						741575	145.50	147.00	1.50		<0.005	28	8	91
						741576	147.00	148.50	1.50		<0.005	84	13	166
					152.4-153.0: Core missing.	7 12070	211100	10100	2100					
					Gradational contact, occurs over 1cm @~50° to core axis.									
153.60	180.10				Metasediments : Wacke - graphitic argillite	741577	153.60	154.60	1.00		< 0.005	148	15	140
					Black-grey in colour, graphitic, weakly foliated @ 60° to core axis. Mineralization occurs as	741578	154.60	155.60	1.00		< 0.005	77	<1	359
					disseminated+stringers+pods of pyrrhotite+pyrite (1-5%).									
					Mostly contains grains <1mm	741579	156.00	157.00	1.00		< 0.005	109	13	701
					Coarse grained sections between 160.7-161.5: disseminated pyrite+pyrrhotite (1%)	741580	157.00	158.00	1.00		0.008	114	14	639

Page 3 of 5

Diamond Drill Core Log


Ma	ajor	Code	Mir	nor	Description		Sarr	ples		QA/QC	Au	Cu	Pb	Zn
From	То	coue	From	То	Description	Number	From	То	Length	S/B/D	ppm	ppm	ppm	ppm
					161.5 - 170.3 Graphite increases significantly; locally beds 15-60 cm wide of less graphitic more									
					silty to wacke material							-		
					177.1-177.5: Lamprophyre dike	741581	158.00	159.00	1.00		0.008	182	23	1045
					Contains quartz veins between 1-4mm in width	741582	159.00	160.00	1.00		< 0.005	168	15	481
						741583	160.00	161.50	1.50		< 0.005	184	15	175
					Contact is gradational, occurs over approximately 0.5cm, but @45° to core axis	741584	161.50	163.00	1.50		< 0.005	426	88	3010
						741701	163.00	164.50	1.50		0.035	285	35	2675
						741702	164.50	166.00	1.50		0.026	295	35	1722
						741703	166.00	167.20	1.20		0.031	354	41	2818
						741585	167.20	168.70	1.50		0.007	288	50	1638
						741586	168.70	170.20	1.50		0.005	613	46	3578
						741587	170.20	171.70	1.50		0.005	166	20	566
						741588	171.70	172.70	1.00		0.005	453	33	1851
						741704	172.70	174.20	1.50		0.015	117	25	1062
						741705	174.20	175.70	1.50		0.014	189	27	1244
						741706	175.70	177.20	1.50		0.011	161	25	1121
						741707	177.20	178.70	1.50		0.017	165	29	867
						741708	178.70	180.20	1.50		0.012	195	28	1292
180.10	194.40				Intermediate Pyroclastic.									
					black-grey-green in colour, minor graphitic material, fine grained alternating beds(?)/bands(?) @									
					60° to core axis of quartz+carbonate and host rock. Some zones of chloritic alteration (180.1-	741589	180.20	181.70	1.50		0.006	236	18	483
					186m)									
					Mineralization occurs as stringers+disseminated pyrite (1-3%), mineralized zone between 180.1-	741590	181.70	182.70	1.00		< 0.005	24	2	61
					184.6m after this vary sparse.	741590	181.70	182.70	1.00		<0.005	24	3	61
					186.8-188: Apperance of kfsp ~1-3mm within quartz+carbonate zones between fine grained black									
					material with minor graphite.									
					Contact is sharp, is on an sharp angle and extends for 65cm @10° to core axis									
194.40	197.90				Lamprophyre dike									
					grey-green in colour, grain size 1-4mm, contains bt(40%)+chl(30%)+qtz(20%) +carbonate(10%).									
					Mineralization consists of disseminated pyrite + pyrrhotite (1-2%)							_		
N.					Contact is sharp but on an angle and extends over 5cm @35° to core axis. Pyrite veinlet along contact.									
197.90	201.00				Intermediate Pyroclastics.									


Page 4 of 5

Diamond Drill Core Log

Ma	jor	Code	Mir	nor	Description		Sam	ples		QA/QC	Au	Cu	Pb	Zn
rom	То	Code	From	То	Description	Number	From	То	Length	S/B/D	ppm	ppm	ppm	ppm
					Black/grey-green in colour, fine grained, contains qtz+carbonate+ chlorite "zones" (quartz/carbonate veins which have caused alteration of host rock). Ranging in widths from 1mm-2cm. Veins $@$ ~50° to core axis.									
					Disseminated pyrite (<1%)									
	_				201= End of hole									
												-		
		-			Some relogging by J Pirie									

Page 5 of 5

